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Preface

 Where are We Coming From?

When we joined Washington State University (WSU) around 10 years ago, we were 
faced with the new form of agriculture that we were not used to. Both of us were 
trained on mechanization and automation technologies for row crops (such as rice, 
wheat, corn, and soybean) and most of our career experience was also around the 
same domain. Dr. Manoj Karkee completed his PhD in agricultural engineering and 
human computer interaction at Iowa State University working on dynamic systems 
modeling, control, and navigation/guidance of tractor and towed implement sys-
tems. He graduated in 2009 and continued researching more in this area before 
making the move to Washington. Dr. Qin Zhang graduated with PhD in agricultural 
Engineering from University of Illinois Urbana-Champaign (UIUC) in agricultural 
automation and worked at Caterpillar Inc. and UIUC for more than 15  years 
researching and developing various automation technologies for agriculture, includ-
ing auto-guidance and intelligent field machinery technologies that have now been 
widely adopted around the world.

In Washington and the Pacific Northwest (PNW) region of the USA, our work 
revolves around a completely different farming environment. Contrary to a reason-
able level of homogeneity we find in the Midwest in terms of major commercial 
crops, the PNW region presented one of the most diverse forms of agriculture focus-
ing heavily on high-value fruit and vegetable crops, which are major parts of a 
cluster of crops called specialty crops. Washington produces more than 300 differ-
ent commercial crops, presenting unique challenges and opportunities for making 
farming more efficient and sustainable. Each type of crop is grown in comparatively 
small acreage. In addition, there are many different crop cultivars and cropping 
systems planted within a given crop type. Using apples as an example, there are a 
few dozen different cultivars planted in Washington State alone, and these cultivars 
are planted in many different crop architectures. In addition to variability in the crop 
architecture, color, geometric (shape, size), and physiological (e.g., surface tough-
ness) parameters of produce also vary widely. These unique combinations of crop 
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types, cropping systems, and cultivars present unique situations requiring special-
ized mechanization, automation, and robotic solutions.

Nevertheless, our experience from both row crop and specialty crop agriculture 
tells us that robotic solutions for all types of agricultural and field applications share 
a wide range of fundamental theories and principles as well as a fair share of chal-
lenges such as difficult field conditions, variable and unstable environment, and 
biological variability of plant and produce. To address these challenges, as discussed 
more widely in various chapters of this book, automation and robotics for agricul-
tural and field applications have been in the fore front of research and development 
in recent years. With the advent of novel, affordable, and more powerful sensing 
technologies, sensors (e.g., red–green–blue depth) and sensing platforms (e.g., 
UAVs and ground robots), novel and advanced robotic technologies (e.g., soft robot-
ics), robust machine learning techniques (e.g., deep learning), and increasingly 
powerful and affordable computational tools (e.g., graphical processing units), we 
can now envision a world where automating even the most specific/unique field 
operations (e.g., red raspberry pruning and bundling) is imaginable.

In this context, both public and private (big and small) enterprises around the 
world are actively involved in research and development of wide variations of 
robotic technologies for farming and other field applications. As new researchers 
are attracted to the field every day and as there is an increasing need for training the 
next generation of workforce for development, operation, and maintenance of smart, 
robotic technologies for farming and other field applications, a book covering the 
fundamental principles that can be applicable to a wide swath of applications in 
various types of agricultural industries was deemed crucial. With this context in the 
background, this book was conceptualized around 3 years ago, and have been in 
writing for about 2 years. In this process, we got the full, unconditional support 
from experts all around the word contributing to the book with their long experi-
ence, unparalleled insights, and thoughtful ideas. It was a privilege to read the con-
tributions of 33 professors, researchers, scholars, engineers, scientist, and students 
from across the globe who are world leaders in their respective fields.

We believe this book fills the gap of a good, comprehensive reference for proces-
sors, scientists, engineers, and scholars working actively in robotics, in general, and 
agricultural and field robotics, in particular. We also believe that this book can pro-
vide a great text or primary reference for students who are developing their knowl-
edge and experience in robotics and for early career researchers who are trying to 
build their research and scholarship programs around agricultural and field robotics. 
Theories, assumptions, and hypothesis are good starting points and can provide 
strong motivations. What we just discussed in this paragraph are our assumptions 
and hypothesis. As we are the scientists who always have doubts on our hypothesis 
and conduct rigorous research to validate or dis-validate our assumptions and 
hypothesis, we are now out of control in terms of what we could do differently in 
the book, and it is up to fellow researchers, engineers, students, and scholars like 
you to prove us right or wrong in terms of what, if any, values this book brings to 
you and to the profession.

Preface
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 Organization of the Book

The book has been organized into 3 distinctive parts and 16 chapters. After present-
ing an introductory discussion on the importance and fundamentals of agricultural 
and field robotics in Chap. 1, 5 chapters have been presented to describe various 
sensing and machine vision systems (Part I of the book) as it applies to agricultural 
and field robotics. Chapter 2 presents color sensing and image processing systems 
whereas Chap. 3 presents the fundamentals of 3D sensing approaches and systems. 
Basics on spectral sensing is presented in Chap. 4. Chapters 5 and 6 present various 
ways crop sensing and scouting can be performed in the field and control environ-
ment farming including new research and development efforts in crop phenotyping. 
Part II of the book, starting with Chap. 7, focuses on mechanisms, dynamics, and 
control of agricultural and field robotic systems. First, robotic manipulation systems 
(robotic arms) and their optimization for agricultural applications will be presented 
in Chap. 7, and end-effector (robotic hand) systems are discussed in Chap. 8. 
Chapter 9 presents the fundamentals of control techniques with specific focus on 
robotic harvesting. Chapter 10 presents various aspects of guidance and auto- 
steering systems whereas Chap. 11 describes technologies for in-field sorting of 
fruit crops and Chap. 12 presents the basics of modeling and simulation techniques 
for robotic systems. Third and final part of this book focuses on emerging topics in 
agricultural and field robotics. In this part, advanced learning and classification 
techniques (Chap. 13) and digital farming techniques such as the Internet of Things 
(IoT) and big data (Chap. 14) are discussed. Similarly, two additional emerging top-
ics are covered in Chap. 15 (Human-machine interactions) and Chap. 16 (Plant- 
machine interactions). All these chapters, generally, begin with fundamental 
concepts and algorithms followed by specific case studies demonstrating the ways 
the concepts and algorithms are applied to solve specific agricultural and field 
robotic challenges. Finally, all chapters present a brief summary and concluding 
thoughts with authors’ insights into the topic area covered.

It is to be noted that this book primarily addresses the fundamentals of agricul-
tural robotics, thus most of the examples, case studies, and cited literature are bor-
rowed from agricultural industries, specifically crop production agriculture. 
Agriculture, being one of the most diverse, variable, uncertain, and biologically 
driven field production environments, focus on agriculture provided, in our opinion, 
the best example to discuss the fundamentals of robotics for field applications. The 
concepts, algorithms, and tools discussed in this book, though the examples come 
from efforts in crop production systems, are equally applicable to robotics beyond 
production agriculture, particularly for outdoor and field applications such as those 
common in animal farming, military, mining, and construction industries.

Preface
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 Summary and Concluding Thoughts

To summarize, automation and robotics is an increasingly important area of research, 
innovation, development, and commercial adoption in agricultural and field applica-
tions. The overall success in developing novel robotic solutions for complex agri-
cultural and field problems requires advancement and innovative integration of 
various tools, techniques, and concepts including machine vision systems, other 
sensors and sensing systems, navigation and guidance techniques, modeling, simu-
lation and control methods, manipulation and end-effector technologies, and robust 
machine learning techniques. This book has been developed to cover some of these 
important areas of robotics as it applies to field environments. The following are 
three most important features of the book:

 (i) The first book discussing the fundamentals of this emerging technology in 
agriculture, which is suitable for senior-level undergraduate students and grad-
uate students (as a textbook or reference book) and for researchers, engineers, 
policy makers, farmers, and other stakeholders as a reference book.

 (ii) Use of a systematic approach to discuss the fundamentals of automation and 
robotics as it relates to agricultural and field applications supported by unique 
and emerging examples from cutting-edge research and development programs 
around the world.

 (iii) The book has presented basic principles of generic concepts and technologies 
in agricultural robotics that is applicable to all areas of agricultural and field 
operations, including field crops, special crops, and green house and vertical 
farming, among others.

Last but not least, as we are drafting this preface, we are in the most unprece-
dented time of our generation, the COVID-19 pandemic. We are under complete 
lockdown (about two-thirds of the world population is in the same condition), and 
most of the latest editing and final polishing of this book occurred at small corners 
of our homes. This pandemic has reminded us how helpless we are, as individuals, 
under the vast, mighty force of nature. We hope, by the time this book comes out, 
we will be in a much better situation in relation to COVID-19. We also hope, how-
ever, that this pandemic is a timely reminder for us to play our roles on living a life 
that maintains a harmony with nature and a life that strives to optimize resource 
utilization for sustainable civilization. We would feel proud if this book, directly or 
indirectly, helps make the tiniest of impacts on advancing agricultural and field 
operations to be more efficient in conserving crucial natural resources.

Prosser, WA, USA Manoj Karkee 
  Qin Zhang 

Preface
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Chapter 1
Agricultural and Field Robotics: 
An Introduction

Qin Zhang and Manoj Karkee

1.1  Background

The primary purpose of agriculture is to produce sufficient high-quality food for 
human being to sustain and enhance life. Commonly accepted population growth 
models predict that there will be more than nine billion people by 2050 in the world, 
and the increasing population will significantly increase the demand for food, fiber, 
and fuel. People have historically improved and kept evolving farming technologies 
to meet the needs for feeding continuously growing human population by increas-
ing productivity and production efficiency and enhancing food safety and nutrition 
while protecting the environment and conserving natural resources. One big chal-
lenge the agricultural industry of the United States (and so do many other countries) 
facing today is the shortage of human labors to conduct field operations, and the 
trend is expected to continue and become even worse.

One solution to address the field labor shortage challenge is the adoption of 
mechanized and automated farming technologies. Over the past century, mechani-
zation technologies have made revolutionary changes in field crop production, mak-
ing it possible to achieve high yields using minimal farm labor. Attributed to its 
great impact to societal advancement, agricultural mechanization was recognized as 
the seventh greatest engineering achievements of the twentieth century by the 
National Academy of Engineering of the United States. Continuing up on this suc-
cess, mechanized farming has been advancing through adoption of increased level 
of automation and intelligence to further improve the precision management of 
crops (including input resources), increase productivity, and reduce farm labor 
dependency in field operations beyond what has been possible with conventional 
mechanization technologies. For example, farmers have widely adopted 
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auto-steering technology commercialized early this century for many different field 
operations including tilling, planting, chemical application, and harvesting (Erickson 
2019). Automated thinning and precise weeding in vegetable and other crops are 
other technologies that have recently been commercialized. Mechanization and 
automation/robotics have played similar roles in other field applications such as 
those common in construction, mining, and military industries. For agricultural and 
other field machinery to be capable of performing those automated field operations, 
machinery needs hold the abilities of (i) being aware of actual operation condition, 
(ii) determining corrections suitable for changed conditions, and (iii) implementing 
the corrections during field operation.

These three basic abilities required for automated or intelligent agricultural/field 
machinery actually are the same as those needed for robots which include the capa-
bilities of (i) perceiving the situation of an operation with surrounding conditions, 
(ii) making appropriate decisions for smartly performing the operation under the 
condition, and (iii) automatically implementing the desired operation. Such similar-
ity between desired abilities of intelligent agricultural and field machinery and 
robots makes a logical sense to call such machinery robotic machines. It implies 
that agricultural and field robots do not have to be in a form of human-like machines 
in appearance, but keep their conventional configuration for most effective, effi-
cient, and robust field operations. Such a definition allows us to inherit the accom-
plishments of century-long development of agricultural and field machinery 
technology in creating robots for various agricultural and other field applications.

1.2  Fundamental Technologies for Agricultural 
and Field Robotics

1.2.1  Sensing and Situation Awareness

As mentioned earlier, the first capability of a robotic machine has to possess is its 
ability to perceive an awareness of the operational situation, which is acquired using 
sensors and/or sensing systems integrated with those machines. As a machine 
designed to mimic humans performing various tasks, ideally a robot should possess 
all the “senses” of human being, namely, vision, hearing, feel/touch, smell, and 
taste. However, robotic agricultural/field machines are designed to perform some 
specific tasks in some specific operational sites/conditions, and therefore, they often 
are not needed to have the full ability to sense to gain the needed awareness of the 
situation to conduct appropriate operations. In a wide range of agricultural and field 
applications, the ability to see is often sufficient, and therefore, visual sensing plays 
a critical role in many robotic machines designed and developed for agricultural and 
other fields.

The first fundamental sensing function requested by any mobile robotic machin-
ery is the capability to gain an awareness of its surrounding and find its ways to 
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move on the desired paths to perform the designated operations. Composed of 
image acquisition hardware and image processing software to automatically inspect 
the environment and objects of interest based on the visual characteristics, computer 
vision could provide the required capability (Reid et al. 2000). One of the widely 
used and simplest computer vision systems could probably be the monocular vision. 
Similar to one eye vision of human being, a monocular vision is capable of provid-
ing a two-dimensional (2D) visual perception on the relative positions of objects of 
interest within a field of view. This technique has found its application in detecting 
a guidance directrix on crop rows or the edges along harvested crops to guide robotic 
machinery performing different operations in row crop fields (Rovira Más et  al. 
2005). Various methodologies of image processing have been developed for extract-
ing the guidance information for providing a steering signal for navigating the 
mobile robotic machinery (Reid et al. 2000). More discussion on various techniques 
used to acquire and process images can be found in Chap. 2. Although the 2D image 
approach is computationally efficient, it lacks reliable means to locate the actual 
position of an object of interest. From this point of view, binocular vision can be 
used to obtain a stereo view (3D image) of the scene and therefore to provide more 
robust perception on perspective pathways because of its capability of providing 
depth information. Furthermore, stereovision has two important advantages for 
navigating robotic machinery: (i) moderate insensitivity to shadows and changes in 
lighting conditions and (ii) its capability to provide useful state information to the 
tracking phase as the localization of potential obstacles in front of unmanned vehi-
cles (Rovira Más et al. 2009).

Because agricultural and field robots are used on outdoor natural environment, it 
requires that surrounding awareness sensing on these machines need to have high 
robustness, high reliability, acceptable accuracy, high mechanical and temperature 
stability, and low cost. There are a few other sensing methods, such as global posi-
tioning systems (GPS), and laser scanning/LIDAR systems, which are widely used 
(stand-alone or in combination with other sensors using sensor fusion techniques) 
on robotic agricultural/field machinery to provide reliable positioning information 
for navigating such machinery operating in the field autonomously. Detailed 
description on stereovision and other 3D sensing techniques and systems can be 
found in Chap. 3.

Other than providing navigation information, vision sensors are also used in 
detecting other characteristics of object of interest either to support robotic opera-
tions or to scout crop growth/health conditions. To provide such functionalities, 
machine vision-based sensing techniques use different types of modalities to acquire 
appropriate information. Standard imaging sensors can be used to detect mono-
chrome or color responses for determining physical properties of object of interest, 
such as relative location, shape, and/or size; and spectral imaging sensors can be 
used to detect responses in various bands of spectrum for measuring biological 
properties of plants, such as nutrient, water, and disease stresses of a plant. A few 
examples of standard image sensing applications (other than navigation) include 
weed detection for robotic weed control (Blasco et al. 2002), branch detection for 
robotic pruning of apple trees (Karkee et al. 2014), and apple detection for robotic 
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picking (Silwal et al. 2016). Some examples of spectral image sensing include crop 
nitrogen stress detection (Kim et al. 2000; Noh et al. 2006), soybean disease detec-
tion (Cui et  al. 2010), and blueberry fruit maturity detection (Yang et  al. 2014). 
More discussion on spectral sensing techniques can be found in Chap. 4 and their 
applications on crop scouting can be found in Chap. 5.

One specific application of various sensing capabilities of a robot would be in 
automated phenotyping, which aims at performing high-throughput screening of 
genotypes for more effective breeding selection of crops and has gain high attention 
in recent years. As plant phenotyping attempts to measure plant growth, architec-
ture, and composition of organs to canopies with a certain degree of accuracy and 
precision at different scales, both standard and spectral imaging methods have found 
their applications in measuring phenotyping parameters (Li et al. 2014). The com-
monly measured plant phenotype parameters include plant architectural data, such 
as plant height, stem diameter, color, leaf area, and leaf angle, and abiotic stress, 
such as drought and salinity adaptation, disease resistance, and yield (Berger et al. 
2010; Arvidsson et al. 2011). One advantage of image-based sensing is its ability to 
acquire high-resolution data, which allows an ability to analyze and visualize plants/
objects often using multidimensional, multiparameter, or sometimes multispectral 
information. Therefore, imaging sensors have been increasingly used to quantify 
plant phenotyping parameters both in controlled environments and in open fields 
(Walter et al. 2012; White et al. 2012; Sankaran et al. 2018). More discussion on 
various sensing systems and their applications in precision agriculture and plant 
phenotyping can be found in Chap. 6.

In addition to visual sensing (and spectral imaging, as an extension of visual 
sensing), some other sensing methods can also be used to mimic human’s capability 
to gain a comprehensive situation awareness to support robotic agricultural/field 
machinery performing some specific tasks. A few examples include the use of elec-
tronic nose or electronic tongue to determine the maturity or quality of some pro-
duces based on their smell or taste (Gómez et al. 2006; Ulloa et al. 2013) and the use 
of acoustic sensor to measure the canopy density in orchards and vineyards in terms 
of reflectance of ultrasonic sound (Palleja and Landers 2015). Many operations in 
agricultural production require some interaction between the machinery and the 
crops or animals which are often very sensitive to magnitude of mechanical impacts, 
and some types of touching force/impact sensing could also be necessary for some 
situations.

It needs to be pointed out that other than situation awareness sensing, robotic 
machinery may require to have other types of sensors for measuring operational 
parameters to achieve accurate controls of automated implementation. For example, 
an effective robotic apple picking may require the robotic machine to be equipped 
with position, speed, and/or force sensors on its manipulators and end-effectors for 
controlling the picking actuator quickly and accurately in reaching the target fruit 
and effectively removing it from the tree.
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1.2.2  Intelligent Decision-Making

After obtaining the required perception ability, an essential ability to distinguish 
robotic machinery from conventional ones is its ability in making intelligent opera-
tional decisions in response to the perceived operation situations. One of the major 
challenges in making robotic agricultural/field machinery work properly and auton-
omously in different kinds of field is mostly caused by the high level of randomness 
in both the biological and physical properties, wide variations in geometric features 
of task/target targets, as well as the high level of uncertainty in operation conditions. 
To overcome these challenges, it demands the robotic machinery possesses the abil-
ity in making intelligent decision in terms of detected operation situation. One 
approach is to combine human workers and robots synergistically and allow the 
robot to mimic human experts’ making intelligent operational decision by using 
examples from human experts making the decision in similar scenarios. One exam-
ple of this approach is a farmer-assisted fertilizing robot developed by Vakilian and 
Massah (2017) for precise nitrogen management in greenhouse crops. Such an 
approach requires the robot to detect the operation scenario using onboard sensors, 
such as using a visual sensor to acquire textural features indicating crop growth 
condition, and check the detected indicators against a set of reference scenarios. 
After a matching scenario is found, the robot will then apply an adequate rate of 
fertilization similar to how a human worker will do for this reference scenario. This 
approach requires the availability of a set of reference scenarios with human work-
ers’ reaction for the case in similar scenarios. Another approach is to separate the 
sensing system from the robot (Zion et  al. 2014), which is frequently proposed 
especially for harvesting robots. By mapping the harvesting targets in the field using 
an adequate coordinating system prior to harvest, the robot could reach a bank of 
targets according to the recorded coordinates. It could speed up the operation sub-
stantially as the sensing method is no longer a limiting factor to draw the robotic 
harvesting efficiency down, which is one of the major remaining challenges for 
agricultural and field robots.

In many field operations in agricultural production (and other similar applica-
tions), it is often desirable that the robotic machinery possesses substantial level of 
intelligence to work properly and effectively under highly uncertain and changing 
operation conditions. One way to solve such a problem is via learning from sample 
data. As a computational method that involves progressively improving the perfor-
mance on a specific task through data-based learning, machine learning (ML) algo-
rithms have been adopted in supporting decision-making on robotic machinery to 
avoid or minimize using explicitly developed programs or models. A few examples 
include the naïve Bayes (NB), k-mean clustering, support vector machines (SVMs), 
and k-Nearest Neighbor (kNN)-based ML algorithms (Rehman et al. 2019). Deep 
learning (DL), a class of extended classical machine learning methods created by 
adding more “depth” (or the complexity), is one of the newest and most robust ML 
techniques that enhances the capability of automated feature extraction from raw 
data (Kamilaris and Prenafeta-Boldú 2018). Therefore, DL is suitable for solving 
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complicated intelligent control problems in agricultural and field applications. The 
advancement of machine learning (including DL) technologies has been and will 
continue to offer more useful tools in making intelligent operational decisions for 
agricultural and field robots.

1.3  Challenges and Opportunities

The main function of agricultural and field robots is to perform designated tasks 
automatically or autonomously on designated production/operation sites. As men-
tioned previously, tremendous progress has been made in the past century in devel-
oping and adopting mechanization technologies for agricultural and other field 
operations. Many modern agricultural machines that have been widely used in vari-
ous production operations today were matured from decades of continuing improve-
ment for achieving the best possible performance on doing the specific tasks. Similar 
improvements have been made in other field operations over the last several decades. 
These matured machines and machinery systems provide a rich resource and a 
strong foundation for developing actuation technologies for many agricultural and 
field robots.

There are still challenges for creating capable and effective robotic actuation 
technologies for doing the work today’s agricultural and field machinery are not 
able to perform or could not effectively perform due to their low levels of intelli-
gence. For example, the production of high-value specialty crops, which the US 
Department of Agriculture (USDA) defines as fruits and vegetables, tree nuts, dried 
fruits, horticulture, and nursery crops, is still largely dependent on manual labor. 
This dependence is mainly attributed to the lack of mature mechanization/automa-
tion technologies for various field operations such as fresh fruit and vegetable har-
vesting, tree training and pruning, crop pollination and thinning, and weed control, 
among others (Davidson et al. 2016). As a specific application example of robotic 
fruit harvesting, the key bottlenecks for commercial development of such a machin-
ery are sensitivity of the produce quality to mechanical impact during harvesting 
and the extensive variability that exists in the unstructured orchard environment. 
The actuation technology (including the manipulator and end-effector) optimization 
for specialty crop harvesting applications is still an active area of research (Sivaraman 
and Burks 2007; Van Henten et al. 2009; Lehnert et al. 2015; Chap. 7 of this book). 
Hoeing actuators for intra-row mechanical weeding (Gobor et al. 2013) and string 
tying actuators for hops’ production (He et  al. 2012) are two examples of other 
actuation technologies need to be developed especially for robotic applications in 
the agricultural and field environments as there are either no existing mechanical 
devices available for performing the work or the existing devices are inadequate for 
performing robotic operations.

Powered by the recent technological advancement in machine learning, sensing 
and data processing techniques, as well as parallel computing, agricultural and field 
robots have never been so close to be practically used in field for commercial 
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productions/operations. It creates an urgency for starting a new study on manage-
ment of robotic field operations, consisting of robotic equipment selection, efficient 
utilization in the field, and optimization for economic returns.

Agricultural and field robots are developed, to a large extent, for solving the chal-
lenges of the human field labor shortage and improve worker health and safety, and 
these robotic machines have to be uniquely designed, normally for specific field 
operations. It forms an important feature to distinguish agricultural and field appli-
cations of robots from industrial operation: while industry applications could adopt 
robotic operation to a few selective tasks in a factory, agricultural applications 
would make sense only if the entire operation were robotized to solve the challenge 
of field labor shortage. Another basic consideration in equipment selection is proper 
sizing of robots. Proper sizing of robots for every field operation to optimally match 
their capacities plays an essential role for achieving productive, efficient, and profit-
able operations. Coordination strategies and control of multiple robots also play a 
critical role for productive, efficient, and safe operations.

One critical obstacle, specifically for agricultural applications, for effective utili-
zation of robotic equipment is the insufficient skills of farmers to effectively man-
age, operate, and supervise robots as they could in using conventional machinery. 
Effective robot managing and supervision may include work-plan creation for indi-
vidual robot and the entire robot fleet, system initialization, the operation-specific 
data/information management and utilization, and the override control for abnormal 
conditions, and many of those tasks require human-robot interaction. Such tasks 
normally require special skills to perform and are often beyond ordinary farmer’s 
capability to manage. One possible solution for such a skill challenge might be 
professional services, either through robot management and maintenance services 
or through robotic operation services. The former is to provide technical support to 
help end users (e.g., farmers) managing and operating their robotic equipment, and 
the latter is to provide custom robotic field operation services for the end users.

1.3.1  Economics: A Critical Dimension

Like in any other commercial operations, economic performance of robotic farming 
(and other field operations) is one of the most important measures in robotic field 
operation management. An ideal robotic farming system, for example, should be 
able to perform a most productive operation at the lowest total cost. As agricultural 
production is often measured by the yield, one way to measure economic perfor-
mance is by the total cost per unit of yield. The total costs for a robotic production 
should include the initial costs, the operational and maintenance costs, and the error 
(e.g., crop damage) costs. The initial costs are one-time expenses for purchasing, 
delivery, and maybe initial integration and calibration when applicable of the robotic 
equipment. As the lifespan of a robot is usually over multiple years (production 
seasons), it could be divided into per season costs in assessing its economic perfor-
mance. The operational costs are more complicated to determine and can be 
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calculated in annual (or per season) basis. This category of costs should include 
service costs (such as maintenance and repair costs), material costs (such as fuels 
and other applicable materials), and labor costs (such as for monitoring and supervi-
sion). The use of robot in agricultural production does not mean to completely elim-
inate human labor in the operation, but to replace human labors from tedious field 
work by using less but skillful operators to manage and supervise the robotic opera-
tion. The error cost is relatively difficult to calculate as there is no sufficient infor-
mation supporting the estimation of what error in robotic operation would cause 
what yield reduction, but impact heavily to the overall economic performance of 
robotic production as any error could result in a substantial yield loss and the entire 
economic performance is based on the yield.

1.4  Concluding Thoughts

Manual operations in agriculture and other field environments are challenging: they 
are not only labor intensive but are laborious and pose health and safety risks. In the 
twenty-first century of social and technological development, people deserve and 
have the potential to move away from performing back-breaking and risky work, 
such as climbing up and down tall ladders with heavy load of fruit (e.g., 15 Kg) in 
manual tree fruit harvesting, by using robotic machinery. As discussed before, tre-
mendous progress has been made over the last century in agriculture in developing 
and adopting mechanization and automation technologies to minimizing farming 
inputs such as fertilizer, water, and labor while improving crop yield and quality. 
Similar progresses have also been made in other relevant (field) industries such as 
construction and mining. Using the foundation provided by these matured machin-
ery systems and through the integration of advanced tools and technologies, reli-
able, robust, and affordable robotic technologies could be developed for these 
industries. With the recent advancement in AI techniques such as deep learning, 
ever-increasing capability and decreasing cost of computational technology (includ-
ing parallel computing), powerful but affordable sensing systems such as hyper-
spectral imagers and novel robotic solutions such as soft robotics, we can now 
envision a world where all labor-intensive and laborious farming/field operations 
are performed by autonomous machines. In this way of farming, we believe, the role 
of human workers will be to operate, collaborate with, supervise, and/or trouble-
shoot these machines (based on the nature of the autonomous machine) remotely 
from off-site offices. The future of farming, what we also call smart farming or Ag 
4.0, we believe, will also see widespread adoption of qualitative decision-making in 
farming by intelligent machines using AI, IoT, and big data analytics (and in col-
laboration with human experts). What the Prime Minister of Canada, Justine 
Trudeau, recently said about general technological developments holds true in agri-
culture (and related industries) as well: “we have never seen this rapid advancement 
in agricultural technologies in the past and we will never be this slow again.”
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Chapter 2
Sensors I: Color Imaging and Basics 
of Image Processing

Won Suk Lee and Jose Blasco

2.1  Introduction

The human eye is geared by nature to sense the difference between colors. In nature, 
the perceived color is mainly determined by the different types of pigments present 
in plants, such as chlorophylls, carotenes, xanthophylls, and anthocyanins, that offer 
information on the type and status of plants and their fruits. This is very important, 
for example, for harvesting robots or those that act according to the state of the 
plants. Likewise, color allows differentiating structural elements of the scene and 
obtaining information from the environment that is essential, for example, in 
 autonomous guidance systems. Color cameras are the most widely used devices in 
 artificial vision because they produce images similar to those perceived by the 
human eye, and are therefore widely used to automate agricultural operations in a 
framework of precision agriculture (Cubero et al., 2016). The acquisition  technology 
of these images is very advanced, and there are also numerous techniques to analyze 
and obtain information from this type of images. To obtain good results, it is very 
important to acquire high-quality images. Therefore, the selection of the cameras 
and the lighting conditions for the images are very important, especially in field 
conditions where the images are poorly structured and the lighting conditions are 
changing. Subsequently, it is necessary to follow a series of basic steps in the image 
analysis. First, a preprocessing is necessary to improve the image and eliminate 
noise pixels to achieve faster and more efficient subsequent processing, followed by 
a segmentation operation to obtain the regions of interest. Finally, a feature 
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extraction is required to obtain the desired information. For any of these tasks, it is 
essential to develop efficient, robust, and accurate processing algorithms.

This chapter is an overview of the main topics related to the basics of color imag-
ing and image processing operations applied to robotics in agriculture. Due the 
limited scope of this chapter, readers are encouraged to read reference books to get 
into details of image processing, such as Gonzalez and Woods (2018) and Russ and 
Neal (2017).

2.2  Basics of Color Imaging

The spectrum visible to humans goes from violet light to red light (Fig. 2.1). When 
light strikes an object, it absorbs part of the light and reflects the rest, which is per-
ceived by the human eye through the retina. The retina contains two different types 
of light-sensing photoreceptor cells, rods and cones. The rods are activated in low 
light conditions, while the cones usually contain three types of pigments that are 
sensitive to wavelengths of light corresponding to the colors red, green, and blue. 
Therefore, all the colors that humans can recognize are a combination of these pri-
mary colors (Goldstein 2010). In order to determine, measure and compare colors, 
precise methods are needed to represent the colors with unique values.

2.2.1  Color Representation

The objective of a color model is to facilitate the expression of the colors in a stan-
dardized way. In general, a color model is the mathematical description of a coordi-
nate system and a particular space (color space) in which each color is represented 
only by a single point (Ibraheem et al. 2012). Color models are used to describe the 

Fig. 2.1 Electromagnetic spectrum and the visible light
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colors of digital images. In addition, a color space is a particular implementation of 
a color model that has a specific range of colors (Hastings and Rubin 2012). For 
example, in the RGB color model, there are different color spaces, such as Adobe 
RGB and sRGB. Different devices (for example digital cameras), due to the elec-
tronics and/or the software implemented on them, have their own color spaces and, 
therefore, can capture or represent only the colors within their range (Ford and 
Roberts 1998). There are a number of color spaces in common usage depending on 
the particular industry and/or application involved. For example, as humans we nor-
mally determine color by parameters such as brightness, hue, and colorfulness. On 
computers it is more common to describe color by three components, normally red, 
green, and blue. There are many different color spaces used in practice and each one 
represents a different method to describe the colors. Some of the most known 
models are briefly described below.

RGB Model
Red (R), green (G), and blue (B) or RGB model is the most widely used model in 
digital devices. It is based on an additive mixing model, where each color is formed 
by a combination of the three primary colors: red, green, and blue. The spatial rep-
resentation is through a cube where each side measures 1 and each axis represents 
one of the three primary (RGB) color coordinates. In this model, the black color is 
represented at point (0,0,0) and the white color at (1,1,1). Figure 2.2b shows the 
distribution of the colors of the images in Fig. 2.2a, using the RGB color model.

A normalized variant of this model is defined as rgb, which is derived by dividing 
the RGB values by (R + G + B). As this color space is native for electronic devices, 
the RGB coordinates are commonly used in vegetation indices to assess different 
properties of the crops using remote sensing techniques (Meyer and Neto 2008).

HSV and HLS Models
These models were designed to be more easily understandable and interpretable 
since they use parameters more related with the perception of the color, such as hue, 
saturation, lightness (HSL), or value (HSV). Lightness (or value) of a color is the 
quality of being lighter or darker. Saturation means the difference of color with 
respect to a gray color with the same intensity. As saturation normally ranges 
between 0 and 1, the grey color would be 0 and the most colorful color would be 1. 
Hue can be defined as the dominant frequency of the spectrum. It is typically repre-
sented in a color wheel and expressed in angular degrees (°), with red being 0° (as 
well as 360°), green being 120°, and blue being 240°. Figure 2.2c shows the distri-
bution of the colors of the images in Fig. 2.2a, using the HSV color model.

CIELAB and CIELUV Models
These models were defined by the CIE for industrial color applications where mea-
surement and color comparison are important. The models separate a brightness 
channel (L*) and two chrominance channels (a*b* and u*v*). The latter are defined 
by nonlinear transformations of the RGB model in order to achieve perceptually 
uniform representations of color. In these models, colors are presented such that the 
differences between perceived colors are related to the distance between these 
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Fig. 2.2 Representation of the colors of two images, (a) one of a mango fruit and another of a 
vineyard using (b) RGB, (c) HSV, and (d) CIELAB color models. It can be seen how most colors 
are concentrated in a particular region of different color spaces, which indicates that in both fruit 
and vegetation images, only a relative small amount of colors is really used
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colors in the color space. In the model, a* coordinate represents changes from red 
to green and b* coordinate represents changes from blue to yellow. This is one of 
the reasons why this color space is especially useful for measuring the color of agri-
cultural produce such as fruit. For example, when most of fruits mature, the color 
changes from green to red, sometimes through orange or yellow. The fact that the 
coordinate varies from green to red makes this color space suitable for the creation 
of indices that indicate the maturity or quality of fruits, such as the citrus color index 
(CCI), the color index of tomatoes (Jarquín-Enríquez et  al. 2013), the browning 
index (Cefola et al. 2012), or others (Pathare et al. 2013). Figure 2.2d shows the 
distribution of the colors of the images in Fig. 2.2a using the CIELAB color model, 
while Fig. 2.2e shows the distribution of the a* and b* coordinates.

This color space is represented by a chromaticity diagram that presents some 
interesting features (Fig. 2.3). Colors are described as perceived by the human eye 
in full daylight. The exterior curve is formed by pure spectral colors. The rest are 
composite colors. The sum of two colors is found in the line that joins them, which 
is very interesting and useful to determine color differences. The white color is at 
x = 1/3, y = 1/3, and the line joining any two complementary colors passes through 
that point. The diagram is complete, which means that it contains all the colors vis-
ible by humans. The notation Yxy specifies colors by identifying value (Y) and the 
color as viewed in the chromaticity diagram (x,y) (XRITE 2018).

Fig. 2.3 CIE 1931 chromaticity diagram. All colors in the visible spectrum are represented, with 
the same brightness intensity
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2.2.2  Color Space Conversion

To convert an image from one color space to another, we need to choose the method 
carefully because the visualization can be significantly different. As devices and 
color spaces represent the colors in a different way, during the conversion from one 
color space to another there can be colors of the original image that cannot be repro-
duced in the target color space, especially those located in the borders. Hence, some 
of the colors will be approximated to the closest one when possible and others, 
especially the saturated colors, will be just trimmed. This conversion can be done in 
several ways, such as absolute colorimetric mode, relative colorimetric mode, or 
perceptual conversion (Kahu et al. 2019).

In relative colorimetric mode, the original colors not reproduced during conver-
sion are replaced by the closest and most saturated color. All other colors do not 
change. Therefore, if an element of a color has certain components that are outside 
the target space, these will be lost creating a flat color situation, since the color will 
be replaced by other colors inside the target space. On the other hand, in the percep-
tual conversion, efforts are made to keep all the perceptual shades of the color, but 
reducing the saturation so that they can fit within the limit of the target space. This 
approach, therefore, does not lead to a situation of saturation or flat coloring as the 
relative colorimetric technique, but the colors will change. The general perception 
of the image will be preserved, but the accuracy of the color will be reduced. There 
is not an ideal conversion method; each image and each application may desire a 
more suitable conversion mode and therefore depends on the colors of the image 
and the space to be converted.

2.2.3  Color Comparison

Two colors can look the same to the human eye if the difference is below the thresh-
old of perception. However, these small differences can be measured and quantified. 
The color difference can be defined as the numerical comparison of the color of two 
samples, which indicates the differences in absolute color coordinates and is com-
monly known as Delta E (ΔE). It is normally calculated as the Euclidean distance 
between corresponding color locations within a color space (Sharma 2003). For 
instance, the difference between two color values expressed in L*, a* and b* coor-
dinates will be shown how far apart visually the two samples are. But, when this is 
applied to nonperceptual color spaces such as RGB, the Euclidean distance between 
two colors does not match the perceptual variations between these colors.

In 1976, the International Commission on Illumination (CIE) published the first 
formula to measure differences in CIELAB coordinates. Given two colors 1 and 2 in 
the CIELAB space, their distance can be calculated using Eq. (2.1). Values lower 
than 3 are considered as nonperceptible by the human eye, while values above 5 are 
considered to be clearly distinguishable.
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Later, it was updated in 1994 and 2000 to correct and maintain the perceptual 
uniformity, but the original formulation is still the most widely used technique due 
to its simplicity (Fraser et al. 2004).

2.3  Image Acquisition

Imaging is a process by which 3D information (the scene) is projected onto a 2D 
plane (the image; more discussion can be found in Chap. 3). The images can be 
obtained from a wide range of sensors (i.e., magnetic resonance imaging, X-rays, 
radar, thermal or spectral cameras). This chapter focuses on images captured by 
standard color cameras that use CMOS (complementary metal oxide semiconduc-
tor) or CCD (charge coupled device) image sensors (photoreceptor). An image sen-
sor is an electronic device used in digital cameras and imaging devices which 
converts the received light into an electronic signal. When the light passes through 
the camera lens, it goes through a small aperture and reaches the sensor. The photo-
receptor captures that light and converts it into an electronic signal that depends on 
the intensity of the light and transmits it to the processor of the imaging device, 
which transforms the electronic signal into a digital image (Yotter and Wilson 
2003). Figure 2.4 depicts this process.

To obtain the color from the electronic signals, digital color cameras generally 
use the so-called CFAs (color filter arrays) to interpolate the color information. 
Among these color filters, the Bayer filter is the most known and used. The most 
common Bayer matrix consists of 2 × 2 mosaics that follow an RGBG scheme: 
green, which provides more luminance information, is repeated twice. From here, to 
build the final image, it is necessary to apply a specific interpolation algorithm, 
which is run by the image processor. The final image result is greatly influenced by 
the interpolation method used (Bull 2014).

The result is a digital image represented as a matrix whose values can be defined 
as a two-dimensional function, f (x, y), where x and y are the spatial coordinates of 
the image and results in the value of the intensity or gray level at point (x, y). An 

Fig. 2.4 Process of the formation of an image in a digital camera
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image of m rows and n columns has a total of n x m pixels. The spatial resolution of 
an image is the number of pixels per unit length of the sensor. Color images usually 
consist of three monochromatic images that correspond to the colors obtained 
through the Bayer filter. Thus, the color of a pixel is represented by a vector contain-
ing the red, green, and blue values f (x, y) = {R, G, B}, within the RGB color space. 
However, color can also be represented in other color spaces (see Sect. 2.2).

Some acquisition parameters are important to capture quality images. For exam-
ple, if the aperture is too small, very little light will arrive at the photoreceptor and 
therefore the image will be very dark. To prevent this, some parameters of the cam-
eras can be adjusted. However, it is very important to know precisely how they work 
since the quality of the image acquired, especially in difficult field conditions where 
the camera is sometimes mounted on vehicles moving through uneven terrain, 
depends heavily on those parameters. One solution is to increase the exposure time, 
keeping the size of the aperture small to maintain focus. However, if the camera or 
object moves, the image will be blurred. Another option is to increase the size of the 
aperture and try to focus the image manually to improve accuracy. But, due to the 
geometry of the lenses, they only keep the images focused for scenes that are within 
a certain distance (depth of field). A third option is to maintain a reduced exposure 
time to freeze movement, a reduced aperture size to better maintain focus, and 
increase sensitivity by adjusting the gain (sensitivity, ISO value) of the camera. But 
increased sensitivity also leads to increased noise.

Basically, to achieve a quality image, these parameters must be adjusted so that 
the photoreceptor reaches a sufficient amount of light. The diaphragm is a device 
that opens and closes to allow more or less light to pass to the photoreceptor in imi-
tation of the iris of the human eye. The smaller the opening, the more depth of field, 
but less light entering into the photoreceptor. The opening is expressed in relation to 
the constant f, whose typical values are between f/1.4 and f/22. The greater the 
number, the smaller the opening size.

The shutter speed is the time during which the light passes through the opening/
aperture to the photodetector. It is measured in seconds, and together with the aper-
ture of the diaphragm, it determines the amount of light that enters the camera. To 
obtain images of static objects, it is not a problem to set slow speeds. But if the 
objects or the camera are in motion, it will be essential to set the shutter at a high 
speed. For example, if an object moves at 1 m/s, it will move 1 mm for every ms of 
shutter speed. However, the higher the shutter speed, the less time the light takes to 
reach the sensor, and, therefore, the light intensity required for the sensor to prop-
erly collect the scene is greater. The sensitivity in digital is related to the gain (volt-
age in relation to the number of photons), which is an electronic amplification of the 
signal, but at the same time it can amplify the noise of the image, so it is desirable 
to not increase the gain unless it is necessary.

Optics also play a leading role in capturing good images (Catrysse 2015). The 
lens is the part of the camera that directs the light rays toward the photoreceptor. The 
quality of the lenses allows to obtain more or less clear, bright, and focused images. 
This determines the depth of field, which is defined by the closest and farthest dis-
tances that can be sharply focused, which is particularly important when working in 
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the field with the camera incorporated in a moving agricultural vehicle or robot that 
can be approached or get away from the scene due to the irregularities of the terrain. 
Therefore, in these cases it is very important to have an adequate depth of field. 
There are autofocus lenses, but they also increase the mechanical complexity, and 
the time needed to adjust the focus makes them unsuitable for capturing fast images 
while the vehicle is moving.

The distance to the scene can also be adjusted by using zoom lenses. The magni-
fication of a lens is determined by the focal length, which is the distance between 
the optical center of the lens and the focus or point where the image is formed on 
the sensor. In a camera with a longer focal length, the objects appear larger, but the 
scene is smaller (greater viewing angle). There are lenses that allow to adjust the 
zoom manually or automatically. But it is advisable to use fixed lenses for machine 
vision applications because they are simpler and produce higher quality images. On 
the other hand, it is important to maintain the fixed and known distance to target 
objects if the objective is to determine some properties of the objects under analysis, 
such as object size without the use of 3D sensing techniques (Chap. 3).

2.4  Basic Image Processing Operations

To obtain useful information about and from the images, they must be processed. In 
its basic form, as discussed before, an image is composed of a set of values that can 
be expressed as a matrix. In the case of monochrome images, these values corre-
spond to the gray levels of each pixel. In the case of color images, they generally 
consist of three matrices that correspond to the red, green, and blue (RGB) values of 
each pixel, or it could be a three dimensional matrix with f(x,y) being the spatial 
dimensions and R,G,B channels stacked over each other in the third (depth) dimen-
sion. These values are spatially connected to form objects or regions of interest. 
However, to find and extract them from the image, it is necessary to apply a series 
of image processing techniques. In general, the basic steps to process an image 
generally include a preprocessing, which is necessary to improve certain character-
istics of the image, eliminate noise, and correct deficiencies that occur during acqui-
sition. The following is the segmentation of the image, which consists of dividing 
the image into regions of interest. For this step, there are numerous region-based 
and pixel-based techniques used (Gonzalez and Woods 2018; Russ and Neal 2017). 
Pixel-based methods are simpler to implement but very sensitive to noise or contrast 
changes in the image. On the contrary, region-based techniques look for homoge-
neous areas or contours in the image. These techniques can be supervised, when it 
is necessary (or appropriate) to include prior knowledge of the image in the segmen-
tation algorithms, or unsupervised, otherwise. The result of the image segmentation 
process is the classification/categorization of pixels into different classes, grouped 
to form regions. Once the image has been divided into regions, it is necessary to 
determine which of these regions correspond to the objects of interest, extract the 
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characteristics of these objects, and make decisions based on the characteristics 
found (Gonzalez and Woods 2018; Russ and Neal 2017).

2.4.1  Image Enhancement

The images can be obtained in controlled environments, which allows establishing 
the most favorable conditions for acquisition depending on the problem to be 
addressed. However, when images are obtained outdoors, conditions cannot be con-
trolled and unwanted effects occur in the form of brightness, shadows, movement, 
noise, or objects of interest that appear hidden in the images. For example, a robot 
that advances in the field will obtain images that will be influenced by changes in 
the lighting condition caused by clouds or the changing sun angle in relation to the 
vegetation/objects being observed. In these cases, it is especially interesting to per-
form image enhancement and preprocessing operations. Image preprocessing is 
used to enhance or highlight some image properties to facilitate the following oper-
ations of analysis and extraction of image characteristics. Some of the improvement 
techniques are based on specific transformation operations in pixels that do not take 
into account the neighborhood of the pixel. However, to improve the contrast of an 
image, it is also possible to use global operations, such as histogram equalization, 
which aims to accentuate the visual contrast, making better use of the range of 
available intensity values. Histogram equalization creates an image whose intensity 
levels are equally likely and cover the entire dynamic range. The result of this pro-
cess is an image whose dynamic range has increased, which will tend to have a 
greater contrast.

2.4.1.1  Histogram

One of the basic tools to obtain information about the distribution of pixel intensi-
ties in the image is the histogram. A histogram is a measure of the frequency of 
occurrence of each intensity level value within an image. It is represented in a graph 
where the X-axis shows the color values or intensities and the Y-axis the frequency 
of these intensities. As example, Fig. 2.5 shows an image (left) and the histogram 
for each of the red green and blue components of the image. Equation (2.2) shows 
how the relative histogram value for gray level k is calculated in an image of size 
N × M.  In the case of color images, a histogram can be obtained for each color 
channel.

 
H k k N M� � � � � �# /pixels with intensity

 (2.2)

This measure evaluates the contrast of the image. If the histogram graph shows a 
narrow peak, a low contrast is identified since few gray levels are used and with very 
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close values. If the graph shows a wider distribution among all gray levels, it means 
more intensity differences in the image and therefore greater contrast. If several 
peaks are observed, they may correspond to different regions of interest, which 
facilitates the segmentation of the image. A special case is a bimodal distribution, in 
which there are only two peaks present. They can identify with two regions of inter-
est or allow discrimination between the background and the foreground of an image. 
The histogram can be used to make visual improvements to the image, such as an 
increase in contrast using techniques such as equalization.

2.4.1.2  Morphological Operations

Various techniques can be used to identify shapes of objects of interest in images 
as discussed earlier in this chapter. As a postprocessing step using a structuring 
element and various calculation with pixels, morphological operations can remove 
small unnecessary objects, make objects more visible, fill holes, and enhance con-
trast among other things. Major morphological operations include erosion, dila-
tion, hit-miss, convex hull, open, close, skeleton, prune, thin, and thick (Russ and 
Neal 2017). Erosion removes small objects, whereas dilation fills smaller voids 
and changes objects such that they become wider and more visible. Hit-Miss is 
used to find patterns in an image, and Convex Hull is used to find envelope of an 
object to detect its shape. Open is an integrated operation that combines erosion 
and dilation so that object shapes are not changing while small unnecessary objects 
are removed. Close is a similar operation, but it first conducts dilation and then 
erosion to fill holes while keeping object shapes intact. Skeleton (or skeletoniza-
tion) is used to estimate skeleton of objects (or change objects into lines). Thin, 
similar to skeleton operation, removes selected foreground pixels to find skeleton, 
whereas thick is used to add selected foreground pixels. Prune is another operation 
that is used to remove unnecessary branches of an object, which is important to 
find key shapes.

Fig. 2.5 Image and histogram of the red, green, and blue components of the image. The peak on 
the right side corresponds to the values in the saturated regions for each channel
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2.4.1.3  Low-Pass Filtering

Smoothing filters (also known as low pass filters) can be used to reduce noise in an 
image but can cause unwanted level of blurring on the image. The most common 
method to apply a filter is the convolution of the image with a kernel. A template of 
size 3 × 3 kernel can be seen in Fig. 2.6. By placing the kernel on the pixel of inter-
est of the image, the result is obtained by the sum of the multiplication of each ele-
ment of the kernel by the value of the pixel in the image. Therefore, the response P 
to the kernel of any pixel in the image is given by Eq. (2.3). To obtain the effect on 
the whole image, the kernel moves through all the rows and columns sequentially 
that form the image so that it is finally applied to all the pixels.
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(2.3)

where zi is the gray level in the image at the pixel corresponding to pi in the ker-
nel. The pixel of interest is the central one.

Smoothing is achieved by decreasing the differences between neighboring pix-
els. This can be obtained, for example, using a mean filter. This filter replaces the 
value of each pixel with the average value of its neighbors. Normally a 3 × 3 kernel 
is applied, but depending on the desired effect, larger kernels can be used. The 
result makes the image appear blurry by reducing the contrast of the edges of the 
objects. The mean is sensitive to the extreme values of the neighborhood. If there 
are pixels with extreme values (outliers), they will significantly affect the final 
result. Therefore, a common option is to replace the mean filter with a median one, 
which is not sensitive to the presence of outliers and also guarantees that the result 
is a value that already exists among the neighbors. This may be of interest in some 
circumstances. The median filter is not a convolution and therefore cannot be 
expressed through a kernel. Another widely used filter, both to eliminate noise 
caused by isolated pixels and to soften the contours of objects in images, is the 
mode filter. This filter replaces the value of each pixel with the highest frequency 
among its neighbors. Special mention has to be paid to the Gaussian smoothing 
operator, which is efficient in noise removal. Its smoothing efficiency depends on 
the value of its standard deviation. It is similar to the mean filter, but it uses a dif-
ferent kernel that represents the shape of a Gaussian hump (Shapiro and 
Stockman 2001).

p1 p2 p3
p4 p5 p6
p7 p8 p9

Fig. 2.6 Kernel o 
convolution matrix of size 

3 × 3
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2.4.2  Segmentation

Segmentation divides an image into the different regions that compose it in order to 
find those that are of interest. There are several techniques to perform this division. 
Some techniques are based on classifying the pixel according to its intrinsic values 
(pixel-wise techniques). Basically, they are based on thresholds or classifiers that 
assign each pixel into a predefined class, depending on its individual value. Other 
techniques are based on detecting regions with similar characteristics (region-based 
techniques). In addition, segmentation algorithms can be supervised or unsuper-
vised depending on whether they need previous information from the user to per-
form the segmentation. Supervised segmentation starts with a previous knowledge 
about the image that the user enters into the segmentation or classification algo-
rithms. For example, previous knowledge might include the number of classes in 
which the image is to be divided and/or the assignment of some pixels with certain 
characteristics (e.g., color) to those classes. These pixels form the training dataset. 
On the contrary, in unsupervised segmentation, the algorithms extract the character-
istics of the image without the use of prior knowledge, which leads to image seg-
mentation without any user intervention. The best technique to be used depends on 
the problem to be addressed. Some of the most common segmentation techniques 
there are discussed below.

2.4.2.1  Pixel-Wise Techniques

Threshold-Based Segmentation
Within the image segmentation techniques, thresholding is one of the simplest 
methods. It consists of dividing the image into regions of interest based on the varia-
tion of the intensity of the pixels. Basically, in the case of monochromatic images, a 
comparison of each intensity value of the pixels is made with respect to a threshold 
value (established according to the problem to be solved). Values above that thresh-
old are assigned to one class (object or background) and pixels that are below to 
another class. This is known as binarization. In more advanced cases, different 
thresholds can be established to increase the number of classes.

When there is a high contrast between the objects of interest and the background, 
the threshold can be chosen arbitrarily. In more complex cases, the study of the 
histogram is convenient. By analyzing the frequency of appearance of the different 
values of the pixels, it is possible to set appropriate thresholds. There are several 
techniques to establish thresholds from the study of the histogram. In the case of a 
bimodal distribution, in which the intensities corresponding to the objects are con-
centrated on one side of the histogram and the background is concentrated on the 
other side, the optimum threshold is usually at the lowest value between the two 
peaks of the histogram. To obtain the optimal threshold, the first step is to find the 
two highest peaks of the histogram and then find the lowest point between them. In 
some cases, the difficulty consists in the existence of secondary peaks that, due to 
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their proximity to the main one, must be ignored, so it is sometimes convenient to 
establish a minimum distance between the two peaks to be considered.

When the histogram is not bimodal, it is necessary to combine both the spatial 
information present in the image and the information about gray levels. Among the 
existing methods, Isodata is one of the simplest. It is an iterative technique used to 
obtain the correct threshold. The histogram is initially segmented into two parts 
using a start threshold T. Next, the average intensity of the pixels belonging to each 
of the parts in which the histogram m1, m2 is segmented is computed. Using these 
values, a new threshold value is calculated by the formula: T = (m1 + m2)/2. This 
process is repeated until the difference between the values T in successive iterations 
is smaller than a predefined parameter ΔT.

However, probably, the most commonly used is the Otsu method (Otsu, 1979). 
The algorithm calculates the threshold value so that the dispersion (distance between 
the values with respect to a mean value) within each segment is as small as possible, 
while the dispersion is the highest possible between different segments. For this, the 
quotient between both variances is calculated, and a threshold that maximizes this 
quotient is searched. Examples for the application of this method can be found in 
Xiong et al. (2018) and Zhuang et al. (2018).

In general, thresholding is a simple and fast method to segment images where the 
objects of interest are highly contrasted against the background of the image. 
However, this technique does not work well in images with low contrast or acquired 
with poor lighting conditions. In these cases, the intensities of the pixels may vary 
depending on their position in the image, which negatively influences the segmenta-
tion. For these cases, it is advisable to use a variable or adaptive thresholding instead 
of a fixed threshold. One technique for setting variable thresholds is the partition of 
the image. Image partition is one of the simplest methods to search for variable 
thresholds being useful to compensate for lighting problems in the image. It consists 
of dividing the image into regions of a certain size so that the lighting in each of 
them could be comparatively more uniform, and then applying a local threshold to 
each of the regions would result in more desirable segmentation results.

When the target is the segmentation of a color image, this technique can be 
applied to each of the three color channels. However, as the color offers more infor-
mation, in these cases, other segmentation techniques are advisable (e.g., use of 
classifiers as discussed below).

Segmentation Using Classifiers
When images are captured with color information, it can be used to discriminate 
different objects and also to obtain information about each object identified. For 
example, in images of tree canopies, the color allows to distinguish fruit and leaves, 
which could be used to make a yield prediction. In addition, it also allows to esti-
mate the stage of fruit maturity. To do this, it is necessary to associate colors in the 
image with the different objects found in the scene. The first step is to divide the 
image into regions of interest, that is, into objects that are different, which can be 
accomplished by classifying pixels into different groups or regions.
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In images of the field captured by a moving robot outdoors, the color of a pixel 
can be seen as a random event, within the n-dimensional space defined by the color 
space used. The probability distribution of the color is determined by the type and 
composition of the environment, the ambient light, the camera settings, and the 
movement of the robot that carries the camera (Rey et al. 2019, Cubero et al. 2020).

There are a number of classification methods, some based on the intrinsic color 
of the pixel to be classified and others that take into account the neighborhood in 
which the pixel is located. As an example of a pixel-oriented classification method, 
suppose we know the functions of the probability distribution of the colors of the 
fruit tree canopies, including vegetation pv (color), a ripe fruit, pf (color), where 
color is a list of n-elements of any color space; for example, in the RGB color space, 
the color would be the list of the three components red, green, and blue of that pixel. 
Considering equiprobable the a priori probabilities of belonging to the vegetation or 
fruit classes, the probability that a pixel belongs to vegetation or fruit can be calcu-
lated using the Bayes rule, given by Eqs. 2.4 and 2.5 (Blasco et al. 2009):
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These functions result in the probability of a pixel belonging to one or another 
class. Consequently, that pixel is assigned to the class with the highest probability 
of belonging between vegetation and fruit. This example is shown with two classes, 
but it can be expanded to more, obtaining a probability function for each of the 
classes present in the classification problem. By classifying all the pixels of the 
image, the segmentation of the image is achieved. The pixel-oriented classification 
approach can be improved with the application of local processing operations, 
which take into account the characteristics of the pixels in a given neighborhood.

2.4.2.2  Region-Based Segmentation

The algorithms to segment monochrome images are generally based on finding dis-
continuities or similarities between gray levels of neighboring pixels.

Segmentation Based on Edge Detection
Normally, what defines the objects in the images are the borders between them. A 
border is defined as the discontinuity between two neighboring regions with a rela-
tively different gray level. These discontinuities can be detected, for example, using 
first- and second-order derivatives. There are numerous techniques and operators to 
calculate these derivatives. In the case of first-order derivatives, it is common to use 
the gradient. The gradient operator is a first-order directional derivative that reaches 
its maximum value in the direction in which the variation is maximum. As an 
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example of a second-order derivative, the Laplacian function can be used, which is 
a filter whose result is 0 in the homogeneous region and positive or negative where 
there is contrast between regions. A commonly used discrete approximation to the 
Laplacian filter is shown in Fig. 2.2c.

Once the edges are obtained, it is normal that they do not completely close the 
contour of objects due, among other things, to the presence of angles, changes in 
lighting and/or presence of other noises. Therefore, after edge detection, techniques 
are usually used to join the pixels of different edges and turn them into the contours 
of objects (Gonzalez and Woods 2018). One of the simplest procedures for linking 
edges is to analyze the characteristics of pixels in small neighborhoods (for exam-
ple, 3 × 3) around each point (x, y) belonging to an edge. All points in that neighbor-
hood that are similar and share certain properties in common are linked. The 
properties that are mostly used are the magnitude of the gradient that has given rise 
to the edge pixel and the direction of the gradient at that point. As a result, an image 
with the objects outlined is achieved.

Segmentation Based on Aggregation Techniques
Similarity-based techniques search for those regions that are homogeneous or with 
a similar texture or other common characteristics. The main methods are based on 
region growing, or division and fusion of regions (Gonzalez and Woods 2018). 
Regions are formed from neighboring pixels that meet some similarity rule (e.g., 
color difference less than a threshold) and differ from pixels that do not belong to 
the region. One of the techniques most used by region-based algorithms is region 
growing. A pixel is chosen within the region to be obtained, and the similarity rule 
is applied to its neighbors. Those pixels that comply with the rule will be added to 
the growing region. On these newly added pixels, the similarity rule will be applied 
again to their neighbors iteratively. The algorithm will stop when the pixels neigh-
boring the growing region do not meet the similarity criteria. To achieve the seg-
mentation of the entire image, several seed pixels are chosen in the image randomly 
distributed or using some kind of rule such as those with extreme intensities or 
colors. A common technique based on this method is the k-means algorithm.

K-means (MacQueen 1967) is a clustering algorithm based on the region grow-
ing techniques that needs as input the number of regions (clusters), k in which the 
image is to be segmented. The algorithm selects the first random k pixels (seeds) in 
the image. In the first step, these single pixels are the centroids of the clusters. Then, 
those pixels accomplishing a function of minimum distance are aggregated to the 
clusters. The function of distance may correspond to the intensity of the pixels or 
any other characteristics on which the segmentation is to be based. The centroid is 
recalculated as the mean of the cluster, including the new samples added. This will 
generate a new pixel assignments, since other pixels will be now closer to the cen-
troids. This process is repeated iteratively until all pixels belong to one of the clus-
ters or there are no further changes in the centroids.

Other techniques, instead of using seeds for a region growing process, divide the 
image into arbitrary regions, so that if the region is very heterogeneous according to 
some type of rule, it will be divided, otherwise, it will be merged with the adjacent 
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regions holding the similarity rules. A common technique is to divide the image into 
four regions. If any of the regions is heterogeneous, it is divided into other four 
regions. The process is repeated until no changes occur.

2.4.3  Features of Objects of Interest

To identify an object from an image, colors are very important information for dis-
tinguishing various objects. In general, various objects have their own colors. Even 
for objects with similar colors to human eyes, their minute differences may be iden-
tified through image processing. For example, to distinguish immature green citrus 
fruit from surrounding green canopies, different amount of red and blue compo-
nents can be identified using chromatic aberration map. In Zhao et al. (2016), chro-
matic aberration map was calculated using the following equations, and green fruit 
can be differentiated and background objects can be removed. Figure 2.7 below is 
an example of a chromatic aberration map.

 ARB R Ratio B,� � �  (2.6)

where ARB is an adaptive red and blue chromatic aberration map, R is red compo-
nent, Ratio is a ratio of blue over red (= B/R), and B is blue component. In Fig. 2.7, 
green colors of the immature green oranges look different than those of surrounding 
green canopies, even though all objects in the image look green.

Shape features are also very useful in detecting objects. Since objects of interest 
generally have their unique shapes in the environment being imaged, these features 
can be used for object detection and localization in many agricultural and field 
robotic applications. For example, for orange or apple detection, roundness of those 
fruits cab be a very important feature to use. Some plant leaves are long and thin, 
which also can be used to differentiate them from round shaped weeds around them. 
Shape features include roundness, compactness, major axis, minor axis, centroid, 
perimeter, curvature, and elongation, among others. These features, alone or in 
combination with other features like color, are used for developing discriminant 
functions to identify objects of interests.

Texture is defined as repeated patterns of similar pixels in an area, and it also can 
be a powerful feature for distinguishing different objects. For example, in an image 
with strawberry plants in Fig. 2.8, the texture of strawberry fruit is very different 
than those of nonfruit parts. Of course, red color of strawberry fruit is a very unique 
feature; however, the texture of the fruit is also very unique for distinguishing fruit 
from other objects. This unique texture holds during immature stages, as shown in 
Fig. 2.8c, which could be a great feature to distinguish immature fruit.

Texture analysis can be divided into two categories: (i) statistical and (ii) struc-
tural methods (Jain 1989). Statistical methods include autocorrelation function, 
image transforms (e.g., coarseness, fineness), edge density, histogram features, and 
random texture models. Structural methods utilize invariant properties of a group of 
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Fig. 2.7 An example chromatic aberration map: (a) original color image, (b) difference between 
red and blue components, (c) binary image after removing noise, (d) adaptive RB chromatic map, 
and (e) binary image of (d) after removing noise. (Adapted from Zhao et al. 2016)
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pixels, which is called a texel. Texels can be located closely or farther away, and 
their frequency of repetition may be used in defining textures with structural meth-
ods (Jain 1989).

2.4.4  Hough Transform

Hough transform was first developed by Paul V.C. Hough in 1959 (Hough 1959) to 
identify line segments in a bubble chamber photograph. Later it was generalized by 
Duda and Hart (1972), and eventually it became a very popular method for identify-
ing circular objects, which was named as the circular Hough transform (CHT) after-
wards. Using Eq. (2.7), CHT finds a circle or curve which are pixels satisfying a 
given condition of a center location (Cx, Cy) and radius (ρ) while the angle (θ) 
changes from 0° to 360°. More detailed information can be found in Kimme 
et al. (1975).

Fig. 2.8 Texture of strawberry fruit is very different than those of leaves and other objects: (a) 
strawberry plant, (b) texture of mature fruit, (c) texture of immature fruit, and (d) texture of leaf

Fig. 2.9 An example of circular Hough transform to identify immature green oranges. (Adapted 
from Sengupta and Lee 2014)
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Since many objects in agricultural crops are in circular shapes, such as oranges 
and apples, this method has been used extensively for detecting objects in crop 
canopies for various robotic applications. Figure 2.9 below shows an example of 
Hough transform from an immature green orange image. In this example, circular 
objects can be seen clearly and easily identified after some postprocessing/cleaning 
techniques are applied. It is noted that the result of Hough transform would not 
generally be the final step for identifying various objects, such as fruit in tree cano-
pies. More postprocessing steps would be necessary to achieve the desired final 
detection/identification results based on the specific application being considered.

2.5  Pattern Matching

Many times when objects of interest are similar, shape and pattern matching or 
template matching can be a good way to identify them in images. Pattern matching 
means to determine whether objects of interest are same (i.e., match) as the prede-
termined pattern or template by finding similarities between them. Some methods 
used in pattern matching are cross-correlation, sum of absolute differences, and 
fuzzy pattern matching, or some variations of these techniques.

One example technique for pattern matching would be the sum of absolute trans-
formed difference (SATD), which is a commonly used method for motion estima-
tion. SATD works by calculating differences of a template and pixels of interests in 
a gray scale image and taking a Hadamard transform of the difference (Kunz 1979). 
Zhao et al. (2016) implemented this method to identify immature green citrus fruit 
in color images along with a combination of other techniques, including adaptive 
red and blue chromatic aberration map, illumination enhancement, and image seg-
mentation based on histogram. The study achieved a detection accuracy of 83% 
with 17% missed fruit and 11% false positives.

A fast normalized cross-correlation (FNCC) would be another pattern matching 
technique that can be applied to identify objects on interests in images. FNCC is a 
template matching method which calculates correlation between a template and 
objects of interests in images. As shown in Fig. 2.10, Li et al. (2016) applied this 
method to detect immature green citrus fruit from images and reported a detection 
accuracy of 84%. Different pattern matching methods may be used in various 
applications. However, it would be difficult to specify the best pattern matching 
method beforehand, as their success may vary depending on specific applications 
at hand.
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2.6  Things to Consider

For outdoor imaging, varying illumination may be a big problem since it will affect 
the image quality tremendously. In agricultural and field applications, images are 
acquired usually in the natural environment without much control over the illumina-
tion sources, configurations, and conditions. Depending on the sunlight, some areas 
of the crop will be under direct sunlight, but some of them will be under the shade. 
In this situation, objects with similar colors might look very different in images 
due to the varying illumination. Figure 2.11a is an example of the effect of varying 

Fig. 2.10 An example of an image of (a) immature green oranges and (b) FNCC result. (Adapted 
from Li et al. 2016)

Fig. 2.11 An examples of illumination enhancement by a histogram equalization and logarithmic 
transformation. (Adapted from Kurtulmus et al. 2011)
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illumination, which shows immature oranges in bright and dark green colors. To 
eliminate or lessen this kind of problem, a histogram equalization method combined 
with a logarithmic transform can be used, as shown in Fig. 2.11b.

Contrast limited adaptive histogram equalization (CLAHE) is another method 
that can be used to adjust different brightness levels in an image. Choi et al. (2016) 
utilized CLAHE to identify and count the number of oranges prematurely dropped 
on the ground. Figure 2.12 shows an example of contrast enhancement.

Occlusion would be another big obstacle in outdoor imaging, particularly in agri-
cultural fields such as fruit orchards. As shown in Fig. 2.13a, many objects of inter-
est are hidden behind other objects and cannot be seen clearly. The human eye may 
be able to identify them; however, it would be difficult for a machine vision system 

Fig. 2.12 Example of illumination enhancement using CLAHE method (a) and (b) original 
images, and (c) and (d) enhanced images using CLAHE. (Adapted from Choi et al. 2016)

Fig. 2.13 Examples of (a) fruit occlusion and (b) clustering/grouping in an orange tree canopy
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to do the same job. Perhaps acquiring multiple images at different angles could 
minimize occlusion.

Clustering or grouping of the same objects of interest would be another problem 
particularly prevalent in using a machine vision system in agriculture and field envi-
ronments. When the same objects are touching each other and grouped together, it 
would be difficult to identify (and count) them individually. Oranges or blueberries 
are good examples facing such issues, as shown in Fig.  2.13b. Similar issues of 
clustering and occlusion can be faced in other applications, such as developing a 
machine vision system for robotic picking of fruit from tree canopies and robotic 
picking of rocks from agricultural fields.

Object movement due to wind during image acquisition would be another obsta-
cle, especially for hyperspectral imaging, using a linescan camera. Since the tilting 
head will be used for acquiring hyperspectral images, it will take time to finish 
acquiring an image. If wind blows during image acquisition, objects will not align 
in the image, one line after another. Similar issues can exist in robotic fruit-picking 
application. A vision system can detect and locate a fruit at the beginning of harvest-
ing cycle. As the fruits are picked, the changing load, wind, or other interferences 
can change the position of the fruit between imaging and picking, thus leading to 
failed picking. Repeated imaging and fruit detection approach can help minimize 
this issue, but at the cost of increased computational demand, which might impact 
the overall speed of the harvesting system.

2.7  Summary and Concluding Thoughts

This chapter describes important basic concepts of color imaging and basic image 
processing techniques. For developing successful robotic solutions for agricultural 
and field operations, it is very important to understand the basics of color spaces, 
different types of imaging sensors, image acquisition techniques, preprocessing 
steps, and some advanced image processing techniques. Agricultural and field 
applications usually require outdoor imaging, which likely means facing problems 
and challenges related to varying illumination, occlusion, and clustering of objects 
(e.g., fruits). Some strategies to minimize the issues caused by these challenges 
have also been described in this chapter. For any given task, developing efficient, 
robust, and accurate image processing algorithms is essential, which provides the 
foundation for developing successful robotic solutions to perform certain tasks in 
specific crops or other field conditions. It is noted that more discussion on various 
aspects of color imaging systems (including camera calibration and stereo-imaging) 
as it pertains to 3D sensing techniques will also be discussed in Chap. 3.

As technologies are advanced, task-specific machine vision systems may be 
developed in the near future that can automatically accomplish various tasks. 
Combined with artificial intelligence, many modular imaging systems may be 
developed for specific agricultural and field applications, such as nutrient or water 
stress detection or crop yield mapping. Such systems may solve difficult situations 
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of varying illumination or occlusion. Yet, fundamentals in color imaging and 
processing still remain important in such systems.
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Chapter 3
Sensors II: 3D Sensing Techniques 
and Systems

Manoj Karkee, Santosh Bhusal, and Qin Zhang

3.1  Introduction

In Chap. 2, we focused on understanding objects, recognizing them, and delineating 
or differentiating one type of object from another kind using color images without 
their depth information. Such 2D sensing and image processing techniques are 
essential for monitoring, evaluating, and/or understanding the objects and environ-
ment. A lot of real-world problems could be addressed quickly with 2D vision tech-
niques. However, there are a lot of other applications where depth information of 
objects is essential. For example, a robotic application such as picking apples 
(Silwal et al. 2017; Silwal 2016), weeding vegetable crops (Chen et al. 2018; Chen 
2019), and bundling red raspberry canes (Khanal 2018; Bhusal et al. 2018; Khanal 
et al. 2019) require both detection and localization (3D) of objects such as apples, 
weeds, and canes.

A robotic system used in agricultural and field environments generally consists 
of some or all of: (i) a vision system to detect and localize target objects and obsta-
cles that may be on the way to get to the objects (e.g., fruit and branches in robotic 
apple harvesting); (ii) a manipulation and end-effector system for reaching and 
engaging with the target objects; (iii) a path planning and control system for robotic 
manipulation; (iv) pre- or postmanipulation object handling system (e.g., a convey-
ance system to bring harvested fruit onto a container/bin); (v) a vehicle/platform 
with navigation and guidance system for mobility; and (vi) a surround awareness 
system for operator safety. Various color, texture, geometric, spectral, and other 
parameters of the operating environment need to be measured during this process 
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(e.g., plant/canopy size; Fig. 3.1). A 3D sensing/measurement system is essential 
and provides the backbone to implement all or most of these aspects of an agricul-
tural and field robotic system.

A 3D sensing system includes a sensor(s) for capturing 3D information and a 
data/image processing technique to recreate a 3D environment (represented in a 
digital form) and locate objects of interest in the scene. Wide varieties of sensing 
techniques and sensor systems are available for 3D measurements, including color 
cameras/stereo vision techniques and time-of-flight (ToF) of light-based sensors 
such as Laser and 3D camera. These sensors are divided into active and passive 
systems depending on if separate illumination source is required to operate these 
sensors. Passive sensing systems consist of sensors that operate with the light energy 
that is available in the environment (does not need a dedicated lighting source). 
These sensors have a receiver that can record the electromagnetic energy reflected/
emitted by the objects of interest in the given environment (e.g., stereo vision sys-
tem based on color cameras). The light source, often, is the sunlight, mainly when 
we are using a vision system in the outdoor environment. However, increasingly, 
researchers and engineers are using artificial lights in the outdoor environments as 
well to both improve the uniformity of lighting conditions and to add the capability 
for nighttime operation (Silwal 2016; Wang et  al. 2013). Active sensors (e.g., a 
Laser) emit an electromagnetic wave and generally receive it back after it gets 
reflected from the target. As discussed later, time or phase lag occurred between the 
emitted and received signals can be used to estimate the distance between the sensor 
and the objects.

Raw data collected with these sensors are processed in specific ways correspond-
ing to the measurement technique used to create a 3D point cloud and to reconstruct 
(digitally create) 3D environment, which can be used both to identify objects and 
locate them in the 3D space. For example, there has been a study to identify apples 
using only 3D information (Soria et  al. 2017). In addition, color, 3D, and other 
information/attributes of objects can be fused together to improve the accuracy of 
identifying target objects. For example, in various agricultural applications, 3D 

Fig. 3.1 Harvest CROO 
Robotics, Tampa FL 
utilizing 3D image 
technologies to estimate 
different canopy 
parameters of a strawberry 
plant. (Image courtesy of 
Bob Pitzer, CTO, Harvest 
CROO Robotics)
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information has been applied to remove unwanted background and keep only the 
areas of interest (e.g., remove the tree canopies and fruit in the rows behind the one 
being considered). This process has helped improve the accuracy of detecting and 
localizing objects of interest (e.g., apples in the trees adjacent to the camera). 
Finally, 3D information could be mapped onto color images and/or other informa-
tion such as objects identified using a color vision system discussed in Chap. 2. As 
discussed before, the presentation of 3D information in the form of the reconstructed 
scene (Nielsen et al. 2011), 3D point cloud (Comba et al. 2018), or overlay with a 
2D image become essential when any object manipulation is necessary using auto-
mated or robotic systems. In the following sections, major principles of distance 
measurement are introduced, followed by more detailed discussions on commonly 
used sensing systems/techniques and several case studies highlighting the impor-
tance of 3D vision systems in agricultural and field robotics.

3.2  3D Measurement Principles

There are many sensors or sensing systems that are available commercially1 for 3D 
measurements. Increasingly large numbers of sensing systems have now shown 
capabilities for accurate measurements in outdoor and field conditions in addition to 
an indoor and structured environment. The capability of these sensing systems 
ranges from object presence/absence characterization (e.g., an ultrasonic system) to 
single point depth measurement (e.g., a Laser depth sensor) to create a 3D point 
cloud with RGB-D (Red, Green, Blue, and Depth) cameras. All of these sensing 
systems, however, operate with a few basic principles of 3D measurement. In this 
section, some of the major 3D measurement principles are introduced. In the fol-
lowing sections, individual sensing systems will be discussed in more detail.

3.2.1  3D from 2D Images

Among a few ways 3D information can be measured, generating 3D from 2D 
images (e.g., stereo vision, discussed in Sect. 3.3) is one of the most widely applied 
techniques (Fig. 3.2). In this technique, a number of images collected from the mul-
tiple perspectives of the object/environment will be mapped together using image 
correspondence (to be discussed in Sect. 3.3.4), which is a process to identify cor-
responding object points projected onto multiple 2D images. Features such as cor-
ner points of objects can be identified and used to establish the correspondence 
between multiple images, which can then be used to develop a trajectory of features 

1 Disclaimer: Commercial product mentioned in the chapter is solely for the purpose of providing 
specific information and should not be construed as a product endorsement by the authors or the 
institution with which the authors are affiliated.
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in the space leading to the 3D representation of the objects and scene. To be able to 
create a 3D trajectory of features, relative location, and orientation of the cameras 
while taking multiple images should be known.

One of the main advantages of this technique is that the 3D information can be 
generated for an entire scene at once using regular color cameras, which are com-
paratively more affordable. This technique also provides inherently co-registered 
3D, color, and other information (e.g., infrared) which could provide a powerful 
tool for both object detection, classification, and localization. The 3D measurement 
resolution is much higher with this technique compared to other techniques dis-
cussed below, and the depth measurement range can be longer than some of the 
other techniques. However, the sensing structure with this technique can be rela-
tively more complex and the computational time comparatively higher. Based on 
this technique, a large number of stereo vision systems have been commercialized 
for decades (e.g., Pointgray, FLIR Systems, USA). Recently commercialized 
RGB-D cameras such as ZED (Stereolabs Inc., San Francisco, USA) also operate 
with this principle and provide a much robust solution for outdoor applications at 
affordable costs. Sensing and image processing techniques for stereo vision-based 
3D measurement are discussed in Sect. 3.3.

Structure from Motion Structure from motion is just another way 2D images are 
collected and used in creating 3D. Rather than using two or more cameras capturing 
multiple images, one camera is moved around the scene to scan multiple views of 

Fig. 3.2 A general framework for creating the 3D model using multiple 2D images
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objects. While doing so, the position and orientation of the camera at every instance 
of imaging would be known. Alternatively, there could be a stationary camera with 
objects moving around the camera with a known location and orientation. A 
sequence of images collected this way will then be matched using key image fea-
tures, as discussed above. Due to the structural, operational, and processing com-
plexities (long processing time), this technique has been less widely applied in the 
past in agricultural and field robotics. However, this technique has been well uti-
lized in recent years in crop phenotyping applications as it offers a more affordable 
solution for this increasingly important area of research and development (e.g., 
Santos and De Oliveira 2012). More discussion on crop phenotyping techniques can 
be found in Chaps. 6 and 13.

3.2.2  3D with Time-of-Flight of Light

There are a large number of 3D measurement sensors/systems that operate on the 
principle of time-of-flight (ToF) of light. As the speed of light is known, the time 
elapsed for the light to travel between two points is the basis in this technique to 
measure the distance between two points. In any sensor operating with this princi-
ple, electromagnetic wave(s) at a certain wavelength(s) is generated and emitted by 
one unit of the system and is received by another unit to complete the process. The 
signal received is then compared with the original signal emitted by the source unit 
to estimate the time lag, which can then be converted into the distance between two 
points (Eq. 3.1).

 D c t� �� , (3.1)

where D is the distance travelled by the signal, c is the speed of light, and Δt is the 
time elapsed.

For a lot of semiconductor devices, measuring the phase difference between 
emitted and received signal might be easier than estimating time elapsed. As an 
alternative to Eq. 3.1, distance calculation with estimated phase difference can be 
written as (Eq. 3.2):
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where Δθ is the phase shift between emitted and received signals and f = 1/T is the 
frequency of the wave used.

The signals used in ToF sensors could be sinusoidal wave (Fig. 3.3a) or square 
wave (Fig. 3.3b). When a sinusoidal wave is used, the phase shift runs in a cycle 
between zero to 360°, and it is crucial to find out if there has been more than one full 
cycle of phase shift between the two signals. There are specific techniques used to 
solve the ambiguity with phase shifts, which will not be discussed in this chapter. 
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Without the solution for resolving phase ambiguity, the maximum distance (or the 
range) a ToF sensor can measure is given by (Eq. 3.3):

 
D

c

fmax =
 

(3.3)

If square waves are used, leading edges or trailing edges are detected to compare 
between what was emitted and what was received. As shown in Fig. 3.3b, it took Δt 
for the signal (trailing edge to trailing edge) to travel between the emitter and the 
receiver, which could be used in Eq. 3.1 to solve for the distance (range) between 
two points.

In developing geometry for ToF sensors, the source/emitting unit and receiving 
unit could be located together (e.g., in the case of a Laser sensor) or separated apart 
(e.g., in the case of a GPS). If the two units are located together, the signal emitted 
by the sensor travels to the object and the receiver records the signal reflected by the 
target. In this case, then, the distance to the object from the sensor would be half the 
total distance travelled by the light. Using Eq. 3.2, the distance d to objects from the 
sensor can then be given by the following equation:
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ToF principle leads to one of the most accurate distance measurement systems 
for close range applications. Being an active sensing technique, sensors developed 
with this principle are also generally less influenced by other light sources and oper-
ate well in variable lighting conditions common in outdoor/field applications. 

Fig. 3.3 Example waveforms used in measuring object distance using the principle of time-of- 
flight (ToF) of light; (a) sinosoidal wave; and (b) square wave
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Sensors with this principle will also have inherent capability to operate in day and 
nighttime, which is not the case with the color imaging–based technique discussed 
above. One of the drawbacks is that this technique doesn’t incorporate color infor-
mation of the environment with the 3D information measured. The technique may 
be also more expensive to develop sensing system such as LIDAR that can be used 
to recreate 3D structure of the entire scene at the desired resolution. Some of the 
important 3D sensing/measurement technologies operating with this principle 
include Laser/LIDAR (light detection and ranging), global positioning system 
(GPS) or, more generically, global navigation satellite systems (GNSS), 3D cam-
eras, and radio wave–based sensors. Some RGB-D sensors such as Kinect V2 
(Microsoft Inc., Redmond, WA) also operate with this principle.

3.2.3  Structured Light

Structured lighting is the method of using active illumination of the scene with a 
varying light intensity pattern for 3D imaging (Valkenburg and McIvor 1998). With 
this technique, a known pattern (spatially varying) of light is generated by an illu-
mination unit (Fig. 3.4). The intensity of each pixel on the structured light pattern 
can be obtained during calibration (Geng 2011). A sequence of these patterns are 
projected on to the environment similar to LCD video projectors (Salvi et al. 2004), 
which will be deformed by the objects in the environment differently based on their 
relative location and orientation. A camera is used to capture the scene illuminated 
by the structured light. For a smooth imaging plane, the captured structured light 
will be same as the projected illumination. However, if a 3D object is under illumi-
nation, the surface geometry of the object will distort the projected structured light. 
This distorted or deformed light pattern in these images will be used for triangula-
tion to obtain the 3D surface geometry. As shown in Fig.  3.4, the geometric 

Fig. 3.4 3D imaging 
technique using structured 
light. (From Geng 2011)
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relationship between an imaging sensor, a structured-light projector, and an object 
surface point can be expressed (Geng 2011) by the triangulation principle as:

 
R B�

�� �
sin

sin

�
� �  

(3.5)

Sensors operating with this principle are generally fast and accurate but are more 
appropriate for indoor condition as variable outdoor/field lighting condition can 
interfere with the patterned light used by the system. Since a projector is used to 
illuminate the entire scene, power consumption by these cameras is high, often 
requiring a dedicated power source. The technique is also more suitable for close 
range depth measurement as the accuracy decreases with increasing distance to 
objects and can operate in both day and nighttime. A few commercially available 
sensors operating with this principle include Kinect V1 (Microsoft Inc., Redmond, 
WA) and Intel RealSense SR300 (Intel Corporation, Santa Clara, CA).

3.3  Stereo-Vision System

3.3.1  Introduction

Let’s take a moment and give a look at the image in Fig. 3.5a. If one has practiced 
single-image stereo viewing in the past, it would not be difficult to see the 3D envi-
ronment represented by this picture (technically a pair of pictures, which will be 
discussed later). There are two diamond-shaped objects (dices) and concentric cir-
cular hills, all in 3D, in the scene. One of the dices is in the center of the smallest 
circle and another one towards the lower-left corner of the environment. To be able 
to see the 3D environment, we need to focus behind the physical surface (paper or 
computer screen) of this image so that our left eye can see a slightly displaced ver-
sion of the image compared to what the right eye sees.

Let’s also look at another image pair presented in Fig. 3.5b. These images are 
created for what is called parallel stereo viewing, in which the left eye will be look-
ing at the left image and the right would be looking at the right image (another 
technique would be cross-viewing with a flipped sequence of images). In this case 
of parallel viewing, eyes are focused behind the surface of these images to bring the 
two images together, which makes the brain assume that these two images are cre-
ated by two eyes in a natural environment. Such a technique creates a sensation of a 
real 3D environment (through processing by the brain) very similar to how our eyes 
work in an actual 3D environment. This process is called the stereo vision tech-
nique, which is one of the most commonly used 3D sensing techniques in agricul-
tural and field robotics.

Similar to stereo-viewing with human eyes as discussed above, stereo vision 
systems consist of two same or similar cameras placed right next to each other 
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(separation distance is called baseline), which are used to collect two different 
images (called left and right images) of the environment (e.g., BumbleBee, FLIR 
Systems; Fig. 3.6; combination of any two cameras of the BumbleBee sensor cre-
ates a stereo system). Alternatively, a single sensor/camera could be used to collect 
image-pair over time with slightly displaced cameral locations. Depending on a 
range of depth measurement, the baseline, B could be varied. To improve the accu-
racy in measuring the distance to objects far away, the baseline needs to be wider. 
The drawback of such a system would be its inability to measure the distance to the 
objects close to the cameras, similar to how our eyes fail to estimate the depth of the 
objects that are very close to the eyes. In other words, further apart the sensors, 
longer the close range of the 3D measurement becomes. Therefore, the baseline is 
one of the most important parameters to be optimized to achieve the desired mea-
surement range for specific applications.

Fig. 3.5 Example stereo vision images; (a) single image stereo; and (b) parallel viewing stereo 
pair. (From: http://een.se/niklas/sis/color/alia.jpg)
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3.3.2  Depth Estimation Using Stereo-Vision Camera

As shown in Fig. 3.7, the imaging planes of two cameras are co-planner, their opti-
cal axes are parallel, and they are separated by a baseline, B. The cameras are sepa-
rated such that the majority of the field-of-views (within the desired range of 
measurement, discussed above) of two cameras overlap. In such a system, if there is 
an object at a point, P in the common field-of-view, it would be projected at point p1 
on the left-side image and p2 in the right-side image. The distance (in pixels) to p1 
from the left edge of the images is higher in the left image than in the right image. 
This difference in the corresponding image positions of the same object/pixel loca-
tion is called Stereo Parallex or Disparity. Let’s assume there is another point, Q in 
the scene, which is closer to the cameras than P. For the simplicity of discussion, it 
has been located in the same line connecting P and the focal point of the left camera. 
That means Q would be projected at the same location as P on the left image. 

Fig. 3.6 BumbleBee XB3 stereo vision camera from FLIR Systems used in various research proj-
ects at Washington State University (e.g., Bhusal et  al. 2018; Hohimer et  al. 2019; Khanal 
et al. 2019)

Fig. 3.7 Stereo vision 
system for estimating 
disparity between 
corresponding projections 
of a point P onto left and 
right imaging planes
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However, q2, projection of Q on the right image, is different than p2, which is closer 
from the left edge of the image. This geometric representation shows that the closer 
the objects are to the sensors, the disparity becomes higher. In general, then, the 
distance to the object is inversely proportional to the disparity. This relationship 
provides the basic principle of how depth is measured using a stereo vision cam-
era system.

In Fig. 3.7, f is the focal length (same for both cameras), P is the physical loca-
tion of the object of interest in the scene with x and x’ being the distance to the 
projection of P on left and right images, as discussed above. The goal of the stereo 
vision system is to find the distance/depth from the cameras to the object, z. Using 
the similarity triangles, disparity can be calculated as:

 
Disparity,d x x

Bf

z
� � ��

 
(3.6)

As the baseline, B is known and so is the focal length f, Eq. 3.6 can be solved for 
z, if we know corresponding disparity d.

3.3.3  Camera Calibration

Precise camera calibration is required for accurate 3D interpretation of the images, 
reconstruction of the world models, as well as robot interaction with the world 
(hand-eye coordination). As discussed above in Sect. 3.3.1, calculating depth with 
the stereo vision system using Eq.  3.6 requires known focal lengths of both the 
cameras used in the stereo vision system as well as the disparity between corre-
sponding pixels/objects in the left and right images. Estimating disparity is based on 
stereo-matching (image correspondence, Sect. 3.3.4), which requires an accurate 
estimation of a set of stereo camera properties, including both intrinsic and extrinsic 
parameters. The intrinsic parameters include focal length along both x and y direc-
tions (fx and fy)¸ principal point or the image center (cx, cy), and the skew γ between 
the two axes. On the other hand, the extrinsic parameters consisting of rotation and 
translation parameters describe the position and orientation of the cameras in the 
world. These parameters are often unknown and need to be computed externally 
through a process called camera calibration.

The pinhole camera model is a geometric model that describes how the points in 
space, say X � � �u v w

T
1 , are projected onto the image plane, Ximg � � �x w

T
1

. According to this model, X and Ximg are related (Szeliski 2010) by:

 X A R t Ximg ,� � �  (3.7)

where A (Eq. 3.8) is a 3 × 3 matrix containing the intrinsic parameters of the camera, 
R is a 3 × 3 rotation matrix, and t is a 3 × 1 translation vector.
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As mentioned before, R and t are commonly referred to as the extrinsic or lens 
distortion parameters of the camera. R is an orthonormal matrix with RR T = I and 
|R| = 1. Completely parameterizing the intrinsic and extrinsic parameters is not a 
straightforward process, and interested readers are advised to refer to other materi-
als (e.g., Hartley and Zisserman 2003; Szeliski 2010) to understand the mathemati-
cal formulation behind them.

Pinhole camera model leads to simpler camera architecture and low-cost systems 
where straight lines in the scene will be a straight line in the image. However, mod-
ern camera systems are designed with different lenses that result in significant 
image distortions as discussed before. In general, radial and tangential distortions 
become noticeable due to lens optics. The presence of radial distortion introduces 
the “fish-eye” effect in the image. As a result, the images are observed curved 
inward (Barrel distortion) or outward (Pincushion distortion) or a combination of 
both (Mustache distortion) (Szeliski 2010). The tangential distortion, on the other 
hand, occurs due to imperfection in the camera lens and the imaging plane and leads 
to visual curvature in the straight lines (Szeliski 2010).

Since a stereo vision system consists of a pair of cameras (referred to as left and 
right camera), intrinsic parameters of both cameras need to be known beforehand. 
Let A1 and A2 be the intrinsic parameters of the stereo camera system or left and 
right cameras. In terms of extrinsic parameters, the stereo camera calibration pro-
cess will compute a single set of rotation and translation matrix representing stereo 
pair. This information will be used to compute the point/image correspondences 
(Sect. 3.3.4) between the left and right images. If a 3D point in the world coordinate 
is projected at p1 and p2 on the left and right image, respectively (Fig. 3.7), then the 
correspondence problem can be defined as:

 p Fp1 2
T = 0 (3.9)

Now that we have defined all necessary unknown parameters (F, A1, A2, R, and 
t) for the stereo vision system, the next step would be to compute these parameters. 
For this chapter, we present a 2D camera calibration method that uses a series of 
images to compute the intrinsic parameters and the lens distortion parameters. We 
will skip the linear algebra on how to compute these parameters and focus more on 
the software or GUI implementation using MATLAB and OpenCV utilities using 
checkerboard images (Fig. 3.8) captured at different orientations with respect to the 
stereo camera. Another popular approach for calibrating camera using circular 
points is described in Meng and Hu (2003). Readers can also go through reference 
books such as Hartley and Zisserman (2003), Szeliski (2010), and Zhang (2000) for 
more a detailed discussion on the calibration process, including the mathematical 
formulation.
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A rectangular (rather than a square) checkerboard is desired (especially when 
using MATLAB) as it allows the camera calibrator to determine the orientation of 
the checkerboard patterns. The corner of the world coordinate system is set to the 
corner of the checkerboard. Before beginning the imaging process, it is important to 
note the length of each square unit of the checkerboard and the rectangular dimen-
sion of the checkerboard (number of checkerboard corners along the x and y direc-
tion). The checkerboard surface is prepared to be as flat as possible to minimize the 
impact of surface imperfection on the calibration process. Also, any camera settings 
that change the camera focal length must not be used during checkerboard imaging 
as the change in focal length of the camera tend to change the size of the checker-
board in the image. In general, all camera settings are kept consistent throughout the 
imaging process to minimize any unwanted variations between images. While cap-
turing images, it is recommended to place the calibration checkerboard at a distance 
close to the intended depth of objects the 3D vision system is used for. To avoid the 
impact of compression, a lossless image compression format is preferred. During 
the calibration imaging, the checkerboard is placed such that the board appears 
towards the edges of the images, which is essential to account for the lens distortion 
discussed earlier. In general, 20–30 image pairs are captured for calibration with 
varying checkerboard orientations, making sure the checkerboard is fully visible in 
both camera field-of-views.

Once the stereo image pairs are ready, MATLAB’s Stereo Camera Calibrator 
App (Fig. 3.9) can be used to calibrate the images. The Stereo Camera Calibrator 
App utilizes the information provided by the user (checkerboard dimension and 

Fig. 3.8 A camera and 
checkerboard configuration 
used for camera calibration
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length of the square) to create a model of checkerboard at Z = 0 plane in each image 
representing the world coordinate. These coordinates are later mapped with the 
detected checkerboard corners within the App to establish the relationship between 
the 2D detected corner points to the world coordinates, which then can be used to 
calculate the intrinsic and extrinsic parameters. Before exporting the intrinsic and 
extrinsic parameters, it is important to evaluate the calibration results from the App. 
There might be cases when the App fails to detect corners or detect different corners 
for origin. With the App, one can examine reprojection errors and camera extrinsic 
parameters as well as view and refine the calibration images. Once the calibration 
process is complete, the App outputs both the intrinsic as well as extrinsic parame-
ters of the stereo vision system along with the distortion parameters. The Brown–
Conrady model (Brown 1965; Conrady 1919) is used to correct radial distortion and 
for tangential distortion and generally higher-order coefficients are not considered. 
The App outputs three radial distortion coefficients and two tangential distortion 
coefficients. Once all the intrinsic and extrinsic parameters are computed, the stereo 
pair can be used to estimate depth or recreate 3D environment.

3.3.4  Image Correspondence

One of the most important steps in estimating depth with the stereo vision system is 
matching the pair of images so that corresponding pixel locations can be found 
between two images. This process is called image correspondence or stereo- 
matching. The matched images will then be used to generate a disparity map, which, 
as mentioned before, represents the separation between corresponding object/pixel 
locations in two images. The accuracy of this map is directly related to the accuracy 
in the depth estimation, and therefore, how accurately two images can be matched 
becomes vital for the overall performance a stereo vision system. The pair of images 
collected by two cameras of a stereo vision system need to have a huge amount of 

Fig. 3.9 Checkerboard images used for camera calibration in MATLAB. (Images from Bhusal 
et al. 2018)
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overlap so that corresponding or matching pixels can be located between two images 
with a greater ease.

Image correspondence or stereo image matching is performed using various sta-
tistical and nonstatistical techniques. One such statistical method is called cross- 
correlation (Eq. 3.10). This is one of the oldest techniques used in stereo-matching. 
As can be seen from the equation, cross-correlation is a process of convoluting one 
image with a part of another image of the stereo-pair. In other words, a small section 
(user defined) of the first image is compared against a small section of the second 
image, pixel by pixel, which is repeated by moving the small section of the first 
image over the entire second image. Through this process, a particular section/
instance in the second image that generates the highest correlation or the best match-
ing between two sections is found. This process is then repeated for each section in 
the first image so that a complete matching between two images can be created.
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Feature-Based Matching It is another approach used in stereo vision systems. In 
this approach, rather than trying to match entire images, specific features of objects 
such as sharp corners, lines, and center of objects that are prevalent in the stereo- 
pair are identified and matched. In this approach, specific objects and/or features of 
interest are first segmented out (see Chaps. 2 and 13 for segmentation techniques) 
in each of the two images. For example, if we are using a vision system for robotic 
apple harvesting, apples would be the objects of interest. Once the apples are seg-
mented out using color images, individual apples (based on their center/location, 
size, and shape) could be matched in two stereo images. If the features/objects iden-
tified can be uniquely defined (e.g., using color, shape, size, and texture features), 
stereo-matching can computationally be more efficient and the matching results 
could be more accurate with this technique compared to the same with the cross- 
correlation- based approach. It is important, however, that the spatial relationship 
between features/objects be matched as well to minimize false matching between 
objects. In addition, feature/object-based matching would provide disparity map 
and then distance of only specific locations within the field-of-view. For example, in 
the case of matching with apples as objects of interest, only areas covered by apples 
could be matched well and could lead to depth estimation with higher accuracy. If 
3D measurement is necessary for other regions in the environment, interpolation- 
based technique or other matching methods may have to be used to fill the gaps.

Another popular and most recently, widely used approach for image correspon-
dence is semi-global matching (SGM) (Hirschmuller 2008). For rectified image 
pair, the cost of matching a base image (let’s say left image) pixel p with all the 
pixels on right image on Epiplolar line (to be discussed below, Sect. 3.3.4) is com-
puted using some similarity measures such as Mutual Information (MI) (Viola and 
Wells III 1997). Thus, for each base image pixel and its potential correspondences 
in the right image, matching results in a 3D cost structure. Cost calculation can 
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result in ambiguous match and results in wrong disparity estimate. This method 
assumes that the observed disparity surfaces are quiet smooth so that any disparity 
shift or irregularities can be penalized. The final matching cost can be aggregated 
from all directions in the neighborhood, and a mach pixel is chosen that closely 
matches with the cost of neighboring pixels. The number of directions or the neigh-
borhood considered affects the computation time of this algorithm. In general, com-
putation from 16 directions ensures good quality of disparity estimation; however, a 
lower number of directions can be used to achieve faster computation.

3.3.5  Epipolar Geometry

As discussed before, accuracy of image correspondence is crucial for the overall 
accuracy of 3D measurement with stereo vision systems. To minimize the complex-
ity and improve the accuracy of correspondence, a technique called Epipolar geom-
etry is used (Shapiro and Stockman 2001). Using a specific Epipolar geometry in 
designing the stereo vision system, search space for corresponding pixels could 
theoretically be reduced down to a line. Basically, if the relative position and orien-
tation of two cameras with respect to each other and their internal parameters, 
including focal length, are known, then a matching axis called Epipolar axis between 
the two images can be found, as shown in Fig. 3.10. As shown in the figure, two 
images were acquired by two cameras with their centers C1 and C2. The location P 
in the field-of-view was imaged at p1 in the left image and p2 in the right image. 
When two camera centers C1 and C2 are connected (which is the baseline), the line 
intersects the images at E1 and E2. Based on this geometry, it is found that any point 
in the line P1E1 in left image would have a matching point located along P2E2 in 
right image. This technique, therefore, minimized the search space down to a line 
from the entire image. Stereo vision system uses a specific example of Epipolar 
geometry created by two cameras with same internal parameters and orientation 
separated by a short distance (baseline) along their imaging planes (orthogonal to 
their optical axis; Fig. 3.7). With such a geometry, the search space for finding a 
corresponding pixel would be a horizontal line at the same pixel location in the 
vertical direction. The Epiplolar geometry is utilized by various image correspon-
dence algorithms, such as the SGM technique discussed before.

3.3.6  Tools for Stereo-Vision-Based Distance Measurement

MATLAB and OpenCV (open source computer vision library) are some of the most 
used tools by engineers and scientists working in agricultural and field robotics area 
for 2D and 3D image processing. As discussed before, the first step for depth 
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estimation with a stereo vision system is to minimize the radial and tangential dis-
tortions in the images captured by the stereo camera(s). MATLAB provides “undis-
tortImage()” and OpenCV provides a similar function “undistort()” to improve 
images by minimizing distortions or to compensate for issues related to lens imper-
fection. Next, images can be rectified, which is a process to make the images 
Epipolar (Sect. 3.3.4). The function stereoRectify() in OpenCV and rectifyStereoIm-
ages() in MATLAB can be used for stereo images rectification. After the images are 
rectified, image correspondence is performed, as discussed in Sect. 3.3.4. Both 
MATLAB and OpenCV provide functions for image/pixel correspondence and to 
compute disparity between the two rectified images. Readers are encouraged to 
explore more on StereoSGBM() function and disparityMap() functions in OpenCV 
and MATLAB, respectively, which utilizes semi-global matching for image corre-
spondence. Once disparity maps are generated, object depth can be computed easily 
using Eq. 3.6 (with known focal length and baseline) that can be easily implemented 
in MATLAB or any other tools).

Fig. 3.10 Epipolar constraints. (Adopted from Shapiro and Stockman 2001); the projection of 
point P in the left image is at P1, which would be found along epiline E2P2, in the right image
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3.4  Other 3D Measurement Systems

3.4.1  Visual Servoing

Particularly in manipulative robotics (where robots use some sort of manipulator 
and end-effector to miniplate objects), approaching the target object can be achieved 
by repeated acquisition and use of 2D images of the target object and its surround-
ing. First, the general target locations/objects are detected in 2D images using image 
processing techniques discussed in Chaps. 2 and/or 13. Once the targets are located 
in 2D images and approach sequence is determined, manipulator movement towards 
the target object is guided based on the instantaneous object location in the 2D 
image sequence as a feedback to the manipulator control system (Ringdahl et al. 
2019). This technique of approaching target objects/locations using repeated use of 
2D images collected using an end-effector-based imaging system is called visual 
servoing. For example, in a fruit picking robot utilizing a visual servoing technique, 
approaching a fruit would involve detecting the fruit and its position (often in 2D 
image space) on a regular basis and actuating the robotic manipulate joints in such 
a way the target fruit always remains at the desired image coordinates.

Visual servoing is a more robust technique for localizing target objects for 
manipulation than other 3D measurement techniques operating as a global sensing 
system (camera systems not attached to an end-effector). As the object position is 
dynamically updated while approaching the object, the technique can ensure reach-
ing the object even in a noisy environment. However, the system can be slower as it 
requires the acquisition and processing of images during the approach. Dynamic 
adjustment of manipulator joint positions also reduces the efficiency at which the 
robotic manipulator can be moved to the target. In a global camera system–based 
manipulation without a visual servoing technique, however, objects might be missed 
if the environment is noisy, 3D measurement system has errors and/or uncertainties, 
and/or unintended movement in objects occur between imaging and the intended 
instance of manipulation (e.g., wind gusts causing an apple to move before the end- 
effector reaches the fruit). More discussion on visual servoing can be found in 
Chap. 9.

3.4.2  Laser and LIDAR

Laser and LIDAR (light detection and ranging), operated with the principle of ToF, 
are one of the most accurate techniques for 3D measurements. These two tech-
niques are basically the same in terms of how they function, and the terms are often 
used interchangeably. In this chapter, we define Laser to represent the basic unit that 
uses a single beam of light to estimate distance to a single point in the environment. 
LIDAR, on the other hand, would include a scanning mechanism so that the device 
could be rotated around to gather depth to the objects around the sensor covering a 
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specific line and/or area of interest in the environment, not just a single point. As 
discussed in Sect. 3.2.2, Laser and LIDAR use either continuous ranging (sinusoidal 
waves; Fig. 3.3a) or pulse ranging (square waves; Fig. 3.3b) to transmit and receive 
the light back for distance calculation using Eq. 3.4. As discussed before, with this 
technique, either the time elapsed or the phase shift between the emitted and the 
reflected lights are estimated, which is then used to calculate the distance travelled 
by the light using known speed of light. These devices provide highly accurate 
range measurement in the close distance but are not suitable for long range distance 
estimation. They are also generally less sensitive to variable lighting conditions 
common in the field environment and have the capability for nighttime operation. 
The technology is relatively slow and expensive to build high-resolution 3D 
environment.

3.4.3  3D Camera

3D cameras also operate using the principle of ToF. However, these sensors have a 
grid of Laser emitters and sensors that receive all of them back. These cameras, 
therefore, generate 3D point cloud of the space (within a field-of-view) at once. 
Contrary to Laser and LIDAR, 3D cameras use thousands or even millions of emit-
ters operating in parallel to create the 3D maps without the need for using a scan-
ning mechanism. These cameras, therefore, are faster in terms of creating 3D 
structure of a given field-of-view; however, they generally have relatively low pixel 
resolution, are more costly, and are not well suited to handle shiny objects. Being 
the active sensors, these cameras also have an ability to function both in day and 
nighttime. Some examples (Fig. 3.11) include Camcube 3.0 (PMD Technologies, 
Siegen, Germany) and Azure Kinect (Microsoft Inc., Redmond, WA). These exam-
ple sensors have resolution around 0.1 to 1.0 megapixels. These cameras have more 
commonly been used by research communities around the world in the past. 
Recently, more cost-effective RGB-D cameras utilizing ToF principle (or other 
techniques such as structured light and stereo vision) have been utilized more 

Fig. 3.11 Example 3D Cameras; (a) CamCube 3 from PMD Technologies (Siegen, Germany); 
and (b) Azure Kinect from Microsoft Inc. (Redmond, WA)
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commonly in research and development of agricultural robotic solutions compared 
to 3D cameras.

3.4.4  Global Navigation Satellite Systems (GNSS)

GNSS, including GPS and Galileo systems, also operates using ToF principle. But 
the distance measurement mechanism is slightly different. For example, our cell 
phones can estimate their location in the space using GPS technology. However, 
these devices do not actively emit light and receive it back to estimate their location. 
In this 3D measurement system, generally, we have an emitting system (satellites) 
and a receiving unit (e.g., a cell phone). When a receiver receives the signal, it can 
estimate the time taken by the signal to travel from the satellite to the receiver, 
which will be used to estimate the distance between the satellite and the receiver. As 
the satellites have known position, a trilateration technique (Fig. 3.12) is then used 
to estimate the specific 3D location of the receiver using signals from at least four 
visible satellites at any given time. Four satellites need to be visible, because the 
trilateration is being used to solve for four unknown variables, x, y, z and time. In 
practice, five or more satellites are used (when available/visible) to improve the 
accuracy of localization.

Fig. 3.12 Distance measurement using the GNSS trilateration. Three circles represent the cross- 
sections of spheres created around three individual satellites with the radius being the respective 
distances between the GNSS receiver and the satellites. The cross-section of three spheres provides 
the potential receiver location, P

M. Karkee et al.



59

Trilateration for positioning with the GNSS system works as follows: with an 
estimated distance from a receiver to one GNSS satellite, r1, the receiver position 
could be constrained down to the surface of the sphere, with the center being the 
location of the specific satellite and the radius being r1. The circles in the diagram 
(Fig. 3.12) are just the cross-sections of the spheres with a possible receiver loca-
tion. Next, if the distance from the receiver to another satellite is estimated to be r2, 
the receiver could be anywhere on the surface of the sphere drawn the same way. 
Now, with two spherical surfaces of possibilities, the interacting line between two 
spheres would define the narrowed down area of the potential location of the 
receiver. When the distance to a third satellite is estimated, now the intersection 
between three spheres provides two potential locations for the receiver. Two resolves 
the ambiguity between two locations, known position of earth can be used as one of 
the two potential locations of the receiver would be impossibly far away from the 
earth’s surface.

Assuming the location of the first satellite be (0, 0, 0), the second be (X2, 0, 0), 
and the third be (X3, Y3, 0) and using the algebraic representation of a sphere, trilat-
eration can be represented as follows (Eqs. 3.11, 3.12, and 3.13). In this formula-
tion, the receiver position is defined by P(x,y,z).
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Eqs. 3.11, 3.12, and 3.13 can then be solved for x,y, and z (receiver position, P in 
3D) as given by Eqs. 3.14, 3.15, and 3.16.
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As mentioned before, however, in practice, more than three satellites are used to 
estimate time as a new variable and also to improve the accuracy of estimations. 
Frequently, in the open space, there can be ten or more satellites visible (e.g., in 
GPS), allowing us to improve positioning accuracy. However, even with such a 
technique, a regular GPS receiver provides a position with an accuracy of about 4 to 
5 m (van Diggelen and Enge 2015). This level of accuracy is sufficient for various 
applications, such as driving around a city. However, when we are using an auto- 
steering system in cornfields or vineyards, much higher accuracy would be neces-
sary for achieving the desired field operations without damaging crops.
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Differential and Real-Time Kinematic GPS To improve the positioning accuracy 
of roaming GPS receivers, Differential GPS (D-GPS) and Real-Time Kinematic 
GPS (RTK-GPS) techniques are used. In D-GPS, a base station with the precisely 
known position will be used (Fig. 3.13) in addition to roaming GPS receivers. Base 
stations could be installed in the field or could even be other low-orbit satellites. The 
location of the base station is estimated using satellite signals as if it were a regular 
GPS receiver. Because the location of the base station is known accurately, the dif-
ference between the actual and estimated location can be calculated as the position-
ing error at the base station. The promise with this technique is that the atmospheric 
and other attenuations/errors in the satellite signals will be similar for two receivers 
that are close to each other. Therefore, the positioning error estimated at the base 
station can be used to correct/improve the positioning accuracy of other receivers 
that operate in the close vicinity of the base station. With this technique, GPS posi-
tions are estimated with receivers that roam around the base station. The estimated 
roaming receiver position will then be corrected as a postprocessing (offline) step or 
in real-time using the correction signal recorded/transmitted by the base station. In 
a real-time D-GPS, the roaming receivers are capable of receiving both the satellite 
signals and the correction signals from the base station and apply the correction to 
the estimated position in real time. The positioning accuracy of the D-GPS system 
can be less than a meter.

Fig. 3.13 A basic framework for Differential GPS and Real-time Kinematic GPS. The base station 
(with precisely known position) estimates its position using satellite signals and computes a cor-
rection comparing the known and estimated position, which is then sent to a remote receiver for 
correcting its estimated position
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RTK-GPS uses the same principle of operation as D-GPS. However, the correc-
tion signals are sent to the roaming receivers using the carrier phase signaling 
method. The carrier phase information received by two receivers (base station and 
roaming receiver) can be used to avoid the error in satellite and receiver clocks, 
which helps further improve the positioning accuracy of the receiver (because that 
of the base station is already known; Langley 1998). With this technique, roaming 
receivers could achieve a positioning accuracy of up to 1 to 2 cm (e.g., Lin 2004).

3.4.5  Interferometric Synthetic Aperture RADAR (InSAR)

InSAR (Interferometric Synthetic Aperture RADAR) is another technique for 3D 
estimation, mostly used by satellite systems (called Satellite Interferometry). This 
technique uses radio waves that are generated by two sensors separated by some 
distance. The configuration could be developed by two sensors in the same satellite 
or two different satellites flying over the same area slightly offset in space and time. 
The radio wave generated by the sensors travels to the objects and returns back to 
both the sensors. The phase difference in the wave received by the two sensors is 
used to estimate the distance to the object. Because radio waves have a wider wave-
length, phase shift analysis could be performed more robustly. However, to find out 
the distance to objects longer than what could be estimated by one full phase of the 
signal, a technique called phase unwrapping needs to be applied.

The depth estimation process with interferometry, briefly, involves four specific 
steps. First, images collected by two sensors or collected at two different instances 
need to be co-registered. This step requires matching pixels from one image to 
another, which is similar to stereo-matching techniques used in the stereo vision 
systems discussed earlier (Sect. 3.3.4). After images are matched, a phase map is 
generated, which is also called interferogram generation. As the phase map includes 
cyclic information between 0 and wavelength of the radio wave used, phase unwrap-
ping is performed on the interferogram to create absolute values of the total phase 
shift. Finally, phase unwrapped maps are converted into depth or elevation maps. 
Because InSAR operates using radio waves, it has certain advantages, including 
better penetration of the signal leading to uninterrupted operation in cloudy days as 
well, which would not be possible with visible signal-based techniques such as 
stereo vision or stereoscopy. More details on this technique can be found in Karkee 
(2005). Based on this technique, the US government has generated digital elevation 
models or altitude information covering almost the entire globe using a mission 
called Shuttle Radar Topographic Mission with spatial interferometry (same shuttle 
carrying two sensors separate by some distance). More information on this dataset 
and mission can be found at https://www2.jpl.nasa.gov/srtm/.
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3.4.6  Ultrasonic and Infrared Techniques

There are a few other 3D sensing techniques that have been used in precision and 
automated agricultural systems for approximate estimation of crop canopy location 
and size. One of those techniques is the use of ultrasonic or infrared signals to detect 
the presence or absence of canopy and estimate various canopy parameters, includ-
ing canopy depth, volume, and foliage density. These sensors also operate in the 
principle of time-of-flight (ToF) of a specific type of wave being used. An ultrasonic 
sensor generates a sound wave in a frequency generally inaudible to humans. The 
signal, after being reflected by the target, is recorded by a sensor to estimate the time 
difference and, consequently, estimate the distance. Canopy parameters estimated 
with these sensors can be used to perform various field operations more accurately. 
One such example operation would be to turn various sections of a chemical sprayer 
ON or OFF depending on the estimated canopy density and volume in a target 
region of a tree canopy as demonstrated by Jeon et al. (2011) and Maghsoudi et al. 
(2015). Sparse representation of 3D structures of tree canopies can also be achieved 
by a motion tracker that works via the relative displacement of an electromagnetic 
field. Sinoquet et al. (1997) used this technique to model walnut trees and Vougioukas 
et al. (2016) to model pear trees for understanding fruit accessibility and harvesta-
bility using an automated harvester. The sensor can be used to record three- 
dimensional positions in space at branch junctions, for example, which can be used 
to represent the tree shape. The techniques discussed in this sub-section generally 
provide only coarse resolution data. However, sensors operating with these princi-
ples can be simpler and low-cost with much simpler data structure and faster pro-
cessing speed beneficial to meet various needs of automated or robotic systems in 
agriculture.

3.5  Case Studies

In agricultural and field robotics, a wide range of 3D measurements systems have 
been applied covering a great swath of applications, including guidance and situa-
tion/surround awareness (e.g., Malavazi et al. 2018); monitoring crop growth and 
other crop phenomics applications (e.g., Guo et  al. 2018); robotic operations in 
orchards (e.g., Gebbers et al. 2013) such as harvesting (Silwal et al. 2017), training 
(Zeng et al. 2019; Majeed et al. 2020), pruning (Karkee and Adhikari 2015; Botterill 
et al. 2017), and thinning (Nielsen et al. 2011); robotics operations in vegetable crop 
production, including pollination (Yuan et al. 2016), harvesting (Klein et al. 2019), 
and weed control (Raja et al. 2020; Chen 2019); and robotic operations in vertical 
and controlled environment farming (e.g., greenhouse and vertical farming); to 
name a few. There could be varied needs of 3D measurement systems and approaches 
depending on the type of applications. For applications that need information on 
only the presence or absence of canopy without regard to identifying individual 
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canopy objects or parts, nonimaging sensors such as ultrasonic and Laser could 
provide desired 3D information at a faster speed. As discussed above, these sensors 
can provide a quick assessment of plant canopy characteristics such as canopy 
depth, canopy size, canopy shape, and foliage density (e.g., Jeon et  al. 2011; 
Maghsoudi et al. 2015; Rosell Polo et al. 2009; Liu and Zhu 2016). In applications 
where accurate 3D positioning of a point or a line in the environment is needed, a 
Laser system could be an ideal option (Jiménez et al. 2000). For example, in identi-
fying trunks for targeted chemical applications in vineyards (Yaxiong et al. 2017) 
and to estimate the canopy volume in an orchard (Underwood et al. 2016), a Laser 
sensor installed on a moving vehicle at a certain height might provide sufficient 
data. A similar example where a plane of Laser data would be of great importance 
is the guidance of robotic machines through orchards. A Laser scanner could pro-
vide object locations on a plane, which could be used in the robotic system to iden-
tify the center of the two rows of trees and to detect obstacles in front of the machine 
(Ye et al. 2017).

On the other hand, 3D location information of the entire environment of interest 
or surrounding area might be necessary to perform various other field activates, 
including understanding, operating, and traveling through an unstructured environ-
ment. For example, a 3D vision system with the capability to reconstruct entire tree 
canopies would also be necessary for applications requiring the identification and 
localization of specific canopy objects (e.g., flower, fruit, leaves, branches, trunks) 
or specific parts (e.g., a cluster of flowers or fruit, an area of foliage with a particular 
disease). Commonly used sensors for estimating the 3D locations of objects in such 
situations include stereo vision camera (Gebbers et al. 2013; Yuan et al. 2016), ToF- 
based 3D cameras (Silwal et al. 2017), RGB-D sensors (Xiao et al. 2017), and sys-
tems to create structure from motion (Dey et al. 2012). In the following subsections, 
a few robotic applications (case studies) of various types of 3D measurement tech-
niques in agriculture have been discussed.

3.5.1  Crop-Load Estimation in Orchards

Accurate crop-load estimation is essential for efficient management of pre- and 
postharvest operations in various fruit crops, including apples. This information will 
help arrange the desired amount of harvesting labor and equipment and also esti-
mate needs for storage and marketing. Crop-load estimation in any fruit crop, such 
as apples, requires detection and counting of fruit as well as determining the size of 
the detected fruit. Various object detection approaches (convectional as well as 
deep-learning-based techniques) are discussed in Chaps. 2 and 13. In this case 
study, a brief discussion on methods for fruit size estimation in the orchard environ-
ment is presented.

In its basic form, distance to a segmented object would be necessary to convert 
the pixel area occupied by an object into the physical size of the object. Though 
there have been a lot of studies in detecting fruits such as apples, only limited 
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studies can be found in utilizing 3D vision systems for fruit sizing in the orchard 
environment. Gongal et al. (2018) presented one such study using a ToF 3D camera- 
based system to estimate apple size in tree canopies. An over-the-row imaging plat-
form with artificial lighting was developed to create a uniform lighting environment 
(Fig. 3.14). The study used the major axis (longest axis) of the apples as the size of 
the fruit, which was estimated based on (i) 3D coordinates of pixels within seg-
mented apples and (ii) 2D size of individual pixels within apple surfaces. In the first 
method, 3D coordinates estimated with the 3D camera were used to calculate 
Euclidean distance between pixels. The maximum distance between two pixels 
within an apple surface was considered to be the major axis of the respective apples. 
In the second method, the physical size of each pixel along the major axis of the 
apples was estimated using a calibration model, which was then summed to esti-
mate the major axis length. The calibration model was developed based on the dis-
tance to pixels from the camera and the pixel coordinates. The study found that the 
3D coordinate-based method achieved only about 69% accuracy in estimating fruit 
size in the orchard environment, whereas the accuracy with the pixel-based method 
was 85%. Other studies in this area include Wang et al. (2013), which scanned apple 
trees from both sides in a row and detected and registered apples to generate yield 
estimation.

Fig. 3.14 Cameras (a), artificial lighting (b), and an over-the-row image acquisition system (c) 
used for apple sizing in tree canopies. (From Gongal et al. 2018)
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3.5.2  Robotic Fruit Harvesting

Robotic fruit harvesting has been investigated for many decades. However, no com-
mercial success has been achieved so far because of a few major constraints, includ-
ing lack of the desired level of speed, accuracy, robustness, and high cost of the 
technology. Fueled by declining the labor force and increasing labor costs and 
encouraged by the recent advancement in sensing and image processing techniques, 
including deep learning, and increasingly cost-effective parallel computing plat-
forms, robotic fruit picking has been an area of active research and development 
over the last decade. Both private companies and university research teams around 
the world are actively perusing fruit picking research and development for various 
types of crops, including apples (Hohimer et al. 2019; Silwal et al. 2017), citrus (Lin 
et al. 2019), kiwifruit (Williams et al. 2019), sweet pepper (Arad et al. 2020), and 
strawberries (Xiong et al. 2020).

In the recent efforts on robotic fruit picking, various types of 3D measurement 
systems have been used in detecting and localizing fruit. Sukkar et al. (2019) used 
an RGB-D sensor (SR 300, Intel Inc., Hillsboro, OR) installed on a robotic arm, 
which was then moved around a target tree canopy to detect apples using a 3D 
model created using the point cloud data. Fruit detection was based on features such 
as shape and size. This technique used images acquired from multiple directions, 
which improved the robustness of fruit detection and localization. Over the last few 
years, a transdisciplinary team of researchers from FFRobotics (Haifa, Israel) and 
Washington State University (WSU) have also been developing a full-scale robotic 
harvesting machine (Fig. 3.15) utilizing a similar sensor (RealSense D435). The 
machine used 12 Cartesian robotic arms (linear movement in and out of canopies) 
supported by 12 RealSense RGB-D cameras, which were selected for their low cost 
and ease of use while also providing the desired level of accuracy and robustness in 
the field environment. The research focused on estimating the 3D location of not 

Fig. 3.15 End-to-end system developed for robotic fruit harvesting, conveying, and bin filling; (a) 
Intel RealSense 435 Cameras used as the color and depth sensors; and (b) the complete har-
vest system
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only apples but also of various canopy objects, including trunks, branches, and trel-
lis wires, which would be essential to create a collision-free path of robotic-end 
effector to travel to the desired fruit, grab it and detach from the tree.

In the integrated robotic machine, RealSense cameras were installed at the base 
of individual robotic arms (Fig. 3.15a). The machine was then evaluated in com-
mercial apple orchards in Washington (2019 harvest season) and Israel (2018 har-
vest season) to harvest entire tree height and transport fruit to bins (Fig.  3.15b, 
https://youtu.be/YUdqTov9GeU). During the field test, the image acquisition pro-
cess began by scanning the canopy directly in front of the initial multiarms robot 
position. As some apples were blocked by other apples, leaves, branches, trunks, 
and trellis wire and were therefore difficult to be accessed and picked by the robotic 
hand, a 3D image processing technique was used to locate all potentially obstruct-
ing objects (Fig. 3.16). This technique was able to detect and locate apples that were 
not obstructed by other canopy objects, which could be completely visible and 
accessible, and may freely be picked by robotic hands. Similar efforts are underway 
with other teams in fruit picking, including apple harvesting by Abundant Robotics 
(Hayward, CA), and strawberry harvesting by Harvest Croo (Tampa, FL).

3.5.3  Robotic Fruit Tree Pruning

There have been several studies in creating the 3D structure of fruit trees and iden-
tifying pruning branches using various kinds of 3D vision systems. Some of the 
frequently used systems for 3D reconstruction of fruit trees include ToF-based 3D 
cameras and RGB-D sensors like Microsoft Kinect 2 (which also operates with 
ToF). Karkee et  al. (2014) and Karkee and Adhikari (2015) developed a 
skeletonization- based technique to create apple tree structures using 3D point cloud 
data acquired with a ToF 3D camera. They used a pan-and-tilt system to increase the 
field of view of the camera system so that entire tree canopies could be imaged and 
reconstructed. The topological structure of trunks and branches created with this 

Fig. 3.16 (a) Apples marked in the image are identified and located to be safe to harvest in the 
given view; (b) Trellis wire and trunk detection and localization to avoid end-effector and trellis 
wire collision
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technique was then used to develop and implement tree pruning rules utilizing 
branch spacing and branch length. Elfiky et al. (2015), Chattopadhyay et al. (2016), 
and Akbar et al. (2016b) used a ToF-based Kinect camera to perform a similar task 
of creating apple tree structures. Reconstruction of 3D structures of apple trees uti-
lized KinectFusion API (Izadi et al. 2011) for surface reconstruction, and then skel-
etonization and feature extraction (Elfiky et  al. 2015). The work then led to 
estimating branch diameter and other canopy features that could be useful for 
designing and implementing automated pruning process for apple trees 
(Chattopadhyay et  al. 2016; Akbar et  al. 2016a). It is noted that Microsoft has 
recently discontinued Kinect sensors, but there are other similar cameras such as 
ZED camera showing promise to continue using low-cost RGB-D sensing for agri-
cultural and field robotics.

LIDAR sensors (Medeiros et al. 2017) and multiple 2D image-based 3D recon-
struction techniques (Tabb 2013) have also been successfully used for estimating 
fruit tree shape for pruning. Medeiros et al. (2017) used one-dimensional LIDAR to 
acquire large depth maps of fruit trees, which was then used to estimate branch 
diameter, branch length, and other geometric features of tree canopies. Tabb (2013) 
and Tabb and Medeiros (2017) used multiple color cameras to acquire apple tree 
images, which was then used to reconstruct a 3D structure using a technique called 
structure from a silhouette. One common drawback of 3D machine vision systems 
used in fruit tree reconstruction and automated pruning has been the data acquisi-
tion and processing time. For example, Medeiros et  al. (2017) and Tabb and 
Medeiros (2017) reported a data acquisition and processing time of more than 
10 min per tree using a high-performance computer, which is limiting for real-time 
applications.

To further advance the robotic pruning technologies, a team of researchers from 
WSU, Carnegie Mellon University, and Oregon State University is currently work-
ing on novel sensing and data processing techniques. A specialized 3D measure-
ment system was developed, which includes two global stereo-camera systems and 
a small, eye-in-hand stereo-camera that moves with the robotic manipulator. 
Synchronized lighting was used to suppress external light in the environment and to 
create a uniform illumination for stereo-imaging, which substantially minimized the 
noisy, unwanted objects in the images (Fig.  3.17). The global camera system 
includes two camera orientations and a sliding mechanism to vary imaging position 
so that a dense 3D point cloud could be developed for a given section of the tree 
canopy. The local camera system was used to improve the accuracy of approaching 
the pruning location. The camera system has been used in both laboratory and field 
conditions to acquire 3D information of apple and cherry trees and creating 3D 
point clouds (Figure 3.17e).

Faster R-CNN proposed by Ren et  al. (2015) was used to identity branching 
points from color images after the 3D point cloud generation. These branching 
points were strong visual cues that were used to detect branch occlusion that would 
be necessary to segregate individual branches as a whole. The link between the 
detected branching points was associated using a skeleton image generated by a 
generative adversarial network (GAN). The output of GAN was a binary image with 
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an array of connected binary pixels that traced the midsection of branches in the 
color images. A multichannel GAN was used to generate skeleton image for 
branches and the main trunk. Once the skeleton was identified, the curvature of the 
limbs and trunk was warped using the depth information obtained in the previous 
steps to reconstruct the 3D models. This information was used to estimate the length 
and size (diameter) of trunks and branches. The 3D skeleton and geometric param-
eters obtained were then used in identifying pruning branches in apple, cherry, and 
other fruit trees.

An integrated robotic system was also developed by the team (Fig. 3.18), which 
has been tested in the laboratory environment (You et al. 2020) to prune out cherry 

Fig. 3.17 Image processing sequence; (a) color images collected with a custom-built stereo vision 
camera from three different locations; (b) color images collected similarly with another stereo 
vision camera placed under the first one; (c) 3D point cloud created with the first stereo-camera, 
(d) 3D point cloud created with the second stereo-camera; and (e) combined 3D point cloud. 
(Image courtesy of Dr. Abhisesh Silwal, Carnegie Mellon University)
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trees trained to an architecture called Upright Fruiting Offshoot (UFO). To simplify 
the architecture and to reduce the overall cost, a RealSense D435 was also investi-
gated (Fig. 3.18b) as an alternative to the specialized local camera mentioned above. 
The study (You et al. 2020) showed that the integrated system with the RealSense 
D435 camera performed the path planning and a sequence of branch pruning opera-
tions successfully. These efforts are showing promising results for improved accu-
racy and computational efficiency for 3D vision system–based robotic pruning. 
Nevertheless, robotic pruning remains one of the most difficult tasks for automating 
tree fruit production, and further research and development are crucial to advance 
these technologies so that the accuracy, robustness, and cost of the technology could 
be achieved to the desired level for practical adoption.

3.5.4  Automated Red Raspberry Bundling

Red raspberry is a specialty crop grown commercially in some parts of the world, 
including the northwest region of Washington State. Similar to many other fruit 
crops, red-raspberries also require various canopy management operations, includ-
ing cane pruning, bundling, and tying. To minimize labor use and associated cost, 
automated or robotic operations are in need of these canopy management activities 
(Bolda et al. 2012). Primarily because of low volume production and unique needs 
around the world, there has been limited research and development in automating 
canopy management activities in red raspberries. Identifying this research gap and 
unique needs of this industry in Washington and around the world, Bhusal et al. 
(2018) and Khanal et al. (2019) developed a novel, automated cane bundling and 

Fig. 3.18 Pruning robot setup; (a) a UR5e robot arm with specially designed two global stereo 
vision cameras and one eye-in-hand camera at the end of the arm; (b) an Intel RealSense D435 
camera replacing the eye-in-hand stereo camera and a custom pneumatically actuated pruning 
end-effector
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tying solution using a stereo vision system for cane localization (Fig. 3.19). The 
vision system used a BumbleBee XB3 stereo vision camera (FLIR Systems, 
Wilsonville, OR) to acquire stereo-pair images of red raspberry canopies during the 
dormant season. The stereo vision system was mounted under the bundling and tap-
ing/tying end-effector and calibrated, as discussed in Sect. 3.3.2.

The system was tested in the field by driving the automated system in the center 
between crop rows. Stereo-images were collected by stopping the platform at the 
center of individual plants/canopies, and the images were then used to perform ste-
reo vision computation, including image correspondence and disparity map genera-
tion (Sect. 3.3.4). One of the images (left image of the stereo pair) was also used to 
detect canes before 3D information was overlaid on to the detected canes. In addi-
tion, depth information was used to remove unwanted canes and other information 
from the background (anything outside the range of target distance to canes of inter-
est), which helped improve the accuracy of estimating depth and height of the bunch 
of canes being bundled and tied together. When the color information (obtained as 
a segmentation mask from semantic segmentation) of detected canes was overlaid 
on distance-filtered depth information, binary blobs containing 3D information of 
target canes were created, which was used to find the average depth to the target 
canes for bundling. Bundling depth and height was provided to a microcontroller to 
actuate the mechanisms for bundling with the L-shaped end-effector and tying using 
a taping mechanism (Fig. 3.19). The automated cane bundling and taping mecha-
nism achieved an overall success rate of 90% when tested in a red-raspberry plot 
located in a research farm at Washington State University. The manual tying and 
automated tying were compared in terms of crop yield. The mean fruit yield between 
machine taped and manually tied raspberry plants showed no significant difference. 
The study showed a potential for the development of an automated red raspberry 

Fig. 3.19 Robotic cane bundling machine for red raspberries based on a stereo vision system (a) 
and raspberry canes detected and separated using 2D and 3D image-processing techniques (b). 
(From Bhusal et al. 2018)
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cane bundling and taping mechanism. However, more work is necessary to increase 
speed, and address concerns related to using plastic tapes in tying canes.

3.6  Summary and Concluding Thoughts

Why 3D Sensing
The world is inherently a 3D space, and therefore, a robotic machine, to be robust, 
must operate using an accurately reconstructed 3D environment. Particularly for 
robots operating in uncertain and variable field conditions (agricultural and other 
fields), precise sensing, representation, and understanding of the 3D environment 
become crucial. For example, an apple-picking robot would need to have a suffi-
ciently detailed and accurate description of the tree canopy environment, including 
the location and spatial relationship between various canopy objects such as fruit, 
branches, trunks, and trellis wires. Such 3D representation would be necessary to 
plan collision-free and efficient paths and then to implement the desired trajectory 
to approach, grab, pick, and place the fruit on to a conveyor or a container. Similar 
needs would be there for countless other robotic operations in the field environment, 
such as moving strawberry boxes out of fields to loading zones (Seyyedhasani et al. 
2020) and flying aerial robots in between trees to apply specific chemicals to desired 
canopy parts. A large number of sensing systems are available and have been used 
in agricultural and field robotics applications. These sensors operate using one of 
three principles: (i) 3D from 2D images, (ii) time-of-flight of light, and (iii) struc-
tured light. The sensors range from single point depth estimation (e.g., a Laser sen-
sor operating with ToF) to an imaging system for full environment 3D development 
(e.g., stereo vision system working with the principle of 3D from 2D images). 
Depending on specific applications at hand, single point depth estimation such as 
ultrasound and Laser techniques to imaging systems such as stereo vision and 3D 
camera systems have been used. As the 3D technologies are becoming increasingly 
cheaper, more reliable, and easier to operate, they have been implemented alongside 
the 2D vision system almost everywhere. However, the choice of the required type 
of technologies largely depends on the functional requirement of the work, space 
required, cost, and performance.

Similar to color and spectral sensing systems (Chaps. 2 and 4), 3D sensing tech-
niques also suffer from various issues in agricultural and field environment, includ-
ing variable lighting, uncertainty of field environment, inherent biological variability 
of canopies, occlusion of objects of interests, and variation in object shape, size, 
color, and other parameters. Laser sensors are generally less influenced by these 
challenges and are considered the best in terms of depth measurement accuracy in 
close range. But if the full environment (of interest) needs to be created at a higher 
resolution using a Laser scanning or LIDAR system, it could be slow and expensive 
(Zhang et al. 2019). Stereo vision system could provide a faster (in terms of image 
acquisition) and more cost-effective solution in such situations, but are more prone 
to the variability and uncertainty in lighting conditions and biological system 
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variabilities. In recent years, however, these systems are showing to be increasingly 
more robust and accurate for agricultural and field environments as well due to 
recent advancements in sensing hardware and data/image processing techniques, 
including deep learning. In addition, synchronized use of artificial lighting to sup-
press the interference created by sunlight and adding the capabilities for nighttime 
operation has been and will continue to be a powerful tool in improving the robust-
ness of 3D vision system for field applications (Gongal et al. 2018; Nuske et al. 2011).

Integrated 2D/3D Sensing
In recent years, 3D information has also been used extensively in understanding the 
spatial variability of color, spectral, and other characteristics of objects (e.g., plant 
canopies). In many of the studies listed earlier in this chapter, two or more sensors 
were used for object detection and localization, which requires a precise calibration 
and registration to project location information estimated by a 3D sensor onto 
objects detected using a 2D image. To overcome this issue, in recent years, inte-
grated color-3D cameras (also called RGB-D camera, e.g., RealSense and ZED 
cameras) and spectral-3D sensors like cameras being produced by MantaPoole 
Technologies (Reston, VA) are being developed and utilized. These cameras pro-
vide co-registered color/multispectral and 3D information and thus offer reduced 
postprocessing time and improved 2D-3D registration accuracy. For example, Xiao 
et al. (2017) used the Microsoft Kinect sensor to detect foliage using color informa-
tion and to estimate leaf area density and average distance to canopy surfaces using 
3D data. Newer, consumer-grade cameras with 2D, spectral, and 3D information are 
providing exceptional capabilities and a higher level of robustness at an affordable 
cost (a few hundred dollars) and thus are gaining broader applicability in agricul-
tural and field robotics.

These newer sensors also provide an opportunity to conveniently implement 
depth filtering. The co-registered 3D information has been widely used to remove 
unwanted background in the field environment. For example, when a robot is work-
ing on a specific row of apple trees, part of canopies captured by the color images 
from the adjacent rows are nothing but the noises. With co-registered 3D informa-
tion, such background noise can easily be removed from the images before further 
processing them using simple depth filters (removing image pixels that are closer 
and/or further away than the depth range a robotic system operates in). Postprocessing 
the depth filtered images has often shown improved accuracy in object detection and 
localization while also reducing the computational time as the noise (or noisy infor-
mation) has been reduced in the images. For example, Zhang et al. (2018) used 3D 
information collected by a Kinect sensor with color images to train a faster R-CNN, 
which showed better accuracy in classifying branches, trunks, and background 
compared to the same without 3D information. As mentioned before, it is expected 
that the decreasing cost and increasing capability of consumer-grade, RGB-D, and 
spectral-3D sensors/cameras will lead to the widespread use of these cameras/sen-
sors in the future. This advancement, therefore, is expected to help increase the 
viability of various type of robotic/automated systems for achieving desired speed, 
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accuracy, and robustness and to reduce the cost of the technology so that it becomes 
more viable for practical adoption.

Need for Higher Computational Performance
Agricultural robots work as an integrated system including vision system (including 
3D sensing), robot control, field task management, guidance, inspection and quality 
control, and conveying and packaging system as depicted in example systems devel-
oped by FFRobotics (Hafia, Israel), Blue River Technology (California, USA) and 
Harvest CROO Robotics (Florida, USA). Multiple robotic subsystems need to be 
used in an integrated and collaborative manner for efficient field operation. For 
example, the robotic apple picking machine developed by FFRobotics utilized 12 
robot manipulator (arm) subsystems with separate cameras for each manipulator. 
All the tasks performed need to be optimized and synchronized for the smooth 
operation of the integrated robotic system. As these mobile robotic platforms will be 
moving in the field from plant to plant and row to row, the desired image processing, 
including 3D processing techniques, needs to include sufficiently higher framerate 
(number of images processed per second) to provide the desired continuity and 
object tracking capabilities. In addition, for field operation, the sensing system used 
are placed in close proximity of the plant to view and understand minute details of 
the plants/canopies and/or due to the design constraint (such as row spacing, robotic 
arm length design, and so on). The proximity of the sensor to plants results in the 
need for acquiring a large number of images to cover the required operation area. 
Thus, the designer of the 3D agricultural vision system should pay special attention 
to the computational speed so that desired system performance can be achieved in 
real-time operation of the integrated robot system.

As seen from the different case studies discussed in the chapter, it is difficult to 
isolate the 2D and 3D image processing in agricultural and field robots. The choice 
of deep learning–based vision system has shown to be very promising in object 
detections and segmentation; however, some of these algorithms might hurt the 
operational speed of integrated agricultural robots. On top of that, some of the 3D 
image-processing algorithms such as SGM (discussed earlier in Sect. 3.3.4) requir-
ing larger block size for matching, postintegration of 2D and 3D data from modern 
consumer-grade camera systems might require additional computational time. The 
computational performance of many vision algorithms, including 3D processing, 
can be increased by utilizing parallel programming software architecture, using 
multiple embedded computer systems such as Nvidia Jetson TX2. Other hardware 
architectures such as high-performance graphical processing units (GPU) can also 
provide promising platforms, which will, however, increase the cost of the inte-
grated system. Some of the recent consumer-grade cameras such as ZED (Stereolabs 
Inc., San Francisco, CA) can be built with CUDA support, a parallel computing 
platform developed by Nvidia for faster 3D computation. Designers of the agricul-
tural vision system (including 3D Vision) should be able to find the right balance 
between the required accuracy, speed, cost, power, and the physical space without 
affecting the performance of the integrated robot.
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Additional Practical Considerations
In agricultural and field robotics where robots are in motion, there might be other 
artifacts such as motion blurriness, which can substantially reduce the accuracy of 
3D mapping. In such a scenario, cameras/sensors that can operate at a higher frame 
rate and provide the flexibility of controlling exposure time, and color balance will 
be preferable. Also, trigger control for applications involving selective imaging 
(e.g., vision-based inspection system that can take images when fruit is present in 
the conveyor belt), and connection type and speed are also essential factors to con-
sider. These choices directly affect the image data transmission rate on a multiimag-
ing system connected to a single computer in an integrated robotic system.

As discussed before, the stereo vision system, especially consumer-grade hard-
ware systems, recently has been more widely used in both researches as well as 
industrial development due to ease of use (precalibration), low cost, high resolution, 
low power consumption, smaller size, and flexibility in connection. These consumer- 
grade cameras (e.g., RealSense and ZED) also come with their own software devel-
opment kit (SDK) and can be easily integrated with major programming languages 
such as C++ and Python (along with supporting wrappers for MATLAB and 
OpenCV libraries) for customizing the applications to meet the needs of specific 
research and development projects. Such SDKs will be the real asset in the future 
research and development of agricultural and field robots utilizing 3D vision 
systems.
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Chapter 4
Sensors III: Spectral Sensing and Data 
Analysis

Rajeev Sinha, Lav R. Khot, Zongmei Gao, and Abhilash K. Chandel

4.1  Introduction

Spectral sensing of plants refers to the domain where an optical sensing device 
measures the response, typically reflectance in arbitrary units, representative of the 
health status of the sampled plant segment (Carter and Knapp 2001; Sankaran et al. 
2011; Thomas et al. 2018; Sinha et al. 2019). Spectral sensing as a system involves 
an optical sensing device that is either connected to onboard or standalone computing 
unit and has spectral data acquisition firmware/software as well as storage unit. A 
sophisticated system may include the pertinent data analytics algorithms running in 
the background for real-time diagnostic and result visualization.

Depending on the configuration, spectral sensing system can have a few (up to 
15) to hundreds of optical bands characterizing the plant response in either spectral 
or in both spectral and spatial dimensions. Spectroscopy signals emitted by the 
objects can be sensed in visible (350–700 nm), near-infrared (NIR) (700–1400 nm), 
and in short-wave infrared (1400–2500 nm) regions (Fig. 4.1). Such response then 
can be analyzed using chemometric methods to relate it to plant health status. The 
goal of this chapter is to introduce some of the basic optical sensing principles, 
typical optical system (device) configurations, and associated spectral data analytics. 
Through pertinent case studies, this chapter also summarizes the application domain 
of the optical spectral sensing method toward better understanding of the plant 
response to biotic and abiotic stressors.
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4.2  Spectroradiometers

4.2.1  Working Principle

Spectroradiometers are calibrated spectral sensing devices having an inbuilt optical 
measurement unit that evaluates the interaction between the biological matter and 
the electromagnetic spectrum (EMS). The basic components of a spectroradiometer 
are (a) a light source producing the spectrum, (b) an optical unit to collimate and 
disperse the spectrum, and (c) a detector measuring the dispersed spectrum 
(Fig. 4.2).

An optical unit consisting of specific lenses is used to converge the incoming 
light or photon flux from the targeted field of view to a narrow slit. This is termed as 
fore-optic configuration (Fig. 4.3a). In this configuration, the photon flux from a 
target surface is directly received by the spectroradiometer. The photon flux can also 
be guided from the target surface toward the spectroradiometer using a fiber optics 
cable or a “light pipe” (Fig. 4.3b). A fiber optics cable may be analogous to a garden 
hose guiding water from one location to the other. It works on the principle of total 
internal reflection and guides light through twists and turns to the spectroradiometer 
or any other optical device. It has two parts, namely, a core and a cladding. Both the 
core (with a higher refractive index) and the cladding (with a lower refractive index) 
are made of glass. The refractive indices and the angle of light incidence are selected 
in a way to achieve total internal reflection of the incident light inside the fiber 
optics cable.

The slit width (μm) regulates the amount of light and thus governs the resolution 
and throughput of a spectroradiometer. Reduction in the slit width below a certain 
limit will not change the unit resolution. Hence, once the resolution criterion is met 
for a spectroradiometer, also a factor of pixel, picture element, and width of a 
detector, the slit width may be increased only for augmenting the throughput 
characteristics.

As the light passes through the slit, it diverges owing to the natural tendency. 
This divergent beam is then collimated or parallelized by a concave mirror, sized to 

Fig. 4.1 Schematics showing the electromagnetic spectrum and wavelengths pertinent to visible 
and infrared regions of the spectrum (not drawn to scale)
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Fig. 4.2 Typical components assembly depicting working principle of a spectroradiometer

Fig. 4.3 Illustrations of a commercial spectroradiometer (SVC HR-1024i, Spectra Vista 
Corporation, Poughkeepsie, NY, USA) in (a) fore and (b) fiber optic configuration for spectral data 
acquisition
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encompass incoming light, before being directed toward a diffraction grating 
(Fig. 4.2). The latter is an optical instrument to disperse the collimated light into 
multiple divergent beams which are nothing but the component wavelengths or 
colors or energies. The wavelength range, and to some extent the spectral resolution 
of a spectroradiometer, is determined by a diffraction grating. Ruled and holographic 
grating are the two basic types of grating. Ruled gratings are formed by physically 
creating parallel and equally spaced grooves over a reflective surface. Holographic 
gratings are generated over a photosensitive material by exposing it to laser beams 
(e.g., ultraviolet and argon) which are intersecting, coherent, and monochromatic in 
nature to create sinusoidal interference fringes over the photosensitive material. 
Using laser beams for creating fringes or grooves in holographic grating has certain 
advantages over the ruled grating. Intersecting beams in the former generates a 
highly uniform surface compared to the latter, providing a highly uniform spectral 
response. A ruled grating does account for a higher amount of stray light due to 
imperfect surface and causes ghosting effect. Overall, the holographic gratings are 
preferred over the ruled gratings where signal to noise ratio (SNR) is critical.

Grating dispersed beam then gets reflected by another optical setup consisting of 
a concave mirror. This mirror also separates the wavelengths that then reach to the 
detector(s). A detector is an electronic device highly sensitive to photons and 
capable of generating electric charge upon the incident of the separated wavelengths 
from the mirror (Fig.  4.2). Semiconductor materials like silicon (Si) or indium 
gallium arsenic (InGaAs) alloy are the most popular detector elements. The InGaAs 
alloy detectors have higher bandgap energy and can have higher upper detection 
limit compared to Si-based detectors. The detector-generated charge then gets 
digitized, filtered, and read/logged as a time series spectrum using associated 
instrumentation.

In earlier spectroradiometers, a single detector element was typical with rotated 
grating to measure the light intensity as a function of the incident wavelength. 
Moving parts add complexity to these designs and device power requirements. The 
modern spectroradiometers thus use charged couple device (CCD) arrays and linear 
detectors, making them more compact and power efficient.

The detection limit of detectors can be improved by cooling the array through 
inbuilt cooler (Wiecek 2005). Si-based detectors can be configured as CCDs, black- 
thinned (BT) CCDs, and photodiode arrays (PDAs). Overall, BT-CCDs are highly 
sensitive and can overcome the light scattering issue typical in CCDs. Thinning of 
the substrate in BT CCDs causes reduced absorption and increased efficiency of the 
detector. PDAs use linearly arranged complementary metal oxide semiconductor 
(CMOS). Though CCDs are excellent where low-noise data is required, they tend to 
consume more power. As CMOS technology uses inbuilt amplifiers and readout 
transistors at each detector, it can achieve rapid digitization with significantly less 
power compared to CCDs.
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4.2.2  Spectroradiometer Types

Spectroradiometers can either be multispectral or hyperspectral depending upon the 
number of specific spectral bands within which the reflected energy is measured. A 
multispectral radiometer measures reflected energy within a few specific bands 
(<15 bands) with somewhat wider spectral bandwidth (per band). Hyperspectral 
radiometer measures reflected energy for hundreds of bands with narrower spectral 
bandwidth. Thus, the latter can sense subtle variations in the reflected energy and be 
more specific in detecting crop stressor specific signatures.

Multispectral spectroradiometers can be handy and practical for field-level sens-
ing due to small size, portability, and comparatively lower unit cost. For example, 
GreenSeeker® (NTech Industries Inc., Ukiah, CA, USA) is an active canopy multi-
spectral sensing device that captures plant-reflected light in red (660 ± 12 nm) and 
near-infrared (NIR) (770 ± 12 nm) bands. These two spectral bands can be used to 
estimate the normalized difference vegetation index (NDVI) (Kim et al. 2012). The 
reflected energy from the crops can be used to calculate different crop health–related 
indices like normalized difference red edge (NDRE) and red edge chlorophyll index 
(CIRE), among others. There are several of such active canopy sensors (ACS) which 
measure the reflected energy in couple or few spectral bands. A CC–470 (Holland 
Scientific Inc., Lincoln, NE, USA) is one such ACS that can be configured by a user 
with a choice of six spectral bands (blue [450 nm]; green [550 nm]; red [650 nm, 
670 nm]; red edge [730 nm]; and NIR [>760 nm]). However, only three of the six 
bands could be used at a time. The company has another ACS, CC–430 model, 
which measures the reflected energy in three specific bands (red [670 nm]; red edge 
[730 nm]; and NIR [>760 nm]) (Cao et al. 2018).

Commercial spectroradiometers such as “Weed-Seeker®” and “DetectSpray®” 
have monochromatic diodes for red and NIR bands and can detect green vegetation 
on a bare soil. Green plants reflect a minimum of red light; however, they reflect 
most in NIR range. A threshold can be set for plant identification based on the 
reflected energy from the target in these two bands. Besides commercially available 
units, there have been a few attempts to develop multispectral radiometers as a 
specific plant health diagnosis tool (Feyaerts et al. 1998; Larbi et al. 2013).

Similar to multispectral units, several hyperspectral spectroradiometers are avail-
able commercially with different spectral sensing ranges. For example, the HR–512i 
(Spectra Vista Corporation, Poughkeepsie, NY, USA; Fig. 4.3) is a field portable 
unit that uses a linear array of Si detectors and has a spectral range of 350–1050 nm. 
The spectral resolution of this unit is less than 3.2 nm with a nominal bandwidth less 
than or equal to 1.5 nm. This unit comes with a 4° field of view (FOV) with an 
optional fiber optics with a 25° FOV with automatic/selectable feature for spectrum 
averaging. The measurements can be acquired and viewed using a 32-bit internal 
central processing unit (CPU), and the device can communicate with up to 16 exter-
nal sensors using a secondary Bluetooth™ radios. Fig. 4.4 shows typical spectral 
responses pertinent to green vegetation under healthy and stressed conditions (Sinha 
et al. 2017a).
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4.2.3  Spectral Data Analysis

4.2.3.1  Preprocessing

Preprocessing steps involve data normalization, smoothing, scatter correction 
(Rinnan et  al. 2009), derivatives, and continuum removals (Dotto et  al. 2018). 
Preprocessing can help improve classification and multivariate as well as explor-
atory analysis. Preprocessing can be divided into (1) scatter correction methods and 
(2) spectral derivatives. While the scatter correction methods are mostly used to 
reduce the scatter effects between samples, the spectral derivatives have the capabil-
ity to remove baseline effects and any offset differences between the data. The most 
common way of selecting a preprocessing method is to try different methods and 
select the optimal one. This strategy is often influenced by a prior expertise with the 
equipment, sample, and different preprocessing methods (Gerretzen et al. 2015).

Multiplicative scatter correction (MSC), inverse MSC, continuum removal, nor-
malization by range, and standard normal variates (SNV) are typical examples of 
scatter corrections (Rinnan et al. 2009). Typical examples of spectral derivative–
based preprocessing include Savitzky-Golay (SG) polynomial derivative and 
Norris-Williams (NW) derivatives (Peng et al. 2014). Spectral derivatives have the 
capability to remove additive as well as multiplicative effects from the reference 
spectra. This is because it does smoothen the spectra and then estimate derivative(s).

Fig. 4.4 Representative spectral responses from healthy and grapevine leafroll disease (GLD) 
infected vine leaves
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MSC is one of the most widely used methods and has been successfully applied 
to preprocess spectral data from meat (Geladi et al. 1985), dairy (Chen et al. 2002), 
grains (Wang et al. 2004), and soil samples (Kooistra et al. 2001). Overall, the MSC 
is performed by correcting the recorded spectrum by a reference spectrum. The 
average spectrum of the calibration set is often used as the reference spectrum. 
Windig et  al. (2008) proposed a loopy MSC which iteratively searches for the 
reference spectrum within the dataset being corrected by the MSC.  The SNV 
transformation centers each spectrum in the dataset, followed by scaling by its own 
standard deviation, and is linearly related to the MSC corrections (Dhanoa et al. 
1994). Normalization is another method for scatter correction with “Euclidian” as 
one of the widely used methods (Sankaran and Ehsani 2011).

Smoothing of spectral data is the first step in both the SG- and NW-based prepro-
cessing methods. It helps in SNR reduction. This is followed by the estimation of 
first (removing the baseline) and second derivatives (removing both baseline and 
linear trends). The SG method uses  moving average to  preserve the intrinsic 
properties of the spectral data, such as relative maxima, minima, and width. In this 
method, a small window of spectral wavelengths is fitted by a polynomial equation. 
Once the parameters of the fitted model are known, they are used to calculate the 
derivative. Thus, selection of window width and degree of the polynomial fit are 
critical steps in the SG-based spectral data preprocessing.

4.2.3.2  Spectral Feature Extraction

Data dimensionality is a critical factor that needs to be carefully considered during 
hyperspectral spectroradiometers use in crop sensing. An efficient high-dimensional 
dataset handling approach has been to search for a subset of wavebands that contain 
salient spectral information (Hira and Gillies 2015) about the plant stressor(s) 
symptoms. This process is often termed as feature selection (Balabin and Smirnov 
2011) after removal of nonpertinent, noisy, and redundant features.

Stepwise multiple linear regression (SMLR) is one such feature selection 
method. It is a sequential approach of feature selection with forward selection and 
backward elimination (Balabin and Smirnov 2011). In the forward selection, the 
features are selected iteratively based on their correlation with the response variable. 
This selection is followed by the determination of model regression coefficient and 
significance testing (mostly using a t–test) at a critical value. The selected feature is 
retained if the regression coefficient is significant, followed by the selection of 
another variable. The added variable is selected based on its correlation with the 
model residuals obtained with the first variable. The two models are then tested for 
significance based on their regression coefficients, and the nonsignificant features 
are removed in a process called backward elimination. These two steps are repeated 
until there is no significant improvement in the model that can be achieved by 
adding or removing more features. While keeping too many variables in the model 
may lead to overfitting, different types of cross-validation methods (e.g., leave-one- 
out cross-validation) can be used to reduce this risk.
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Besides SMLR, other multivariate feature selection approaches are principal 
component analysis (PCA), principal component regression (PCR), and partial least 
square regression (PLSR) (Balabin and Smirnov 2011). These methods overcome 
issues like collinearity, band overlaps, and interactions which are frequently found 
in spectroscopic data. PCA is a dimensionality reduction technique which transforms 
a high-dimensional dataset into a smaller set of uncorrelated variables known as 
principal components (PC) that explain most of the variance in the feature dataset 
(Sinha et al. 2017b; Sinha et al. 2018). In PCR, major PC scores of the features are 
retained and the remaining scores are discarded. The lower ranked PC scores often 
account for linear dependencies among the features. The removal of such PCs 
adequately addresses the issue of multicollinearity in the dataset (Lee et al. 2015). 
While SMLR aims at finding a single factor correlating the feature dataset as well 
as the response variable, PCR searches for the factors capturing maximum variance 
in the dataset prior to regression analysis. PLSR captures the variance and correlates 
the data by maximizing the covariance in the feature dataset. Thus, PLSR is deemed 
superior to SMLR and PCR in terms of predictive power (Xiaobo et al. 2010).

Algorithms like interval partial least square (iPLS), backward iPLS, and forward 
iPLS regressions can also be used for feature selection. In iPLS, the feature dataset 
is divided into sections which do not overlap. Each of the sections is separately 
modeled using PLSR to find the suitable variable range (Nørgaard et  al. 2000). 
Backward iPLS is similar to iPLS in the interval selection with added determination 
of a sequence model leaving one interval at a time. For example, if ‘n’ intervals are 
selected, each PLS model is calculated with (n-1) intervals excluding one interval at 
a time. Forward iPLS is an inverse form of backward iPLS. It builds PLSR model 
with an interval that has the best performance in terms of root mean square error of 
cross-validation (RMSECV). In addition to the interval selection algorithms where 
the selected intervals are fixed, moving window methods can also be used for feature 
selection. In such algorithms (e.g., moving window PLSR), a window of spectral 
features is built and moved through the entire spectrum. At each of the window 
locations, the RMSECV is calculated for a PLSR or SMLR model, and information 
about a critical spectral region is obtained. In some algorithms, the size of the 
spectral window is not fixed, and hence, they can be called as changeable size 
moving window PLSRs. A combination of moving window and changeable size 
moving window, known as searching combination moving window, can also be 
implemented within PLSR.

Successive projection algorithm (SPA) is another feature selection method that 
reduces the collinearity issues associated with SMLR (Araújo et  al. 2001). SPA 
projects feature dataset to a vector space and allows selection of a feature set with 
low collinearity. Feature with the highest projection value in the orthogonal space of 
the prior selected features is selected in a forward selection process (Balabin and 
Smirnov 2011). The uninformative variable elimination (UVE) is another approach 
of variable selection (Centner and Massart 1996). In this technique, some random 
variables are added to the feature dataset. The new added features that contribute 
less in the model development, compared to primary selected random variables, are 
eliminated from the model. A combination of SPA and UVE (UVE-SPA method) is 
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also feasible with SPA selecting a set of features and UVE removing less informative 
features. Such approach is reported to have a greater precision of prediction.

In addition to the above-discussed algorithms, there exist a number of advanced 
algorithms for spectral feature selection. They include simulated annealing (SA), 
artificial neural networks (ANN), and genetic algorithm (GA). The SA is a search- 
based probabilistic optimization technique which approximates a global optimal 
solution in a large space. It starts with an initial solution which is continuously 
modified based on a control parameter. The algorithm searches for a global optimal 
solution by iterating through a number of local optimal solutions (Swierenga et al. 
1998). ANNs are machine learning models inspired by neural networks in human 
brain. Back propagation (BP) is one of the most commonly used ANNs. BP ANN 
consists of different layers of neurons, namely, at input, hidden, and output layers. 
For feature selection, the causal index of the trained ANN model is analyzed to 
estimate the influence of each input on each ANN output (Balabin and Smirnov 
2011). Among multiple approaches, a combination of PCA and conjugate gradient 
algorithm (GA) can be employed to determine the number of neurons in the hidden 
layer that represents the data dimensionality. The contribution of inputs to the total 
model variance governs retention of the significant features. GA is a heuristic 
optimization method for features selection based on the theory of probability. This 
technique searches for all possible subsets of features that would have maximum 
model prediction accuracy. GA combined with PLS (GA-PLS) has been reported as 
a better feature selection approach as the combination offers a number of feature 
sets which can provide an optimum or near-optimum solution (Mehmood et al. 2012).

4.2.3.3  Spectral Data Classification/Prediction Models

Several types of models can be used to classify different categories or classes in the 
feature dataset and subsequently predict the class which relates to plant stressor(s). 
Classification is defined as the process of identification of the category of a new 
sample based on a training set of samples with known categories (Tang et al. 2018). 
Some of the most common classification/prediction models for Vis-NIR 
hyperspectral dataset are logistic regression (LR), linear discriminant analysis 
(LDA), quadratic discriminant analysis (QDA), and Naïve Bayes (NB). LR 
determines the probability of a sample to be associated with a specific class or 
category. However, for well distinct classes and small datasets, the estimation of 
regression parameters is unstable. The LDA and QDA methods, respectively, model 
the response variable with a linear and nonlinear combination of predictor variables 
and can be used for multiclass classification (Sinha et al. 2017c; Sinha et al. 2018). 
Data dimensionality, sample size and spectral feature set, is critical for any of the 
classifiers, including that of LDA and QDA. The NB classifier assumes independence 
among the features prior to assigning a probability value to a specific class 
(Srivastava et al. 2007). Soft independent modeling of class analogies (SIMCA) is 
also a well-known classification model used for classifying Vis-NIR spectral 
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datasets. SIMCA is an extension to PCA. However, it is reported as a weak classifier 
compared to LDA and QDA techniques (Rácz et al. 2018).

Some of the advanced classification algorithms used with spectral datasets are 
k-nearest neighbor (kNN), artificial neural network (ANN), decision trees (DT), 
random forest (RF), support vector machines (SVM), and ensemble learning (EL). 
The kNN can be used for pattern recognition where the class of a sample is 
ascertained by the class of its nearest ‘k’ neighbors (Guo et  al. 2018). ANN are 
supervised machine learning technique. The traditional ANNs use RB function, 
perceptron, and back propagation algorithms, among others. DTs are extremely fast 
classification models devised in a tree-like shape. Each node in the tree performs a 
pairwise comparison on a selected feature with the branches coming out of the 
nodes that symbolize the outcome. A leaf node signifies the final classification or 
decision-making. RFs are a collection of several DTs and can overcome the issue of 
overfitting associated with DTs. In RF, outcomes of various DTs are merged for 
final prediction or classification. Recently, SVMs have been used extensively for 
classification/prediction of spectral datasets. SVMs create a linear hyperplane to 
classify the observations. In addition, significant improvements in the performance 
of SVM classifier can be obtained using kernels which map the feature vectors into 
a high dimension (Mishra et al. 2012).

4.2.4  Application Case Studies

Table 4.1 reports some of the applications of spectral sensing in plant stressors 
detection. Pertinent feature selection and classification/prediction models 
implemented are also summarized therein. Subsections below also detail a few case 
studies where visible near-infrared spectroscopy has been employed in plant stress 
detection.

4.2.4.1  Case Study 1. Biotic and Abiotic Stress Detection in Grapevines

Spectral reflectance technique has been successfully employed for detecting biotic 
and abiotic stresses in grapevines. Naidu et al. (2009) assessed the potential of Vis- 
NIR spectroscopy for the detection of grapevine leafroll-associated virus-3 
(GLRAV–3)-related grapevine leafroll disease (GLD) symptoms in red-berried 
cultivars (cv. Cabernet Sauvignon and Merlot). Leaf spectra were collected from 
detached healthy and infected vines using a portable spectroradiometer following a 
destructive sampling approach. Significant differences (p  <  0.05) between the 
healthy and GLD-infected leaf samples were observed in the visible (550  nm), 
infrared (900 nm), and mid-infrared regions (1600 and 2200 nm).

In a continuing study, Sinha et al. (2019) employed a nondestructive leaf sam-
pling strategy for GLD detection. For two crop seasons (2016 and 2017), in-field 
spectral data was collected from healthy, symptomatic, and asymptomatic leaf 
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Table 4.1 Commonly used classification/prediction models with Vis-NIR/NIR spectral datasets 
in agricultural applications

Model Application
Spectral 
range, nm Spectral features References

LR Citrus greening 
detection

350–2500 PCs, >95% variance Mishra et al. 
(2012)

Maize yield 
prediction

350–2500 Full spectrum Ferreiro- 
González et al. 
(2017)

Blood spot detection 
in eggs

200–1100 576.94, 600.31 nm Chen et al. 
(2015)

LDA Tea-type 
classification

190–800 PCs, first 7 Dankowska and 
Kowalewski 
(2019)

Wine grape quality 
assessment

350–2500 Full spectrum Costa et al. 
(2019)

Adulteration in 
processed meat

400–
1000,
900–1700

PCs, >99% variance Rady and 
Adedeji (2018)

QDA Citrus greening 
detection

350–2500 PCs, >99.9% variance Sankaran et al. 
(2011)

Grapevine leafroll 
disease detection

350–2500 626, 701, 726, 901, 976, 1001, 
1027, 1052, 1101 nm

Sinha et al. 
(2019)

Bitter pit detection 
in apples

800–2500 971.2, 978, 986.1, 987.3, 995.4, 
1131.5, 1135.3, 1139.1, 
1142.8 nm

Kafle et al. 
(2016)

NB Grapevine leafroll 
disease detection

350–2500 626, 701, 726, 901, 976, 1001, 
1027, 1052, 1101 nm

Sinha et al. 
(2019)

Unfertilized duck 
eggs detection

330–1030 500–940 nm Dong et al. 
(2019)

Adulteration in 
processed meat

400–
1000,
900–1700

PCs, >99% variance Rady and 
Adedeji (2018)

SIMCA Citrus greening 
detection

350–2500 PCs, >99.9% variance Sankaran et al. 
(2011)

Nutrient estimation 
in oil palm leaf

350–2500 354, 732, 2129, 2292 nm for N
352, 356, 568 nm for P, 356 nm 
for K

Khorramnia 
et al. (2014)

Weed species 
discrimination

920–2500 1078, 1435, 1490, 1615 nm Shirzadifar et al. 
(2018)

kNN Citrus greening 
detection

350–2500 PCs, >99.9% variance Sankaran et al. 
(2011)

Adulteration in 
processed meat

400–
1000,
900–1700

PCs, >99% variance Rady and 
Adedeji (2018)

Blood spot detection 
in eggs

200–1100 576.94, 600.31 nm Chen et al. 
(2015)

(continued)

4 Sensors III: Spectral Sensing and Data Analysis



90

Table 4.1 (continued)

Model Application
Spectral 
range, nm Spectral features References

ANN Soil lead and zinc 
content estimation

350–2500 460, 900, 1400, 1900, 2200 nm 
for PB
600, 900, 1100, 1400, 1900, 
2200 nm for Zn

Khosravi et al. 
(2018)

Nutrient estimation 
in oil palm leaf

350–2500 354, 732, 2129, 2292 nm for N, 
352, 356, 568 nm for P, 356 nm 
for K

Khorramnia 
et al. (2014)

DT Discrimination of 
apple varieties

325–1075 500–700, 720–960 nm He et al. (2007)

Classification of 
orange growing 
locations

1000–
2500

Full spectrum Dan et al. (2015)

pH-based 
classification of 
meat quality grades

400–2500 400, 448, 482, 540, 568, 600, 
602, 604, 606, 608, 622, 626, 
654, 666, 684, 698, 968, 1376, 
1710, 1874, 2476, 2494 nm

Jr et al. (2018)

SVM Bitter pit detection 
in apples

800–2500 971.2, 978, 986.1, 987.3, 995.4, 
1131.5, 1135.3, 1139.1, 
1142.8 nm

Kafle et al. 
(2016)

Nutrient estimation 
in oil palm leaf

350–2500 354, 732, 2129, 2292 nm for N, 
352, 356, 568 nm for P, 356 nm 
for K

Khorramnia 
et al. (2014)

Adulteration in 
processed meat

400–
1000,
900–1700

PCs, >99% variance Rady and 
Adedeji (2018)

RF Soil nitrogen and 
carbon assessment

305–2200 Full spectrum Nawar and 
Mouazen (2017)

Soil organic carbon 
estimation

350–2500 Full spectrum Vašát et al. 
(2017)

Soil quality 
parameters

400–2500 Full spectrum de Santa et al. 
(2018)

PLSR Wine grape quality 
assessment

350–2500 Full spectrum Costa et al. 
(2019)

Bitter pit 
development 
prediction in apples

935–2500 PLS components, >95% variance Jarolmasjed 
et al. (2017)

Adulteration in 
processed meat

400–
1000,
900–1700

PCs, >99% variance Rady and 
Adedeji (2018)

PCR Egg yolk cholesterol 
quantification

190–2500 Full spectrum Puertas and 
Vázquez (2019)

Winter wheat 
biomass estimation

350–2500 5 vegetation indices Yue et al. (2018)

Soil properties 
assessment

1300–
2500

20 PCs, smallest RMSECV Chang et al. 
(2001)

LR Logistic regression, LDA Linear discriminant analysis, QDA Quadratic discriminant analysis, 
NB Naïve Bayes, SIMCA Soft independent modeling by class analogy, kNN k–Nearest neighbors, 
ANN Artificial neural networks, DT Decision tree, SVM Support vector machines, RF Random 
forest, PLSR Partial least square regression, PCR Principal component regression
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samples using a field portable spectroradiometer. PLSR- and SMLR-based feature 
selection followed by QDA and NB classifiers were employed in the study. The 
reflectance between the healthy and GLD-infected leaves (both symptomatic and 
asymptomatic) were found to be significantly different in visible (351, 377, 501, 
526, 626 and 676 nm) and NIR (701, 726, 826, 901, 951, 976, 1001, 1027, 1052 and 
1101 nm) regions. Some of the feature wavelengths (1001, 1027 and 1052 nm) were 
repetitive across crop seasons as well as temporally within a specific crop season. 
The PLS score plots for healthy-symptomatic and healthy-asymptomatic spectral 
datasets exhibited inherent clustering for the samples (Fig. 4.5). A study reported 
reliable asymptomatic samples classification (Fig. 4.5a) similar to the symptomatic 
samples (Fig. 4.5b). The QDA had superior performance with overall classification 
accuracies in the ranges of 75–99% for both healthy-symptomatic and healthy-
asymptomatic datasets.

Al-Saddik and Cointault (2019) evaluated Vis-NIR spectroscopy for obtaining 
optimal spectral wavelengths for the detection of “Flavescence dorée” in French 
vineyards. The reflectance of healthy leaves was observed to be higher in the visible 
(500–700 nm) and lower in the NIR (800–1300 nm) and infrared regions (>1300 nm) 
compared to the infected leaves. The preprocessing of spectral data yielded a 
classification accuracy >97% using SVM and LDA classifiers.

Beghi et al. (2017) utilized Vis-NIR spectroscopy for water stress monitoring in 
grapevines (cv. Cabernet Sauvignon). The study reported high R2 values for the 
prediction of total water content (TWC) and leaf water potential (ψ) (0.67 and 0.72, 
respectively) using spectral response in the ranges of 400–1000 nm. However, better 
prediction of TWC (R2 = 0.91) was observed with spectra from 1000–2000 nm. In 
a similar study, de Bei et al. (2010) measured leaf water potential in three different 
grapevine cultivars (cv. Cabernet Sauvignon, Chardonnay and Shiraz) using a 
spectroradiometer (300–1100 nm). While acceptable prediction of ψ was observed 
for all the cultivars, the best prediction was reported for Shiraz cultivar (R2 = 0.92, 
standard error in cross-validation = 0.09 MPa).

4.2.4.2  Case Study 2. Citrus Disease Detection

Vis-NIR spectroscopy has been successfully employed to detect various diseases in 
citrus production. Citrus greening (or Huanglongbing [HLB]), caused by a phloem- 
limiting bacteria, Candidatus Liberibacter asiaticus (Sankaran and Ehsani 2011), 
has been one of the devastating citrus diseases. In a study, Sankaran et al. (2011)) 
utilized Vis-NIR spectroscopy to classify healthy and HLB-infected citrus leaves 
under field conditions. Suitable feature extraction techniques (SDA and SMLR) 
were employed for feature wavelength selection, followed by QDA- and SIMCA-
based classification. The study reported that spectral bands from visible, NIR, and 
infrared regions (537, 612, 688, 713, 763, 998, 1066, 1120, 1148, 1296, 1472, 1597, 
2121, 2172, 2348, 2493 nm) had the potential to discriminate between healthy and 
HLB-infected leaves. Overall classification accuracies were in the ranges of 74% to 
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91% with QDA performing better compared to SIMCA. In a similar study, Mishra 
et al. (2012) evaluated Vis-NIR spectroscopy with three different classification tech-
niques (kNN, LR and SVM). Similar to prior studies, the reflectance of HLB-
infected leaves was found higher in the visible region compared to healthy leaves. 
This was possibly due to chlorosis in the infected leaves causing less absorption of 
visible light. Lorente et al. (2015) also used Vis-NIR spectral measurements to auto-
matically detect citrus fruit decay due to fungus Penicillium digitatum in mandarins.

4.2.4.3  Case Study 3. Apple Bitter Pit Disorder Detection

Apple bitter pit is a physiological disorder that causes significant economic losses 
to growers. Bitter pit development occurs before harvest and intensifies during 
postharvest storage. Optical sensing techniques have shown the potential in detecting 
this disorder. For example, Kafle et  al. (2016) studied the robustness of spectral 
features for the nondestructive detection of bitter pit in fresh market apples (cv. 
Honeycrisp). The SMLR and RF algorithms were used for feature selection. A study 
reported 971, 978, 986, 987, 995, 1132, 1135, 1139, and 1143 nm as common bands 
associated with the disorder. Using the selected features, QDA and SVM classifiers 
yielded high bitter pit apple classification accuracies (78–87%). In a continuing 
study, Jarolmasjed et al. (2017) employed NIR spectroscopy for prediction of bitter 
pit development in Honeycrisp, Granny Smith, and Golden Delicious varieties. 
Spectral data acquired about 63 days after harvest resulted in 100% classification 
accuracy of healthy and bitter pit samples of Honeycrisp variety, which typically 
had the highest visual symptom on the fruit surface. Similar approach has been 
validated with hyperspectral imaging for bitter pit detection in storage apples 
(Jarolmasjed et al. 2018). Beyond above research studies, commercial systems that 
use such optical sensing approach do exist in the market. For example, Ellips 
Technologies (https://ellips.com/technology/) has a range of fruit-sorting system 
based on optical detection of internal qualities of the produce, including that 
of apples.

4.3  Spectral Imaging

Spectral imaging combines spectroscopy and imaging principles to simultaneously 
provide both spectral and spatial information of a target surface (e.g., plant canopy). 
Multispectral and hyperspectral are the common spectral imaging techniques that 
enable capturing spectral responses of a complete surface in comparison to an 
averaged spectrum of a limited FOV pertinent to spectrometer or spectroradiometer. 
Multispectral imaging refers to imaging spatial signatures within multiple but 
limited (or selected) number of broad wavebands (3–15) while hyperspectral 
imaging (HSI) captures spectra typically within hundreds of narrow wavebands 
(Wu and Sun 2013). Following sections elaborate on these techniques and pertinent 
applications in production agriculture with selective example case studies.

4 Sensors III: Spectral Sensing and Data Analysis
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4.3.1  Multispectral Imaging

Multispectral imaging outputs surface reflectance in the Vis-NIR spectrum (typi-
cally 450–1100 nm) that can be related to crop stressor(s). It has gained immense 
adaptability in the production agriculture for monitoring soil and vegetation traits 
such as physiology, nutrient status, water demands, pest/disease infestation, and 
yield potential forecasting (Ranjan et al. 2019; Vargas et al. 2019; Guo et al. 2020; 
Munyati et al. 2020; Rahman et al. 2020). Table 4.2 lists some of the commercially 
available multispectral imaging sensors. Typically, each sensor would have few 
spectral bands with broad bandwidth and be configured to sense spectral reflectance 
at red, green, blue, and red edge and near-infrared (< 900 nm) bands, among others.

4.3.1.1  Imaging Platforms

Multispectral imaging sensors could be integrated on various satellites (Peter et al. 
2020; Sicre et al. 2020), aerial platforms (Bagheri 2020; Su et al. 2020), and ground 
(Fig. 4.6, Sankaran et al. 2013; Svensgaard et al. 2014; Ranjan et al. 2019) platforms. 
Platform governs the spatial resolution, that is, regional to field to plant/leaf-level 
sensing and may also be a major factor in determining temporal resolution. Satellite- 
based imaging could be conducted from high or low earth orbits to provide details 

Table 4.2 Specifications of some of the commercially available multispectral imaging sensors

Make Model
Spectral bands [peak ± bandwidth] 
(nm)

Spatial 
resolutiona 
(mm/pixel) FOV (H° × V°)

Micasense RedEdge Blue (475 ± 10), green (560 ± 10), 
red (668 ± 5), red edge (717 ± 5) and 
NIR (840 ± 20)

66.60 47.9° × 36.9°

Parrot Parrot 
Sequoia

RGB, green (550 ± 20), red 
(660 ± 20), red edge (735 ± 5) and 
NIR (790 ± 20)

91.67 61.9° × 48.5°

Sentera Quad 
sensor

Blue (446 ± 26), green (548 ± 22), 
red (650 ± 32), red edge (720 ± 19.5) 
and NIR (839 ± 10)

22.5 50° × 39°

Sentera Double 
4 K

Blue (446 ± 26), green (548 ± 22), 
red (650 ± 32), red edge (720 ± 19.5) 
and NIR (839 ± 10)

22.5 60° (HFOV)

MAIA M2 2 bands from visible-NIR spectrum 
(395–950), customizable

40 36° × 27°

Tetracam MCA4 Blue (450 ± 5), green (530 ± 10), red 
(685 ± 5), red edge (740 ± 5), NIR 
(780 ± 5) and RGB

54.1 38.26° × 30.97°

aAt 100 m above ground level (AGL). Disclaimer: mention of a commercial product is solely for 
the purpose of providing specific information and should not be construed as a product endorsement 
by the authors or the institution with which the authors are affiliated
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from regional to field scale at geospatial resolutions ranging from low (about 3 m/
pixel) to very low (30 m/pixel). Satellite-based imagers could be limited majorly 
due to cloud covers, atmosphere dynamics (Sun et al. 2013; Stettz et al. 2019) within 
high altitudes, and low revisit frequency (2–16  days). Such limitations could be 
eliminated with low-altitude airborne and ground-based imaging systems that pro-
vide on-demand data with minimum atmospheric interference (Dash et al. 2018). 
Airborne imaging systems can aid in acquiring spectral data at high spatial resolu-
tion (mm–cm/pixel) suitable to understand crop trait details at plant scale. Ground-
based imaging provides data at a very high resolution (mm/pixel) to assess detailed 
crop characterizations from plant to leaf scales. It may however be subjected to 
some inconsistencies of spatial resolution, geometric and radiometric calibration, 
sensor’s perspective, and reflectance variation due to ambient light changes between 
imagery samples. Ground-based imaging can also be laborious and does not provide 
flexibility to get high temporal resolution that is feasible with aerial approach.

4.3.1.2  Multispectral Imagery Processing

When compared to HSI, aerial multispectral imaging offers ease of data handling 
and may require less computational resources per unit coverage area, that is, acre-
age. However, accurate surface reflectance retrieval could be challenged by factors 
including limited number of spectral wavebands as well as imaging requirements 
under clear or overcast sky and near the solar noon. Noise in ground and airborne 
imagery due to varying light conditions and aforementioned factors could be cor-
rected with radiometric calibrations using calibrated reflectance panels (CRP) and 
simultaneous solar irradiance measurements by skyward-facing sunshine sensors. 
Also, customized correction functions have been developed for satellite- specific 
multispectral imaging to minimize noises due to cloud covers and atmospheric 
parameters (Tasumi et al. 2007).

Fig. 4.6 Multispectral imaging with (a) ground and (b) airborne platforms

4 Sensors III: Spectral Sensing and Data Analysis



96

Meaningful information from multispectral imagery could be extracted by a 
series of preprocessing and processing steps. Raw imagery often contains pixelated 
digital numbers corresponding to the imaged surface within the sensor’s FOV. These 
numbers are initially converted to pixel radiances using a radiometric calibration 
model (e.g., Eq. 4.1, source: Micasense, Inc., Seattle, WA, USA). This model com-
pensates for sensor’s black level, sensitivity, gain, exposure, and vignette effects. 
The resultant pixel radiance could then be converted to a surface reflectance matrix 
using CRP radiance and reflectance scale factors (Eq. 4.2) pertinent to each imaging 
waveband. For the airborne imagery, additional steps of stitching, georectification, 
and orthorectification need to be performed prior to conversion from digital num-
bers to pixel radiance. All such steps could be performed in aerial photogrammetry 
and mapping software platforms (e.g., Pix4DMapper from Pix4D Inc., Agisoft from 
Agisoft LLC, Drone2Map from Esri) that provide reflectance orthomosaics as final 
outputs.
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Where p is the normalized raw pixel value, pBL is the normalized black level 
value, a1, a2, a3 are the radiometric calibration coefficients, V(x, y) is the vignette 
polynomial function for pixel (x, y), te is the image exposure time, g is the sensor 
gain, x, y are the pixel column and row numbers, respectively, and L is the spectral 
radiance in Wm−2sr−1nm−1. Fi is the reflectance calibration factor for band i, ρi is the 
average reflectance of the CRP for the ith band (provided by the manufacturer), 
avg(Li) is the average value of the radiance for the pixels inside the panel for band i.

Numerous multispectral image processing techniques have been developed and 
explored for crop monitoring, such as texture analysis, vegetation index (VI), and 
supervised classifications (Navulur 2006). Outputs from these processes can be 
used to extract regions of interest, zonal statistics, and prescription maps. All such 
processing could be performed through custom analysis algorithms and user 
interfaces or scripts.

4.3.1.3  Multispectral Imaging Applications

Multispectral imagery–derived VI features (Table 4.3) have been widely used in 
assessing a range of biotic and abiotic stressors that include nutrient deficiencies, 
heat and water stress, disease, and pest infestations in different field and orchard/
tree crops (Table  4.4). For example, predictive modelling of chlorophyll content 
was performed for open tree canopy orchards (Berni et al. 2009) using transformed 
chlorophyll absorption in reflectance index (TCARI) normalized by the optimized 
soil-adjusted vegetation index (OSAVI). A high correlation (0.94) was obtained 
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between the field-measured chlorophyll content and the predictive model. Similarly, 
a photochemical reflectance index (PRI) was used to assess crop water stress in 
olive orchards, and it exhibited high correlation (0.92) with the field-measured tree 
xylem water potential. In another study, normalized difference vegetation index 
(NDVI) was used to detect sheath blight disease in a paddy field showing a high 
correlation (0.79) with the ground-assessed disease severity (Zhang et  al. 2018). 
Citrus greening disease symptoms were also assessed using multispectral imagery–
derived VI features and statistical support vector machine algorithm. High classifi-
cation accuracy, specificity, and sensitivity above 80% were observed for the 
symptomatic tree leaves (Sankaran et al. 2013).

4.3.2  Hyperspectral Imaging

Hyperspectral imaging is one of the most advanced spectral sensing methods 
(Sankaran et al. 2015) because it can obtain both spectral and imaging information, 
covering hundreds of wavelengths and obtaining a wider range of internal and exter-
nal information of the object (Mendoza et al. 2018). With HSI, there is an image for 
each wavelength, and one pixel of each image has a wavelength covering the whole 
spectral range. The most sensitive wavelengths can then be identified to detect crop 
stress or to build the low cost miniaturized optical sensing module(s). Collecting 
spectral information for each pixel in the image of a scene, HSI generates a 

Table 4.3 Some of the widely used vegetation indices in production agriculture

Index Equation Reference

Normalized Difference Vegetation 
Index (NDVI) NDVI

R R

R R
NIR Red

NIR Red

�
�
�

Rouse et al. (1973)

Green Normalized Difference 
Vegetation Index (GNDVI) GNDVI

R R

R R
NIR Green

NIR Green

�
�
�

Gitelson and Merzlyak 
(1998)

Normalized Difference RedEdge Index 
(NDRE)

NDRE
R R

R R
NIR Red Edge

NIR Red Edge

�
�

�
�

�

Leprieur et al. (1996)

Optimized Soil-Adjusted Vegetation 
Index (OSAVI)

OSAVI
R R

R R
NIR Red

NIR Red

�
� �� �
� �

1 16

0 16

.

.

Rondeaux et al. (1996)

Green-Red Vegetation Index (GRVI)

GRVI
R R

R R
Green Red

Green Red

�
�
�

Motohka et al. (2010)

Ratio Vegetation Index (RVI)

RVI
R

R
NIR

Red

=

Quan et al. (2011)

4 Sensors III: Spectral Sensing and Data Analysis



98

three-dimensional (3D) dataset of spatial and spectral information, known as hyper-
cube. This 3D dataset comprises two spatial dimensions (x rows × y columns) and 
one spectral dimension (λ wavelengths), as illustrated in Fig. 4.7.

Three common techniques of acquiring the 3D (x, y, λ) HSI datasets include 
spatial, spectral, and spatial–spectral scanning methods (Fig. 4.8). The spatial scan-
ning method uses either point scanning or line scanning, the spectral scanning 

Table 4.4 Multispectral imaging applications in crop stress monitoring

Platform
Sensor (model, 
manufacturer) Vegetation index Application Reference

UV-based 
mast

6-band (MCA-5, 
Tetracam, Inc., CA, 
USA)

SIPI, VOG, 
mNDVI, mSR, 
RE-NDVI, SR, 
NDVI

Citrus greening Sankaran et al. 
(2013)

UV-based 
mast

5-band (Red edge 3, 
MicaSense, Inc., WA, 
USA)

Broadband 
vegetation indices

Pinto bean crop 
stress and yield

Ranjan et al. 
(2019)

Small UAS 6-band (MCA-6, 
Tetracam, Inc., CA, 
USA)

NDVI, TCARI, 
OSAVI

Leaf area and 
chlorophyll

Berni et al. 
(2009)

Small UAS 5-band (Red edge M, 
MicaSense, Inc., WA, 
USA)

NDVI, RVI and 
OSAVI

Wheat yellow 
rust

Su et al. (2018)

Small UAS 5-band (Sequoia, 
parrot, Paris, France)

NDVI Post fire 
vegetation 
survey

Fernández- 
Guisuraga et al. 
(2018)

Small UAS 5-band (Red edge 3, 
MicaSense, Inc., WA, 
USA)

NDVI Rice sheath 
blight

Zhang et al. 
(2018)

Small UAS 5-band (Red edge 3, 
MicaSense, Inc., WA, 
USA)

NDVI, GRVI Citrus greening Javan et al. 
(2019)

Small UAS Double 4 K (Sentera 
LLC, MN, USA)

NDVI, NDRE Pea biomass 
phenotyping

Vargas et al. 
(2019)

Small UAS 5-band (Red edge M, 
MicaSense, Inc., WA, 
USA)

NDVI Cotton plant 
phenotyping

Xu et al. (2019)

Low orbital 
satellite

13-band (sentinel-2A 
L1C, Paris, France)

NDVI Cotton root rot Song et al. 
(2017)

High orbital 
satellite

4-band (HJ-CCD 
sensor, China)

NDVI, SAVI, 
GNDVI, SIPI, 
OSAVI, PSRI

Wheat grain 
protein

Tan et al. (2020)

UV Utility Vehicle, SR Simple Ratio, SIPI Structure Insensitive Pigment Index, VOG Vogelmann 
Red Edge Index, NDVI Normalized Difference Vegetation Index, mNDVI Modified NDVI, 
RE-NDVI Red Edge Normalized Difference Vegetation Index, NDRE Normalized Difference Red 
Edge Index, mSR Modified Red Edge Simple Ratio, GRVI Green Red Vegetation Index, RVI 
Relative Vigor Index, OSAVI Soil Adjusted Vegetation Index, PSRI Plant Senescence Reflectance 
Index, TCARI Transformed Chlorophyll Absorption Reflectance Index. Disclaimer: mention of a 
commercial product is solely for the purpose of providing specific information and should not be 
construed as a product endorsement by the authors or the institution with which the authors are 
affiliated.
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method uses the area scanning approach, and the spatial–spectral scanning method 
uses the snapshot imaging approach (Sellar and Boreman 2005). Selecting the suit-
able hyperspectral technique depends on application and imaging requirements.

In the point or whiskbroom method of spatial scanning, a single point is scanned 
along two spatial dimensions by moving either the sample or the sensor (Fig. 4.8). 
The point scanning method is used to acquire a spectrum for each pixel in the scene. 
The line scanning or push broom method can be considered as an extension of the 
point scanning method. In this approach, the sensor is configured to simultaneously 
acquire a slit of spatial information as well as spectral information corresponding to 
each spatial point in the slit. A special 2D image (y, λ) with one spatial dimension 
and one spectral dimension is taken at a time. A complete hypercube is then gener-
ated by aggregating slit scans in the direction of motion (x).

The spectral scanning method commonly employs the area scanning method, 
also known as sequential method. This method acquires a single band 2D grayscale 
image (x, y) with full spatial information at once (Fig. 4.9). The hypercube contain-
ing a stack of single band images is built up as the scanning is performed in the 
spectral domain through a number of wavelengths. No relative movement between 
the sample and the detector is required during such scanning approach. The spatial–
spectral or snapshot scanning method is intended to record both spatial and spectral 
information of the FOV with one exposure. No scanning in either spatial or spectral 
domain is needed for obtaining a 3D image cube (Grusche 2014).

The spatial scanning does not provide live display of spectral images, which is 
calculated from the scanned spectra of the corresponding area. Spectral scanning 
thus has advantage in that it displays live spectral images that may be essential for 
adjusting optical settings related to FOV and focus within FOV. As of today, the 

Fig. 4.7 (a) Hyperspectral image data cube, (b) point sampled spectra of grapevine leafroll dis-
ease infected and healthy leaf, (c) related grayscale images, and (d) pseudo color images
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available spatial–spectral-based HSI imaging sensors provide low spatial or spectral 
resolutions. On the positive side, as this approach has all the information required to 
build a hypercube using captured data, it eliminates motion artifacts typical to other 
acquisition methods. This allows image capture at video frame rates, making this 
technology suitable for high-speed remote sensing applications (Kester et al. 2011).

4.3.2.1  Data Analysis Methods

Data Preprocessing The purpose of hyperspectral imagery preprocessing is to 
eliminate unintended distortions. Preprocessing can also enhance salient image fea-
tures. The field of HSI data processing is well developed, and to keep this chapter 
scope focused, we are not covering those steps (Baxes 1994; Nixon and Aguado 
2012). In terms of image preprocessing, four basic methods including brightness 

Fig. 4.8 Hypercube acquisition modes: spatial (a) point scanning and (b) line scanning, (c) spec-
tral area scanning, and (d) spatial–spectral snapshot scanning
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transformations, geometric transformations, local neighborhood preprocessing, and 
image restoration can be performed on the pertinent spectral data.

There exist different types of random spectra noises including the environment, 
instruments, and the biological sample itself. To remove such noise, many spectral 
data preprocessing methods have been utilized by the researchers. Simple multivari-
ate chemometric methods include PCA and PLSR analysis. Furthermore, baseline 
correction (BC), derivative, Fourier transform (FT), mean centering (MC), multipli-
cative scatter correction (MSC), normalization, orthogonal signal correction (OSC), 
smoothing, standard normal variate (SNV), wavelet transform (WT), or combina-
tions of those can be used to preprocess the hyperspectral imagery data.

Feature Selection Spectral images could provide physical attributes of the objects, 
such as plant canopy vigor, leaf color, leaf texture, size, and shape information 
(Mahlein 2016). Color and texture features are important for identifying the charac-
teristic difference between different objects, that is, healthy and symptomatic plants. 
Normally used color features are RGB (Red, Green, Blue), YCBCR (Luminance, 
Chrominance), and HSV (Hue, Saturation, Value) spaces. Contrast, homogeneity, 
dissimilarity, energy, and entropy features often describe texture-level changes.

Fig. 4.9 Hyperspectral 
imaging sensor acquiring 
spectral response for 
grapevine leafroll disease 
detection
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In a recent review, Zou et al. (2010) have grouped the spectral imaging feature 
selection methods into manual, regression, and sophisticated methods. In the man-
ual method, typically an experienced researcher scans the data for the peak absor-
bance of the known chemical components, such as the C···H (aliphatic), C···H 
(aromatic), C···O (carboxyl), O···H (hydroxyl), and N···H (amine and amide). 
Regression methods could be single and multiple linear regression (MLR). Stepwise, 
forward selection, and backward elimination–based MLR methods are often used 
by the scientists (Balabin and Smirnov 2011; Liu et al. 2015) while analyzing HSI 
data. Lastly, as discussed in the prior section, sophisticated methods such as SPA, 
UVE, Gas, and iPLS can be used for salient wavelengths/feature selection (Cheng 
et al. 2016; Jiao et al. 2016; Li et al. 2017). These methods have been discussed in 
detail in Sect. 4.2.3 of this chapter. Several new methods such as band ratio, com-
petitive adaptive reweighted sampling (CARS), receiver operating characteristic 
(ROC) analysis, branch and bound (BB) algorithm, minimum redundancy-maxi-
mum relevance (MRMR), normalized difference spectral indices (NDSI), and ratio 
spectral indices (RSI) have also been explored (Liu et al. 2014; Wang et al. 2017; 
Chen et al. 2018) during HSI data analysis.

Classification/Prediction Models In HSI data analysis, the multivariate regression 
techniques aim at establishing a relationship between a desired physical, chemical, 
or biological attribute of an object and its observed spectral and spatial response. 
Multivariate classification can be done using either linear or nonlinear regression 
analysis. The conventional linear regression methods include hierarchical linear 
models, linear least squares, ridge regression, Bayesian linear regression, and prin-
cipal component regression (Yan & Su, 2009). Similarly, the conventional nonlinear 
regression methods include nonlinear least squares, Gauss–Newton algorithm, and 
gradient descent algorithm (Bates et al., 1988). Classification/prediction models are 
necessary to assess spectral features robustness in detecting plant stress. For exam-
ple, such a model’s performance can be evaluated by correlation coefficient (r), 
standard error of calibration (SEC), standard error of prediction (SEP), and root 
mean square error estimated by cross-validation (RMSECV). A good model should 
have a lower value of SEC, SEP, and RMSECV as well as a higher value of r and a 
small difference between SEC and SEP (Cen and He 2007).

4.3.2.2  Hyperspectral Imaging Applications

Table 4.5 summarizes HSI applications domain in plant stressors detection with 
pertinent sensor, associated feature section and classification/prediction model 
details. Overall, most applications have used HSI in laboratory settings. To date, it 
is challenging to employ the hyperspectral sensor in the field conditions due to 
sensor sensitivity to the varying light and environment conditions. For example, the 
wind will cause the plant leaves motion and could result in the blurred images 
acquired using push broom–type HSI imaging system. Current HSI system 
development efforts thus are focused on developing snapshot-type sensors which 
would have needed spatial and spectral resolution for use in crop stressors mapping.
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4.4  Summary and Concluding Thoughts

The spectroscopy and spectral imaging technologies offer great promise for 
enhanced characterization of plant stressors. However, as discussed in the above 
sections, many hurdles need to be resolved for practical field use of these tech-
niques. Spectrometers on the market are being customized for use case scenarios, 
and additional features that integrate real-time analytics, wireless network 

Table 4.5 Plant diseases detection using hyperspectral imaging with common feature selection 
and classification methods

Sensor (model, 
manufacture)

Feature 
selection

Classification/ 
prediction Crop type Disease type References

HSI system–
based on LCTF

ROC 
curve

ELM Citrus fruit Decay Verlag et al. 
(2013)

Short-wave 
infrared 
(headwall 
photonics Inc., 
MA, USA)

PLS-DA PLS-DA, 
LS-SVM

Watermelon 
seeds

Cucumber 
green mottle 
mosaic virus

Lee et al. (2016)

Pika XC 
(Resonon Inc., 
MT, USA)

GA SVM Soybean Charcoal rot 
disease

Nagasubramanian 
et al. (2018)

ImSpectorV10 
(spectral 
imaging ltd., 
Finland)

Features 
ranking

kNN Tomato Gray mold Xie et al. (2017)

ImSpectorV10 
(spectral 
imaging ltd., 
Finland)

SPA BPNN, ELM, 
LS-SVM

Tobacco Tobacco 
mosaic virus

Zhu et al. (2016)

ImSpectorV10 
(spectral 
imaging ltd., 
Finland)

PCA PLS-DA, 
SVM, 
RBFNN, ELM

Oilseed rape Sclerotinia 
sclerotiorum

Kong et al. (2018)

FieldSpec UV/
VNIR (ASD Inc. 
Colorado, USA)

NDSI LRA Peanut Leaf spots 
disease

Chen et al. (2019)

Pika XC 
(Resonon Inc., 
MT, USA)

SPA QDA, KNN 
and SVM

Oilseed rape Waterlogging 
stress

Xia et al. (2019)

ImSpectorV10 
(spectral 
imaging ltd., 
Finland)

PCA, 
SPA

BPNN Wheat Wheat stripe 
rust

Yao et al. (2019)

Note: LR Logistic regression; PLS Partial least squares, PLS–DA Partial least squares–discriminant 
analysis, LS–SVM Least–Squares Support Vector Machine, GA Genetic Algorithm, SVM Support 
vector machine, KNN k–Nearest Neighbors, ELM Extreme Learning Machine, BPNN back 
propagation neural network, LRA linear regression analysis, LCTF liquid crystal tunable filters, 
NDSI Normalized difference spectral index
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connectivity, and on-board/cloud computing ability would make them more appeal-
ing to end users. In case of hyperspectral spectroradiometers and imaging sensors, 
real-time sensing remains a challenge due to lack of on-board “big data” processing 
options with streamlined workflow in a chosen software suite. Those sensors are 
also bulky to be integrated with low altitude aerial sensing platforms, limiting their 
wider use. Thus, additional research is needed to have miniaturized modules with 
autocalibration and fast-capturing high radiometric resolution detectors. Some stan-
dardization efforts are also needed to capture pertinent metadata, both for multi- and 
hyperspectral domain, that is compatible and accepted universally in a range of data 
analytics tools. As a wide range of explorations are on-going globally, it would also 
be beneficial if there exists a common database of spectral libraries for given crop 
and stressor type. This would ultimately avoid repetition of efforts to some extent 
and/or validation of a given technique in a similar type of stress detection in a geo-
graphically distinct region.
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Chapter 5
Crop Scouting and Surrounding Awareness 
for Specialty Crops

Francisco Rovira-Más and Verónica Saiz-Rubio

5.1  Introduction to Crop Scouting

At the beginning of the nineteenth century, farmers managed limited pieces of land 
from which one family could survive. Decisions were made according to the knowl-
edge accumulated after spending long days in small fields. The size of the fields 
allowed for a very precise management of the land. With the advent of mechaniza-
tion, the land that every farmer could manage grew exponentially, and decisions had 
to be made through sampling, which often led to unrealistic generalizations. With 
the introduction of precision agriculture, massive data acquisition provides a way to 
systematically scouting crops as a tool for enhancing decision-making at manage-
ment level. The successful application of precision agriculture principles to wine 
production, for example, leads to an optimized management of the vineyard, espe-
cially in everything related to grape harvesting. It is possible to make great wine by 
dumb luck or recipe, but not consistently; only by measuring key parameters can 
you make the best possible wine year after year (Cox 1999), using the variability 
inside the vineyard in your favor. However, methodical crop scouting to support key 
decisions on objective and precise field data is currently a dream for many produc-
ers due to the following main reasons:

• Monitoring cost: it is very expensive to pay operators for acquiring field data. 
Due to these high costs, it can only be done once per year at most, which impedes 
updating information and assesssing the evolution of crops along the entire 
growing season. The nitrogen content of the leaves, for example, continuously 
varies as fertilizer or water is applied.
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• Low sampling rate: since it is not feasible to sample data every meter, measure-
ments are realized once every 400 m2 (20 m × 20 m) for advanced management 
of high-value specialty crops, and usually at a much less resolution for the rest, 
if data is sampled at all. Hence, data sampling rate is so low that conclusions are 
often biased. For example, the weekly assessment of grape ripening status in 6 
weeks prior to harvesting is either biased (low-sampled) or unaffordable.

• Weight of current handheld devices: data sampling for hours with a handheld 
device that may easily weigh several kg becomes a torture for the operators, who 
in addition have typically to walk under the sun in the summer.

• Costs of service providers: although service providers offer data maps, airborne 
information tends to be of low resolution, and if several measurements are needed 
to check the evolution of the plants along the season, say every week or 2 weeks, 
the cost per season may become dissuasive.

The use of noninvasive monitoring devices for agriculture started with remote 
sensing, where optical sensors to perceive the vegetative activity of plants provided 
images that by recording the light reflected from the canopy, typically in the red and 
near-infrared spectra, allowed the calculation of certain vegetative indices such as 
the NDVI (normalized difference vegetative index). The acquisition of data from 
satellites, airplanes, or unmanned aerial vehicles presents a number of drawbacks 
that have discouraged their use in many practical applications in commercial 
orchards. Among them, it can be mentioned the need of a clear atmosphere for 
image taking, the low resolution when the aircrafts fly far away from the field, the 
unresolved legal problems in many countries caused by UAVs that require special 
licenses, the need for paying every image – something growers are not happy to 
do – and in general the lack of temporal flexibility to get vital information from the 
field that end users would like to have access to as soon and as many times as fields 
need. Aerial images have been convenient to assess vegetation differences – e.g., 
due to water stress or chlorophyll activity – over large areas of cropland, but result 
quite inappropriate for the precision needed in modern specialty crops, especially 
when the canopy is stretched along vertical structures. Due to these disadvantages, 
the use of proximal sensing has been growing in the last decade and is becoming the 
de facto management system of the future, through which precision agriculture may 
be successfully implemented in orchards.

There exist several parameters that have awaken interest among specialty crop 
producers, such as the nutritional content in the leaves or nitrogen uptake, water 
status and stress, maturity rate for fruits, disease and pest attack spatial distribution, 
and the estimation of yield at different periods of time before harvest. Yield estima-
tion, in particular, has been claimed by growers as key piece of information for the 
optimal management of orchards, groves, and vineyards, as it can significantly fluc-
tuate among seasons and also spatially within the same field and season. Although 
there are no commercial solutions yet, several approaches have produced promising 
results. Nuske et al. (2011) applied machine vision techniques to estimate yield in 
vineyards. The system uses a sideways-facing color camera of resolution 
3264 × 2448 (pixels) with halogen lamp lighting to detect and count the number of 
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berries per vine at 0.8 Hz, based on shape and texture, with a satisfactory detection 
rate, even for green grapes over green leaves. To reduce the presence of false posi-
tives (mistaken berries that were mostly isolated), as grape berries naturally grow in 
clusters, berries that do not have at least five other berries within their immediate 
neighborhood were eliminated. An average error of 10 % and a correlation coeffi-
cient of determination of 0.74 were reported when predicting the actual harvest 
weight with this experimental setting. As important as with vineyards is crop yield 
estimation for apple orchard management, mainly due to the fact that current man-
ual sampling-based yield estimation is time-consuming, labor-intensive, and quite 
inaccurate. Optimizing fruit thinning and harvesting efforts as well as packing 
house strategies can reduce operation costs. To face this challenge, Wang et  al. 
(2013) deployed a computer vision system that uses a stereoscopic camera with 
28 cm baseline between two lenses of 11 mm focal length and artificial lighting 
(ring flashes) for yield estimation (number of apples) during the night. The system 
works well with both red (Red Delicious) and green (Granny Smith) apples in a tall 
spindle planting structure in such a way that apples are approximately 2 m from the 
stereo rig. The implemented algorithm uses the color space HSV (hue-saturation- 
value) to discriminate the apples from the background, even green apples from foli-
age, given the robustness of this model to decouple the light intensity from the color 
information in the image. For the red apple rows that received conventional fruit 
thinning, the computer was very close to ground truth, with errors around 3  %. 
However, apples were undercounted by 41 % for the trees without fruit thinning. 
Similarly, undercounts for the green apples, which have thicker foliage and more 
occlusions, reached 30 %. In order to account for occlusions, a finer calibration was 
added to the estimation model, lowering errors below 2 %. At the end, the orchard 
manager received a 2D yield map indicating the spatial distribution of red apples for 
the upcoming harvest.

It is no random coincidence the fact that both yield prediction cases exposed in 
Nuske et al. (2011) and Wang et al. (2013) together with the use case example for 
water stress monitoring of Sect. X require supporting structures that enhance can-
opy and fruit exposure. When tractors coexisted with animals to farm orchards, it 
soon became apparent that old orchards had been outlined for horses, and therefore, 
many tractors did not fit between rows, encountering serious problems to maneuver 
at the end of the rows in narrow headlands. As tractors eventually replaced animals, 
orchards were delineated with wider row spacing and larger headlands. This is an 
excellent example of how farming practices changed to better adapt to technology; 
it made no sense to design tractors with the size of horses to fit well in the traditional 
orchards. Several decades have passed and we are again facing a similar dilemma. 
Orchard automation, scouting, and site-specific approaches are not fully efficient 
with the way many fields are set today. Fruit exposure highly depends on the way 
trees are shaped. A critical barrier to yield prediction, and robotic harvesting of 
fruits in trees, has been the high percentage of fruits occluded by branches and 
leaves, which puts fruits out of reach of end-effectors commanded by computerized 
vision systems. However, new production structures are being incorporated for 
high-value specialty crops, some of them already implemented to facilitate 
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mechanized operations. Such is the case of vineyards for wine production. The tra-
ditional goblet or head-trained vines are steadily being replaced by more modern 
vertical shoot position (VSP) trellis, where most of the bunches are openly exposed 
in either side of the vine. The percentage of fruit exposure may be further enhanced 
by field operations such as canopy defoliation. Figure 5.1 illustrates the differences 
between these two production systems for wine grapes; Fig. 5.1a shows a traditional 
goblet vine, whereas Fig. 5.1b represents the trellis system used for VSP architec-
tures. As evidenced in the images, VSP is far more convenient for automation and 
data acquisition from a moving vehicle.

Although wine-producing vineyards were pioneers in the adoption of vertical 
and flat supporting structures for specialty crops, other crops have been gradually 
introducing trellises to convert spherical canopies into vegetation walls. This kind 
of high-exposure architectures is favorable to automation because they are simple, 
narrow, accessible, and productive (SNAP). Figure 5.2a depicts the case for apples, 
Fig. 5.2b provides a production alternative for cherries, Fig. 5.2c shows a vertical 
structure for almonds, and Fig. 5.2d brings the innovative high-density plantations 
proposed for olive trees. Unlike orchards, row crops and short plants are easier to 
automate and monitor, as agricultural equipment is not tightly constrained inside 
rigid structures and GPS signal is less prone to be blocked.

Given that proximal sensing requires keeping a limited distance between the 
measuring sensor and the target, typically between 1 and 3 meters, a ground vehicle 
is necessary to carry the data acquisition equipment and scan the field in a reason-
able time while assuring a sampling rate with statistical significance. This excludes 
manual sampling and therefore favors automation and the introduction of intelligent 
off-road equipment in the field. One possibility is represented by conventional 
equipment – tractors, harvesters, and sprayers – endowed with the necessary suite 
of sensors and computers to automatically save crop data. Another option is to 
deploy a scouting robot to autonomously register large amounts of data, as described 
in detail in Sect. 5.2. This alternative has been gaining momentum over the last 
years, as a consequence of the rapid expansion of robotics and big data applications. 

Fig. 5.1 Vineyard architectures: (a) head-trained vines or goblet (France); (b) vertical shoot posi-
tion or VSP (Portugal)
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The amount of data retrieved from commercial orchards is not massive and perva-
sive, generally speaking, and as a result, we are not into big data yet, but having 
access to a high-rate data-collecting machine will likely lead the way to it. A great 
number of financial publications coincide in forecasting a rapid growth of the ser-
vice robots market, with a significant role of agricultural applications for the next 
two decades. Figure 5.3 shows the expected growth of the US agricultural robots 
market by application for 2015 (USD million) (Verified Market Intelligence 2018). 
Although milking robots and dairy management will still dominate the deployment 

Fig. 5.2 Vertical supporting systems for specialty crops: (a) apples (USA); (b) cherries (USA); (c) 
almonds (Spain); (d) olive trees being harvested with a modified grape harvester. (Spain, courtesy 
of prof. Antonio Torregrosa)

Fig. 5.3 US agricultural robots market by application (Verified Market Intelligence 2018)
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of robotic solutions in the next decade, the introduction of digital farming through 
advanced management of soil and crops with precision agriculture techniques, in 
combination with a stronger presence of automation and intelligent systems in field 
farming, will result in the emergence of a growing group of first adopters who will 
manage their land at the same technological level reached by other industrial sec-
tors. This transformation for the twenty-first-century farmer from laborer to digital 
age manager may be instrumental to attract young generations to agricultural pro-
duction, counterweighting the risks of leaving such a high responsibility as feeding 
the world to an ever-aging population of farmers.

5.2  Scouting Robots: Architecture and Design

There are two practical approaches to endow agricultural machinery with intelli-
gence and automation: (a) modify conventional equipment by introducing digital 
technology and automatic controls and (b) design a new vehicle that integrates a 
mechatronics design from scratch. At the dawn of digital technology, the former 
type was mostly represented by large vehicles powered by diesel engines, while the 
latter consisted of small- or medium-sized platforms run by electrical drives and 
traditional lead batteries. At present, however, solutions are not so clearly divided, 
and large equipment manufacturers are already offering big tractors with a good 
dose of electrification, whereas innovative farm robots may incorporate small com-
bustion engines to fulfill high-demand field tasks, such as blast spraying or mowing, 
in platforms propelled by lithium batteries, which have increased efficiency signifi-
cantly thanks to research conducted by the automotive industry. The convenient size 
of a farm vehicle endowed with certain degree of automation is still an unresolved 
question. Productivity and liability are antagonist concepts that need to be balanced 
until finding a reasonable and cost-effective trade-off. Large machines such as com-
bine harvesters are very efficient because they can harvest big amounts of product 
per day, but at the same time, they are hard to automate because of their size, weight, 
and power; if a navigation or control problem arises, it is very difficult to stop a 
machine of such magnitude. Small robots, or moderate-sized autonomous assis-
tance platforms, on the contrary, entail lighter risks when operating in the field, but, 
unfortunately, are limited in their capacity to produce work because of small operat-
ing widths and low power autonomy. Better batteries and safer architectures will 
probably lead to larger off-road vehicles propelled by electricity on one hand, and 
farm machinery more modest in size but with higher levels of automation on 
the other.

When conventional agricultural equipment is modified to adopt digital farming 
techniques, it retains a highly effective mechanical design inherited from many 
years of continuous evolution. However, when a new farm robot is developed, there 
is a risk of overlooking its mechanical design in favor of software, sensors, or elec-
tronics. A vehicle built to operate in off-road conditions must include a strong chas-
sis, a responsive suspension, and an effective steering mechanism; without them, its 
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behavior will likely become inconsistent and unpredictable with time. Figure 5.4a 
depicts the computer-based design of the entire chassis for a vineyard robot, 
Fig. 5.4b provides a close-up evaluation of highly stressed and highly strained joints 
in its chassis (wheel motor carriers), and Fig. 5.4c depicts the four-wheel indepen-
dent suspension constructed for the designed robot. We should evaluate the dynamic 
performance of agricultural robots as systematically as any conventional off-road 
vehicle, taking into consideration such crucial parameters as slippage, weight trans-
fer, and traction. The size and type of the wheels, or the potential need of ballast, 
may improve field performance significantly.

The dynamic performance of a farming robot, which mostly moves on off-road 
terrains, is crucial for the safety of the vehicle and the quality of the data collected 
on the fly. Its dimensions and weight distribution over the wheel axles are important 
design parameters, but the critical point for reaching a stable behavior is the optimal 
design of suspension and steering. The prototype of Fig.  5.4, for instance, was 
equipped with four custom-made coil springs with an elastic constant of 
15,675 N·m−1, with the purpose of improving the results of a previous prototype 
featuring commercial suspension springs with an elastic constant of 27,210 N·m−1. 
In order to compare the dynamic performance of both prototypes (Saiz-Rubio & 
Rovira-Más 2016), a three-axis accelerometer was mounted on the front right wheel 
of each prototype to record vertical accelerations at a frequency of 16  Hz. The 
robots were set to overcome two obstacles at approximately 1 km·h−1: first, a round 
curb of approximately 4 cm in height and 8 cm wide causing a sudden drop and, 
second, an office footrest forming a wedge of 45 cm in length and 16 cm in height 
(slope angle of 21°). Figure 5.5 shows the outcome of this comparison. As expected, 
the softer suspension of the second prototype (Fig. 5.4c) absorbs better the vertical 
accelerations provoked by the obstacles, especially with the curb.

The study of the most favorable suspension system for each particular robotic 
platform needs to be complemented by its corresponding design of the steering 
mechanism. When robots are endowed with autonomous navigation, this stage in 
the design process becomes fundamental. An advantageous steering system must 
provide crisp and accurate corrections when the robots advances in straight 

Fig. 5.4 Mechanical design in agricultural robots: (a) 3D model for robot chassis (courtesy of 
Andrés Cuenca); (b) high stress joints in motor carriers; (c) independent suspension in actual robot
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guidance between orchard or vineyard rows, but at the same time must allow sharp 
turns at the headlands to change rows with the minimum slippage. Figure 5.6 gives 
an overview of the key design components that form the steering mechanisms of 
scouting robots. In this particular case, as the robot is four-wheel-drive two-wheel- 
steer, the electric motors powering the front wheels must turn with them as the robot 
steers, which complicates the outline of the steering linkages. The model of Fig. 5.6a 
shows an example of a tie rod assembly that facilitates wheel turns with electric 
motors attached to each wheel. The actual rotation of the wheels is accomplished by 
displacing a sliding bar actuated by the pinion-rack coupling of Fig. 5.6b. In gen-
eral, a significant change in the suspension system implies a reformulation of the 
steering linkage design. The steering system for the prototype of Fig. 5.4 was also 
improved by introducing slight caster and camber angles in the front wheels. A 
caster angle induces an inclination angle at maximum turns that facilitates the nego-
tiation of sharp turns in a similar way automobiles and tractors steer (Fig. 5.6c). The 

Fig. 5.5 Suspension test for two prototypes of agricultural robots

Fig. 5.6 Steering design in scouting robots: (a) tie-rod assembly; (b) pinion-rack actuation; (c) 
caster angle
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light positive camber angle helps the robot self-center, which is key for automatic 
steering along the rows.

The benefits of optimizing the steering system of a scouting robot must necessar-
ily translate to the actual field, where the modified robot will have to outperform the 
navigation aptitudes shown by the robot before the improvements. A comparison 
similar to that of Fig. 5.5, but focused on automated guidance, is plotted in Fig. 5.7. 
The robot of Figs. 5.4 and 5.6c was automatically guided in Spain, whereas a previ-
ous prototype with a simpler steering mechanism was tested in France. Both vine-
yards had a row spacing of 2 m, and the forward speed oscillated between 1 km·h−1 
and 1.8 km·h−1. The plot graphs the Ackerman angle registered by the robot’s cen-
tral computer and clearly reveals a superior behavior for the enhanced steering sys-
tem (blue line), which behaved more stable than the old prototype (red line), that 
additionally showed some asymmetry in the actuation of the wheels. Experience 
taught that slight deviations in the construction of the tie rod assembly had signifi-
cant consequences in the navigation performance of autonomous vehicles. But the 
opposite was true too; a committed design of the suspension and steering systems 
as a whole resulted in gratifying outcomes.

The deployment of automated systems, even in the case of low-level automation, 
always involves solving important technical difficulties. Out of all of them, the big-
gest barrier to commercialization has typically been reliability and safety. There is 
a long way between a working prototype and a product ready for the market. As a 
result, it takes years for a solution to hit the market and become accessible to aver-
age end users. A safe solution must be reliable in both hardware and software. The 
environmental conditions found in agriculture  – low temperatures in the winter, 
high humidity, strong sun radiation, application of chemicals, and potential knocks – 
are usually a threat to delicate off-the-shelf electronics, so a first step in making 
scouting machines stronger is by protecting sensors, electronic cards, and wires 

Fig. 5.7 Steering performance comparison between two robotic prototypes automatically guided
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from weather aggressions, in addition to using components with an IP rate of 65 or 
above. Once hardware is protected and secure, communication among sensors, 
actuators, and computers or processors has to be granted. Furthermore, this com-
munication must be permanent and take place at the necessary frequency to assure 
a stable and predictable performance. Even though each sensor requires a particular 
interface, we can enunciate some general rules. Serial data are usually transmitted 
through universal serial ports (USB) or RS-232. When both protocols are available, 
the latter is preferable for agricultural applications as it is stronger and can be tightly 
screwed, providing a sturdy link between sensors and computers. The fact that com-
puters permanently number serial ports is a guarantee of stability before device 
confusion. Typical sensors that use RS-232 communication are GPS receivers and 
lidar rangefinders. The increasing popularity of USB ports for video streaming has 
led to their dominance in imaging sensors over the traditional I2C and firewire 
(IEEE 1394). However, caution is necessary when using USB-connected devices; 
first, the connector itself has been designed for desktop computers and, as a result, 
is weak and easy to unhook under the vibration of off-road equipment; and second, 
the power supplied through USB ports is limited to 5 V up to 5 A, which many times 
requires the addition of extra power for power-avid devices.

The transmission between sensors and computers – or processors – must be set 
at a conservative sample rate, in such a way that if a few measurements are missed, 
information is still available in a timely manner. However, the control of actuators, 
especially in navigation and safeguarding, has to be as reliable as possible. For such 
cases, the commands sent by the processing units must arrive integral and at the 
right pace. This necessity immediately discards any kind of wireless communica-
tion between the central computer and the control of motors and electrohydraulic 
valves. The most accepted protocol in industry for serial data transmission is the 
controller area network (CAN) bus, developed by Bosch in the 1980s. It allows 
controllers, sensors, and actuators be connected on a common serial bus that behaves 
like a “data highway.” Based upon the CAN bus, the manufacturers of agricultural 
equipment are developing the ISO bus, a protocol to connect farm implements and 
tractors in a general, safe, and efficient way, with only one control console for all the 
implements regardless of the brand. This standard is still in progress but many man-
ufacturers already offer it.

There has been a considerable gap between technology development and user 
adoption with regard to digital farming, and a significant contribution to it comes 
from the lack of harmony between solutions offered and user needs. Some solutions 
tend to be very complex and not in tune with current demands made by growers. 
The average user is not an information technology (IT) expert with an engineering 
degree; rather, we expect to find practical workers in search of consistent solutions. 
Intelligent systems must be straightforward and intuitive, easy to use, and easy to 
explain. In this context, only indispensable sensors and functions should be used to 
keep complexity at reasonable levels. Adding extra sensors, even if they are low 
cost, will increase the failure rate of any system. To ease usability, human-machine 
interaction must be clear and easy, with well-defined graphic user interfaces (GUI) 
and ergonomic joysticks for manual operations. For autonomous operations, a 
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well-designed network of emergency stops is mandatory to stop the vehicle in case 
of unexpected behavior. Figure 5.8a shows the graphic user interface of the robot 
utilized in the use case of Sect. 5, and Fig. 5.8b illustrates its manual control with an 
ergonomic joystick. Overall, the skills required to operate these scouting vehicles 
should be similar to using a cell phone and not much more advanced.

5.3  Surrounding Awareness for Scouting and Data Collection

The principal task of any scouting machine is the perception of its surroundings, and 
that will only be possible with a combination of sensors holding the capacity of 
measuring physical properties of what is enclosed in the machine’s vicinity. Not 
only the sensors must have the capacity of perceiving these physical properties in a 
quantitative or numerical format, but they also must facilitate their recording in a 
data-logging device for their further processing. Data may be processed in real time 
for immediate actuation, but the majority of scouting applications require onboard 
data storage. The development of sensors is in continuous growth, and we will see 
new devices hitting the market in the following years, but the implementation of 
some sensors over the last decade has resulted particularly attractive and effective 
for the complex scenario of agricultural environments, where open off-road terrains 
that require working outdoors pose challenging situations to the advanced manager 
willing to apply the principles of precision agriculture and digital farming. This sec-
tion reviews some of the most popular sensors onboard intelligent vehicles for crop 
scouting applications, providing a general overview of their workings to show their 
potential, but without getting into technical details.

Fig. 5.8 User-centered design in agricultural robots: (a) intuitive GUI; (b) manual control with 
ergonomic joystick
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5.3.1  Visible Light Machine Vision

Machine vision is the computer version of the farmer’s sight; the eyes are repre-
sented by cameras and the brain by computers. The output of vision systems are 
digital images. A monocular camera yields digital images of a scene at a given rate 
(frames per second or fps), and a stereoscopic camera produces a depth image as a 
result of comparing two images taken simultaneously by two equal cameras 
mounted on a rigid rig. In this section, we will deal with cameras that perceive the 
environment in the visible range, which means that the cameras register the same 
scene seen by humans, filtering out other electromagnetic sources such as ultravio-
let or infrared. A digital image consists of little squares called pixels (picture ele-
ments), each of which carries information on its level of intensity. If the image is in 
black and white (technically called monochrome  image), the intensity level is in 
reality a gray level between a minimum value (0) and a maximum value (imax). The 
number of gray levels depends on the number of bits (binary digits) in which the 
image has been coded. Most of the images used in agriculture are 8 bits, which 
means that the image can distinguish 256 gray levels (28) and the maximum value is 
255 representing pure white. In practical terms, our eyes cannot distinguish so many 
levels, and 8 bits are many times more than enough. When digital images reproduce 
a scene in color, pixels carry information of intensity levels for three channels red, 
green, and blue, leading to RGB images, whose processing is more intricate than 
monochrome images and therefore falls outside the scope of this chapter.

Monocular cameras constitute the basic component of typical vision systems and 
retrieve powerful and useful information from plants, trees, and other objects of 
interest in agricultural fields. In addition to selecting the camera manufacturer and 
image type (monochrome or color), users must also choose important technical 
parameters such as the lens focal distance, the size of the sensor, and optical filters 
when there is a need to block determined spectral ranges (colors). Although the 
detailed description of these parameters would take too long for an overview like 
this, the focal distance (f) is related to the scope of scene that fits into the image, and 
as a result, the smaller value of f, the wider angle of view covered by the camera, 
and therefore a bigger portion of the targeted scene will be captured in the resulting 
image. Once images are taken, we have completed the first step of the vision pro-
cess – image acquisition – but the images still have to be properly interpreted to be 
meaningful, the image processing stage, which involves the delicate step or extract-
ing the useful information from the image, something that must be efficiently car-
ried out by computer algorithms tailored for each given application. Figure 5.9a 
shows a monocular monochrome camera used to capture zenithal scenes from a 
vineyard, and Fig. 5.9b reproduces the results of a color-based segmentation algo-
rithm to extract oranges from a citrus grove, application that uses the HSV color 
space in similar fashion to the apple detection algorithm of Wang et al. (2013).

Even though digital images reproduce scenes with great detail, this representa-
tion is flat, that is, in two dimensions, whereas the real scene is actually in three 
dimensions. What dimension is left then? The depth, or distance between the cam-
era and the scene. In the image shown in Fig. 5.9b, we can locate a given orange 
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with precision in the horizontal and vertical axis, but we cannot know how far it is. 
This information would be essential, for example, if we had to program a robotic 
arm to retrieve the orange, as it could be out of reach. Stereo cameras allow the 
acquisition of two (or more) images in a certain relative position to which the prin-
ciples of stereoscopy can be applied. These principles mimic how human vision 
works, as the images captured by our eyes in the retinas are slightly offset – as are 
our eyes – and this offset, known as disparity, is what allows the brain estimate the 
depth. In agriculture, stereovision is used for assisting in autonomous navigation 
(Rovira-Más et al. 2015) and for generating three-dimensional (3D) maps of crops 
(Rovira-Más et al. 2008), which allows the estimation of plant growth and canopy 
vigor. Figure 5.10a shows a compact stereo camera mounted on a rice harvester, and 
Figs. 5.10b, c and d, depict a commercial vineyard monitored with a stereo camera 
mounted at the front of a tractor, its depth image (c) where darker pixels indicate 
farther distances, and its 3D virtual representation (frontal view d) that depicts the 
canopy at both sides of the vehicle and the row spacing ahead showing that is free 
for navigation. Notice that stereo matching is a pixel-by-pixel operation that requires 
texture to identify the same objects in both images of the stereo pair. Therefore, 
image areas without enough texture (dark shadows under the canopy or uniformly 
lit patches of soil) produce (white) pixels with no information in the disparity image 
(c), eventually creating voids in the 3D representation of the scene. These voids are 
easily identifiable within the vineyard canopy of Fig. 5.10d.

5.3.2  Biosensing for Crop Monitoring

With the development of non-invasive crop sensing tools that can operate on the fly, 
i. e., while a vehicle is moving in the field, the availability of crop information has 
grown significantly. The accessibility to massive field data is key to apply the prin-
ciples of precision agriculture, a modern approach to grant economical and 

Fig. 5.9 Monocular vision for scouting: (a) digital camera; (b) color image processed to 
detect oranges
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environmental sustainability in farms. Machine vision with cameras sensitive to 
non-visible spectral bands, infrared radiometers, and other optical devices can pro-
duce amounts of data that growers can fit into decision support models to make 
better choices. Among the crop parameters that have risen more interest in agricul-
ture, it is worth mentioning the canopy volume, the temperature of the leaves mea-
sured with infrared radiometers (Sect. 5.5) or, alternatively, with thermographic 
cameras yielding the CWSI (crop water stress index), and plant vigor assessed 
through the calculation of the NDVI (normalized difference vegetation index) or the 
NBI (nitrogen balance index). The use of vegetative indices, such as NDVI, NBI, 
and CWSI, provides objective and quantitative methods to evaluate the status of 
crops at any given moment of the productive cycle and, therefore, allows farmers 
reach a deeper understanding of how crops evolve with time. The fact that many 
intelligent farm vehicles include a GPS receiver facilitates the acquisition of crop 
information in map format, which is convenient to compare the spatial variability of 
key parameters and the generation of historical data series. At present, there exist 
several off-the-shelf devices to calculate the NDVI in real time and apply a variable 
rate of fertilizer according to the nutritional status of plants. The systematic record 
of plant physical properties at high resolution is known as plant phenotyping and is 

Fig. 5.10 Stereo vision: (a) binocular camera; (b) real scene; (c) depth or disparity image; (d) 3D 
frontal representation
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becoming instrumental to understand the relationship between the genetic makeup 
of a plant and its complex traits such as growth or water stress resistance. Figure 5.11a 
shows a multispectral camera that allows the calculation of NDVI and NBI, and 
Fig. 5.11b depicts an infrared radiometer that can estimate the canopy temperature 
of specialty crops.

5.3.3  Nonvisual Range Perception

Ultrasonic rangefinders are devices that use sound to measure distances, and for that 
reason, they are also known as sonar sensors. The principle that lays behind sonars 
is the fact that the speed of sound is known (343 m·s−1 at 20 °C), and measuring the 
time that the wave needs to hit an obstacle and return – the echo – allows the estima-
tion of that distance. The speed of sound in the air depends on the ambient tempera-
ture, but this relationship is known and easy to apply. However, the use of sonar 
sensors in agricultural fields is subjected to some difficulties that can be detrimental 
for the accuracy and consistency of measurements. The sound wave sent by the sen-
sor has to hit an object and return to the sensor receiver that must capture it to mea-
sure the time used by the wave in its round trip. The physical properties of the target 
objects, especially their reflective nature, are essential to obtain reliable results. 
Sound waves do not behave as linear beams; instead, they propagate in irregular 
cones that expand in coverage with distance. As a result, when the target object is 
uneven (as canopies) and the cone is not narrow, the measurements may become too 
noisy. An important design feature to consider is the distance between adjacent 

Fig. 5.11 Sensors for crop monitoring: (a) multispectral camera; (b) infrared radiometer
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ultrasonic sensors, as echo interference is a source of unstable behavior. Overall, 
sonar rangefinders are helpful sensors to estimate short distances, say up to 2 m, 
cost-efficiently, and when accuracy and reliability are not essential, for instance, 
when detecting the distance of a vigor-estimating sensor to the canopy for fine- 
tuning measurements. Figure 5.12 shows a robust ultrasonic sensor to estimate the 
lateral distance of a robot to the canopy of grape vines (a) and a lower cost sonar to 
issue warnings when the robot moves backward and objects interfere in its trajec-
tory (b).

Lidar stands for light detection and ranging and is an optical device that provides 
distances to objects. Although different light sources can be used to estimate ranges, 
most of the lidars use laser pulses because the beam density and coherency make 
them very accurate. However, laser beams are very narrow and one static emitter 
cannot cover the amplitude of zones typically needed. As a result, off-the-shelf 
rangefinders come in two working modes: (1) a rotating head with an emitter that 
sweeps an area that can reach 270° and (2) a stationary head with several emitters 
equally spaced to cover an area, usually smaller than that spanned by rotating heads. 
Lidars are not affected by sunlight unless it hits the emitter directly and work excel-
lently at night when most vision systems provide poor perceptive capabilities. 
Machine vision and lidar are technologies that complement well each other to pro-
vide local perception to intelligent vehicles. Figure 5.13 shows a perception unit 
comprising a stereovision camera, two sonar sensors on the sides for lateral percep-
tion, and a frontal lidar rangefinder with a motionless head consisting of 11 emitters 
that cover an angle of 88°, with beams angularly spaced by 8.8°.

5.4  Crop Monitoring and Mapping

Regardless of the level of intelligence embedded in a farm machine, field work has 
to be carried out in the most efficient way. In fact, automation and control is intro-
duced to enhance performance of machinery and therefore increase efficiency, 

Fig. 5.12 Ultrasonic sensors for estimating distances in agricultural vehicles
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safety, and comfort for the operators. In a general formulation of crop scouting, a 
vehicle operating in the field can be ground-based or airborne. In either case, it will 
have to cover an area in a given time, and this is actually a relevant parameter when 
comparing different options to do a given task, i.e., the number of ha·h−1 that the 
machine can cover. Let us put the example of a sprayer equipped with a multispec-
tral camera to monitor a vineyard NDVI with a row spacing of 2 m. The sprayer is 
supposed to pass along every row, with an average speed of 5 km·h−1. The time 
invested in headland turns for this example has been estimated in 20 % of the total 
operation. At that pace, the sprayer advances 1.4 m every second, and considering 
the regular row spacing of 2 m, the area covered is 2.8 m2·s−1, or 10,080 m2 per hour, 
which can be approximated to 1 ha·h−1. Taking into account that a working day is 
equivalent to 8 h, and 20 % of the time is lost in headland maneuvers, the final effi-
ciency will be approximately 6.4 ha·day−1. This is the working efficiency we need 
to compare among alternative solutions.

At present, there is a raising interest in electrical drives and actuators. The auto-
motive industry has pushed the development of high-performance batteries for 
hybrid or totally electric vehicles. Electric actuators facilitate vehicle control and 
provide a clean alternative to fossil fuels. This technological move is obviously 
affecting agricultural equipment, and major manufacturers are already developing 
innovative vehicles with an ever-growing presence of electrical components. 
However, performing demanding tasks in off-road conditions requires a consider-
able amount of energy, and it is critical  to estimate the autonomy of electrically 
powered vehicles. The efficiency of the example mentioned above will hardly be 
accomplished if the sprayer cannot run for at least 8 h per day. The pervasive advent 
of unmanned aerial vehicles for data acquisition is greatly dependent on battery 
performance and payload. The use of renewable sources of energy, while 

Fig. 5.13 Lidar rangefinder (black component) with 11 beams covering a horizontal field of 
view of 88°
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recommendable, must always be compatible with the actual needs of power and 
workload encountered in the field to satisfy a minimum degree of efficiency.

Crops can be monitored by simple visual inspection or just by reading a sensor 
output in a display, but the large amount of data logged by most of current sensors, 
even if running at low frequencies, makes this approach inefficient. Some applica-
tions require a real-time processing of sensor data, for example, variable rate fertil-
izing with an NDVI-based nitrogen assessment, but the majority of monitoring 
applications require saving data for their later processing. The storage of data in 
numerical tables and oversized matrices is suitable for engineering work, but field 
managers and crop growers find it more intuitive when field data is conveyed in a 
map format. Therefore, the preferred method to deal with crop data is through two- 
dimensional maps. The fact that GPS receivers are ubiquitous and easily accessible 
favors the coupling of crop information with global positioning. However, the stan-
dard geodetic coordinates coded in NMEA (National Marine Electronics 
Association) strings that all GNSS receivers get are not convenient for the precision 
and detail needed in proximal sensing applications, where the position of individual 
trees is often necessary. In addition, working in degrees, minutes, and seconds is not 
intuitive for the daily planning of field managers, who would rather use meters 
instead of degrees. The local tangent plane (LTP or NED) offers several advantages 
that make it the ideal coordinate frame for proximal sensing monitoring. It uses 
Cartesian coordinates north and east, which are by themselves intuitive for growers 
to orientate in the field, and also features a local origin chosen by the user in every 
field. This allows both, the use of Euclidean geometry for the calculation of dis-
tances and areas, and having convenient magnitudes for the coordinates, which will 
normally be expressed in meters. The flat coordinates NED (North-East-Down) pro-
vide global references for scouting vehicles and therefore for each crop measure-
ment carried out from them by simply translating each sensor location to the GPS 
antenna’s location.

Choosing an advantageous coordinate system for representing the spatial distri-
bution of field data is a necessary step, but the way crop information is displayed in 
the user map is crucial. Accurate maps of difficult interpretation are useless for the 
average field manager. Three features may ruin the usability of monitoring maps: 
(1) the measurement scale has so many intervals or classes that practical actuation 
is not easy to figure out; (2) measurements are not coinciding in space, and therefore 
multiple variables cannot be correlated; and (3) the parameter displayed in the map 
has no practical meaning or application for the daily operations of the farm, 
either because variability is too high or the parameter itself is more scientific than 
operational. The first two drawbacks are counterweighted by discretizing both the 
space and the measurements. A grid approach that maintains global references in 
LTP coordinates offers good guarantees for map usability (Rovira-Más 2012) and 
facilitates the comparison of data through the years. This approach lets users decide 
the cell size – map resolution – and the number of classes that are manageable for 
each specific situation, typically represented in a friendly color scale. The tempera-
ture maps of Fig. 5.19 are examples of grid representations in the LTP frame. Notice 
that a scouting robot recording a temperature measurement every second will gather 
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several data points for each cell of 4 m2 area, and without computing the average 
measurement of each cell, comparison and correlation between  zones is not 
practical.

The third drawback mentioned above requires a different sort of solution. A grid 
map that directly represents raw data acquired in the field will naturally present a lot 
of variability, mainly with cells of reduced area. It may be the case of having a crop 
map with the right spatial resolution and with a reasonable interval for the studied 
parameter, but still yielding a large dispersion among cell values. For such cases, 
and if no real-time decisions are to be made, geospatial techniques for data smooth-
ing and clustering become very practical to make crop maps operative. When field 
data is scarce, interpolation has been the typical technique used, but many times it 
has led to artificial mapping that has little to do with field reality. When massive data 
is available, however, smoothing and clustering are the most appropriate ways to 
treat data. In any case, geostatistics in precision agriculture must avoid the common 
plague of overfitting and overtransforming data (Schueller 2010). The ideal situa-
tion will be when a crop map has a few treatment zones for a parameter directly 
applicable with the equipment available in the farm. To reduce the number of treat-
ment zones, cells that fall within a “close” vicinity must be classified as equal dose. 
The problem is how to determine the radius – known as the range – around any 
given cell above which influence from other cells is negligible, following the 
accepted principle of Tobler stating that everything is related to everything else, but 
nearby objects are more related than distant objects (Tobler 1970). Clustering tech-
niques are usually optimal when data follow a Gaussian distribution. The estimation 
of the maximum distance of influence can be found through the plotting of semivar-
iograms, which consists of computing statistical variances (Y axis) for growing 
distances (X axis) until the variance remains close to a steady state called the sill. 
The geometrical locus of the variances is then fit to an equation whose intersection 
with the sill establishes the maximum range, the distance considered for clustering 
and smoothing data. Figure 5.14a shows the distribution of nitrogen (0 is poor; 1 is 
maximum) in leaves of a vineyard where 1062 measurements were made noninva-
sively (Saiz-Rubio et al. 2017). Note the closeness of the actual distribution of nitro-
gen values with a perfect Gaussian distribution. Figure 5.14b plots its corresponding 
semivariogram where the best fit was exponential and the maximum range found 
was 30 m.

Once the range has been set, a raw map plotting data directly retrieved from crop 
sensors can be further processed to indicate site-specific treatment zones. A multi-
tude of algorithms may be applied, taking into account the range as the radius of 
influence. A simple way of smoothing data would be by estimating the median in 
the surrounding cells considering two concentric rings, that is, by finding the median 
of each cell and its surrounding 24 cells (5 × 5 window) (Saiz-Rubio et al. 2017). 
Figure 5.15a shows a grid map of nitrogen in leaves directly plotted with sensor 
data, and Fig. 5.15b plots the result of applying the 25-cell smoothing filter based 
on the median. The filtered map facilitates decision-making based on zoning and 
allows a rational use of variable-rate equipment.
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Fig. 5.14 Normal distribution of foliar nitrogen (0–1) in a vineyard (a) and semivariogram (b)
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Fig. 5.15 Original grid-based nitrogen map (a) and results after applying smoothing techniques 
(b) (Data courtesy of Mª Paz Diago)

5.5  Use Case: Vineyard Scouting with Ground Robots 
for Water Status Assessment

The Alto Douro Wine Region is a UNESCO World Heritage site centered on the 
Douro (or Duero) river, which is sheltered by mountains from the coastal influence 
of the Atlantic Ocean. This region is home of the most important wines elaborated 
in Portugal and includes both table wine – typically known as Douro wines – and 
the world-famous Porto wine. Producing wine in the Alto Douro is hard due to steep 
terrain and high temperatures, and even though wine makers are used to these con-
ditions, and grape vines, most of which indigenous local varieties, are acclimated to 
the region, the steadily rising temperatures of the last years have posed serious con-
cerns among growers, who need to keep the yield and reputation of their products 
before an uncertain availability of water for irrigation. An excess of water stress in 
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vines may lead to important economic losses and long-standing damage to renowned 
Porto brands. Figure 5.16a shows the effects of water stress (1 August 2018) in the 
canopy of Touriga Nacional vines, where plant coverage is too poor. A traditional 
method in the region to palliate the effect of extreme sun radiation has been to spray 
the vine canopy with lime to lower leaf temperature. Figure 5.16b depicts the depo-
sition of lime on the leaves.

The natural response of a stressed vine is to limit transpiration by closing the leaf 
stomata, with the purpose of preserving plant water as much as possible when soil 
water is not available. The predominant method so far to assess the degree of water 
stress in a plant tissue has been by estimating the water potential of leaves with a 
Scholander pressure chamber. These pressure bombs are field portable and easy to 
operate. However, while the measurements yielded are quite reliable, the actual 
operation is time-consuming and physically demanding. It requires transporting a 
nitrogen tank along the field to reach the sampled points of measurement. Single 
leaves must be introduced into the chamber, and for every test, an equilibrium must 
be reached: as the pressure increases, at some point the liquid contents of the sample 
will be forced out of the xylem and will be visible at the cut end of the stem or peti-
ole. In order to see the little drop coming out of the stem, a magnifying lens is typi-
cally used. In addition to the time needed for a single sample, measurements must 
be carried out either at midday or before dawn, which are not the best time for being 
in the field. All these inconveniencies have resulted in very few growers, even in 
large wineries, assessing water stress with the proper instrumentation, and there-
fore, there is an urgent claim to develop a new methodology using non-invasive 
technologies that allow getting more data, more often and less cumbersomely. 
Figure 5.17 shows the use of the Scholander pressure chamber in a commercial 
vineyard both at midday (center, right) and before dawn (left).

The effects of closing stomata result in an increase of leaf temperature; therefore, 
by tracking the thermal dynamics of vine canopies, we can define objective indica-
tors of how stressed plants are. Unfortunately, plant biology involves complex, not 
fully understood physiological phenomena, and additional parameters must be 

Fig. 5.16 Water stress in grape vines: (a) scanty canopy; (b) lime treatment to decrease leaf 
temperature
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taken into account to enrich plant monitoring. For example, the sun-exposed side of 
the rows will evolve differently from the shady side, and the vegetative vigor of each 
single plant will result in different resistance to stress. The EU-funded research 
project VineScout (2017-2020) aimed at understanding and estimating water status 
in vineyards by the massive measurement of canopy temperature and vine vigor. To 
do so, the robot of Fig. 5.18 was equipped with an infrared radiometer to measure 
temperature and a multispectral camera (Fig. 5.11a) to track vegetation indices. The 
onboard GPS receiver assigned a submeter precise location for each point sensed in 
the field.

Fig. 5.17 Sampling and measurement of plant water stress in a vineyard with the Scholander pres-
sure chamber (Courtesy of Symington Family Estates)

Fig. 5.18 Robot VineScout to assess vine water stress: (a) day mapping; (b) night mapping
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The output of a field monitoring session comes in the format of a map, where a 
text file stores the parameters measured in the field and their corresponding GPS 
location. One of the maps generated by the robot of Fig. 5.18 to assess water stress 
is the canopy temperature, which was measured with an infrared radiometer (Apogee 
Instruments, Logan, UT, USA) placed in the right side of the robot (Fig. 5.11b) fac-
ing the canopy central section at an approximate separation of 50 cm. This map was 
displayed in real time in the robot’s console (Fig. 5.8a) and also saved in a text file 
for its further processing. Figure  5.19 shows various canopy temperature maps 
recorded in the Portuguese vineyard of Fig. 5.16 in the summer, where the winery 
Symington Family Estates established an experimental irrigation scheduling  for 
research. Figure 5.19a is an aerial image of the studied field that highlights differ-
ences in vine vigor caused by uneven soil and terrain. Figure 5.19b plots the trajec-
tory of the robot during one of the mapping missions conducted in the vineyard in 
2018, when some of the highest temperatures of the summer were registered in the 
afternoon. The robot only mapped one side of the canopy and scanned every two 
rows. The temperature map in grid format recorded over the afternoon is shown in 
Fig. 5.19c. In contrast, Fig. 5.19d represents the temperature map for the same field 

Fig. 5.19 Crop monitoring maps: (a) aerial NDVI map of monitored field (Courtesy of Symington 
F. E.); (b) robot trajectory for building the grid map of afternoon temperature; (c) grid map of 
afternoon temperature; (d) grid map of dawn temperature
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the day before at dawn. The map of Fig. 5.19c covers 12 rows and sums up a total 
of 16,529 points (including the headland turns where no valid measurements were 
made) acquired in a time frame of 67 min. After removing the headland section 
where the temperature was not registered, the total number of points was 15,469. 
The map of Fig.  5.19d comprises 15 rows and 23,012 data points, which were 
reduced to 18,945 after removing the headlands.

According to Fuchs (1990), radiation, air temperature, humidity, and wind speed 
modify leaf temperature and may mask indications of water stress. Furthermore, the 
position, inclination, and orientation of leaves within the canopy also produce con-
siderable variation of leaf temperature. The intricacies behind the knowledge of 
how much stress a vine is actually supporting in a given period of time lead to com-
plex models and a multiplicity of influencing parameters. However, the majority of 
field data used so far has been taken remotely and occasionally. The opportunities 
brought by the automatic monitoring of crops at submeter distances, producing 
massive amounts of data at the grower request, open a new paradigm for under-
standing crop growth and fruit production. The temperature maps of Fig. 5.19 were 
taken in August and involve 34,414 measurements grabbed from dawn to evening. 
When comparing these figures with manual sampling, the resolution of robot- 
generated maps reaches significantly higher orders of magnitude. Maps 5.19c and d 
involve an area of 4800 m2 (≈ 0.5 ha), considering an approximate row length of 
100 m, a row spacing of 2 m, and a mapping frequency of one pass every two rows. 
The resolution achieved is 3.2 measurements per m2. The same rationale can be 
applied to the map of Fig. 5.19d, yielding a similar sampling resolution. The data 
represented in the maps are the straight measurements carried out by the infrared 
radiometer, and no filtering has been introduced yet. However, some patterns and 
preliminary conclusions may be extracted from these results. The distribution of 
temperatures graphed in Fig. 5.19c reveals that many locations in the 15 rows sam-
pled reached temperatures above 40 °C, with an uneven distribution of temperatures 
that resembles the S shape of Fig. 5.19a (dark blue in Fig. 5.19a). The map recorded 
at dawn, from 5:27 am to 6:55 am, produced a more homogeneous result, and more 
data is required for a deeper understanding of thermal dynamics along the day. 
Fortunately, the specific measurements recorded by the robot at every location are 
available for the user, and can be easily plotted for the entire battery of  tests. 
Figure 5.20 shows the precise temperatures acquired for the maps of Fig. 5.19c and d.

Every row in the field of Fig. 5.19 has an approximate length of 100 m and pres-
ents a basin-like lower section toward the center of the row, where plants are more 
vigorous. The extremes of the rows (headlands) are higher and plant canopies sig-
nificantly thinner. The robot velocity oscillated between 1.2 km·h−1 and 1.7 km·h−1 
according to the motion being upslope or downslope. Overall, each run took between 
4 and 5 min. Figure 5.20 confirms that there is much higher dispersion for the tem-
peratures measured during the afternoon, but also reveals a pattern in the chilly 
temperatures at dawn; at the central part of each row, where vines have more foliage 
and the terrain profile forms a mild basin, registered temperatures were typically 
several degrees lower. As time progressed over the morning test, the average 
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temperature slowly increased, and after 1 h, the differences between headlands and 
row centers practically disappeared. The thermal behavior of the vineyard over time 
and location was transferred to the vineyard manager, who will add this information 
to other field data for a better decision-making in the management of this plot.

5.6  Summary and Concluding Thoughts

Feeding an ever-growing population is becoming a big challenge for the agricultural 
engineers of the future. Fortunately, disruptive technologies tend to appear to face 
up such challenging scenarios, and digital farming has brought powerful tools to do 
so, such as precision agriculture and robotics. Making the right managerial deci-
sions is key for the sustainable production of specialty crops, and to make good 
decisions, reliable data is essential. This chapter has explained the basic conditions 
for crop scouting and the principles for designing monitoring vehicles, paying espe-
cial attention to the workings of fundamental sensors, and how to display their 
information in legible maps. However, although results are positive and technology 
is more accessible every day, systematic field monitoring is still scarce. Many high- 
interest crop properties such as maturity and yield have no commercial device to 
monitor noninvasively from moving vehicles. In some cases, measuring sensors are 
available, but their practical implementation or the data that they generate are too 
cumbersome for regular applications at user level. Nevertheless, digital farming has 
come to stay and these difficulties will eventually be overcome with time. Agriculture 
is not a source of big data yet, but it is a question of time.

Fig. 5.20 Specific temperatures acquired by the robot in the maps of Fig. 5.19c and d 
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Chapter 6
Crop Sensing and Its Application 
in Precision Agriculture and Crop 
Phenotyping

Geng Bai and Yufeng Ge

6.1  Introduction

The need to enhance agricultural productivity and resilience in the face of increas-
ing world population and changing climate has called enormous interests from both 
academics and industry. The median values of global population prediction are 8.1 
billion, 9.6 billion, and 10.9 billion in the years 2025, 2050, and 2100, respectively 
(UN 2013). With a population of 7.8 billion in 2020, continuously increasing the 
crop yield is always a practical but challenging way to feed the increasing popula-
tion. The consumption of food and other crop-related production per person per 
year will also keep increasing with the progress of the local economic development, 
especially in developing countries where the consumption rate is substantially lower 
than that in developed ones (Alexandratos and Bruinsma 2012). The negative influ-
ence of climate change on crop production systems has drawn substantial concern 
(Olesen et al. 2011).

Crop production is the largest sector of fresh water usage, which uses around 
70% of total fresh water withdrawn (Morison et al. 2008). In addition, excessive 
chemical application in crop production can lead to substantial environmental and 
economic cost (Pimentel and Burgess 2014). Thus, breeding new crop cultivars with 
better adaptation to the climate and developing transformative technologies for sus-
tainable field management are two promising ways to boost the crop yield while 
minimizing the negative impact of crop production on the environment.
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Sensing of morphological, physiological, and biochemical properties of crops 
plays an increasingly important role in agriculture. In the research domain, plant 
sensors enable us to gather a large volume of information across multiple scales on 
crop performance to elucidate relationships between plant genetics, environmental 
stresses, and management practices (also known as G × E × M). In production set-
tings, sensors generate valuable information used by producers for decisions in 
seeding, fertilization, irrigation, and chemical applications. Satellite remote sensing 
and grain yield monitors are examples of early crop sensing. More recently, crop 
sensing research and applications have seen a trend of rapid expansion, which is 
likely due to the confluence of the following two factors. The wide availability of 
low-cost sensors, coupled with a substantial increase in computational power, has 
created flexible and cost-effective solutions in agriculture to generate, curate, model, 
and share very large-scale sensor data.

In the main body of this chapter, we review the major spectroscopic, imaging, 
and ranging sensors; how they are used to measure plants and crops in different 
environments; and their advantages and limitations. Applications of crop sensing in 
precision agriculture and plant phenotyping are also introduced. Finally, we end the 
chapter with a perspective discussion on the open challenges in crop sensing/pheno-
typing and future directions.

6.2  Crop Sensing Systems and Strategies

6.2.1  Spectroscopy

Reflectance or transmission spectra of crop leaves or canopies in the visible 
(400–700  nm, VIS), near-infrared (700–1100  nm, NIR), and shortwave infrared 
(1100–2500 nm, SWIR) regions of the electromagnetic (EM) spectrum (collectively 
known as VIS-NIR-SWIR) are often used to measure physiological and chemical 
properties of plants. Portable spectrometers such as those from Analytical Spectral 
Devices and Ocean Optics are often used. For the leaf-level measurement, a leaf clip 
with an artificial light source (such as a tungsten-halogen lamp) is commonly used; 
whereas for the canopy-level measurement, fiber-optical cables are pointed toward 
the canopy to measure reflected solar energy. Compared to hyperspectral imagers, 
spectrometers often have significantly lower cost with higher spectral resolution, 
faster measurement speed, and smaller and lightweight sensors.

Incident radiation, spectral properties of plants, environmental parameters, and 
the instrumental parameters are the main factors determining the spectral signal of 
field plants. In most cases of crop sensing research in the field using spectroscopy, 
the measurement of spectral reflectance is adopted instead of collecting absorbance 
and transmittance because it is more practical to set up spectrometers above the 
canopy for data collection. To understand the dominant factors which influence the 
spectral properties of field plants, it is better to start from studying the spectral 
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properties of an “ideal” green leaf sample in the lab, whose spectral properties do 
not change with time, under a stable light source and a controlled environment. In 
this way, we exclude other extraneous factors except for the spectral properties of 
the plant leaf.

Figure 6.1 shows an example of spectral reflectance of a maize leaf in the VIS- 
NIR- SWIR region. Figure 4.3 (Chap. 4) also presents a similar spectral signature 
for a specific application of detecting grapevine leafroll disease (GLD). In the VIS 
spectrum, a small bump in the green band (centered around 550 nm) exists because 
chlorophylls in the leaf cells absorb more strongly in the blue and red regions. 
Another important feature is the significantly lower reflectance in the VIS region 
compared to that in the NIR region. In NIR, a significantly higher reflectance is col-
lected by the spectroscopy due to the internal leaf structure and the scattering of 
light by mesophyll tissues. Photosynthetic pigments, including chlorophylls, carot-
enoids, xanthophylls, and others, significantly affect the spectral reflectance proper-
ties, while chlorophylls a and b contribute the most among them in a healthy green 
leaf. In the SWIR region, the leaf reflectance curve shows several deep valleys due 
to the absorption of light by water in the leaf. In addition, many organic components 
(such as proteins and structural carbohydrates in the cell wall) in the leaf also con-
tribute to the absorption of light energy in the NIR and SWIR regions.

Different vegetation indices (VIs) have been developed from wavelength-wise 
spectral reflectance to monitor terrestrial vegetation properties using satellite 

Fig. 6.1 A sample of spectral reflectance of a maize leaf ranging from visible, near-infrared, and 
shortwave-infrared spectrum (400–2500 nm) measured by an ASD spectrometer. The absorption 
bands of photosynthetic pigments and water molecular are also generally marked
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platforms at seasonal or longer temporal scale. A large number of VIs exist for dif-
ferent objectives, but only a few are introduced as follow. Normalized difference 
vegetation index (NDVI) utilizes the difference between the low reflectance at the 
red band and the high reflectance at the NIR band of plant canopy by creating a 
normalized index ranging from −1 to 1 (Tucker, 1978). Based on NDVI, soil-
adjusted vegetation index (SAVI) has been developed to minimize the soil bright-
ness influence (Huete 1988) while enhanced vegetation index (EVI) is more 
influenced by canopy biophysical parameters and less affected by the atmosphere 
(Huete et  al. 2002). To overcome the saturation issue of NDVI when measuring 
dense crop canopies, the spectral reflectance at the red-edge region has been used 
(Mutanga and Skidmore 2004).

A narrow band VI, photochemical reflectance index (PRI) has been brought for-
ward to estimate the diurnal dynamics of the photosynthetic efficiency using the 
spectral reflectance at 531 nm with the help of a reference wavelength at 570 nm 
(Gamon et al. 1992). Measuring solar-induced chlorophyll fluorescence (SIF) has 
been considered as a promising approach to directly monitor photosynthesis activity 
in recent years (Frankenberg and Berry 2018). SIF is emitted by the plant chloro-
phylls between the wavelength of 650 nm and 800 nm as one of the energy dissipa-
tion pathways during the light reaction of photosynthesis (Meroni et  al. 2009). 
However, no standard pipeline of SIF data collection and retrieval has been estab-
lished. NIRv, which is the product of NDVI and the terrestrial reflectance at NIR 
spectrum, is a new VI with a close relationship with SIF and has the potential to 
estimate global gross primary production (GPP) accurately (Badgley et al. 2017).

Many other factors need to be considered when studying the reflectance proper-
ties of plant canopy in the field. These factors include the difference in canopy 
structures, variation in incident solar irradiance, plant physiological activities, 
observation angle of the spectroscopic sensors, soil reflectance, wind disturbance, 
and so on. One limitation of the spectroscopic sensors (or spectrometers) is that it is 
a point-measurement instrument which cannot provide pixel-by-pixel information 
like hyperspectral imaging systems. Thus, the spectral noise from background 
objects is difficult to exclude.

Spectrometer specifications (e.g., wavelength range, spectral resolution, dark 
current level, signal to noise ratio, detector-cooling technology, and wavelength 
shift due to the body temperature of the spectrometer) and calibration protocols 
(radiometric and spectral calibration) are the main factors that could significantly 
affect the quality of the raw data. Spectral calibration is necessary to be carried out 
periodically to make sure the measured data is correctly assigned to each wave-
length. Radiometric calibration converts the raw data set from digital count to the 
energy unit. Reference targets with known reflectance values can be used for reflec-
tance calibration.
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6.2.2  RGB Imaging

RGB cameras are the most common imaging sensors for plant measurements. They 
capture plant images in the visible part of the EM spectrum in three broad bands 
(Red, Green, and Blue) commonly by CCD detectors. More discussion on the vari-
ous types of sensors and image processing techniques used for RGB imaging can be 
found in Chap. 2. A plethora of consumer-grade digital RGB cameras are found 
commercially that are also low-cost, flexible, and easy to operate. RGB images are 
generally easier to interpret because they appear similar to how and what human 
eyes see. In the field, depending on the type of crops being imaged, cameras are 
mounted on a sensor platform facing generally downward to capture nadir view 
images of crop canopy (e.g., imaging row crops like corns) or sideways to capture 
the side view of the canopies (e.g., scanning perennial crops such as fruit trees). 
Sideways imaging can also be used in the greenhouse applications (Ge et al. 2016). 
In such cases, single potted plants are generally imaged with cameras mounted on 
the side and side view images from multiple camera angles can be derived. RGB 
images are useful to quantify the morphological traits of crops, such as vegetation 
cover, height, width, biomass, and growth dynamics. This is achieved by segment-
ing the vegetation (or green) pixels from the image and quantitatively relating the 
pixel information to the actual traits. Figure 6.2 shows the image examples of dif-
ferent crops in the field and greenhouse conditions.

In the field, canopy height information can be derived from overlapped RGB 
images taken by mobile imaging systems using Structure from Motion (Díaz-Varela 
et al. 2015). With multiple-angle RGB images, 3D reconstruction of the plant or 

Fig. 6.2 Raw RGB images collected in the field (a–d: winter wheat, soybean, maize, and came-
lina) and greenhouse (e–f: maize and soybean) conditions. Various phenotypic parameters related 
to the plant/canopy structure and color distribution can be extracted from the raw images through 
image processing
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canopy can be realized to retrieve important traits, including leaf number, leaf angle 
distribution, leaf area, and so on. Figure 6.3 shows an initial attempt of 3D recon-
struction results of a maize plant in the laboratory environment and a sorghum plot 
in the field condition using RGB images taken from multiple angles. In addition, 
RGB images can help the plant segmentation work for other imaging systems with 
lower spatial resolution if they are sharing large area of the camera field of 
views (FOVs).

Robust algorithms for image processing is usually challenging under varying 
illumination conditions in a field with high weed density. This challenge is usually 
much less influential on the crop segmentation in the greenhouse environment 
where uniform lighting condition might be created for the imaging system. Color 
calibration might be needed if images are taken using multiple cameras, and color 
information is critical for quantitative analysis of the scene. A flexible imaging plat-
form with Pan-Tilt capability can generate raw data set for 3D reconstruction of the 
top canopy. Noise introduced by unwanted crop movement during the image acqui-
sition process due to wind could be minimized by using an image array to capture 
images simultaneously.

Fig. 6.3 Preliminary result of 3D reconstruction of plant and canopy using multiangle RGB 
images. Left: individual maize crop under indoor illumination environment with (a) an RGB image 
to show the target maize crop and (b) point clouds generated from multiangle imaging (Courtesy 
of Suresh Thapa). Right: sorghum plot in field condition with (a) an RGB image of the target sor-
ghum plot, (b) generated point clouds, and (c) 3D meshes for further process
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6.2.3  Multispectral Imaging

As discussed in Chap. 4, multispectral cameras usually cover multiple spectral 
bands in the VIS and NIR spectral range to capture the distinct difference of the 
canopy reflectance at visible and near-infrared bands with the sharp increase feature 
at the red edge spectrum. Reliable result of crop segmentation from soil background 
could be achieved by leveraging NDVI image generated from the multispectral 
imager. Other imagers can further utilize the segmentation results through image 
registration. For example, it can help crop segmentation of the thermal infrared 
image to retrieval the canopy temperature and soil temperature. Figure 6.4 shows an 
image-processing example to use multispectral camera for plant segmentation for 
calculation of different phenotypic parameters (Bai et al. 2019). In addition, specific 
bands can be used for the estimation of nitrogen deficiency and other important 
traits based on various VIs (Berni et al. 2009; Svensgaard et al. 2014; Zaman-Allah 
et al. 2015).

A good strategy or algorithm to avoid under or over exposure of the images at 
each spectral band is critical to the quality of the raw images. Radiometric calibra-
tion is normally necessary if the images from different collection dates will be quan-
titatively compared, although variable light condition during a single data collection 

Fig. 6.4 An example of plant segmentation using a multispectral imaging system. The segmenta-
tion result also helps the canopy segmentation in thermal infrared image for the calculation of 
canopy temperature. The arrows indicate the workflows from raw images to the results

6 Crop Sensing and Its Application in Precision Agriculture and Crop Phenotyping



144

is still challenging. Comparing to RGB imaging, the spatial resolution of multispec-
tral imagers (cameras) are usually coarser, and a good balance between the spatial 
resolution and the coverage area needs to be considered if the parameters of the 
sensing platform can be modified.

6.2.4  Thermal Infrared Imaging

Any object with a temperature above −273.15 °C emits electromagnetic radiation, 
and the flux density of the radiation energy is a function of the object’s surface tem-
perature and its emissivity. Thus, thermal infrared imagers can capture surface tem-
perature information in the FOVs by measuring the infrared radiation at specific 
wavelength range emitted by the target. When crops are water stressed, leaf stomata 
tend to be closed to prevent excess water loss and plant dehydration. This process 
leads to a reduced heat dissipation through transpiration, which gives rise to higher 
leaf temperature. Thermal infrared imaging therefore is a useful nondestructive tool 
to estimate plant water stress through accurately measuring the canopy temperature. 
Plant water stress can be estimated by calculating the crop water stress index 
(CWSI) based on canopy temperatures and other meteorological parameters 
(Jackson et al. 1981). Evapotranspiration estimation of the canopy can also be car-
ried out by measuring the temperature of the plant and canopy along with other 
environmental parameters (Norman et al. 1995; Li et al. 2005).

Canopy temperature in the field is highly variable with time due to the variation 
of the incident radiation, wind disturbance, air temperature, physiological activities 
of the plants, and other parameters. Thus, temperature measurement with high tem-
poral and spatial resolutions could provide more information for the study. Figure 6.5 
shows a series of thermal infrared images of a soybean plot captured under different 
times on a sunny day in July 2018 (Bai et al. 2019). Soil temperature experienced 
much more increase and decrease in the whole afternoon than that of the canopy. In 
addition, measurement accuracy of different cameras differs significantly depend-
ing on its performance as well as calibration protocols. How to capture the canopy 

Fig. 6.5 Thermal image at different times from noon to late afternoon. Canopy and soil tempera-
ture ranges from 25 to 45 °C and the local solar noon was around 1330
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temperature of the target field quickly and accurately with enough spatial resolution 
is challenging. It is also a challenge to capture useful temperature data when using 
conveyer belt to transport potted plants to the imaging chamber in the greenhouse 
because of the temperature difference of the greenhouse and the imaging chamber.

6.2.5  Hyperspectral Imaging

Functioning of hyperspectral imaging systems has been described in Chap. 4 (Sect. 
4.3.2). Briefly, this imaging system is capable of providing the largest amounts of 
spectral reflectance information of the individual plant or canopy. Figure 6.6 shows 
an example of a 3D image cube (called a hypercube) collected for a maize plant in 
an imaging chamber by a hyperspectral camera (Pandey et al. 2017). Regardless of 
the operation mechanism, the product of hyperspectral imaging systems could be 
considered as a hypercube, which not only includes spectral reflectance at each 
wavelength like a spectrometer but also delivers 2D images for each wavelength 
band in the FOV. Thus, each pixel array in the image has the spectral information in 
the whole wavelength range, while pixels at a certain wavelength consist of a 2D 
image at that wavelength. Either stacked 2D images at individual wavelength bands 

Fig. 6.6 Hyperspectral image example. Figure (a) illustrates the stacked images at all wavelength 
bands, while figure (b) shows the reflectance intensity from a stem and leaf pixel from the 
hypercube
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or the reflectance spectrum of individual image pixels from all wavelength bands 
could be used for data processing (Mahlein et al. 2012). With appropriate statistical 
methods, hyperspectral images are promising to estimate the spatial distribution of 
leaf properties, including water content, macro- and micronutrient content, and 
other important chemical concentrations of the plant, along with the ability to 
exclude the background using specific image-processing algorithms (Li et al. 2014).

Similar to spectrometer, careful calibration is needed to convert the pixel values 
into radiance or reflectance. The environmental illumination needs to be uniform 
and constant for the application of hyperspectral imaging in comparing different 
plant canopies (e.g., comparison between different pot plants in a greenhouse). In 
addition, the target plant needs to be kept completely stationary during the imaging/
scanning period, which might take several minutes. For field application of the 
hyperspectral imaging system, the effect of variation of the illumination condition 
on the data, the large weight of the sensor, the stability of the sensor platform, wind 
disturbance, and the calibration protocols are the main factors influencing the data 
quality. However, a single hyperspectral camera could potentially replace the RGB, 
VNIR, and other imaging systems and provide more information as a single data set 
in the near future.

6.2.6  LiDAR

Canopy structure parameters (like canopy height) are important traits and affect its 
spectral reflectance signal. Plant canopy is a 3D leaf–stem structure which reflects, 
absorbs, scatters, and transmits incident light. Except the leaves at the top of canopy 
that reflect light directly back to the air, most of the light penetrates into the canopy 
architecture and is scattered in the canopy multiple times. Thus, different canopy 
structures can result in a difference in the total light absorption by the canopy.

Unlike other sensors mentioned above, light detection and ranging (LiDAR) is 
an active sensor which sends out laser pulses to quickly measure the distance 
between the laser source and the target based on the travel time of the pulse. The raw 
distance of a point target is usually based on polar coordinates and needs to be con-
verted into Cartesian coordinates based on the physical set up of the LiDAR on the 
sensing platform. By continuously changing the laser generation angle slightly, the 
distance datum of different target locations is obtained. After the coordinate conver-
sion and removing the unwanted scanning area, structural parameters of the crop 
canopy can be calculated from the processed point cloud with appropriate algorithms.

LiDAR has been widely used in vegetation sensing with aerial and ground sys-
tems for canopy height measurement, estimation of leaf area index, and other 
parameters related to canopy structure (Sun et al. 2018; Yuan et al. 2018; Jin et al. 
2018; Zhao and Popescu 2009). 3D reconstruction work using LiDAR has also been 
investigated in order to retrieve more structure parameters. Usually, a moving plat-
form for the LiDAR or a rotation platform for the plant itself is necessary to gener-
ate a high-quality 3D point cloud for retrieving structure traits if the LiDAR itself 
can only scan a single line of the target. 3D LiDAR can generate a 3D point cloud 
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without movement by rotating the laser housing at a certain degree. Figure  6.7 
shows two examples of the LiDAR data collected in the field and greenhouse by 
different sensing platforms (Bai et  al. 2019; Thapa et  al. 2018). Obtaining point 
clouds with high density and good accuracy is a critical step to retrieving quantita-
tive parameters.

Specific algorithms are needed if researchers need to reconstruct the plant struc-
ture and estimate various attributes such as leaf area and leaf angle distribution 
(Thapa et al. 2018). A very accurate measurement using LiDAR requires the abso-
lutely stable/stationary instrument and target, which is not always possible for crop 
sensing in the field due to the plant movements caused by wind. Accurate and fast 
data logging of the platform status (roll, yaw, rotation), time stamp, and geographic 
tag with the LiDAR measurement can improve the LiDAR measurement accuracy 
when operating LiDAR on mobile sensing platforms. A good multireturn capacity 
is needed if more canopy structure information inside the canopy is needed.

6.3  Applications of Crop Sensing Systems

6.3.1  Variable Rate Fertilization and Irrigation

Over application of various crop inputs such as fertilizer and irrigation water often 
leads to low utilization efficiency of resources and negative economic and environ-
mental impact (Carpenter et al. 1998). Applied fertilizer that cannot be taken up by 

Fig. 6.7 Two examples of LiDAR point clouds of maize plants under different scenarios. Left: 
point cloud collected from 6 maize plants with a row spacing of 30 inches in the field condition 
with (a) LiDAR point clouds, (b) a histogram to show the count of the data points along X axis, 
and (c) a histogram to illustrate the count of the data points along Y axis. Right: different stages of 
the data processing for a maize plant under indoor environment started from (a) raw point cloud to 
(e) a 3D rendering of the leaf surface model
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the plants goes into underground water by deep percolation, which leads to exces-
sive nitrogen concentration in the water resources. Over-irrigation results in more 
deep percolation and surface runoff, which brings more nitrogen into the surface 
and underground waterbodies. Thus, site-specific application of irrigation water and 
chemicals based on how much the crop actually needs has been studied for decades 
(McCann et al. 1997). Data collection and processing, application map generation, 
and application are the main pipeline of variable rate fertilization (VRF) and irriga-
tion (VRI).

Developing a reliable sensing and scheduling system which could bring more net 
profit for the users remains the major challenge for a faster adoption of VRI technol-
ogy (O’Shaughnessy et al. 2019). Water saving in crop irrigation could make sig-
nificant contribution to the conservation of freshwater resources because agriculture 
is the largest component of freshwater consumption (Elliott et al. 2014). Economic 
benefits could also be achieved by saving pumping cost and water bill at certain 
regions (Lo et al. 2016). With over 30 years’ research and development, off-the- 
shelf VRI application systems are available, but the generation of application maps 
are still evolving along with the advancement of the sensing technologies. Soil sens-
ing and crop sensing are the two sensing categories for the decision-making of VRI 
applications. Soil sensing has provided valuable information for precision agricul-
ture since the mid1980s from intensive soil sampling to real-time proximal sensing 
(Mulla 2013). Off-the-shelf soil mapping system for soil electrical conductivity 
sensing, which is related to soil texture and moisture content, is also available. With 
the advancing of remote sensing technologies using satellite platforms, scientists 
started developing application tools for soil and crop sensing from the early 1990s 
(Bhatti et  al. 1991). Historically, the low temporal (1 week or more) and spatial 
resolution (30 m or more) of the data from satellite images were not enough for 
most of the VRI applications. However, new commercial satellites with biweekly, 
submeter resolution are already operating and have the potential to be used in preci-
sion agriculture.

Surface irrigation, sprinkler irrigation, and drip irrigation are the three main irri-
gation methods in production, while the currently available VRI packages are for 
the large-scale moving sprinkler systems, including center pivot and lateral-moving 
systems. High-frequency, cloud-free imagery is critical in the initial data collection 
phase if satellite platforms are used (Barker et al. 2018). Canopy temperature data 
collected from infrared thermometers mounted on the center pivots are used to 
detect crop water stress and trigger the VRI application (Andrade et al. 2017).

Compared to VRI, VRF has attracted more attention because it has more poten-
tial to be economically sound if less fertilizer is applied. Significant lower applica-
tion of nitrogen and irrigation water by VRF could be economically beneficial to 
producers and minimize the negative impact to the local environment (Diacono 
et al. 2013) while maintaining or increasing crop yield and quality. One of the big-
gest challenges of the data collection for VRF is to find a reliable parameter for 
estimating leaf nutrient concentration using crop sensing technologies. Tractor- 
mounted NDVI sensors have been used for real-time VRF after researchers found a 
strong relationship between the crop spectral reflectance and the crop nitrogen 
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uptake (Stone et al. 1996). A big challenge is that these real-time VRF systems need 
users to set and sense “reference plots” strategically located at different locations of 
the field to calibrate the sensor readings (Kitchen et  al. 2010). Unmanned aerial 
systems (UAS) provide another promising tool for soil and crop sensing based on 
the remote sensing technologies due to its significantly higher resolutions and oper-
ation flexibility (Ferguson and Rundquist 2018).

6.3.2  Site-Specific Mechanical Weeding

Site-specific mechanical weeding systems for in-row and intra-/between-row weed 
has the potential to diminish herbicide usage in the future and completely avoid its 
negative environmental effect (Slaughter et  al. 2008). A real-time weed sensing 
technology is a critical component to guide the mechanical weeding components. 
Optical sensors on different sensing platforms have been widely studied for weed 
sensing (Thorp and Tian 2004; Brown and Noble 2005; Peteinatos et  al. 2014; 
Bajwa et al. 2015).

Because the mechanical weeding component needs the precise location informa-
tion of the weed plant for accurate physical weeding, an on-board weed sensing 
system on the weeding machine becomes more promising than a separate sensing 
platform. In addition, the weed detection algorithm needs to react fast enough to 
trigger the weeding components, which means time-consuming algorithms are not 
preferred even with better accuracy. Nonimaging sensors, like spectrometer, can 
indicate a potential area with high weed stress based on abnormally high NDVI 
values. In addition to the spectral parameters, imaging systems can also leverage the 
morphological differences between crops and weeds (Perez et al., 2000; Søgaard 
2005; Ishak et al. 2009; Burgos-Artizzu et al. 2011). Using RGB imager alone, good 
performance of plant segmentation algorithms under changing light condition is 
still challenging (Hamuda et al. 2016). An alternative approach is to create a con-
trolled, artificial illumination environment in the field which naturally eliminates 
the issues of the changing light condition (Lottes et al. 2016). However, this solution 
also introduces more limitations due to the shading structure and the illumination 
chamber. Fluorescence and hyperspectral imagers are also being used for weed 
detection (Behmann et al., 2015; Underwood et al. 2017).

6.3.3  High-Throughput Plant Phenotyping

With the rapid increasing global population, meeting the needs for food, fiber, and 
fuel with the limited arable land and under the changing climate remains a major 
challenge. Breeding new crop cultivars with better tolerance for biotic and abiotic 
stresses is one of the most important solutions for a continuous yield improvement. 
Collection of genetic and phenotypic data (crop height, lodging, flowering date, 
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growth speed, stress-tolerance ability, to name a few) are carried out by breeders for 
selecting the top performers among the candidate genotypes. Breeders are still using 
labor-intensive methods to collect phenotypic data by portable tools and by obser-
vations from experienced researchers (Furbank and Tester 2011; Araus and Cairns 
2014). In recent years, engineers have been working with breeders to develop high- 
throughput phenotyping systems at different scales, which could potentially replace 
the conventional ways of phenotyping with much higher efficiency.

Lab, greenhouse, and field-based plant phenotyping facilities have been devel-
oped to carry out phenotypic data collection for breeding research. The lab-scale 
facility is usually designed for Arabidopsis thaliana, which is a model plant for 
plant science research (Granier et al. 2006). Automatic high throughput greenhouses 
have been developed in different fashions. They are generating big phenotypic data 
set from integrated sensors, including RGB camera, multispectral imaging, fluores-
cence imaging, thermal IR imaging, and hyperspectral imaging (Humplík et  al. 
2015; Ge et al. 2016). Figure 6.8 shows the concentration prediction of six macro-
nutrients of maize and soybean leaves using the hyperspectral image data with the 
partial least square regression (PLSR) method (Pandey et al. 2017).

Off-the-shelf phenotyping systems at lab and greenhouse scales have been on the 
market, while different field systems are being developed for specific research 
objectives with their own merit and limitations. Large-scale ground facilities enable 
accuracy and highly repeatable measurements with high payload capacity for data 
fusion (Virlet et  al. 2017; Kirchgessner et  al. 2017; Bai et  al. 2019). Figure  6.9 
shows two measurement campaigns using a large-scale phenotyping facility at leaf 
level with matched environmental parameters. These facilities could also be used 

Fig. 6.8 Concentration prediction of six macronutrients in corn and soybean leaves from hyper-
spectral image cube using the PLSR method. Maize plants are denoted by circles, and soybean 
plants are indicated by crosses. (Pandey et al. 2017)
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for the selection of sensor packages for mobile platforms with limited payload 
capacity by testing different combinations of sensors. However, these systems are 
not currently affordable for most of the independent research groups due to the cost. 
In addition, this type of system cannot be transported to another experiment location.

UAS could cover a large area of the field with limited payload and can be easily 
transported to different locations (Sankaran et al. 2015; Shi et al. 2016). However, 
limited flight time and payload, accident possibilities, and platform stability could 
be the main concerns to use UAS for plant phenotyping. Ground platforms have 
more payload than UAS and provide a more stable platform for crop sensing (Deery 
et  al. 2014). It also has the potential to carry out contact sensing by integrating 
robotic arms into the systems. Under-canopy navigation, field accessibility, soil 
compaction, and crop damage are the main limitations for the ground platforms.

6.4  Summary and Concluding Thoughts

In this chapter, several widely used sensing systems for crop sensing study have 
been introduced with example data set collected using proximal sensing platforms. 
Three different applications in precision agriculture based on crop sensing has also 
been discussed, including variable rate application technology, site-specific mechan-
ical weeding, and high throughput plant phenotyping.

Thanks to the rapid development and enhancement of the modern sensing tech-
nologies, lots of affordable sensors are now available to carry out crop sensing 
research with acceptable speed and accuracy. With the further evolution of the 
instruments, more and more sensors with low price, low energy consumption, fast 
and accurate measurement, and lightweight will be applied. It is certain that the 
plant traits that can be currently measured will be measured at much higher 

Fig. 6.9 Preliminary data set using a cable-suspended field phenotyping facility at the University 
of Nebraska-Lincoln. Figure (a) illustrates the measured length of panicle length of sorghum 
plants. Figure (b) shows the relationships between the temperature of canopy and soil and the 
environmental parameters
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temporal and spatial resolutions, while the plant traits which cannot be measured 
nowadays will be accurately observed by new instruments. A close collaboration 
between scientists and engineers in crop sensing research would continuously 
advance the crop sensing technologies.

As mentioned above, the continuous research on VRF, VRI, site-specific mechan-
ical weeding, and other solutions for precise field management will provide much 
more sustainable solutions for crop producers, which is economically and environ-
mentally friendly. In the near future, these technologies are expected to be seam-
lessly integrated into the agricultural activities by improved connectivity in the field 
(Ojha et al. 2015; Vasisht et al. 2017). In the long terms, different robotic platforms 
and humanoid robots driven by powerful artificially intelligent (AI) technologies 
might provide more environmental-friendly and low-cost solutions for precision 
agriculture (Nelson et al. 2019) and crop phenotyping.

When it comes to high-throughput plant phenotyping, one of the main objectives 
of developing such a technology is to leverage new technologies to revolutionize the 
current phenotyping work in plant breeding by significantly improving the effi-
ciency and accuracy of phenotyping. In addition, new breeding protocols with sig-
nificantly short breeding cycle might be possible by combining advanced genotyping, 
high-throughput phenotyping, and advanced statistical techniques.
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Chapter 7
Robotic Manipulation and Optimization 
for Agricultural and Field Applications

Changki Mo, Joseph Davidson, and Cameron Hohimer

7.1  Introduction

The design of robot kinematics and its optimization for agricultural and field appli-
cations should be based on a specific task. Robots with kinematics suitable for a 
specific task may perform better than a universal robot expected to perform several 
tasks. The tasks needed for precision agriculture including planting, pruning, thin-
ning, harvesting, weeding, spraying, and post-harvesting will require specific 
robotic manipulation. Those are also largely dependent on crop types and working 
environment – outdoor fields or greenhouses (Van Henten et al. 2009; Bechar and 
Vigneault 2016; Bloch et al. 2015, 2018).

An essential step in the design of a robotic manipulator for a specific task is the 
creation of a kinematic framework flexible enough to accommodate the crop envi-
ronment. However, the unstructured environment of agricultural fields and orchards 
pose unique engineering challenges compared to other possible applications such as 
automation in manufacturing plants. Some of these challenges include variable out-
door conditions; complex plant structures; inconsistency in product pose, shape, 
size, and color; and delicate products. The most critical source of variation affecting 
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the design of the robotic manipulator for agricultural and field applications is the 
highly irregular and unstructured environment (Bac et al. 2014; Davidson and Mo 
2015; Silwal et al. 2017). In addition, a target object (e.g., specific crop) can be sur-
rounded by densely spaced obstacles (e.g., branches and leaves, support wires, and 
crop clusters in a fruit orchard). The manipulator and end-effector need to avoid 
these obstacles to successfully approach a target object (e.g., a fruit) and prevent 
damage to the other objects in the environment (e.g., tree branches or nearby fruit) 
(Van Henten et al. 2010; Bac et al. 2016).

Noting that successful planning and implementation of the manipulator motion 
determines the feasibility of a robotic system for a specific task in a predefined 
workspace, it would be useful to understand the influence of design parameters 
affecting motion planning success.

7.2  Design Considerations/Constraints

Traditionally, robotic manipulators for agricultural and field applications are 
designed for specific manipulative tasks by looking mainly to target crop type, 
working environment, workspace volume, payload capacity, and target performance 
metrics that may include manipulability and velocity performances. Although it is 
quite reasonable to consider these aspects as fundamental criteria for manipulator 
design, in general they can give contradictory results in the design phase. Therefore, 
a formulation as multi-objective optimization problem can be convenient in order to 
consider them simultaneously (Ceccarelli et al. 2005).

As for manipulability and velocity performance, design requirements and opera-
tional feasibility should be investigated for any possible singularity conditions. In 
fact, it is desirable to ensure a given workspace volume within which the manipula-
tor can be movable, controllable, and far enough from singularities. The singularity 
analysis for robotic manipulators can be performed by means of the Jacobian matri-
ces. In general, the condition for identifying singular configurations can be repre-
sented by surfaces in the n dimensional joint space, and they can be identified by 
finding the configurations at which the determinant of the Jacobian matrix J is zero. 
The concept of singularity has been extensively studied, and several classification 
methods have been defined. In the agricultural and field robotic systems, serial 
manipulators typically are used and singularity occurs when a manipulator reaches 
internal or external boundaries of its workspace and the output link loses one or 
more degrees of freedom (DOFs).
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7.2.1  Target Crop Type

Design criteria for autonomous robotic manipulation depend on the working envi-
ronment including crop types. For example, some high-value crops for which auto-
mated harvesting has been a pressing need to reduce production costs are grown in 
the greenhouse environment, such as tomatoes, cucumbers, and sweet peppers. The 
main design criteria for these crops will be the ability of the robot to reach the crops 
within a predefined greenhouse volume, its size because of the limited workspace 
and the possibility of collisions with plants and greenhouse structure, its maximum 
payload, and the speed and ability of the machine to operate in adverse climate 
conditions with high temperature and humidity levels (Van Henten et al. 2009). On 
the other hand, fresh market apples and citrus are commonly grown in outdoor 
orchards. Currently, the working environment for modern apple orchards, for exam-
ple, is a well-maintained row of trees that are trained, pruned, and thinned to have 
planar canopies. The trees are shaped like a vertical wall or a tilted wall supported 
by a V-trellis. This is a simplified environment compared to traditional highly 
unstructured and biologically driven orchards. It is relatively obstacle-free with 
improved fruit accessibility. This architecture enables better apple detection and 
reduces the complexity of planning and control algorithms. Nevertheless, it is 
worthwhile to note that robotic systems will operate in tight working environments 
either in outdoor fields or greenhouses. To reach a crop in an obstacle-dense crop 
environment in either working environment, robotic manipulation requires a 
collision- free motion of the manipulator and end-effector.

The optimal design parameters considered and motion planning in robotic har-
vesting high-value crops in a dense obstacle environment will be different from 
harvesting apples from a fruiting wall environment. For the former, the effect of the 
angle of approach of the end-effector to the fruit on suitable motion planning avoid-
ing risky paths may need to be investigated. In order to find a collision-free goal 
configuration and path, the parameters specifying the crop environment (e.g., fruit 
location and stem spacing), the robot (end-effector dimensions and robot position), 
and the planning algorithm can be considered. Bac et al. (2016) indicated that reduc-
ing end-effector dimensions and widening stem spacing improved goal configura-
tion success. Furthermore, the fruit location at the stem is the strongest influencing 
parameter and therefore provides an incentive to train or breed plants that develop 
more fruit at the front side of the plant stem. For the latter, it would be ideal to be 
able to determine an optimal distance from the vehicle to the fruiting wall at each 
robotic harvesting stop to reach the maximum number of apples.
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7.2.2  Workspace Considerations

One of the objectives of the manipulator kinematic design for a specific task is to 
cover a predefined workspace. The workspace of a manipulator can be described as 
the total volume swept out by the end-effector as the manipulator executes all pos-
sible motions. The workspace is constrained by the geometry of the manipulator as 
well as mechanical constraints on the joints (Spong et al. 2006). It is one of the most 
important kinematic properties required for robotic manipulation, which impacts 
significantly on manipulator design and location in a worksite. Although this work-
space definition is commonly referred to as the reachable workspace in robotic lit-
erature, the workspace can be categorized into a reachable workspace and a 
dexterous workspace.

The reachable workspace is the entire set of points reachable by the manipulator, 
whereas the dexterous workspace of a manipulator is the volume of space which can 
be reached by the manipulator with arbitrary orientation. The dexterous workspace 
is useful in the context of task planning since it allows the orientation of the end- 
effector to be ignored when positioning objects in the dexterous workspace (Murray 
et al. 1994). Ceccarelli et al. (2005) expanded the definition of the workspace even 
further as position workspace refers to reachable points by a reference point on the 
manipulator, and orientation workspace describes the angles that can be swept by 
reference axes on the manipulator. In addition, the task space can be defined by all 
feasible positions and orientations of the manipulator’s end-effector. The task space 
can be conveniently represented in Cartesian coordinates with Euler angles.

The workspace can be computed with the forward kinematics equations or 
graphically constructed while considering the mechanical joint limits and the geom-
etry of the robot. Because the forward kinematics function is continuous, the vol-
ume can be defined by an enclosing surface (Baur 2015). In particular, an operation 
of the manipulator at the workspace limit should in general be avoided, because the 
freedom to move the end-effector in any direction declines. It is worthwhile to note 
that the overlap of the arm’s workspace and the crop space is the key to increase the 
reachability instead of only increasing the volume of arm’s workspace (Wang 
et al. 2018).

7.2.3  Target Performance Metrics

The primary metric for robot performance evaluation is task success followed by 
speed in robotic literature (Righetti et al. 2014). To evaluate the robotic manipula-
tion, a suitable quantitative performance criterion needs to be defined. For task suc-
cess, manipulability has been commonly used as a criterion for manipulator design 
evaluation and optimization. Almost all manipulability measures found in the litera-
ture involve the “Jacobian” of the manipulator J. Typically the determinant of 
Jacobian is used for a measure of manipulability. The design specifications 
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mentioned can be formalized by two quantitative performance criteria, one evaluat-
ing the length of a collision-free path to the target and the other evaluating the 
manipulability.

Alternatively, optimality criteria for manipulator design can be identified in per-
formance evaluations regarding positioning and orientation capability and velocity 
response. Positioning and orientation capability can be evaluated by computing 
position and orientation workspaces that give the reachable regions by the manipu-
lator as function of the mobility range of the manipulator joints. The velocity 
response can be evaluated by looking at the velocity mapping that can be described 
by the Jacobian of the manipulator. The Jacobian is also useful to identify singular 
configurations (singularities) of a manipulator at which DOFs are lost that should be 
avoided in a controlled movement.

As for the speed requirement, the cycle time of a single robotic operation should 
be optimized to be economically feasible. This time will include the time for the 
vision system (e.g., fruit detection, ripeness assessment, and 3D localization of the 
crops, in a robotic picking example) and the time for robotic manipulation (motion 
planning, the motion of the end-effector to the crop, gripping, and cutting (usually 
of the crops in greenhouse, whereas grasping and detaching of those in outdoor 
orchard) and the return motion for the storage). To satisfy this performance require-
ment, the motion trajectory of the manipulator should be as short as possible (Van 
Henten et al. 2009).

Bac et al. (2016) used performance measures in terms of success rate, planning 
time, and path quality in manipulator motion planning for sweet pepper harvesting 
in an obstacle-dense greenhouse environment. The success rates comprised goal 
configuration success and path planning success. The goal configuration success 
measure represents the percentage of fruits for which a collision-free goal configu-
ration was accessed. A path was considered collision-free if it was collision-free 
before and after path smoothing. The planning time refers to the time elapsed to 
plan a path. Path quality was quantified by the joint angles index of curvature 
(JAIC). JAIC, measured in the configuration space, is based on the city block dis-
tance metric capturing the overall sum of the joint angle paths, i.e., JAIC measures 
how much the joints rotate. JAIC was normalized by the sum of joint angle paths for 
the “line-of-sight” path (the shortest path from start point to goal point); thus, JAIC 
ranges from 1 (the shortest path) to 0. The normalization facilitated path quality 
comparisons among groups of crops.

7.3  Orientation: What Is It Good For?

For a robot manipulator, the number of joints determines the number of DOF. A 
rigid object in three-dimensional free space has six DOFs: three for position and 
three for orientation. Therefore, a manipulator should typically possess at least six 
independent DOFs. With fewer than six DOFs, the robot cannot reach every point in 
its workspace with arbitrary orientation. Certain applications such as reaching 
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around or behind obstacles may require more than six DOFs. A manipulator having 
more than six DOFs is referred to as a kinematically redundant manipulator (Spong 
et al. 2006).

The manipulator should have maximum dexterity once the end-effector has 
arrived at the target position. Dexterity is a measure quantifying the ability of a 
manipulator to move and rotate the end-effector in all directions. The dexterity sig-
nificantly matters at the endpoint of the motion path for a specific task such as the 
manipulator for a crop harvesting in greenhouse needs a large amount of dexterity 
at the endpoint to perform the picking task.

7.3.1  What Types of Tasks Are Required?

The robot design for precision agriculture, in particular, must be based on a well- 
defined task model to provide a good fit between a robot and its task because differ-
ent tasks would require different robots to perform optimally in each task. Each 
precision agriculture task including planting, pruning, thinning, harvesting, weed-
ing, spraying, and post-harvesting will require specific robotic manipulation with a 
task-based optimized robot. The optimization cost function can include time, 
energy, weight, and/or cost and depends on the customer demands (Bloch et al. 2015).

The main objective of our case study (Sect. 7.6) for the robotic apple harvester in 
an orchard was to optimize the robot manipulation to be able to reach all (or most) 
apples in each machine vision frame (Wang et al. 2018). For a precision agriculture 
task (e.g., for selectively picking apples in an orchard), the optimal robot must be 
able to reach all (or a certain majority) of the apples, i.e., interact with the task envi-
ronment. This interaction with the environment is the optimization constraint: if it 
is not fulfilled, the robot is not suitable for the task (Bloch et al. 2015).

7.3.2  Required Manipulability

Manipulability can be used to determine the optimal configurations in which to 
perform certain tasks. In some cases, it is desirable to perform a task in the configu-
ration for which the end-effector has the maximum manipulability. Manipulability 
can also be used to aid in the design of manipulators (Spong et al. 2006). For effi-
cient Cartesian motion, the manipulator must be kept away from singular configura-
tions, which can be evaluated using the manipulability measure.

The concept of manipulability of a manipulator was introduced by Yoshikawa 
(1985). The manipulability is defined as the square root of the determinant of the 
product of the manipulator Jacobian by its transpose:

 
� � � �det JJT

 
(7.1)
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The manipulability μ is equal to the absolute value of the determinant of the Jacobian 
J in case of square Jacobian (Tenev and Stoyanov 2000).

Baur et al. (2012) performed the manipulability measure for the first manipulator 
prototype to validate the proposed manipulator kinematic design for the selective 
harvesting of sweet pepper in greenhouse. The manipulability measure H2 normal-
ized on the minimum value H2,min was calculated for discrete points on the paths for 
the weighting factors as depicted in Fig. 7.1. At a height of 0.8 m, the robot manipu-
lability is lowest. At this height, the manipulator must fold itself up since the first 
prismatic joint has reached its mechanical limit. With respect to a high manipulator, 
an operation in this region should be avoided. The manipulability along γ is mini-
malat �

�
2

 and 
π
2

. Here the manipulator must take a stretched configuration since it 
isapproaching the limits of the workspace, and therefore the manipulability is 
reduced.

In addition, visual servoing, in which a camera is mounted on the end-effector, is 
commonly used for final alignment of the end-effector with the target crop in case 
of inaccurate positioning information from the main camera system of the robot. In 
this case, considerable dexterity is needed to be able to make the required correc-
tions to the position and orientation of the end-effector. More details on visual ser-
voing can be found in Chap. 9.

Fig. 7.1 Normalized manipulability on discrete points along the paths. (From Baur et al. 2012)
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7.3.3  Speed vs Robustness

Speed or cycle time is one of the key performance metrics to evaluate robotic sys-
tems. Manipulators used for agricultural and field robotics (e.g., fruit harvesting) 
typically consist of two to seven DOFs. An advantage of using many DOFs is an 
improved target reachability in cluttered environments. However, the disadvantage 
is that common motion planning algorithms have difficulty in finding a collision- 
free path within a reasonable time. Furthermore, additional DOFs decrease speed 
and reliability and increase the cost of the manipulator. Visual servoing or force 
feedback can improve robustness in terms of position errors, but it may reduce the 
cycle time.

For the robotic apple harvester, our case study, the manipulator’s planned trajec-
tory is executed using a simple, open-loop look-and-move approach. To reduce 
design complexity and enhance speed of harvesting, both of which are design crite-
ria, the end-effector has no sensors (visual servoing or force feedback is not used) 
and utilizes open-loop, feedforward control. As such, an important initial design 
step was to develop an environmental model for the actuation torque required to 
produce the desired link normal forces (Davidson and Mo 2015). However, field 
evaluation indicated that force feedback would improve success rate of robotic har-
vesting. Prismatic-only motion also can be slower than the combination of prismatic 
and rotation by revolute joints to reach a certain target point.

7.4  Robotic Manipulation

In design of a robotic manipulator, the first thing to be considered is the kinematic 
structure of the system. Typically, it is possible to design very specialized and opti-
mized kinematics for a well-defined task, although modular manipulators can be 
designed to reconfigure the kinematics for the needs of the different applications 
(Baur et al. 2012; Baur 2015; Bloch et al. 2018).

The optimality criterion for robotic manipulation is to fulfill the given task within 
a predefined workspace and desired cycle time with a limited collision interacting 
suitably with the task environment.

7.4.1  Kinematics and Dynamics

7.4.1.1  Kinematics

The kinematics equations describe the motion of the robot without consideration of 
the forces and torques producing the motion.
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Forward Kinematics

A manipulator is a kinematic chain of rigid bodies, or links, connected by discrete 
joints. Here we consider only open serial chains and exclude closed chains (i.e., 
chains that form a loop) as well as continuum structures with more complex motion. 
One end of the chain is constrained to a base, and the robot’s end-effector is fixed at 
the other end of the chain. Joints can be either revolute or prismatic, and joint articu-
lation defines each degree of freedom and constitutes a joint variable. The objective 
of forward kinematics is to determine the position and orientation of the end- effector 
given the values for the joint variables of the robot.

There are two general approaches to the forward kinematics problem. The first 
approach, which is covered in detail by Siciliano et  al. (2010), incorporates the 
kinematic relationship between consecutive links in a recursive procedure to define 
the overall manipulator kinematics. Consider an open chain, serial link manipulator 
with n links where reference frames have been assigned to each link. Then, the for-
ward kinematics describing the position and orientation of the end-effector frame n 
with the base frame 0 can be written as

 T q A An n
n

nq A q q0
1
0

1 2
1

2
1� � � � � � �� � ��

 (7.2)

where Ai
i

iq
� � �1  is the homogenous transformation matrix between consecutive 

links. Each homogenous transformation matrix can be completely defined by a sin-
gle joint variable. One widely used method to determine the individual transforma-
tion matrices between links is the Denavit-Hartenberg (DH) convention (Denavit 
and Hartenberg 1955), the rules of which can be formalized in an operating proce-
dure. An advantage of DH representation is that it requires the minimum number of 
parameters to describe the robot’s kinematics.

A second approach to forward kinematics uses modern geometric techniques 
incorporating tools from classical screw theory. This approach uses an exponential 
description of rigid body motion where rotation matrices are represented with expo-
nential coordinates. The forward kinematics are found with the product-of- 
exponential (PoE) formula where the key concept is to consider each joint as 
applying a screw motion to all the outward links (Lynch and Park 2017). Unlike DH 
representation, the PoE representation is not minimal. Its advantages are that it is 
intuitive owing to its geometric underpinnings and does not require assigning refer-
ence frames to each link. The reader is referred to the recent text by Lynch and Park 
(2017) for additional details on the PoE representation for forward kinematics.

Inverse Kinematics

A more fundamentally important problem for robotic manipulation in agricultural 
and field applications (e.g., robotic harvesting) is the inverse kinematics problem, 
which requires the determination of the joint variables corresponding to a given 
end-effector pose in the operational space. If the position of a crop in the Cartesian 
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coordinate system is known, what joint coordinates are required to place the har-
vesting end-effector at the correct position with the desired orientation? The inverse 
kinematics problem is much more complex than the direct kinematics problem for 
the following reasons (Siciliano et al. 2010):

• The equations are generally nonlinear and closed-form solutions may not exist
• Multiple solutions may exist
• Infinite solutions may exist

Because closed-form solutions only exist for certain classes of manipulators with 
simplified structures, general-purpose solution procedures require numerical meth-
ods. Some of the numerical methods developed include Jacobian transpose meth-
ods, pseudo-inverse methods, damped least squares methods, quasi-Newton 
methods, and neural net methods. The nonlinear optimization technique developed 
by Wang and Chen (1991) is commonly used because of its computational effi-
ciency. It is not sensitive to the manipulator’s singular configurations and is numeri-
cally more stable than other methods because it does not require matrix inversion. 
The technique uses the cyclic coordinate descent (CCD) method (Luenberger and 
Ye 2008) to rapidly find a feasible point that is near the true solution and then uses 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric method (Luenberger 
and Ye 2008) to obtain a solution at the desired degree of precision. The CCD 
method is a direct search method that cycles through n coordinate directions using 
each in turn as the search direction (Nocedal and Wright 1999).

7.4.1.2  Dynamics

The derivation of a manipulator’s dynamic model is important for such activities as 
actuator selection, structural analysis, motion simulation, and controller design. Just 
like there are forward and inverse kinematics, there are also forward and inverse 
dynamics. The forward problem finds the robot’s acceleration from its state vari-
ables (i.e., joint position and velocity) and joint forces and torques. Conversely, 
during the inverse dynamics problem, the joint torques/forces corresponding to the 
robot’s state and the desired acceleration are found.

Two popular techniques are available for modeling the robot’s dynamics and 
formulating the equations of motion, a system of second-order differential equa-
tions. With the Lagrangian formulation, the first step is to choose a set of general-
ized coordinates that describe the link positions of an n-DOF manipulator, which, 
for an open chain manipulator, is the vector of joint variables q. The generalized 
forces associated with the generalized coordinates include nonconservative joint 
torques, joint friction, and external forces from interaction with the environment. 
The equations of motion can be found with the well-known Lagrange’s equations, 
available in mechanics textbooks, where the Lagrangian of the robot is the differ-
ence between the total kinetic and potential energies of the system. While the 
Lagrangian formulation’s energy-based approach is conceptually simple for kine-
matic chains with a few degrees of freedom and also yields the equations of motion 
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in analytical form, the technique can become quite complex for higher-dimensional 
systems.

Whereas the Lagrangian formulation derives the robot’s dynamic model using 
the system’s total Lagrangian, the Newton-Euler formulation considers force bal-
ances on all manipulator links. For open kinematic chains, this leads to efficient 
recursive algorithms for both inverse and forward dynamics where a forward recur-
sion starting at the base is used to propagate velocities and accelerations and a 
backward recursion starting at the end-effector is used to propagate forces and 
moments along the structure (Siciliano et al. 2010). An advantage of the Newton- 
Euler formulation is that it is computationally efficient. The texts by Siciliano et al. 
(2010) and Lynch and Park (2017) provide excellent overviews of using both the 
Lagrangian and Newton-Euler formulations to derive dynamic models of robots.

7.4.2  Path and Trajectory Planning

Robot motion planning is one of the central parts in the design of autonomous 
robotic manipulation and among the most difficult problems. The computational 
complexity of the best-known complete path planning algorithms grows exponen-
tially with the number of internal DOF of the robot (Spong et al. 2006). The term 
motion planning incorporates a multitude of different aspects, like finding a 
collision- free path, handling the interaction of cooperating robots, impedance con-
trol, developing of grasping strategies, dealing with inaccurate or incomplete sensor 
information, and much more. Additionally, while fulfilling the aforementioned pri-
mary objectives, motion planning algorithms have to handle several physical con-
straints inherent to any technical system, like speed or power limitations of actuators 
(Baur 2015).

7.4.2.1  Collision-Free Path Planning

A heuristic A*-search algorithm is commonly used to calculate collision-free 
manipulator motions. The A*-search algorithm minimizes a measure of the length 
of the motion trajectory through the configuration space (Pearl 1984; Kondo 1991; 
Van Henten et al. 2003). Another interesting feature of the A*-search algorithm is 
that it only returns a solution if one exists. This means that if a goal configuration is 
not reachable without collisions caused by, for instance, too large links, this design 
can be heavily penalized. For the robot design optimization, the A*-search algo-
rithm was modified to allow for both orthogonal and diagonal node expansion, as 
illustrated in Fig. 7.2, resulting in smoother motion trajectories than with orthogo-
nal node expansion only (Van Henten et al. 2009).

Bac et al. (2016) proposed a sequence of algorithms consisting of three steps: 
calculation of the start and goal configuration, path planning, and path smoothing. 
Each step uses a collision detection module. The RRT (rapidly exploring random 
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tree) is a well-known representative of single-query planners as stated by Kuffner 
and LaValle (2000). However, the paths found by RRT-based planning algorithms 
tend to be tortuous due to the random nature of such sampling algorithms. Therefore, 
a path smoothing algorithm was implemented following the path planning phase. 
Most path planning algorithms were not suitable for manipulators with a larger 
number of DOFs because planning time increases exponentially with the number of 
DOFs (Choset et al. 2005). However, the sampling-based planner implemented, a 
balanced bidirectional rapidly exploring random tree (bi-RRT) (Kuffner and LaValle 
2000; LaValle 2006), is less affected by the number of DOFs. This planner ran-
domly samples the configuration space using a user-defined sampling resolution. If 
the sample is collision-free, it is added to a growing tree. After a few iterations, the 
trees growing from the start and goal configuration may connect and a path is found.

Sampling-based motion planning algorithms have also proven extremely suc-
cessful in addressing manipulation problems (Berenson et al. 2009; Diankov et al. 
2008; Rusu et al. 2009). They are very efficient at finding collision-free paths in a 
high-dimensional state space. While they can quickly find feasible motion plans, 
they are often lacking in the quality of paths produced. Smoothing and post- 
processing is typically required before executing these plans on a robot (Hauser and 
Ng-Thow-Hing 2010), which can significantly add to the required computation 
time. Trajectory optimization techniques have recently been applied to motion plan-
ning for manipulation (Ratliff et al. 2009; Kalakrishnan et al. 2011). These tech-
niques plan collision-free motions by minimizing a cost function over trajectories. 
Such approaches allow the user to include additional desirable objectives, such as 
trajectory smoothness, obstacle clearance, torque minimization, and constraint sat-
isfaction. The use of optimization resolves the inherent redundancy in finding 
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Fig. 7.2 Orthogonal and diagonal node expansion in the A*-search algorithm. (From Van Henten 
et al. 2009)
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collision-free configurations and trajectories, making the robot behave in a more 
predictable and repeatable fashion (Righetti et al. 2014).

7.5  Optimization: Putting It All Together

Using quantitative measures and nonlinear optimization techniques, optimal kine-
matic design of the manipulator can be pursued. Optimal robot design has received 
considerable attention in the engineering literature and recently in agricultural and 
field applications, in particular for greenhouse agriculture.

Van Henten et al. (2009) adopted a performance criterion scheme of combining 
both the measure of path length and the dexterity measure for autonomous cucum-
ber harvesting in greenhouses. The optimal design combines small values of the 
measure of path length and large values of the dexterity measure. Once a perfor-
mance criterion is defined, there are various ways to solve the optimization prob-
lem. Because we are dealing with a highly nonlinear optimization problem, the 
solution may contain several local minima (Paredis and Khosla 1995). Therefore, 
global optimization techniques are preferred for the solution. Local optima were 
detrimental to the performance of the SQP (sequential quadratic programming) 
algorithm and that differential evolution (DE) was most capable in dealing with the 
multi-modality of the optimization problem (Van Henten et al. 2009).

Bac et  al. (2016) investigated the influence of five parameters, on success or 
planning time, including average stem spacing, fruit location at a side of the stem, 
dimensions of the end-effector, robot position, and sampling resolution (ε) for the 
robotic system used for sweet pepper harvesting in an obstacle-dense greenhouse. 
Average stem spacing was expected to influence goal configuration success and 
path planning success because it modifies the density of the obstacle map. Fruit 
location at a side of the stem was expected to influence goal configuration success 
and path planning success because, for instance, back-side fruit are further away 
from the robot and obstacles are more likely to obstruct a path than for front-side 
fruit. Changing the dimensions of the end-effector was expected to influence goal 
configuration success and path planning success because dimension of the end- 
effector influences the size of the collision-free workspace of the manipulator. 
Dimensions were precisely known and did not vary among harvest cases. Robot 
position influences dexterity of the manipulator (Klein and Blaho 1987), i.e., the 
range of motion toward a target object (e.g., fruit in plant canopies). In addition, 
variation in position and orientation of the target object influence the robot position 
required to reach an object. Sampling resolution (ε) is a parameter in the bi-RRT 
algorithm that determines the probability of finding a path. A smaller resolution 
increases this probability at the cost of additional iterations. A small resolution is 
typically required for crops surrounded by many obstacles (Bac et al. 2016).
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7.6  Case Study: Robotic Apple Harvester

This case study is based on Silwal et al. (2017) that described individual compo-
nents, an integrated system, and field evaluation results for a single-manipulator, 
single end-effector robotic system developed at Washington State University. Silwal 
et al. (2017) reported the design and field evaluation of a robotic apple harvester. 
The approach adopted was to use a low-cost system to assess required sensing, plan-
ning, and manipulation functionality in a modern orchard system with a pla-
nar canopy.

7.6.1  Mechanical Design

Based on orchard parameters and 0.94 m bed height of the mobile platform (John 
Deere, Moline, IL, USA) used for field studies, the third and fourth trellis wires of 
a modern apple orchard (Fig. 7.3) were selected as the working environment for the 
mechanical design.

The intent was to assess the overall approach and determine what additional 
functionality was needed, if any, before expanding the system to the entire tree. The 
shaded regions in Fig. 7.3 show the working environment in relation to tree geom-
etry. The robotic harvester’s mechanical design includes a custom, serial link 
manipulator with seven DOFs and a grasping end-effector.

7.6.1.1  Manipulator

To expand the number of permissible end-effector orientations at the target fruit’s 
position and not constrain the approach path (e.g., horizontal only), a manipulator 
task space  ∈ SE(3) was desired. Monte Carlo simulations were conducted to 
determine link lengths for a six-DOF conceptual model. MATLAB’s (MathWorks 

Fig. 7.3 Two different views of the system’s working environment (shaded regions) in relation to 
tree structures
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Inc., Natick, MA) random number function was used to generate a 100,000 × 1 vec-
tor of uniformly distributed random numbers for each joint within its respective 
joint limits. For each row of joint coordinates, the manipulator’s forward kinematics 
was then used to determine the position of the end-effector. Simulation results were 
used to graphically verify that the resulting workspace bounded the region between 
the third and fourth trellis wires (Fig. 7.3) in the vertical direction. Further lab stud-
ies with the fabricated six-DOF arm and a replica apple tree (Davidson et al. 2016a) 
indicated the need for a seventh DOF.

Unlike a vertical orchard system, in the V-trellis system selected for field studies, 
apples on the far side of the canopy plane are not accessible from the adjacent row. 
A prismatic base was added to extend the depth of the reachable workspace into the 
tree canopy. The kinematic redundancy provided by the seventh DOF was used to 
help the manipulator avoid singularities during fruit picking. The kinematic model 
of the serial link manipulator is provided in Fig. 7.4.

The six-DOF manipulator is fastened to a prismatic base.
Table 7.1 provides the picking manipulator’s DH parameters and physical joint 

limits where a is the link length, α is the link twist, d is the link offset, and θ is the 
joint angle.

7.6.1.2  End-Effector

The fruit removal technique selected during this research incorporates a grasping 
end-effector. An advantage of a grasping approach is control over the end-effector 
workspace dimensions. Unlike a vacuum and funnel design with a constrained 
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Fig. 7.4 Kinematic configuration and DH parameters of the custom manipulator
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opening span, for example, there is the potential for incorporating grasp planning 
for apples in especially cluttered environments, such as clustered fruit or those adja-
cent to obstacles. Development of the end-effector and fruit-picking motion was 
facilitated by a recent study of the hand-picking process (Davidson et al. 2016b). All 
information about the analysis, design, and fabrication process used to build the 
end-effector can be found in recent papers (Davidson and Mo 2015; Silwal 
et al. 2017).

The end-effector does not contain any sensors, and grasping is executed in a 
purely open-loop manner with feedforward control. Each finger actuator is preset to 
a torque value with a limiting stall current. Finger motion stops when the actuator’s 
encoder indicates that the motor has stalled. Because the actuator is non-back driv-
able, reducing the motor current to a small amount is sufficient to ensure that tendon 
tension is maintained. After a grasp is initiated, the system waits for a small amount 
of time assuming that static equilibrium is reached with the grasped fruit. To release 
the apple, the direction of motor rotation is reversed and the finger is returned to a 
preset open position. This control mode was selected to reduce design costs and 
complexity as well as increase manipulation speed.

A pneumatic end-effector with bellows-type inflatable actuators for fingers was 
also investigated (Hohimer et al. 2019) as a possible approach to reduce the overall 
weight of the end-effector and improve robustness of the fingers when colliding 
with undetected branches near the fruit. This approach offers the ability to remove 
weight from the end of the manipulator thereby reducing the torque required of each 
motor in the kinematic chain but adds to the overall footprint of the systems with the 
need for a pneumatic air supply. It also attempts to capitalize on the advantages of 
soft more compliant systems to reduce damage to tree, fruit, and robot.

7.6.2  Harvesting Cycle Activities

After fruit localization, all apples identified in the scene are prioritized so as to opti-
mize the picking sequence. The system then determines manipulator joint solutions 
for a set of waypoints along the path to each fruit. The end-effector’s path to and 

Table 7.1 DH parameters and physical joint limits of the picking manipulator

Joint a (m) α (o) d (m) θ (o) Lower joint limit Upper joint limit

1 0 −90 d1 0 −0.21 m 0.21 m
2 0 90 0.189 θ2 −90° 90°
3 0 90 0 θ3 −270° −135°
4 0 90 0.27 θ4 −90° 90°
5 0 90 0 θ5 −200° −75°
6 0 90 0.231 θ6 −270° −95°
7 0.198 90 0 θ7 0° 180°
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from each apple is linear. A limitation of the design used during field studies is that 
the potential provided by kinematic redundancy was not fully exploited.

7.6.2.1  Apple Prioritization

In order to maximize the efficiency of robotic arm’s movement during harvesting, 
the identified apples had to be prioritized in a logical sequence. This research con-
sidered the task of apple prioritization during each harvesting cycle as a traveling 
salesman problem (TSP). The TSP is a well-known optimization problem in the 
class of non-deterministic polynomial-time hard (NP-hard) problems. In brief, the 
TSP aims to find a route from a known location that visits a pre-described set of 
locations, visiting each only once, and returns to the original location in such a way 
that the total traveling distance is minimum. The nearest neighbor algorithm 
(Kizilateş and Nuriyeva 2013) was used to solve the TSP where distances between 
apples were calculated using the 3D Euclidean distance equation with respect to the 
manipulator’s starting location at the beginning of a harvesting cycle.

7.6.2.2  Path Planning

Path planning for a single fruit pick is described in this section. The origin of the 
world reference frame O (a right-hand coordinate frame) with unit vectors i, j, k is 
located at the arm’s base where it is centered over the mobile platform (Fig. 7.5).

The world x-axis is oriented along the length of the mobile platform normal to 
the tree canopy, and the world z-axis is vertical. Using pure translation, the fruit’s 
position vector is transformed from the camera’s reference frame to the world refer-
ence frame O. Let p = (a + d)i + bj + ck be the vector of coordinates of the fruit’s 
center with respect to frame O where d is displacement of the prismatic base along 
the x-axis. At the beginning of inverse kinematics (IK) planning, the arm’s base 
frame B with unit vectors x0, y0, z0 (Denavit and Hartenberg 1955) is collocated 
and aligned with the world reference frame O (i.e., d is equal to 0). The motion plan-
ning algorithm determines the six-DOF arm’s IK using the dual optimization tech-
nique proposed by Wang and Chen (1991). In brief, the cyclic coordinate descent 
(CCD) method (Luenberger and Ye 2008) is used to rapidly find a joint vector q near 
the true solution, which is then used as input to the Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) variable metric method (Luenberger and Ye 2008) to obtain a solu-
tion at the desired degree of precision. The joint limits of the manipulator are used 
as boundary constraints, and the convergence tolerance of the objective function is 
set at 1E-6. For each apple in the harvesting cycle, IK solutions are found for three 
positions, the approach point, grasp point, and release point. The prismatic base is 
only displaced if the IK solver fails to converge to a solution for the desired end- 
effector position or if the manipulator’s configuration at the apple’s position is near 
a singularity. The algorithm then performs a search along the axis of the prismatic 
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base to find a displacement d that leads to an IK solution, if any. The end-effector’s 
path and velocity between the three positions are specified in the operational space.

7.6.2.3  Approach to Fruit

The approach point is 15 cm from the fruit. At the approach position, the orientation 
of the end-effector’s normal vector n is partially defined by an azimuth angle α, 
which is the angle between the x-axis and the projection of p in the x-y plane 
(Fig. 7.6). So, the equation for the azimuth angle α is
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(7.3)

The path the end-effector follows to the apple depends on fruit height. If c is less 
than 0.55 meters, the end-effector makes a horizontal approach to the fruit. To 
expand the number of apples that can be picked, the end-effector follows a 45° 
inclined path to fruit that are vertically higher than 0.55 meters. For the horizontal 
approach, the rotation matrix UE relating orientation of the end-effector’s frame E 
with respect to the manipulator’s base frame B is obtained via the elementary rota-
tion matrix about the z-axis Rz(𝛼). For the inclined case, UE is found by composition 
of elementary rotations about the y and z coordinate axes

Fig. 7.5 The world reference frame of the autonomous harvesting system is located at the pris-
matic base’s centerline
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 U R RE � � � �� ��z y� 45  (7.4)

7.6.2.4  Fruit Grasp

Before selecting the joint vector q required for the end-effector to reach the apple, 
the motion planning algorithm first checks the kinematic configuration of the arm at 
the fruit’s position. The geometric Jacobian (𝐪) of the differential kinematics equa-
tion defines a linear mapping (Siciliano et al. 2010)

 v J q qe � � �   (7.5)

between the arm’s 6 × 1 vector q of joint velocities and the 6 × 1 vector ve = [le ωe]Tof 
linear le and angular end-effector velocities ωe in the arm’s base frame B. Because 
end-effector velocity from the approach point to the grasping point is defined rela-
tive to the end-effector frame E, the algorithm first computes the geometric Jacobian 
JE(q) in frame E using the relative rotation matrix UE whereby
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The motion planning algorithm then checks the condition number of the 6 × 6 
matrix JE. For an ill-conditioned Jacobian JE, the algorithm updates the prismatic 
base position in an iterative fashion until the arm’s configuration is optimized to 
produce higher end-effector velocities at the apple’s position. The end-effector’s 
velocity from the approach to apple position is 0.15 m/s along its normal vector n, 
the orientation of which was defined by the azimuth angle 𝛼. So, for the horizontal 
and inclined approach, v

E
e

T
� � �0 1500000.  (m/s) where v

E
e is the end-effector 

Fig. 7.6 The azimuth 
angle partially defines the 
orientation of the 
end-effector’s normal 
vector at the approach 
position
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velocity expressed in the end-effector frame E. The required joint velocities q are 
found with the inverse differential kinematics equation using the vector of joint 
angles of the manipulator’s configuration when the end-effector is at the approach 
position

 
q J q vE E� � �� ��1 e  (7.7)

The algorithm used for computation of the system’s kinematics at the grasping 
position is shown below. The initial base position d is the displacement of the pris-
matic base at the approach position. End-effector orientation and velocity are deter-
mined by the azimuth angle and fruit height. If a solution of real joint variables and 
a well- conditioned geometric Jacobian are not found, the base position is incre-
mented alternating between positive and negative displacements. Between each 
iteration, the algorithm checks for acceptable results. Should a solution of real joint 
variables and well-conditioned Jacobian not be found within the range of the mobile 
base, which is approximately 0.44 m, the fruit is excluded from the picking cycle.
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7.6.2.5  Release of Fruit

After grasping the apple, the manipulator moves the end-effector 12 cm back from 
the tree along a path coincident with the end-effector’s normal vector n originally 
defined by the azimuth angle and fruit height. Selection of the 12 cm displacement 
was based on previous studies of fruit-picking dynamics (Davidson et al. 2016b) 
which showed that mean displacement to fruit separation from the onset of picking 
was approximately 7 cm. The end-effector’s linear velocity le along the path to the 
release point has the same magnitude as the linear velocity from the approach posi-
tion to the grasping position. During fruit detachment, there is also a 45° rotation 
(0.6 rad/s) around n in order to produce a combined pulling and twisting motion. 
The rotation matrix UR

E relating orientation of the end-effector’s frame E to the 
manipulator’s base frame B at the release point is therefore

 U R RR
E E� � � �� ��z x� 45  (7.8)

for the horizontal approach/removal and

 U R R RR
E E� � � �� � �� �� �

z y x� 45 45  (7.9)

for the inclined approach/removal where RE
x  is the elementary rotation matrix about 

the x-axis of frame E (i.e., the end-effector’s normal vector n). The position and 
orientation at the release point are passed to the IK solver for calculation of the 
required manipulator joint angles q.

7.6.2.6  Field Test Results

Figure 7.7 shows the setup used during field testing of the robotic system. Of the 
193 apples identified, 150 of the fruit were in the system’s reachable workspace and 
were selected as the harvesting samples in this study.

Fig. 7.7 The robotic 
platform with the arm 
attached to end-effector, 
global camera system, and 
computer during field 
testing
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The picking efficiency for the apples the system attempted to pick was 85% 
(127/150). Post inspection of the 127 fruit successfully harvested revealed no obvi-
ous evidence of bruising or surface damage. Because stem retention is desirable for 
fresh market apples, after each harvesting cycle, all apples were inspected to deter-
mine whether the stem was intact (86/127), had pulled out of the stem cavity (8/127), 
or had the spur attached (33/127).

One of the major objectives of this research was to use well-defined performance 
criteria and segregate and report execution time of each major task individually. 
Figure  7.8 displays the contents of timing parameters for all major procedures. 
Vision timing included the sum of all listed procedures including apple identifica-
tion, inverse mapping, and depth filtering.

On average, 6.1 s was required to identify and localize all apples in an image, 
equivalent to 1.5 s of computation time per apple. IK time was measured as the time 
required to calculate joint velocities and angles for each path point for all apples as 
well as filter apples beyond the workspace. The mean computation time for path 
planning was 0.1 s per fruit. Picking time describes physical manipulation only and 
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Fig. 7.8 Time required to 
complete each procedure. 
Total cycle time includes 
vision processing, path 
planning computations, 
and physical manipulation 
of the fruit
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includes the time required to approach, grasp, remove, and drop an individual apple. 
The system’s average picking time was 6.0 s. The total cycle time was the summa-
tion of vision processing, path planning computations, and manipulation of the 
fruit. Including the average vision time of 1.5  s, the total cycle time required to 
harvest a single apple was approximately 7.6 s. It should be noted that the cycle time 
reported here does not include the time required to reposition the vehicle between 
harvesting cycles. Because the largest movement was usually from the first apple in 
a cycle to the manipulator’s waiting position, the average picking time for the first 
fruit was significantly higher than the remaining apples in a cycle. Table 7.2 com-
pares the picking time of the first fruit in a cycle with the remaining fruit in that cycle.

7.6.3  Workspace Analysis for an Eight-DOF 
Apple-Picking Robot

After completing the first iteration of field studies, an additional prismatic joint was 
added to the robot in order to expand the system’s workspace and increase the num-
ber of reachable fruit per harvesting cycle. The picking manipulator, which is shown 
in Fig. 7.9, has eight DOFs. The picking end-effector design is the same as that 
described in Silwal et al. (2017). In addition to the DH parameters and physical joint 
limits of the picking manipulator in Table 7.1, the parameter and joint limit for the 
y-axis prismatic joint are provided in Table 7.3.

7.6.3.1  Inverse Kinematics

With a configuration space of q ∈ R8 and workspace of xe ∈ R6, the picking manipu-
lator is kinematically redundant. For this work, the picking manipulator’s inverse 
kinematics planner was revised. The inverse differential kinematics problem for the 
redundant manipulator is considered a constrained linear optimization problem. 
Using Lagrange multipliers to minimize a cost function, Siciliano et al. (2010) show 
that a solution to the inverse differential kinematics problem for an n DOF redun-
dant manipulator is

Table 7.2 Comparison of average picking time, which measures physical manipulation during an 
apple pick, by cycle position
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 q J v I J J qe n 0� � �� �# #

 (7.10)

where q is the n x 1 vector of joint velocities, ve is the 6 x 1 vector of the end- 
effector’s linear and angular velocities, J (6 x n matrix) is the manipulator’s geomet-
ric Jacobian, In is the n x n identity matrix, q0 is an arbitrary n x 1 vector, and 
the matrix

 J J JJT T# � � ��1 (7.11)

is the right pseudo-inverse of J. The matrix (In − J#J) is a null space projection 
matrix of J. Therefore, the vector q0 can be chosen so as to satisfy secondary con-
straints, such as maximizing manipulability or the distance from an obstacle, with-
out changing the end-effector’s position and orientation xe. For this work, q0 is 
specified as

Fig. 7.9 Kinematic model 
of the eight-DOF 
configuration

Table 7.3 The parameter and joint limit for the y-axis prismatic joint

Joint a (m) α (o) d (m) θ (o) Lower joint limit Upper joint limit

2 0 90 d2 −90 −0.34 m 0.34 m
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where k is a gain factor and w is an objective function. Similar to the approach used 
in earlier studies (Baur et al. 2012; Chaumette and Marchand 2001; Schuetz et al. 
2014; Liegeois 1977), in this work, the objective function w includes a piecewise, 
polynomial function that penalizes joint positions q near their physical limits
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where qM, i (qm, i) is the maximum (minimum) joint limit and qM i,  (qm i, ) are joint 
thresholds. Thus, the picking manipulator’s inverse kinematics algorithm uses kine-
matic redundancy for joint limit avoidance. To calculate the joint positions q, Eq. 
(7.10) is numerically integrated in discrete time using the Euler method. A first- 
order, closed-loop inverse kinematics algorithm (Siciliano et al. 2010) that accounts 
for the operational space error e between the desired end-effector position and 
orientation xd and actual end-effector position and orientation xe was used to com-
pensate for numerical drift. A time step of 0.01 sec was shown to produce accurate 
results with minimal position and orientation error at a sufficient computation time. 
All path planning and inverse kinematics calculations were completed in Microsoft 
Visual Studio C++ using the open-source Eigen linear algebra library.

7.6.3.2  Workspace Analysis

The workspace, i.e., the reachable region, of the eight-DOF manipulator can be 
calculated by the simulations of manipulator movement with specified joint values 
(Wang et al. 2018; Wang 2018). Each of the eight joints of the manipulator has spe-
cific limits on its movement. Seven points were chosen within each of the two pris-
matic joints’ limits, and five points were chosen within each of the six revolute 
joints’ limits, to obtain 765,625 grids of chosen joint parameters. Forward kinemat-
ics function is called to calculate the x, y, and z coordinates of the end-effector loca-
tion from those joint parameters. All these positions are considered as reachable 
locations of the arm. Figure 7.10 depicts the eight-DOF picking arm’s total work-
space (pink-colored shape), and blue dots represent apple coordinates obtained 
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from field trial. All the simulation work was conducted in MATLAB (MathWorks 
Inc., USA) with the Peter Corke’s Robotics Toolbox (Corke 2017).

It can be decided if these reachable locations of the manipulator can be reached 
by the inverse kinematics function. The algorithm that is used to decide if an apple 
is “pickable” is called to decide if all those supposedly reachable locations are sites 
of pickable apples. In that algorithm, the inverse kinematics function is called twice, 
once to see if the apple location is reachable and once for the approach position 
which is 15 cm away from the final location along the end-effector normal, to see if 
the approach position is also reachable. The reachability of each of these points is 
categorized accordingly (using the inverse kinematics solver): 1, if the final position 
cannot be reached; 2, if the final point is reachable but the approach position is not 
reachable; and 3, if both locations are reachable. Then all the points are plotted with 
three different colors to differentiate the three different situations. A cross section of 
the workspace at 0.4 m above the origin of the arm shows these three different situ-
ations (Fig. 7.11).

If the eight-DOF picking arm is changed to the five-DOF arm (Fig. 7.12), the 
workspace is shrunk as shown in Fig. 7.13.
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For all the 505 sets of converted apple coordinates, the eight-DOF arm can reach 
76% of the apples, whereas the five-DOF arm can reach 63%. According to this 
workspace analysis, the absolute volume of the workspace is not as important as the 
effective workspace which is the overlap between the robot’s workspace and the 
fruit space. Because of the unstructured environment of the apple orchard, the robot 
needs the ability to adjust to the fruit space to maximize the overlap. More details 
on optimizing the overlap are in Wang et al. (2018). By incorporating an adjustment 
algorithm that accounts for changes in the environment, the five-DOF configura-
tion’s performance is increased by 49% (reaching 94% of the apples) without any 

Fig. 7.12 Kinematic 
model of the five-DOF 
arm. (Hohimer et al. 2019)
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increase in the actual workspace volume. Any increase in efficiency is important to 
make the system more economical (Wang et al. 2018).

7.6.4  Optimization Process for the Robotic Apple Harvesting 
System as the Whole System

The “whole system” does not only refer to the robotic arm itself but also the camera 
location, the size of the fruiting wall, and the time required to pick the whole fruit-
ing wall (Wang et al. 2018; Wang 2018).

Given a fruiting wall of certain length and height and required time to pick all 
apples on that fruiting wall, we should be able to design a low-cost system that fin-
ishes the task within the required time. This is an optimization problem where we 
need to determine the optimal number and size of frames to divide the fruiting wall 
into, both vertically in the z-axis and horizontally along the y-axis.

In this system, assuming the apples are evenly distributed, then we have the 
following:

• The number of frames determines the size of each frame.
• The size of each frame determines the camera’s field of view.
• The camera’s field of view determines the optimal configuration of the 

picking arm.
• The configuration of the arm determines the time needed for each frame.
• The time needed for each frame plus the time needed to move between frames 

determines how many frames each arm can pick within the required time.
• The number of frames each arm can pick determines the number of arms needed 

for the whole fruiting wall.
• The number of arms needed and the arm’s configuration together determines the 

total cost of the whole system.

All the above are variables in this optimization problem and can be symbolized 
and calculated in a function. The objective here is to minimize cost and finish pick-
ing the fruiting wall within the required time. The smaller the number of frames, the 
larger the frame size is. Then it takes longer for the arm to finish each frame but 
saves the time needed to move between frames. Thus, the total number of arms 
could be reduced, but the cost of each arm could be higher since it needs to pick a 
larger area. This problem might be solved iteratively. Several optimal or suboptimal 
solutions to this problem can be simulated to calculate the actual cost and compared.
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7.7  Summary and Concluding Thoughts

The design principles and considerations for robotic manipulation and optimization 
for field agricultural applications are briefly discussed in this chapter. A case study 
with a robotic apple harvester along with workspace analysis is also introduced to 
provide a sequence of a design process including subsystems, an integrated system, 
sensing, planning, and manipulation functionality in a modern fruiting wall orchard. 
The manipulation and optimization of agricultural robotic systems for the highly 
unstructured environment is a difficult challenge, although there exists a clear need 
for the technology in today’s economy. According to the field testing of a robotic 
system designed to harvest fresh market apples, horticultural practices play a criti-
cal role in the selection of functionality requirements.

Bloch et al. (2015) proposed that the robot would need be optimally designed for 
a specific task in a specific working environment to improve robot performance for 
agricultural tasks and decrease its cost. They also suggested the environment itself 
should also be optimized for optimal robot performance since the environment 
defines the robot’s optimal kinematics (Bloch et al. 2018).

It is noted that the overlap of the manipulator’s workspace and the target objects’ 
space (e.g., fruit distribution in canopies for robotic apple harvesting) is the key to 
increase the reachability instead of only increasing the volume of arm’s workspace 
(Wang et al. 2018). As such, a comprehensive workspace analysis should be pre-
ceded for optimal manipulator kinematic design. According to our prior work 
(Wang et al. 2018), the eight-DOF picking arm showed a bigger workspace than that 
of five-DOF arm; however, optimal kinematic design and motion planning made it 
possible to reach as many apples as the eight-DOF arm can reach. Also, robotic 
system engineers should collaborate with growers and horticulturalists in develop-
ment of autonomous robotic systems for precision agriculture.

Noting that our camera and arm’s origin are fixed together on the utility vehicle, 
there are challenges compared to the greenhouse environment. In greenhouse, the 
heating pipes are fixed, so the robotic manipulation can be optimized for the fixed 
distance between the robot and the plant stem. The problem lies in that every time 
the utility vehicle is parked, it cannot guarantee that the distance from the vehicle to 
the fruiting wall is optimal so that the maximum number of crops would be in the 
reachable range of the arm. This leads to some of the crops being either too close or 
too far in the view of the robotic arm. An autonomous vehicle with a LiDAR (Light 
Detection and Ranging) sensor or a visual camera may be used to keep the optimal 
distance from the fruiting wall.

For the case study (Sect. 7.6), for example, it would be ideal to be able to figure 
out an optimal distance from the vehicle to the fruiting wall at each vehicle stop to 
reach the maximum number of apples. In other words, to reach the maximum num-
ber of apples at each vehicle stop, we need to make the workspace of the arm include 
as many apples as possible, i.e., we need to move the vehicle around to move the 
arm’s origin (Wang et al. 2018; Wang 2018).

7 Robotic Manipulation and Optimization for Agricultural and Field Applications



188

From the workspace analysis (Wang et al. 2018; Wang 2018), we also can see 
that the eight-DOF configuration has larger volume, but most of this volume is 
wasted due to the shape of the fruit space when we superimpose them. The five- 
DOF showed less volume as expected, but its performance is not affected dramati-
cally as long as we can optimize its overlap with the fruit space. Therefore, it is 
desirable to have a system that will be able to maximize its coverage over the fruit 
space but minimize any useless workspace. It should also save in terms of operation 
with less energy wasted on maintaining unnecessary workspace.

The design of the robot should match a specific task in a specific environment to 
be optimal (Bloch et al. 2018). According to their results, a three-DOF prismatic 
joint would satisfy such task since its workspace is rectangular prism shaped. 
Vougioukas et al. (2016) mathematically verified that 91% fruit in an orchard can be 
reached by linear-only motion. In order to be more efficient or implement hierarchi-
cal picking, we can actually install multiple vertical rails with x-axis arm on the 
y-axis rail, so we can start picking at multiple locations in a row or execute picking 
in a hierarchical approach, i.e., the first arm goes to pick first, and a second arm can 
go again to pick what’s left and later a third arm as desired. This might be an 
approach to tackle the problem of fruit clustering in addition to implement obstacle 
and cluster detection in the algorithm (Wang et al. 2018; Wang 2018).
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Chapter 8
End-Effector Technologies

Qingchun Feng

8.1  Introduction

An end-effector of a robotic system is the part that comes into direct contact with 
the terminal objects to perform required tasks. As it is the part that is directly 
engaged with and operates on the objects of interest, which is similar to the human 
hands, it is also called the robot hand, or sometimes just the gripper. Though there 
could be a wide variation of end-effectors designed and developed for specific tasks 
(to be discussed later), an end-effector, commonly, is composed of two or more 
fingers that can be opened and closed to achieve the desired functions, such as 
grasping, holding, and rotating objects. Considering the extensive need of robotic 
technology for labor-intensive tasks such as harvesting, pollination, pruning, spray-
ing, milking, sterilizing, as well as cleaning during animals’ breeding, end-effectors 
for agricultural and field applications are required to handle a great diversity of 
objects, such as fruit, leaves, flowers, stems, trees, stones, and even animal 
body parts.

Because end-effectors come into direct contact with the objects being manipu-
lated (or being operated on), the end-effector efficiency greatly determines the per-
formance of a robotic system. Therefore, physical characteristics of the target object 
(to be manipulated), including its shape, size, surface characteristics, and softness, 
should be investigated prior to the development of a suitable end-effector. Besides, 
the biological and chemical properties of the target objects should also be known in 
order to avoid possible damage to the object as well as to the end-effector during the 
operation.
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As an example of long-lasting need of innovation in agricultural robotics, 
research and development on fresh-market fruit and vegetable harvesting comes in 
the forefront. Key technological features of a robotic fruit/vegetable harvesting 
machine essentially consist of acquiring the targets’ visual information in a complex 
agricultural environment, flexible and nondestructive manipulation of biological 
matter, and integration of the production system by combining the machinery with 
agronomy/horticulture, which also happen to be the common technical bottlenecks 
limiting the adoption of current agricultural robotic systems.

The vast array of features related to fresh-market fruit presents some critical 
challenges in robotic fruit picking, which is also a representative case for various 
agricultural operations when it comes to application of robotics. Hence in this book 
chapter, end-effector technologies, including their principles and application, for 
fruit harvesting robots would be the main focus. The current harvesting robots (that 
are being developed around the world) are primarily utilized to harvest vegetable 
and fruit crops in greenhouses, as well as tree fruit crops in natural orchards. Among 
these crops, vegetable and fruit in greenhouses are mostly characterized by soft 
surfaces and small sizes. A few examples include tomatoes, strawberries, cucum-
bers, and eggplants. The tree fruit crops with the need for robotic harvesting primar-
ily include apples, oranges, stone fruit, mangoes, and kiwi. In addition, automatic 
picking end-effectors for special commodities such as cabbage, pineapple, and 
mushrooms have also been researched.

This chapter will provide a comprehensive review on the existing end-effectors 
for fresh-market fruit harvesting including a brief introduction to various harvesting 
principles used in designing these end-effectors. The crucial issues for designing an 
effective picking end-effector will be discussed in detail. Finally, some concluding 
thoughts (including future trends) in technology advancement and potential solu-
tions for overcoming the existing technical challenges will also be evaluated.

8.2  Functions of a Picking End-Effector

An acceptable fruit picking operation signifies that the fruit is successfully, effi-
ciently and safely separated from the plant, as any damage to it would affect its 
quality. The one-fruit-at-a-time picking model, which is widely adopted for fresh- 
market fruit harvest, is composed of two steps. First and foremost, the target fruit or 
stalk is held, and then separated from the plant. Based on this picking principle, 
currently researched and developed picking end-effectors can be classified into 
three groups: (i) fruit-holding type, (ii) stem-holding type, and (iii) direct- 
separating type.
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8.2.1  Fruit-Holding End-Effectors

Since the fruit-holding type picking end-effectors are in direct contact with the fruit, 
its key function is to exert suitable force on the object being picked, which is strong 
enough to stably hold the object (e.g., fruit), but is not too high to cause any damage 
to the object. Based on the techniques investigated in the past, the end-effectors 
designed to hold fruit can be divided into five categories: (i) elastic buffering, (ii) 
under-actuated fingers, (iii) flexible driving, (iv) end-effectors with clamping force 
feedback, and (v) air suction.

 (a) End-effectors with elastic buffering material

In view of the potential hard contact between the rigid finger and fruit, an elastic 
buffering material, such as rubber, silicone, and polyfoam, can be used to cover the 
end-effector fingers in order to absorb the impact and present better frictional prop-
erty. The two end-effectors illustrated in Fig. 8.1, namely, a three-finger citrus pick-
ing end-effector developed at the University of Florida (Fig.  8.1a; Hannan and 
Burks 2004) and a two-finger tomato picking end-effector developed by Kondo 
(Fig. 8.1b, Monta et al. 1998), both have an elastic buffering material attached to 
their fingers.

Elastic materials are placed, generally, on the inner side of the fingers to provide 
a clamping buffer, so as to avoid or minimize the chances of scathing the soft fruit. 
This method is low-cost, easy to implement, and it could also be used with harder 
(less delicate) fruits. However, it is not very useful for soft fruits, and the thick buff-
ering material might even reduce the fingers’ valid range of motion.

 (b) End-effectors with under-actuated fingers

The under-actuated mechanism is defined as the process through which more 
than one joint could be driven by a single motor. This principle implies that the 
robot’s under-actuated fingers are equally operated by only one driver, and the 

Fig. 8.1 End-effectors with varying types of elastic buffering materials. (a) An apple picking end- 
effector (from Gauchel 2014). (b) A tomato picking end-effector (from Monta et al. 1998)
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knuckles are self-adaptive to the shape and size of the target fruit. Considering the 
differences in the harvested fruit size and shape, end-effectors with under-actuated 
fingers are of tremendous utility. The under-actuated structure can be used for fruits 
with various shapes and positions, which sharply improves the end-effectors’ error 
tolerance characteristic, and ensures uniform contact between the finger and 
the fruit.

One of the under-actuated end-effector was developed at Washington State 
University for their apple picking robot. The end-effector consisted of three fingers 
(Fig. 8.2a, Silwal et al. 2016) and each finger included two joints covered with soft 
rubber on the surface. When one of the fingers first touched the object of interest, 
the disc differential mechanism rotated to compensate for the displacement of the 
other two jaws, thereby adapting to the fruit’s shape, which ensured a reliable grab-
bing performance with an under-actuated mechanism to equalize the contact force. 
Another apple picking end-effector was designed by FFRobotics (Haifa, Israel), 
which included three fingers (Fig. 8.2b; Courtney and Mullinax 2019), which were 
driven by a telescopic electric push-rod to ultimately hold the fruit. Subsequently, 
an unpowered joint in each finger rotated to match with the fruit’s shape. An addi-
tional wrist joint of this end-effector was adopted to twist off the apple’s stalk.

A tomato picking robot end-effector was developed by Kyoto University with 
four flexible fingers fixed to a nylon supporting plate by four sections of connected 
nylon hose (Fig. 8.3a; Kondo and Ting 1998 and Krikke 2005). A cable was fixed at 
the end of the finger through the hose. Whenever the cable was pulled, the finger 
would bend to grab the fruit. As the fingers were bent to adapt to the fruit, they could 
fit tightly with the fruit. With the similar concept, a four-finger tomato picking end- 
effector was created by Ling et al. (2004) at Ohio State University, which also had 
only one cable to drive the fingers simultaneously. The nylon hose was replaced 
with a harder ABS plastic tube in order to limit lateral movement during clamping 
(Fig. 8.3b), which was expected to provide a stronger holding force. Another tomato 
picking end-effector developed at National Ilan University, Taiwan, also included 

Fig. 8.2 End-effectors with under-actuated fingers designed and developed for picking apples: (a) 
developed by Silwal et al. (2016); (b) developed by Courtney and Mullinax (2019)
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four under-actuated fingers, consisting of four elastic joints, and a soft foam rubber 
on its surface. The main difference in this configuration was that every two fingers 
were driven by an electromagnet through an elastic plate.

 (c) End-effectors with flexible driving medium

If a traditional rigid drive (such as a motor) is used in actuating an end-effector, 
the clamping apparatus’ dynamic impact may easily damage fruit. Therefore, gas 
and liquid are used as flexible/soft driving media so as to prevent any risk of causing 
fruit blemish. The pneumatic flexible/soft picking end-effector developed at 
Zhejiang University of Technology consisted of one pneumatic torsion joint and 
three pneumatic flexible bending fingers (Fig. 8.4a, Yang et al. 2010; Jin 2010; and 
Bao et al. 2009). Compressed gas was filled into the torsion joint and the bending 
finger cavity, respectively, enabling these structures to make the fingers rotate and 
bend inward. Similarly, ARTS Laboratory (Scuola Superiore Sant’Anna, Italy) 

Fig. 8.3 Tomato picking end-effectors with under-actuated fingers for picking tomato: (a) devel-
oped by Kondo and Ting (1998); (b) developed by Ling et al. (2004)

Fig. 8.4 End-effectors with pneumatically driven soft fingers: (a) an orange picking end-effector 
(from Yang et al. 2010); (b) a citrus picking end-effector (from Allotta et al. 1990); (c) a cucumber 
picking end-effector (Li et al. 2008)
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developed a pneumatically driven flexible, three-finger clamping end-effector 
(Fig. 8.4b; Allotta et al. 1990), which had longer fingers steadily holding citrus fruit. 
Similarly, Li et al. (2008) at China Agricultural University used two groups of rub-
ber fingers to clamp cucumbers (Fig. 8.4c). Due to varying thickness of rubber on 
two sides of the fingers, variation in deformation between two sides under the action 
of high-pressure gas led to overall bending of the fingers.

Differing from the flexible/soft fingers mentioned above, a tomato picking end- 
effector was studied by Feng et al. (2015) and Wang et al. (2016) at China National 
Research Center  of Intelligent Equipment for Agricultural, using a circumferen-
tially distributed airbag of constant pressure to clamp the fruit (Fig. 8.5). Internal 
pressure of the airbag was adjusted through a pressure reducing valve in order to 
establish a constant clamping force on the surface of the fruit.

Regarding the liquid actuation, Swedish Institute of Food and Biotechnology 
developed a magnetorheological fluid robot gripper (Fig. 8.6; Pettersson et al. 2010) 
which used a magnetic field to control the pressure of magnetorheological fluids, 
and then accomplished flexible/soft gripping of differently shaped fruits using an 
adequate gripping force.

 (d) End-effectors with clamping force feedback control

As described above (a)–(c), based on their intrinsic flexibility, elastic material, 
under-actuated mechanism, and flexible driving medium were selected to safely 
clamp target fruit, which are all passive flexible operations. The clamping force on 
the fruit surface originated from the adaptive deformation of the clamping appara-
tus, which could not be dynamically and accurately sensed or controlled. 
Consequently, the actuator was predominantly used for fruits with similar shapes, 
small sizes, and compact surfaces, since the clamping function was not ideal for 
targets with very soft surfaces or of heavy weight.

Active flexible operation is focused on achieving active intervention on potential 
damage caused by the clamping mechanism/apparatus or fruit slippage from the 
fingers, by sensing and controlling the force exerted between the clamping 

Fig. 8.5 Tomato picking end-effector with constant pressure airbag (form Feng et al. 2015)
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apparatus and objects of interest. Active flexible clamping has stronger adaptability 
to the object being manipulated through feedback-based closed-loop control of the 
clamping force. Nowadays, the picking end-effector mainly relies on pressure or 
sliding sensors in the fingers and wrist joints, in order to improve the effectiveness 
of the machines in holding and separating/detaching fruit.

Dimeas et al. (2015) at the University of Patras constructed a three-finger picking 
end-effector, equipped with a pressure array sensor inside the finger. Moreover, 
Fuzzy control based on clamping force feedback was integrated. A notable draw-
back with this technique was that it took more than 10s to achieve stable clamping 
of strawberries.

A double-finger apple picking end-effector was developed by Ji et al. (2014) at 
Jiangsu University. The end-effector included a pressure resistor attached to the 
inner side of the finger to sense the real-time clamping force (Fig. 8.7a). Through 
the grasping torque control method based on generalized proportional-integral tech-
nique, the end effector achieved a successful clamping rate (without causing any 

Fig. 8.6 End-effector with 
fingers driven by a liquid 
media (Pettersson et al. 
2010)

Fig. 8.7 End-effectors with pressure sensors on fingers: (a) an end-effector for picking apples 
(from Ji et al. 2014); (b) an end-effector for picking kiwi (from Zhang 2014)
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fruit damage) of 90% for apples and pears, and it took a total of 3 s from touching 
the fruit to completing the stable holding. A similar end-effector was developed and 
tested with kiwi fruit by Zhang (2014) at Northwest Agriculture & Forestry 
University (Fig. 8.7b). Pressure sensors were installed inside the arc surface of the 
fingers in order to detect the clamping pressure.

Researchers have also investigated the potential of sensing fruit stem using end- 
effector mechanisms. A flexible clamping end-effector was designed by a team at 
ARTS Laboratory (Scuola Superiore Sant’Anna, Italy; Allotta et  al. 1990; and 
Muscato et al. 2005; Fig. 8.8). When the fingers of this end-effector held an orange 
and tightened the fruit stem backward, the force and torque sensors at the wrist of 
the claw detected the information, which was used to determine spatial position of 
fruit stems. The end-effector then used a cutting mechanism to remove the fruit 
from the plant.

Through installation and integration of a clamping force/pressure sensor, the 
clamping pressure exerted on the fruit surface could be dynamically measured, 
which was then used in various studies to avoid or minimize potential damage to the 
fruit during picking/detachment. However, since the fruit are composed of soft bio-
logical tissues, the interaction force between the fruit and the end-effector fingers 
exhibited a dynamic characteristic. It generally took a long time to attain a stable 
clamping state by using the force signal as a reference for dynamic control, which 
lowered the robot’s picking efficiency.

 (e) End-effectors with air suction

In this design, a suction component (such as a sucker) connected with an air 
source with negative pressure was approached close to the fruit in such a manner 
that the fruit was captured and fixed with the suction component under the negative 
pressure. Hence, the end-effector mechanism with fruit suctioning with negative 
pressure offered a larger tolerance to the positioning error of the end-effector (or 
caused by the error in the sensing/machine vision system), as well as variations of 
fruit size and shape, which made its application convenient and simple to realize.

Fig. 8.8 An fruit picking 
end-effector with force and 
torque sensors at the wrist 
(Muscato et al. 2005)
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Christopher et  al. (2017; Queensland University of Technology) successfully 
developed a pepper picking robot using this technique. The end-effector used con-
sisted of a negative pressure sucker and a cutting knife. After the robot attached the 
fruit through the sucker, it was pulled away slightly from the plant, and the manipu-
lator subsequently directed a cutting knife to cut the fruit stem. Similarly, Feng et al. 
(2012; the National Agricultural Intelligent Equipment Research Center, China) 
developed an end-effector consisting of a fruit suction cup and a stem grasper 
(Fig. 8.9). After being sucked and captured, the target fruit was retrieved from the 
plant by a telescopic cylinder, and the fruit stem was severed between the grasper’s 
fingers. It is worth mentioning that collision interference between the end-effector 
and other fruits could be prevented by capturing and separating fruits using these 
types of suction mechanisms.

In addition to being used as an auxiliary component, negative pressure suction 
was also employed to separate fruits from plants, and eventually collect fruits. For 
instance, an apple picking end-effector developed by Abundant Robotics (Fig. 8.10; 
Thorne 2019) sucked in and pulled off fruit from the plants as the end-effectors 
approached them.

As discussed above, one of the major advantages of using suctioning mechanism 
is to enhance the picking end-effectors error tolerance, so that the picking robot 
acquires the adaptability to pick targets of random postures and varying shapes. 
Nonetheless, when a large amount of negative pressure is required, parameters such 
as the rotational speed of vacuum fans, the vacuum power, and the air flow rate are 
difficult to control, which give rise to issues such as high energy consumption and 
noise, and increased likelihood of fruit damage from sucking. When suctioning is 
used as an auxiliary device of picking end-effectors for clamping and separating the 
target, it is capable of pulling the fruit away from the plant, thus avoiding any sort 

Fig. 8.9 An end-effector 
with air suction as 
auxiliary clamping unit 
designed for picking 
strawberries (Feng et al. 
2012)
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of collision between the fingers and the plant, which is necessary to optimize the 
success rate of picking.

8.2.2  Stem-Holding End-Effectors

Compared to the end-effectors designed to hold fruit (discussed in Sec. 8.2.1), the 
end-effectors designed to hold fruit stem have the advantage of avoiding direct con-
tact and potential impact on fruits, which makes it more suitable for fruits and veg-
etables with slim and long stems, such as strawberries, cucumbers, and grapes. For 
example, the cucumber picking end-effector developed by Henten et al. (2002) at 
Wageningen University (Fig.  8.11a) consisted of two fingers for grasping the 
cucumber stems. After the cucumber was held in place by a suction mechanism, its 
stem was then grabbed by the end-effector. Subsequently, electrical heating in the 
upper part of the fingers was used to cut off the stem. Another end-effector with 
clamping fingers was designed for strawberry picking by Hayashi. This end-effector 
had the clamping fingers moving synchronously with the cutting blades, which were 
installed above a clamping claw. After the claw was closed, the fruit stem was held 
and separated from the plant. Feng et al. (2018) also designed a similar gripper with 
synchronous grasping and cutting claws for picking bunches of tomatoes 
(Fig. 8.11b).

Though these techniques were shown to be effective for picking long-stem fruit, 
end-effectors with stem-holding mechanisms were often found to be difficult to 
apply to fruits with short stalk/stem and/or those fruit growing in clusters due to the 
limited space available for grabbing and cutting operation.

8.2.3  End-Effectors for Direct Separation

Direct separation picking implies that the end-effectors directly separate the fruit or 
fruit stalk from the plant without clamping it, and then collects or transports it to a 
container. The apple harvesting end-effector designed by Abundant Robotics 

Fig. 8.10 Apple picking 
end-effectors designed 
with air suction as fruit 
separating unit (from 
Thorne 2019)
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discussed above (Thorne 2019; Fig. 8.10) picked and separated apples from their 
respective branches using strong negative pressure formed by a high-power vacuum 
generator and then transported them to a collection bin/container along a vacuum 
pipe. Muscato et al. (2005), on the other hand, designed a citrus picking end- effector 
adopting a spiral sleeve mechanism (Fig. 8.12). When the fruit entered the sleeve, 
the sleeve rotated to direct the fruit into the picking device along the spiral track. 
Next, the rotating cutter at the end severed the fruit stem to separate the fruit from 
its stem.

In addition to robotic picking of individual fruit as discussed in the previous 
paragraph, these types of end-effectors have been widely used in harvesting a bunch 
of fruit together including mass harvesting systems based on shaking or vibratory 
mechanisms. An automated wolfberry harvester designed by Peng et al. (2019) at 
Ningxia Academy of Agricultural and Forestry Sciences, China, was customized to 
hold wolfberry bunches into a container through manual assistance, and a vibrating 
device installed in the container caused the mature fruit fall off into the container 

Fig. 8.11 Various end-effectors designed to hold and cut fruit stems: (a) a cucumber picking end- 
effector (from Henten et al. 2002); (b) a tomato picking end-effector (from Feng et al. 2018)

Fig. 8.12 A direct- 
separation type end- 
effector consisting of a 
spiral sleeve used to pick 
citrus (from Muscato et al. 
2005)
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(Fig. 8.13a). The wine grape harvesting machine developed by Oxbo International 
used a beam end-effector (Huffman 2010; Fig. 8.13b) that applied vibratory signal 
to the vines to separate bunches of berries off of the canopies.

Because a single device was able to perform fruit separation, capturing, and col-
lection, the direct-separation end-effectors (and associated mechanism) like the 
ones discussed in this subsection led to generally a compact structure and efficient 
harvesting operation. Nevertheless, due to the lack of auxiliary mechanisms to pro-
tect the fruit, these systems could cause high level of fruit damage from fruit-to-fruit 
and fruit-to-device impacts. Therefore, this type of end-effectors and associated har-
vesting systems are more appropriate for harvesting fruit with a thicker pericarp, or 
fruit used in processing market (and not those consumed fresh).

8.2.4  Other Novel End-Effectors

Different fruit crops pose different challenges for robotic picking and seek for novel 
end-effector technologies to be effective. Sweet pepper is one of such examples as 
it has a special shape as well as unique characteristics including large size, irregular 
posture, and short stem. To meet the needs of picking fruit with these unique char-
acteristics, a novel end-effector was developed by Arad et  al. (2019). The end- 
effector consisted of two-finger auxiliary positioning device to restrict swinging of 
sweet peppers during picking (Fig. 8.14a), and a saw-shaped cutting knife was con-
tinuously pushed forward until the fruit stem was cut off. Severed fruit fell onto a 
container placed below the end-effector. Sweet peppers are often produced using 
hanging wire cultivation mode and are currently picked manually. The end-effector 
designed in this study, which used three steps of constraint, cut, and collect fruit, 

Fig. 8.13 End-effectors designed to directly separate bunches of fruit together: (a) an end-effector 
developed for wolfberry harvesting with vibration (from Peng et al. 2019); (b) a vibration beam 
end-effector used to harvest wine grapes (from Huffman 2010)
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was able to overcome the fact that the fruit and the fruit stem were difficult to hold. 
The design also offered simple and practical solution that also improved the toler-
ance on fruit positioning error of the robotic systems.

Preter et al. (2018; Octinion Company, Leuven, Belgium) designed a strawberry 
picking end-effector (Fig. 8.14b) incorporating a combination of fruit holding and 
stem pulling mechanisms. The end-effector, thus, prevented any residual stem on 
the fruit from scraping other fruits being collected together. The clamping fingers 
were made of elastic material with a hollowed-out structure using 3D printing tech-
nology. The fingers demonstrated satisfactory adaptive deformation to strawberry 
fruits so that the fruits could be reliably held without causing any damage.

Considering the need for automated sorting and packaging of fresh fruit and 
vegetable, Soft Robotics Company (Boston, USA) customized a fruit gripper with 
tentacle-shaped soft fingers based on the breakthrough in soft materials and struc-
tural design (Anandan 2016; Fig. 8.14c). This technology leads to an end-effector 
that is highly adaptable to fruits and vegetables with different shapes. Compared to 
the suction mechanism and multi-joint fingers, it possesses the obvious advantages 
of being more efficient and reliable. At the same time, with this technique, end- 
effector mechanism control is simple, the modular installation is easily applicable, 
and the material is both harmless and sanitary. Hence, this type of end-effectors is 
suitable for application in the fruit and vegetable industry, both for harvesting and 
post-harvest handling.

8.3  Design Considerations for Picking End-Effectors

8.3.1  Fruit Holding Mechanism

 (a) Finger configurations

As mentioned previously, the current picking robots comprised various end- 
effectors, each offering its own advantages and disadvantages. Owing to its 

Fig. 8.14 Some unique types of end-effectors studied for fruit and vegetable harvesting and han-
dling: (a) a sweet pepper picking end-effector (from Arad et al. 2019); (b) a strawberry picking 
end-effector (from Preter et al. 2018); (c) a soft fruit gripper (from Anandan 2016)
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relatively simple structure, flexible application, and convenient operation, the two- 
finger configuration is currently the most widely used picking end-effector. However, 
its versatility with respect to picking targets of complex shapes and varying postures 
is limited. The under-actuated end-effectors use the simple multi-joint flexible fin-
gers to form a multi-finger holding device. The bending curve of fingers is smooth 
and has a certain compensation ability, which allows for proper adaptation of the 
end-effector to various fruit sizes. That said, this mechanism is considered highly 
under-actuated since its multi-joints are driven by only one motor. Whenever obsta-
cles such as branches and leaves are encountered between the fruit and the end- 
effector, the flexible finger will bend, thus causing failed picking.

The end-effectors with multiple flexible fingers, based on the anthropomorphic 
multi-joint finger, pneumatic artificial muscle, shape memory alloys, ion exchange 
polymeric metal materials, are currently being researched actively in the field of 
robotics. However, they are still far from practical application, especially agricul-
tural application, given their significant complexity and cost.

 (b) Number of fingers

The more the fingers, the better the reliability of holding the target. It is worth 
mentioning that the increased number of fingers would also increase the complexity 
of the mechanism and the control system would also increase, and would cause 
more interference with fruit stalks, branches, and leaves. Spherical fruits can gener-
ally be held by two or more fingers. In instances when there are fewer fingers, the 
overall configuration of the end-effector would be compact and convenient to use.

 (c) Measuring physical properties of fruits

The static-friction coefficient, which is the intrinsic property between materials 
touching each other, is a critical parameter to determine the grasping force on fruit/
stalk in order to overcome the external force causing them to slide off. Stainless 
steel, PVC, and rubber are often the materials of choice in developing end-effectors. 
The static-friction coefficients between the fruit/stem and the end-effector materials 
can be calculated by measuring a series of maximum static-friction forces under 
different pressures (Feng et al. 2019).

A device for measuring the maximum static-friction force is depicted in Fig. 8.15. 
The contrast material is pasted on the presser and the base of the universal testing 
machine, and contacted with the measured fruit/stalk. After setting the pres-
sure’s intensity with which the presser holds the fruit/stalk, a pulling-force instru-
ment is adapted to retrieve the fruit until it becomes freely movable. The maximum 
value displayed on the pulling-force instrument is noted as the double maximum 
static-friction force under the setting pressure, including frictions both on the top 
and bottom sides of the fruit/stem.

The friction coefficient is greater when the fruit/stalk comes into contact with the 
rubber compared with the other two kinds of contrast material, meaning that it 
would be easier to hold fruit or stalk with graspers made of rubber. Besides, the 
stalk’s friction coefficient is less than that of fruit for all the three kinds of contrast 
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material, hence holding the stalk necessitates a stronger force compared with hold-
ing fruit.

Impact or pressure resistance capability of fruit is another important factor to 
consider when designing the flexible picking end-effectors. A device for measuring 
the resistance is delineated in Fig. 8.16. The fruit is set between the presser and the 
base. And the the presser extrude the fruit until the pressure on the fuite rises to the 
extremity, when the resistance force from fruit has a sharp decline. The maximum 
pressure value measured is recorded as the pressure a fruit can resist without being 
damaged.

As tomato fruit ripen, its pressure resistance capability declines by 60% from the 
green mature stage to full maturity (with complete color change). The pressure 
resistance ability of fruit along the axial direction is generally higher than the same 

Fig. 8.15 A device to measure maximum static frictional force (from Feng et al. 2019)

Fig. 8.16 A device to 
measure pressure 
resistance (radial) of fruit 
(from Feng et al. 2019)
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in the radial direction, irrespective of the sample’s maturity stage. In other words, it 
is easier to crush the tomatoes by pressing radially rather than axially.

8.3.2  Separating Fruit from Plants

 (a) Stem cutting

Using blades to directly cut off fruit stalks/stems is a simple and practical way to 
separate the fruit. At present, stem cutting end-effectors are mostly used for long- 
stem fruits such as strawberries, cucumbers, and tomatoes. However, since the 
blades are repeatedly used, it is possible to cause infection in plants by pathogens 
and fruit moisture loss at the incision site. In addition, the stem cutting mechanism 
may fail to work for fruits that grow in clusters due to relatively narrow working 
space and varying fruit postures, which creates challenging environment for cutting 
apparatus to get into the stems for cutting.

 (b) Separation at the abscission layer

Given that the fruit stem abscission layer is naturally formed when the fruits 
mature, end-effectors acting on separating fruit at abscission do not need an addi-
tional stem separation mechanism. These end-effectors are capable of separating the 
fruit through pulling, folding, and twisting actions, while the fingers hold the fruit 
steadily. The major advantages of this kind of end-effectors include simple structure 
and versatility.

Due to the directional distribution features of the abscission layer tissues, the 
breaking forces in different directions vary substantially. If a fruit is pulled along the 
stem, it usually requires a larger pulling force to sever the tissue. Additionally, the 
forces exerted by the fingers on fruit surface will also rise to ensure that the fruit is 
securely grasped, which results in a significant increase in the actuation power, con-
figuration size, and weight of the corresponding mechanism. In addition, excessive 
pulling force exerted on the fruit may cause the branches to break. On the other 
hand, if the force is tangent to the abscission layer, the required detachment force 
will be comparatively lower. Fruits with stem abscission layers, such as tomatoes, 
apples, and pears, all have this characteristic. It is also noted that humans also 
exploit this characteristic to achieve efficient picking of these fruits by twisting the 
stem rather than pulling fruit along the stem.

 (c) Thermal cutting

As discussed above, stem cutting might cause disease infection in plants. Thermal 
cutting, therefore, provides an alternative that is considered a safe way for severing 
fruit stems. For example, cucumber (Henten et al. 2002) and sweet pepper (Bachche 
and Oka 2013) picking end-effectors were used to separate fruits from plants by 
thermal cutting. These end-effectors operate with the principle that when the two 
electrodes come into contact with the fruit stem, a high-frequency current is 
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generated, and the high temperature generated inside the stem breaks off its fibrous 
tissue. This method avoids the dilemma of incision pollution and water loss, but it 
require two electrodes to make reliable contact with the fruit stem to form a circuit 
pathway, which necessitates high positioning accuracy of the picking robot. As an 
alternative way of thermal cutting, Zhang et al. (2011) developed a strawberry har-
vesting end-effector using laser cutting. As the fruit stem was grabbed, the laser 
installed on the finger was energized, which generated sufficient heat to burn off the 
fruit stem. The prototype they developed, however, was effective for only small 
strawberry stems. Thermal cutting of thicker fruit stems with laser requires a more 
powerful laser generator.

 (d) Measuring physical properties of fruit

A device used to measure cutting force is necessary to severe fruit stem as por-
trayed in Fig. 8.17. Two blades (NO.1 and NO.2) made of T12 steel were installed 
in two opposite sides of the device as shown in the figure. One blade is stationary 
and other the can be moved. During the test, fruit stem to be tested is held in place 
between two blades. Then, the movable plate is pressed down against the stem until 
the stem is cut off. The maximum force recorded by the device in this process is 
noted as the cutting force necessary to severe the stem. It is also noted that the cut-
ting force needed to severe the stems with the double blade device discussed here 
was about 50% less than the force needed with the single blade device (Feng 
et al. 2019).

As fruits like tomatoes mature, the abscission layer formed at the stem-branch 
and stem-calyx can be readily separated, which is the optimum point for harvesting 
the fruit from the plant. Thus, obtaining its breakage property is pivotal for 

Fig. 8.17 A device to 
measure cutting force of 
fruit stem (Feng et al. 
2019)
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designing the harvesting end-effectors. A device for measuring stem breakage force 
at abscission-layer is depicted in Fig. 8.18.

The stem is more easily broken at stem-branch layer when pulled along an angle 
of 0° than at any other angles. It has also been found that the difference in the break-
age force by pulling along 30°, 60°, and 90° are negligible. Besides, as the fruit gets 
more mature, the value of the breakage force goes down. It has been reported to fall 
by roughly 44% as the fruit goes from green maturity to full maturity.

Compared to the force necessary to separate stem at stem-branch junction, the 
stronger force is necessary to separate fruit at the stem-calyx layer. The breakage 
force at this layer decreases with increasing pull force angle. The minimum value of 
the breakage force along an angle of 90° was 44% less than the maximum value 
along an angle of 0°. In addition, the breakage force also diminishes as the fruit get 
more mature, and the trend is slowed down after the maturity gets to the color 
change stage, because the development of the calyx abscission layer is complete by 
this stage (Feng et al. 2019).

Fig. 8.18 A device to measure abscission layer breakage force of fruit (Feng et al. 2019)

Q. Feng



209

8.4  Challenges

8.4.1  Complexity, Diversity, and Variability of Objects

The fruit is an important biological component of plants, and different plants pro-
duce diverse fruits. The picking end-effectors for different target fruit, therefore, are 
usually not interchangeable. For example, strawberry picking claws may not be 
used to pick tomatoes without a substantial modification. The development of reli-
able, unique end-effectors for picking various types of fruits is a necessary prereq-
uisite for realizing robot picking operation.

Even for the same plant, due to the random growth of fruit population, their 
shape, posture, and position are different. Therefore, it is important to account for 
the difference in size and mechanical properties of fruits and fruit stem in designing 
end-effectors, so that the power and size of the end-effectors meet the requirements 
of most of the fruits. Taking tomato fruits as an example, the diameter of most fruits 
ranges between 50 mm and 90 mm, and there are also heteromorphic fruits that are 
either too large or too small. If the goal is to meet the needs of every fruit, the size 
and power of the end-effector will have an excessively vast range, and the develop-
ment and application costs will rise accordingly.

The growth posture of the picking targets (fruits) is also a random variable. 
Optimal positioning of the end-effector to approach and capture the fruit/stem is 
necessary for successful picking. This need presents a huge challenge for position-
ing the end-effector to hold the fruit or stem, because it is difficult to locate the 
posture of spherical fruit and slim stems in the complex farming environment.

The aggregation of naturally grown fruits is also hard to address. In addition to 
individual fruits, fruits growing in clusters and/or bunches and overlap/occlusion of 
fruit and fruit stem are also quite common. Therefore, avoiding mechanical interfer-
ence and accurately manipulating single fruit is also an immensely challeng-
ing issue.

8.4.2  Needs for High Precision Operations

As an integral part of a robotic operation in crop production, fruit picking end- 
effectors need to be able to prevent damage and achieve high-efficiency and low- 
energy picking operations. Due to the variation in fruit shape and size, it is necessary 
for the picking end-effector to have an adequate error tolerance and nondestructive, 
flexible operation characteristics to ensure high success rate of picking, and prevent 
or reduce picking failure and/or bruising, cuts, and other kinds of damages to fruit. 
There are three main sources of fruit damage during robotic picking: (i) Impact dur-
ing grasping is the most common damage, which is caused by the collision between 
fingers (or other end-effector parts) and fruit under fast operation, which greatly 
increase the probability of fruit damage. (ii) The fruit is bruised, cut, or otherwise 
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damaged by other objects such as fruit rubs on the robot or plant during picking. (iii) 
The fruits are bruised when being released to a conveyer or container, primarily due 
to fruit-to-fruit impact/collision.

Due to the narrow working space within the plant canopies and the limited bear-
ing capacity of the manipulator, lighter and smaller end-effectors have greater 
advantages in terms of working flexibility and are more conducive to saving energy. 
So, under the premise of meeting the requirements of picking operations, the ideal 
end-effector should be light and compact. This requirement, however, may create a 
contradiction. Despite the fact that the reliability of the picking end-effector can be 
improved through structural optimization, mechanical feedback and intelligent con-
trol, its complexity, size, and cost would increase accordingly, thus its practicability 
would decrease instead.

8.5  Summary and Concluding Thoughts

Application of the humanoid design concept

Traditional agricultural production conditions, with manual operation as the 
main body, do not match the requirements of robots for a standardized environment, 
which is an important factor limits the practical application of agricultural robots on 
farmland. Through analyzing and imitating human and animal behavior, the idea of 
bionic design is very necessary for improving the performance of the traditional 
end-effector device (Chen et  al. 2015). So the actuator of multi-function, high- 
efficiency and humanoid characteristics would be an important trend of the end- 
effector R&D for agricultural robots.

Material technology breakthrough

With the advancement in material science and engineering in recent years, the 
emergence and application of soft materials such as SMA (Yang and Gu 2007), 
IPMC (Chatterjee et al. 2013), and FEA (Tarvainen and Yu 2017) are of great sig-
nificance to solve the issue of flexibility faced by current agricultural robots. These 
kinds of materials offer outstanding advantages in terms of contact flexibility, 
motion control, and structure compactness, which can effectively overcome the 
problems of multi-joint drive, fruit damage caused by rigid contacts, and complex 
structure of the current clamping end-effectors. However, these materials still have 
shortcomings in stress, service life, and cost, which cannot fully meet the current 
needs for agricultural robots.

Integration of machinery and agronomy/horticulture

Compared with industrial robots, agricultural robots work with biological mate-
rials/objects with different shapes and sizes, constantly changing working environ-
ment, and random distribution of target positions and postures. Such uncertain 
agricultural conditions have become one of the important factors restricting the 
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commercial application of agricultural robots. The concept of systems approach 
combining agricultural machinery and agronomics/horticulture could be a powerful 
tool to increase production efficiency and reduce cost and to improve the adaptabil-
ity of agricultural machinery. Such an approach also provides an important way to 
promote the wider application of innovative, intelligent equipment in agriculture. 
Some of the agronomic/horticultural improvement that might help adoption of 
robotic harvesting include: (i) adopting precise crop/canopy management tech-
niques so that fruits growing at the same height range can be harvested at the same 
time; (ii) cultivating new varieties with longer fruit stems, which are more conve-
nient for robotic picking; and (iii) Intensifying the abscission layer formation of 
mature fruits to reduce the difficulty in fruit separation.
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Chapter 9
Control Techniques in Robotic Harvesting

Siddhartha Mehta and Maciej Rysz

9.1  Introduction

Food security and global market competition can be regarded as major factors fuel-
ling the interest and need for agricultural robotics. In addition, the agricultural sec-
tor in many developed countries is operating at reduced manpower due to the lack 
of seasonal labor availability, high insurance costs, and rising wages. According to 
Gongal et al. (2015), the labor-intensive and injury-prone working conditions expe-
rienced in specialty crop harvesting are leading to a decline in skilled labor avail-
ability and the increase in harvesting costs. For example, consider the case of Florida 
citrus, which had harvesting costs of about 2–4 times that of Brazilian harvesting 
costs in the period from 1979 to 2009. In 2008–2009, the delivered-in cost of Florida 
orange was $2.359  USD per kg solids, while that of the Brazilian orange was 
$1.598 per kg solids. The harvesting cost alone for Florida orange in 2015–2016 
was $0.2985 per m2 compared to the production cost of $0.5752 per m2. As reported 
by major economic studies, the harvesting cost of Florida citrus must be reduced by 
50% to maintain global competitiveness and its long-term viability (Brown 2002). 
In this respect, mechanization of fruit harvesting via automated or semiautomated 
mass harvesting systems is highly desirable. However, mechanized fruit harvesters 
have limitation for soft fruit harvesting due to excessive bruising and mechanical 
damage to the harvest. Fruit damage is typical to mass harvesting systems since they 
are based on the principle of shaking or knocking fruit out of trees. As a result, the 
harvest obtained via mechanical harvesting is more suitable for the juice market. 
Another alternative to manual labor is to develop autonomous robotic harvesting 
systems, which have potential to improve productivity and reduce harvesting costs. 
Advanced robotic end-effector designs employing state-of-the-art technology, such 
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as force feedback sensors, can greatly reduce and even eliminate fruit damage, thus 
making robotic harvesters attractive for the fresh fruit market. However, the harvest-
ing time for this selective harvesting technology can be significantly greater than 
that of the mass harvesters. Therefore, a viable approach could be to use mechanical 
harvesters for the juice market and robotic harvesting systems for the fresh fruit 
market. Collectively mechanical and robotic harvesting technologies, by the man-
ner of complementing each other, can aid in realizing sustainable agriculture prac-
tices that improve economic viability and support the global mission of food 
security.

Control systems are ubiquitous in modern day agriculture as we increasingly 
seek autonomous and robotic solutions to the traditionally manual agricultural oper-
ations. And the demand for advanced control techniques that offer performance and 
robustness guarantees is growing rapidly to realize highly efficient autonomous 
operations. In reference to robotic harvesting, the role of a control system can be to 
guide a robotic system, typically a robotic manipulator, from its current position and 
orientation (i.e., pose) to a desired pose corresponding to the location of a fruit or 
vegetable to be harvested using observations or measurements provided by sensors. 
Visual servo controllers or vision-based controllers rely on cameras or imaging 
devices to provide image measurements of an object to the underlying control sys-
tems. One of the advantages of using a camera as a sensor is that even a relatively 
inexpensive monocular camera can provide exceptionally rich information, includ-
ing shapes, colors, and textures, of the scene being viewed. As a result, vision-based 
control is the most popular control technique used in robotic harvesting. The cam-
eras can be monochromatic, color (RGB), or color with depth (RGB-D), also known 
as depth cameras. Both monochromatic and RGB cameras form an image by pro-
jecting the three-dimensional scene onto the camera’s two-dimensional image 
plane. On the other hand, RGB-D cameras, in addition to capturing the two- 
dimensional image, provide depth information for every pixel in the image. RGB-D 
cameras hold great promise but are currently limited by the available technology. 
Although the control techniques discussed in this chapter hold for any of these cam-
eras, we will limit our discussions to monocular RGB cameras for the sake of 
simplicity.

In this chapter, we will go over the basics of vision-based control and review the 
progress made in visual servoing in robotic harvesting. Subsequently, we will study 
the process of controller design by presenting a simple visual servo control system. 
Stability and performance of control systems, which are the key influencers in 
determining harvest efficiency, can be affected by uncertainties in the system and 
environment. With this motivation, we will present robust and adaptive visual servo 
controllers that are resilient to these uncertainties. Finally, we state open problems 
that are aimed at improving harvest efficiency and harvesting times via improve-
ments in the performance of visual servo control systems.
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9.2  Basics of Visual Servo Control

As discussed earlier, a visual servo controller uses image feedback from a camera to 
control the motion of a robotic system. Specifically, the camera provides relative 
position of an object being viewed in the camera’s coordinate frame, which can be 
used to obtain control signals (e.g., velocity, acceleration) for the robot. Visual servo 
controllers can be classified into three architectures—position-based, image-based, 
and 2.5D control system—depending on how the image feedback is used to obtain 
control input. In position-based control system, the control input is computed in the 
3D Cartesian space based on the estimated 3D pose of an object with respect to the 
camera. The 3D pose of the object can be recovered from its 2D images using the 
knowledge of a model of the object. In image-based control system, the control 
input is computed in the 2D image-space using the image coordinates of the object. 
Roughly, 2.5D control systems can be considered as a combination of the position- 
based and image-based control systems. In 2.5D control systems, the control input 
is expressed in part in the 2D image-space using image coordinates of the object and 
in part in the 3D Cartesian space using the partial 3D pose of the object. This 3D 
pose information is only limited to determining the rotation and scaled translation 
of the object with respect to the camera, which can be obtained from the images 
using photogrammetric techniques. Therefore, 2.5D control systems do not rely on 
the model knowledge of the object.

Independent of the choice of visual servo control architecture, usually the first 
step is to process the images obtained from a camera to provide the image-space 
coordinates of the object being viewed. This is accomplished by detecting certain 
features of the object. The commonly used features include edges, corners or points 
of interest, and blobs. Advances in computer vision and image processing have led 
to the development of several feature detectors such as canny (Canny 1986), sobel 
(Sobel and Feldman 1968), FAST (Rosten and Drummond 2006), and Shi and 
Tomasi (Shi 1994), which offer relatively straightforward and computationally trac-
table means of processing images to detect the desired features. In robotic harvest-
ing, it is natural to use the centroid or geometric center of a fruit or vegetable as a 
feature, which first requires that the fruit or vegetable be detected from the back-
ground in the image. For brevity, we will restrict our discussion in this chapter to 
fruit harvesting. The process of separating fruits from the image background is 
referred to as fruit detection. Most fruits can be detected based on their shape, color, 
or reflectance. For example, oranges can be detected via color thresholding accom-
panied by circular shape detection methods. Fruit detection typically yields blobs 
corresponding to the position of the fruits in the image, and the centroid or geomet-
ric center of the blobs provide the 2D image-space coordinates of the fruits. The 
knowledge of 3D position of the fruits is highly desirable in path planning and 
control of the robot. However, when using monocular camera as the only sensor, the 
challenge is to recover the 3D scene information from its 2D images, i.e., to obtain 
the depth information that is lost during projection of the 3D scene on the 2D image 
plane. To this effect, various depth recovery techniques based on monocular, stereo, 
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or multiple camera configurations can be used to estimate the 3D fruit position. 
Alternatively, additional sensors such as laser rangefinders and ultrasonic transduc-
ers can also be used to provide depth information. The process of obtaining 3D 
coordinates of the fruits by measuring or estimating the unknown depth is known as 
fruit localization.

A vision system can be configured as eye-in-hand, also known as camera-in- 
hand, or eye-to-hand, which is largely dictated by the application. In eye-to-hand 
camera configuration, a camera mounted external to the robot provides image mea-
surements of the robot’s pose. For example, a fixed camera mounted in a greenhouse 
can view and navigate a wheeled mobile robot. On the other hand, in eye-in-hand 
configuration, a camera is attached to the robot such that it provides image measure-
ments of the environment as the robot moves. Roughly speaking, the former pro-
vides image measurements encoding information on the pose of the robot and the 
latter provides that of the object being viewed with respect to the camera. Robotic 
fruit harvesting systems widely employ the eye-in-hand camera configuration, 
where a camera can be mounted on the robot’s end-effector. The control objective 
in this case becomes to drive the robot towards a fruit to be harvested while regulat-
ing the image coordinates of the fruit to a desired set point (e.g., the image center).

9.2.1  Progress in Vision-Based Control in Robotic Harvesting

The objective of vision-based control in robotic harvesting is to autonomously posi-
tion the robot in relation a fruit for successful detachment using measurements pro-
vided by a vision system. This section outlines different control techniques used in 
robotic harvesting. For comprehensive overview of robotic systems and vision- 
based control in agriculture, readers are referred to Tillett (1993), Sarig (1993), 
Hannan and Burks (2004), Li et al. (2011), Bac et al. (2014), and Zhao et al. (2016). 
Vision-based control approaches in robotic harvesting can be broadly divided into 
open-loop control and closed-loop control.

Open-loop vision-based control systems combine visual sensing and robotic 
manipulation using the principle of “look-then-move,” in which a scene is inter-
preted to determine the position of the fruits and then control is executed to position 
the robot at these pre-determined fruit locations. This principle leads to simple con-
troller design but puts burden on image processing to accurately obtain the fruit 
position. Since open-loop control does not require continuous image feedback, 
computational demands are greatly reduced and higher manipulation speeds can be 
obtained. Below is some of the notable research that uses open-loop control strategy 
for robot positioning. Grand d’Esnon (1985) and Grand d’Esnon et al. (1987) devel-
oped a vision-based three degrees-of-freedom (DOF) manipulator—MAGALI—for 
golden apple harvesting, where a monocular camera detected fruits during a vertical 
scan. Subsequently, the telescopic arm translated along the optical beam until it 
reached the fruit, which was sensed by a photoelectric sensor. Levi et al. (1988) 
developed a vision-based cylindrical manipulator system for robotic citrus 
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harvesting. In AGROBAT project, Buemi et al. (1996) used a stereo-vision camera 
for tomato localization, which provided measurements for open-loop control of a 
six DOF robotic arm for harvesting. Kondo et al. (1996) relied on a similar approach 
but using pseudo-stereo vision to localize cherry tomatoes by triangulation. In an 
orange harvesting robot, Recce et  al. (1996) used two robotic arms, each with a 
monocular camera within its end-effector, to form a pseudo-stereo sensor. Neural 
network-based approach was used to match the stereo images and map the image 
coordinates of the fruits to joint-space coordinates of the robot. In a robotic cucum-
ber harvester, Van Henten et al. (2002) proposed a cooperative camera scheme that 
uses two monocular cameras; one mounted a rail and another on top of the end- 
effector. Since both the cameras can move, pseudo-stereo images can be obtained 
from each of the cameras to localize fruits. The rail-mounted camera enables robot 
motion planning and coarse guidance, while the camera mounted on the end- effector 
is used for final approach to the fruit. Cho et al. (2002) considered open-loop control 
architecture for lettuce harvesting robot, where the camera measurements were used 
to control the force of the gripper. Baeten et al. (2008) relied on a single eye-in-hand 
monocular camera for robotic apple harvesting. Two open-loop controllers were 
employed; a rotation controller to bring the target fruit to the center of the image and 
a translation controller to move the gripper along the optical axis by a distance 
determined through triangulation process. Tanigaki et al. (2008) employed a laser- 
based 3D vision sensor in eye-in-hand configuration to obtain 3D position of the 
fruits for a cherry harvesting robot. Hayashi et al. (2010) used a standard stereo- 
vision setup for 3D localization of strawberries, which were harvested using a three 
DOF manipulator.

Open-loop control systems are attractive due to their simplicity. However, these 
systems may suffer from excessive positioning errors in outdoor agricultural envi-
ronments since continuous image feedback is not opted to verify and rectify the 
position of the robot with respect to the fruit. Measurement errors in the fruit’s posi-
tion, unmodeled dynamics of the robot, and environmental disturbances (e.g., fruit 
motion) are some of the factors that may adversely affect the performance of open- 
loop control systems, which may result in unsuccessful pick-cycles and reduced 
harvest efficiency. Closed-loop vision systems overcome these limitations by 
employing continuous image feedback. A dynamic “look-and-move” approach is 
the most widely implemented closed-loop visual servo control framework. In this 
architecture, the vision system is separated from the robot dynamics. As a result, 
knowledge of the complex, nonlinear robot dynamics is not required, which signifi-
cantly simplifies controller development. The vision system in this framework pro-
vides set-point kinematic inputs, often position or velocity of the end-effector, to a 
robot controller, which tracks these set-point commands by computing appropriate 
joint inputs for the manipulator. In contrast, the direct visual servo control frame-
work eliminates the robot controller entirely and directly provides joint inputs using 
vision alone. Therefore, direct visual servo controllers require accurate knowledge 
of the robot dynamics.

The first reported closed-loop visual servo control in robotic harvesting appears 
in Harrell et al. (1985), where a monochromatic vision system was implemented to 
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track citrus fruits at 60 Hz. Subsequently, the authors developed a direct visual servo 
controller in Harrell et al. (1989) to obtain joint inputs based on the image position 
of the fruit centroid with respect to the principle point (i.e., center of the image). 
However, the control structure resulted in geometric increase in control gains rais-
ing concerns about stability of the system and requiring an ad hoc gain scheduling 
procedure. In Harrell et  al. (1990) the authors developed a vision controller that 
computed joint velocity inputs to regulate a fruit at the principle point. The robot 
approached the fruit with predefined velocity until an ultrasonic transducer mounted 
in the end-effector detected the presence of fruit. The closed-loop vision control 
improved robustness to fruit motion, but it was largely limited by the image feed-
back rate. Similar to Van Henten et al. (2002), Edan et al. (2000) used a cooperative 
sensing framework consisting of two monochromatic cameras serving as a far- 
vision sensor and a near-vision sensor. The far-vision camera detected oncoming 
melons, whereas the near-vision camera mounted on the gripper provided image 
feedback to reach centrally over a target melon until a proximity sensor detected the 
soil surface. In eggplant harvesting, Hayashi et al. (2002) developed a vision-based 
fuzzy controller to determine the forward, vertical, and angular motion of the end- 
effector based on the feedback from a monocular camera mounted in eye-in-hand 
configuration. Bulanon et  al. (2005) considered an end-effector mounted camera 
and laser ranging sensor for apple harvesting robot. A proportional controller was 
developed to provide camera position inputs based on the error between the image 
position of an apple and the image center. Foglia and Reina (2006) also considered 
a monocular camera system in eye-in-hand configuration for radicchio harvesting, 
where the closed-loop system was aimed to compensate for positioning errors of the 
gripper due to unexpected speed variations of the carrier. In robotic apple harvest-
ing, De-An et al. (2011) developed a proportional controller that related the image- 
space (pixel) errors to joint angle increments to position a fruit at the image center. 
A standard IBVS controller was used in sweet pepper harvesting in Barth et  al. 
(2016) using a single monocular camera in eye-in-hand configuration, where the 
center of gravity image coordinates of the largest segmented sweet pepper served as 
the image feature. The feature depth in the image Jacobian was obtained using 
simultaneous localization and mapping.

As evident from the literature, the general idea is to use vision feedback from an 
eye-in-hand camera to align a fruit with the image center using closed-loop control 
and move the robot towards the fruit with a constant velocity until an additional 
sensor (e.g., proximity sensor) detects the presence of fruit. However, it must be 
noted that the dynamics of the fruit in the image plane are coupled with the motion 
of the camera along the optical axis. Controllers designed without taking into 
account this coupling can at best guarantee semi-global stability. In other words, the 
control gains must be selected sufficiently large to compensate for the change in the 
fruit position due to motion of the robot along the optical axis. Otherwise, it will 
result in instability of the closed-loop system and failure to maintain the fruit at the 
image center. Furthermore, the change in the fruit position in the image is “ampli-
fied” as the camera gets closer to a fruit thus requiring even larger control gains. 
This can lead to excessive camera motion, which may result in the fruit leaving the 
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camera’s field-of-view (FOV). To improve stability of robotic harvesters, Mehta and 
Burks (2014) presented a hybrid control framework that uses principles of IBVS 
and PBVS to control the 3D translation of the camera. The image measurements of 
the fruit provide camera velocities along the image axes, whereas the camera veloc-
ity along the optical axis is obtained using the depth estimates of the fruit. 
Subsequently, the hybrid control design is extended to develop robust and adaptive 
visual servo controllers in Mehta et al. (2016) and Mehta and Burks (2016), respec-
tively, to compensate for the unknown fruit motion that may arise due to environ-
mental disturbances.

9.2.2  A Basic Visual Servo Control System

In this section, a closed-loop visual servo controller is presented to regulate a robot 
end-effector to a target fruit location. The controller is based on the dynamic look- 
and- move principle. A cooperative vision system consisting of a fixed camera and 
an eye-in-hand camera is incorporated. The fixed camera provides a global view of 
a tree canopy, while the eye-in-hand camera, due to proximity, provides high resolu-
tion fruit images. The fixed camera is primarily responsible for high-level tasks such 
as building global fruit map, optimal harvest planning, and robot path planning. 
While the image feedback from the eye-in-hand camera enables the end-effector to 
reach the desired fruit location. The 2D image position of the fruits in the eye-in- 
hand camera and the depth recovered in fruit localization form the basic feedback 
structure of this visual servo controller as shown in Fig. 9.1.

In this chapter, we will use a computationally inexpensive model-based approach 
(Mehta and Burks 2014) for depth estimation. The controller development pre-
sented in this section is modular with respect to depth estimation technique. Hence, 
the controller holds for different depth estimation methods, such as the ones using 
stereo-vision (Buemi et al. 1996; Kondo et al. 1996; Recce et al. 1996; Van Henten 
et  al. 2002, 2003) and range measurement sensors (Harrell et  al. 1989, 1990; 
Bulanon et  al. 2005). As discussed earlier, harvest efficiency is one of the most 
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Fig. 9.1 Visual servo control scheme in robotic fruit harvesting
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influential factors in robotic harvesting economics, which depends on the stability 
and performance of closed-loop control systems. Therefore, specific attention is 
given to rigorous controller formulation. A rotation controller is developed to orient 
the robot end-effector towards the target fruit such that the target fruit enters the 
FOV of the eye-in-hand camera. This enables harvesting the fruits that were not 
initially visible to the eye-in-hand. Subsequently, the developed visual servo con-
troller regulates the end-effector to the fruit location. Lyapunov-based stability 
analysis guarantees global exponential stability of the closed-loop system such that 
the desired transient performance can be obtained by appropriately selecting con-
trol gains.

Euclidean Reconstruction
Consider the orthogonal coordinate frames F, Ff, and Fb as shown in Fig. 9.2. The 
time-varying coordinate frame F is attached to an eye-in-hand camera, i.e., a camera 
held by a robot end-effector. The coordinate frame Ff is attached to a fixed camera, 
for example, a stationary camera mounted in the workspace of a robot, and the coor-
dinate frame Fb is attached to the stationary base of a robot. O∗ ∈ R3 denotes the fruit 
position measured in the base frame Fb. The unknown Euclidean coordinates of the 
fruit center, m t mf( ) ∈, 3, expressed in terms of F and Ff, respectively, are given as

 m t x t y t z t m x y z
T

f f f f

T( ) = ( ) ( ) ( )  =  ,  (9.1)

where z(t), zf ∈ R denote the unknown depth of the target fruit expressed in F and 
Ff, respectively.

The Euclidean-space is projected onto the image-space, so let mi(t) and mfi denote 
the corresponding normalized Euclidean coordinates of the fruit center as

Fig. 9.2 Cooperative camera framework showing coordinate frame relationships, where the time- 
varying frame F is attached to the eye-in-hand camera, Ff corresponds to the fixed camera, and Fb 
is attached to the stationary base of the robot
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Assumption 9.1 In (9.2), it is assumed that the unknown depths z(t), zf > ε, where 
ε ∈ R>0 is a constant. This is a standard assumption in visual servo control, which 
physically means that the target is always in front of the camera.

In addition to having normalized task-space coordinates, the target point will 
also have pixel coordinates acquired by the eye-in-hand camera and the fixed cam-
era. Let p(t), pf ∈ R2 denote the pixel coordinates of the target center expressed in F 
and Ff, respectively, as

 p t u t v t p u v
T

f f f

T( ) = ( ) ( )  =  , . (9.3)

Since the normalized Euclidean coordinates in (9.2) cannot be measured directly, 
a global invertible transformation (i.e., the pinhole camera model) is used to deter-
mine the normalized Euclidean coordinates from the corresponding pixel infor-
mation as

 p Am p A mT T

f
T T

f f1 1  =   =, . (9.4)

where A, Af ∈ R3 × 3 are the known, constant, invertible, intrinsic camera calibration 
matrices for the eye-in-hand camera and the fixed camera, respectively.

Leveraging on our efforts in Mehta and Burks (2014), the depth of a fruit can be 
estimated via perspective transformation by assuming known geometry of the fruit 
variety as1
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(9.6)

where ẑ f ∈ denotes the estimated Euclidean depth of a fruit measured in Ff; dox, 
doy ∈ R denote the sample mean major and minor axes, respectively, of an ellipsoi-
dal fruit, dix, diy ∈ R denote the major and minor axes, respectively, in the image 
plane, Ap ∈ R denotes the area of the fruit in the image plane of the fixed camera (in 
pixels), e ∈ R is the known eccentricity of the ellipse, the constant ff ∈ R>0 represents 

1 In the presence of partial occlusions or clustered fruit, advanced methods such as perimeter detec-
tion and shape analysis techniques (Plebe and Grasso 2001; Hannan et al. 2010) can be used to 
directly obtain the image-space diameters dix, diy of the fruit to get ẑ f  using (9.5).
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the focal length in pixels for the fixed camera, and λxf, λyf ∈ R>0 are the scaling fac-
tors in the image x and y directions of the fixed camera, respectively.

Remark 9.1 Any inaccuracy in estimating the fruit size Ap affects the major and 
minor axes, dix and diy, respectively. As stated in Remark 1  in Mehta and Burks 
(2014), it can be shown that dix/diy is constant and hence the unknown depth ratio 
ˆ /z zf f , denoted by γz ∈ R>0, is also constant.

Controller Development
The objective is to locate the robot end-effector to the target fruit position for har-
vesting, i.e., to regulate the eye-in-hand camera coordinate frame F to the target 
fruit in the sense that OF(t) → O∗, where OF(t) → R3 denotes the time-varying position 
of the frame F measured in Fb. The control objective can be achieved by regulating 
the time-varying fruit pixel coordinates p(t) to the desired image coordinates, and 
regulating the end-effector to the desired fruit depth. Hence, mathematically, the 
control objective can be stated as

 p t p p u v z t zd d

T

d( ) → = [ ] ( ) =, 0 0 and  (9.7)

where zd ∈ R>0 denotes the maximum desired depth of the fruit in F, and u0, 
v0 ∈ R denote the pixel coordinates of the principal point (i.e., the intersection of an 
optical axis with the image plane) of the eye-in-hand camera.

As discussed earlier, the fixed camera can view an entire or part of a tree canopy. 
Using (9.5) and (9.6), the fixed camera can obtain a global fruit map and the corre-
sponding harvesting sequence such as in Edan et al. (1991). However, the fruit to be 
harvested may not be visible to the eye-in-hand camera, say, because the eye-in- 
hand camera is pointing away from the fruit. Therefore, a nonlinear rotation control-
ler is developed to orient the eye-in-hand camera such that the target fruit enters its 
FOV. The rotation controller uses the estimated fruit position obtained by the fixed 
camera to determine the desired orientation of the eye-in-hand camera. Once the 
target fruit is visible to the eye-in-hand camera, the translation controller regulates 
the end-effector to the target fruit using image feedback from the eye-in-hand camera.

 (a) Rotation Controller

In this section, a controller is developed to orient the robot end-effector such that 
the target fruit enters the FOV of the eye-in-hand camera. Using (9.2), (9.5), and 
(9.6), let the estimated Euclidean position of the fruit in the fixed camera Fj be 
denoted by m f

 ∈3. The Euclidean coordinates m f
  can be expressed in the eye-in- 

hand camera as m t

’

( ) (see (9) and (12) in Mehta and Burks 2014). Therefore, the 
objective is to align m t

’

( ) along the direction of the camera’s optical axis 0 0 1[ ]T .
The rotation error eω(t) ∈ R3 defined as orientation mismatch to bring the target 

fruit in the FOV of the eye-in-hand camera can be represented in terms of angle-axis 
representation as

 e uω θ=  (9.8)
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where u(t) ∈ R3 represents a unit axis of rotation such that u t m t
T( ) = ( ) ∧[ ]

’
0 0 1

, and θ t m t
T( ) = ( ) [ ] ∈−cos ,

’
1 0 0 1�
��

 denotes the rotation angle about u(t) that 
brings m t

’

( ) along the optical axis, such that 0 ≤ θ(t) ≤ π. In (9.8), m t�
��’

( )∈3 rep-
resents a unit vector along m t

’

( ).
Based on the rotation error in (9.8), the angular velocity ωc(t) ∈ R3 of the camera 

can be designed using the following PD controller:

 ω ω ω ω ωc p dk I k L e= − +( )−3

1

 (9.9)

where kpω, kdω ∈ R>0 are the proportional and derivative control gains, respectively. 
Various loop tuning methods, such as Ziegler-Nichols and manual (trial-and-error), 
can be adopted to determine the control gains. In (9.9), I3 denotes a 3 × 3 identity 
matrix, and Lω(t) ∈ R3 × 3 is a measurable Jacobian-like function defined as
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where sinc(θ) is the unnormalized sinc function, and [u]× is the skew-symmetric 
matrix of u(t). The determinant of Lω(t) is det(Lω) = 1/sinc2(θ/2), thus being singular 
only at θ = 2kπ ∀ k ∈ N>0, i.e., outside of 0 ≤ θ(t) ≤ π.

Theorem 9.1 The angular velocity control input in (9.9) ensures global exponen-
tial regulation of robot end-effector such that the target fruit is in the FOV of the 
eye-in-hand camera in the sense that

 e t tω ζ ζ( ) = −{ }0 1exp  (9.11)

where ζ0, ζ1 ∈ R denote positive bounding constants.

Proof For detailed stability analysis, readers are referred to Mehta and 
Burks (2014).

 (b) Translation Controller

The objective of the translation controller is to regulate the eye-in-hand camera 
to the target fruit position. Based on the control objective, the translation errors 
ev1(t) ∈ R2 and ev2(t) ∈ R can be defined as

 e p pv d1 = −  (9.12)

 e z zv d2 = −α ˆ  (9.13)

The error ev1(t) ∈ R2 corresponds to regulating the fruit to the image center, and 
the error ev2(t) ∈ R is designed to regulate the end-effector to the target fruit depth. 
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In (9.13), ẑ t m t( ) = [ ] ( )0 0 1   is the estimated depth of the target fruit from the 
eye- in- hand camera, and m t ( ) is the estimated fruit position in the eye-in-hand 
camera coordinate frame. The estimated fruit depth ẑ t( ) is assumed to be a continu-
ous function of time. In (9.13), α ∈ R>0 denotes a scaling factor such that z z t< ∀α ˆ . 
The constant α is selected based on an upper bound on the Euclidean depth estima-
tion error, and, as a rule of thumb, α can be selected arbitrarily high to ensure that 
the robot reaches the target fruit despite any estimation errors. Since z z<α ˆ , the 
robot may overshoot the target fruit, and hence the end-effector is equipped with an 
infrared proximity sensor to stop once the fruit is reached.

Let v t v t v t v tc cx cy cz

T( ) ( ) ( ) ( )   be the linear velocity of the eye-in-hand 
camera and define v v t v tc cx cy

T

1  ( ) ( )  . Taking time derivative of (9.13), the lin-
ear velocity vcz(t) along the optical axis of the camera can be obtained as

 v k k ecz pv dv v= − +( )−2 2

1

21 α  (9.14)

where kpv2, kdv2 ∈ R>0 are the proportional and derivative control gains, respectively.
Taking the time derivative of the first expression in (9.4), the velocity of the eye- 

in- hand camera can be related to the velocity p t( )∈2 of the target centroid in the 
image frame as

 
p

z
J v

z
J vv c v cz= − +

1 1
1

’ ’’

 
(9.15)

where Jv
'(u, v) ∈ R2 × 2 and Jv

''(u, v) ∈ R2 are measurable image Jacobians. Since no 
orientation change is required during translation control, the image dynamics in 
(9.15) are obtained considering ωc(t) = 0..

Using (9.15), the velocity vc1 ∈ R2 along the x and y-axis of the eye-in-hand cam-
era can be designed as
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where kpv1, kdv1
' ∈ R>0 are proportional and derivative control gains, respectively, 

such that kpv1 = kpv11 + kpv12. In (9.16), the facts that ˆ /z z = γ  and z z≤α ˆ  are used.

Theorem 9.2 The translation velocity control inputs vc1(t) and vcz(t) in (9.16) and 
(9.14), respectively, ensure global exponential regulation of robot end-effector to 
the desired fruit depth in the sense that

 e t tv1 2 3( ) ≤ −{ }ζ ζexp  (9.17)

 e t tv2 4 5( ) = −{ }ζ ζexp  (9.18)

where ζ2, ζ3, ζ4, ζ5 ∈ R are positive bounding constants.
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Proof For detailed stability analysis, readers are referred to Mehta and 
Burks (2014).

Experimental Validation
The performance of the developed visual servo controller was demonstrated using a 
7 degree-of-freedom Robotics Research K1207 manipulator shown in Fig. 9.3. The 
indoor experiment comprised of an artificial citrus tree and two color CCD cameras 
(KT&C, KPCS20-CP1) with focal length of 4.3 mm and resolution of 640 × 480 
that served as the fixed camera and the eye-in-hand camera. The fixed camera was 
mounted on stationary base of the manipulator as shown while the eye-in-hand cam-
era was attached to the robot end-effector as shown in Fig. 9.3. Images from both 
the cameras were digitized using USB frame grabbers. The image processing work-
station (IPW) was used to identify fruits from the captured images using the method 
described in Hannan et al. (2010). The robot control workstation (RCW) hosted a 
lower level controller to generate joint torque commands based on the control input 
from the IPW. Also, the RCW broadcasted the joint position feedback along with 
the end-effector position and orientation to the IPW using a real-time communica-
tion network.

The experiment was repeated several times for different robot and fruit positions. 
The actual fruit position O* was measured using forward kinematic analysis by 
positioning the end-effector at the center of the fruit. Figure 9.4 shows the polar plot 
of the Euclidean distance error between F(n) (red ◇) and O* (blue △). To assist in 
visualizing the results, the fruit is shown as an ellipse of axes {dox, doy}. From the 
fact that regulation error is less than the radius of the fruit and that the fruit was 
harvested successfully during each trial, the preliminary results indicate satisfactory 
performance of the developed visual servo controller.

Fig. 9.3 (a) Robotic Research K1207 manipulator with the fixed camera mounted on the station-
ary base of the robot and (b) the eye-in-hand camera located inside the robot end-effector
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9.3  Advanced Control Techniques

The performance of visual servo controllers in robotic harvesting is affected by 
endogenous as well as exogenous uncertainties. The uncertainties in the vision sys-
tem specifications (e.g., camera calibration parameters), unmodeled robot dynam-
ics, and uncertain fruit depth measurements can be regarded as endogenous factors. 
Whereas, environmental factors such as uneven and varying illumination, fruit 
occlusion, clustered fruits, obstacles, and fruit motion contribute to exogenous 
uncertainties. In this chapter, we will particularly focus on the issue that a fruit may 
not be stationary as reported in the early works of Harrell et al. (1989). Exogenous 
disturbances such as wind gusts, fruit detachment forces, canopy unloading, and 
robot-tree contact may cause an unknown time-varying fruit motion. If not consid-
ered during control system development, the fruit motion could result in unsuccess-
ful pick cycle and reduced harvest efficiency. Robotic harvesters employing 
open-loop control or dead-reckoning are highly vulnerable to fruit motion since the 
fruit position is not updated during the reaching stage. The existing approaches to 
closed-loop visual servo control either do not consider fruit motion or implicitly 
rely on high-gain controllers (Mehta and Burks 2014; Barth et al. 2016) in conjunc-
tion with or separate from using high-frequency visual feedback (Harrell et al. 1989, 
1990) for fruit motion compensation. Approaches using high-gain controllers are 
susceptible to measurement noise as the noise inadvertently gets amplified along 
with the feedback signal, which could lead to high-bandwidth actuation (causes 
chattering of the end-effector) and system instability. In the field conditions, where 
a fruit can easily be partially occluded or clustered, additional image processing 
becomes necessary to robustly identify the fruit to improve fruit detection rates, 
which limits the rate of image feedback. Passive approach to fruit motion compen-
sation using high frequency image feedback may not be viable with the need for 
robust image processing (Muscato et al. 2005) and the desire to process higher reso-
lution imagery for improved positioning accuracy. Additionally, as stated earlier, 

Fig. 9.4 Plot showing 
Euclidean distance error 
between the final position 
of eye-in-hand camera F(n) 
(red) and the fruit centroid 
O* (blue △) for the 
obtained 21 observations
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passive approaches that do not take into account disturbance dynamics fail to guar-
antee stability and performance of the closed-loop harvesting system. Various 
researchers (Fortuna et al. 1994; Hayashi et al. 2002; Muscato et al. 2005; Mehta 
and Burks 2014; Bac et  al. 2014) have expressed the need for advanced control 
methods to improve harvest efficiency when uncertainties in fruit detection and 
tracking arise. In this section, we will present robust and adaptive visual servo con-
trollers that guarantee stability of the closed-loop harvester system in the presence 
of unknown fruit motion.

Robust and adaptive control approaches deal with uncertainties. Robust control 
methods do not require model knowledge of the uncertainty. However, a bound on 
the uncertain parameters is required to be known a priori. The robust controller is 
then designed for the “worst case” scenario using the bound. As a result, control 
energy expenditure in robust controllers can be high. On the other hand, adaptive 
control methods are based on the notion of adapting to a controlled system whose 
parameters are uncertain. Since the unknown parameters are adapted online, these 
methods can be computationally more expensive than robust control, but they 
require less control energy.

9.3.1  Robust Visual Servo Controller

The robust controller presented in this section uses the same cooperative camera 
framework presented in Sect. 9.2.2. The model-based fruit localization approach 
provides 3D position of the fruits in the fixed camera as well as the eye-in-hand 
camera, and the fruit is assumed to undergo an unknown but bounded fruit motion. 
The objective of robust controller is to position the eye-in-hand coordinate frame to 
the target fruit position in the presence of unknown fruit motion.

Controller Development
The above control objective can be achieved by regulating the time-varying fruit 
image coordinates p(t) to the desired image coordinates, and driving the end- effector 
to the desired fruit depth. Hence, mathematically, the control objective can be 
stated as

 p t p p u v z t zd d

T

d( ) → = [ ] ( ) =, 0 0 and  (9.19)

where zd ∈ R>0 denotes the maximum desired depth of the fruit in F, and u0, 
v0 ∈ R denote the pixel coordinates of the principal point (i.e., the intersection of an 
optical axis with the image plane) of the eye-in-hand camera.

 (a) Rotation Controller

The rotation error in (9.8) depends on the relative orientation between a moving 
camera and a moving fruit. Therefore, the open-loop error system obtained by tak-
ing the time derivative of (9.8) contains two terms as
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 e L dcω ω ωω= +  (9.20)

where Lω(t) ∈ R3 × 3 is defined in (9.10) and dω ∈ R3 is the exogenous disturbance as 
a result of fruit motion. The disturbance is assumed to be bounded such that 
∣dω ∣  ≤ γω, where γω ∈ R>0 and |·| denotes the L2 vector norm. This is a valid assump-
tion because the fruit moves with a finite velocity.

Based on the open-loop error dynamics in (9.20) and the subsequent stability 
analysis, the angular velocity of the camera can be designed as

 
ω

γ
γ εω ω
ω ω

ω ω ω
c k e

e

e
= − −

+

2

 
(9.21)

where kω ∈ R>0 is the control gain, and ε ∈ R>0 is chosen to be arbitrarily small.

Theorem 9.3 The rotation controller orients the end-effector such that the target 
fruit appears arbitrarily close to the center of the eye-in-hand camera. Formally, the 
rotation control input developed in (9.21) ensures uniformly ultimately bounded 
regulation of the end-effector in the sense that

 e t tω ζ ζ ζ( ) ≤ { }+0 1 2exp  (9.22)

where ζ0, ζ1, and ζ2 ∈ R denote positive bounding constants.

Proof For detailed stability analysis, readers are referred to Mehta et al. (2016).

 (b) Translation Controller

Assuming the estimated fruit depth ˆ( )z t  to be a continuous function of time, the 
open-loop error dynamics for depth regulation can be obtained by taking time deriv-
ative of (9.13) as

 e v dv cz z2 = +αξ  (9.23)

where dz(t) ∈ R is the component of fruit motion along the optical axis, such that 
∣dz(t) ∣  ≤ γd for γd ∈ R>0, and ξ denotes the constant depth ratio ˆ /z z . γd indicates an 
upper bound on the fruit velocity along the optical axis due to disturbance. Based on 
(9.23), the linear velocity vcz(t) of the eye-in-hand camera along the optical axis can 
be designed as
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(9.24)

where kz = kz1 + kz2 ∈ R>0 is the constant control gain, εz ∈ R>0 is an arbitrarily small 
design constant, and w ∈ R>0 is the user defined weight on the term |ev1|2. The control 
gain kz determines response of the controller to the input error ev2(t); however, large 
gains should be avoided in the presence of measurement noise.
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To design the linear velocity vc1(t), an open-loop error system can be obtained by 
taking the time derivative of (9.12) as
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(9.25)

Based on the open-loop error system in (9.25) and the subsequent stability analy-
sis, the linear control velocity vc1(t)  ∈  R2 of the eye-in-hand camera can be 
designed as
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where kp ∈  R>0 is the constant control gain, and εp ∈  R>0 is an arbitrarily small 
design constant. Similar to kz, the control gain kp determines response of the control-
ler to input error ev1(t).

Theorem 9.4 The translation controller guarantees that the end-effector is placed 
arbitrarily close to the target fruit location. Formally, the translation control inputs 
developed in (9.24) and (9.26) ensure uniformly ultimately bounded regulation of 
the end-effector in the sense that
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where ζ3, ζ4, ζ5, ζ6, ζ7, ζ8 ∈ R denote positive bounding constants.

Proof For detailed stability analysis, readers are referred to Mehta et al. (2016).

Experimental Validation
We used an artificial citrus fruit suspended in the air to imitate a fruit attached to a 
stem. The fruit was manually perturbed in the experiment, and the performance of 
the controller with and without robust feedback elements was recorded. The dis-
placement of the fruit centroid was ≈120 mm. Figure 9.5 shows the rotation and 
translation errors as a function of time. It can be seen that the robust controller offers 
improved compensation to fruit motion as compared to a high-gain controller. The 
motion of the fruit centroid in the image plane of the eye-in-hand camera is shown 
in Fig. 9.6, where it can be seen that the fruit is satisfactorily regulated to the image 
center even in the presence of fruit motion.
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9.3.2  Adaptive Visual Servo Controller

The robust control approach presented in the previous section compensates for the 
unknown fruit motion by including robust feedback terms that were designed to 
upper bound a nonlinear disturbance. The designed controller guaranteed that a 
robot can be regulated arbitrarily close to fruit in the presence of fruit motion (see 
Mehta et al. (2016) for details). The motivation behind using direct adaptive control 
approaches is to “learn” and compensate the fruit motion in real time. With the 
gained knowledge of the fruit motion, effective compensation can be offered as 
against using robust disturbance bounding terms. On the downside, learning requires 
that the functional form of the fruit motion is known. Instead of considering an 
arbitrary fruit motion as in Mehta et al. (2016), it is assumed that the suspended fruit 
follows the motion of a simple pendulum, which is a mild assumption for fruits with 
long stems such as orange. The fruit motion is analyzed in the image plane and 
along the optical axis of the camera using a second-order spring-mass system. By 
linearly parameterizing the motion dynamics, an adaptive update law is designed to 
identify the unknown fruit motion, and the developed adaptive visual servo control-
ler regulates the robot to a target fruit. To account for modeling uncertainties, robust 
feedback elements are also included in the control structure.

Fruit Motion Modeling
A suspended fruit, similar to simple pendulum, is considered to move in x, y, and z 
directions with respect to F. Using the small angle approximation (i.e., angular dis-
placement ≪1 rad), a pendulum can be considered a harmonic oscillator. The fruit 
motion in the image-space is analyzed as a combination of two second-order spring- 
mass systems.

For a fruit modeled using a spring-mass system as shown in Fig. 9.7 and observed 
by a stationary camera, its motion can be analyzed by separating the motion in the 

Fig. 9.5 Rotation error eω(t)  =  [eω1(t)eω2(t)eω3(t)]T and translation error e t e t e tv v
T

v

T( ) = ( ) ( ) 1 2  
where ev1(t) = [ev1x(t)ev1y(t)]T using the proposed robust controller (blue line) and without robust 
feedback terms (red dash-dot line)
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image plane ( u t v t( ) ( ), ) from the out-of-plane motion z t( ) along the optical axis of 
the camera as
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where u0, v0 ∈ R is the unknown amplitude of motion in the image plane, z0 ∈ R is 
the unknown amplitude of motion along the optical axis, and ω ∈ R is the unknown 
angular frequency of motion.

Using polynomial approximation of cyclic functions in (9.28) and segregating 
the unknown parameters u0, v0, and ω from the known functions of time, i.e., after 
linearly parameterizing the uncertainty, the image dynamics can be obtained as

Fig. 9.6 Time-varying fruit position in the image plane of the camera-in-hand. The trajectories in 
blue refer to the observed fruit position during rotation and translation control. The relative size of 
the fruit in the image plane at different time instances during translation control is also shown

Fig. 9.7 Fruit motion in 
the image plane is modeled 
as a spring-mass system
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where Yp(t) ∈ R2 × 2n is the regression matrix of known functions of time, Θp ∈ R2n is 
the vector of constant unknown parameters, and Rp ∈ R2 is defined as
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such that |Rp| ≤ γp for any γp ∈ R>0. Similarly, the depth dynamics can be obtained as

 z v Y Rz z z z= − + +Θ  (9.31)

where Yz(t) ∈ R1 × n is a vector of known functions of time, Θz ∈ Rn is the vector of 
constant unknown parameters, and Rz = z0ωR1 such that |R|z ≤ γz for any γz ∈ R>0.

Controller Development
The rotation controller to regulate the orientation of the eye-in-hand camera to view 
the target fruit is the same as given in (9.21). In this section, we will design an adap-
tive translation control law. The regulation error in the image plane ep(t) ∈ R2 and 
along the optical axis ez(t) ∈ R can be defined as

   

e p p

e z z

p d

z d

= −

= −  
(9.32)

where the fruit depth z(t)  ∈  R is assumed to be known (e.g., using 
triangulation).

Based on the error dynamics and the stability analysis, the velocity of the robot 
along the optical axis vz(t) ∈ R can be designed as
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where kz ∈ R>0 is the control gain, Θ̂z
nt( )∈  is the time-varying estimate of the 

unknown parameter vector Θz, and εz ∈ R>0 is an arbitrarily small design constant. 
The estimate Θ̂z t( ) in (9.33) is obtained using the following parameter update law:

 Θ̂ Γz z z
T

zproj Y e= ( ) (9.34)

where Γz ∈ Rn × n is the positive definite gain matrix, and proj denotes the normal 
projection algorithm, which ensures that the elements ˆ , , ,Θzi t i n( )∀ = 1 2  of Θ̂z t( ) 
are bounded as Θ Θ Θzi zi zit≤ ( ) ≤ˆ , where Θ Θzi zi, ∈ denote the known constant 
lower and upper bounds of Θ̂zi t( ), respectively.

Similarly, the camera velocity vc
'(t) ∈ R2 in the xy-plane of F can be obtained as
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where Θ̂p
nt( )∈2  is the estimate of the unknown vector Θp that is obtained using

 Θ̂ Γp p p
T

pproj Y e= ( ) (9.36)

where kp ∈ R>0 is the control gain, εp ∈ R>0 is an arbitrarily small design constant, 
and Γp ∈ R2n × 2n is a positive definite adaptation gain matrix.

Theorem 9.5 The adaptive visual servo controller in (9.33)–(9.36) guarantees that 
the end-effector is placed arbitrarily close to the target fruit location. Formally, the 
adaptive controller ensures uniformly ultimately bounded regulation of the fruit in 
the sense that
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where ζ0, ζ1, ζ2, ζ3, ζ4, ζ5 ∈ R denote positive bounding constant.

Proof For detailed stability analysis, readers are referred to Mehta and 
Burks (2016).

Simulation Results
A numerical simulation was performed to demonstrate the performance of the adap-
tive controller. A non-vanishing disturbance was assumed to perturb the fruit with 
velocity causing the fruit centroid to oscillate with amplitude of ≈dc = 210 mm. The 
image coordinates of the fruit were assumed to be affected by a zero-mean Gaussian 
noise of standard deviation one pixel. The performance of the developed adaptive 
controller was compared with a pure high-gain controller.

Figure 9.8 compares the regulation error of the adaptive controller with a high- 
gain controller. For clarity, the transient response of the adaptive controller using 
larger time scale is shown in Fig. 9.9. It can be seen from Fig. 9.9 that the regulation 
errors in the image plane approach zero as the adaptive controller learns the fruit 
motion, thus offering excellent disturbance rejection.

Figure 9.10a shows the image-space trajectory of the fruit centroid during the 
closed-loop operation using the adaptive controller, and the corresponding image- 
space trajectory using the high-gain controller is shown in Fig. 9.10b. The adaptive 
controller regulates the fruit close to the image center (blue line) as shown in 
Fig. 9.10a while the high-gain controllers demonstrate poor performance and poten-
tially unstable closed-loop operation (refer to Fig. 9.10b).
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Fig. 9.8 Error comparison 
between the adaptive 
controller (blue line) and 
the high-gain controller 
(red dotted line)

Fig. 9.9 Error e t e t e tv v
T

v

T( ) = ( ) ( ) 1 2  for dc = 210 mm, where ev1(t) = [ev1x(t)ev1y(t)]T for the pro-
posed adaptive controller

Fig. 9.10 Time-varying fruit position (blue line) and relative fruit size in the image plane of 
the camera
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9.4  Summary and Concluding Thoughts

As discussed earlier, the stability of robotic harvesters is affected by uncertainties in 
the system and environment including fruit motion, obstacles, illumination changes, 
and uncertain camera parameters. Although stability is utmost important and must 
be ensured, the control methods in robotic harvesting should also take into account 
the performance of the system. The performance can be quantified in several ways, 
such as the total control energy or the convergence time of a controller. Controllers 
guaranteeing stability as well as performance will improve harvesting economics. 
To this end, below are some of the future research directions that are aimed at devel-
oping robust and performance-oriented controllers.

Finite-Time and Fixed-Time Controllers
For the robotic harvesting systems to be able to replace labor force, it is necessary 
that the pick-cycle times of a robotic harvester are comparable to that of the manual 
operation. A significant portion of the pick-cycle time is the time required for the 
robot to reach the fruit, which depends on the performance of the controller. Robotic 
harvesters relying on constant velocity during the approach phase can reduce pick- 
cycle times by increasing the forward velocity. However, higher forward velocity in 
the vicinity of fruit is more likely to result in unsuccessful harvest attempt. The 
closed-loop 3D translation controllers developed in prior sections guarantee stabil-
ity of the closed-loop system, i.e., the robot will be successfully regulated to the 
constant or time-varying fruit position, but the convergence time is not well-defined. 
The controller in Sect. 9.2.2 provides the rate of convergence (i.e., the translation 
error decays exponentially), but theoretically it takes infinite time to reach the exact 
fruit location. It may not a concern in practice since the robot is only be required to 
reach in the vicinity of the fruit for the end-effector to successfully harvest the fruit. 
This is because the end-effectors can usually accommodate small positioning errors. 
The robust and adaptive controllers designed in Sect. 9.3 guarantee UUB stability, 
i.e., the position errors decay exponentially to a ball of known radius at the origin 
and remain inside the ball. The size of the ball can be designed to ensure that the 
end-effector successfully picks the fruit once the errors are reduced to this ball. As 
a result, the controllers developed in this chapter guarantee that the robot reaches in 
the vicinity of the fruit in finite time. The time required depends on the control gains 
as well as the initial position of the robot with respect to the fruit.

The future directions in controller development should include development of 
robust finite-time and fixed-time controllers. The finite-time controllers can guaran-
tee that the position of the robot is regulated to the exact fruit position, not in the 
vicinity of the fruit, in finite time. Among others, the finite convergence  time 
depends on the initial position error between the robot and the fruit. Whereas, fixed- 
time controllers guarantee fixed convergence time that is independent of the initial 
position of the robot with respect to the fruit. Moreover, robust finite-time or fixed- 
time controllers can ensure robustness with respect to environmental and system 
uncertainties. This blend of stability and performance is important to improve har-
vest efficiency and reduce pick-cycle times.
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Human-Robot Collaboration
The performance of autonomous and robotic systems can severely deteriorate in 
complex agricultural environments due to unmodeled effects and unforeseen events. 
While autonomous systems are preferred due to cost-effectiveness and computa-
tional benefits, given the brittleness of automation in complex environments, human 
involvement becomes crucial to improve harvesting efficiency. Therefore, the grow-
ing interest is in augmenting the capabilities of autonomous robotic systems with 
the expert knowledge of humans through human-robot collaboration. Human col-
laborators with their reasoning skills and expert knowledge gained through techni-
cal practices, training, and experience can overcome the shortfalls of autonomous 
systems pertaining to perception, planning, and mobility. To this effect, human col-
laborators may interact with the autonomous system by providing information in 
response to undocumented situations or by correcting the behavior of the system 
when deemed erroneous or inefficient.

Based on the nature of interaction, continuous or intermittent, various collabora-
tive control architectures, such as shared control and supervisory control can be 
explored. In supervisory control, a human supervisor monitors the activity of the 
robot and intermittently issues commands to modify the behavior of the robot. The 
supervisor often issues broad task-level commands instead of controlling the motion 
of the robot at an execution-level. For example, if an imminent collision is perceived 
while the robot is approaching a fruit, the supervisor can invoke “obstacle avoidance 
control” which would then be executed by the robot. The separation between human 
intervention and autonomous execution in supervisory control is overcome with 
shared control that enables both the autonomy and the human to participate in 
execution- level control. The control input to the robot can be obtained by appropri-
ately fusing the human and the autonomy control inputs (Ton et  al. 2018). With 
reference to the above example, the human operator can directly issue control inputs 
to the robot to avoid obstacles while the robot approaches a target fruit. The shared 
control architecture is particularly beneficial in agricultural robotics as it can fuse 
robust and optimal control inputs to appropriately balance the performance and 
robustness for improved harvest efficiency.
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Chapter 10
Guidance, Auto-Steering Systems 
and Control

Riikka Soitinaho and Timo Oksanen

10.1  Introduction

This chapter describes the fundamentals of automatic guidance systems, including 
methods for positioning, navigation, and control. We begin with a short introduction 
to some central terms and concepts that are the basis of understanding the technical 
descriptions later on. We also introduce a brief history of automatic guidance in 
agriculture and highlight some of the motivations and requirements for modern 
automatic guidance systems before proceeding to explain the basics of the technical 
solutions in more detail.

10.1.1  Terminology and Concepts

Automatic guidance: Sometimes also referred to as automated guidance, auto- 
guidance, or guidance. Exact definition may vary across literature. Here we pre-
fer the term automatic guidance. Automatic guidance comprises the tasks of 
positioning, navigation, control, and actuation, a system that is capable of auton-
omously guiding a vehicle to perform a task where the vehicle needs to move 
from one place to another.

Auto-steering: As opposed to manual steering, automation controls the steering 
actuator, not a human being, by turning the steering wheel. A system that makes 
it possible to steer a vehicle without a human driver, including software and 
components for actuation.
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Control: A means to regulate a process variable. A controller manipulates the pro-
cess variables. To apply a correction to a process variable based on the deviation 
of measured and desired signal with the help of actuators.

GNSS (Global Navigation Satellite System): A general term for global coverage 
satellite-based navigation utility systems that provide users with geo-spatial 
positioning and timing information, for example, GPS, GLONASS, Galileo 
and BeiDou.

GPS (Global Positioning System): The Global Positioning System is a satellite- 
based navigation utility system, owned by the United States, that provides users 
with positioning, navigation, and timing services.

Guidance directrix: A guidance directrix, or sometimes called just a directrix, is a 
course or direction for the guidance to follow.

Guidance Objective: A guidance objective is a general term for a target that is set for 
the automatic guidance system. In practice, a guidance objective could be formu-
lated as “follow the furrow.”

Implement: An agricultural implement is a tool that is used to carry out agricultural 
processes. For operation, implement is connected to a tractor using either hitch, 
hook, or drawbar. There are different types of implements, for example, for irri-
gation, cultivation, planting, and harvesting.

Motion planning: Motion planning is the task or process of finding a sequence of 
valid configurations to move a robot (for example, an autonomous vehicle) from 
one place to another. The term valid is used in two regards: valid as in the robot 
is capable of moving to such a position and orientation (pose, configuration), 
considering all possible constraints resulting from the kinematics and dynamics 
of the robot itself, but also valid as in the solution does not result in any colli-
sions with the environment.

Navigation: A typical definition of navigation usually includes at least the task of 
finding a way from one place to another. Sometimes, also correcting the course, 
orientation, and speed to arrive at the desired location is considered to be part of 
navigation.

Positioning: Determining position (and orientation) in reference to some defined 
reference system (for example, a geodetic datum).

Position, location, orientation, heading, course, track: In a three-dimensional space, 
a rigid body has 6 degrees of freedom, which means 6 values are needed to 
describe the placement of the object. Position refers to the 3D coordinates of the 
object, whereas orientation (angular position) describes the 3D rotations of the 
object. To be more precise, each rotation is measured as a displacement from a 
defined reference orientation and with respect to a specified rotation axis. In 
summary, we need both position and orientation to fully describe how an object 
is placed in space. Same definitions apply to a two-dimensional space. The terms 
position and location are interchangeable to some extent, but here we prefer the 
term position. The term heading is typically used to indicate the direction of the 
front of a vehicle (which might differ from the travel direction of the vehicle). 
The terms course and track are used synonymously to indicate the travel direc-
tion of the vehicle. In the context of satellite navigation, heading is usually 
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defined as the compass direction in which the device (for example a GPS receiver) 
is travelling.

Path: A path only considers geometric constraints, i.e., how to move from pose A to 
pose B (position and orientation). Therefore, a path is a sequence of poses from 
pose A to pose B.

Path planning: Path planning is the task or process of finding a valid (collision-free) 
path (only considering geometric constraints) from pose A to pose B.

Path tracking: Path tracking is the task or process of determining the right actions in 
order to minimize the deviation of the true (actual) pose from the planned pose 
while travelling a path. With certain vehicle applications, we consider, for exam-
ple, lateral deviation and deviation in heading.

Semiautonomous vehicle: A vehicle that is not fully autonomous but contains many 
automated functions and most of the time can work in autonomous manner but 
still under supervision of human being. It usually means that a human driver is 
on-board but vehicle navigates automatically.

Sensors: An accelerometer is a device that measures acceleration, that is, the rate of 
change of the velocity of an object. A three-axis accelerometer can measure 
acceleration in the direction of three different axes. An accelerometer senses both 
static and dynamic forces of acceleration, including gravity. A compass is a 
device that can indicate direction. The term is typically used to refer to a mag-
netic compass that indicates a direction relative to the magnetic field of the Earth. 
A GPS receiver is a device that can receive signals from GNSS satellites and 
based on the information calculate its own geographical location. A gyroscope is 
a device that can measure orientation and angular velocity. An inertial measure-
ment unit (IMU) is a device that combines accelerometers, gyroscopes, and 
sometimes magnetometers (a compass) to provide measurements of orientation, 
angular rate and gravitational force. A lidar (originally an abbreviation for Light 
Detection and Ranging, sometimes also called a laser scanner), sometimes called 
a laser scanner or a laser rangefinder, is a device that can compute the distance to 
objects by emitting a laser light and measuring the travel time of the reflection. 
An odometer is a device that can measure the distance travelled by a vehicle, for 
example, a car.

Steering actuator: A steering actuator is a mechanism to electronically control the 
steerable components of the vehicle, usually realized by electro-hydraulic 
mechatronics. An actuator is typically defined as a device that can convert energy 
into motion. A steering actuator is an actuator for steering commands, for exam-
ple, an electric motor that provides the rotation for a wheel.

Trajectory: A trajectory (as opposed to a path) also considers time constraints when 
moving from pose A to pose B (position and orientation over time).

Trajectory planning: Trajectory planning is the task or process of planning a valid 
(collision-free) trajectory (considering also timing constraints) from pose A 
to pose B.
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10.1.2  History, Motivation, and Requirements 
for Automatic Guidance

Automatic guidance, sometimes also referred to as automated guidance, auto- 
guidance, or guidance, is a system that is capable of autonomously guiding a vehi-
cle to perform a task where the vehicle needs to move from one place to another. For 
example, autonomous spraying of a field requires an automatic guidance system.

In the future, agriculture will be increasingly more automated. This poses tech-
nological challenges but also great opportunities to implement more precise, effi-
cient, and environmentally friendly ways of farming and cultivation. Knowledge 
and understanding of how to automate agricultural processes are essential in order 
to design and maintain these systems. Like in many other industries, where a similar 
trend of automation has been seen over the past few decades, one essential motiva-
tion for agricultural automation is to allow human workforce to attend to other tasks 
that require capabilities that automation cannot yet provide. For example, automatic 
guidance can free the human operator from adjusting the course of the agricultural 
vehicle and allow them to concentrate on operating the equipment.

Automatic guidance can provide multiple benefits for crop production as well as 
for the environment. Even with declining workforce, productivity can be increased 
with automation. Sometimes also cost benefits can be achieved, and the fast prog-
ress of automation can eventually provide added safety and reliability. Precision and 
efficiency are increased by reducing overlaps and minimizing gaps in field opera-
tions, thus also reducing the amount and cost of fertilizer and other chemicals. This 
in turn minimizes the environmental impact and helps protecting the surrounding 
habitats. Automation, including automatic guidance, can also enable variable rate 
applications and other applications that are difficult without automation and modern 
sensor systems. In some cases, an automatic guidance system can work in condi-
tions that are difficult for a human driver.

Former surveys of the topic provide a wide overview of the early ideas and devel-
opment of automatic guidance in agriculture. For example, Wilson (2000), Reid 
et al. (2000), and Keicher and Seufert (2000) provide great summaries of the rele-
vant research until the beginning of the new millennium. For the interested reader, 
these surveys provide an excellent reference to earlier development of automatic 
guidance.

Wilson (2000) concluded that especially computer vision and the Global 
Positioning System (GPS) offer the best technical solution to vehicle guidance. 
This, in general, seems to have become reality by the 2020s. Beginning from early 
mechanical solutions, the development of automatic guidance in agriculture has 
advanced with the advent of various sensors based on different principles such as 
ultrasonic sensors, magnetometers, laser ranging devices, accelerometers, GPS 
receivers, and imaging sensors such as cameras, combined with novel algorithms to 
extract information from the data and act accordingly.

By now, consumer products have entered the market, many of them based on 
GPS navigation, and are capable of traversing an open field semiautonomously, 
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including fully automatic turning. Some of these systems are able to offer a 
centimeter- level accuracy and precision. A modern automatic guidance system may 
include various sensor and measurement devices, including a GPS receiver for 
absolute positioning, but also IMU, gyroscope, accelerometer, and compass for 
additional measurements. Especially in research, relative positioning approaches 
have been applied as well, utilizing, for example, cameras or laser ranging devices, 
combined with different algorithms to extract positioning information from the 
environment. Some additional computational capabilities might be required for 
some of these applications. Finally, to control the vehicle with automation, it has 
been necessary to implement the system with actuators and feedback sensors for the 
actuation. An example of some of the typical hardware components of a modern 
automatic guidance system is outlined in Fig. 10.1.

To determine a suitable guidance strategy and to implement a suitable guidance 
system (both software and hardware), we need to address individual conditions and 
limitations that stem from different practices in crop production. Four different agri-
cultural landscapes are presented in Fig. 10.2. For example, in an orchard (a) or 
between two rows of crop (b), it is possible to obtain a directrix for the guidance by 
observing and analyzing visual cues in the environment. A system based on com-
puter vision might be able to provide a majority of the necessary information for 
positioning. On an open field (c), however, it is much more challenging to establish 
a directrix based on camera imaging or laser ranging sensors alone. In this case, for 
example, GNSS-based positioning can offer a means of navigating in the field. In 
addition to the availability of positioning information in the environment, we also 
need to consider challenges related to the terrain. For example, additional consider-
ations might be needed for terrace farming (d) or other difficult terrain. Finally, 

Fig. 10.1 An example of some typical hardware components of a modern automatic guidance 
system. (Illustration: Riikka SOITINAHO)
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since our knowledge of the environment might be imperfect or incomplete, a means 
of observing the surroundings might be necessary to avoid any unforeseen obstacles.

The framework of an automatic guidance system often comprises the following 
components: path planning, positioning, navigation, control, and actuation. The 
hardware part of the system consists of sensors and actuators, where the sensors 
contribute information of the environment and the system itself, and the decisions 
made based on this information are converted into control signals that are transmit-
ted to the actuators that change the course and orientation. The software part, obtain-
ing input from the sensors, is responsible for combining all the information into 
control signals to operate the actuators.

In the rest of this chapter, we apply the following structure to introduce and 
explain the key components of an automatic guidance system, as shown in Fig. 10.3. 
First of all, we need positioning methods to obtain information about the location 

Fig. 10.2 Agricultural landscapes: (a) orchard, (b) row crops, (c) open field arable land, (d) ter-
race farming

Fig. 10.3 Automatic guidance and related concepts. (Illustration: Riikka SOITINAHO)
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and orientation of the vehicle. This information is an input to navigation which uses 
it to find a plausible path from one place to another. Control is then concerned with 
how to feasibly satisfy the navigation plan, given the case specific limitations of the 
real world. Finally, actuation addresses the specific electrical, mechanical, hydrau-
lic, and pneumatic systems that are employed to control and move the vehicle. 
Before concluding the chapter, we briefly visit the topic of standardization related 
to automatic guidance.

10.2  Automatic Guidance

The most common form of guidance is related to parallel swathing. In parallel 
swathing, the guidance objective is to keep fixed distance to another path that is 
either preplanned (a set of paths) or the trace of any earlier swaths in the field to be 
tracked, sometimes called contours.

Straight paths, often called A-B lines, are the basic element of any guidance sys-
tem. Basic path planning is rather easy, as it only requires filling the field with a set 
of straight lines, a fixed distance apart from each other. Advanced paths, often called 
contours, are anything that has a more complex shape compared to a straight line.

Guidance refers to guiding a vehicle, such as a mobile robot or a tractor, along a 
path or to a target. Also manual guidance, using human perception and human steer-
ing control, is classified as guidance, but this is out of the interest of this book. In 
many field operations, the main noise to be compensated by automatic guidance is 
related to wheel slip. Lateral slip of the steering wheel is directly influencing the 
accuracy of guidance, but also wheel slip in direction of travel influences in curves 
because it causes bias for the actuation as the desired curvature is not realized. Due 
to unavoidable wheel slip in the field, closed-loop control is the only means to real-
ize automatic guidance.

10.2.1  Guidance Objectives

The task for the guidance system depends on the field operation. Therefore, it is 
crucial to make a distinction between various guidance objectives in order to cover 
precision of operation. The most common guidance objective is parallel swathing, 
which aims at seamless field operation in an open field when it comes to operations 
like harrowing or sowing. In this case, the traces made by the implement may nei-
ther overlap nor is it allowed that any gaps remain between adjacent swaths. The 
goal is a seamless field with no visible gaps or overlap between the swaths 
(Fig. 10.4).

With small compromises, this very generic guidance objective can be applied 
also to several other field operations like open field spraying, fertilizer spreading, 
grass mowing, and combine harvesting. However, furrow ploughing is an example 
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of an operation where the guidance objective is to guide the vehicle along the furrow 
by keeping the wheels in the furrow—a physical feature that was created in the field 
by the previous pass. Similar track-a-feature guidance objectives appear in potato 
field operations (and other row crop operations) both during the season and 
harvesting.

Vehicle combinations, either mechanically connected or independent, require us 
to define further guidance objectives. For instance, a trailed sprayer connected to a 
tractor used for crop protection with multiple steering actuators is an example of 
this. During the growth season, the vehicle combination should cause as little dam-
age to the crops as possible, and therefore it is intended that the wheels of the 
sprayer follow the tracks of the tractor precisely to minimize the area where pres-
sure and compaction is applied by the wheels.

Furthermore, a subsequent series of operations offer various guidance objectives 
that are somehow interconnected. For instance, in hay making, a typical workflow 
is mowing, tedding, raking, and baling. In this work, especially raking and baling 
are interrelated—the guidance objective of baling is to track the windrows created 
during raking. In addition, proper raking operation is dependent on the maneuver-
ability of the baling vehicle.

The examples of guidance objectives provided here are to give the reader an idea 
of how a guidance objective is typically defined. The set of possible field operations 
in different regions and crops is somewhat unlimited, and therefore an exhaustive 
list of guidance objectives cannot be defined.

10.2.2  Sensors for Guidance

Commercial success in order to realize automatic guidance was largely based on 
economically available GNSS positioning components. Automatic guidance was 
certainly possible prior to GPS, but the systems never became popular due to 

Fig. 10.4 The guidance 
objective in sowing is 
seamless parallel swathing. 
(Image: Timo OKSANEN)
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complexity and high cost. GNSS receivers and easy-to-use correction services have 
allowed users to deploy automatic guidance systems in increasing numbers.

Depending on the guidance objective, it might or might not be possible to rely 
entirely on GNSS positioning. In order to follow the ridges in a potato field, the 
traces need to be precisely recorded during planting to form the paths for the subse-
quent operations. In general, this is possible and offered by many commercial auto-
matic guidance systems, but due to human errors it might be difficult to use in 
practice. The most common challenges are related to forgetting to set the recording 
on, losing the recorded log files, or partially losing the accuracy of positioning dur-
ing the planting work.

Some guidance objectives are related to tracking some features in the field that 
are created in situ. For instance, windrows have certain size and shape based on the 
material properties, yield, and the characteristics of the machine. For this sort of 
guidance objectives, accuracy benefits can be gained by using local sensors that 
measure directly the location of the feature in the field relative to the location of the 
vehicle. For example, local row feelers, based on either mechanical or noncontact 
sensing, are used in row crop machinery to follow the crop rows. Contactless sen-
sors, including sensors detecting features optically, are used to guide machines; 
these are typically based on vision with one or multiple cameras in different wave-
lengths or 2D or 3D lidars.

10.3  Positioning and Navigation

10.3.1  Positioning

Positioning is the task or ability to determine one’s location (including orientation) 
with relevant accuracy and precision. In some regards, all positioning can be consid-
ered to be relative, whether it is relative to a satellite constellation or to a marker 
found in the surrounding environment. However, sometimes it makes sense to make 
a distinction between positioning methods that yield a location in a geographic 
coordinate system (relative to the surface of the Earth) and positioning methods that 
yield a location relative to a landmark, a beacon, or any kind of a reference point in 
the vicinity. In this case, we would say the former methods provide absolute posi-
tioning whereas the latter ones provide relative positioning.

Sometimes it is not enough to know one’s position (coordinates in 3D space), but 
also knowledge of one’s orientation (rotation in 3D space) is of essence. Other 
important variables include speed, heading, and course. In general, heading and 
course are not the same thing—heading means the direction of the front of a vehicle, 
whereas course means the travel direction of the vehicle. Instead of speed and 
course we can also use the term velocity.

Field navigation is often planned on projected 2D space even if the fields are not 
strictly flat. The main reason for this is mathematical simplification for path 
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tracking, path planning, and other subsystems of the guidance system. In gentle 
slopes, the inaccuracy resulting from this simplification is often acceptable. The 
other reason for using 2D instead of 3D is the lack of precise information about the 
field slopes (or the terrain model), as fields tend to change along the years due to 
erosion and natural altitude changes over the season. After ploughing, the field sur-
face is relatively higher. In order to do 3D path planning and guidance, a sufficient 
terrain model should be acquired.

To follow and guide a vehicle along the desired path, the positioning system 
should give a good estimate of where the path is relative to the vehicle and its com-
ponents (like a trailer), or vice versa, where the vehicle and its components are rela-
tive to the path. In 2D space, for a simple single body system, two main variables 
are to be considered when it comes to path tracking: angular deviation and cross- 
track error to the path. In simplified cases, only the cross-track error might be suf-
ficient, but in general case orientation error is needed for conversion of the 
cross-track error in various locations of the vehicle (like the front axle or intake of 
a harvester), not only where the GNSS receiver is located.

For a multibody vehicle, like a tractor with a trailer, each component should be 
considered in the estimation. For instance, a trailed seed drill follows the tractor in 
trailer-like behavior during curves, but also on side slopes and soft soil, the imple-
ment tends to slide due to wheel and other slip. Estimation of the relative orientation 
of the components in multibody systems can be done with three main approaches: 
indirectly by using the motion and kinematic model of the system, by measuring the 
relative angles with sensors, or by multiple GNSS receivers. All these options are 
used in commercial solutions.

To calculate the angular deviation of the vehicle and the path, the heading of the 
vehicle needs to be estimated. Heading is the real orientation of the vehicle (one 
angle in 2D space) in the global coordinate system. Heading should not be mixed 
with course, which refers to the travel direction of the vehicle in the global coordi-
nate system. Under strong side forces and wheel slip, heading and course may differ 
remarkably. Also, in case of true four-wheel steering, the heading and course differ 
intentionally.

10.3.1.1  Relative Positioning

Relative positioning is feasible when position can be measured relative to a refer-
ence point. Instead of measuring position as coordinates in a global coordinate 
frame, we measure position relative to, for example, the coordinate frame of the 
vehicle. Various sensors and methods exist for relative positioning, including odom-
etry, camera and machine vision systems, stereo vision, laser rangefinders, ultra-
sonic sensors, artificial marker systems, and mechanical feelers. Hague et al. (2000) 
give a good introduction to ground-based sensing systems that provide relative posi-
tioning, including odometry, artificial landmarks, and local feature detection. For 
example, a mechanical feeler can be used to estimate the position of a furrow, and 
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camera systems and lidar sensors can detect the location of crops and obstacles. 
With odometry, we can estimate change in position using data from motion sensors.

These sensors can be classified into two categories: sensors that measure the 
internal state of the system and sensors that make external observations. For exam-
ple, inertial sensors like accelerometers and gyroscopes can be used to measure the 
state of the agricultural vehicle. A geomagnetic compass can indicate the direction 
of the vehicle relative to the magnetic field of the Earth. Encoders that measure 
wheel rotation can be used to estimate travelled distance, given that the circumfer-
ence of the wheel is known. On the other hand, sensors that make external observa-
tions include cameras, laser rangefinders, ultrasonic sensors, and mechanical feelers. 
Finally, combining data from multiple sources to achieve higher accuracy position-
ing is possible with sensor fusion methods like Kalman filter (Kalman 1960).

Systems based on artificial landmarks typically measure the distance to known 
markers in the environment, for example, by a radar or a laser device and time-of- 
flight calculation. Given three (or more) markers, the position of the vehicle can be 
calculated based on trilateration. If the absolute locations of the markers are known, 
this can be considered a method of absolute positioning. A disadvantage of these 
systems is that the markers need to be set up, and a line of sight needs to be available 
independent of the location and tilt of the vehicle.

More common nowadays are positioning systems based on cameras or laser 
rangefinders that detect naturally occurring objects in the environment. Several 
studies describe systems that are based on a camera, a stereo camera, or a laser 
rangefinder alone. These sensors are used to observe local environment features that 
are distinct from their surroundings, especially crop rows and crop edges.

Often some form of image or data processing is required in order to use the sen-
sor information for positioning. Extracting meaningful information from camera 
images or laser scanner data can be demanding compared to the relative ease with 
which humans can identify objects they see. Some assumptions need to be made 
about the objects that are observed in the environment. For example, a typical 
assumption in vision-based positioning is that a crop row can be distinguished from 
the surroundings based on its green color. Separating the green plants from the soil 
and other surroundings is done by image segmentation. The goal of image segmen-
tation, in this case, is to obtain a binary image where the crops are typically repre-
sented with white pixels and the background with black pixels. One way of 
performing automatic image thresholding is the Otsu method (Otsu 1979), which 
was used, among others, by Guerrero et al. (2013). Also near-infrared images can be 
used to detect vegetation (for example, Åstrand and Baerveldt 2005).

Another commonly used sensor for relative positioning is a laser rangefinder, or 
a lidar. For detecting objects like crops with a lidar, it is required that the crops (crop 
rows, crop edges, windrows) can be distinguished from the ground level. Another 
typical assumption is that the crops grow in relatively straight rows. For example, 
Fleischmann et al. (2013) present an approach for observing field structures, like 
windrows, for positioning and guidance of agricultural vehicles. The positioning 
relies exclusively on distance data from a laser scanner. Also Malavazi et al. (2018) 
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propose a lidar-only based approach for positioning. A line detection algorithm for 
2D point clouds is applied to detect the crop rows.

Varying outdoor illumination is a challenge especially for camera imaging. Also 
blurring of the images might be caused by the vehicle movement. Vehicle move-
ment needs to be considered with certain types of laser scanners as well, since so 
called rolling shutter artifacts can result from measurement during movement. A 
rotating laser scanner takes multiple asynchronous distance measurements during 
one rotation. Because the vehicle is moving, each measurement is recorded in a dif-
ferent location. Therefore, unless a correction is applied, a distortion can occur in 
the constructed scene.

Other types of sensors, for example, IMU and odometry, are sometimes used for 
positioning in combination with a camera or a lidar scanner. For example, Blok 
et al. (2019) combined lidar scanner, IMU, and encoder data for positioning using 
both a Particle filter and a Kalman filter.

In certain field operation, it is possible to make marker lines to the field in order 
to do parallel swathing. For instance, in sowing, the seed drill may be equipped with 
side markers which draw a small furrow into the soil that is not affecting the agro-
nomic result but is a visible target line for the next swath, to be followed with an 
eye. This marker may be also followed by lidar or machine vision. Detection of 
single furrow is challenging as the field may have similar lines naturally, for instance 
after preceding harrowing. One option is to improve the marker with additional 
features, like diagonal lines combined with the marker line. Kannas et al. (2008) 
presented an example of this, realized at the edge of harrow, to create special fea-
tured diagonal line to be detected and tracked in the parallel swath, pattern is pre-
sented in Fig. 10.5.

To provide positioning information for automatic guidance, the positioning sen-
sors that make external observations need to be installed in a known location on the 
vehicle so that a transformation can be made between the coordinate frame of the 
vehicle and the sensor.

10.3.1.2  Absolute Positioning

Absolute positioning in a fixed coordinate system is necessary to work in open 
fields with no features. In the early days, in the era before satellite navigation, abso-
lute positioning was possible, for example, using local beacon systems, triangula-
tion of signals, or with an optical theodolite or a tachymeter. Even today, a robotic 
tachymeter is a valid precision localization tool, but the setup time and cost are not 
suitable for agricultural applications. Thanks to their versatility and global perfor-
mance, GNSS receivers have outnumbered other absolute positioning technologies, 
to an extent that at the time of writing other technologies have only historical 
relevance.

GNSS (Global Navigation Satellite System) is an umbrella term for all satellite 
navigation systems for absolute positioning. Originally the term was used to refer to 
GPS (USA), but parallel systems have been introduced later, including GLONASS 

R. Soitinaho and T. Oksanen



251

(Russia), Galileo (Europe), and BeiDou (China). Each satellite system has equal or 
more than 24 satellites in different orbits. GPS was originally designed for 24 satel-
lites, but both GPS and other systems have been augmented with additional satel-
lites for redundancy. Modern satellite navigation radios on the Earth are capable of 
tracking all systems with a single antenna, and therefore multiple constellations can 
be used simultaneously to improve availability. Satellites broadcast signals in fre-
quencies typically between 1.1 and 1.6 GHz.

Mobile receivers have to receive a signal at least from four satellites in order to 
calculate their own position. The positioning is based on trilateration of distances to 
each satellite, but since the receiver clocks are relatively inaccurate, a fourth signal 
is required to estimate the time shift. In the original GPS constellation, the maxi-
mum number of visible satellites at any given time was 12. Some shadow regions 
are therefore possible when the minimum of four satellites at a time cannot be seen 
by the receiver. Multi-constellation systems have improved the situation, and track-
ing at least four satellites at a time is more accessible nowadays.

A GNSS receiver natively tracks only GNSS satellites, and positioning is based 
purely on trilateration of pseudo-distances to each tracked satellite. Therefore, a 
GNSS receiver in basic mode works autonomously, without any additional depen-
dency or two-way communication. However, due to signal distortion in the 

Fig. 10.5 A harrow with marker device that created improved feature to be detected with higher 
confidence with machine vision. (Image: Timo OKSANEN)
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atmosphere of the Earth, the pseudo-distances are not precisely correct. This makes 
positioning relatively inaccurate. Typical absolute accuracy of an autonomous 
GNSS receiver is in the scale of 10 m.

Autonomous GNSS does not provide sufficient accuracy for agricultural guid-
ance and navigation. Only in exceptional cases, it can be used for rough operations. 
Typically, GNSS is augmented with free SBAS (Satellite-based Augmentation 
System) services that provide regional corrections over other geostationary satellite 
systems. SBAS is a general term for regional systems, like WAAS (USA) or EGNOS 
(Europe). Using SBAS usually improves the accuracy so that basic navigation can 
be achieved with accuracy of 1 m in good conditions. This accuracy is sufficient for 
fertilizer spreading but not for precision planting.

Similar DGNSS (differential GNSS) can also be realized with local base stations 
where a dedicated receiver is stationary, and differential correction data is trans-
ferred to a moving rover by some radio technology; a dedicated local radio link or 
over cellular data network.

The next level in accuracy requires real-time kinematic (RTK) technology. This 
requires tracking the carrier phase of the signals transmitted by the satellites, not 
only the pseudorandom data in the carrier. The goal of carrier-phase tracking is to 
calculate multiples of wavelengths between the satellite and the rover and add the 
phase difference. If the receiver is able to solve the number of whole cycles to each 
satellite, the accuracy is in the level of centimeters. The wavelength of the basic 
GPS signal (L1) is about 19 cm. Phase tracking in the cycle improves the theoretical 
accuracy in parts of the wavelength. In practice, RTK GPS requires a base station 
(in a known location) that records the observations with the same principle. This 
information is transmitted in real time to the rovers in the neighborhood. By using a 
base station and multiple signals on different frequencies transmitted by the satel-
lites, the deviations caused by the atmosphere can be eliminated. However, the dis-
tance from the base station to the rover should not be too long in order to achieve the 
best accuracy. As a rule of thumb, a good radius is 20 km—the longer the distance, 
the more inaccuracy.

Since RTK correction requires a local base station and radio communication 
between the base and the rover, the usability in practice is not the best. To improve 
usability and convenience, service providers can be used to obtain the correction for 
the rover. Some service providers use a ground network over cellular data, and some 
use dedicated satellite broadcasting. Most of the services are commercial and 
require a commercial license.

Heading estimation can be achieved either by using a dual antenna GNSS 
receiver and calculating the orientation from their relative position output or by 
combining the GNSS data with inertial and/or magnetic sensors. A magnetic sensor 
(an electronic compass) provides direct information about the orientation but is 
prone to magnetic field disturbances caused by the vehicle itself or stationary objects 
in the field. To solve the disturbances, an advanced compensation methodology is 
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required. Inertial sensors provide information about relative movement, and binding 
the relative information to absolute positioning in movement is required to estimate 
the heading by using sensor fusion methodologies: the GNSS receiver provides the 
course when the vehicle is moving, and this is valuable information only when the 
vehicle is moving with known bias between course and heading.

In addition, the point of interest is the position of the vehicle, not the position of 
the GNSS receiver itself. The navigational point of the vehicle is rarely the point 
where the GNSS receiver is installed. Typically, the origin of the tractor coordinate 
system is on the center of the rear axle, either on the ground level or on the level of 
the axle. Due to visibility reasons, to provide a good line of sight to all directions, 
the GNSS receiver is usually mounted on the highest point of the vehicle. Thus, the 
distance between the GNSS receiver and the origin of the tractor coordinate system 
is often more than 1 m, or up to about 3 m in large size tractors. When the tractor 
travels on a slope, the error caused by the inclination must be compensated by tilt 
sensors, or by using more sophisticated estimation methods to estimate purely the 
position of the vehicle in global coordinate system, instead of GNSS receiver. An 
example of the configuration of coordinate systems is illustrated in Fig. 10.6.

Fig. 10.6 An example of coordinate systems in tractor positioning and navigation; including trac-
tor coordinate system origin which is on the rear axle, IMU and GPS. Coordinate transformations 
between coordinate systems are needed. (Oksanen et al. 2005. Image: Timo OKSANEN)
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10.3.2  Navigation

The exact definition of navigation varies from one source to another, but a typical 
definition usually includes the task of finding a way from one place to another, 
which essentially means planning a path (or a trajectory) from point A to point 
B. Sometimes, also monitoring one’s past position is considered part of navigation, 
whereas determining one’s position is most often considered to be a positioning 
task. Some definitions also consider applying the necessary corrections to course, 
orientation, and speed to arrive at a desired position to be a navigation task, whereas 
it can also be seen as a separate task related to control. Therefore, depending on the 
definition, some overlap may exist between positioning and navigation, as well as 
between navigation and control.

Here we distinguish the tasks of positioning, navigation, and control so that posi-
tioning is mostly concerned with answering the question “where am I?,” navigation 
should answer the question of “where should I be?” and “how do I go there?,” and 
the task of control is to decide “how do I track the path?.” There is an obvious 
dependency between positioning and navigation, but navigation also needs to con-
sider the limitations related to the ability to control the vehicle.

There are various applications in agriculture where the ability to navigate accu-
rately and reliably plays a significant role. Sometimes, instead of finding a way from 
point A to point B, we want to pass over every point of an area (or volume) of inter-
est. This task is called coverage path planning, and it is in fact a typical task in 
agriculture, for example, in crop cultivation (think of harrowing, sowing, or similar 
tasks). For some applications, it makes sense to make a long-term plan, from start to 
finish, whereas for other applications, it is enough to react and plan according to 
short-term information. For example, to follow a crop row based on camera images 
or lidar data does not require a preplanned path, nor is it necessarily helpful to have 
one. Instead, the path can be computed online, based on the relative location to the 
crops, which is estimated from the sensor information. For some other tasks, it is 
difficult to find visual cues from the environment to provide a directrix for the navi-
gation. In those situations, navigating based on absolute positioning methods makes 
sense, so as it allows to plan the full path in advance. Of course one should still 
consider if it is necessary to have access to real-time situational awareness in any 
case. For example, a dynamic or partially unknown environment might necessitate 
such information.

One more important aspect of navigation is to plan feasible paths. First of all, a 
feasible path takes into account the geometry of the vehicle and its surroundings. 
But, in addition, navigation needs to be aware of the vehicle kinematics, dynamics, 
and actuation, since not every path can be followed by every vehicle. This is to say 
that we should always plan a path that can actually be tracked, given that there are 
vehicle specific constraints. For example, a car-like non-holonomic vehicle cannot 
make a 90 degree turn in place. These limitations in vehicle maneuverability pose 
interesting challenges to navigation planning.
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Finally, we distinguish between navigation based on relative and absolute posi-
tioning, because it is worth underlining the central differences between the basic 
principles of these two approaches. As outlined in Sect. 10.3.1., the most prominent 
absolute positioning method is based on satellite systems that provide a geographi-
cal location on the Earth’s surface. Most other methods, including vision-based and 
laser ranging methods, provide relative positioning. However, also combination 
approaches can be used for navigation, and they are worth a mention in their 
own right.

It is also important to note that there are at least two different ways of using a 
laser ranging device for positioning and navigation. First, a lidar can be used to 
measure distance to any objects that reflect the laser pulse emitted by the device, so 
that the distance can be calculated by analyzing the time-of-flight when the return-
ing reflection is detected by the device. This captures the surface shape of the objects 
in the surroundings, and also means that these objects can be a part of the environ-
ment by nature. Since the exact location of these objects is not known, we can only 
navigate relative to these objects. Another way is to place artificial markers in the 
surroundings, and then the distance to these markers is measured with laser ranging 
(or another means). Three markers are enough to perform trilateration calculation. 
Notice that if the absolute (geographical) coordinates of these markers are known, 
this can be considered a method of absolute positioning.

10.3.2.1  Navigation Based on Relative Positioning

Certain features in the environment can be detected and observed, for example, with 
a camera or a laser rangefinder. For instance, the green color of some crops, or the 
height of the stems or the crop line, stands out from the surrounding environment. 
Therefore, one of the elementary assumptions in visual and laser ranging-based 
applications is that there is a demarcation line in the environment that can be 
detected and followed. The demarcation line might be readily found in the environ-
ment (for example, crop rows), or something that is created during the process itself 
(for example, mowing), or sometimes the guideline is established by a previous task 
(for example, windrowing).

Based on the features that are detected from the sensor data, we can estimate the 
relative location of the crop line or the windrow. The location of the crops is used as 
a reference for path planning and navigation. To establish a directrix for the guid-
ance, this reference needs to be combined with knowledge about the nature of the 
task, for example, that the vehicle should drive between two rows of crop or that the 
vehicle should follow the windrow. The guidance objective is the key to determining 
where the path for the vehicle should be placed. For example, the vehicle might be 
required to drive exactly in the middle of two adjacent rows of crop, or at a certain 
distance from the crop line.

A simple way of determining the navigation line is to apply linear regression to 
the points that were estimated to belong to the crop line. The idea is the same inde-
pendent of the data being obtained from a camera, a laser rangefinder, or ultrasonic 
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sensors. However, the field of view of different devices might differ remarkably. A 
camera can capture a significant part of the environment at once, whereas a single 
ultrasonic sensor measures the distance to one point in the environment at a time. 
Therefore, we need different ways of processing the data to provide meaningful 
information for the navigation. For example, we may need to combine current and 
past data to identify a crop line with a laser scanner.

After determining the location and orientation of the crop row, one more step to 
decide the navigation line is to determine if there should be a lateral distance 
between the crop line and the vehicle path. Either we calculate the center of two 
adjacent crop rows if we want the vehicle to drive in the middle or we calculate the 
navigation line as parallel to the crop line but at a desired distance. Notice that the 
line is typically calculated based on the current camera view, and therefore it may 
change (both relative and absolute location) each time a new frame is obtained from 
the camera.

Different methods of detecting crop rows (or other linelike formations), and 
thereon establishing the navigation plan, include, for example, linear regression, 
Hough transform, blob analysis, stereo vision, and horizontal strips. There is a vast 
amount of applications and research on relative navigation, and therefore this intro-
duction is by no means exhaustive. Instead, we present the reader with an overview 
and a starting point for further reading.

Linear regression in combination with a camera-based vision system has been 
applied to detect crop rows in various instances. For example, Billingsley and 
Schoenfisch (1997) applied a line fitting method to locate crop rows. The crop row 
detection is a part of a vision guidance system for agriculture. Søgaard and Olsen 
(2003) estimated the crop row lines by weighted linear regression without perform-
ing image segmentation. Montalvo et al. (2012) used a linear regression approach 
where the line parameters are estimated from image pixels that were considered to 
belong to the crop rows. Underlying knowledge of the amount and expected loca-
tion of the crop rows was used to determine the crop row pixels from the images. 
Han et al. (2004) used K-means clustering to automatically find a threshold for row 
detection. Also Zhang et al. (2018) and Ospina and Noguchi (2019) applied linear 
least squares to identify the center lines of crop rows.

Another method of extracting line features from camera images (or laser range-
finder data) is the Hough transform (Hough 1959), to which Duda and Hart (1972) 
proposed an alternative parametrization that later became popular. For example, 
Rovira-Más et al. (2005) applied Hough transform to camera images of crop rows 
to obtain navigation directions. A forward-viewing camera was used to capture the 
view in front of the tractor. Ji and Qi (2011) proposed an algorithm based on random 
Hough transform for detecting the center of crop rows. Winterhalter et al. (2018) 
applied Hough transform to detect crop rows from both camera and laser scanner 
data, which they first transformed into feature maps that describe the location of the 
plants in 2D space.

A stereo vision-based approach was applied, for example, by Kise et al. (2005), 
who calculated an elevation map based on the images from a stereo camera that was 
installed on a tractor. A navigation point was extracted from the elevation map, and 
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the steering angle to correct the offset was computed from the navigation point 
coordinates in the tractor coordinate frame. Yun et al. (2018) developed a guidance 
line detection system based on stereo vision. The guidance line was extracted with 
linear regression from the boundary points between a ridge and a furrow. Also 
Kneip et al. (2019) used a stereo vision system to obtain an elevation map of the 
crops. The crop edge, the edge between the standing crop and the ground, was 
assumed to be linear, and the crop edge model was calculated using linear regression.

The crop row center line detection process of Ospina and Noguchi is shown in 
Fig. 10.7. Wide angle images were used for crop row detection. The input image is 
shown in (a), an HSV image from the input image in (b), and a binary image in (c). 
The calculated row centers are shown in (e), and the center lines based on least 
squares regression in (f). This method can be used for automatic guidance systems 
for agricultural machinery (Ospina and Noguchi 2019).

Navigation methods based on positioning data from other types of sensors are 
often based on the same ideas; only the sensor data is different and so are the meth-
ods to process the data. We may use, for example, a laser rangefinder or ultrasonic 
sensor. The working principle of these devices is similar: they measure distance to 
objects based on time-of-flight. A laser rangefinder uses a laser beam, whereas an 
ultrasonic sensor uses ultrasonic waves. The sensor measures the time between 
sending and receiving a pulse, either light or sound, and the proximity to the object 
is determined based on the duration and the propagation speed of the pulse in the 
medium (in this case air).

The navigation task, then, is to establish an image of the environment and deter-
mine a meaningful path based on this information and the guidance objective. For 
example, to guide a vehicle along the windrow, we must calculate the center of the 
windrow and determine the lateral and angular deviation of the vehicle from this 
line. Finally, a path tracking controller is required in order to drive the vehicle 
towards the path, by controlling the actuators that steer the vehicle.

Fig. 10.7 Crop row center line detection of Ospina and Noguchi. (Adapted from Ospina and 
Noguchi 2019)
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For example, Fleischmann et al. (2013) presented an approach that is exclusively 
based on distance data from a laser scanner. A windrow was detected from the laser 
scanner data based on a particle filter approach and geometric modelling of the 
windrow. The detected swath from the example by Fleischmann et  al. (2013) is 
shown in Fig. 10.8. The windrow detection result can be used as a waypoint for the 
path planning and navigation. Using a laser scanner also makes the detection more 
robust against variations in illumination.

Methods based on relative positioning typically apply local, short-term planning, 
where the solution is reactive with regards to newly obtained information about the 
environment. For example, the exact location of the navigation directrix might 
change between each camera frame. One part of planning and navigation is how the 
directrix is calculated; however, where the directrix is located is decided only on the 
field once the features are observed in real time.

10.3.2.2  Navigation Based on Absolute Positioning

Another approach, especially when features in the environment are difficult to 
detect (or there are no features to detect), is to navigate based on absolute position-
ing. Using absolute positioning like GPS gives some added flexibility when plan-
ning a path or a turn. For example, at the end of a crop row, we might temporarily 
lose sight of the features that we need for relative positioning and navigation. Given 
that the satellite visibility is sufficient, the vehicle can still be guided based on 
GPS. However, GPS-based navigation comes with its own disadvantages as well: 
satellite visibility might sometimes be blocked or hindered by tree lines or build-
ings. It is also important to notice that relying solely on satellite-based navigation 
poses some limitations. In an unknown environment, satellite-based navigation 
alone is not feasible. In addition, unless the exact location of the crops is known, we 
cannot make sure that the vehicle does not run over the plants.

Fig. 10.8 Detected swath (green line with blue points) based on laser scanner data. (Adapted from 
Fleischmann et al. 2013)
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Again, the guidance objective is the key to determining how the path should be 
planned. A typical guidance objective that can be solved with absolute navigation is 
a coverage task related to open field operations such as harrowing or seeding. As 
opposed to many of the relative navigation approaches, the idea with navigation 
based on absolute positioning is that a precise path plan can be determined before-
hand. However, if we rely entirely on satellite navigation, the assumption is that the 
environment is known and static. A map of the environment is necessary to plan a 
path in the correct coordinate frame.

An example of a GPS-based navigation plan and the outcome is shown in 
Fig. 10.9. The data was recorded as part of the project for cooperative agricultural 
work for multiple tractors (Soitinaho 2018). A coverage path was planned for a trac-
tor in a local coordinate frame, which was then transformed to GPS coordinates. 
The coverage path was planned inside an artificially defined rectangular field bound-
ary that is shown in Fig. 10.9a. The path consists of an ordered sequence of GPS 
coordinate points called waypoints. Sections with higher curvature have higher den-
sity of waypoints. In turns, the distance between two waypoints is around 0.1–0.2 m, 
whereas in the straight sections two successive waypoints are up to 80 m apart. Both 
the planned path (black) and the true path (red) are shown in Fig. 10.9b. The way-
points were sent to the vehicle individually, and the true path was recorded with the 
vehicle GPS receiver at 200 ms intervals.

At its simplest, a coverage plan for an open field operation consists of straight 
driving lines that are placed parallel to each other at an equal distance. This distance 
is decided based on the width of the implement, for example, a trailed harrow. In an 
ideal case, if the harrow is 3 m wide, the interval between the driving lines is 3 m as 
well. If we had sensors without noise and a perfect controller, all of the field would 
be harrowed by the time each driving line has been completed. In reality, some gaps 
and overlaps are observed due to various sources of imprecision in the system.

Just like with any relative navigation approach, we measure the deviation from 
the planned path. In addition, we need to keep track of the progress to know where 

Fig. 10.9 An example of a field boundary, path plan, and navigation outcome based on GPS posi-
tioning. (Image: Riikka SOITINAHO)
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to measure the deviation from, which means that we also need a method to deter-
mine when a navigation point has been successfully reached.

10.4  Path Tracking

In order to keep the vehicle on the path, a path tracking system is required to com-
mand the steering actuator. Path tracking can be considered as a control design 
problem, where a cross-track is the process variable and needs to be regulated to 
zero by using steering angle as the control variable.

Path tracking can be also realized with little knowledge on control science, by 
using simple direct geometrical approaches like pure pursuit. In pure pursuit method 
and its variations, the principal idea is to take a fixed “look-ahead” distance in front 
of the vehicle and find the intersection with the path to be tracked. The intersection 
point is converted either to curvature of the arc interconnecting this intersection 
point and tangent to true rotational point of the vehicle or the angle of the vector 
connecting vehicle true rotational point to the intersection. Finally, the derived con-
version is injected to the steering actuators with certain gain. Also, the look-ahead 
distance is considered as another tuning variable along with the gain (Snider 2009).

Cross-track error can be calculated from different parts of the vehicle body. In 
the Stanley method, the cross-track error is calculated from the center of the front 
axle to the nearest point in the path. This results cross-track error and a vector from 
the front axle to the path. The control method utilizes both the angle of the vector 
and the cross-track distance to compute the control in a nonlinear manner. The con-
trol law incorporates a tunable gain parameter for adjusting reaction speed 
(Snider 2009).

In order to improve derivation of a more precise control law, a kinematic model 
needs to be derived for the vehicle, to generalize usability. Most agricultural tractors 
utilize two-wheel steering. Bicycle models are used to simplify four wheels to two 
wheels and one rigid frame between these, which usually describe motion in a suf-
ficient way. A tractor using the Ackermann steering principle can be converted 
directly to the bicycle model. The kinematic model is usually presented as a set of 
differential equations where the state variables are coordinates of the vehicle origin 
in global coordinates and the heading angle; control or input variables are steering 
angle or curvature and the velocity of the vehicle.

A kinematic model can be used in path tracking in many ways to derive the con-
trol law. One approach is to convert the kinematic model working in global coordi-
nates to another form where the motion is expressed with respect to the path. This 
path relative model can be used in a more direct way for path tracking, by using a 
kinematic controller. Furthermore, the bicycle model can be improved to incorpo-
rate dynamics, including forces and mass of the vehicle. Including dynamics is ben-
eficial in higher velocities to keep the vehicle control stable. The derived model may 
be linearized in order to use a linear feedback control law, or use other control 
methods capable utilizing nonlinear plant model (Snider 2009).
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Model predictive control (MPC) is a numerical method for solving optimal con-
trol problems over a certain horizon in an iterative manner. Model predictive control 
is limited to linear plant models. A set of various nonlinear MPC methods have been 
developed to handle also nonlinear plants, but these are computationally more 
expensive and require fast processors to be solved in real-time applications for path 
tracking. The clear benefit of these methods is direct utilization of the kinematic 
model with dynamics. The specific challenge in modeling and control design is 
related to nonlinearities of steering actuation, which includes rate limits, saturation, 
and dead time delays due to hydrostatic transmission of power. Therefore, appropri-
ate control design must compensate also control delays and performance limits of 
the steering actuator.

Another way to utilize kinematic model is to use it in inverse way to linearize the 
path tracking problem to lateral cross-track error and heading error. This approach 
makes the design of control laws easier to tune, and simple PID control approach 
may be used with feed forward compensator (Oksanen and Backman 2013).

10.5  Actuation and Steering Actuator

Modern machinery for arable farming utilized hydrostatic power steering mecha-
nism. Most tractors are either front wheel steered or articulated, and a hydraulic 
cylinder is used to change the steering angle. Combine harvesters and other self- 
propelled vehicles may also use rear wheel steering, and some special tractors use 
four-wheel steering; also these are usually hydrostatically controlled, except the 
models manufactured in developing countries. Vehicles with full tracks use various 
types of steering actuation: in early models steering was usually based on brakes, 
but in modern transmissions the speed of each track is controlled to cause steer-
ing action.

The most common mechatronics in modern agricultural vehicles for steering is 
based on hydrostatic steering with no direct mechanical link between the steering 
wheel and the wheel angle. A special hydraulic valve contains feedback with an 
integrated metering unit. The steering unit connects the physical steering wheel in 
the cabin to the hydraulic lines of the steering cylinder. Steering actuation of articu-
lated tractors requires higher force and torque compared to front wheel steering. 
Therefore, the energy requirement of articulated tractors is about 3.5 times higher 
compared to Ackermann steering (Renius 2020).

Later, to enable smooth automatic steering, the steering unit has been augmented 
with an additional proportional valve that allows electronic control of the hydraulic 
flow. A valve augmented with electronics may enable also other advantages, such as 
quick steering or driving speed-dependent amplification by electronic means. 
Automated steering requires also a sensor for the steering wheel that measures posi-
tion and/or torque. This sensor serves as a safety function, for quick disengagement 
of automated steering. In addition, the automated steering actuator is also closely 
coupled to the motion controller or sensors for motion, as the safety standards 
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require that automated steering must be disengaged if certain speed threshold, typi-
cally 25 km/h, is exceeded. Automated steering is also disengaged automatically if 
the speed becomes zero.

By using the appropriate communication method, like CAN bus, the guidance 
system is able to command and control the steering actuator. In addition to control-
ling the steering angle, the guidance system needs to know the necessary constraints: 
mainly the maximum steering angles and the maximum achievable rate of steering. 
Also, proper calibration needs to be done for the zero angle. This can be adjusted 
either in the steering actuator or in the guidance system, or both.

10.6  Standardization

Commercially available automatic guidance systems can be divided into two cate-
gories: OEM (original equipment manufacturer)-installed integrated systems and 
retrofit kits. During the transition to the era of automatic guidance, retrofit kits were 
a popular means to convert old tractors and other agricultural vehicles to be capable 
of (usually GNSS based) automatic guidance. Today, OEM installations are typical 
for new machinery as it allows better integration and usability. In addition, the cost 
of selecting at least a ready-for-guidance option is lower than before. Ready-for- 
guidance usually means a system that has a preinstalled cable harness and steering 
actuators, but a GNSS receiver, other sensors, and the guidance controller are not 
included.

The interface between the steering actuators and the guidance system has been 
standardized in ISO 11783-7 by single frame messages. The behavior of the inter-
face itself is not well standardized, only the message to command the steering and 
to record the actual steering orientation. The standardized property is curvature, as 
it is a generic measure to abstract different vehicle kinematics, from front wheel 
steering to four-wheel steering and articulated steering. However, using this stan-
dard interface is not straightforward, as vendors have different interpretations of the 
needs for other communication around it. For instance, AEF (The Agricultural 
Industry Electronics Foundation) has defined the TIM (tractor implement manage-
ment) standard, which first requires authentication in order to enable commanding 
messages. In order to authenticate, the guidance system vendor must follow all the 
guidelines and pass the conformance test that verifies compatibility.

Also testing procedures for positioning and guidance systems in agriculture have 
been a subject of standardization. In ISO, there has been a working group TC 23/
SC19/WG7 to prepare the standard series ISO 12188. Part 1 defines dynamic testing 
of GNSS receivers. The test procedure tests how a receiver behaves in various 
curves and curvatures and laid in certain orientation to north. The test defines test 
speeds from 0.1 to 5.0 m·s−1, which is the relevant speed range for agricultural field 
applications. Simulation of signal loss is also considered. The purpose of standard-
ized tests is to provide ground for comparison of various products and to output 
comparable numbers. Also terminology and calculation of absolute, relative, and 
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dynamic accuracies are defined. Part 2 defines path tracking performance testing 
during straight and level travel.

Further standardization to augment ISO 11783-7 capability for steering actuation 
has been proposed. Two main functions missing are: a) four-wheel steering with 
two degrees of freedom and b) implement steering. The four-wheel steering with no 
fixed equation between front and rear steering axles is not possible within the cur-
rent ISO 11783-7, but it could be added in a rather simple way, by introducing a 
course offset in addition to the curvature, which is already standardized 
(Oksanen 2017).

Implement steering suitable for various guidance objectives has also been sug-
gested for the scope of standardization by Oksanen and Backman (2016). The pro-
posal is based on the idea of an abstract implement, which is a skeleton model of a 
multibody implement with steering capability, in similar way as bicycle model is 
abstracting kinematics of a tractor or a car. The abstraction is possible for hitch 
mounted implements with side shift, trailed implements with drawbar offsetting, 
trailed implements with steerable drawbar, and trailed implements with steering 
wheels or steerable coulters, or any combination of these to allow two degrees of 
freedom.

Ultimately, the standardized implement steering enables commercial multi- 
brand guidance systems where a single guidance system is able to command both 
steering of the tractor and the implement (see Fig. 10.10). The commercial guidance 
systems designed for implement steering are either independent of tractor guidance 
or work only together with the tractor of the same manufacturer (Oksanen and 
Backman 2016).

Furthermore, the current ISO 11783-7 lacks a means to communicate the steer-
ing actuator parameters from the steering actuator to the guidance system, like max-
imum capable curvature, maximum rate of steering, or any delay or latency 
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Fig. 10.10 The architecture of combined guidance system. (Oksanen and Backman 2016. Image: 
Timo OKSANEN)
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parameters. Lack of delivery of these parameters make plug-and-play guidance sys-
tem installation laborious as tuning procedure must be done completely manually 
by installation personnel (Oksanen 2017).

10.7  Summary and Concluding Thoughts

This chapter describes some fundamental topics and concepts in automatic guid-
ance and control in agriculture. To obtain a comprehensive understanding of auto-
matic guidance, it is important to familiarize oneself with the topics of positioning, 
navigation, control, vehicle engineering, and path planning. This chapter presents a 
general view of the relevant tools and methods. Agricultural applications also 
require some special considerations when it comes to outdoor environments and 
off-road conditions. The methods that are applied should be evaluated and chosen 
case by case. Therefore, having a good understanding of the specific application is 
always of essence. The guidance objective is the key to selecting the right methods 
and hardware. Properly designed automatic guidance has to be taken into account in 
the overall vehicle design process. In the future, the level of autonomy is expected 
to increase and new functionalities will be innovated. For instance, automated turn-
ing of agricultural vehicles in conjunction with parallel guidance will be more com-
monly used and interlinking guidance objective of sequential operations will be 
introduced commercially.
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Chapter 11
Automated Infield Sorting and Handling 
of Apples

Zhao Zhang and Renfu Lu

11.1  Introduction

Apple is the third largest fruit in the world in terms of production tonnage, following 
watermelon and banana (STATISTA 2017). Consumers like apples because they 
have distinct texture, flavor, and aroma, as well as their nutritional and health ben-
efits, such as reducing risk of some cancers and cardiovascular diseases (Boyer and 
Liu 2004). While apples are mainly consumed as fresh fruit, apple juice is also 
popular in many regions of the world (e.g., North America, China, Europe, and 
Japan), which is just behind orange juice in annual consumption per capita (Produce 
for Better Health Foundation 2015).

United States is the second leading apple producing country after China; it pro-
duced 5.1 million metric tons of apples in 2016, which generated about $3.5 billion 
farm-gate revenue (wholesale value). Apples are grown commercially in 32 states in 
the United States, with Washington, New  York, Michigan, Pennsylvania, and 
California accounting for 65%, 10%, 10%, 4%, and 2% of the total production, 
respectively (USDA 2017). Harvest and postharvest storage and packing operations 
account for more than 50% of the total production cost in the United States (Gallardo 
et al. 2010; Gallardo and Galinato 2012). Increased labor cost, shortage of domestic 
labor supply, and low profitability are threatening the future of the apple industry in 
the United States (Baugher et al. 2009) as well as in other parts of the world. Hence, 
automation is crucial to improving productivity and addressing labor cost and 
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availability issues, in harvest and postharvest handling, thus lowering the overall 
production cost for the apple industry.

11.1.1  Current Status in Apple Postharvest Handling 
and Presorting

Currently, apples are still harvested manually and once over for most cultivars. 
Harvested apples of mixed quality grades (i.e., fresh and processing) are hauled to 
the storage facility for short-term cold or refrigerated storage (i.e., for a few weeks 
only) or, otherwise, for long-term controlled atmosphere (CA) storage (from a few 
months to a year or even longer). Upon receipt of orders from the market, fruit are 
removed from storage and then graded, sorted, and packaged before being delivered 
to the retailers (Zhang et al. 2017a). Sorting and grading of apples at packinghouses 
in the United States and other developed countries is largely automated. Machine 
vision, including both color and near-infrared spectral imaging, is now widely used 
for sorting fruit for color, size, shape, and/or surface defects. In recent years, we 
have also seen increased use of near-infrared spectroscopic technology in many 
packinghouses for detecting internal defects and/or for sorting fruits based on solu-
ble solids content. These commercial sorting systems are highly automated and 
extremely efficient (sorting at a rate of 10–15 fruits/s per lane), but they require high 
initial capital investment and are also expensive to operate.

Postharvest storage and packing operations typically account for 1/3 or more of 
the total apple production cost (Wunderlich et al. 2007). For instance, a packing-
house in Michigan would charge growers $30/MT and $80/MT for cold and CA 
storage, respectively, while the packing cost (including sorting, grading, and pack-
aging) can be as high as $290/MT, regardless of the quality grade of apples. Since 
processing apples are usually sold at a fraction of the price of fresh ones (Lehnert 
2015), growers may not break even when there is a high percentage of processing or 
cull apples in the whole lot (Schotzko and Granatstein 2005). For this reason, some 
growers would rather dump processing apples in orchard to reduce the postharvest 
handling expense (Lehnert 2013). Moreover, inferior, defective fruits are suscepti-
ble to disease and pest invasion during storage, which may spread to good apples in 
the same lot, thus presenting risk for huge economic loss for growers and packing-
houses. Currently, only some large packinghouses in the United States presort or 
pre-grade apples, which are usually done shortly after harvest and prior to long-term 
CA storage, while most packinghouses do not adopt this practice, mainly because 
of cost concerns.

Instead of presorting apples at packinghouse, it would be more advantageous to 
presort apples in orchard so that growers can send inferior or processing apples 
directly to the processor for making juice or other apple products (e.g., fresh cut and 
apple sauce). This would effectively lower the postharvest storage cost because 
these apples only need be kept in cold or refrigerated storage for short term instead 
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of the more expensive long-term CA storage (Mizushima and Lu 2011). Presorting 
in orchard would be less demanding in terms of sorting requirements, as it only 
needs to sort apples into two or three grades (i.e., fresh, processing, and cull), com-
pared to the packinghouse machine vision-based sorting system, which needs to 
sort apples into as many quality grades as possible at high sorting speed. However, 
presorting in orchard entails several unique technical challenges, which include, but 
are not confined to, limited space for the sorting system, the requirements for the 
system to be compact and low in cost, with easy integration with the existing or new 
harvesting platforms, and the accompanying capabilities needed for automated han-
dling of harvested apples and bins, both empty and full. Currently, no commercial 
infield sorting system is available for apple growers, because no cost-effective tech-
nology has been developed, and R&D costs are too high for horticultural equipment 
manufacturers, most of which are small in scale with limited technological expertise 
in sensing and automation.

11.1.2  Current Status of Handling Harvested Apples 
in Orchard

Handling of harvested apples is an essential part of an infield sorting system, which 
is, hereinafter, referred to the process from the time right after apples are detached 
from trees until they are placed in the bin. While apples are still manually harvested 
using the traditional method of buckets and ladders, we have seen increased use of 
self-propelled harvest-aid platforms in the United States and in European countries 
(Zhang et al. 2016). These harvest-aid platforms, or simply harvest platforms, are 
usually self-propelled and have limited automation features for handling harvested 
fruit. Workers can stand on the fixed or adjustable stages of the harvest platform to 
pick apples from trees at different heights from the ground, which eliminates the use 
of ladders and, possibly, buckets (mainly for those units made in Europe) and 
reduces the time needed for transporting harvested apples to the bin, thus decreasing 
the working strength and increasing the overall harvest productivity. There are 
mainly two types of commercial harvest platforms, i.e., those equipped with harvest 
conveyors (either mechanical or vacuum-based) and bin fillers (hereinafter called 
WBF), and the other using buckets and with no bin fillers (NBF). The bin filler plays 
an important role in automatic handling of harvested apples; it receives apples from 
conveyers and then places them into the bin evenly, without causing bruising dam-
age to the fruit.

With the NBF platforms (Fig.  11.1), which are popular in the United States, 
workers no longer use a ladder to reach to fruit up on the tree, but still need to carry 
a picking bucket for holding harvested apples temporarily. One advantage of using 
the picking bucket, which can hold up to 20 kg of apples, is that workers can conve-
niently place apples in the bucket without making large upper body movements 
during picking, thus enhancing the picking efficiency. Since there are no harvest 
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conveyors and bin filler(s), NBF platforms are simple to construct; they usually 
have few or limited automation features and thus are relatively low cost.

With the WBF platforms (Fig. 11.2), harvested apples are transported to the bin 
by means of belt conveyors with fingers or similar structures, or vacuum tubes. 
Harvest platforms with belt conveyors are popular in Europe, while the platforms 
using vacuum tubes (Fig. 11.2) currently have very limited adoption by the industry 
because of cost and productivity concerns. With the mechanical belt conveyors, 
pickers directly place apples onto individual conveyors, which are then transported 
via one or more conveyors to the bin filler, which places the fruit into the bin. The 
use of mechanical harvest conveyors relieves workers from the burden of carrying a 
picking bucket. One major issue with the harvest conveyors is that workers would 
need to make larger upper body and/or arm movements, as these conveyors are not 

Fig. 11.1 Two commercial apple harvest platforms with no bin filler, on which workers still need 
to carry picking buckets for holding picked apples temporarily, until the buckets are full and 
dumped to the bins

Fig. 11.2 A commerical harvest platform with mechancial harvest conveyors (a) and a vacuum- 
based harvest platform (b). For both platforms, workers directly place harvested apples on the belt 
conveyors or vacuum tubes, which are then transported to the bin via a bin filler (not shown here). 
(Permission for using the photo in (a) is granted from LaGasse Works, Inc.)
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always placed at the most convenient position relative to the workers, which would 
decrease the picking efficiency and may also pose occupational health risks to the 
workers. With the vacuum tube transporting system, pickers can conveniently place 
picked apples into the tube (Weinstock 2016). The system thus enables workers to 
maintain high picking efficiency. Depending on fruit shape and size as well as cul-
tivar, individual apples may exhibit different aerodynamic behavior during transport 
in the vacuum tubes. Hence, it is important that proper vacuum pressure and tube 
configuration be maintained to ensure smooth transport of fruit in the vacuum tube 
to avoid fruit collision. Moreover, upon reaching the destination, the fruit need to go 
through a deceleration process before being released to the bin filler. Overall, the 
vacuum-based platform requires a more sophisticated system design with greater 
power consumption for vacuum transport of fruit, and fruit bruising could be 
an issue.

The bin filler, as discussed above, plays a critical role in all WBF platforms. Over 
the years, many different types of bin fillers have been developed for use with vari-
ous mechanical harvest systems. A comprehensive review of bin fillers for posthar-
vest packinghouse use and for infield use is given in Zhang et al. (2018a). There are 
different forms of bin fillers that are currently being used with the commercial WBF 
platforms. Figure 11.3 shows two commercial bin fillers used with the WBF harvest 
platforms with mechanical harvest conveyors (Fig. 11.3a) and the vacuum harvest 
platform (Fig. 11.3b). The bin filler used with the mechanical harvest conveyors 
consists of a vertical fingered conveyor and a rotary brush for bin filling. During 
filling, the bin is rotating to achieve even distributions of apples. The bin filler, 
shown in Fig.  11.3b, mainly consists of a pinwheel installed with soft pads. As 
apples arrive at the pinwheel from the decelerators, they are released from the rotat-
ing pads in all directions into the bin to achieve even distributions of fruit. This bin 

Fig. 11.3 Two bin fillers used for the commercial harvest platforms with mechanical (a) and 
vacuum (b) harvest conveyors. The bin filler (a) uses a vertical conveyor with fingers coupled with 
a soft brush roller to transport apples to the bin, which is rotating during filling to ensure even 
distributions of apples in the bin, while the bin filler (b) uses a spinning wheel installed with soft 
flexible pads for distributing apples in the bin evenly. (Permission for using the photos was granted 
by LaGasse Works, Inc. (a) and Phil Brown Welding Corp. (b))
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filler design overall is simpler and also more compact, compared to other forms of 
bin fillers. As discussed in Zhang et al. (2018a), most of the bin fillers are still too 
complex in design, bulky in size, and expensive; they have low level of automation 
and require human assistance or intervention during the operation. Hence, further 
R&D is needed in the development of a low-cost, compact, simpler bin filler with 
full level of automation.

11.1.3  Current Status of Handling Fruit Bins in Orchard

Proper handling of empty and full bins during harvest in orchard is also critical to 
the harvest productivity when using a self-propelled harvest platform with or with-
out the bin filler. In the United States, apple bins are typically made of wood or 
plastic, and each bin can hold 400–500 kg of apples, depending on the actual bin 
size. For the NBF platforms, like the one shown in Fig. 11.1a, four or five empty 
bins are first loaded onto the platform. After all bins have been filled, they are dis-
charged to the bin trailer altogether from rear of the platform. During the unloading 
of full bins and subsequent loading of empty bins, the harvest crew ceases picking 
activities temporarily. For a harvest crew of 6–8 workers, it would need about 
30–40 min to fill five bins and then take 2–3 min to unload the full bins and load 
empty bins. This means that workers, on average, would lose 5–10% of their pick-
ing time due to the time breaks needed for handling full and empty bins. Some other 
NBF platforms (such as the one shown in Fig. 11.1b) carry one or two bins; only one 
bin is being used for fruit filling in any given time. Once that bin is full (which 
would take about 10–15 min for a crew of four), it is discharged to the ground, and 
the empty bin is then moved in place. Workers need to cease picking fruit during the 
handling of bins (1–2  min). Thus, the harvest productivity could be reduced by 
10–20%, due to the less efficient bin handling procedure.

The productivity loss caused by bin handling is also of concern for the WBF 
platform. Workers on the WBF platform need to suspend picking activities for 
1–2 min, during the unloading of the full bin and loading of an empty bin, which 
would reduce the overall harvest productivity by about 10% (Jones 2015). Moreover, 
some of the WBF platforms require a dedicated person to handle the bin switching, 
which could further reduce the overall productivity by 10–15%.

In summary, bin handling for the current commercial harvest platforms is not 
fully automated, and it still needs human involvement, either partially or fully. 
Moreover, during the bin handling, workers need to cease picking activities. 
Altogether, the productivity loss attributed to the bin handling would be between 10 
and 25%, depending on type of platform used, which offsets much of the productiv-
ity gain from using the platform. Hence, it is important that the bin handling opera-
tions (i.e., loading and unloading) be fully automated and do not interfere with the 
worker’s picking activities.
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11.2  Overview of New Automated Apple Infield 
Sorting Technology

Motivated by the potential benefits of presorting apples in orchard and in view of 
technical shortcomings and lack of automation with the current apple harvest plat-
forms in handling harvested fruit and bins, our research team at USDA Agricultural 
Research Service (ARS) initiated a new project several years ago on the develop-
ment of new automated infield sorting technology. To ensure that the new infield 
sorting system would meet the needs of apple growers, surveys were conducted 
with apple growers and packinghouses in Michigan to better understand their needs 
and concerns on apple harvest and infield sorting. Analyses were also performed on 
the potential economic benefits resulting from the adoption of infield presorting and 
harvest-assisting technology (Mizushima and Lu 2011; Zhang et  al. 2017b). 
Furthermore, we also evaluated various machine vision systems currently being 
used in commercial packinghouses for sorting and grading apples and other fruits to 
determine whether we could adopt or modify some of the system design features for 
infield use. In addition, field evaluations were performed on the productivity of dif-
ferent commercial harvest platforms currently being used by growers. An extensive 
review was also conducted of various bin filling technologies that have been devel-
oped over the past 60+ years for packinghouse and harvest use (Zhang et al. 2018a). 
Through these reviews and evaluations, it was clear that the existing packinghouse 
sorting and bin filling technologies are not appropriate for infield presorting use, 
and substantial innovation is thus needed. It was further determined that the research 
needed be focused on addressing these key technical issues, i.e., automated sorting 
and grading of apples, automatic handling of harvested fruit, and automatic han-
dling of bins. In the initial phase of the project, the infield sorting system was devel-
oped for working with a commercial harvest trailer, which was hauled by a tractor. 
However, such design was not well received by growers, because the infield sorting 
system needed a dedicated person to drive the tractor/trailer and the automatic bin 
handling function was not integrated with the system. Hence, in the second phase of 
the project, further effort was made on the development of a self-propelled harvest 
platform with an automatic bin handling function. The new apple harvest platform 
was constructed and field tested in 2016 harvest season, followed with further 
improvements and field testing in 2017.

Figures 11.4 and 11.5 show a schematic and picture of the new apple harvest and 
infield sorting machine prototype. This machine allows six workers standing on the 
ground or elevated stages to pick apples from trees and then place the fruit onto 
harvest conveyors. The fruit on the six harvest conveyors will then converge to the 
main conveyor, through which they are transported to the machine vision-based 
sorter for quality inspection (Pothula et al. 2018). Apples are sorted into two grades 
(i.e., fresh and processing) and finally sent to the respective bins by a custom- 
designed sorting mechanism (Lu et al. 2018). The sorting system has several inno-
vative design features; it is simple in design, compact, and efficient (able to handle 
6 fruits/s). There are three bin fillers installed with the sorting system. These bin 
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fillers are compact and fully automated. For any given time, two bin fillers are at 
working status; one is handling fresh apples, while the other cull apples. The third 
bin filler is used as a backup for handling cull apples when the regular cull bin is full 
and is being unloaded from the machine, so that the harvest crew does not cease 
picking activities during the replacement of cull bins. When a fresh or cull bin is 
full, the sensor installed on the bin filler would send a signal to the computer, which 
then triggers the automated bin handling system to unload the full bin and load an 
empty bin at the same time. As the machine travels forward in the orchard, it auto-
matically picks up empty bins that have been placed on the ground in advance. The 
picked-up empty bins are then pulled into the right positions on the machine, using 
a computer-controlled hydraulic system, coupled with chain conveyors, active roll-
ers, and sensors.

Fig. 11.4 Schematic of the apple harvest and infield sorting machine with four major design fea-
tures, i.e., harvest-aid stages with conveyors, machine vision-based sorting system, automated bin 
fillers, and automated bin handling system. (Reproduced with permission from Zhang et al. 2017b)

Fig. 11.5 Apple harvest and infield sorting machine being tested in a commercial orchard in 
Michigan during the 2017 harvest season
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In the following sections, we give a further, detailed description of the automated 
apple sorting system (Sect. 11.3), the new bin filler (Sect. 11.4), and the automatic 
bin handling system (Sect. 11.5).

11.3  Automated Grading and Sorting of Apples

Much research has been reported over the past 40  years on the development of 
machine vision systems, including both hardware and software, for quality inspec-
tion of apples (Rehkugler and Throop 1986; Blasco et al. 2003; Cubero et al. 2011; 
Unay et al. 2011; Sofu et al. 2016; Moallem et al. 2017). Machine vision is now 
widely used commercially for sorting and grading apples and other fruits in pack-
inghouses. Some of the major fruit sorting equipment manufacturers include 
Compac Sorting Equipment Ltd. based in New Zealand, Durand Wayland in the 
United States, Greefa in the Netherlands, and Unitec in Italy. While each system is 
different in design, a typical machine vision-based sorting system needs to perform 
these tasks: (1) fruit singulation, which separates or parses the incoming, often dis-
organized fruit and arranges them in a specific, consistent pattern, so that each fruit 
can be identified and tracked throughout the entire packing process until it reaches 
the final destination, (2) fruit transport, which moves unsingulated and singulated 
fruit from one place to the next, (3) fruit rotation, which is needed for imaging the 
entire surface of fruit by the vision system, (4) fruit imaging and grading, which is 
done by a color and/or spectral imaging system to determine quality grade based on 
the analysis of fruit surface color, size or shape, and presence/absence of blemishes, 
and (5) fruit sorting, the final step of sending the graded fruit to their destinations. 
Many commercial sorting lines are also installed with in-line load cells to weigh 
each fruit during sorting and grading, so that precision packaging can be realized. A 
commercial packinghouse needs to handle a large volume of apples. Hence, effi-
ciency and high throughput are critical to commercial packinghouse sorting lines, 
while space and size for the sorting system are not important considerations in the 
overall system design. For most commercial sorting lines, fruit singulation, rotation, 
and sorting are performed in sequence and, in most cases, by separate systems or 
machines. These machines cannot be directly adopted or adapted for infield use, due 
to their complexity, large size, and high cost. Therefore, a new sorting system needs 
be developed to meet the specific requirements for infield use.

An infield sorting system should have the same basic functions, as those described 
above for packinghouse use. The system must also be compact and low in cost, so 
that it can be integrated with the existing or new apple harvest platform. Since the 
system only needs to accommodate a harvest crew of 6–8 workers, an overall 
throughput of 6–8 fruits/s is needed (assuming each worker, on average, can pick 
one apple per second) (Zhang 2015). With such low throughput and less stringent 
sorting requirement, it is possible to develop a low-cost, compact infield sorting 
system. Based on these considerations, a new automated infield sorting system was 
developed, which consists of a compact multi-function mechanism for fruit 

11 Automated Infield Sorting and Handling of Apples



276

singulation, rotation, and transport, a color vision system with in-house–developed 
sorting algorithms, and a compact sorting mechanism for directing graded fruit to 
the right destinations or bins (Fig. 11.6) (Lu et al. 2018). A detailed description of 
these major subsystems is given in the following subsections.

11.3.1  Screw Conveyor for Fruit Singulation, Rotation, 
and Transport

As described above, the sorting system needs to perform fruit singulation, rotation, 
and transport functions, so that apples coming from the main conveyor would form 
in line (three lanes in the current design) with proper distance separations and rotate 
continuously (on the stem-calyx axis or randomly) for imaging the entire surface of 
the fruit by the computer vision system, while moving forward at the same time. In 
addition, the sorting system should be able to keep track of individual fruit on the 
conveyor in real time after the fruit enters the vision inspection chamber, so that the 
graded fruit can be sent to the right destinations. In commercial sorting lines, bi- 
cone conveyors and cups are commonly used for transporting and rotating fruits 
(Throop et al. 2001, 2003). These designs were considered in the initial phase of 
research but were not adopted because they overall are too complex and take too 
much space to be a viable solution for infield use. Blasco et al. (2003) and Cubero 
et  al. (2011) developed a robotic vacuum cup to hold and rotate individual fruit 
under the camera, so that the majority of the fruit surface can be imaged by the 

Fig. 11.6 Overview of the automated apple infield sorting system, consisting of a pitch-variable 
screw conveyor for fruit singulation, rotation, and transport, a computer vision system, and a rotary 
sorting mechanism. The vision system covers three lanes, each running at a sorting rate of up to 2 
fruits/s
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camera. This design, however, has low throughput and is not practical for infield 
grading use.

Subsequently, we developed a new multi-function screw conveyor system, with 
which fruit singulation, rotation, and transport are accomplished altogether 
(Fig. 11.6). The screw conveyor system consists of three pairs of screw shafts; the 
metal shafts are covered with soft material, and the helical strip for driving fruit 
forward is also made up of soft synthetic material to prevent bruising damage to the 
fruit during transport on the conveyor. The system is simple, compact, cost- effective, 
and reliable. Apples first arrive from the main conveyor in disorganized pattern, and 
they are then organized into three lines. For the beginning section of the screw con-
veyor, apples in the lines are moving at slow pace and are close to, or even in touch 
with, each other, due to small pitches for that section of the screw shafts. The fruits 
are moving faster with the increasing pitch of the helical strip until they are being 
completely separated (see the close-up of Fig. 11.6). As the fruits are moving for-
ward, they are also rotating, driven by the pair of shafts. Once the apples enter the 
imaging chamber, the separation distance between the neighboring apples main-
tains approximately constant, because the pitch of the screw shafts for that section 
is fixed. The vision system takes multiple images of each rotating fruit to ensure that 
the entire fruit surface is inspected.

11.3.2  Computer Vision System and Sorting Algorithms

The computer vision system was designed to grade apples at a rate up to 6 apples/s 
for size and color (Mizushima and Lu 2013a). There are several imaging configura-
tions that have been adopted for different machine vision systems (Fig. 11.7). With 

Fig. 11.7 Three camera mounting configurations: (a) vertical mounting of the camera with a nar-
row field of view; (b) horizontal mounting of the camera with a reflection mirror arranged in 
approximately 45° of angle, so that the camera can take images of fruit from the mirror; (c) vertical 
mounting of the camera with a large field of view to reduce the vertical distance to the fruit
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the conventional imaging configuration commonly used in the packinghouse, cam-
eras with a narrow field of view (or a long focal length) are mounted directly above 
the moving fruit (Fig. 11.7a). This imaging configuration is easy to set up and can 
minimize image distortion, but it requires a relatively large distance (or height) 
between camera and fruit, which is not desirable for the infield sorting system due 
to the overall height limitation. To reduce the height of the imaging chamber, Cubero 
et al. (2010) proposed using a mirror to reflect the fruit images to the camera, which 
is mounted in a plane parallel to the moving direction of the fruit (Fig. 11.7b). This 
configuration effectively lowers the overall chamber height, but it is not desirable 
for infield use, since the sorting system needs to work in a rugged orchard environ-
ment, where dust and machine vibration cannot be avoided, which could negatively 
affect the system’s performance.

Instead of using the narrow field-of-view configuration, we chose a wide field- 
of- view camera (Fire-I, Unibrain, Inc., San Ramon, CA, USA) for the imaging sys-
tem (Fig.  11.7c), to limit the overall chamber height, while keeping the system 
simple (Mizushima and Lu 2013a, b). Accompanied with this camera mounting 
configuration is large distortion in the acquired images, due to great variations in the 
viewing angle and distance from the fruit objects to the camera. Figure 11.8 shows 
that the size estimation error increases as the fruit is farther away from the camera. 
Several camera calibration methods have been developed for correcting image dis-
tortion (Zhang 2000; Hartley and Zisserman 2004), but they were found unsatisfac-
tory for the current camera setup. Hence, a new distortion correction method of 
using reference balls of 63.5 mm and 76.2 mm (representing a typical size range of 
apples) was proposed.

First, a quadratic equation between the location of the ball along the fruit moving 
direction (x) and the number of pixels for the ball images obtained from the raw 
images was developed, as shown in Fig. 11.9, where the x-axis is the apple moving 
direction and y-axis indicates the total pixels obtained from the raw images. As the 
ball centroid moves further away from the camera center, the measured area became 
smaller, resulting from the increased distance. The correction curves shown in 

Fig. 11.8 Errors in fruit 
size (or weight) estimation 
caused by varied distances 
of objects from the camera. 
(Reproduced with 
permission from 
Mizushima and Lu 2013a)
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Fig. 11.9 are unsymmetrical, mainly because the camera was not mounted at the 
center of the chamber along the fruit moving direction.

Second, the variable pixels per unit dimension could be calculated using Eq. 11.1.
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where r(x) is the variable pixels per unit dimension function; d is the actual diameter 
of the calibration ball (mm); x is the object centroid in the image (pixels; along the 
fruit moving direction); a, b, and c are the coefficients corresponding to the obtained 
quadratic equation for the calibration balls (Fig. 11.9). Third, the variable pixels per 
unit dimension for different conditions were obtained. If the measured number of 
pixels is larger than the large ball (76.2 mm) (X in Fig. 11.9) or smaller than the 
small ball (63.5 mm) (Z in Fig. 11.9), the variable pixels per unit dimension func-
tion for the large ball and small ball would be used, respectively. Otherwise, the 
variable pixels per unit dimension function would be recalculated based on its ratio 
of distance VY (A in Fig. 11.9) and YW (B in Fig. 11.9).

The USDA standards (USDA 2002) define apple size based on the maximum 
equatorial diameter, but few researchers have actually used this criterion to grade 
fruit, owing to the difficulty of detecting the stem/calyx and orientation of moving 
apples (Throop et al. 2003; Pla et al. 2001). Mizushima and Lu (2013a) developed 
two algorithms (i.e., stem and symmetry detection) to calculate fruit maximum 

Fig. 11.9 Relationship between the number of pixels obtained from the images of the small 
(63.5 mm) and large (76.2 mm) reference balls and their centroid position x (x along the fruit mov-
ing direction). (Reproduced with permission from Mizushima and Lu 2013a)
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equatorial diameter. If a stem is detected in the image, a radius function (number of 
contour points and the distance between the contour points and centroid) is used to 
determine the orientation of the apple, after which the maximum equatorial diame-
ter could be calculated (Fig. 11.10). If a stem is not detected in the image (some 
apples lost stems during harvest), the symmetry detection algorithm is used to esti-
mate the orientation of the symmetry axis. Perpendicular to the symmetry axis, the 
maximal equatorial diameter can be calculated. Furthermore, an automatic adjust-
able algorithm for apple color evaluation was developed for color sorting of apples, 
using support vector machine, coupled with Otsu’s thresholding method (Mizushima 
and Lu 2013b).

An image processing software program for inspecting fruit quality (mainly size 
and color, with the defect detection algorithm being added later) was developed 
using Visual Studio 2010 Compiler and Qt and OpenCV library (Version 2.3). The 
software program, consisting of four algorithms, assesses apples by extracting 12 
features from each image (Table 11.1).

11.3.3  Sorting Mechanism

The sorting mechanism directs the apples into different bins based on the grading 
results from the computer vision system. The sorting mechanism should be compact 
and reliable, and meet the throughput of 6 apples/s. As discussed earlier, the bi-cone 
and cup conveyors are widely used in commercial sorting systems. In the initial 

Fig. 11.10 Contour points extracted to determine fruit orientation using the detected stem and 
centroid. (Reproduced with permission from Mizushima and Lu 2013a)
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phase of the project, a special cup conveyor design was used for transporting and 
sorting fruit. But it was found too complex and not quite reliable for field use. 
Hence, that design was abandoned in the next phase of development. Instead, a new 
rotary sorting mechanism was proposed and built (Lu et al. 2018). The rotary sorter 
consists of four compartments, separated by disks or pedals, and two gates 
(Fig.  11.11) for each lane. The sorter is synchronized with the screw conveyor; 
when the screw shafts complete one revolution, the sorter would rotate 90° covering 
one full compartment. As a graded apple is coming out from the imaging chamber 
at the end of the screw conveyor, it falls into one of the sorter’s compartments. After 
the apple arrives at Gate 1, the gate (solid line) would open to allow the apple, if 
graded “cull,” to exit from the compartment, by gravity and centrifugal force, and 
go to bin 1. Otherwise, the gate remains closed (dotted line of Gate 1), and the sorter 

Table 11.1 Features extracted from a single fruit image

Algorithm Features extracted

Moment algorithm Major orientation
Maximum diameter perpendicular to major orientation
Minor orientation (perpendicular to major orientation)
Maximum diameter perpendicular to minor orientation

Contour extraction algorithm Area
Diameter estimated from area

Stem detection algorithm Stem orientation
Maximum diameter perpendicular to stem orientation

Symmetry detection 
algorithm

First symmetry orientation

Maximum diameter perpendicular to first symmetry orientation
Second symmetry orientation
Maximum diameter perpendicular to second symmetry 
orientation

Reproduced with permission from Mizushima and Lu (2013a)

Fig. 11.11 Apple sorting mechanism consisting of a rotary sorter with four compartments and two 
gates controlled by solenoids
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continues transporting the apple to the next gate (Gate 2). Gate 2 would open (solid 
line) to allow the apple to exit to bin 2, if it is graded “fresh.” Otherwise, the gate 
stays in close status and the apple continues moving to the next, final bin (i.e., bin 
3). The two gates are controlled by solenoids, which are in turn controlled by com-
puter. Hence, this rotary sorter, in principle, can sort apples into three grades (e.g., 
bins 1, 2, and 3). However, for practical considerations (i.e., easy handling of bins 
and actual needs by growers for two-grade presorting), apples are only sorted into 
two grades (i.e., fresh and cull), and bin 3 is used as a backup bin for culls (see fur-
ther discussion later). It should be mentioned that by increasing the diameter of the 
disk with more compartments, the rotary sorter’s design concept can be used for 
sorting apples into multiple grades, if such sorting is desired.

11.3.4  Performance Evaluation

To ensure that the computer vision-based sorting system, along with the in-house–
developed software, would perform satisfactorily for infield sorting of apples, labo-
ratory and field tests were conducted to evaluate the screw conveyor, the vision 
system along with the software, and the rotary sorter, as well as the system’s bruis-
ing damage to apples.

The screw conveyor system was tested and evaluated for its ability of singulat-
ing, transporting, and rotating apples (Pothula et al. 2018). The conveyor system 
should enable the computer vision system to take enough images of each fruit, as it 
is passing the imaging chamber, so that the entire surface of the apple would be 
imaged at least once. As such, six apples, two for each of the three sizes (i.e., small, 
medium, and large), for each of “Golden Delicious” and “Delicious” varieties, were 
selected. Each quadrant of the test apple’s surface was painted with different colors 
(i.e., blue, red, green, and yellow) (Fig. 11.12). As these painted apples were passing 
through the vision system at the three throughputs of 1, 2, and 3 apples/s, the camera 
took images of each apple at 15 fps (frames per second). The acquired images were 
then analyzed to determine the percent of the entire surface area that had been 

Fig. 11.12 Six “Golden Delicious” apples, two for each of the three sizes, painted with different 
colors for assessing the screw conveyor design in rotating each apple for imaging; original apples 
before (top) and after each quadrant of the apples painted with different colors (bottom)
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imaged by the vision system. Results showed that as the throughput of the screw 
conveyor increased from 1 to 3 apples/s per lane, the number of times for which the 
entire apple surface was inspected decreased from 6 to 2. As expected, higher con-
veyor speed means faster linear moving speed for apples, thus fewer images taken 
by the vision system. At the maximum speed of 3 apples/s (or 9 apples/s for the 
sorting system), the entire surface of each apple was imaged at least twice. Hence 
the screw conveyor design was successful in singulating, rotating, and transporting 
apples for infield presorting application.

The computer vision system was able to acquire and process one image (several 
apples in one image) within 50 ms (image capture, size estimation, and color assess-
ment needed approximately 12 ms, 20 ms, and 15 ms, respectively). Thus, the vision 
system can meet the requirement of 6 apples/s for infield presorting. The relatively 
short imaging and processing times provide room for further implementation of 
additional sorting functions, such as defect detection. The vision system was also 
tested for size grading of “Delicious” and “Golden Delicious” apples (Mizushima 
and Lu 2013a). Approximately, 86% of the test fruits were correctly identified for 
the stem-calyx orientation, within ±20° accuracy. The system was able to estimate 
fruit maximum equatorial diameters, with the overall root mean squared error of 
1.79 mm, which is considered acceptable for practical use. Furthermore, the vision 
system was also evaluated for color sorting capabilities; it achieved superior results, 
when compared with a commercial sorting system, for the color sorting of 300 
“Delicious” apples of three commercial grades (i.e., Extra Fancy, Fancy, and Cull 
based on the USDA grading standards), with overall classification errors of being 
less than 2% (Mizushima and Lu 2013b).

The sorting system was further evaluated for sorting accuracy and bruising dam-
age at the throughputs of 2, 2.5, and 3 apples/s lane in single apple feeding mode. 
Results showed that overall the system performed satisfactorily, with sorting accu-
racies for these speeds all above 90% (achieving 99% and 100% at the rate of 2 
apples/s in the two setups). Bruising damage evaluation showed that more than 95% 
of the apples, after having run through the sorting system, were graded as Extra 
Fancy, which has met the industrial requirement for commercial use (< 5% of apples 
downgraded from Extra Fancy) (Peterson et al. 2010). It was, however, noticed that 
when the system ran at a higher speed (2 fruit/s or higher), some apples in the rota-
tory compartments did not have enough time to roll out of the gates, which was most 
likely due to the improper timing for opening and closing the gates. Better timing of 
the gates and improved design of the compartments should help to address these 
issues when the sorter is running at a speed greater than 2 fruit/s lane.

11.4  Automatic Handling of Harvested Apples

The bin filler is the most critical part for automatic handling of harvested apples. 
Bin fillers currently are not popularly used for the harvest platforms made in the 
United States, mainly because the existing bin fillers are still not satisfactory in 
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performance, too complicated, and not fully automated (Zhang and Heinemann 
2017; Zhang et al. 2018a). To presort apples in the field, multiple bin fillers (at least 
two) are needed for handling cull and fresh apples. It is thus critical that these bin 
fillers are compact and simple in design, so that they would be cost-effective and 
can be easily integrated with the harvest platform. It is also important that these bin 
fillers meet the performance requirements (i.e., being safe and reliable, achieving 
uniform distributions of fruit in the bin, and causing minimal or no bruising damage 
during fruit handling). Finally, the bin filler needs be fully automated, so that it does 
not need human assistance or intervention and would cause no or little disruption to 
the harvest activities during the bin replacement process. An extensive review of the 
existing and past bin fillers indicated that none of the existing bin filling technolo-
gies would meet these requirements without substantial modification. Therefore, 
considerable effort was taken on the development of a new generation bin filler for 
incorporation with the apple harvest and infield sorting machine.

11.4.1  Development of New Bin Fillers

The bin filler needs to fill each bin with 400–500 kg of apples, and it should thus 
meet certain dimension requirements. A typical bin used in the United States has a 
height of 0.86 m and horizontal dimensions of 1.22 m by 1.02 m. Hence, the new 
bin filler must be able to move a vertical distance of no less than 0.86  m, with 
enough horizontal dimensions to fill the bin evenly. Moreover, the bin filler should 
handle at least 6 apples/s to meet the overall harvest capacity requirement. In the 
overall system design for the apple harvest and infield sorting machine (Figs. 11.4 
and 11.5), it was necessary that the bin fillers be mounted directly beneath the apple 
sorting system (Sect. 11.3). This means that the bin filler needs to receive apples 
released from the rotary sorter (Sect. 11.3.1) and then place them in the bin, with 
varying distances between 0.86 and 1.72 m (two times the bin height).

Two types of commercial bin fillers for apple harvest use are presented in Sect. 
11.1.2. Though the spinning pinwheel design is simple and low in cost, it requires 
the use of decelerators to lower apple speed and then release the fruit onto the pin-
wheel at sufficiently low speed (Lehnert 2010). The decelerators are not suitable for 
infield sorting because of the large size. After the evaluation of different bin fillers, 
a new design concept was proposed, which allows apples from the rotary sorter to 
fall freely to the bin filler (with the falling distance varying with the filling level in 
the bin) (Fig. 11.13). To better control and also decelerate the freely falling apples 
before arriving at the pinwheel, two pairs of foam rollers, spinning in opposite 
directions, were used. The first pair, fixed on the sorting system, receives apples 
from the rotary sorter and then releases them in vertical direction to ensure that the 
apples fall directly into the gap of the lower pair of rollers, and the second, lower 
pair of foam rollers, mounted on the bin filler frame just above the pinwheel, catches 
the falling fruit and then releases the apples onto the pinwheel beneath at a con-
trolled speed. The use of two pairs of foam rollers greatly simplifies the overall 
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design of the bin filler and makes the system simple and compact. The bin filler, 
mainly composed of a pair of foam rollers and the pinwheel, moves vertically by 
using a linear actuator controlled by an onboard microcontroller. A detailed descrip-
tion of the major design features of the bin filler is given in Zhang et al. (2018b).

To realize the automatic bin filling process, an IR sensor and a Hall Effect sensor 
are used together to monitor the relative distance between the pinwheel and apple 
level in the bin and the pinwheel spinning speed, respectively. As the bin is being 
filled with more apples, the relative distance between the apple level and the pin-
wheel decreases and, at the same time, the pinwheel spinning speed tends to decrease 
due to increased force exerting on the motor for rotating the pinwheel. Two thresh-
olds (one for relative distance and one for spinning speed) are preset in the micro-
controller algorithm. When both real-time detected values are smaller than the 
preset thresholds, the linear actuator would be triggered to lift the pinwheel and 
foam roller for a specific distance. The bin filler control algorithm flowchart is 
shown in Fig. 11.14.

In testing and evaluating the initial version of bin filler which was installed with 
four soft pads, it was noticed that apple collisions occurred at the foam rollers and 
pinwheel pads when the system was running at the full capacity (i.e., 6 fruit/s). In 
addition, uneven distributions of apples in the bin during filling were also observed. 
Subsequently, improvements were made by increasing the number of soft pads from 
four to nine, so that each compartment of the pinwheel would not have more than 
one apple in any given time (Fig.  11.13). This effectively reduces or avoids the 
occurrence of apple collision at the pads. In addition, foam guides were also added 
at the end of pads to decelerate the rolling apples before exiting the pads as well as 
improve fruit distributions in the bin.

Fig. 11.13 Schematic of the bin filler (a) and close-up of foam rollers and pinwheel with multiple 
soft pads (b)
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11.4.2  Performance Evaluation

After incorporation into the apple harvest and sorting machine (Fig. 11.5), the new 
bin filler was tested and evaluated in both laboratory and orchard. Field tests were 
conducted in 2017 to evaluate the bruise damage by the bin filler for two varieties 
of apple (“Gala” and “Blondee”) in a commercial orchard in Michigan. Four pick-
ers, two on the ground and two on the platform, picked apples and then placed them 
onto the harvest conveyors. After the fresh bin was fully filled, the computer- 
controlled hydraulic system was triggered to unload the bin onto the ground. Four 
hundred apples for each cultivar (“Gala” and “Blondee”) were randomly collected 
from the bin for bruise evaluation using the USDA fresh market standards 
(Table 11.2). Results indicated that 99% and 98% of “Gala” and “Blondee” apples 
were graded “Extra Fancy,” confirming that the automatic fruit handling system has 
met the industrial bruising requirement.

Laboratory tests were intended to evaluate the fruit distribution and bruising by 
the bin filler. Currently, visual observation is commonly used for the evaluation of a 

Fig. 11.14 Flowchart of the software program for automatically monitoring, recording, and con-
trolling the bin filler. (Reproduced with permission from Zhang et al. 2017a)
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bin filler for fruit distributions in the bin, which is subjective, inaccurate, and time- 
consuming. Hence, we proposed an objective and cost-effective approach, using a 
depth camera (Kinect-v2, Microsoft Corp., Redmond, WA, USA), for quantitative 
evaluation of fruit distributions in the bin (Zhang et al. 2018b). The Kinect-v2 cam-
era was calibrated, and the absolute difference between the camera-based height 
and actual height (manually measured) ranged from 0.1 to 11.6 mm, with the mean 
absolute error of 1.3 mm (Fig. 11.15), which is much smaller than the size of a typi-
cal apple. Hence, the depth camera was considered appropriate for the evaluation of 
apple-in-the-bin distributions.

The performance of the bin filler for fruit distributions was tested at a throughput 
of 4 apples/s. During a field test, it was noticed that the center lane of the three-lane 
sorting system tended to have more apples than the two side lanes. Hence, in the 
laboratory evaluation, both uniform and nonuniform fruit feeding patterns (desig-
nated as UF and NF respectively) were considered. For UF, each lane would handle 
the same number of apples (1.33 fruit/s), while for the NF, the center lane would 
handle twice the number of apples as each side lane did. When the bin was 

Table 11.2 Classification of bruise damage (Peterson et al. 2010)

Class
USDA fresh market 
standards Bruise specification

1 Extra Fancy No bruising
2 Extra Fancy Bruise diameter ≤ 3.2 mm (1/8 in.)
3 Extra Fancy Bruise diameter 3.2 to 6.4 mm (1/ 8 to 1/4 in.)
4 Extra Fancy Bruise diameter 6.4 mm (1/4 in.) to 12.7 mm (1/2 in.) or area of 

several bruises <127 mm2

5 Fancy Bruise diameter 12.7 to 19 mm (1/2 to 3/4 in.) or total area of 
multiple bruises <283 mm2

6 Downgraded Bruises larger than the tolerances in “Fancy”
7 Downgraded Cuts or punctures of any size

Fig. 11.15 A depth image for apple-in-the-bin distributions acquired by the Kinect-v2 camera. 
(Reproduced with permission from Zhang et al. 2018b)
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approximately 1/3, 2/3, and 7/8 filled, depth images were taken to quantify the fruit 
distributions in the bin. Standard deviation (SD) of the measured height (3 replica-
tions) was used as a measure of fruit distributions. The smaller the SD value is, the 
more even the fruit distribution is. Results showed that when the bin was about 1/3 
filled, the SDs were not significantly different between the two feeding patterns. 
This is because the bin floor is flat, and apples were easy to move from the landed 
place to the final destination (Fig. 11.16). With the bin being filled with more apples 
(2/3 or 7/8 of the bin height), the later arrived ones tended to dwell at the landed 
place, thus resulting in a higher standard deviation (Fig. 11.16) or less even fruit 
distributions. Overall, feeding pattern (i.e., UF and NF) did not have a significant 
effect on the distributions of fruit in the bin, which is important as the fruit feeding 
pattern in the real condition may vary, depending on the picking speed of individual 
workers and number of workers working on the platform.

To further understand spatial variations in the fruit filling height, the depth 
images were divided into 8 × 8 blocks (total 64 blocks) at the three levels of filling. 
In each image, the absolute differences between the base block (the one with the 
largest height value among the 64 blocks) and non-base blocks were calculated, and 
they were categorized into four height groups. Group 1 for those blocks with the 
absolute difference being less than or equal to 70 mm, group 2 for blocks with the 
absolute difference between 71  mm and 140  mm, group 3 for blocks between 
141 mm and 210 mm, and group 4 for blocks of larger than 210 mm. Figure 11.17 
shows the 2D display of fruit distributions, in which darker blocks represent the 
larger absolute differences in height. The bin filler overall had satisfactory perfor-
mance in fruit distribution in the bin under both uniform and nonuniform feeding 
conditions. The fruit distributions were less even around the four corner areas of the 
bin, as indicated by darker blocks in Fig. 11.17, because the circular pinwheel had 
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Fig. 11.16 Apple distributions in the bin as measured by the surface height standard deviation in 
mm, under the uniform and nonuniform feeding patterns. The fruit distributions were measured at 
the three levels of filling in the bin (i.e., 1/3, 2/3, and 7/8 bin filled). Whiskers associated with 
individual bars stand for two standard deviations calculated from three replications. Bars for each 
group (i.e., 1/3, 2/3, and 7/8 bin filled) with the same letters are not significantly different by Tukey 
Test at the level of 0.05. (Adapted with permission from Zhang et al. 2018b)
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difficulties moving apples to these corners. Overall, the bin filler has met our goals 
in terms of simplicity and compactness in design, cost, performance, and automa-
tion; it can handle fruit at a capacity of 6 fruits/s or higher.

11.5  Automatic Handling of Fruit Bins

As discussed earlier, the current bin handling process for the commercial harvest 
platforms would result in a significant loss (i.e., 10–25%) in harvest productivity, 
because it still needs human involvement and the pickers have to cease picking 
activities during the bin handling. Hence, it is important that the apple harvest and 
infield sorting machine can automatically handle full and empty bins without human 
intervention or involvement so as to minimize the downtimes for the harvest crew 
during the bin handling. This means that the system should be able to automatically 
monitor the bin filler and/or bin filling status. Once the bin is full, the bin filler 
would alert the system, so that it would automatically unload the full bin and load 
an empty bin, and once the latter is in place, the bin filler would automatically insert 

Fig. 11.17 Relative height variations of the fruit distribution in the bin under the uniform and 
nonuniform feeding conditions. The whole bin area was divided into 8 × 8 blocks or areas, with 
respect to the highest block measured at the three filling levels (1/3, 2/3, and 7/8 bin filled). 
(Adapted with permission from Zhang et al. 2018b)
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into the new bin and begin filling again. In addition, since the bin replacement pro-
cess could take some time (typically 1–2 min in the current commercial harvest 
platforms), it is desirable to use a backup bin for apple filling during the transitional 
period, so that the harvest crew does not need to cease picking activities during the 
bin replacement process. Based on these considerations, we developed an automatic 
bin handling system for the apple harvest and infield sorting machine.

To integrate the automatic bin handling function, the harvest and sorting machine 
was designed such that it can carry four bins at the same time; all four bins are lined 
up on the chain conveyor, which is driven by a computer-controlled hydraulic sys-
tem. The automatic bin handling system consists of multiple IR and ultrasonic sen-
sors, active rollers, and hydraulic-driven chains (Fig. 11.4). To effectively implement 
the automatic bin handling function, empty bins need to be pre-placed in the orchard 
at appropriate spacing intervals, which is already being practiced by many growers 
in the United States. As the machine is moving forward, the active chain and rollers 
in the front of the machine are both turned on. The tilted front forks would enter 
beneath the bin and lift the bin partially, until after it is being engaged with the 
active rollers and hydraulic-driven chain, which pull the bin to another horizontal 
chain. Once the empty bin is loaded on the horizontal chain, its movement is being 
monitored by the multiple IR sensors. After the bin has been moved to the proper 
position (Fig. 11.4), the IR sensor sends a signal to the computer, which activates 
one of the bin blocks, which are installed next to the chain tracks on the main frame 
of the harvest and sorting machine, from the horizontal to vertical position, thus 
stopping the bin from further horizontal movements. Following this procedure, 
additional bins are loaded one after another until all four bins are in place. Thereafter, 
the computer would trigger the hydraulic system to lift the first bin to the elevated 
position for handling culls. The cull and fresh bin fillers then begin to lower auto-
matically to the bin floor. After completion of automatic initialization for the two 
bin fillers, the system is ready to perform normal harvesting and sorting operations.

After the fresh bin is full, the bin filler sends signal to the computer, which sus-
pends the sorting system and harvest conveyors, followed with activation of the 
hydraulic chains to push the fresh bin out to the ground (Fig. 11.18). At the same 
time, a new empty bin is moved into the position for fresh apples. The fresh bin filler 
then automatically lowers into the new empty fresh bin, and the whole system then 
resumes normal harvesting and sorting operations.

In a second situation, the cull bin at the elevated position is filled to the full level. 
The sorting system then directs all new culls to the backup cull bin. Meanwhile, the 
hydraulic system is triggered to lower the cull bin to the chassis, which is then 
unloaded by a chain conveyor to the ground. During the unloading of the cull bin, 
normal harvesting and sorting operations are not disrupted. After the fresh bin is 
filled again, it is unloaded to the ground, and the backup cull bin is then moved to 
the elevated cull bin position, and a new empty bin is moved into the fresh bin posi-
tion (Fig. 11.19). The system returns to the same working status as that shown in 
Fig. 11.18.

The bin handling system has been tested off-season for several times, and the 
overall performance was satisfactory. However, it was found that the IR sensors 
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sometimes could not provide accurate bin position data, due to interference from 
natural lighting, and the sensors were also prone to moisture. Field testing of the 
machine also suggested that all sensors used in the automatic bin handling system 
should be water, dust, and dirt proof. For the current bin handling system, the har-
vest crew still needs to cease picking activities for 1–2 min during the replacement 
of fresh bins. Further improvements in reducing the crew downtimes can be made 
by utilizing the backup cull bin for fresh apple filling, when the regular fresh bin is 
filled, which can be done by modifying the computer program without any hard-
ware change.

Fig. 11.18 Automatic handling of a fresh bin after it is full (top). The full fresh bin is unloaded 
automatically to the ground, and at the same time, a new empty bin is moved into the fresh bin 
position (bottom). After the bin filler is lowered to the proper position, the system resumes normal 
harvesting, sorting, and filling operations
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Fig. 11.19 Automatica handling of a full cull bin. After the cull bin has been filled (top), all culls 
are directed to the backup cull bin (middle). At the same time, the full cull bin is being unloaded to 
the ground automatically (middle). After the fresh bin is filled, it is unloaded and the backup cull 
bin is moved to the elevated cull bin position (bottom). The normal bin filling process, as shown in 
Fig. 11.18, resumes

Z. Zhang and R. Lu



293

11.6  Summary and Concluding Thoughts

Commercial harvest platforms have gained popularity in recent years as a means for 
improving harvest productivity and the working condition for workers, but their 
overall level of automation is still low, thus limiting them from achieving optimum 
harvest productivity. This chapter reviewed the current status of apple harvest-aid 
technology, fruit postharvest handling and presorting, and handling of harvested 
fruit and bins in orchard. It then described the development of a new apple harvest 
and infield sorting machine to enhance harvest productivity and achieve cost sav-
ings for postharvest handling. The new system had several innovative automation 
features, which include automated grading/sorting, handling of harvested fruit, and 
fruit bin handling. The patented infield presorting system utilized a simple, compact 
pitch-variable screw conveyor design to accomplish the fruit singulation, rotation, 
and transporting functions simultaneously. By using a wide field-of-view imaging 
configuration, coupled with appropriate system calibration procedures, a low-cost, 
compact imaging system was constructed, which enables to inspect and grade each 
fruit based on color and size. The graded apples are then sent to the cull and fresh 
bins by a compact rotary sorter. The new automated bin filler consists of two pairs 
of foam rollers, allowing to catch and deaccelerate freely falling apples and then 
release them to the pinwheel installed with multiple soft pads, which distributes the 
fruit in the bin evenly with minimum bruising. Laboratory and field tests showed 
that the machine vision-based sorting system and the bin filler have met the require-
ments for infield presorting use. Moreover, the automatic bin handling function has 
been incorporated into an apple harvest and sorting machine, which helps minimize 
the downtimes for the harvest crew during the bin replacement process, thus enhanc-
ing the overall harvest productivity.

With the current imaging system, apples are graded and sorted based on color 
and size. Defect sorting is important for presorting and hence should be incorpo-
rated in the imaging algorithm in the future. The sorting system was designed for 
handling a throughput up to 6 apples/s. A new sorter has been developed recently to 
replace the rotary sorter, which allows to sort apples into two grades (cull and 
fresh) at a speed of up to 10–12 fruit/s. Research is also being taken in the develop-
ment of a new picking-aid technology for incorporation into the system, which is 
expected to further improve harvest productivity. Hence, improvements to the 
imaging- based sorting system and the bin filler are needed to meet the higher 
throughput requirement (i.e., 9 apples/s or higher). Moreover, additional functions, 
such as yield and quality mapping, should be considered in the future for the apple 
harvest and sorting machine, to help growers and packinghouses better monitor and 
keep track of harvested fruit from the field to the retailing market. Ultimately, it 
would be highly desirable to incorporate robotic technology with automated sorting 
technology in one machine to achieve total automation in fruit harvest and infield 
sorting. Finally, while the current machine is developed for apples, the technology, 
with some modification, should also be applicable for other fruits, such as peaches 
and pears.
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Disclaimer Mention of commercial products in the chapter is only for providing factual informa-
tion for the reader and it does not imply endorsement or recommendation by USDA over those not 
mentioned.
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Chapter 12
Modeling, Simulation, and Visualization 
of Agricultural and Field Robotic Systems

Brian L. Steward, Mehari Z. Tekeste, Jingyao Gai, and Lie Tang

12.1  Introduction

Agricultural machinery technology needs to adapt to the demands for increased 
food production to support a growing world population. While at the same time, 
more volatile climatic and pandemic conditions make it necessary for machinery to 
accomplish agricultural field operations more quickly and efficiently. Emerging 
technologies are rapidly advancing, enabling greater autonomy and control of field 
operations.

Because of the importance of agricultural machines in perceiving cropping con-
ditions and implementing management decisions, they will be a key part of any 
smart, digital agriculture scheme. Additionally, agricultural and field robots will 
likely be a part of the agricultural machine portfolio of the future, because autono-
mous machines enable a step change in the degree of perception and control that can 
be accomplished when human operator limitations are a constraint. Nevertheless, 
this type of autonomy in agricultural robotics can only be achieved through the use 
of multiple layers of technology (Fig.  12.1; Han et  al. 2015). As a foundational 
technology layer, agricultural robotics must have machine architecture with both 
hardware and software components required for the robot’s function. Then the robot 
must be aware of its location and the environment and cropping system around it. 
This awareness capability is provided by perception, localization, and monitoring 
technologies found in the machine awareness layer. Then to act upon the world, 
control technology is required to navigate and control implement motion. Fourthly, 
machine behavior needs to be planned and then supervised with technology in a 
machine behavior layer.
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All of these layers of technology means that agricultural and field robotics are 
highly complex and will need to be flexible and robust in their operation. Developing 
this high degree of functionality can only be accomplished with simulation comple-
mented with field testing. Simulation requires the development of models of the 
robot along with models associated with the soil and organisms with which the 
robot will interact as well as human operators or supervisors. Additionally, the 
results of simulation are only useful when they are presented in a way that makes 
sense to the user of the simulation. Thus visualization of the robot and its virtual 
world are very important to this simulation ecosystem.

This simulation approach has been taken in the development of self-driving cars. 
For example, one company, Waymo, recently reported self-driving more than ten 
million miles on the road. However, they were simulating that amount of driving 
each day (DeBord 2018; Nelson 2018).

12.2  Simulation Requirements

A challenge for any complex system, like an agricultural robot, is to develop soft-
ware algorithms that enable the autonomous behavior that is required for the 
designed function of the robot. For an efficient development process, work on the 
software needs to take place simultaneously with the development of the robot 
mechanisms. An even more complicating factor is that agricultural robots need to 
operate in outdoor agricultural fields, and their availability is determined by weather 
conditions as well as the crop growing season. If development progress is limited by 
field conditions, then it will happen at a very slow pace (Shamshiri et al. 2018).

However, simulation technology enables software development in a simulation 
environment, placing the algorithm development in a loop with the other physical 
parts of the robot modeled and simulated. This approach is called X-in-the-loop 
simulation where X is the controller at various stages of development, placed in a 
closed loop with simulation of the dynamic system or plant to be controlled. 
Depending on the stage of the development, X can be a model of the controller, 

Fig. 12.1 A multilayer design framework for agricultural robotics has four technology layers. 
(Han et al. 2015)
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called Model-in-the Loop (MIL) simulation, or just the software running on a gen-
eral purpose computing platform, like a PC, for Software-in-the-Loop (SIL) simula-
tion. The final stage of XIL is Hardware-in-the-Loop (HIL) simulation where the 
embedded controller hardware and software is used along with a dynamic simula-
tion of the plant (Rosique et al. 2019). This XIL approach is common in the devel-
opment of cyber-physical systems today.

To do an XIL simulation of an agricultural robot, several components are required 
to implement the simulation system (Fig. 12.2). A closed-loop simulation system is 
first divided up into two parts. There are the algorithms which will be used to imple-
ment the autonomous behavior of the robot (left side of Fig. 12.2), and there are the 
models which the simulator must solve to represent the behavior of the robot (right 
side of Fig. 12.2).

In the multilayer design framework (Fig. 12.1), the three top technology levels 
are all algorithm-based, meaning that they are technologies that are implemented in 
software. Machine awareness, for example, requires that electrical signals produced 
by sensors are processed in a way that makes sense of the signals so that they are 
representing something in the physical world to the robot. Machine control involves 
the control of robot actuators to enable motion for the functions that the robotic 
system is designed to perform. Machine behavior is the planning and supervision of 
the robot in order to enable the robot to function with autonomy. All these are 
needed to be part of the XIL simulation system either as models, software, or hard-
ware. For ease of deployment to the physical robot, it is important that they can be 
easily transferred to the robot.

To represent the dynamic robot system being controlled, the hardware needed for 
the simulation must be modeled as well as the environment in which the robot will 
be operating. So in addition to a model of the robot, the model of the virtual world 
is required to show how the robot will interact with its surroundings. This is very 
important to an agricultural robot because it will be interacting with biological sys-
tems around it to carry out its intended function. Also important are the models of 

Fig. 12.2 Required elements of a full XIL robot simulation include both the algorithms (the X 
being either a model, software, or hardware), which will be used to determine robot behavior and 
the simulation of the robot and environment in which it will operate
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the sensors used by the robotic system. In the case of agricultural systems, robot 
sensors may be cameras or distance sensors, among others. All of these models form 
the background upon which any simulation must be built.

12.3  Modeling Background

With any dynamic simulation, the physics governing the real-world entity of inter-
est must be represented mathematically (Cellier 1991). This representation of the 
real-world entity is called the model of the entity. So modeling, the development of 
the mathematical representations of real-world entities, goes together with dynamic 
simulation, which involves solving the model equations and representing the behav-
ior of the entity as a function of time and, in some cases, space.

Reality is complex and so making a model of some piece of reality will involve 
some kind of simplification. In other words, it is impossible to model all of the 
complexity of the real world, so a model should only represent the reality that results 
in the behavior of interest to the modeler. Additionally, modeling too much com-
plexity will result in more model development time needed for troubleshooting and 
validating the model against experimental results. Too much complexity also has an 
implication at the time of simulation as overly complex models will take too much 
computational capacity resulting in long simulation times. In this context, it is 
important to consider two aspects of model development: model scope and model 
fidelity, as both are important and involve decisions that the modeler must make 
about their work.

Model scope is the boundary around what is included in the model and thus 
determines what physical reality is outside of the model. The physical reality inside 
the scope of the model is called the system; that which is outside is the environment 
(Fig. 12.3). The environment is the context in which the system operates, and there 
are mutual influences between the environment and the robotic system. The system 
inputs are physical signals that have influence on the system. They are causal, mean-
ing that they cause the system behavior to change. The system also has an influence 
on the environment through its output signals.

Model fidelity is defined differently by various authors. Choi et al. (2017) defined 
model fidelity “as the degree of output similarity between a reference system and a 
model that abstracts the reference system.” So model fidelity, in this sense, is mainly 
a faithfulness to produce an input-output response when simulated, which is consis-
tent to that which is observed in the real system. Williams and Alleyne (2014) 
offered a similar definition of model fidelity being “the extent to which a model can 
replicate the actual physical event.” It is “the degree to which a model reflects the 
behavior of a real system.” However, they later indicated that fidelity is measured by 
the number of dynamic equations for a system that are included in a model. Thus 
model fidelity is associated with the quantity of correct dynamic systems equations 
that are included in a model so that when simulated, the model more faithfully 
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provides responses that reflect the behavior of the real-world system over a wide 
range of inputs.

Model fidelity is how much of the system dynamics that a modeler is capturing 
in their representation of the real-world system. In modeling, not all of the complex-
ity of the real world is captured, but as long as the behavior of interest is represented 
by the model, it has utility. George Box (1987) is famously quoted, “All modes are 
wrong, but some are useful.” In the development of a model, the modeler needs to 
decide what behavior is particularly important to capture in the model, and what 
behaviors are not particularly important to model. For example, Karkee and Steward 
(2010) modeled the steering system of a tractor and cart system with three models 
containing various degrees of fidelity of the tire-soil interaction. The simplest model 
was called a kinematic model in which the wheels moved in the direction that they 
were pointed. The other models were called dynamic models in which the vehicle 
was turned based on the lateral forces acting on the wheel based on the interaction 
between the tires and the soil. Even these “higher” fidelity models were a simplifica-
tion of the tire-soil interaction which is quite complex (Taheri et  al. 2015; see 
below). When these vehicle system models were simulated, it was shown that at 
slow speeds, the lower fidelity model was sufficient to capture the steering behavior 
of interest. In other words, if developers are interested in simulating the steering 
behavior of a tractor-cart system at low speeds, the additional complexity of the 
higher fidelity models would have added no value.

For each model needed for an agricultural robot simulation, decisions need to be 
carefully made about the scope and fidelity of each model. These model attributes 
need to be selected so the behavior of interest is captured in the model and unneces-
sary model scope and fidelity are not included. Additional complexity, time, and 

Fig. 12.3 The model scope is the demarcation between the system and the environment. It is 
determining that which will be modeled, which is called the system, and that which will be left 
unmodeled, the environment
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effort would be needed for modeling unnecessary system behavior. The scope and 
fidelity of the model are also related to the computational resources associated with 
the simulation platform. Computational capability to solve the equations of motion 
of the models may also influence choices about the scope and fidelity of the models 
because of the effect on computational speed, which determines how long it will 
take before the simulation is completed.

12.4  Dynamical System Modeling

Dynamical system models are mathematical representations of system behavior 
using differential algebraic equations (DAE). Models of the kinematics and dynam-
ics of the mechanical systems associated with a robot are one type of dynamical 
system models, but electrical, fluid, and thermal physical systems are also modeled 
as dynamical system models as well as sensor and actuators at the interface between 
these different engineering systems. Control system dynamics can also be modeled.

Dynamical system models required for most robotic applications are typically 
lumped parameter models or “0D” models. This label means zero-dimensional 
because spatially distributed system characteristics are lumped into a topology of 
interconnected discrete elements. Thus the spatial aspect of the system is moved 
from partial differential equations into the topology of the model components leav-
ing a system of ordinary differential equations. 0D models typically provide a fidel-
ity that is sufficient for most agricultural robot applications, in comparison with 1D, 
2D, or 3D models which include spatial variables in the equations.

One challenge for modelers is how to represent the system in a form that can be 
used by computers. The mathematics associated with dynamical system models can 
be represented in several long-standing forms such as nth-order input-output dif-
ferential equations, transfer functions, or state-space models consisting of n first- 
order differential equations often in a matrix representation, where n indicates the 
order of the system or the number of derivatives required to represent the dynamics 
of the system (Fig. 12.4). Systems can also be modeled graphically with the mod-
eler representing the system via a user input to the computer that facilitates the 
construction of a diagram. Such graphical models include block diagram models or 
connection diagrams with physical modeling. Block diagrams flow out of the analy-
sis in the Laplace transform domain and the representation of systems with transfer 
functions. As such, systems are represented by blocks with connections showing the 
flow of signals from one block to another (Mathworks 2019a). Block diagrams have 
been used for decades particularly in the controls system area.

Another approach to graphically representing physical systems as a model is 
called physical modeling (Fritzson 2015, p.  6). In physical modeling, graphical 
objects represent physical objects, and their physical connections are represented 
through the use of connection diagrams or physical networks (Mathworks 2019a). 
This approach is acausal as neither direction nor causality is specified in the 
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connections. The connections generally represent the paths in which energy is trans-
mitted from one component to another.

Two commonly used physical modeling approaches are Simscape and Modelica. 
Simscape is the physical network blocks and connection approach embedded in the 
Matlab Simulink graphical modeling platform (The Mathworks, Natick, MA). It is 
a good example of dedicated modeling objects that are specifically used only within 
a specific simulation platform. Modelica, on the other hand, is an open modeling 
language that can be used to simulate dynamical systems in many modeling and 
simulation environments. Currently 12 environments are available including 
Dymola, MapleSim™, Wolfram System Modeler®, and  OpenModelica 
(Modelica 2019).

12.5  Simulation and Visualization Platforms

There are generally two classes of simulation platforms that can be used for simulat-
ing agricultural robots. These two classes of platforms have different advantages 
relative to one another. The choice of a particular simulator depends on the purpose 
of the simulation. One use-case of a simulator is to have an XIL environment in 
which software development can take place with testing done by simulating the 
physical plant. Such an approach reduces the need to go to the field to do testing in 

Fig. 12.4 Dynamical systems can be represented in different models. For example, a mass-spring- 
damper system can be represented (starting in top left and moving CCW) as a differential equation, 
a state space model, a transfer function, a block diagram, or a physical model
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the early development. Another purpose of doing simulation is to evaluate the per-
formance of a component or subsystem of a robot in completing some tasks. To 
achieve this purpose, a higher fidelity model may be needed for the simulation so 
that the performance metrics coming from simulation can be trusted with some level 
of confidence. Another purpose could be to explore the design space very early in 
the design process in which conceptual robot architectures are simulated.

The first class of simulators for robots are scientific computing platforms that 
have been developed for and are used for system-level modeling and simulation. 
These tools were mentioned above, which include Matlab/Simulink/SimScape and 
Modelica-based packages. These simulation environments are strong in providing a 
means for developing high fidelity models of the multibody structure of robots, 
including robot actuators. The Matlab environment also supports model-based soft-
ware design so that algorithms can be simulated along with modeled robot plants.

The second class consists of robot simulators that have been developed specifi-
cally for simulation of robots. Examples of robot simulators include Gazebo, V-Rep, 
and WeBots, among others (Shamshiri et al. 2018). Gazebo, for example, is widely 
used for robot simulation as it easily interfaces with the Robot Operating Systems 
(ROS) enabling the development of software in the context of testing the developed 
code with a simulated robot and environment. The description of the robot and envi-
ronment are entered through an XML file which describes the bodies. There are also 
simulators for autonomous vehicles (AV), typically focusing on the on-road vehicle 
sector including Carcraft by Waymo, Metamoto, and CARLA, which is an open- 
source layer over Unreal Engine 4, a commercially available graphics engine 
(Rosique et al. 2019).

There are trade-offs between these two approaches. Typically, the scientific com-
puting platforms enable the development of higher-fidelity models that are inclusive 
of the multiple engineering systems encompassed in a mechatronics design. So, for 
example, not only the mechanical system can be modeled and simulated, but also 
the electrical or fluid power actuation and sensors. These platforms also enable 
dynamic system model representations, are readable, often in a graphical format, 
and thus offer some transparency between the modelers and users of the models. 
Modelica, for example, enables an object-oriented modeling approach so that physi-
cal components and subsystems can be abstracted into classes, from which specific 
objects are instantiated. In addition, this modeling language enables different views 
of the model including text, where all of the equations can be explicitly read, or 
graphical views, in which the connections between different components can be 
easily observed (Fritzson 2015; Tiller 2001). These platforms thus enable robust 
modeling tools coming out of the dynamic systems discipline. They also offer visu-
alization of the robot or any other mechanism as it is moving during simulation. A 
limitation, depending on the tool, may be in the ability of the platform to include 
representations of the world with which the robot is operating and interacting. This 
is particularly important for agricultural and field robots because of their close cou-
pling with the field space through both their actuation systems and their sensors. 
Some tools have explicit means for developing virtual world representations. Other 
may not, and then any interaction between the robot and the world would need to be 

B. L. Steward et al.



305

modeled explicitly within the system model. Yet another approach would be to cou-
pling the dynamic simulation to graphical engines in which the virtual world and 
robot can be modeled, simulated, and visualized.

By contrast, robotic simulators mainly provide means for representing the 
mechanical systems associated with robots through a multibody representation con-
sisting of sets of joints and bodies. Often the representation is in a textual file for-
mat, often in XML format, and may not offer a very readable model to the user. 
They generally lack capabilities for explicitly modeling other engineering systems, 
which may make representing high fidelity models of actuators difficult. Sensor 
models may be available, but their models are not typically very transparent, but are 
rather a plug-in that was written in some computer language. Because they are robot 
simulators, there are means to represent detailed robot worlds for the robots to oper-
ate in and typically provide very good computer graphics for simulation and visual-
ization. In addition, interactions between the robot and the world are typically 
handled through collision detection and responses.

12.6  Robot Models

The backbone of a robot is a mechanical system, but it is more than a mechanical 
system; rather it is a mechatronic system, meaning it is a combination of mechanical 
systems along with other engineering systems, particularly electronic, electrical, 
and fluid systems, mostly in the form of actuators and sensors. Nevertheless, at the 
most fundamental level, the mechanical components and mechanisms of a robot 
must be modeled. The actuation system of the robot should also be modeled, but the 
level of fidelity depends on the goals of the simulation.

First, models of the mechanical components need to be developed. For models of 
the three-dimensional shapes of parts, solid models are typically used and can be 
developed using several available solid modeling computer aided drafting (CAD) 
software packages (e.g., Solidworks, Creo, Inventor, OnShape). Solid models are 
developed through sketches of geometrical shapes on a two-dimensional plane and 
then additively or subtractively growing those shapes in the third dimension to form 
a solid. Thus, geometric operations are used to form the 3D model of a part. Then 
other material properties associated with each part are added to the solid model such 
as material density, Young’s modulus, and surface properties. With these properties 
in place, other engineering calculations and simulations can be carried out. Solid 
models are typically represented using one of two means: constructive solid geom-
etry and boundary representation. Constructive solid geometry (CSG) representa-
tions consist of trees of geometric additive or subtractive primitive operations 
required to make the part (Foley et al. 1996). CSG is typically used as the format of 
the native files associated with solid modeling software. Boundary representation 
(B-rep) of solid models consists of descriptions of the edges or triangulated faces of 
parts. B-reps are often used in standard file formats that are used for file interchange 
between different software applications. For example, the STL (for 
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stereolithography) file format uses a triangulated surface B-rep of components and 
is used to transfer solid models to 3D printing software (Grimm 2004). Similarly, 
STEP (Standard for Product Data Exchange) files are using an ISO standardized file 
format for the exchange of 3D solid models. The standard is much broader than just 
the exchange of geometric information, but also includes interchange of a product 
data across the entire product life cycle (Pratt 2001; ISO 10303).

For simulation, component models must be imported into the simulation pack-
age. For example, STL files or STEP files can be imported and used to represent the 
shape of bodies of Simscape Multibody models in the Matlab environment. Also, 
Dymola will accept DXF files and ASCII STL files (Dymola 2018). DXF files are a 
file format developed by Autodesk for exchange of models between AutoCAD and 
other programs (Autodesk 2012).

In a CAD solid modeling software, assembly modeling is used to model how 
individual components are located relative to one another for a primary purpose of 
visualization, but also to manage all of the components that are assembled into a 
product. Physically, components are constrained by fasteners or may be able to 
move relative to one another. Assembly models contain a list of the components that 
are needed to build the assembly along with their relationship to the coordinate 
system in the assembly space or their relationship with other parts which are deter-
mined with mating conditions. For example, two flat surfaces of two different com-
ponents can be mated to be coincident to each other. Robot simulation, however, 
requires multibody dynamic models which can come from assembly models.

Multibody dynamic (MBD) models are similar to the assembly models, but are 
focused on representing the interconnection of rigid or flexible components (or bod-
ies) to enable simulation of their motion under the influence of external forces. Thus 
the main primitives for representing multibody systems are bodies and joints. 
Bodies are just the models of rigid components with dimensional properties, and 
can come from the solid models. Joints define how bodies are connected together 
and how their motion is constrained relative to one another. For example, a pris-
matic joint constrains motion to only translational motion along one translational 
axis. Similarly, a revolute joint constrains motion to only rotational motion about 
one rotational axis. Through the system of bodies and joints, the degrees of freedom 
for the system are determined. A degree of freedom is a possible independent move-
ment of a body or system of bodies. In 3D space, a body will have six degrees of 
freedom, three translational motions, and three rotational motions. Joints constrain 
motion reducing the number of degrees of freedom for a system depending on the 
constraints associated with the joint (Shabana 2020).

In the Matlab platform, MBD models can be developed in Simscape Multibody; 
the representation of the bodies and joints can be represented graphically with refer-
ences to STEP files exported from a CAD software. It is also possible to export an 
assembly model from a CAD software through the Simscape Multibody Link 
Plug-in, which will then take the assembly model and make it into an MBD model. 
In Modelica, there is an MBD library in the Modelica Standard Library from which 
MBD robot models can be built.
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Robot simulators represent the multibodies that make up a robot using a format 
that is specific to the simulator. For example, in Gazebo, the robot elements are 
described in an XML file in the Universal Robotic Description Format (URDF). 
URDF files are used in ROS to specify the component and joint configurations of 
the mechanisms that make up a robot. Gazebo actually uses SDF (Simulation 
Description Format) files, which specify everything needed for the robot simulation 
including both the robot and the world. There is a way to use, however, a single 
URDF file for both ROS and Gazebo by using <gazebo> tags for parameters that are 
used by Gazebo, but are ignored when the file is used by ROS (Gazebo 2019; 
Bipin 2018).

In URDF, there are two main elements that define the multibody system of the 
robot: links and joints. Links are the solid elements that can be defined as simple 
geometric shapes or through the solid models. The solid models can be represented 
using STL files or COLLADA files. The COLLADA file format was designed for 
exchanging 3D graphics between graphics software; as such they can provide better 
surface feature representations than STL files. When defining the links, both visual 
and collision models are defined. The visual model will contain more details, so the 
fidelity of the visual appearance is maintained; the collision model will be a lower 
fidelity geometric model to reduce the computational demand of the collision detec-
tion algorithm (described below; Bipin 2018). Joints are the definition of the con-
nection between the links and specify the possible relative motion between the 
links. Gazebo joint types include: fixed, continuous, revolute, prismatic, planar, and 
floating.

As an example of another robot simulator, in the V-REP robot simulator, robots 
can be defined using URDF files, or STL files can be imported and placed in the 
V-REP scene through the use of a graphical user interface (Shamshiri et al. 2018).

12.7  Virtual World Models

Since the robot will be operating in a real-world environment and will be acting 
upon that environment, a model of the world will be needed. Like the robot model, 
virtual world models also consist of solid models of the objects in the world, as well 
as their relationship to one another. In addition, for visibly realistic representations 
of the objects in the world, their surface properties including textures must be rep-
resented in the model. Then in the simulation, the 2D scenes will be rendered based 
on the models provided to the simulator. Matlab accomplishes this using the 
Simscape 3D Animation package which uses virtual world models represented as 
Virtual Reality Modeling Language (VRML) or eXtensible 3D (X3D) files. The 
virtual world can be imported from URDF or Simulation Description Formal (SDF) 
into a VRML file and edited with a 3D editor. In Gazebo, the virtual world can be 
edited within the Gazebo GUI editor and will be saved as a file with a “.world” 
extension which is in the SDF format. The SDF format was developed to provide a 
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complete description of everything needed to run a simulation in Gazebo across 
robot to virtual world levels (Gazebo 2019).

12.8  Collision Detection

An important part of the robot’s interaction with the virtual world comes from the 
simulator’s capability of determining when a robot component geometrically inter-
sects or “collides” with an object in the world. Once a collision is detected, then the 
response to that collision must be determined. In Matlab/Simulink or Modelica, if 
the physics of the system are completely modeled in the dynamic model, then colli-
sion detection is handled in the system equations which must explicitly track inter-
actions between objects. A bouncing ball can be used as a prototypical example 
problem to illustrate hybrid dynamic systems which have both continuous dynamics 
and discrete states. For this example, a gravitation force operates on the ball leading 
it to accelerate in the downward direction. The position of the ball above a horizon-
tal surface is monitored, and when the ball comes into contact with the surface, the 
continuous simulation is stopped and then reinitialized with the velocity of the ball 
now directed upward with a magnitude that was the same as the downward velocity 
scaled by the coefficient of restitution (Fig. 12.5).

Another approach is to push the collision detection operation into the model of 
virtual world. One virtual world representation format is X3D (Extensible Three 
Dimensional; www.web3D.org), which is an ISO standard for defining three- 
dimensional computer graphics for virtual worlds and robots operating in those 
worlds. A feature of X3D is the capability for detecting collisions between objects 

Fig. 12.5 Simulink model of a bouncing ball with two states for velocity and position. Collisions 
between the ball and surface are detected when the position is less than or equal to 0, and when the 
system is restarted with an initial upward velocity which is the product of the velocity upon colli-
sion and the coefficient of restitution. (Source: Mathworks 2020a)
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with picking sensor components placed in the X3D world model. The term “pick-
ing” is a 3D graphics term that refers to testing for object collision. X3D sensors are 
used in the Simulink 3D animation tool, in which each X3D sensor indicates through 
a Simulink VR Source block when collisions occur. Responses to those collisions 
are determined through response models represented as Simulink blocks, which 
then provide input to a VR Sink block and modify the objects in the virtual world. 
This type of interaction between the virtual world and the robot enables transpar-
ency and flexibility to the people developing the models and software to control the 
robot (Fig. 12.6).

In Gazebo, like other robot simulators, the links associated with the robot and 
those associated with the virtual world are provided by a physics engine such as 
Open Dynamics Engine (ODE), Bullet, Simbody, or DART (Shamshiri et al. 2018; 
Mondesire et al. 2016; Erez et al. 2015; Lee et al. 2018; Sherman et al. 2011). The 
physics engine determines the motion of the multibody system, which makes up the 
robot as well as internally detects collisions and determines the response to those 
collisions.

The general collision detection and response process determines at each time 
step which bodies are in contact with each other. For each contact point, a tempo-
rary joint is established, and based on the stiffness, damping, and friction models 
between the two bodies, the resulting joint forces or impulses are calculated. Then 
based on these impulses, bodies’ velocities and positions are updated (Fig. 12.7), 
the set of temporary joints is removed, and the process repeats (ODE 2019; Coumans 
2015; Moore and Wilhelms 1988; Kavan 2003). Robot simulators will all take a 
similar approach to collision detection and response using the algorithms associated 
with their physics engine. It is important to note that this approach to collision 
detection largely emerged from the computer animation and graphics community 

Fig. 12.6 Example of Simulink interface with virtual world in which sensors defined in the X3D 
format indicate when collisions occur. Collision signals come from the VR Source block labeled 
Virtual Reality Sensors in the upper-left corner are handled by the Object Handling block in the 
center, which provides signals to the VR Sink block on the right which implements changes in 
appearance to objects in the virtual world. (Source: Mathworks 2020b)
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with a common application of simulating the motion of objects in video games. 
Thus, while physics principles are applied, the goal has not been to maintain high 
physical fidelity, rather high visual fidelity to the gamer. The simulation has to 
appear visually correct, not necessarily be physically correct.

12.9  Sensor Models

Agricultural and field robotics depend on the use of sensors for machine awareness 
through perception of its location and interaction with the environment. Because the 
information from those sensors will ultimately be used to control the robot, simula-
tion of the sensors is important for the overall simulation systems. In Matlab, some 
simple sensors are available in using Simulink 3D animation. For example, an X3D 
picking sensor can be placed in the virtual world which will provide an indication 
of colliding geometry. It is also possible to develop Simulink models with camera 
sensors acquiring images from photo-realistic environments like those produced 
with Unreal engine (Matlab 2019b). In Gazebo, sensor models can be explicitly 
defined in the world file using SDF (Gazebo 2020). The sensor is mated to the robot 
in the URDF file that also defines the robot’s link geometry and inertia properties. 
The sensor’s transduction of virtual world signals and signal processing are mod-
eled in sensor model code and parameter definitions, which is called through a plug-
 in in the world and robot model. Sensor model plug-ins can be customized using the 
Gazebo Application Programming Interface (API), in which motion, force, and 
vision sensors can be modeled.

Fig. 12.7 Simulation loop 
for rigid body motions 
with collision detection 
and response. (Inspired by 
Coumans 2015)
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12.10  Integration with the Software Architecture

When operating with simulation, a major purpose is to test software that has been 
written for the application. In the Matlab Simulink environment, algorithms can be 
written in a variety of languages or graphically connecting blocks, many of which 
preexist from Matlab toolboxes. Additionally, code can be developed to run on the 
embedded hardware which will be used for the robot.

Since Gazebo has been historically connected to  the Robot Operating System 
(ROS), the middleware already exists for implementing the robot code, which is 
then hooked into Gazebo. ROS is an open-source middleware that provides a frame-
work for connecting many different software components that are needed to develop 
complex robotic applications. ROS manages a graph-like peer-to-peer network of 
processes which can be distributed across multiple machines. The processes are 
loosely coupled using the ROS communication protocols. Different communication 
styles have been implemented, including synchronous request/response communi-
cation over “service,” asynchronous data streaming over “topics,” and shared 
parameter storage named “parameter server” (ROS 2019).

When using Gazebo with ROS, Gazebo loads a series of ROS plug-ins, which 
turns Gazebo into a ROS node. The plug-ins provide message and service publish-
ers for interfacing Gazebo with ROS. The ROS plug-ins implement functions to 
simulate force, motion, and perception sensors and actuate motors and dynamically 
reconfigure parameters in the simulation using the Gazebo API. Once the rest of the 
ROS nodes for robot control were developed and tuned in the simulation, they can 
be migrated into the real-world robot to control directly or with minor 
modification.

12.11  Comparison Between Robotic Simulation Techniques

As the development of robotic systems accelerates, different platforms for simulat-
ing robotic systems are being developed and tend to come from different disciplin-
ary spaces. One area is the dynamics systems modeling and control space. The 
focus here is on developing models of physical systems that can provide high fidel-
ity physics-based representations of the engineered systems. These platforms pro-
vide opportunity to model systems from different domains, so for robots this could 
include detailed models of actuators, mechanisms, and power trains, among others. 
There has been substantial activity in this area to develop standards for exchanging 
models between simulation platforms and co-simulation through the functional 
mock-up interface (FMI 2014). These developments have largely come out of large 
European research projects with participants largely from the dynamic systems 
community. Therefore, within this space, Modelica can be used to develop high 
fidelity robot models that could be exported to be part of a robot simulator, which 
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provided the additional needed capability of world modeling and visualization, sen-
sor modeling, and linkage to the software architecture.

Similarly the scientific computing platforms produced by Mathworks have also 
largely come out of the controls and dynamic systems community. Mathworks’ 
Matlab and Simulink platforms provide commercial solutions to a wide range of 
scientific computing applications, and their expertise encompasses a wide range of 
technical specialties. Mathworks provide tools that enable:

 1. Physical modeling of robots to a high degree of fidelity across multisystems
 2. Implementation of control system algorithms and porting algorithms to code for 

target electronic control hardware
 3. Representing and visualizing visual worlds with collision detection and some 

limited sensing ability

Robotic simulators, on the other hand, have largely emerged from the robotics 
community and leverage physics engines and graphics engines, which emerged 
from the computer graphics and animation community. Therefore, these platforms 
tend to have another set of strengths as compared to the other ones discussed above. 
For this chapter, the focus has been on Gazebo, which has the following set of 
strengths:

 1. Ability to define fundamental robot multibody properties.
 2. Robust definition of virtual world.
 3. Leveraging physics engines for multibody dynamics, collision detection, and 

response.
 4. Connection to ROS, robotics middleware where algorithms can be developed 

and simulated with HIL.
 5. Several available sensor models to facilitate interaction with the virtual world. 

These models have limited documentation.

Simulations that require a high level of physical fidelity will tend to be better 
suited by the scientific computing platforms, which also offer means for transpar-
ently representing models of components making up a robot. On the other hand, if 
interest is more in high fidelity modeling of the world that the robot will be operat-
ing in, the robot simulators may be a better choice. These types of tradeoffs with the 
different simulation platform options need to be considered in the decision process 
of selecting a simulation system for a specific application at hand.

12.12  Modeling Agricultural Field Elements

Modeling agricultural and field robots requires representing the system starting with 
the physical components that make up the robot, their connectivity to each other, 
and their dynamic behavior including all of the control elements along with sensors 
and actuators. These machine models are generally straightforwardly modeled with 
existing modeling elements and established methods. However, the modeling of 
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robot interactions with the environment where it will operate and carry out agricul-
tural field operations is an area with more open research questions. Three important 
interactions are:

 1. Between the machine and soil through traction systems (tire or tracks) and 
ground-engaging tools through which the robot will be acting on the environment

 2. Between sensors and objects (usually biological) in the environment used to per-
ceive the location of the robot both in a global and local level as well as obstacles 
to avoid or product to be manipulated (e.g., harvesting fruit, or grain and pick-
ing rocks)

 3. Between operators and machines when operators play a role in robot operation, 
which depends on the level of autonomy and supervision of the robotic system

Discussion on some aspects of machine-human interactions and interfaces can 
be found in Chap. 15 and the same with machine-canopy interactions can be found 
in Chap. 16.

12.12.1  Modeling and Simulating Soil-Machine Interactions

For agricultural robotics, the soil-machine interface is critical to evaluate tractive 
performance of the machine to autonomously accomplish the required agricultural/
field tasks. Under external loading, the soil-machine systems can be broadly catego-
rized as (1) load bearing processes where soil supports load bearing capacity and 
develops tractive forces or (2) load loosening processes where soil exhibits defor-
mation in the form of compression, shear, excessive displacement, or their combina-
tions (e.g., tillage or blade cutting applications). In either of the load bearing or load 
loosening processes, soil reaction to applied external loads can cause soil compac-
tion (change in volume); soil distortion (shear) combined with compaction; soil 
distortion at constant volume (plastic flow); expansion (dilation) that could occur 
with post-shear failure and tensile failure (Gill and Vanden Berg 1968; Koolen and 
Kuipers 1983). In a pre-failure phase, soil deformation often comprises elastic strain 
(recoverable) and plastic strain (irrecoverable) proportions with the elastic strains 
accounting for only small fractions of the total soil strain (Shen and Kushwaha 1998).

Agricultural and field robots must be able to propel themselves across a field 
surface in an off-road environment; in this case, soil-to-tire/wheel interactions 
should be modeled to predict the tractive forces in the longitudinal direction of the 
vehicle as well as the motion resistance that occurs as a result of soil and tire defor-
mations. In addition, the relationship between side-slip and lateral forces is impor-
tant in modeling the steering function of the robot.

Soil responds to normal and tangential forces applied from tractive devices as an 
elastic medium, or with plasticity in a combination of elasto-plastic deformations 
(Koolen and Kuipers 1983). The assumption of soil responding as a perfectly soil 
shear at constant volume (plastic flow, without dilation) has been used successfully 
to estimate the maximum traction force for the development and evaluation of 

12 Modeling, Simulation, and Visualization of Agricultural and Field Robotic Systems



314

off- road vehicles (Wong 2010). Assumptions of rigid wheels applying loads on soil 
that behaves as coulomb-friction (Fig. 12.8a) or soil responding in shear distortion 
in the form of plastic flow (Fig. 12.8b) can be integrated into robotic simulators or 
real- time vehicle performance models (Wong 2010).

For simulating robot mobility performance on off-road ground conditions in real 
time, the tractive element to ground surface interaction is modeled primarily as a 
dynamic interaction between the robot tractive elements and the soil surface. At 
each time step, the contact collision detection algorithm determines if the traction 
and soil elements are in surface contact with each other and makes a note of it. Then 
the collision response algorithm uses the relative position of each contacting ele-
ments and determines the resulting forces based on the material stiffness and damp-
ing properties of the two interacting elements and iteratively computes resulting 
forces. For low vehicle speeds, strain-dependent damping properties can be assumed 
to be negligible (Wong 2010). The friction behavior at the interface can be modeled 
as coulomb friction where the friction force can be calculated as the product of the 
normal force and a friction coefficient between the tractive element and the soil 
surface. This rigid soil surface assumption is typical for robotic simulators using 
rigid body collision detection and response algorithms. However, on cohesive- 
frictional soils where soil deformation exhibits mainly in the form of perfectly 
shear-distorted plastic flow, the soil-to-traction element interactions can be assumed 
to obey Mohr-Coulomb theory that governs the shear (tangential) force calculations 
at the point or surface where they are interacting. Janosi (1962) assumed that trac-
tion forces can be estimated from the tangential shear stresses developed at the tire 
to soil interface. Using Janosi’s approach, the tractive element (rigid wheel or stiff 
carcass tires) are assumed non-deformable.

Fig. 12.8 Modeling soil-tire interaction can take on three levels of fidelity from left to right: rigid 
wheel on non-deformable soil (a), rigid wheel on deformable soil (Janosi’s shear stress to soil 
deformation (shear; plastic flow assumption)) (b); and rigid wheel or stiff carcass tires on deform-
able soil (compression (sinkage) and shear) assumptions based on Bekker-Janosi approach (c). 
Either of these can be implemented in a rigid body simulation loop using collision detection of 
contact elements and explicit solutions of the soil-tire forces using finite difference technique. 
Examples of these approaches are implemented in the NATO-Mobility Model (Wong 2010) and 
Wismer-Luth-Brixius-Zoz (Upadhyaya 2009) wheel numerical tire performance models
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According to Janosi (1962), the soil shear stress can be calculated using the fol-
lowing equation:
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where

S = shear stress
c = soil cohesion
p = pressure normal to the shear plane (normal stress)
φ = soil-to-soil internal friction angle
j = shear deformation
k = modulus of a soil shear stress-strain curve

The soil parameters can be estimated from laboratory direct shear tests at differ-
ent normal stress levels. The magnitude of normal stresses applied to obtain the soil 
parameters should consider the range of vertical static or dynamic normal loads and 
contact area associated with the robot application. The values of j and k must be in 
the same units. At the maximum shear strain, Janosi’s equation (Eq. 12.1) expresses 
the Mohr-Coulomb failure equation (S = c + p tan (φ)).

For analysis of the soil-robot tractive systems where the soil deformation con-
sists of compression and shear (Fig. 12.8c), tractive performance of off-road vehi-
cles or robots will require force-equilibrium analysis of motion resistance in addition 
to soil shear-induced horizontal gross tractive force (Wong 2010). Generally, robots 
will not have draw-bar pull, so the tractive effort is used to overcome both motion 
and terrain grade resistances. Analysis of robot tractive performance on soft and 
compressible soil conditions (e.g., wet soil) should account for the normal pressure 
and sinkage relationship, and shear stress and strain relationship according to 
Bekker-Janosi’s approaches (Wong 2010). Further details on vehicle track or rolling 
wheel performance analysis using the semi-empirical approaches by Bekker’s 
approach for modeling the plate pressure-sinkage and Janosi’s shear stress strain 
relationships are available in Wong (2010). For tractive force prediction under slip 
(velocity reduction), Wong (2010) and Upadhyaya (2009) explained semi-empirical 
predictive equations with slippage parameter added to the tractive force calcula-
tions. In agricultural and field robotic applications without draw-bar pull require-
ments, free wheel rolling without slip can be assumed at the soil-tractive element 
interaction. The Wismer-Luth-Brixius-Zoz empirical approach (Upadhyaya 2009) 
by defining wheel numeric parameters to the soil cone index in the 0–150 mm soil 
layer has also been applied for tractive forces performance of large agricultural trac-
tor tires. Further investigation may be required to investigate the robustness of 
Wismer-Luth-Brixius-Zoz approach for small robots because the numerical model 
parameters were developed for large agricultural tires and loads from high horse-
power tractors. Soil-to-tire/wheel interaction modules based on the above soil 
deformation theories or semi-empirical approaches can be integrated into 
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rigid- body simulation modeling (Fig. 12.9) as opposed to utilizing simple coulomb 
friction analysis at the tractive elements and hard surface planes.

Soil interactions with deformable, pneumatic tires, however, are known to be 
characterized based on the knowledge that tires exhibit deflection due to the flexible 
nature of the carcass material inflated with a compressible fluid, air, and knowledge 
that soils are deformable with elasto-plastic material behaviors. In such tire-soil 
systems, contact between the two elements is the intimate continuous contact of the 
tire lugs engaging in normal load, shear, and penetration with the deformable soil 
material. In applications where both tire and soil deform, physics-based, high 
fidelity modeling of the tire-soil force systems is essential (Fig. 12.10). High-fidelity 

Rigid Body Simulation Loop

Soil Model Wheel Model

Rigid Wheel

Stiff ccarcass Tires [1]

Parameterized tires and
prescribed tire deflection [2]

Analytical
(Columb Friction law)

Empirical Soil Cone Index Approach
(E.g. Wismer-Luth-Brixius-Zoz[2])

Semi-Empirical Soil Parameters
(Cohesive and Frictional Soils)

(E.g. Bekker-Janosi approach[1])

Contact Elements Detection (2D or 3D Rigid
Wheel & Soil) and Finite Difference Algorithm

Soil-To-Tire/Wheel Interaction Module

Fig. 12.9 Modeling the interaction between the soil and tire can have differing levels of fidelity 
for soil (left) as well as those for the wheel or stiff carcass tire model (right). Details about soil-to- 
tire/wheel using semi-empirical soil models according to Bekker-Janosi approach[1] are available 
in Wong (2010). Similarly Upadhyaya (2009) explained the application of empirical models that 
uses soil cone index for parameterized soil-to-wheel performance analysis according to the 
Wismer-Luth-Brixius-Zoz approach[2]

Fig. 12.10 Physics-based modeling of soil-to-tire interaction for tire/grouser elements on deform-
able soil in the continuum elements (e.g., finite element method (FEM)) and discontinuum ele-
ments (discrete element method (DEM)). Soil material models often need to be validated for FEM 
modeling (e.g., CAM-Clay and Drucker-Prager material models) and for DEM modeling (e.g., 
Hertz-Mindlin (HM) contact model) of simple soil-to-tool interaction, for example, standard soil 
cone penetration testing
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modeling of soil responses to tire loading requires stress and strain constitutive soil 
models and computational methods such as finite element method (FEM) or dis-
crete element method (DEM).

In finite element method (FEM) or discrete element method (DEM) techniques, 
soil models are entered as stress-strain constitutive relationships or force-overlap 
displacement contact laws, respectively. With recent advances in computer technol-
ogy and explicit computational techniques, the FEM and DEM approaches can be 
integrated into the performance analysis of tire-soil interactions for robotic applica-
tions. Understanding the effect of tire inflation pressure on tractive forces and 
motion resistance, for example, requires transient performance of tire-soil interac-
tion using these high fidelity computational modeling techniques. When evaluating 
tire or track performance on various soil conditions, high fidelity analysis of soil- 
tire interactions using soil models applicable for field soil conditions are necessary.

In mesh-based explicit FEM analysis, deformable tires can be modeled as elas-
ticity, hyperelasticity, and viscoelasticity material, and soils can also be assumed to 
behave as elasto-plastic material (Abaqus 2013). The interaction produces tractive 
forces in the longitudinal direction of the vehicle; soil develops motion resistance 
acting against the direction of the tractive effort as a result of normal and shear 
stress distribution on the soil as well as lateral forces that are related to the steering 
of the vehicle. Deformation of tires, the stress distribution at the tire-soil contact 
surface, and the soil strain (deformation) can also be solved obeying the surface-to- 
surface friction behavior dependent shear stress calculations at the tire and soil con-
tacting elements, and the material (tire and soil) constitutive stress-strain 
relationships. The DEM technique, being a meshless and explicit numerical analy-
sis, can theoretically simulate the interaction of soil-to-soil and soil-to-geometry 
(tire or track elements). In either FEM or DEM approaches, understanding the soil 
material models and methods to determine the soil material model parameters are 
very important. The sections below attempt to explain the typical material models 
that can be relevant for robot interaction with agricultural soils.

12.12.1.1  FEM Soil Modeling

Soil behaviors under loading are generally considered having nonlinear elastic- 
plastic properties with large strain deformation (Upadhyaya et al. 2002). Formulation 
of elasto-plastic theories requires the definition of elastic stress and strain relations 
and yields criteria that mathematically define the stress conditions under which 
plastic deformation, stress hardening, or strain softening behaviors occur (Chen and 
Mizuno 1990). Yielding in soils defines the onset of plasticity or the point at which 
elastic behavior ceases. The elastic portion of stress and strain can be defined using 
Young’ modulus, Poisson’s ratio, shear modulus, and bulk modulus of elasticity. 
Numerous yield criteria have been proposed for the plasticity constitutive soil mod-
els and have been integrated into FEM commercial codes, e.g., (Abaqus 2013). 
Mohr-Coulomb failure, Drucker-Prager’s, and Cam-Clay are among the widely 
used yield criteria in soil mechanics (Chen and Mizuno 1990; Wood 1990). Soil 
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models with Drucker–Prager cap yield criterion have been successfully applied to 
predict traction forces developed from rigid-wheel interaction on sandy soils 
(Varghese et al. 2013). Soil material parameters to define the soil stress and strain 
relationships in soil models can be estimated using soil triaxial and direct shear tests 
or validated from simulation of typical soil-to-tool interaction (Tekeste et al. 2009; 
Fig. 12.10) prior to use for soil-to-wheel simulation using FEM techniques (Chiroux 
et al. 2005). The theory of constitutive soil models and their application for FEM 
analysis are explained in detail in the Abaqus theory manual (Abaqus 2013).

12.12.1.2  DEM Soil Modeling

DEM models consist of particles with micro-mechanics constitutive relationships 
between forces and overlap displacement from the colliding particle-to-particle and 
particle-to-object geometry. The constitutive relationships between force and over-
lapping displacement are formulated using spring stiffness-damper originally on the 
bases of Hertzian and Mindlin theories between two elastic-collision of elements 
(Cundall and Strack 1979). Recently, advanced models such as cohesive and elasto- 
plastic contact models have been implemented in commercial DEM codes (EDEM 
2011). The DEM contact forces (normal and tangential) as a function of overlap 
between two elements in contact can be calculated on the basis of Hertz-Mindlin 
(HM) contact theory (Tsuji et al. 1992; EDEM 2011). The tangential contact force 
is limited by Coulomb friction law and depends on the coefficient of static friction. 
Both normal and tangential damping forces as a function of normal and tangential 
components of the relative velocity related by the damping coefficients are calcu-
lated according to Tsuji et al. (1992). The rolling friction contact model (Eq. 12.1) 
in EDEM, a commercial DEM software, as described in Sakaguchi et al. (1993), is 
used to calculate torque from rolling resistance at the contacting surface from nor-
mal contact forces.

 � � �i r n i I� F R  (12.2)

where:

τi = Torque applied to the contacting surfaces from element (sphere) i
μr = Coefficient of rolling friction
Fn = Hertzian normal contact force
Ri = The distance of the contact point from the element (sphere) i center of mass
ωi = The unit angular velocity vector of the object at the contact point

The normal Hertzian contact force, Fn, as a function of normal overlap, δn, is 
calculated according to:
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where E* is the equivalent Young’s Modulus and R* is the equivalent radius.
The equivalent Young’s Modulus is defined in terms of individual shear moduli 

(Ei and Ej) of contacting sphere i and sphere j, respectively, and Poisson’s ratio (νi 
and νj) of each sphere using the relationship:
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The equivalent radius is defined in terms of the individual sphere radii (Ri and 
Rj) using:
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The HM contact and damping forces depend on the material properties of 
Poisson’s ratio, solid density (particle density), shear modulus; and interaction 
model parameters of coefficient of restitution, coefficient of static friction, and coef-
ficient of rolling friction (EDEM 2011).

The contact forces between two particles and the resultant motion of each parti-
cle after each contact collision are calculated at an explicit time step based on the 
equations of motion (Cundall and Strack 1979). Simulation-based DEM analysis 
workflow consists of generating a CAD geometry surface mesh, numerical approxi-
mating natural soil particle into DEM primitive shapes (e.g., spheres, clumped- 
sphere or other complex ellipsoidal shapes), assigning material model properties, 
setting the explicit DEM solver setting, and postprocessing.

Unlike FEM soil model development where the stress-strain constitutive rela-
tionship are length scale invariant, DEM soil material properties are expressed as 
stiffness (F/L, where F is force quantity and L is length quantity) that are not scale 
invariant. In addition, measurement of individual granular particle-to-particle or 
particle-to-geometry micro-mechanics model parameters is practically impossible 
for soil materials with soil particle sizes less than 2 mm.

For analysts to simulate soil-machine systems (e.g., tire-soil interaction for high 
fidelity simulation of robots), it is essential to evaluate if the continuum basis (using 
FEM) or discontinuum basis (using DEM) techniques fit to the idealized soil- 
machine system. In applications where soil deformation due to external loading 
from machine components comprises a combination of compression and shear, or 
dilation in discontinuum forms, FEM analysis are limited in handling excessively 
large strains and distortion of elements. Examples of such applications may include 
design of track grouser shapes, tire rolling-induced prediction of soil bulldozing 
motion resistance, and accurate prediction of tire-soil ground contact stress distribu-
tion. The DEM technique is, thus, a preferred numerical technique to predict such 
complete soil behavior and could also be coupled with multibody dynamic (MBD) 
models for wheel dynamic motion. DEM soil models require calibration technique 
to determine the material properties for the micro-mechanics contact laws. For 
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some tire-soil applications, for example, tire-soil interaction modeling for predict-
ing gross traction and motion resistance on non-dilatant soils, explicit FEM analysis 
can successfully predict tire performance (Varghese et al. 2013). For robot interac-
tion with soil, the framework example shown in Fig. 12.10 can be considered for 
physics-based modeling of soil-to-tire interactions. Explanation about tire material 
models including rubber or other carcass elements are beyond the scope of this 
chapter.

12.12.1.3  Simulation-Based Comparison of Soil Modeling 
with DEM and FEM

Determining soil parameters for DEM models continues to be a challenge and is an 
active research area in soil-machine academic communities (Upadhyaya 2009). 
Similarly for FEM soil models, direct determination of all the soil model parameters 
from standard soil testing do not necessarily provide accurate prediction of the soil- 
to- tire interactions (Chiroux et al. 2005). Experience in developing soil models for 
agricultural soils have shown that validating DEM or FEM soil material models to 
approximate standard in situ tests such as using soil cone penetrometer are better 
alternatives. As an exercise to compare computational demands in typical FEM and 
DEM soil-machine modeling frameworks, simulation of soil cone penetrometer 
insertion into soil using FEM and DEM approaches is presented here.

Soil was modeled as 4-node brick element (Abaqus 2013) for FEM analysis and 
as a single sphere for DEM analysis of soil cone penetration testing. Solver settings 
and the explicit calculations for the two commercial codes, Abaqus for FEM 
Drucker-Prager simulation (Tekeste et al. 2009) and EDEM for DEM soil constitu-
tive simulations, were set to predict soil reaction forces on the standard conical tip 
of a cone penetrometer (ASABE 2018). The cone penetrometer was modeled with 
a 30° conical tip and a cone base diameter of 1.28 cm. A rigid cone body using the 
RAX2 2-node linear axisymmetric element was used in the FEM and a CAD solid 
model in the DEM. The cone body was driven vertically downward into the soil 
body at 30 mm/sec. Cone penetration through a soil discontinuum model in DEM 
and through adaptive meshed deformed soil brick elements in FEM show how the 
cone interacts with the soil media in an expected manner (Fig. 12.11). The FEM 
results showed significant stretching of the soil material and a concavity that would 
not be expected at the top; whereas the DEM results seemed to be consistent with 
observations of soil deformation as a discontinuous granular media.

Analysis of the computational effort required for the adaptively changing explicit 
time step solver used for the FEM in Abaqus and the fixed time step solver for the 
DEM in EDEM showed that the DEM simulation had a computational cost of 
21,000 times the CPU/simulation time required to solve the FEM analysis 
(Table 12.1). The benefit of the DEM was that it captured the typical soil deforma-
tion from indentation by the conical tip. The FEM formulation, however, took 
numerous iterative exercises to avoid instability from geometry nonlinearity and 
excessive soil element distortion. Element distortion has not been an issue in the 
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DEM simulation, rather the method to determine the DEM soil material properties 
is very challenging.

After performing the comparative analysis of soil cone penetration in DEM and 
FEM frameworks, FEM analysis was done for large wheel soil analysis to predict 
tractive forces in a computationally efficient manner. The wheel geometry (overall 
diameter and rim diameter) were obtained from Raper et al. (1995) and Varghese 
et al. (2013). A stiff external wheel element was added in addition to the wheel rim 
to demonstrate the rigid wheel and soil deformation. A layered soil column cone 
penetration test on Norfolk sandy loam soil was used to develop soil model proper-
ties for the Drucker-Prager Cap soil model with hardening at two soil density condi-
tions (1.32  Mg/m3 loose and 1.64  Mg/m3 dense states) (Tekeste et  al. 2009). 
Abaqus-Explicit analysis of soil-to-wheel interaction (Fig. 12.12) was performed 

Fig. 12.11 Soil cone penetration simulation using a 3-mm diameter single sphere DEM soil 
model in EDEM (a) and using a 5-mm RAX2–2-node FEM element with adaptive technique in 
Abaqus (b)

Table 12.1 DEM and FEM simulation parameters and performance metrics from the soil cone 
penetration simulations

Method
Particle 
size (mm)

Number of 
particles

Time 
step 
(s)

Simulation 
time (s)

Estimated 
total CPU 
(hr)

CPU/
simulation 
time (hr/s)

DEM
(Hertz- 
Mendlin soil 
model)

3
(single 

sphere)

86,157 1e-06 5 210 
(8.75 days)

42

5
(single 

sphere)

17,307 1e-06 5 167 
(6.96 days)

33.4

FEM 
(Drucker 
Prager soil 
model)

5
(RAX2–2- 

node 
element)

1024
(RAX2–2- 
node 
elements)

4.23–
05

5 0.01 (50.3 s) 0.002
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consisting of two steps: (1) gravity loading (5.6 kN) of the wheel on soil (A) after 
Raper et al. (1995) and (2) free rolling of the wheel (B) at 0.15 m/s after Varghese 
et al. (2013) on Norfolk sandy loam soil (72% sand, 17% silt and 11% clay). A 
surface-to-surface contact formulation with penalty method (Abaqus 2013) was 
used for friction behavior between the wheel and the soil. The results showed soil 
deformation under gravity loading underneath the wheel with the highest stress 
(Von-Misses) at the top soil surface and permanent (plastic) deformed soil elements 
(see left edge of the rolled wheel domain; Fig. 12.12b).

Modeling the interaction between soil and traction elements is likely to be 
desired for realistic simulation applications in agricultural and field robotics with 
deformable tires. In the future, however, more interest will develop around the area 
of soil engaging tools as more autonomous capability will open the possibility of 
precision tillage and cultivation among other applications. Robotic mechanical 
weeding is a good example of how automation technologies will open up opportuni-
ties for weed control using precision cultivation (Steward et  al. 2019). In these 
cases, soil engaging tools will result in draft forces that will act on the robot body in 
addition to the traction forces that must be characterized to develop a physically 
faithful simulation system for vehicle and tool attachment. There are analytical 
models for predicting draft force soil engaging tools such as tines (Godwin and 
Spoor 1977; Wheeler and Godwin 1996). These models are dependent on soil prop-
erties and tool geometry, and there are opportunities for more advanced modeling in 
particular to the DEM approaches described above.

12.12.2  Modeling and Simulating Perception Systems

The perception systems of agricultural and field robots use sensors that sense the 
environment around the robot. Typically, the location of the robot is important, 
which can be obtained using a global navigation satellite system (GNSS) sensor 

Fig. 12.12 FEM rigid wheel-soil formation using 2D plane strain analysis in Abaqus. The soil was 
modeled using Drucker-Prager with hardening material model. 2D rigid wheel similar to the model 
in Varghese et al. (2013) was used for this demonstration under gravity loading (a) and free-wheel 
rolling examples (b)
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(e.g., GPS, see Chap. 3, Sect. 3.3 for more details) or with some other local sensors 
such as cameras measuring reflected light from the crop and background which is 
used to find row structure (Fig. 12.13; Xue and Xu 2010). In addition, optical depth 
sensors are used to determine the distance from the vehicle to crop plants or the soil 
surface. Typical depth sensors include stereo vision, time-of-flight (TOF) cameras, 
and LIDAR (Mousazadeh 2013). Detailed discussion on various types of 3D sens-
ing techniques and sensors can be found in Chap. 3. While there are many different 
types of sensors, typically each of them will have some perception algorithms con-
verting the signals from the sensors into meaningful information of use to the robot. 
For example, images or video from cameras can be converted into robot pose infor-
mation based on crop row structure (Higuti et al. 2018; Imperoli et al. 2018; Pinto 
et al. 2000). To test the perception systems and their interaction with robot control 
and behavior systems, simulation of the sensors interacting with the physical world 
is necessary.

In the context of an agricultural field or other off-road surfaces, many robotics 
sensors are interacting with plants and soil of the field scene. Plants offer a more 
complex scene than what many robot sensor simulators have been designed to use. 
Complexity can be found in the following aspects of crop field scenes:

• Changing lighting conditions. Sunlight varies with sky conditions such that when 
the skies are clear, the sunlight is direct and intense. When the skies are cloudy, 
then the light is diffuse and less intense. These conditions can change rapidly 
with weather condition.

• The interaction of the light with the leaf will result in different proportions of the 
light being reflected with specularity or diffusivity.

• Reflection will be from multiple leaves and stems making up the plant canopies.
• Light reflectance is a function of the wavelength resulting in a characteristic 

reflectance spectrum across the visible and near-infrared regions (Fig. 12.12). 
Though following a typical characteristic reflective curve, this spectrum is 

Fig. 12.13 Spectral 
signatures of different 
plants and soil. (Kyllo 
2003)
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dependent on plant species and conditions and is thus temporally and spatially 
varying (more details on spectral sensing techniques can be found in Chap. 4).

These types of interactions between light and plant canopy have been well stud-
ied from a remote sensing perspective (Li et  al. 2014; Walter-Shea and Norman 
1991). However, for agricultural and field robotic applications, the interest is often 
in proximal sensing, more at the single plant morphology or plant component level. 
This is an area where there is an opportunity for more work to develop the means to 
simulate sensors.

Specifically for agricultural robots, the morphological characteristics of plants, 
such as the shapes of plant canopy and leaves in the projected two-dimensional (2D) 
image plane or in three-dimensional (3D) space, can be used in perception systems 
to discriminate plants of different species (Dyrmann et  al. 2018; Tang and Tian 
2008; Wu et al. 2007). Additionally, crop row pattern are also used for localization 
and automated guidance through crop row (Åstrand et al. 2002; Higuti et al. 2018; 
Liu et al. 2016; Xue and Xu 2010). Techniques such as machine learning are applied 
to the extracted features to classify species of plants and identify crop rows (Pinto 
et al. 2000; Rehman et al. 2019; Tang et al. 2003). Since the shapes of plant canopies 
and leaves are complex and varied, the most challenging task is the investigation of 
effective and robust descriptors to differentiate different crop species in images.

As discussed in Chap. 2, cameras are commonly used as the primary source to 
extract the morphology characteristics. However, light reflectance sensors that 
acquire spectral information and no spatial information to discriminate between 
plant species have been investigated (Vrindts et  al. 2002). This approach can be 
challenging unless the light is controlled and the plants are sparse. Since most spec-
tral cameras are passive receivers of reflected light, they are dependent on the qual-
ity of the reflected light received. The spectral reflectance similarity of vegetation 
pixels can lead to difficulties in separating leaves or plants with occlusions, and 
shadow effects or saturation effects caused by uncontrolled illumination may affect 
the segmentation and feature extraction performance (Smith et al. 2018).

There is also loss of structural information with camera sensors because the 3D 
scene is projected onto a two-dimensional image plane. Thus depth sensors provid-
ing three-dimensional (3D) plant shape features extracted from 3D point clouds, as 
discussed in Chap. 3, have been found promising in addressing some of the prob-
lems in plant identification associated with reflectance-based sensors alone. These 
features are more robust to external illuminance changes and shadow effects than 
those extracted from color images (Gai et al. 2019; Li and Tang 2018; Vázquez- 
Arellano et al. 2016).

For many agricultural and field applications, the modeling and simulation of sen-
sors needs to have a fidelity that includes the spectral reflectance characteristics of 
the plants and soil background in the field of view. Additionally, the plants grow 
with morphologies that are substantially more complex than for which many robotic 
simulations are capable as they are often designed to simulate robot in indoor envi-
ronments with objects that can be represented with regular geometric shapes.
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For current applications of robotic simulations, it is important to first identify 
scale for which the perception system is working with in the plant context, and what 
plant model fidelity is sufficient for specific applications. For example, if the per-
ception system is using corn plant rows for determining robot pose, it may be pos-
sible to use vertically oriented cylinders to represent the corn stalks to evaluate 
perception algorithms. In addition, many solid models are available for integration 
into virtual worlds.

In summary, depending on the fidelity required, the sensor models and simula-
tion for the agricultural and field robotic simulation may be very complex to repre-
sent the interaction with different light spectra and complex soil, plant canopy, and 
environmental structures.

12.12.3  Modeling and Simulating Machine Operators

Depending on the amount of interaction between the robot and a human operator, 
the human operator can be an important element in the closed loop of the simulation 
system. Specifically, where there is a strong human-in-the-loop aspect of the human 
operator, then complete vehicle system simulation must have models of the opera-
tor, which is typical with off-road vehicles (Filla et  al. 2005). Existing operator 
modeling approaches for off-highway vehicles fit into two categories: (1) task- 
oriented operations in which the operator controls the machine through a repeated 
sequence of tasks to accomplish high-level goals (Filla 2005; Elezaby 2011) and (2) 
reference-oriented operations in which the operator is guiding the machinery along 
a particular path to accomplish some types of operation (Norris et al. 2003). More 
recently, virtual operator models were developed for the excavator trenching opera-
tion with adaptability to the work site environment (Du et al. 2018) and also learn-
ing the characteristics of the operation resulting in optimized performance (Du et al. 
2019). In the case of agricultural and field robotics, likely human operators will play 
a supervisor role into the future and their response is an important aspect to be mod-
eled and included in the simulation. From another perspective, operator behavior 
has been modeled for particular operations and used as the strategies for automating 
those operations (Bradley and Seward 1998; Wu 2003; Enes 2010).

12.13  Case Study: A Phenotyping Robot

12.13.1  Introduction

The Iowa State University (ISU) Phenobot Project is a good example of how model-
ing and simulation was used during the design process of a navigational control 
system and mission planning of an agricultural robot over soil surfaces. The third 
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generation of the ISU Phenobot—Phenobot 3.0—was designed to traverse corn 
rows with a conventional spacing of 0.71 m and carry a sensor package mounted on 
a mast so that phenotypical data of corn plants could be acquired across fields 
throughout the growing season. The width of the robot was 0.51  m to facilitate 
vehicle guidance through the crop rows (Fig. 12.14), and the sensor mast height was 
adjustable ranging from 2.1 to 3.7 m. Additionally, an anti-rolling mechanism was 
designed to correct the rolling angle of the sensor mast via a closed-loop con-
trol system.

The goal of the navigation system is to guide the Phenobot between the corn 
plant rows and keep it centered between two crop rows. Sensors for this task include 
a GPS antenna mounted at the top of the sensor mast, which is used for global local-
ization of the vehicle along the path between the crop rows. A forward facing cam-
era is continuously capturing images in front of the vehicle so that the robot can be 
aware of its location relative to the nearby corn rows. Motor encoders and an IMU 
(inertial measurement unit) sensor were used for vehicle odometry. During the navi-
gation control development process, ROS was used as a middleware to link different 
functional processes in the control system implemented on an on-board PC. Gazebo 
was used to simulate the Phenobot for debugging and fine-tuning the system. As 
described above, the simulation required a definition of the robot model, a world 
model, and sensor models.

Fig. 12.14 Phenobot 3.0 is 
articulated with a front and 
back section, and a vertical 
sensor mast for carrying 
sensors between corn 
plants is mounted at the 
center
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12.13.2  Robot, World, and Sensor Models

The Phenobot 3.0 robot model consisted of eight bodies (or links in URDF nomen-
clature), which are the front and rear bodies, the front and rear wheels, two bodies 
for the connection between the front and rear, and the telescoping sensor mast which 
has a mast base and an upper mast (Fig. 12.15). Connecting these bodies together 
are seven joints: two continuous joints for the wheels, two revolute joints for steer-
ing and mast roll control, one fixed joint connecting the center tube link to the rear, 
and one prismatic joint for the height control of the mast. Four power trains (URDF 
transmission elements) were defined, connecting actuators to actuated joints, which 
are the front and rear wheels, the articulated steering joint, and the mast roll joint. 
The front and rear wheels are controlled in terms of velocity, while the articulated 
steering joint and the mast roll joint are controlled in their angular position. Three 
sensors are included in the robot model. First, the inertial measurement unit (IMU) 
was mounted to the front section of the vehicle. The GPS unit was mounted to the 
top of the sensor mast, and the TOF camera (Kinect II, Microsoft, Redmond, WA) 
was mounted at the front face of the vehicle (Fig. 12.15).

The robot world for the application consisted of realistic corn plant models that 
were purchased from CGTrader (Vilnius, Lithuania) and then were replicated into 
rows. The ground surface is made up of an uneven surface which increased the fidel-
ity of the soil surface condition, and enabled the simulation of the mast roll as the 
vehicle moves through the field. The robot world was developed using the world 
editor application within Gazebo (Fig. 12.16).

Fig. 12.15 Phenobot Robot model consisted of seven links or bodies and six joints connecting the 
links together
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12.13.3  ROS Node Network

The control program was implemented in ROS and has several modules. The mod-
ules, from lower hardware level to higher robot behavioral level, included hardware 
control, robot localization, robot navigation, and mission planning. The hardware 
control module listens to the robot movement commands and controls individual 
joints. The robot localization module listens to the sensor outputs (the encoders, 
IMU, GPS, and the front navigation camera) and calculates the current pose in both 
the vehicle local coordinate system and the Universal Transverse Mercator (UTM) 
coordinate system. Based on the pose of the robot and local circumstance, the robot 
navigation module plans and follows paths to reach specific targets during the mis-
sion. The mission planning module creates plans based on the user-specified tasks. 
With the modules above, a “graph” of ROS nodes for robot control was established 
(Fig. 12.17).

12.13.4  Robot Simulation with Gazebo

In this project, the robot was simulated in Gazebo to test the ROS program devel-
oped for robot control. At first, the robot and the sensor models in Gazebo were veri-
fied by using ROS visualization tools. Here in this project, RViz was used to inspect 
the robot model and the sensor output. Then, the developed ROS programs were 

Fig. 12.16 The Phenobot 3.0 and the virtual world simulated by Gazebo. The virtual world was a 
field scene with rows of modeled corn plants and a soil surface with modeled roughness
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attached to the Gazebo simulation environment and tested from the lower level 
hardware control module to the higher level mission planning module. The robot 
hardware control module was tested by inspecting the robot movement with some 
user-specified speed command. When testing the localization module, the parame-
ters in the module were tuned by comparing the calculated localization result and 
the robot actual pose in the simulation world. The navigation module was developed 
and validated by observing the robot navigation behaviors, such as path planning, 
path following, and obstacle avoidance, when providing a target pose or a reference 
path. The mission planning module was finally developed and attached to the ROS 
network, which enabled the robot to traverse through the crop rows automatically 
(Fig. 12.18).

12.14  Summary and Concluding Thoughts

The simulation of agricultural robots is possible with the current set of tools that are 
available from either the dynamical systems and controls discipline or the robots/
gaming discipline. Each family of tools has strengths and weakness that should be 
considered at the outset of a product development process. Before choosing a 

Fig. 12.17 The ROS node network of the robot control system (in the big rectangle named 
“robot”) and their interaction with Gazebo (the leftmost ellipse). The ellipses are ROS nodes and 
the rectangles are the ROS message topics for data interchanges between nodes
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simulation tool framework, it is important to decide on the modeling fidelity and 
scope required for the project.

Robot simulation can be divided into two subsystems: the algorithms needed to 
do all of the perception, control, and behavior for the robot, and then models of the 
physical hardware and environment in which the robot will be operating. For agri-
cultural and field robots, much of the complexity in faithfully representing reality 
occurs at the interface between the robot and the environment. Specifically, the soil- 
machine interface is important for robot mobility across deformable soils and 
robotic control of soil engaging tools. Sensors are required for robot perception and 
in the agricultural/field context; those sensors interact with complex field scenes, 
making high fidelity simulation a challenge.

Simulation technology for autonomous systems is advancing at a very rapid 
pace. It is likely that the two different families of tools described in this chapter will 
converge drawing from the strength of each type of tool. Additional physics-based 
approaches for modeling and simulating agricultural and field robot and environ-
ment interactions will increase with higher-fidelity models of machine-environment 
interactions and improved processes for calibrating and validating models.
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Chapter 13
Advanced Learning and Classification 
Techniques for Agricultural and Field 
Robotics

Abhisesh Silwal, Tanvir Prahar, and Harjatin Baweja

13.1  Introduction

It is estimated that more than 80% of data type in big data are in pixel format, i.e., 
images and videos. As the daily volume of data generated globally rises exponentially, 
the task of extracting valuable information has already become a cumbersome task. 
One such technique to extract information from images and videos is classification, 
which involves classifying or clustering contextual information within images. In 
today’s world, to process such high volume of information with high accuracy, both 
research and industry experts are depending on Artificial Intelligence (AI).

AI is a field of study that aims to develop machines that behave as if they were 
intelligent. A definite goal of research in AI is to understand intelligence and build 
intelligent systems that come closer to human performance of specific tasks at hand 
(Wolfgang 2011). In this era of bigdata, driven by the combination of improved and 
cost-effective sensors, increased availability of data, and most importantly high 
computational power, AI technologies are becoming the backbone of the new 
technological renaissance. These innovative technologies include search engines, 
natural language processing, machine learning, robotics, and computer vision, to 
mention a few.

In today’s world, we can feel the presence of AI everywhere from targeted adver-
tisement seen in social media feeds, and tackling climate change, to searching for 
relevant literatures to include in this book chapter. It is the predictive ability of AI 
and machine learning (a branch of AI) methods that has enabled it to gain such 
momentum. AI-powered analytics have given enterprises unparalleled edge to 
extract valuable information from bigdata to improve sales, boost marketing, and to 
predict the trends in the financial market in real time (Oliver 2018). Similar to 
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manufacturing, financial, and service industries, in recent history, agricultural 
industries have also started to adopt and apply AI-based solutions for various 
cumbersome tasks.

As discussed in Chap. 1 and other chapters in this book, agricultural industry is 
one of the most important business entities in the world. It plays a critical role in 
global economy, and its sustainability (or their lack of it) has the potential to threaten 
global food security (Karkee et al. 2017). Through traditional automation, agricul-
tural industries have increased productivity several folds while reducing the number 
of manual workers and other types of inputs thus decreasing production costs, 
increasing quality and reducing environmental impacts (Kapach et  al. 2012). 
However, the current rate of production might not be able to meet the future demands 
of the population growth predicted by commonly accepted population growth mod-
els (Karkee et al. 2017). Therefore, improving currently existing agricultural tech-
nologies to sustain the future agricultural demand is vital (Karkee et al. 2017).

To increase productivity, the concept of “precision agriculture” was originated in 
the 1990s. In simple terms, it refers to the site-specific farm management concept of 
observing, measuring, and responding to variability in crops (McBratney et  al. 
2005). With ease in the availability of advanced technology such as remote sensing, 
internet of things (IoT) and robotic platforms, the concept of precision agriculture 
has evolved to “smart farming” (Santos et al. 2019; Walter et al. 2017). To increase 
productivity, smart agricultural systems deploy suites of sensors to constantly 
monitor different variables that affect crops while generating large quantity of data 
that quickly becomes impractical for manual analysis. To process such data in real 
time and accurately, agricultural industry is also leaning toward AI-based approach, 
which includes classical machine learning tools such as support vector machine 
(SVM), artificial neural network (ANN) to the state-of-the-art deep learning models 
to classify contextual information from images and other non-imaging sensors.

This book chapter is organized in the following manner. The first section intends 
to provide background concepts of the fundamental building blocks of machine 
learning and deep learning, the context to advanced classification and learning in 
practice today. The second section in this chapter reviews literatures in the area of 
computer vision and robotics in agriculture highlighting the applications of machine/
deep learning techniques described in the first section. Then it focuses on the 
significance and impacts made by the advanced techniques compared to the 
traditional approaches. This book chapter then closes with some concluding 
thoughts on current limitations and future challenges.

13.2  Machine Learning

Machine learning (ML) is an important subset of Artificial Intelligence where the 
central idea is to learn from data without explicit programming (Samuel 1959). 
From application perspective, machine learning can also be regarded as a 
computationally intensive applied statistics to estimate complicated functions but 
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with a decreased emphasis on proving confidence intervals of these functions 
(Goodfellow et al. 2016).

13.2.1  Learning Algorithms

A popular definition of learning algorithm is often written as “a computer program 
said to have learned from experience, E with respect to some class of tasks, T and 
performance measure, P, if its performance at tasks in T, as measured by P, improves 
with experience E” (Mitchell 1997). Machine learning algorithms are typically 
implemented in situations that are too cumbersome for manual programming tasks. 
It should be noted that the task “T” in machine learning is not itself to learn but to 
attain the ability to do the task (Goodfellow et al. 2016). The following text provides 
brief description of different types of ML tasks frequently seen in agricultural 
applications.

Classification Classification task involves classifying input data to a predeter-
mined set of possible classes. In another term, the learning algorithm learns to map 
input(s) to a fixed possible set of categories. The output of a classifier is categorical 
or qualitative value.

Regression Regression, on the other hand, produces quantitative output. Here, the 
task is to predict a numerical value from a set of inputs.

Clustering Clustering task is to group or cluster data with similar characteristics 
but without any supervision. Unlike classification, the total class labels are not 
known, and the learning algorithm must exploit the similarities to group data points 
into specific clusters.

There are more types of ML tasks including transcription, anomaly detection, 
machine translation, structured output, synthesis and sampling, imputation of 
missing values, denoising, density estimation, and recommendation. However, most 
of these tasks are either application specific or have common occurrence on other 
field of studies. For example, machine translation is commonly applied in natural 
language processing to translate between different languages. A detailed description 
of several of these tasks can be found in Goodfellow et al. (2016).

The measurement “P” is to quantify the performance of the task T. For instance, 
in the task of classification, the performance of the classifier is often attributed in 
accuracy as a metric to measure how the classifier is performing. Finally, the 
experience “E” is described as the experience the ML algorithm is allowed to have 
during the learning process (Goodfellow et  al. 2016). This experience could be 
induced in a supervised or unsupervised way, which is the two broad categories of 
ML algorithms. In supervised learning, labels and targets in the dataset are preset 
and the ML algorithm learns to map the labels to a specific target. ML tasks such as 
classification and regression fall under this category. For instance, a dataset could 
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contain multiple labels of fruits associated to the different types of fruit. A classifier 
trained in this dataset would learn to associate new input images to one of the preset 
classes of fruits in a supervised manner. Similarly, a different dataset could just have 
images of fruits without any labels or hint to the classifier. The task is to cluster just 
fruit pixels from the rest of the image pixels. This scenario falls under the 
unsupervised ML category. It should be noted that there are no formal definitions of 
supervised and unsupervised learning (Goodfellow et al. 2016). The above example 
and distinctions are based on a commonly accepted descriptions and concepts that 
can provide a framework for appropriate application of these techniques to solve 
practical problems.

There are other variants of machine learning algorithms including semi- 
supervised and reinforcement learning. A semi-supervised ML, as the name sug-
gests, falls between supervised (labeled data and defined class) and unsupervised 
(no labels and classes) ML categories. Thus, this class of ML algorithm experience 
both labeled dataset (often minimal) as well as unlabeled classes. Reinforcement 
learning, on the other hand, not only experiences fixed dataset but also interacts with 
the environment and learns through trial and error. In this chapter, we primarily 
focus on research on computer vision in agriculture within supervised and 
unsupervised ML categories.

13.2.2  Common Learning Models

Linear Regression Linear regression is the simplest learning model, and as the 
name implies, it solves linear regression between dependent variables (inputs) and 
independent variables (outputs). The equation governing this learning mode is as 
follows:

 ŷ w xT


=  (13.1)

where w ∈ Rn.
In the above equation, the input “x” is multiplied with the parameter “w” to the 

get models prediction ŷ


.

Logistic Regression Logistic regression extends the linear behavior of linear 
regression with the inclusion of logistic function in its hypothesis representation. 
The equation governing logistic regression learning is as follows:
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Perceptron Artificial neurons are mathematical abstractions and the basic building 
block of a neural network. Figure 13.3 depicts a block diagram of a perceptron. A 
perceptron is the most basic artificial neuron that takes several binary inputs and 
produces a single binary output (McCulloch and Pitts 1943). Here each input is 
multiplied by a weight, which can be any real number. It is these weights that are 
adjusted during the network training to produce desirable outputs. If the combined 
inputs are greater than a threshold, the output is high otherwise the output is low.

 

Output =
≤

>









∑
∑

0

1

if w x threshold

if w x threshold
i

i i

i
i i

 

(13.1)

The perceptron can be a good choice if the decision manifold is linear. For exam-
ple, let us consider a simple case where a farmer needs to decide to harvest or not to 
harvest in a given day. He might consider several variables to make this decision, 
but for brevity let us consider three variables viz. the possibility to rain that day (x1), 
number of available workers (x2), and amount of reserved fuel (x3). In this example, 
let us further assume that some of these considerations are more crucial than others. 
For instance, for maintaining fruit quality, it should not be raining, so the input 
associated to the variable x1 can have a higher weight. Similarly, availability of fuel 
(x3) might not be that big of a deal, so that can have a lower weight. The threshold 
or the decision boundary can be set arbitrarily but usually set to 0.5, i.e., if the 
weighted sum of inputs is greater than 0.5, the algorithm favors the decision to har-
vest and vice versa.

In this example, the weights are w1 = 0.8 for x1, w2 = 0.5 for x2, and w3 = 0.1 for 
x3. If the weather is good (x1 = 1), the labor is adequately available x2 = 1 and the fuel 
is available x3 = 1 then, the output = 1, so the farmer will continue to harvest. The 
weights and the thresholds can be varied as needed for representing different 
scenarios. Though a powerful tool, such simple linear cases do not always suffice 
for complex decision-making tasks. However, cascading multiple layer of these 
perceptrons, as shown in Fig. 13.1, can represent complex and nonlinear decision- 
making manifolds.

In this network, the first layer takes in the inputs multiplied by their respective 
weights. The output of each perceptron in the current layer is used as inputs for the 
next layer. Also, as a simplification of notation, the threshold can be replaced by a 
bias, and the sum of products of inputs and weights can be written as a dot product. 
So, the perceptron can now be represented as:
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Sigmoid Neurons A combination of these perceptrons makes up what is known as 
an artificial neural network (or just neural network). A crucial aspect of neural net-
work (NN) is tuning the weights associated to each neuron, so that it produces the 
right output for the given input data. This process involves providing the network 
with an input, observing the output, and computing the loss (or error) on that output. 
The loss is computed by a special function called the loss function. The loss func-
tion returns a high value if the prediction made by the network is incorrect and a low 
value otherwise. These loss values are a measure of how much the weights should 
change in order to produce the correct output for the given input. In practice, gradi-
ent-based methods are generally used for calculating the updates of the weights. 
This requires the neural network to be made from continuous and differentiable 
units. Thus, the issue with vanilla perceptron is the discontinuity of the output (i.e., 
binary output). So, a modification to the perceptron is introduced in the form of a 
sigmoid neuron (Fig. 13.2 left). The sigmoid activation function adds a continuous 
nonlinear function output at the back of the perceptron unit, and the output can take 
any value between 0 and 1. The sigmoid function is represented as:

 
σ z

e z( ) =
+ −

1

1  
(13.4)

Now the output of the neuron with sigmoid activation becomes:
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The sigmoid neurons are in effect like perceptrons. If the value of z is very large, 
the neuron outputs a value close to 1, and if z it is very small, the neuron outputs a 
value close to 0. The ability to generate all real values between 0 and 1 also makes 
it continuous and differentiable. Fig.  13.2 (right) shows the output curve of the 
sigmoid neuron.

Fig. 13.1 A single perceptron with three inputs and single output (left). A multi-perceptron net-
work (right)
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13.2.3  Learning Weights with Gradient Descent

The real value of NN-based learning algorithms lies in the fact that the weights of 
neurons can be automatically altered to fit to the pattern or relationship inherently 
represented by the available input-output data. The most prevalent algorithm for 
doing so is called Gradient Descent. This is a gradient-based method, where the 
weights are altered such that the value generated by the loss function reduces over 
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Fig. 13.3 A multi-perceptron network for hand-digit classification
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time. To discuss about gradient descent, let us consider a simple task and a simple 
neural-network architecture shown below.

 1. Neural Network Architecture: Suppose the task is to classify images of handwrit-
ten digits each of size 28x28 pixels in size. Here, the input to each neuron in the 
first layer (input layer) will be a 28x28 = 784x1 dimensional vector. Since, the 
output can take 1 out of 10 possible values (0–9), the output will be a 10x1 
dimensional vector. In neural network architectures, varying numbers of neurons 
can be added in the input layer and the layer in between the input and the output 
layers (these are called hidden layers). These (including number of layers and 
number of neurons in each layer) are network hyperparameters and are generally 
decided by empirical data analysis. Figure 13.3 shows the network architecture 
developed for modeling this character recognition problem.

 2. Loss Function: The neural network can now be considered as a function that 
transforms inputs (vectorized images) to outputs (one vector for the class the 
image belongs to). Here, the predicted class can be denoted by the function y(x). 
As mentioned before, the loss function is a function that returns a higher value if 
the prediction is incorrect and a low value otherwise. A common loss function 
used in NN is the L2 loss as shown in eq. 13.4. This loss function is parameterized 
by NN parameters, as it depends on them.

 
L w b y x a,( ) = ( ) −

2

2

 
(13.6)

Here, w is the weights of the neural network and b are the biases, x is the input, 
y(x) is the predicted output, and a is the actual output (or ground truth). Equation 
13.6 shows the loss for a single output/ground-truth pair. The loss can also be 
calculated for batch updates, by just averaging the L2 loss over all the examples 
(input-output pairs available for training the network) in the batch, as shown in 
eq. 13.7
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(13.7)

 3. Back Propagation: Once the loss is calculated, it can be used to adjust the param-
eters of the neural network so that the network generates increasingly more accu-
rate output. This is accomplished by iterating the process of computing the 
output, calculating the loss, and adjusting the parameters (weights and biases) to 
reduce the loss. The algorithm used to accomplish this process is called Gradient 
Descent by Back Propagation of Loss. To show the algorithm in action, let us 
assume a small network as shown in Fig.  13.4. This network has a four- 
dimensional input, two hidden layers, and a two-dimensional output. X0 is the 
input vector, x1 = f (W1x0 + b1), x2 = f (W2x1 + b2) and the output x3 = f (W3x2 + b3). 
The tunable parameters in the network are: W1(5x4), W2(3x5), W3(2x3), b1(5x1), 
b2(3x1), and b3(2x1).
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The idea is to change theses tunable parameters such that the loss (eq. 13.6) 
reduces. Hence, the parameters need to be changed in the direction opposite to the 
gradient of the loss w.r.t. the parameters. Let us consider just the weights and not the 
biases for now. So, the weights need to be changed such that,

 
w w

L

w
: ,= −

∂
∂

α for allweightsw.
 

(13.8)

The partial derivatives of Loss L w.r.t. all the network weights w are calculated 
through chain rule of derivatives. First the partial derivatives are derived for weights 
in the last layer
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Fig. 13.4 An example 
neural network with four 
inputs, two hidden layer, 
and two outputs
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Here, “o” is the Hadamard product. As a quick check, the dimensions of the LHS 
and RHS can be matched. So, ∂L/∂W3 must have the same dimensions as W3. W3 has 
a dimension of 2x3 and (x3 − a) has a dimension of 2x1,and f′ (W3x2) has a dimen-
sion of 2x1 as well. Variable x2 has a dimension of xx1, so δ3 x

T
2  is of dimension 2x3, 

which is the same as W3.
Similarly, for W2 we have
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And for W1, the derivatives will be
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Thus, for every layer, there emerges a recursive relation for the gradients of the 
weights. Once the gradient equations are obtained, these can then be used to update 
the weights, such that the loss is minimized. The backpropagation algorithm consists 
of three parts,

Forward Pass All inputs are passed through the network to compute projected out-
puts, and the loss are computed in this pass.

 x f W xi i i i= ( )−1  

 E x aL= −
2

2

 

Backward Pass All the δs are symbolically computed in this pass
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Once the first layer is reached during the backward pass, input (x0) is known. 
This is then plugged in, and all the numerical values for all the gradients are thus 
computed.

Weight Update The numerical values of the gradients are then used to update 
the weights
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The biases too can be updated in a similar way.

13.3  Deep Learning

Deep learning (DL) is currently one of the leading methods used in machine learn-
ing. The term “Deep” in DL refers to the increased number of layers between the 
input and output aka depth in DL architecture. Typically, in the artificial neural 
networks (ANNs) or neural networks (NNs) discussed in Sect. 13.2, the depth of the 
networks has remained fairly small. DL uses the same basic principles of the ANNs 
but then extends the depth of the network that provides enhanced capability for 
much more robust modeling and classification framework. Figure 13.5 shows the 
basic difference between classical machine learning and deep learning methods. As 
opposed to feature engineering in classical ML including ANN, DL methods offer 
end-to-end architecture that learns features from example dataset leading to simpler 
modeling/classification architecture and better generalization capability. Because of 
this very reasons, deep learning-based approach have out-performed classical 
machine learning and has become the go-to technique for most AI type problems 
(Seif 2018). Following several paragraphs provide brief description of some of the 
principle DL architectures found in the literature.

Deep Feedforward Networks As the name suggests, deep forward networks, also 
known as multilayer perceptrons (MLPs), are the type of neural network where 
information flows in just forward direction. These networks approximate some 
functions that map input to a certain category. These networks are often considered 
as the steppingstone to more complex networks discussed below (Goodfellow 
et al. 2016).
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Convolutional Neural Networks Convolutional neural networks (CNNs) are a 
class of deep feed-forward networks described above. This is the most common 
architecture used in several research articles for feature extraction and classification. 
For this reason, CNNs are described in more details in this subsection. As seen 
earlier, a regular neural network requires a vectorized representation of data 
including input images if they are used to process images. This approach can 
perform well with images of small dimensions, but the network grows exponentially 
as the image size increases. For example, an image of size 200x200x3 would have 
200 * 200 * 3 = 20,000 weights going to just one input neuron. Evidently, with 
several input and hidden layer neurons, the size and complexity of the model/
network quickly gets unmanageable. Convolutional neural networks take advantage 
of the fact that the inputs to the neural network are images. So, the neurons are not 
fully connected to the preceding layer. Instead the neurons in a layer are only 
connected to a small region of the outputs of the layer before it. Just the neurons of 
the final output layers are connected fully to the preceding layer. Figure 13.6 shows 
a simple CNN architecture consisting of N convolution + ReLU + Max Pooling 
layers followed by a fully connected layer for N class classification.

 1. Convolutional (CONV) Layer: The convolutional layer lies at the core of a 
Convolutional neural network (CNN). Each convolutional layer consists of 
learnable filters (weights). These filters have a small spatial span of a certain 
width and height but span through the whole depth of the input layer. For 
instance, the filter for the first CONV layer might be of size (5x5x3), which 
means that the width and height are both 5 pixels, and it is 3 pixel/channel deep 
for the 3 color channels of an RGB input image. These filters are slid over the 
input volume and the dot product between the entries of the filter and the input 

Fig. 13.5 General block diagram of classical machine learning algorithm (top) and deep learning 
architecture (bottom)

A. Silwal et al.



349

array is computed. This process is called convolution. The output of each filter is 
thus a two-dimensional layer, called the activation map of that filter. Each layer 
in a CNN can have a number of these filters. Suppose if a layer has 9 filters, then 
it will have 9 activation maps. These activation maps are concatenated in depth 
dimension, and this concatenated volume is the output of a convolution layer.

The size of the output maps depends on the stride of the filters, padding of 
input volume, and the number of filters in a layer.

 (i) The stride with which the filter slides over the input volume decides the size 
of the output. The stride is 1 pixel when the filter moves one pixel at a time. 
It can be any integer value. Higher the stride, lower the spatial size of the 
output volume.

 (ii) It is convenient to add zeros at the edge of the input volumes, which is 
called zero padding. This process allows the convolutional operation to 
cover the entire input image and keep the spatial size of output the same as 
that of input volumes.

 (iii) The number of filters dictates the depth of the output volume, as each filter 
produces two-dimensional activation map.

 2. Non-Linearity: The outputs of the convolutional operations (CONV layer) are 
then sent through a nonlinearity function. This can be a sigmoid unit as defined 
above, a tan-h nonlinearity function or anything else that is differentiable. In 
most of the CNNs, a nonlinearity called the rectified linear unit (ReLU) is used 
which is defined as follows:

 
f x

x x( ) = 



>
0

0if

otherwise 

 3. Pooling: It is a common practice to insert a pooling layer in between two con-
secutive convolution layers. The function of pooling layer is to reduce the spatial 
size and hence the number of tunable parameters. The pooling layer operates 
independently on each activation map, using the max-pooling operation. Most 
commonly, 2x2 filters are applied that down-sample every 4 pixels in activation 
map to 1 pixel, by taking the maximum of those 4 pixels. So, a pooling layer with 

Fig. 13.6 A simple CNN architecture for image classification
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a size of PxP and stride S accepts a volume of size W1xH1xD1 and produces a 
volume with size W2xH2xD2, where W2 = (W1 − P)/S + 1, H2 = (H1 − P)/S+ 
1, and D2 = D1. Though not a differentiable operation, it works with the back-
propagation algorithm, because during backpropagation, the gradients can be 
routed to the input that had the highest value in the forward pass. For this process 
to work, there just needs to be a track of the indices of the max value at each layer.

 4. Final Layer: Finally, depending on the task, the final layer can either be a number 
of sigmoid neurons (classification task) or linear neurons (regression task). The 
final layer is fully connected to the last activation map volume. If the size of the 
volume is WxHxD, then each neuron in the final output layer will have W*H*D 
weights.

Fully Convolutional Networks Fully connected networks (FCNs) are end-to-end 
learning DL networks based on CNN.  This network has two sub-networks: 
convolution and deconvolution network. The convolution network down samples 
the input images using combination of filters, max pooling, and activation function 
as described in the above section. Whereas the deconvolution network up samples 
the features from the convolution end up to the full size of the input image to pro-
duce a semantic mask as output. The architecture of the FCN from the original 
paper (Long et al. 2015) is shown in Fig. 13.7.

Recurrent Neural Networks Unlike CNNs, which are designed to process gird 
values (such as images), a recurrent neural network (RNN) is a specialized neural 
network for processing a sequence of values. RNNs, also referred as multi-temporal 
networks, have access to output from previous moment and can use that information 
for the task in the current observation. Such functionality is achieved by sharing 
parameters across different parts of the model. Additional discussion on some of the 
more complex networks can be found in Chap. 16 (Sect. 16.3.3).

input image pixelwise prediction

forward/ inference

backward/ inference

Fig. 13.7 Illustration of a FCN sematic segmentation framework
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13.4  An Overview of Applications of Machine Learning 
in Agriculture

In the previous sections, basics on classical machine learning and deep learning 
were discussed, which provides a background on understanding the capabilities of 
various learning and classification techniques. This section summarizes relevant lit-
eratures that implement, improve, or propose custom machine/deep learning algo-
rithms to solve computer vision problems relevant to agricultural and field robotics. 
The reviewed articles are categorized into two major subgroups: viz. object classifi-
cation and clustering. As per the name, the classification subcategory includes algo-
rithms based on supervised learning schemes that classify, localize, and count 
objects of interests such as fruit, weeds, and diseased canopy parts from images. It 
also includes articles for regression-based counting. On the other hand, the cluster-
ing subcategory includes studies that focus on implementing unsupervised learning 
methods.

Identifying objects such as fruits, vegetables, and diseased canopy parts directly 
from images and transforming that information into a layer in the decision-making 
process in the crop production cycle have the potential to revolutionize agricultural 
industries. Additionally, researchers often describe machine vision-based approach 
to agricultural automation as efficient, low-cost, nondestructive, and automated pro-
cess scalable to large-scale implementations. The combination of above- mentioned 
advantages and demand from the industry has generated an enormous amount of 
interest in machine learning-based approaches to solving computer vision problems 
for agricultural automation and robotics. The plot in Fig. 13.8 shows the number of 
publications indexed by Google Scholar against the year of publication that include 
terms “Agriculture,” and “Robotics,” and phrase “Machine Learning/Deep 
Learning.” This curve almost follows an exponential trend indicating the large 
attention to the application of learning-based approach in agriculture.

13.4.1  Classification

Crop/Fruit Detection Detecting fruits and vegetables in images is a fundamental 
requirement for any image-based automation task in agricultural fields (Silwal et al. 
2014). It is often regarded as the critical factor for the success of autonomous 
systems in agriculture as it provides the ability to perceive and analyze sensory 
information to generate appropriate actions for tasks such as manipulating robot 
arms for harvesting or autonomous navigation in row crops (Silwal et al. 2017). As 
an example, a typical computer vision-based pipeline in fruit detection is to identify 
and localize individual fruit within the image. Although, this process looks simple 
and intuitive, getting consistent result in varying and uncertain field conditions has 
proven to be difficult. Numerous publications in the past three decades in vision- 
based agricultural robotics have regarded visual information processing as one of 
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the major bottlenecks to reach commercial maturity (Kapach et al. 2012). To address 
the need for robust and more generalized fruit detection algorithm, this research 
problem has received much attention in the research community.

Support vector machine (SVM) is one of the most popular classical machine 
learning technique among researchers to detect fruits in images. Ji et al. (2012) and 
Wang et al. (2009) used SVM with color and shape features with three different 
SVM kernel functions (Poly, Radial basis function or RBF, and Sigmoid) to classify 
apples. With a dataset of 150 sample images, they reported apple detection accuracy 
of 93% for the RBF kernel. Similarly, Qiang et al. (2014) used SVM to classify 
objects into multiple class including citrus (as fruit), leaves, and branches. They also 
used RBF kernel, and detection accuracy was 92.4% in a dataset of 87 images. To 
detect green citrus, Sengupta and Lee (2014) trained SVM to classify textures on 
patches of circular objects detected using Circular Hough Transform (CHT). The 
dataset consisted of 100 images (38 training, 62 evaluation). Another frequently 
used classical learning tool for fruit detection is artificial neural network (ANN) as 
discussed above. Plebe and Grasso (2001) used hand crafted RGB color features to 
train ANN to identify oranges. The authors reported 87.0% oranges detection accu-
racy with 13.0% false positive and 5.0% false negative in a dataset of 800 images. 
Similarly, Regunathan and Lee (2005) used multilayer neural network for citrus 
detection based on manually crafted feature on hue, luminance, and saturation 
(HLS) color space. H and S values of every pixel in the test dataset were used to 
classify as citrus or background. Fruit was then counted by segmentation using 
morphological operation and watershed transformation. This study reported mean 

Fig. 13.8 The trends of using machine learning and deep learning in agricultural automation and 
robotics research. The plots were generated using advanced search feature on Google Scholar for 
terms: Agriculture, Robotics and “Machine Learning/Deep learning”
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percentage error of 39.6% on detecting fruit visible in the image. The dataset con-
sisted of 74 images divided equally for training and testing.

Yield Estimation Yield prediction is one of the most critical yet complicated and 
inaccurate system that adds more uncertainty in the crop production cycle (Bargoti 
and Underwood 2017; Gongal et al. 2016). Currently, yield prediction in various 
crops such as apples and wine grapes is manually calculated as the product of total 
tree counts and the average number of fruits per tree/plant. As the average number 
of fruits in trees/plant could drastically vary, the final prediction could become 
highly inaccurate (Stein et  al. 2016). Furthermore, in commercial orchards and 
vineyards, pre-/post- harvesting operations can cost up to a third of the total labor 
cost (Bac et al. 2014). Having accurate and early yield estimates could facilitate 
better management decisions and allow adequate time to allocate resources to such 
time-sensitive tasks to maximizing crop yield. Unsurprisingly, a large number of 
studies focused on early season yield prediction for various crops are evident from 
the published literature.

Stas et al. (2016) used Single DVI, Incremental NDVI, and Targeted NDVI for 
winter yield prediction of wheat in China. They compare Boosted Regression Trees 
and SVM for NDVI based yield prediction and concluded that Boosted Regression 
trees consistently outperform SVMs. Kaul et  al. (2005) compared ANNs with 
multiple linear regression for yield estimation in corn and soybean farms. ANNs 
outperformed multiple linear regression for both the crops. Soil rating and weekly 
rainfall numbers were inputs to the learning algorithms. R2 for corn prediction for 
ANN was 0.77 versus 0.42 for linear regression. In case of soybean, R2 for NN-based 
approach was 0.81 as opposed to 0.46 for linear regression.

Morellos et al. (2016) used visible near infrared spectroscopy for total nitrogen, 
organic carbon, and moisture content of soil in Germany. Spectral wavelength from 
305-2200  nm was used in this work to compare multivariate methods namely: 
principal component regression and partial least squares regression with ML 
approaches least squares support vector machines and Cubist (Kuhn and Johnson 
2013). Least squares support vector machines performed the best for total nitrogen 
and organic carbon prediction with root mean squared prediction error (RMSPE) of 
0.457% and 0.062%, respectively. Cubist method provided the best prediction 
results for total nitrogen with RMSPE = 0.071%. In order to exploit the full potential 
of several available spectral bands, You et al. (2017) use Deep Gaussian Process in 
conjunction with Long Short Term Memory (LSTM) to automatically extract 
relevant features while also incorporating spatiotemporal information for soybean 
yield prediction in the United States. The proposed method outperformed competing 
baseline approaches such as ridge regression, decision trees, and ANNs. González 
Sánchez et  al. (2014) compare various ML approaches such as multiple linear 
regression, M5-Prime regression trees, multilayer neural networks, support vector 
regression, and k-nearest neighbor for field prediction for ten crop datasets. 
Attributes such as plantation area, irrigation depth, solar radiation, rainfall, and 
temperature range were used to train the models. On average M5-Prime achieved 
the largest number of crop yield models with the lowest errors. Nuske et al. (2011) 
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studied yield estimation over four growing seasons in various wine and table grape 
vineyards. They made use of active lighting stereo camera to get cues based on 
texture, color, and shape to train a random forest classifier to classify key-points 
between grapes and background. These detections are then fed into a calibration 
function that mapped dense visual measurements to predicted yield. This calibration 
function is generated using sparse in-season sampling or harvest from prior years. 
They achieved an average error between 3% and 11% from the actual total yield. 
More discussion on 3D sensing systems for yield estimation can be found in Chap. 3.

Biotic/Abiotic Stress Detection Effective crop protection requires accurate and 
early detection of biotic and abiotic stresses in plants (Behmann et al. 2015). Biotic 
and abiotic stresses are the two major threats to higher yield (Behmann et al. 2015; 
Liakos et al. 2018;). Several machine learning approaches have been investigated 
over the last decade to identify these ailments as early as possible. Mokhtar et al. 
(2015) developed a computer vision pipeline to detect yellow leaf curl virus in 
tomatoes from RGB mages. Features extracted from a preprocessed and segmented 
image were passed through an SVM classifier with various kernel functions. The 
authors achieved a maximum accuracy of 92% with a quadratic kernel function. 
Hernández-Rabadán et al. (2014) used self-organizing maps in conjunction with a 
Bayesian classifier to segment Powdery Mildew in tomato plants. Fuentes et  al. 
(2017) compared various deep learning architectures for detection, localization, and 
classification of diseases such as Gray mold, canker, leaf mold, plague, leaf miner, 
white fly, and nutritional deficiency in tomato cultivar. Region-based fully convolu-
tional metwork (Dai et al. 2016) with ResNet-50 feature extractor performed the 
best overall with mean average precision (mAP) score of 0.8598.

Mohanty et al. (2016) used Google Net (Szegedy et al. 2015) to detect 26 dis-
eases in 14 crop species. Some of the diseases classified were apple scab, apple 
black rot, apple cedar rust, cherry powdery mildew, corn gray leaf spot, corn com-
mon rust, corn northern leaf blight, and orange huanglongbing (citrus greening). 
The trained model achieved a near perfect accuracy of 99.4%. Ghosal et al. (2018) 
performed identification, classification, and quantification of ailments such as bac-
terial blight, bacterial pustule, frogeye leaf spot, Septoria brown spot, sudden death 
syndrome, and iron deficiency chlorosis in soybean crop using CNN and achieved 
an overall classification accuracy of 94.1%. The detection accuracy was negatively 
affected by confounding symptoms that are tough to classify even for expert plant 
pathologists. The authors used feature maps of CNN layers to generate interpretable 
results. More discussion on spectral sensing techniques for crop stress detection can 
be found in Chap. 4.

Plant Phenotyping As discussed in Chap. 6, plant phenotyping is the process of 
measuring physical plant traits. Due to maturity in camera technology and recent 
advancements in computer vision, a large number of phenotype measurement 
solutions have been investigated using images as input and ML techniques to 
process those images. Chen et al. (2017) used dual CNN architecture for fruit count 
estimation as a phenotypic parameter. The first CNN segmented potential blobs 
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inside an image that were likely to contain fruit and the second CNN estimated fruit 
count within each blob segmented by previous CNN. Baweja et al. (2018) used a 
combination of faster R-CNN (Ren et al. 2015) and fully connected networks (FCN; 
Long et al. 2015) to segment, count and size sorghum stalks, whereas Sodhi et al. 
(2017) used a combination of SVM and conditional random fields (CRFs) on 
reconstructed point clouds to achieve the same task.

Cudic et al. (2018) used machine learning to find new genetic markers in single 
nucleotide polymorphism (SNP) sequences that correlate well to known phenotype 
values. Drawing inspiration from genetics, they developed a novel locally connected 
autoencoder architecture to reduce dimensionality of SNP sequences. Activation 
values of some of the encoding neurons were bound to be correlated to phenotype 
values. Upon backpropagating error from the encoding neurons of interest 
(Dimopoulos et  al. 1999), new genetic markers were found in the input SNP 
sequences. Given the images of plants, a CNN was able to predict the new markers 
found with an average accuracy of 0.58%.

Parhar et  al. (2018) presented a deep learning-based high-throughput, online 
pipeline for in situ sorghum stalk detection and grasping. Instead of using standard 
CNN-based architectures for semantic segmentation (Badrinarayanan et al. 2017; 
Chen et al. 2014; Long et al. 2015; Zhao et al. 2017), Mirza and Osindero (2014) 
used Conditional Generative Adversarial Networks (CGAN) for semantically 
segmenting plant stalks. In a relatively homogeneous environment facilitated by 
active lighting, this approach not only required fewer training images but also 
generated a realistic looking segmentation mask. These segmentation masks were 
then fed to find optimal grasp locations in a 3D point cloud for plant phenotyping. 
More discussion on the application of vision system for high-throughput crop 
phenotyping can be found in Chap. 6.

13.4.2  Clustering

A typical application of unsupervised learning in agriculture and elsewhere is the 
clustering of image pixels into different groups. In this category of ML techniques, 
the task is to group similar looking inputs (or inputs with similar features) into a 
discrete set of clusters. K-means (Lloyd 1982) and its variants and hierarchical 
techniques (Johnson 1967) are some of the popular choices in unsupervised 
ML. However, comparatively few research studies have reported implementing the 
unsupervised method in addressing agricultural issues. To detect green apples, 
Wachs et al. (2010) used K-means to segment apples from thermal and color images. 
Morphological operations and CHT were then used to improve classification 
accuracy. This study reported fruit detection accuracy of 38.8% on color images, 
50.6% on thermal, and 53.2% with the combination of two images. Similarly, 
Bulanon et al. (2004) used K-means to cluster pixels in tree canopies with red apple. 
The segmentation via clustering approach resulted in fruit detection accuracy of 80%.
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13.5  Significance of Machine Learning in Agriculture

Table 13.1 summarizes nearly five dozen different articles implementing various 
machine learning-based (ML), deep learning-based (DL), and traditional non- 
learning- based (NL) algorithms that addressed wide variety of computer vision 
problems in agriculture, in general, and agricultural automation and robotics, in 
particular. For brevity, only studies that focused on fruit detection, yield estimation, 
and crop stress (e.g., disease) detection are included in the table although the reviews 
and discussion throughout the chapter included a much wider application range. 
Furthermore, only those studies reporting performance with similar metrics are 
included in this analysis. Additionally, some studies with multi-class accuracy were 
averaged across all classes. Table 13.1 also included the total size of the dataset used 
for training, testing, and validation of the algorithms.

The average accuracy across three different tasks (fruit detection, yield estima-
tion, and stress (disease) detection for non-learning algorithm is 79%. For classical 
machine learning algorithms, the average accuracy across these tasks is 85.42%. 
Similarly, deep learning-based algorithm scored 96% accuracy across the same three 
different tasks. The average size of data used in NL application was 95 images, 
whereas ML and DL application relied on significantly larger datasets. In our limited 
comparison, DL-based approach outperformed NL and ML approached by 16% and 
10% respectively. ML-based algorithm also outperformed NL approach by almost 
6%. It should also be noted that the intension of this comparison is to see the average 
trend of the reported accuracy across different visual tasks in agriculture between the 
application of NL, ML, and DL algorithms. As there are no common dataset used 
among these studies, a direct comparison is not possible. Figure  13.9 shows the 
graphical representation of the accuracy and dataset size as seen in Table 13.1

As DL architectures are becoming more popular in agricultural applications (evi-
dent from Fig. 13.7 and Table 13.1), only few recent publications have compared per-
formance of DL to classical ML in their study. dos et al. (2017), Farooq et al. (2018), 
Ma et al. (2018), Rançon et al. (2019), and Zhong et al. (2019) compared CNN-based 
DL model to several ML-based models for weed, fruit, and disease detection respec-
tively. In these studies, DL model was based on CNN and ML models included vari-
ants of SVM, random forest, PCA, SIFT, etc. (Fig. 13.9). As expected, the CNN model 
outperformed ML models in all tasks. These studies showcase additional cases where 
DL generated better accuracy then classical ML using same datasets for training and 
testing. In some cases such as in Zhong et al. (2019) (Fig. 13.9), the performance of 
DL and ML are close; however it should be noted that the ML architectures are subjec-
tive to hand engineered features that require expert knowledge. Additional details on 
the advantages and disadvantages of deep learning algorithms over conventional 
machine learning approach are summarized below (Fig. 13.10).

Engineered Feature Versus Learned Feature Except the vast performance boost 
for classification tasks reported in the literature, the main advantage of DL over the 
rest is because of its feature learning aspect. Hand-engineered features often require 
expert knowledge as well as considerable amount of time and effort to engineer and 
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Table 13.1 Summary of algorithms for various tasks in agriculture

Non-learning algorithms

Article(s) Objective

Dataset 
Size 
(min–
max)

Accuracy 
(min–
max)

Average 
accuracy

Bulanon et al. (2002), Çakır et al. (2013), 
Cohen et al. (2010), Dobrusin et al. (1993), 
Edan et al. (2000), Kurtulmus et al. (2011), 
Linker et al. (2012), Okamoto and Lee (2009), 
Payne et al. (2014), Pla et al. (1993), Silwal 
et al. (2014) Stajnko et al. (2009), Wachs et al. 
(2010), Zhao et al. (2005)

Fruit 
detection

17–173 70–90 80

Zhou et al. (2012)
Gongal et al. (2016)

Yield 
prediction

50–424 74–82 78

– Stress & 
disease 
detection

– – –

Classical machine learning algorithms
Bulanon et al. (2004), Chaivivatrakul and 
Dailey (2014), Chinchuluun et al. (2006), Ji 
et al. (2012), Kurtulmus et al. (2014), Plebe 
and Grasso (2001), Qiang et al. (2014), Rakun 
et al. (2011), Seng and Mirisaee (2009), 
Slaughter and Harrell (1989), Wang et al. 
(2009), Zhong et al. (2019)

Fruit 
detection

13–3600 75–93.3 84.15

Chinchuluun et al. (2006), Ramos et al. (2017), 
Amatya et al. (2016), Sengupta and Lee (2014), 
Ali et al. (2016), Pantazi et al. (2016a, 2016b), 
Senthilnath et al. (2016)

Yield 
prediction

100–
4300

80.4–89.6 85

Pantazi et al. (2017a, 2017b), Ebrahimi et al. 
(2017), Chung et al. (2016), Moshou et al. 
(2014), Moshou et al. (2004), Moshou et al. 
(2005), Moshou et al. (2006), Binch and Fox 
(2017), Lu et al. (2017), Ma et al. (2018), 
Rançon et al. (2019), dos et al. (2017), Farooq 
et al. (2018)

Stress & 
disease 
detection

55–
14,208

74.34–
99.92

87.13

Deep learning algorithms
Koirala et al. (2019), Liu et al. (2018), Zhong 
et al. (2019), Sa et al. (2016), Stein et al. 
(2016)

Fruit 
detection

1300–
3600

94–98 96

Heinrich et al. (2019), Koirala et al. (2019), 
Bargoti and Underwood (2017)

Yield 
prediction

500–
1730

99–99.6 99.3

dos et al. (2017), Farooq et al. (2018), Lammie 
et al. (2019), Fuentes et al. (2017), Ma et al. 
(2018), Rançon et al. (2019), Ferentinos 
(2018), Lu et al. (2017), Zhang et al. (2019)

Stress & 
disease 
detection

200–
87,484

86–99.6 92.8
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estimate (Kamilaris and Prenafeta-Boldú 2018). DL architecture inherits this fea-
ture as an integrated part of the pipeline and automatically learns to recognize the 
features. Furthermore, the hard-crafter features are often low-level features. With 
deep CNN layers, DL algorithms over training time learn much higher representa-
tion of the data further increasing robustness.

Generalization DL architectures offer end-to-end learning ability on the dataset and 
seem to generalize better. However, ML algorithm often offers just a part of the solu-
tion. As seen in the cited literatures, ML pipelines often had additional  post- processing 
algorithm to further improve accuracy. As more algorithms are fused together, more 
parameters are added that could adversely affect generalization.

Data Requirement One often criticized aspect of DL algorithms is the amount of 
data required to train the network. This if often considered a major drawback for DL 
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Fig. 13.9 Overall accuracy plot of NL, ML, and DL algorithm across three different tasks includ-
ing crop/fruit detection, yield estimation, and biotic/abiotic stress detection
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architectures as not every researcher/research problem could have hundreds if not 
thousands of manicured datasets. Although, transfer learning, fine-tuning, and data 
augmentation (Goodfellow et  al. 2016) offer some leverage over larger dataset 
requirement, a significantly larger dataset, compared to other traditional ML 
approaches, is always required for reliable performance. Data annotation is another 
significant requirement before the network can be trained to do anything. Often in 
field application of DL such as in agricultural sites, training on new experimental 
site often requires labeling and training on site. This can be a very cumbersome task.

Computing Resource and Training Time Training and deploying DL networks 
require computers with powerful graphical processing units (GPUs) whereas many 
ML algorithms can be deployed in less powerful and compact computing platforms. 
The training time for DL versus ML is also significantly different. Depending on the 
architectures and training scheme, DL network could take several hours to days. In 
contrary, ML algorithms are known to train and be ready to deploy in matter of minutes.

13.6  Summary and Concluding Thoughts

Variable lighting condition, fruit visibility, occlusion, and inconsistency in crop shape, 
size, and color are some of the most mentioned factors limiting the performance of 
computer vision algorithms in field environment published prior to the ML interven-
tion (Gongal et al. 2015). With the intervention of classical machine learning in com-
puter vision in agriculture and with the notion of learning from data, the solution to 
many agricultural tasks became relatively more consistent, but still the outcomes 
depended on experts to hand engineer reliable features to work with. With the advent 
of deep learning (DL), the availability of high computation power, and end-to-end 
learning scheme, the desire of having a general-purpose algorithm for classification 
problem in agriculture is getting closer to reality than it ever has been.

From the studies reviewed in this chapter, we can interpret that the focus of the 
computer vision research community in agriculture has been mainly to improve 
productivity, reduce manual work, and early detection of biotic/abiotic stresses 
(e.g., diseases) just from images. DL architectures are usually designed to work in 
two- or higher-dimensional data for usual tasks like classification. Throughout the 
reviewed studies, the application of DL in various agricultural problems showed 
improved accuracy compared to conventional approaches. In many cases, we could 
argue that the existing DL algorithms could provide out-of-box solutions to essential 
tasks in agriculture such as fruit detection and quality assessment. Public availability 
of such state-of-the-art tools could provide opportunities for new companies to 
commercially adopt these techniques in the near future.

The success and achievements of DL are usually attributed to the availability of 
high-power computation platforms and skilled programming. However, it can also 
be argued that the public sharing of data and open-source codes are equally 
contributing factors. Publicly shared large datasets such as Imagenet and COCO for 
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training DL algorithms provided a common resource that makes it convenient to 
evaluate competing algorithms. Such culture could also greatly benefit agricultural 
society as no such shared dataset exists.

In this chapter, we provided a brief description of the techniques and terminolo-
gies commonly used in machine learning. We summarized nearly five dozen papers 
applying machine learning in various tasks in agriculture. We also compared the 
performance of DL to various traditional approaches. To our findings, DL-based 
approaches generally outperformed in all applications they were applied to and 
were able to generalize to larger test datasets. Our aim in this chapter was to provide 
concise information of common components of ML and DL as well as the current 
status of ML and DL in agricultural applications. The application of DL in computer 
vision agricultural automation and robotics looks highly encouraging and could 
contribute toward more smart, automated, and sustainable farming.
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Chapter 14
Digital Farming and Field Robotics: 
Internet of Things, Cloud Computing, 
and Big Data

Dimitrios S. Paraforos and Hans W. Griepentrog

14.1  Introduction

The demand for agricultural production is increasing, due to the 60–70% expected 
increase in food demand by 2050 (Porter et al. 2014). The increased production will 
have to face the challenge of sustainable farm management through optimized use 
of the available natural resources with a limited environmental impact, to meet the 
societal challenges of Sustainable Development Goals (United Nations 2015), such 
as food security and resource use efficiency. Advances in many disciplines of tech-
nology could provide their service toward giving solutions to this challenge.

Widely used precision agriculture (PA) techniques and tools, combined with 
technological developments in the Internet of Things (IoT), cloud computing, and 
big data analytics, are expected to bring the fourth revolution in farming and food 
production. This agricultural revolution, which in many cases is being referred to as 
“Agriculture 4.0” or “Digital Farming,” follows the previous three revolutions. The 
first agricultural revolution took place around 10,000 BC and was characterized by 
the domestication of plants and animals. The second agricultural revolution was 
prompted by the industrial revolution during the nineteenth century when farming 
became mechanized and commercial with the development of new inventions and 
technologies. The third revolution or “Green” Revolution was a period when the 
productivity increased drastically as a result of new advances. During this period, 
high-yield crops were developed and introduced, and also new chemical fertilizers, 
synthetic herbicides, and pesticides were created.

The digital transformation of agriculture is being facilitated by the emergence of 
technologies focused on data acquisition and data management, which are expected 
to have a profound impact. The IoT is in the core (Fig. 14.1) as it is the connection 
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with the physical world where various sensors and devices continuously monitor 
and control environmental variables related to atmospheric conditions, soil state, 
and biomass of biological organisms. As IoT devices are not always reachable in 
real time, due to energy-saving issues, the recorded timestamped information is 
transferred to the cloud through network gateways, in order for the data to be avail-
able for cloud-based IoT applications. Cloud computing technologies offer new 
possibilities in terms of storage and computation. Big data analytics are one level 
higher where data mining is being performed to detect trends, patterns, and associa-
tions, but also possible deviations. Digital farming, as was described above, requires 
this entire architecture in order to be able to support the farmer in everyday decision- 
making. An indispensable aspect of digital farming is field robotics as the latter act 
as the implementing component of the decision-making process. Agricultural 
robots, together with intelligent and highly automated agricultural implements, are 
responsible for the precise execution of agricultural operations (spraying, pruning, 
harvesting, etc.).

Since digital farming is being formulated as a highly cognitive system, it is nec-
essary to have the layered architecture presented in Fig. 14.1, in order to acknowl-
edge the increased complexity from one level to the other. The lower level of IoT 
can potentially operate as a stand-alone procedure in a reactive manner as closed 
loops can perform deterministic actions based on sensed data. Cloud computing 
techniques enhance manipulation of the acquired data, while big data technologies 
(including deep learning) introduce an associative formulation by linking sensory 
inputs with well-established patterns (Strube 1998). Digital farming being at the 
higher level of cognition requires knowledge, experience, and sensing and, thus, 
includes all previous technologies in order to achieve its mission.

The aim of this chapter is to give an overview of the offered technologies related 
to IoT, cloud computing, and big data from an agriculture-related perspective. The 
basic principles of each technology but also the emerging trends that could poten-
tially have a profound impact in the agricultural domain will be also presented. One 
specific objective is to define a conceptual architecture that integrates all mentioned 
technologies and how these will interconnect in the future toward making Agriculture 
4.0 a reality.

IoT

Cloud 
Computing

Big Data

Digital 
Farming

Fig. 14.1 General 
architecture of digital 
technologies in agriculture
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14.2  Internet of Things (IoT)

It is difficult to provide a unified definition of IoT as many exist due to the rapid 
penetration of the related technologies into our everyday life. Irrespective of all 
ambiguous definitions, everyone agrees that the IoT is an emerging technological 
paradigm where smart devices (Things) are equipped with sensors but can also act 
in order to control the physical world. The devices are assigned unique identifiers 
and can connect to the Internet but also interact with each other (Borgia 2014) form-
ing a wireless sensor network (WSN). Based on the latest technology advances, it is 
becoming clear that the IoT is moving gradually to the cloud. In order to save 
energy, the IoT devices are unreachable most of the time. Nevertheless, the informa-
tion should be always available for the application. Thus, a mirrored entity is being 
created in the cloud which holds all the information acquired from the physical 
entity (Atzori et al. 2017). By forming this cyber-physical ecosystem, the real and 
the digital world are in continuous interaction offering the user the capability to 
have a deeper and detailed view into the physical world.

14.2.1  IoT Architecture

A four-stage IoT architecture (Fuller 2016) is presented in Fig. 14.2. Stage 1 con-
sists of all the “Things,” typically sensors that collect environmental data such as 
temperature, humidity, soil properties, etc. In many cases, the Things can also be 
actuators with the purpose to vary the physical conditions based on the decision that 
is taken in situ or at a higher cognition level. At Stage 2, the data are being aggre-
gated and converted into digital streams. Data preprocessing before entering the 
cloud and the data center takes place at Stage 3 by edge processing systems. Finally, 
at Stage 4, the data are stored on back-end cloud systems, and a thorough in-depth 
analysis is being performed. At this stage, advanced cloud-based systems and 
sophisticated big data techniques are being utilized (Popović et al. 2017).

14.2.2  IoT Hardware and Platforms

The last years the number of vendors offering IoT hardware platforms is increasing 
rapidly (Ray 2016). In Table 14.1, five widely used platforms are presented and are 
classified according to key parameters such as processor, memory, communication, 
logic level voltage, I/O connectivity, flash memory, operating temperature, power 
supply, and dimensions. The cost varies among offered platforms and at the moment 
this comparison was performed was from $30 up to $200 based on the offered hard-
ware capabilities and programming interfaces.

14 Digital Farming and Field Robotics: Internet of Things, Cloud Computing…
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14.2.3  Applications in Agriculture

The IoT has found wide implementation in agriculture with numerous applications. 
In order to categorize the various applications, three main domains have been iden-
tified: open-field farming, livestock farming, and protected agriculture. More details 
related to each category are presented in the following subsections.

14.2.3.1  Open-Field Farming

In open-field farming, the focus is on monitoring soil conditions such as tempera-
ture, moisture, pH, etc. Climate conditions and air monitoring are also examined by 
measuring temperature, humidity, and radiation (Talavera et al. 2017). Crop plant 
monitoring is being investigated by the detection of weeds, pests, and animal intru-
sion into the field, while crop growth is also being examined using IoT (Sreekantha 
and Kavya 2017). Irrigation control is of high importance as the proper amount and 
timing can minimize crop water stress and lead to water waste reduction. In this 
direction and toward developing an autonomous precision irrigation system through 
the integration of a center pivot irrigation system, an underground WSN was 

Cloud
(Analyltics, Prediction,

Integration)

Sensors and Actuators

Data Acquisitions Systems
(IoT Gateway)

IoT Edge Devices
(Preprocessing)

{The Things: Sensors collecting data 
from the environment and actuators 
varying the physical conditions.

{The collected data are being 
aggregated and converted into digital 
streams.

{Crossing the realm of IT: Data 
processing before entering the data 
center.

{In-depth processing by also utilizing 
Big Data techniques. Application and 
Presentation. 

Fig. 14.2 A four-stage IoT architecture
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examined by Dong et al. (2013). The last years the tractor and implement commu-
nication data are also collected and analyzed. Paraforos et al. (2017b) connected an 
IoT device to the CAN bus diagnostics interface of the tractor, to inform the farmer 
regarding the performed agricultural operations.

14.2.3.2  Livestock Farming

An important contribution of IoT in livestock farming is related to animal tracking 
and behavioral analysis. Parameters such as animal health, proper insemination 
time, and reproductive health problems are monitored (Vannieuwenborg et  al. 
2017). Automated detection of lame animals, which produce less milk and have 
other problems, is being performed by collecting data from inertial measurement 
units. Analysis of these data reveals impaired movement or deviation from normal 
gait or posture (Haladjian et al. 2018). Other parameters include extreme climate 
condition detection that has an important impact on animal welfare, environmental 
conditions of a beehive, but also odor and hazardous gas monitoring.

14.2.3.3  Protected Agriculture

Greenhouses are highly intensive production systems that justify the use of advanced 
technologies such as IoT. High-precision monitoring and control systems are being 
implemented including micro-climate and crop sensing, valves and controllers for 
fertigation, and integrated pest management (Tzounis et al. 2017). The last years a 
novel farming system has emerged called “Vertical Farming” in which the crops are 
being cultivated inside buildings and in layers above one another, under a fully con-
trolled and closed environment. In these systems, IoT devices are used to sense but 
also control various physical variables such as moisture, nutrients, light, and oxy-
gen. Artificial lighting is offered by rows of LED grow lights, while plants are usu-
ally irrigated with recycled water by spraying the exposed hanging roots, suspended, 
from the crops.

14.2.3.4  Challenges in Applying IoT in Agriculture

One of the biggest challenges of applying IoT in agriculture is that the devices are 
exposed to harsh environmental conditions. Factors like extreme temperatures with 
a high variation, high humidity and intensive rainfall, strong wind, solar radiation, 
machine operation, and animal movement causing displacement and vibration are 
introducing problems to the proper functionality of the sensors and the electronic 
circuits. Since most of the IoT applications are based on wireless communication 
(e.g., WSN), the batteries that are used for power consumption offer a limited flex-
ibility in functioning without surveillance for a longer period (Jawad et al. 2017). 
Except device-related problems, the harsh conditions are responsible for network 
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issues as well. A low wireless link quality affects the transceivers and the quality of 
the transmitted data (Villa-Henriksen et al. 2020), while the calculation of the signal 
strength in that case can be highly beneficial in assessing signal quality (Reiser et al. 
2017). Another component has to do with security challenges. Authentication, con-
fidentiality, and data privacy need to be secured against all possible external threats 
providing that only authorized users will have access to the collected data (Tzounis 
et al. 2017).

14.3  Cloud Computing

Cloud computing is on-demand computing services (e.g., databases, storage, net-
working, servers, software, analytics, etc.) over the Internet where the provider 
charges the user based on usage. The creation of virtual machines, by leveraging a 
distributed system consisting of a collection of interconnected and virtualized com-
puters, enables the user to utilize elastic resources based on their current needs. The 
shift to cloud computing significantly reduces the cost of buying new hardware and 
software but also increases speed as IT resources can be provisioned in some min-
utes. Furthermore, factors as the high level of performance and reliability, especially 
when connected with IoT (Stergiou et al. 2018), contribute to the wide expansion of 
cloud computing technologies.

14.3.1  Cloud Services

The three main types of cloud computing service models are:

• Infrastructure as a service (IaaS): a vendor provides users access to preconfig-
ured computing resources such as storage and networking, servers, and virtual 
machines. Popular IaaS offerings are Amazon EC2, IBM SoftLayer, Microsoft 
Azure VM, and Google Compute Engine (GCE).

• Platform as a service (PaaS): the cloud is used to deliver an on-demand environ-
ment to users for developing, testing, delivering, and managing software applica-
tions. Widely used PaaS products are Google App Engine, IBM Bluemix, and 
Apache Stratos.

• Software as a service (SaaS): it is a method for delivering software applications 
over the Internet, on-demand and typically on a subscription basis. SaaS offer-
ings are the most widely visible of all the cloud computing service models. Two 
of the most popular SaaS applications include Microsoft Office 365 and Adobe 
Creative Cloud.
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14.3.2  Emerging Architectures of Cloud Computing

New cloud computing technologies are emerging due to the development of large- 
scale applications. They move closer to a virtualized infrastructure and deal with 
factors such as scalability, flexibility, and privacy. In a review by Varghese and 
Buyya (2018), four new computing models are identified:

• Volunteer computing: Public participants share their idle computing resources to 
create an ad hoc cloud. It is expected to have an important implementation on 
projects with a societal or scientific focus.

• Fog and edge computing: Computational resources on edge nodes are being lev-
eraged. This technology is strongly connected with the use of IoT as it was 
described in the previous section.

• Serverless computing: This doesn’t mean there aren’t any servers, but instead the 
applications are being executed only when it is necessary and not all the time. 
Function as a service (FaaS) is a form of serverless computing.

• Software-defined computing: Using virtualization technologies, the infrastruc-
ture can be broken up into resources that can be allocated on demand. This 
applies not only to networking but also to computation and storage.

14.3.3  Cloud Computing Implementation in Agriculture

One of the most important implementations of cloud computing in agriculture is the 
farm management systems (FMSs). The use of FMSs has widely expanded the last 
years which nowadays are regarded as important tools for managing the agricultural 
business and for implementing precision agriculture principles (Fountas et al. 2015). 
In order for a farmer to receive valuable information, all details related to the per-
formed agricultural operations should be carefully recorded and imported into the 
FMS. This is why the combination of a cloud-based FMS with IoT sensor data is 
very promising for future systems. Furthermore, a cloud-based FMS can be inter-
connected with open agriculture-related databases (e.g., weather forecasting) or 
even an interface for receiving online agriculture consultation from advisors 
(Symeonaki et al. 2017).

As the level of communication of the infield autonomous systems with the cloud- 
based infrastructure is expected to increase in the next years, issues related to opera-
tional safety and resilience will need to be addressed. Challenging aspects, including 
unplanned cloud failures or hardware malfunctions that are highly possible to occur 
due to various reasons such as natural disasters or even targeted attacks, should be 
taken under consideration. Another important topic that could hinder farmers to 
adopt cloud computing tools is that reliable and broadband Internet access in rural 
areas, which are less densely populated, has not yet been achieved resulting in a 
digital divide compared to urban areas.
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14.3.4  The Future Internet Ecosystem

An important example of innovative ICT tools that have emerged in the last years 
based on cloud computing is the Future Internet Public-Private Partnership Program 
(FI-PPP 2011), which was launched by the European Commission in 2011. The 
overarching aim of the FI-PPP is to create a library of software components that are 
called Generic Enablers (GEs). The GEs should be public and open-source and 
allow developers to create mash-up applications by implementing innovative FI 
functionalities such as IoT connectivity and big data analytics. All GEs are devel-
oped and described in detail as a set of application programming interfaces (APIs) 
in the FIWARE platform (FIWARE 2020). The FIWARE architectural chapters are 
provided in Fig. 14.3. The usability of FI technologies in the context of environmen-
tal applications has been thoroughly examined by Granell et  al. (2016), while 
Paraforos et  al. (2016) described an FMS architecture that utilizes advanced FI 
characteristics.

14.3.5  Fog and Edge Computing

One of the emerging technologies that were mentioned above, which is expected to 
have a substantial impact in agriculture, is fog and edge computing, where cloud 
services are extended to the edge of the network to decrease the latency and network 
congestion (Ferrández-Pastor et al. 2018; O’Grady et al. 2019). Both these tech-
nologies offer similar functionalities, and their main purpose is pushing both data 
and computational intelligence to platforms with data analytic capabilities that are 
located either on the IoT device or near to the source of origination of the data. The 
term fog computing was first used by Bonomi et al. (2012), while its main feature is 
to extend cloud computing services at the edge of the network (Moysiadis et al. 
2018). The primary difference between fog and edge computing is the location 
where data processing occurs. For edge computing, the computation takes place 
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Fig. 14.3 Architectural chapters of the FIWARE platform
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mainly on the devices with the IoT-connected sensors, while fog computing exists 
between the two layers (i.e., edge and cloud computing) and can be distributed in 
different locations serving a higher number of edge devices.

14.4  Big Data

Agriculture-related data are approaching the dimension of the 3 + 1 “Vs” that char-
acterize big data: Volume, Velocity, Variety, and Veracity (Zhang et  al. 2018)  – 
Volume due to the produced amount of terabytes of data; Velocity for the increased 
pace that these data are becoming available to the user; Variety due to the heteroge-
neity of data sources, e.g., combination of structured and (semi-)structured data; 
and Veracity that deals with the quality and validity of the data (Lokers et al. 2016). 
Other studies add two more Vs in the definition: Visualization for facilitating the 
human interpretation of analyzed data and Visibility on efficiently processing geo-
spatial data based on cloud computing technologies (Li et al. 2016). Big data analyt-
ics on the combination of machine data sets, with the sensor and unmanned aerial 
vehicle (UAV) data, could reveal hidden patterns, correlations, and other insights 
that are not detectable when using conventional methods for data analysis (Karmas 
et al. 2016).

14.4.1  Agricultural Geospatial Big Data

Geospatial data have the form of (a) raster data (images, 3D objects), (b) vector data 
(points, lines, polygons), and (c) graph data (nodes, edges paths). The term “geo” 
implies that the data correspond to a global coordinate reference system. Geospatial 
data have always been big data due to the vast amount of location-specific data that 
is being generated every day (Lee and Kang 2015). Sources of spatial data are air-
borne data coming from drones or satellites but also infield sensors such as IoT or 
mobile devices, cameras, etc. A necessary tool to store, integrate, analyze, and pres-
ent geospatial data is a geographical information system (GIS).

One important source of agriculture-related data is the agricultural machines’ 
subsystems. Different sensors and electronic control units (ECUs) that are installed 
on the tractors or agricultural implements produce data and communicate through 
control area network (CAN) bus by utilizing the ISO 11783 (commonly designated 
as ISOBUS) and J1939 communication protocols. Although the use of these data is 
intended for the correct operation as well as for the real-time inter-machine com-
munication (Kortenbruck et al. 2017), the analysis of these data, when combined 
with positioning information from a global navigation satellite system (GNSS), 
could reveal valuable information about the performed agricultural operations but 
also the cultivated crop (Paraforos et al. 2017b). Details regarding the analytics of 
these data will be presented at one of the following sections.
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14.4.2  Big Data Technologies

Conventional data analysis tools and techniques are not sophisticated enough to 
cope with big data and handle the vast and complex amount of data streaming from 
various sources. Thus, new technologies have been developed in the last years that 
are specialized in big data analytics by leveraging cloud-based resources. A charac-
teristic example of an architecture that deals with geospatial big data is being devel-
oped in the frame of the BigGIS project (BigGIS 2020). This architecture (Fig. 14.4) 
includes most of the widely used toolboxes in big data analytics. The data sources 
vary and span from sensor data up to citizen sensing. In the specific architecture, 
StreamPipes works as an IoT platform which allows to integrate, process, and ana-
lyze big data streams by minimizing at the same time the programming effort as it 
uses graphical modeling. Although Apache Flink is specialized in analyzing IoT 
sensor data, Apache Spark featuring GeoTrellis could be incorporated when pro-
cessing geographical data (e.g., raster or vector data). An important tool in the big 
data analysis layer is the concept of deep learning. The latter uses supervised and 
unsupervised techniques for data classification and data extrapolation (forecasting). 
Two common deep architectures of deep learning that are being implemented in big 
data analytics are the deep belief networks (DBF) and the convolutional neural net-
works (CNN) (Jan et al. 2017).

In order to handle the communication between the data processing elements, i.e., 
nodes, within the analytics pipelines, the Apache Kafka and the ActiveMQ could be 
utilized as message brokers. The Apache Hadoop software library and Exasol, 
CouchDB, and RDF4J are some of the offered storage back ends for the distributed 
processing of large data sets. The middleware is also responsible for the connection 

Fig. 14.4 Overview of offered big data technologies (Adapted from Abecker and Kutterer (2018), 
with permission)
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with every possible data sink. The most important is to offer an API (application 
programming interface) to allow third-party software to communicate with the 
developed software ecosystem. The “Container Management” solutions like 
Rancher/Kubernetes support the whole software production chain, from software 
development up to testing and deployment in order to make the use of a container 
tool as efficient and effective as possible. Finally, the entire infrastructure is based 
on cloud computing technologies such as the Amazon EC2 (bwCloud in the specific 
example of Fig. 14.4).

14.4.3  Data Privacy and Ownership

Although the gradual shift to big data analytics and smart farming appears as an 
economic opportunity, it also raises important questions related to data privacy 
(Whitacre et al. 2014) and the balance that should exist between private and public 
open data as this is the core issue of the adoption decision for many hesitant farmers. 
Such questions are:

• Who owns the data generated on and around the farm?
• Who has control over the data?
• Who has access to the data?
• Who is entitled to the value of the data?

Mostly, “the farmer” is the answer to the first question. It is the farmer who 
decides (and thus gives permission) to share or sell his/her data. Still, it is not always 
so clear. What if the activity in which the data is generated is performed by an exter-
nal person or third-party software? Does the application of particular software mean 
that a service provider becomes a data owner? There are actors who create data 
(farmers), those who collect (brokers) and those who analyze (analysts). Currently, 
the last ones shape the rules deciding how the data will be used and who is provided 
access, but farmers should be assured that their knowledge and decision-making 
capacities will not be replaced by algorithms, as they should always be the ones tak-
ing the last decision.

14.4.4  Open Agricultural Data

In the discussion regarding data related to agriculture and nutrition, open data con-
cept plays an important role; that is data that anyone can access, use, or share to 
shape solutions by enabling more efficient and effective decision-making. According 
to Kunisch (2016), big data technologies offer new opportunities in giving answers 
to complex issues; thus, a public-private partnership framework, in terms of open 
source and open access, would be an appropriate platform for agricultural produc-
tion and research data storage and exchange. This is also witnessed by open data 
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initiatives, such as the global open data for agriculture and nutrition (GODAN), 
which aims to make agricultural and nutritionally relevant data available, accessi-
ble, and usable for unrestricted use worldwide. By leveraging open agriculture- 
related data, the outcome of big data analytics, except the high importance for the 
farmer, by providing decision support on sustainable land management, would also 
be beneficial for farmer advisors, public authorities, and policy-makers (Carolan 
2015) toward making decisions for giving solutions to societal challenges.

14.5  Digital Farming

Although the technical capabilities of precision agriculture are already well devel-
oped, the precision and the efficiency of the application could be further enhanced 
shifting toward smart agriculture adapted to the new digital era. The greatest poten-
tial lies in leveraging multisource data and all previously described technologies to 
enhance already existing agronomical algorithms. The overarching aim is to mini-
mize yield gaps in order to allow farms to be more efficient but also more profitable, 
safe, and environmentally friendly.

14.5.1  Automated Robotic Farming

One of the main components of digital farming is the utilization of autonomous 
agricultural vehicles. This component is responsible for closing the loop that starts 
with infield sensing, continues with cloud-based data analysis, and ends up again in 
the field where the necessary actions need to be taken with the highest possible 
accuracy. Recent technologies that are discussed in this chapter, in combination 
with artificial intelligence progress, will lead to the new agricultural era (Saiz-Rubio 
and Rovira-Más 2020). Nowadays field robotics are dominating agriculture per-
forming all kinds of agricultural operations with a proliferating number of commer-
cial products (e.g., Naïο Technologies, Saga Robotics, Robotti Agrointelli) but also 
research efforts such as weed control (Wu et  al. 2020), apple harvesting (Silwal 
et al. 2017), and robot-human collaboration (Vasconez et al. 2019), just to name a 
few. A future trend is to use collaborative and cooperative behavior in a fleet of 
robots that will offer the opportunity to spread tasks over multiple platforms. This 
will reduce the damage caused by heavy conventional agricultural platforms on the 
soil or existing crops (Duckett et al. 2018).
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14.5.2  Increased Accuracy

As digital farming will be using in the future sophisticated technologies such as 
robots and autonomous vehicles for implementing precision agriculture principles, 
high infield position accuracy is at a high priority. Innovative instrumentation should 
be considered toward reaching this higher level of accuracy. A device offering an 
accuracy at the millimeter level is a total station (TS). Commonly, this device is 
used in the domain of civil engineering and provides a higher accuracy compared to 
satellite-based positioning systems. Paraforos et al. (2017a) utilized a highly accu-
rate industrial robotic manipulator to examine if a robotic TS can offer millimeter 
accuracy for demanding agricultural operations. The obtained results validated that 
this device would play an important role in the future in agricultural operations 
related to individual plant treatment. Afterward, the TS was used to examine the 
seeding depth for each individual seed in cereal no-till sowing (Sharipov et al. 2017, 
2018) but also to produce a three-dimensional reconstruction of maize crop plants 
(Vázquez-Arellano et al. 2018a, b).

14.5.3  Automated Farm Management Systems

A common problem in farm management is that the agricultural tasks are not 
recorded properly; additionally, a farmer often neglects to gather all necessary data 
and import them into an FMS (Paraforos et al. 2016). A solution that appears prom-
ising is to utilize agricultural machinery communication data (Paraforos et al. 2019). 
The connection of ISOBUS with an FMS has been described in detail in Part 10 of 
the standard (ISO 2015). Software architecture was developed by Paraforos et al. 
(2017c) to automate a commercial FMS, named ifarma (Agrostis 2017). The data 
flow of this architecture is presented in Fig. 14.5. Machine data from ISOBUS com-
munication were collected, analyzed, and aggregated into agricultural tasks. A 
stand-alone application was developed using MATLAB and was installed at the 
remote cloud-based server. The ISOBUS service was calling the MATLAB App by 
passing the acquired ISOBUS data. Initially, in this App, the data were filtered using 
the information from the rear hitch positions (SPN 1873) and the ground-based 
machine speed (SPN 1859), to extract only the infield data from the complete data 
set. The ISOBUS service generated the performed tasks with all related data, and 
this information was forwarded to the ifarma service that was responsible for stor-
ing this information in the FMS database and for presenting it to the user using the 
App’s graphical user interface.
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14.5.4  Data-Driven Digital Agriculture

Figure 14.6 presents a scientific-technological approach and the software architec-
ture for data-driven agricultural applications where all previously described tech-
nologies are utilized. The architecture is based on the fusion, management, and 
intelligent analysis of manifold kinds of agricultural data based on IoT technologies 
(and recently IoS  – Internet of Services), especially (i) data from agricultural 
machinery, connected through the ISOBUS; (ii) open data as provided, for instance, 
by public administrations or other providers of open data for agriculture (like KTBL 
in Germany); (iii) sensor data originating from WSN in the field; and (iv) remote- 
sensing data generated by UAVs and satellites.

Such domain- and goal-specific analysis, reporting, and visualization functions 
will produce (a) precise inputs for innovative algorithms to support daily as well as 
strategic agro-technical and agro-economic decisions, as well as (b) the prerequisite 
for innovative agricultural data products and data services. Such data products can 
become the starting point for an agricultural data economy, for instance, helping 
agricultural advisors to improve their services or helping farm inputs suppliers to 
improve their products and to optimize their marketing and logistics processes. As 
a “side-product,” the overall data infrastructure can also facilitate all reporting and 
data communication processes between farmers and public authorities or even from 
farmers to the general public (“Agricultural Open Data”), thus increasing farm man-
agement efficiency and supporting policy-making, nature protection, food produc-
tion transparency, etc. This leads to a holistic FMS which, based on formerly 
underexploited data sources, data connectivity, and intelligent analyses, can deliver 
completely new levels of insights and decision support regarding farm operations 
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and management, especially with the ability of better spatially enabled and longer- 
term analyses.

14.6  Summary and Concluding Thoughts

It becomes clear that the farm of the future will be highly connected. Various sen-
sors installed in the field but also agricultural machinery performing operations will 
constantly record, process, and transmit information to the cloud-based infrastruc-
ture for storage and in-depth analysis. Actuators and autonomous vehicles will be 
responsible for implementing the farmer’s strategy, which will be supported by the 
results of the aforementioned analysis. The entire architecture will be based on a 
multilevel automation ecosystem, starting from simple closed-loop systems, i.e., 
irrigation, up to more complex systems with a higher level of cognition such as 
machine coordination.

A cutting-edge future technology that is expected to have a profound impact on 
agriculture in the next years is the concept of digital twins. The latter are already 
becoming available in other scientific disciplines, such as automotive and industrial 
informatics (Schluse et al. 2018). The digital twins are virtual, digital equivalents to 

Io
T

Cl
ou

d
Co

m
pu

tin
g

Bi
g 

Da
ta

 
An

al
yt

ic
s

SensingControl

Storage

Holistic 
FMS

Agronomical Algorithms
(productivity calculation, 
fertilization optimization, 

yield prediction, etc.)

Analysis

Data Lake

RobotsMachinery WSN Remote

Advisors
Public Authorities

Farmers

Decision
Support

Big Data Services

New Data Products
(Harvest maps, Seed 

maps etc.)

Reports & Open 
Data (nitrogen usage, 
harvest quantities etc.)

Seed Sell

Advice
Regulate

Inform... ... ...

Presentation

Harverst...

Fig. 14.6 Structural ecosystem for data-driven agricultural applications (Courtesy: Wassilios 
Kazakos, disy Informationssysteme GmbH, modified)

14 Digital Farming and Field Robotics: Internet of Things, Cloud Computing…



382

physical objects that provide a thorough representation of the object and the context 
that this object is working in. The main focus of the digital twins is to combine IoT 
sensor data with historical data and human expertise, by utilizing machine learning 
techniques to improve the outcome of prognostics. This technology could provide 
decision support to farmers and other stakeholders by enabling them to act immedi-
ately and efficiently in the presence of a predicted deviation.

The wide implementation of Digital Farming faces many challenges like security 
in digital transactions. Blockchain, which is the distributed ledger technology 
behind many cryptocurrencies, promises smallholder farmers’ highly secure access 
to digital technologies. Other important challenging issues that were discussed 
related to operational safety of cloud computing technologies should be taken under 
consideration when designing a digital farming system. Consequently, resilience 
should be incorporated into the proposed data-driven agricultural ecosystem by 
developing decentralized systems that leverage multi-cloud and multi-region archi-
tectures (Varghese and Buyya 2018). Although this requires significant use of 
human and financial resources, it will decrease the overall vulnerability of 
the system.

Disclaimer
Mention of a commercial product is solely for the purpose of providing specific 
information and should not be construed as a product endorsement by the authors or 
the institution with which the authors are affiliated.
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Chapter 15
Human-Machine Interactions

Danny Mann

15.1  Introduction

Why focus on ergonomics in a book devoted to robotics (or automation) in agricul-
ture? The question can be answered in two ways. First of all, automation is likely to 
occur in stages. We have already seen this to be the case. Minor modifications are 
made to a machine that automates a specific function. A combine header might be 
equipped with sensors that enable the raising and lowering of the header to be auto-
mated. A tractor can be equipped with auto-steer technology so that the operator is 
not required to steer during parallel passes across the field. In both of these exam-
ples, the operator still retains responsibility for numerous other tasks. Therefore, the 
automated subsystems must be integrated with the remaining manual tasks. The 
second answer to the question is that ergonomics will continue to play an important 
role even when the entire machine becomes autonomous. When automation was 
introduced in the manufacturing sector, it was first envisioned that humans would be 
displaced from the manufacturing process. This did not occur. Although the assem-
bly jobs may have been displaced, different roles were created as human operators 
were required to supervise the autonomous machines. Effective supervision requires 
a thorough understanding of the processes being supervised – an understanding that 
can only be achieved by ongoing and timely access to information from the autono-
mous machine. Thus, the effective functioning of a system involving a human 
supervisor and an autonomous machine will rely on a well-designed automation 
interface.

This chapter will cover four distinct topics. In the first section, you can expect to 
gain an understanding of human-machine interaction associated with agricultural 
machines. This will be followed by a discussion of the tools for assessing 
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human-machine interaction. The third section will discuss the progression of tech-
nologies that have been used to support the operator of an agricultural machine up 
to and including fully autonomous agricultural machines. In the final section, future 
challenges associated with remote supervision of autonomous agricultural machines 
will be discussed.

15.2  Human-Machine Interaction for Agricultural Machines

15.2.1  Ergonomics Defined

Meister (1971) defined ergonomics as “the application of behavioral principles and 
data to engineering design to: (i) maximize an individual’s contribution to the effec-
tiveness of the system of which he/she is a part and (ii) reduce the impact of that 
system on the individual.” When we hear the word ergonomics, we might immedi-
ately think of concepts such as comfort (i.e., an “ergonomic” office chair is one that 
supports proper posture and keeps us comfortable throughout the workday). This 
aspect of ergonomics is certainly covered by Meister’s definition through the second 
objective to “reduce the impact of that system on the individual.” However, we must 
not forget to consider the first objective. There are at least three important facts 
associated with the objective to “maximize an individual’s contribution to the effec-
tiveness of the system of which he/she is a part.” First, the individual and the 
machine together comprise a system; neither can function alone. Second, the effec-
tiveness of the system will be influenced by the operator’s interaction with the 
machine. Third, the design engineer’s task is to design the machine such that the 
overall effectiveness of the human-machine system can be maximized. The engi-
neer should always consider ergonomics when designing any machine or system; 
failure to adequately consider ergonomic principles will undoubtedly result in a 
less-than-optimal solution.

To explain the concept of ergonomics to engineering students, I employ a basic 
diagram that depicts two-way flow of information between a machine and its human 
operator (Fig. 15.1). The human operator uses “controls” to communicate instruc-
tions to a machine, and the machine has been designed with “displays” that 

Fig. 15.1 The study of ergonomics is all about the transmission of information that must occur 
between a machine and its user. Input information is provided to the machine using “controls.” 
Feedback from the machine is presented to the user through “displays”
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communicate status information back to the human operator. Ergonomics is all 
about maximizing the efficiency of these two channels of communication through 
the physical design of the controls and displays and through understanding how the 
external environment influences the transmission of information. For the past sev-
eral decades, farmers have interacted (or communicated) with their agricultural 
machines from an operator station mounted on the machine. Using an analogy from 
the world of entertainment, this has provided the operator with a front-row seat to 
everything that is happening with the machine. Engineers pay careful attention to 
the ergonomics of the control panel, and displays are designed to direct the operator 
to the most pertinent information related to the function of the machine (or in some 
cases to capture the operator’s attention when a problem has been detected). There 
is little doubt that modern agricultural machines are better than their predecessors 
from previous decades in terms of the human-machine interactions that are facili-
tated. Dooley (2012) provided a thorough overview of ergonomics applied to agri-
cultural vehicles. Design engineers should be proud of these achievements.

15.2.2  Designing to Support Flow of Information 
to the Machine

15.2.2.1  General Principles Guiding Control Panel Design

A primary challenge of the engineer is to design a control panel that enables the 
operator to effectively communicate with the machine through various control 
actions. Design of controls is a typical topic in many ergonomics textbooks, and it 
is not my intention to attempt a summary of the numerous concepts that are 
explained in those books. Rather, I will provide some specific examples that relate 
to agricultural machines to demonstrate the application of some of these important 
ergonomic design principles.

Complex agricultural machines have many controls which must be activated at 
various times according to the function being performed. Often they must be acti-
vated according to a particular sequence. In any given arrangement of controls, 
some will be used more often than others; some will be more important than others. 
Thus, designers can rely on four principles when arranging controls:

 (i) Importance Principle: important controls should be placed in convenient 
locations.

 (ii) Frequency-of-Use Principle: frequently used controls should be placed in con-
venient locations.

 (iii) Functional Principle: controls should be grouped together according to their 
function.

 (iv) Sequence-of-Use Principle: controls should be arranged to take advantage of 
the sequences of operation that take place during a task.
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To effectively use these four design principles, it is necessary to have a good 
understanding of the tasks being controlled so that the characteristics of impor-
tance, frequency of use, function, and sequence of use can be correctly identified. It 
is relatively easy to describe the function of each control based on the components 
of the machine. Thus, the designer can readily group controls according to similar 
function (assuming that there are two or more controls having similar function). 
Understanding characteristics such as importance of individual controls, frequency 
of use of controls, and sequence of use of controls requires a thorough understand-
ing of how the machine is used by a typical worker in a typical work environment. 
Task analysis, which will be introduced in an upcoming section, is an appropriate 
tool to gain an understanding of how a machine is used by a worker for the purpose 
of classifying controls according to importance, frequency of use, function, and 
sequence of use.

Sanders and McCormick (1993) have described the concept of a “focus attention 
task” to define the aspects that are important for a design. Driving a tractor can be 
described as a focus attention task where one must keep focus on one or a few select 
channels of information while not being distracted by other channels. In the case of 
a system consisting of a tractor and an air seeder, the channels of critical informa-
tion are likely to change based on the position of the machine in the field. There are 
two distinct periods experienced by the operator. The first can be described as moni-
toring the air seeder attached behind the tractor during the parallel passes across the 
field. During this period, the operator’s focus should be the monitoring of the air 
seeder to optimize air seeder efficiency. There are numerous parameters to monitor 
and control, although the timeliness of control adjustments is usually not critical 
(i.e., optimum efficiency may not be achieved, but there is no imminent danger to 
the machine). The second distinct period occurs during the headland turn at the end 
of each pass. During this short period, the operator’s focus is solely on turning the 
machine for the next pass down the field. There is a critical sequence of actions that 
must occur within a short period of time to ensure that the machine is turned safely. 
From this discussion, it can be concluded that controls used to adjust the various 
functions of the air seeder are likely to be the most important controls during the 
periods when the air seeder is travelling on the parallel passes across the field. 
Similarly, the controls needed to enable the headland turn will be the most impor-
tant controls during the periods when headland turns are being completed. This 
example emphasizes the fact that the most important controls might change based 
on the scenario being considered. Furthermore, it can be hypothesized that sequence 
of use of controls may be more critical during headland turns than during the actual 
seeding periods. No research has been found to support this hypothesis regarding 
sequence of use of controls.

A review of the literature identified one study in which the frequency of use of 
controls in agricultural machines was addressed. Drakopoulos and Mann (2006) 
described results of a survey of 10 experienced tractor operators in Greece. These 
individuals were given five categories of controls and asked to rank them in order 
from most frequently used controls to least frequently used controls. As expected, 
the steering wheel was identified as the most frequently used control on a tractor. 
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The next most frequently used controls were those used to control the functioning 
of the implement hitched to the tractor. Then, in decreasing frequency of use were 
the controls used to control the tractor itself divided into three groups: (i) controls 
related to the motion of the tractor, (ii) controls related to the internal environment, 
and (iii) controls related to the external environment. Although these results seem 
intuitive, they are based solely on the opinions of a relatively small number of expe-
rienced farmers. Ideally, these results should be confirmed through observation. 
Mastorakos (2012) completed ride-alongs with experienced air seeder operators. 
There were eight types of controls used by the experienced farmers during seeding 
operations (not including the steering wheel). Four of the controls can be catego-
rized as relating to the motion of the tractor (i.e., throttle, transmission, auto-steer, 
and differential lock). The remaining four controls can be categorized as relating to 
the functioning of the implement hitched behind the tractor (i.e., air seeder lift, air 
seeder monitor, air seeder engage, and air seeder fan). The “air seeder lift” control 
was the most frequently activated control, averaging approximately 40 activations 
in the 1-h duration of the ride-alongs. Collectively, the controls related to the func-
tioning of the air seeder were activated an average of 74.2 times during the 1-h 
duration of the ride-along compared with 21 activations for the controls associated 
with the motion of the tractor. This amounts to approximately 78% of all control 
activations. These results confirm the survey results of Drakopoulos and Mann 
(2006). In terms of frequency of use, controls used to adjust the machine hitched to 
the tractor are used more frequently than controls used to adjust the motion of the 
tractor during field operations.

15.2.2.2  Mathematical Models for Quantifying a Control Panel

Efficient operation of any machine depends upon the design of its control panel. 
Agricultural machines are no exception. The need for consideration of ergonomic 
principles in the design of control panels for agricultural machines is becoming 
increasingly important as the complexity of agricultural machines continues to 
increase. There are many factors that should be considered in the design of controls. 
Drakopoulos and Mann (2007) provided a review of the controls present in a tractor 
workstation and reported critical design dimensions for rotary switches, toggle 
switches, rocker switches, knobs, push buttons, hand levers, and steering wheels. 
For the most part, the ergonomic knowledge summarized by Drakopoulos and Mann 
(2007) relates only to physical characteristics of individual controls (i.e., length, 
width, height, diameter, separation distance, activation force).

Despite the importance of understanding how to ergonomically design individual 
controls, it is perhaps of greater importance to understand how the various pieces fit 
together. In other words, it is not sufficient that individual controls be ergonomically 
correct – the entire assembly of controls needs to be organized and grouped prop-
erly to enable the control panel to be used efficiently. Banks and Boone (1981) 
presented an “index of accessibility” that can be used to compare the layout of 
control panels based on two characteristics related to accessibility: (i) the distance 
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to the control and (ii) the ranked frequency of use of that control. In essence, the 
“index of accessibility” yields a high score when frequently used controls are placed 
closer to the operator than when those same controls are placed further from the 
operator. The “index of accessibility” is a useful tool for the design engineer when 
considering various options for the layout of a control panel, but it must be remem-
bered that this model only accounts for frequency of use and proximity to the 
operator.

Drakopoulos and Mann (2008) proposed an alternate mathematical equation for 
quantifying control functionality in agricultural tractors. The model accounts for 
physical characteristics of controls, the relative frequency of use of controls, and 
four attributes of workstation design (i.e., placement of controls, suitability of con-
trols, functional reach, and labeling of controls). Drakopoulos and Mann (2008) 
tested the model by comparing six tractors with manufacturing dates between 2003 
and 2005 against six tractors with manufacturing dates between 1975 and 1981; the 
average score was 0.63 for the six modern tractors (with a value of 1.0 considered 
to be an optimal control panel arrangement based on functionality) compared with 
an average score of 0.19 for the late 1970s tractors. The so-called index of function-
ality proposed by Drakopoulos and Mann (2008) was capable of detecting ergo-
nomic improvements that have occurred in agricultural tractors over the past three 
decades.

15.2.3  Designing to Support Flow of Information 
to the Operator

The other important challenge for the engineer is to design appropriate displays to 
enable the flow of information from the machine to the operator. The first task, of 
course, is to decide what information will be needed by the operator. After deciding 
what information to display, the next challenge is deciding how it should be dis-
played for the operator. Design of displays is a typical topic in most ergonomics 
textbooks; therefore, it is not my intention to provide a thorough review of the infor-
mation that is typically presented in these books. Rather, I will highlight several 
specific examples that relate to agricultural machines.

There are many unique ways to design pictorials for a display on an agricultural 
machine. Three example displays are shown below (Fig. 15.2), all designed to pro-
vide information on the functional components of an air seeder. How do we know 
which pictorials are the most appropriate to use?

Rakhra (2018) completed a doctoral dissertation in which he investigated the 
design of a user interface for an air seeder. The dissertation included an in-depth 
review of various human factors principles that have been proposed for design of 
displays. Informed by these various principles, several pictorials were designed for 
each air seeder parameter (Rakhra and Mann 2018). Evaluation of the pictorials was 
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completed using the metrics of situation awareness and mental workload. Rakhra 
and Mann (2018) reported statistically significant improvements in operator situa-
tion awareness, and significantly lower mental workload, for most of the pictorials 
designed from a user-centered perspective. It is important to consider the user when 
designing displays for an agricultural machine – it is particularly useful to incorpo-
rate elements that support an appropriate level of situation awareness in the opera-
tor. Situation awareness will be discussed in depth in an upcoming section.

15.3  Tools for Assessing Human-Machine Interaction

15.3.1  Measuring the Unmeasurable

Engineers are typically very good at measuring things. If we want to know the 
engine temperature on a tractor, we install an appropriate sensor that can be cali-
brated to give us the appropriate temperature measurement to whatever precision is 
required. The data that are generated can be used to assess the performance of some 
particular aspect of a design. Now let’s consider the control panel or an information 
console of an agricultural machine. How do we determine whether the control panel 
or information console that we have designed enables the operator to effectively 
interact with the machine? The answer is not so obvious. Because we are focused on 
the flow of information between the operator and the machine, there are no obvious 
physical parameters that can be measured. This section of the chapter will describe 
several tools that can be used by the engineer to assess the adequacy of the human- 
machine interaction from an ergonomic perspective. The intent is not to provide a 
thorough academic analysis of these tools. Rather, an overview will be provided that 
discusses the potential benefits of each tool, how they can be used with reference to 
understanding human-machine interactions for agricultural machines, and problems 
that have been encountered when attempting to use these tools.

Fig. 15.2 Three unique designs of an interface to display information important to the monitoring 
and control of an air seeder. (Adapted from Rakhra and Mann 2018)
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15.3.2  Task Analysis

Task analysis is a fundamental tool for any engineer concerned with the interaction 
between an operator and a machine. Stated in simplest terms, task analysis is any 
process that is used to decompose a task into subtasks. Kirwan and Ainsworth 
(1992) wrote an entire book that describes specific task analysis techniques; how-
ever, any engineer can conduct an effective task analysis without being aware of any 
of the formal techniques. Common sense with a bit of creativity will suffice. As a 
general principle, remember that task analysis is about determining the step-by-step 
procedures followed by the human in the system. Any methodology that will help 
you obtain that information is useful. That may include talking with the operator, 
observing the operator, asking the operator to complete a written questionnaire, or 
reviewing existing documentation (i.e., procedures manuals). The engineer is famil-
iar with the process of decomposition. We decompose a big problem into smaller 
problems to get to the point where we can fully understand all of the factors. This is 
the essence of task analysis.

The tangible output of a task analysis may be a table or a block diagram that 
clearly depicts the subtasks (or steps) in the order they must be completed to achieve 
a particular goal. Generation of this tangible output may be achieved by a knowl-
edgeable engineer without ever leaving his/her desk; however, experience suggests 
that some form of observation may be extremely useful. I recall the days from my 
childhood when I rode along with my dad in the cab of the tractor. I spent hours 
watching his actions. When I was old enough to safely operate the machine on my 
own, I was already trained. At the time, I was not aware that I had essentially con-
ducted a task analysis through observation of the operator, and I certainly never took 
the time to document the task using a flow chart or table, but I did learn the step-by- 
step procedures that were essential to operating each specific agricultural machine. 
The design engineer can do the same thing by riding along with an operator or by 
recording the operator’s actions for subsequent analysis. Over the past 20 years, my 
research team has employed ride-alongs on several occasions to gain an understand-
ing of how agricultural machines are operated. The following examples are pro-
vided to demonstrate the task analysis tools employed and the lessons learned in the 
process.

Dey and Mann (2009) applied task analysis concepts to gain an understanding of 
the workload associated with operating an agricultural sprayer equipped with a 
navigation device. Their task analysis consisted of a written survey and subsequent 
field observation of experienced sprayer operators. A digital video recorder was 
installed inside the cab of the sprayer with a clear view of the operator’s face (par-
ticularly the eyes). During operation of the sprayer, video footage was recorded. In 
subsequent analysis, the proportion of time spent viewing four distinct visual sec-
tors was determined. This eye-glance behavior was used to determine the amount of 
time spent looking at the GPS guidance display, the external view of the field, and 
the spraying apparatus. In addition to video observation of the subject, the researcher 
rode along with the sprayer operator and manually recorded other observations. The 
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study by Dey and Mann (2009) targeted the visual tasks of the sprayer operator (i.e., 
where is the operator looking to obtain the required information to guide the 
sprayer – the navigation device or the external field cues). It is interesting to note 
that contradictory results were reported between the written surveys (which are a 
form of subjective opinion) and the field observations (which are a form of objective 
data). The experienced sprayer operators reported that the lightbar navigation device 
was their most important source of guidance information on the survey; however, 
the observed eye-glance data suggested that the external field cues were more 
important than the navigation device because more time was devoted to viewing the 
external field cues. It is impossible to know whether these results are contradictory 
or whether the experienced sprayer operators were simply able to gain the informa-
tion required from brief glances to the navigation device. It should be evident, how-
ever, that a deeper understanding of a task is enabled by triangulation of data from 
multiple sources.

Karimi et al. (2012) also used a form of task analysis to gain an understanding of 
the use of auto-steer systems on the eye-glance behavior and posture of 13 experi-
enced air seeder operators. Similar to the work by Dey and Mann (2009), Karimi 
et al. employed ride-alongs and video recordings of the operator to reach their con-
clusions. Although not discussed in the publication (i.e., Karimi et al. 2012), it is 
important to note that the researcher who was present in the tractor cabs during the 
ride-alongs used the opportunity to observe the air seeder parameters most fre-
quently monitored during field operation. These seven parameters (i.e., fan rpm, 
tank levels, application rates, blockage, forward speed, tool pressure, and tool 
depth) were used by Karimi et al. (2011) to enable a comparison of different formats 
for information presentation on air seeder displays. Thus, direct observation can be 
an effective task analysis technique for identification of the important parameters 
that must be monitored and controlled during operation of a machine.

Although my research team has employed a number of task analysis techniques, 
I would probably conclude that a simple video camera to record the behavior of the 
operator is the most effective technique. Experienced operators may have strong 
opinions about operational tendencies, but their opinions are not always supported 
by the observations of the video camera. Done with thoughtful preparation, task 
analysis is an important tool for the design engineer when seeking to understand the 
human-machine interaction for any agricultural machine.

15.3.3  Mental Workload

Mental workload is a concept that is easy to understand, but can be challenging to 
explain scientifically. Any task that we undertake invokes some level of mental 
workload – we must exert some mental energy to complete the task. Similarly, it is 
easy to understand that some tasks invoke a greater level of mental workload than 
others. Calculus invokes more mental workload than simple arithmetic. If the opera-
tion of an agricultural machine imposes a high level of mental workload, it is 
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reasonable to conclude that either (i) there will be poor machine performance or (ii) 
the operator will become mentally exhausted after only a short duration of opera-
tion. Excessive levels of mental workload must be avoided. At the other end of the 
spectrum, inadequate levels of mental workload will leave the operator under- 
stimulated (or bored). In such situations, machine performance is likely to suffer 
because the operator’s normal level of mental capacity has been temporarily 
reduced. The challenge, therefore, is to find the right balance between inadequate 
and excessive mental workload. But, how do we measure mental workload?

The literature suggests that driver mental workload can be assessed indirectly by 
measuring fatigue because prolonged exposure to a heavy mental workload causes 
fatigue (Bartlett 1943). Although the measurement of driver fatigue is important in 
transportation research (Hartley 1998; Lee 1941), Mann (2000) showed that it may 
not be appropriate in research involving agricultural machines because tractor driv-
ers must regularly leave the cab to perform various tasks. Each excursion from the 
cab corresponded with a short-term decrease in the driver’s level of fatigue (i.e., the 
operator was somewhat refreshed by getting up out of the operator’s seat). 
Consequently, it is challenging to correlate level of fatigue with the level of mental 
workload being imposed by the system.

Driver mental workload can also be measured in a more direct sense. Several 
behavioral and physiological responses have been correlated with the level of men-
tal workload experienced by a driver. Methods to assess driver mental workload can 
be grouped into the following categories: subjective (i.e., self-report) measures, per-
formance measures, and physiological measures (O’Donnell and Eggemeier 1986). 
Subjective measures assess the operator’s opinion of the workload experienced. The 
operator fills out a scale, usually after the task is completed, rating his or her level 
of workload. It is generally believed that the operator’s performance in a related task 
will decline if the mental workload is too high. A primary task of the machinery 
operator is to guide the agricultural machine along parallel passes to minimize lat-
eral error (i.e., skipping or overlapping). Therefore, a performance measure such as 
lateral error can be correlated with mental workload. Physiological measures such 
as heart rate (HR) and heart rate variability (HRV) are popular for measuring work-
load with vehicle drivers (de Waard 1996). HR is an established measure, and there 
is a consensus that it increases with increases in physical workload (Lee and Park 
1990). HRV, however, is not as well established. The consensus appears to be that 
HRV decreases with increases in both physical and mental workload (Lee and Park 
1990). Each method has its own advantages and disadvantages, and not all methods 
are sensitive to workload in the same area of performance. It is recommended that a 
battery of tests be used to measure operator performance, assess physiological 
parameters, and gather self-report ratings simultaneously (Meijman and O’Hanlon 
1984). The test battery should be selected based upon the specific research question 
to be answered (de Waard 1996).

My research team has experience with the measurement of mental workload. Of 
particular importance is a study by Dey and Mann (2011). In this paper, we con-
ducted an in-depth study of the mental workload associated with operating an agri-
cultural sprayer. We used a battery of mental workload measures including two 
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performance measures (i.e., lateral root mean square error of guidance deviation 
and reaction time), three physiological measures (i.e., heart rate variability, central 
nervous activity (EEG), and eye-glance behavior), and two subjective measures 
(i.e., NASA-TLX and SSWAT). Please refer to Dey and Mann (2011) for further 
information on these specific measures. The most important finding from this study 
was that the various measures did not all lead to the same conclusions. Most of the 
time, the physiological measures failed to agree with the performance and subjec-
tive measures. As researchers, we were faced with the dilemma of deciding which 
data to trust. I must confess that my confidence in the usefulness of mental workload 
as an assessment tool was shaken and my research team has ceased to use the metric 
of mental workload as a primary means of assessing human-machine interaction.

15.3.4  Situation Awareness

Typically, engineers are fascinated with technology. Technology can be used to 
design all kinds of gadgets to solve all kinds of problems. When the focus of the 
design engineer is on the technology, we can call this technology-centered design. 
The danger associated with technology-centered design is that the design engineer 
gets carried away with all of the “bells and whistles” that can be added based on the 
latest technology. Little or no attention is paid to the human operator who will 
attempt to operate the complex gadget. Consideration of the human operator during 
the design process can be referred to as user-centered design. Endsley et al. (2003) 
identified three principles that must be considered to achieve user-centered design:

 (i) Organize the technology around the user’s goals, tasks, and abilities.
 (ii) Technology should be organized around the way users process information and 

make decisions.
 (iii) Technology must keep the user in control and aware of the state of the system.

The key concept that emerges from these principles is called “situation aware-
ness.” Endsley (1988) defined situation awareness as “the perception of the ele-
ments of the environment within a volume of time and space, the comprehension of 
their meaning, and the projection of their status in the near future.” From this defini-
tion, we can see that situation awareness consists of perception, comprehension, and 
projection. These are referred to as the three levels of situation awareness. An opera-
tor who notices a flashing red light on his/her display panel is said to have level one 
situation awareness because the change in the environment (i.e., the red light flash-
ing) has been perceived. If the operator understands that the flashing red light means 
that the engine oil pressure is low, it is said that the operator has level two situation 
awareness. To achieve level three situation awareness, the operator must realize that 
continuing to operate the engine without correcting the low oil pressure problem 
will result in damage to the engine. This is a projected consequence. As can be seen 
from this example, situation awareness depends upon both the training (or 
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experience) of the operator and the communication of information from the system 
to the human.

Techniques for measuring situation awareness belong to one of five categories: 
recall, anticipation, critical events, subjective ratings, and physiological indicators 
(Tenney and Pew 2006). The published literature supports the use of any of these 
techniques, although recall techniques seem to have been studied most thoroughly 
(Endsley et al. 2003). A recall technique requires a user to answer questions about a 
scenario while the scenario is occurring. The situation awareness global assessment 
technique (SAGAT) is the best-known objective metric, and it has been applied to 
driving scenarios. This technique is particularly suited to simulator environments 
because it works best if the scenario is halted (and all displays blanked); the opera-
tor must then answer questions about what was happening prior to the scenario 
being halted. If one does not want to halt the scenario, the situation present assess-
ment method (SPAM) can be used. Questions are posed to the operator in real time 
with the displays in full view; the operator’s response time is an indication of the 
operator’s situation awareness. Sirkin et al. (2017) described a new system that has 
been developed to measure situation awareness in autonomous vehicles. Their 
“Daze” system was designed to function in both simulation and on-road driving 
scenarios without halting the simulation or stopping the driving activity. The driver 
is able to answer queries through a graphical interface that is simple to use and 
unobtrusive. Although the Daze system was designed with the on-road vehicle in 
mind, it seems reasonable that a similar concept could be utilized for applications 
involving off-road vehicles.

Given concerns associated with assessment of mental workload (as described in 
the previous section), my research team now utilizes the metric of situation aware-
ness for assessing human-machine interaction. Bashiri and Mann (2014) used the 
situational awareness rating technique (SART) to investigate the impact of automa-
tion support on the situation awareness of the operator. The results showed that situ-
ation awareness increased as the level of automation support increased up to the 
point where the machine was operating completely autonomously. In this highest 
level of automation, the operator’s situation awareness declined. Rakhra and Mann 
(2018) used the situation awareness global assessment technique (SAGAT) to evalu-
ate various elements being considered for the design of an interface for an agricul-
tural machine. We were able to differentiate display elements designed using a 
user-centered design approach from those elements not designed according to this 
approach using the metric of situation awareness. Situation awareness is an effective 
tool for assessing human-machine interaction.

It is worth noting that Rakhra and Mann (2018) used a subjective mental work-
load measure, the integrated workload scale (IWS) (Golightly et al. 2012; Pickup 
et al. 2005), in conjunction with the situation awareness technique (SAGAT). Both 
the IWS and SAGAT yielded the same conclusions suggesting that it might be 
appropriate to use both mental workload and situation awareness techniques simul-
taneously to increase confidence in experimental results.
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15.3.5  Simulators

Drawing upon experience from other industries, it is often wise to conduct prelimi-
nary testing using some type of simulator. Simulators occupy a middle position on 
the continuum between pure laboratory tests and pure field tests. For human factors 
testing, field studies are invaluable because they provide directly valid data, and 
they allow the experimenter to determine the most important variables affecting 
performance. Due to variability of field conditions, weather, and other factors, how-
ever, field studies are often expensive and ineffective for determining functional 
relationships among different factors of interest (Duncan and Wegscheid 1982). 
Laboratory experiments are the opposite. They are very good for determining func-
tional relationships, but the results are often relevant only to a laboratory situation 
that is much different than field conditions. Simulators lie somewhere in the middle. 
A simulator provides field-like tasks within a laboratory setting. As a result, func-
tional relationships for field situations can be tested without the problems of field 
testing.

Distinctions between different simulators are often based on fidelity – how well 
a simulator mimics actual conditions in the physical environment. People often rely 
on fidelity as an indication of validity, assuming that people will perform more like 
a real situation the more lifelike the simulator. The problem is that high-fidelity 
simulators are very expensive, making them impractical for many applications. 
Low-fidelity computer-based simulators, on the other hand, are much less expensive 
and are suitable for many research applications (Gruening et al. 1998). For most 
applications, in fact, there is no consensus on how much fidelity is required in a 
simulation (Van Cott and Kinkade 1972). The best approach may be to use the least 
expensive simulator that suits the needs of the test, based on a task analysis.

With respect to operation of agricultural machines, it is appropriate to consider 
simulation of the driving task. A driving simulator is a system that provides an intel-
ligent environment in which a human driver can perceive and control the operation 
of a virtual vehicle. If the observations in a driving simulator are to be generalized 
to real-world driving, the driving simulator must draw, from the drivers, the same 
driving behavior that they would exhibit in real-world driving. This means that the 
simulated vehicle and environment should have the same appearance and dynamics, 
provide the same information (i.e., feedback) to the driver, and provide the same 
means for the driver to input the necessary control commands. Although some driv-
ing simulators provide only visual feedback, most high-fidelity driving simulators 
allow the driver to interact with the vehicle and the environment in a multisensory 
fashion by providing motion, haptic, and auditory feedback (Kemeny and Panerai 
2003). Not only do these nonvisual cues increase the realism of the simulation, but 
extensive research has shown that, depending on the driving task being simulated, 
some of these cues may be necessary (Siegler et al. 2001; Steele and Gillespie 2001).

Experimental control is the greatest advantage offered by driving simulators 
when they are used for research purposes. Many extraneous variables that cannot be 
controlled in real driving can be tightly controlled in driving simulators. Independent 
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variables can be separately controlled as desired, and several experiments can be 
run under identical experimental conditions. Conducting experiments in a driving 
simulator requires much less planning and is much less costly compared to experi-
ments in an instrumented car in a real environment. Another important advantage of 
driving simulators is the safety of the test subject. This issue is particularly signifi-
cant when studying issues such as driver fatigue or driving during low-visibility 
conditions. Measuring driving performance variables (and other parameters such as 
physiological and psychological response of the driver) is much easier to carry out 
in a driving simulator than in a real vehicle (Horiguchi and Suetomi 1995).

However, driving simulators also have certain shortcomings. No driving simula-
tor can perfectly reproduce the real driving experience. Models of vehicle dynamics 
and environmental disturbances can be made increasingly accurate, but can never be 
perfect. It is extremely difficult, if not impossible, to provide visual feedback that 
has the same field of view, resolution, and depth cues as those of a real visual scene. 
Certain motion cues are not possible to render even in the most advanced driving 
simulators because no driving simulator has unlimited motion range. Direct render-
ing of simple vehicle maneuvers requires large motion systems that are unrealistic. 
Engineers have developed special techniques such as motion washout filtering, tilt 
coordination, and motion scaling that can render most vehicle motions, but these 
techniques do not completely resolve the existing problems. Transport delays are 
another major issue; there is always a delay between the subjects’ action and the 
simulator’s response. This is due to the time required for the acquisition of the sub-
ject’s commands, computation of the appropriate response, and the delay in the 
visual and motion subsystems. Not only should these delays be small, but all simu-
lator subsystems should be synchronized, a requirement that is difficult to achieve 
(Horiguchi and Suetomi 1995; Kemeny and Panerai 2003).

I have effectively used driving simulators throughout my research career. The 
initial simulator (Young 2003) was designed to mimic the tasks associated with 
operating an agricultural sprayer. Steering and controlling the booms were the main 
subtasks involved. The information necessary for steering was obtained from both a 
lightbar and an aiming point ahead of the operator; the information necessary for 
controlling the booms was obtained from displays behind the operator. Therefore, 
the simulator required subjects to scan the same locations and perform similar con-
trol actions as a high-clearance sprayer operator (Fig. 15.3). Two PhD students con-
tributed to improving the fidelity of the simulator. Displays and controls were added 
in response to an in-field task analysis of agricultural sprayer operators (Dey and 
Mann 2009). Further improvements (i.e., simulator yaw motion, steering torque 
feedback, auditory feedback, and a video projection system) were made by 
D. Karimi who researched the role of sensory cues on the physical and behavioral 
validity of the simulator (Karimi and Mann 2008a, b, c; Karimi et al. 2008a, b).

More recently, a simulator has been developed to simulate a tractor-air seeder 
system. A block diagram representation of the current simulator is presented in 
Fig. 15.4. A complete description of the simulator is provided by Mann et al. (2014). 
The simulator has been used to conduct research related to the automation of agri-
cultural machines.
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Because a simulator only mimics the real field situation, results must be used 
cautiously. First, the tasks that are performed in a simulator must be designed care-
fully, with reference to a task analysis. Second, the relevance of results to the real 
world must not be overstated. Ultimately, it would be ideal if results are validated 
against real-world data to establish how well the simulation reflects field situations.

15.4  Use of Technology to Support the Operator

15.4.1  Guidance Aids

Beginning around the year 2000, manufacturers began to market different types of 
guidance aids that were intended to support the operator. While the quest for an 
automated guidance system was continuing, there was a realization that technology 
could be used to help the operator to reduce the lateral error typically associated 
with skipping and/or overlapping on parallel passes across a field.

Aiming Point & Lightbar

Right BoomLeft 
Boom

Fig. 15.3 Model representing the three visual sectors viewed by a sprayer operator. An aiming 
point is located ahead of the vehicle; sprayer booms are located to each side, slightly behind 
the vehicle

Implement information display 

Steering wheel 

Curved screen Projector 

Control unit 

Console 

Back monitor 

Fig. 15.4 Block diagram representation of a simulator used to simulate a tractor-air seeder system
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Guidance aids might best be defined as “devices which provide guidance infor-
mation to the driver, but do not attempt to replace the driver.” A common character-
istic of most of these devices is that the operator is required to visually monitor 
some type of interface to obtain guidance information.

Introduction of another interface into the cab of any vehicle may cause one of 
two results: (i) the task of the operator may become easier or (ii) the task of the 
operator may inadvertently become more difficult or more dangerous (Mollenhauer 
et al. 1997). Kaminaka et al. (1981) observed that steering performance decreased 
when operators were required to share their visual attention between the steering 
and rear-monitoring tasks. An explanation is offered by de Waard (1996): two com-
peting visual channels cannot be watched simultaneously. The driver overcomes 
this problem by scanning one or both of the visual channels – a process that increases 
the driver’s mental workload. Farmers have traditionally guided their machines by 
viewing the surrounding environment through the cab’s windows. This behavior is 
not expected to change with the addition of a guidance aid. The driver would con-
tinue to obtain a general orientation within the field by looking out the windows, but 
the guidance aid’s interface would be viewed for precise guidance information. The 
inevitable result is scanning of the two competing visual channels.

There are two types of guidance aids that were previously used by operators of 
agricultural machines: camera-based guidance aids and GPS-based guidance aids. 
A camera-based guidance aid is a system comprised of a camera that is mounted on 
the agricultural machine in a forward-facing direction and a display that is mounted 
near the operator’s seat. What the camera “sees” is displayed on the display effec-
tively giving the operator a close-up view of the region directly ahead of the camera. 
Tang and Mann (2003) investigated the factors contributing to guidance perfor-
mance when using a camera-based guidance aid. Specifically, they focused on a 
parameter they described as “image velocity” which is the rate at which the image 
scrolled across the display as the machine moved forward across the field. This 
image velocity was influenced by the placement of the camera (height and angle of 
tilt). Operator performance declined as the image velocity increased. Given current 
technological advances, it is unlikely that camera-based systems are to be used as 
guidance aids. However, if camera-based systems were to be used for other moni-
toring purposes, attention should be devoted to placement of the camera to mini-
mize the image velocity with the intent of maximizing the operator’s ability to 
correctly interpret the visual information provided by the camera.

A GPS-based guidance aid is comprised of an antenna placed on the roof of the 
agricultural machine (used to obtain a GPS signal) and a lightbar (i.e., an array of 
light-emitting diodes (LEDs) that provided an indication of lateral error) that would 
be placed either in the cab or on the hood of the agricultural machine within the 
operator’s line of sight. The lightbar displays the lateral error calculated based on 
the GPS signal. Discussions with dealers of this equipment revealed that the design 
of the lightbar was a major factor in how well operators adapted to the system. In 
particular, there was a demand for larger lightbars (Young 2003). Lightbars avail-
able commercially were not salient enough to be interpreted outside central vision. 
Because visual acuity degrades with eccentricity (Anstis 1974), a larger or more 

D. Mann



403

salient lightbar could allow operators to acquire information from the lightbar fur-
ther into their visual periphery. This could reduce scanning between the lightbar and 
the aiming point and allow information from the lightbar to be acquired more easily 
after scanning areas to the rear and sides. Possible ways of increasing salience 
include increasing size, increasing luminance, using flashing lights on the lightbar, 
or optimizing colors for peripheral vision (Ancman 1991; Christensen et al. 1986).

There are a number of factors that my research team considered in the design of 
an effective lightbar display. Young (2003) compared two lightbars that differed in 
size (by a factor of 10) and luminance (by a factor of 6). The larger, brighter lightbar 
enabled an 11% reduction in guidance error. Blue light is more easily perceived in 
the peripheral field of view than red light (Moreland and Cruz 1959); this is a likely 
explanation for the results reported by Ima and Mann (2003) who demonstrated that 
lightbars comprised of blue LEDs enabled the best tracking performance (i.e., low-
est steering error) and monitoring performance (i.e., lowest reaction time). Ima and 
Mann (2003) also reported improved tracking and monitoring performance with 
enlarged lightbars, confirming the finding of Young (2003). Ima and Mann (2003) 
investigated the influence of auxiliary indicators – an additional cluster of LEDs – 
mounted on the side of the operator station where it would be detectable in the 
periphery of the operator. These auxiliary indicators yielded improved tracking per-
formance, but at the expense of decreased monitoring performance. Overall, experi-
mental results have confirmed that the operator’s performance is influenced by the 
design of an interface such as a lightbar that is intended to provide supplemental 
information to the operator of an agricultural machine.

Although technology has advanced beyond these guidance aids, it is important to 
remember the lessons learned from the previous research. For both types of guid-
ance aids, their ultimate effectiveness was based on the ability of the operator to 
attain visual information from the display. Thus, human-machine interaction must 
not be neglected.

15.4.2  Partial Automation

In past decades, the machinery operator was solely responsible for completion of all 
tasks. In the case of semi-autonomous agricultural machines, the responsibility for 
operating the machine is shared between the human operator and any microproces-
sors (computers) associated with automated systems or components. Deciding how 
to allocate responsibility (i.e., function) between the human and the automation is a 
nontrivial problem faced by the design engineer.

There has been much discussion of function allocation in the literature. One 
approach is to employ the “left-over principle” (Bye et al. 1999); this occurs when 
the human operator is assigned to any tasks that cannot be automated based on cur-
rent technology (or are too expensive to automate) with essentially no consideration 
of ergonomic implications. Fitts (1951) proposed the “compensatory principle” 
where tasks are allocated to human or machine based on basic characteristics of 
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both humans and machines. Humans are perceived to have an advantage at detecting 
small visual and auditory signals, perceiving patterns of light and sound, and impro-
vising and exercising judgment. Machines are able to respond to control signals 
more quickly and more precisely. Sheridan (2002) commented that “the human 
should be left to deal with the big picture while the computer copes with the details.” 
Although the compensatory principle seems to be an improvement over the left-over 
principle, the “complementarity principle” was proposed by Jordan (1963). He 
argued that the system designer must “think about how we complement men by 
machines and vice versa to get a task done.” Functions should be allocated in such 
a way that the operator remains in control of the situation and does not suffer any 
degradation in skills (Bye et al. 1999).

The first step in deciding the appropriate allocation of function between a human 
and a machine is to determine the goals to be achieved and the tasks necessary to 
achieve those goals (Hollnagel and Bye 2000). Task analysis techniques can be used 
to identify the goals and tasks associated with operating an agricultural machine. 
The nature of each task is compared to the attributes of both humans and computers 
to determine the most appropriate match. The outcome is a model depicting the 
allocation of function for a semi-autonomous human-machine system. Panfilov 
et al. (2016) provided three theoretical descriptions of a semi-autonomous system 
composed of a tractor and air seeder based on three distinct function allocation 
models (i.e., left-over principle, complementary principle, and compensatory prin-
ciple) (Fig. 15.5). Their analysis concluded that the complementarity principle of 
function allocation is the most appropriate choice because it allows flexibility in 
allocation of function, it considers the human operator as an active participant in the 
functioning of the system, and it allocates functions according to the need to ensure 
stability of system performance. From this discussion, it is evident that the design 
of any autonomous or semi-autonomous agricultural vehicle should be based on 
allocation of function.

Bye et al. (1999) concluded their paper by saying “the allocation of functions 
between man and machine is an important part of design of automation systems.” 
Parasuraman et al. (2000) proposed a framework for automation design (i.e., decid-
ing which functions to automate and to what extent), consistent with the comple-
mentarity principle, that consists of four steps: (1) identifying types of automation 
(which requires identification of the relevant tasks), (2) determining appropriate 
levels of automation for tasks, (3) evaluating the system performance from the per-
spective of the human, and (4) evaluating the system performance from the perspec-
tive of the technology. To address the first step, Parasuraman et al. (2000) proposed 
a model with four classifications of functions: information acquisition, information 
analysis, decision and action selection, and action implementation. They contend 
that all tasks fit into one of these four classifications. For the system designer, this 
corresponds to four potential types of automation: acquisition, analysis, decision, 
and action. Each type of automation can have a level of automation that ranges from 
low (no automation or manual task) to high (fully automatic).

Bashiri (2015) completed a PhD thesis entitled “Effects of task automation on 
the mental workload and situation awareness of operators of agricultural 
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semi-autonomous vehicles.” His research investigated the effects of vehicle steering 
task automation (VSTA) and implement control and monitoring task automation 
(ICMTA) on mental workload and situation awareness of subjects using a tractor- 
driving simulator. The most interesting results were observed for ICMTA which 
involved five levels of automation support. Reaction time and number of errors 
made by subjects both decreased as the automation level increased (Bashiri and 
Mann 2015). Situation awareness increased as the level of automation support 
increased except at the highest level of automation where the subjects were essen-
tially eliminated from the task loop (Bashiri and Mann 2014). A similar result was 
obtained by Rakhra (2018) – the highest level of situation awareness was observed 
for moderate levels of automation (and situation awareness decreased for the fully 
autonomous condition). Based on these results, it is reasonable to conclude that cau-
tion must be exercised when contemplating a fully autonomous agricultural machine 
if it is envisioned that a human will be expected to monitor the performance of such 
a machine.

15.4.3  Fully Autonomous Agricultural Machine

The concept of the driverless tractor has appeared in the scientific literature over the 
past several decades. We have now arrived at the point in history where the technol-
ogy exists to provide automated guidance systems for agricultural machines. We 
might be tempted to believe that our work is complete now that we have realized the 
agricultural machine that can drive itself across the field. We must resist this tempta-
tion because evidence suggests that automation cannot operate in isolation 
of humans.

Automated systems were first designed to relieve the human of repetitive or con-
tinuous manual tasks. It has been observed, however, that automation often redis-
tributes workload rather than reducing it because the human is forced to assume a 
supervisory role (Sarter et al. 1997). According to Sheridan (1992), supervisory 
control occurs when there is at least one human operator that has the capability to 
both send instructions and receive status information from a system that itself func-
tions autonomously. If a machine is designed to have fully automatic control, the 
human operator can observe status information through a display, but is unable to 
control the actions of the machine. It is impossible to predict with certainty whether 
future AAMs will be designed with fully automatic control or supervisory control; 
however, there is evidence to suggest that supervisory control may be the preferred 
option. Blackmore et al. (2002) proposed a system architecture to enable control of 
an autonomous tractor. Their view included a “coordinating process” which was to 
be handled by a human coordinator located remotely in a farm office. They pro-
posed the phrase “tractor mimic display” for the computer interface that would be 
used by the coordinator to obtain tractor status information. Blackmore et al. (2002) 
suggested that the mimic display would also incorporate a “real-time video link to 
steerable on-board cameras” to allow the coordinator to have “a better 
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understanding of the tractor’s environment.” Several other research groups have 
described similar concepts where a remote supervisor has some level of control over 
one or more AAMs (Johnson et al. 2009; Moorehead et al. 2009; Moorehead et al. 
2012; Stentz et al. 2002). Project Xaver is a new concept proposed by tractor manu-
facturer Fendt that is comprised of a “swarm” of small field robots that are directed 
via the Cloud from a “logistic unit.” This logistic unit is responsible for transport of 
the field robots, battery charging (the field robots are electric vehicles), and supply 
of seeds (the model described is for precision seeding). The farmer manages the 
entire process through a tablet; the tablet enables task planning and live monitoring.

To summarize, it is most reasonable to conclude that autonomous agricultural 
machines will not operate in isolation. It is likely that multiple field robots will be 
required to communicate with each other, receiving overall instruction and support 
from some type of central unit. Furthermore, the farmer will have the ability to 
monitor operation and submit task planning instructions through some type of inter-
face. In other words, the farmer will have an active supervisory role with an autono-
mous agricultural machine. Careful attention must be paid to the design of the 
automation interface to ensure that the human-autonomy system can operate at 
maximum efficiency.

15.5  Future Challenges Associated with Remote Supervision 
of Autonomous Agricultural Robots

15.5.1  Sensory Requirements for Remote Supervision 
of Autonomous Agricultural Robots

Historically, the human operator of an agricultural machine is seated in an operator 
station mounted on the machine. This means that the operator is situated in close 
proximity to the machine and can obtain sensory information (primarily visual and 
auditory) directly from the machine and the surrounding environment. I can remem-
ber my days as a teenager on the farm – specifically operating our IHC 503 com-
bine. That late 1960s machine had very few sensors, and very limited information 
was available on the instrument console. Nevertheless, I became very proficient at 
operating that machine based on sensory input. I learned to detect when the machine 
was on the verge of being overloaded by the sound coming from the threshing 
chamber located beneath the cab. One might say that this lesson was learned the 
hard way as, on numerous occasions, I failed to adjust the speed of the machine in 
time resulting in the threshing cylinder becoming plugged. Of course, this meant 
slipping on gloves and wasting valuable time manually pulling stalks out of the 
machine. Over time, I learned to detect the early signs of overloading by the subtle 
change in the sound coming from the threshing chamber so that I could reduce the 
forward speed of the combine ultimately eliminating the manual task of unplugging 
the combine.
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Admittedly, current machines employ more sensors than were present on our old 
IHC 503 combine. Nevertheless, it is reasonable to believe that machinery operators 
still obtain sensory information from the machine and the surrounding environment 
that contributes to successful operation of these machines. Projecting to the future, 
it is anticipated that the farm manager will supervise autonomous agricultural 
machines from a remote location and, therefore, will not have access to the direct 
sensory information. It is reasonable to speculate that the loss of this information 
may be detrimental to the ability of the farm manager to remotely supervise these 
machines. Thus, there is a need to determine whether sensory information is essen-
tial to the task of remote supervision of an agricultural machine.

Panfilov and Mann (2018) conducted a lab experiment in which research partici-
pants, who were acting as remote supervisors, were asked to detect machine mal-
functions that were presented using either graphical indicators or with video footage. 
Their experimental results demonstrated, based on observed eye-glance behavior, 
that the live video footage was not particularly useful for detecting machine prob-
lems or malfunctions, but the supervisors felt more secure in their supervisory task 
when live video was present. Analysis of the gaze distribution showed that supervi-
sors made long gazes at the screen with the graphical indicators and only brief gazes 
to the video footage. The recommendation from their research is that an interface 
for remote supervision should include real-time video of a general view of the agri-
cultural machine with detailed information on machine status displayed using 
graphical indicators.

A follow-up study was conducted to determine the visual requirements for a 
remote supervisor of an autonomous sprayer (Edet and Mann 2020). Twenty-nine 
experienced sprayer operators participated in the project. During the experiment, a 
total of 11 different video clips showing various regions of a sprayer and the sur-
rounding environment during spraying operation were presented sequentially to 
each participant; participants were asked to comment on each video clip. The results 
indicated that experienced sprayer operators considered views that are familiar and 
directly related to the spraying operation as “extremely important” while unfamiliar 
views were given a lower rank. Sprayer operators prefer (i) the view ahead of the 
sprayer (from the operator’s cab), (ii) the boom, and (iii) an aerial view of the 
sprayer in operation, as these regions enable them to assess the sprayer and field/
crop conditions to make necessary decisions. The information that was perceived 
from these views included boom height, nozzle status (plugged or not), spray pat-
tern, presence of obstacles, crop conditions, approximate travel speed, proximity of 
headland, weather conditions, and location of the sprayer within the context of the 
field. With this information, operators felt that they would be able to identify the 
need to make adjustments to the sprayer (i.e., change boom height, increase or 
decrease droplet size, increase or decrease travel velocity) or stop the sprayer until 
problems can be resolved (i.e., clean a plugged nozzle, weather conditions improve). 
There is a growing body of evidence to suggest that real-time video is essential to 
the task of remotely supervising an autonomous agricultural machine. Researchers 
have yet to investigate issues such as video transmission latency (delay) and the 
impact that this will have on the supervisor.
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I began this section with an anecdotal story related to the contribution of auditory 
information to the operation of an agricultural machine. A recent graduate student 
in my research team investigated the role of auditory information to the task of 
remote supervision of an autonomous agricultural machine (Simundsson et  al. 
2019). Based on anecdotal information, it was recognized that machinery operators 
are often able to detect existing or impending problems from the changes in sound 
produced by the mechanical components of the machine. Karimi et  al. (2008b) 
reported that the addition of auditory cues did not improve steering performance (in 
a simulated agricultural vehicle) perhaps because steering is a purely visual task; 
however, auditory cues did improve the monitoring task. Donmez et  al. (2009) 
investigated the use of sonifications (continuous auditory alerts) during the control 
of unmanned aerial vehicles and found that visual information supported by sonifi-
cations yielded faster reaction times than visual information supported by discrete 
auditory signals. Simundsson et  al. (2019) collected auditory information from 
combine harvesters in three distinct operating modes. A neural network was used to 
classify the auditory signals  – it was able to correctly classify the three distinct 
operating modes. Based on the results of this proof-of-concept work completed by 
Simundsson, there is further opportunity to develop the technology to enable audi-
tory information to be incorporated into the automation interface for remote super-
vision of an autonomous agricultural machine.

15.5.2  Shared Situation Awareness 
in Human-Autonomy Teams

In February 2017, Mica Endsley published an article entitled “From here to auton-
omy: lessons learned from human-automation research” (Endsley 2017). She argues 
that successful autonomous systems will be those that achieve “a successful 
approach to human-autonomy teaming.” To guard against unexpected automation 
transitions “when the automation suddenly passes control to the human operator 
who may not be ready to take over” (Endsley 2017), it is critical that automation 
interfaces be designed carefully to support the situation awareness of the individual 
overseeing the automation. Grubb et al. (1994) demonstrated that passive monitor-
ing of automation creates “a high-workload activity” for the individual overseeing 
the automation. The design of the automation interface is further complicated by the 
automation conundrum described by Endsley (2017) as “The more automation is 
added to a system, and the more reliable and robust that automation is, the less 
likely that human operators overseeing the automation will be aware of critical 
information and able to take over manual control when needed.” To address this 
conundrum, Endsley proposed a “human-autonomy system oversight” model to 
assist system designers and researchers. It is recommended that automation inter-
faces be designed with transparency to enable the automation supervisor to success-
fully navigate mode transitions when human intervention is required. Essentially 
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this requires that both the human and the autonomous system have the same aware-
ness of system status  – a principle known as “shared situation awareness.” The 
concept of shared situation awareness is not new, but it has traditionally been applied 
to situations involving two or more human teammates that contribute to the func-
tioning of a system. There is a current void in the scientific literature with respect to 
shared situation awareness involving teams comprised of human supervisors and 
autonomous machines. Research is needed to fill this void, ultimately enabling the 
viability of remote supervision of AAMs. For a human-autonomy team, it is impos-
sible to query the autonomous machine in the usual manner. Therefore, a novel 
technique must be developed to enable shared situation awareness of human- 
autonomy teams to be assessed.

15.6  Summary and Concluding Thoughts

There are numerous researchers and entrepreneurs working on the development of 
autonomous agricultural machines (i.e., robots). If designed appropriately, autono-
mous agricultural machines should be able to reduce the demand on the farm worker 
possibly enabling one farm worker to remotely supervise multiple machines from a 
central location. I believe that these machines will ultimately function as part of a 
larger system comprised of the autonomous agricultural machine and a human 
supervisor. The ultimate productivity of such a human-machine (or human- 
automation) system will depend on the ability of the farmer to efficiently and effec-
tively obtain information from each of the autonomous agricultural machines 
through an interface. Great importance must be placed on the design of the interface 
so that human interaction with the autonomous agricultural machine can be opti-
mized. Ultimately, the efficiency of this human-autonomy team will be dependent 
upon both members of the team having a common understanding of system status.

In many fields of research, there is interest in understanding the challenges of 
human interaction with automation. Although interest among those designing and 
researching agricultural machinery is not yet widespread, initial signs are beginning 
to appear. Lang et al. (2009) used the phrase “sustainable integration of man” in an 
article entitled “Analysis of human factors on agricultural machines.” In 2010, 
Schmitz wrote an article entitled “Ergonomics and automation – safe manipulation 
of complex systems.” Both articles share the message that as technology continues 
to advance, it is essential that ergonomics be considered in the design of modern 
agricultural machines.
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Chapter 16
Machinery-Canopy Interactions in Tree 
Fruit Crops

Xin Zhang, Qin Zhang, Manoj Karkee, and Matthew D. Whiting

16.1  Introduction

The rapid development of the modern agricultural machinery has substantially 
advanced farming operations in recent years. Researchers and engineers, building 
on those successes, are continuing to work on developing intelligent solutions to 
solve various challenging problems in production agriculture. Among others, there 
has been a particular emphasis on developing automation and robotic solutions for 
tree fruit production (e.g., apple, cherry, citrus, pear, peach, and more) to address the 
challenge of labor shortage that has been increasingly impacting the industry all 
over the world. Despite these efforts, the progress in practically adopting mechani-
cal or robotic solutions to these crops has been slow. One of the primary attributors 
causing the sluggish adoption is the large variation and complexity in tree struc-
tures. In addition to fulfilling the important expectation of crop yield and quality 
improvements, the creation and adoption of proper tree crop architectures make 
them more machine-friendly, which could be one of the critical ways to facilitate 
further advancement and adoption of mechanized or even robotic solutions in tree 
fruit production. In other words, a study on machine-canopy interaction will be a 
fundamental aspect of overall efforts on mechanization and automation in tree 
fruit crops.

The external structure of tree crops has been proved to be critically important in 
achieving effective mechanical or robotic operations in tree fruit orchards (Zhang 
et al. 2019a, b). Without proper intervention, most fruit trees will be forming a big 
and tall spherical structure. Moreover, such a canopy will grow randomly into an 
unstructured environment, which presents a high level of variability and uncertainty 
making it difficult for most mechanical or robotic operations in orchards (e.g., 
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pruning, thinning, spraying, harvesting, and transporting) because of the need for 
adjusting machine positions appropriately for performing an operation with almost 
every branch.

Taking robotic harvesting in tree fruit as an example, Mehta and Burks (2014) 
used a programmed manipulator for robotic citrus harvesting. An analysis of results 
indicated that about half of the unsuccessful harvesting attempts were because of 
the difficulties caused by canopy occlusions (25%) and fruit clusters (23%). Such 
results revealed a strong dependence of a robot on crop canopy and environmental 
factors. Figure  16.1 visualizes the difference of canopy architectures between 
unstructured, naturally grown apple trees and structured, trellis-trained trees. In the 
naturally grown trees, the target apples might be distributed within a canopy space 
of 3 m in height and 2 m in width with heavy occlusions caused by leaves, branches, 
and other fruit (Fig. 16.1a). On the other hand, in the structured (trellis-trained), 
modern orchards, apples can mostly be located along the primary branches with 
minimum occlusions (Fig. 16.1b).

Lack of appropriate design and maintenance of crop/canopy structures can cause 
canopy occlusions and failure of robotic/mechanized activities, as depicted in 
Fig. 16.2 (Silwal et al. 2017). This study showed that the excessively long branches 
and offshoots often induced the failure of fruit removal (e.g., slipping out from the 
gripper or insufficient detaching distance) because of the limited working space for 
a robot. Another two studies on automated harvesting at Washington State University 
(Hohimer et al. 2019; Wang et al. 2018) also showed that clustered fruits caused 

Fig. 16.1 Example of unstructured, conventional apple trees (a) and structured (trellis-trained), 
modern apple trees (b) in Washington State, USA (from Zhang 2020)
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major problems for both the vision system and the manipulating arms during apple 
harvesting. The findings implied, as expected, that for a successful robotic system, 
unstructured crop architectures could present significant hurdles, as robots tend to 
perform well in a structured environment. Similarly, the harvesting performance 
(e.g., fruit detachment efficiency) of mechanical shake-and-catch systems could 
also be affected by its interactions with the canopy architectures (e.g., branch length 
and/or diameter). Partly because of these hurdles, the long effort in developing 
robotic/mechanized harvesting systems starting from the 1960s (Bac et al. 2014; 
Sistler 1987) has not yielded commercially successful solutions yet.

As the entire agricultural production is moving toward adopting more mecha-
nized and automated technologies worldwide, this chapter will therefore provide a 
unique perspective on a critical aspect of automation and robotics in agricultural 
fields: interaction and integration of machinery-canopy systems into developing a 
systems solution for agricultural robotics. Specifically, the chapter will discuss the 
ways machine systems could interact with fruit tree architectures to achieve the 
highest possible work efficiency.

16.2  Orchard Mechanization and Role of Tree Fruit 
Crop Architectures

Previous studies have underscored the importance of crop architecture and canopy 
management practices on effectiveness of mechanized orchard operations. For 
example, in mass mechanical fruit harvesting, weak and pendant fruiting branches 
prevent shaking energy from being effectively transmitted to the target fruits. This 
effect is attributed to the higher energy dissipation on thin and long lateral branches 
(He et al. 2019).

As modern orchard systems have been proven to produce high-value fruits, there 
is a need to refine tree systems to develop simplified orchard systems that are pro-
ductive, producing high-quality fruits, and equally important, amenable to facilitate 
the incorporation of mechanized and automated field operations in these crops. 

Fig. 16.2 An example of 
unsuccessful fruit 
detachment by a robot 
because of a long and thin 
offshoot bearing the fruit 
(from Silwal et al. 2017)
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Therefore, the incorporation of machinery in fruit production operations requires a 
transition from conventional low-density, complex orchard systems to modern pla-
nar architectures, which can be accomplished through appropriate orchard training, 
pruning, and thinning operations. Some preliminary results have shown the pro-
gresses on how machinery efficiency has been enhanced by certain horticultural 
practices. For example, Tombesi et  al. (2017) found that mechanical harvesting 
efficiency of fruit removal could be enhanced over 12% by removing weak branches 
on free vase-trained olive trees. Peterson et al. (1999) studied the mechanical har-
vesting of apples in trees trained to a Y-trellis architecture. Their results also sug-
gested that high fruit detachment efficiency could be achieved if proper crop/canopy 
pruning strategies were adopted. As another example, when a mass mechanical 
harvester was used to harvest blueberries planted in bushes, each fruiting shoots 
needed to be manually and individually vibrated during the harvesting process 
(Fig. 16.3; He 2017). Such naturally grown tree/bush architectures might negatively 
affect the harvesting efficiency in terms of fruit removal, fruit collection, fruit qual-
ity, and time taken. These findings indicated that complex crop conditions could be 
major hurdles for the success of robotic/mechanical operations in orchards.

Partially because of the lack of efforts in developing and adopting appropriate 
crop/canopy management systems, a long effort in developing robotic or mechani-
cal systems has not yet led to commercially successful solutions for various orchard 
applications such as fresh market fruit harvesting and fruit tree pruning. Therefore, 
wider efforts are essential in keeping automation in the forefront while designing, 
developing, and adopting machine-friendly tree architectures, and the cultural prac-
tices should be optimized to provide a simpler and friendlier crop environment for 
the practical use of automated and robotic machines.

Fig. 16.3 An example of 
using mechanical harvester 
to vibrate blueberries in 
bushy architecture in a 
commercial orchard in 
Washington State, USA 
(Image Courtesy of Dr. 
Long He)
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16.2.1  Conventional Fruit Tree Architectures

Fruit trees are perennial woody plants, which generally have a permanent trunk with 
branches/twigs growing from the trunks. The fruit tree canopies, therefore, could be 
described as a four-dimensional (4D) structure (i.e., a specific 3D trunk for indi-
vidual trees plus variations between trees, and over time; Godin et al. 1999). The 
architecture will become more complex when it evolves over time through growth 
and development. Traditionally, trees are grown with a comparatively lower level of 
training and pruning and generally without a trellis system to support the structure, 
which can be described as “big-old-bushy” trees (Fig. 16.4). Many orchards are still 
planted in such manner lacking uniformity, which makes these sites unsuitable for 
using automated or autonomous orchard machinery.

Many different types of field operation are carried out in tree fruit production 
around the year including pruning, training, thinning, spraying, harvesting, and 
post-harvest transportation. The effectiveness and practical viability of utilizing 
orchard machines to carry out these operations have been limited, as discussed 
above, due to the complexity of the tree canopies in these conventional architec-
tures. For example, selective robotic pruning will need to identify and precisely 
locate the target branches and associated cutting points. Such complicated struc-
tures pose increased level of difficulties for both the machine vision system to 
detect/localize the target branches and the robotic end-effector (hand) to approach 
and cut the branches at desired locations. Modern fruiting-wall tree architec-
tures, such as some apple and sweet cherry orchards in Washington State, could 
potentially help in facilitating and simplifying the robotic tasks in tree fruit 
orchards.

Fig. 16.4 An example of 
an unstructured, 
conventional sweet cherry 
orchard in Washington 
State, USA
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16.2.2  SNAP Concept for Improving 
Machine-Canopy Interactions

To minimize the complexity of crop canopies, modifications and improvements of 
tree architecture are being investigated that can facilitate machine operations in 
orchards (Tombesi et al. 2017). For example, one of the optimal tree architectures 
for effective automated/robotic operation would be a vertical fruiting-wall system in 
a medium- to high-density planting, which generally offers a uniform and consistent 
tree structure throughout an orchard. In such an architecture, shoots, flowers, and 
fruits would be primarily located on the canopy surface with minimal occlusions. In 
actual practical field conditions, the amount of completely exposed canopy objects 
would vary based on how well the orchards are managed. However, such an archi-
tecture provides insight into what would be a desirable canopy structure for an 
orchard machine to achieve and maintain satisfactory level of efficiency and 
productivity.

As a configuration of an ideal orchard for improving machine-canopy interaction 
in tree fruit crops, SNAP (i.e., simple, narrow, accessible, and productive) concept 
of tree architecture could be used to describe its main features (http://treefruit.wsu.
edu/orchard- management/orchard- establishment/). The core of such a SNAP 
orchard production system is that the horticultural practices must be suited for using 
mechanized operations, including field conditions, tree population and spacing, and 
tree canopy shape and size. Establishing favorable field conditions for machinery 
systems should be considered even before orchard systems are designed. 
Standardization of tree sizes, featured by tree height, tree shape, canopy thickness, 
and tree spacing within and between rows, would allow orchard machinery to oper-
ate continuously without frequent adjusting and could substantially improve 
throughput of mechanized orchard operations and thus profitability. In addition, a 
systematic approach needs to be established to understand the relationship between 
machine and canopy components. For example, Case Study 2 presented later (see 
Sect. 16.3.2) will show how a machine learning technique was implemented to iden-
tify the canopy parameters with higher relevancy for shake-and-catch apple harvest-
ing in terms of fruit removal efficiency.

Some preliminary evidences of how SNAP tree architecture facilitates orchard 
operations could be provided using manual tasks. For example, in a study of hand 
harvest in 11 commercial sweet cherry orchards, the highest mean harvest rates 
(0.94  kg  min−1 and 0.78  kg  min−1) were recorded in “Cowiche” and “Tieton” 
orchards trained to the UFO system, respectively. Comparing to some conventional 
orchards, high harvest efficiency in these orchards was likely the result of the SNAP 
architecture and that most fruit were accessible from the ground (Whiting 2018). 
Similar study was conducted by Zhang (2020) in 2016 based on the infield data of 
tracking four to eight randomly selected pickers performing manual harvest of fresh 
market apples in three commercial orchards in Washington State. Table 16.1 listed 
the results that it took approximately 43–99 s longer to harvest apples in each pick-
ing cycle (started from the time once the ladder was completely set up until the 
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ladder was moved to another location) in conventional trees (“Pink Lady”) com-
pared to formally trained trees (“Scifresh” in vertical and “Fuji” in V-trellis).

In addition to mass mechanical fruit harvesting (He et al. 2019; Fig. 16.5a) and 
selective, robotic harvesting (Hohimer et al. 2019; Fig. 16.5b), this SNAP architec-
ture strategically facilitates the adoption of mechanization and automation for many 
other orchard tasks such as pruning (Fig. 16.5c), blossom/fruit thinning (Bhattarai 
et al. 2020; Wang et al. 2013; Fig. 16.5d), and pollination (Whiting 2017; Fig. 16.5e), 
improves labor efficiency, and simplifies cultural practices by allowing pruning of 
only the secondary fruiting shoots (Ampatzidis and Whiting 2013). For example, 
Fig.  16.5c depicted the machine-assisted manual pruning operations in a trellis-
trained apple orchard, where SNAP tree architecture enabled the self-propelled plat-
form to move continuously and smoothly inside the tree row while the labors/robots 
could complete the simplified tasks in an efficient manner. To gain a deeper under-
standing of such machinery-canopy interactions, Case Study 1 presented in Sect. 
16.2.4 will show how a certain crop/canopy management influences the effective-
ness of mass mechanical harvesting of apples for fresh market.

16.2.3  Example of SNAP Tree Architectures

This section introduces more features of SNAP concept using examples to explain 
a few specific architectures in apple and sweet cherry orchards commonly planted 
in Washington State. As an example of a modern orchard design that can facilitate 
emerging mechanized solutions, a formally trained architecture is introduced first. 
Formal training is one of the commonly used trellis systems for apples in Washington 
State. In this trellis-trained architecture, trees are planted in a medium- to high- 
density (3000–4500 trees per hectare) architecture that can offer increased produc-
tivity and profitability to growers. Main tree trunks are positioned vertically, and six 
to eight tiers of primary branches are trained horizontally along the trellis wires in 
both sides of the trunk using tapes. The trellis system can be designed to create 
vertical (Fig. 16.6a) or V-axis (Fig. 16.6b) canopies, creating a fruiting-wall (or 2D) 
tree canopy. This architecture has been adopted substantially in the US Pacific 

Table 16.1 Cycle time of worker picking fresh market apples (each cycle started from the time the 
ladder was completely set up until the ladder was moved to another location; from Zhang 2020)

Apple cultivar Scifresh Fuji Pink Lady

Tree architecture Vertical V-trellis Conventional
Harvest method Pick Pick + cuta Pick + cuta

Recorded picker # 4 6 8
Recorded picking cycle # 27 23 56
Avg. time per cycle (s) 91 134 190
Standard deviation (s.d.) (s) 60 176 120

aCutting the apple stem
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Northwest region because of various advantages including highly simplified, com-
pact, and planar canopy structures that can facilitate canopy management by both 
labors and machines and good light penetration through the canopy with the poten-
tial for high yield and quality of fruits (Whiting 2018). Dormant and/or summer 

Fig. 16.5 Machine-assisted orchard operations of mass fruit harvesting (from He et al. 2019) (a), 
selective robotic fruit harvesting (from Hohimer et al. (2019)) (b), dormant canopy pruning (c), 
blossom thinning (from Wang et al. (2013)) (d), and pollen suspension spraying (from Whiting 
2017) (e) in Washington State, USA
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pruning is normally required on the secondary fruiting shoots (the ones growing out 
of main, lateral branches) to maintain the compactness of the tree architecture.

Similar vertical or slightly inclined tree architectures could also be found in other 
tree fruit crops, such as cherries. As cherry is an exceptionally labor-intensive crop 
to harvest due to large tree size and a large number of smaller fruits per tree, 

Fig. 16.6 Commercial apple orchards trained to formal vertical trellis (a), V-trellis (from Zhang 
et al. 2020a, b) (b), sweet cherry orchards trained to vertical Upright Fruiting Offshoot (UFO) 
(from Whiting 2018) (c), Y-trellised UFO (d), and apple orchard trained to tall or super spindle 
(from Karkee et al. 2014) (e) fruiting-wall architectures in Washington State, USA
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progress has been made toward mechanized harvesting (Larbi et al. 2015; Peterson 
et al. 2003). From a mass mechanical harvest research on trellised-trained “Bing” 
cherries in the USA, it was found that machine harvest cost was USD $0.04 per 
kilogram compared to $0.55 per kilogram for manual picking (Seavert and Whiting 
2008). The study concluded that mechanically harvested sweet cherry orchards 
would be more profitable than conventional orchard systems. However, commercial 
adoption of the harvest system has yet to be realized because of various limitations 
including the ones related to orchard systems as discussed before. The mechanical 
harvester requires, to be efficient, the trellised tree architectures either in vertical 
Upright Fruiting Offshoot (UFO) (Fig. 16.6c) or Y-trellised (UFO or regular Y-axis) 
systems (Fig.  16.6d) that is not widespread in sweet cherry industry yet. As the 
name suggests, UFO architectures mainly have “upright offshoots” creating similar 
structure to the formally trained apples in the sense there will be one permanent 
wood (trunk) and several primary branches grown out of the permanent wood. The 
difference is that UFO would have a horizontal permanent structure and several 
vertical primary branches, whereas formal apple canopies would have vertical per-
manent structure. Mostly, UFO sweet cherry orchards in Washington State have 
been planted at a certain angle to the ground surface. However, special cases with 
vertical UFO canopies (fruiting surface angled at 90° to the ground; Fig. 16.6b) can 
also be commonly found. As they are similar, UFO architecture offers similar ben-
efit for automated field operations as the ones offered by a formal apple tree 
architecture.

Further research with a similar shake-and-catch cherry harvesting system showed 
a potential for improving fruit removal rates with multiple harvest passes in a 
Y-trellised architecture (He et al. 2015). The study has shown that branch angle in 
Y-trellised fruiting walls is also important factor for efficient mechanical harvest 
and reducing fruit damage. Y-trellised sweet cherry orchards at Washington State 
University (WSU) research plots trained to 60° from horizontal were used as exam-
ple systems to reduce the fruit drop height to the harvester catching surface placed 
underneath the canopies and to reduce the potential for fruit-branch impact during 
harvest. In this system, fruit removal and recovery rates were comparatively higher 
compared to steeper angle of fruiting walls, and fruit damage was comparable to 
that from hand picking (Ampatzidis and Whiting 2012; Peterson et al. 2003).

In addition to formal and UFO architectures described above, a random canopy 
architecture (Fig.  16.6e) is also commonly adopted in commercial orchards for 
apples, where branches are allowed to grow in all directions from the vertical trunk 
and are not trained to trellis wires in any particular fashion, though tree trunks are 
supported by the trellis system (e.g., a tall spindle or a super spindle apple orchard). 
To maintain a 2D fruiting-wall structure, branches are kept as short as possible 
through dormant pruning and occasional summer/fall pruning (Karkee et al. 2014).

Both formal and random architectures offer the same type of accessibility to 
automated or robotic systems in apple production when the canopies are sufficiently 
narrow, especially for harvesting. It is also important to note that picking a fruit 
standing freely and away from branches and trunks is always easier than a clustered 
fruit or a fruit close to a branch. A formal architecture provides more opportunities 
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compared to a random architecture to avoid fruiting in the vertical trunk/leader and 
to keep most of the fruit hanging down a fruiting branch and be located at the sur-
face of the canopy (Hu et al. 2020). For a shake-and-catch mass harvesting system, 
a formal architecture provides an opportunity to shake only targeted fruiting 
branches and catch the fruit just under those branches, which has the potential to 
keep fruit quality at a desirable level for the fresh market (He 2018).

16.2.4  Case Study 1: Canopy-Machine Interaction 
in Mechanical Harvesting of Apples

Due to the extensive labor requirements for harvesting fresh market fruits, there is a 
burgeoning demand for mechanical harvesting solutions. Among all options, vibra-
tory shake-and-catch mechanical harvesters have a huge potential to be adopted for 
a wide variety of tree fruit crops, such as apples and cherries. However, none of the 
harvesting technologies studied in the past have been fully adopted in commercial 
orchards for fresh market crops due to low harvest efficiency and/or high fruit dam-
age, which may be primarily attributed to the complexity of canopy architectures 
(Zhang et al. 2018a, b). A transdisciplinary research was conducted at Washington 
State University (WSU) to test the hypothesis that strategic dormant pruning of 
apple fruiting branches (trained in formal vertical tree architecture; Fig. 16.6a) can 
enhance fruit removal efficiency (FRE) of vibratory mechanical harvesting systems. 
The primary goal is to study the influence of a dormant pruning strategy (i.e., prun-
ing all lateral branches to a maximum length) on the performance of a vibratory 
mechanical harvesting system.

A vibratory mechanical harvesting system (Fig. 16.5a) composed of a hydrauli-
cally powered shake-and-catch platform was designed and fabricated by the WSU 
team in 2016 (He et al. 2017). This platform consisted of three major components: 
a four-wheel hydraulically driven self-propelled orchard platform (OPS, Blueline, 
Moxee, WA), a hydraulically driven vibratory shaker modified from a commercial 
handheld reciprocating saw (MGG20016-BA1B3, Parker Hannifin Corp., Mayfield 
Heights, Ohio, and SP200, Stihl Inc., Virginia Beach, VA), and an in-house designed 
and fabricated fruit catching and collection system with two three-layered support-
ing frames and six catching surfaces padded with cushioning foams. The vibratory 
shaker was installed on a sliding mechanism that could be moved in and out to reach 
targeted branches. Each catching surface was 2.50 m × 1.20 m with an adjustable 
elevation angle.

The proposed two pruning strategies applied to the branches were maximum 
15 cm (guideline 1; G1) and maximum 23 cm pruning (guideline 2; G2), respec-
tively. When branches were treated with G1, all fruiting shoots were pruned to be no 
longer than 15 cm, and when branches were treated with G2, all shoots were pruned 
to be no longer than 23 cm (Zhang et al. 2018a, b). In a commercial operation, G2 
pruning is close to the commonly applied pruning length in Pacific Northwest apple 
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orchards (Fig. 16.7a). Pruning activity was performed in winter 2016 by a set of 
skilled orchard workers. The resulted shoot length distribution could be found in 
Fig. 16.7b.

The overall FRE of 91% was achieved with shoots pruned at G1, which was 
significantly higher than that of 81% with shoots pruned at G2 (Fig. 16.8a). With 
increased shoot length, FRE significantly and continuously decreased from about 
98% to 56% (Fig. 16.8b). These findings verified the primary hypothesis that shorter 
shoots could improve the FRE without sacrificing the quality of harvested fruits in 
shake-and-catch harvesting of apples. Based on the results obtained in this study, an 
FRE of 85% or greater can be achieved if the pruning strategy of G1 is applied in 
vibratory mechanical harvesting. The results also showed that a minimum of 91% 
marketable fruit quality could be achieved for fresh market.
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Fig. 16.7 An example of dormant pruning by skilled workers with specific guidelines (a) and 
resulted histograms and cumulative distributions for shoot length (b) (from Zhang et al. 2018a, b)
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16.3  Technologies for Machine-Canopy Interaction Studies

Crop growth usually varies both spatially and temporally in a field, and farmers are 
trying to minimize farming inputs and maximize their profits by performing field 
operations only in the right place at the right time. To enable farmers to perform 
their time-sensitive, site-specific operations precisely, it requires various tools to 
support them in making effective decisions based on both spatial and temporal crop 
variabilities. As the world has witnessed rapid advancement in sensing technolo-
gies, artificial intelligence (including deep learning), computational infrastructure 
(including cloud computing), and robotic technologies in recent decades, various 
industries have been increasingly adopting smart and autonomous solutions. These 
technologies have also been and will continue to facilitate development and testing 
of smart, robotic solutions for farming including decision support tools.

Sensing is always an essential element in agricultural automation and robotics. 
In orchard automation, sensors are frequently used to measure the microclimate, 
quantify tree-absorbed sunlight, detect fruit location in tree canopies, and monitor 
fruit development, in addition to measuring soil properties and various crop stresses 
(Zhang 2018). For example, satellite-, aerial-, or ground vehicle-based crop moni-
toring or scouting technologies provide farmers with the capability of obtaining 
adequate spatial and temporal resolution of field data for various precision agricul-
ture applications, such as plant biotic/abiotic stress monitor or disease control (more 
in Chaps. 5 and 6). Attributing to those agricultural industry accomplishments, the 
practice of investigating machinery-canopy interaction has been making some 
progresses.

16.3.1  Information Technologies for Decision-Making 
in Machine-Canopy Interaction

Information technology-based computational and sensing applications have become 
a trend in agriculture, including the utilization of global positioning systems (GPS; 
see Chap. 3), satellite and/or unmanned aerial systems (UASs), geographic informa-
tion system (GIS), machine/computer vision (see Chaps. 2 and 3), artificial intelli-
gence (AI) (including deep learning such as convolutional neural networks or 
CNNs; see Chap. 13), and infrared/multi-/hyper-spectral optical sensing systems 
(see Chap. 4), among others. Some of the technologies could be incorporated and 
used for multiple purposes. Figure  16.9a showed an example of using an UAS 
equipped with various sensing elements, such as thermal and/or multi-spectral cam-
eras, scouting a commercial UFO sweet cherry orchard to monitor the water stress 
on the crop field. The area in the center of Fig. 16.9b has been identified as water 
stressed as shown by the higher temperature in those trees compared to others. Such 
stresses could be easier to be observed or estimated due to the uniform fruiting-wall 
structure of UFO tree architecture. If conventional cherry trees were used, the 
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temperature at only the top of the canopy would be monitored in the orchards, which 
could heavily lower the accuracy and reliability of the monitoring process.

Information technology could always help the researchers to see the facts beyond 
the existing phenomenon between machineries and crops and to obtain more accu-
rate and spatially consistent data for better understanding and/or decision-making in 
real time. The following two case studies will exemplify how information technolo-
gies could help with understanding and investigating machinery-canopy interac-
tions in tree fruit harvesting.

16.3.2  Case Study 2: Machine Learning in Canopy Parameter 
Identification for Mechanical Apple Harvesting

As discussed in Case Study 1 (Sect. 16.2.4), a mass mechanical harvesting approach 
for apples offers an alternative and promising solution. In addition to harvester 
design elements, it is equally important to understand the key canopy parameters of 
apple trees as they are closely integrated and interact with each other during the 
harvesting process (Zhang et al. 2020a, b). The shaking process when such interac-
tions occur was normally very short (i.e., a few seconds). The primary goal of this 
research was, therefore, to identify the most relevant canopy parameters affecting 
the fruit removal efficiency of mechanical harvesting of apples using supervised 
machine learning algorithm and principal component analysis (PCA). The study 
was conducted with vertically trained “Scifresh” (Fig. 16.6a) and V-trellised “Envy” 
(Fig. 16.6b) apple trees. Figure 16.10 showed a typical canopy structure in a modern 
commercial apple orchard during harvest season, where 11 physically measured 
canopy parameters were identified, which included 4 branch parameters, 4 fruit 
parameters, and 3 shoot parameters.

Fig. 16.9 Examples of using an unmanned aerial system (UAS) equipped with various sensors 
(e.g., thermal and multispectral cameras) scouting a commercial UFO sweet cherry orchard (a) and 
the corresponding thermal image for monitoring the water stress of the trees (i.e., lighter area in the 
center of the image) (b) in Washington State, USA
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A complete definition of each parameter is provided as follows: (1) branch 
length, denoted as “BLength,” refers to the full length of the branch from the base 
to the end; (2) branch basal diameter, denoted as “BBasalD,” refers to the diameter 
of the base of the branch; (3) branch middle diameter, denoted as “BMiddleD,” 
refers to the diameter of the middle of the branch; (4) branch end diameter, denoted 
as “BEndD,” refers to the diameter of the end of the branch; (5) fruit load, denoted 
as “FLoad,” refers to the fruit number per branch; (6) fruit density, denoted as 
“FDensity,” refers to the fruit number per centimeter of the branch; (7) fruit loca-
tion, denoted as “FLocation,” refers to the distance from the fruit to the vibrating 
location of the branch; (8) fruit single mass, denoted as “FSingleMass,” refers to the 
mass of a single fruit; (9) shoot length, denoted as “SLength,” refers to the full 
length of the shoot from the base to the end; (10) shoot basal diameter, denoted as 
“SBasalD,” refers to the diameter of the base of the shoot; (11) shoot index, denoted 
as “SIndex,” refers to the ratio of a shoot basal diameter to its length (Zhang et al. 
2020a, b).

Figure 16.11 shows four examples of the actual probability distributions of the 
manually measured canopy parameters in terms of “mechanically harvested” and 
“mechanically unharvested” apples when harvested with a mechanical shaking sys-
tem. The distributions may indicate the possible relationship between certain can-
opy parameters and fruit removal results. For example, some parameters (e.g., 
“FLoad” – fruit load per branch) showed noticeable differences in actual distribu-
tions between “harvested” and “unharvested” apples as presented in Fig. 16.11b, 
indicating they might heavily influence the harvest result. While some other param-
eters (e.g., “FLocation” – the distance from fruit location to the branch base) were 
almost completely overlapped as can be seen in Fig. 16.11c, which suggested that 
these parameters may not substantially affect the harvest outcomes.

Supervised machine learning techniques such as support vector machines 
(SVM), decision trees, and k-nearest neighbors (kNN) classifiers are commonly 
used in data classification and regression studies for many other applications 

Fig. 16.10 A typical canopy structure in a modern commercial apple orchard during harvest sea-
son, where 11 physically measured canopy parameters were identified, which include (1) 4 branch 
parameters, (2) 4 fruit parameters, and (3) 3 shoot parameters (from Zhang et al. 2020a, b)
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(Chlingaryan et al. 2018; Gongal et al. 2015). Unlike unsupervised machine learn-
ing (where only unidentified clusters of the dataset are created), supervised machine 
learning models use input-output dataset of known object classes or systems to 
“learn the pattern” from example responses (more details on Chap. 13). Application 
of supervised learning for identification of canopy parameters influencing fruit 
removal efficiency included three major steps of (i) data preparation, (ii) model 
training, and (iii) model testing.

As illustrated in Fig. 16.12, first, all ground-truth data points of canopy parame-
ters were standardized into zero mean using the technique introduced by Breiman 
(2001) and then were used as system inputs for two apple cultivars used in this 
work. Principle component analysis (PCA) was applied to reduce the number of 
dimensions in dataset before the use of supervised machine learning. The prepro-
cessed data were then used to train and test selected supervised learning technique; 
85% of randomly selected data samples were used for model training, and the 
remaining 15% of the samples were used as new dataset for model testing. Binary 
classes were used as the known responses to evaluate the accuracy in predicting the 
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Fig. 16.11 Four examples of actual probability distributions of manually measured canopy 
parameters (i.e., a branch parameter (a), two fruit parameters (b–c), and a shoot parameter (d)) in 
terms of mechanically “harvested (-Ha)” and “unharvested (-Un)” apples in mass mechanical har-
vest (Adapted from Zhang et al. 2020a, b)

X. Zhang et al.



431

results. In addition, PCA was then used to examine the cumulative explained vari-
ances and coefficients of principal components (PCs), where cumulative explained 
variance represents the interpretation of the PCs against the entire dataset being 
explained. Once the model testing was completed, a few PCs of canopy dataset were 
identified by those PCs (Wold et al. 1987), which were used to determine key can-
opy parameters based on ranked coefficients of PCs.

In the canopy parameter dataset used in Case Study 2, it was assumed that if the 
target apples were physically alike (with similar geometric parameters) or were 
located at canopy areas with similar canopy parameters, the similar learning weights 
could be assigned to them as they would have similar likelihood of being removed 
(or not) during shake-and-catch harvesting. Based on this assumption, kNN learning 
algorithm was first considered due to its outstanding performance (Kurtulmus et al. 
2014) in classifying the objects based on the classes their nearest neighbors belong 
to and its predictive assumption that the objects near each other share similar char-
acteristics. After some trial and error, a weighted kNN (w-kNN) was finalized as the 
modeling framework for this study. Bayesian optimization algorithm was used to 
optimize the hyper-parameters of the w-kNN model in making skillful predictions 
(Snoek et al. 2012). The optimization procedure was completed (EI(x,Q), Eq. 16.1) 
over 30 distance metrics of evaluations, such as “spearman,” “hamming,” “jaccard,” 
and “cityblock,”

Fig. 16.12 Overall flowchart of identifying key canopy parameters using a supervised machine 
learning model and principal component analysis (PCA) (Adapted from Zhang et al. 2020a, b)
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which evaluates the expected improvement in the objective function (fobj) and 
ignores the values that could cause an increase in the function. xbest and μQ(xbest) 
represent the location of the lowest posterior mean and the lowest value of the pos-
terior mean, respectively.

The minimum observed and estimated values were compared by evaluating the 
objective function (fobj  =  log(1  +  cross validation loss)), where the function was 
expected to be minimized close to zero. Five distance metrics were then selected as 
the best evaluation measures (with minimum values of fobj and shorter computa-
tional time). Finally, the most feasible distance metric was determined as “city-
block” (Eq. 16.2). This distance metric was used to locate the nearest neighbors in 
w-kNN due to its minimum number of neighbors (k = 1) and estimated fobj value 
(minimum errors = 0.187) with short computational time of 0.15 s
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where dst represents the distance between two row vectors (sum of the absolute dif-
ference; each row is one feature vector forming one test sample) in Cartesian coor-
dinates for a random row vector xs and another random row vector xt in a given 
m-by-n data matrix (s = 1, 2, …, m; and t = 1, 2, …, m; where s and t are different 
values), n = 11, and p = 1.

Using this technique, overall, 2678 ground-truth data points were classified into 
two classes of fruit removal status: mechanically “harvested” and “unharvested” 
apples, and test accuracy achieved was up to 91%. Assuming a parameter coeffi-
cient in PCs greater than 0.5 as being highly relevant (based on the empirical studies 
(Jolliffe 2011)), canopy parameters including “fruit load per branch,” “branch basal 
diameter,” and “shoot length” showed higher relevancy for shake-and-catch apple 
harvesting technology in terms of fruit removal in “Scifresh” apples (Table 16.2; 
Zhang et al. 2020a, b).

The results, in general, demonstrated that the development of mass mechanical 
harvesting technology should always be pursued in close interaction with the opti-
mization of crop/canopy architecture, as canopy parameters play a critical role in 
the overall success of the harvesting technology. More specifically, results indicated 
that different canopy parameters respond differently to the shaking signal used in 
shake-and-catch harvesting (Zhang et al. 2020a, b). Results also suggested that the 
higher fruit load/density with larger basal diameter of branch and shorter fruiting 
offshoot could potentially result in a higher mechanical harvesting efficiency as 
observed from the probability density of samples collected for mechanically “har-
vested” and “unharvested” apples. The key canopy parameters identified in Case 
Study 2 could potentially be considered to create guidelines for crop/canopy man-
agement for improved harvesting efficiency.
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16.3.3  Case Study 3: Machine Vision in Mechanical 
Apple Harvesting

As discussed before, development and adoption of mechanical harvesting solutions 
(e.g., shake-and-catch systems) is essential for addressing the challenge of uncer-
tain availability of seasonal semiskilled labor around the world. One of the limita-
tions of shake-and-catch harvesting systems developed in the past has been the time 
taken to position the shaking end-effector and the catching device at appropriate 
locations within tree canopies. To address this challenge, some studies have been 
conducted in the past by a research team at Washington State University (Zhang 
et al. 2018a, b). This study provided a capability for automated branch detection 
using deep learning-based computer vision system; however, one of the drawbacks 
is that the study was conducted in the dormant season. In order to apply this method 
during the harvest season under the full foliage conditions, an additional positioning 
system (e.g., GPS or LiDAR) and the attitude sensor will be needed to relocate the 
movement path that was used during the dormant season. An alternative and more 
efficient way is to directly detect the target branches during harvest seasons (e.g., 
Amatya and Karkee 2016), which is more challenging due to the heavy occlusion 
from leaves and fruit clusters. To further address this challenge, the potential of 
using a computer vision system based on a deep learning technique will be dis-
cussed in Case Study 3 for automated identification and localization of desired geo-
metric features of tree canopies during harvest season (Zhang 2020; Zhang et al. 
2019a, b).

A large number of studies with the application of deep learning have been con-
ducted in agriculture in recent years. Detailed discussion on this technique, as men-
tioned before, can be found in Chap. 13. Reported studies are focused around image 

Table 16.2 Coefficients of the first five principal components (PC1–PC5) for “Scifresh” with 11 
canopy parameters

Scifresh Parametersa PC1 (29.9%) PC2 (18.4%) PC3 (14.4%) PC4 (9.9%) PC5 (7.6%)

1 BLength 0.398 −0.279 −0.543 0.073 −0.012
2 BBasalD 0.382 0.327 −0.125 −0.285 0.271
3 BMiddleD 0.360 0.491 −0.160 −0.201 0.168
4 BEndD 0.212 0.593 0.161 0.340 −0.321
5 FLoad 0.542 −0.340 0.205 0.000 0.004
6 FDensity 0.417 −0.227 0.632 −0.030 −0.049
7 FLocation 0.218 −0.177 −0.424 0.218 −0.441
8 FSingleMass −0.013 0.132 0.014 0.389 −0.188
9 SLength 0.063 −0.018 0.020 0.722 0.505
10 SBasalD 0.035 0.078 0.123 0.096 −0.404
11 SIndex −0.008 0.017 0.023 −0.166 −0.381

aA parameter with an absolute value of coefficient above 0.5 (in bold type) was deemed highly 
relevant
Adapted from Zhang et al. (2020a, b)
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processing for agricultural applications due to its outstanding accuracy and robust-
ness (e.g., ~41% higher overall classification accuracy compared to most of the 
conventional image processing algorithms; Kamilaris and Prenafeta-Boldú 2018). 
Convolutional neural networks (CNNs) are one of the most applied deep learning 
techniques due to their capabilities in processing high-resolution image data with 
reasonable computational time, which is made possible by network weight sharing 
among numerous convolutional layers. The primary goal of Case Study 3 is to pre-
cisely identify and locate the tree branches/trunks and to estimate suitable shaking 
locations in dense foliage tree canopies for automating mass mechanical harvesting 
systems for apples.

A Kinect imaging sensor (Kinect V2, Microsoft Inc., Redmond, WA) that con-
sisted of red-green-blue (RGB), depth, and infrared channels was used in this study 
(Fig. 16.13a), which is both relatively stable in outdoor environment and economi-
cally affordable. The RGB camera images are helpful in object detection with color 
and other associated features. The depth camera, which operates in Time-of-Flight 
principle (see Chap. 3 for more details), recorded 3D information of the scene using 
infrared laser signals (Zhang et al. 2020a, b; Fig. 16.14a). The maximum effective 
pixel resolution of Kinect for RGB sensor was 1920 × 1080 and for depth sensor 
was 512 × 424. A customized platform mounted on an electric Toro Utility Vehicle 
was used for image acquisition. The camera was positioned orthogonal to the target 
canopies in both V-axis and vertical tree architecture systems. The distance from the 
camera to the center of the target canopies was maintained around 1.1–1.2 m to 
optimize the visualization of the tree trunks and branches (Fig. 16.13b) (Zhang 2020).

Some preprocessing steps have been applied to the acquired images before using 
them as the inputs to CNNs. For example, the image background was removed by 
applying a depth threshold (Fig. 16.13c). Images were then annotated to group pix-
els into one of the four different classes of interest: (i) tree branches, (ii) apples, (iii) 
tree trunks, and (iv) background (mostly leaves) (Fig. 16.14b). In total, a dataset of 
674 “Fuji” images were collected, which were then divided into 70%, 15%, and 
15%, respectively, for network training, validation, and testing.

In this study, pretrained deep learning networks were adopted and fine-tuned to 
the apple canopy images for semantic segmentation of individual pixels into spe-
cific classes (Fig. 16.13d). One of the most efficient CNNs was used in this study: 
DeepLab v3  +  ResNet-18 (i.e., one of the typical directed acyclic graph (DAG) 
networks; originally with 72-layer of ResNet-18) (Chen et al. 2017, 2018). ResNet 
is a CNN developed by He et al. (2016) and was the winner of 2015 ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC). This model extensively utilizes the 
batch normalization layers (to accelerate the network training) but lacks fully con-
nected layers (layers that have full connections to all activation channels in the 
previous layer) at the end of the architecture. Figure 16.15 visualizes the overall 
architecture of the modified DeepLab v3+ ResNet-18 (with 101-layer after DeepLab 
v3 was added; abbreviated as ResNet-18 in the following content) and the activation 
channels of the convolutional layers used in this work. The entire architecture can 
be divided into 16 processing blocks, from the initial steps of feeding RGB-D 
images to the network at B1, to the final steps in B16 where the last layer of the 
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Fig. 16.13 Overall machine vision pipeline for branch detection including a Kinect V2 imaging 
sensor (a), image acquisition (b), preprocessing (c), and applications of the convolutional neural 
networks (CNNs) in processing the collected data (d) (from Zhang 2020)

(a) (b)

Branches

Apples

Leaves

Trunk

Fig. 16.14 An illustration of canopy point cloud data acquired from the orchard (a) and corre-
sponding pixel-wise annotated (ground-truth) image (b) (from Zhang 2020)
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network maps the non-normalized output to a probability distribution of the pre-
dicted output classes. Eventually, all positive activation channels for four classes of 
“branches” (Fig.  16.16a), “apples” (Fig.  16.16b), “leaves” (Fig.  16.16c), and 
“trunks” (Fig. 16.16d) were displayed, which confirmed that the modified ResNet-18 
was working effectively to segment out all classes of interest by automatically 
learning their features.

The performance of ResNet-18 model was evaluated using per class accuracy 
(PcA), which measures the proportion of correctly classified pixels (Fig. 16.17a). In 
addition, intersection over union (IoU) (a measure of the overlaps between pre-
dicted classes and the ground-truth) and boundary-F1 score (BFScore; a measure of 

Fig. 16.15 Convolutional neural network (CNN) architecture used in Case Study 3 based on 
DeepLab v3+ ResNet-18 (Adapted from Zhang 2020)

Fig. 16.16 Positive activation channels for four classes: (a) “branches,” (b) “apples,” (c) “leaves,” 
and (d) “trunks” at “B15” in Fig. 16.15 of DeepLab v3+ ResNet-18 (from Zhang 2020)
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how well the boundaries were preserved) were used. When the ResNet-18 model 
was tested with full resolution images, a mean PcA of 97%, a mean IoU of 0.69, and 
a mean BFScore of 0.89 per image basis were achieved for images collected in a 
V-trellised “Fuji” apple orchard. The network performance on per class basis was 
also good in segmenting “branches” and “trunks” out (Fig. 16.17b). For example, 
the IoUs for “branches” and “trunks” were 0.40 and 0.63, individually, and the same 
were 0.78 and 0.96 for “apples” and “leaves” (Zhang 2020). The results were con-
sidered satisfactory because they referred to a 57% and 77% overlap between pre-
dicted and ground-truth segments for branches and trunks, which meant that the 
actual trajectories of branches and trunks could be described within the tolerance of 
an end-effector of the shaking harvester.

16.4  Summary and Concluding Thoughts

Fruit crop production is a highly competitive agricultural industry worldwide with 
growers seeking more effective and efficient methods to precisely and automatically 
(when possible) manage their orchard operations to remain competitive in the inter-
national market. Also, there is little doubt that SNAP (simple, narrow, accessible, 
productive) fruit tree/canopy architectures will be favored in the next decades due to 
their excellent light interception, uniform distribution of fruit and other canopy 
parts, machine-friendlier configurations, and improved production efficiencies. 
However, development of any orchard machineries without understanding its inter-
action with canopies would lead to a suboptimal or even impractical solutions. At 
the same time, lack of understanding and consideration of desired canopy features 
for machine operations during new canopy development is going to lead to a canopy 
system that may be inefficient for mechanization, automation, and robotic opera-
tions. As we continue to develop and adopt advanced mechanization and 
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Fig. 16.17 Normalized confusion matrix comprising the pixels in the true class and the predicted 
class based on the segmentation results generated by modified DeepLab v3+ ResNet-18 model (a) 
and an example test result of segmentation model used (b) (from Zhang 2020)
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automation technologies and improved canopy architectures in fruit crop farming, 
it’s more important than ever to understand various aspects and extents of machin-
ery-canopy interactions and utilize such understanding in future research and 
development.

This chapter provided a unique perspective on discussing how the efficiency of 
overall systems could be maximized in tree fruit crops (e.g., apples and sweet cher-
ries) by putting both biological/horticultural and engineering considerations 
together. The preliminary studies and experiences of the authors indicated a positive 
impact of various cropping system practices and operations on improving the effec-
tiveness, applicability, and feasibility of orchard machinery technologies.

Traditionally, scientists and engineers primarily aimed at improving the effi-
ciency of the orchard machineries without much consideration of the potential 
effects regarding the crop architectures and canopies. It is important to note that 
mechanical or robotic orchard machinery could only operate at maximum produc-
tivity and efficiency in high-density orchard blocks with organized, uniform, and 
accessible fruit tree architectures. In fact, the prospect of designing orchards to 
readily adopt significant automation, mechanization, and/or robotics technologies 
in tree fruit production is compelling – adoption to date has lagged behind other 
agricultural industries despite the high labor requirement for tree fruit production. It 
may be argued that one of the key factors inhibiting the utilization of automation 
technologies is the aged and complex and largely random orchard systems that are 
common in the majority of fruit-growing regions around the world.

For example, the concept of mass mechanical harvesting technology has been 
studied for decades since the early 1960s. However, no commercial success has 
been achieved yet for fresh market fruit harvesting. In recent years, development 
and adoption of formal tree architecture (Figs. 16.5a and 16.18; see Sect. 16.2.2 for 
more details) orchards provided a great opportunity for further developing such 
harvesting technology. In this architecture, most of the fruits would grow along the 
horizontally trained branches and be present at the surface of the canopy. As illus-
trated in Figs. 16.5a and 16.18, a multilayer harvesting approach could be used for 
mass mechanical harvesting that can be confined within the target branches. Such 
tree architectures offer an environment for achieving the improved fruit removal 
efficiency and fruit quality with the multilayer, targeted shake-and-catch harvesting 
machine by vibrating the individual branches with optimal frequency and amplitude 
and catching fruit right underneath, thus decreasing the likelihood of fruit damage.

Inspired by the potentials of crop canopies developed with due consideration of 
various aspects of machinery-canopy interactions in apples and sweet cherries as 
discussed above, other tree fruit growers (such as citrus growers) have also started 
planting and experimenting with trellised crop systems in California, Florida, and 
Israel. Undoubtedly, machine-canopy interaction is an emerging topic of research in 
agricultural mechanization and robotics, which lays the foundation for achieving 
effective mechanized/automated perennial crop production.

In future work, systematic research efforts should be directed toward closer and 
deeper understanding and consideration/implementation of interactions and integra-
tions between orchard machinery and tree fruit crops to determine the most suitable 
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site-specific setups and horticultural practices for further development of orchard 
machinery/automation. During this process, the standardized criteria of orchard/
canopy configuration could be established for different tree fruit crops in different 
fruit-growing regions worldwide. In addition, mechanized or automated solutions 
should also be developed to create and maintain desired crop and canopy manage-
ment architecture (such as robotic tree training and pruning) so that issues related to 
unreliable seasonal human labor sources and rapidly increasing labor costs would 
not impact the capability in creating machine-friendly canopies (Zhang et  al. 
2019a, b).

Where to Look for Further Information
Currently, researchers at Washington State University (WSU), Center for Precision 
and Automated Agricultural Systems (CPAAS), have been working on the related 
topics of machinery-canopy interactions on tree fruit crops, specifically for apples 
and sweet cherries (http://cpaas.wsu.edu/). Some publicly accessible image datasets 
(e.g., relevant to Sect. 16.3.3) could be downloaded from WSU #AgRobotics 
Laboratory Research Exchange common portal (https://research.libraries.wsu.edu/
xmlui/handle/2376/17718). The readers could refer to the following book chapters, 
PhD dissertations, and journal or conference publications to look for further 
information.

• Karkee, M., Silwal, A. & Davidson, J.R. (2017). Mechanical Harvest and In-field 
Handling of Tree Fruit Crops. In Automation in tree fruit production: Principles 
and practice.

• Whiting, M. D. (2018). Precision orchard systems. In Automation in Tree Fruit 
Production: Principles and Practice (pp. 75–93). CABI Wallingford, UK.

Fig. 16.18 An illustration of a trellis-trained, formal, fruiting-wall tree architecture, which is con-
sidered well-suited for multilayer, targeted shake-and-catch mechanical apple harvesting. More 
details on formal architecture can be found in Sect. 16.2.2. With this architecture, most of the fruits 
would grow along the horizontally trained branches and be present at the surface of the canopy 
(from Zhang 2020)
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• Zhang, X. (2020). Study of canopy-machine interaction in mass mechanical har-
vest of fresh market apples. PhD Dissertation. Pullman, USA: Washington State 
University, Department of Biological Systems Engineering.

• Zhang, X., Fu, L., Karkee, M., Whiting, M. D., & Zhang, Q. (2019). Canopy 
Segmentation Using ResNet for Mechanical Harvesting of Apples. IFAC- 
PapersOnLine, 52(30), 300–305.

• Zhang, X., He, L., Karkee, M., Whiting, M. D., & Zhang, Q. (2020). Field evalu-
ation of targeted shake-and-catch harvesting technologies for fresh market apple. 
Transactions of the ASABE, 63(6), 1759–1771.

• Zhang, X., He, L., Majeed, Y., Karkee, M., Whiting, M. D., & Zhang, Q. (2018). 
A precision pruning strategy for improving efficiency of vibratory mechanical 
harvesting of apples. Transactions of the ASABE, 61(5), 1565–1576.

• Zhang, X., He, L., Zhang, J., Whiting, M. D., Karkee, M., & Zhang, Q. (2020). 
Determination of key canopy parameters for mass mechanical apple harvesting 
using supervised machine learning and principal component analysis (PCA). 
Biosystems Engineering, 193, 247–263.
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