
Chapter 7
A Gödelian Hunch from Quantum
Theory

Hippolyte Dourdent

7.1 Introduction

In classical logic, self-referring propositions can lead to pathologies such as the
well-known Liar paradox “This sentence is false.” Because it features an over-
determination—if the sentence is true then it is false, if it is false then it is true—the
“Liar” leads to undecidability, the impossibility to decide whether the sentence is
true or false. Analogs have been famously used in the foundations of mathematical
logic, from Russell’s paradox to Gödel’s incompleteness theorem, passing by Tarski
and Gödel undefinability theorem.1

In [1], Szangolies points out that “an intriguing connection between fundamen-
tal features of quantum mechanics and the phenomena of self-reference” might be
established. The expression “Gödelian hunch” is coined to describe “the idea that
the origin of the peculiarities surrounding quantum theory lie in phenomena related,
or at least similar, to that of incompleteness in formal systems.”What if the paradox-
ical nature of quantum theory could find its source in some undecidability analog
to the one emerging from the Liar ? This essay aims at arguing for such quantum
Gödelian hunch via two case studies: quantum contextuality as an instance of the
Liar-like logical structure of quantum propositions; and the measurement problem
as a self-referential problem.

Quantum contextuality results from a theorem established byKochen and Specker
[2], which shows that a quantum measurement cannot reveal a pre-existing value of
a measured property independently of the measurement context. Using a narrative
based on the Newcomb problem [3], the theological motivational origin of this result

1The undefinability theorem stipulates that any description of the truth of a proposition must be in
a richer metalanguage than the language in which the proposition itself is stated; this hierarchy of
languages arising as a solution of the Liar.
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is introduced in order to show how the theorem might be related to a Liar-like
undecidability (Sect. 7.2). I will also briefly present a topological generalization of
contextuality [4] such that non-locality (Bell’s theorem [5]) can be treated as a special
case. In this approach, the logical structure of quantum contextuality is compared to
sequences of cyclically referring statements, “Liar cycles”, which, associated with a
truth predicate, lead to a logical contradiction [6].

The measurement problem is often presented as a tension between the linear and
deterministic evolution of the wave-function following the Schrödinger equation and
the projection postulate or theBorn rule. Nevertheless, the problemwas also analyzed
as emerging from a logical error, and occurs because no distinction is made between
theoretical and meta-theoretical objects. I will present my analysis of the Wigner’s
friend thought experiment [7] and a recent paradox by Frauchiger and Renner [8],
introducing the notion of “meta-contextuality” as a Liar-like feature underlying the
neo-Copenhagen interpretations of quantum theory (Sect. 7.3).

Finally, this quantum Gödelian hunch opens a discussion of the paradoxical
nature of quantum physics (Sect. 7.4) and the emergence of time itslef from self-
contradiction (Sect. 7.5).

7.2 A Gödelian Hunch from Quantum Contextuality

In 1960, Specker submitted a paper entitled “Die Logik nicht gleichzeitig entscheid-
barer Aussagen” [9] (translated as “The logic of propositions not simultaneously
decidable” [10]). Inspired by Birkhoff and von Neumann’s axiomatic approach
to derive quantum theory from non-classical “experimental propositions” adapted
to the experimental result of quantum mechanics, Specker asks: “Is it possible to
extend the description of a quantum mechanical system through the introduction of
supplementary—fictitious—propositions in such a way that in the extended domain
the classical propositional logic holds [...] ?” The answer is negative, “except in the
case of Hilbert spaces of dimension 1 and 2.” A fruitful collaboration with Kochen
will culminate in an enriched reformulation of Specker’s result, today known as
the Kochen-Specker theorem [2]. Thus, either a measurement reveals a pre-existing
value of a measured property depending on the measurement context (quantum con-
textuality), or such value is unpredictable2 [12].

7.2.1 Counterfactual Undecidability

In his seminal work, Specker noticed an analogy between these simultaneously unde-
cidable propositions of quantum theory and the undecidability of counterfactual

2 For example the outcome might be brought-into-being by the act of measurement itself, “Unper-
formed measurements have no results.” [11]
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propositions.3 Hence, the question of an extension of quantum propositions in clas-
sical logic is paralleled with:

“the scholastic speculations about the “Infuturabilien” [...], that is, the question
whether the omniscience of God also extends to events that would have occurred
in case something would have happened that did not happen. (cf. e.g. [3], Vol. 3, p.
363.)” [10]. Can an omniscience extend to counterfactual propositions ? A possible
positive answer is given by the reference “([3], Vol. 3, p. 363) [13]”. The latter leads
to a chapter on molinism, describing an unorthodox form of omniscience proposed
by scholastics in order to conciliate God’s foreknowledge and human’s free will.
According to this view, God’s knowledge of counterfactual facts, i.e. facts condi-
tioned on our free choices, precedes God’s knowledge of actual facts. God already
has knowledge of our free acts, but our free acts have a counterfactual power on
his knowledge. If God had predicted that you will make a certain choice A, it may
nevertheless have been in your power to do something, such that were you to do it,
God would not have predicted this peculiar choice A. In a sense, God’s omniscience
and human free will can co-exist at the condition that the former is contextualized
by the latter.

In order to illustrate the afored mentioned analogy, I propose the following narra-
tive. We invoke an omniscient demon whose omniscience extends to counterfactual
propositions. Two observables A and B are given to a free agent, Alice. Alice can
choose to measure the observable B in two contexts: C1 := (A, B) or C2 := (B).
Beforehand, the demon has predicted her choice and, based on it, has assigned a
value to B: v(B)|C1 = 0 or v(B)|C2 = 1. Alice measures the value of the observable
in one of the contexts, and assume that she verifies that the demon’s prediction is
correct. One can then ask the counterfactual question: what would have happened if
she had chosen the other context ? Two solutions are possible:

• (a) “If Alice had chosen the other context, she would have found a different value
for B.” In this case, the omniscience of the demon may extend to counterfactuals.
But this implies that either Alice is not free of her choices (superdeterminism), or
the omniscience of the demon is conditioned by the context she chooses (molin-
ism).

• (b) “If Alice had chosen the other context, she would have found the same value for
B.” In this case, the omniscience of the demon does not extend to counterfactuals.
The demon would have been wrong. Because its essence is defined by its function,
denying this function is an exorcism. Thus, the value of B is unpredictable.

This narrative is freely inspired by the Newcomb problem [3], a decision theory
problemwhere the values associated to the prediction correspond to distinct earnings
(e.g. v(A) = 10k$, v(B)|C1 = 1k$ and v(B)|C2 = 1M$), the problem arising from
the question of which choice allows Alice to maximize her gains. Interestingly,
Slezak observed that the problem might originate from a self-referential structure:
“Newcomb’s problem may be understood as a game against one’s self in which one’s

3 A counterfactual proposition is a special kind of conditional proposition which follows the struc-
ture: “If A′ would have happened instead of A, then B ′ would have happened instead of B.”
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Fig. 7.1 a Each corner of an individual bar represents an observable to which one assign a truth-
value. b Each observable is compatible with two other ones separately, and thus two local contexts
can be defined per observable. The truth values assigned to observables in a context are logically con-
sistent. c Each corner from {A, B,C, D, E} is mutually compatible with its two neighbours. How-
ever, the global picture of all bars glued together is an undecidable figure, the Penrose pentagone.
One cannot define a global context in which no truth-value assignment leads to a contradiction

choice is based on deliberations that attempt to incorporate the outcome of this very
choice. [...] This hidden circularity facing the decision-maker arises because, as
we contemplate our best move, we consider the demon’s decision, which is actually
based on this very choice we are trying to make.” [14]

A similar “circularity” lies under the counterfactual statements (a) and (b). It is
of course trivial to point out that nothing is quantum in the Newcomb narrative.
Yet, the non-Boolean logical structure of quantum theory yields analog conclusions:
either a value-assignement to all observables is contextual or one cannot assign pre-
defined values to all observables, i.e. these values are in general unpredictable. The
self-referential nature of these narratives hints at the presence of a similar circular
structure underlying quantum contextuality. Approaching contextuality as the fact
that quantum theory is based on intertwined Boolean algebras that cannot be embed-
ded in a global Boolean algebra highlights this Liar-like structure.

7.2.2 Topological Undecidability

In a topological approach of contextuality by Abramsky et al. [4] based on sheaf
theory and cohomology, contextuality emerges when data which are locally con-
sistent are globally inconsistent. One can illustrate this definition of contextuality
with famous undecidable figures such as the Penrose pentagone4 (Fig. 7.1). In this
construction, each pair of bars can be isolated and visualized without paradoxes. It is
only when one tries to interpret the figure globally that a visual obstruction emerges.

4 Warning: this is a figurative illustration which has a didactic purpose. Of course, sheaf-theoretic
contextuality cannot be reduce to this simple example. However, note that a proof of contextuality,
the violation of the KCBS inequality [15], shares a similar structure.
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As noticed in [6], there is a direct connection between contextuality and classical
semantic paradoxes called “Liar cycles”, defined as sequences of statements of the
form : [{S1, S2} true ; ... ; {SN−1, SN } true ; {SN , S1} false] with Si the i th assertion,
and {Si−1, Si } and {Si , Si+1} the two “local” contexts associated to this assertion.
Although every proof of the Kochen-Specker theorem features such logical global
obstruction, this generalized approach does not reduce to quantum contextuality, and
also incorporates non-locality as a special case. As an example, the Hardy paradox
[16] can be shown to entail contextuality, and thus feature a Liar-like logical structure.
The paradox involves two agents, Alice and Bob, who share a two-qubit system in a
specific entangled state. Each agent can choose to measure their respective qubit in a
computational {|0〉, |1〉} or a diagonal basis {|+〉, |−〉}with |±〉 = 1√

2
(|0〉 ± |1〉). The

initial entangled state can thus be written in four different basis, each corresponding
to a measurement context. For example, in the comput.-comput. basis, the state is:
|ψ〉 = 1√

3
(|00〉 + |10〉 + |11〉). Assuming that a predefined value can be associated

to a measured property when a result can be predicted with certainty, one can infer
the four following sentences, each associated to a measurement context (cf. detailed
construction in appendix):

Sentence H1: “If Alice obtains ‘−’, then Bob obtains ‘1’.” (diago.-comput. basis)

Sentence H2: “If Bob obtains ‘1’, then Alice obtains ‘1’.” (comput.-comput.
basis)

Sentence H3: “If Alice obtains ‘1’, then Bob obtains ‘+’.” (comput.-diago. basis)

Sentence H4: “Alice and Bob both obtain ‘−’ with a probability 1/12.”. (diago.-
diago. basis)

Assuming non-contextuality means that one can build inferences from these dif-
ferent sentences. For instance, from (H1, H2, H3), one can construct the sentence:
“If Alice obtains ‘−’, then Bob obtains ‘+’ ”. However, this sentence is incompatible
with H4. Thus, ((H1, H2, H3), H4) is globally inconsistent, and the paradox entails
contextuality. The following probabilistic5 Liar cycle can be formulated, assuming
that both Alice and Bob obtained ‘−’: Bob obtains ‘−’ and Alice obtains ‘−’→Bob
obtains ‘1’ → Alice obtains ‘1’ → Bob obtains ‘+’, contradicting the first assign-
ment. Note that in such contextuality scenario, the contradiction occurs at the level
of classical statements, inferred from quantum propositions. The assigned values are
both classical and meta-theoretical, in the sense that they are not part of quantum
theory. Hence, if one wants to attach meta-theoretical statements to quantum propo-
sitions, these statements cannot be embedded in a global Boolean one in general.
The non-Boolean logic of quantum theory contaminates the meta-theoretical state-

5 The Hardy paradox is a probabilistic Liar cycle because the contradiction only occurs with a
probability 1/12.
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ments, which become globally undecidable. I argue that this global undecidability
of quantum propositions is in favor of a quantum Gödelian hunch.

7.3 A Gödelian Hunch from the Measurement Problem

As expressed in the literature, there exists different measurement problems (cf. e.g.
[17]). The one we wish to tackle addresses “the question of what makes a measure-
ment a measurement. [...] There is nothing in the theory to tell us which device in
the laboratory corresponds to a unitary transformation and which to a projection !”
[17]. This measurement problem as been analyzed as a “logical error” emerging from
a a lack of distinction between theoretical and meta-theoretical objects [18]. Simi-
lar conclusions explicitly underlying an analogy between the measurement problem
and Gödel’s theorem have been made (cf. [1] for an overview). For example, Chiara
notices that such analysis could seem “to be very close to some similar limitative
results that we have accepted in logic such as the Gödel theorem (who realizes a
proof of the consistency of a well-behaved scientific theory, must be ‘external’ with
respect to the theory (in the sense that he cannot use only the proof theoretical tools
allowed by the theory)) or the Tarski theorem (who ‘grasps’ the concept of truth for
a well-behaved theory cannot speak only the language of the theory).” [19] I will
analyze the Wigner’s Friend thought experiment and the Frauchiger-Renner para-
dox -which shows that “a self-referential use of quantum theory yields contradictory
claims.” [8]—as sustaining this Gödelian hunch.

7.3.1 Wigner’s Friend, Universality, Meta-Contextuality and
Measurement

The measurement problem we are dealing with is usually formalized as follow.
Assume that a quantum system is in the state |ψ〉 = α|0〉 + β|1〉 ∈ HS . On the one
hand, following the projection postulate, the systemwill either be projected onto state
|0〉with probability |α|2, or state |1〉with probability |β|2 after the measurement. On
the other hand, if the “observer” (e.g. themeasuring device) is a physical system, then
it shall be described by quantum theory. One associate a Hilbert space HO to this
observing system.Defining |M〉 the observer state “ready to performameasurement”,
the initial state of the compound system inHS ⊗ HO is (α|0〉 + β|1〉) ⊗ |M〉. In this
case, the measurement process is described as an interaction between the system and
the device, and thus as a unitary transformation U , resulting in U [(α|0〉 + β|1〉) ⊗
|M〉] → α|0〉 ⊗ |M0〉 + β|1〉 ⊗ |M1〉. Because the two final states are physically
distinct, there seem to be a tension between the postulates of quantum theory, raising
the question of how should a measurement process be described.
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The Wigner’s Friend thought experiment [7] is a meta-illustration of this mea-
surement problem, which asks: what happens when an observer observes another
observer observing a quantum system ? A quantum system, e.g. a qubit living inHS ,
is given to an observer, Wigner’s friend, who can perform ameasurement on this sys-
tem in her laboratory. Outside her laboratory, another observer,Wigner, can associate
a quantum state to the compound system HS ⊗ HO , where HO is a Hilbert space
associated to Wigner’s friend, e.g. a memory qubit |Mi 〉 which can be interpreted as
“Wigner’s friend observes a projection on state |i〉”. The problem occurs from the
fact that while Wigner’s friend observes a collapse of the qubit, the measurement
process has been described as a unitary transformation from Wigner’s perspective.
However both descriptions should be valid. My analysis of this problem relies on
the following terminology. The quantum system is an object, since it is described
by quantum theory. Wigner’s friend is an observer, and as a user of quantum theory,
is a meta-theoretical object, in short a meta-object. Wigner is an observer who can
perform a measurement on systems of the form object ⊗ meta-object, and is thus a
meta-meta-object, or meta-observer. The problem seems to arise from the fact that
an observer and a meta-observer are lead to describe the same event in contradictory
ways. I introduce the notion ofmeta-context as a set of the form{meta-object,object}.
This set is defined by a movable cut between theoretical objects studied in the lan-
guage of the theory, and meta-theoretical objects which are out of the range of the
theory. In the Wigner’s friend paradox, two meta-context are involved: {Wigner’s
friend, HS} and {Wigner, HS ⊗ HO}.

The problem can be understood as follows. Firstly, quantum theory is assumed
to be correct and can be applied to any object whatsoever. Such assumption is
called quantum universality (Q). Secondly, one assumes that truth values given
by the propositions associated with an object are independent of the meta-context,
of whether the object is theoretical or meta-theoretical, i.e. the truth values are
non-meta-contextual (NMC).6 Maintaining (Q) and (NMC) leads to an absolute
form of universality: everything can be described by the theory, irrespective of the
meta-context, no cut is needed. But imagine an infinite chain of observers observing
observers observing a quantum system. Then, meta- ... -meta-observers are invoked,
ad infinitum. One could argue that the ultimate meta∞-object is God, or some Lapla-
cian demon. However, if such a demon can measure the whole Universe, then the
demon is necessarily excluded from the Universe in order to avoid Liar-like incon-
sistencies, independently of the considered theory. As shown by Breuer [21], if a
theory is considered to be absolutely universally valid, then the theory cannot be
experimentally fully accessible, due to self-referential problems. There is a tension
between absolute universality (Q,NMC), in which the measuring process might be
treated theoretically, and measurement as a meta-theoretical process. In the light
of this analysis, the most appealing solution is to drop (NMC) and acknowledge
the observer for what it is: a meta-object. This way, the notion of meta-observer
becomes obsolete, and the logical inconsistencies are avoided (cf. Fig. 7.2). The
universality of the theory is maintained, but becomes relative. Any object can be cut

6 This notion is equivalent to Brukner’s “observer-independent facts” [20].
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Fig. 7.2 Inspired by Grinbaum’s epistemic loops [18], let us represent all theoretical objects by
a loop. Cutting the loop sends objects in the meta-theoretical domain. a Meta-Context {Wigner’s
friend,HS}. bMeta Context {Wigner,HS ⊗ HO}. cMaintaining (Q) and (MNC) leads to ignoring
the relative cuts, i.e. the meta-contexts. Wigner and Wigner’s friend are put at the same level, and
self-referential inconsistencies may occur

and become a meta-object. However, once the cut is fixed, any out-of-meta-context
question is undecidable. “Although it can describe anything, a quantum description
cannot include everything.” [11]

7.3.2 “Wigner’s Friendifications”

Recently, there has been a renewed interest in Wigner’s thought experiment in the
field of quantum foundations. This resurgence is due to the appearance of new hybrid
paradoxes [8, 20, 22], which rely on a Wigner’s Friendification,7 a transformation
of previous quantum “paradoxes” where one allows meta-objects to be described as
objects of the theory, and allows meta-observers to measure coumpound systems of
the type “object ⊗ meta-object”. I will analyze the Frauchiger-Renner paradox [8]
as a Wigner’s Friendification of the Hardy paradox explicitly showing the logical
inconsistency which can emerge from (Q,NMC).

The original Hardy scenario involved two agents/observers, Alice and Bob, shar-
ing a two-qubit system. In the new thought experiment, Alice and Bob are upgraded
to meta-observers, while two new agents, their respective friends, share a two-qubit
system and can perform a measurement on their respective part of the system. Like
in the standard scenario, Alice and Bob’s friend can measure their qubit in the com-
putational {|0〉, |1〉} basis or in the diagonal {|+〉, |−〉} basis. Regarding Alice and
Bob, these bases are “Wigner’s friendified” as follows. The computational basis is
transformed into a meta-computational basis corresponding to an “observer basis”,

7 In my knowledge, this terminology was first used by Aaronson in a blog post (www.scottaaronson.
com/blog/?p=3975) in order to describe the Frauchiger-Renner paradox.

www.scottaaronson.com/blog/?p=3975
www.scottaaronson.com/blog/?p=3975
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a statement made by the observer, the friend8: {|0〉SA ⊗ |0〉FA , |1〉SA ⊗ |1〉FA}. For
example, if Alice’s friend finds his qubit in state |0〉SA , then his statement will be
|0〉FA and Alice will find the global system in the state |0〉SA ⊗ |0〉FA . The diagonal
basis of the standard observation becomes a meta-diagonal basis corresponding to a
“meta-observer basis”, where the meta-observer actually performs a quantum mea-
surement on the compound system, resulting in a statement associated to the meta-
observer:{|+〉A, |−〉A}, with |±〉A = 1√

2
(|0〉SA ⊗ |0〉FA ± |1〉SA ⊗ |1〉FA). Applying

thisWigner’s Friendification to the four sentences of theHardyparadox (cf appendix),
one obtains four new assertions:

Sentence FR1: “If Alice obtains “−”, then Bob’s friend obtains outcome “1”.”

Sentence FR2: “If Bob’s friend obtains “1”, then Alice’s friend obtains outcome
“1”.”

Sentence FR3: “If Alice’s friend obtains “1”, then Bob obtains outcome “+”.”

Sentence FR4: “Alice and Bob both obtain “−” with a probability of 1
12 .”

Like in the Hardy paradox, these sentences forms a probabilistic Liar cycle:
assume that Bob and Alice both obtains ‘−’ (this happens with a probability 1/12).
Bob obtains “−” and Alice obtains ‘−”→Bob’s friend obtains “1”→Alice’s friend
obtains “1” → Bob obtains “+”, contradicting the first statement. In [8], the authors
analyze this paradox as an incompatibility between three assumptions: (Q) quantum
theory is correct and can be applied to systems of any complexity; (C) observers
and meta-observers claims should be consistent with each other; (S) a measurement
yields a single outcome. Assumption (C), in particular, has been widely discussed
in the literature (cf. for example [20, 23–25]). I argue that this assumption can be
reformulated into two assumptions: non-contextuality and non-meta-contextuality.

Indeed, like the Hardy paradox, the Frauchiger-Renner paradox entails contex-
tuality in the sense of Abramsky: a global logical obstruction of four consistent
propositions.9 Thus the contradiction might occur from assuming non-contextuality
(NC). However, unlike the Hardy paradox, here each statement can be associated to
one agent: one for each observer (FR2 and FR3), and one for each meta-observer
(FR1 and FR4). In fact, like in the original Wigner’s friend experiment meta-objects
(the friends) are described in the language of the theory, i.e. at the level of objects.
As seen previously, this is equivalent to the (NMC) assumption, which associated
with (Q), can lead to self-referential inconsistencies when statements made in dif-
ferent meta-contexts are compared. Giving up on (NMC), consistency is restored,
but only inside a meta-context among {Alice, Alice’s Friend ⊗ qubit SA} ; {Bob,

8 More precisely, it corresponds to a meta-observer asking her friend in which state has the qubit
been projected.
9 Note that the paradoxhas alreadybeen analyzed as applying classical logic to quantumpropositions
which is forbidden by the non-Boolean structure of quantum theory [20, 23, 24].
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Fig. 7.3 a Meta-context: {Alice, Alice’s Friend ⊗ qubit SA}. b Meta-context: {Alice’s Friend,
qubit SA}. cMeta-context: {Bob, Bob’s Friend ⊗ qubit SB}. dMeta-context: {Bob’s Friend, qubit
SB}. e Maintaining (Q) and (NMC), i.e. comparing the results from different meta-contexts, leads
to logical inconsistencies

Bob’s Friend ⊗ qubit SB} ; {Alice’s Friend, qubit SA} ; {Bob’s Friend, qubit SB}
(cf. Fig. 7.3). Under such analysis, the fact that “a self-referential use of the theory
yields contradictory claims” [8] is not especially surprising, if one acknowledge that
quantum theory can only be consistently used in a meta-context, i.e. that the use of
quantum theory is (meta-)contextual.

7.3.3 The Heirs of Copenhagen

Analyzing themeasurement problemas self-reference and escaping the logical incon-
sistency by introducing a cut10 complies with various “neo-Copenhagen” interpre-
tations of quantum theory, often wrongly labeled as “anti-realistic” [26], such as
information-based interpretations [27–29] and QBism [30]. All agree on the fun-
damental distinction between the meta-theoretical and theoretical object. In these
interpretations, this movable cut is functional and not ontological. It does not dis-
criminate a macroscopic classical world from a microscopic quantum one, because
every object can be treated by the theory (Q) or not. This is especially made explicit
in Rovelli’s relational interpretation: “As soon as we realize that any physical sys-
tem can play the role of a Copenhagen’s ‘observer’, we fall into relational quantum
mechanics. Relational quantummechanics is Copenhagen quantummechanics made

10 Sometimes called the von Neumann or Heisenberg cut (“Schnitt”).
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democratic by bringing all systems onto the same footing.” [29], as well as in a recent
QBist analysis of the Frauchiger-Renner paradox, which rests on a: “quantumCoper-
nican principle; when two agents take actions on each other, each agent has a dual
role as a physical system for the other agent” [31]. Following the footsteps of Bohr:
“There is no quantum world. There is only an abstract quantum physical description.
It is wrong to think that the task of physics is to find out how nature is. Physics
concerns what we can say about nature. We depend on our words, our task is to
communicate experience and ideas to others. We are suspended in language ...” [32];
or as Wittgenstein wrote in his Tractatus: “(5.632) The subject does not belong to
the world: rather it is a limit of the world.” Absolute universality has a God-like
flavour and leads to paradoxical features that cannot be said. On the contrary, one
can acknowledge the transcendental status of the meta-theoretical object: a classical
(Boolean) description is the condition of possibility for the rendering of quantum
(non-Boolean) events.

7.4 Conclusion: Is Physics Paradoxical?

In his seminal paper on the logic of simultaneously undecidable propositions [9,
10], Specker attached the following epigraph: “La logique est d’abord une science
naturelle.” [Logic is in the first place a natural science.] extract from “La physique de
l’objet quelconque” by Gonseth. Gonseth argued that logic should be considered as
an experimentally refutable science of “any object whatsoever”. If quantum physics
goes against classical logic, thus classical logic should be revised. Several years
later, Putnam defended a similar idea in a paper entitled “Is Logic Empirical ?” [33].
Mirroring this interrogation, we ask: “Is Physics Paradoxical ?”.

Quantum theory does not only defy common sense, but it also defies classical
logic, i.e. our common language and semantic. In this sense, quantum theory is more
paradoxical than other physical theories. But is Nature itself paradoxical ? Does the
world really feature intrinsically strange phenomena that cannot be grasped with
our words, whether it is a non-local behaviour or parallel worlds ? In this essay, I
argued for an alternative. Quantum paradoxes are not physical, but emerge from a
lack of metaphysical distancing. I highlighted how the Liar-like structure of quan-
tum propositions enlightened by the Kochen-Specker theorem already invites to give
up on considering quantum objects as entities with intrinsic properties indepen-
dently of the questions asked by a meta-theoretical object. I proposed the notion of
“meta-contextuality” to explain how neo-Copenhagen interpretations avoid the mea-
surement problem, Wigner’s friend andWigner’s friendified paradoxes by analyzing
them as logical errors. Acknowledging the need for an undiscriminating cut between
meta-theoretical and theoretical objects when one uses quantum theory, any ques-
tion that ignores this transcendental distinction looses its operational significance and
becomes physically undecidable. Thus, quantumparadoxesmight just be instances of
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a fundamental undecidability, contributing to a quantum Gödelian hunch.11 Finally,
this essay fully adheres to Wheeler’s intuition12: “Physics is not machinery. Logic is
not oil occasionally applied to that machinery. Instead, everything, physics included,
derives from two parents, and is nothing but cathode-tube image of the interplay
between them. One is the “participant”. The other is the complex of undecidable
propositions of mathematical logic.” [26]

7.5 Epilogue: A Gödelian Hunch from Time

Quantum physics might not be the only branch of physics where one can hope to
find physical analogs or instances of Liar-like paradoxes. In 1949, Gödel discovered
solutions of general relativity latter known as closed time-like curves (CTCs) which
theoretically would allow an observer to travel back in her own past [35]. However,
the existence of such closed causal loops seems to imply the possibility for a traveller
to interact with her own past-self, and for example prevent her own time-travel. This
paradox, known as the grandfather antinomy, shares the same logical structure as
the Liar. Unlike quantum theory, where the Gödelian hunch relies on the semantic
of the theory, the grandfather paradox is a (speculative) physical realization of a
self-contradiction.

By analogy with the scholastic debate previously introduced Sect. 7.2.1, the para-
dox can be understood as the tension between events that already happened and the
ability to decidewhether these “physically-already-determined” facts can be changed
or not. Here, the role of God or the omniscient demon is played by time itself. The
most popular (and boring) solution in science-fiction is a “many-worlds-like” one:
there is no contradiction because when the traveler interacts with her past, different
consistentworlds are created.One can defend a “superdeterminisitic” solution,where
the traveler has no free will. A weaker version of this solution is that the traveler is
still free, but her choices of actions are limited by some “time police / fine-tuning”
principle (e.g. a Leibnizian notion of “compossible facts”) such that consistency is
preserved. Finally, one could deny time its fundamental aura, and argue instead that
it is emergent. In fact, inside a closed loop, “time” is undefinable. Following the
notion of contextuality introduced precedently, when one faces a global inconsis-
tency, one can cut the loop, and recover logical consistency by introducing “local”
contexts of logically consistent and well-defined sequences of events (cf. Fig. 7.4).
These “contexts of ordered events” are locally consistent, but globally inconsistent.

11A very recent result [34] also contributes to the quantum Gödelian hunch. Using a modified proof
of quantum contextuality, the authors proved that the class MIP* of problems that can be decided by
a polynomial-time referee interacting with quantum agents sharing entanglement contains Liar-like
undecidable problems.
12 Wheeler might have been one of the first to investigate this quantum Gödelian hunch. A famous
anecdote tells thatWheeler was thrown out of Gödel’s office for asking him if there was a connection
between his incompleteness theorem and Heisenberg’s uncertainty principle [1].
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Fig. 7.4 a Events A and B in a closed loop. The order is undefinable. If the loop is cut, an order
emerges. Depending on the position of the cut, the “context”, either A precedes B (b), or the opposite
(c)

As Gödel wrote: “Time is the means by which God realized the inconceivable that P
and non-P are both true [...].” [36]

This way, time emerges from cutting self-referential paradoxes. Noticing that this
cut might be epistemic, in line with a Gödelian hunch, one could finally speculate
that “Time is a consequence of every attempt to provide a comprehensive description
of the universe from within. Thus, time in this sense is not related to the universe
itself but to the attempt to describe it.’ [37]

Acknowledgements I would like to thanks Cyril Branciard for his precious support and advices,
and Alexei Grinbaum for inspiring discussions.

Technical Appendices

The Hardy Paradox

In this scenario, two agents, Alice and Bob, share a two-qubits system in a specific
entangled state. Each agent can choose to measure their respective qubit in a com-
putational {|0〉, |1〉} or a diagonal basis {|+〉, |−〉} with |±〉 = 1√

2
(|0〉 ± |1〉). The

initial entangled state can thus be written in four different basis, each corresponding
to a measurement context. For example, in the comput.-comput. basis, the state is:
|ψ〉 = 1√

3
(|00〉 + |10〉 + |11〉). Assuming that a predefined value can be associated

to a measured property when a result can be predicted with certainty, one can infer
the four following sentences, each associated to a measurement context:

(1) • In the diago.-comput. basis, the state before measurements is:
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|ψ〉 =
√

2
3 | + 0〉 + 1√

6
| + 1〉 − 1√

6
| − 1〉

Sentence H1 : “If Alice obtains ‘−’, then Bob obtains ‘1’.”

(2) • In the comput.-comput. basis, the state before measurements is:

|ψ〉 = 1√
3
(|00〉 + |10〉 + |11〉)

Sentence H2 : “If Bob obtains ‘1’, then Alice obtains ‘1’.”

(3) • In the comput.-diago. basis, the state before measurements is:

|ψ〉 =
√

2
3 |1+〉 + 1√

6
|0+〉 + 1√

6
|0−〉

Sentence H3 : “If Alice obtains ‘1’, then Bob obtains ‘+’.”

(4) • In the diago.-diago. basis, the state before measurements is:

|ψ〉 = 3√
12

| + +〉 + 1√
12

| + −〉 − 1√
12

| − +〉 + 1√
12

| − −〉

Sentence H4 : “Alice and Bob can both obtain ‘−’ with a probability 1/12.”

Assuming non-contextuality means that one can build inferences from these dif-
ferent sentences. For instance, from (H1, H2, H3), one can construct the sentence:
“If Alice obtains ‘−’, then Bob obtains ‘+’ ”. However, this sentence is incompat-
ible with H4. Thus, ((H1, H2, H3), H4) is globally inconsistent, and the paradox
entails contextuality. The following probabilistic13 Liar cycle can be formulated,
assuming that both Alice and Bob obtained ‘−’: Bob obtains ‘−’ and Alice obtains
‘−’ → Bob obtains ‘1’ → Alice obtains ‘1’ → Bob obtains ‘+’, contradicting the
first assignment.

“Wigner’s Friendification” of the Hardy Paradox

The Hardy paradox presented above is Wigner’s friendified as follows: The com-
putational basis is transformed into a meta-computational basis corresponding to
an “observer basis” {|0〉SA ⊗ |0〉FA , |1〉SA ⊗ |1〉FA}. The diagonal basis of the stan-
dard observation becomes a meta-diagonal basis corresponding to a “meta-observer
basis”: {|+〉A, |−〉A}, with |±〉A = 1√

2
(|0〉SA ⊗ |0〉FA ± |1〉SA ⊗ |1〉FA). The corre-

sponding sentences can then be derived:

13 The Hardy paradox is a probabilistic Liar cycle because the contradiction only occurs with a
probability 1/12.
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(1) • In the metaobserver-observer basis, the state before measurements is:

|ψ〉tot =
√
2

3
|+〉A|0〉SB |0〉FB + 1√

6
|+〉A|1〉SB |1〉FB − 1√

6
|−〉A|1〉SB |1〉FB

Sentence FR1: “If Alice finds the outcome ‘−’, she knows that Bob’s friend
obtained outcome ‘1’.”

(2) • In the observer-observer basis, the state before measurements is:

|ψ〉tot = 1√
3

(|0〉SA |0〉FA |0〉SB |0〉FB + |1〉SA |1〉FA |0〉SB |0〉FB + |1〉SA |1〉FA |1〉SB |1〉FB

)

Sentence FR2: “If Bob’s friend finds the outcome ‘1’, he knows that Alice’s
friend obtained outcome ‘1’.”

(3) • In the observer-metaobserver basis, the state before measurements is:

|ψ〉tot =
√
2

3
|1〉SA |1〉FA |+〉B + 1√

6
|0〉SA |0〉FA |+〉B + 1√

6
|0〉SA |0〉FA |−〉B

Sentence FR3: “If Alice’s friend finds the outcome ‘1’, she knows that Bob
obtained outcome ‘+’.”

(4) • In the metaobserver-metaobserver basis, the state before measurements is:

|ψ〉tot = 3√
12

|+〉A|+〉B + 1√
12

|+〉A|−〉B − 1√
12

|−〉A|+〉B + 1√
12

|−〉A|−〉B

SentenceFR4: “Alice andBobbothfind the outcome ‘−’with a probability of 1
12 .”

The experiment is repeated n times. A contradiction arises when the four state-
ments are combined and when, for the nth round, Bob obtains outcome “−” and
knows that Alice also obtains outcome “−” (FR4). From FR1, Bob knows then that
Alice’s friend obtained outcome “1”, and thus, from FR2, that Bob’s friend obtained
outcome “1”. But, from FR3, this implies that Bob knows that he himself obtained
outcome “+”, contradicting the fact that he obtained outcome “−”.
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