Chapter 4 ®)
Unpredictability and Randomness e

Rade Vuckovac

Abstract Randomness is to a certain degree opposite to determinism. This essay
tries to put those two on the same page. It argues the premise where randomness is
a consequence of a deterministic process. It also provides yet another viewpoint on
the hidden variable theory.

4.1 Introduction

Any discussion about randomness should include a description of unpredictability.
A quoted part from the explanation on true randomness makes a good starting point
for our inquiry (bold emphasis added):

If outcomes can be determined (by hidden variables or whatever), then any experiment
will have a result. More importantly, any experiment will have a result whether or not you
choose to do that experiment, because the result is written into the hidden variables before
the experiment is even done. Like the dice, if you know all the variables in advance, then
you don’t need to do the experiment (roll the dice, turn on the accelerator, etc.). The idea
that every experiment has an outcome, regardless of whether or not you choose to do that
experiment is called “the reality assumption”, and it should make a lot of sense. If you flip
a coin, but don’t look at it, then it’ll land either heads or tails (this is an unobserved result)
and it doesn’t make any difference if you look at it or not. In this case the hidden variable is
“heads” or “tails”, and it’s only hidden because you haven’t looked at it.

It took a while, but hidden variable theory was eventually disproved by John Bell, who
showed that there are lots of experiments that cannot have unmeasured results. Thus the
results cannot be determined ahead of time, so there are no hidden variables, and the results
are truly random. That is, if it is physically and mathematically impossible to predict
the results, then the results are truly, fundamentally random. [1]

Some deterministic systems which show unpredictable behaviour are in:
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Chaos Theory; It shows one exciting feature not usually found in classical sys-
tems. Predicting a long-term state of a system combined with its approximate
initial conditions is a difficult if not impossible task. Edward Lorenz sums it as:

Chaos: When the present determines the future, but the approximate present does not
approximately determine the future.

Then following details show unpredictability in a little bit more detail:

e Butterfly Effect; An interesting and not widely emphasised point about Butterfly
Effect is [2, 3]:

Even a tiny change, like the flap of a butterfly’s wings, can making a big difference for
the weather next Sunday. This is the butterfly effect as you have probably heard of it.
But Edward Lorenz actually meant something much more radical when he spoke of the
butterfly effect. He meant that for some non-linear systems you can only make predictions
for a limited amount of time, even if you can measure the tiniest perturbations to arbitrary
accuracy.

e n-body problem; Even in Newton times, the motions of more than two orbiting
bodies were considered as a problem (Fig. 4.1). Currently, we are left with numer-
ical methods and simulations. The former is an approximation and butterfly effect
prone. The later are basically computational experiments, which are the preferable
option for n-body system investigation [4, 5].

Cellular Automation (CA); CA is a deterministic model containing grids, pop-
ulated by cells. The grids are arranged in one or two-dimensional space. An
evolution rule governs how the initial state of cells evolve to the next generation.
Figure 4.2 shows one dimensional CA rules and an evolution history. One of the
interesting CA features is the concept of Computational Irreducibility (CI). It
proposes that the only way to determine the future state of CA is to run it, which
is very similar to “the results cannot be determined ahead of time” principle in
hidden variable argumentation.

4.2 CA a Closer Look

While Chaos Theory provides us with dynamical systems showing unpredictability
behaviour, the CI (computational irreducibility) principle is probably more accessible
for the discussion.

Wolfram’s rule 30 CA is a good starting point. Figure4.2 shows the transition
rules on the top. Every case prescribes how a cell (black or white) is transformed
depending on the previous cell state and its neighbouring cells. Row 1 is the initial
state of CA. Rows 2, 3, 4 ... are consecutive evolved generations. A next-generation
cell is derived from a previous cell and its neighbours. For example, the cell (row 4,
column 13)is derived from case 7. When a cell does not have an above row neighbour,
the cell from other end is considered. So, for example, the cell (16; 1) uses case 7
(again) because the top left neighbour is the cell (15; 31).
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3-body simulation

@ |Initial positions (random)
@ Positions after 200 steps

Fig. 4.1 An example of chaotic behaviour when the system has more than two bodies

There are a contest and prize for solving three CA rule 30 problems [6]. All three
of them are relevant for the randomness discussion:

Problem 1:  Does the centre column always remain non-periodic? The centre col-
umn is column 16 outlined red in Fig.4.2. The period has been checked for the
~ first billion steps, and the centre column does not show periodicity. In effect, it
has very similar properties to 7.

Problem 2:  Does each colour of cell occur on average equally often in the centre
column? The ratio of black and white cells approaches 1:1 when the step iterations
increase. After one billion steps, the centre column has 500025038 black and
499974962 white cells. In a sense, it mimics a fair coin flipping exercise.

Problem 3:  Does computing the nth cell of the centre column require at least
O (n) computational effort? Stephen Wolfram strongly suspects that rule 30 is
computationally irreducible (CI). In that case, even if the initial state and rules of
transformation are known, the quickest way to see the future of the state is to run
CA (to do the experiment).
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Fig. 4.2 CA rule 30. Transformation rules and evolution history. Column 16 acts as a random
sequence

4.3 Conditional Branching

While chaos theory and CA provide evidence of future inaccessibility, there is an
even more persuasive argument where we can not acquire the future state of some
systems without experimenting.

Conditional branching, the underlying algorithmic construct is the essential argu-
mentation ingredient. Conditional branching with other two primitives, sequence and
iteration, provides all necessary blocks to build any algorithm imaginable [7]. It is
an if-else statement in a program. When the program reaches if-else command, it
evaluates some state and depending on evaluation continues with an if or an else path.
Usually, when the program is made, all the possible inputs and they eventual exe-
cution paths (EP) are thoroughly defined. Figure 4.4 shows domain partition, where
inputs are partitioned according to the joint EP.

For example, the 3x + 1 problem one step is:

| f®if x=0mod?2
Fx) = {g(x) if x=1mod]1 “.1
where f(x) = x/2, and g(x) = (3x 4+ 1)/2. There we know that even input will be
executed by f(x) and odd with g(x).
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even
evell

Fig. 4.3 The 3x + 1 composite function; f(x) = x/2 and g(x) = Bx + 1)/2

Table 4.1 For two iterations of 3x + 1 (Fig.4.3), we have four partitions of natural numbers
depending on execution path and corresponding composite

Domain (Ny) Execution path (EP) Composite function
Partition A Even-even f(f(x)

Partition B Even-odd g(f(x))

Partition C Odd-odd g(g(x))

Partition D Odd-even flg(x))

The problem starts when this procedure is iterated (Fig. 4.3 and Table4.1). Every
iteration doubles the amount of unique EP. For example if our inputs are 64-bit
integers and we iterate Eq. 4.1 64 times. The number of possible paths is EP < [2%4].
In that case domain partition by execution paths (Fig.4.4) seems an impossible task
and that is probably the cause of why this problem is still not solved despite dealing
with very basic arithmetic [8].

Now we can ask: Is every program with multiple execution paths domain partition-
able?

Informal Theorem 1. There exists at least one algorithm with multiple execution
paths where the knowledge of which way execution goes is known only after input
evaluation [9].

Proof We can assume the opposite: every input partitioning can be performed effi-
ciently before execution. On first glance, that is a reasonable statement because when
a program is specified correctly, every case behaviour is fully defined in advance.
On the other hand, there are at least two problems with this:

e Programs are not always made with a purpose. For example, multiple branching
statements could be written haphazardly throughout a program. If it compiles, it
will run, but the output behaviour will be unpredictable.

e If every program is partition-able, then branching algorithmic structure is redun-
dant. Practically, we will know which path to execute for some input in advance
without the need to test the branching statement.
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Fig. 4.4 Partitions mappings, when a program has multiple paths of execution

Having algorithms without conditional branching is not what we presently believe:

— Encyclopedia Britannica; Conditional branching entry:
In Analytical Engine --- control transfer, also known as conditional branching,
whereby it would be able to jump to a different instruction depending on the value

of some data. This extremely powerful feature was missing in many of the early com-
puters of the 20th century. [10]

— Wikipedia; Turing Completeness:

To show that something is Turing complete, it is enough to show that it can be used to
simulate some Turing complete system. For example, an imperative language is Turing
complete if it has conditional branching. [11] |

4.3.1 Conditional Branching Candidates

While the systems where non-partitionable inputs exist, it is hard to identify one.
Some candidates are:
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CA rule 30; English description of the rule is in the exact form as Eq.4.1 (bold
added):

Look at each cell and its right-hand neighbor. If both of these where white on the previous
step, then take the new color of the cell to be whatever the previous color of its left-hand

neighbor was. Otherwise, take the new color to be opposite of that. [12]

Rule 30 used to be a random number generator in Wolfram’s Mathematica soft-

ware.
Equation4.1 is one step of the procedure. The conjecture

Collatz conjecture;
asserts that every natural number after some steps reaches 1. Some reflections

on the problem:

3x+1 execution paths as random walks

50 T
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Fig. 4.5 Random walk using 3x + 1 execution paths. When the algorithm executes the odd branch
((3x + 1)/2) the left step is taken; otherwise, the walk takes the right step (x/2)
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The iterates of the shift function are completely unpredictable in the ergodic theory sense.
Given a random starting point, predicting the parity of the n-th iterate for any n is a “coin
flip” random variable. ... Empirical evidence seems to indicate that the 3x + 1 function
on the domain Z retains the “pseudorandomness” property on its initial iterates until the
iterates enter a periodic orbit. This supports the 3x + 1 conjecture and at the same time
deprives us of any obvious mechanism to prove it, since mathematical arguments exploit
the existence of structure, rather than its absence. [13, p. 18]

Figure 4.5 shows random walks behaviour using branching 3x + 1 parity.

Mobius function; It is another mathematical object with a branching structure and
randomness emergence (Fig. 4.6). It appears that the Riemann hypothesis, random
walks and Mobius function are closely related. A Math StackExchange discussion
on this topic is here [14]. Equation4.2 and Fig. 4.6 show the Mobius function, its
branching structure and a random behaviour emergence.

0 if 0 if n has a squared prime factor
um)y=141 ifn =1 4.2)
(—=D)* if nis a product of k distinct primes

1.5 T T T T T T

10 (0] (0] 00 00 o 000 0O 0] 0] O OO o A~

0.5 b

£ 0F o oo O o0 0O OO0 0O o o (e} OO0 000 O O O O OO
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n->

Fig. 4.6 Mobius function and its randomly looking mappings
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Branching CA (BCA); This CA was at first designed as a toy model to investigate
the if-else structure and its impact on the state transitions. The CA evolution step
has now a familiar structure:

L @ éi+1, if Ai+2.> Aiys @.3)
c® A;41, otherwise

where @ is exclusive or and Zi+1 is one complement of the cell A;;;. This
particular CA is used as a cryptographic primitive for cipher design [15]. Figure 4.7
using branching CA illustrates all chaos theory features including the butterfly
effect.
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Fig. 4.7 Two cellular automata evolutions where the initial state (top left three pixels plus top black
region) differs by just one bit (one in 4096-bit state)
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4.4 Measuring Randomness

While all mentioned candidates show randomness, the measure of it is a seemingly
tricky endeavour. The Turing test for intelligence [16] may provide the base for
randomness evaluation. A similar idea was explored in cryptography as well [17].

‘We have three entities in Turing Al test: a human, a machine and an interrogator.
They are in three separate rooms, and their communication is in the questions/answer
form where interrogator asks, and the other two parties respond. The evaluation of
answers should determine who the human is. If a distinction is inconclusive, the
machine could be considered intelligent.

For randomness game we have true-randomness side represented by Random Ora-
cle (RO), the pseudo-randomness side is BCA and an interrogator (IN). As in the Al
test, IN communicate with RO and BCA via questions/answer (input/output) format.
IN task is to decide which party produces truly random output. If the distinction
could not be made, the true and pseudo qualifiers are redundant.

4.4.1 Random Oracle

RO concept provides a specific tabular representation which we can categorise as a
true random mapping:

The following model describes a random oracle:

e There is a black box. In the box lives a gnome, with a big book and some dice.

e We can input some data into the box (an arbitrary sequence of bits).

e Given some input that he did not see beforehand, the gnome uses his dice to generate
a new output, uniformly and randomly, in some conventional space (the space of oracle

outputs). The gnome also writes down the input and the newly generated output in his
book.

e If given an already seen input, the gnome uses his book to recover the output he returned
the last time, and returns it again. [18]

The RO model is believed to be an imaginary construct useful in a cryptography
secure protocol argumentation. However, it cannot be realised in practice. The use
of dices in the description is assumed to be an entirely random process. In other
words, if we need RO in practice, we have to use a random function. Its main feature
is that every output is an independent, random string. That implies the use of a
gigantic input/output table (Table4.2). That table cannot be compressed, rendering
the exercise impractical. More details about RO can be found here [19].

In the finding pseudo game, IN (interrogator) asks a question and RO (the gnome)
replies with a truly random answer with the stipulation that same question is answered
with the same response.
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Table 4.2 Random function

57

Domain (N) Range (N)

Input 1 Random string 1

Input 2 Random string 2

Input 3 Random string 3
Fig. 4.8 BCA Rule
transformation rule;
depending on the neighbours o A > AL
relation, third right-hand Ai+1 : carrly ~ oa r|r3 or A
neighbour or its one - y i+1
complement (all bits are RN
flipped) is XORed (logical ! ' otherwise -
exclusive or) with the carry. A1 |

Updated carry is XORed
with the current cell to form

carry = carry xor A i,

anew cell Current Array
Ai | A |Ais2| |Aiss
Cell Array (next generation)
A'i
x Updated cell
A} = A, xor carry
4.4.2 BCA

BCA candidate (mentioned earlier) represents a pseudo-random oracle. Transforma-
tion details are shown in Fig.4.8. When IN (interrogator) submits the question the
following happens: firstly an array is initialised. The input x (question) is copied on
the array first cells. The array is evolved for some time, and the part of the last state
serves as output y (response). Figure4.9 red and blue are input and output used in

IN and BCA communications.
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/— input x ? F initial state

l output (y)

Fig. 4.9 Branching cellular automata (BCA) pretending to be a random oracle (RO)

4.4.3 Distinguishing Chances

The finding pseudo can be played by two set of rules:

e Ist variant: IN (interrogator) knows inputs and corresponding outputs only (red
and blue Fig.4.9).
When IN examines BCA input/output pairs, a couple of exciting things are
revealed. Similar inputs, produce very different outputs (Fig. 4.7). When numerous
input/output pairs are put in a tabular form, the table starts to reassemble random
structure from random function mappings (Table4.2). This set-up is reminiscent
to the Alan Turing challenge scenario:

I have set up on the Manchester computer a small programme using only 1,000 units
of storage, whereby the machine supplied with one sixteen-figure number replies with
another within two seconds. I would defy anyone to learn from these replies sufficient
about the programme to be able to predict any replies to untried values. [16]

e 2nd variant; we give IN some hints: IN can have full knowledge of BCA algorithm
and only partial knowledge of the initial state. Meaning, knowing the magenta part
excluding the green part Fig.4.9. If IN wants to check whether the observed pair
comes from BCA by running it, the green part has to be replaced with some
provisional part. To find a matching green part IN has to perform an exhaustive
search. The same happens if the IN goes backward from the output. Complete
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knowledge of the state is needed (provisional plus output) to be able to proceed
with steeping. That situation leaves IN with brute force option only.

In both variants, the IN (interrogator) inability to correlate input/output pairs stays.
The 2nd variant also prevents IN to check if observed data comes from BCA even
the inner working of the input/output transformation is known. !

4.5 Speculations

The main point raised in this essay is the computation barrier imposed by conditional
branching. That wall forces input evaluation during program execution. Even with
known input and algorithm knowledge, predictability of output is impossible. The
only way to discover output is to run the algorithm (to evaluate input). The absence
of patterns, when input/output pairs of such algorithm were analysed, is caused by
that barrier.

If we assume that the conditional barrier is relevant to physical reality and in the
context of:

Thus the results cannot be determined ahead of time, so there are no hidden variables, and
the results are truly random.

We can speculate; yes, the results can not be determined ahead of time but, para-
doxically, that does not necessary exclude determinism.

The misunderstandings might come from determinism definitions because we
have different meanings which usually are not noted in argumentations. There are at
least two sets of determinism with very other properties. The differentiation occurs
when we need to access state details at a particular point of time. For example,
imagine, a special kind of video player which can play two movies only: 2-body
digital simulation and the sequel n-body digital simulation. While watching the 2-
body movie, we can fast forward it if we are bored. While watching n-body movie,
we notice that fast forward is not working any more, and if we want to see what
happens on end, we have to watch the whole movie.

From there, we can identify potential inconsistencies when dealing with deter-
minism. In the accepted hidden variable theories (HVT) narrative, a cursory look at
the Bell’s inequality [20] and HVT indicates that we have determinism acting locally
with the correspondent distribution of probable outcomes which is never confirmed
by experiment. Since quantum distribution is matched with observed, we conclude
that quantum phenomena are non-deterministic.

On the other hand, we have determinism from the n-body movie. Desired state
details are known only when they happen. Any imaginable distribution information

! The partially knowing BCA initial state case might be analogous to the true randomness cause.
Generally, initial state ignorance comes from practical reasons. Fidelities of real state versus assumed
state might be tiny, and misreadings can be easily made. We can see what one-bit difference in
4096-bit state can do for BCA evolution (Fig.4.7). There is a good chance that RO (true) and BCA
(pseudo) randomness have the same origin.



60 R. Vuckovac

is obtained by observation only. It is not evident how this kind of determinism fits in
HVT context and how its distributions can be violated by experiment.

For the end, there is a parallel with apparent quantum weirdness in the algorithmic
world:

3x 4+ 1 problem story; We have a state (a natural number). The state will go
through the transition, as shown in Fig. 4.1. Before the measurement, the state is in a
superposition of a number of possible execution paths. Only after running the algo-
rithm (measurement), the superposition state collapses, and we know the execution
path and the transition result.

The 3x + 1 problem is still unsolved. The conjecture support comes from experi-
mental evidence where all numbers between 1 and 2™ are reaching 1 as postulated.
Another support comes from a heuristic probability which shows that every multi-
plication (with 3) has two divisions (with 2) on average, which indicates a starting
number shrinkage on the long run [8]. Both of the supports or what we know about
the phenomena comes from experiments and probability distributions; even it is a
deterministic process.
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