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Preface

This book is a collaborative project between Springer and The Foundational Ques-
tions Institute (FQXi). In keeping with both the tradition of Springer’s Frontiers
Collection and the mission of FQXi, it provides stimulating insights into a fron-
tier area of science, while remaining accessible enough to benefit a non-specialist
audience.

FQXi is an independent, non-profit organization that was founded in 2006. It
aims to catalyze, support, and disseminate research on questions at the foundations
of physics and cosmology.

The central aim of FQXi is to fund and inspire research and innovation that is
integral to a deep understanding of reality, but which may not be readily supported
by conventional funding sources. Historically, physics and cosmology have offered
a scientific framework for comprehending the core of reality. Many giants of modern
science—such as Einstein, Bohr, Schrödinger, and Heisenberg—were also passion-
ately concerned with, and inspired by, deep philosophical nuances of the novel
notions of reality they were exploring. Yet, such questions are often overlooked
by traditional funding agencies.

Often, grant-making and research organizations institutionalize a pragmatic
approach, primarily funding incremental investigations that use known methods and
familiar conceptual frameworks, rather than the uncertain and often interdisciplinary
methods required to develop and comprehend prospective revolutions in physics and
cosmology. As a result, even eminent scientists can struggle to secure funding for
some of the questions they find most engaging, while younger thinkers find little
support, freedom, or career possibilities unless they hew to such strictures.

FQXi views foundational questions not as pointless speculation or misguided
effort, but as critical and essential inquiry of relevance to us all. The Institute is dedi-
cated to redressing these shortcomings by creating a vibrant, worldwide community
of scientists, top thinkers, and outreach specialists who tackle deep questions in
physics, cosmology, and related fields. FQXi is also committed to engaging with
the public and communicating the implications of this foundational research for the
growth of human understanding.

As part of this endeavor, FQXi organizes an annual essay contest, which is open
to everyone, from professional researchers to members of the public. These contests
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vi Preface

are designed to focus minds and efforts on deep questions that could have a profound
impact across multiple disciplines. The contest is judged by an expert panel and up
to 20 prizes are awarded. Each year, the contest features well over a hundred entries,
stimulating ongoing online discussion for many months even after the closure of the
contest.

We are delighted to share this collection, inspired by the 2019–2020 contest,
“Undecidability, Uncomputability, and Unpredictability.” In line with our desire to
bring foundational questions to the widest possible audience, the entries, in their
original form, were written in a style that was suitable for the general public. In this
book, which is aimed at an interdisciplinary scientific audience, the authors have
been invited to expand upon their original essays and include technical details and
discussion that may enhance their essays for a more professional readership, while
remaining accessible to non-specialists in their field.

FQXi would like to thank our contest partners, the Fetzer Franklin Fund and The
Peter and Patricia Gruber Foundation. The editors are indebted to FQXi’s Scientific
Director, Max Tegmark, and Managing Director, Kavita Rajanna, who were instru-
mental in the development of the contest. We are also grateful to Angela Lahee at
Springer for her guidance and support in driving this project forward.

Foundational Questions Institute, www.fqxi.org, 2021

Santa Cruz, USA
London, UK
Lancaster, UK

Anthony Aguirre
Zeeya Merali
David Sloan

https://fqxi.org/
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Chapter 1
Introduction

Anthony Aguirre, Zeeya Merali, and David Sloan

When I look at Gödel’s proof of his undecidability theorem…The proof is a soaring piece
of architecture, as unique and as lovely as Chartres Cathedral…It destroyed Hilbert’s dream
of reducing all mathematics to a few equations, and replaced it with a greater dream of
mathematics as an endlessly growing realm of ideas…Every formalization of mathematics
raises questions that reach beyond the limits of the formalism into unexplored territory.

Freeman Dyson (2008).

For a brief time in history, it was possible to imagine that an advanced intellect could,
given enough time and resources, in principle, understand how to mathematically
prove everything that was true. Nineteenth-century polymath Pierre-Simon Laplace
famously posited a demon that could discern what mathematics corresponds to phys-
ical laws, and use those laws to predict anything that happens before it happens, given
sufficient information about all the particles in the universe.

But that time, in which scientists and philosophers envisaged a clockwork
universe, has passed, following developments inmathematics, physics, and computer
science. In 1931, German-Austrian mathematician Kurt Gödel published his unde-
cidability results, in the form of his incompleteness theorems. These put paid to
German mathematician David Hilbert’s program to find a complete and consistent
set of axioms for all of mathematics. Soon after, in 1937, English mathematician and
computer scientist Alan Turing presented a proof of the conjecture that some decision
problems are undecidable—that is, there is no single algorithm or computation that
can infallibly give the right answer to some purely mathematical yes-no questions.

Theworld of physicswas concurrently being revolutionised by the development of
quantum theory, which suggested that nature is fundamentally indeterministic. The

A. Aguirre
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2 A. Aguirre et al.

outcomes of quantum experiments can never be predicted with certainty; instead,
they appear to be set at random upon measurement. Meanwhile chaos theory stated
that even complicated classical (non-quantum) processeswould be plagued by unpre-
dictability, in systems whose dynamics are highly sensitive to their initial conditions.
Thus the twentieth century showed that there are rigorous arguments limiting what
we can prove, compute, and predict.

In the intervening years, some connections between these results have come to
light; however, many remain obscure, and their implications are unclear. Are there,
for example, real consequences for physics of undecidability and non-computability?
Are there implications for our understanding of the relations between agency,
intelligence, mind, and the physical world?

These are some of the questions that were addressed by participants in FQXi’s
2019–2020 essay contest, “Undecidability, Uncomputability, and Unpredictability.”
The contest drewover 200 entries fromcountries around the globe, including adiverse
mix of entrants—from research physicists, philosophers, and computer scientists, to
high-school students and interested non-academics. This volume brings together all
10 prize-winning entries.

Our joint first-prize winners were Markus Müller and Klaas Landsman. In
chapter 2, “Undecidability and Unpredictability: Not Limitations but Triumphs
of Science”, Müller champions fundamental undecidability and unpredictability,
arguing that for too long scientists have lamented them as barriers to fully under-
standing reality. He suggests that it is philosophically naïve to think that the answers
to all questions are ‘things’ that exist ontologically, albeit inaccessible to science.
Instead, Müller asserts, one should regard ‘real patterns’ as fundamental; such a shift
implies that scientists can still strive to know all that there is to know.

In chapter 3, “Indeterminism and Undecidability”, Landsman examines a famous
theorem in the foundations of quantum physics by Irish physicist John Bell, and
subsequent experiments based on it, that suggest that quantum theory is inherently
indeterministic. The traditional reading of Bell’s theorem leaves two loopholes that
still allow for a fundamental deterministic framework to underly quantum theory:
A deterministic theory can exist if it is ‘non-local’ (allowing signals to travel at
faster-than-light speeds) or, alternatively, if measurement settings in experiments are
somehow constrained by unknown external influences and thus cannot be said to
be freely chosen. However, in his essay, Landsman claims that a precise analysis of
undecidability and randomness in quantum theory closes off these two possibilities
for determinism.

Many of our winners were similarly fascinated by the question of whether phys-
ical reality is truly indeterministic—a feature associated with the random and unpre-
dictable outcomes of quantum experiments. Rade Vuckovac notes that such random-
ness seems to stand in opposition to determinism but, in chapter 4, “Unpredictability
andRandomness”, he argues that randomness could in fact be a consequence of deter-
minism. Flavio Del Santo also takes an unconventional approach: Indeterministic
quantum theory is often presented in contrast with deterministic classical physics
but, in chapter 5, “Indeterminism, Causality and Information: Has Physics Ever
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Been Deterministic?”, Del Santo questions whether classical physics may itself be
indeterministic, which in turn may have consequences for notions of causality.

In chapter 6, “Undecidability, Fractal Geometry and the Unity of Physics”, Tim
Palmer develops a causal deterministic description of quantum theory. His analysis
invokes an uncomputable class of geometric model, in an effort to combine quantum
theory, the general theory of relativity, and chaos theory, in one unified framework.
Meanwhile, in chapter 7, “A Gödelian Hunch from Quantum Theory”, Hippolyte
Dourdent looks to Gödel’s incompleteness theorems for inspiration in attempting
to explain the source of numerous quantum paradoxes—with implications for the
emergence of time. Dourdent builds, in part, on work by Jochen Szangolies, whose
own essay discussing the notion of an ‘epistemic horizon’—a bound on the amount
of knowledge one can gain about a system—is presented in chapter 8, “Epistemic
Horizons: This Sentence Is 1/

√
2(|True> + |False>)”, where it is applied to Bell’s

Theorem.
Other winners also specifically considered the issue of what can be known, and

how it can be known. The question of how subjective observers can comprehend
aspects of the universe and exploit that knowledge for gain is addressed by Ian
Durham, in chapter 9, “Why Is the Universe Comprehensible?”. David Wolpert
and David Kinney use a computational model, in chapter 10, “Noisy Deductive
Reasoning: How Humans Construct Math, and HowMath Constructs Universes”, to
explain mathematical reasoning and how it provides a handle on the world. Finally,
in chapter 11, “Computational Complexity as Anthropic Principle: A Fable”, Rick
Searle deems a Laplace demon untenable in the face of modern developments in
physics and computational complexity, but argues that such constraints may help,
rather than hinder, scientists’ attempts to discover deeper truths about reality.

Given the contest topic, it is perhaps unsurprising that this compilation is
dominated by researchers specialising in quantum foundations and computational
complexity. Nonetheless it is gratifying that the question stimulated new insights not
only into the nature of quantum reality, but also into how we construct knowledge
and comprehend the universe, and potentially revealed new avenues for unifying
quantum physics with general relativity. It thus seems that the optimistic outlook
promoted by a number of our winners is correct: Undecidability, uncomputability,
and unpredictability should not be bemoaned for limiting our understanding; rather
these features open new windows on the fundamental nature of reality.

Reference

F. Dyson, The Scientist as Rebel (NRYB Collections: 2008)



Chapter 2
Undecidability and Unpredictability: Not
Limitations, but Triumphs of Science

Markus P. Müller

Abstract It is a widespread belief that results like Gödel’s incompleteness theorems
or the intrinsic randomness of quantummechanics represent fundamental limitations
to humanity’s strive for scientific knowledge. As the argument goes, there are truths
that we can never uncover with our scientific methods, hence we should be humble
and acknowledge a reality beyond our scientific grasp. Here, I argue that this view is
wrong. It originates in a naive form ofmetaphysics that sees the physical and Platonic
worlds as a collection of things with definite properties such that all answers to all
possible questions exist ontologically somehow, but are epistemically inaccessible.
This view is not only a priori philosophically questionable, but also at odds with
modern physics. Hence, I argue to replace this perspective by a worldview in which
a structural notion of ‘real patterns’, not ‘things’ are regarded as fundamental. Instead
of a limitation of what we can know, undecidability and unpredictability then become
mere statements of undifferentiation of structure. This gives us a notion of realism
that is better informed by modern physics, and an optimistic outlook on what we
can achieve: we can know what there is to know, despite the apparent barriers of
undecidability results.

2.1 The Pessimistic View

The early 20th century has given us insights intomathematics, physics, and computer
science that seemed to shatter our hope for unlimited progress of scientific knowl-
edge. In 1931, Gödel published his famous incompleteness theorems [1], implying
that every sufficiently complex consistent axiomatic system contains statements that
are true but unprovable within the system. An information-theoretic version of this
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6 M. P. Müller

insight is Turing’s proof of the unsolvability of the halting problem [2]: there is no
algorithm that could, in all instances and in finite time, decide whether another spec-
ified computation will eventually halt or run indefinitely. At about the same time,
the discovery of quantum physics has led us to the insight that Nature seems to be
intrinsically random: even with maximal knowledge of the current state of the world,
it is impossible to predict future events with certainty [3].

At first glance, these insights seem to point at limitations of science, suggest-
ing an attitude of humility and disappointment. Before these results, there was David
Hilbert’s program to reduce all of mathematics to a finite, complete, provably consis-
tent set of axioms [4]. And there was Pierre-Simon Laplace’s famous declaration [5]
of the possibility of a “demon”, able to predict all of the future with certainty given
sufficient physical data. The new insights were in stark contrast to these declara-
tions, showing that the hopes of Hilbert, Laplace and others were misplaced. Does
this mean that mathematics and physics are, as scientific disciplines, intrinsically
deficient in some sense?

At least this is the way that these theorems are often portrayed, both in popular and
in academic accounts. Regarding Gödel’s theorems, Wikipedia [6] claims: “These
results set a limit in principle to mathematics: not every mathematical theorem can
be formally derived or disproved from the axioms of some area [...] of mathematics.”
This proposed limitation of mathematics is often contrasted to an alleged omnipo-
tence of the human mind, leading to a class of “anti-mechanist” arguments: “There
have been repeated attempts to apply Gödel’s theorems to demonstrate that the pow-
ers of the human mind outrun any mechanism or formal system” [7]. Philosopher
John R. Lucas [8] claims that “given any machine which is consistent and capable
of doing simple arithmetic, there is a formula it is incapable of producing as being
true [...] but which we can see to be true” (cited in [7]).

If, on the other hand, one gives up on the idea that the human mind is in some
specific sense more powerful than any mechanism, then it may be tempting to read
Gödel’s theorem as a fundamental epistemic restriction for humanity. This view is
vividly expressed, for example, by Driessen and Suarez [9]:

“In this book, recent mathematical theorems are discussed, which show that man
never will reach complete mathematical knowledge. Also experimental evidence is
presented that physical reality will always remain partially veiled to man, inaccessi-
ble to his control. It is intended to provide, in the various contributions, the pieces of
a puzzle which restore the possibility of a natural, intellectual access to the existence
of an omniscient and omnipotent being.”

As the quotation indicates, there is a widespread view of quantum physics
which regards its statistical character as a symptom of incompleteness. This view is
defended, for example, by proponents of de Broglie–Bohm theory [10], a nonlocal
hidden-variable interpretation of quantum mechanics. According to this view, there
exists a deterministic underlying reality, and particles have well-defined positions at
any time. However, the predictions of quantum mechanics are probabilistic due to
fundamental uncontrollable disturbances. It is this unavoidable lack of experimental
control that is ultimately responsible for the apparent randomness of measurement
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outcomes. According to this view, quantum theory’s statistical character is thus most
naturally interpreted as manifesting some fundamental epistemic restriction.

So has science, in the problems described above, hit an impenetrable barrier?
Let us gain some intuition by looking at a problem where humanity seemed to hit a
barrier for about two thousand years, before the problem became finally dissolved.

2.2 On Axiomatic Theories and Structural Differentiation

Around 300 BC, in his treatise Elements, Euclid formulated a set of axioms and
postulates that were supposed to capture the essence of geometry [11]. One of these
principles seemed less self-evident than the others and was hence standing out:
Euclid’s fifth postulate, the parallel postulate. Could this postulate perhaps be proven
as a consequence of the others? This hope was the source of a twenty-centuries-long
search for a proof, for a logical deduction of the uniqueness of any parallel line
through any given external point from simpler assumptions.

In the 19th century, this search finally came to an end. The discovery of non-
standard geometry showed that the parallel postulate cannot logically follow from
the others. When it became gradually clear that (what we call today) elliptical and
hyperbolic geometries are consistent theories—and these theories satisfy all other
principles except for the fifth postulate—the parallel postulate changed its status
from an apparent necessity to a choice to be made.

Denote by T the totality of all of Euclid’s axioms and postulates (or rather, of
Hilbert’s more rigorous reformulation [12]) except for the parallel postulate—we
can see it as a formal system, or theory. But what is this theory T about? It describes
geometric objects—points, lines, circles, and more—and their relations. It allows us
to prove many interesting statements about these objects (such as: an exterior angle
of a triangle is larger than either of the remote angles), but it leaves some questions
undecided that seem natural to ask (is the sum of the angles in a triangle equal to
180◦?). This theory is sometimes called absolute geometry (see [13] for details).

If we add the parallel postulate to T , we obtain another theory: T1, familiar
Euclidean geometry. On the other hand, we can add suitable modifications of the
parallel postulate to T , and obtain T2 and T3: hyperbolic and elliptic geometry.

When we talk about a theory in this way, we mean a systems of axioms equipped
with formal rules to generate theorems, formulated in some language. However,
we typically have a mental picture of the things that the theory talks about—the
“meaning” of the language. Euclidean geometry T1, for instance, is typically not
envisioned as an abstract language game, but vividly depicted as talking about geo-
metric structure: geometric objects embedded in a plane. The standard mathematical
description of this idea is to say that a theory can have a model [14]: a set (say,
the two-dimensional plane) equipped with distinguished elements (such as points,
lines, circles), functions, and relations (such as incidence or congruence) such that
the theorems of the theory are true when understood as talking about these elements.
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Forwhat follows,we can take a somewhat different perspectivewhich is implicitly
shared by many practicing mathematicians, but rarely explicitly communicated. Let
us stipulate the following informal definition.

Definition. A structure S is whatever is described by a consistent theory T .

For example, the structure S1 described by theory T1 corresponds to the objects and
relations of Euclidean geometry—points, lines, their incidences and congruences,
and several others. More formally, we can define a structure S as the collection of
all models of its theory T .

Figure2.1 gives a sketch of the geometric structures mentioned above. Euclidean,
hyperbolic and elliptic geometries S1, S2 and S3 are more differentiated structures
than absolute geometry S: they have all the properties of S, plus some additional prop-
erties. On the other hand, we can regard S as the collection of all its differentiations
S1 ∪ S2 ∪ S3, because every model for T1, T2 or T3 is also a model for T .

Definition. Structure S′ is more differentiated than structure S if its corre-
sponding theory T ′ is an extension of the theory T—that is, if T ′ contains the
same formal rules and axioms as T , plus additional axioms. This implies that
all models for T ′ are also models for T .

Consequently, a structure is equal to the collection of all its differentiations.

The theory T describing absolute geometry is incomplete. That is, the question
Q “is there more than one line through any given point parallel to another line?” is
undecidable within T : neither the affirmation nor the negation of this question can be
proven in T . However, we can still regard the corresponding structure S as a perfectly
valid “thing” in some sense. It is simply the case that some questions (like Q) that we
may ask about this “thing” don’t have answers. An answer exists for differentiations
S1, S2 and S3 of S (no, yes, and no), but no answer to this question exists for S. And this
is how itmust be: since S is the collection of all its differentiations, neither affirmation
nor negation1 of Q can be true for S. In this sense, undecidability of Q in theory T
simply refers to the fact that the corresponding structure S is undifferentiated with
respect to Q. It is a bit like stem cells of the human embryo,which are undifferentiated
in the sense that the question “what type of cells will these become?” does not (yet)
have an answer.

But should we really regard S as a valid “structure” if it has these “holes” in its
catalogue of properties? Isn’t S a defective thing, since the corresponding theory T
is defective, i.e. incomplete?

1 Note that this does not violate the law of the excluded middle. The statement A ∨ ¬A (for A the
answer to Q) is still true for S, precisely because it holds for all its differentiations.
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Fig. 2.1 Absolute geometry
and its differentiations

If we decided to throw out S on the basis of T ’s incompleteness, then we would
quickly run out of interesting mathematical structures. This is precisely the content
of Gödel’s first incompleteness theorem:

“Any consistent theory T within which a certain amount of elementary arith-
metic can be carried out is incomplete; i.e., there are statements of the language
of T which can neither be proved nor disproved in T ” [7].

Thus (see also [7, Sect. 2.6]), we can obtain new theories T ′ and T ′′ by adding
an unprovable statement or its negation as a new axiom to T . This means that the
corresponding structure S has (at least) two inequivalent differentiations, S′ and S′′—
similarly as absolute geometry has elliptic andhyperbolic (andEuclidean) geometries
as differentiations. Calling a structure “interesting enough” if its theory T admits the
necessary amount of arithmetic to be formalized for Gödel’s theorem to apply, we
arrive at the following consequence:

Theorem. Every interesting enough structure has several inequivalent differ-
entiations.

Intuitively, and perhaps traditionally, we tend to think of the mathematical world
as consisting of “mathematical objects” with a catalogue of statements that are onto-
logically either true or false. For example, we may believe that there is something
called “the natural numbers”, N, a well-established “thing” (after all, formalized as
a set) that somehow “sits there”, waiting for our mathematical tools to discover all
of its properties and to prove all of its true theorems. Since mathematicians are only
human, as this informal argument goes, all they can do is resort to theories T that try
to capture the essence of N (such as the Peano axioms), and to use these theories to
prove results about N. According to this view, Gödel’s first incompleteness theorem
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is bad news: it implies that there will always be statements about N that are true, but
that cannot be proven by our best theory.

The terminology established above allows us to take a different perspective on the
Platonic world. If we visualize the mathematical world as consisting of structure in
the above sense, then Gödel’s first incompleteness theorem attains a quite different,
more optimistic interpretation: proving the undecidability of a statement is not a
certificate of principled human fallibility, but a deep insight into the existence of
several distinct differentiations of some structure. It is not a fundamental limit to
what we can know, but a precious piece of knowledge about a non-property of the
structure that we have discovered.

2.3 The Physical World: Every Thing Must Go

Modern physics, as I will now argue, informs us that a similarmove should be consid-
ered regarding our physical world. Consider the historical notion of the luminiferous
aether. For several centuries, it was believed that light waves need amaterial medium
for propagation, similarly as water waves. It was therefore natural to ask: What are
the properties of aether? How can we experimentally verify its existence and its
properties?

The historical course of events is well-known. After the exploration of light
revealed more and more implausible properties of aether, the Michelson–Morley
experiment and the subsequent development of Special Relativity has finally led the
physics community to abandon this notion. This turn of events meant that the inabil-
ity to answer the questions above (what are the properties of aether?) was not due to
experimental limitations, but due to the fact that the questions have no answers. In
other words: the questions were not solved, but dissolved.

The aether and its properties is by far not the only problem of physics with the
final fate of dissolution. Consider the following question:

Did events A and B happen at the same time?
This is a very natural question with many highly relevant instances. For example,

did homo sapiens and homo erectus inhabit Southeast Asia at the same time? Ques-
tions like this are immensely important for understanding our human ancestry [15].
Did the suspect arrive at his hotel room at the same time that the victim was killed
in the bar? The answer may well determine whether the suspect is sent to prison.

Even though we can (hopefully) answer the question with enough effort in the
cases just described, Special Relativity tells us that we cannot obtain an answer in all
instances. But is this due to a limitation of our experimental abilities? No. According
to Special Relativity, it is because the above question doesn’t have an answer. It
is only that in the cases of interest (such as the two just described), the question is
implicitly asked relative to a predetermined frame of reference. Based on Newtonian
mechanics, we thought that a general, absolute answer to this question should always
exist, we have found that it doesn’t.
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The dissolution of questions tends to provoke considerable resistance. This is even
true for well-established insights like the relativity of simultaneity, as the following
quotation by philosopher and logician Peter Geach ([16], cited in [17]) demonstrates:
“[...] ‘at the same time’ belongs not to a special science but to logic. Our practical
grasp of this logic is not to be called into question on account of recondite physics
[...] A physicist who casts doubt upon it is sawing off the branch he sits upon”.

If suchwell-established instances of dissolution like the absence of absolute simul-
taneity provoke resistance, then it should not come as a surprise that such hesitation
is particularly strong in the context of our second revolution of modern physics:
quantum theory.

Quantum theory claims that there are questions thatwemaybe interested in asking,
but that we will never be able to answer, no matter what heavy artillery of physical
methods we roll out. If we decide to prepare a quantum state in the superposition
|ψ〉 = 1√

2
(|0〉 + |1〉) andmeasure, wemay be interested to knowbeforehandwhether

we will obtain outcome |0〉 or |1〉. But if quantum theory is correct, then this desired
prediction is impossible. It is as rock solid impossible [18] as it is impossible to
absolutely decide, in the regime of Special Relativity, whether two events A and B
happened simultaneously.

Let us reformulate this observation of unpredictability. The question that turns
out to be unanswerable is arguably best characterized as follows:

What is, at some given moment, the actual configuration of the world?
There are different ways to understand this question, depending on what we mean

by an “actual configuration”. In the foundations of quantum mechanics, this notion
is often understood in a particular way: as a collection of values of ordinary variables
that resemble what John Bell has called “beables” [19]. If such beables exist, and
if they determine the outcomes of quantum measurements, then it is in principle
impossible for us to get to know them all. These hypothetical “hidden variables” are
not only epistemically inaccessible, but they also have properties that seem implau-
sible. For example, by Bell’s theorem, these hidden variables must be nonlocal in
some sense; the way that they manifest themselves in measurements on entangled
quantum states must necessarily involve superluminal signalling, but this signalling
is miraculously washed out (“fine-tuned” [20]) so that it does not show up in the
workings of our devices.

De Broglie–Bohm theory consists precisely of an attempt to answer the above
question with an interpretation of the “actual configuration” of the world as just
described. But also some proponents of ψ-epistemic interpretations [21, 22] (what
kind of hidden variables with what kind of causal structure give rise to quantum
states as states of knowledge?) or QBism [23] (what kind of participatory real world
gives rise to quantum states as rational states of belief?) are strongly motivated by
versions of this question. Arguing by analogy, we can characterize the situation in
the structure terminology of Sect. 2.2 as follows. Quantum mechanics, as it is used
in actual scientific practice, corresponds to some structure S. Bohmians claim that
the world actually corresponds to a structure S′ that is more differentiated than S,
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carrying unverifiable2 answers to questions like “where is the electron exactly, right
now?”. Supporters of epistemic views in the sense above state as their goal to discover
the correct differentiation S′.

The structure terminology suggests an obvious alternative: perhaps the question
simply doesn’t have an answer. The urge to claim that it does, but thatwe are unable to
find it, is arguably motivated by a metaphysics of “things”. Similarly as our example
of the natural numbers N in Sect. 2.2, such a view of the world depicts the universe
as a collection of objects, or as a thing in itself, that “sits there” in an infinitely
differentiated form. Similarly as a material body cannot not have a weight, or a coin
cannot not show heads or tails, we tend to take it as an analytic truth that the world
cannot not be in some configuration. But if we see the world not as a thing, but as
structure in some sense, then we may well accept the possibility that it corresponds
more accurately to structure S than to any of its differentiations:

Interpretation. Modern physics has shown us that some apparent properties
of the world are actually non-properties: they correspond to questions that do
not have an answer.

While Gödel’s results are not directly applicable to the physical world, they
motivate a use of the structure terminology to interpret this phenomenon by
analogy. Structuremanifests itself by, andweaves together, “real patterns” [25]
(such as correlations in measured data). Structure can be more or less differ-
entiated. Structural undifferentiation means that there are questions that have
no answers, or that there are less patterns than expected.

Apart fromdissolving the question above,what else dowe gain from a “structural”
perspective? In some cases, the claim that a question doesn’t have an answer can have
surprising predictive power. As an example, consider device-independent quantum
cryptography [26]. Two agents (Alice and Bob) perform local measurements on
entangled quantum states. They use the random, correlated outcomes to generate
a secret key. Could there be an eavesdropper (Eve) that spies on their message? If
Alice’s and Bob’s statistics violates a Bell inequality, then the answer must be “no”.
Namely, if Eve is constrained by locality, and the setup violates local realism, then
what remains is a phenomenal violation of realism: Eve cannot be correlated to any
“elements of reality” in her past that would correspond to that secret key. In other
words: you cannot spy on something that doesn’t exist.

But the predictive power of this kind of reasoning seems to come at a price: aren’t
we giving up on realism here?

2 Note that this characterization does not apply to Valentini’s version of de Broglie–Bohm the-
ory [24], which includes the possibility to have quantum nonequilibrium systems that make predic-
tions which differ from standard quantum mechanics.
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2.4 Ontic Structural Realism

In the context of quantum physics, the word “realism” is ambiguous and overloaded.
Theviolationof aBell inequality implies a violationof local realism, but these notions
are defined in a very specific way. Interpretations of quantum theory that reject the
violation of locality are often labelled as “anti-realist” [21]. But this includes inter-
pretations of quantum mechanics that simply reject the mathematical framework on
which the derivation is built in thefirst place (the ontologicalmodels framework [27]),
even if they rest on a generally realist view of the physical world. A prominent exam-
ple is given by QBism [23] that subscribes to a notion of “participatory realism”.

In particular, to be a realist doesn’t commit one to a metaphysics of “things”—
perhaps quite on the contrary. This is the main point in a book by Ladyman et al.
with the title of the previous section: Every Thing Must Go [17]. The authors argue
precisely for a form of realism relying on a metaphysics of structure, not things—
ontic structural realism.

The goals of Ladyman et al. are quite different from those of this essay—they are
mostly motivated by the problems of standard scientific realism: “[...] the history of
successful novel prediction science is the most compelling evidence for some form of
realism, but [...] the history of ontological discontinuity across theory change makes
standard scientific realism indefensible.”

In particular, what is rejected is the ‘doctrine of containment’: “On this doctrine,
the world is a kind of container bearing objects that change location and properties
over time. These objects cause things to happen by interacting directly with one
another. [...] they themselves are containers in turn, and their properties and causal
dispositions are to be explained by the properties and dispositions of the objects they
contain (and which are often taken to comprise them entirely).”

It is argued that this kind of view is in line with human intuition, but not so
much with modern physics: “we should not interpret science [...] as metaphysically
committed to the existence of self-subsistent individuals. [...] We will later say that
what exists are (‘real’) ‘patterns’. [...] When we go on to deny that, strictly speaking,
there are ‘things’, we will mean to deny that in the material world as represented by
the currently accepted scientific structures, individual objects have any distinctive
status.”

Such a version of realism is still able to account for the “no-miracles argu-
ment” [28]: that the best explanation of the success of science is that our best
scientific theories are at least approximately true. In particular, it frees us from a
problem famously described by Laudan [29]: if we insist on understanding “approx-
imate truth” as the property that the central terms of a scientific theory (such as
Dalton’s atoms or Bohr’s electrons) refer to actual entities in the world, then we have
to regard previous physical theories (and thus perhaps also contemporary ones) as
utterly unsuccessful. On the other hand, if we base realism on a structural ontology
of “real patterns”, then this problem is dissolved, and a form of stability across theory
change is established.
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In summary: applying structural terminology to our understanding of the physical
world is not in conflict with realism, but on the contrary implied by mature versions
of it.

2.5 Quantum-Optimistic Conclusions

What canwe conclude ifwe accept the structural viewput forward in this essay? First,
interpreting undecidability as undifferentiation of structure arguably renders “anti-
mechanist” views as expressed for example by Driessen and Suarez [9] implausible.
Non-existing answers can neither be found by machines, nor by humans—nor by
gods.

Regarding quantum theory, the structural perspective seems to bring us closer
to views that are often unduly characterized as anti-realist: views in which quantum
states are states of information about future measurement outcomes (or experiences),
but not about some underlying reality [21]. But we do not have to stop here. Seeing
the world as consisting of real patterns interwoven by structure, not as a “thing” or
a collection of things, opens up the possibility to reconcile these epistemic interpre-
tations with others that regard the quantum state as ontic. Namely, if quantum states
are expressions of knowledge (or belief, or chance), and if the quantum state “is” the
world (or is in the world), then why not accept the conjunction of both views?

Hypothesis. The quantum world is probabilistic structure. In other words, it
is not a “thing” or a collection of things, but it is the multitude of statistical
patterns and their structural relations that any observer encounters in their data.

In [30], I have worked out a concrete version of this hypothesis in detail. It starts
with the claim that the world is nothing but the determination of the chances of
what happens to any observer next, and derives our usual picture of a “thing-like”
objective world from it. Regardless of this specific approach, themainmessage is one
of optimism: seeing unpredictability not as an expression of a fundamental epistemic
restriction, but as structural undifferentiation admits new fruitful perspectives on
the world, including ones that drop the false dichotomy of “ontic” and “epistemic”
interpretations of the quantum state.

In this view, undecidability and unpredictability are not in themselves sufficient
reasons to be pessimistic. But perhaps this is a dangerous perspective. As Steven
Pinker [31] points out,

Pessimism has been equated with moral seriousness.Citing the popular naysayers,
if you think knowledge can help solve problems, then you have a “blind faith” and a
“quasi-religious belief” in the “outmoded superstition” and “false promise” of the
“myth” of the “onward march” of “inevitable progress”.
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In the light of Gödel’s theorems, the epitaph of David Hilbert’s tombstone in
Göttingen is sometimes regarded as a prototype of a false promise:

We must know. We will know.
Let me therefore conclude this essay with one further outmoded declaration of blind
faith:

We can know what there is to know.
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Chapter 3
Indeterminism and Undecidability

Klaas Landsman

Dedicated to the memory of Michael Redhead (1929–2020).

Abstract The aim of this paper is to argue that the (alleged) indeterminism of
quantum mechanics, claimed by adherents of the Copenhagen interpretation since
Born [8], can be proved from Chaitin’s follow-up to Gödel’s (first) incompleteness
theorem. In comparison, Bell’s [2] theorem as well as the so-called free will theorem-
originally due to Heywood and Redhead [44]-left two loopholes for deterministic
hidden variable theories, namely giving up either locality (more precisely: local con-
textuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated measurement
settings, as in ’t Hooft’s cellular automaton interpretation of quantum mechanics).
The main point is that Bell and others did not exploit the full empirical content of
quantum mechanics, which consists of long series of outcomes of repeated mea-
surements (idealized as infinite binary sequences): their arguments only used the
long-run relative frequencies derived from such series, and hence merely asked hid-
den variable theories to reproduce single-case Born probabilities defined by certain
entangled bipartite states. If we idealize binary outcome strings of a fair quantum
coin flip as infinite sequences, quantum mechanics predicts that these typically (i.e.
almost surely) have a property called 1-randomness in logic, which is much stronger
than uncomputability. This is the key to my claim, which is admittedly based on a
stronger (yet compelling) notion of determinism thanwhat is common in the literature
on hidden variable theories.
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3.1 Introduction: Gödel and Bell

While prima facie totally unrelated, Gödel’s theorem [37] in mathematical logic
and Bell’s theorem [2] in physics share a number of fairly unusual features (for
theorems)1:

• Despite their very considerable technical and conceptual difficulty, both results
are extremely famous and have caught the popular imagination like few others in
science.

• Thoughwelcome in principle-in their teens,many people including the authorwere
intrigued by books with titles like Gödel, Escher Bach: An Eternal Golden Braid
and The Dancing Wu-Li Masters: An Overview of the New Physics, both of which
appeared in 1979-this imagination has fostered wild claims to the effect that Gödel
proved that the mind cannot be a computer or even that God exists, whilst Bell
allegedly showed that reality does not exist. Both theorems (apparently through
rather different means) supposedly also supported the validity of Zen Buddhism.2

• However, even among professional mathematicians (logicians excepted) few
would be able to correctly state the content of Gödel’s theorem when asked on
the spot, let alone provide a correct proof, and similarly for Bell’s theorem among
physicists.

• Nonetheless, many professionals will be aware of the general feeling that Gödel
in some sense shattered the great mathematician Hilbert’s dream of what the foun-
dations of mathematics should look like, whilst there is similar consensus that
Bell dealt a lethal blow to Einstein’s physical world view-though ironically, Gödel
worked in the spirit and formalism of Hilbert’s proof theory, much as Bell largely
agreed with Einstein’s views about quantum mechanics and about physics in gen-
eral.

• Both experts and amateurs seem to agree that Gödel’s theorem and Bell’s theorem
penetrate the very core of the respective disciplines of mathematics and physics.

In this light, anyone interested in both of these disciplines will want to know what
these results have to do with each other, especially since mathematics underwrites
physics (or at least is its language).3 At first sight this connection looks remote.
Roughly speaking4:

1 In fact there are two incompleteness theorems in logic due to Gödel (see footnotes 2 and 5) and
two theorems on quantum mechanics due to Bell [12, 89], but for reasons to follow in this essay I
am mainly interested in the first ones, of both authors, except for a few side remarks.
2 See Franzén [35] for an excellent first introduction to Gödel’s theorems, combined with a fair and
detailed critique of its abuses, including overstatements by both amateurs and experts (a similar
guide to the use and abuse of Bell’s theorems remains to be written), and Smith [75] for a possible
second go.
3 Yanofsky [91] nicely discusses both theorems in the context of the limits of science and reason.
4 Both reformulations are a bit anachronistic and purpose-made. See Gödel [37] and Bell [2]!
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1. Gödel proved that any consistent mathematical theory (formalized as an
axiomatic-deductive system in which proofs could in principle be carried out
mechanically by a computer) that contains enough arithmetic is incomplete (in
that arithmetic sentences ϕ exist for which neither ϕ nor its negation can be
proved).

2. Bell showed that if a deterministic “hidden variable” theory underneath (and
compatible with) quantum mechanics exists, then this theory cannot be local
(in the sense that the hidden state, if known, could be used for superluminal
signaling).

Both were triggered by a specific historical context. Gödel [37] reflected on the
recently developed formalizations of mathematics, of which he specifically mentions
the Principia Mathematica of Russell and Whitehead and the axioms for set theory
proposed earlier by Zermelo, Fraenkel, and von Neumann. Though relegated to
a footnote, the shadow of Hilbert’s program, aimed to prove the consistency of
mathematics (ultimately based on Cantor’s set theory) using absolutely reliable,
“finitist” means, clearly loomed large, too.5

Bell, on the other hand, tried to understand if the de Broglie–Bohm pilot wave
theory, which was meant to be a deterministic theory of particle motion reproducing
all predictions of quantummechanics, necessarily had to be non-local: Bell’s answer,
then, was “yes.”6

In turn, the circumstances in whichGödel and Bell operated had a long pedigree in
the quest for certainty in mathematics and for determinism in physics, respectively.7

The former had even been challenged at least three times8: first, by the transition from
Euclid’smathematics to Newton’s; second, by the set-theoretic paradoxes discovered
around 1900 by Russell and others (which ultimately resulted from attempts to make
Newton’s calculus rigorous by grounding it in analysis, and in turn founding analysis
in the real numbers and hence in set theory), and third, by Brouwer’s challenge to
“classical” mathematics, which he tried to replace by “intuitionistic” mathematics
(both Hilbert and Gödel were influenced by Brouwer, though contrecoeur: neither
shared his overall philosophy of mathematics).

5 Gödel’s second incompleteness theorem shows that one example ofϕ is the (coded) statement that
the consistency of the theory can be proved within the theory. This is often taken to refute Hilbert’s
program, but even among experts it seems controversial if it really does so. For Hilbert’s program
and its role in Gödel’s theorems see e.g. Zach [92], Tait [83], Sieg [74], and Tapp [84].
6 Greenstein [39] is a popular book on the history and interpretation of Bell’s work. Scholarly
analyses include Redhead [68], Butterfield [14], Werner and Wolf [88], and the papers cited in
footnote 49.
7 Some vocal researchers calim that Bell and Einstein were primarily interested in locality and
realism, determinism being a secondary (or no) issue, but the historical record is ambiguous; more
generally, over 10,000 papers about Bell’s theorems show that Bell can be interpreted in almost
equallymanyways. But this controversy is amoot point: whatever his own (or Einstein’s) intentions,
Bell’s [2] theorem puts constraints on possible deterministic underpinnings of quantum mechanics,
and that is how I take it.
8 For an overall survey of this theme see Kline [47].
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In physics (andmore generally), what Hacking ([42], Chap. 2) calls the doctrine of
necessity, which thus far-barring a few exceptions-had pervaded European thought,
began to erode in the 19th century, culminating in the invention of quantummechanics
between 1900–1930 and notably in its probability interpretation as expressed byBorn
[8]:

Thus Schrödinger’s quantum mechanics gives a very definite answer to the question of the
outcome of a collision; however, this does not involve any causal relationship. One obtains
no answer to the question “what is the state after the collision,” but only to the question
“how probable is a specific outcome of the collision”. (…) This raises the entire problem
of determinism. From the standpoint of our quantum mechanics, there is no quantity that
could causally establish the outcome of a collision in each individual case; however, so far
we are not aware of any experimental clue to the effect that there are internal properties of
atoms that enforce some particular outcome. Should we hope to discover such properties
that determine individual outcomes later (perhaps phases of the internal atomic motions)?
(…) I myself tend to relinquish determinism in the atomic world. ([8], p. 866, translation by
the present author)

In a letter to Born dated December 4, 1926, Einstein’s famously replied that ‘God
does not play dice’ (‘Jedenfalls bin ich überzeugt, daß der nicht würfelt’). Within
ten years Einstein saw a link with locality,9 and Bell [2] and later papers followed
up on this.

3.2 Randomness and Its Unprovability

This precise history has a major impact on my argument, since it shows that right
from the beginning the kind of randomness that Born (probably preceded by Pauli
and followed by Bohr, Heisenberg, Jordan, Dirac, von Neumann, and most of the
other pioneers of quantum mechanics except Einstein, de Broglie, and Schrödinger)
argued for as being produced by quantum mechanics, was antipodal to determin-
ism.10 Thus randomness in quantum mechanics was identified with indeterminism,
and hence attempts (like the de Broglie–Bohm pilot wave theory) to undermine the
“Copenhagen” claim of randomness looked for deterministic (and arguably realistic)
theories underneath quantum mechanics.

Although “undecidability” may sound a bit like “indeterminism”, the analogy
between the quests for certainty in mathematics and for determinism in physics (and
their alleged undermining by Gödel’s and Bell’s theorems, respectively) may sound
rather superficial. To find common ground more effort is needed to bringing these
theorems together.11

9 This phase in the history of quantum mechanics is described by Mehra and Rechenberg [57].
10 See Landsman [53] for the view that randomness is a family resemblance (in that it lacks a
meaning common to all its applications) with the special feature that its various uses are always
defined antipodally.
11 Also cf. e.g. Breuer [9], Calude [16], Svozil, Calude and Stay [79], and Szangolies [80].
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First, some of its “romantic” aspects have to be removed from Gödel’s theorem,
notably its reliance on self-reference, although admittedly this was the key to both
Gödel’s original example of an undecidable sentence ϕ (which in a cryptic way
expresses its own unprovability) and his proof, in which an axiomatic theory that
includes arithmetic is arithmetized through a numerical encoding scheme so as to be
able to “talk about itself”. Though later proofs of Gödel’s theorem also use numerical
encodings of mathematical expressions (such as symbols, sentences, proofs, and
computer programs), this is done in order to make recursion theory (initially a theory
of functions f : N → N) available to a wider context, rather than to exploit self-
reference. Each computably enumerable but uncomputable subset E ⊂ N leads to
undecidable statements (very rarely in mainstreammathematics),12 namely those for
which the sentence n /∈ E is true but unprovable. Chaitin’s (first) incompleteness
theorem (Theorem B.1 in Appendix B), which will play an important role in my
reasoning, is an example of this. To understand this theorem and its background we
return to the history of 20th century mathematics and physics.

Hilbert influenced this history in many ways,13 of which the sixth problem on his
famous list of 23 mathematical problems from 1900 is particularly relevant here: this
problem concerns the ‘Mathematical Treatment of the Axioms of Physics, especially
the theory of probabilities and mechanics’ [45]. This problem influenced our topic in
two initially independent ways, which now come together. First, the problem inspired
von Neumann [62] to develop his mathematical axiomatization of quantum mechan-
ics, which still forms the basis of all mathematically rigorous work on this theory.
In particular, he initiated the literature on hidden variable theories (see Sect. 3.3).
Second, it led both von Mises and Kolmogorov to their ideas on the mathematical
foundations of probability and randomness, initially in opposite ways: whereas von
Mises [58] tried (unsuccessfully) to first axiomatize random sequences of numbers
and then extract probability from these as asymptotic relative frequency,Kolmogorov
[49] successfully axiomatized probability first and then (unsuccessfully) sought to
extract some notion of randomness from this.

The basic problem (already known to Laplace and perhaps even earlier proba-
bilists) was that, in a 50-50 Bernoulli process for simplicity, an apparently “random”
string like

σ = 001101010111010010100011010111 (3.2.1)

is as probable as a “deterministic” string like

σ = 111111111111111111111111111111. (3.2.2)

12 A subset E ⊂ N is computably enumerable (c.e.) if it is the image of a computable function
f : N → N, and computable if its characteristic function 1E is computable, which is true iff both
E and N\E are c.e.
13 This is true for physics almost as much as it is (more famously) for mathematics, since Hilbert
played a major role in the mathematization of the two great theories of twentieth century physics,
i.e. general relativity [22, 69] and quantum mechanics [54, 67]).
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In other words, their probabilities say little or nothing about the “randomness” of
individual outcomes. Imposing statistical properties helps but is not enough to guar-
antee randomness. It is slightly easier to explain this in base 10, to which I therefore
switch for a moment. If we call a sequence x Borel normal if each possible string
σ in x has relative frequency 10−|σ|, where |σ| is the length of σ (so that each digit
0, . . . , 9 occurs 10% of the time, each block 00 to 99 occurs 1% of the time, etc.),
then Champernowne’s number

0123456789101112131415161718192021222324252629282930 . . .

can be shown to be Borel normal. The decimal expansion of π is conjectured to be
Borel normal, too (and has been empirically verified to be so in billions of decimals),
but these numbers are hardly random: they are computable, which is one version of
“deterministic”.

Any sound definition of randomness (for binary strings or sequences) has to
navigate between Scylla and Charybdis: if the definition is too weak (such as Borel
normality), counterexamples will undermine it (such as Champernowne’s number),
but if it is too strong (such as being lawless, like Brouwer’s choice sequences), it
will not hold almost surely in a 50-50 Bernoulli process [60]. As an example of such
sound navigation, Solomonoff, Kolmogorov, Martin-Löf, Chaitin, Levin, Solovay,
Schnorr, and others developed the algorithmic theory of randomness [56]. The basic
idea is that a string or sequence is random iff its shortest description is the sequence
itself, but the notion of a description has to made precise to avoid Berry’s paradox:

The Berry number is the smallest positive integer that cannot be described in less than
eighteen words.

The paradox, then, is that on the one hand this number must exist, since only finitely
many integers can be described in less than eighteen words and hence the set of
such numbers must have a lower bound, while on the other hand Berry’s number
cannot exists by its own definition.14 In the case at hand, the notion of a description
is sharpened by asking it to be computable, so that, roughly speaking (see Appendix
B for technical details), we call a (finite) binary string σ (Kolmogorov) random if
the length of the shortest computer program generating σ is at least as long as σ
itself, and call an (infinite) binary sequence x (Levin–Chaitin) random or 1-random
if its (sufficiently long) finite truncations are Kolmogorov random. At last, for finite
strings σ Chaitin’s (first) incompleteness theorem states that although countably
many strings σ are random, this can be proved only for finitely many of these,
whereas for infinite sequences x his (second) incompleteness theorem says that if
such a sequence is random, only finitely many of its digits can be computed (see
Theorems B.1 and B.4 for precise statements). Thus randomness is elusive.

14 This is one of innumerable paradoxes of natural language, which leads to an incompleteness
theorem once the notion of a description has been appropriately formalized in mathematics, much
as Gödel’s first incompleteness theorem turns the liar’s paradox into a theorem.
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3.3 Rethinking Bell’s Theorem

In order to locate Bell’s [2] theorem in the literature on quantum mechanics and
(in)determinism, I recall that Hilbert’s sixth problem inspired both the work of von
Mises andKolmogorov that eventually gave rise to the algorithmic theory of random-
ness, and (Hilbert’s postdoc) von Neumann’s work on the mathematical foundations
of quantummechanics, culminating in his book [62]. One of his results was that there
can be no nonzero function λ : Hn(C) → R (where Hn(C) is the space of hermitian
n × n matrices, seen as the observables of a quantum-mechanical n-level system)
that is:

1. dispersion-free (i.e. λ(a2) = λ(a)2 for each a ∈ Hn(C));
2. linear (i.e. λ(sa + tb) = sλ(a) + tλ(b) for all s, t ∈ R and a, b ∈ Hn(C)).

Unfortunately, von Neumann interpreted this correct, non-circular, and interesting
result as a proof that quantummechanics is complete in the sense that there can be no
hidden variables in the sense of Born [8], i.e. ‘properties that determine individual
outcomes’. The reason this does not follow is twofold.15 First, the proof relies on
a tacit assumption that later came to be called non-contextuality, namely that the
value λ(a) of some observable a only depends on a, whereas measurement ideology
à la Bohr [7] suggests that it may depend on a measurement context, formalized as
a further set of observables commuting with a (unless a is maximal such a set is far
from unique).16 Second, though natural, the linearity assumption is very strong and
excludes even eigenvalues of a.

This secondpointwas remediedby theKochen–Specker theorem,17 whoweakened
von Neumann’s linearity assumption to linearity on commuting observables, which
at least incorporates eigenvalues and is even found so appealing that the Kochen–
Specker is generally taken to exclude non-contextual hidden variable theories. See
also Appendix C.

The final step in the series of attempts, initiated by von Neumann, to exclude hid-
den variables by showing that subject to reasonable assumptions the corresponding
value attributions cannot exist even independently of any statistical considerations,
is the so-called free will theorem.18 In the wake of the renowned “epr” paper [33] the
setting has nowbecome bipartite (i.e. Alice andBobwho are spacelike separated each
perform experiments on a correlated state) and the non-contextuality assumption is
weakened to local contextuality: the outcomes of Alice’s measurements are indepen-

15 See also Bub [13], Dieks [26], and forthcoming work by Chris Mitsch for balanced accounts.
16 The idea of contextuality was first formulated by Grete Hermann [23].
17 See Kochen and Specker [48]. Ironically, his followers attribute this theorem to Bell [3], although
the result is just a technical sharpening of von Neumann’s result they so vehemently ridicule. For
a deep philosophical analysis of the Kochen–Specker theorem, as well as of Bell’s theorems, see
Redhead [68].
18 See Appendix C. This theorem is originally due to Heywood and Redhead [44], with follow-ups
by Stairs [76], Brown and Svetlichny [11], and Clifton [18], but it was named and made famous by
Conway and Kochen [21], whose main contribution was an emphasis on free will ([52], Chap. 6).
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dent of any choice of measurements Bob might perform, and vice versa.19 Thus her
value attributions λ(a|context) may well be contextual, as long as the observables
commuting with the one she measures (i.e. a), which form a context to a, are local
to her.

A second line of research, which goes back at least to de Broglie [10], was influ-
entially taken up by Bohm [6], and most recently includes ’t Hooft [46], assumes the
possibility of non-contextual value attributions and tries to make these compatible
with the Born rule of quantum mechanics. Bell [2] was primarily concerned with
such theories, asking himself if a deterministic theory like Bohm’s was necessarily
non-local.

In Bell’s analysis, which takes place in the bipartite (epr) setting, the quantum-
mechanical probabilities are obtained by formally averaging over the set of hidden
variables, i.e.,

Pψ(F = x, G = y | A = a, B = b) =
∫
�

dμψ(λ) Pλ(F = x, G = y | A = a, B = b).

(3.3.1)
Hereψ is some (explicitly identified) quantum state of a correlated pair of (typically)
2-level quantum systems (which may be either optical, where the degree of freedom
is helicity, or massive, where the degree of freedom is spin), F is an observable
measured by Alice defined by her choice of setting a, likewise G for Bob defined
by his setting b, with possible outcomes x ∈ 2 = {0, 1}, likewise y ∈ 2 for Bob;
the left-hand side is the Born probability for the outcome (x, y) if the correlated
system has been prepared in the state ψ; the expression Pλ(· · · ) on the right-hand
side is the probability of the outcome (x, y) if the unknown hidden variable or state
equals λ, and finally, μψ is some probability measure on the space� of hidden states
supposedly provided by the theory for each state ψ.

We now say that the hidden variable theory supplying the above quantities is:

• deterministic if the probabilities Pλ(F = x, G = y | A = a, B = b) equal 0 or 1;
• locally contextual if the expression

Pλ(F = x | A = a, B = b) =
∑

y=0,1

Pλ(F = x, G = y | A = a, B = b);
(3.3.2)

is independent of b, whilst the corresponding expression

Pλ(G = y | A = a, B = b) =
∑

x=0,1

Pλ(F = x, G = y | A = a, B = b),

(3.3.3)
is independent of a. That is, the probabilities of Alice’s outcomes are independent
of Bob’s settings, and vice versa. This locality property seems very reasonable
and in fact it follows from special relativity, for if Bob chooses his settings just
before his measurement, there is a frame of reference in which Alice measures

19 Since Alice and Bob are spacelike separated their observables commute (Einstein locality).
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before Bob has chosen his settings, and vice versa. In turn, this is equivalent to the
property that even if she knew the value of λ, Alice could not signal to Bob, and
vice versa.20

Bell proved that a hidden variable theory cannot satisfy (3.3.1) and be both deter-
ministic and locally contextual (which explained why Bohm’s theory had to be non-
local). Making his tacit assumption that experimental settings can be “freely” chosen
explicit, we obtain21:

Theorem 3.3.1 The conjunction of the following properties is inconsistent:

1. determinism;
2. quantum mechanics, i.e. the Born rule for Pψ(F = x, G = y | A = a, B = b);
3. local contextuality;
4. free choice, i.e. (statistical) independence of the measurement settings a and b

from each other and from the hidden variable λ (given the probability measure
μψ).

3.4 Are Deterministic Hidden Variable Theories
Deterministic?

Although the assumptions have a slightly different meaning, the free will theorem
leads to the same result as Bell’s theorem (see Appendix 3), so that the (no) hidden
variable tradition initiated by von Neumann, which culminates in the former, coa-
lesces with the (positive) hidden variable tradition going back to de Broglie, shown
its place by the latter. Thusly there are the obvious four (minimal) ways out of the
contradiction in Theorem 3.3.1:

• Copenhagen (i.e. mainstream) quantum mechanics rejects determinism;
• Valentini [86] rejects the Born rule and hence qm (see the end of Sect. 3.5 below);
• Bohmians reject local contextuality22;
• ’t Hooft [46] rejects free choice.

We focus on the last two options, so that determinism and quantum mechanics (i.e.
the Born rule) are kept. In both cases the Born rule is recovered by averaging the
hidden variable with respect to a probability measure μψ on the space of hidden
variables, given some (pure) quantum state ψ. The difference is that in Bohmian
mechanics the total state (which consists of the hidden configuration plus the “pilot
wave” ψ) determines the measurement outcomes given the settings, whereas in ’t

20 In quantum mechanics the left-hand side of (3.3.1) satisfies this locality condition for any state
ψ.
21 See [52], §6.5 for details, or Appendix C below for a summary.
22 There is a subtle difference between Bohmian mechanics as reviewed by e.g. Goldstein [38], and
de Broglie’s original pilot wave theory [86]. This difference is immaterial for my discussion.
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Hooft’s theory the hidden variable determines the outcomes as well as the settings.23

More specifically:

• In Bohmianmechanics the hidden variable is position q, and dμψ(q) = |ψ(q)|2dq
is the Born probability for outcome q with respect to the expansion |ψ〉 =∫

dq ψ(q)|q〉.
• In ’t Hooft’s theory the hidden variable is a basis vector |m〉 in some separa-
ble Hilbert space H (m ∈ N), and once again the measure μψ(m) = |cm |2 is
given by the Born probability for outcome m with respect to the expansion
|ψ〉 = ∑

m cm |m〉.
Thus the hidden variables (i.e. q ∈ Q and m ∈ N, respectively) have familiar
quantum-mechanical interpretations and also their compatibility measures are pre-
cisely the Born measures for the quantum state ψ. In this light, we may ask to
what extent these hidden variable theories are truly deterministic, as their adherents
claim them to be. Since the argument does not rely on entanglement and hence on
a bipartite experiment, we may as well work with a quantum coin toss. The settings
of the experiments are then fixed, so that we may treat Bohmian mechanics and ’t
Hooft’s theory on the same footing. Idealizing to an infinite run, one has an out-
come sequence x : N → 2. Standard (Copenhagen) quantum mechanics refuses to
say anything about its origin, but nonetheless it does make very specific predictions
about x . The basis of these predictions is the following theorem, whose notation and
proof are explained in Appendix 1. One may think of a fair quantum coin, in which
σ(a) = 2 = {0, 1} and μa(0) = μa(1) = 1/2, and which probabilistically is indis-
tinguishable from a fair classical coin (which in my view cannot exist, cf. Sect. 3.5).

Theorem 3.4.1 The following procedures for repeated identical independent mea-
surements are equivalent (in giving the same possible outcome sequences with the
same probabilities):

1. Quantum mechanics is applied to the whole run, described as a single quantum-
mechanical experiment with a single classically recorded outcome sequence;

2. Quantum mechanics is applied to single experiments (with classically recorded
outcomes), upon which classical probability theory takes over to combine these.

Either way, the (purely theoretical) Born probability μa for single outcomes induces
the infinite Bernoulli process probability μ∞

a on the space σ(a)N of infinite outcome
sequences.

23 In Bohmian mechanics, the hidden state q ∈ Q just pertains to the particles undergoing mea-
surement, whilst the settings a are supposed to be “freely chosen” for each measurement (and in
particular are independent of q). The outcome is then fixed by a and q. In ’t Hooft’s theory, the
hidden state x ∈ X of “the world” determines the settings as well as the outcomes. Beyond the
issue raised in the main text, Bohmians (but not ’t Hooft!) therefore have an additional problem,
namely the origin of the settings (which are simply left out of the theory). This weakens their case
for determinism even further.
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Theorem B.3 in Appendix 2 then implies:

Corollary 3.4.2 With respect to the “fair” probability measure P∞ on 2N almost
every outcome sequence x of an infinitely often repeated fair quantum coin flip is
1-random.

In hidden variable theories, on the other hand, x factors through�, that is,24 there are
functions h : N → � and g : � → 2 such that x = g ◦ h. Hidden variable theories
do provide g, i.e. describe the outcome of any experiment given the value of the
hidden variable λ ∈ �. However, what about h, that is, the specification of the value
of the hidden variable λ in each run of the experiment? There are just the following
two scenarios:

1. The function h is provided by the hidden variable theory. In that case, since the
theory is supposed to be deterministic, h explicitly gives the values λn = h(n) for
each n ∈ N (i.e. experiment no. n in the run). Since g is also given, this means that
x is given by the theory. By Theorem B.4 (i.e. Chaitin’s second incompleteness
theorem), the outcome sequence cannot be 1-random, against Corollary 3.4.2.

2. The function h is not provided by the hidden variable theory. In that case, the the-
ory fails to determine the outcome of any specific experiment and just provides
averages of outcomes. My conclusion would be that, except for some kind of a
“story”, nothing has been gained over quantum mechanics, but hidden variable
theorists argue that their theories cannot be expected to provide initial conditions
(for experiments), and claim that the randomness in measurement outcomes orig-
inates in the randomness of the initial conditions of the experiment.25 But then
the question arises what else provides these conditions, and hence our function h.
The point here is that in order to recover the predictions of quantum mechanics
as meant in Corollary 3.4.2, the function h must sample the Born measure (in its
guise of the compatibility measure μψ on �), in the sense of “randomly” picking
elements from �, distributed according to μψ , cf. (3.5.2). This, in turn, should
guarantee that the sequences x = g ◦ h mimic fair coin flips. Since g is supposed
to be given, this implies that the randomness properties of x must entirely origi-
nate in h. This origin cannot be deterministic, since in that case we are back to the
contradictory scenario 1 above. Hence h must come from some unknown external
random process in nature that our hidden variable theories invoke as a kind of an
oracle. In my view the need for such a random oracle undermines their purpose
and makes them self-defeating. Every way you look at this you lose!

24 The function g incorporates all details of the experiment that may affect the outcome (like the
setting, context, and quantum state) except the hidden variable λ (which it specifies). It has nothing
to do with noncontextual value assignments on the set of quantum-mechanical observables (which
do not exist).
25 The Bohmians are divided on the origin of their compatibility measure, referred to in this context
as the quantum equilibrium distribution, cf. Dürr, Goldstein, and Zanghi [29] against Valentini [86].
The origin of μψ is not my concern, which is the need to randomly sample it and the justification
for doing so.
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3.5 Conclusion and Discussion

We may summarize the discussion in the previous section as follows26:

Theorem 3.5.1 For any hidden variable theory T the following properties are
incompatible:

1. Determinism: T states the outcome of the measurement of any observable a given
the value λ ∈ � of the hidden variable via a function g : � → σ(a) and provides
these values for each experiment; for an infinite run this is done via some function
h : N → �, so that T provides the outcome sequence x : N → σ(a) through
x = g ◦ h.

2. Born rule: Outcome sequences are almost surely 1-random. (cf. Corollary 3.4.2).

The proof is short. According to the first clause T states the entire outcome sequence
x . By Chaitin’s incompleteness theorem B.4 this is incompatible with the second
clause. �
In order to understand Theorem 3.5.1 and its proof it may be helpful to note that in
classical coin tossing the role of the hidden state is also played by the initial conditions
(cf. [25], Chap. 1, Appendix 2). The 50-50 chances (allegedly) making the coin fair
are obtained by averaging over the initial conditions, i.e., by sampling. By the same
arguments, this sampling cannot be deterministic, i.e. given by a function like h,
for otherwise the outcome sequences appropriate to a fair coin would not obtain:
it must be done in a genuinely random way and hence by appeal to an external
random process. This is impossible classically, so that-unless they have a quantum-
mechanical seed-fair classical coins do not exist, as confirmed by Diaconis and
Skyrms ([25], Chap. 1).

I conclude that deterministic hidden variable theories compatible with quantum
mechanics do not exist. The reason that Bell’s [2] theorem and the free will theorem
leave two loopholes for determinism (i.e. local contextuality and no free choice)
is that their compatibility condition with quantum mechanics is stated too weakly:
the theory is only required to reproduce certain single-case (Born) probabilities,
as opposed to the properties of typical outcome sequences (from which the said
probabilities are extracted as long-run frequencies). This reason this approach is
still partly successful lies in the clever use of entangled states. If one rejects the
second requirement on determinism in Theorem 3.5.1, Bell’s theorem and the free
will theorem still provide useful constraints on deterministic hidden variable theories,
but as shown in the previous section such a rejection necessitates an appeal to an
unknown random process and hence seems self-defeating.

Let us now consider the role of the idealization to infinite outcome sequences and
see what happens if the experimental runs are finite.27 Once again, via Theorem 3.4.1

26 In stating the second condition I have taken σ(a) = {0, 1} with 50-50 Born probabilities, but this
can be generalized to other spectra and probability measures. See Downey and Hirschfeldt [27],
§6.12.
27 In other words, we examine whether Earman’s principle is satisfied, cf. footnote 37.
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the Born rule predicts that outcome strings will be Kolmogorov random with high
probability. Any deterministic theory (in the sense of Theorem 3.5.1) provides an
explicit description (say in ZFC) of the outcomes, whose randomness would be
provable from this description. But this is precluded by Chaitin’s first incompleteness
theorem (i.e. Theorem B.1), now in the role played by his second incompleteness
theorem in the infinite case.28 �

Nonetheless, although their incompatibility with quantum mechanics has now
been established, it will be hard to disprove deterministic hidden variable theories
from experimental data. Let us look at the proof of Bell’s theorem for inspiration as
to what such a (dis)proof should look like. In the context of the epr–Bohm experi-
ment local deterministic hidden variable theories predict correlations that satisfy the
Bell inequalities,29 whereas on suitable settings quantum mechanics predicts (and
experiment shows) that typical outcome sequences violate these inequalities. Now a
disproof of some deterministic hidden variable theory T cannot perhaps be expected
to show that all quantum-mechanical outcome sequences violate the predictions of
the hidden variable theory (indeed they do not, albeit with low probability), but it
should identify at least a sufficiently large number of typical (i.e. random) sequences.
However, even in the finite case this identification is impossible by Theorem B.1,
so that the false predictions of T cannot really be confronted with the correct pre-

28 To make this argument completely rigorous one would need to define what a “description” pro-
vided by a deterministic theory means logically. There is a logical characterization of deterministic
theories [59], and there are some arguments to the effect that the evolution laws in deterministic
theories should be computable, cf. Earman [31], Chap. 11, and Pour-El and Richards [65], passim,
but this literature makes no direct reference to output strings or sequences of the kind we analyze
and in any case the identification of “deterministic” with “computable” is obscure even in situations
where the latter concept is well defined. For example, if we stipulate that h : N → � is computable
(and likewise g : � → 2) then the above appeal to Chaitin’s first incompleteness theorem is not
even necessary, but this seems too easy. A somewhat circular solution, proposed by Scriven [70], is
to simply say that T is deterministic iff the output strings or sequences it describes are not random,
but this begs for a more explicit characterization. One might naively expect such a characterization
to come from the arithmetical hierarchy (found in any book on computability): if, as before, we
identify 2N with the power set P(N) of N, then S ⊂ N is called arithmetical if there is a formula
ψ(x) in PA (Peano Arithmetic) such that n ∈ S iff N � ψ(n), that is, ψ(n) is true in the usual sense.
We may then classify the arithmetical subsets through the logical form of ψ, assumed in prenex
normal form (i.e., all quantifiers have been moved to the left): S is in �0

0 = �0
0 iff ψ has no quan-

tifiers or only bounded quantifiers (in which case S is computable), and then recursively S ∈ �0
n+1

iff ψ(x) = ∃yϕ(x, y) with ϕ ∈ �0
n , and ϕ ∈ �0

n+1 iff ψ(x) = ∀yϕ(x, y) with ϕ ∈ �0
n . Here any

singly quantified expression ∃yϕ(x, y) may be replaced by ∃y1 · · · ∃ykϕ(x, y1, . . . , yk) and like-
wise for ∀y . By convention �0

n ⊂ �0
n+1 and �0

n ⊂ �0
n+1, and �0

n := �0
n ∩ �0

n . Since in classical
logic ∀yϕ(x, y) is equivalent to ¬∃y¬ϕ(x, y), it follows that �0

n sets are the complements of �0
n

sets. One would then like to locate deterministic theories somewhere in this hierarchy, preferably
above the computable �0

0. The idea of a hidden variable (namely y) suggests �0
1 and closure under

complementation (it would be crazy if some deterministic theory prefers ones over zeros) then leads
to �0

1, but this equals �0
0. The next level �

0
2 is impossible since this already contains 1-random sets

like Chaitin’s �. Hence more research is needed.
29 For Bell’s proof it is irrelevant whether or not some hidden variable is able to sample the com-
patibility measure, since the Bell inequalities follow from pointwise bounds, cf. Landsman [52],
Eq. (6.119).
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dictions of quantum mechanics. Thus the unprovability of their falsehood condemns
deterministic hidden variable theories, and perhaps even determinism as a whole, to a
zombie-like existence in a twilight zone comparable with the Dutch situation around
selling soft drugs: although this is forbidden by law, it is (officially) not prosecuted.

The situation would change drastically if deterministic hidden variable theories
gave up their compatibility with the Born rule (on which my entire reasoning is
based), as for example Valentini [86] has argued in case of the de Broglie–Bohm
pilot wave theory. For it is this compatibility requirement that kills such theories,
which could leave zombie-dom if only they were brave enough to challenge the
Born rule. This might open the door to superluminal signaling and worse, but on
the other hand the possibility of violating the Born rule would also provide a new
context for deriving it, e.g. as a dynamical equilibrium condition (as may be the case
for the Broglie–Bohm theory, if Valentini is right).

I would personally expect that the Born rule is emergent from some lower-level
theory, which equally well suggests that it is valid in some limit only, rather than
absolutely.
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Appendix A: The Born Rule

The Born measure is a probability measure μa on the spectrum σ(a) of a (bounded)
self-adjoint operator a on some Hilbert space H , defined as follows by any state ω
on B(H)30:

Theorem A.1 Let H be a Hilbert space, let a∗ = a ∈ B(H), and let ω be a state
on B(H). There exists a unique probability measure μa on the spectrum σ(a) of a
such that

ω( f (a)) =
∫

σ(a)

dμa(λ) f (λ), for all f ∈ C(σ(a)). (3.5.1)

The Born measure is a mathematical construction; what is its relationship to experi-
ment? This relationship must be the source of the (alleged) randomness of quantum
mechanics, for the Schrödinger equation is deterministic. We start by postulating, as
usual, thatμa(�) is the (single case) “probability” thatmeasurement of the observable
a in the stateω (which jointly give rise to the pertinent Bornmeasureμa) gives a result

30 Here a stateω is a positive normalized linear functional on B(H), as in the C*-algebraic approach
to quantum mechanics (Haag [41], Landsman [52]). One may think of expectation values ω(a) =
Tr (ρa), where ρ is a density operator on H , with the special case ω(a) = 〈ψ, aψ〉, where ψ ∈ H
is a unit vector. For a proof of Theorem A.1 see Landsman [52], Sect. 4.1, Corollary 4.4.
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λ ∈ � ⊂ σ(a). Here I identify single-case “probabilities” with numbers (consistent
with the probability calculus) provided by theory, upon which long-run frequencies
provide empirical evidence for the theory in question, but do not define probabilities.
The Born measure is a case in point: these probabilities are theoretically given, but
have to be empirically verified by long runs of independent experiments. In other
words, by the results reviewed below such experiments provide numbers whose role
it is to test the Born rule as a hypothesis. This is justified by the following sampling
theorem (strong law of large numbers): for any (measurable) subset � ⊂ σ(a) and
any sequence (xn) ∈ σ(a)N we have μ∞

a -almost surely:

lim
N→∞

1

N
(1�(x1) + · · · + 1�(xN )) = μa(�). (3.5.2)

Proof of Theorem 3.4.1. Let a = a∗ ∈ B(H), where H is a Hilbert space and B(H)

is the algebra of all bounded operators on H , and let σ(a) be the spectrum of a. For
simplicity (and since this is enough for our applications, where H = C

2) I assume
dim(H) < ∞, so that σ(a) simply consists of the eigenvalues λi of a (which may be
degenerate). Let us first consider a finite number N of identical measurements of a (a
“run”). The first option in the theorem corresponds to a simultaneous measurement
of the commuting operators

a1 = a ⊗ 1H ⊗ · · · ⊗ 1H ; (3.5.3)

· · ·
aN = 1H ⊗ · · · ⊗ 1H ⊗ a, (3.5.4)

all defined on the N -fold tensor product H N ≡ H⊗N of H with itself.31 To put this
in a broader perspective, consider any set (a1, . . . , aN ) ≡ a of commuting operators
on any Hilbert space K (of which (3.5.3)–(3.5.4) is obviously a special case with
K = H N ). These operators have a joint spectrum σ(a), whose elements are the joint
eigenvalues λ = (λ1, . . . ,λN ), defined by the property that there exists a nonzero
joint eigenvector ψ ∈ K such that aiψ = λiψ for all i = 1, . . . , N ; clearly,

σ(a) = {λ ∈ σ(a1) × · · · × σ(an) | eλ ≡ e(1)
λ1

· · · e(n)

λn
�= 0} ⊆ σ(a1) × · · · × σ(aN ),

(3.5.5)
where e(i)

λi
is the spectral projection of ai on the eigenspace for the eigenvalue λi ∈

σ(ai ). Von Neumann’s Born rule for the probability of finding λ ∈ σ(a) then simply
reads

pa(λ) = ω(eλ), (3.5.6)

where ω is the state on B(K )with respect to which the Born probability is defined.32

If dim(K ) < ∞, as I assume, we always have ω(a) = Tr (ρa) for some density
operator ρ, and for a general Hilbert space K this is the case iff the state ω is normal

31 This can even be replaced by a single measurement, see Landsman [52], Corollary A.20.
32 The uses of states themselves may be justified by Gleason’s theorem ([52], §§2,7, 4.4).
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on B(K ). For (normal) pure states we have ρ = |ψ〉〈ψ| for some unit vector ψ ∈ K ,
in which case

pa(λ) = 〈ψ, eλψ〉. (3.5.7)

The Born rule (3.5.6) is similar to the single-operator case ([52], §4.1)33: the contin-
uous functional calculus gives a Gelfand isomorphism of commutative C*-algebras

C∗(a, 1K ) ∼= C(σ(a)), (3.5.8)

under which the restriction of the state ω, originally defined on B(K ), to its commu-
tative C*-subalgebra C∗(a) defines a probability measure μa on the joint spectrum
σ(a) via the Riesz isomorphism. This is the Born measure, whose probabilities are
given by (3.5.6). For the case (3.5.3)–(3.5.4) we have equality in (3.5.5); since in
that case σ(ai ) = σ(a), we obtain

σ(a) = σ(a)N , (3.5.9)

and therefore, for allλi ∈ σ(a) and statesω on B(H N ), the Born rule (3.5.6) becomes

pa(λ1, . . . ,λN ) = ω(eλ1 ⊗ · · · ⊗ eλN ). (3.5.10)

Now take a state ω1 on B(H). Reflecting the idea that ω is the state on B(H N ) in
which N independent measurements of a ∈ B(H) in the state ω1 are carried out,
choose

ω = ωN
1 , (3.5.11)

the state on B(H N ) defined by linear extension of its action on elementary tensors:

ωN
1 (b1 ⊗ · · · ⊗ bn) = ω1(b1) · · · ωN (bN ). (3.5.12)

It follows that

ωN (eλ1 ⊗ · · · ⊗ eλN ) = ω1(eλ1) · · · ω1(eλN ) = pa(λ1) · · · pa(λN ), (3.5.13)

so that the joint probability of the outcome (λ1, . . . ,λN ) ∈ σ(a) is simply

p�a(λ1, . . . ,λN ) = pa(λ1) · · · pa(λN ). (3.5.14)

Since these are precisely the probabilities for option 2 (i.e. the Bernoulli process),
i.e.,

μa = μN
a , (3.5.15)

33 The Born rule for commuting operators follows from the single operator case ([52], §2.5).
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this proves the claim for N < ∞. To describe the limit N → ∞, let B be any C*-
algebra with unit 1B ; below I take B = B(H), B = C∗(a, 1H ), or B = C(σ(a)). We
now take

AN = B⊗N , (3.5.16)

the N -fold tensor product of B with itself.34 The special cases abovemay be rewritten
as

B(H)⊗N ∼= B(H N ); (3.5.17)

C∗(a, 1H )⊗N ∼= C∗(a1, . . . , aN , 1H N ); (3.5.18)

C(σ(a))⊗N ∼= C(σ(a) × · · · × σ(a)), (3.5.19)

with N copies of H and σ(a), respectively, and in (3.5.18) the ai are given by (3.5.3)–
(3.5.4). We may then wonder if these algebras have a limit as N → ∞. They do,
but it is not unique and depends on the choice of observables, that is, of the infinite
sequences a = (a1, a2, . . .), with aN ∈ AN , that are supposed to have a limit. One
possibility is to take sequences a for which there exists M ∈ N and aM ∈ AM such
that for each N ≥ M ,

aN = aM ⊗ 1B · · · ⊗ 1B, (3.5.20)

with N − M copies of 1B . On that choice, one obtains the infinite tensor product
B⊗∞, see Landsman [52], §C.14. The limit of (3.5.17) in this sense is B(H⊗∞),
where H⊗∞ is von Neumann’s ‘complete’ infinite tensor product of Hilbert spaces,35

in which C∗(a, 1H )⊗∞ is the C*-algebra generated by (a1, a2, . . .) and the unit on
H⊗∞. The limit of (3.5.19) is

C(σ(a))⊗∞ ∼= C(σ(a)N), (3.5.21)

where σ(a)N, which we previously saw as a measure space (as a special case of XN

for general compact Hausdorff spaces X ), is now seen as a topological space with
the product topology, in which it is compact.36 As in the finite case, we have an
isomorphism

C∗(a, 1H )⊗∞ ∼= C(σ(a))⊗∞, (3.5.22)

and hence, on the given identifications, we obtain an isomorphism of C*-algebras

C∗(a1, a2, . . . , 1H⊗∞) ∼= C(σ(a)N). (3.5.23)

34 If B is infinite-dimensional, for technical reasons the so-called projective tensor product should
be used.
35 See Landsman [52], §8.4 for this approach. The details are unnecessary here.
36 Cf. Tychonoff’s theorem. The associated Borel structure is the one defined by the cylinder sets.
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It follows from the definition of the infinite tensor products used here that each stateω1

on B defines a state ω∞
1 on B⊗∞. Take B = B(H) and restrict ω∞

1 , which a priori is a
state on B(H⊗∞), to its commutative C*-subalgebra C∗(a1, a2, . . . , 1H⊗∞). The iso-
morphism (3.5.23) then gives a probability measure μa on the compact space σ(a)N,
where the label a now refers to the infinite set of commuting operators (a1, a2, . . .)

on H⊗∞. To compute this measure, I use (3.5.1) and the fact that by construction
functions of the type

f (λ1,λ2, . . .) = f (N )(λ1, . . . ,λN ), (3.5.24)

where N < ∞ and f (N ) ∈ C(σ(a)N ), are dense in C(σ(a)N) (with respect to the
appropriate supremum-norm), and that in turn finite linear combinations of factorized
functions f (N )(λ1, . . . ,λN ) = f1(λ1) · · · fN (λN ) are dense in C(σ(a)N ). It follows
from this that

μa = μ∞
a . (3.5.25)

Since this generalizes (3.5.15) to N = ∞, the proof of Theorem 3.4.1 is finished. �

Appendix B: 1-Randomness

In what follows, the notion of 1-randomness, originally defined by Martin-Löf in
the setting of constructive measure theory, will be explained through an equivalent
definition in terms of Kolmogorov complexity.37 We assume basic familiarity with
the notion of a computable function f : N → N, which may be defined through
recursion theory or Turing machines.

A string is a finite succession of bits (i.e. zeros and ones). The length of a stringσ is
denoted by |σ|. The set of all strings of length N is denoted by 2N , where 2 = {0, 1},
and

2∗ =
⋃
N∈N

2N (3.5.26)

denotes the set of all strings. The Kolmogorov complexity K (σ) of σ ∈ 2∗ is defined,
roughly speaking, as the length of the shortest computer program that prints σ and
then halts. We then say, again roughly, that σ is Kolmogorov random if this shortest
program contains all of σ in its code, i.e. if the shortest computable description of σ
is σ itself.

37 For details see Volchan [87], Terwijn [85], Diaconis and Skyrms ([25], Chap. 8), and Eagle [30]
for starters, technical surveys by Zvonkin and Levin [93], Muchnik et al. [61], Downey et al. [28],
Grünwald and Vitányi [40], and Dasgupta [24], and books by Calude [15], Li and Vitányi [56],
Nies [63], and Downey and Hirschfeldt [27]. For history see van Lambalgen [50, 51] and Li and
Vitányi [56]. For physical applications see e.g. Earman [31], Svozil [77, 78], Calude [16], Wolf
[90], Bendersky et al. [4, 5], Senno [73], Baumeler et al. [1], and Tadaki [81, 82].
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To make this precise,38 fix some universal prefix-free Turing machine U , seen as
performing a computation on input τ (in its prefix-free domain) with output U (τ ),
and define

K (σ) = min
τ∈2∗{|τ | : U (τ ) = σ}. (3.5.27)

The function K : 2∗ → N is uncomputable, but that doesn’tmean it is ill-defined. The
choice ofU affects K (σ) up to a σ-independent constant, and to take this dependency
into account we state certain results in terms of the “big-O” notation familiar from
Analysis.39 For example, if σ is easily computable, like the first |σ| binary digits of
π, then

K (σ) = O(log |σ|), (3.5.28)

with the logarithm in base 2 (as only the length of σ counts). However, a random σ
has

K (σ) = |σ| + O(log |σ|). (3.5.29)

We say that σ is c-Kolmogorov random, for some σ-independent constant c ∈ N, if

K (σ) ≥ |σ| − c. (3.5.30)

Simple counting arguments show that as |σ| = N gets large, the overwhelmingmajor-
ity of strings in 2N (and hence in 2∗) is c-random.40 The following theorem, which
might be calledChaitin’s first incompleteness theorem, therefore shows that random-
ness is elusive41:

38 A Turing machine T is prefix-free if its domain D(T ) consists of a prefix-free subset of 2∗, i.e.,
if σ ∈ D(T ) then στ /∈ D(T ) for any σ, τ ∈ 2∗, where στ is the concatenation of σ and τ : if T
halts on input σ then it does not halt on either any initial part or any extension of σ. The prefix-free
version is only needed to correctly define randomness of sequences in terms of randomness of their
initial parts, which is necessary to satisfy Earman’s Principle: ‘While idealizations are useful and,
perhaps, even essential to progress in physics, a sound principle of interpretation would seem to be
that no effect can be counted as a genuine physical effect if it disappears when the idealizations are
removed.’ See Earman [32], p. 191. For finite strings σ one may work with the plain Kolmogorov
complexity C(σ), defined as the length (in bits) of the shortest computer program (run on some
fixed universal Turing machine U ) that computes σ.
39 Recall that f (n) = O(g(n)) iff there are constants C and N such that | f (n)| ≤ C |g(n)| for all
n ≥ N .
40 It is easy to show that least 2N − 2N−c+1 + 1 strings σ of length |σ| = N are c-Kolmogorov
random.
41 Here “sound” means that all theorems proved by T are true; this is a stronger assumption than
consistency (in fact only the arithmetic fragment of T needs to be sound). One may think of Peano
Arithmetic (PA) or of Zermelo–Fraenkel set theory with the axiom of choice (ZFC). As in Gödel’s
theorems, one also assumes that T is formalized as an axiomatic-deductive system in which proofs
could in principle be carried out mechanically by a computer. The status of the true but unprovable
sentences K (σ) > C in Chaitin’s theorem is similar to that of the sentence G in Gödel’s original
proof of his first incompleteness theorem, which roughly speaking is an arithmetization of the
statement “I cannot be proved in T ”: assuming soundness and hence consistency of T , one can
prove G and K (σ) > C in the usual interpretation of the arithmetic fragment of T in the natural



36 K. Landsman

Theorem B.1 For any sound mathematical theory T containing enough arithmetic
there is a constant C ∈ N such that T cannot prove any sentence of the form K (σ) >

C (although infinitely many such sentences are true), and as such T can only prove
(Kolmogorov) randomness of finitely many strings (although infinitely many strings
are in fact random).

The proof is quite complicated in its details but it is based on the existence of a
computably enumerable (c.e.) list T = (τ1, τ2, . . .) of the theorems of T , and on the
fact that after Gödelian encoding by numbers, theorems of any given grammatical
form can be computably searched for in this list and will eventually be found. In
particular, there exists a program P (running on the universal prefix-free Turing
machine U used to define K (·)) such that P(n) halts iff there exists a string σ for
which K (σ) > n is a theorem of T . If there is such a theorem the output is P(n) = σ,
where σ appears in the first such theorem of the kind (according to the list T). By
definition of K (·), this means that

K (σ) ≤ |P| + |n|. (3.5.31)

Now suppose that no C as in the above statement of the theorem exists. Then there
is n ∈ N large enough that n > |P| + |n| and there is a string σ ∈ 2∗ such that T
proves K (σ) > n. Since T is sound this is actually true,42 which gives a contradiction
between

K (σ) > n > |P| + |n|; K (σ) ≤ |P| + |n|. (3.5.32)

Note that this proof shows that a proof in T of K (σ) > n (if true) would also
identify σ.

As an idealization of a long (binary) string, a (binary) sequence x = x1x2 · · · is an
infinite succession of bits, i.e. x ∈ 2N, with finite truncations x|N = x1 · · · xN ∈ 2N

for each N ∈ N. We then call x Levin–Chaitin random if each truncation of x is
c-Kolmogorov random for some c, that is, if there exists c ∈ N such that

K (x|N ) ≥ N − c

for each N ∈ N. Equivalently,43 a sequence x is Levin–Chaitin random if eventually
K (x|N ) >> N , in that

lim
N→∞(K (x|N ) − N ) = ∞. (3.5.33)

numbers N. See Chaitin [20] for his own presentation and analysis of his incompleteness theorem.
Raatikainen [66] also gives a detailed presentation of the theorem, including a critique of Chaitin’s
ideology. Incidentally, he shows that there even exists a U with respect to which K (·) is defined
such that C = 0 in ZFC. See also Franzén [35] and Gács [36].
42 The following contradiction can be made more dramatic by taking n such that n >> |P| + |n|.
43 See Calude [15], Theorem 6.38 (attributed to Chaitin) for this equivalence.
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Apart from having the same intuitive pull as Kolmogorov randomness (of strings),
this definition gains from the fact that it is equivalent to two other appealing notions
of randomness, namely patternlessness and unpredictability, both also defined com-
putationally. In view of these equivalences we simply call a Levin–Chaitin random
sequence 1-random.44

A sequence x ∈ kN is Borel normal in base k if each string σ has frequency k−|σ|
in x . Any hope of defining randomness as Borel normality in base 10 is blocked
by Champernowne’s number 0123456789101112131 . . ., which is Borel normal but
clearly not random in any reasonable sense (this is also true in base 2). The decimal
expansion ofπ is also conjectured to beBorel normal in base 10 (with huge numerical
support), although π clearly is not random either. However, Borel normality seems
a desirable property of truly random numbers on any good definition, and so we are
fortunate to have:

Proposition B.2 A 1-random sequence is Borel normal (in base 2, but in fact in any
base) and hence (“monkey typewriter theorem”) contains any finite string infinitely
often.45

Another desirable property comes from the following theorem due to Martin-Löf, in
which P is the 50-50 probability on {0, 1} and P∞ is the induced probabilitymeasure
on 2N:

Theorem B.3 With respect to P∞ almost every outcome sequence x ∈ 2N is 1-
random.

This implies that the 1-random sequences form an uncountable subset of 2N,46

although topologically this subset is meagre (i.e. Baire first category).47 Chaitin’s
incompleteness theorem for (finite) strings has the following counterpart for (infi-
nite) sequences:

44 Any pattern in a sequence x would make it compressible, but one has to define the notion of a
pattern very carefully in a computational setting. This was accomplished by Martin-Löf in 1966,
who defined a pattern as a specific kind of probability-zero subset T of 2N (called a “test”) that can
be computably approximated by subsets Tn ⊂ 2N of increasingly small probability 2−n ; if x ∈ T ,
then x displays some pattern and it is patternless iff x /∈ T for all such tests. Martin-Löf’s definition
yields what usually called 1-randomness, in view of his use of so-called �0

1 sets. See the textbooks
Li and Vitányi [56], Calude [15], Nies [63], and Downey and Hirschfeldt [27] for the equivalences
between Levin–Chaitin randomness (incompressibility), Martin-Löf randomness (patternlessness),
and a third notion (unpredictability) that evolved from the work of von Mieses and Ville, finalized
by Schnorr. The name Levin–Chaitin randomness, taken from Downey et al. [28], is justified by its
independent origin in Levin [55] and Chaitin [19].
45 For details and proofs see Calude [15], Corollary 6.32 in §6.3 and almost all of §6.4.
46 To see this, use the measure-theoretic isomorphism between (2N, �K , P∞) and ([0, 1], �L , dx),
where�K is the “Kolmogorov”σ-algebra generated by the cylinder sets [σ] = {x ∈ 2N | x||σ| = σ},
where σ ∈ 2∗, and �K is the “Lebesgue” σ-algebra generated by the open subsets of [0, 1]. See
also Nies [63], §1.8.
47 SeeCalude [15], Theorem6.63.Hencemeagre subsets of [0, 1] exist with unit Lebesguemeasure!
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Theorem B.4 If x ∈ 2N is 1-random, then ZFC (or any sufficiently comprehensive
mathematical theory T meant in Theorem B.1) can compute only finite many digits
of x.48

This clearly excludes defining a 1-random number by somehow listing its digits, but
some can be described by a formula. One example is Chaitin’s �, or more precisely
�U ,49 which is the halting probability of some fixed universal prefix-free Turing
machine U , given by

�U :=
∑

τ∈2∗|U (τ )↓
2−|τ |. (3.5.34)

Appendix C: Bell’s Theorem and Free Will Theorem

In support of the analysis of hidden variable theories in the main text, this appendix
reviews Bell’s [2] theorem and the free will theorem, streamlining earlier expositions
([17], [52], Chap. 6) and leaving out proofs and other adornments.50 In the specific
context of ’t Hooft’s theory (where the measurement settings are determined by
the hidden state) and Bohmian mechanics (where they are not, as in the original
formulation of Bell’s theorem and in most hidden variable theories) an advantage of
my approach is that both free (uncorrelated) und correlated settings fall within its
scope; the former are distinguished from the latter by an independence assumption.51

48 More precisely, only finitely many true statements of the form: ‘the n’th bit xn of x equals its
actual value’ (i.e. 0 or 1) are provable in T (where a proof in T may be seen as a computation, since
one may algorithmically search for this proof in a list). See Calude [15], Theorem 8.7, which is
stated for Chaitin’s � but whose proof holds for any 1-random sequence. Indeed, as pointed out to
the author by Bas Terwijn, even more generally, ZFC (etc.) can only compute finitely many digits
of any immune sequence (we say that a sequence x ∈ 2N is immune if the corresponding subset
S ⊂ N (i.e. 1S = x) contains no infinite c.e. subset), and by (for example) Corollary 6.42 in Calude
[15] any 1-random sequence is immune.
49 There exists a U for which not a single digit of �U can be known, see Calude [15], Theorem
8.11.
50 The original reference for Bell’s theorem is Bell [2]; see further footnote 6, and in the context
of this appendix also Esfeld [34] and Sen and Valentini [72] are relevant. The free will theorem
originates in Heywood and Redhead [44], followed by Stairs [76], Brown and Svetlichny [11],
Clifton [18], and, as name-givers, Conway and Kochen [21]. Both theorems can and have been
presented and interpreted in many different ways, of which we choose the one that is relevant for
the general discussion on randomness in the main body of the paper. This appendix is taken almost
verbatim from Landsman [53].
51 This addresses a problem Bell faced even according to some of his most ardent supporters [64,
71], namely the tension between the idea that the hidden variables (in the pertinent causal past)
should on the one hand include all ontological information relevant to the experiment, but on the
other hand should leave Alice and Bob free to choose any settings they like. Whatever its ultimate
fate, ’t Hooft’s staunch determinism has drawn attention to issues like this, as has the free will
theorem.
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As awarm-up I start with a version of theKochen–Specker theorem,whose logical
form is very similar to Bell’s [2] theorem and the free will theorem, as follows:

Theorem C.1 Determinism, qm, non-contextuality, and free choice are contradic-
tory.

Of course, this unusual formulation hinges on the precise meaning of these terms.

• determinism is the conjunction of the following two assumptions.
1. There is a state space X with associated functions A : X → S and L : X → O ,
where S is the set of all possible measurement settings Alice can choose from,
namely a suitable finite set of orthonormal bases of R3 (11 well-chosen bases
will do to arrive at a contradiction),52 and O is some set of possible measurement
outcomes. Thus some x ∈ X determines both Alice’s setting a = A(x) and her
outcome α = L(x).
2. There exists some set � and an additional function H : X → � such that

L = L(A, H), (3.5.35)

in the sense that for each x ∈ X one has L(x) = L̂(A(x), H(x)) for a certain
function L̂ : S × � → O . This self-explanatory assumption just states that each
measurement outcome L(x) = L̂(a,λ) is determined by the measurement setting
a = A(x) and the “hidden” variable or state λ = H(x) of the particle undergoing
measurement.

• qm fixes O = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, which is a non-probabilistic fact of
quantum mechanics with overwhelming (though indirect) experimental support.

• non-contextuality stipulates that the function L̂ just introduced take the form

L̂((�e1, �e2, �e3),λ) = (L̃(�e1,λ), L̃(�e2,λ), L̃(�e3,λ)), (3.5.36)

for a single function L̃ : S2 × � → {0, 1} that also satisfies L̃(−�e,λ) = L̃(�e,λ).53

• free choice finally states that the following function is surjective:

A × H : X → S × �; x �→ (A(x), H(x)). (3.5.37)

In other words, for each (a,λ) ∈ S × � there is an x ∈ X for which A(x) = a and
H(x) = λ. This makes A and H “independent” (or: makes a and λ free variables).

52 If her setting is a basis (�e1, �e2, �e3), Alice measures the quantities (J 2
�e1 , J 2

�e2 , J 2
�e3 ), where J�e1 =

〈 �J , �ei 〉 is the component of the angular momentum operator �J of a massive spin-1 particle in the
direction �ei .
53 Here S2 = {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1} is the 2-sphere, seen as the space of unit vectors
in R

3. Equation (3.5.36) means that the outcome of Alice’s measurement of J 2
�ei
is independent of

the “context” (J 2
�e1 , J 2

�e2 , J 2
�e3 ); she might as well measure J 2

�ei
by itself. The last equation is trivial,

since (J−�ei )
2 = (J�ei )

2.
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See Landsman [52], §6.2 for a proof of the Kochen–Specker theorem in this lan-
guage.54

Bell’s [2] theorem and the free will theorem both take a similar generic form,
namely:

Theorem C.2 Determinism, qm, local contextuality, and free choice, are contradic-
tory.

Once again, I have to explain what these terms exactly mean in the given context.

• determinism is a straightforward adaptation of the above meaning to the bipartite
“Alice and Bob” setting. Thus we have a state space X with associated functions

A : X → S; B : X → S; L : X → O R : X → O, (3.5.38)

where S, the set of all possible measurement settings Alice and Bob can each
choose from, differs a bit between the two theorems: for the free will theorem it
is the same as for the Kochen–Specker theorem above, as is the set O of possible
measurement outcomes, whereas for Bell’s theorem (in which Alice and Bob each
measure a 2-level system), S is some finite set of angles (three is enough), and
O = {0, 1}.
– In the free will case, these functions and the state x ∈ X determine both the
settings a = A(x) and b = B(x) of a measurement and its outcomes α = L(x)

and β = R(x) for Alice on the Left and for Bob on the Right, respectively.
– All of this is also true in the Bell case, but since his theorem relies on impossible
measurement statistics (as opposed to impossible individual outcomes), one in
addition assumes a probability measure μ on X .55

Furthermore, there exists some set � and some function H : X → � such that

L = L(A, B, H); R = R(A, B, H), (3.5.39)

in the sense that for each x ∈ X one has functional relationships

L(x) = L̂(A(x), B(x), H(x)); R(x) = R̂(A(x), B(x), H(x)), (3.5.40)

for certain functions L̂ : S × S × � → O and R̂ : S × S × � → O .

54 The assumptions imply the existence of a coloring Cλ : P → {0, 1} ofR3, whereP ⊂ S2 consist
of all unit vectors contained in all bases in S, and λ “goes along for a free ride”. A coloring
of R3 is a function C : P → {0, 1} such that for any set {e1, e2, e3} in P with ei e j = δi j13 and
e1 + e2 + e3 = 13 where 13 is the 3 × 3 unit matrix) there is exactly one ei for which C(ei ) = 1.
Indeed, one finds Cλ(�e) = L̃(�e,λ). The key to the proof of Kochen–Specker is that on a suitable
choice of the set S such a coloring cannot exist.
55 The existence of μ is of course predicated on X being a measure space with corresponding
σ-algebra of measurable subsets, with respect to which all functions in (3.5.38) and below are
measurable.
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• qm reflects elementary quantummechanics of correlated 2-level and 3-level quan-
tum systems for the Bell and the free will cases, respectively, as follows56:

– In the free will theorem, O = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} is the same as for
the Kochen–Specker theorem. In addition perfect correlation obtains: if a =
(�e1, �e2, �e3) is Alice’s orthonormal basis and b = ( �f1, �f2, �f3) is Bob’s, one has

�ei = �f j ⇒ L̂ i (a, b, z) = R̂ j (a, b, z), (3.5.41)

where L̂ i , R̂ j : S × S × � → {0, 1} are the components of L̂ and R̂, respec-
tively. Finally,57 if (a′, b′) differs from (a, b) by changing the sign of any basis
vector,

L̂(a′, b′,λ) = L̂(a, b,λ); R̂(a′, b′,λ) = R̂(a, b,λ). (3.5.42)

– InBell’s theorem, O = {0, 1}, and the statistics for the experiment is reproduced
as conditional joint probabilities given by the measure μ through

P(L �= R|A = a, B = b) = sin2(a − b). (3.5.43)

• local contextuality, which replaces and weakens non-contextuality, means that

L(A, B, H) = L(A, H); R(A, B, H) = G(B, H). (3.5.44)

In words: Alice’s outcome given λ does not depend on Bob’s setting, and vice
versa.

• free choice is an independence assumption that looks differently for both theorems:

– In the free will theorem it means that each (a, b,λ) ∈ S × S × � is possible in
that there is an x ∈ X for which A(x) = a, B(x) = b, and H(x) = λ.

– In Bell’s theorem, (A, B, H) are probabilistically independent relative to μ.58

This concludes the joint statement of the free will theorem and Bell’s [2] theorem
in the form we need for the main text. The former is proved by reduction to the
Kochen–Specker theorem, whilst the latter follows by reduction to the usual version
of Bell’s theorem via the free choice assumption; see Landsman [52], Chap. 6 for
details.

For our purposes these theorems are equivalent, despite subtle differences in
their assumptions. Bell’s theorem is much more robust in that it does not rely on
perfect correlations (which are hard to realize experimentally), and in addition it
requires almost no input from quantum theory. On the other hand, Bell’s theorem

56 In Bell’s theorem quantum theory can be replaced by experimental support [43].
57 As in Kochen–Specker, this is because Alice and Bob measure squares of (spin-1) angular
momenta.
58 By definition, this also implies that the pairs (A, B), (A, H), and (B, H) are also independent.
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uses probability theory in a highly nontrivial way: like the hidden variable theories it
is supposed to exclude it relies on the possibility of fair sampling of the probability
measure μ. The factorization condition defining probabilistic independence passes
this requirement of fair sampling on to both the hidden variable and the settings,
which brings us back to the main text.

Different parties may now be identified by the assumption they drop: Copenhagen
quantum mechanics rejects determinism, Valentini [86] rejects the Born rule and
hence qm, Bohmians rejects local contextuality, and finally ’t Hooft rejects free
choice. However, as we argue in the main text, even the latter two camps do not really
have a deterministic theory underneath quantum mechanics because of their need to
randomly sample the probability measure they must use to recover the predictions
of quantum mechanics.
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Chapter 4
Unpredictability and Randomness

Rade Vuckovac

Abstract Randomness is to a certain degree opposite to determinism. This essay
tries to put those two on the same page. It argues the premise where randomness is
a consequence of a deterministic process. It also provides yet another viewpoint on
the hidden variable theory.

4.1 Introduction

Any discussion about randomness should include a description of unpredictability.
A quoted part from the explanation on true randomness makes a good starting point
for our inquiry (bold emphasis added):

If outcomes can be determined (by hidden variables or whatever), then any experiment
will have a result. More importantly, any experiment will have a result whether or not you
choose to do that experiment, because the result is written into the hidden variables before
the experiment is even done. Like the dice, if you know all the variables in advance, then
you don’t need to do the experiment (roll the dice, turn on the accelerator, etc.). The idea
that every experiment has an outcome, regardless of whether or not you choose to do that
experiment is called “the reality assumption”, and it should make a lot of sense. If you flip
a coin, but don’t look at it, then it’ll land either heads or tails (this is an unobserved result)
and it doesn’t make any difference if you look at it or not. In this case the hidden variable is
“heads” or “tails”, and it’s only hidden because you haven’t looked at it.

It took a while, but hidden variable theory was eventually disproved by John Bell, who
showed that there are lots of experiments that cannot have unmeasured results. Thus the
results cannot be determined ahead of time, so there are no hidden variables, and the results
are truly random. That is, if it is physically and mathematically impossible to predict
the results, then the results are truly, fundamentally random. [1]

Some deterministic systems which show unpredictable behaviour are in:
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Chaos Theory; It shows one exciting feature not usually found in classical sys-
tems. Predicting a long-term state of a system combined with its approximate
initial conditions is a difficult if not impossible task. Edward Lorenz sums it as:

Chaos: When the present determines the future, but the approximate present does not
approximately determine the future.

Then following details show unpredictability in a little bit more detail:

• Butterfly Effect; An interesting and not widely emphasised point about Butterfly
Effect is [2, 3]:

Even a tiny change, like the flap of a butterfly’s wings, can making a big difference for
the weather next Sunday. This is the butterfly effect as you have probably heard of it.
But Edward Lorenz actually meant something much more radical when he spoke of the
butterfly effect. Hemeant that for some non-linear systems you can only make predictions
for a limited amount of time, even if you can measure the tiniest perturbations to arbitrary
accuracy.

• n-body problem; Even in Newton times, the motions of more than two orbiting
bodies were considered as a problem (Fig. 4.1). Currently, we are left with numer-
ical methods and simulations. The former is an approximation and butterfly effect
prone. The later are basically computational experiments, which are the preferable
option for n-body system investigation [4, 5].

Cellular Automation (CA); CA is a deterministic model containing grids, pop-
ulated by cells. The grids are arranged in one or two-dimensional space. An
evolution rule governs how the initial state of cells evolve to the next generation.
Figure4.2 shows one dimensional CA rules and an evolution history. One of the
interesting CA features is the concept of Computational Irreducibility (CI). It
proposes that the only way to determine the future state of CA is to run it, which
is very similar to “the results cannot be determined ahead of time” principle in
hidden variable argumentation.

4.2 CA a Closer Look

While Chaos Theory provides us with dynamical systems showing unpredictability
behaviour, theCI (computational irreducibility) principle is probablymore accessible
for the discussion.

Wolfram’s rule 30 CA is a good starting point. Figure4.2 shows the transition
rules on the top. Every case prescribes how a cell (black or white) is transformed
depending on the previous cell state and its neighbouring cells. Row 1 is the initial
state of CA. Rows 2, 3, 4 ... are consecutive evolved generations. A next-generation
cell is derived from a previous cell and its neighbours. For example, the cell (row 4,
column 13) is derived from case 7.When a cell does not have an above rowneighbour,
the cell from other end is considered. So, for example, the cell (16; 1) uses case 7
(again) because the top left neighbour is the cell (15; 31).
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Fig. 4.1 An example of chaotic behaviour when the system has more than two bodies

There are a contest and prize for solving three CA rule 30 problems [6]. All three
of them are relevant for the randomness discussion:

Problem 1: Does the centre column always remain non-periodic? The centre col-
umn is column 16 outlined red in Fig. 4.2. The period has been checked for the
≈ first billion steps, and the centre column does not show periodicity. In effect, it
has very similar properties to π.

Problem 2: Does each colour of cell occur on average equally often in the centre
column?The ratio of black andwhite cells approaches 1:1 when the step iterations
increase. After one billion steps, the centre column has 500025038 black and
499974962 white cells. In a sense, it mimics a fair coin flipping exercise.

Problem 3: Does computing the nth cell of the centre column require at least
O(n) computational effort? Stephen Wolfram strongly suspects that rule 30 is
computationally irreducible (CI). In that case, even if the initial state and rules of
transformation are known, the quickest way to see the future of the state is to run
CA (to do the experiment).
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Fig. 4.2 CA rule 30. Transformation rules and evolution history. Column 16 acts as a random
sequence

4.3 Conditional Branching

While chaos theory and CA provide evidence of future inaccessibility, there is an
even more persuasive argument where we can not acquire the future state of some
systems without experimenting.

Conditional branching, the underlying algorithmic construct is the essential argu-
mentation ingredient. Conditional branchingwith other two primitives, sequence and
iteration, provides all necessary blocks to build any algorithm imaginable [7]. It is
an if-else statement in a program. When the program reaches if-else command, it
evaluates some state and depending on evaluation continues with an if or an else path.
Usually, when the program is made, all the possible inputs and they eventual exe-
cution paths (EP) are thoroughly defined. Figure4.4 shows domain partition, where
inputs are partitioned according to the joint EP.

For example, the 3x + 1 problem one step is:

F(x) =
{
f (x) i f x ≡ 0 mod 2
g(x) i f x ≡ 1 mod 1

(4.1)

where f (x) = x/2, and g(x) = (3x + 1)/2. There we know that even input will be
executed by f (x) and odd with g(x).
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Fig. 4.3 The 3x + 1 composite function; f (x) = x/2 and g(x) = (3x + 1)/2

Table 4.1 For two iterations of 3x + 1 (Fig. 4.3), we have four partitions of natural numbers
depending on execution path and corresponding composite

Domain (N1) Execution path (EP) Composite function

Partition A Even-even f ( f (x))

Partition B Even-odd g( f (x))

Partition C Odd-odd g(g(x))

Partition D Odd-even f (g(x))

The problem starts when this procedure is iterated (Fig. 4.3 and Table4.1). Every
iteration doubles the amount of unique EP. For example if our inputs are 64-bit
integers and we iterate Eq.4.1 64 times. The number of possible paths is EP ≤ |264|.
In that case domain partition by execution paths (Fig. 4.4) seems an impossible task
and that is probably the cause of why this problem is still not solved despite dealing
with very basic arithmetic [8].

Nowwe can ask: Is every programwithmultiple execution paths domain partition-
able?
Informal Theorem 1. There exists at least one algorithm with multiple execution
paths where the knowledge of which way execution goes is known only after input
evaluation [9].

Proof We can assume the opposite: every input partitioning can be performed effi-
ciently before execution. On first glance, that is a reasonable statement because when
a program is specified correctly, every case behaviour is fully defined in advance.
On the other hand, there are at least two problems with this:

• Programs are not always made with a purpose. For example, multiple branching
statements could be written haphazardly throughout a program. If it compiles, it
will run, but the output behaviour will be unpredictable.

• If every program is partition-able, then branching algorithmic structure is redun-
dant. Practically, we will know which path to execute for some input in advance
without the need to test the branching statement.
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Fig. 4.4 Partitions mappings, when a program has multiple paths of execution

Having algorithmswithout conditional branching is not what we presently believe:

– Encyclopedia Britannica; Conditional branching entry:

In Analytical Engine · · · control transfer, also known as conditional branching,
whereby it would be able to jump to a different instruction depending on the value
of some data. This extremely powerful feature was missing in many of the early com-
puters of the 20th century. [10]

– Wikipedia; Turing Completeness:

To show that something is Turing complete, it is enough to show that it can be used to
simulate some Turing complete system. For example, an imperative language is Turing
complete if it has conditional branching. [11] �

4.3.1 Conditional Branching Candidates

While the systems where non-partitionable inputs exist, it is hard to identify one.
Some candidates are:
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CA rule 30; English description of the rule is in the exact form as Eq.4.1 (bold
added):

Look at each cell and its right-hand neighbor. If both of thesewherewhite on the previous
step, then take the new color of the cell to be whatever the previous color of its left-hand
neighbor was. Otherwise, take the new color to be opposite of that. [12]

Rule 30 used to be a random number generator in Wolfram’s Mathematica soft-
ware.

Collatz conjecture; Equation4.1 is one step of the procedure. The conjecture
asserts that every natural number after some steps reaches 1. Some reflections
on the problem:
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3x+1 execution paths as random walks

Fig. 4.5 Random walk using 3x+1 execution paths. When the algorithm executes the odd branch
((3x + 1)/2) the left step is taken; otherwise, the walk takes the right step (x/2)
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The iterates of the shift function are completely unpredictable in the ergodic theory sense.
Given a random starting point, predicting the parity of the n-th iterate for any n is a “coin
flip” random variable. ... Empirical evidence seems to indicate that the 3x + 1 function
on the domain Z retains the “pseudorandomness” property on its initial iterates until the
iterates enter a periodic orbit. This supports the 3x + 1 conjecture and at the same time
deprives us of any obvious mechanism to prove it, since mathematical arguments exploit
the existence of structure, rather than its absence. [13, p. 18]

Figure4.5 shows random walks behaviour using branching 3x + 1 parity.
Möbius function; It is another mathematical object with a branching structure and

randomness emergence (Fig. 4.6). It appears that the Riemann hypothesis, random
walks andMöbius function are closely related. AMath StackExchange discussion
on this topic is here [14]. Equation4.2 and Fig. 4.6 show the Möbius function, its
branching structure and a random behaviour emergence.

μ(n) =
⎧⎨
⎩
0 if 0 if n has a squared prime factor
1 if n = 1
(−1)k if n is a product of k distinct primes

(4.2)
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Fig. 4.6 Möbius function and its randomly looking mappings
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Branching CA (BCA); This CAwas at first designed as a toy model to investigate
the if-else structure and its impact on the state transitions. The CA evolution step
has now a familiar structure:

c′ =
{
c ⊕ Ai+1, if Ai+2 > Ai+3

c ⊕ Ai+1, otherwise
(4.3)

where ⊕ is exclusive or and Ai+1 is one complement of the cell Ai+1. This
particularCA is used as a cryptographic primitive for cipher design [15]. Figure4.7
using branching CA illustrates all chaos theory features including the butterfly
effect.

Fig. 4.7 Two cellular automata evolutions where the initial state (top left three pixels plus top black
region) differs by just one bit (one in 4096-bit state)
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4.4 Measuring Randomness

While all mentioned candidates show randomness, the measure of it is a seemingly
tricky endeavour. The Turing test for intelligence [16] may provide the base for
randomness evaluation. A similar idea was explored in cryptography as well [17].

We have three entities in Turing AI test: a human, a machine and an interrogator.
They are in three separate rooms, and their communication is in the questions/answer
form where interrogator asks, and the other two parties respond. The evaluation of
answers should determine who the human is. If a distinction is inconclusive, the
machine could be considered intelligent.

For randomness gamewe have true-randomness side represented byRandomOra-
cle (RO), the pseudo-randomness side is BCA and an interrogator (IN). As in the AI
test, IN communicate with RO and BCA via questions/answer (input/output) format.
IN task is to decide which party produces truly random output. If the distinction
could not be made, the true and pseudo qualifiers are redundant.

4.4.1 Random Oracle

RO concept provides a specific tabular representation which we can categorise as a
true random mapping:

The following model describes a random oracle:

• There is a black box. In the box lives a gnome, with a big book and some dice.

• We can input some data into the box (an arbitrary sequence of bits).

• Given some input that he did not see beforehand, the gnome uses his dice to generate
a new output, uniformly and randomly, in some conventional space (the space of oracle
outputs). The gnome also writes down the input and the newly generated output in his
book.

• If given an already seen input, the gnome uses his book to recover the output he returned
the last time, and returns it again. [18]

The RO model is believed to be an imaginary construct useful in a cryptography
secure protocol argumentation. However, it cannot be realised in practice. The use
of dices in the description is assumed to be an entirely random process. In other
words, if we need RO in practice, we have to use a random function. Its main feature
is that every output is an independent, random string. That implies the use of a
gigantic input/output table (Table4.2). That table cannot be compressed, rendering
the exercise impractical. More details about RO can be found here [19].

In the finding pseudo game, IN (interrogator) asks a question and RO (the gnome)
replieswith a truly randomanswerwith the stipulation that same question is answered
with the same response.



4 Unpredictability and Randomness 57

Table 4.2 Random function

Domain (N ) Range (N )

Input 1 Random string 1

Input 2 Random string 2

Input 3 Random string 3

... ...

Fig. 4.8 BCA
transformation rule;
depending on the neighbours
relation, third right-hand
neighbour or its one
complement (all bits are
flipped) is XORed (logical
exclusive or) with the carry.
Updated carry is XORed
with the current cell to form
a new cell

Ai+1Ai Ai+2 Ai+3

A'i

A'i = A i xor carry
Updated cell

Current Array

Cell Array (next generation)

Ai+1

Ai+1

carry

if A i+2 > A i+3
carry = carry xor A i+1

otherwise
carry = carry xor A i+1

~~

Rule

4.4.2 BCA

BCA candidate (mentioned earlier) represents a pseudo-random oracle. Transforma-
tion details are shown in Fig. 4.8. When IN (interrogator) submits the question the
following happens: firstly an array is initialised. The input x (question) is copied on
the array first cells. The array is evolved for some time, and the part of the last state
serves as output y (response). Figure4.9 red and blue are input and output used in
IN and BCA communications.
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initial state?

output (y)

input x

Fig. 4.9 Branching cellular automata (BCA) pretending to be a random oracle (RO)

4.4.3 Distinguishing Chances

The finding pseudo can be played by two set of rules:

• 1st variant: IN (interrogator) knows inputs and corresponding outputs only (red
and blue Fig. 4.9).
When IN examines BCA input/output pairs, a couple of exciting things are
revealed. Similar inputs, produce very different outputs (Fig. 4.7).When numerous
input/output pairs are put in a tabular form, the table starts to reassemble random
structure from random function mappings (Table4.2). This set-up is reminiscent
to the Alan Turing challenge scenario:

I have set up on the Manchester computer a small programme using only 1,000 units
of storage, whereby the machine supplied with one sixteen-figure number replies with
another within two seconds. I would defy anyone to learn from these replies sufficient
about the programme to be able to predict any replies to untried values. [16]

• 2nd variant; we give IN some hints: IN can have full knowledge of BCA algorithm
and only partial knowledge of the initial state. Meaning, knowing the magenta part
excluding the green part Fig. 4.9. If IN wants to check whether the observed pair
comes from BCA by running it, the green part has to be replaced with some
provisional part. To find a matching green part IN has to perform an exhaustive
search. The same happens if the IN goes backward from the output. Complete
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knowledge of the state is needed (provisional plus output) to be able to proceed
with steeping. That situation leaves IN with brute force option only.

In both variants, the IN (interrogator) inability to correlate input/output pairs stays.
The 2nd variant also prevents IN to check if observed data comes from BCA even
the inner working of the input/output transformation is known.1

4.5 Speculations

Themain point raised in this essay is the computation barrier imposed by conditional
branching. That wall forces input evaluation during program execution. Even with
known input and algorithm knowledge, predictability of output is impossible. The
only way to discover output is to run the algorithm (to evaluate input). The absence
of patterns, when input/output pairs of such algorithm were analysed, is caused by
that barrier.

If we assume that the conditional barrier is relevant to physical reality and in the
context of:

Thus the results cannot be determined ahead of time, so there are no hidden variables, and
the results are truly random.

We can speculate; yes, the results can not be determined ahead of time but, para-
doxically, that does not necessary exclude determinism.

The misunderstandings might come from determinism definitions because we
have different meanings which usually are not noted in argumentations. There are at
least two sets of determinism with very other properties. The differentiation occurs
when we need to access state details at a particular point of time. For example,
imagine, a special kind of video player which can play two movies only: 2-body
digital simulation and the sequel n-body digital simulation. While watching the 2-
body movie, we can fast forward it if we are bored. While watching n-body movie,
we notice that fast forward is not working any more, and if we want to see what
happens on end, we have to watch the whole movie.

From there, we can identify potential inconsistencies when dealing with deter-
minism. In the accepted hidden variable theories (HVT) narrative, a cursory look at
the Bell’s inequality [20] and HVT indicates that we have determinism acting locally
with the correspondent distribution of probable outcomes which is never confirmed
by experiment. Since quantum distribution is matched with observed, we conclude
that quantum phenomena are non-deterministic.

On the other hand, we have determinism from the n-body movie. Desired state
details are known only when they happen. Any imaginable distribution information

1 The partially knowing BCA initial state case might be analogous to the true randomness cause.
Generally, initial state ignorance comes frompractical reasons. Fidelities of real state versus assumed
state might be tiny, and misreadings can be easily made. We can see what one-bit difference in
4096-bit state can do for BCA evolution (Fig. 4.7). There is a good chance that RO (true) and BCA
(pseudo) randomness have the same origin.
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is obtained by observation only. It is not evident how this kind of determinism fits in
HVT context and how its distributions can be violated by experiment.

For the end, there is a parallel with apparent quantumweirdness in the algorithmic
world:

3x + 1 problem story; We have a state (a natural number). The state will go
through the transition, as shown in Fig. 4.1. Before the measurement, the state is in a
superposition of a number of possible execution paths. Only after running the algo-
rithm (measurement), the superposition state collapses, and we know the execution
path and the transition result.

The 3x + 1 problem is still unsolved. The conjecture support comes from experi-
mental evidence where all numbers between 1 and 2≈59 are reaching 1 as postulated.
Another support comes from a heuristic probability which shows that every multi-
plication (with 3) has two divisions (with 2) on average, which indicates a starting
number shrinkage on the long run [8]. Both of the supports or what we know about
the phenomena comes from experiments and probability distributions; even it is a
deterministic process.
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Chapter 5
Indeterminism, Causality and
Information: Has Physics Ever Been
Deterministic?

Flavio Del Santo

Abstract Atradition handeddownamongphysicistsmaintains that classical physics
is a perfectly deterministic theory capable of predicting the future with absolute cer-
tainty, independently of any interpretations. It also tells that it was quantummechan-
ics that introduced fundamental indeterminacy into physics. We show that there exist
alternative stories to be told in which classical mechanics, too, can be interpreted as
a fundamentally indeterministic theory. On the one hand, this leaves room for the
many possibilities of an open future, yet, on the other, it brings into classical physics
some of the conceptual issues typical of quantum mechanics, such as the measure-
ment problem. We discuss here some of the issues of an alternative, indeterministic
classical physics and their relation to the theory of information and the notion of
causality.

5.1 When Did Physics Become Unpredictable?

Like all of the human activities, also science maintains traditions that are handed
down from generation to generation and help to form the identity of a community.
One specific story that seems to have crystallized among practitioners is that classical
physics (i.e., Newton’s mechanics and Maxwell’s electrodynamics) would allow,
in principle, to predict everything with certainty. The standard story continues by
telling that the foundations of such a theory are perfectly well understood and free of
any interpretational issues. In particular, it is widely accepted that classical physics
categorically entails a deterministic worldview.

Indeed, due to the tremendous predictive success of Newtonian physics (in partic-
ular in celestial mechanics), it became customary to conceive an in principle limitless
predictability of the physical phenomena that would faithfully reflect the fact that
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our Universe is governed by determinism. This view was advocated and vastly pop-
ularized in the early nineteenth century by Pierre-Simon Laplace, who envisaged the
possibility for a hypothetical superior intelligence –which went down in history as
Laplace’s demon– to predict the future states of the universe with infinite precision,
given a sufficient knowledge of the laws of nature and the initial conditions [1]:

Given for one instant an intelligence which could comprehend all the forces by which nature
is animated and the respective situation of the beings which compose it –an intelligence
sufficiently vast to submit these data to analysis– it would embrace in the same formula the
movements of the greatest bodies in the universe and those of the lightest atom; to it nothing
would be uncertain, and the future as the past would be present to its eyes.

The standard story goes on by stating that this faith in perfect determinism was
abruptly shattered by the advent of quantum theory, which, with its probabilistic
predictions, made indeterministic doubts burst into physics for the first time.1 But is
it really so? In this essay, we will show that this is not necessarily the case and that
the alleged fundamental difference between classical and quantum physics based on
their alleged inherently deterministic, respectively indeterministic, character should
be rethought.

From the historical point of view, as early as 1895 –thus before that any quantum
effect was discovered and such theory formulated– the father of the kinetic theory
of gases, Ludwig Boltzmann, already doubted the very possibility of having perfect
determinism at the microscopic scale (see [2, 3]). It ought to be noticed that accord-
ing to the standard understanding of classical statistical mechanics, probabilities are
there introduced to account for a lack of knowledge about the actual state of affairs
(epistemic randomness) and are not supposed to be irreducible.2 This is due to the
fact that statistical physics deals with an enormous amount of components (and of
degrees of freedom), but it is generally accepted that every single classical particle
has a perfectly predetermined behavior (and that in principle this is predictable).
Despite this, Boltzmann maintained: “I will mention the possibility that the funda-
mental equations for the motion of individual molecules will turn out to be only
approximate formulas which give average values.” [5]. Also Franz S. Exner, another
eminent Viennese physicists, contemporary of Boltzmann, questioned the validity
of determinism in classical physics even at the macroscopic level: “In the region of
the small, in time and space, the physical laws are probably invalid; the stone falls to
earth and we know exactly the law by which it moves. Whether this law holds, how-
ever, for each arbitrarily small fraction of the motion [...] that is more than doubtful.”
[6]. One of the intellectual heirs of Boltzmann and Exner in Vienna was the Nobel
laureate and founding father of quantum theory, Erwin Schrödinger. Indeed, he fully
embraced their skeptical positions about determinism: “As pupil of the venerable
Franz Exner I have been on intimate terms for a long time with the idea that probably

1 By indeterminism we denote the sufficient condition that there exists at least one phenomenon, or
a type of phenomena, which does not obey determinism.
2 Probabilities are said to be irreducible if “it is not possible by further investigation to discover
further facts that will provide a better estimate of the probability.” [4].
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not microscopic lawfulness but perhaps ‘absolute accident’ forms the foundation of
our statistics.” [7].3

Interestingly, contrarily to the text-books presentation of classical physics, the fact
that classical systems have a perfectly predeterminate dynamics (thus giving rise to
perfectly deterministic predictions) is not inherent in the formalism (see Sect. 5.2).
Rather, it is based on an additional hidden assumption that takes the form of a
principle. In a previous work [9], we have named this principle of infinite precision.
This is articulated in two parts, as follows:

Principle of Infinite Precision
1. Ontological—there exists an actual value of every physical quantity, with

its infinite determined digits (in any arbitrary numerical base).
2. Epistemological—despite it might not be possible to know all the digits

of a physical quantity (through measurements), it is possible to know an
arbitrarily large number of digits.

It is only when its formalism is complemented with this principle that classical
physics becomes deterministic.

However, the principle of infinite precision is inconsistent with any operational
meaning, as alreadymade evident byMax Born. The latter gave pivotal contributions
to the foundations of quantum formalism–introducing the fundamental rule that bears
his name, which allows to assign probabilities to quantum measurements, and for
which he was awarded the Nobel Prizein 1954– and became critical of determinism,
even in classical physics, due to its reliance on “infinite precision”. Indeed, in his
essay Is Classical Mechanics in fact Deterministic? [10], he affirmed:

It is usually asserted in this theory [classical physics] that the result is in principle determinate
and that the introduction of statistical considerations is necessitated only by our ignorance
of the exact initial state of a large number of molecules. I have long thought the first part
of this assertion to be extremely suspect. [...] Statements like ‘a quantity x has a completely
definite value’ (expressed by a real number and represented by a point in the mathematical
continuum) seem to me to have no physical meaning. [Because they] cannot in principle be
observed.

To explain how infinite precision and determinism relate to one another it is
interesting to rephrase a simple example devised by Born. Referring to Fig. 5.1,
consider a (classical) particle that is bound to move in a one-dimensional cavity with
perfectly elastic walls and total length l. If the particle has a perfectly determinate
(i.e. with infinite precision) initial position x(t = 0) = x0 and velocity �v(t = 0) =
�v0, classical physics then allows to predict, also with infinite precision, the future
positions x(t) and velocities �v(t) for any time instant t . Yet, imagine to slightly relax
the principle of infinite precision and, while x0 remains fully determinate, the initial

3 This trend of doubting determinism in the Vienna school of statistical physics has been referred
to as the Vienna indeterminism in the philosophical literature [8].



66 F. Del Santo

Fig. 5.1 Toy example of a system (a classical particle confined in a cavity), in which the indeter-
minacy on the initial conditions is amplified in the future indeterminacy of the physical state while
time passes

velocity (say pointing to the right) of the particle has a small indeterminacy, i.e.
v0 ≤ v(t = 0) = v0 + �v0. Once the particle starts moving, its initial indeterminacy
starts to be reflected on the determination of its position at later times. According
to the laws of classical mechanics, the range of possible future positions of the
particle increases linearly as time passes, i.e. �x(t) = t�v0. This means that, for
any arbitrarily small indeterminacy of the initial velocity �v0, there always exists a
critical time instant tc := l/�v0, such that �x(t = tc) = l. Namely, independently
of how small is the initial indeterminacy, it is sufficient to wait enough long time
for having complete indeterminacy on the particle’s position within the cavity. This
clearly shows that the principle of infinite precision is a necessary condition for
determinism.

This example is one of the simplest instantiations of those systems whose future
dynamics is highly susceptible to a variation of the initial conditions (a property
called instability). Such a phenomenon is typical of the so-called chaotic systems
wherein the uncertainty in the determination of future values of some physical quan-
tities increases exponentially with elapsed time. Actually, our example displays what
in chaos theory is referred to as the real butterfly effect [11]. Namely, not only high
sensitivity to the initial conditions, but –since the system is bounded, and, accord-
ingly, it is the region of phase space within which its physical state can evolve– after
a certain time the uncertainty saturates the whole allowed region of phase space. This
means that after a certain critical time the distribution of the states in phase space
is the homogeneous one.4 As a matter of fact, criticisms of classical determinism
became more severe in the second half of the last century, when the chaos theory
was further developed and its fundamental consequences understood [12, 13].

Furthermore, the challenges to determinism in classical physics experienced a
revival in very recent years, when several scholars formalized the fact that predeter-
mined physical quantities seems to be at odds with information-theoretic arguments
[9, 14–19], as we will show in detail in what follows.

4 We acknowledge Sabine Hossenfelder’s essay “Math Matters” in the 2020 FQXi Essay Contest
for Ref. [11].
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5.2 The “Orthodox Interpretation” of Classical Physics

In order to introduce the arguments against the tenability of determinism in classical
physics and a possible alternative interpretation thereof,5 we first ought to recall
some pillars of the formalism of that theory. We refer here to the standard formalism
together with its metaphysical assumptions (i.e. the principle of infinite precision)
as the “orthodox interpretation” of classical physics.6

Conceptually, classical physics (say Newtonian mechanics, but equivalent argu-
ments apply to classical electromagnetism, too) is characterized by (i) the physical
state of a system, which accounts for its relevant physical properties and (ii) a set of
general laws that govern the evolution (backwards and forward in time) of the physi-
cal state.7 Formally speaking, the dynamical properties of a system are identified by a
set of physical quantities, which mathematically are called variables. The collection
of these variables (typically position andmomentum) is called the state of the system
and the space composed of all the possible values taken by these quantities is called
phase space. Moreover, the assumption of the principle of infinite precision results
in the fact that classical states are mathematical points in a continuous phase space.
Namely, a physical state is an n-tuple of real numbers for a n-dimensional phase
space.

As for the mathematical characterization of the general laws of classical mechan-
ics, these are ordinary differential equations that take as inputs the values from the
state at time t0, called initial conditions, and return the state of the system at any arbi-
trary time t . The mathematical theory of differential equation then guarantees that,
given any sequence of subsequent states in a certain interval of time, i.e. a trajectory
in phase space for that interval, there exists always a unique extension thereof, into
the past and the future [21]. This mathematical formalization all together leads, in
fact, to the formal definition of Laplacian determinism: For any given physical state
there exists a unique evolution, i.e., a unique trajectory in phase space. However,
as stressed by Drossel, “the idea of a deterministic time evolution represented by
a trajectory in phase space can only be upheld within the framework of classical
mechanics if a point in phase space has infinite precision” [18].

We have already pointed out how the concept of infinite precision has no opera-
tional meaning. This was also recently remarked by Rovelli, who stated that “con-
cretely we never determine a point in phase space with infinite precision –this would
bemeaningless–, we rather say that the system ‘is in a finite region R of phase space’,
implying that determining the value of the variables will yield values in R.” [22].

5 We use here the expression “interpretation” and not “theory” becausewe consider only empirically
indistinguishable predictions (in the same sense of the interpretations of quantum mechanics) [20].
6 We borrow this name from the foundations of quantum mechanics, where the attribution “ortho-
dox” is usually associated to the most widespread interpretation of the quantum formalism, also
called the “Copenhagen interpretation”, attributed to Niels Bohr and his school.
7 To these two main aspects of classical physics one has to add a third one, (iii) that there exists a
background time which allows to speak about the state of a physical system at a certain instant of
time and its evolution at later instants.
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Fig. 5.2 Suggestive representations of physical states in phase space, in comparison for “orthodox”
classical physics (left), quantum physics (middle), and “alternative” classical physics (right). In the
orthodox classical physics, the state is a mathematical point which determines a unique trajectory
(determinism),whereas both in quantum and alternative classical physics the state has a fundamental
indeterminacy that leads to an indeterministic dynamics. The peculiarity of quantum physics is that
its formalism sets a precise value to the smallest size of a cell in phase space

Note that, however, as most of his fellow physicists, Rovelli upholds the “orthodox”
classical mechanics which considers this a for-all-practical-purposes issue, i.e. at the
fundamental level, R degenerates to a mathematical point. In quantum physics, on
the other hand, there is a fundamental lower limit to the size of the region in phase
space. In particular, the volume of the region, V ol(R), cannot be smaller than the
size delimited by the Planck constant (for each degree of freedom), i.e.,

V ol(R) ≥ (2π�)(d.o. f.).

And Rovelli refers to this as “the major physical characterization of quantum theory”
[22].

But are quantumand classical physics necessarily so different on thismatters?One
has to realize that the principle of infinite precision is not part of the mathematical
formalism of classical theory, but rather it belongs to the domain of interpretations. In
fact, one can consider –and several arguments point in the direction that one should
perhaps do so– an alternative interpretation of classical physics in which physical
states are not mathematical points characterized by (n-tuples of) real numbers. In
this way, even classical physics would display a fundamental indeterminacy, and its
conceptual difference with quantummechanics should be scaled down (see Fig. 5.2).

Invoking again Born’s operationalism, one ought to consider the following [10]:

A statement like x = π cm would have a physical meaning only if one could distinguish
between it and x = πn cm for every n, where πn is the approximation of π by the first n deci-
mals. This, however, is impossible; and even if we suppose that the accuracy of measurement
will be increased in the future, n can always be chosen so large that no experimental distinc-
tion is possible. Of course, I do not intend to banish from physics the idea of a real number.
It is indispensable for the application of analysis. What I mean is that a physical situation
must be described by means of real numbers in such a way that the natural uncertainty in all
observations is taken into account.
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As we will show in the next section, one can indeed envision an alternative classical
physics that maintains the same general laws (equations of motion) of the standard
formalism, but dismisses the physical relevance of real numbers, thereby assigning a
fundamental indeterminacy to the values of physical quantities, as wished by Born.
In fact, “as soon as one realizes that the mathematical real numbers are “not really
real”, i.e. have no physical significance, then one concludes that classical physics is
not deterministic.” [15].

5.3 An Alternative, Indeterministic Interpretation of
Classical Physics

5.3.1 Determinism at Odds with Information Principles

The relaxation of the principle of infinite precision does not come about only as amere
intellectual exercise, or as a proof of principle that classical physics is compatible
with alternative interpretations beyond the orthodox one. In fact, the motivation for
searching novel interpretations of classical physics stems also from the application
of information-theoretic concepts to physics. Indeed, our current understanding tells
us that

information is not a disembodied abstract entity; it is always tied to a physical representation.
It is represented by engraving on a stone tablet, a spin, a charge, a hole in a punched card,
a mark on paper, or some other equivalent. This ties the handling of information to all the
possibilities and restrictions of our real physical world, its laws of physics and its storehouse
of available parts. [23].

This view goes under the name of Landauer’s principle, in short, “information is
physical”.

In Ref. [15], Gisin gave sound arguments to support the claim that “a finite volume
of space cannot contain more than a finite amount of information”. Intuitively, this
is a direct consequence of Landauer’s principle, because each bit of information to
be stored requires a certain amount of space, bounded from below by the size of
the smallest physical system that can encode it. It is true that today, thanks to the
incredible development of the technology of miniaturization, we are able to encode
and manipulate information in astonishingly small systems. This allows to reach
densities of information storage of about 25 terabytes per centimeter square [24]
on atomic lattices, whereas molecular storage of information in DNA has recently
achieved extraordinary densities of information of the order of a million terabyte per
cubic millimeter [25]. These outstanding results notwithstanding, physical systems
have a finite size, hence it seems a very reasonable assumption to believe that there
is a finite limit to the possible information density.

Furthermore, a well known formal theoretical argument sets a limit to the allowed
information density, called Bekenstein bound [26], states that the information I (in
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number of bits) contained in a system circumscribed by a sphere of radius R is
smaller than the mass-energy E enclosed in the same sphere, i.e.,

I

2π R
≤ E

ln 2
,

where we have adopted the Planck units (i.e., c = � = 1). The intuition behind this
is that the storage of each bit of information is associated with a certain amount of
energy and that unbound densities of energy degenerate into black holes.

Coming back to the orthodox interpretation of classical physics, we have already
shown how this assumes that physical states are mathematical points in phase space,
expressed by (n-tuples of) real numbers. However, it should be noticed that real
numbers contain, in general, an infinite amount of information. As we have learnt
since primary school, the set of real numbers encompasses all the familiar rational
numbers and supplement themwith the irrational numbers. However, even among the
irrational numbers, there are fundamental conceptual differences that have relevant
consequences for the role they are attributed in physics. All the irrational numbers we
are used to speak about, such as

√
2 or π , are, in fact, computable irrational numbers.

This means that they can be compressed into an algorithm of finite length which,
at every iteration, outputs the next digit of the considered number. For instance, an
algorithm (but not the only one) to construct π is given by computing (each digit of)
the ratio of the circumference of any circle to its diameter. So, although an irrational
computable number has infinite digits without a periodic pattern, and, as such, it
would take infinite time (i.e., iterations of the associated algorithm) to get all the
digits, its actual information content is finite. Everything there is to know about it is
contained in the algorithm that generates it. More precisely, the (finite) information
content of a computable number corresponds to the amount of information in bits of
shortest algorithm that outputs that number (i.e., its Kolmogorov complexity). What
is however disconcerting, is that the amount of computable numbers among all the
real numbers is infinitely small (i.e., it forms a subset of Lebesgue measure zero).
Technically, the probability of picking a computable number from the set of real
numbers is zero (see also [14, 15]).

Putting together the above arguments,we come to the conclusion that real numbers
cannot be physicallymeaningful insofar as their information content is almost always
infinite. One thus ought to consider alternative interpretations of classical physics
that do not enforce the principle of infinite precision. Namely, interpretations that
do not assume that physical quantities take values in the real numbers. Note again
that without real numbers, one cannot any longer uphold determinism in classical
physics.

In this view, the orthodox interpretation of classical physics can be regarded as
a deterministic completion of an indeterministic model, in terms of hidden vari-
ables: Namely, the real numbers [15, 16]. This is reminiscent of Bohm’s [27] or
Gudder’s [28] hidden variablemodels of quantumphysics, which provide a determin-
istic description of quantum mechanics by adding (in principle inaccessible) supple-
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mentary variables, whereas the orthodox interpretation takes probabilities (therefore
indeterminism) to be irreducible.

5.3.2 “Finite Information Quantities” (FIQs)

To overcome the problem of the infinite information content of real numbers in the
context of physics, an explicit alternative model has been sketched in Ref. [15] and
developed in greater detail in Ref. [9]. This model entails an alternative indetermin-
istic interpretation of classical mechanics. We review here its main features.

In the spirit of the previous considerations, let us leave the dynamical equations of
Newtonian mechanics unchanged, but let us relax the principle of infinite precision
by substituting the real numbers with newly defined quantities. We refer to them as
“finite-information quantities” (FIQs), which, while providing the same empirical
predictions as the orthodox interpretation of classical physics, have no overlap with
real numbers (they are not a mathematical number field, nor a proper subset thereof).

Let us start by considering again the orthodox interpretation. Let a physical quan-
tity γ ∈ R (say the position of a particle moving in one dimension) lie, without loss
of generality, in the interval [0, 1] and write it in binary base:

γ = 0.γ1γ2 . . . γ j . . . ,

where γ j ∈ {0, 1}, ∀ j ∈ N
+. This means that, being γ ∈ R, its infinite bits are all

given at once, i.e., always determined.
Consider now the following alternative model to describe physical quantities

which introduces an element of randomness in such a way to always guarantee the
finiteness of the information content. We thus introduce the following:

Definition—propensities There exist objective properties, named propensi-
ties, q j ∈ [0, 1] ∩ Q, for each digit j of a physical quantity. A propensity
quantifies the tendency of the j th binary digit to take the value 1.

The concept of propensities, borrowed from Popper’s objective interpretation of
probabilities [29], can be understood from the limit cases, namely when they are
either 0 or 1. For example, q j = 1 means that the j th digit will take value 1 with
certainty. On the opposite end, if a bit has an associated propensity of 1/2, it means
that the bit is totally indeterminate.We posited that propensities are rational numbers,
but in general it is enough that their information content is always finite (e.g., they
could be computable real numbers). In order to define physical quantities, we thus
have to define the following:
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Definition—FIQs A finite-information quantity (FIQ) is an ordered list of
propensities {q1, q2, · · · , q j , · · · }, each associated to a bit of a physical quan-
tity, such that the overall information content is finite, i.e.,

∑
j I j < ∞, where

I j is the information content of the j th propensity (as expressed by some
reasonable measure).

Note that a previous work [9], we have suggested a straightforward way to
construct a FIQ, i.e. to assume that after a certain threshold, all the bits to which
propensities are associated become completely random, i.e., ∃M(t) ∈ N such that
q j = 1/2,∀ j > M(t). In this way, the propensities are all independent and it is
possible to choose I j = 1 − H(q j ), where H is the binary entropy function of its
argument. It’s trivial to check that in that scenario

∑
j I j < ∞. However, in Ref. [30],

it was pointed out a weakness of the simple latter scenario, namely that the mutual
independence between propensities of a FIQ is not preserved under a basic operation
such as a change of unit. We have shown in [31] that this does not jeopardizes the
FIQ program, but indeed forces us to introduce more complex ways to construct
FIQs, such that correlations between propensities are properly introduced. Despite
the criticism in [30], for conceptual simplicity we still present in what follows the
simple model to construct FIQs using independent propensities, because this will
more intuitively allow to discuss the main conceptual novelties and issues.

In general, since we require our alternative interpretation to be empirically equiv-
alent to the orthodox one, at least the digits of a physical variable that are already
known (i.e., measured) at time t should be fully determined. Therefore, the propen-
sities of the first, more significant, N (t) digits should be already actualize, i.e.
qi ∈ {0, 1},∀i ≤ N (t). We are now ready to express a physical quantities γ in this
FIQ-based interpretation:

γ (N (t), M(t)) = 0. γ1γ2 . . . γN (t)
︸ ︷︷ ︸
determined γ j ∈{0,1}

?k , with qk∈(0,1)
︷ ︸︸ ︷
?N (t)+1 . . .?M(t) ?M(t)+1 . . .

︸ ︷︷ ︸
?l , with ql= 1

2

,

where the symbols ?i means that the digit in position i is not yet determined. Notice
that in this framework the potential property of becoming actual (a list of propensities,
FIQ), has somehow a more fundamental status than an already actualized value (a
list of determined bits). In fact, in this alternative interpretation, a state would be the
collection of all the FIQs associated with the dynamical variables (i.e., the list of the
propensities of each digit). Thus, even two systems that are to be considered identical
at a certain instant of time (in the sense that they are in the same state) will have, in
general, different actual values at later times. But then, how does the actualization
happen in such a way that is compatible with the observed results? To answer this
question we need to discuss what is a measurement in a non-deterministic physics.
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5.3.3 The Classical “Measurement Problem”

Any indeterministic interpretation of a physical theory needs to face the questions
(measurement problem): How does a single value of a physical variable become
actualized out of its possible values? Or how does potentiality become actuality?
Our experience, in fact, tell us that every time a quantity gets measured there is only
one value registered by the instrument. In order to address this issue, however, it is
necessary to first ask: What is a measurement? This long-lasting question is one of
the most profound open problems of the foundations of quantum physics (see, e.g.
[32]). As we have recalled, the latter is normally considered the first theory to have
introduced fundamental indeterminacy in the domain of physics. Yet, as soon as an
indeterministic interpretation of classical physics is upheld, this is also subject to a
measurement problem.

Let us operationally define what are the minimal requirement for a process to be
considered a measurement:

Definition—Minimal requirements for a measurement
1. Stability: Consecutive measurements of the same quantity leave the already

determined digits unchanged.
2. Intersubjectivity: Different agents can access the same measurement out-

comes.
3. Precision improvability: With more accurate measurement apparatuses,

more digits become available (with the former two properties).

As for stability, it should be remarked that it is of course possible that the dynami-
cal evolution would change the state of the system under consideration, and therefore
the outcomes of measurements occurring at two (arbitrarily distant) instants of time.
However, what is assumed here is a trivial evolution, or equivalently a short enough
time interval between consecutive measurements, thus focusing only on the changes
of the states due to measurements. This assumption is customarily upheld in explain-
ing quantum mechanics, when one says that two consecutive measurements of the
same observable yield the same results (obviously if performed in the same basis).

In order to be an empirically adequate model, in the FIQ-based indeterministic
interpretation of classical physics, too, one needs to explain how to complywith these
properties of measurements. By construction of FIQs, propensities are objective
properties subjected to fundamental irreversibility (i.e., once they become either
0 or 1 the remain unchanged), and this accounts for the stability and ensures the
intersubjective availability of the measurement results.

What is far from being straightforward, however, is the compliance with precision
improvability. In Ref. [9], we have introduced two possible ways to account for
this property. On the one hand, one can envisage (i) a mechanism that makes the
actualization to spontaneously occur as time passes. This resembles the so-called
objective collapse models of quantum mechanics [33–35]. On the other hand, it is
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possible to think that (ii) the actualization happens when a higher level requires
it, thus, with some top-down causation mechanism [36]. In this case, it would be
the measurement apparatus that “imposes” to the physical variables to acquire a
determined value. This is clearly reminiscent of the Copenhagen interpretation of
quantum mechanics.

Such a “classical measurement problem” remains an open problem as much as its
more notorious quantum counterpart. Yet, it should be noticed that however prob-
lematic, the fact that both classical and quantum physics share this issue helps to
scale down the fundamental difference between these two theories.

5.4 (In)determinism and Causality

Like in the orthodox interpretation, in the indeterministic model previously intro-
duced, too, the laws of classical mechanics are taken to be general relations that
causally connect physical states at different instants of time. Traditionally, in the
philosophy of science, the concepts of determinism and causality have been long
wedded, to the extent that usually Laplacian determinism is often referred to as
causal determinism. One of the most notable examples of this can be found in Hume,
who maintained that a cause is always sufficient for its effect: “It is not possible on
Hume’s account, for causes to be less than deterministic.” [4]. Also Leibniz elevated
determinism to an a priori truth, when formulating his principle of sufficient reason:
“There is nothing without a reason, or no effect without a cause” (quoted in [21]).
And Kant even formulated what is sometimes called the law of universal causation,
according to which, “if we [...] experience that something happens, then we always
presuppose thereby that something precedes on which it follows in accordance with
a rule.” [37].8

The concept of causation is also traditionally related, at least in science, to the
quest for explanation. This means to ask: Why did the (observed) event Ei happen?
(here i labels the time at which E occurs). Answering this question in a determin-
istic worldview seems to us quite meaningless. In fact, were everything completely
predetermined, this question –like any other one– would not be a genuine question,
in the sense that, for whoever asked it, this was a necessity from the beginning of
times. Recalling again Laplace’s demon, “the future as the past would be present to
its eyes” [1]. In other words, everything would just be an already shot film that is
unrolling, and the script of the film makes you say the line “why did Ei happen?”.

Moreover, even if we assume that an agent, or an intellect, is external to everything
that occurs in the universe (i.e. s/he is really watching the movie from outside),
thereby not being included in this predetermined state of the universe, this is not
unproblematic. Asking why something happened is in this case certainly meaningful
but the answer is trivial: Because this is the film I am watching (and there are no

8 Note that Kant refers to the term rule as a univocal correspondence and does not contemplate any
non-deterministic (e.g., probabilistic) law that relates causes and effects.
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other films available!). Again, determinism assumes that given an initial state of
the universe and universal laws everything causally follows. But this is misleading
because there is only one specific initial state and, without alternatives, causation
seems a void concept.

On the contrary, indeterminism introduced the possibility of alternatives, thereby
making causality meaningful. If one asks the reason why a certain event E j occurred,
is now possible to reply: “Because another event Ei/A happened before (i.e., i < j)
and not its mutually exclusive alternative Ei/B”. Significant progress in weakening
the bond between determinism and causality was made in the second half of the
nineteenth century, thanks to the work of philosophers the likes of Popper [29],
Earman [21], Salmon [38], Dowe [4], Reichenbach [39], Good [40] and Suppes
[41]. Mostly inspired by quantum mechanics, the concept of probabilistic causality
came about. This maintains that an event C directly influences another event E but
is not sufficient for it. A common, and quite grim, example to explain probabilistic
causality features the following chain of events (temporally ordered): A scientist,
Eric, sits in a sealed room (i.e., without any exchange with the external environment).
His colleague, Clara, brings a canister full of radioactive material in Eric’s room
(ideally, making sure that there are no other exchanges with the environment). While
time elapses, the radioactive material will be decaying –at a certain probabilistic rate
depending on its chemical composition– releasing ionizing radiation. Sadly, at some
point, Eric develops radiation poisoning. Now, since decay is governed by quantum
mechanics and in that theory probabilities are considered irreducible, there was no
deterministic process relating Clara’s actions to Eric’s condition. However, if you
think that Clara can be held accountable for Eric’s sickness, then you believe in
probabilistic causality.

Referring to Fig. 5.3, we can graphically formalize deterministic (on the left)
and probabilistic causality (on the right). Both are represented as graphs which are
directed (causes precede their effects in time), and acyclic (an effect cannot be the
cause if itself). However, in a deterministic graph, there are no possible alternatives:
Everything that can happen does happen.9 On the contrary, a graph representing
probabilistic causality (Fig. 5.3-right) is a multigraph with two types of edges. The
first ones (blue) represent the “potential causations” and are weighted with the mea-
sure or the degree to which an event Ei causes future events E j/K , where i, j label
the time instants and K ∈ {A, B, . . .} the possible mutually exclusive alternatives.10

A natural choice for the weights of the potential causation is clearly propensities
qK , as defined in Sect. 5.3.2. The second kind of edges (red), instead, represent what
actually happened and can be reconstructed in hindsight after the actualization of the
potentiality has happened (e.g., after measurements).

9 Note that it is of course not necessary that each event is effect and cause of one and only one event
as in Fig. 5.3-left. We represented this simple chain because we deem less confusing the comparison
with the probabilistic graph (Fig. 5.3-right).
10 Note that the celebrated Many-World Interpretation of quantum mechanics affirms that all the
possible alternative outcomes actually happen, hence refuting the mutual exclusiveness thereof.
While this is also a possible further interpretation of the FIQ-based physics, we will not consider
this further.
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Fig. 5.3 Causal graphs of a deterministic (left) and indeterministic (right) series of events. The red
arrows relate events that actually happen, while the blue ones denote potential, mutually exclusive,
alternative events of which only one will happen with a certain propensity qK (see main text)

Clearly, the alternative interpretation of classical physics based on FIQs, intro-
duced in Sect. 5.3.2, is causal but not deterministic and can be represented by causal
graphs of the second type (Fig. 5.3-right).

Recently, D’Ariano, Manessi and Perinotti [42] have pointed out that the notions
of determinism and causality are logically independent, namely one can have not
only non-deterministic (probabilistic) causal theories, such as quantum mechanics,
but in principle non-causal deterministic theories, too. Their argument is carried out
in the framework of operational probabilistic theories, introduced by some of the
same authors in previous works. Without entering the formal details, according to
the authors of Ref. [42] a theory is said to be causal if there is no-signaling from the
future. Namely, if the probability of preparing a system in a certain initial state is
independent from the choice of measurements that will be performed on the system
itself. Determinism is instead defined as “the property of a theory of having all
probabilities of physical events equal to either zero or one.” [42]. They then cleverly
design a toy-theory that is, in fact, deterministic but not causal, according to their
definitions.
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However, defining deterministic behaviors as a limiting case of probabilistic ones,
while is seemingly very natural, leads to subtle issues. Indeed, this boils down to give
an interpretation of what probabilities are supposed to mean. If they are taken to have
no causal meaning, but being merely measured frequencies of occurrences, then
the fact that determinism and causality are logically independent becomes trivial.
Consider a typical example of classical correlations: During a vacation in New York,
take a pair of shoes and separate them into two identical boxes. Shuffle the boxes in
a way that is impossible to know which one contains the left, respectively the right,
shoe. Keep one box with you and send the other to a friend in Tokyo. You can now
open the box and you figure out that you kept, say, the left shoe. Then you can infer
the following statement with probability one, i.e., deterministically: “My friend in
Tokyo has received a right shoe”. Nobody, however, would ever entail that finding
the left shoe in New York has caused the right show to be found in Tokyo.11

Similarly, take the digits of a (computable) number, say π . If you know with
certainty that the number you are dealing with is really π , for instance because is
the ratio between a circle’s circumference and its diameter, then you can assert with
probability one, i.e. deterministically, that its nineteenth decimal digit is a 4. Again,
nobodywould claim that you caused this digit to be 4 bymeasuring the circumference
and diameter of a circle.

5.5 Concluding Remarks

In this essay, we have revised arguments to support the view that classical physics
could be interpreted indeterministically, and basic operational principles and
information-theoretic arguments hint at this direction. At the same time, quantum
mechanics has given us reason (in particular by means of the violation of Bell’s
inequalities [43]) to believe that the universe we live in is not deterministic. If this
is the case, Popper’s words remind us of what is the reward for indeterminism: “The
future is open. It is not predetermined and thus cannot be predicted –except by acci-
dent. The possibilities that lie in the future are infinite” [44]. In fact, not only is the
future unpredictable in an indeterministic universe, but also the truth values of future
(scientific) statements are genuinely undecidable, as Gisin’s simple example points
out [45]:

Think of a proposition about the future, for example, “It will be raining in exactly one year
time from now at Piccadilly Circus”. If one believes in determinism, then this proposition is
either true or false [...]. But if one believes that the future is open, then it is not predetermined
that it will rain, hence the proposition is not true, and it is not predetermined that it will not
rain, thus the proposition is also not false.

11 One can object that in fact, the events were causally determined by the operation of shuffling
and it is only subjective ignorance that makes this appear random. Fair enough, but then substitute
the shoes with two quantum entangled particles and you will convince yourself that you have
“determinism” (in the sense of perfect correlations) without causality (see [43]).
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However, our stance on an open future cannot remain but a belief, because compelling
arguments (e.g., [46, 47]) show that every physical theory, including classical and
quantum mechanics, can be interpreted either deterministically or indeterministi-
cally and no experiment will ultimately discriminate between these two opposite
worldviews. We can only have the certainty that the future of the battle between
determinism and indeterminism is open, too.
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Chapter 6
Undecidability, Fractal Geometry and
the Unity of Physics

T. N. Palmer

Abstract An uncomputable class of geometric model is described and used as part
of a possible framework for drawing together the three great but largely disparate
theories of 20th Century physics: general relativity, quantum theory and chaos the-
ory. This class of model derives from the fractal invariant sets of certain nonlinear
deterministic dynamical systems. It is shown why such subsets of state-space can
be considered formally uncomputable, in the same sense that the Halting Problem
is undecidable. In this framework, undecidability is only manifest in propositions
about the physical consistency of putative hypothetical states. By contrast, physi-
cal processes occurring in space-time continue to be represented computably. This
dichotomy provides a non-conspiratorial approach to the violation of Statistical Inde-
pendence in the Bell Theorem, one where key counterfactual states needed to estab-
lish Bell’s theorem are undefined, thereby pointing to a possible causal deterministic
description of quantum physics.

6.1 The Disunity of 20th Century Physics

Three of our greatest theories of physicswere formulated in the 20thCentury: general
relativity theory, quantum theory and chaos theory. There is hardly any aspect of
human endeavour in the 21st Century that has been untouched by the consequences
of at least one of these theories. However, each is remarkably disparate from the
others, the very antithesis of the unity to which most physicists aspire in their search
for laws which govern the universe. To be specific:

A schematic of the local fractal state-space structure of the invariant set IU in
Invariant Set Theory. a An ensemble of trajectories decoheres into two distinct clus-
ters labelled a and �a. Under a second phase of decoherence, this trajectory, itself
comprising a further ensemble, decoheres into two further distinct regions labelled
b and �b. b Under magnification, a trajectory segment is found to comprise a helix
of p trajectories at the next fractal iterate. c Top: a cross section through the helix
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of trajectories comprises p (here p = 16) disks coloured black or grey according to
whether that trajectory evolves to the a cluster or the �a cluster. Bottom: each of these
p disks itself comprises p further disks coloured black or grey according to whether
each trajectory evolves to the b or �b. The fractal set Cp of disks is homeomorphic to
the set of p-adic integers

• Our inability to synthesise general relativity theory and quantum theory into a
satisfactory quantum theory of gravity is legendary and is widely regarded as the
single biggest challenge in contemporary theoretical physics.

• There are profound differences between quantum theory and chaos theory despite
the fact that unpredictability lies at the heart of both theories. In conventional
interpretations of quantum theory, unpredictability arises from the randomness
of the measurement process in what is otherwise a linear theory. By contrast,
unpredictability arises in chaos theory from the instability and nonlinearity of its
deterministic equations of motion. However, there is more than this. By virtue of
its determinism, chaos has not been seen as a route to understand the phenomenon
of quantum entanglement: in order to violate the Bell inequality a conventional
chaotic model of quantum physics would have to be explicitly nonlocal, a property
inimical to the goal of synthesising with a causal theory of gravity.

• Theway chaos is typically defined is incompatiblewith the principles of relativistic
invariance. In particular, a defining characteristic of a chaotic system is instability,
characterised by the fact that two states which are initially close can diverge expo-
nentially in time, implying the existence of positive so-called Lyapunov exponents
[15]. However, such divergence can be eliminated by a logarithmic reparametri-
sation of time suggesting that, in terms of the standard definitions at least, the
phenomenon of chaos is not coordinate independent [3].

The purpose of this essay is to provide some basis for believing that these theories
can be brought closer together through the unifying concept of non-computability.

6.2 Chaos and the Undecidable Geometry of Fractal
Attractors

Although unpredictability is a familiar if not defining characteristic of chaotic sys-
tems such as the famous three-component Lorenz equations [11]

dx

dt
= σ(y − x)

dy

dt
= x(ρ − z) − y

dz

dt
= xy − βz, (6.1)
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chaotic unpredictability is not a direct manifestation of non-computability. The rea-
son is as follows: although chaotic systems exhibit sensitive dependence to initial
conditions, they do nevertheless exhibit continuous dependence on initial conditions
[19]. Such continuous dependence means that in a chaotic system it is possible to
predict reliably as far ahead as you like, providing the initial conditions are known
sufficiently accurately. This implies that such predictions are computational (i.e. can
be performed to arbitrary accuracy by finite computing machines in finite time).

However, in the infinite future, two interesting things happen. Firstly, no matter
what the initial condition, the state of a time-irreversible chaotic system such as
described by the Lorenz equations settles down on its fractal attractor, sometimes
referred to as a dynamically invariant subset of state space, or invariant set for short.
Secondly, in the infinite future, the property of continuous dependence on initial
conditions finally breaks down. This suggests the interesting question: are the fractal
attractors of chaotic dynamical systems uncomputable?

To answer this question, we must first define what is meant by the term ‘uncom-
putable’. One can take the definition from the seminal work of Turing [21] who
famously showed, by an extension of the Gödel incompleteness theorem, that no
algorithm exists that can decide whether, from the set of all possible pairs of com-
puter programs and program inputs, a given program-input pair will halt.

In their seminal book ‘Complexity and Real Computation’ [2] (co-authored by
Steve Smale one of the pioneers of chaos theory), Blum et al. set about answering the
question of whether membership of a fractal, such as the famous Mandelbrot Set, is
decidable. Their argumentation applies equally to the fractal attractorA of a chaotic
system. We consider a putative algorithm/machine on the real numbers, which takes
as input a point x in the state space of the chaotic system, and halts if x ∈ A (Fig.
6.1). Blum et al.’s Path Decomposition Theorem implies that such an algorithm does
not exist if A does not have integer dimension. The very definition of a fractal is
one whose (e.g. Hausdorff) dimension is not an integer. Hence we can conclude that
indeed the fractal invariant sets of chaotic systems are uncomputable. This notion
was further developed by Simant Dube [4], who showed that many of the classic
undecidable problems of computing theory (e.g. the Post Correspondence Problem
named after one of the pioneers of computing theory, Emile Post) can be recast in
terms of geometric properties of fractal attractors (e.g. does a given line intersect the
attractor).

It is possible that this property of non-computability may also arise in finite time,
in the initial-value problem for the Navier-Stokes partial differential equations of
classical fluid mechanics. The physics behind this assertion lies in the possibility that
the e-folding time, associated with the linear instability of a particular turbulent eddy,
decreaseswithout bound as the spatial scale of the eddygoes to zero, implying afinite-
time breakdown of continuous dependence on initial conditions [19]. However, such
a property has not be proven rigorously and indeed is closely related to one of theClay
Mathematics Millenium Prize Problems. For this reason, we do not pursue it here.
As the author has discussed in [19], this finite-time breakdown in the computability
of the Navier Stokes equations (rather than unpredictability in low-order chaos) is
what Ed Lorenz actually meant by ‘The Butterfly Effect’ [12].
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Fig. 6.1 Adapted from Fig F
of [2]. Blum et al. consider a
putative algorithm/machine
that takes as input a point x
in the state space of a
dynamical system with
attractor A, and halts if
x ∈ A. Their Path
Decomposition Theorem
implies that no such machine
exists if A has fractional
dimension. The fractal
attractors of chaotic systems
are therefore
non-computational, and
x ∈ A is undecidable

Fig. 6.2 Iterates of a the familiar Ternary Cantor Set C2; b a representation of the Cantor Set C16.
In both cases, Cp is the intersection of all iterates. The set Zp of p-adic integers is homeomorphic
to Cp
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Before returning to the principal theme of this essay, a number of important points
need to bemade about properties of fractal attractors. The essence of a fractal attractor
is the Cantor Set. In Fig. 6.2a we show a simple ternary Cantor set C2 (remove the
middle third from the interval [0, 1] and iterate). In Fig. 6.2b is shown a generalisation
Cp to p iterated pieces (to which we return in the Appendix). In both cases, the fractal
is itself the intersection of all fractal iterates. A point on C2 can be represented by
a base-3 real between 0 and 1 whose base-3 expansion does not contain the digit 1,
e.g. p = .02022020 . . .. If we perturb this number by adding to it a number drawn
from the unit interval (e.g. δ p = .0000010 . . .), then almost certainly the perturbed
number p + δ p will not lie on C2.

This raises the question: Howwould we actually domathematics on fractal attrac-
tors, for example so that when we add or multiply two points on such an attractor,
the sum or product remains on the set? This is nontrivial because if, for example,
we take two points p1 = .020220 . . . and p2 = .002020 . . . on C2 (written in base 3)
and add them together, then p1 + p2 = .100010 . . . which contains the digits 1 and
therefore does not lie on C2. A similar issue arises if wemultiply p1 by p2. Onemight
imagine that simply replacing each 2 with a 1, so that p1 and p2 are represented in
binary, would do the trick. However, it does not as the example p1 = .10010 . . .,
p2 = .11110 . . . shows (in this case p1 + p2 no longer lies in the unit interval [0, 1]).

In fact, there is a way to ensure that addition and multiplication on Cantor Sets are
arithmetically closed.However, instead of using familiar real-number representations
of p1 and p2 on C2, we must instead use so-called 2-adic integer representations (and
p-adic integers for Cp). p-adic numbers are bread and butter for pure mathematicians
[9]. However, they are typically considered exotic by physicists. This may have to
change if we are to exploit the notion of non-computability in physics. There is a rich
theory of nonlinear dynamical systems based on mappings of p-adic numbers [23].
Going beyond this, it is possible to do calculus, complex analysis, Lie group theory,
indeed much of the usual sorts of mathematics performed by physicists, using p-adic
numbers. Like the real numbers, the set of p-adic numbers forms a completion of the
set of rational numbers—however,with respect to a differentmetric: the p-adicmetric
rather than the more familiar Euclidean metric. There is an important consequence
of this: points which lie in the fractal gaps of the Cantor Set (corresponding to p-adic
numbers which are not p-adic integers) are, p-adically distant from points on the
Cantor Set, even when from a Euclidean perspective they may seem arbitrarily close.
This has conceptually implications discussed below.

Despite all this, the notion of fractals and non-computability may invoke a sense
of uneasiness for physicists who believe that the world around us should be describ-
able using finite mathematics. As Hilbert famously noted: ‘the infinite is nowhere
to be found in reality, no matter what experiences, observations, and knowledge are
appealed to.’ In this regard, we should note that non-computability can leave an
imprint in finite approximations D′ of chaotic systems D. In particular, the propo-
sition x ∈ AD′ , although algorithmically decidable, can nevertheless be computa-
tionally irreducible: it cannot be decided reliably by an algorithm which is itself a
simplification of D′. Wewill refer to this again in the discussion of the Bell Theorem.
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In can be noted that finite representations of fractals can be represented simply by
finite truncations of the corresponding p-adic integers.

6.3 Towards a Unification of 21st Century Physics

Using the concept and properties of uncomputable fractal attractors, let us return to
the issue raised at the beginning of this essay: the disunity of the three great theories
of 20th Century physics. We discuss possible ways to resolve the disunity in reverse
order to that described above.

6.3.1 Chaos Theory and Relativity Theory

We can easily overcome the obstacle between chaos and relativity theory discussed
above. The answer [3] is to define chaos in terms of the geometric properties of its
fractal invariant set. For example, as discussed, one defining geometric characteristic
of a fractal is its non-integer dimension. An approach based on an analysis of the
invariant sets of a parametrisation of the cosmological Mixmaster model [13] allows
one to talk meaningfully about coordinate-independent chaos in a relativistically
invariant cosmological setting. This allows us to introduce a concept which is central
to the discussion of quantum entanglement below: the notion of the universe evolving
on some uncomputable fractal invariant set IU .

6.3.2 Chaos Theory and Quantum Theory

One seeming obstacle between quantum theory and chaos theory—the linearity of the
former and the nonlinearity of the latter—is easily overcome. Figure 6.3 shows, using
MonteCarlo techniques based on theLorenz equations, the evolution of some contour
of a probability distribution.The evolutionof probability densityρ in classical physics
satisfies a linear Liouville equation which in Hamiltonian form can be written

∂ρ

∂t
= {H, ρ} (6.2)

where {. . .} is the Poisson bracket. This is remarkably close in structure to the von
Neumann-Dirac form

i�
∂ρ

∂t
= [H,ρ] (6.3)
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Fig. 6.3 Evolution of a contour of probability, based onMonte Carlo integrations of (6.1), is shown
evolving in state space for different initial conditions, with the Lorenz attractor as background. The
linearity of theLiouville equation exists peaceablywith the nonlinearity of the underlying dynamical
equations

of the Schrödinger equation where [. . .] is the operator commutator. (A reason for
the appearance of i� in (6.3) and not in (6.2) is discussed in the Appendix.) Now
the linearity of the Liouville equation is simply a consequence of conservation of
probability. In particular, the linearity of the Liouville equation says nothing what-
soever about the underlying nonlinearity of the dynamics which generates ρ. The
close formal similarity between the Hamiltonian form of the Liouville equation and
the von Neumann-Dirac equation is strongly suggestive (to the author at least) that
there must also be some deterministic framework underpinning quantum physics.
If this is so, then, by analogy with the Liouville equation, the linearity of the von
Neumann-Dirac equation says nothing about the nonlinearity of this underpinning
deterministic dynamic.

The principal obstacle in drawing together chaos and quantum theory is therefore
not the linearity of the Schrödinger equation, but the Bell Theorem. Unless it explic-
itly violates local causality (i.e. is nonlocal), a conventional computable deterministic
model of quantum spin must satisfy the Bell Inequality

C(0, 0) + C(0, 1) + C(1, 0) − C(1, 1) ≤ 2 (6.4)
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and thus be inconsistent with experiment. As usual, we imagine a source of entangled
spin-1/2 particles prepared so that the total angularmomentumof any pair of particles
is zero. The spins of the particles are measured by remote experimenters Alice and
Bob who can each choose to orient their measuring apparatuses in one of two ways
(relative to a reference direction): conventionally these are referred to as X = 0,
X = 1 (for Alice) and Y = 0, Y = 1 (for Bob). C(X,Y ) denotes the correlation
in spin measurements for ensembles of particles, as a function of the measurement
settings. In the discussion below, X ′ = 1 if X = 0 and vice versa, and similarly for
Y .

In a local deterministic theory, each pair of entangled particles is described by
a supplementary variable λ, often referred to as a hidden variable (though in the
uncomputable type of theory proposed here, there is no need for λ to be hidden; as
discussed below, the ontic characteristics of a putative quantum state are inaccessible
to the experimenter [22]). For eachλ in a conventional hidden-variable theory, a value
of spin (here ±1) is defined for each of the four values of X and Y .

One property which a locally causal deterministic theory must conform to if it is
to satisfy the Bell Inequality is that of Statistical Independence

ρ(λ|XY ) = ρ(λ) (6.5)

The assumption (6.5) ensures that when the individual correlations in (6.4) are esti-
mated from separate sub-ensembles of particle pairs (as happens in any real-world
experimental test of the Bell inequality), then the hidden variables associated with
these sub-ensembles are statistically equivalent to one another. A theory which vio-
lates (6.5) is referred to as superdetermistic [6], and the existence of statistically
inequivalent real-world sub-ensembles is almost universally seen as implausibly con-
spiratorial and even unscientific.

However, in a non-computable theory, it is possible to violate (6.5) without negat-
ing the statistical equivalence of real-world sub-ensembles of particles/hidden vari-
ables. To see this, suppose indeed that the universe is evolving on some uncomputable
fractal invariant set IU in cosmological state space, as discussed above.Hence, if a pair
of entangled particles, represented by some unique λ, is measured with some partic-
ular choice of measurement settings (X,Y ), then, by hypothesis, the state x(λ, X,Y )

of the world associated with the triple (λ, X,Y ) lies on IU .
Now if x(λ, X,Y ) is a real-world state, then x(λ, X ′,Y ) or x(λ, X,Y ′) are coun-

terfactual states: they describe hypothetical worlds where measurement pairs such
as (X ′Y ) or (XY ′) might putatively have been performed on the same particle pair,
even though the measurements (X,Y ) were performed in reality. An experimenter
might whimsically have decided to use the parity of yesterday’s Dow-Jones index to
determine whether to choose X over X ′. In this way the counterfactual x(λ, X ′,Y )

lies on IU if it is consistent with the laws of physics to perturb the degrees of freedom
that determined yesterday’s Dow Jones index, and keep fixed all other degrees of
freedom—the position of the moons of Jupiter and so on—that describe the state
of the world. Now it is important to note that such a perturbation as formulated is
merely kinematic perturbation and may or may not be consistent with constraints
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associated with the dynamical laws. Now as discussed above, a random dynamically
unconstrained perturbation to a point on a Cantor set almost certainly takes the point
off the Cantor Set. Hence in a model where states are constrained to lie on a measure-
zero fractal invariant set in state space, it is plausible that neither the counterfactual
states x(λ, X ′,Y ) nor x(λ, X,Y ′) lie on IU . In the Appendix we describe a particular
model where such counterfactual states definitely do not lie on IU . That is to say

ρ(λ|XY ) = 1 =⇒ ρ(λ|X ′Y ) = 0 and ρ(λ|XY ′) = 0 (6.6)

which is a manifest violation of (6.5).
On the other hand, since it is undecidable whether x(λ, X,Y ) ∈ IU , then there

is no algorithm for determining which of x(λ, X,Y ), x(λ, X ′,Y ), x(λ, X,Y ′) or
x(λ, X ′,Y ′) lies on IU . That is to say,we cannot assert by algorithm thatρ(λ|XY ) = 1
and ρ(λ|X ′Y ) = 0. From a computational perspective, it is no more likely that the
particle pair associated with a particular λ is measured with one set of X and Y values
as with any other set. From this computational perspective, (6.5) is not violated.

Violations of Statistical Independence are sometimes seen as implausibly con-
spiratorial. Indeed, it is sometimes said that it would be impossible to do science
in a world where Statistical Independence is violated. For example, how could one
test the efficacy of a new drug, if one could not guarantee that the sub-samples of
volunteers given the drug and a placebo were not statistically equivalent? However,
such criticisms simply do not apply to this violation of Statistical Independence,
simply because by construction, the violations do not apply to anything happening
in the real world, but only to counterfactual worlds. If both sub-samples of volunteers
are sub-samples in the real world, then their statistical properties are by definition
totally unaffected by the violation of Statistical Independence as described by (6.6).
Similarly, such violation does not imply any conspiracy in the real world, because
nothing the events that are being denied as unphysical, by construction do not occur
in the real world.

Of course this result does not imply that all counterfactual worlds are physically
inconsistent. Indeed there can be as many allowed counterfactual worlds on the
invariant set as there are points on the real line. Hence, none of the analysis above
denies the validity of counterfactual reasoning in classical physics, or indeed in
everyday life. It is just that counterfactual reasoning fails when it comes to arguing
about certain types of experiment in quantum physics.

In this analysis, it is important to note that we are invoking the concept of undecid-
ability in relation to the geometry of state space, and not in terms of physical processes
occurring in space-time. A mathematical description of an actual process occurring
in physical space-time should always be possible using computational/algorithmic
equations, whilst a mathematical description of a proposition concerning the reality
of a putative state in state space may not be so. To illustrate this dichotomy, let us
return to the prototype Lorenz attractorAL . As discussed, the proposition x ∈ AL is
undecidable. However, the space-time processes which AL represents, in this case
a highly truncated model of fluid convection in Newtonian space-time, are given by
the computable differential equations (6.1), solvable by algorithm.
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Unravelling the dichotomy between real-world processes in space-time and puta-
tive worlds in state space is central to understanding why an uncomputable theory
of quantum physics can violate Bell inequalities without violating experimenter free
will or causality [6]. Free will is frequently described as an ability ‘to have done
otherwise’, a description that is manifestly built around the notion of putative coun-
terfactual worlds in state space (where I did do otherwise). However, one can equally
well describe free will solely in terms of real-world processes, without referring to
counterfactuals at all: specifically one is freewhen there are no constraints preventing
one from doing as one wishes [8]. Similarly for causality: when Newton claps his
hands and hears the sound reflected from the back wall of the college quad, he can
assert that the sound was caused by the clap in one of two ways: either by claiming
that if he hadn’t clapped he wouldn’t have heard the sound (thus invoking counterfac-
tuals) or by linking the clap to the excitation of an acoustic wave which propagated
across the quad according to the computational equations of fluid mechanics, was
reflected by the quad wall, entered his ear triggering an electric signal in his neurons.
The latter description only involves real-world processes occurring in space-time.

In the case of an uncomputable theory of quantum physics, such as presented
here, these two descriptions of freewill and causality are profoundly inequivalent. By
basing descriptions of freewill and local causality strictly on computational processes
occurring in space-time, and not on undecidable counterfactuals in state space, an
uncomputable deterministic model need violate neither free will nor causality and
still violate the Bell inequality. No conspiracies are needed to achieve this. The
uncomputable model described briefly in the Appendix does this and more: using
number-theoretic properties of trigonometric functions [14], it shows that whatever
the choices that Alice and Bob actually make for X and Y , the correlations for the
sub-ensembles are necessarily quantum mechanical in nature.

Above, it wasmentioned that in state-space, the p-adicmetric respects the primacy
of a fractal invariant set better than does the familiar Euclidean metric. This has
profound metaphysical implications. For example, in the theory of counterfactual
causality of the renowned philosopher David Lewis [10], it is assumed that of two
putative counterfactual worlds, the one which resembles reality better must be closer
to reality. From this perspective, a world which differs only in some seemingly
insignificant detail, e.g. in the wavelength of a single photon from a distant quasar,
must be extremely close to reality. As such, it would seem grossly implausible of a
theory to assert as profoundly unphysical, a world which differs from reality only in
terms of something as seemingly insignificant as the wavelength of a single photon.
However, relative to the p-adic metric, if this counterfactual world lies in a fractal
gap of the corresponding invariant set in state space, then no matter how closely it
resembles reality, and hence nomatter howclose it appears to reality fromaEuclidean
perspective, it will actually be distant from reality. In the Appendix is discussed a
model where such a counterfactual world does indeed lie in a fractal gap, if the
wavelength of the photon is used to determine the measurement settings in a Bell
experiment.

The results above carry overmutatis mutandis to the finite casewhere propositions
about states lying on periodic fractal-like invariant sets may be formally decidable
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but nevertheless computationally irreducible (a term defined above). In such a case,
it is impossible to determine reliably the truth of such propositions x ∈ IU using a
computational subset of the universe (e.g. what we would call a computer!). The
model described in the Appendix has a finite but computationally irreducible repre-
sentation for finite fractal parameter p. In this model, the continuum complex Hilbert
space of quantum theory arises as a singular (and not a smooth) limit [1] at p = ∞.
This is consistent with emerging evidence from quantum complexity theory [7] that
quantum theory cannot be considered the smooth limit of some corresponding finite
theory.

What is the key difference between a classical deterministic system described
probabilistically by (6.2) and a quantum system described by (6.3)? In the classical
system, the individual state-space trajectories are independent of one another: each
trajectory has been started from an independently chosen set of initial conditions. By
contrast, if the laws of physics derive from a constraint that trajectories must lie on
some fractal geometry in state space then state-space trajectories can no longer be
considered independent. Indeed, the primacy of such geometry implies that neigh-
bouring state-space trajectories can be thought of as interacting with one another. A
manifestation of such interaction is the quantum computer: a physical object able to
perform certain computations exponentially faster than a classical computer. Such
an ability is consistent with the notion that the evolution of physical objects asso-
ciated with “reality” can be influenced by counterfactual processes occurring on
neighbouring state-space trajectories on the invariant set.

6.3.3 Quantum Theory and General Relativity Theory

Could non-computability break the road-block in finding a satisfactory theory which
can synthesise quantumand gravitational physics?Geroch andHartle [5] andPenrose
[20] have speculated that a quantum theory of gravity may not be computable on the
basis that it is undecidable whether two simplicial 4 manifolds are topologically
equivalent. The following additional reasons suggest that non-computability could
lie at the heart of a quantum theory of gravity. Specifically:

• General relativity is a nonlinear theory. The structure of fractal geometry is nec-
essarily nonlinear. As discussed, it is only when expressed in terms of evolution
of probability that fractal-based dynamics, like the Schrödinger equation, appears
linear.

• General relativity is a deterministic causal theory. Causal structure derives from
the metric properties of space-time. As described in this essay, it is possible to vio-
late Bell inequalities with a locally causal but uncomputable deterministic theory,
providing the notion of local causality is defined purely in terms of computational
processes occurring in space-time, and not in terms of undecidable counterfactual
properties of state space.
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• General relativity is primarily a geometric theory. Non-computability has a nat-
ural expression in terms of fractal (p-adic) geometry. Could it be that the com-
putational pseudo-Riemannian geometry of space-time is emergent from the non-
computational p-adic geometry of state space for large but finite p? (In particular,
could it be that the Lorentzian signature of the space-time metric is emergent from
the primitive quaternionic structure that is a feature of the specific fractal model
discussed in the Appendix [18].)

6.4 Discussion

Fromwhere do new ideas come?Do they pop out of the aether as some randomflashes
of inspiration with no obvious precedent? Or do these ideas mostly already exist,
but in a completely separate setting. As such, does the creative spark really consists
of taking some pre-existing idea from its usual setting and transplanting it into an
unfamiliar setting where it may provide new insights into old unsolved problems?
Here, an example of the latter is presented. For many decades of his research career,
the author has worked on the chaotic dynamics of climate, having first done a PhD in

Fig. 6.4 A schematic of the local fractal state-space structure of the invariant set IU in Invariant Set
Theory. a An ensemble of trajectories decoheres into two distinct clusters labelled a and �a. Under
a second phase of decoherence, this trajectory, itself comprising a further ensemble, decoheres into
two further distinct regions labelled b and �b. b Under magnification, a trajectory segment is found
to comprise a helix of p trajectories at the next fractal iterate. c Top: a cross section through the
helix of trajectories comprises p (here p = 16) disks coloured black or grey according to whether
that trajectory evolves to the a cluster or the�a cluster. Bottom: each of these p disks itself comprises
p further disks coloured black or grey according to whether each trajectory evolves to the b or �b.
The fractal set Cp of disks is homeomorphic to the set of p-adic integers
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general relativity theory. It was this somewhat improbable combination of research
topics that led to a realisation [16] that the non-computable state-space geometry
of chaotic systems could provide new insights into the Bell Theorem. Perhaps this
could, in turn, provide a novel path to a unification of the two most fundamental
theories of 20th century physics: general relativity theory and quantum theory. If this
path does turn out to be the right one, quantum theory will have to change much
more than general relativity.

1 Appendix

In Invariant Set Theory (IST) [17, 18], we consider a specific fractal model IU of
state-space trajectories (or histories), where a single trajectory at some I − 1th level
of fractal iterate comprises a helix of p trajectories at the I th fractal iterate (similar to
a strand of rope)—see Fig. 6.4. Here p is a finite but arbitrarily large integer. A cross-
section of such trajectories is isomorphic to Cp (see Fig. 6.2b). Under interaction with
the environment, these I th trajectories diverge (with the appearance of Everettian
branching at the I − 1th iterate). In the simplest case where we partition state space
into two clustering regions (corresponding to measurement eigenstates) labelled a
and �a, each of the I th-iterate trajectories is labelled by the region into which the
trajectory evolves. In this way, at each fractal iterate, the set of p trajectories can
be represented by the complex Hilbert vector cos θ

2 |a〉 + eiφ sin θ
2 |�a〉 where cos2 θ

2
denotes the fraction of I th-iterate trajectories labelled a, and φ denotes an angular
coordinate around the helix of I th-iterate trajectories. This correspondence with
complex Hilbert states only holds when cos θ is of the form n1

p ∈ Q and φ
2π is of the

form n2
p ∈ Q (where 0 ≤ n1, n2 ≤ p are integers). The finite size of the helix, and its

symmetry under discrete rotations, explains both the factor � (whose dimensions are
that of phase space) and i in (6.3). Indeed, as discussed in [18], IU exhibits a natural
quaternionic structure (generating Pauli spin matrices). In IST the state space Sp

associated with such qubit Hilbert vectors is a discretised form of the Bloch Sphere.
Complementarity in quantum theory (arising from the non-commutativity of

observables) is a consequence of number theory in IST. In particular Niven’s Theo-
rem [14] asserts that if φ is a rational angle, then cosφ is almost certainly irrational.
Such a transformation arises in performing a unitary Hadamard on a complex Hilbert
vector. In IST, this number theoretic result implies that if an experimenter measures
on which arm a particle travels when passing through an interferometer (position
measurement), the experimenter could not counterfactually have performed an inter-
ferometric experiment (momentum measurement) on that same particle. Because of
Niven’s Theorem, Sp does not map onto itself under a general rotation of the sphere.
That is, Sp is incommensurate under general rotations. In IST, the tensor product
of rational Hilbert vectors is simply the Cartesian product of Sp—the discretised
form implying that an exponentially increasing number of degrees of freedom can
be accommodated with multiple Cartesian products, unlike with the continuum state
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space S
2 of a qubit in quantum theory. As a consequence, for a Bell State, IST

demands that the cosine of the relative angle between Alice and Bob’s measurement
settings must be of the form n3

p and hence be rational.
Consider the first two terms in the CHSH inequality (6.4). They refer to correla-

tions relative to the three measurement orientations X = 0, Y = 0 and Y = 1. These
can be represented as vertices of a spherical triangle on the celestial sphere. Suppose
in reality that a particular particle pair (with hidden variableλ)weremeasured relative
to X = 0, Y = 0. From IST, the cosine of the angular distance between the vertices
X = 0 andY = 0must be rational. In [18], it is shown, using the cosine rule for spher-
ical triangles, that in such a circumstance it is impossible for the cosine of the angular
distance between the vertices X = 1 and Y = 1 to also be rational. Hence if the state
x(λ, X = 0,Y = 0) ∈ IU , the counterfactual state x(λ, X = 0,Y = 1) /∈ IU (con-
sistent with (6.6)). Because the fractal geometry is described using complex Hilbert
vectors, the correlations between sub-ensembles of real-world particle pairs will
necessarily be quantum mechanical.

A corresponding analysis can be made of the Factorisation assumption in the
Bell Theorem, expressed as AXY (λ) = AX (λ), BY X (λ) = BY (λ)where A and B are
Alice and Bob’s deterministic spin functions which return the values±1. Violation of
Factorisation is typically viewed as implying a violation of local causality. However,
in a geometric uncomputable theory, it is again vital to make the distinction between
violation of local causality based on computable space-time processes—for example
when information in space-time propagates superluminally—and violation of local
causality based on undecidable counterfactual reasoning. As with free choice, it is
possible to violate the latter without violating the former.

IST violates Factorisation from the counterfactual perspective, but not from the
space-time perspective. From the space-time perspective if λ is associated with
a state on IU , then either λ ∈ �1 = {λ| X = 0, Y = 0 or X = 1, Y = 1} or λ ∈
�2 = {λ| X = 0, Y = 1 or X = 1, Y = 0}. If λ ∈ �1, then given X (say X = 0)
the value of Y is redundant (it is necessarily Y = 0), and hence Factorisation is sat-
isfied. Similarly if λ ∈ �2. By contrast, Factorisation is violated if we admit coun-
terfactual worlds not lying on IU . Such a counterfactual world would be associated
with onewhere, for example,λ ∈ �1 and,with X = 0 fixed,Y = 0 ismathematically
perturbed to Y = 1. Such a counterfactual state does not lie on IU and is therefore,
by the Invariant Set Postulate, not ontic. Such a state is, moreover, p-adically distant
from any state on IU (even if the counterfactual world only differs by the wavelength
of a single photon, e.g. from a distant quasar). As such, IST is locally causal from a
space-time perspective, but not from a counterfactual perspective.

The uncomputable theory described here is not quantum theory. However, the
closed complex Hilbert Space of quantum theory is emergent (only) in the singular
limit at p = ∞. At this limit, all fractal gaps close, and the set of all complex
Hilbert states is ontic. As the theoretical physicist Michael Berry [1] has discussed,
old theories of physics are frequently the singular limit of new theories as some
parameter of the new theory (here p) is set equal to either zero or infinity.
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Chapter 7
A Gödelian Hunch from Quantum
Theory

Hippolyte Dourdent

7.1 Introduction

In classical logic, self-referring propositions can lead to pathologies such as the
well-known Liar paradox “This sentence is false.” Because it features an over-
determination—if the sentence is true then it is false, if it is false then it is true—the
“Liar” leads to undecidability, the impossibility to decide whether the sentence is
true or false. Analogs have been famously used in the foundations of mathematical
logic, from Russell’s paradox to Gödel’s incompleteness theorem, passing by Tarski
and Gödel undefinability theorem.1

In [1], Szangolies points out that “an intriguing connection between fundamen-
tal features of quantum mechanics and the phenomena of self-reference” might be
established. The expression “Gödelian hunch” is coined to describe “the idea that
the origin of the peculiarities surrounding quantum theory lie in phenomena related,
or at least similar, to that of incompleteness in formal systems.”What if the paradox-
ical nature of quantum theory could find its source in some undecidability analog
to the one emerging from the Liar ? This essay aims at arguing for such quantum
Gödelian hunch via two case studies: quantum contextuality as an instance of the
Liar-like logical structure of quantum propositions; and the measurement problem
as a self-referential problem.

Quantum contextuality results from a theorem established byKochen and Specker
[2], which shows that a quantum measurement cannot reveal a pre-existing value of
a measured property independently of the measurement context. Using a narrative
based on the Newcomb problem [3], the theological motivational origin of this result

1The undefinability theorem stipulates that any description of the truth of a proposition must be in
a richer metalanguage than the language in which the proposition itself is stated; this hierarchy of
languages arising as a solution of the Liar.
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is introduced in order to show how the theorem might be related to a Liar-like
undecidability (Sect. 7.2). I will also briefly present a topological generalization of
contextuality [4] such that non-locality (Bell’s theorem [5]) can be treated as a special
case. In this approach, the logical structure of quantum contextuality is compared to
sequences of cyclically referring statements, “Liar cycles”, which, associated with a
truth predicate, lead to a logical contradiction [6].

The measurement problem is often presented as a tension between the linear and
deterministic evolution of the wave-function following the Schrödinger equation and
the projection postulate or theBorn rule. Nevertheless, the problemwas also analyzed
as emerging from a logical error, and occurs because no distinction is made between
theoretical and meta-theoretical objects. I will present my analysis of the Wigner’s
friend thought experiment [7] and a recent paradox by Frauchiger and Renner [8],
introducing the notion of “meta-contextuality” as a Liar-like feature underlying the
neo-Copenhagen interpretations of quantum theory (Sect. 7.3).

Finally, this quantum Gödelian hunch opens a discussion of the paradoxical
nature of quantum physics (Sect. 7.4) and the emergence of time itslef from self-
contradiction (Sect. 7.5).

7.2 A Gödelian Hunch from Quantum Contextuality

In 1960, Specker submitted a paper entitled “Die Logik nicht gleichzeitig entscheid-
barer Aussagen” [9] (translated as “The logic of propositions not simultaneously
decidable” [10]). Inspired by Birkhoff and von Neumann’s axiomatic approach
to derive quantum theory from non-classical “experimental propositions” adapted
to the experimental result of quantum mechanics, Specker asks: “Is it possible to
extend the description of a quantum mechanical system through the introduction of
supplementary—fictitious—propositions in such a way that in the extended domain
the classical propositional logic holds [...] ?” The answer is negative, “except in the
case of Hilbert spaces of dimension 1 and 2.” A fruitful collaboration with Kochen
will culminate in an enriched reformulation of Specker’s result, today known as
the Kochen-Specker theorem [2]. Thus, either a measurement reveals a pre-existing
value of a measured property depending on the measurement context (quantum con-
textuality), or such value is unpredictable2 [12].

7.2.1 Counterfactual Undecidability

In his seminal work, Specker noticed an analogy between these simultaneously unde-
cidable propositions of quantum theory and the undecidability of counterfactual

2 For example the outcome might be brought-into-being by the act of measurement itself, “Unper-
formed measurements have no results.” [11]
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propositions.3 Hence, the question of an extension of quantum propositions in clas-
sical logic is paralleled with:

“the scholastic speculations about the “Infuturabilien” [...], that is, the question
whether the omniscience of God also extends to events that would have occurred
in case something would have happened that did not happen. (cf. e.g. [3], Vol. 3, p.
363.)” [10]. Can an omniscience extend to counterfactual propositions ? A possible
positive answer is given by the reference “([3], Vol. 3, p. 363) [13]”. The latter leads
to a chapter on molinism, describing an unorthodox form of omniscience proposed
by scholastics in order to conciliate God’s foreknowledge and human’s free will.
According to this view, God’s knowledge of counterfactual facts, i.e. facts condi-
tioned on our free choices, precedes God’s knowledge of actual facts. God already
has knowledge of our free acts, but our free acts have a counterfactual power on
his knowledge. If God had predicted that you will make a certain choice A, it may
nevertheless have been in your power to do something, such that were you to do it,
God would not have predicted this peculiar choice A. In a sense, God’s omniscience
and human free will can co-exist at the condition that the former is contextualized
by the latter.

In order to illustrate the afored mentioned analogy, I propose the following narra-
tive. We invoke an omniscient demon whose omniscience extends to counterfactual
propositions. Two observables A and B are given to a free agent, Alice. Alice can
choose to measure the observable B in two contexts: C1 := (A, B) or C2 := (B).
Beforehand, the demon has predicted her choice and, based on it, has assigned a
value to B: v(B)|C1 = 0 or v(B)|C2 = 1. Alice measures the value of the observable
in one of the contexts, and assume that she verifies that the demon’s prediction is
correct. One can then ask the counterfactual question: what would have happened if
she had chosen the other context ? Two solutions are possible:

• (a) “If Alice had chosen the other context, she would have found a different value
for B.” In this case, the omniscience of the demon may extend to counterfactuals.
But this implies that either Alice is not free of her choices (superdeterminism), or
the omniscience of the demon is conditioned by the context she chooses (molin-
ism).

• (b) “If Alice had chosen the other context, she would have found the same value for
B.” In this case, the omniscience of the demon does not extend to counterfactuals.
The demon would have been wrong. Because its essence is defined by its function,
denying this function is an exorcism. Thus, the value of B is unpredictable.

This narrative is freely inspired by the Newcomb problem [3], a decision theory
problemwhere the values associated to the prediction correspond to distinct earnings
(e.g. v(A) = 10k$, v(B)|C1 = 1k$ and v(B)|C2 = 1M$), the problem arising from
the question of which choice allows Alice to maximize her gains. Interestingly,
Slezak observed that the problem might originate from a self-referential structure:
“Newcomb’s problem may be understood as a game against one’s self in which one’s

3 A counterfactual proposition is a special kind of conditional proposition which follows the struc-
ture: “If A′ would have happened instead of A, then B ′ would have happened instead of B.”
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Fig. 7.1 a Each corner of an individual bar represents an observable to which one assign a truth-
value. b Each observable is compatible with two other ones separately, and thus two local contexts
can be defined per observable. The truth values assigned to observables in a context are logically con-
sistent. c Each corner from {A, B,C, D, E} is mutually compatible with its two neighbours. How-
ever, the global picture of all bars glued together is an undecidable figure, the Penrose pentagone.
One cannot define a global context in which no truth-value assignment leads to a contradiction

choice is based on deliberations that attempt to incorporate the outcome of this very
choice. [...] This hidden circularity facing the decision-maker arises because, as
we contemplate our best move, we consider the demon’s decision, which is actually
based on this very choice we are trying to make.” [14]

A similar “circularity” lies under the counterfactual statements (a) and (b). It is
of course trivial to point out that nothing is quantum in the Newcomb narrative.
Yet, the non-Boolean logical structure of quantum theory yields analog conclusions:
either a value-assignement to all observables is contextual or one cannot assign pre-
defined values to all observables, i.e. these values are in general unpredictable. The
self-referential nature of these narratives hints at the presence of a similar circular
structure underlying quantum contextuality. Approaching contextuality as the fact
that quantum theory is based on intertwined Boolean algebras that cannot be embed-
ded in a global Boolean algebra highlights this Liar-like structure.

7.2.2 Topological Undecidability

In a topological approach of contextuality by Abramsky et al. [4] based on sheaf
theory and cohomology, contextuality emerges when data which are locally con-
sistent are globally inconsistent. One can illustrate this definition of contextuality
with famous undecidable figures such as the Penrose pentagone4 (Fig. 7.1). In this
construction, each pair of bars can be isolated and visualized without paradoxes. It is
only when one tries to interpret the figure globally that a visual obstruction emerges.

4 Warning: this is a figurative illustration which has a didactic purpose. Of course, sheaf-theoretic
contextuality cannot be reduce to this simple example. However, note that a proof of contextuality,
the violation of the KCBS inequality [15], shares a similar structure.
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As noticed in [6], there is a direct connection between contextuality and classical
semantic paradoxes called “Liar cycles”, defined as sequences of statements of the
form : [{S1, S2} true ; ... ; {SN−1, SN } true ; {SN , S1} false] with Si the i th assertion,
and {Si−1, Si } and {Si , Si+1} the two “local” contexts associated to this assertion.
Although every proof of the Kochen-Specker theorem features such logical global
obstruction, this generalized approach does not reduce to quantum contextuality, and
also incorporates non-locality as a special case. As an example, the Hardy paradox
[16] can be shown to entail contextuality, and thus feature a Liar-like logical structure.
The paradox involves two agents, Alice and Bob, who share a two-qubit system in a
specific entangled state. Each agent can choose to measure their respective qubit in a
computational {|0〉, |1〉} or a diagonal basis {|+〉, |−〉}with |±〉 = 1√

2
(|0〉 ± |1〉). The

initial entangled state can thus be written in four different basis, each corresponding
to a measurement context. For example, in the comput.-comput. basis, the state is:
|ψ〉 = 1√

3
(|00〉 + |10〉 + |11〉). Assuming that a predefined value can be associated

to a measured property when a result can be predicted with certainty, one can infer
the four following sentences, each associated to a measurement context (cf. detailed
construction in appendix):

Sentence H1: “If Alice obtains ‘−’, then Bob obtains ‘1’.” (diago.-comput. basis)

Sentence H2: “If Bob obtains ‘1’, then Alice obtains ‘1’.” (comput.-comput.
basis)

Sentence H3: “If Alice obtains ‘1’, then Bob obtains ‘+’.” (comput.-diago. basis)

Sentence H4: “Alice and Bob both obtain ‘−’ with a probability 1/12.”. (diago.-
diago. basis)

Assuming non-contextuality means that one can build inferences from these dif-
ferent sentences. For instance, from (H1, H2, H3), one can construct the sentence:
“If Alice obtains ‘−’, then Bob obtains ‘+’ ”. However, this sentence is incompatible
with H4. Thus, ((H1, H2, H3), H4) is globally inconsistent, and the paradox entails
contextuality. The following probabilistic5 Liar cycle can be formulated, assuming
that both Alice and Bob obtained ‘−’: Bob obtains ‘−’ and Alice obtains ‘−’→Bob
obtains ‘1’ → Alice obtains ‘1’ → Bob obtains ‘+’, contradicting the first assign-
ment. Note that in such contextuality scenario, the contradiction occurs at the level
of classical statements, inferred from quantum propositions. The assigned values are
both classical and meta-theoretical, in the sense that they are not part of quantum
theory. Hence, if one wants to attach meta-theoretical statements to quantum propo-
sitions, these statements cannot be embedded in a global Boolean one in general.
The non-Boolean logic of quantum theory contaminates the meta-theoretical state-

5 The Hardy paradox is a probabilistic Liar cycle because the contradiction only occurs with a
probability 1/12.
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ments, which become globally undecidable. I argue that this global undecidability
of quantum propositions is in favor of a quantum Gödelian hunch.

7.3 A Gödelian Hunch from the Measurement Problem

As expressed in the literature, there exists different measurement problems (cf. e.g.
[17]). The one we wish to tackle addresses “the question of what makes a measure-
ment a measurement. [...] There is nothing in the theory to tell us which device in
the laboratory corresponds to a unitary transformation and which to a projection !”
[17]. This measurement problem as been analyzed as a “logical error” emerging from
a a lack of distinction between theoretical and meta-theoretical objects [18]. Simi-
lar conclusions explicitly underlying an analogy between the measurement problem
and Gödel’s theorem have been made (cf. [1] for an overview). For example, Chiara
notices that such analysis could seem “to be very close to some similar limitative
results that we have accepted in logic such as the Gödel theorem (who realizes a
proof of the consistency of a well-behaved scientific theory, must be ‘external’ with
respect to the theory (in the sense that he cannot use only the proof theoretical tools
allowed by the theory)) or the Tarski theorem (who ‘grasps’ the concept of truth for
a well-behaved theory cannot speak only the language of the theory).” [19] I will
analyze the Wigner’s Friend thought experiment and the Frauchiger-Renner para-
dox -which shows that “a self-referential use of quantum theory yields contradictory
claims.” [8]—as sustaining this Gödelian hunch.

7.3.1 Wigner’s Friend, Universality, Meta-Contextuality and
Measurement

The measurement problem we are dealing with is usually formalized as follow.
Assume that a quantum system is in the state |ψ〉 = α|0〉 + β|1〉 ∈ HS . On the one
hand, following the projection postulate, the systemwill either be projected onto state
|0〉with probability |α|2, or state |1〉with probability |β|2 after the measurement. On
the other hand, if the “observer” (e.g. themeasuring device) is a physical system, then
it shall be described by quantum theory. One associate a Hilbert space HO to this
observing system.Defining |M〉 the observer state “ready to performameasurement”,
the initial state of the compound system inHS ⊗ HO is (α|0〉 + β|1〉) ⊗ |M〉. In this
case, the measurement process is described as an interaction between the system and
the device, and thus as a unitary transformation U , resulting in U [(α|0〉 + β|1〉) ⊗
|M〉] → α|0〉 ⊗ |M0〉 + β|1〉 ⊗ |M1〉. Because the two final states are physically
distinct, there seem to be a tension between the postulates of quantum theory, raising
the question of how should a measurement process be described.
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The Wigner’s Friend thought experiment [7] is a meta-illustration of this mea-
surement problem, which asks: what happens when an observer observes another
observer observing a quantum system ? A quantum system, e.g. a qubit living inHS ,
is given to an observer, Wigner’s friend, who can perform ameasurement on this sys-
tem in her laboratory. Outside her laboratory, another observer,Wigner, can associate
a quantum state to the compound system HS ⊗ HO , where HO is a Hilbert space
associated to Wigner’s friend, e.g. a memory qubit |Mi 〉 which can be interpreted as
“Wigner’s friend observes a projection on state |i〉”. The problem occurs from the
fact that while Wigner’s friend observes a collapse of the qubit, the measurement
process has been described as a unitary transformation from Wigner’s perspective.
However both descriptions should be valid. My analysis of this problem relies on
the following terminology. The quantum system is an object, since it is described
by quantum theory. Wigner’s friend is an observer, and as a user of quantum theory,
is a meta-theoretical object, in short a meta-object. Wigner is an observer who can
perform a measurement on systems of the form object ⊗ meta-object, and is thus a
meta-meta-object, or meta-observer. The problem seems to arise from the fact that
an observer and a meta-observer are lead to describe the same event in contradictory
ways. I introduce the notion ofmeta-context as a set of the form{meta-object,object}.
This set is defined by a movable cut between theoretical objects studied in the lan-
guage of the theory, and meta-theoretical objects which are out of the range of the
theory. In the Wigner’s friend paradox, two meta-context are involved: {Wigner’s
friend, HS} and {Wigner, HS ⊗ HO}.

The problem can be understood as follows. Firstly, quantum theory is assumed
to be correct and can be applied to any object whatsoever. Such assumption is
called quantum universality (Q). Secondly, one assumes that truth values given
by the propositions associated with an object are independent of the meta-context,
of whether the object is theoretical or meta-theoretical, i.e. the truth values are
non-meta-contextual (NMC).6 Maintaining (Q) and (NMC) leads to an absolute
form of universality: everything can be described by the theory, irrespective of the
meta-context, no cut is needed. But imagine an infinite chain of observers observing
observers observing a quantum system. Then, meta- ... -meta-observers are invoked,
ad infinitum. One could argue that the ultimate meta∞-object is God, or some Lapla-
cian demon. However, if such a demon can measure the whole Universe, then the
demon is necessarily excluded from the Universe in order to avoid Liar-like incon-
sistencies, independently of the considered theory. As shown by Breuer [21], if a
theory is considered to be absolutely universally valid, then the theory cannot be
experimentally fully accessible, due to self-referential problems. There is a tension
between absolute universality (Q,NMC), in which the measuring process might be
treated theoretically, and measurement as a meta-theoretical process. In the light
of this analysis, the most appealing solution is to drop (NMC) and acknowledge
the observer for what it is: a meta-object. This way, the notion of meta-observer
becomes obsolete, and the logical inconsistencies are avoided (cf. Fig. 7.2). The
universality of the theory is maintained, but becomes relative. Any object can be cut

6 This notion is equivalent to Brukner’s “observer-independent facts” [20].
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Fig. 7.2 Inspired by Grinbaum’s epistemic loops [18], let us represent all theoretical objects by
a loop. Cutting the loop sends objects in the meta-theoretical domain. a Meta-Context {Wigner’s
friend,HS}. bMeta Context {Wigner,HS ⊗ HO}. cMaintaining (Q) and (MNC) leads to ignoring
the relative cuts, i.e. the meta-contexts. Wigner and Wigner’s friend are put at the same level, and
self-referential inconsistencies may occur

and become a meta-object. However, once the cut is fixed, any out-of-meta-context
question is undecidable. “Although it can describe anything, a quantum description
cannot include everything.” [11]

7.3.2 “Wigner’s Friendifications”

Recently, there has been a renewed interest in Wigner’s thought experiment in the
field of quantum foundations. This resurgence is due to the appearance of new hybrid
paradoxes [8, 20, 22], which rely on a Wigner’s Friendification,7 a transformation
of previous quantum “paradoxes” where one allows meta-objects to be described as
objects of the theory, and allows meta-observers to measure coumpound systems of
the type “object ⊗ meta-object”. I will analyze the Frauchiger-Renner paradox [8]
as a Wigner’s Friendification of the Hardy paradox explicitly showing the logical
inconsistency which can emerge from (Q,NMC).

The original Hardy scenario involved two agents/observers, Alice and Bob, shar-
ing a two-qubit system. In the new thought experiment, Alice and Bob are upgraded
to meta-observers, while two new agents, their respective friends, share a two-qubit
system and can perform a measurement on their respective part of the system. Like
in the standard scenario, Alice and Bob’s friend can measure their qubit in the com-
putational {|0〉, |1〉} basis or in the diagonal {|+〉, |−〉} basis. Regarding Alice and
Bob, these bases are “Wigner’s friendified” as follows. The computational basis is
transformed into a meta-computational basis corresponding to an “observer basis”,

7 In my knowledge, this terminology was first used by Aaronson in a blog post (www.scottaaronson.
com/blog/?p=3975) in order to describe the Frauchiger-Renner paradox.

www.scottaaronson.com/blog/?p=3975
www.scottaaronson.com/blog/?p=3975
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a statement made by the observer, the friend8: {|0〉SA ⊗ |0〉FA , |1〉SA ⊗ |1〉FA}. For
example, if Alice’s friend finds his qubit in state |0〉SA , then his statement will be
|0〉FA and Alice will find the global system in the state |0〉SA ⊗ |0〉FA . The diagonal
basis of the standard observation becomes a meta-diagonal basis corresponding to a
“meta-observer basis”, where the meta-observer actually performs a quantum mea-
surement on the compound system, resulting in a statement associated to the meta-
observer:{|+〉A, |−〉A}, with |±〉A = 1√

2
(|0〉SA ⊗ |0〉FA ± |1〉SA ⊗ |1〉FA). Applying

thisWigner’s Friendification to the four sentences of theHardyparadox (cf appendix),
one obtains four new assertions:

Sentence FR1: “If Alice obtains “−”, then Bob’s friend obtains outcome “1”.”

Sentence FR2: “If Bob’s friend obtains “1”, then Alice’s friend obtains outcome
“1”.”

Sentence FR3: “If Alice’s friend obtains “1”, then Bob obtains outcome “+”.”

Sentence FR4: “Alice and Bob both obtain “−” with a probability of 1
12 .”

Like in the Hardy paradox, these sentences forms a probabilistic Liar cycle:
assume that Bob and Alice both obtains ‘−’ (this happens with a probability 1/12).
Bob obtains “−” and Alice obtains ‘−”→Bob’s friend obtains “1”→Alice’s friend
obtains “1” → Bob obtains “+”, contradicting the first statement. In [8], the authors
analyze this paradox as an incompatibility between three assumptions: (Q) quantum
theory is correct and can be applied to systems of any complexity; (C) observers
and meta-observers claims should be consistent with each other; (S) a measurement
yields a single outcome. Assumption (C), in particular, has been widely discussed
in the literature (cf. for example [20, 23–25]). I argue that this assumption can be
reformulated into two assumptions: non-contextuality and non-meta-contextuality.

Indeed, like the Hardy paradox, the Frauchiger-Renner paradox entails contex-
tuality in the sense of Abramsky: a global logical obstruction of four consistent
propositions.9 Thus the contradiction might occur from assuming non-contextuality
(NC). However, unlike the Hardy paradox, here each statement can be associated to
one agent: one for each observer (FR2 and FR3), and one for each meta-observer
(FR1 and FR4). In fact, like in the original Wigner’s friend experiment meta-objects
(the friends) are described in the language of the theory, i.e. at the level of objects.
As seen previously, this is equivalent to the (NMC) assumption, which associated
with (Q), can lead to self-referential inconsistencies when statements made in dif-
ferent meta-contexts are compared. Giving up on (NMC), consistency is restored,
but only inside a meta-context among {Alice, Alice’s Friend ⊗ qubit SA} ; {Bob,

8 More precisely, it corresponds to a meta-observer asking her friend in which state has the qubit
been projected.
9 Note that the paradoxhas alreadybeen analyzed as applying classical logic to quantumpropositions
which is forbidden by the non-Boolean structure of quantum theory [20, 23, 24].
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Fig. 7.3 a Meta-context: {Alice, Alice’s Friend ⊗ qubit SA}. b Meta-context: {Alice’s Friend,
qubit SA}. cMeta-context: {Bob, Bob’s Friend ⊗ qubit SB}. dMeta-context: {Bob’s Friend, qubit
SB}. e Maintaining (Q) and (NMC), i.e. comparing the results from different meta-contexts, leads
to logical inconsistencies

Bob’s Friend ⊗ qubit SB} ; {Alice’s Friend, qubit SA} ; {Bob’s Friend, qubit SB}
(cf. Fig. 7.3). Under such analysis, the fact that “a self-referential use of the theory
yields contradictory claims” [8] is not especially surprising, if one acknowledge that
quantum theory can only be consistently used in a meta-context, i.e. that the use of
quantum theory is (meta-)contextual.

7.3.3 The Heirs of Copenhagen

Analyzing themeasurement problemas self-reference and escaping the logical incon-
sistency by introducing a cut10 complies with various “neo-Copenhagen” interpre-
tations of quantum theory, often wrongly labeled as “anti-realistic” [26], such as
information-based interpretations [27–29] and QBism [30]. All agree on the fun-
damental distinction between the meta-theoretical and theoretical object. In these
interpretations, this movable cut is functional and not ontological. It does not dis-
criminate a macroscopic classical world from a microscopic quantum one, because
every object can be treated by the theory (Q) or not. This is especially made explicit
in Rovelli’s relational interpretation: “As soon as we realize that any physical sys-
tem can play the role of a Copenhagen’s ‘observer’, we fall into relational quantum
mechanics. Relational quantummechanics is Copenhagen quantummechanics made

10 Sometimes called the von Neumann or Heisenberg cut (“Schnitt”).
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democratic by bringing all systems onto the same footing.” [29], as well as in a recent
QBist analysis of the Frauchiger-Renner paradox, which rests on a: “quantumCoper-
nican principle; when two agents take actions on each other, each agent has a dual
role as a physical system for the other agent” [31]. Following the footsteps of Bohr:
“There is no quantum world. There is only an abstract quantum physical description.
It is wrong to think that the task of physics is to find out how nature is. Physics
concerns what we can say about nature. We depend on our words, our task is to
communicate experience and ideas to others. We are suspended in language ...” [32];
or as Wittgenstein wrote in his Tractatus: “(5.632) The subject does not belong to
the world: rather it is a limit of the world.” Absolute universality has a God-like
flavour and leads to paradoxical features that cannot be said. On the contrary, one
can acknowledge the transcendental status of the meta-theoretical object: a classical
(Boolean) description is the condition of possibility for the rendering of quantum
(non-Boolean) events.

7.4 Conclusion: Is Physics Paradoxical?

In his seminal paper on the logic of simultaneously undecidable propositions [9,
10], Specker attached the following epigraph: “La logique est d’abord une science
naturelle.” [Logic is in the first place a natural science.] extract from “La physique de
l’objet quelconque” by Gonseth. Gonseth argued that logic should be considered as
an experimentally refutable science of “any object whatsoever”. If quantum physics
goes against classical logic, thus classical logic should be revised. Several years
later, Putnam defended a similar idea in a paper entitled “Is Logic Empirical ?” [33].
Mirroring this interrogation, we ask: “Is Physics Paradoxical ?”.

Quantum theory does not only defy common sense, but it also defies classical
logic, i.e. our common language and semantic. In this sense, quantum theory is more
paradoxical than other physical theories. But is Nature itself paradoxical ? Does the
world really feature intrinsically strange phenomena that cannot be grasped with
our words, whether it is a non-local behaviour or parallel worlds ? In this essay, I
argued for an alternative. Quantum paradoxes are not physical, but emerge from a
lack of metaphysical distancing. I highlighted how the Liar-like structure of quan-
tum propositions enlightened by the Kochen-Specker theorem already invites to give
up on considering quantum objects as entities with intrinsic properties indepen-
dently of the questions asked by a meta-theoretical object. I proposed the notion of
“meta-contextuality” to explain how neo-Copenhagen interpretations avoid the mea-
surement problem, Wigner’s friend andWigner’s friendified paradoxes by analyzing
them as logical errors. Acknowledging the need for an undiscriminating cut between
meta-theoretical and theoretical objects when one uses quantum theory, any ques-
tion that ignores this transcendental distinction looses its operational significance and
becomes physically undecidable. Thus, quantumparadoxesmight just be instances of
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a fundamental undecidability, contributing to a quantum Gödelian hunch.11 Finally,
this essay fully adheres to Wheeler’s intuition12: “Physics is not machinery. Logic is
not oil occasionally applied to that machinery. Instead, everything, physics included,
derives from two parents, and is nothing but cathode-tube image of the interplay
between them. One is the “participant”. The other is the complex of undecidable
propositions of mathematical logic.” [26]

7.5 Epilogue: A Gödelian Hunch from Time

Quantum physics might not be the only branch of physics where one can hope to
find physical analogs or instances of Liar-like paradoxes. In 1949, Gödel discovered
solutions of general relativity latter known as closed time-like curves (CTCs) which
theoretically would allow an observer to travel back in her own past [35]. However,
the existence of such closed causal loops seems to imply the possibility for a traveller
to interact with her own past-self, and for example prevent her own time-travel. This
paradox, known as the grandfather antinomy, shares the same logical structure as
the Liar. Unlike quantum theory, where the Gödelian hunch relies on the semantic
of the theory, the grandfather paradox is a (speculative) physical realization of a
self-contradiction.

By analogy with the scholastic debate previously introduced Sect. 7.2.1, the para-
dox can be understood as the tension between events that already happened and the
ability to decidewhether these “physically-already-determined” facts can be changed
or not. Here, the role of God or the omniscient demon is played by time itself. The
most popular (and boring) solution in science-fiction is a “many-worlds-like” one:
there is no contradiction because when the traveler interacts with her past, different
consistentworlds are created.One can defend a “superdeterminisitic” solution,where
the traveler has no free will. A weaker version of this solution is that the traveler is
still free, but her choices of actions are limited by some “time police / fine-tuning”
principle (e.g. a Leibnizian notion of “compossible facts”) such that consistency is
preserved. Finally, one could deny time its fundamental aura, and argue instead that
it is emergent. In fact, inside a closed loop, “time” is undefinable. Following the
notion of contextuality introduced precedently, when one faces a global inconsis-
tency, one can cut the loop, and recover logical consistency by introducing “local”
contexts of logically consistent and well-defined sequences of events (cf. Fig. 7.4).
These “contexts of ordered events” are locally consistent, but globally inconsistent.

11A very recent result [34] also contributes to the quantum Gödelian hunch. Using a modified proof
of quantum contextuality, the authors proved that the class MIP* of problems that can be decided by
a polynomial-time referee interacting with quantum agents sharing entanglement contains Liar-like
undecidable problems.
12 Wheeler might have been one of the first to investigate this quantum Gödelian hunch. A famous
anecdote tells thatWheeler was thrown out of Gödel’s office for asking him if there was a connection
between his incompleteness theorem and Heisenberg’s uncertainty principle [1].
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Fig. 7.4 a Events A and B in a closed loop. The order is undefinable. If the loop is cut, an order
emerges. Depending on the position of the cut, the “context”, either A precedes B (b), or the opposite
(c)

As Gödel wrote: “Time is the means by which God realized the inconceivable that P
and non-P are both true [...].” [36]

This way, time emerges from cutting self-referential paradoxes. Noticing that this
cut might be epistemic, in line with a Gödelian hunch, one could finally speculate
that “Time is a consequence of every attempt to provide a comprehensive description
of the universe from within. Thus, time in this sense is not related to the universe
itself but to the attempt to describe it.’ [37]

Acknowledgements I would like to thanks Cyril Branciard for his precious support and advices,
and Alexei Grinbaum for inspiring discussions.

Technical Appendices

The Hardy Paradox

In this scenario, two agents, Alice and Bob, share a two-qubits system in a specific
entangled state. Each agent can choose to measure their respective qubit in a com-
putational {|0〉, |1〉} or a diagonal basis {|+〉, |−〉} with |±〉 = 1√

2
(|0〉 ± |1〉). The

initial entangled state can thus be written in four different basis, each corresponding
to a measurement context. For example, in the comput.-comput. basis, the state is:
|ψ〉 = 1√

3
(|00〉 + |10〉 + |11〉). Assuming that a predefined value can be associated

to a measured property when a result can be predicted with certainty, one can infer
the four following sentences, each associated to a measurement context:

(1) • In the diago.-comput. basis, the state before measurements is:
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|ψ〉 =
√

2
3 | + 0〉 + 1√

6
| + 1〉 − 1√

6
| − 1〉

Sentence H1 : “If Alice obtains ‘−’, then Bob obtains ‘1’.”

(2) • In the comput.-comput. basis, the state before measurements is:

|ψ〉 = 1√
3
(|00〉 + |10〉 + |11〉)

Sentence H2 : “If Bob obtains ‘1’, then Alice obtains ‘1’.”

(3) • In the comput.-diago. basis, the state before measurements is:

|ψ〉 =
√

2
3 |1+〉 + 1√

6
|0+〉 + 1√

6
|0−〉

Sentence H3 : “If Alice obtains ‘1’, then Bob obtains ‘+’.”

(4) • In the diago.-diago. basis, the state before measurements is:

|ψ〉 = 3√
12

| + +〉 + 1√
12

| + −〉 − 1√
12

| − +〉 + 1√
12

| − −〉

Sentence H4 : “Alice and Bob can both obtain ‘−’ with a probability 1/12.”

Assuming non-contextuality means that one can build inferences from these dif-
ferent sentences. For instance, from (H1, H2, H3), one can construct the sentence:
“If Alice obtains ‘−’, then Bob obtains ‘+’ ”. However, this sentence is incompat-
ible with H4. Thus, ((H1, H2, H3), H4) is globally inconsistent, and the paradox
entails contextuality. The following probabilistic13 Liar cycle can be formulated,
assuming that both Alice and Bob obtained ‘−’: Bob obtains ‘−’ and Alice obtains
‘−’ → Bob obtains ‘1’ → Alice obtains ‘1’ → Bob obtains ‘+’, contradicting the
first assignment.

“Wigner’s Friendification” of the Hardy Paradox

The Hardy paradox presented above is Wigner’s friendified as follows: The com-
putational basis is transformed into a meta-computational basis corresponding to
an “observer basis” {|0〉SA ⊗ |0〉FA , |1〉SA ⊗ |1〉FA}. The diagonal basis of the stan-
dard observation becomes a meta-diagonal basis corresponding to a “meta-observer
basis”: {|+〉A, |−〉A}, with |±〉A = 1√

2
(|0〉SA ⊗ |0〉FA ± |1〉SA ⊗ |1〉FA). The corre-

sponding sentences can then be derived:

13 The Hardy paradox is a probabilistic Liar cycle because the contradiction only occurs with a
probability 1/12.
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(1) • In the metaobserver-observer basis, the state before measurements is:

|ψ〉tot =
√
2

3
|+〉A|0〉SB |0〉FB + 1√

6
|+〉A|1〉SB |1〉FB − 1√

6
|−〉A|1〉SB |1〉FB

Sentence FR1: “If Alice finds the outcome ‘−’, she knows that Bob’s friend
obtained outcome ‘1’.”

(2) • In the observer-observer basis, the state before measurements is:

|ψ〉tot = 1√
3

(|0〉SA |0〉FA |0〉SB |0〉FB + |1〉SA |1〉FA |0〉SB |0〉FB + |1〉SA |1〉FA |1〉SB |1〉FB

)

Sentence FR2: “If Bob’s friend finds the outcome ‘1’, he knows that Alice’s
friend obtained outcome ‘1’.”

(3) • In the observer-metaobserver basis, the state before measurements is:

|ψ〉tot =
√
2

3
|1〉SA |1〉FA |+〉B + 1√

6
|0〉SA |0〉FA |+〉B + 1√

6
|0〉SA |0〉FA |−〉B

Sentence FR3: “If Alice’s friend finds the outcome ‘1’, she knows that Bob
obtained outcome ‘+’.”

(4) • In the metaobserver-metaobserver basis, the state before measurements is:

|ψ〉tot = 3√
12

|+〉A|+〉B + 1√
12

|+〉A|−〉B − 1√
12

|−〉A|+〉B + 1√
12

|−〉A|−〉B

SentenceFR4: “Alice andBobbothfind the outcome ‘−’with a probability of 1
12 .”

The experiment is repeated n times. A contradiction arises when the four state-
ments are combined and when, for the nth round, Bob obtains outcome “−” and
knows that Alice also obtains outcome “−” (FR4). From FR1, Bob knows then that
Alice’s friend obtained outcome “1”, and thus, from FR2, that Bob’s friend obtained
outcome “1”. But, from FR3, this implies that Bob knows that he himself obtained
outcome “+”, contradicting the fact that he obtained outcome “−”.
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Chapter 8
Epistemic Horizons: This Sentence Is
1√
2
(|true〉 + |false〉)

Jochen Szangolies

Abstract In [Found. Phys. 48.12 (2018): 1669], the notion of epistemic horizon
was introduced as an explanation for many of the puzzling features of quantum
mechanics. There, it was shown that Lawvere’s theorem, which forms the categori-
cal backdrop to phenomena such as Gödelian incompleteness, Turing undecidability,
Russell’s paradox and others, applied to a measurement context, yields bounds on
the maximum knowledge that can be obtained about a system, which produces many
paradigmatically quantum phenomena. We give a brief presentation of the frame-
work, and then demonstrate how it naturally yields Bell inequality violations. We
then study the argument due to Einstein, Podolsky, and Rosen, and show how the
counterfactual inference needed to conclude the incompleteness of the quantum for-
malism is barred by the epistemic horizon. Similarly, the paradoxes due to Hardy and
Frauchiger-Renner are discussed, and found to turn on an inconsistent combination
of information from incompatible contexts.

8.1 Introduction: Interpretation Versus Reconstruction

Almost from the inception of quantum mechanics, it has been clear that it does not
merely represent a theory of new phenomena, but rather, an entirely novel way of
theory-building. There is now wide agreement that certain assumptions and concep-
tions, implicit in the Newtonian, classical framework, can no longer be upheld—
albeit, and perhaps shockingly, there is as yet no consensus on what, precisely, those
are.

In coming to terms with the novelty of quantummechanics, the dominant strategy
has been that of interpretation: roughly, the attempt of matching the formalism to an
underlying reality (whatever that, exactly, maymean). However, the plethora of inter-
pretations on the market—the Wikipedia article [1] currently lists 14 ‘mainstream’
interpretations—indicates that this project is still far from completion.
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Sometimes, the inverse of a hard problem is more easily solved. Instead of trying
to infer the underlying ontology tomatch the quantum formalism, onemight thus take
a constructive road and explore which phenomena arise naturally in certain ‘model’
or ‘toy’ settings, with the aim of eventually zeroing in on QM. This is the project
of reconstructing quantum mechanics: finding one or more foundational principles
such that the quantum predictions naturally follow.

In contrast to the project of interpretation, this search has, it seems, produced a
significant convergence of ideas. As pointed out by Grinbaum [2], two principles are
common to several recent attempts (see references in [3]):

1. Finiteness: There is a finite maximum of information that can be obtained about
any given system.

2. Extensibility: It is always possible to acquire new information about any system.

At first glance, these seem contradictory: how can we obtain additional infor-
mation, if we already possess the maximum possible information about a system?
The answer, as we will see, is closely related to one of the central puzzles of quan-
tum mechanics: there must be a mechanism such that ‘old’ information becomes
obsolete—which, in QM, is just the hotly-debated ‘collapse’ of the wave function.

Compare this to the situation of anobserver on the spherical Earth:moving towards
their horizon, bringing new terrain into view, they lose sight of what they’ve left
behind.1

It may nevertheless remain mysterious why nature should conspire to withhold
information from us observers. To this end, in Ref. [3], it was proposed that the prin-
ciples 1 and 2 do not need to be separately postulated, but instead, follow naturally by
means of applying Lawvere’s fixed-point theorem [4] to the process of measurement,
or more accurately, the prediction of measurement outcomes.

Lawvere’s theorem essentially exposes the common (categorical) structure behind
phenomena such as Gödelian incompleteness, the unsolvability of the halting prob-
lem, Russell’s paradox, and many others (see [5] for an overview). Thus, by con-
necting it to quantummeasurement, unpredictability in physics—andmany quantum
phenomena with it—and undecidability in mathematics can be seen as two aspects
of the same phenomenon: the presence of epistemic horizons.

8.2 Horizons of Our Understanding

I do not propose to present a detailed reconstruction of the formalism of quantum
mechanics here. However, I want to at least present an intuition as to how such a
reconstruction, starting from the principles 1 and 2, might proceed.

1 Although we typically expect that which has slipped beyond the horizon to remain largely
unchanged, and thus, our information about it to remain accurate—but of course, this may not
be the case.
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To this end, consider as a toy model a (classical) point particle of mass m moving
in one dimension. Its state can be completely described by giving its position x and
velocity v—or, as is more common, its momentum p = mv. The space spanned by
the particle’s possible positions and momenta is called its phase space. Each point
in phase space gives a tuple (x0, p0) uniquely determining the particle’s state (see
Fig. 8.1a).

From this starting point, we impose principles 1 and 2. Upon requiring that there
be a maximum amount of information that can be obtained about a system, we can
no longer localize its state within phase space with perfect precision—the space
effectively becomes discretized (see Fig. 8.1b). Imposing then that we can always
obtain additional information entails that we can increase our information about,
say, its position—but to compensate, must lose information about its momentum
(see Fig. 8.1c).

Thus, we do not simply obtain a discretized phase space, but rather, there is a
minimumarea of localization,whose shape is determinedby the information obtained
about each coordinate. Since position has units of length [m], while momentum has
units of mass · velocity [kgm

s ], this area of maximum localizabiliy has units of

[kgm2

s ]—which is the dimension of Planck’s famous constant, �. Hence, maximum
localizability in phase space is bounded by �, which entails for the uncertainties �x
and �p

�x�p � �,

which is of course nothing but Heisenberg’s famous uncertainty relation. In this way,
assumptions 1 and 2 carry us the first step of the way towards quantization.

This is, of course, an entirely heuristic picture. However, it will help, in the fol-
lowing, to have an intuition about the sort of project being outlined here.

Fig. 8.1 Quantization in phase space
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8.2.1 Superposition

Having now had a glimpse of how quantum phenomena emerge due to the restriction
of information available about a system, it is time to consider some characteristic
aspects of quantummechanics in detail. Thefirst step along this roadwill be to discuss
how the impossibility of associating a definite value to every possible property of a
system emerges from an argument trading on inconsistent self-reference, in much
the same way as Gödelian incompletenes [6] and Turing undecidability [7].

Suppose, for simplicity, that a given system S can be in countably2 many different
states {si }i∈N—that is, there exists an enumeration {s1, s2, . . .} of states of S.

Furthermore, suppose there exists likewise an enumeration of possible measure-
ments {m j } j∈N. We will suppose that these are dichotomic: that is, each yields either
1 or −1 as outcome. This is not a restriction: we can always decompose a many-
valued measurement into an appropriate set of dichotomic ones. Measurements are
then functions that take states as input and return values, mn(sk) ∈ {1,−1}.

Think, as an example, of a coin: after we flip it, we make a measurement (that is,
we look to seewhich side is up), and denote ‘heads’ as 1, ‘tails’ as−1. For this system,
there exist only two states—s1 for heads and s2 for tails—and one measurement m1,
and we have

m1(s1) = 1

m1(s2) = −1

We now introduce the following assumption:

Assumption 1 (Classicality) For every state sk and measurement mn , there exists
a function f such that f (n, k) = mn(sk).

We can think of this f as a universal prediction machine for S: given the index
of a state and a measurement, it spits out the result the measurement will produce.
For our coin example, this function is given by Table 8.1:

Consequently, f (1, 1) = 1 (in state s1, the coin shows heads), and f (1, 2) = −1
(in state s2, the coin shows tails).

For the general case, with i, j ∈ N, we obtain Table 8.2.
We can now lead Assumption 1 to a contradiction. To do so, we must first observe

that we can construct new measurements by means of logical operations. For this,
it is convenient to think of the values 1 and −1 as representing ‘true’ and ‘false’,

Table 8.1 Measurement outcomes for a coin

f (n, k) s1 s2

m1 1 −1

2 Note, however, that the argument can be generalized beyond countable sets [3].
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Table 8.2 Tabulation of the function f (n, k) for a general system, together with an illustration of
the diagonalization technique

f (n, k) s1 s2 s3 s4 s5 . . . sg . . .

m1 (1) −1 1 1 1 . . . 1 . . .

m2 1 (−1) 1 −1 −1 −1

m3 −1 1 (−1) −1 −1 1

m4 1 −1 −1 (1) 1 1

m5 −1 −1 −1 1 (1) −1
.
.
.

.

.

. · · ·
.
.
.

mg −1 1 1 −1 −1 . . . (E) . . .

.

.

.
.
.
.

.

.

. · · ·

respectively. Then, we can consider mn(sk) = 1 to mean that the proposition ‘S has
property n in state k’ is true, and mn(sk) = −1 consequently that it is false. Each
measurement thus tests whether a system in a given state has or fails to have a certain
property. Since properties and measurements are thus in one-to-one correspondence,
we will on occasion abuse notation and speak of the ‘property mn’.

We can equivalently look at this in terms of subsets (or -regions) of the state space
introduced in Fig. 8.1. Each measurement essentially tests whether the system is
in some region of that space. For instance, the region with p smaller than

√
2m E0

corresponds to the set of states with energy E less than E0; a measurement that
yields 1 for all states in that region (and −1 otherwise) then indicates the truth of the
proposition ‘S has energy less than E0’.

This enables us to construct a logical calculus for the properties of the system.
From twomeasurementsm1 andm2, we can, for instance, constructm12 = m1 ⊕ m2,
where the operator ⊕ is taken to signify the logical xor: that is, m12 = 1 if m1 �= m2,
and m12 = −1 if m1 = m2. For ease of notation, we indicate the property values by
superscripts; see Fig. 8.2.

Fig. 8.2 Property-calculus in phase space
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Moreover, we can give an explicit measurement procedure for each property:
simply measure momentum and position up to the precision necessary to localize
the state within the respective subset.

But then, this means that we can construct the following measurement mg: for
eachmi ,mg(si ) is just the opposite ofmi (si ). That is, ifm1(s1) yields 1,mg(s1) yields
−1; if m2(s2) yields −1, then mg(s2) yields 1. The construction of this measurement
is then shown in Table 8.2.

If we now hold fast to our assumption that f (n, k) enumerates all possible mea-
surement outcomes, then mg itself must correspond to some row of Table 8.2. How-
ever, it cannot correspond to the first row, as it differs from m1 in the value associated
to s1; it cannot correspond to the second row, as it differs in the value associated to
s2; and so on, for any particular row of that table.

We might now suppose that, having infinitely many rows, we can just add the
missing measurement. But, as is of course familiar, this move will not get us out of
trouble: we can always just repeat the construction, finding a further measurement
not on the list already.

But this means that there exists some state sg and measurement mg such that the
value of mg(sg) cannot be predicted by f . Thus, our ‘universal prediction machine’
cannot, in fact, exist; there are measurements such that their outcome for certain
states cannot be predicted. They are, in other words, undecidable.

The above has the form of a diagonal argument. Diagonalization was first intro-
duced by Cantor in his famous proof of the existence of uncountable sets, and lies at
the heart of Gödel’s (first) incompleteness theorem, the undecidability of the halting
problem, and many others. The precise structure of such arguments in a category-
theoretic setting was brought to the fore by Lawvere by means of a fixed-point
theorem [4]. This can be directly adapted to the present setting, yielding a somewhat
more general argument than the above; for details, see [3] and Appendix A.

An intuitive way to understand this result is the following. Consider that we can
define every measurement by listing the states that lie within the corresponding
subregion of state space. Then, note that we can, correspondingly, define each state
viameasurements—say, listing all themeasurements that yield a+1-outcome (all the
properties the system possesses in that state). Thus, we can define a measurement in
terms of a state defined in terms of that very measurement—yielding the paradoxical
circularity characteristic of self-reference.

This has intriguing consequences. First of all, we cannot consistently assign to sg

either a value of 1 or −1 for mg , as supposing it ought to be 1 yields the conclusion
that it must be −1, and vice versa. Thus, when faced with the question whether the
system has property mg, we find that we can neither affirm nor deny. This is, of
course, just the situation Schrödinger’s infamous and much-abused cat finds itself
in: we can neither claim it is alive, nor that it is not. Thus, we may consider the
system to be in a superposition with respect to mg.

Suppose now we perform a measurement of mg. Any possible outcome will be
inconsistentwith the systembeing in state sg—since, aswe had surmised, no outcome
can consistently be associated with that state. Hence, after the measurement has
yielded a result, it follows that the system can no longer be in the state sg—that is,
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post measurement state change (‘wave-function collapse’) is a direct consequence
of the preceding considerations.

It is important to note that quantum mechanics, itself, does not again fall prey
to the same issues. There are two salient factors accounting for this: first, the proof
depends on the possibility of ‘duplicating’ the index g to construct mg(sg)—which,
physically, represents a cloning operation that is famously impossible in quantum
mechanics [8]. Second, we must be able to invert the value of a measurement—take
the value 1 to−1, and vice versa. That is, every possible value assigned to a property
must be negated.

But this likewise is impossible in quantum mechanics [9]. Let us replace the
classical outcomes with orthogonal quantum states |1〉 and |−1〉. Then, the operator

UN OT = |1〉 〈−1| + |−1〉 〈1|

takes |1〉 to |−1〉, and vice versa. However, applied to the state 1√
2
(|1〉 + |−1〉), we

get

UN OT
1√
2
(|1〉 + |−1〉) = 1√

2
(|1〉 + |−1〉).

Hence, the superposition yields afixedpoint forUN OT—thus evading the inconsistent
assignment of Table 8.2.

This is, of course, only the first whiff of quantum phenomena. The picture can be
developed further. Complementarity, the impossibility to simultaneously assign def-
inite values to certain properties, can be obtained by considering a form of the above
argument in the context of sequences of measurements. Furthermore, the uncertainty
principle emerges as a finite bound on the information available about a system—the
number of simultaneously definite properties—by appealing to Chaitin’s version of
the incompleteness theorem [10]. For details, see [3]. In the following, we will con-
sider another paradigmatically quantum feature that has, so far, not been considered:
entanglement.

For this, it will be useful to consider a simple ‘toy’ system. Thus, take the extreme
case of a system S such that only one of its properties is decidable—all save a single
bit of information lies beyond the epistemic horizon. We are then in the situation of
Fig. 8.2: one bit of information decides one of three possiblemutually exclusivemea-
surements on the system. Appreciating the parallel to the orthogonal measurements
for a single qubit, we will name these three properties xS , yS , and zS .

8.2.2 Entanglement

So far, we have only considered single, individual systems. One might therefore ask
what this framework entails once one investigates composite systems instead. Thus,
take two systems, A and B. To keep matters simple, we will confine our discussion
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here to ‘toy systems’ of the kind introduced above—that is, systems described by a
single definite property.

Consequently, A is described by either of xA, yA, or zA having a definite value,
whileB’s state is given by one out of xB, yB, and zB. A possible state of the compound
system A ⊗ B would then be (x+

A, x−
B ), where we used the superscript notation to

indicate property values.
As we had surmised, however, we can use elementary Boolean logic to construct

new properties. Thus, let us consider the property xAB = xA ⊕ xB. This indicates
a correlation between the two x-values: it signifies that one must be the opposite of
the other. We can then e.g. give a complete description of the system as (x+

A, x+
AB),

signifying the state where xA = 1, and xB must be the opposite, hence −1.
This is, as yet, a completely classical situation. Picture the case of two colored

cards, one red, and one green, in two envelopes: once you open one, you immediately
know the color of the card within the other, even if the latter is located on Pluto. There
is in particular nothing nonlocal about you having this knowledge.

However, consider now the state (x+
AB, z+

AB). Here, the two bits of information
we have available to describe the state are entirely taken up by the correlations: we
know that the two x-values, as well as the two z-values, are opposed to one another;
but we know nothing whatever about any individual x- or z-value!

This is precisely the situation of an entangled two-particle system (cf. [11]). Our
f (n, k), which, for this system, can only determine two properties, only provides
values for xAB and zAB, but leaves, e.g., zB undecidable. However, once we have
performed the requisite measurement, the considerations of the previous sections
tell us that something remarkable must happen: whatever outcome is produced,
one bit of information must now be taken up by the value of zB; but, due to the
(anti-)correlation between z-values, this then immediately tells us the value of zA, as
well! Furthermore, as all information available is now taken up by (e.g.) (z+

B, z+
AB),

it follows that nothing about the x-values can be known: the correlation there is
destroyed.

8.3 Does This Ring a Bell?

We now have the tools in hand to investigate one of the most famous expressions of
quantum ‘weirdness’: Bell’s theorem [12], or the failure of ‘local realism’. We will
start with a slightly different view on Bell inequalities [13].

Consider, to this end, again that there exists a function f (n, k) providing values
to all possible measurements. In particular, consider the above bipartite system and
the properties xA, zA, xB and zB. With respect to these properties, every state can
be written as a four-tuple (xA, zA, xB, zB), corresponding to a column in Table 8.2.
That is, there are 16 possible states, from f (n, 1) = (x+

A, z+
A, x+

B , z+
B) to f (n, 16) =

(x−
A, z−

A, x−
B , z−

B), which we label λi .
In any given experiment, each of these states may be present with a certain prob-

ability P(λi ) = pi . See Table 8.3 for an enumeration.
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Table 8.3 States and probabilities for the bipartite syste A ⊗ B
State xA zA xB zB P(λi )

λ1 1 1 1 1 p1
λ2 1 1 1 −1 p2
λ3 1 1 −1 1 p3
λ4 1 1 −1 −1 p4
λ5 1 −1 1 1 p5
λ6 1 −1 1 −1 p6
λ7 1 −1 −1 1 p7
λ8 1 −1 −1 −1 p8
λ9 −1 1 1 1 p9
λ10 −1 1 1 −1 p10
λ11 −1 1 −1 1 p11
λ12 −1 1 −1 −1 p12
λ13 −1 −1 1 1 p13
λ14 −1 −1 1 −1 p14
λ15 −1 −1 −1 1 p15
λ16 −1 −1 −1 −1 p16

With this, we can compute probabilities for individual outcomes by
marginalization—that is, summing over all probabilities for states that contain the
desired outcome. Therefore, the probability to find xA = 1 is equal to P(x+

A) =
∑8

i=1 pi = p1 + p2 + · · · + p8, as states λ1 through λ8 have xA = 1. We can like-
wise compute probabilities for joint events: P(x+

A, x−
B ) = p3 + p4 + p7 + p8.

Finally, we can compute expectation values for such joint events:

〈xAxB〉 =
∑

r,s∈{1,−1}
rs P(xr

A, xs
B)

= P(x+
A, x+

B) + P(x−
A, x−

B) − P(x+
A, x−

B) − P(x−
A, x+

B)

= p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8 − p9 − p10 + p11 + p12 − p13 − p14 + p15 + p16

These expectation values carry information about the correlation between the two
properties: if 〈xAxB〉 = 1, only the pi with a positive sign are nonzero, and thus,
xA = xB for all states in the ensemble; for 〈xAxB〉 = −1, we obtain xA = −xB. If
〈xAxB〉 = 0, the value of xA tells us nothing about xB, and vice versa.

With this, it is easy to compute the quantity

〈CC H SH 〉 = 〈xAxB〉 + 〈xAzB〉 + 〈zAxB〉 − 〈zAzB〉
= 2 − 4(p3 + p4 + p6 + p8 + p9 + p11 + p13 + p14)

= 4(p1 + p2 + p5 + p7 + p10 + p12 + p15 + p16) − 2.
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Since
∑

i pi ≤ 1, this immediately yields

−2 ≤ 〈CC H SH 〉 ≤ 2.

This is, of course, nothing but the famous CHSH-Bell inequality [14].
This should strike us as somewhat remarkable: only the assumption that there

exists a f (n, k) assigning values to all observables turns out to be enough to derive a
bound on the above expression. Thus, Bell inequalities precisely delineate the set of
theories for which there exists f (n, k) such that it yields the values for all possible
measurements. Contrariwise, Bell inequality violations certify that no such f (n, k)

for all values can exist—or at least, be probed by experiment.
Theundecidability of these values then allows for theviolationof this expression—

as is, indeed, observed in quantum mechanics. Mathematically, the bounds on
〈CC H SH 〉 correspond to necessary conditions for the existence of a joint probabil-
ity distribution (Table 8.3); their violation means that no consistent assignment of
probabilities to the λi is possible.

This should not surprise us: we have already seen that, for instance, the event
(x+

A, z+
A) cannot occur— f (n, k) does not assign simultaneous values to both ele-

ments. But if the above probability distribution were to exist, we could easily obtain

P(x+
A, z+

A) = p1 + p2 + p3 + p4.

But what could it mean to assign a probability to an impossible event?
It is more usual to attribute violations of Bell inequalities to the failure of either

locality or realism. What does the above probability distribution have to do with
either?

‘Realism’ is ultimately simply the possibility of assigning values to all observ-
ables. If such an assignment is possible, each of the rows in Table 8.3 designates a
valid state, and can be assigned a probability, leading to the above considerations.

But how is the failure of locality supposed to avoid this trouble? The resolution
here is that we have implicitly assumed that we can fairly sample from the above
probability distribution. However, if outcome probabilities on B were to change due
to measurements onA, then we could no longer carry the argument through. Hence,
one usually makes an assumption that a measurement on one part of the system
does not influence measurements carried out on the other; to make this assumption
sensible, one ensures that both parts of the system are far away from one another,
such that no influence, propagating at the speed of light, could travel between them.
Should there then be any instantaneous influence despite these precautions, we speak
of a failure of locality.
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8.4 EPistemic HoRizons: Incomplete QuantumMechanics?

It is sometimes proposed that Bell’s theorem only hinges on the assumption of local-
ity, and hence, its violation suffices to conclude that nature is nonlocal (e.g. [15]). The
reasoning here is typically that ‘realism’ is not a separate requirement that could fail
on its own, but rather, is already established by the famous argument due to Einstein,
Podolski, and Rosen (EPR) [16].

Let us take a lightning-quick review of the argument adapted to the present for-
malism. EPR take a system in the state (x+

AB, z+
AB), and consider measurements on

one of its parts (say A). Upon measuring xA, we obtain the x-value for A, and due
to the correlation given by x+

AB, can immediately infer xB; likewise for z. However,
the quantum formalism does not permit us to speak of simultaneous values for xB
and zB. But how, then, is B supposed to know to ‘produce’ the right value in each
case?

The EPR-argument hinges on a bit of counterfactual reasoning: had wemeasured
zA (instead of xA), wewould have been able to predict a definite value for zB (instead
of xB). Due to the absence of any disturbance onB due to our actions onA (locality),
we then conclude that B cannot just spontaneously ‘decide’ which value to produce,
and hence, both xB and zB must have had a definite value—in EPR’s parlance, an
‘element of reality’—associated to them all along.

To illustrate this puzzle, Schrödinger introduced the analogy of the fatigued stu-
dent [17]: quizzed in an oral examination, they will get the first answer right with
certainty, after which, however, any further answer will be random. Even though we
only get one correct answer out in any case, we still must conclude that the student
knew the answer to every question, in order to produce this performance: had we
asked a different first question, then nevertheless the student would have produced
the right answer.

Applied to quantum mechanics, this would entail that the description of the cor-
related system A ⊗ B must be incomplete: B must, to give the right answer in each
of these cases, ‘know’ the correct values for xB and zB in advance, these answers
simply being hidden to the quantum formalism.

If this is correct, then nonlocality is our only out in the case of Bell’s theorem:
there are simultaneous values for all observables— f (n, k) does not tell the whole
story—and measuring one part of a system must influence the value distribution of
the distant part.

One way to attempt to defuse the force of EPR’s argument is to deny that the sort
of counterfactual inference that allows us to reason about what would have happened
had our measurement choice been different is valid, at least in a quantum context.
However,without further substantiation regardingwhy that should be the case, simply
denying the validity of a certain form of argument to avoid an unwelcome conclusion
hardly seems fair.

While I do not presume to settle this controversy once and for all, I believe the
present framework offers a fresh perspective on thematter. For considerwhat happens
in each of the two cases. The initial state (x+

AB, z+
AB) becomes, say, (z+

A, z+
AB),
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respectively (x+
A, x+

AB). The only change is thus in the properties of the local system
A, about which we have gained new information.

This allows us then to infer the value of the distant system. However, wemay hold
that this is something different than that value spontaneously becoming definite—
after all, this value is not given by any f (n, k). We could thus associate ‘elements of
reality’ to the values of f (n, k) exclusively. Our conclusions about the distant values
would then have the status of inferences about the truth value of the Gödel sentence:
We can infer that ‘I am not provable (in a given axiomatic system)’ is true, since it
is, in fact, not provable (in that system); however, the system itself will not be able
to establish this truth (on pain of contradiction).

Such a state is one in which we have the following two items of knowledge: ‘the
x /z-value ofA is 1’ and ‘the x /z-value of B is opposite that ofA’. This differs from a
state like (x+

A, x−
B ) in a subtle, but crucial, way. In that state, our knowledge is given

by ‘the x-value ofA is 1’ and ‘the x-value of B is −1’. The difference emerges if we
imagine varying the first of each set of propositions—that is, engage in counterfactual
reasoning. In case of a state like (x+

A, x−
B ), we can say that had we obtained a value

of 1 for the z-value instead, we could still validly speak of the x-value of B being
−1.

That is not the case for the state (x+
A, x+

AB): varying the first proposition, but
leaving the second constant, would lead us to a state in which we have no information
about the x-value ofB. Consequently, the two states differ in the counterfactuals they
support: the state (x+

A, x−
B ) allows us to say that, had the first value been different, the

second would have been the same (absent any disturbance), leading to e.g. (z+
A, x−

B ).
However, in the state (x+

A, x+
AB), as soon as we imagine exchanging xA, we loose

any ability to make determinations of xB, as this value is specified only contingently
on that of xA. In a state like ‘(z+

A, x+
AB)’, xB would simply not have any determinate

value at all.
An alternative way to think about the situation is by introducing the notion of a

conditional event. A conditional event is, for instance, an observable that only takes
a value conditionally on the value of another. Thus, we can write the state (x+

A, x+
AB)

equivalently as (x+
A, x−

B |x+
A), where the ‘|’-notation denotes the conditioning: the

value of xB is −1 given that the value of xA is +1. This is a rewriting of the
information contained in x+

AB that more clearly emphasizes the result ofA observing
a given value on their ability to predict the value of B’s measurement.

We should then not think about the state (x+
A, x−

B |x+
A) as containing the value of

B’s measurement; rather, the two bits of information it contains jointly entail B’s
value. This is a salient difference. Consider, for example, the case of a one-time
pad: one bit of the encrypted message plus one bit of the key may entail one bit of
the clear text, in the same way that A’s measurement result, plus knowledge of the
correlation, entails B’s outcome. But that does not mean that the state, as such, must
contain information about B’s value if A’s value were different, anymore than the
value of the key alone must contain information about the clear text.

Thus, only given that one has actuallymeasured xA is reasoning about the value of
xB possible. In this sense, the present framework gives a natural meaning to Bohr’s
somewhat opaque ‘influence on the precise conditions which define the possible
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types of prediction which regard the subsequent behaviour of the system’ [18]. We
naturally imagine it to be possible to change one thing, while keeping something
else equal; but in this case, the ‘one thing’ (the definite value of xA) is part of the
antecedent conditions for making determinations about that ‘something else’ (the
value of xB). Moreover, trying to simultaneously appeal to both (x+

A, x−
B |x+

A) and
(z+

A, z−
B|z+

A) (for instance) amounts to exceeding the information bound on the system
as given by f (n, k); thus, the illegitimate nature of the counterfactual argument in this
case is seen to be rooted in the more fundamental informational limit. The epistemic
horizon puts a limit to the information accessible about any given system, and each
attempt to access more courts inconsistency.

The EPR argument, then, essentially trades on a conflation of (x+
A, x−

B |x+
A) with

(x+
A, x−

B ). Only the latter state supports the reasoning that leads us to conclude that
the distant particle must have ‘known’ the value of both xB and zB all along.

8.5 Hardy’s Paradox

The tools developed above can be fruitfully applied to other supposed ‘paradoxes’ in
the quantum world. Consider, to this end, the Hardy state [19, 20] of two entangled
qubits, which is in the zAzB-basis

|ψH 〉 = 1√
3

(∣
∣z+

Az+
B
〉 + ∣

∣z+
Az−

B
〉 + ∣

∣z−
Az+

B
〉)

. (8.1)

Here, a state such as
∣
∣z+

Az+
B
〉
means thatA and B would obtain the values z+

A resp.
z+
B upon performing the requisite measurements.
Hardy’s paradox now consists in pointing out that elementary reasoning suf-

fices to demonstrate that two parties, A and B, measuring each qubit in the x-basis
{∣∣x+〉

,
∣
∣x−〉} = { 1√

2
(
∣
∣z+〉 + ∣

∣z−〉
), 1√

2
(
∣
∣z+〉 − ∣

∣z−〉
)}, can never both see the state ∣

∣x−〉

(i.e. obtain the outcomes x−
A and x−

B ). Yet, in fact, this happens with a probability
pH = 1

12 .
This can be seen by writing |ψH 〉 in the xAxB-basis. This yields:

|ψH 〉 = 3√
12

∣
∣x+

Ax+
B
〉 + 1√

12

∣
∣x+

Ax−
B
〉 + 1√

12

∣
∣x−

Ax+
B
〉 − 1√

12

∣
∣x−

Ax−
B
〉

(8.2)

According to the Born rule, measurements performed on this state yield the∣
∣x−

Ax−
B
〉
-outcome with probability pH = 1

12 .
It is useful, here, to look at the chain of reasoning used to arrive at the above

conclusion in greater detail (cf. [21]). To start with, in the above notation, for the
Hardy state in the zAzB-basis, the state contains the information that ‘if B obtains
the outcome z−

B , thenA obtains the outcome z+
A’; once B then obtains that outcome,

we have the information content (z−
B, z+

A|z−
B).
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As before, the notation ‘z+
A|z−

B’ expresses the conditional nature of A’s value;
only given that B obtained the value z−

B can we consistently talk aboutA’s observed
value.

Now, the state in the xAzB-basis is:

|ψH 〉 =
√
2

3

∣
∣x+

Az+
B
〉 + 1√

6

∣
∣x+

Az−
B
〉 + 1√

6

∣
∣x−

Az−
B
〉

(8.3)

From this, we see that, if A measures xA = −1, B must obtain zB = −1, that is,
the information within the state afterwards is (x−

A, z−
B|x−

A).
Finally, in the zAxB-basis, the state is:

|ψH 〉 =
√
2

3

∣
∣z+

Ax+
B
〉 + 1√

6

∣
∣z−

Ax+
B
〉 + 1√

6

∣
∣z−

Ax−
B
〉

(8.4)

IfA thus obtains zA = +1, B must obtain xB = +1, and the information content
afterwards is (z+

A, x+
B |z+

A).
This now suffices to establish the contradiction. Suppose we were to reason as

follows:

(i) If A obtains x−
A, we can conclude that B must obtain z−

B , due to 3.
(ii) Thus, suppose B then in fact obtains z−

B . With 1, we can then conclude thatA,
had she measured in the zA-basis, would obtain z+

A.
(iii) However, if A obtains z+

A, then 4 tells us that B must obtain x+
B .

(iv) (From i–iii) Putting these together, we surmise that if A obtains x−
A, B must

obtain x+
B , and consequently, the outcome

∣
∣x−

Ax−
B
〉
can never occur.

(v) Yet, by 2,
∣
∣x−

Ax−
B
〉
occurs with probability p = 1

12 . E
To see what goes wrong here, let us go back, for a moment, to the discussion of the

EPR paradox. There, we surmised that the information within a state (x+
A, x−

B |x+
A)

crucially differs from that in a state like (x+
A, x−

B ) in that the latter, but not the former,
supports counterfactual inferences. That is, if we have the information about both
systems individually, we can imagine varying the value of one system independently;
but if the information about one system is only specified conditionally on that of the
other, then counterfactual reasoning becomes nonsensical.

The EPR argument would successfully establish the incompleteness of quantum
mechanics if, when A measures in the x-basis, we had the state (x+

A, x−
B ), and like-

wise, for z-measurement, the state (z+
A, z−

B). For then, we could say that if A had
measured in a basis different from the one in which she actually did measure in any
given experiment, B’s particle nevertheless must have been prepared to produce a
fitting answer. These two states could hence be termed counterfactually consistent,
and we can appeal to both in a single argument.

However, that is not the case for states of the form (x+
A, x−

B |x+
A). Here, B’s value

is only specified conditional on A’s; thus, we cannot consistently imagine varying
onlyA’s value, as it forms part of the determining conditions of B’s value. The state
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(x+
A, x−

B |x+
A) and its counterpart (z+

A, z−
B|z+

A) are thus not counterfactually consistent,
and cannot be used in a single argument.

But the same is then true for (x−
A, z+

B|x−
A) and (z+

A, x+
B |z+

A). Both apply only in the
contexts in whichA did, in fact, make the x- respectively z-basis measurement. Since
A cannot in fact make both measurements, propositions (i) and (iii) cannot simulta-
neously be appealed to: their combination would exceed the amount of information
consistently obtainable about the system.

Consequently, the ‘paradox’ in the above argument is of the same nature as that
due to EPR, and similarly tells us that, in a quantum world, we must be careful
which propositions about a system are simultaneously definite, and thus, can be used
to underwrite counterfactual arguments.

8.6 The Frauchiger-Renner Argument

Recently, an intriguing new argument has been presented by Daniela Frauchiger and
Renato Renner [22]. They aim to show that “quantum theory cannot consistently
describe the use of itself”, and use an ingenious thought experiment to support their
claim. The paper has already received much commentary, which points both to the
high impact and controversial nature of their result, as well as to the lack of consensus
regarding its interpretation.

The Frauchiger-Renner argument can be read as a ‘Wigner’s Friendification’ [23]
of Hardy’s paradox. In a famous Gedankenexperiment [24], Wigner (W) asks us
to imagine a hermetically sealed laboratory containing a scientist (the eponymous
‘Friend’ F) carrying out a Schrödinger’s cat-type experiment. At some point, F
will have made some definite observation of the cat’s well-being. Yet, W , having
no knowledge of F’s result (although he may have knowledge that F has observed
some definite result), must, applying the usual rules of quantum mechanics, describe
the entire laboratory system as being in a state of superposition. Indeed, in theory, he
could perform an interference experiment on the entire laboratory that would confirm
his description.

But this poses a problem: F , we should expect, has made a definite observation,
yetW’s description and experimental results are incompatiblewith any given definite
state of the laboratory system.

The ‘Wigner’s Friend’-scenario is essentially a ‘Wigner’s Friendification’ of the
EPR-argument: the latter features two entangled systems,while the formermakes one
of these systems a conscious observer, and adds another observer (a ‘meta-observer’,
[21]) which carries out a measurement on the total system in an orthogonal basis.W ,
we imagine, knows that the system is either in the state (cat alive, friend sees cat alive)
or (cat dead, friend sees cat dead)—since both are incompatible with interference,
we conclude, there must be some contradiction. Perhaps F’s observation collapses
the wave function, and thus, standard quantum rules no longer obtain once conscious
observation is involved.
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However, crucially, according to the above discussion, W in fact only knows
that the system is in the state (cat alive, friend sees cat alive|cat alive) or (cat dead,
friend sees cat dead|cat dead). And these, we had surmised, cannot be simultaneously
appealed to consistently. Hence, the conclusion of a contradiction does not, in fact,
obtain.

Frauchiger and Renner now essentially formulate a Wigner’s-Friendified version
of the Hardy paradox: consider two observers, A’s friend FA and B’s friend FB,
which share an entangled two-qubit system, and perform z-basis measurements on
their respective qubits. In the state

|ψH 〉 = 1√
3

(∣
∣z+

Az+
B
〉 + ∣

∣z+
Az−

B
〉 + ∣

∣z−
Az+

B
〉)

,

we now consider, e.g., z+
A to be the ‘belief state’ of A’s friend FA after perform-

ing a z-measurement and obtaining the outcome +1—analogous to F’s state after
observing the cat. A and B then carry out their measurements on the entire labo-
ratories containing their respective friends in the basis {∣∣x+〉

,
∣
∣x−〉} = { 1√

2
(
∣
∣z+〉 +

∣
∣z−〉

), 1√
2
(
∣
∣z+〉 − ∣

∣z−〉
)}, as before. However, this is now to be interpreted as a mea-

surement testing for the superposed states of the entire laboratories, containing their
respective friends, here labeled by their respective ‘belief states’.

As before, simple application of the Born rule immediately tells us that both A
and B may observe the −1-outcome with probability 1

12 . We can now again apply
the reasoning of Hardy’s paradox to obtain the apparent contradiction. However, in
this version, the argument has an added wrinkle: we are not merely thinking about
results A (say) would have obtained, had she made the appropriate measurements,
but about measurements actually performed by FA. Does this change matters?

From Eq. (8.3), we find that, if A obtains −1, FB must obtain −1, likewise.
But then, if FB obtains −1, Eq. (8.1) tells us that FA must obtain the +1-outcome.
Finally, Eq. (8.4) tells us that given thatFA sees+1, Bmust obtain the+1-outcome.

Fig. 8.3 Epistemic horizons of the observers in the Frauchiger-Renner argument
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In summary: having obtained the value −1 in her measurement, A knows that
FB knows that FA knows that B must obtain the value +1, and thus, knows herself
that B must obtain the value +1; yet, with probability 1

12 , both A and B obtain the
outcome −1.

The point of the Wigner’s-Friendification is then the following: we are now not
considering different measurements that A could have performed (but didn’t), but
rather, measurements as actually performed by distinct observers, who presumably
have each obtained definite measurement results. It is then tempting to think of these
as ‘facts in the world’, available for classical—that is, Boolean—logical reasoning.

But there still is no unified logical framework encompassing both (x−
A, z−

B|x−
A)

and (z+
A, x+

B |z+
A)—appealing to both simultaneously amounts to exceeding the infor-

mation limitation about the system as given by f (n, k). FB’s observation of −1 can
be contained withinA’s epistemic horizon, butFB’s determination ofFA’s observa-
tion cannot also be: as shown in Fig. 8.3, each individual epistemic horizon contains
at most two bits of information. The Frauchiger-Renner argument then exceeds that
limit by trying to unite the different, overlapping horizons into one—an impossibil-
ity already highlighted by the impossibility of finding a joint probability distribution
over all observables in a Bell experiment. Hence, the ‘telescoping’ of knowledge
necessary for A’s conclusion that B can never see −1 if she sees −1 cannot be
performed: A’s attempt to peek behind her epistemic horizon fails.

Frauchiger and Renner codify this ‘telescoping’ in their assumption C , which
says that “a theory T must [...] allow any agent A to promote the conclusions drawn
by another agent A′ to his own conclusions” [22]. This assumption, then, fails to
be satisfied, if the preceding framework is apt. However, this is not an instance of
quantum theory failing to “consistently describe the use of itself”; rather, quantum
theory, as already established by EPR and Hardy-type arguments, restricts which
propositions can be consistently combined, without exceeding the bound on the
maximal information that can be contained within a system.

One important lesson of the Frauchiger-Renner argument then is that it is not the
counterfactual reasoning, per se, that is problematic in quantummechanics, but rather,
exceeding the informational limitation given by the undecidable values of f (n, k).
In the EPR and Hardy-arguments, this limitation is exceeded via counterfactually
appealing to values that would have been obtained, had different measurements been
carried out; but even if, as in the case of the FR argument, these measurements are
actually performed, the bound on the maximum information available for any given
system prohibits appealing to them within a single argumentative context.

8.7 Conclusion

Wehave considered the application of self-referential arguments to physical systems,
and found that many paradigmatically quantum phenomena seem to gain a natural
explanation from this perspective. This idea is not entirely new: JohnWheeler himself
proposed the undecidable propositions of mathematical logic as a candidate for a
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‘quantumprinciple’, fromwhich to derive the phenomenologyof quantummechanics
[25]—a proposal which, as legend has it, got him thrown out of Gödel’s office [26].
For a brief review of these efforts, see [3] and references therein.

What this program, if successful, shows is that there is a common thread behind
mathematical undecidability and physical unknowability—that, in other words, the
epistemic horizons the puremathematician and the experimental physicist find delim-
iting their perspectives are not separated, but instead, spring from a common source.

In an intriguing sense, the incompleteness of mathematics may then come to the
rescue of physics, allowing it in turn to yield a complete picture: the incompleteness
the EPR-argument seeks to establish is averted by the horizon that bars counter-
factual reasoning about unperformed experiments—which, hence, famously ‘have
no results’ [27]. It is as if Schrödinger’s student does not know the answer to any
questions, as such, but knows each answer only relative to that question being asked.

This motivates a proposal of relative realism: assign ‘elements of reality’ only
where f (n, k) yields a definite value. In this way, we get as close to the classical ideal
of local realism as is possible in a quantum world. The resolution of the EPR, Hardy,
and Frauchiger-Renninger paradoxes is then to deny the EPR notion of ‘elements of
reality’: according to their definition, an element of reality is associated with every
value that can be predicted with certainty. But in a state such as (x+

A, x−
B |x+

A), we
can predict x−

B with certainty, but no element of reality is associated to it; rather, it is
the conditional value x−

B |x+
A that is definite in this sense, which does not allow us to

make any determination of xB in the absence of a definite value for xA, and which
cannot stand for x−

B in chains of inferences.
Wemay try, combining indirectly-obtained information from different contexts in

ever more ingenious ways, to look beyond our epistemic horizon; but the Old One’s
secrets, it seems, are not so easily discerned.

Technical Endnotes

A. The Lawvere Fixed-Point Argument

We will explicitly construct a measurement mg(sk), that is, a function mg : �S →
{1,−1}, where �S denotes the state space of S, such that it differs from f (n, k) for
at least one sk .

Suppose that there exists a function f (n, k) : N × N → {1,−1} such that it is
equal to the outcome of the nth measurement for the kth state. Furthermore, we
introduce the arbitrary map α : {1,−1} → {1,−1}, and the map � : N → N × N

that takes n ∈ N to the tuple (n, n) ∈ N × N. With these, we construct g as the map
that makes the following diagram commute:
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N × N {1,−1}

N {1,−1}

f

α�

g

The map g constructed in this way then yields sequentially values for a certain
measurement, mg, if performed on states of S, i.e. g(k) = mg(sk). If f yields the
value of every measurement applied to every state, then there must be some n such
that g(k) = f (n, k) for all states sk . Choose now k = n and evaluate g(n):

f (n, n) = g(n)

= α( f (n, n))

The first equality is simply our stipulation that g should encode some measure-
ment, and that f (n, n) yields the outcome of the nth measurement on the nth state.
The above then shows that the map α must have a fixed point at f (n, n) for the
construction to be consistent.

However, we are free in our choice of α, and consequently, may choose the
negation ¬(1) = −1, ¬(−1) = 1. But this clearly has no fixed point, and we obtain
the contradiction

f (n, n) = ¬ f (n, n) E

But then, this means that no f reproducing everymeasurement outcome can exist.
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Chapter 9
Why Is the Universe Comprehensible?

Ian T. Durham

Abstract Why is the universe comprehensible? How is it that we can come to know
its regularities well enough to exploit them for our own gain? In this essay I argue
that the nature of our comprehension lies in the mutually agreed upon methodology
we use to attain that comprehension and on the basic stability of the universe. But
I also argue that the very act of comprehension itself places constraints on what we
can comprehend by forcing us to establish a context for our knowledge. In this way
the universe has managed to conspire to make itself objectively comprehensible to
subjective observers.

9.1 Introduction

Why is the universe comprehensible? How is it that we can come to know its regulari-
ties well enough to exploit them for our own gain? This is one of the greatest enigmas
of human knowledge. As Einstein once said, “[t]he eternally incomprehensible thing
about the world is its comprehensibility” [9].1 But, in order to comprehend some-
thing, Paul Davies has argued that the system being comprehended must necessarily
have a certain level of organization that is embodied by the presence of non-random
complexity within the system and that the act of comprehension requires accepting
that this non-random complexity is in some sense objectively real [6]. Objective
reality is necessarily observer-independent. It is an inherently third-person perspec-
tive. Yet, if something is said to be comprehensible it is worth asking by whom or
what; comprehensibility by its very definition implies the existence of something or
someone doing the comprehending. Thus it would seem that comprehension is an
inherently first-person, subjective act. Somehow the universe has conspired to make
itself objectively comprehensible to subjective observers.

1This translation of the phrase is attributed to Holton [18].
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Yet, these two perspectives are not necessarily incompatible. For example,Markus
Müller recently constructed a self-consistent theory in which an objective external
world emerges from more fundamental observer states. The theory takes the first-
person perspective as axiomatically true and, using the tools of algorithmic infor-
mation theory, derives an emergent third-person perspective from it [20]. There is
a sense in which a subjective first-person perspective is unavoidably fundamental.
We are, after all, a part of this world that we seem to comprehend. We cannot step
outside of it. In fact, our mere presence within it is surely a regularity worthy of an
explanation. But that still does not explain how it is that we can even countenance
the possibility of arriving at an explanation in the first place. The very fact that the
concept of explanation exists is, itself, in need of some explanation.

ToEinstein, ‘comprehensibility’meant a scientific understanding of the universe’s
functional composition. That is, he is presumably not interested in any metaphysical
considerations. While metaphysical arguments for comprehensibility may exist, cf.
theological explanations, these offer little in the way of reproducibility. It is arguably
reproducibility that bridges the gap between the first-person, subjective act of com-
prehension and the third-person objective reality that is being comprehended. In a
certain sense it could be said that objective reality is defined by those regularities that
can be independently reproduced or verified by different observers.

This question of the universe’s comprehensibility, then, rests squarely on the
ability of independent observers to reproduce or verify the existence of certain reg-
ularities. It is fundamentally an act of agreement, a willingness to acknowledge
commonalities. In that sense, though comprehension is a subjective act for individ-
ual observers, for it to have any real meaning theremust be some objective agreement
by those observers about the regularities being comprehended. That is, the observers
must, at least in a broad sense, share a common methodology for carrying out their
observations. This makes the question of comprehensibility one of measurement. In
this essay, I explore how the nature of this methodology itself helps to enable the
comprehensibility of the universe while simultaneously placing limits on how much
we can comprehend.

9.2 Comprehensibility

The famous philosophical question2 “if a tree falls in a forest and no one is there to
hear it fall, does it make a sound?” is usually interpreted as a metaphorical question
about the nature of objective reality. Much less attention is paid to the nature of the
question itself and what that implies for any hypothetical answer. A literal reading
of the question and its sentence structure makes it clear that the question is about
the sound produced (or not produced) by a falling tree. The tree is assumed to
fall regardless of the presence or absence of a person in the vicinity. Even more

2 The origins of this question appear to be inGeorgeBerkeley’sATreatiseConcerning thePrinciples
of Human Knowledge (1710). Its current form seems to have first been stated in [19].
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fundamentally, there is never any question about the tree’s existence. The tree exists
and it has fallen. The question is whether the sound it makes in falling requires the
presence of an observer.

Though the question concerning the tree is a truth-conditional sentence, not all
questions necessarily take such a form. For example, the sentence “what color is my
hair?”3 does not have a truth value. However, the answers to questions are invariably
declarative statements that do have truth values. Thus questions can nearly always be
understood within truth-conditional semantics [5, 13]. But in order to judge the truth
of a sentence we must understand its meaning [23]. According to Frege, there exist
two primary types of expressions: proper names (which are nearly always singular
terms) and functional expressions [11]. Understanding the meaning of a statement
requires understanding the context of these expressions.

We can reformulate the question concerning the tree as a declarative statement
to which a truth value may be assigned: “any tree that falls in a forest will make a
sound regardless of the presence or absence of an observer.” The proper name in
this sentence is ‘any tree that falls in a forest’. That is, this is a statement about a
tree falling in a forest. It is not a statement about a dog or the color yellow. The
functional expression places the falling tree in a forest in context by associating it
with the predicate ‘will make a sound regardless of the presence or absence of an
observer’. Thus, this is a statement about whether a falling tree in a forest makes a
sound in the presence or absence of an observer. It is not a statement about whether
a falling tree in a forest turns into a pigeon or reads a book. The ability to assign a
truth value to the full statement rests on the fact that these two expressions each have
referents, i.e. they specify objects, conditions, etc. Though the referents are necessary
in the formulation of the statement, they naturally constrain the truth value. Simply
put, we could ask an infinite number of questions about a tree falling in a forest, but
as soon as we choose which question to ask, we have narrowed the context. This may
seem trivial but it is actually deeply profound. While the question “what color is my
hair?” could garner an infinite number of responses (e.g. ‘potato’, ‘narrow’, ‘blue’,
etc.) only a finite set of such responses makes logical sense. The statement “any tree
that falls in a forest will believe in Santa Claus” is a nonsensical statement whose
truth value has no real meaning.

In more concrete terms, consider an experiment designed to measure the spin of
a single, free electron. One potential implementation of such an experiment consists
of a source of single, free electrons (e.g. an electron gun), a Stern-Gerlach magnet,
solid-state detectors, and a source of a transverse electric field to cancel out the
transverse Lorentz force (see Fig. 9.1). This measurement asks and answers the
question “what is the spin of an electron along the â axis?” We could restate the
question as a truth-conditional statement of the form “the electron is spin-up along
the â axis” (alternately,we could state it as spin-down along the same axis). Physically
speaking, the ‘proper name’ (in Frege’s terms) is the electron which is produced by
the electron gun. All the other devices in the measurement generate the functional
expression that places the electron in the context of a spin measurement along the â

3 This is a trick question. I’m bald.
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Fig. 9.1 One method of measuring the spin of single electrons along a particular axis a, involves
firing a properly attenuated beam of electrons through a Stern-Gerlach (SG) magnet and an appro-
priately applied transverse electric field. The transverse electric field is required to balance the
Lorentz force. Each electron is then incident on one of two solid-state detectors

axis. That is, the choice of devices inherently determines the subject and predicate of
the experiment. This experiment as it has just been described, for example, will not
measure the spin of an electron along some axis b̂. In order to measure spin along an
axis b̂, the magnetic and electric fields would need to be appropriately rotated. This
can only be accomplished by modifying the apparatus which necessarily changes
the functional expression. Likewise, neither will this experiment measure the spin
of a silver atom along any axis. This is not because the devices representing the
functional expression can’t accomplish the task, but rather it is because the source
representing the proper noun (in Frege’s terminology) only produces electrons. Even
more obviously, this experiment will never determine the color of my hair without
considerable modification.

Of course, one could simply deny these limitations and declare that the experiment
has actually determined the spin of an electron along some axis b̂ or the spin of a
silver atom or the color of my hair. That is, an individual observer could have an
entirely different semantic interpretation of the experiment. This gets at the heart of
science itself. As an anonymous reviewer in Philosophical Magazine once declared
(as quoted in [8]), “[s]cience is the rational correlation of experience.” That is, the
objective power of science lies in the correlation of multiple subjective experiences.
Each individual observer is free to declare whatever he or she wishes to declare. It
is only when observers come to agree on elements of experience through rational
means that objectivity is gained.4 Consider, for example, an experiment designed to
test a Bell-type inequality using electron spin. We begin with a source of entangled
electron pairs where the pairs are emitted in the form of two electron beams. Each
beam passes through a setup similar to the one shown in Fig. 9.1 except the observer
operating the equipment on a particular beam has the freedom to rotate the magnetic

4 Due to length restrictions I will not endeavor to define ‘rational means’ here. In relation to the
aforementioned quote, Eddington expands on the idea in [8].
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and electric fields to any desired direction thereby allowing for a measurement of
spin along any axis in a plane orthogonal to the beam. By convention we refer to
the two observers, each associated with one of the two beams, as Alice and Bob.
Crucially, in order for this experiment to produce meaningful results, Alice and Bob
must agree on the measurement protocol. That is, if their goal is to test a Bell-type
inequality in such a way that they both agree on the result, then they must agree to the
semantics of the statement whose truth value the experiment aims to determine. For
instance, if Alice chooses to measure the spin of her electron along an axis b̂, she and
Bob must have agreed to the definition of axis b̂ prior to carrying out the experiment.
If they have not agreed to the definition of axis b̂ beforehand, they have little hope of
finding ameaningful result to the experiment. But once they do agree to the definition
of axis b̂, they will have necessarily limited the context of the experiment since they
will have defined axis b̂ to correspond to a specific direction that they both agree on.
If they wish to achieve their stated goal of testing the Bell-type inequality, neither of
them can simply deny the limitations of the setup. They must agree on the semantic
interpretation of the proper noun and functional expression in any truth-conditional
statement they wish to jointly test since that is the point of the experiment. This is
another deeply profound point.

In a single-observer experiment, the observer is free to assign any meaning at all
to the semantic content of the experimental statement. In the experiment described in
Fig. 9.1, for example, the observer could declare that the source produces silver atoms
or even trees, for that matter, and simply assume that the results make meaningful
sense. In other words, to a single observer, the truth value of the truth-conditional
statement that the observer is testing does not necessarily depend on that observer’s
interpretation of the statement. Observers in isolation are free to simply deny any
result they obtain or interpret it in any way they wish. Absent any independent
verification, they could simply declare that the experiment produced a particular
truth value. But in a two-observer experiment such as a Bell-type inequality test, the
truth value of the statement being tested necessarily depends on the mutually agreed
upon interpretation of the statement they are testing. Suppose, for example, that Alice
and Bob do agree on the interpretation of the statement they are testing and suppose
that statement is something to the effect of “a series of N runs of this experiment
violates aBell inequality.” Thismeans that theywill agree onwhat constitutes a single
run of the experiment, which Bell inequality is being tested (what a Bell inequality
even is, for that matter), what constitutes axis â, what constitutes axis b̂, etc. If, under
these conditions, they act in good faith, then it means that they will agree on the truth
value of the statement that they are testing. Note that if they have agreed to all these
points (which constitute the functional expression of the statement) then (acting in
good faith) they will necessarily agree on the result even if the equipment fails. This
is because they have agreed to the form of the functional expression itself. If you
and I agree that a certain switch operates a light and we agree on what it means for
that light to be illuminated when the switch is in a certain state, then we will agree
(if acting in good faith) if the light fails to illuminate when the switch is in this state.
We may disagree as to why it failed to illuminate, but by agreeing to the conditions
of the experiment we should agree on whether or not it has illuminated. If we do not,
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then either one of us is not acting in good faith or there is some potentially hidden
source of disagreement in the setup or execution.

Put another way, on a subsequent run of the experiment, Alice and Bob could
fail to reach an agreement on what constitutes axis b̂. This disagreement could be
known to them, but it also could be the result of experimental error. In either case, it
is conceivable that Alice could find a violation of the inequality while Bob does not.
This leaves the truth value of the statement that they are testing ambiguous. Each
can say that they individually comprehend the results of the experiment, but without
some form of agreement, their individual interpretations remain nothing more than
metaphysical speculation. That is, for their individual subjective comprehension to
have any objective, scientific power, they must agree to what is being comprehended
which means they must agree on the interpretation of the statement that they are
testing. This is the only way in which the experiment can produce an unambiguous
truth value. In other words, while individual observers can claim to observe anything,
in order for truth values of statements to be unambiguous, observers must agree to
the context of these statements and to the protocol that is to be used to determine
those truth values. In fact, this is really the heart of reproducibility in science. If
an experiment cannot be reproduced, there must be a disagreement, either in the
interpretation of the result or in the setup or operation of the experiment.

The comprehension that Einstein speaks of, then, arises from two interdependent
conditions: (1) observers (of which there must be more than one) must agree on the
meaning of truth-conditional statements and the methods used to test those state-
ments, and (2) the results of the agreed upon tests must, in the aggregate, remain
within the physical context of the tests themselves, i.e. an experiment such as the
one depicted in Fig. 9.1, for example, will not determine the color of my hair. In
a certain sense, assuming a stable universe, the second condition follows from the
first. If Alice and Bob agree to the meaning of a question, they immediately limit the
number of possible responses that will make any logical sense. If they then agree to
themethod of testing the question, they further limit the possible answers to bewithin
the context of the test methodology. Put simply, if Alice and Bob agree to ask the
question “what color is my hair?” and they agree on the methodology for testing that
question, they can be fairly confident that the answer they find will not be ‘narrow’
or ‘dog’. As long as the universe remains relatively stable, the first condition implies
the second.

The fact that the universe remains relatively stable, thus ensuring that the second
condition ismet in the aggregate, was originally proposed as a “principle” of compre-
hensibility in [7]. It asserted that the nature of a physical system under investigation
will always remain within the bounds of the method of investigation. That is, we
expect scientific answers to scientific questions. Of course, one could object to the
use of the word ‘always’ as there is no way to prove this. In fact it is really a statement
of tendencies within physical systems akin to the Second Law of Thermodynamics.
In terms of truth-conditional statements, then, we can restate this principle of com-
prehensibility as follows.
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Principle of Comprehensibility (Truth-conditional form) The results produced
by tests of truth-conditional statements, for which the statements and the method
of testing those statements are both agreed-upon by two or more observers, tend to
remain within the physical context of the tests themselves.

Again, despite beingwritten here in terms of truth-conditional statements,which have
a formal structure, this is a physical principle. This is why we specify a ‘physical
context’ within the principle’s statement. It is not a formal (logico-mathematical)
statement and thus has no rigorous proof. While it is impossible to prove that the
answer to the question “what color is my hair?” will never be ‘narrow’ or ‘dog’, the
fact remains that it is highly unlikely. Even more unlikely is that ‘narrow’ or ‘dog’
will be an outcome of the experiment described in Fig. 9.1. In short, stability and
context lead to comprehension. Comprehension, however, comes with a price.

9.3 The Price of Comprehensibility

By simply asking a question, we immediately establish a context which limits the
scope of the inquiry. The general stability of the universe ensures that potential
answers to our question will, to a high degree of probability, remain within the
context of the question. This is the essence of comprehensibility since it allows us
to develop systematic measures by which we can further probe a topic. Building an
understanding requires refining the context by asking additional questions. But this
also necessarily means that our knowledge is shaped by the questions we ask and
how we choose to ask them, i.e. by our methodology.

As a simple example, supposewe are taskedwith designing a device that will com-
pute a number by solving a specific equation. Choosing a design for the fundamental
operation of our device is analogous to choosing a set of truth-conditional statements
for a particular question. So, for example, perhaps we designed our device to be deci-
mal (i.e. base-ten) at itsmost fundamental and it computes the number 1197.How this
number is represented to us is immaterial. What matters is that the device was able
to compute the number exactly based on how it was designed. On the other hand, we
could have designed our device to be binary at its most fundamental, in which case it
would compute the number 10010101101 since 100101011012 = 119710. Again, the
representation of the number to us is immaterial here. Both devices could represent
the number to us as base-eight or base-six or even as sounds or images. What matters
is that the two designs are fundamentally different yet both ultimately produce the
same solution to the equation with equal accuracy. The principle of comprehensi-
bility ensures that the decimal device performs decimal operations while the binary
device performs binary operations, i.e. the devices produce what they are designed
to produce. If they reliably and consistently continue to do so, we might infer that
this pattern represents some kind of objectively real aspect of the world and we could
say that we comprehended some element of it.
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But suppose, instead, that our decimal device finds that the solution to the input
equation is 1/10 and let us further suppose that this answer is exact. If our device
was instead binary, the best it could do would be to approximate this number as a
non-terminating expansion,

1

10
≈ 1

16
+ 1

32
+ 1

256
+ · · · = 1

24
+ 1

25
+ 1

28
+ · · ·

That is, the design of our device can potentially limit the accuracy of our knowledge
and constrain our comprehension. If we are in doubt about the results we obtain, we
could theoretically design a different device and check the results. If we began with
our binary device and realized the result was an approximation, we might be able to
design a decimal device and compare the results of the two. If the decimal device
naturally gives a fixed, terminating answer we can assume it is more accurate. But if
we are, say, computing π, how would we know which is more accurate?

This is not a trivial point. John Wrench and Levi Smith famously calculated the
digits of π using a gear-driven calculator by solving Machin’s formula, eventually
reaching 1120 digits by 1949 [22]. Since then all improvements to their estimation
have been on electronic computers. While decimal computers do exist and have been
used to search for the digits of π (e.g. the ENIAC), most of the machines used to
calculate π have been binary in their basic functionality and simply encoded decimal
digits using some scheme such as binary-coded decimal (BCD) or excess-3. Further,
since 2009 all records for the digits of π have been carried out using Alexander
Yee’s multi-threaded y-cruncher program.5 So not only have we limited ourselves to
electronic computers in our search for the digits of π but we have recently limited
ourselves to a single algorithm. But as the simple example above demonstrates, the
choice of device itself can constrain the accuracy of the results. How do we know
that a mechanical computer would necessarily give the same set of digits? After all, a
mechanical computer would not likely be able to execute the algorithm that is at the
heart ofYee’s y-cruncher program since that program is designed expressly for digital
computers. But constructing a mechanical computer to calculate 50 trillion digits of
π (the current record) would likely be extremely difficult if not impossible. There
are other reasons to trust Yee’s algorithm and electronic computations in general,
but the point is that there is really no way to prove just how accurate they are in an
experimental sense. Simply put, in order to compute a number (like π) we must build
a device capable of carrying out the computation. But in doing so, we must choose a
design and that choice immediately sets constraints on what types of results we can
expect to get from the device. A binary device will produce binary results while a
decimal device will produce decimal results.

The Church-Turing thesis conjectures that it ultimately should not matter what
form the computation takes. The types of problems computable using one model
should be computable using anymodel since the thesis asserts that all computational
models are equivalent to Turing machines. But the Church-Turing thesis is a formal

5 For details see http://www.numberworld.org/y-cruncher/.
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conjecture. It’s unclear if such a conjecture can necessarily be applied to physical
systems [3, 4] though several proposals for physical versions of the thesis have
been made [1, 21, 27]. But the physical world is a fickle beast. Proving something
physically is very different from proving something mathematically. This point goes
well beyond merely addressing Hilbert’s Sixth Problem in which he called for an
extension of the axiomatic methods of mathematics to physics [15]. It is conceivable
that, should a suitable theory of quantum gravity be found, we could eventually see a
fully axiomatized physical theory. But anyone who has spent any time in a laboratory
will attest to the fact that the real world is far messier than theory would have us
believe.

Comprehensibility is about what we, as humans, can know for certain about the
universe and it is through experiment that we do this. As Richard Feynman once
famously said, if something disagrees with experiment then it’s wrong [10]. But the
nature of comprehensibility ensures that the answers to the questions we pose to the
universe are constrained by the form of the question itself. A physical binary device,
i.e. not an idealized abstract one, will always produce binary results and thus, for
example, will never be able to calculate 1/10 exactly. Certain physical computations
will always be approximate.

This has an even deeper and more profound implication if science ultimately
rests entirely on proofs of truth-conditional statements. Proving a truth-conditional
statement is equivalent to solving a decision problem or what Hilbert and Wilhelm
Ackermann referred to as the Entscheidungsproblem [16]. Such a problem produces
a yes-or-no answer to a question given any number of inputs. JohnWheeler famously
argued that the answers to such questions were the basis of all that exists [26]. As
late as 1930 Hilbert believed there would never be an unsolvable problem [17].
Yet, though the Church-Turing thesis conjectures that all computational models are
equivalent to Turing machines, it also allows for the existence of noncomputable
functions. That is, it allows for the existence of decision problems for which no
algorithm can be constructed that is guaranteed to lead to a correct yes-or-no answer.
Such problems are said to be undecidable. Turing, for instance, famously showed
that the halting problem was undecidable on Turing machines [24, 25]. But all of
this work was grounded in formal methods. If the Principle of Comprehensibility is
valid it would seem to imply that there might exist problems that are undecidable
for physical reasons. That is, if Wheeler is right and all that exists derives its very
existence from “apparatus-elicited” answers to yes-or-no questions, then there are
elements of the physical universe that are simply unknowable. Furthermore, the
origin of that unknowability is both logical and physical. Some aspects might be
unknowable because we cannot construct an algorithm that is guaranteed to lead to
a correct truth value for some truth-conditional statements. Other aspects might be
unknowable because the universe’s fundamental fabric is such that no machine can
be constructed to produce a correct truth value for some truth-conditional statements.
These are distinct points unless the universe itself is a Turing machine. The latter
follows from the constraints associated with comprehensibility. In order to answer a
question, we must choose a set of truth-conditional statements that we will test and
agree to a testing methodology. This ensures that the results will be comprehensible.
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But, by choosing a particular set of such statements as opposed to some other set, we
are shaping the form in which our answer will appear. When we ask a question we
are necessarily carving out a small portion of knowledge from all that it is possible
to know. Yet the question we ask and how we ask it immediately contextualizes
any potential answer (even one that doesn’t logically follow) and thus shapes any
knowledge we gain from it. There is simply no way around this.

9.4 Limitations

The above arguments largely rest on the ability to reformulate the questions that
lie at the heart of the scientific enterprise in terms of truth-conditional statements.
But can all questions be reduced to truth-conditional statements? Can the scientific
enterprise even be fully reduced to a set of questions?Attempts to formulate scientific
explanation in terms of the answers to questions has a long history. Hempel and
Oppenheim argued that all scientific explanations could be regarded as answers to
‘why-questions’ such as “[w]hy do the planets move in elliptical orbits with the Sun
at one focus?” [14]. Often referred to as the deductive-nomological (DN) model,
their account of the scientific enterprise is one of deduction that is reliant on the
accurate prediction or postdiction of phenomena. But this model fell out of favor in
the philosophy of science community for several decades and, despite a resurgence,
continues to have its detractors chiefly because it appears to exclude some types
of explanations generally regarded as scientific [12]. But even assuming that the
scientific enterprise can be reduced to a set of questions, it is not clear that it can
be further reduced to sets of truth-conditional statements. David Braun, for instance,
offers an alternative in which the answers to questions simply provide contextual
information [2]. Truth is a loaded term.After all, how dowe know that our knowledge
of the world is even real? Would it not be better to simply speak of information? In
Newton’s day, testing the truth-conditional statement “time is absolute” would have
produced a positive truth value given the knowledge and technology of the time. That
same statement, if tested now, would elicit a negative truth value. Yet it is wrong to
say that there was any change in the underlying physics between then and now.What
changed was our knowledge of that physics, i.e. we increased our information.

Yet even if we take Braun’s view it is clear that limitations still exist and that these
limitations intimately depend on context. Our inability to simultaneously measure
non-commuting observables in quantum systems to arbitrary accuracy is a limit on
our ability to obtain information regardless of whether or not we believe in objective
truth. It arises from the context of our measurement. Comprehensibility is still the
result of a combination of the mutual agreement between observers and the fact that
the universe remains relatively stable. That is to say, the Principle of Comprehensi-
bility need not be formulated in a truth-conditional form. The fact remains that in
order to saywe comprehend some element of the universe wemust necessarily obtain
some information about that element. But obtaining that information is a physical
process that necessarily has a context which constrains the nature of that informa-
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tion; the very act of acquiring information shapes the information acquired. Physical
limitations on the acquisition of knowledge are not controversial. The universe has
fundamental limits baked into it. But it is these very limits that allow for the universe
to be comprehensible. They are necessary in order for our seemingly finite minds to
have any hope of comprehending anything.

These physical limitations bear a certain resemblance to Gödel’s incompleteness
theorems in that they arise from the internal structure of the system and one must
break free from that structure in order to fully understand it. The universe is a vast
and interconnected place of which we are but a small part, a mere mote of dust, as
it were. Any attempt to comprehend it must necessarily depend on the fact that we
are a part of it. Indeed the very act of comprehension is itself a part of it and is thus
shaped by it. Like the god Odin fromNorse mythology, who is said to have sacrificed
an eye in order to attain wisdom, our quest for comprehension limits our very ability
to comprehend, and the universe remains always partially veiled.

References

1. P. Arrighi, G. Dowek, The physical Church-Turing thesis and the principles of quantum theory.
Int. J. Found. Comput. Sci. 23(5), 1131–1145 (2012)

2. D. Braun, Now you know who Hong Oak Yun is. Philos. Issues 16, 24–42 (2006)
3. B.J. Copeland, Computation, in The Blackwell Guide to the Philosophy of Computing and

Information, ed. by L. Floridi (Wiley-Blackwell, Hoboken, 2004)
4. B.J. Copeland, O. Shagrir, The Church-Turing thesis: logical limit or breachable barrier? Com-

mun. ACM 62(1), 66–74 (2019)
5. C. Cross, F. Roelofsen, Questions, in The Stanford Encyclopedia of Philosophy, ed. by E.N.

Zalta (Metaphysics Research Lab, Stanford University, Spring, 2018 edition, 2018)
6. P.C.W. Davies, Why is the Physical World so comprehensible? in Complexity, Entropy and the

Physics of Information, Santa Fe Institute Studies in the Science of Complexity, ed. by W.H.
Zurek (Addison-Wesley, Redwood City, CA, 1990), pp. 61–70

7. I.T. Durham, Boundaries of scientific thought, in Information and Interaction: Eddington,
Wheeler, and the Limits of Knowledge, The Frontiers Collection, ed. by I.T. Durham, D. Rickles
(Springer, Cham, 2017), pp. 1–34

8. A.S. Eddington, The Philosophy of Physical Science (Cambridge University Press, Cambridge,
1939)

9. A. Einstein, Physik und Realität. J. Frankl. Inst. 221, 313–382 (1936)
10. R.P. Feynman, The Character of Physical Law (Modern Library, New York, 1965)
11. G. Frege, Function and concept, in Translations from the Philosophical Writings of Gottlob

Frege, Oxford Readings in Philosophy, ed. by P. Geach, M. Black, 3rd edn. (Basil Blackwell,
Oxford, 1980), pp. 130–149

12. S. Glennan, Explanation, in Philosophy of Science, ed. by S. Sarkar, J. Pfeiffer (Routledge,
Abingdon, 2006)

13. C.L. Hamblin, Questions. Australas. J. Philos. 36, 159–168 (1958)
14. C. Hempel, P. Oppenheim, Studies in the logic of explanation. Philos. Sci. 15(2), 135–175

(1948)
15. D. Hilbert, Mathematical problems. Bull. Am. Math. Soc. 8(10), 437–479 (1902)
16. D. Hilbert, W. Ackermann, Grundzüge der theoretischen Llogik (Springer, Berlin, 1928)
17. A. Hodges, Alan Turing: The Enigma (Simon and Schuster, New York, 1983)
18. G. Holton, What precisely is “thinking”? ...Einstein’s answer. Phys. Teach. 17, 157 (1979)



146 I. T. Durham

19. C.R. Mann, G.R. Twiss, Physics (Foresman and Co., Chicago, 1910)
20. M.Müller, Lawwithout law: from observer states to physics via algorithmic information theory

(2019), https://arxiv.org/abs/1712.01826
21. G. Piccinini, The physical Church-Turing thesis: modest or bold? Br. J. Philos. Sci. 62(4),

733–769 (2011)
22. D.S.Richeson,Tales of Impossibility: The 2000-YearQuest to Solve theMathematical Problems

of Antiquity (Princeton University Press, Princeton and Oxford, 2019)
23. A. Tarski, The semantic conception of truth and the foundations of semantics. Philos. Phe-

nomenol. Res. 4 (1944)
24. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proc.

Lond. Math. Soc. 42(2), 230–265 (1937)
25. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. A

Correction. Proc. Lond. Math. Soc. 43(2), 544–546 (1938)
26. J. Wheeler, Information, physics, quantum: the search for links, in Complexity, Entropy and

the Physics of Information, ed. by W.H. Zurek (Addison-Wesley, Redwood City, CA, 1990),
pp. 3–28

27. S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, 2002)

https://arxiv.org/abs/1712.01826


Chapter 10
Noisy Deductive Reasoning: How
Humans Construct Math, and How Math
Constructs Universes

David H. Wolpert and David Kinney

Abstract We present a computational model of mathematical reasoning according
to which mathematics is a fundamentally stochastic process. That is, in our model,
whether or not a given formula is deemed a theorem in some axiomatic system is not
a matter of certainty, but is instead governed by a probability distribution. We then
show that this framework gives a compelling account of several aspects of mathemat-
ical practice. These include: 1) the way in which mathematicians generate research
programs, 2) the applicability of Bayesian models of mathematical heuristics, 3) the
role of abductive reasoning in mathematics, 4) the way in which multiple proofs
of a proposition can strengthen our degree of belief in that proposition, and 5) the
nature of the hypothesis that there are multiple formal systems that are isomorphic
to physically possible universes. Thus, by embracing a model of mathematics as not
perfectly predictable, we generate a new and fruitful perspective on the epistemology
and practice of mathematics.

10.1 Introduction

Humans are imperfect reasoners. In particular, humans are imperfect mathematical
reasoners. They are fallible, with a non-zero probability of making a mistake in
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any step of their reasoning. This means that there is a nonzero probability that any
conclusion that they come to is mistaken. This is true no matter how convinced they
are of that conclusion. Even brilliant mathematicians behave in this way; Poincaré
wrote that he was “absolutely incapable of adding without mistakes” ([14], p. 323).

The mirthful banter of Poincaré aside, such unavoidable noise in human mathe-
matical reasoning has some far-reaching consequences. An argument that goes back
(at least) to Hume points out that since individual mathematicians are imperfect
reasoners, the entire community of working mathematicians must also be one big,
imperfect reasoner. This implies that there must be nonzero probability of a mis-
take in every conclusion that mathematicians have ever reached (Hume [10], Viteri
and DeDeo [21]). This noise in the output of communal mathematical research is
unavoidable, inherent to any physical system (like a collection of human brains) that
engages in mathematical reasoning. Indeed, one might argue that there will also be
unavoidable noise in the mathematics constructed by any far-future, post-singularity
hive of AI mathematicians, or by any society of demi-God aliens whose civilization
is a billion years old. After all, awe-inspiring as those minds might be, they are still
physical systems, subject to nonzero noise in the physical processes that underlie
their reasoning.

By contrast, almost all work on the foundations and philosophy of mathematics
to date has presumed that mathematics is the product of noise-free deductive reason-
ing. As Hilbert [9] famously said, “mathematical existence is merely freedom from
contradiction”.

In light of this discrepancy between the actual nature of mathematics constructed
by physically-embodied intelligences and the traditional view of mathematics as
noise-free, here we consider the consequences if we abandon the traditional view
of “mathematical existence” as noise-free. We make a small leap, and identify what
might be produced by any community of far-future, galaxy-spanning mathemati-
cians as mathematics itself. We ask, what are the implications if mathematics itself,
abstracted from any particular set of physical reasoners, is a stochastic system?What
are the implications if we represent mathematics not only as inescapably subject to
instances of undecidability and uncomputability, as Gödel [7] first showed, but also
inescapably unpredictable in its conclusions, since it is actually stochastic?

In fact, if you just ask them, many practicing human mathematicians will tell you
that there is a broad probability distribution over mathematical truths. For example, if
you ask them about any Clay prize question, most practicing mathematicians would
say that any of the possible answers has nonzero probability of being correct. What if
mathematicians are right to say there is a broad distribution over mathematical truths,
not simply as a statement about their subjective uncertainty, but as a statement about
mathematical reality? What if there is a non-degenerate objective probability distri-
bution over mathematical truths, a distribution which “is the way things really are”,
independent of human uncertainty? What if in this regard mathematics is just like
quantum physics, in which there are objective probability distributions, distributions
which are “the way things really are”, independent of human uncertainty?

In this essay we present a model of mathematical reasoning as a fundamentally
stochastic process, and therefore of mathematics itself as a fundamentally stochastic
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system. We also present a (very) preliminary investigation of some of this model’s
features. In particular, we show that this model:

• allows us to formalize the process by which actual mathematical researchers select
questions to investigate.

• provides a Bayesian justification for the role that abductive reasoning plays in
actual mathematical research.

• provides a Bayesian justification of the idea that a mathematical claim warrants
a higher degree of belief if there are multiple lines of reasoning supporting that
claim.

• can be used to investigate themathematical multiverse hypothesis (i.e., the hypoth-
esis that there are multiple physical realities, each of which is isomorphic to a for-
mal system) thereby integrating the analysis of the inherent uncertainty in the laws
of physics with analysis of the inherent uncertainty in the laws of mathematics.

If mathematics is “invented” by human mathematicians, then it obviously is a
stochastic system, and should be modeled as such. (In this case, the distributions
of mathematics are set by the inherent noise in human mathematical reasoning.)
Going beyond this, we argue that even if mathematics is “discovered” rather than
invented, it may still prove fruitful to weaken the a priori assumption that what is
being discovered is noise-free—just as it has often proven fruitful in the past to
weaken other assumptions imposed upon mathematics. In this essay, we start to
explore the implications if mathematics is a stochastic system, without advocating
either that it is invented or that it is discovered—as described below, our investigation
has implications in both cases.1

10.2 Formal Systems

The concept of a “mathematical system” can be defined in several equivalent ways,
e.g., in terms of model theory, Turing machines, formal systems, etc. Here we will
follow Tegmark [17] and use formal systems. Specifically, a (recursive) formal
system can be summarized as any triple of the form

1. A finite collection of symbols, (called an alphabet), which can be concatenated
into strings.

2. A (recursive) set of rules for determiningwhich strings arewell-formed formulas
(WFFs).

3. A (recursive) set of rules for determining which WFFs are theorems.

1 Note that just like the authors of all other papers written about mathematics, we believe that
the deductive reasoning in this essay is correct. The fact that we acknowledge the possibility of
erroneous deductive reasoning, and that in fact the unavoidability of erroneous reasoning is the
topic of this essay, doesn’t render our belief in the correctness of our reasoning about that topic any
more or less legitimate than the analogous belief by those other authors.
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As considered in Tegmark [17, 18], formal systems are equivalence classes, defined
by all possible automorphisms of the symbols in the alphabet. A related point is that
strictly speaking, if we change the alphabet then we change the formal system. To
circumvent such issues, here we just assume that there is some large set of symbols
that contains the alphabets of all formal systems of interest, and define our formal
systems in terms of that alphabet. Similarly, for current purposes, it would take us
too far afield to rigorously formalize what we mean by the term “rule” in (2, 3). In
particular, here we take rules to include both what are called “inference rules” and
“axioms” in Tegmark [17].

As an example, standard arithmetic can be represented as a formal system [17].
‘1 + 1 = 2’ is a concatenation of five symbols from the associated alphabet into a
string. In the conventional formal system representing standard arithmetic, ‘1 + 1 =
2’ is both aWFF and a theorem. However, ‘+4−’ is not aWFF in that formal system,
despite being a string of symbols from its alphabet.

The community of real-world mathematicians does not spend their days just gen-
erating theorems in various formal systems. Rather they pose “open questions” in
various formal systems, which they try to “answer”. To model this, here we restrict
attention to formal systems that contain the Boolean ∼ (NOT) symbol, with its usual
meaning. If in a given such formal system a particular WFF ϕ is not a theorem, but
∼ ϕ is a theorem, we say that ϕ is an antitheorem. For example, ‘1 + 1 = 3’ is an
antitheorem in standard arithmetic. Loosely speaking, we formalize the “open ques-
tions” of current mathematics as pairs of a formal system S together with a WFF in
S, ϕ, where mathematicians would like to conclude that ϕ is either a theorem or an
antitheorem. Sometimes, ϕ will be a WFF in S but neither a theorem nor an antithe-
orem. We call such strings ϕ undecidable. As an example, Gödel [7] showed that
any formal system strong enough to axiomatize arithmetic must contain undecidable
WFFs.

To use these definitions to capture the focus of mathematicians on “open ques-
tions”, in this essay we re-express formal systems as pairs rather than triples:

1. An alphabet;
2. A recursive set of rules for assigning one of four valences to all possible strings

of symbols in that alphabet: ‘theorem (t)’, ‘antitheorem (a)’, ‘not a WFF (n)’, or
‘undecidable (u)’.

It will be convenient to refer to any pair (S, ϕ) where S is a formal system and ϕ is
a string in the alphabet of S as a question, and write it generically as q. We will also
refer to any pair (q, v) where v is a valence as a claim.

10.3 A Stochastic Mathematical Reasoner

The physical Church-Turing thesis (PCT) states that the set of functions computable
by Turing machines (TMs) include all those functions “that are computable using
mechanical algorithmic procedures admissible by the laws of physics” ([24], p. 17).
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If we assume that any mathematician’s brain is bound by the laws of physics, and so
their reasoning is also so bound, it follows that any reasoning by amathematicianmay
be emulated by a TM. However, as discussed above, we wish to allow the reasoning
of humanmathematicians to be inherently stochastic. In addition, since a TM is itself
a system for carrying out mathematical reasoning, we want to allow the operation of
a TM to be stochastic.

Accordingly, in this essay we amend the PCT to suppose that any reasoning
by mathematical reasoner—human or otherwise—may be emulated by a special
type of probabilistic Turing Machine (PTM) (see appendix for discussion of TMs
and PTMs). We refer to PTMs of this special type as noisy deductive reasoning
machines (NDR machines). Any NDR machine has several tapes. The questions
tape always contains a finite sequence of unambiguously delineated questions (spec-
ified using any convenient, implicit code over bit strings). We write such a sequence
as Q, and interpret it as the set of all “open questions currently being considered
by the community of mathematicians” at any iteration of the NDR machine. The
separate claims tape always contains a finite sequence of unambiguously delineated
claims, which we refer to as a claims list. We write the claims list as C , and interpret
it as the set of all claims “currently accepted by the community of mathematicians”
at any iteration of the NDR machine. In addition to the questions and claims tapes,
any NDR machine that models the community of real human mathematicians in any
detail will have many work tapes, but we do not need to consider such tapes here
(Fig. 10.1).

TheNDRmachine starts with the questions and claims tapes blank. Then theNDR
machine iterates a sequence of three steps. In the first step, it adds new questions
to Q. In the second step the NDR machine “tries” to determine the valences of the
questions in Q. In the third step, if the valence v of one or more questions q has been
found, then the pair (q, v) is added to the end of C , and q is removed from Q. We
also allow the possibility that some claims in C are removed in this third step. The
NDR machine iterates this sequence of three steps forever, i.e., it never halts. In this
way the NDR machine randomly produces sequences of claims lists. We write the
(random) claims list produced by an NDRmachine after k iterations asCk , generated
by a distribution Pk . (Note that Pk(C) can be nonzero even if |C | �= k, i.e., if the
number of claims in C differs from k.)

As an illustration, for any NDR machine that accurately models the real commu-
nity of practicing mathematicians, the precise sequence of questions in the current
claims list C must have been generated in a somewhat random manner, reflecting
randomness in which questions the community of mathematicians happened to con-
sider first. The NDR machine models that randomness in the update distribution of
the underlying PTM. In addition, in that NDR machine it is extremely improbable
that a claim on the claims tape ever gets removed.

There are several restrictions onNDRmachineswhich are natural to impose in cer-
tain circumstances, especiallywhen usingNDRmachines tomodel the community of
human mathematicians. In particular, we say that a claims list C is non-repeating if
it does not contain two claims that have the same question, otherwise it is repeating.
We say that an NDR machine is non-repeating if it produces non-repeating claims
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Fig. 10.1 Directed graph showing several possible evolutions of the claims tape of anNDRmachine
for a binary alphabet. Dashed arrows denote both the deletion of bits on the claims tape and concate-
nation of additional bits onto the claims tape, whereas solid arrows denote only the concatenation
of bits. Labels on arrows show transition probabilities from each claims list to the next, which are
determined by the update distribution of the NDR machine

lists with probability 1. As an example, if the NDR machine of the community of
mathematicians is non-repeating, then there might be hidden contradictions lurking
in the set of all claims currently accepted by mathematicians, but there are not any
explicit contradictions.

For each counting number n, let Cn be the set of all sequences of n claims. For
any current C and any n ≤ |C |, define C(n) to be the sequence of the first n claims
in C . We say that a finite claims list C ismistake-free if for every claim (q, v) ∈ C ,
v is either t, a, n, u, depending on whether the question q is t , a, n or u, respectively.
In other words, a claims list is mistake-free if for every claim (q, v) in that list, if
q = (S, ϕ), then v is the syntactic valence assigned to ϕ by S. As an example, most
(all?) currentmathematicians view the “currently accepted body ofmathematics” as a
mistake-free claims list. (However, even if it so happened that that current claims list
actually were mistake-free, we do not assume that humans can determine that fact;
in fact, we presume that humans cannot make that determination in many instances.)
We say that an NDR machine is mistake-free if for all finite n, the probability is 1
that any claims list C produced by the NDR machine will be mistake-free.

We want to analyze the stochastic properties of the claims list, in the limit that
the mathematical reasoner has been running for very many iterations. To do that, we
require that for any n, the probability distribution of sequences of claims Ck(n) ∈ Cn
at the beginning of the claims list C that has been produced by the NDR machine at
its k’th iteration after starting from its initial state converges in probability in the limit
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of k → ∞. We also require that the set of all repeating claims lists has probability
0 under that limiting distribution. (Note though that we do not forbid repeating
claims lists for finite k.) We further require that for all n > 0, the infinite k limit of
the distribution over Ck(n) is given by marginalizing the last (most recent) claim
in the infinite k limit of the distribution over Ck(n + 1).2 We write those limiting
distributions as P∞(C(n)), one such distribution for each n.

For each n, the distribution P∞(C(n)) over all n-element claim sequences defines
a probability distribution over all (unordered) claims sets c = {ci } containingm ≤ n
claims:

P∞
n (c) :=

∑

C(n):∀i,ci∈C(n)

P∞(C(n)) (10.1)

(where ci ∈ C(n) means that claim ci occurs as one of the claims in the sequence
C(n)). Under the assumptions of this essay, the n → ∞ limit of this distribution over
claims sets of size m ≤ n specifies an associated distribution over all finite claims
sets, i.e., limn→∞ P∞

n (c) is well-defined for any fixed, finite claims set c. We refer to
this limiting distribution as the claims distribution of the underlying NDRmachine,
and write it as P(c). Intuitively, the claims distribution is the probability distribution
over all possible bodies of mathematics that could end up being produced if current
mathematicians kept working forever.3 We say that a claims list (resp., claims set) is
maximal if it has nonzero probability under P∞ (resp., P), and if it is not properly
contained in a larger claims list (resp., claims set) that has nonzero probability.

Due to our assumption that there is zero probability of a repeating claims list
under the claims distribution, the conditional distribution

P(v | q) := P((q, v))

P(q)
(10.2)

= limn→∞
∑

C(n):(q,v)∈C(n) P
∞(C(n))

limn→∞
∑

v′
∑

C(n):(q,v′)∈C(n) P
∞(C(n))

(10.3)

is well-defined for all q that have nonzero probability of being in a claims set gener-
ated under the claims distribution. We refer to this conditional distribution P(v | q)

as the answer distribution of the NDR machine.4 We will sometimes abuse termi-
nology and use the same expression, “answer distribution”, even if we are implicitly

2 This is equivalent to requiring that an NDR machine is a “sequential information source” [8]. In
the current context, it imposes restrictions on how likely the NDR machine is to remove claims
from the claims tape.
3 Note that even if a claims setC is small, it might only arise with non-negligible probability in large
claims lists, i.e., claims lists produced after many iterations of the NDR machine. For example, this
might happen in the NDRmachine of the community of mathematicians if the claims in cwould not
even make sense to mathematicians until the community of mathematicians has been investigating
mathematics for a long time.
4 Note the implicit convention that P(v | q) concerns the probability of a claims list containing a
single claim in which the answer v arises for the precise question q, not the probability of a claims
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considering P(v | q) restricted to a proper subset of the questions q that can be
produced by the NDR machine. As shorthand we will sometimes write answer dis-
tributions as A.

Amistake-free answerdistribution is one that canbeproducedby somemistake-
free NDRmachine. In general, there are an infinite number of NDRmachines that all
result in the same answer distribution A. However, all NDR machines that result in
a mistake-free answer distribution must themselves be mistake-free. For any claims
list C and question q such that P(q,C) �= 0, we define

P(v | q,C) := P((q, v),C)

P(q,C)
(10.4)

:= limn→∞
∑

C(n):(q,v)∪C∈C(n) P
∞(C(n))

limn→∞
∑

C(n),v′ :(q,v′)∪C∈C(n) P
∞(C(n))

(10.5)

and refer to this as a generalized answer distribution. (In the special case that C is
empty, the generalized answer distribution reduces to the answer distribution defined
in (10.3).)

Claims distributions and (generalized) answer distributions are both defined in
terms of the stochastic process that begins with the PTM’s question and claims tapes
in their initial, blank states. We make analogous definitions conditioned on the PTM
having run long enough to have produced a particular claims list C at some iteration.
(This will allow us to analyze the far-future distribution of claims of the actual current
community of human mathematicians, conditioned on the actual claims list C that
that community has currently produced.)

Paralleling the definitions above, choose any pair n1, n2 > n1 and any Cn1 ∈ Cn1
such that there is nonzero probability that the NDRmachine will produce a sequence
of claims lists one of which is Cn1 . We add the requirement that the probability
distribution of sequences of claims Ck(n2) ∈ Cn2 at the beginning of the claims list
C that has been produced by the NDR machine at its k’th iteration after starting
from its initial state, conditioned on its having had the claims list Cn1 on its claims
tape at some iteration < k, converges in probability in the limit of k → ∞. With
abuse of notation, we write that probability distribution as P∞

Cn1
(C(n2)), and require

that P∞
Cn1

(C(n2)) is given by marginalizing out the last claim in P∞
Cn1

(C(n2 + 1)).
This distribution defines a probability distribution over all (unordered) claims sets
c = {ci : i = 1, . . . ,m} containing m ≤ n2 claims:

P∞
Cn1 ;n2(c) :=

∑

C(n2):∀i,ci∈C(n2)

P∞
Cn1

(C(n2)) (10.6)

We assume that limn2→∞ P∞
Cn1 ;n2(c) is well-defined for any finite claims set c (for all

Cn−1 that are produced by the NDR machine with nonzero probability). We refer to

list that has an answer v in some claim, and that also has the question q in some (perhaps different)
claim.
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this as a list-conditioned claims distribution, for conditioning claims list Cn1 , and
write it as PCn1

(c). It defines an associated list-conditioned answer distribution,

which we write as ACn1
(v | q) = PCn1

(v | q). We define the list-conditioned gener-
alized answer distribution analogously. Intuitively, these are simply the distributions
over bodies of mathematics that might be produced by the far-future community of
mathematicians, conditioned on their having produced the claims list Cn1 sometime
in their past, while they were still young.

Note that the generalized answer distribution P(v | q, c) is defined in terms of a
claims set c which might have probability zero of being a contiguous sequence of
claims, i.e., a claims list. In contrast, PCn1

(v | q) is defined in terms of a contiguous
claims list Cn1 . Moreover, the claims in Cn1 might have zero probability under the
claims distribution, e.g., if the NDR machine removes them from the claims tape
during the iterations after it first put them all onto the claims tape. Finally, note that
both P(v | q, {c}) and PCn1

(v | q) are limiting distributions of the final conclusions
of the far-future community of mathematicians. Both of these differ from the proba-
bility that as the NDR machine governing the current community of mathematicians
evolves, starting from a current claims list and with a current open question q, it
generates the answer v for that question. (That answer might get overturned by the
far-future community of mathematicians.)

10.4 Connections to Actual Mathematical Practice

In this section we show how NDR machines can be used to quantify and investigate
some of the specific features of the behavior of humanmathematicians (see also [21]).
Most of the analysis in this section holds even ifwe restrict attention toNDRmachines
whose answer distribution A is a probabilistic mixture of single-valued functions
from q → v. Intuitively, such NDR machines model scenarios where each question
(S, ϕ) is mapped to a unique valence, but we are uncertain what that map from
questions to valences is.

10.4.1 Generating New Research Questions

Given our supposition that the community of practicing mathematicians can be mod-
eled as anNDRmachine,what is the precise stochastic process that thatNDRmachine
uses in each iteration, in the step where it adds new questions to Q. Phrased differ-
ently, what are the goals that guide how the community of mathematicians decides
which open questions to investigate at any given moment?

This is obviously an extremely complicated issue, ultimately involving elements of
sociology and human psychology.Nonetheless, it is possible tomake some high-level
comments. First, most obviously, one goal of human mathematicians is that there be
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high probability that they generate questions whose valence is either t, a or u. Human
mathematicians don’t want to “waste their time” considering questions (S, ϕ)where
it turns out thatϕ is not aWFFunderS. Sowewould expect there to be lowprobability
that any such question is added to Q. Another goal is that mathematicians prefer to
consider questionswhose answerwould be a “breakthrough”, leading tomany fruitful
“insights”. Oneway to formalize this second goal is that humanmathematicians want
to add questions q to Q such that, if they were able to answer q (i.e., if they could
determine the valence v of q), then after they did so, and C was augmented with that
question-answer pair, the NDR machine would rapidly produce answers to many of
the other open questions q ∈ Q.

10.4.2 Bayesian Models of Heuristics of Human
Mathematicians—General Considerations

Human mathematicians seem to act somewhat like Bayesian learners; as mathemati-
cians learn more by investigating open mathematical questions—as their data set of
mathematical conclusions grows larger—they update their probability distributions
over those open questions. For example, modern computer scientists assign a greater
probability to the claimNP �= P than did computer scientists of several decades ago.
In the remainder of this section we show how tomodel this behavior in terms of NDR
machines, and thereby gain new perspectives on some of the heuristic rules that seem
to govern the reasoning of the human mathematical community

First, note that the subjective relative beliefs of the current community of math-
ematicians do not arise in the analysis up to this point. All probability distributions
considered above concern what answers mathematicians are in fact likely to make, as
the physical universe containing them evolves, not the answers that mathematicians
happen to currently believe. Rather than introduce extra notation to explicitly model
the current beliefs of mathematicians, for simplicity we suppose that the subjective
relative beliefs of the current community of mathematicians with respect to what the
answer is to all questions in the current questions tape, matches the actual answer dis-
tribution of the far-future community of mathematicians. As an example, under this
supposition, ifC is the current claims list of the community of mathematicians and φ

is the WFF “NP �= P” phrased in some particular formal system S, then the current
relative beliefs of the community of mathematicians concerning whether NP �= P
just equals P(v = t | φ,S).5

5 In general, even if a mathematician updates their beliefs in a Bayesian manner, the priors and
likelihoods they use to do so may be “wrong”, in the sense that they differ from the ones used by the
far-future community of mathematicians. The use of purely Bayesian reasoning, by itself, provides
no advantage over using non-Bayesian reasoning—unless the subjective priors and likelihoods of
the current community of mathematicians happen to agree with those of the far-future community
of mathematicians. In the rest of this section we assume that there is such agreement. See [5,
23] for how to analyze expected performance of a Bayesian decision-maker once we allow for the
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10.4.3 A Bayesian Justification of Abduction in
Mathematical Reasoning

Adopting this perspective, it is easy to show that the heuristic technique of “abductive
reasoning” commonly used by humanmathematicians is Bayes rational. To begin, let
q = (S, ϕ), q ′ = (S, ϕ′) be two distinct open questions which share the same formal
systemS and are both contained in the current set of open questions of the community
of mathematicians, Q, and so neither of which are contained in the current claims list
of the community of mathematicians, C . Suppose as well that both q and q ′ occur
in PC with probability 1, i.e., the far-future community of mathematicians definitely
has answers to both questions. Suppose as well that if q ′ were a theorem under S,
that would make it more likely that q was also a theorem, i.e., suppose that

PC
(
v = t | q, (q ′, t)

)
> PC (v = t | q) (10.7)

i.e.,

PC
(
(q, t), (q ′, t)

)

PC (q, (q ′, t))
>

PC ((q, t))

PC(q)
(10.8)

and so repeatedly using our assumption that both q and q ′ occur with probability 1,

PC
(
(q, t), (q ′, t)

)

PC ((q ′, t))
> PC ((q, t)) (10.9)

PC
(
(q, t), (q ′, t)

)

PC ((q, t))
> PC

(
(q ′, t)

)
(10.10)

PC
(
(q, t), (q ′, t)

)

PC (q ′, (q, t))
>

PC
(
(q ′, t)

)

PC(q ′)
(10.11)

i.e.,

PC
(
v = t | q ′, (q, t)

)
> PC

(
v = t | q ′) (10.12)

So no matter what the (list-conditioned, generalized) answer distribution of the
far-future community of mathematicians PC is, the probability that q ′ is true goes up
if q is true. Therefore under our supposition that the subjective beliefs of the current
community of mathematicians are given by the claims distribution PC , not only is
it Bayes-rational for them to increase their belief that q ′ is true if they find that q
is—modifying their beliefs this way will also lead them to mathematical truths (if we

possibility that the priors they use to make decisions differ from the real-world priors that determine
the expected loss of their decision-making.
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define “mathematical truths” by the claims distribution of the far-future community
of mathematicians).6

Stripped down, this inference pattern can be explained in two simple steps. First,
suppose that mathematicians believe that some hypothesis H would be more likely
to be true if a different hypothesis H ′ were true. Then if they find out that H actually
is true, they must assign higher probability to H ′ also being true. This general pattern
of reasoning, in which we adopt a greater degree of belief in one hypothesis because
it would lend credence to some other hypothesis that we already believe to be true,
is known as “abduction” [13], and plays a prominent role in actual mathematical
practice [21]. As we have just shown, it is exactly the kind of reasoning one would
expect mathematicians to use if they were Bayesian reasoners making inferences
about their own answer distribution A.

10.4.4 A Bayesian Formulation of the Value of Multiple
Proof Paths in Mathematical Reasoning

Real human mathematicians often have higher confidence that some question q is
a theorem if many independent paths of reasoning suggest that it is a theorem. To
understandwhy thismight beBayes-rational, as before, letC be the current claims list
of the community of mathematicians and let Q be the current list of open questions.
Let {{c}1, . . . {c}n} be a set of sets of claims, none of which are in C . By Bayes’
theorem,

PC
(
v = t | q, {c}1, . . . , {c}n

) = PC
({c}1, . . . , {c}n | (q, t

))
PC

(
v = t | q)

PC
({c}1, . . . , {c}n | q)

(10.13)
Expanding PC

({c}1, . . . , {c}n | q)
in the denominator gives

PC
(
v = t | q, {c}1, . . . , {c}n

)

= PC
({c}1, . . . , {c}n | (q, v = t)

)
PC

(
v = t | q)

PC
({c}1, . . . , {c}n | (q, v �= t)

)
PC

(
v �= t | q) + PC

({c}1, . . . , {c}n | (q, v = t)
)
PC

(
v = t | q) (10.14)

Next, for all 1 < i ≤ n define

6 Note that this argument doesn’t require the answer distribution of the far-future community of
mathematicians to be mistake-free. (The possibility that “correct” mathematics contains inconsis-
tencies with some nonzero probability is discussed below, in Sect. 10.5.) Note also that the simple
algebra leading from Eq. (10.7) to Eq. (10.12) would still hold even if q and/or q ′ were not cur-
rently an open question, and in particular even if one or both of them were in the current claims
list C . However, in that case, the conclusion of the argument would not concern the process of
abduction narrowly construed, since the conclusion would also involve the probability that the far-
future community of mathematicians overturns claims that are accepted by the current community
of mathematicians.
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αi := PC
({c}1, . . . , {c}i | (q, v = t)

)

PC
({c}1, . . . , {c}i−1 | (q, v = t)

) (10.15)

= PC
({c}i | {c}1, . . . , {c}i−1, (q, v = t)

)
(10.16)

βi := PC
({c}1, . . . , {c}i | (q, v �= t)

)

PC
({c}1, . . . , {c}i−1 | (q, v �= t)

) (10.17)

= PC
({c}i | {c}1, . . . , {c}i−1, (q, v �= t)

)
(10.18)

Note that due to Eqs. (10.16) and (10.18), we can write

αi

βi
= PC (v = t | q, {c}1, . . . , {c}i−1)

PC (v �= t | q, {c}1, . . . , {c}i−1)
(10.19)

So αi ≥ βi iff PC (v = t | q, {c}1, . . . , {c}i−1) ≥ 1/2. We say that all {c}i in the set
{{c}i } are proof paths if αi ≥ βi for all 1 < i ≤ n.

As an example, suppose that in fact for all 1 < i ≤ n,

PC
({c}i | {c}1, . . . , {c}i−1, (q, v = t)

) = PC
({c}i | (q, v = t)

)
(10.20)

PC
({c}i | {c}1, . . . , {c}i−1, (q, v �= t)

) = PC
({c}i | (q, v �= t)

)
(10.21)

In this case, {c}i is a proof path so long as the probability that the far-future community
of mathematicians concludes the claims in {c}i are all true is larger if they also
conclude that q is true than it is if they conclude that q is not true. Intuitively, if the
claims in {c}i are more likely to lead to the conclusion that q is true (i.e., are more
likely to be associated with the claim (q, t)) than to the conclusion that q is false,
then {c}i is a proof path.

Plugging Eqs. (10.15) and (10.18) into (10.14) gives

PC
(
v = t | q, {c}1, . . . , {c}n

)

= αn

βn

PC
({c}1, . . . , {c}n−1 | (q, v = t)

)
PC

(
v = t | q)

PC
({c}1, . . . , {c}n−1 | (q, v �= t)

)
PC

(
v �= t | q) + αn

βn
PC

({c}1, . . . , {c}n−1 | (q, v = t)
)
PC

(
v = t | q)

(10.22)

If we evaluate Eq. (10.14) for n − 1 rather than n and then rearrange it to evaluate
the numerator in Eq. (10.22), we get

PC
(
v = t | q, {c}1, . . . , {c}n

)

PC
(
v = t | q, {c}1, . . . , {c}n−1

)

= αn

βn

PC
({c}1, . . . , {c}n−1 | (q, v �= t)

)
PC

(
v �= t | q) + PC

({c}1, . . . , {c}n−1 | (q, v = t)
)
PC

(
v = t | q)

PC
({c}1, . . . , {c}n−1 | (q, v �= t)

)
PC

(
v �= t | q) + αn

βn
PC

({c}1, . . . , {c}n−1 | (q, v = t)
)
PC

(
v = t | q)

(10.23)
:= εn (10.24)
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Iterating gives

PC
(
v = t | q, {c}1, . . . , {c}n

) = PC
(
v = t | q, {c}1

) n∏

i=2

εi (10.25)

Next, note that αi ≥ βi implies that εi ≥ 1. So Eq. (10.25) tells us that if each {c}i
is a proof path, i.e., εi > 1 for all i > 1, then the posterior probability of q being true
keeps growing as more of the n proof paths are added to the set of claims accepted
by the far-future community of mathematicians.

This formally establishes the claim in the introduction, that the NDR machine
model of humanmathematicians lends formal justification to the idea that, everything
else being equal, a mathematical claim should be believed more if there are multiple
distinct lines of reasoning supporting that claim.

10.5 Measures over Multiverses

The mathematical universe hypothesis (MUH) argues that our physical universe is
just one particular formal system, namely, the one that expresses the laws of physics of
our universe [11, 15, 17–20]. Similar ideas are advocated by Barrow [3, 4], who uses
the phrase “pi in the sky” to describe this view. Somewhat more precisely, the MUH
is the hypothesis that our physical world is isomorphic to a formal system. A key
advantage of the MUH is that it allows for a straightforward explanation of why it is
the case that, to use Wigner’s [22] phrase, mathematics is “unreasonably effective”
in describing the natural world. If the natural world is, by definition, isomorphic
to mathematical structures, then the isometry between nature and mathematics is no
mystery; rather, it is a tautology.While theMUH is accepted (implicitly or otherwise)
by many theoretical physicists working in cosmology, some disagree with various
aspects of it; for an overview of the controversy, see Hut et al. [11].

Here, we adapt the MUH into the framework of NDR machines. Suppose we
have a claims distribution that is a delta function about some formal system S, in the
sense that the probability of any claim whose question does not specify the formal
system S is zero under that distribution. Similarly, suppose that any string ϕ which
is a WFF under S has nonzero probability under the claims distribution. (The reason
for this second condition is to ensure that the answer distribution, A(v | (S, ϕ)) =
P(v | (S, ϕ)), is well-defined for any ϕ which is a WFF under S.) We refer to the
associated pair (S,A) of any such claims distribution as an NDR world. Similarly,
we define an NDRworld instance of an NDRmachine as any associated pair (S, c)
where c is a maximal claims set of that NDR machine.

Intuitively, an NDR world is the combination of a formal system and the set of
answers that some NDR machine would provide to questions formulated in terms of
that formal system, without specifying a distribution over such questions. An NDR
world instance is a sample of that NDR machine. (It is not clear what a distribution
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over questions would amount to in a physical universe, which is whywe exclude such
distributions from both definitions.) A mistake-free NDR world is any NDR world
with a mistake-free answer distribution, and similarly for an NDR world instance.
Note that while a mistake-free NDR world can only produce an NDR world instance
that is mistake-free, mistake-free NDR world instances can be produced by NDR
worlds that are not mistake free.

Rephrased in terms of our framework, previous versions of the MUH hold that
our physical universe is a mistake-free NDR world. That is, the physical universe is
isomorphic to a particular formal system S which in turn assigns, with certainty, a
specific syntactic valence to each possible string in the alphabet of S. Our approach
can be used to generalize this in two ways. First, it allows for the possibility that
the physical world is isomorphic to an NDR world that is not mistake-free. Second,
it allows for the possibility that the physical world is isomorphic to an NDR world
instance that is not mistake-free. In such a world, some strings would have their
syntactic valence not because of the perfect application of the rules of some formal
system, but rather because of the stochastic application of those very rules.

Thus, our augmented version of the MUH allows for the possibility that mathe-
matical reality is fundamentally stochastic. So in particular, the mathematical reality
governing our physical universe may be stochastic. This is similar to the fact that
physical reality is fundamentally stochastic (or at least can be interpreted that way,
under some interpretations of quantum mechanics).

An idea closely related to the MUH as just defined is the mathematical multiverse
hypothesis (MMH).TheMMHsays that somenon-singleton subset of formal systems
is such that there is a physical universe that is isomorphic to each element of that
subset. Each of these possible physical universes is taken to be perfectly real, in
the sense that the formal system to which that universe is isomorphic is not just
the fictitious invention of a mathematician, but rather a description of a physical
universe. In this view, the world that we happen to live in is unique not because it
is uniquely real, but because it is our actual world. Following Lewis [12], defenders
of the MMH understand claims about ‘the actual universe’ as indexical expressions,
i.e. expressions whose meaning can shift depending on contingent properties of their
speaker (pp. 85–86).

A central concern of people working on the MMH (e.g. Schmidhuber [15] and
Tegmark [20]) is how to specify a probability measure over the set of all universes,
which we will refer to as anMMHmeasure. Implicitly, the concern is not merely to
specify the subjective degree of belief of us humans aboutwhat the laws of physics are
in our particular universe. (After all, the MMHmeasures considered in the literature
assign nonzero prior probability to formal systems that are radically different from
the laws of our universe, supposing such formal systems are just as “real” as the one
that governs our universe.) Rather theMMHmeasure is typically treated asmore akin
to the objective probability probability distributions that arise in quantummechanics,
as quantifying something about reality, not just about human ignorance.

In existing approaches to MMH measures, it is assumed that any physical real-
ity is completely described by a set of recursive rules that assign, with certainty, a
particular syntactic valence to any string. As mentioned above, this amounts to the
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assumption that all physical universes are mistake-free NDR worlds. So the con-
ventional conception of an MMH measure is a distribution over mistake-free NDR
worlds, i.e., over NDR world instances that are mistake-free. A natural extension, of
course, is to have the MMHmeasure be a distribution over all NDRworld instances,
not just those that are mistake-free. A variant would be to have the MMH measure
be a distribution over all NDR worlds, not just those that are mistake-free. Another
possibility, in some ways more elegant than these two, would be to use a single NDR
machine to define a measure over NDR world instances, and identify that measure
as the MMH measure.

10.6 Future Research Directions

There are many possible directions for future research. For example, in general, for
any q produced with nonzero probability, the PTM underlying the NDR machine of
the community of mathematicians will cause the answer distribution P(v | q) not to
be a delta function about one particular valence v. This is also true for distributions
concerning the current community of mathematicians: letting ((q, v),C) be the cur-
rent sequence of claims actually accepted by that community, and supposing it was
produced by k iterations of the underlying PTM, Pk(v | q,C) need not equal 1. In
other words, if we were to re-sample the stochastic process that resulted in the cur-
rent claims list of the community of mathematicians, then even conditioning on the
question q being on that claims list, and even conditioning on the other, earlier claims
in that list, C , there may be nonzero probability of producing a different answer to
q from the one actually accepted by the current community of mathematicians.

This raises the obvious question of how Pk(v | q,C)would change if wemodified
the update distribution of the PTM underlying that NDRmachine. In particular, there
are many famous results in the foundations of mathematics that caused dismay when
they were discovered, starting with the problems that were found in naive set theory,
through Godel’s incompleteness theorems on to the proof that both the continuum
hypothesis and its negation are consistent with the axioms of modern set theory. A
common feature of these mathematical results is that they restrict mathematics itself,
in some sense, and so have implications for the answers to many questions. Note
though that all of those results were derived using deductive reasoning, expressible in
terms of a formal system. So they can be formulated as claims by an NDR machine.
This raises the question of how robust those results are with respect to the noise
level in that NDR machine. More precisely, if those results are formulated as claims
of the NDR machine, and some extremely small extra stochasticity is introduced
into the PTM underlying the NDR machine, do the probabilities of those results—
the probability distribution over the valences associated with the questions—change
radically? Can we show that the far-ranging results in mathematics that restrict its
own capabilities are fragile with respect to errors in mathematical reasoning? Or
conversely, can we show that they are unusually robust with respect to such errors?
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As another example of possible future research, the field of epistemic logic is
concerned with how to formally model what it means to “know” that a proposition
is true. Most epistemic logic models require that knowledge be transitive, meaning
that if one knows some proposition A, and knows that A ⇒ B, then one knows B [1,
6]. Such models are subject to an infamous problem known as logical omniscience:
supposing only that one knows the axioms of standard number theory and Boolean
algebra, by recursively applying transitivity it follows that one “knows” all theorems
in number theory—which is clearly preposterous.

Note though that any such combination of standard number theory and Boolean
algebra is a formal system. This suggests that we replace conventional epistemic
logic with an NDR machine version of epistemic logic, where the laws of Boolean
algebra are only stochastic rather than iron-clad. In particular, by doing that, the
problem of logical omniscience may be resolved: it may be that for any non-zero
level of noise in the NDR machine, and any 0 < ε < 1, there is some associated
finite integer n such that one knows no more than n theorems of number theory with
probability greater than ε.

As another example of possible future work, the models of practicing mathe-
maticians as NDR machines introduced in Sect. 10.4 are very similar to the kind of
models that arise in active learning [16], a subfield of machine learning. Both kinds
of model are concerned with an iterated process in which one takes a current data
set C , consisting of pairs of inputs (resp., questions) and associated outputs (resp.,
valences); usesC to suggest new inputs (resp., questions); evaluates the output (resp.,
valence) for that new input (resp., question); and adds the resulting pair to the data
set C . This formal correspondence suggests that it may be fruitful to compare how
modern mathematical research is conducted with the machine learning techniques
that have been applied to active learning, etc.

In this regard, recall that the no free lunch theorems are a set of formal bounds
on how well any machine learning algorithm or search algorithm can be guaranteed
to perform if one does not make assumptions for the prior probability distribution
of the underlying stochastic process [23, 25]. Similar bounds should apply to active
learning. Given the formal correspondence between the model of mathematicians
as NDR machines and active learning algorithms, this suggests that some version
of the NFL theorems should be applicable to the entire enterprise of mathematics
research. Such bounds would limit how strong any performance guarantees for mod-
ern mathematical research practices can be without making assumptions for the prior
distribution over the possible answer distributions of the infinite-future community
of mathematicians, P(A).

10.7 Conclusion

Starting from thediscoveryof non-Euclideangeometry,mathematics has beengreatly
enrichedwhenever it has weakened its assumptions and expanded the range of formal
possibilities that it considers. Following in that spirit of weakening assumptions,
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we introduced a way to formalize mathematics in a stochastic fashion, without the
the assumption that mathematics itself is fully deterministic. We showed that this
formalism justifies some common heuristics of actualmathematical practice.We also
showed how it extends and clarifies some aspects of the multi-universe hypothesis.

A Probabilistic Turing Machines

Perhaps the most famous class of computational machines are Turing machines. One
reason for their fame is that it seems one can model any computational machine that
is constructable by humans as a Turing machine. A bit more formally, the Church-
Turing thesis states that “a function on the natural numbers is computable by a
human being following an algorithm, ignoring resource limitations, if and only if it
is computable by a Turing machine.”

There are many different definitions of Turing machines (TMs) that are “com-
putationally equivalent” to one another. For us, it will suffice to define a TM as a
7-tuple (R,�, b, v, r∅, r A, ρ) where:

1. R is a finite set of computational states;
2. � is a finite alphabet containing at least three symbols;
3. b ∈ � is a special blank symbol;
4. v ∈ Z is a pointer;
5. r∅ ∈ R is the start state;
6. r A ∈ R is the halt state; and
7. ρ : R × Z × �∞ → R × Z × �∞ is the update function. It is required that for

all triples (r, v, T ), that if we write (r ′, v′, T ′) = ρ(r, v, T ), then v′ does not
differ by more than 1 from v, and the vector T ′ is identical to the vectors T for
all components with the possible exception of the component with index v7;

We sometimes refer to R as the states of the “head” of the TM, and refer to the third
argument of ρ as a tape, writing a value of the tape (i.e., of the semi-infinite string
of elements of the alphabet) as T .

Any TM (R, 	, b, v, r∅, r A, ρ) starts with r = r∅, the counter set to a specific
initial value (e.g, 0), and with T consisting of a finite contiguous set of non-blank
symbols, with all other symbols equal to b. The TM operates by iteratively applying
ρ, until the computational state falls in r A, at which time it stops, i.e., any ID with
the head in the halt state is a fixed point of ρ.

If running a TM on a given initial state of the tape results in the TM eventually
halting, the largest blank-delimited string that contains the position of the pointer
when the TM halts is called the TM’s output. The initial state of T (excluding the
blanks) is sometimes called the associated input, or program. (However, the reader

7 Technically the update function only needs to be defined on the “finitary” subset ofR × Z × �∞,
namely, those elements of R × Z × �∞ for which the tape contents has a non-blank value in only
finitely many positions.
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should be warned that the term “program” has been used by some physicists to mean
specifically the shortest input to a TM that results in it computing a given output.)
We also say that the TM computes an output from an input. In general, there will be
inputs for which the TM never halts. The set of all those inputs to a TM that cause
it to eventually halt is called its halting set.

The set of triples that are possible arguments to the update function of a given
TM are sometimes called the set of instantaneous descriptions (IDs) of the TM.
Note that as an alternative to the definition in (7) above, we could define the update
function of any TM as a map over an associated space of IDs.

In one particularly popular variant of this definition of TMs the single tape is
replaced by multiple tapes. Typically one of those tapes contains the input, one
contains the TM’s output (if and) when the TM halts, and there are one or more
intermediate “work tapes” that are in essence used as scratch pads. The advantage of
using this more complicated variant of TMs is that it is often easier to prove theorems
for such machines than for single-tape TMs. However, there is no difference in their
computational power. More precisely, one can transform any single-tape TM into
an equivalent multi-tape TM (i.e., one that computes the same partial function), as
shown by Arora and Barak [2].

A universal Turing machine (UTM), M , is one that can be used to emulate any
other TM. More precisely, in terms of the single-tape variant of TMs, a UTM M has
the property that for any other TM M ′, there is an invertible map f from the set of
possible states of the tape of M ′ into the set of possible states of the tape of M , such
that if we:

1. apply f to an input string σ ′ of M ′ to fix an input string σ of M ;
2. run M on σ until it halts;
3. apply f −1 to the resultant output of M ;

then we get exactly the output computed by M ′ if it is run directly on σ ′.
An important theorem of computer science is that there exist universal TMs

(UTMs). Intuitively, this just means that there exists programming languages which
are “universal”, in that we can use them to implement any desired program in any
other language, after appropriate translation of that program from that other lan-
guage. The physical CT thesis considers UTMs, and we implicitly restrict attention
to them as well.

Suppose we have two strings s1 and s2 where s1 is a proper prefix of s2. If we
run the TM on s1, it can detect when it gets to the end of its input, by noting that the
following symbol on the tape is a blank. Therefore, it can behave differently after
having reached the end of s1 from how it behaves when it reaches the end of the first
�(s1) bits in s2. As a result, it may be that both of those input strings are in its halting
set, but result in different outputs. A prefix (free) TM is one in which this can never
happen: there is no string in its halting set that is a proper prefix of another string
in its halting set. For technical reasons, it is conventional in the physics literature to
focus on prefix TMs, and we do so here.

The coin-flipping distribution of a prefix TM M is the probability distribution
over the strings in M’s halting set generated by IID “tossing a coin” to generate
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those strings, in a Bernoulli process, and then normalizing. So any string σ in the
halting set has probability 2− | σ | /� under the coin-flipping prior, where � is the
normalization constant for the TM in question.

Finally, for our purposes, a Probabilistic Turing Machine (PTM) is a conven-
tional TM as defined by conditions (1)–(7), except that the update function ρ is
generalized to be a conditional distribution. The conditional distribution is not arbi-
trary however. In particular, we typically require that there is zero probability that
applying such an update conditional distribution violates condition (7). Depending
on howwe use a PTM tomodelNDRmachines, wemay introduce other requirements
as well.
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Chapter 11
Computational Complexity as Anthropic
Principle: A Fable

Rick Searle

Give me a place to stand and with a lever I will move the whole
world.
Archimedes.
I am a strange loop.
Douglas Hofstadter.

In the early 19th century the polymath and physicist Pierre Simon de Laplace imag-
ined a demon. Laplace posited that a super-intellect in possession of all the data of
nature, with the application of a single equation, would possess complete knowledge
of not only the past, but the entirety of the future as well. What we have learned
in the two centuries since he conceived of his demon is that its existence is almost
certainly impossible. The laws of physics themselves prohibit the existence of any
such super-intellect. And while that fact, in and of itself, may seem like a trivial
observation there may be a way in which it is telling us something deep about the
universe in which we live. Rather than merely serve as an ultimate limit to the human
pursuit of knowledge, we might instead use the impossibility of Laplacian demons
as a tool to infer aspects of nature beyond what we currently know.

However, I will first need to demonstrate how we learned that Laplacian demons
are impossible in the first place. Permit me to do so in the most engaging way I know,
namely, in the form of a fantastical story.

11.1 Laplace Builds a Demon

For now, he was safe in the tranquility of the countryside. The very moment the
rumors of yet another revolution had begun circulating in Paris, Laplace had packed
up his family and fled. Who knew if another Terror would unleash its angry mobs
upon the citizens of France?Whoknew if the reactionaries gathering under the banner
of Bonaparte, fresh from his plundering of Egypt, might themselves stage a coup and
hurl the country towards an even darker fate, the crowd brought to the point of frenzy
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by a demagogue and enthroning him as dictator—like they did long ago with Caesar
in Rome?

Years earlier he had seen the lives of his friends Condorcet and Lavoisier lost
to witch—hunts against imaginary enemies. In light of this he had done everything
possible to avoid the debates of politics and focused himself exclusively on problems
he believed to be free from the foibles of human emotion and judgement—the ques-
tions of science. There was no knowing if this indifference might itself eventually
lead to him being labeled an enemy by either the revolutionaries or the reactionaries.
Might the choice to do nothing itself be deemed a choice? The revolution of the
heavenly bodies was deterministic, predictable, clocklike. The revolutions of human
beings, however, were stochastic, terrifying, shrouded in perpetual uncertainty. If
only he could pierce even part of the veil.

It was during the height of his anxiety that Laplace was given the scroll. Into the
hands of a scholar at the Académie des Sciences had come an ancient document
from the Ottoman land of Crete that had proven indecipherable to all who had tried
to crack its code. It appeared to be a sort of blueprint, but the exact nature or purpose
of the machine it described was utterly mysterious. It certainly was written using
some form of sophisticated mathematics, though it utilized the geometric reasoning
of the Greeks rather than the modern algebra, and for this reason the Académie had
turned to Laplace.

At first a mere useless puzzle to secure needed distraction, it was fear that brought
forth his epiphany. Startled awake one evening by a loud crack of thunder, Laplace,
for once, could remember his dream. The storm must have raged for some time
before it awakened him. Asleep, the lightning had echoed in his unconscious mind
with visions of entrails, murmurations, fractal scars on oracle bones. Awake, he now
realized that the device the scroll described was a sort of predictor—a means of
calculating the future based upon a kind of geometric calculus built of branching
patterns.

Was this not a matter of great resonance? The ancient Greeks like themoderns had
replaced magic with science but found the prospect of divining the future irresistible.
Here was their attempt to transform the superstition of the Oracle at Delphi into
something real and based on the true laws of nature.Was it not at least a possibility that
the blueprint he had before him had emerged from the mind of the great Archimedes
himself, that what it described was a kind of lens for peering through the opacity of
the natural world and seeing through to the logical structure that lie beneath?

At dawn he set about building the instrument. He sent orders for a multitude of
bizarre gears and levers to the finest machinists in Paris. It took him the better part of
a year to complete it—punctuated by what proved only temporary frustrations and
failures.

When completed the mechanism filled almost a large room, the greatest extent of
whichwas takenupby a large sort of pendulum, in its center a thin needlewhichgently
glanced a circular layer of fine sand. Questions to the oracle were posed by manip-
ulating a series of nobs upon which were inscribed the script of the ancient Greek
alphabet with letters used for numbers in the Milesian style. Pulling a lever returned
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the circle of sand to its prior, pristine state—smooth, symmetrical, featureless—and
from the viewpoint of any particular grain of sand—perfectly random.

What perplexed and frustrated him was that the answers to his queries came back
in the form of inscrutable scribbles drawn upon the sand by the pendulum. Laplace
cursed himself for having done something wrong, but then he noticed the regularity
of the drawings.

He had an idea. He took a pair of dice and asked through the dials for a prediction
of their outcome before he threw them. The instrument then drew lines in the style of
branched tallying. Its predictions always perfectly matching the number of the dice
that Laplace would throw. If it drew a branch with three lines followed by a branch
with two, his roll would inevitably be a three and a two.

Other experiments came to him. In the habit of skipping morning and afternoon
meals as he became lost in his work, his wife would often ask one of the house
servants to bring him something to eat during the late afternoon. What would be
brought was always a surprise to Laplace, his sustenance depending on what was
available in the kitchen, a question which he found to be of no interest. He himself
couldn’t predict what might be sent to him but could the machine?

“What will Marie Charlotte send me today?” he asked by pulling at the nobs and
levers. Upon entering his question, the device drew a horizontal line that branched in
two and then moved outward then inward until the lines had formed what were three
distinct groups of shapes only to end by joining together and stopping. When the
maid appeared sometime later with a plate of bread and cheese along with a small
bottle of wine, it stuck Laplace that the shapes in the sand could very well represent
the meal he had before him.

Laplace took a slug from the bottle and sat down dizzy with confusion. “Could
it be a form of pictograph?” he asked aloud with the maid having left and only the
mute contraption in front of him to hear. At once he bolted from his lab and in the
direction of his study leaving his food for the rats.

With his copy of the Encyclopédie Méthodique before him Laplace began
searching through all the known versions of the world’s pictographic scripts. None of
the shapes he had seen fit, neither the rectangular contortions of the ancient Chinese
script or its many derivatives, nor did any of the other notable variants of picture
language such as Cuneiform or Mesoamerican. It was thus in a sense of near hope-
lessness that he looked at themost infamous, and until very recently, least understood
pictographic language of them all—Egyptian hieroglyphs.

To his amazement the drawings did indeed appear to conform to the shapes of
well-known hieroglyphs. The ancient Egyptian word for bread composed of a string
of pictures—foot, oval, bird, hand—clearly matched the contours of the lines in the
sand. The device was writing in the language of the pharaohs.

This was surely the hand of fate for it was at about this time that rumor had it
that amidst the horde of treasures the stout Corsican had looted from Egypt was a
Ptolemaic stele upon which was inscribed a code for translating hieroglyphics into
ancient Greek. Few scholars had had the opportunity to study the object, but a man
who had was the Egyptologist Jean-François Champollion, who (again), fortune
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would have it, had sought refuge from the political turmoil of the capital in the exact
same village as Laplace himself.

Laplace commandeered one of his servants to call upon Champollion and bring
him to the estate with utmost haste. Within only a few hours the Egyptologist had
arrived, his look laying bare his anxiety, for surely he had thought such a call for aid
was a harbinger of ill fortune for refugees from political dangers such as himself.

Champollion was quite comforted (perhaps even annoyed) when Laplace
explained the reason he had called upon him in such an abrupt manner. That it
had nothing to do with Napoleon’s coup d’état or the Parisian riots, but with the
fabulous device he had built.

Demonstration of the instrument soon made Champollion doubt that what he was
seeing was a mere magic trick, though the air of the occult that surrounded its design
and powers led him to nickname themachine the demon—a termhe used alternatively
with a tone of derision or fear. A firm believer in the sapientia antique, he agreed to
serve as a kind of medium for the prognostications of the machine and sent for his
notebook on the Egyptian stele so that he could serve as a translator for Laplace.

As the real investigation was about to begin Champollion pleaded with Laplace
to ask the demon questions on the future of their beloved France. What would come
of the revolution and the power mad reaction that had arisen in its wake? What fate,
good or ill, lie before them? All of these entreaties Laplace brushed aside responding
almost in the style of a soliloquy on the unpredictability of human affairs as if it were
a speech written in advance.

The intractability of human behavior, Laplace lectured, was not a result of indi-
viduals being free, for they were no freer than the gears of a clockwork. The problem
was that the gears themselves were broken and flawed in an uncountable number
of idiosyncratic ways. A working clock is by its very definition predicable. What is
man but a broken clock?

If the demon was deemed incapable of predicting the fate of the nation might it
not still be capable of discerning his own fate wondered Champollion, and begged
Laplace to inquire of the demon whether or not they should flee France for the safety
of England.

Something about the tone of Jean-François, or the look of desperation on his
face, weakened Laplace’s commitment to ask the device scientific questions alone.
He had been reminded of his own fear, and tempted by the possibility of assuaging
his anxiety by knowing his fate. Later Laplace would recall that the course of what
transpired was utterly contingent, one of an uncountable multitude of possible paths
into the future that might have been followed instead, but like a play with alternative
endings, only one could be chosen.

“Should they flee toEngland?”Laplace asked by turning the knobs ofGreek letters
and waited as the device snapped to life and began sketching out its answer in the
sand as the Egyptologist looked on in astonishment. Champollion paged frantically
through his note book desperate to match the branching lines emerging before him
with his drawings of the glyphs from the stele.

“What is its answer?” Laplace eventually barked in impatience.
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“I believe it says that it depends on the weather,” the Egyptologist responded
quizzically.

“Ifwe should fear storms in the channel, then, I’ll just ask it to predict theweather.”
Laplace replied, pulling the lever to clear the sand, and spelling out his question with
the nobs. “And what weather does it predict?”

Thedevice slowly drewout another series of branching shapeswhichChampollion
translated using his notes as “incalculable”. This shape was followed by what he at
first thought was an ankh symbol, but then realized it wasn’t a hieroglyphic at all,
but a picture of a butterfly.

“Unknowable because of butterflies? I do not know what it means,” Champollion
blurted out.

“The problem of three bodies!” Laplace exclaimed.
“What?”
“The position of three orbiting bodies cannot be calculated exactly whenever

infinitesimal differences inmeasurement need to be taken into account. The fluttering
of a butterfly’s wings can give birth to storms.”

“There are limits to reason?” Champollion wondered aloud. “Might it at least
calculate the best way for us to make our escape, given that the location of the
partisans is unknown and always changing?” he asked. At which Laplace again
began pulling at the lever and nobs. Once again the oracle responded by drawing out
symbols that meant unknowable.

“I have lost myself!”, Laplace bellowed. “The answer to our questions depends
upon knowledge shrouded in evenmurkier regions than the invisiblemolecules deter-
mining the weather - the darkness of the human heart. Much better to ask of the
instrument questions susceptible to reason alone.”

At that moment Champollion thought he could hear the sound of cannons far off
in the distance. He said nothing as Laplace appeared to pay no attention. Perhaps he
was hearing things. The clanking and whirling of the enormous machine filled him
with a sense of déjà vu. He remembered a visit to his friend—the great machinists
John JosephMerlin—in the golden days before the time of revolution andwar.Merlin
displayed for him then his new automata—a gigantic clock, which he claimed ran,
and would always run, from the power of the air alone. At the time had not grasped
the implications of such an invention thinking it a mere plaything, but now its true
import came to him and he said to Laplace.

“I have often wondered how we might have avoided a revolution such as this.
What conditions might have prevented the whole of society from crumbling like a
castle made of sand? As Rousseau has taught us, it was inequality that caused it.
And what causes inequality but the want of surplus in society, a bare minimum left
over from basic needs seized upon by those with power. Only a vast increase in the
surplus would free us from this state, which might be fulfilled by machines capable
of perpetual motion. Ask your demon whether such machines are possible.”

At this Laplace entered the question, but instead of beginning its drawing the
machine merely circled its pendulum above the sand as if it were unable to make up
its mind on where to begin.
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Champollion remembered how shocked he was by the scale of the automaton
built by Merlin, and how the machinist had claimed that the devise needed to be of
such scope were it to run perpetually, and he said to Laplace, “Perhaps it’s a matter
of size, if the machine were bigger it might answer us quickly or at all?” At which
Laplace immediately began to input the question.

“How much bigger would you need to be to answer my question within the span
of a day?” The machine drew out its answer.

Champollion again scrambled through his notes, finding the sketch before him
nonsensical.

“It’s saying its circle would need to have a diameter of over three million river
units.”

“What is that in kilometers?”
“Ten and one half.”
“Damn it, that’s over 30,000,000 km!” Laplace, said having quickly ran through

the calculation in his head, and then he remembered that he had recently stumbled
across a similar number while researching his Exposition du système du monde. This
figure was 250 times the diameter of the sun, a mass which he had surmised was so
great that even light could not escape the pull of its gravity.

A grimace appeared across Laplace’s face, and he felt himself unmoored. His
mind raced with the perverse, unanticipated realization that the world’s form might
be the inverse of his prior assumptions. Perhaps it was not just humanity that was
stochastic and unpredictable, but, in some deep sense, nature itself. That the child,
rather than being flawed, was instead a perfect reflection of its parent—condemned
to a terrifying uncertainty.

Laplace felt a wave of anxiety pass over him as he entered his last question. “Even
should we never know the future course of events it is comfort enough to know at
bottom that they have been determined in advance - that the world is structured
according to the laws of some universal intellect far beyond human comprehension.
Tell me, oh ancient oracle- is the world at bottom determined or random?” And the
machine answered:

“Random.”
Laplace felt himself destroyed, as if the entireworld he had constructed for himself

had proven a lie and was disappearing through his fingers like sand. And then he
remembered the paradox of Epimenides he had learned in his youth. “How can this
cursed machine know that for all time what we ask of it is unknowable? It is true
what they say - all Cretans are liars!”

11.2 The Science that Destroys Demons

In my imagined tale, Laplace’s attempt to build a super-intellect is undone by five of
the deepest discoveries of science over the last two centuries: deterministic chaos,
computational complexity, the Black hole information paradox, and the paradox of
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self-reference at the heart of both Gödel’s Incompleteness Theorem and Turning’s
notion of uncomputability. I will discuss each in turn.

In the 20th century Edward Lorenz formalized the notion of deterministic chaos,
which had been circulating at least since the 19th century genius Henri Poincaré had
shown the three body problem could not be solved exactly. “Shadows” of possible
trajectories would have to suffice [1]. At bottom the world might be deterministic,
but we are unable to predict its exact course for any but the simplest systems. For
dynamic and complex phenomenon prediction over long time scales requires infinite
precision in terms of data. Seemingly inconsequential differences in measurement
have a way of rippling through systems giving rise to radically different outcomes
as Lorenz discovered in his investigations of the weather [2].

Yet the limitations on a super-intellect imposed by the need to gather ever more
precise data pale in comparison to the question of whether that data can even be
processed in the first place. It’s here where we encounter the discoveries of computer
science, especially since the 1970s [3]. Computational complexity is formally a
branch of mathematics, but is perhaps unique among the branches in that it takes the
reality of the constraints of time and space seriously.

The problem of finding the best escape route that my imagined Laplace poses to
the demon is a variant of what’s called “The Canadian Traveler’s Problem” (itself
a harder version of the infamous “Traveling Salesman Problem.”) [4]. It is not that
these and other examples of NP complete problems are unsolvable, it is that the time
needed to solve them grows exponentially with the size of the problem itself.

Not even quantum computers are expected to be able to solve NP complete
problems in polynomial time, let alone problems above that complexity class. The
computer scientist Scott Aaronson has gone so far as to proposewhat he calls ‘TheNP
Hardness Conjecture’, that states “There is no physical process to solve NP complete
problems in polynomial time” [5].

The implications of computational complexity become extremely important for
prediction (and therefore for physics) in the case of black holes and thermodynamics.
As Aaronson points out, it’s tempting to think we can solve NP complete problems in
polynomial time by just throwingmore resources at them.We can just use a bigger or
faster computer. Yet both of these solutions merely swap one exponential for another.
Exponential time for exponential energy. At some point the energy needs get so great
that the concentrated mass of the computer exceeds the Schwarzschild Radius and
collapses to form a black hole [6].

If the physics of black holes is a unique environment where some combined
version of quantum mechanics and general relativity becomes necessary, then for
over a generation, physicists have been uncovering clues that such a unificationmight
come in part from applying lessons learned in the field of computational complexity.

Since the work of Jacob Bekenstein we’ve known that black holes contain the
maximum information density. The Bekenstein Bound means that no machine we
build will ever have more than a finite amount of memory [7]. As much later pointed
out by Patrick Hayden and John Preskill, limits on computation may be a way to
solve the famous Black Hole Information Paradox. The information content of a
black hole is equally inaccessible both inside and outside the horizon. The inside
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because of gravity and the outside because the information has become so scrambled
[8] it would be impossible within the lifetime of the black hole to decode it [9].
Perhaps not truly random, but certainly pseudo-random [10].

Still we don’t need to go to the level of black holes to confront instances where
computational complexity plays a deep role in physics. The other famous demon
in physics was that of James Clerk Maxwell. Were a Maxwellian demon that could
effortlessly separate hot and cold particles in a box possible, we would have created
a version of the perpetual motion machine dreamed of since antiquity.

The reason why such a machine was impossible wasn’t understood until Rolf
Landauer re-conceptualized the paradox in terms of computation. Any Maxwellian
demon would need to erase its memory, which requires energy and in the process
would offset any energy gained from effortlessly separating its particles [11]. Ideas
such as these borrowed from computational complexity may ultimately help physics
to resolve the asymmetry of time in the classical and quantum worlds [12].

We haven’t yet even really touched upon quantum mechanics where not only
is computational complexity informing physics, but physics is revolutionizing
computer science itself. In just the last decade quantum computers have gone from
science fiction to working models. More sophisticated versions of these machines,
or even the discovery that we are incapable of building them, may finally allow
us to resolve the dispute between the different versions of quantum mechanics—
Schrodinger’s, Heisenberg’s or Feynman’s—all of which make identical predictions
but are built on radically different ontologies [6]. Quantum computers may also
give us some indication whether the Many Worlds Interpretation is real or a mirage
[13]. Computational complexity has already indicated that Bohmian Mechanics is
intractable, and thus might give us a clue that hidden variable theories must be wrong
[14].

More astounding is the impact the study of quantummechanics has had on compu-
tational complexity itself. The realization that quantum entanglement can be used
as a resource for computation in the form of Multi-Prover Interactive Proofs (MIP*)
has resulted in an exciting marriage of the two fields of study the most profound of
which seems to show that many forms of uncomputability might be overcome with
the resource of infinite entanglement.1 Unfortunately, this is not a resource found in
the universe in which we live.

There have by nowbeen somany instances ofwhere the impossibility of Laplacian
demons has allowed us to infer aspects of the universe that physicists might want to
start thinking about using computational complexity itself as away to infer constraints
in the way they now use the anthropic principle. Any theory that would permit P =
NP as in faster than light communication or time travel (closed time like curves), or
which gave rise to memory or speed capacities beyond the Bekenstein Bound, could
be bracketed as unlikely for that very reason.

1 Ji et al. [15]. An updated version of the above cited paper corrects for an error and shows that
*MIP= RE still stands. See: Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, Henry
Yuen “Quantum soundness of the classical low individual degree test” https://arxiv.org/abs/2001.
04383.

https://arxiv.org/abs/2001.04383
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Still none of this will answer what is perhaps the ultimate question when it comes
to the role of computation in our world, the question that lies at the heart of our
discovery of computation itself—is the world at bottom deterministic or random (in
the sense of Wheeler’s “law without law”) [16]? Everything so far would appear
to suggest that it is a finely tuned balance of both [17]. What makes the question
perhaps impossible to answer is the dilemma of self-reference which is not a problem
we can solve. We try to look at the universe from an Archimedean point outside of it
and yet are inescapably trapped within, compelled to choose the role we play while
living here. If fate exists then here is where it can be found, for we are forced to
confront some version of Gödel’s Incompleteness or Turing’s Halting Problem in
the radically different worlds of black holes, quantum measurements, or even when
we try to understand what it means to be an agent and a self [18].
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