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1 Introduction

Classical trajectory chemical dynamics simulations are widely and powerful tools
that have been used to study reaction dynamics since the 1960s [1]. In contrast
to the variational transition state theory (VTST) and reaction path Hamiltonian
methods [2], they provide much greater insight into the dynamics of reactions for the
classical equations of motion of the atoms are numerically integrated on a potential
energy surface (PES). The traditional approach uses an analytic function that is
gotten by fitting ab initio and/or experimental data [3] to construct the surface.
Regarding a small number of atoms or a high degree of symmetry [4, 5], it is
practical. Researchers recently proposed additional approaches and algorithms for
representing PESs. Wang and Karplus firstly demonstrated that the trajectories may
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be integrated “on the fly” when the potential energy and gradient are available
at each point of the numerical integration according to an electronic structure
theory calculation. During the numerical integration, the method directly calculates
the local potential and gradient under an electronic structure theory in a “direct
dynamics” simulation. However, regarding a high-level electronic structure theory,
the computation of direct dynamics simulations become quite expensive. Thus, it
is important to use the largest numerical integration step size when maintaining
the accuracy of the trajectory. In order to use a larger integration step, Helgaker
et al. adopt the second derivative of the potential (Hessian). After the Hessians
are gotten directly by an electronic structure theory, using a second-order Taylor
expansion, a local approximation PES can be constructed and the trajectories can
be approximately calculated. For local quadratic potential is only valid in a small
region (named a “trust radius”), the equations of motion are only integrated under
the trust radius. The new potential, gradient, and Hessian, calculated again at the
end of the trust radius, define a new local quadratic PES where the integration of the
equations of motion is successive. Millam et al. used a fifth-order polynomial or a
rational function to fit the potential between the potential, gradients, and Hessians at
the beginning and end of each integration step. It provides a more accurate trajectory
in the trust region and calculates larger integration steps. That involves a predictor
step, the integration on the approximate quadratic model potential. The following
step, the fitting on the fifth-order PES between the starting point and the end point
in the trust radius, is also called the “corrector step.” It is named the Hessian-based
predictor–corrector integration scheme. Around it, some scholars proposed their
own methods. Because of extrapolation, errors in prediction–correction algorithms
grow rapidly, usually four predictions are followed by an ab initio calculation. This
limits the improvement of computing performance.

The successful application of the prediction of deep learning in computational
chemistry greatly expanded its application. Deep learning is a machine learning
algorithm, not unlike those already in use in various applications in computational
chemistry, from computer-aided drug design to materials property prediction [6].
Deep learning models achieved top positions in the Tox21 toxicity prediction
challenge issued by NIH in 2014 [7]. Among some of its more high-profile
achievements include the Merck activity prediction challenge in 2012, where a deep
neural network not only won the competition and outperformed Merck’s internal
baseline model, but did so without having a single chemist or biologist in their team.
Machine learning (ML) models also can be used to infer quantum mechanical (QM)
expectation values of molecules, based on reference calculations across chemical
space [8]. Such models can speed up predictions by several orders of magnitude,
demonstrated for relevant molecular properties such as polarizabilities, electron
correlation, and electronic excitations [9]. LSTM is an artificial recurrent neural
network (RNN) architecture used in the field of deep learning. The prediction of
LSTM has been widely used in different fields [10, 11].

In this chapter, we explore the idea of integrating LSTM layer with chemistry
dynamics simulations to enhance the performance in trust radius. This idea is
inspired by the recent development and use of LSTM in material simulations
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and scientific software applications [12]. We employ a particular example, H2O
molecular dynamics simulation on NWChem/Venus (cdssim.chem.ttu.edu) package
[13] to illustrate this idea. LSTM has been used to predict the energy, location,
and Hessian of atoms. The results demonstrate that LSTM-based memory model,
trained on data generated via these simulations, successfully learns preidentified key
features associated with the energy, location, and Hessian of molecular system. The
deep learning approach entirely bypasses simulations and generates predictions that
are in excellent agreement with results obtained from explicit chemistry dynamics
simulations. The results demonstrate that the performance gains of chemical
computing can be enhanced using data-driven approaches such as deep learning
which improves the usability of the simulation framework by enabling real-time
engagement and anytime access.

This chapter is organized as follows. Section 2 presents the idea that integrate
chemistry dynamics simulations with LSTM. Section 3 shows the experiment
setting and results on H2O molecular dynamics simulation, followed by data
analysis. Section 3 presents the conclusions and lays out future work.

2 Methodology

2.1 Prediction–Correction Algorithm

In chemistry dynamics simulation, Hessian’s calculation consumes most of the CPU
time because Hessian is the third derivative of the position. Hessian updating is a
technique frequently used to replace electronic structure calculations of the Hessian
in optimization and dynamics simulations. Existing generally applicable Hessian-
update schemes, for example, the symmetric rank one (SR1) scheme, Powell’s
symmetrization of Broyden’s (PSB) method, the scheme of Bofill, the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) scheme, the scheme of Farkas and Schlegel,
and other Hessian update schemes, are based on the Eq. (1)

H (Xk+1) (Xk+1–Xk) = G(Xk+1) –G(Xk) (1)

where G(X) and H(X), respectively, denote the gradient and Hessian of the potential
energy at point X. Some researchers employed Hessian update method to build
Hessian-based prediction–correction integration method to calculate the trajectory
of atom in order to reduce the calculation time of Hessian and ab initio.

As illustrated in Fig. 1, in each time step of the integration method, the prediction
is used to identify the direction the trajectory, ab initio potential energy, ab initio
gradient, and ab initio or Hessian are computed at the end point Xi,p of predicted
trajectory. The potential information calculated at the end of predicted trajectory is
used with the potential energy information at point Xi−1,p near the trajectory starting
point Xi−1 of this time step, which is the end point of corrected trajectory of the

http://cdssim.chem.ttu.edu
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xi-1,p

xi-1 xi

xi,p

Fig. 1 During the ith step, the algorithm first predicts the trajectory from Xi–1 to Xi,p using potential
approximated by the quadratic Taylor expansion about Xi–1,p. Then performs electronic structure
calculation of the potential energy information at Xi,p and reintegrate the trajectory from Xi–1 to Xi
using potential interpolated from ab initio potential information at Xi–1,p and Xi,p

previous time step, to interpolate a highly accurate local PES. This highly accurate
PES is used in the correction phase of the time step to recompute a more accurate
trajectory.

In each time step, to obtain an accurate predicted trajectory, the prediction utilizes
the Hessian in addition to the potential energy and its gradient. Assuming the current
time step is the ith time step, the potential energy information needed during the
prediction to integrate the trajectory is obtained by the quadratic expansion.

E(X) = E
(
Xi−1,p

) + G
(
Xi−1,p

) (
X − Xi−1,p

)

+1/2
(
X − Xi−1,p

)T
H

(
Xi−1,p

) (
X − Xi−1,p

)
i > 2 (2)

P is an integer. About the point Xi–1,p, the end point of the predicted trajectory of
the (i–1)th time step at which ab initio potential energy E(Xi–1,p), ab initio gradient
G(Xi–1,p), and ab initio or updated HessianH(Xi–1,p) have been computed on a region
within a trust radius from Xi–1,p.

If we use Xi–1,p as the current location, the next part will show how to calculate
the potential energy for the next X location. We can calculate the Potential Energy
(P) and Gradient (G) at the Xi–1,p from known position. For example, there are eight
atoms in F− + CH3OOH. There are 3 × N dimensions in the gradient and location
vectors and N2 dimensions in the Hessian matrix of the reaction system. Therefore,
most of calculation of Eq. (2) is to compute H(Xi–1,p). The biggest challenge is to
choice different approaches to fast the calculation of H(Xi–1,p) with the position and
others of the current location, at the same time, cannot enlarge the system error.

2.2 Long Short-Term Memory

As shown in Fig. 2, a neural network is the connection of many single neurons, an
output of a neuron can be an input of another neuron. Each single neuron has an
activation function. The left layer of the neural network is called the input layer, it
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Fig. 2 The structure of a neural network

Fig. 3 The structure of a recurrent neural network and its unfolding

includes X1,X2,X3,X4, the right layer of it is output layer, involve Z1. The other
layer is hidden layer, it covers Y1,Y2,Y3.

Recurrent neural network (RNN) is a typical kind of neural network. As shown
in the leftmost part of Fig. 3.

Like the leftmost of Fig. 3, RNN is a neutral network containing loops. N is a
node of neural network. I stands for input and O for output. Loops allow information
to be transmitted from the current step to the next step. RNN can be regarded as a
multiple assignment of the same neural network, and each neural network module
transmits the message to the next one. The right side of Fig. 3 corresponds to the
unfolding of the left side. The chain feature of RNN reveals that RNN is essentially
related to sequences and lists. RNN applications have been successful in speech
recognition, language modeling, translation, picture description, and this list is still
growing. One of the key features of RNN is that they can be used to transmit the
previous information to the current task. But the distance from previous step to
related step is not too long.
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Fig. 4 The structure of a LSTM node

Long short-term memory (LSTM) overcomes this shortcoming. LSTM is a
special type of RNN. LSTM solves the problem of long-term dependence of
information. LSTM avoids long-term dependencies through deliberate design.
Figure 4 shows the structure of a node in LSTM, where a forget gate can be
observed. The output of the forget gate is “1” or “0.” “1” means full reserve,
“0” is abandon completely. The forget gate determines which information will be
retained and what will be discarded. The upper horizontal line allows the input
information cross neutral node without changing in Fig. 4. There are two types of
gates in a LSTM node (input and output gates). The middle gate is an input gate,
which determines the information to be saved in the natural node. F means function
modular and create a new candidate value vector. The right gate is the output gate.
The F module closed the output gate determines which information of the natural
node will be transmit to the output gate.

A node has three gates and a cell unit as shown in Fig. 4. The gates use sigmoid
as activation function, the tanh function is used to transfer from input to cell states.
The following are to definite a node. For the gates, the function are

it = g (wxixt + whiht−1 + bi) (3)

ft = g
(
wxf xt + whf ht−1 + bf

)
(4)

fo = g
(
wxoxt + wof ht−1 + bo

)
(5)

The transfer for input status is

c_int = tanh
(
wxcxt + whcht−1 + bo_in

)
(6)

The status is updated by
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Fig. 5 The workflow of status changing of neutral node

ct = f ∗
t ct−1 + i ∗

x c_int (7)

ht = o ∗
t tanh (ct ) (8)

The workflow of a node is shown in Figs. 5 and 6 shows the flowchart for LSTM.

2.3 Model

The calculation of position of the atom, the energy of the system, and Hessian
occupy almost all the CPU time in chemistry dynamics simulations. Figure 7
illustrates the Hessian-based predictor–corrector algorithm in chemistry dynamics
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Fig. 6 The flowchart of LSTM

simulations. At each time step, the potential energy, kinetic energy, velocity,
Hessian, and other parameters are calculated from the position of the atom. In Fig. 1,
assuming Xi–1,p is the current point, the calculation potential energy of next point X
is as follows. The gradient and potential energy of the current point can be calculated
from the known location of the point. Assuming eight atoms, the dimension of
gradient and location will be 3 × N, which of H will be N2. Hence, the largest
calculation of Eq. (2) will be to calculateH(Xi–1,P). It is the focus of study of various
algorithms to quickly and accurately calculate.

Algorithm 1 Algorithm

Input: Atomic initial parameters
Parameter: location of atoms, initial energy info
Output: the trajectory of atoms.
1.      ab initio computing
2: while less than steps do
3: while less then training step do
4: exec  Predictor-Corrector 
5: train deep learning model 
6: end while
7: predict the location,energy and Hessian
8: output trajectory
9: end while
10: return
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Fig. 7 Flowchart
representation of the
complete Hessian-based
predictor–corrector integrator
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H(Xi–1,p) according to the location and time information of the current point,
simultaneously systematic error is required least. Researchers proposed some
Hessian update methods to saving computing time [14]. Deep learning will be used
to predict the location, energy, and Hessian of atoms. Therefore, deep leaning will be
used three times to instead of predictor–corrector. It is important to understand that
our deep learning model needs to be trained and initialized before predicting. The
result of this approach is a novel predictor–corrector algorithm with deep learning.

3 Experimental Results

To test the algorithm with deep learning, we implemented the integration algorithm
in the VENUS (cdssim.chem.ttu.edu) dynamics simulation package interfaced with
the electronic structure calculation NWChem [13]. We chose the reaction system
H2O as our testing problem. In the tests, ab initio potential energy, gradient, and
Hessian were calculated using the density function theory 6–311 + G**, and ab
initio Hessian is calculated once in every five steps during training. In the remaining
nine steps, the new update scheme is used. We calculated a trajectory for the
chemical reaction system with 5000*0.67 integration steps, where each step has a
fixed size of 0.02418884 fs (100 a.u.; 1 a.u. = 2.418884e-17 s). The remaining step
5000*0.33 steps were predicted by the proposed deep learning algorithm. There
are three prediction parameters in our test. They are atomic position, energy, and
Hessian, respectively.

Figure 8 illustrates the computational energy and its predicted values. The above
is the H2O system computational energy chart. The horizontal coordinate is the time
step and the vertical one is the energy value. The yellow region represents training
data and green section predicted values. After more than 3000 training steps, the
predicted value is almost the same as the calculated values. Table 3 lists some
relative errors. We find the relative error to be less than 0.1%.

Figure 9 shows a hydrogen atomic location chat. The above is the computational
values and the following is training and predicted values. The horizontal coordinate
is the time step and the vertical one is the atomic location. Table 1 has some relative
error between predicted and computational values. We find the relative error less
than 0.7% and some even less than 0.01%. Figure 10 is one of Hessian chat. The

Table 1 Relative error between atomic position prediction and computational value

Computational data (D1) Predicted data D2 |(D1–D2)|/|D1| (%)

−0.65278023 −0.6570433 0.65%
−0.65459454 −0.6573254 0.4%
−0.6577446 −0.6590448 0.2%
−0.662028 −0.66203827 <0.01%
−0.6672311 −0.6661249 0.16%

http://cdssim.chem.ttu.edu
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Fig. 8 The energy of H2O system: (a) Output of the prediction–correction algorithm. (b) The
yellow region corresponds to training data and green is prediction data
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Fig. 9 The location of atoms in H2O system: (a) Output for the prediction–correction algorithm.
(b) The yellow region corresponds to is training data and green represents prediction data
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Fig. 10 The Hessian of H2O system: (a) Output of the prediction–correction algorithm; the yellow
part is training data and great is prediction data in (b)
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Table 2 Relative error between Hessian prediction and computational value

Computational data (D1) Predicted data D2 |(D1–D2)|/|D1| (%)

0.16278428 0.20113048 23%
0.24653251 0.2093605 15%
0.43518633 0.47104657 8%
0.15830526 0.20171289 27%
0.23584451 0.20607977 12.6%

Table 3 Relative error between system energy prediction and computational value

Computational data (D1) Predicted data D2 |(D1–D2)|/|D1| (%)

13.881894 13.881851 <0.01%
13.881888 13.881856 <0.01%
13.881871 13.881851 <0.01%
13.881843 13.881836 <0.01%
13.881803 13.88181 <0.01%

above are the computational values and the following are training and predicted
values. The horizontal coordinate is the time step and the vertical one is Hessian
value. Table 2 has some relative error between predicted and computational values.
We find the minimum relative error is 8% and some even over 25%. Although it is
5000 steps, Hessian calculated only 1000 steps because of the predictive–correction
algorithm. Therefore, the size of the training set is less than 670 and the relative
error is relatively large (Table 3).

The prediction–correction algorithm can reduce H2O reaction system dynamics
simulation time from months to days. The stability of the prediction–correction
algorithm becomes very weak as simulation goes on. In addition, there must be an
ab initio calculation every few steps in the prediction–correction algorithm. As the
prediction step increases, the stability becomes weaker. Deep learning can reduce
the simulation time of the reaction system by one third. The prediction step can
reach over 1200 steps without affecting the system error after enough training. If
some reinforcement learning and other methods are used, the calculation time will
be further reduced and the prediction steps will be more.

4 Conclusion and Future WORK

In this chapter, a new molecular dynamics simulation algorithm is proposed by
combining deep learning and predictive–correction algorithms. The new algorithm
can reduce the calculation time of the system by one-third without increasing the
error. In the future, the enhanced learning and parameter migration will be used to
further reduce the calculation time. Then monodromy matrix [15–17] will be used
to monitor the change of the calculation error.
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