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1 Introduction

It is nearly impossible to move around modern society without encountering a
device or application powered by artificial intelligence (AI). Weather forecasts,
traffic signals, airplanes, factory lines, home appliances, and mobile applications
are just a few examples of areas likely to encounter elements controlled by Al
Yet, there is even more happening under the surface with Al managing countless
applications including internet traffic, gene-related research, and medical image and
history analyzation. For most people today, deep learning, machine learning, and Al
are all terms for which they are at least familiar.

Another body of work that most people will have heard of is data science and
data analytics. Technological advances over the past few decades have transferred
the possibility of generating, storing, sharing, and analyzing data to nearly everyone.
With data now being a true commodity, some have said that data is the new oil or
gold. For example, retailers are now able to gather information about their sales
as well as their customers habits and preferences to greatly benefit both parties.
Retailers can then use this information to intelligently predict customer shopping
habits during other times of the year as well as control their supplies based on
projected demands, thus, not wasting time and money on unnecessary storage or
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creating shortages. This is just one example of the great advances made possible
by data science and its varying applications. With advances such as autonomous
driving now available, there is no telling where data science and Al might take us.
In this article, we briefly review the history of these developments in artificial
general intelligence, artificial intelligence, machine learning, deep learning, and data
science (see Fig. 1), tracing the history from the first mechanical computer in 1850
to the current state of deep learning in 2020. We overview the many evolutions in
Al and discuss possible future directions as well as some of the ethical dilemmas
posed by such advances. Ultimately, our goal is to overview these processes for a
lay audience who may not have intimate knowledge of Al and data science at large.

2 Artificial Intelligence

The first mechanical computer was invented in the 1850s by Charles Babbage [1].
In 1950, Alan Turing, renown for advancing the general-purpose programmable
computer, asked the big question for the first time: “Can machines think?” [2]. Alan
Turing proposed an operational test for machine intelligence. A machine “passes the
test if a human interrogator, after posing some written questions, cannot tell whether
the written responses come from a human or a machine.” [2].

In 1956, the term “Artificial Intelligence” (AI) was used for the first time in a
proposal for a summer research workshop at Dartmouth College in New Hampshire.
The goal of Al was to “[make] a machine behave in ways that would be called
intelligent if a human were so behaving” [3]. The aim of the workshop was to



Pathways to AGI, A Brief Overview 75

develop Al such that it might pass the Turing test. To pass the Turing test the Al
needs to [1]:

Understand speech; natural language processing (NLP)

— Store the information and data; knowledge representation

Use the stored data to draw conclusions; automated reasoning/decision-making
Detect new patterns and adapt to new circumstances; machine learning (ML)

To fully pass the Turing test, two additional capabilities are needed [4, 5]:

— Extract knowledge and/or comprehension from images or videos (e.g., face
recognition); computer vision

— Mimic human physical behaviors corresponding with the senses to interact with
the environment (e.g., touch, motor functioning); physical interaction

Overall, the Al could be divided into two categories of Artificial General Intel-
ligence (AGI) or strong Al (actual thinking), and narrow or weak Al (simulated
thinking) [1, 6]. Some scholars argue that achieving AGI may be decades into the
future, and that the emergence of AGI will bring with it an “intelligence explosion”
leading to “profound changes in human civilization” [6]. Yet, the field of computer
science has already begun to develop the narrower form of Al In fact, the ability to
have devices such as sensors and robots, and intelligent Decision Support Systems
(DSS), such as the autocorrect software analyzing the words on this page are the
result of already existing forms of Al [6]. These technologies have already evolved
beyond what many people could have imagined, and yet the future of AGI has the
potential to transform the experience of generations to come in ways we cannot yet
predict.

Early (late twentieth century) Al approaches were rule-based and focused on
attending to all possible solutions for a specific and identifiable problem [7]. Some
board games and various types of robots used in factory lines are just two examples
of this type of rule-based Al. Going forward, decision making systems began to
advance these types of approaches [8]. Specifically, decision making attended to the
fact that real-life problems are rarely contained within such specific and rule-based
features. Even board games must contend with players who make unpredictable
decisions. Although decision making may follow some of the same patterns of
rule-based prediction systems, it began to extend the bounds of these rules by
accounting for uncertainty [9]. The Boltzmann machine research line during the
1990s through the early 2000s delivered a well-known example of this type of
Al, which utilizes probability and statistics predicting behavior patterns in various
settings [10—12]. Sum-Products Networks (SPNs) are another advancement in Al
that began to incorporate networks able to compete with deep learning models in
many applications by taking into account the probability distributions of features
[13].

The boom of digital storage development in the 1990s and 2000s—delivering
cloud storage and advanced data collection methods—brought with it a new era of
“big data.” Big data refers to the vast amount of easily accessible consumer data
including images, texts, audio, transactions, and human and environmental sensing
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data from electronic devices. This surge in available data required new methods for
analyzing it, translating to Data Science (DS) and a new chapter in machine learning
(ML).

3 Data Science

Data Science is divided into three main areas including collecting, storing, and
analyzing data (structured or unstructured) [14]. Data collection methods were
advanced through the spread of high-speed internet world wide—including less
costly wireless connections—as well as increased variety of cheaper electronic
connections and sensors, such as smartwatches, exercise trackers, and cameras [15].
Data storage was advanced through cloud storage, which further influenced big
data collection by offering these services at a reduced cost and to an increasing
proportion of the population.

Data analysis consists of two major components: preprocessing and process-
ing. Preprocessing refers to various aspects of raw data management including
unbalanced data, imputation techniques for missing data, detecting and addressing
outliers, and data labeling procedures. Processing refers to extracting information
and knowledge from preprocessed data to identify patterns, make predictions, and/or
classify data [14]. One of the promising methodological categories for processing
big data is Machine Learning (ML), a subdivision of Al

4 Machine Learning (ML)

Machine learning (ML) is a subdivision of Al that consists of statistics, mathe-
matics, and logical techniques to extract patterns (i.e., information) from a set of
training data and apply the inferences to unseen data. Again, these recent advances
in ML were made possible by the new era of big data and the vast advancement in
computational capacity. Importantly, ML differs from other forms of Al in that it
does not require extensive and complicated programming, but rather, has the ability
to learn patterns and later apply them. Thus, ML does not need to consider every
possible solution (i.e., be deterministic) and can manage noise and uncertainty [16].

Innovation in ML brought with its exponential advancement in earlier
techniques—some of them developed before the 1970s—such as Linear
Regressions, decision trees, Random forest, K-nearest neighbor (KNN), Support
Vector Machine (SVM), Atrtificial Neural Networks (ANNs). For example, early
ML ANN models for autonomous driving [17] and facial recognition [18] were
developed in the 1980s but lacked access to the data and computation capacity
needed to apply them [16].

Like any method, ML brings with it its own unique techniques and challenges.
Common types of ML include supervised learning, unsupervised learning, semi-
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supervised learning, and reinforcement learning. Each of these is discussed in brief
below, followed by some of the challenges associated with ML such as overfitting
and dealing with extraneous features.

Supervised learning refers to the use of an ML training data set that has been
labeled, typically by humans, and the goal of which is to categorize or label the
unseen data [19]. The process of categorization or labeling often occurs through
classification or regression techniques, which has value for making predictions—
using regression—such as predicting stock market values or classifying objects in
an image, such as identifying tumors in a medical x-ray.

Unsupervised learning refers to categorizing data by analyzing patterns and
shared features without utilizing a pre-labeled training dataset [19]. In unsupervised
learning, clustering is often used to detect patterns and anomalies, such as in
grouping customers for marketing strategies or marking emails from unknown
sources as “spam.”

In addition, a smaller (i.e., limited) labeled ML dataset may be used to improve
the categorization of a larger, unlabeled dataset. This is known as semi-supervised
learning. Semi-supervised learning may be a more cost-effective option of labeling
large datasets, in addition to allowing for greater accuracy by limiting human
error [19]. For example, speech recognition errors may be reduced by 22% when
human-labeled data are combined with machine-labeled data using semi-supervised
learning [20].

Reinforcement learning (RL) operates using a reward-based system. Reinforce-
ment learning attempts to select the best possible action that would maximize the
final reward (or conversely, minimize the punishment), all while keeping track of
these actions to improve the choice-selection of the following round. Thus, it is a
trial-and-error process that works through the system’s ability to learn improvement
strategies and decisions through the success or failure of previous attempts. There
are many different types of RL algorithms, each designed to address a specific
problem [16]. Examples of RL applications include some types of board games
(e.g., chess and Go), robots, and various elements of autonomous driving systems.

Although Machine Learning algorithms demonstrate immense accuracy in iden-
tifying training dataset patterns, a common problem in these models is overfitting
the data [21, 22]. Overfitting occurs when the ML network has been trained using
all labeled (i.e., training) data and cannot deal with the noise (i.e., uncertainty) in the
unseen data. It also occurs when patterns observed in the limited training data are
not accurate of the existing patterns in the larger data. Overfitting may occur when
using unbalanced or biased datasets, indicating that the training set does not include
all possible samples within the domain[16, 21, 22].

There are several ways of correcting for the risk of overfitting. One of these is to
divide the training dataset into two parts: training and validation [6, 16]. The size
of the validation set will depend on the size of the overall training set, but typically
ranges from about 10 to 30% of the full set. The validation set is not used for training
purposes, but is instead verified against the final dataset to ensure accuracy. In this
procedure, cross-validation is used to correct for the risk of selecting a biased
validation set [23]. For example, a 10-fold cross-validation procedure would involve
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dividing a training set into 10 separate sets and then training the ML model 10 times
using only nine of those sets each time. The final model would then be validated
against the remaining set (1/10th of the original), with the accuracy being equal to
the average of the 10 validation runs.

Another challenge that may arise in ML models is the issue of extraneous
features, such as the vast number of potentially uncorrelated features present in
some big data sets. In many cases, not all of the features present in a dataset
will be related to the objective of the ML model and, thus, are not useful. For
example, to predict the seasonal sales of an online store, customers’ employment
status and income may be related to the outcome, but their specific job title may
not be. There are several known processes for responding to unrelated features in
a dataset including feature selection, combination, and extraction [24]. These
are performed through techniques like correlation analyzation, principal component
analyzation (PCA), and dimensionality reduction techniques. These techniques
work mainly by validating the correlation of each feature to the target [24].

Machine Learning techniques and data sets can be categorized into two groups:
linear and non-linear. A linear data pattern is the simplest data pattern and can be
categorized using a linear function to perform regression or classification. Many
algorithms had been developed to fit linear models such as linear regression, logistic
regression, classification and regression trees, K-nearest neighbors, and support
vector machine [16]. Non-linear functions are those that cannot be classified using
linear methods. Like other models of data analysis and management, non-linear data
associations may pose additional challenges to ML [16]. The non-linear problem in
ML is known as the XOR (i.e., “exclusive or”’) problem, which refers to a mixed
pattern of data that cannot be categorized using linear functions, Fig. 2 [25].

Although many algorithms have been developed to manage linear data (as men-
tioned above), the non-linear nature of many data sets remained a challenge for ML.
For example, the decision trees, k-nearest neighbors, and support vector machine
mentioned above are functions that can manage some non-linear data problems; yet,
they do this imperfectly, and issues remain. Artificial Neural Networks (described
in the next section) began to address these issues [16].
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5 Artificial Neural Network

In 1958, the first artificial neuron was introduced—attempting to mimic the neural
pathways of the human brain. Named Perceptron, it used a sigmoid function and
performed linear functions with great success [26]. To advance this then new
technology, several Perceptrons were later clustered into a layer, allowing for linear
patterns to be detected through the use of input data connecting into the Perceptron
layer. Training happens by feedforwarding the data while backpropagating the labels
to tune the weights of each node. Thus, the first artificial neural network (ANN) was
born [27]. Perceptron remained at the height of ANN mechanisms until 1969, when
rigorous reviews demonstrated its shortcomings—namely, that Perceptron could not
address the issue of non-linearity; it had hit a dead-end [28].

By the 1980s, scientists again attempted to address the issue of non-linearity (i.e.,
the XOR problem) by using hidden layer(s) of Perceptron, known as Multilayer
Perceptron (MLP). MLP is a type of ANN consisting of one or more layers of
varying nodes—the network architecture (see Fig.3) [27]. Using an activation
function, such as sigmoid, on the front end of the nodes, again combined with
backpropagation techniques, allowed for increasingly advanced classification and
regression models—including those for non-linear patterns [27]. These advances
greatly improved the accuracy of some of the advanced technologies we enjoy today,
such as autonomous driving and facial recognition.

The early ANN designs were fully connected, with each node tied to the next, and
each connection having a weight. Each node contained an activation function and
uses the value of prior nodes multiplied by the weight of the connection to calculate
the next node in a recursive loop. The simultaneous backpropagation by means of
the training dataset serves to update and fine-tune the node weights and thresholds.
Similar to the reinforcement learning process described above, cost/loss functions
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are used as additional metrics by which to measure the compatibility between the
training data (i.e., ground truth) and the network predictions [27].

Despite vast advances in theorizing, the ANNs (MLP) of the 1980s faced several
challenges. Specifically, the limited number of available nodes in each MLP layer,
combined with the limited number of layers, produced a heavy burden for the
computers of the day. In short, advanced theorizing was limited to the computational
capacity of the 1980s machines. However, by the year 2000, significant advances
were made in computational capacity. These advances, paired with the ability to
replace the nodes’ sigmoid activation function with more efficient functions such as
sign, linear, tanh [29, 30], and more recently ReLU and leaky-ReL.U [31], allowed
for the creation of a larger network of nodes, including more hidden layers. This
led to the creation and advancement of deep neural networks (DNN), also known as
deep learning (DL).

6 Deep Learning (DL)

As mentioned, the vast improvements in the computational capacity of the 2000s
helped shape the development of deep neural networks (DNN) or deep learning
(DL). Another shaping factor in the development of DL was the arrival of big data
sets, which offered the opportunity to improve the training process and thus the
performance of DNN.

Similar to ANNSs, the learning in DNNs occurs through the optimization of
the weights throughout the entire network. One of the well-known algorithms
for handling this type of optimization problem is Stochastic Gradient Descent
(SGD) [32]. There are several other methods based on the SGD algorithm such as
Momentum, Nesterov Momentum, and Adam [32]. Each of these methods works by
tracing the error surface of the error calculation function (known as loss function)
with the goal of finding the global minima, as shown in Fig.4 [32, 33]. The loss
function is based on the adjustments of the weights of each of the connections in the
network [32].

Other parameters that need to be taken into consideration in order to maxi-
mize DNNs’ accuracy include data preprocessing, hyperparameter adjusting such
as learning rate adjustments, weight initialization, initializing biases, and batch
normalization [34, 35].

Several modifications of DNNs have vastly improved the implementation of
these models. The modifications aim to reduce the models’ generalization error
by regularizing the weights. There are several methods to do such regularizations
including considering the noise robustness, stop learning point (i.e., early stopping),
parameter sharing, and dropout [34, 35]. The following section overviews some of
the main events and advancements in determining the current state of DLs.

In 2007, Fei Fei Li and colleagues introduced ImageNet, the largest database
of labeled images with over 14 million images categorized into nearly 22,000
indexed synsets (categories) as of 2020 [image-net.org]. These images can be used
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for technologies such as object location, detection, and classification in videos and
other image-related media [image-net.org]. Since 2010, ImageNet has led an annual
challenge—the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
The challenge brings bright minds from around the globe together to explore new
ideas in DL by allowing them to use a large collection of image-data they would not
otherwise have access to. This challenge has brought great success in minimizing
error as demonstrated in Fig. 5. Remarkably, the classification error of 28% in 2010
was reduced to less than 3% by 2017 [36].
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By 2011, the Convolutional Neural Network (CNN) was beginning to grow in
popularity. CNN was able to outperform humans in recognition of traffic signs with
an accuracy of 99.46% (compared to humans at 99.22%) [37]. First introduced in
1997, CNN was inspired by the visual cortex of animals and attempted to regularize
input data to find hierarchical patterns within image data—called self-organized
map [38]. By 2020, nearly all DLs utilized CNN layer(s) for visual-related tasks.
Going back to the ILSVRC, CNN was utilized by the majority of champions,
but it has been used for many other applications as well [36]. Interesting research
conducted in 2015 demonstrates how a DNN network functions using CNN layers
(i.e., https://youtu.be/AgkflQ41GaM) [39].

Another network architecture from the year 1997, Long Short-Term Memory
(LSTM) [40], also saw vast improvements in the 2010 decade [41]. LSTM, also
known as Recurrent Neural Network (RNN), is a modified neural network that
utilized feedback connections. LSTM allowed for the subsequent advancements in
DL such as speech and handwriting recognition applications, as well as anomaly
detection in data series (e.g., network traffic) [41].

In 2014, Tan Goodfellow and colleagues invented the Generative Adversarial
Network (GAN) [42]. GAN is comprised of two neural networks competing against
each other; the first is a generative network which generates new data while the
second is a discriminative network that evaluates the generated data. This advanced
network can generate new data based on the characteristics of the inputted training
data. For example, if the training data were to be of a human face, the network
would generate a new face, looking entirely human but never having previously
existed [43]. A vast amount of applications benefit from GANS, such as imaginary
fashion models and scientific simulations [43]. Despite their many advances, GANs
raise some concerns, specifically regarding the production of falsified voice or video
records [44].

By 2016, Google announced the Tensor Processing Unit (TPU), followed by the
Google TensorFlow framework of open source libraries [45]. TensorFlow touts well-
tailored hardware and software to be used for neural network computations and
applications [45]. Using this technology, Google’s DeepMind AlphaGo defeated
the Go champion in 2016 by combining DL and RL in a new mechanism named
Deep Reinforcement Learning [46].

Another contemporary topic in ML that was also initiated in the 1990s is transfer
learning or domain adaptation, first published by Lorien Pratt [47]. Transfer learning
works by using knowledge garnered through the ML model during the training
phase and literally transferring the learning to another task in a similar domain [48].
For example, a DL model trained to classify flowers can be used to also classify
leaves by modifying the trained model using a transfer learning technique (e.g.,
fine-tuning some of the layers). Since 2014, transfer learning has been used to adapt
deep learning models, such as in domains like medical imaging. This is known as
deep transfer learning and has been used to reduce the often-long training time as
well as to handle the small training samples of some deep learning [48]. Progressive
learning introduced by Google’s DeepMind Project in 2016 is another specific type
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of deep transfer learning that is attempting to build on previous, related knowledge,
similar to human learning capabilities [49].

In summary, this overview summarized a few notable types of DL that are on
the rise. It is important to note that the aforementioned advancements in DL are
vast topics in and of themselves, each carrying with them a research line with
hundreds or even thousands of relevant articles that could not be overviewed here.
In addition, there are many more DL advances not discussed here, including the
autoencoders used for image segmentation models such as U-Net and new types of
data compressors [50], among many others.

7 Discussion

As mentioned, the era of big data, spurred by drastic advancements in computational
capacity, has brought a new chapter to machine learning (ML) and artificial
intelligence (AI) since the turn of the century. In the past decade alone, the
movement toward artificial general intelligence (AGI) has grown exponentially, and
there is no telling where it might take us.

A common example of the great innovations of AGI is IBM’s Watson, first
introduced in 2011. Watson is a natural language processing (NLP) platform, whose
architecture benefits from a variety of developments in Al and ML [51]. In 2011,
Watson defeated the champions of the popular quiz show Jeopardy—a feat spurred
by its ability to “process 500 gigabytes, the equivalent of a million books, per
second” [52].

The use of even narrow Als to mimic human cognition is opening the pathway
to AGI, and AGI is a force that future humans will have to contend with. The
competition is likely to be intense given that computer programs do not suffer from
fatigue, boredom, or other common human ailments—and impediments to work
and/or output. For example, Google’s well-known program, AlphaGo, managed to
train itself in one night to rise from an amateur to a champion player by the next
morning [46].

There are countless other examples of the ways in which AGI is looming closer.
Present-day Aurtificial Neural Networks (ANN) are already a simple mimic of
human brain cells, and Convolutional Neural Networks (CNN) mime the human
visual cortex. Generative Adversarial Networks (GAN) work like the human
imagination—generating new data from observed data—which can be used for
better understanding facts by imaging-related data. All this is done without needing
to access all or even a vast amount of data. Long-Short Term Memory (LSTM)
works similarly to the human memory and is able to solve problems related to
sequential data analyzing. Transfer learning, followed by progressive learning, is
attempting to mimic human skill-learning abilities, a task that is endless for human
beings. However, human beings must rely on previous knowledge and skills—
oftentimes garnered over a lifetime—that Al programs can learn in a matter of
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hours. All of this evidence suggests that AGI is close to becoming reality, and the
implications of this have yet to be explored.

8 Ethics

With any scientific advance—particularly one that travels so quickly—ethical
issues and considerations are unavoidable. Recent years have seen an increase in
considerations of the potential ethical pitfalls of Al and the use of personal data
raised by data scientists and other scholars (including social scientists, historians,
and others) [53-55]. Unfortunately, the ethical consequences of many advances
are difficult to assess in real-time. For example, although it is relatively obvious to
see the issues with falsifying evidence through GANs [44], the impact of wrongly
classifying a disease through X-ray images is more difficult to project, not to
mention the social implications of these advanced changes. This section discusses
some primary areas of concern in the ethics debate surrounding Al and offers some
additional points for consideration.

One primary area of ethics currently involves data privacy surrounding sensitive
data and personal information such as credit card transactions and medical data.
Issues related to data privacy are complicated by the need for access to personal
information in order to move many fields forward. For example, not using medical
information means that patients miss out on the opportunity to have their diagnoses
made by more accurate Al programs. On the other hand, there are also consequences
to this data being made available. Doctors risk being sued if later Al advances point
to something they missed, and patients are at risk of having their private information
shared elsewhere. Like most ethical issues, it is imperative to consider both sides
of this debate and to seek solutions that maximize benefits while limiting risks.
Data anonymization mechanisms begin to address these issues by making data
unidentifiable, which allow for the positive usage of private information without
risking patient or physician privacy [56].

A second ethical implication includes the social impact of human job loss if
Al automates such jobs. For example, the rise of autonomous driving semis and
other transport vehicles has the potential to contribute to the unemployment of a
large proportion of middle-class workers in the USA. This process is similar to the
transition of farming to factory jobs across Europe and other parts of the world
during the industrial era as well as the subsequent automation of factory lines.
During these times, many workers lost their jobs, thereby moving from middle-
class into poverty. Although these changes are unavoidable, the social impact on
families and communities must be considered. However, existing data and insight
from the industrial and automation booms can help data scientists and social
science researchers better predict and prepare for the implications of Al-automation
for employment. Planning for these potential consequences may help to ease the
transition for society and future generations.
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A final ethical implication worth noting here is the broader impact on society.
Such impacts are often difficult to observe in real-time. One poignant example
of the effects of Al is political polarization. With the rise of social media and
worldwide connectivity via cell phones, tablets, smartwatches, and other devices,
the implications of Al automating what information people have access to is more
evident than ever. Some have suggested that the targeted marketing and information
brought by AI has contributed to political and social polarization, with many
people having access only to the information they already agree with. Opinions are
constantly being validated, and the ability to be objective in any topic is becoming
limited. This process has also occurred with consumer branding, as Al approaches
target consumers with ads for products they are more likely to buy based on their
previous purchasing behaviors. In fact, it has been said that these mechanisms know
people better than they know themselves. The implications of the human mind
becoming inundated with certain types of data remain to be seen, and the ethical
considerations have yet to be examined. However, such implications must be on our
radar as they have the potential to change society for generations.

Ethical dilemmas are just that: dilemmas. The vast majority are not easily
solvable or even identifiable. However, their elusiveness cannot be the reason that
data scientists fail to consider these issues—potential or currently a reality. Rather, it
is the responsibility of the data scientist community to partner with other disciplines
(e.g., social and behavioral sciences) to consider the effects of their creations on
society, no matter how far into the future they may reach.
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