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1 Introduction

In the last decade, the applications of embedded systems have boosted in the field
of Internet-of-Things (IoT). Typically, IoT systems with multiple sensors including
computation devices scattered over an enormous area [1]. While the advent of
IoT solved many hitches, several inevitable problems were invited as well [2, 3].
The amalgamation of IoT and cloud requests facilitated the formation of edge
computing, in which computing befalls at the network edge where there is no
limitation of devices in terms of hardware type [4, 5]. In other words, the computing
hardware device can be anything such as Raspberry Pi [6], Field Programmable
Gate Array (FPGA) [7], System-on-Chip (SoC) [8], Application-Specific Integrated
Circuit (ASIC) [9], general-purpose Central Processing Unit (CPU), or server [10].
For better understanding, a comparison between edge computing and traditional
cloud computing systems is shown in Table 1.

Under the described idea, many research groups are working on edge computing
in the hunt for further exploration and improvement. The edge computing is,
currently, one of the most popular topics, and with the trend of machine learning,
scholars are combining two ideas in order to achieve desired goals that are men-
tioned above [11, 14]. In the field of edge computing, the major focus of the research
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Table 1 Cloud computing vs. edge computing

Parameters Cloud computing Edge computing

Architecture Centralized Distributed

Data processing Far from the source Adjacent to the source

Latency High Low

Jittering High Low

Data privacy Low High

Accessibility Global Local

Mobility Limited Feasible

No. of nodes Few Extremely high

Data exploitation risk Global Remains in edge network

Communication with devices Over the Internet Local through edge node

work is on the software side, which includes performance improvement [19–
21], algorithm optimization [12, 15], and increased efficiency with better task
scheduling [13]. Comparatively, there is much less flow where scholars are working
on the FPGA [17, 18], digital circuit [16], embedded systems [24], and hardware
architecture [25, 26].

On that front, this literature proposes a promising architecture on IoT-Edge-
Server based embedded systems with Bluetooth Low Energy (BLE) mesh system,
surveillance system, a couple of processors and a server. In a generic manner, we
have two platforms: (a) a BLE mesh network and (b) a surveillance demonstration.
These systems are able to fetch data, at one instance, to Intel i7-7700HQ CPU
and to Raspberry Pi on the other instance. The entire system has, virtually, three
layers: (1) disposed layers, (2) edge computing network, and (3) cloud computing
network [27].

The edge computing is boon to the IoT, but it also brings veil challenges that
inspired us to propose a pioneering architecture. The main contributions of this work
are as follows:

– To provide a robust architecture of IoT-Edge-Server embedded systems that
can be implemented on extensively scattered environments such as agricultural
farms, smart cities, or commercial/industrial buildings.

– Depending upon the application-specific tasks, we provide a system with an
architecture that has two conceivable methods of computation: 1) traditional
cloud computing and 2) edge computing.

– An implementation of two of the innumerable face recognition algorithms on
Raspberry Pi and Intel i7-7700HQ CPU. There were few publications where they
had performed a similar task on the comparably likewise hardware setting, but
there is no mention of computation time or accuracy [28–30]. While our work not
only delivers computation time and accuracy but also provides those data with an
assortment of multiple face recognition algorithms, cameras, and computation
devices as well.

– Improved data privacy—edge computing enables computation at the edge nodes,
which requires personal data to be on the edge nodes rather than storing them on
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Fig. 1 Two channel computation options

a cloud. In other words, data remains at the network edge, which restricts data
being hacked by anyone from the server.

– Improved computation speed—Performing any type of computation at any edge
node prevents extreme back-and-forth of data to the cloud server and also
improves the computation speed by reducing the latency. We provide benchmarks
for computation time of cloud computing and edge computing for the same task
to prove our hypothesis.

– We design communication commands for BLE mesh fabricated boards, which
are reserved for only these boards.

2 Proposed Architecture

In this section, we propose the design architecture as shown in Fig. 2, and we
also provide various computation options as shown in Fig. 1. The computation
options can be decided based on the requirements in terms of computation time
and responsiveness.

Figure 2 displays the proposed architecture of the IoT-Edge-Server based
embedded system.More specifically, the architecture consists mainly of three virtual
layers. These layers are depicted in Fig. 1: (1) disposed layer, (2) edge computing
network, and (3) cloud computing.

2.1 Disposed System

In Fig. 2, the disposed system is labeled with the multiple disposed systems, which
are BLE mesh network and surveillance system. Generally, the disposed layer is an
integrated system to the edge computing network depending upon the applications
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Fig. 2 Proposed architecture

and requirements. As mentioned earlier, for our proposed architecture and mainly to
test our hypothesis, we implemented a BLE mesh network and surveillance system.

The BLE mesh network is a creation of four semi-customized boards using the
APlix CSR 1020 modules that are suitable for low-power and restricted-complexity
IoT applications. In this typical system, there is one master host connected to three
slave boards. Each board possesses components to perform a designated task: (1)
temperature and humidity sensor, (2) light-emitting diode (LED), and (3) motor.

On the other side, the surveillance system manifests a passive infrared (PIR)
sensor associated with a camera to detect and recognize a face(s) in the milieu.

2.2 Edge Network

As shown in Fig. 2, the green-colored area named as edge nodes consists of all the
computation devices for the architecture. Such devices are connected to the disposed
systems and cloud server that apparently creates an edge computing network. For
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time being, we neglect the orange-colored area to visualize a simple embedded
system without any cloud server. For our system, we propose three types of edge
nodes that include FPGA, CPU, and Raspberry Pi. These devices will provide
assistance in the improvement of latency for the task and sieving data that needs
to be stored on the server eventually. The filtration of data includes the removal of
repetitive data, duplicated logs, or any junk data.

2.3 Cloud Network

The entire orange-colored system titled as traditional cloud computing, as displayed
in Fig. 2, is envisioned as a cloud computing network where all the data from the
disposed systems can be transferred to the server for the computation to take further
steps. When the computation is completed, the decision or data will be sent back to
the disposed systems. We would like to emphasize that the orange-colored portion
in Fig. 2 is a traditional cloud computing architecture where all the computing and
data would be sent to cloud for any kind of processing. For the proposed research
work, the server specifications are as follows: Intel(R) Core (TM) i3-7350K @ 4.20
GHz with 8 Gigabyte (GB) Random Access Memory (RAM).

3 Implementation

In this section, details of the design of the whole platform are introduced including
the BLE mesh system, surveillance system, and server-side execution.

3.1 BLE Mesh System

Asmentioned before, the BLEmesh system has, currently, four self-designed boards
accomplishing varied tasks creating the complete system on the foundation of the
BLE low energy protocol. As shown in Fig. 3, using the mesh-topology method
and abundant sensors, we can establish a large-scale environment. Figure 3 visually
elucidates the arrangement of all the sensors in the giant setting. Moreover, the
maximum distance between two boards to be able to communicate is around 57
feet as our experimental result. As shown in Fig. 3, the BLE mesh host/server is
only able to communicate with an actuator that is in the same group 2. Furthermore,
the actuator works as a relay for groups 1 and 2; in that manner, the BLE mesh
host/server is able to communicate with the LED and temperature/humidity sensor
boards. With the use of a relay between two boards, the maximum-communication
distance can be increased to 77 feet as our results. Thus, a large network with
numerous sensors can be deployed for wide-range habitats.
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Fig. 3 Mesh topology

Fig. 4 Data packet

The above-mentioned boards communicate on specific commands with each
other. Due to the self-manufactured PCB boards, they are not, commercially,
available in the market and also should interact with each other on the private set
of commands that are reserved for these typical boards only [22, 23]. Figure 4 is a
generic hexadecimal command, which includes required data types with their pre-
defined size, content, and description for better understanding.

Figure 5 presents a particular hexadecimal command to turn on/off the LED.
Figure 6 demonstrates a particular hexadecimal command to control the LED,

and the output is the mixed color of Red, Green, and Blue.
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Fig. 5 LED ON/OFF

Fig. 6 LED control

Fig. 7 Mesh network check

Fig. 8 Motor control

Figure 7 is mainly used to check the network connection between the host and
other devices. Note that device numbers hexadecimal 02, 03, and 04 allow to check
network connection with LED, a thermal sensor, and motor, respectively.

Figure 8 displays the command to control a motor in which direction has two
input values: hexadecimal 00 or 01 for clockwise and anti-clockwise rotation,
respectively. The strength represents the speed of the motor that has a total of six
input values: hexadecimal 00 stops the motor and hexadecimal 01 to 05 changes the
speed of the motor from low to high.

Figure 9 provides ability to control the sensor. Here, hexadecimal 00 stops
data receiving from the sensor and hexadecimal 01 activates data receiving, which
provides current temperature and humidity.

The command, shown in Fig. 10, transmits current humidity and temperature
value data to host that has 16-bit resolution for each, the most significant bit (MSB)
to least significant bit (LSB). The sensor data is 10 times of the real humidity. On
the other side, the MSB is the sign bit for temperature, where 1 and 0 represent
negative and positive temperature, respectively. The other 15 bits are the value of
temperature that is again 10 times of the real temperature.

– An example for humidity:
Humidity range: hexadecimal 0000 to FFFF

– 0000 0010 0101 0011 (Binary) = 0253 (Hex)
0253 (Hex) = 2 × 256 + 5 × 16 + 3 = 595
Real humidity = 59.5% RH
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Fig. 9 Sensor control

Fig. 10 Sensor data

– An example for temperature:
Temperature range: hexadecimal 0000 to FFFF

– 0000 0001 0010 0001 (Binary) = 0121 (Hex)
0121 (Hex) = 1 × 256 + 2 × 16 + 1 = 289
Real temperature = 28.9◦ C

– 1000 0000 1000 0011 (Binary) = 8083 (Hex)
8083 (Hex) = 0 × 256 + 8 × 16 + 3 = 131
Real temperature = -13.1◦ C

3.2 Surveillance System

When such a big system is deployed on the large environments, security becomes
one of the main concerns [31–33]. Keeping security, a crucial factor of our system,
we implemented an intelligent control system that can detect motion with a PIR
sensor. Moreover, a detected motion enables the camera that captures an image on
that instance of motion to detect and recognize a human face(s) in that typical image
frame. If an unknown human is detected, the system creates an alert and notifies to
the designated person via email. Upon the recognition of a known person from the
database, there will be no alert generated.

There are plentiful algorithms available to recognize the face but for the sake of
simplicity we chose two of them to test on our system: (1) the Low Binary Pattern
Histogram (LBPH) and (2) the Deep Metric Learning (DML).

3.2.1 Low Binary Pattern Histogram

The LBPH is one of the algorithms open-sourced in the Open-CV library [34]. Post-
implementation, we noticed that LBPH provides lesser accuracy compared to the
Deep Metric Learning algorithm but at the same time it also has lower computation
time for the equal setup. We implemented LBPH on Raspberry Pi 3 and Intel(R)
Core (TM) i7-7700HQ CPU @ 2.80GHz with 16 Gigabyte (GB) Random Access
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Memory (RAM). We also need to create and train the dataset in order to recognize
the face(s) using the algorithm. Training of the dataset is performed every time
changes occur in the dataset; otherwise, we do not need to train and directly run the
algorithm to recognize a face(s).

Due to the lower computation time, it was feasible to contrivance LBPH on the
Raspberry Pi. For the LBPH, the lighting of the surrounding, distance of humans
from a camera, and many other perilous situations may affect the accuracy of
recognizing a person from the given image frame.

3.2.2 Deep Metric Learning

DML is a face recognition algorithm from the dlib C++ library, which is an open-
sourced collection of machine learning applications and algorithms [35]. The DML
delivers surprisingly higher accuracy but at the same time drains out the computation
power of a processor compared to LBPH. The requirement of the computation
resource on DML is high; thus, as a case study the execution was successfully
achieved on the Intel(R) Core (TM) i7-7700HQ CPU@ 2.80 GHz with 16 Gigabyte
(GB) Random Access Memory (RAM).

As shown in Fig. 13, for DML based face recognition system, which identifies
the human face if it is in the image frame, there is no need to train the dataset as the
open-source library is pre-compiled with human facial features. Hence, it directly
allows implementing inference on the desired platform.

Furthermore, on top of the face recognition systems, we have implemented an
alert system that notifies the designated person if the recognized face(s) is not in the
dataset. To accomplish such a task, we instigated a script using Simple Mail Transfer
Protocol (SMTP) that enables us to send an alert in the email to the authorities
to initiate safekeeping regarded action. The benefit of such notification is that the
nominated person can choose to take contemplating safety action without physically
being in the range of the system if needed.

3.2.3 Server-Side Execution

As shown in Fig. 2, we set traditional cloud computing architecture to measure
the computation time for each task such as recognition time for both LBPH and
DML algorithms as well as BLE mesh network commands. We create a server
using Node.js, a JavaScript run-time environment to execute JavaScript, scripting
on an Intel(R) Core (TM) i3-7350K @ 4.20 GHz with 8 Gigabyte (GB) Random
Access Memory (RAM). In Fig. 11, steps to create a server on a processor are shown
including all the project environments, which must be followed by “nodemon app”
command where the “app” is our project name.

As represented in Fig. 12, whenever web request is triggered by task or user,
an appropriate Node.js script runs to request data on the cloud from the disposed
systems. In a follow-up after that processed request, data is transmitted toward
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Fig. 11 Creating server on processor

cloud from the disposed systems. Depending upon the requirements, the cloud
server executes a task or performs computation and sends back data to the disposed
systems, if needed. For this work, the cloud server will be performing all the tasks
or computations in a python scripting environment. Also, for any continuous task,
such a process could have back-and-forth data transmission from cloud to a disposed
system or vice versa.

To control the whole system, we create a simple web page to perform all the tasks
using Hypertext Markup Language (HTML) and Node.js. A screenshot from demo
web page is shown in Fig. 13.

Figure 14 is a screenshot from the web page after a task being executed on the
BLE mesh system, and it also shows the time of execution for a task on cloud
computing.

Figure 15 displays a screenshot of a web page when the database is stored on the
cloud for LBPH algorithm based face recognition. The database stores 300 images
each for every person.

As mentioned before, every time we change the database, the algorithm is
required to train the new database, and for the status update, screenshot is shown
in Fig. 16.

Finally, after receiving the database and training them, the algorithm would
be able to recognize the face(s) from the image/video frame. Figure 17 shows a
correctly recognized image together with a screenshot and execution time.

In Fig. 18, we share a screenshot of the face recognition system using the DML
algorithm including the total computation time.
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Fig. 12 Cloud server request
flow

4 Experimental Results

In this section, we display results from the conducted experiments on the system
to bolster our hypothesis. We share the distance improvement of the BLE mesh
system with a node between them functioning as a relay. We provide accuracy
results for the LBPH and DML algorithms on various computing devices including
their performance results in terms of computation time.

Table 2 represents the maximum distance between two mesh boards, which is 57
feet. Interestingly, any board would not be able to communicate with other boards if
the distance is greater than 57 feet, but it can be, definitely, increased up to 77 feet
using other boards as a relay between those boards.

Table 3 represents computation time for a specific task on a couple of computa-
tion devices as well as a cloud server. While execution time on the Raspberry Pi and
CPU for a specific same task is quite negligible, the execution time cloud server is
terribly high even for such a low-data-rate task execution.
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Fig. 13 Demo web page

Fig. 14 BLE mesh
system—task execution
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Fig. 15 Capture dataset for LBPH

Fig. 16 Trained dataset

Table 4 displays the time taken, in seconds, by different devices along with
both the recognizing methods for the edge computing as well as execution for
cloud computing. The computation time utterly relies on the hardware, and it is
the processing speed. Furthermore, the time taken by the cloud server is fairly high
compared to any edge computation devices.

Table 5 is the accuracy of recognizing the face(s) on the different systems with the
same environment setting. The LBPH provides extremely lower accuracy compared
to the DMLmethod that consists of potential raise to a certain percentage by training
more datasets and also replacing with better camera quality. Although there is a
plausible way to increase accuracy, we exceedingly doubt about LBPH’s capability
to imitate the accuracy of DML.
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Fig. 17 Face recognition using LBPH

Fig. 18 Face recognition using DML

5 Conclusion

The proposed architecture presents favorable fallout as far as wide-range habitats
are concerned with plausibility to deploy long-range BLE mesh system, scalable
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Table 2 Distance results for
mesh network

Maximum distance No. of node(s)

57 feet 0

77 feet 1

Table 3 Task execution on
BLE mesh system

Device Task execution time(s)

Raspberry Pi ≥ 0.07

CPU ≥ 0.06

Cloud server ≥ 0.2

Table 4 Face recognition
performance for edge/cloud
computing

Device Recognition time(s) Method

Raspberry Pi 0.41–0.45 LBPH

CPU 0.035–0.037 LBPH

CPU 0.391–0.398 DML

Cloud server ≥ 6 LBPH

Cloud server ≥ 9 DML

Table 5 Face recognition accuracy

Devices Recognition accuracy(%) Webcam Method

Raspberry Pi 50–60% Logitech C270 LBPH

CPU 50–60% Logitech C270 LBPH

CPU 60–70% 720p HD Laptop LBPH

CPU 99.38% 720p HD Laptop DML

Cloud server 50–60% Logitech C270 LBPH

Cloud server 99.38% Logitech C270 DML

surveillance system, and an email alert system. A large-scale BLE mesh system
can be established using mesh topology. A scalable surveillance system means
using a different combination of face recognition algorithms, camera quality, and
hardware’s computation speed, and one can use such a setup depending on the
requirements. With the implementation of the proposed architecture, there are
many application-specific large-scale sites that can be benefited such as commercial
buildings, agricultural farms, industrial factories, etc.

6 Future Scope

The proposed architecture has many future research directions. The manufactured
boards can be replaced with ASIC chips with research funding. As demonstrated
in the proposed hardware architecture figure, all these computations can be done at
a logic level using FPGAs that can be, eventually, replaced with ASIC chips, too.
Alert system upgrades are also possible where mobile applications could be created
rather than web page based control methods. Since the proposed work has a lot of



772 A. Gajjar et al.

potential research opportunities in the emerging field of artificial intelligence, it is
likely to create a big impact on the design of such an application-specific integrated
circuit for offering low-latency and inexpensive computations.
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