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1 Introduction

The electrocardiogram (ECG) is a record of the heart muscle movement and has
been widely used in detection and treatment for cardiac diseases. Different from
normal ECG signals, arrhythmia signals can be harbingers of some dangerous
heart diseases. Early diagnosis helps early detection of chronic disease and starts
treatment as soon as possible. For emergency heart attack such as ventricular
fibrillation, timely detection can significantly improve the survival rate [1]. There-
fore, efficient and effective ECG arrhythmia detection and classification is very
important. However, arrhythmia beats usually occur sporadically and unexpected,
which makes them extremely difficult to record. The rarity of arrhythmia data
limits the training quality of classifiers and becomes a hindrance on the road to a
comprehensive diagnosis system [2].

To enable auto-diagnosis with limited real arrhythmia data, an efficient model
to generate ECG signals with high confidence and quality, especially the abnormal
ECG signals, is necessary. To build a system that can mimic arrhythmia signal, we
choose long short-term memory (LSTM) and generative adversarial nets (GANSs) as
main components. The GANs were first published in 2003 by Goodfellow et al. [3].
In the system, there is a generator (G) that will continuously produce fake signals
to approach real database, while there is a discriminator (D) that can determine
whether the input is real or from the generator. Both G and D will be trained at
the same time until the discriminator cannot define the true label. Instead of using
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the original ECG signal, we use the feature got from an LSTM encoder to train the
generator.

LSTM is a special recurrent neural network model, which can selectively
remember the important information of the input. It is good at dealing with
correlated data sequence and commonly used on speech recognition [4] and
sequence translation [5]. In our system, the LSTM encoder and decoder are trained
to find the commonality of a group of data and exclude the effort from differences
among individuals. To learn and mimic arrhythmia signals, a GAN model [3] is
included between LSTM encoder and decoder to learn the commonality within
hidden states. Previous study shows that GANs can generate similar output based on
input efficiently [6]. So we choose GANs as the generative model to synthesize the
commonality given by LSTM encoder. After enough training, it can generate fake
states and pass them to LSTM decoder to produce high quality fake signals.

Our main contributions are listed below: (1) We proposed an LSTM and GAN
based arrhythmia generator, which can learn from a small data set and produce high
quality arrhythmia signals. (2) We optimize the system performance by studying
the correlation between training iteration and training samples. (3) We verify the
effectiveness of our method on MIT-BIH data set with random forest classifiers.
Compared to classifier trained with only real data, the same classifier that is trained
with both real and fake data achieves an accuracy boost from 84.24 to 95.46%.

The remaining of this paper is organized as follows: Sect. 2 is the related work
about both mathematical and machine learning based ECG models. In Sect. 3, our
method will be discussed in detail. Section 4 describes the classifier in order to test
our method. And the result is shown in Sect.5. Discussion about future work is
given in Sect. 6. The paper is concluded in Sect. 7.

2 Related Work

2.1 Mathematical ECG Models

Mathematical ECG models use a set of dynamic equations to fit the ECG behavior.
In [7], a realistic synthetic ECG generator is built by using a set of state equations
to generate a 3D ECG trajectory in a 3D state space. ECG signal is represented
by a sum of Gaussian functions with amplitudes, angular spreads, and locations
controlled by the Gaussian kernel parameters as in Eq. 1. In [8], a sum of Gaussian
kernels are fitted to a normal ECG signal and then used to generate abnormal signal.
Switching between normal and abnormal beat types is achieved by using a first-
order Markov chain. The state probability vector (P) is trained to be changed based
on factor such as R-R time series. According to the P and the ECG morphology
parameters, the next ECG beat type can be determined.
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In [9] to apply the model to filtering arrhythmia, a new wave-based ECG dynamic
model (WEDM) by separating different events of the ECG has been introduced.
In this model, the ECG signal was separated into three events as the P, C, and
the T that represent the P-wave, the QRS complex, and the T-wave, respectively.
Beside the (P,Q,R,S,T) events, there are also parameters needed for R-R process
used in the wave-based synthetic ECG generation, which are mean heart rate,
the standard deviation of the heart rate, the mean normalized low frequency, the
standard deviation of the normalized low frequency, the mean respiratory rate, the
standard deviation of the respiratory rate, and the low frequency to high frequency
ratio. By controlling the set of parameters, it is possible to generate abnormal
signals.

Mathematical models can generate high quality ECG signal with enough data
to extract the parameters. These parameters are often more than just standard
parameters P, Q, R, S, T as marked in Fig. 1. More parameters, such as mean heart
rate, the standard deviation of heart rate, the mean normalized low frequency, etc.,
are often necessary to configure the models. However, lack of enough ECG data
for each type of abnormality causes extreme difficulty on parameter extractions
and makes mathematical models inappropriate for general abnormal ECG signal
generation.
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2.2 Machine Learning ECG Models

The generative adversarial networks (GANs) [3], based on the mini—-max two-
player game theory, show a great superiority in generating high quality artificial
data. In [10], a GAN based inverse mapping method has been produced. Instead
of cooperation between the constructed and original image space, the latent space
has been used to update the generator. The similarity of the reconstructed image
to original image is around 0.8266, which is higher than direct training. In [11],
personalized GANs (PGANs) are developed for patient-specific ECG classification.
The PGANs learn how to synthesize patient-specific signals by dealing with the
P, Q, R, S, T events. The results are used as additional training data to get higher
classification rate on personal ECG data. Three types of arrhythmia are considered
in the work with an average accuracy rate about 93%. However, the models are
only trained to produce personalized ECG signals. As sporadic types of arrhythmia
are even harder to collect for each individual, it is impractical to train GANs for
personalized abnormal ECG signal generation.

Long short-term memory (LSTM) can solve the vanishing gradient problem
caused by the gradual reduction of the back propagation. It has high performance
when dealing with time series related issues such as speech recognition, machine
translation, and encoding/decoding [4]. For ECG signal classification, LSTM
encoder/decoder classifier can achieve 99.39% for ECG signals [12]. However, it
only studies common arrhythmia that is equally distributed and ignores rare cases.

Although those models can generate both normal and abnormal signals, there are
still limitations. For the mathematical model, there are too many parameters needed
for computation. On the other hand, the input real data need to be analyzed before
it can be used for calculating. For the VAE and PGAN models, the models are only
trained to produce personalized ECG signals. However, for those sporadic types of
arrhythmia, it is hard to record and cannot be used for training. Therefore, a general
purposed ECG signal generator is needed.

3 Methodology

Figure 2 illustrates the overall flow of our LSTM and GAN based ECG signal
generator. Instead of using LSTM as classifier, we use two LSTMs, one is as encoder
to translate ECG signal data x into hidden states h, and another is as decoder to
convert h back to x. Not only more data, but also more iterations can help improve
the quality of the LSTM encoder and decoder. To generate fake ECG signals, we
insert GANs between LSTM encoder and decoder and train it to generate fake latent
vector h¢ that is similar to h. The LSTM encoder, decoder, and GANs are trained
separately for each type of abnormal signals. For abnormal signal type that has less
than 1000 beats, the iteration is increased to improve performance. After enough
fake ECG data are generated, a random forest classifier is trained with both real and
fake ECG data.
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Fig. 2 Proposed approach for ECG signal generator. Part (a) is the logic flow of our system. Part
(b) is the LSTM encoder and decoder training process. Part (¢) shows how GANs work

3.1 LSTM Encoder and Decoder

In this section, we describe the LSTM unit and how to train LSTM encoder and
decoder. Figure 2b shows the general diagram of LSTM encoder and decoder. Each
unit represents an LSTM cell. It takes the input signal x(#), the previous unit output
h(z), the previous cell state C(# — 1), and the bias vector b as inputs. Inside a unit,
three gates (f,i,0) work together to calculate the hidden state h. The gates’ activation
value vectors are calculated to determine whether the input information should be
used. The W is the separate weight matrices for each input. The activation of three
gates is calculated in the following way: the forget gate (f) first determinates whether
the previous memory should be used. The total input of the cell passes through the
input gate (i) and sigmoid function (tanh) and then multiplies with the activation
value of the input gate. After adding input value to the cell state C, the final output
hidden state h is calculated by multiplying the output gate activation value (o) and
tanh(C). h is used to update W for each gate.

The decoder is formed as an inverse process of the encoder, and it works by
taking the final hidden state % as the first input. The conditional decoder takes the
last generated output as one of the inputs that is represented as the dot line in Fig. 3b.
The final output of the decoder is an ECG signal restored based on the hidden state
h. All parameters including weight W and bias b are the same as the encoder unit
but in reverse order.
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3.2 GAN:s for Fake Hidden State Generation

The GANS are used to generate fake hidden state that can pass to the LSTM decoder
to produce fake ECG signal waveform. The basic idea of the GANs is a mini-max
game of two players: the generator (G) and the discriminator (D). D exterminates
the samples to determine whether they are valid (real hidden states) or invalid (fake
hidden states), while G keeps creating samples with similar distribution to real
hidden states. We implemented the generator and discriminator in the following
way: Generator(G): The generator is a 2-layer feed-forward fully connected ANN
with ReLu. It takes a random noise as input and gives the fake hidden state hg
as output. Discriminator(D): The discriminator is a 4-layer feed-forward fully
connected ANN with ReLu between each layer. It is trained to distinguish the real
and fake states.

Algorithm 1 summarizes the training of GANs. The output of the function D (x)
is the predicted label from the discriminator of input x, while the MSE(Y, I?) =
% Z?:] Y; — }A’i)z, Y is the predicted label, and the Y is the ground truth. A
mini-batch of real state and a mini-batch of fake state made from the former step
variables are chosen. The training is based on two simultaneous stochastic gradient
descending processes. At each step, mini-loss functions Gy,ss and D, are all given
by D. Dj,ss shows the ability of D in different real and fake states. A 0 Dj,z5 means
it can perfectly distinguish the inputs, and the higher Dy, is the worse situation
it will be. The Gy, represents how much the G can “cheat” D. Gj,ss equals to 0
means all the fake states given by G are considered as real, the higher, the worse. A
learning rate of 0.0002 is chosen [6].
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Algorithm 1 GANs Training
Input:
Noise: Gaussian Distribution noise
h: Real Hidden State from LSTM Encoder
Valid: Label of real state
Invalid: Label of fake state
Output:
hy: Fake Hidden State
for step number of training irritation do
for k Steps do
Sample mini batch of h;
Sample mini batch of Generated hf;
RealLabel = D(h);
FakeLabel = D(hy);
Update D by descending its stochastic gradient with loss
function Dy 4s;
Djoss = 3 * [MSE(RealLabel, Vaild)
+MSE(FakeLabel, Invalid)]
end for
NoiseLabel = D(Noise);
Update G by descending its stochastic gradient with loss
function Gy
Gioss = MSE(NoiseLabel, Valid)
end for

Algorithm 1 GAN training

4 Random Forest Arrhythmia Classifier

The random forest (RF) classifier used to classify different types of abnormal ECG
signals. The RF is a method that brunch of decision trees work together. Each tree
votes independently, and the final decision is made with the class that gets most
votes. The decision tree is built by randomly choosing n features from the total m
characteristics of the samples, where (n = /m). The child nodes are decided by
using those n features until the current n features have been used in its parent node.
Multiple decision trees are built independently based on randomly picked samples
of n features. Combination of all the decision trees forms a random forest. The
contribution of RF works as follows:

(1) Randomly pick N samples from the original data set with replacement.
(2) Train the root node of the decision node based on the N samples.
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(3) Randomly choose m features from the total M (m = VM ) characteristics of the
samples. Use the m features as the split nodes until the current m features have
been used in the parent node.

(4) Independently build multiple decision trees following steps 1-3, while all trees
are built without pruning.

(5) Combine those decision trees with counters.

The feature for RF classifier in our system is the signal itself. The classifier is trained
based on real data only to classify each arrhythmia type, and then another classifier
is trained to prove the effect of real and fake data used together.

5 Result

5.1 ECG Database

In experiments we use MIT-BIH arrhythmia database [13]. In the MIT-BIH
database, total 23 types of annotations have been record. The 4 types we used are:
left bundle branch block beat (LB) with 8011 beats, right bundle branch block beat
(RB) with 6425 beats, aberrated atrial premature beat (AA) with 6548 beats, and the
atrial fibrillation (AF) with only 310 beats as the rare ECG type.

5.2 Result for LSTM and GANs

Figure 4 shows the output of decoder for type AF with different iterations. As
iteration number increases, LSTM decoder can better capture the commonality of
AF signals. Figure 5 gives the error vs. iteration curves for all four types. Figure 6
shows the fake hidden states generated by GANs and its fake ECG signal generated
by the LSTM decoder. We can see that GANs+LSTM decoder can produce similar
but not exactly the same abnormal ECG signals, which are suitable for the later
training of the RF classifier.

5.3 (Classification with Fake ECG Signal

Here we compare the qualities of training based on real data only vs. training on both
real and fake data. Table 1 summarizes the training result with or without fake data
and also comparisons to other existing methods. RF stands for RF classifier trained
with only real data. It achieves an average 84.24% accuracy in total 21,298 testing
samples. And for each abnormal ECG type, the classifications rates are: 95.33%
for LB, 61.34% for RB, 96.29% for AA, and 0.18% for AF. RLG stands for RF
classifier trained with both real and fake data. Fake signals are added to data sets
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Fig. 4 Encoder result with different training steps. (a) The real signal. (b) Decoder output after
5000 steps. (¢) Decoder output after 10,000 steps. (d) Decoder output after 20,000 steps

of each type to an equal number of 8200. After training, the average classification
accuracy rate increases to 95.46%. Moreover, for each type, we have 95.28% for LB,
95.39% for RB, 95.85% for AA, and 93.55% for AF. Note that testing is only done
on real data for a fair comparison, and we can see a significant boost in accuracy
especially for AF. The huge difference between with or without fake data on AF
classification shows the importance of data balance for training as well as verifies
the effectiveness of our approach.

6 Future Work

Although ECG based arrhythmia test is attracting more and more attentions and
more and more ECG databases are created, the arrhythmia beats included in are still
not comparable to normal beats. In the MIT-BIH database [13], only 16 beats of
110,000 are recorded as atrial escape beat. On the other hand, all the annotations are
given by two cardiologists artificially, and some of the public databases such as [16]
do not include arrhythmia annotation. Therefore, mathematical models can be used
as auxil. In [17], new models based on probability density function are created to
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Table 1 Performance comparison of the proposed method with other studies

Paper Method Class Beats Accuracy/%
Neuro-morphic model [14] RF 3 154 92.16
[15] SVM 4 44,258 86
[11] LG 3 Unknown 93
Mathematical model [8] VFCDM 3 61 88
Our method RF 4 21,298 84.24
RLG 95.46

make more detailed divisions about ECG signals. In that case, neural network can
participate in adjust parameters.

There are research that show that ECG signals vary from person to person [18],
and arrhythmia ECG models can also be created to adapt to different persons. With
the development of wearable ECG detect device [19], personalized ECG signal can
be collected easily. Since our system can generate ECG beat from few input real
signals, we can build a personalized classification system within few periods of
testing.

Hardware based ECG application is another field with good development pre-
spects. In [20] a 65-nm CMOS is used for personal cardiac monitoring. A classifier
is trained based on the MIT-BIH database and then tested with connected ECG
processor. With the hardware based neural network implementation method [21]
and database extended by our generator, a faster arrhythmia can be trained to get
higher accuracy.

Therefore, we will consider in future the feasibility of this hardware—software
co-operated application. We want to create a wearable device with pre-installed
arrhythmia classifier that can be adjusted by users’ ECG signal to finish the personal
cardiac monitoring.

7 Conclusion

In this work, we present an LSTM and GAN based ECG signal generator to improve
abnormal ECG classification especially for rare types. Our LSTM encoder can
extract the hidden states that represent the commonality between individuals of the
same ECG type. With fake states from GANs, our LSTM decoder can produce high
quality fake signals for later detection and classification. We implemented a random
forest classifier to verify the effectiveness of our approach. With the help of fake
ECG signals, the average classification rate improves from 84.24 to 95.46%, with
classification accuracy for rare ECG types (AF) boosted from 0.18 to 93.55%
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