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1 Introduction

As video cameras are pervasive as a CCTV or a mobile device, many researches
attempt to utilize the potential of these cameras and develop various intelligent
systems and services with Video Analytics (VA), which is a generic term for
various methods of video analysis [3, 11]. Deep Neural Network (DNN) recently
has been a key technology for video analytics due to their high accuracy and various
applications such as object detection and tacking, action recognition and instance
segmentation, etc. [2]. A desired video analytics quality requires high accuracy
with low latency, but the high accuracy of DNN requires a prohibitive cost on
latency [1, 4]. DNN based VA involves high complexity computation which cannot
be performed at high speed on the limited computing resource of end devices,
such as CCTV or mobile device [5]. For example, on Qualcomm Adreno 530 GPU
which is the embedded GPU of end devices, the processing time per image of big-
yolo, a DNN based object detection model with 22 convolution layers, is about
600∼4500ms (1.6∼0.2) fps and those of tiny-yolo, a DNN based object detection
model with 9 convolution layer, is about 200∼1100ms (5∼0.9) fps [9].

In this regard, Mobile Edge Computing (MEC) has been emerged as a promising
solution to address these issues. The MEC provides computing resources located in
close proximity to end users within the Radio Access Network. The latency on DNN
based VA in the limited computing resource of end devices would be significantly
improved by offloading the computation to the MEC. However, since multiple video
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cameras are usually served concurrently for VA in the MEC, even the computing
resources (i.e. GPUs) of the MEC are limited to handle each video stream.

Many VA systems efficiently utilizing the limited computing resources of the
MEC shared by multiple video cameras have been proposed. Their main target
application is object detection, which is the basis of various high-level VA applica-
tions such as scene graph detection and instance segmentation. In order to guarantee
the VA performance in real time, several systems address these issues by adapting
configurations [3, 11], such as frame resolution, frame sampling rate and detector
model. However, they have a high profiling cost problem derived from an online-
profiling technique, which is essential due to the dynamics of the configuration’s
impact on video analytics accuracy [3].

In this paper, we propose a low-cost VA system analyzing multiple video streams
efficiently under limited resource. The objective of our proposed system is to find
the best configuration decision of frame sampling rate for multiple video streams
in order to minimize the accuracy degradation while guaranteeing the real time VA
in the shared limited resource. Firstly, the frame sampling rate knob of each video
stream is adapted optimally based on the velocity feature of objects extracted from
its video context in low-cost. Its objective on each video stream is to find the best
frame sampling rate for reducing the resource demands as much as possible while
guaranteeing a desired accuracy. Secondly, the frame sampling rate knob of each
video stream is adapted additionally in a greedy way, considering a limited resource
shared by multiple video streams. Its objective is to reduce the resource demands of
each video stream in fairness to analyze multiple video streams in real time in the
shared limited resource while minimizing the accuracy degradation of each video
stream.

2 Low-Cost Video Analytics System

We introduce our VA system which supports multiple camera feeds fairly under
limited resource capacity. Figure 1 shows the structure of our VA system for edge
computing environment. It consists of a pre-processor, an object detection model,
and a configuration controller [3]. It is implemented on a GPU-enabled edge server
attached to a small cell base station and its input video streams are generated from
multiple cameras. Let [n] = 1, . . . , n denote the set of integer numbers which has a
cardinality of n.

There are I multiple video streams, each of which has its default frame rate
and resolution. Each video stream is split into smaller segments, each of which is
a contiguous set of frames spanning a T -second interval (By default, T = 4). Let
Si = {Si,1, Si,2, . . . , Si,j , . . . , Si,J } denote the segments of i-th video stream whose

size is J . The raw frames of Si,j are denoted as Si,j = {f 1
i,j , f

2
i,j , . . . , f

ls
i,j }, where

the number of frames in Si,j is ls . Let fpsdef be the default frame rate of all cameras



A Low-Cost Video Analytics System with Velocity Based Configuration. . . 669

Fig. 1 An illustration of our proposed video analytics system

(By default, fpsdef = 30),1 respectively. The generated raw frames are transferred
to the VA system. We assume ls is same with fpsdef .

The pre-processor samples the received raw frames of each video stream in
a certain frame rate. The frame rate is considered as a main configuration knob
and controlled by the configuration controller. Let f si,j denote the frame rate
of i-th video stream for j -th segment. There are allowable candidates which
the configuration controller can decide for frame rate knob. The candidate set
of frame rate is denoted as S and are sorted in a descending order (e.g. S =
{30, 15, 10, 6, 5, 3, 2, 1}fps. For simplicity, we use the divisors of fpsdef for S.
Then, the frame rate knob of i-th video stream for j -th segment is defined as f si,j .
Let Cj = {f s1,j , f s2,j , . . . , f sI,j } denote the configurations of I video streams on
j -th segment, decided by the configuration controller.

The sampled frames of each video stream are fed into the queue and processed
on a single GPU for VA by an object detection model (i.e. Yolo). A GPU is entirely
occupied by a video stream at a time and the usage time of the GPU is used as
a resource. We assume that the processing time of the object detection model on
a frame is static since the GPU tends to be stable and static for processing each
operation of the object detection model.

Lastly, the model recognizes objects and draws bounding boxes around them in
each sampled frame of video streams.

Based on the detection results on the sampled frames of each video stream from
the object detection model, the system predicts and finalizes the detection results of
all frames in j -th segment of each video stream (including the frames not sampled).
The accuracy of the j -th segment in each video stream is calculated as the average
accuracy per frame of a segment. In the same way as existing VA systems, the

1We assume that the default frame rate of all cameras is same.
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detection results of the last sampled frame are used for the frames not sampled in a
segment.

2.1 System Objectives

We formulate the VA problem to optimize the average accuracy of analyzing live
video streams by adapting configurations under limited resource capacity over the
time horizon.

We divide the continuous time to discrete time slots. The length of a time slot
is defined as τ , which is defined as the segment length ls . Therefore, the j -th time
slot is defined as the time at which the j -th segment, which has generated during
(j − 1)-th time slot, have to be processed. Then, in the j -th time slot, the problem
is to process the j -th segments of video streams, denoted as {Si,j |∀i ∈ [I ]}.

The objective of our VA system is to make an optimal configuration decision
for its VA problem over video streams at each time slot. Then, the configuration
decision vectors for j -th segments is defined as follows:

Cj = {f s1,j , f s2,j , . . . , f sI,j }. (1)

The total processing time on the GPU for all frames sampled in the configuration
Cj for j -th segments of video streams is modeled as follows:

PT (Cj ) =
∑

i∈I

f si,j ∗ lp, where f si,j ∈ S. (2)

Here, f si(t) is decided among the candidates of S.
The accuracy of analyzing a video stream is affected by several factors: the video

context, the object detection model, the frame resolution, rate and bitrate of the
video stream [9]. Since we assume that our VA system receives each video stream in
high enough bitrate and uses a single object detection model, which has a fixed input
size, the accuracy depends only on the video context, the frame rate of the video
stream. Then, the accuracy model is defined as ai,j (f sj ) which represents the VA
accuracy on j -th segment of i-th video stream with f sj . In i-th video stream, there
is a trade-off between the accuracy ai,j (f si,j ) and the processing time f si,j ∗ lp.
Increasing the frame rate may increase the accuracy but will also increase processing
time.

Then, we formulate the VA problem to find the configuration decision vector Cj

optimizing the trade-offs of video streams as follows:

maximize
Cj

∑

i∈I

ai,j (f si,j ) subject to PT (Cj ) ≤ τ. (3)
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The objective is to maximize the sum of the accuracies of I video streams for j -th
segment. The constraint says that the total processing time cannot exceed the time
slot length τ , in order to keep the queue stable. The VA problem is a multiple-choice
knapsack problem (MCKP). A brute-force solution to the VA problem would take a
running time of O

(
I · |S|). Obviously, it is impractical to search a large space of the

configuration by profiling the accuracy models of video streams in each segment.
Moreover, the accuracy model ai,j (f si,j ) is non-linear function and cannot be
formulated cleanly in analytic form with the lack of analytic understanding on
theoretical properties of the object detection models. It is necessary to design an
efficient algorithm resolving the time complexity and the non-linearity.

2.2 Velocity Based Configuration Adaptation Algorithm

In this procedure, we consider the ls raw frames of j -th segment generated from
each live video stream. Then, we decided the sampling frame rate f si,j for the ls
raw frames of each live video stream, using the velocity of objects on 1-th raw frame,
f 1

i,j . Firstly, since f 1
i,j is sampled in default, we have the bounding boxes of detected

objects B1 = {b1,1, b1,2, . . . , b1,q , . . . , b1,Q} on f 1
i,j , where b1,q is the bounding

box of q-th object detected. We extract K tracks on f 1
i,j , denoted as {tr1,k|∀k ∈

[K]}, using an optical flowmethod which extracts many tracks of feature points over
contiguous frames. Let tr1,k = {p1,k, p2,k, . . . , pl,k}, k ∈ [K] denote the track of k-
th feature point at f 1

i,j where l is the track length ( l = 5) and ph,k = {valxh,k, val
y
h,k}

is the coordinates of k-th feature point at h-th time.
Secondly, we estimate the velocity of each object by calculating the average

movement distance per frame of feature points included in the detected bound-
ing box of an object on f 1

i,j . The tracks of M feature points included in the

detected box b1,q are denoted as T R
q

1 = {tr1,1, tr1,2, . . . , tr1,M} where tr1,m =
{p1,m, p2,m, . . . , pl,m},m ∈ [M]. The delta of the track of m-th feature point
over its track length is calculated and denoted as (Δtrx

1,m,Δtr
y

1,m) = pl,m−p1,m
trackLen

=
(valxl,m,val

y
l,m)−(valx1,m,val

y
1,m)

trackLen
. Based on it, the estimated velocity of b1,q is defined as

follows:

v1,q = (vx
1,q , v

y

1,q ), (4)

where
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vx
1,q = 1

|M|
|M|∑

i=1

Δtrx
1,i ,

v
y

1,q = 1

|M|
|M|∑

i=1

Δtr
y

1,i .

(5)

As a result, we estimate how objects on f 1
i,j move per frame in a segment with

{v1,q |∀q ∈ [Q]}. In order to decide the best frame rate intuitively which maximizes
the accuracy with minimum resource consumption, we focus on the velocity of
the fastest object qmax = argmaxq∈Q{v1,q} and, based on it, adapt the sampling
frame rate f si,j for j -th segment. First, we predict the qmax-th object’s bounding
boxes over j -th segment by shifting the qmax-th object’s bounding box on f 1

i,j ,
b1,qmax , with its velocity of v1,qmax . Let {b∗

t,qmax
|∀t ∈ [ls]} denote the predicted

bounding boxes of qmax-th object over the ls frames of j -th segment. It is performed
by shifting the coordinates of b1,qmax based on v1,qmax and predicting those of
{b∗

j,qmax
|∀t ∈ [ls]}, as defined as follows:

rect∗t,qmax
= (

x∗
t,qmax

, y∗
t,qmax

, w∗
t,qmax

, h∗
t,qmax

)

= (
x1,qmax + t ∗ vx

1,qmax
, y1,qmax + t ∗ v

y

1,qmax
,

w1,qmax , h1,qmax

)
,∀t ∈ [ls].

(6)

Here, (x∗
t,qmax

, y∗
t,qmax

, y∗
t,qmax

, w∗
t,qmax

) is the left and top coordinates of the
predicted bounding box b∗

t,qmax
. We assume that the width and height of b∗

t,qmax

are static in this short time. Finally, we decide the sampling frame rate f si,j based
on the reciprocal of the longest interval from 1-th frame to the t-th frame whose
predicted bounding box b∗

t,qmax
shows IoU above the desired threshold ηv (By

default, ηv = 0.5)with b1,qmax . In practice, we choose the closest one among S

for the sampling frame rate f si,j .

f si,j = fpsdef

max{t |IoU(b∗
t,qmax

, b1,qmax ) > ηv,∀t ∈ [ls]} . (7)

To minimize the accuracy degradation, we prevent the prediction from being far
from b1,qmax in a certain level with the desired threshold and adapt the sampling
frame rate depending on how fast the prediction exceeds the desired threshold over
ls frames.

By default, our VA system runs only based on the frame rate f si,j of each live
video stream decided by the aforementioned algorithm for j -th segment. Then, the
default configuration of video streams is denoted asC0

j = {f s01,j , f s02,j , . . . , f s0I,j }.
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However, if PT (C0
j ) exceeds τ , we additionally adapt the frame rates of video

streams in C0
j . That is, in order to remove the total exceeded time ET = PT (C0

j )−
τ , the configuration C0

j is adapted to be cheaper.
Firstly, ET is split into I smaller segments, denoted as ETi, i = 1, . . . , I , and

distributed to all live video streams. Then, each live video stream is required to
reduce ETi from PT (C0

j ). ETi is decided in proportion to f si,j fairly because
f si(t) reflects the resource demand of i-th live video stream, defined as follows:

ETi = (
PT (C0

j ) − τ
) ∗ f si,j∑

i∈[I ] f si,j
. (8)

Secondly, each video stream i = 1, . . . , I independently starts to adapt its frame
rate f s0i,j cheaper for reducing ETi . The adaptation is conducted one by one
iteratively in a greedy way for maximizing the resource consumption reduction
while minimizing the accuracy degradation until ETi ≤ (f s0i,j − f si,j ) ∗ lp. As
a result, Cj = {f s1,j , f s2,j , . . . , f sI,j } is determined.

3 Evaluation

In our experiment, we deploy our implemented VA system on the physical machine
equipped with CPU, Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, GPU, GeForce
GTX 1080(8GB), memory 16GB in order to process all analysis tasks on video
streams. The VA task is a DNN based object detection. We use CUDA 9.0 and
cuDNN 7.0 [7] to accelerate the DNN speed based on a GPU.We use Keras 2.2.4 [6]
APIs with Tensorflow framework 1.12 [10] in order to execute an object detection
model of Yolov3. We determine a particular DNN called Yolo, which input size is
608×608. It can detect 80 object classes and are pre-trained on the COCO image
dataset. We use a subset of surveillance videos and annotations from VIRAT 2.0
Ground dataset [8]. Based on them, we construct 9 video streams from nine real-
world static cameras deployed in different area. Each video stream generates 10800
frames totally in 30 fps and 1920×720p (for 6 video streams) or 1280×720p (for 3
video streams).We implement optical flow algorithm used in the proposed algorithm
by Lucas–Kanade method.

In these experiments, the proposed algorithm was compared with existing
aforementioned well-known algorithm in existing VA systems such as Chameleon,
which are based on online profiling. For the existing algorithm, we use the original
parameters and configurations described in its paper, such as segments of profiling
window w = 4, segment interval T = 4, profiling interval t = 1. We assume
the maximum performance we can achieve is the analytics performance with the
expensive configuration (i.e. 30 fps) and it is denoted as Pure in this paper. In order
to evaluate the VA performance of the proposed algorithm on accuracy and resource
consumption, we measure F1 score, the harmonic mean of precision and recall,
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and average GPU processing time per frame. We calculate an accuracy of a single
frame by comparing the detected objects with the ground truth box. We identify true
positives in the F1 score using a label-based condition, which checks if the bounding
box has the same label and sufficient spatial overlap with some ground truth box.
This IoU threshold is set as 0.5.

In this experimental environment, we evaluate the VA performance of each
algorithm by measuring accuracy (F1 score) and resource consumption (GPU
processing time) for multiple video streams in limited resource scenario. We apply
several video streams concurrently (from 2 video streams to 9 video streams) among
9 video streams. Figure 2 shows the accuracy and normalized accuracy performance
of proposed algorithm over multiple video streams. The x-axis represents the
number of streams to be processed, ranging from two to nine. The proposed
algorithm shows higher accuracy in every cases compared to existing VA systems.

In Fig. 2a, b, the proposed algorithm shows higher accuracy for multiple streams
in every cases. In Fig. 2b, the accuracy of the proposed algorithm is almost constant
above five streams, since the configuration is already adapted to the cheapest one
decided within the proposed algorithm’s constraint. By relaxing this constraint we
impose, it is possible to reduce the resource consumption although the accuracy
decreases. However, we judge that the accuracy below the certain level is not
meaningful, so this constraint is needed to guarantee the least desired accuracy.

Figure 3 shows the latency performance of the proposed algorithm over multiple
video streams. The proposed algorithm also shows better performance on resource
consumption in every cases. However, as the number of streams increases, the
resource consumption of Chameleon drops sharply from two streams to eight
streams while those of the proposed algorithm falls and stops to a proper level
from six streams. Compared to Chameleon, the proposed algorithm finds better
configurations on accuracy and resource consumption by profiling. Meanwhile,
Chameleon, which profiles limited configuration candidates basically, profiles fewer
configuration candidates feasible in divided resource allocated to each video stream.
Obviously, it is not enough to find efficient configurations and realize a desired
accuracy. Especially, as the number of video streams increases and the resource
allocated to each video stream decreases, configuration candidates to be profiled
decreases. Consequently, although reducing significantly its profiling load and
resource consumption, it shows unacceptable accuracy with this deficient profiling.
The resource consumption of the proposed algorithm is also almost constant from
five streams with its aforementioned constraint.
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Fig. 2 Accuracy performance of the proposed algorithm over multiple video streams, (a) F1 score,
(b) Normalized F1 score by Pure
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Fig. 3 Latency performance of the proposed algorithm over multiple video streams (Average GPU
time per frame)

4 Conclusion

In this paper, we propose a low-cost VA system with velocity based configuration
adaptation to find the best configuration decision of frame sampling rate for multiple
video streams in order to minimize the accuracy degradation in the shared limited
resource. Firstly, the frame sampling rate knob of each video stream is adapted
optimally based on the velocity feature of objects extracted from its video context
in low-cost. Secondly, the frame sampling rate knob of each video stream is adapted
additionally in a greedy way, considering a limited resource shared by multiple
video streams. As a result, the proposed VA system outperforms the existing VA
systems in terms of accuracy and resource consumption.
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