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1 Introduction to Feature Extraction and Chromosome
Classification on Massive Data

Healthcare analytical applications generate massive data including text/image/video
in both batch and streaming contexts, which consist of a growing volume in
petabytes for a single average-size city hospital that possesses micro-macro scale
real-time tracking/monitoring devices. Furthermore, such hospital systems require
tracking real-time responses both during diagnosis and historical analytics for
trusted results. Therefore, the veracity of the growing datum is highly controversial,
in which trust is an obligation to give vital decisions.

In this study, we unify the resources and apply real-time trusted analytical models
just by focusing on scalable chromosome diagnostic models. Picture archiving
and communication systems (PACS) are considered as storage data formats and
HL7/similar ones to unify the resources. PACS are a prerequisite in data-exchange
mission in modern hospitals to enable routing, retrieving, and storing medical
images [1]. Specifically, images from radiology department such as X-ray, mag-
netic resonance imaging, and computed tomography are the main tasks of PACS
systems to facilitate the workflow. Here, we integrate the chromosome karyotyping
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Fig. 1 Chromosome image
with its geometrical features

resources, which are used for disease characterization, and our analytical models in a
trusted manner to co-operate with other resources by considering the trustworthiness
of the overall system for the vital decisions.

Chromosomes are organic structures found in the cell nucleus that carries genetic
information. A healthy human cell includes 23 chromosome pairs (22 pairs of
autosomes, classes 1–22; a sex genosome, either XX for females or XY for males).
Microscopic images of the chromosomes are taken at the metaphase stage of
the cell division for identification of chromosomes as well as their classification,
i.e., karyotyping, since the chromosomes can be easily distinguished at that stage
[2]. Genetic disease diagnosis at an early stage is an important task for proper
medical treatment processes, and thus, morphological analysis of chromosomes
becomes very crucial. Chromosomal abnormalities that cause genetic diseases can
be exemplified as having an improper number of chromosomes (monosomy/tri-
somy), translocation, deletion, or inversion of chromosomes. Such morphological
abnormalities of chromosomes could be associated with genetic diseases and,
especially, with many cancer diseases [3].

In feature extraction systems, a reliable chromosome classification is possible if
feature vectors are defined appropriately. The common features used in automatic
chromosome classification algorithms are mainly geometrical and banding pattern-
based features [4]: The length of the chromosome and its centromeric index (CI), a
ratio of the short arm (p) with total length of the chromosome (p + q), are widely
used geometrical features. As an example, an individual chromosome is given in
Fig. 1 with its geometrical features {p,q}.

Efficient chromosome diagnosis systems require dynamic feature extraction and
object detection mechanisms. Multiple-object detection is one of the challenging
problems in computer vision application domains. Furthermore, real-time object
images may not be sufficiently clear and separation of the objects from the
background may usually not be adequate, which can be considered as other arising
problems in computer vision systems. In order to circumvent such limitations,
different object detection algorithms have already been developed in the literature
[4–9]. Adaptive sub-modularity can be considered as one of prominent image
processing techniques for the detection of multiple objects [10]. As a solution to
dealing with large-scale data sets, a submodular function maximization method is
proposed in a distributed fashion, whose effectiveness in massive data such as sparse
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Fig. 2 (a) Typical Q-band chromosome images taken at metaphase of cell division and (b) their
karyotyping [15]

Gaussian process inference and exemplar-based clustering is demonstrated in [11].
As additional types of chromosome classifiers, different algorithms have already
been studied in literature such as artificial neural network-based classifiers [12],
support-vector machine [13], and fuzzy logic–based classifiers [14].

In this study, a scalable and dynamic feature-extraction model is developed
to manage the specified features in chromosome dataset. A distributed clustering
system and a memory-centric analytical infrastructure are implemented for high-
speed data processing of chromosome images, which can be built on the current
PACS systems in hospitals. Every class of chromosomes in different cells is
compared in terms of their features and with its homolog chromosome and the
cell having potential genetic disorder is diagnosed, accordingly. The chromosomal
features are firstly extracted from publicly downloadable (BioImlab) chromosome-
image dataset [15], which includes 119 human cells with 5474 individual Q-band
chromosome images. A typical chromosome cell at mesophase and its karyotyping
is demonstrated in Fig. 2.

The remainder of the chapter is as follows: Sect. 2 discusses the scalable trusted
computing technique briefly employed in this study for the classification process
of the chromosomes. In Sect. 3, the feature extraction model is discussed in detail;
the raw chromosome images, feature selection techniques, and the establishment
classification models based on the features are presented. Finally, a conclusion is
provided in the last section.
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2 Proposed Chromosome Classification Model

In this study, a hierarchical multi-layer neural networks and tree structures are
considered as a chromosome classifier that processes the genome data in hierar-
chical fashion. Each layer gathers the chromosome image features as an input data;
automatically vectorizes and merges the matrices; analyses the feature of genes and
encodes the data; and sends the feature sets to the next layer.

As universal health standardization, Health-Level Seven (HL7) information
modeling is implemented for the genome analyses [16]. HL7 follows an object-
oriented modeling technique that is organized into class diagrams (graphs) with
attributes of classes. The extracted genomic data in our study will be transported
in the distributed system via predefined encapsulating HL7 objects and the raw
genomic data will be sorted out for the selection of specific genes at the memory-
centric section of the system. Later, the feature extraction of the specified genes
will be provided with the distributed system via training algorithms, and then, new
genetic data will be classified comparing with formerly collected genetic features.

As a network communication model in HL7 standards, Open System Intercon-
nection (OSI) reference model is used. As a hierarchical network architecture, the
OSI model includes seven layers in a logical progression (see Fig. 3). Briefly stated,
the seven OSI layers have the following assignments [17]:

• Application layer includes network software (user interface and application
features) directly served to users.

• Presentation layer converts the information into specific formats (encryption,
compression, conversion, and so on). In our case, the raw genomic data is
processed.

• Session layer controls end-to-end connections between the applications in
different nodes.

• Transport layer converts the received genome data from the upper layers into
segments.

• Network layer is responsible for path determination and datagrams generation.
• Data links provides error control as well as “transparent” network services to

physical layer.
• Physical layer enables direct communication with the physical media.

Comparing both TCP/IP and OSI reference models, TCP/IP has four layers—
combining the application, presentation, and session layers into one top layer; taking
both data-link and physical layers as a bottom (Network) layer (see Fig. 3).

Storing, printing, and transmitting of chromosome image information is handled
by the Digital Imaging and Communications in Medicine (DICOM) protocol, which
includes application protocol in TCP/IP model to communicate among the system.
Each chromosome image is defined as a data object and the data exchange is
conducted in image format. Complete encoding of medical data is standardized by
DICOM protocol with attributes named as “DICOM data dictionary.”
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Fig. 3 Hierarchical
architectures of OSI and
TCP/IP reference models
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DICOM stores the images from the archive, and if they are needed, DICOM
provides association between service class users (SCUs) and service class providers
(SCPs). Different protocols are also available for specific purposes like disease
names, clinical context management, and hospital data acquisition aims. The
current global standards can be exemplified as ICD (International Classification
of Disease), NIST (National Institute of Standards and Technology), HL7 CDA
(Clinical Document Architecture), CCR (Continuity of Care Record), CCOW (Clin-
ical Context Management Specification), LOINC (Logical Observation Identifiers
Names and Codes), ELINCS, EHR-Lab (Electronic Health Record - Lab), X12,
SNOMED (Systematized Nomenclature of Medicine Clinical Terms), NCPDP
(National Council for Prescription Drug Programs), IHE (Integrating the Health-
care Enterprise), CCHIT (Certification Commission for Healthcare Information
Technology), HITSP (Healthcare Information Technology Standards Panel), CMMI
(Capability Maturity Model Integration), ISO 27001, TS 13298, OHSAS 18001,
Medical Data Interchange Standard (MEDIX), ASTM E1238, IEEE 1073 and ASC
X12N. Furthermore, ASTM E31.17 and ASTM E31.20 standards are applied for
data security and privacy. The standards are explored to manage the transactions in
a scalable/trusted manner.

The studied feature extraction method will be described in detail in the following
subsections.

2.1 Proposed Feature Extraction Method

For high-precision classification, it is very important to have best-characterized
chromosome images. For that reason, better features should be selected to improve
classification performance. It is also critical to note that well-described features
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Fig. 4 Original image of
Chromosome 1 pair [15]

Fig. 5 Chromosome 1 pair
image (in Fig. 4) after
binarization. Solid rectangles
indicate the region above the
predefined threshold

reduce the processing workload and thus offer greater success of chromosome
classification in less processing time.

2.1.1 Adaptive Thresholding to Individual Chromosome Images

An adaptive threshold value must be determined because the quality of each
chromosome image may differ. A boundary detection-based thresholding is applied
for efficient feature extraction. Chromosome 1 pair is chosen as an example for the
application of the proposed feature extraction method (see Fig. 4).

2.1.2 Chromosomes-Image Binarization and Skeletonization

After thresholding with an adaptive value for each chromosome image as in Fig. 4,
binarization of the image is conducted and the chromosome region is detected from
the image (see Fig. 5). Later, a skeletonization algorithm is carried out for the binary
version of the chromosome image, which can be considered as a landmark for the
feature extraction (see Fig. 6).
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Fig. 6 Skeletons of
Chromosome 1 pair image (in
Fig. 4) extracted by using the
skeletonization algorithm

Fig. 7 Binary images of
Chromosome 1 pair with its
medial axes

2.1.3 Medial Axis Estimation of Chromosome Pair

Determination of medial axis is an essential task for the feature extraction of chro-
mosome pairs. Medial axis estimation provides detection of centromere location and
its indexing, chromosome length estimation, and density profile extraction [18]. For
that purpose, the chromosome image in Fig. 5 is scanned with lines to determine
boundaries of the binary image. The mid-points of every scanned line are found
using a mid-point algorithm, which enables an accurate medial axis estimation.
Estimated medial axes for the binary images in Fig. 5 are drawn and represented
in Fig. 7.

2.1.4 Gray Level Extraction Along Medial Axis

After the determination of medial axes, a curve-fitting is performed with a 5th-
degree polynomial function. Using this approach, the chromosome alignment can
be mathematically derived. The next step is to resolve the chromosome image by
slicing an equal number of perpendicular lines to the medial axes (see Fig. 8 for
detailed representation). For that purpose, the norm of the polynomial curve is
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Fig. 8 Polynomial
curve-fitting of medial axes
on the chromosome images
and their slicing with
perpendicular lines

determined, and the curve is sliced equally for every adjacent perpendicular line.
It should be noted that the solid lines are in parallel, and hence, they do not intersect
with each other. The distance vector r is given as an inset in Fig. 8.

The next step is extraction of the gray levels through the norm of medial curve.
To do this, a new parameter called Histogram, H(r), of the chromosome image is
calculated by the following equation:

h(r) =
n∑

k=1

−→
gk · −→

uk

n
, (1)

where −→
gk denotes the gray-level vector along the perpendicular line −→

uk and n is
the number of perpendicular lines, viz. pixels. Corresponding histogram function
dictates the average density of pixels along the medial axis. The h(r) calculation
is conducted for the chromosome pair in Fig. 4 and plotted in Fig. 9. Some
important remarks could be gathered from the histogram plot: (1) End-points of
the chromosome pairs could be inferred from the histogram plot; (2) centromere
position, which is the lowest point of the curve, could be precisely determined by
using the histogram plot. In this case, corresponding centromere-index (CI) could
also be calculated from Fig. 9, which is found to be CI = 0.46 for chromosome 1a
and CI = 0.49 for chromosome 1b.

2.1.5 The Feature Extraction from Histogram Information

As a common shape signature extraction of image data, frequency response calcu-
lation is implemented in image processing systems [19]. Therefore, discrete Fourier
transform (DFT) of the histogram function is taken as a feature extractor H(f ) for
precise chromosome classification. The feature extractor function is calculated via
the following equation:
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Fig. 9 Histogram function calculation along the length of the medial curve

H(f ) =
n∑

k=1

hk(r)e
−i2πkr/n. (2)

Absolute values of |H(f )| is plotted in terms of frequency (see Fig. 10). There
are two critical points to infer from Eq. (2): The centromere location, i.e., CI of the
chromosome, directly influences the frequency of the main peak, which is found to
be 4 Hz for Chromosome 1a whereas that value equals 4.02 Hz for Chromosome
1b (see Fig. 10). It is important to note that the reason of being the two frequencies
nearly the same is due to the nearly equal values of CI. Another important remark
can be inferred while comparing Figs. 9 and 10 that the average value of histogram
function h(r) affects the absolute value of corresponding feature extractor, |H(f )|.

As an alternative, the feature extraction model can be extended by using hyper-
spectral images of the chromosomes. Namely, chromosomes images under different
wavelengths of illumination can give us additional information for the diagnosis
of disease carrying/faulty chromosomes. It is known that biological molecules and
cells have footprints in the mid-infrared and terahertz parts of the electromagnetic
spectrum [20]. Combining the image and spectral data at these wavelengths would
improve the performance of the classification algorithm significantly. We discuss
further improvements on feature extraction and classification in detail in Sect. 2.3.
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Fig. 10 DFT function |H(f )| as a feature extractor calculation for the Chromosome 1 pair in Fig. 4

2.2 Chromosomal Abnormalities–Related Disease Diagnosis
by Spectral Chromosome Information and Other Novel
Features

Humans have 23 pairs of chromosomes which have various numbers of genes
and differ in their structures and sizes (i.e., male Y and female X chromosome).
Structural and numerical chromosomal alterations are identified in ~0.6% of births
[21], which frequently cause developmental disabilities, mental retardation, birth
defects, and dysmorphism [22]. Many genetic or rare diseases are caused by the
chromosomal abnormalities, which are diagnosed with a determined gain or loss of
some genomic materials coding hundreds of genes. Unlike single-gene mutations,
the gain or loss in chromosome complexes directly influences gene expression doses
which can cause imbalances in phenotype and human body functions.

Alternative abnormalities can be microdeletion or microduplication of chro-
mosomes, all of which can be identified via conventional visual analysis of
chromosomes under microscope (karyotyping). In contrast to numeric chromosomal
abnormalities, which occur when three copies of chromosome present rather than
two such as Down syndrome (trisomy of chromosome 21), structural abnormalities
are caused from the breakage or rejoining of chromosome arms. This can result in
deletions of chromosome segments.

The chromosomal alterations can cause the imbalances in a contiguous gene
syndrome, in which multiple genes are negatively influenced, resulting in com-
binatorial abnormalities in clinical phenotype [23]. On the other hand, most of
the chromosomal deletion syndromes (such as Williams syndrome, Miller-Dieker
syndrome and DiGeorge syndrome) result in haploinsufficiency of a gene or genes
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in the lost segment where single copy of other allele gene does not express
sufficient doses of the gene product for a normal and healthy state phenotype [22].
Chromosomes can be visualized as lighter and darker bands which are considered
as sections/segments following certain staining protocols and classical microscopy.

However, the newly developed spectral chromosome technologies enable the
characterization of the disorders in a high throughput manner via super-resolution
visualization with lab-on-a-chip (LOC) microfluidics and microscopy in a real-
time fashion. The chromosome imaging and spectral analysis platform can address
disease-related abnormalities with respect to healthy and homolog chromosomal
information. Therefore, any subtle alterations or rearrangements of the segments
in a chromosome (micro-level deletions or reunions syndromes) can be easily
imaged and detected using high-resolution chromosome spectral analysis, enabling
the identification of unbalanced abnormalities that are invisible under conventional
microscopy technique.

The use of high-resolution LOC spectral chromosome analysis can allow cy-
togenetic field both to diagnose the pre-characterized genetic syndromes and to
identify new disorders. With an automated chromosome spectral analysis through
an adaptive optimization method of karyotyping schemes, numerical or structural
abnormalities in chromosomes can be detected highly efficient and robust manner
while diagnosing cancers and other genetic disorders. For instance, in diagnosed
chronic myeloid leukemia (CML) patients, abnormal pattern named t (9;22) chro-
mosomal translocation is identified in one chromosome 9 and one chromosome 22
[24].

A study reported a developed computerized scheme to automatically identify the
unbalanced alteration in one chromosome 22 of abnormal cells in CML patients
by analyzing and image-processing karyotypes of metaphase cells from bone
marrow patient specimens [25]. Extracting novel spectral features for real-time
diagnostic requires using maximum available computational resources in minimum
physical space. The minimization of physical space can be achieved via various
innovations such as 3D-Stack packaging OBCs and ASICs including micro-channel
cooling/transfer, nano-sensing, custom processor CPU/GPU/FPGA on a single
board, which we discussed in the last chapter.

Extracted genetic disorder features can be efficiently characterized and diag-
nosed using a genetic algorithm, artificial neural networks and statistical models
along with graph construction for genetic syndrome-related chromosomal spectral
information, extended data flow blocks and computational units’ path tracking like
in biological system design tool, BioGuide [26]. The software tool standardizes
genetic elements and provides graph data structures of all possible genetic element
interactions to allow molecular biologists to estimate and characterize phenotyp-
ically functional genetic circuits. BioGuide constructs a massive graph structure
G = (V,E), where V = {g1, g2, g3, . . . , gn} each element is a part of genetic circuit.
E = {e1,e2,e3, . . . ,em} each edge em = {gs,gt} represents the possible connections
between the elements, which build a genetic circuit. In this way, complex sequence
relations can be modelled effectively.
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Nevertheless, tracking the complex sequences requires scalable data flow and
transaction flow management in a trusted manner. Both analytical models and
the system are needed to scale at a massive level. As illustrated in Fig. 14, the
transaction is managed by layered system components. Scaling the models and the
system requires memory-centric analytical approaches, which is tracking the lineage
of datum, transaction, and the models. In another study, we proposed a Memory
Centric Analytics (MEMCA) system that provides a holistic abstraction to ensure
trusted scaling and memory speed trusted analytics. Initial results are shared in [27]
MEMCA used for satellite and space data. The results evidenced the potentials for
spectrum analysis of satellite and space datum. Thus, the use of MEMCA approach
for other kinds of high-resolution spectral imagery data may have great potential for
novel studies.

The proposed scalable analytical model for chromosome diagnosis can be
utilized in cytogenetic fields as well to diagnose the pre-characterized genetic
syndromes and to identify new disorders, which will be further discussed in the next
section. The system architecture will be explored in Sect. 2.3 to track the complex
sequences and to apply the analytical models on the massive data at memory speed
in a trusted manner.

2.3 Genetic Disorder Detection via Spectrum Analysis
and Scalable Multi-layer Neural Networks

In this study, an open-public data set is [15] used for single-chromosome images
of different human cells. The chromosomes of the same class are analyzed with
the abovementioned spectral analysis approach in the cases of different cells,
and the obtained FFT spectra are compared altogether. Important outcomes are
gathered from the spectral information comparison: The shape of chromosome as
well as density profile of genes directly influences the spectral feature. For that
reason, comparing the FFT spectral feature enables to detect corresponding genome
diseases, chromosome diagnostic, and so on. Spectral feature extraction could be
performed via OBCs and ASICs (2D/3D Stacks) including nano-sensor plates,
which will be discussed later in detail.

Combining the image and spectral data from different types of measurement
systems would improve the performance of the classification algorithm significantly.
Specifically, the feature extraction stage can be extended by using hyper-spectral
images and other spectroscopic data related to chromosomes. Namely, images of
the chromosomes under different wavelengths of illumination can give us additional
information for the diagnosis of decease carrying/faulty chromosomes. It is known
that biological molecules and cells have foot-prints in the mid-infrared and terahertz
parts of the electromagnetic spectrum [20].

Another option is to use Raman spectral response of chromosomes to gather
extra features for the classification algorithm. Indeed, Ojeda et al. [28] have
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Fig. 11 A simple analytical
model of neurons as a binary
threshold unit

managed to differentiate the Raman spectroscopy response of three different types
of chromosomes by optical tweezing and exposing the chromosomes to a laser
beam; an interesting method for differentiating colon cancer cells is just measuring
the dry mass of chromosomes by tomographic phase microscopy (actually the
refractive index distribution is measured) [29].

Another important method which is very beneficial for analysis of chemical and
biological substances is Fourier transform infrared spectroscopy (FTIR). FTIR is
already proposed for the diagnosis of cancer [30]. In one of the studies, FTIR is
used for comparing the chromosomes taken from breast cancer cells and healthy
cells [31]. As another genetic diagnostic imaging approach, quantum dots such
as gold nanoparticles are used for in vivo bio-imaging of subcellular organelles
as well as genetic diagnosis [32]. Nanowires are another alternative platform for
efficient label-free nano-sensing of DNAs and selective electrical detection of
genetic disorders [33]. Graphene-based bio-devices can also be considered as a
powerful biosensor for monitoring the chromosomes’ behaviors as well as extracting
their electro-chemical features [34].

The datum, including the features, has varying resources and computational
complexity/cost increases the complexity of analytical model and training process.
We define a multi-layer neural network to classify and embed the new features dy-
namically obtained from available data sources. Neural computation is an efficient
method to represent complex sequences inspired from neuroscience. Analytically,
a neuron can be simply modeled as a binary threshold unit, w: Each neuron model
computes the weighted sum of its inputs from other connected units and outputs
either “0” or “1” according to the threshold level, μ (see Fig. 11). The output state
of neurons, n, is calculated via the following formula:

ni (t + 1) = �

⎛

⎝
∑

j

wijnj (t) − μi

⎞

⎠ . (3)

Here, � is a unit step-function representing the following characteristic:

�(x) =
{
1, for x ≥ 0
0, elsewhere.

(4)
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Fig. 12 Illustration of MNNs intra-node and intra-layer interaction

The output state ni becomes either “1” (firing state) or “0” (not firing state)
depending on the inputs as well as the threshold level. In this way, real neurons could
be translated as computing units since the output states are described as binary units
[35].

In reality, it is not as simple as in Eq. (3) to determine the behavior of real
neurons since (1) the input/output relationships are nonlinear, (2) neurons produce
continuous output pulses rather than a simple output level, and (3) neurons do not
works synchronically as Eq. (3) states. For that reason, the output state, ni, should
be defined as continuous-valued function like the following formula:

ni = g

⎛

⎝
∑

j

wijnj − μi

⎞

⎠ . (5)

In this equation, a new function g called activation function is added to the neural
system.

Human brain itself can be described as a parallel system of billions of processors
(neurons), which are highly connected into each other via synapses and operate
simultaneously. Therefore, neural networks can be considered as an efficient
way for parallel processing of massive data. For that purpose, neural network
systems are described as multi-layer architecture (perceptron) to make applicable
in computational networks (see Fig. 12).

In the studied feature extraction model, each chromosome is taken as a neuron
and operates as a feature vector generator in the multi-layer neural network system.
The implemented image feature classifiers such as binarization, skeletonization,
gray-level and medial axis detection, thresholding, histogram, and DFT vectors are
set to be multi-layers of the proposed neural network system. At every layer, the
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activation function g is adaptively selected to infer spectral chromosome feature for
real-time diagnostic purposes.

Each neuron takes as input wi1, wi2, wi3, . . . , win, feature sets and outputs an
activation function g(.), triggering the function according to μi threshold value. As
illustrated in Fig. 12 perceptron/multi-layer architecture is defined to denote layer-
wise implementation. There are L number of scalable layers denoted as L = {l1,
l2, . . . , ln}. Connection between layers is denoted as w

(l)
ij , where unit j in layer l is

connected with unit i in layer l + 1. The activation of unit i in layer l is denoted as
μ

(l)
i . Activation function computation is as follows:

μ
(2)
1 = g

(
w

(1)
11 + w

(1)
12 + w

(1)
13 + . . .

)

μ
(2)
2 = g

(
w

(1)
21 + w

(1)
22 + w

(1)
23 + . . .

)

μ
(2)
3 = g

(
w

(1)
31 + w

(1)
32 + w

(1)
33 + . . .

)

. . .

Each layer is trained dynamically; training sets, test sets, and activation functions
are updated according to upcoming extracted features. Below is generalized sudo-
code for the multi-layer neural network building/training process.

1. Set initial feature sets w
(l)
ij = 0 for each neuron and all l

2. Embed new features to each neuron
3. Extract new features with CNN/RNN
4. For i = 1 to n

1. Update activation function g(.) for each w
(l).
ij

2. Update features w
(l)
ij for each neuron

3. Update output state ni for each neuron

Repeat until
∑

jw
(l)
ij of each neuron >= μi

Activating the functions g(.) in appropriate layer, hidden layer or upper ones,
improves the training performance and decreases computational cost notably.
Reference [36] is discussing the placement of activation functions, recommending
the replacement of activation functions of lower layers with MNNs in a limited
computing resources case.

To extract new features based on the available sets, limit the interaction between
the neurons to computationally feasible level, we restrict the connections between
hidden layers inter/intra layers, and define stimulus locations for the images and
activation functions. Layer-wise implementation of multi-layer neural networks
enables efficient abstraction of stimulus features like centromere indexes, skeleton,
polynomial curves, histograms, discrete Fourier transform (DFT), and additional
spectral features we pursue research. Convolutional/subsampling layers are defined
in the fully connected MNN structure; 2D structural advantage of images/signals is
used with the local connections.
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Fig. 13 First layer of CNN with mean/max pooling

The image sets are given as input to convolutional layer as m*m*r image,
where m = height/width, and r = 3, RGB channels in this set (see Fig. 13)
for the illustration of CNN multi-layer system architecture. Other channels with
spectral and signal features can also be added into the system modeling. There
are kernels/filters k have size n*n*q, where the size of kernel n < m and q ≤ r.
Kernel size raises the locally connected structure, convolved with the image to
produce k feature maps with the size of m − n + 1. The maps are sub-sampled
with mean or max pooling over p*p contiguous regions. Size of pool is variant,
2 ≤ p ≤ 5 up to size of image, greater for larger input images. Bias and sigmoidal
nonlinearity is applied to each feature map, before or after subsampling layers. After
the convolutional layers, there may be any number of fully connected layers.

The implemented neural network system needs a training feature set
{t1,t2, . . . ,tn}; in our case, tn denotes known image features of either healthy
chromosomes or with genetic diseases. A cost function can be described with
the following equation to prevent possible over-fitting conditions:

J (l)
n =

∥∥∥μ(l)
n − tn

∥∥∥
2
. (6)

Equation (6) implies that the implemented CNN model tries to converge the
output feature set to the training set by minimizing the differentiation between the
two sets and thus reducing the overall cost function J

(l)
n . The train and output feature

datasets/matrices are vectorized dynamically and served to a scalable memory-
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Fig. 14 A healthcare analytical cloud system overview

centric clustering algorithm, which is implemented at the output and training feature
datasets in a distributed and trusted manner. In this way, new anomaly detection
and classification is provided with the help of disjoint computational nodes, and
hence, the requested genetic feature comparison can be conducted in real time
with faster data processing. Further hierarchical system architecture is schematically
represented in Fig. 14.

Placement of activation functions is a non-deterministically triggering compu-
tational resource. We implemented our memory-centric analytical approach for
trusted analytics as illustrated in Fig. 14. MEMCA is a holistic abstraction to ensure
trusted scaling and memory speed trusted analytics [37]. Using Markovian chains
and distributed ledger-based structures is an effective way to keep the data sources
fresh and to execute the transactions trustfully. Managing non-linearly growing
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transaction in trusted manner ensures scalability and elasticity of the system as much
as possible up to currently available hardware and physical constraints. Trusted
execution of the system enables trusted scaling of algorithms in real time. We extend
the analytical models in trusted manner via the MEMCA abstraction. Large feature
sets/matrices are dynamically embedded to the growing models. The transactions
including private data are verified with checksum values at appropriate check-
pointing locations. Thereby, the integrity between cloud, gateway, fog nodes, and
edge nodes layers is ensured. The proposed system is highly scalable and trusted to
manage the growing datum and emerging edge devices to extract new features like
spectral data and other custom ASIC and OBC devices.

ASIC designs congregate different types of detectors and processing units.
These detectors may belong to different physical domains such as pressure,
heat, and electromagnetics. Moreover, electromagnetic wave detectors can also
be classified according to the wavelength (frequency) band of operation, lying
between microwave regime and up to ultraviolet and X-rays. Especially, infrared
and terahertz bands are extremely useful for the characterization of chemical and
biological samples due to their specific footprints [38]. Their integration to ASIC
systems is very important in that respect. Infrared detectors are mostly based on
semiconductor technology and hence their integration to the ASIC integration is not
very challenging, except in some cases where the detectors should be cooled down
to ultra-low temperatures.

In the terahertz detector case, there are many different detector types with dif-
ferent operation principles. Here we are interested in the photoconductive antennas,
because of its simple design and low cost. These antennas would occupy a planar
region in the order of the wavelength of operation (e.g., 1 THz corresponds to a
wavelength of 300 μm). However, a lens system and a detector array may be needed
for far-field imaging systems, which can be useful for defense and testing. The size
of the detector array and the lens may differ according to the target resolution and
image size, where increasing the size may show some integration problems to the
ASIC architecture.

On the other hand, such far-field detection systems may become separated
from the ASIC system and a communication link may be established for the
control and date transfer between these modules. 3D-Stack packaging enables novel
miniaturized OBCs and ASICs into highly space-efficient architectures, where the
micro-channel cooling/transfer can remedy any extreme heat generation and hot-
spot issues (references above). The space efficiency can be further improved by
nano-sensing, custom processor CPU/GPU/FPGA/Storage on a single board, and
memory speed compact storage given the available physical limits [39]. The novel
micro-machines packaged with the innovative method is handling computational
bottlenecks in limited physical space and enabling to extract novel features for real-
time diagnostic applications. We develop customs ICs for specific purposes up to
requirements, which will be discussed in detail in another study.

The datum/transaction flowing in the system is verified with periodical check-
sums at available check-pointing locations to enhance overall trustworthiness
of the system. Lineage data enhances fault recovery and decreasing up-time to
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milliseconds in case of any failure, which enables memory speed scalable/trusted
analytics on the massive datum processed by thousands of transactions in real time.

3 Conclusions

Chromosomal abnormalities are identified using conventional microscopy tech-
niques after classic karyotyping protocols. Fast, efficient, and trustable bioinformat-
ical tools can help genetic diagnosis laboratories to characterize genetic disorders
with a high-throughput manner. Here, we developed an adaptable and dynamic
feature-extraction model, which utilizes scalable and hierarchical chromosomal
data sets. Chromosomal alterations include numerical (i.e., trisomy) or structural
rearrangements (i.e., micro-deletions or rejoining) of chromosomes, which can be
identified by comparing with healthy homolog chromosome. Our study character-
ized chromosomal structures by spectral analysis in detail, where solid rectangles,
skeletons, medial axes, polynomial curve-fitting of medial axes, length of the medial
curve, and DFT functions of regions of the chromosome pair were extracted. This
deep information of the chromosomal spectral analysis for a chromosome pair
provides a massive data set for an efficient characterization of a chromosome pair.
Different soft computing techniques are developed to classify chromosomes based
on the extracted features using the Copenhag data base.

We further improved our classification and feature extraction algorithms with
multi-layer networks and convolutional neural networks. The proposed classifi-
cation system is compatible with HL7 standards and efficient for massive data
acquisition and storage as well as real-time data-stream processing. It is also
compatible with spectral analyses and edge computing methods, which could be
considered as another superiority of the proposed chromosome classifier tool. The
proposed system operates via a distributed and scalable algorithm, which provides
elasticity on the number of edges/clients.

Placement of activation functions differentiates the behavioral pattern of com-
putational resource triggering non-deterministically. We implemented our MEMCA
(memory-centric analytical) abstraction for trusted analytics so that chromosome
feature data is transferred to clients in a trusted manner and the behavioral
pattern of computational resources is optimized most efficiently up to the resource
requirements. Initial results indicate a promising performance of trusted scaling with
the trust metrics to ensure the trustworthiness of the overall system. Furthermore,
ASICs and OBCs could be developed to extract new electrochemical features
and identified in the case of using nanoscale sensors based on nanomaterials like
graphene and quantum dots, which is the future direction of our study besides from
memory speed trusted and scalable analytic models of the massive datum.
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