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1 Introduction

Due to the rapid growth of wireless communication technology, the number
of Internet of Things (IoT) devices has increased dramatically in recent years.
According to a Cisco, 50 billions of IoT devices will be connected to the Internet by
2020 [3]. In addition, it was estimated that data volume generated yearly by those
devices will be more than 40 times bigger than the current global traffic, which
will amount to 850 Zettabytes [7]. Thus, existing cloud computing infrastructure
would be unable to provide good service for the analysis of new data as it simply
has not enough computing power and network capacity for a large number of
computation tasks. In addition, many AI applications (e.g., autonomous driving)
have strict requirement on the latency of computation.

Therefore, it makes more sense to locate computations closer to the data sources,
so called edge computing or on-device computing. On-device computing has better
capabilities in terms of privacy, latency, scalability, reliability, diversity, and costs
compared with traditional cloud computing [8, 14, 18, 19].

Deep learning (DL) tasks are usually computationally intensive and require large
memory footprints. At the same time, end-devices have limited computing power
and small memories to support raw large-scale DL models. Therefore, original DL
models are optimized, compressed, distilled, and quantized to reduce the resource
cost. There are already many methods for optimizing DL models [1, 6, 12], but
most of them are related to quantization of matrix multiplication operations, while
quantization of activations (built as nonlinear functions (NLFs)) has not been

I. Vasyltsov (�) · W. Chang
Samsung Advanced Institute of Technology, Samsung Electronics, Suwon-si, Gyeonggi-do,
South Korea
e-mail: ihor.vasiltsov@samsung.com

© Springer Nature Switzerland AG 2021
H. R. Arabnia et al. (eds.), Advances in Artificial Intelligence and Applied
Cognitive Computing, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70296-0_41

561

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70296-0_41&domain=pdf
mailto:ihor.vasiltsov@samsung.com
https://doi.org/10.1007/978-3-030-70296-0_41


562 I. Vasyltsov and W. Chang

studied enough. Softmax layer is one of the most popular and important NLFs, but
the complexity of implementation in the platform with limited hardware resources
can be a bottleneck of application performance. Thus, we will focus on the usage of
softmax layer in computer vision tasks as the main application.

In this paper we propose a lightweight method for efficient computation of the
softmax layer at the devices with limited computational power. The method is
based on the approximation of softmax by taking reciprocal of natural exponential
function, which is implemented as 1-dimensional look-up-table (1-D LUT). In
Sect. 2, we consider some preliminaries for understanding softmax, drawbacks
of existing approximation methods, and propose our method. Section 3 shows
the experimental validation of the proposed method with human segmentation
tasks. Section 4 describes a plan for further extension of our research, and Sect. 5
concludes the paper.

2 Softmax Approximation

2.1 Preliminaries

In mathematics, the softmax is a function that takes a vector x of n real numbers
as an input, and normalizes it into a probability distribution P(x) consisting of
n probabilities proportional to the exponential of each input number. Thus, after
applying softmax, each component will be in the interval σ(xi) ∈ (0, 1), and
the components will add up to 1, so that they can be interpreted as probabilities.
Softmax is often used in neural networks, to map the non-normalized output of
a network to a probability distribution over predicted output classes. There are
different representations of the softmax function depending on the application [4],
but the most well-known and widely accepted version is as follows [11]:

σ(xi) = exi

Σexi
(1)

In the real hardware the range of number representation is limited, thus ex

computations can often lead to overflow or underflow. Therefore for practical
implementation to provide stable computation, a normalization of input by x∗

i =
xi − max(x) is used [11]1 as shown below:

σ(xi) = exi−max(x)

Σexi−max(x)
(2)

1All major DL frameworks (TensorFlow v1.7, PyTorch (with Caffe2) v0.4.0, MXNET v1.1.0,
Microsoft Cognitive Toolkit v2.5.1, and Chainer v5.0.0a1) are using this safe version for softmax
computation [11].
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2.2 Previous Arts

Softmax layer is one of the most important and widely used NLF in modern AI
models, due to its smooth properties. However, many modern neural processing
unit (NPU) architectures are focused on the acceleration of matrix multiplications
only, as they are a majority of computational functions of a DL model. As a
result, for computation of complex NLF (i.e. softmax layer), the data must be
sent out of NPU to an external host (CPU, GPU, or DSP), which complicates the
software development, and can also negatively impact on the overall performance
and power consumption. In addition, since general purpose interface is used for data
transmission, the internal data can be exposed to malicious user, which may cause
an issue of data privacy.2

To avoid involvement of the host for softmax computation, some NPU pro-
posed dedicated HW accelerators. In many of those implementations, each of the
numerator and the denominator in Eq. (1) are computed first, and then a division
operation is performed, e.g., [10, 15, 17]. In such case, the HW accelerator should
contain a divider circuit (fixed-point, or even floating point), which requires an
additional HW cost. To avoid a big area cost for traditional dividers, the authors
in [5] propose to replace the denominator with closest 2b value.3 Then division can
be implemented just as a simple bit-shift operation. Although the method described
above is decreasing the hardware complexity of softmax computation it still relies
on the division operation, which is not always feasible for end-devices with limited
computational power.

2.3 Proposed Method

In general case, we can consider alternative softmax function σ ∗(xi) as

σ ∗(xi) = score(xi)

norm(x)
(3)

where score(xi) and norm(x) are some scoring and normalization factors (for
original function score(xi) = exi , and norm(x) = Σexi ).

As described in [9], we can list some desirable properties of the alternative
softmax function as below:

– Nonlinearity: for better selectivity of the scored values.
– Numerical stability: to avoid overflow, or underflow during computation.
– Positive: output values all should be positive, to be used for scoring.

2For example, for CCTV or industrial data sensing application.
3Where b is a certain integer constant.
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Table 1 Softmax approximation methods and their properties

Method of Numerical Computational
# approximation Nonlinearity stability Positive Bounded complexity

1 xi Bad Bad Bad Bad Best

2 exi Best Bad Good Bad Good

3 xi

max(x)
Bad Bad Bad Good Bad

4
x2i

max2(x)
Good Bad Good Good Bad

5
x2i

Σx2i
Good Bad Good Best Worst

6 exi−max(x) Best Best Best Best Good

7 1
emax(x)−xi

Best Best Best Best Good

– Bounded: output values should be bounded by some constant, ideally, σ ∗(xi) ∈
(0, 1).

– Computational complexity: should be feasible for the implementation into
platform with limited HW resources.

Since we consider softmax approximation for inference task in computer vision
applications where softmax layer is mostly used for scoring the outputs for classi-
fication, the requirements to normalization factor norm(x) can be softer compared
with the original formula Eq. (1), where inputs are mapped into the corresponding
probabilities. Thus, we can use more various factors for normalization in σ ∗(xi).

We have experimented with different approximations for score(xi) and norm(x)

factors, and summarized some of the methods and their properties in Table 1.4

First, we have started with the simple approximations, ignoring normalization
factor at all, i.e. applying norm(x) = 1. We have obtained identity (i.e., σ ∗(xi) =
xi , method 1 in Table 1), and natural exponentiation function (σ ∗(xi) = exi ,
method 2 in Table 1) for approximation. However, despite their low computational
complexity, the numerical stability was not good as the output of function was not
bounded. To counter this issue, we have applied some normalization factors (see
methods 3 to 5 in Table 1), but the numerical stability was still poor. At the same time
we have noticed that method 2 (exponentiation) is showing good selectivity due to
its nonlinear property (refer to the corresponding image in Table A.1 in Appendix),
and can be a good candidate if normalized appropriately. For this purpose we have
performed several transformations as shown in Eq. (4) below:

exi

max(ex)
= exi

emax(x)
= exi−max(x) = e−(max(x)−xi ) = 1

emax(x)−xi
(4)

4For more details, please refer to Table A.1 in Appendix, where statistical results and examples of
images from initial tests are shown.
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First, we kept exi as a scoring factor score(xi) and then we have usedmax(ex) as
a normalization factor to bound the output by 1 and thus we have obtained method 6.
However, in such case, the input values to the exponential function ex will be all
negative due to the xi − max(x) term, and if ex is implemented by LUT (which is
a common approach for HW with limited computation resources), then additional
affine transformation is required to compensate for negative input values. To avoid
this drawback, we propose to use max-normalization in the inverse way as x∗

i =
max(x) − xi , then input values to ex will be all positive, which allows them to be
used directly as indices to LUT values. Second, to compensate for the inverse way
of max-normalization, we have used the reciprocal version of ex → 1/ex as shown
in Eq. (4).

In such case neither divider nor multiplier is needed, and only 1-D LUT is
required to compute the approximated value of softmax. As a result, the compu-
tational complexity is reduced significantly, and it becomes more feasible for the
implementation in HW with limited computational power.

Thus, we propose to substitute the original method for softmax computation with
the inverse way of max-normalization and the reciprocal of exponential function:

σ(xi) = exi

Σexi
= exi−max(x)

Σexi−max(x)
→ σ ∗(xi) = 1

emax(x)−xi
(5)

The properties of the proposed method 1
emax(x)−xi

are as below:

– Nonlinearity is satisfied with the reciprocal of exponential function 1/ex :
1

eαx �= α 1
ex

– Numerical stability is satisfied by max(x) − xi term:
(max(x) − xi) ∈ [0,max(x) − min(x)] → 1

emax(x)−xi
∈ (0, 1]

– Positive output values are due to the exponential function:
1
ex > 0 ∀x ∈ (−∞,+∞)

– Bounded σ ∗(xi) ∈ (0, 1] due to the inverse normalization term max(x) − xi

used together with the reciprocal of exponential function 1/ex :
(max(x) − xi) ≥ 0 ∀x → 1

emax(x)−xi
∈ (0, 1]

– Computational complexity is low, as 1/ex can be implemented with LUT-based
method, where the size of LUT is small.

Indices in LUT can be directly calculated by rounding operation as i =
	max(x) − x
. When input data are quantized by w bits then efficient quantization
boundary xq can be defined as5

5Efficient quantization boundary xq defines the biggest input value, which can be mapped into w

quantization bits.
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e−xq = 1

2w − 1

ln(e−xq ) = ln(
1

2w − 1
)

−xq = ln(1) − ln(2w − 1)

xq = ln(2w − 1)

xq = �ln(2w − 1)


(6)

Content of LUT is computed as shown below:

LUT1/e[i] =
⌊
1

ei
· (2w − 1)

⌉
,∀i = 0, 1, . . . , xq + 1 (7)

Note, that LUT [i] = 0,∀i > xq due to quantization, as no value can be encoded
with w bits after efficient quantization boundary xq .

If selectivity (precision of computation) is not enough, then LUT can be scaled
linearly by α as

LUT1/e[i] =
⌊

1

ei/α
· (2w − 1)

⌉
,∀i = 0, 1, 2, . . . , α · (xq + 1) (8)

3 Experimental Validation

To validate the proposed method we have used a pre-trained Unet model for human
segmentation and internally prepared dataset with 1000 images. In this model
softmax computation is used to predict the class of every pixel, thus requiring
307,200 computations for typical 640 × 480 image. This model takes the image
as an input, and produces the predicted grey-scale image for segmentation, where
each pixel Pi is in uint8 precision (with values from 0 to 255). To get the binary
mask for segmentation, every pixel in those images was binarized into two classes
(class 0 for “background,” and class 1 for “human”) by using threshold thr = 127,
as follows:

Bm
i =

{
0, ∀Pi < thr

1, ∀Pi ≥ thr
(9)

In the model we have substituted the conventional softmax layer with the
computation method as described above in Sect. 2. For practical implementation,
we have selected three different precisions (uint8, uint4, uint2) and prepared the
LUTs accordingly to Eq. (7). For evaluation accuracy of segmentation we used the
well-known bit-wise intersection-over-union metric [13, 20] as shown below:
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Table 2 Accuracy of different approximation methods. Full test over 1000 images

Method Size of LUT IoU IoU
# of approximation Precision (Bytes) (class 0) (class 1) mIoU

0 Reference FP32 0.9847 0.9799 0.9823

1
x2i

max2(x)
FP32 0.9817 0.9746 0.9781

2
x2i

Σx2i
FP32 0.9828 0.9765 0.9797

3 exi−max(x) FP32 0.9845 0.9800 0.9823

4 1
emax(x)−xi

uint8 8 0.9845 0.9799 0.9822

5 1
emax(x)−xi

unit4 5 0.9845 0.9799 0.9822

6 1
emax(x)−xi

uint2 3 0.9842 0.9792 0.9817

IoU = area(Bm
gt,i

⋂
Bm

p,i)

area(Bm
gt,i

⋃
Bm

p,i)
(10)

where Bm
gt,i is a pixel-group of ground-truth image, and Bm

p,i is that of predicted
segmentation image. The mIoU value was computed as a mean value among two
classes.

Table 2 shows the results of our experiments for different methods of approxi-
mation and selected precision (for LUT-based method). As it comes from the table,
the accuracy of human segmentation task based on the proposed approximation of
softmax layer is as high as the FP32 reference. There is no, or negligibly small
accuracy drop (< 0.1% for 2-bit quantization) even for very small size of LUT (3
to 8 bytes).

4 Future Work

Despite its extremely low computational complexity, the current version of the
softmax approximation can be applied only to the applications where softmax layer
is used for scoring (typically last layer in CNN models), calculated within one input
tensor only. Thus, it cannot be directly applied to more complicated and softmax-
intensive applications such as Natural Language Processing (NLP) tasks where
cross-tensor probabilities must be computed more often (e.g., multi-head attention
block in Transformer [16], and BERT [2] models). Therefore, we will work forward
in order to extend the proposed method to other classes of AI applications.
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5 Conclusion

In this paper we have proposed an efficient method for softmax approximation,
which can be implemented at the platform with limited hardware resources (mobile,
IoT, edge devices) for AI inference tasks. We have applied max-normalization to
the input data in the inverse way, which together with the application of LUT-
based method for computation of the reciprocal exponential function 1/ex has
significantly reduced the complexity of softmax layer computation. It also has the
additional benefits as follows:

– does not require any additional multiplier, divider, or adder.
– scalable in terms of accuracy and precision (appropriate LUTs can be pre-

computed off-line).
– fixed latency of computation, which depends only on the size of the tensor.

Thus, the proposed approach provides a good alternative for HW accelerator
design, simplifying the overall process of computing the softmax layer, while
maintaining identical accuracy to the conventional FP32 based computation.

Appendix

In this section there are presented more details about the research on softmax
layer approximation. There are shown more methods for approximation, as well
their results over initial test. The experiments for initial tests were conducted
the same way as in Sect. 3, but over sub-set of 100 images. Also, examples of
images generated by human segmentation model for different methods of softmax
computation are shown (Table A.1).

As it can be seen from the table, imag e generated by human segmentation model
with method 2 (σ ∗(xi) = exi ) shows good selectivity of the method. Thus, we used
it as a base for creating the finally proposed method σ ∗(xi) = 1

emax(x)−xi
.
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Table A.1 Accuracy of different approximation methods. Initial test over 100 images

Method IoU IoU Image
# of approximation Precision (class 0) (class 1) mIoU (example)

0 Reference FP32 0.9844 0.9833 0.9838

1 xi FP32 0.1731 0.2274 0.2002

2 exi FP32 0.7320 0.4989 0.6154

3 xi

max(x)
FP32 0.9667 0.9557 0.9612

4
x2i

max2(x)
FP32 0.9811 0.9778 0.9795

5
x2i

Σx2i
FP32 0.9825 0.9800 0.9812

6 exi−max(x) FP32 0.9838 0.9828 0.9833

7 1
emax(x)−xi

uint8 0.9838 0.9827 0.9833

8 1
emax(x)−xi

uint4 0.9838 0.9827 0.9833

9 1
emax(x)−xi

uint2 0.9837 0.9822 0.9829
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