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1 Introduction

Worldwide, steel industry is one of the most important strategic industries. Quality
is an important competitive factor to the steel industry success. Detection of surface
defects devotes a large percent of quality control process to satisfy the customer’s
need [1], and [2]. Defect detection and classification can be accomplished manually
by human labor; however, it will be slow and subject to human-made errors
and hazards. Therefore, automatic traditional-inspection systems were developed
to detect various faults. These include eddy current testing, infrared detection,
magnetic flux leakage detection, and laser detection. These methods are not able to
detect all the faults, especially the tiny ones [3]. This motivates many researchers [4,
5] to develop computer vision systems capable of classifying and detecting defects
in ceramic tiles [6], textile fabrics [7], and steel industries [8]. Achieving defect
detection, localization, and classification in real time is one of the challenges in
the steel production process. Therefore, the main aim of this chapter is to propose
parallel algorithms to detect and classify patches, scratches, and scale defects in
surface steel strips in real time.

The rest of this chapter is organized as follows. Section 2 reviews the related
works. Section 3 illustrates the proposed algorithm. Section 4 discusses the experi-
ment setup and results. Section 5 concludes this chapter.
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2 Related Work

Image processing plays a major role in the steel production industry to enhance the
quality of the products. In the literatures, many image-processing algorithms have
been proposed to detect various defects by features extraction techniques. A plenty
of features have been used including color, texture, shape, geometry features, etc.,
for defect localization and type identification [9]. The common techniques used for
feature extraction in steel images are categorized into four different approaches [10].
These approaches are statistical methods, structural algorithms, filtering methods,
and model-based techniques as shown in Fig. la.

Statistical approaches usually used histogram curve properties to detect the
defects such as histogram statistics, autocorrelation, local binary patterns, grey level
co-occurrence matrices [11], and multivariate discriminant function [12]. Image
processing and edge detection algorithms are the basic operations used in structural
approaches. Due to various defects depicting similar edge information, it is hard
to classify the defect types. Filter-based methods involve convolution with filter
masks for computing energy or response of the filter. Filters can be applied in
frequency domain [13], in spatial domain, or in combined spatial frequency domain
[14]. Model-based approaches include fractals, random field models, autoregressive
models, and the epitome model [10] to extract a model or a shape from images.
Figure 2 lists methods utilized to detect two types of surface defects on steel strips.

There are many approaches to extract features in parallel. Lu et al. [15] proposed
an adaptive pipeline parallel scheme for constant input workloads and implemented
an efficient version for it based on variable input workloads; they speed up to
52.94% and 58.82% with only 3% performance loss. Also, Zhang et al. [16]
proposed a model to generate gray level run length matrix (GLRLM) and extracts
multiple features for many ROIs in parallel by using graphical processing unit
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Fig. 1 Related work
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Patches N Scratches

2 = Local Binary Pattern (LBP) [3] = Local Binary Pattern (LBP) [3]

g = Histogram [24] = Histogram [24]

% = Edge Detection [24] * Edge Detection [10]

‘% * Features Extraction [10-26 ] = Features Extraction [21 ]
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g = Artificial Neural Networks (ANN) [24] = Gabor Filter [29]

Z = Learning Vector Quantization (LvQ) [30] * Deep Auto-encoder Network (DAN) [24)

5 = Artificial Neural Networks(ANN) [24]

Fig. 2 Defects detection and classification techniques

(GPU), and they achieved five-fold increase in speed than an improved sequential
equivalent.

The classification process is the main consideration in the inspection system.
Generally, there are two types of classification methods: supervised and unsuper-
vised as presented in Fig. 1b. In supervised classification, training samples are
labeled, and features are given to the classifier to generate the training model. The
training model predicts the pre-defined classes for test samples [10]. These methods
include SVM, neural networks, nearest neighbors, etc. Yazdchi et al. [17] applied
neural network (NN) to classify steel images that achieved accuracy 97.9%. Yun
et al. [18] suggested support vector machine (SVM) classifier for defect detection
of scale-covered steel wire rods. In unsupervised classification, classifier earns on
its own and it is not fed with labeled data. Classifier just tries to group together
similar objects based on the similarity of the features [19]. Most common types
of methods include K-means, SOM (self-organizing map) [20] and LVQ (learning
vector organization) [13]. Figure 2 lists some defect detection and classification
methods. The key parameters of the defect classification methods are the accuracy
and the efficiency. This paper employs the SVM.

3 Proposed Algorithms

This chapter develops parallel algorithms to detect and classify patches, scratches,
and scale defects in surface steel strip. Figure 3 shows the high-level design of the
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Fig. 3 High-level architecture of the proposed algorithm

proposed defect detection and classification technique. First phase is to preprocess
the image to improve it and remove noises. Second phase detects defects from the
steel image and segments it to defective ROIs. Third phase extracts Haralick features
from gray level co-occurrence matrix (GLCM). Finally, these features will be used
as inputs to the SVM classifier.

3.1 Preprocessing Phase

Surface steel images are subject to various types of noises due to image acquisition
setup, lighting conditions, or material reflections. The preprocessing operation is
an important step to eliminate light reflection and noises. Preprocessing operation
carried out image enhancement and noise reduction. Image enhancement composes
two steps to make image clearer. First, convert the RGB images into grayscale
images and resize the image to M x N. Then apply the contrast stretching operation
to enhance image brightness by stretching the intensity values from 0 to 255. To
remove noises, this chapter uses median filter to remove salt, pepper noises, and
makes images more blurred [21, 22].

3.2 Defect Detection Phase

In this phase the algorithm divides the M x N grayscale steel image into blocks
(ROISs) of size W x H. After that, it extracts statistical features for each ROI by using
multivariate discriminant function [12] to detect either the ROI is defected or not.
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1. Features Extraction: The proposed algorithm divides the M x N grayscale image
into ROIs of size W x H, where W <« M and H < N. To characterize the shape of
the surface defects and detect either if the ROI is defected or not, the algorithm
extracts following statistical features for each ROI: difference (8), mean () and
variance (v) as in Egs. (3), (4), and (5). After that, it calculates mean vector
(MV) for each ROI as Eq. (6). Extract features need many operations that may
take long time, which is not suitable to achieve real-time for defects detection.
Consequently, this paper uses Summed Area Table (SAT) [3] to reduce the
required time to compute these features. It quickly generates the sum of values of
a rectangular subset of a grid using Eq. (1). Where i(x, y) is the pixel value from
the given image and S(x, y) is the value of the summed area table [23]. For M x N
image, SAT table is created with O(M x N) complexity. Once it is created, the
task to calculate the sum of pixels in a rectangle that is a subset of the original
image can be done in constant time by Eq. (2) with O(1).

S, y) =i,y +Sa&-Ly)+Sx y-1) =S -1 y-1) )]

SUM = § (xo—1, yo—1) + S (xo + x1, yo + y1)

=S (xo +x1, yo—1) =S (xo—1, yo + y1) @
Diff_Value (ROI, W, H) 3)

w = Mean_SAT (Image, xo, yo, W, H) 4)
v = Variance_SAT (Image, xo, yo, W, H) 5)
MV = [ p v]” (©)

Consequently, SAT can quickly iterate pixels and significantly reduces the
required time to process the images. In this paper, we developed SAT algorithm
in parallel using CUDA [24, 25] as shown in Fig. 4.

2. Defect Detection: The defect detection algorithm divides image into ROIs to
detect each ROI either belongs to defective group (Gp) or non-defective group
(G3). MV and MV, are mean vectors that contain the statistical features of G
and G respectively. We assume MVROI denotes a mean vector that contains the
features in ROI [12]. The two groups represent defective pixels and non-defective
pixels in the image. To separate the pixels into defective and non-defective pixels,
we create two Gaussian Mixture Models (GMM)s [26]. An iterative Expectation-
Maximization (EM) algorithm is used to estimate maximum likelihood E: and
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Algorithm: Parallel SAT Function

1 function PSAT (image)
2 |
3 double *SAT;
4
5 /fAllocate space on device
6 cudaMalloc(&SAT, M * N * sizeof(double));
7
g //Copy matrix to device memory
a9 cudaMemcpy (SAT, image, M * N * sizeof(double), cudaMemncpyHostToDevice);
10
11 // invoke kernel at host side
12 const int maxThreadsPerBlock = IMG_SIZE; // number of threads in each block
13 int numBlocksX = ((unsigned int)({* / maxThreadsPerBlock) + 1);
14 int numBlocksY = ((unsigned int)(N / maxThreadsPerBlock) + 1);
15
16 dim3 numBlocksForRows = dim3(numBlocksX, 1);
17 di=3 numBlocksForColumns = dim3{numBlocksY, 1);
18
19 f{Run rows sum kernel
20 rowSum <<<numBlocksForRows, maxThreadsPerBlock >>>({double(*)[IMG_SIZE])SAT, M, N);
21 cudaDeviceSynchronize();
22
23 f/Run columns sum kernel
24 colSum<<<numBlocksForColumns ,maxThreadsPerBlock>>>((double(™) [IMG_SIZE])SAT, M, N);
25 cudaDeviceSynchronize();
26
27 //Copy data to host memory
28 cErr = cudaMemcpy(image, SAT, M*N * sizeof(double), cudaMemcpyDeviceToHost);
29
30 /f free device global memory
31 cudaFree(d_Data);
32 }
Algorithm: Sum Rows Kernel
1 function sumRows (SAT, M, N)
2 {
3 int idx = blockIdx.x ™ blockDim.x + threadIdx.x;
4 if (idx < N)
5 for (int i = 8; i < N; i++)
6 SAT[i][idx] = sAT[i][idx] + SAT [i - 1][idx];
7
Algorithm: Sum Columns Kernel
1 function sumCals (SAT, M, NJ
2:f
3 int idx = blockIdx.x * blockDim.x + threadIdx.x;
4 if (didx < M)

Fig. 4 Parallel SAT Algorithm in CUDA

t; for both GMM; and GMM; as in Eq. (7), by guess weight o, mean m
and variance o values [27]. EM contains three steps. First step chooses initial
parameters values, the second is E-step that evaluates the responsibilities using
the current parameter values, the third is M-step that re-estimates the parameters
using the current responsibilities [28]. By maximum likelihood function ML(p)
in Eq. (8), the pixel belongs to G if 1 is larger than or equal to . otherwise it
belongs to G, Eq. (8).
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= log(a) + (2ra?)("2)expl3(Cx-m/o)’ o
PeG, E=2k
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To decide if the image is defective or not, we apply multivariate discriminant
function, €2, for each ROI in the image [5, 12]. Multivariate discriminant function
applies Mahalanobis distance rule A% Eq. (9) [12, 29]. If Mahalanobis distance
between the ROI and G more than or equal Mahalanobis distance between ROI
and G, then the ROI is defective; otherwise, the ROI is non-defective as in Eq.
(10). Multivariate discriminant function in Eq. (11) derived from Eqgs. (9) and (10),
where T denotes matrix transpose [12]:

A% (MVROIL, MV) = (MVROI — MV)" CV~! (MVROI — MV) 9)
A? (MVROI, MV{) > A% (MVROI, MVy) (10)

= (MV;-MV,)TcCvV~! MVROI-1/2(MV;-MV,)" cCV~! MV ,;-MV,)
(11)

To apply discriminant function €2, we need to calculate covariance vector, CV,
for both groups G1 and G2 by Eq. (12), where N; denotes the number of pixels in
the group and x;; denotes pixel in G1 and G2. Then the common covariance matrix
(CCV) will be calculated by Eq. (13):

N;
T .
cv — > (xij = MVy) (xij — MV;)" fori = 1,2. (12)
j=l1
2 CV; 2
— ) =Y _ :
CCV_X;(N/ 1) — wheren_;n/ (13)
J= J=

The ROI is defective if the value of discriminant function €2 is positive.
Otherwise, the ROI is non-defective as Eq. (14). To decide either the image contains
defects or not, it must have at least one defective ROI; otherwise, the image is non-
defective [12].

defective block, Q >0

. (14)
non — defective block, Q<0

Q (block) = {
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Applying the discriminant rule, €2, for all ROIs in the image, results would be
like in Fig. 5; the numbers represent the value of the discriminant rule for each ROI
[12]. The image has no defect if all ROIs have negative discriminant value.

To speed up the EM algorithm, this chapter calculates each iteration E-step
and M-step for all pixels in parallel using CUDA [30] as shown in Fig. 6. The
parallel EM algorithm has main function PEM() that launches the GPU kernel
UpdateKernel() to process E-step and M-step for all pixels in parallel as seen in Fig.
7. The UpdateKernel() creates 1D grid and 1D ROIs; each ROI contains MT threads
[25]. Each thread calculates both E-step and M-step for a pixel. Assume an image
has NP pixels, the complexity of the sequential EM is O(Maximum of Iteration x
NP). However, it is O(Maximum of Iteration) for the proposed parallel EM.

3.3 Defect Classification

In the past decade, different researchers have presented several methods for steel de-
fect classification [31]. Nevertheless, these methods are limited to high computation
and low accuracy. This work proposed a classification algorithm to classify scratch,
patches, and scale defects. The algorithm has two modules. First, features extraction
module takes the defective image and calculates GLCM and Haralick features [32,
33]. Second, once features are extracted, the classification module utilizes support
vector machine (SVM) for the recognition of their corresponding class.

1. Features Extraction Module: GLCM defines the texture of an image by calculat-
ing how frequently pairs of pixels with specific values and in a specified spatial
relationship happen in an image. Each element (i, j) of GLCM denotes how many
times the gray levels i and j occur as a sequence of two pixels located at a defined
distance § along a chosen direction 6. Haralick defined a set of 14 measures of
textural features [33]. This work selected six textural features shown in Table 1

461 | 619167182 | 862 ) 568 |-155) K55 | 758 | 1L

S43 | B45 |53 | AT S5 435|576 526 | 483 | 209
81 |-565]-s14]-715 | 500]-738]-700] 1068 | 691 |-1045
724 )-687) 605 | -s03 | sas |77 |-a2 | el | 108 | a8

A5 AT |88 |43 -3T73 ]| -TH4 | 498 760 | -THT7 | -1060

34A7)-284)-2905 762 | B8] 504 | -£30] 181 |-1002] 648
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Fig. 5 Defective image and its discriminant result. [12]
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Fig. 6 Parallel EM algorithm

that are used as input to SVM classifier to classify the defect in steel image.
The computation time of texture features depends on the number of gray levels,
between 0 and 255 levels. This chapter develops Haralick features calculation in
parallel to reduce the execution time for the proposed classification algorithms
[34]. To extract the features from GLCM matrix in parallel, this work developed
P_Haralick_Featuers() function that launches the HaralickKernel() kernel with
2D (blocks) ROIs with n, threads in the x-direction and n, threads in the y-
direction [25]. Each thread computes six features for one pixel. To accumulate
features values from threads, kernel uses AtomicAdd() function as shown in
Fig. 8. While a thread reads a memory address, it adds the value of feature to
it, and writes back the result to memory. As GLMC is 256 x 256 matrix, 256 gray
levels then the complexity to extract Haralick features by sequential algorithm is
0(256x256); however, with parallel algorithm it is O(1).

2. Defect Classification Module: To classify surface steel strip defects, this chapter

uses multi-class classification SVM. The classification process is divided into
two steps: training process and testing process. In both steps the classifier will
use features vectors; in the training step to label different defects and in the test
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Algorithm: Update Kernel called by the PEAL)

1 function UpdateKernel(double *x, double *dev_sum_wj, double *dev_sum_
*a, double *mean, double *var, double *dev_L, const int numGaussians, col

2 {

3 int idx = blockldx.x * blockDim.x + threadldx.x;

4 int j = idx;

5

(=] double resp[2];

7

e if (j < datasSize)

9 double den;

10 double I_max, tmp, sum;

11 I_max = -1000000;

12 for (int i = 0; i <« nuMmGaussians; i++)

13 respli] = log(a[i]) + Probability(x[j], meanl[i], var[i]):

14 if (respli] = I_max) I_max =resp[i];

is sum =0;

16 for (int i = 0; i < numGaussians; i++)

17 sum += exp(resp[i] - I_max);

i8 tmp = I_max + log(sum);

19 dev_L[j] = tmp;

20

21 den = 0;

22 for (int i = 0; i <« nuMmGaussians; i++)

23 respli] = exp(respl[i] - tmp);

24 den += respli];

25

26 double *learn_a = &dev_sum_wj[i * numGaussians];

27 double *learn_m = &dev_sum_wj_xjli * numGaussians];

28 double *learn_v = &dev_sum_wj_xj2[j * numGaussians];

29

30 for (int k = 0; k < numGaussians; k++)

31 learn_a[k] = resp[k] / den;

32 learn_mi[k] = x[j] * respl[k] / den;

a3 learn_v[k] = x[i] = %[i] = resp[k] / den;
¥

Fig. 7 UpdateKernel() invoked by EM algorithm in CUDA

Table 1 Haralick features

Homogeneity Y3 (m — n)>GLMC (m, n)
m n
Entropy F2=3%" Z GLMC (m, n)
m n
Energy F3 =33 GLMC (m, n) logGLMC (m, n)
m n
Mean F4= \/Z 3" GLMC? (1, n)
m n
IDM F5=33% % (mGLMC (m, n) nGLMC (m, n))
m n

step to classify defects [2, 18]. This work extracts features in parallel to reduce
the classification time. In the training phase, we pass these features along with
their corresponding labels to the SVM to generate SVM model. The second and
final step of the proposed system is the testing phase where we have a test dataset
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Algorithm: Extract Haralick Features Kernel

1 function HaralickKernel (GLMC, energy, contrast, homogenity, IDM, entropy, mean)
2 {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

*energy = GLCM[i][j] * GLcM [L1][j]; //Energy

3

4

5

6 if (i < HARLICK_SIZE &% j < HARLICK_SIZE)

7

8 atomicAdd(contrast, (i - j)*(i - j)* GLCM[i][j]); //Contrast
9

atomicAdd(homogenity, GLCM [1][3F] / (1 + abs(i - j))); //Homogenity
10 if (i 1= )
11 atomicAdd(IDM, GLCM[i]1[3] / ((i - F)*(i - 3))); //IOM
12 if (data[i][j] != @)
13 atomicAdd{entropy, -1 * GLCM[i][j] * logl@(GLCM[i][]]1)); //Entropy
14 atomicAdd(mean, @.5*(i* GLCM[1][j] + J * GLCM[i][3]1)); //Mean
15 }

Fig. 8 HaralickKernel () to extract Haralick features

l_ ———————————————————————— Training Process == =

I
1 Training Feature - 1
1 Image Haralick features vectors SVM Training I
| |
R e e e e e Ly ———— L kN p— === I
| I
| Steel Surface Image Pre-processed Defect Defective Image SVM I

mages - i Image ) eature vector

1 g Preprocessing Detection |
! I
—-TestingProcess - ——

Defect Type

Fig. 9 Defect classification steps

images of the steel strips. These images are further checked for the defect; if
an image has defective ROIs, then Haralick features must be extracted. These
features are then given to the SVM along with a trained SVM model which was
trained in the first step; as a result, SVM identifies the predicted class of defect.
Figure 9 shows the classification steps.
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3.4 Evaluation Criteria of Defect Detection and Classification

This section introduces the performance criteria to check the effectiveness and
accuracies of the defect detection and classification algorithms.

1. Detection Accuracy: The defect detection accuracy as shown in Eq. (15) is used
to determine the accuracy and the effectiveness of the defect detection algorithms
[35, 36]:

B TP + TN
" TP+ TN+ FP +FN

DA (15)

where TN is true negative, TP is true positive, FN is false negative, and FP is false
positive. True positive is referred to defective steel image identified as defective.
True negative is referred to defect-free steel image identified as defect-free. False
positive is referred to defect-free steel image identified as defective. False negative
is referred to defective steel image identifies as defect-free.

Classification Accuracy: The accuracy of the classification algorithm could be
calculated as in Eq. (16):

Accuracy(dj) = M (16)
N (dj)
where d; is the defect class j, j = 1, ... W, N.(d;) is the number of images correctly
classified as defect class d;, N;(d;) is the total number of images in that defect class,
and W is the total number of defected classes. The total accuracy for the defect
classification algorithm is the probability of a correct prediction due to our classifier
for all defect classes over a set of images:

> Accuracy (d)
w

Total accuracy = 17

2. Performance Criteria: Computing time is the main criteria to study the perfor-
mance of the proposed defect detection and classification algorithm. The required
time to detect and classify defects for steel surface is divided into two main
significant parts: detection time and classification time as shown in Eq. (18):

B
Totalime = Z Dt; + Ct; (18)
i=1

where the surface steel image has been divided into B ROIs, Dt; is the required time
to detect either ROI i in the surface steel image has defect or not, Ct; is the required
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time to classify the type of the defects in the defected ROI i in the surface steel
image. Ct; equals zero if ROI 7 has no defects. In addition, this work used speedup
to measure the performance of the proposed algorithm is speedup as in Eq. (19):

T,
Speedup = T (19)
p

where Ts denotes the execution time of the sequential algorithms, and Tp denotes
the execution time of parallel algorithms.

4 Experiment Results

This section introduces experiments results of the proposed parallel algorithms for
detecting scratch, patches, and scale defects.

1. Setup: The experiment platform in this work is Intel(R) Core™ i7-8550U with a
clock rate of 1.8 GHz, working with 8 GB DDR4 RAM and a graphics card that is
NVIDIA GeForce 940MX with 2GB of DDR3 and 1122 MHz. All experiments
in this project were conducted in Windows 10 64-bit operating system with
the development environments of Visual C4++ 2017 with OpenCV 3.4.3 and
CUDA toolkit 10. NEU dataset has 1800 grayscale steel images has been used. It
includes six types of defect which are inclusion, crazing, patches, pitted surface
and rolled-in scale, 300 samples for each type. Moreover, to study the tolerance
of the proposed algorithm against noises this paper added salt and pepper noises
to about 1%—-2% of the steel images dataset. Dataset is divided into 70% for
training set and 30% for testing set.

2. Experiment: The experiments were conducted in three stages: pre-processing,
defect detection, and defect classification. In the first stage, images are pre-
processed as follows. Steel images are resized to 400 x 400 and then a 3 x 3
median filter is used to remove noises. The second stage “defect detection”
includes four steps. The first step creates two Gaussian mixture models for
each image by maximum likelihood to divide the image pixels into two groups:
defective group and non-defective group. Figure 10 shows two GMM for steel
image having scratch defect. The second step calculates statistical features mean,
difference, and variance for these groups. In third step, each image is divided
into ROIs. Each ROI contains 40x40 pixels. Use summed area table to extract
statistical features for each ROI. Finally, use the discriminant rule to decide either
the ROI is defective or non-defective. The fourth step displays defected ROIs if
the steel image is defective or not as shown in Fig. 11. The defect classification
stage is divided into two phases. In the training phase, the SVM classifier takes
vectors of the extracted six Haralick features with associated labels for all images
in the training set and then generates a training model. In the testing phase, the
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Two Gaussian Mixture Models

(@) Scratch Defect Steel Image (b) Two Gaussian Mixture Models
Fig. 10 Steel image and GMM models

Fig. 11 Defect detection
result

trained SMV takes Haralick features as a vector for test image from testing set
and predicts defect class.

3. Results: This section illustrates gradually the results of the proposed algorithms.
In this chapter we develop three defect detection algorithms: (1) sequential
without SAT algorithm (SEQ) [12], (2) proposed sequential with SAT algorithm
(SSAT), and (3) proposed parallel with SAT algorithms (PSAT) developed by
CUDA. The median execution time for three types of implementations to detect
and classify three defects will be illustrated in this section. Table 2 shows the
median defect and classification time in milliseconds (ms) for SEQ and SSAT and
PSAT algorithms. They detect three defects, patches, scratch, and scale, while
image size is 400 x 400 pixels and ROIs size is 40 x 40 pixels. Table 2 contains
steel images with defected ROIs, defect type, median of the execution time
for defect detection and classification algorithms, and speedup. The rightmost
column in this table displays the speedup of the PSAT compared to SEQ.

Figure 12 shows median execution time for sequential and parallel algorithms
implemented to detect and classify three defects. It depicts that the PSAT algorithm
is the fastest one especially in detecting scratch defect. The PSAT algorithm is
able to accomplish ~1.50x speedup. Figure 13 plots median defect detection and
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Table 2 Execution times for three algorithms

Median execution time in ms Speedup
Defect type SSAT SEQ PSAT
Patches 22.045 20.094 14.656 1.50
Scratch 22.787 21.697 13.804 1.65
Scale 20.319 20.015 14.577 1.39

Image size 400 x 400 pixels and block size 40 x 40 pixels

25
£ 20
=
c 15
0
3 10
%
w 5

0

Patches Scratch Scale
Defect Type
" SEQ " SSAT " PSAT

Fig. 12 Median defect detection and classification time

classification time with different dimensions of surface steel images with block
(ROI) size 40x40 pixels. It shows that the median execution increases linearly with
the increase of image size. The proposed PSAT algorithm has exhibited superior
performance compared to the other algorithms while image size is increasing.

The proposed algorithm divides the image into non-overlapped ROIs (partitions).
The number of ROIs is specified based on defect location. Some defect may split
into two ROIs. So, the smaller defect in a ROI may not be classified as a defect type.
In doubt, this case will affect the accuracy of the proposed algorithm. The number
of ROIs must be chosen carefully to reduce the defect splitting. Figure 14 depicts
that PSAT algorithm takes shortest execution time in milliseconds for all bock sizes,
while the SEQ takes significantly long execution time. SEQ divides image into ROIs
with size W x H and handles each ROI separately, while PSAT generates 2D ROIs
with W x H threads. Each thread launches kernel to detect either ROI is defective
or not in parallel. Therefore, PSAT shows 1.4 speedup compared with SSAT and
more than 1.6 speedup compared with SEQ. The accuracy of the proposed defect
detection algorithms SSAT and PSAT is about 95.66%.
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Fig. 13 Median defect detection and classification time with image size
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Fig. 14 Median defect detection and classification rime with ROI size

5 Conclusion

The major aim of this chapter is to design and develop a parallel algorithm that
automates the defects inspection process in steel industry. This work employed SAT
to improve the defect detection algorithm in [12] In addition, it demonstrated the
detailed implementation of the proposed sequential algorithm based on SAT and
parallel algorithm. Once defected image is detected, SVM classifier has been used
to classify the type of the defect (scratch, patches, scale). The experimental results in
this article verified that the developed techniques succeeded to speed up the surface
steel defects detection and classification compared with the existing techniques.
Finally, the proposed parallel algorithm speeds up over the sentential algorithms
developed in [12] by about 1.65 times to detect scratch, about 1.5 times to detect
patch and 1.39 times to detect scale defects respectively where the image size is
400 x 400 with about 95.66%.
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