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1 Introduction: Non-Linearity and Complexity

Traditionally, much research exists for analysis, characterization, and classification
of complex heterogeneous non-linear systems and interactions which historically
have been difficult to accurately understand and effectively model [1, 2]. Systems
that are nonlinear and dynamic generally comprise combinatorial complexity with
changes in variables over time [3]. They may appear chaotic, unpredictable, or
counterintuitive when contrasted with much simpler linear systems. Complex
system interrelationships and chaotic behavior of these systems can sometimes
be perceived as random. However, they are not. Simple changes in one part of
a nonlinear system can produce complex effects. Widespread nonlinearity exists
in nature as well [4]. Micro- and macroscopic examples include collision-based
particles in motion; common electronic distortion; chemical oscillations; weather
modeling; and, for this paper, complex relationships between vast volumes of
seemingly ambiguous and superficially relatable binary cyber event data from a
wide array of systems, users, and networks.

Additionally, advanced cyber research shows that meaningful enhancements are
required to mitigate the ever-increasing volume of intrusion detection system (IDS)
alerts overwhelming human analysts today, thousands of which are received per day,
and 99% of which are false indications [5]. The currently well-known cyber security
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landscape is wrought with many types of cyber security attacks where individuals
and nation states employ a wide array of tactics to attack at every available data,
network, and system access location. Mitigation research appears to be focused on
using network-based intrusion detection systems and fusing their outputs to gain
a more comprehensive understanding of undesired activities on the network [6].
While there has been some success, overall awareness of current network status and
future adversarial action prediction has still not been achieved [6]. Although analysts
are undeniably capable of performing difficult cyber security mitigation tasks,
our understanding of the cognitive processes required by analysts, under current
conditions, to produce more effective protection is very limited and requires new
research [7, 8]. Therefore, as many complex problems generally involve more than
one solution and as innovation is found at the intersection of multiple disciplines [9],
our approach will be multi-, trans-, disciplinary to improve critical cyber situational
awareness, classification, contextual understanding, and decision support [7]. We
survey and heuristically decompose cyber security, axiomatic design, complexity
theory, and novel new AI/ML/ITM learning techniques.

While many disciplines are known to have well-known mathematical formalisms
for describing, predicting, and approximating solution;, historically, however, non-
linear solution accuracy and analysis have generally been problem dependent and
have required significant added effort to simplify and bound [10]. For example,
many current cyber event classification-based techniques rely on an experts’
extensive knowledge of network attack characteristics. Once provided to a detection
system, an attack with a known pattern can then be more rapidly detected. Literature
shows that the ability to mitigate a cyber event becomes highly dependent upon the
fidelity of the attack’s signature [11, 12]. Hence, systems often detect only what is
known and are therefore significantly vulnerable to an environment of continuously
adaptive attacks and vectors. Even if new attack signatures are rapidly incorporated
for improving mitigation, the initial loss is irreplaceable and repair procedures
costly. Mitigations are made even more difficult by the indeterminate validity of
an inherently stochastic nonlinear system attack [13].

Recent advances in artificial intelligence (AI) and machine learning (ML)
research are well known to be benefitting many disciplines struggling with rapidly
increasing velocity, volume, and complexity of data and systems, and for improving
timely generation of qualitative readily consumable knowledge [14]. However,
AI/ML classification-based approaches generally rely on what is considered normal
or standard baseline data traffic activity profiles generally built and stored over
time. Comparative activities then explore for anomalies which deviate from cap-
tured baseline profiles. However, as vast volumes and high velocity binary data
are individually captured, subsequent significant processing is then required to
correlate/fuse potential complex non-linear inter- and intra-data relationships [15].

The difficult objective is to understand what is considered normal traffic, what
is not already included in an ever-increasing ambiguous cyber knowledge store,
and if an obscure event is nominal, a risk, or an attack. Today, this must all be
accomplished within a given day’s context challenged cyber environments where
99% of Intrusion Detection System (IDS) events can be potentially considered
inadvertent false alarms [5]. Fortunately, the use of iterative methods, followed by
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Fig. 1 Cross discipline engineering

domain−/discipline-specific solution sets, support effective solution generation for
nonlinear problems. The addition of relatable data domains and data sources can
potentially also add context to mitigating cyber threats [16, 17].

As part of our transdisciplinary approach, we therefore first employ axiomatic
design’s iterative design matrix optimization mechanisms to manage, understand,
and simplify existing and future cyber systems, which generally comprise multi-
faceted processing methods and ambiguously related data. We also decrease cyber
security risks by reducing information content with AD analysis processes, which
in turn helps to reduce false positives and false negatives.

In Fig. 1, multi-disciplinary engineering involves engaging methods from other
disciplines to solve a problem within one discipline, inter-disciplinary involves
choosing methods from one discipline and applying it to one or more disciplines.
In contrast, transdisciplinary engineering is the field of study which supports
simplification and optimization by engineering common solutions across many
disciplines [18]. Computer science, mathematics, and cyber security are examples of
disciplines which provide capabilities for many disciplines. Even single-discipline
engineering solutions can be complicated. Multi- and/or trans-disciplinary engineer-
ing solutions can increase the complexity and non-linearity even further, requiring
more robust engineering principles and increased efforts for standard or more
critical implementations.

1.1 Complexity

Exacerbating the problematic design of nonlinear systems are challenging levels of
ambiguity and intricacy. Specifically, complex nonlinear relationships exist between
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vast volumes of seemingly ambiguous, independent cyber events and their poten-
tial relationships across multi-domain data. Additionally, modern manufacturing
systems are increasingly required to adapt to changing market demands, their
structural and operational complexity increases, creating a negative impact on
system performance [19]. Similarly, cyber security systems suffer from increasingly
adaptive adversaries [20] and must innovate in-kind to adapt to the asymmetric
assault on system, data, and knowledge integrity. Significant research and patents
exist to improve knowledge and context reliability with the correlation and fusion
of big data [21]. Thus, the employment of complexity theory and applications of
axiomatic design potentially decrease cyber system and data ambiguity and enable
cyber security systems and their algorithms to become increasingly adaptive.

Axiomatic design (AD) research originated, in the 1990s with Nam P. Suh,
within the Massachusetts Institute of Technology (MIT) Mechanical Engineering
school. AD has been widely deployed for optimizing industrial and manufacturing
applications. Complexity theory is applied for simplifying and optimizing system
designs for mechanical, manufacturing, industrial, economic, social, and other
systems. We propose that cyber security system designs can similarly benefit from
AD ultimately improving cyber system adaptability and resiliency.

Suh describes that significant confusion exists within the definition of what is
complex and explains that many more attempts have been made to understand
complexity in terms of physical entities stead focusing on what is to ultimately be
achieved. Suh describes complexity as computational, algorithmic, and probabilistic
[3] and employs an approach comprising four complexity types: Time-independent
real/imaginary complexity and time-dependent combinatorial/periodic complexity.
Suh mitigates overall system complexity by employing optimizing actions: Reduce
the time-independent real complexity, eliminate time-independent imaginary com-
plexity where possible, and transform time-dependent combinatorial complexity
into time-dependent periodic complexity for decomposing complex systems into
smaller, more easily comprehensible, operable units. Suh describes this action as
functional periodicity domain determination (e.g., biological, thermal, circadian,
temporal, geometric, etc.).

1.1.1 Managing Complexity

Suh stipulates that complexity must be viewed within the functional domain. There-
fore, fundamental management of complexity within a discipline, project, need, or
gap is a focused process which defines what we want to achieve or understand
within the functional domain. Managing complexity in the physical domain begins
with creating system definitions using the voice of the customer known as customer
needs (CN), which are subsequently translated into functional requirements (FR). To
achieve optimized system design goals a set of design parameters (DP) is iteratively
defined. DPs are analyzed for their individual probability of satisfying FR based
system designs as shown in Fig. 2, probability density function (PDF). For example,
if all required functional cyber system’s DPs are completely encompassed within
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Fig. 2 Design vs. system PDF

the cyber system range, then we know that a cyber system’s FRs are very likely to
be achieved within a bounded design. Therefore, as an existing design or actively
designed system becomes iteratively more well defined, it becomes less complex
and less ambiguous. This is achieved through iterative FR-DP mapping and design
matrix decoupling efforts where system optimization is driven through utilization
of an independence axiom which drives orthogonality analysis. The ultimate design
objectives are to achieve, as close as possible, a completely orthogonal uncoupled
FR-DP design matrix, and the reduction of information content by minimizing
DP random variations which reduce the variance of cyber system function and
consequently reduces time dependent combinatorial complexity and non-linearity
[3].

Moreover, when a system range extends outside of a design range boundary,
a design and the satisfaction of functional requirements become more difficult
to achieve and more complex. Axiomatic design processes achieve optimized
functional designs through the aforementioned matrix decomposition process by
traversing from “what we want to achieve” to “how we hope to satisfy” cyber
system functionality across the following domains: customer, functional, physical,
and process. Two important axioms, eluded to earlier, drive optimized cyber system
functionality. First, the independence axiom helps maintain design independence
and orthogonality of functional requirements and supports minimization of design
overlap where possible to drive solutions to improve minimization and increase cost
effectiveness. Second, the information axiom drives minimizing information content
throughout the iterative design process to provide continuous simplification. The
ultimate cyber system complexity reducing objective is complete uncoupled design
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relationships where all functional requirements are satisfied by independent design
parameters and functions.

Analogously, for managing and securing cyber systems, software, and data,
matrix decomposition provides logical decoupling of dependent interfaces and
supports development of common normalized functional requirement inputs(what)
and design parameter output(how) mappings. Consequently, upon design comple-
tion, physical and logical complex cyber system component tasks are effectively
abstracted and simplified, and their data minimized, increasing successful un-
derstanding and improved correlation/fusion, thereby optimizing cyber sensing,
improving scalability through orthogonal/independent design features, and reducing
overall complexity and cost.

Analogously, supervised machine learning is a process, derived from statistical
learning theory, also used for mapping inputs to outputs by learning unknowns from
example pairs of related information. Hence, machine learning and axiomatic design
are generally well aligned as they both support problem bounding and correlation-
based discovery of unknowns. Each utilizes vectorized learning across a spectrum
of widely varying characteristics. Comparably, empirical risk minimization (ERM)
is a principle of statistical learning which helps bound algorithm performance and
can be characterized by using joint probability distributions. Similarly, in axiomatic
design, a system range correlates to a pre-defined bounded data range where a design
range correlates to an actual range of each design component’s datum. Simply,
if a datum X represents a cyber event which occurred at time t1, while datum
Y represents a cyber event occurrence at time t2, if Y occurred within the time
range for cyber event X, then Y is within the range of X or [(t2–t1) and (t1 + t2)],
there exists a PDF which can represent the overlap of the system vs design range.
Therefore, expanding upon the ML-AD parallels, the proceeding sections examine
combining advanced novel machine-based learning techniques for increasing data
correlation/fusion to further reduce cyber risk and complexity.

2 Artificially Intelligent Cyber

Discipline breadth is required for developing AI systems making AI research and
education inherently multi- and trans- disciplinary [18, 22]. Machine learning is also
supporting the evolution of cognition-based learning within these many domains
[22, 23]. Cognition research employs computer software design analogous to
components of the human brain combined with varying advances in artificial neural
networks (ANN). ANNs are deemed one of the hallmarks of machine learning
and designed to operate synonymously as neurons within a human brain, and as
a group of interconnected nodal relations. ANNs were inspired by neuroscience-
based biological neural networks which are the structure by which chemical-based
ionic electrical signals are passed throughout the body [24]. They are therefore
at the core of probabilistically relating changing levels of data relationships and
recent active research supports their use in developing automated machine- based
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pattern recognition in general and for enhancing the cyber security domain [25,
26]. Thus, we describe the combined use of ITMs and cognitive-based learning
methods to support the challenging processing of high volume, high velocity data,
and improving opportunities for autonomous operations within an overwhelmed
cyber user environment, minimal contextual security, and lacking system stability,
thus improving understanding, transmitting less, and enabling individuals to more
effectively utilize their cyber systems to better control their heterogeneous systems
and data environments.

2.1 Cyber Data Ingest

Moving toward more autonomous self-learning operations requires a more intelli-
gent, normalized, and optimized set of data ingress. The relatively standard extract
transform load (ETL) tasks listed below, among others, are used throughout the
data industry for processing passive and active streaming data (e.g., sensor data).
Generally, learning from any data, including a cyber security scenario, involves
a collection of each varying set of resting or streaming sensor data which is
then compared, contrasted, associated, and normalized against previously captured
content. The efficacy of algorithms being used to try and understand the data,
relies on, among others, the ability to detect change. In short, these changes evolve
into patterns which support improved learning fidelity over time. Ultimately these
processes support learning continuously and evolving toward eventual autonomous
learning and autonomous improvement of system functionality:

• Collect & verify data.
• Analyze for missing data.
• Cleanse data.
• Tag data.
• Organize/correlate/classify data.
• Compare, contrast, normalize with existing data.
• Verify, remember, store analytical results.
• Transmit/display results.

Traditionally, ETL functionality is also included for improving scaling of
input source types (e.g., TCP/UDP Sockets, Filesystems) by understanding and
classifying content prior to, and for improved, system processing. It is well known
that current industry data volume, velocity, and variety vary greatly and can
require significant processing for discovering patterns and context. However, a
perception of high complexity exists in cyber security data, primarily because cyber
data pattern analysis has traditionally been wrought with false positives and false
negatives stemming from minimally included and minimally derivable context.
This challenge increases the difficulty in determining nominal, unscrupulous, or
accidental behavior from the many data, network, or user-based cyber events. As
an example, a distributed denial of service (DDoS) attack is a high volume and
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velocity attack attempting to impact user services and is usually directed from many
distributed locations. Understanding whether malicious or accidental is many times
difficult. Other attacks: Phishing, JavaScript, SQL injections are generally small in
data volume and velocity. This type of cyber data can be characterized as more
passive (files per day) or active (streaming sensor data) but can still be difficult to
classify. Important however is that correlation of high volume and/or passive data
requires the proper infrastructure to support collection and processing of both.

As systems and sensors scale up or down, we therefore propose employing
the logical and physical efficiency benefits of a well-known common ingest and
processing architecture known as Lambda Architecture [27]. Lambda is well-
known within many high-volume data architectures for processing individualized
passive/batch and/or active/streaming data. Therefore, cyber sensor input data, like
many varying data types, can be transformed per more well-defined flows and
through a scalable orchestrated ETL process. This ensures proper a priori ingest
curation and formatting required for subsequent cyber-based analytical processing
algorithms, which is common for most modern ETL environments. Once data ingest
analytics have curated and appropriately tagged the input, the resulting curated
output is subsequently correlated, normalized, and/or fused with data within parallel
streams of data and/or passive data including previous results. The algorithmically
infused output is then believed to be of enhanced value (learning from the data) and
becomes synonymous with terms like adaptive system learning, machine learning,
and algorithmic domain terms (e.g., anomaly detection, cyber behavioral learning,
intelligence, surveillance reconnaissance (ISR) fusion, molecular effect correlation,
etc.).

2.2 Machine Learning and Cyber Security

It is well known that machine learning algorithms derive from statistical learning
theory, are therefore inherently statistical in nature, and require significant initial
training within a given bound or context to become qualitatively relevant. Similarly,
finite element analysis within engineering disciplines and many mathematical
concepts have historically supported non-linear solution accuracy and analysis by
also providing problem-dependent bounding and thus simplification [10]. It is also
well known that machine learning algorithm training, to be of consequence, is
time consuming and generally considered a fine art to suitably discover and train
with a sufficiently related problem data. Similarly, qualitative mitigation of cyber
security risk requires proper human and data training to improve anomaly detection
techniques and to adequately build normal activity profiles [28].

The effectiveness of the cyber algorithm training (as for most applications)
then depends greatly upon the availability of completely normalized cyber traffic
datasets, which, in practice, are rare, extremely difficult to keep up to date, and thus
expensive to obtain, especially attack-free instances [5]. It is well known that for ML
algorithms to be of benefit a significant amount of work must be achieved early in
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just understanding the data through a process of problem definition, data analysis,
and data preparation. Understanding the context around the problem, constraints,
assumptions, and motivations around who, what, where, and how the data was
captured is critical to successful and useful subsequent modeling and application.
A large pool of well-known machine learning algorithms and classification-based
anomaly detection techniques are available today for computer vision, natural
language processing, dimensionality reduction, anomaly detection, time series
analysis, prediction, and recommender systems. Although multi-model ML shows
promise in pattern analysis by creating ensemble outputs of multiple classifiers,
herein we discuss traditional single model machine learning examples, their pitfalls,
and subsequently propose information theoretic mechanisms to decrease cyber risk
by significantly improving data-context understanding and thereby also improving
autonomy when analyzing complex cyber systems.

2.2.1 Machine Learning: Value, Characteristics, and Limitations

Traditional machine learning is divided into two groups known as Supervised and
Unsupervised. Additionally, we discuss our proposal for the additional application
of AD. The objective is to drive more mindful initial and continuous interpretation
of data, to help optimize development of common processing, simplification of well-
defined data-analytics pairing, as well as, optimized frameworks for the improved
processing of high volume, high velocity ML data.

ML processing flows can be resource intensive and can come in the form of
data collection exemplars, learning approximations, learning associations, striving
for equality/specificity using sensitivity, and the use of optimization strategies.
Considering recent research into ML, what becomes apparent is that ML’s useful-
ness is measured in a few different ways. ML algorithms are generally employed
to sift through massive volumes of data looking for patterns. Some challenging
characteristics of ML processing can include significant time consumption when
compared against traditional data processing, ambiguous output, improved only
with significant a priori data analysis, and the perceived complexity of data
dependencies. Benefits of ML can include significant mitigation of the relative dif-
ficulty and/or inability of less automated approaches for determining discriminatory
separation and classification of data.

We propose that in order to more fully understand the potential benefits and draw-
backs of ML and in order to significantly improve valuable in-context affiliation
between cyber data, one must account for the context of human interactions taking
place between systems, data, algorithms, and applications. This includes capturing
specific human cognitive states, and simultaneous and continuous correlation of all
information, recursively. The implication is that “ones” and “zeroes” by themselves
are most often analyzed “out-of-context” and hence provide much less is discernible
meaning than when also compared to additive valuable contextual characteristics.

These value-based data characteristics become more visible when considering
the subtle differences between the concepts of presentation and representation, well
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researched within the domains of information theory and physics [22] and used
for improving human decision-making. Representation is simply defined as the
underlying simple and complex relationships that are represented by mathematics,
protocols, and formats. However, representation of simple and complex data
and relationships between data are often not as readily discernible, when data
relationships reach higher dimensions [29]. Hence, a potential use for ML pattern
learning and algorithmic association designed specifically for this purpose.

Pattern analysis performance on high dimensional, most often initially unknown
and unrelated data, is one key factor generally used to determine the value of an
algorithm. Proper presentation/visualization of ML output is also required within
the context of how data is used to support perceived benefits and/or drawbacks
of a given method. These perceived benefits derive from the subjective quality of
decision value derived from both, the a priori knowledge/context of the processed
data, and the expression quality of the output. Perceived value inherently derives
from how separable and discernible the data is and how well expressed the context
around the data becomes after processing. As an example, parallel coordinates, as
described by Inselberg, is a renowned method for discerning multi-dimensional
data relationships through novel visualization for significantly improved decision
making [22]. The objective of multi-dimensional visualization is to vastly improve
the ability to perform multi-dimensional comparisons and context development
whether simple or non-linear and then rapidly transform the visual presentation of
higher order complex mappings into more simply discernible dimension reducing
sets of two-dimensional relationships.

A quick review of ML: Supervised learning (SL), takes as input, data which has
been previously learned and tagged, also known as “labeled.” As an SL algorithm
iterates over and processes each piece of new data, it compares each to previously
learned data. As comparisons are made, exactly or partially, within a certain range or
approximation of an a priori defined boundary, then the resulting response/decision
variable is placed in the appropriate group. Hence, if the SL objective is to estimate
the value of a given variable, then a simple “curve fit approximation” would be
the recommended approach. If the SL algorithm is attempting to discover discrete
categories within the data, then Decision Tree methods are preferred for organizing
decisions, strategies, and possible outcomes.

Unsupervised learning (UL) treats all data equally and its prime directive is not
to estimate the value of a variable but rather to simply look for patterns, groupings,
or other ways to characterize the data that may lead to understanding of the way data
interrelates. Hence, cluster analysis, K-means, correlation, hidden Markov models,
and even factor analysis (principal components analysis) and statistical measures
are examples of unsupervised learning. Unsupervised techniques essentially attempt
a “partitioning” of a large pool of data into smaller chunks of data that are
more related to members of the partition than data outside the partition. Different
methods and different disciplines have varying names for this partitioning, whether
for simple organization like concept maps or more algorithmic, like clustering, a
term frequently used and commonly associated with methods such as (K-means).
“Chunking” and “kriging” are terms for methods that handle the data differently
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but strive for the same organization. There are also methods such as Voronoi maps,
Self-Organizing-Maps, Isoclines, Gradients, and many other approaches that also
strive for separation of data into partitions without regard to what to call (labeling)
members of each partition. It is this lack of requiring an external “label” as criterion
which drives “unsupervised” partitioning.

Therefore, one of the most useful applications of statistical analysis is the devel-
opment of estimators and function approximators (not models) to visually explain
(present) the relationship between many data items (variables). Thus, many types
of estimators have been developed (e.g., linear and nonlinear regression (function
fitting), discriminant analysis, logistic regression, support vector machines, neural
networks, and decision trees). However, Wulpert’s no free lunch (NFL) theorem
describes that each method has advantages only within a particular use case, and
therefore, great care must be taken to understand each use case thoroughly [30].

ML algorithms focus upon similar varying optimization strategies where no
single estimation or approximating method is best for all applications. Therefore, in
order to improve the fidelity of machine-based learning and go further than current
ML allows, we propose that it is uniquely important to understand the difference
between memorizing (not accepted within academia as learning) discovered patterns
and comparing/estimating how well those patterns compare/relate to recent and
well-known information theory innovations and information theoretic methods
(ITM) [31]. These methods strive to “explain” data at higher fidelity for rounding
out the expression of details/context in every case, focusing upon enabling better
realizations and decision-making. Analogously, imagine employing a new, more
highly expressive method that enabled the realization of the exact location of
electrons in space and time as opposed to Shroedinger approximations. The sci-
entific applications and optimizations possible with this new expressive information
would be considered revolutionary because of the wealth of new opportunities and
vastly improved decision-making. Therefore, we discuss objectives to significantly
improve understanding of ambiguous cyber security event data, optimization, and
innovation, by providing higher fidelity-based information context and insights and
for ultimately creating higher quality cyber security mitigation decision-making.

2.2.2 Currently Employed Supervised and Unsupervised Cyber Security
Machine Learning Approaches

Most recently Ferrag et al. [32] analyzed 35 of the most well-known cyber security
data sets with ten significant machine learning algorithms (Fig. 3 [32]) against
performance efficiency for binary and multi-class classification, as well as accuracy,
false alarm rate, and detection rate. Each data set-ML paired analysis yielded a
best algorithm. FFDNN: Feed forward deep neural network; CNN: Convolutional
neural network; DNN: Deep neural network; RNN: Recurrent neural network;
DBN: Deep belief net- work; RBM: Restricted Boltzmann machine; DA: Deep
auto-encoder; DML: Deep migration learning; STL: Self-taught learning; ReNN:
Replicator neural network. Additionally, Eskin describes the use of unsupervised.
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Fig. 3 Current cyber deep
learning approaches [32]

SVM for detecting anomalous cyber events. Example SVM usage approaches:
Registry anomaly detection (RAD) for monitoring Windows registry queries [33],
Robust SVM (RSVM) anomaly detection ignores noisy data [34], confident
anomaly detection [35]. A core assumption of SVMs is that all sample data for
training are independently and identically distributed. Additionally, in ML practice,
training data is often noisy, thereby often invalidating results and driving standard
results into highly non-linear decision boundaries, leading to poor generalization.
Research is also lacking to optimize and reduce anomaly detection and SVM run-
time processing [35]; like many ML methods, SVM benefits and/or drawbacks
are highly tied to a priori, well-defined boundaries and to the homogeneity of
data mapped to equivalent small or large numbers of false detections, hence, our
objective to provide improved machine learning fidelity and efficacy.

2.2.3 Improving Machine Learning Fidelity: Information Theory
and Information Theoretical Methods

Vast systemic complexity and multi-dimensionality issues retard, impede, and pro-
vide significant friction to building advanced systems more capable of managing and
protecting valuable commercial and government assets. Therefore, among a treasure
trove of issues managing and understanding current and exponentially expanding
Big Data and system endpoints, as well as, globally distributed computing, this
chapter confronts the major issue regarding data and system fidelity along with
prescribed solutions.
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Historically, the fidelity of information content combined with representation
and presentation clarity lends itself to improved insights and thus greater potential
for improved decision-making and efficient actions [22]. In the complexity section
above, the information and independence axioms were outlined expressly to provide
background on mechanisms used today that support the optimization and simplifica-
tion of information content relationships. The definition of fidelity is defined herein
as the degree of exactness, accuracy, or precision. Historically, in biochemistry the
ability to see and understand finer grained cellular interactions increases our ability
to make improved decisions on curing disease or the manufacture of specifically tar-
geted rather than generalized drugs. The lack of fidelity of understanding can result
in dire consequences. In nuclear physics the quest for higher fidelity understanding
of the universe drives the search for even smaller particles (e.g., Higgs Boson) which
provide even more globally impacting insights. However, our systems, software,
processing, and hardware are forever built by a third party and most often are not
developed to a common standard. Software intra- and inter- dependencies are not
effectively known or managed. Hence, the continuous lack of fidelity and lack of
real-time insight into comprehensive system, system processing, application, and
data dependencies is one of several core reasons we continue down a path of cyber
frustration and insecurity. Therefore, along with employing axiomatic design for
improving data and system understanding, and dependency mapping for simplifying
system construction, we propose the application of advanced ITM approaches. The
objective is to potentially achieve significantly higher fidelity system dependency
and data anomaly detection/classification understanding for today’s complex multi-
dimensional data issues and cyber security challenges.

2.2.4 Cyber Data: Reducing High Dimensionality and Complexity
of Machine Learning

Remember that data representation is defined as the underlying simple and com-
plex relationships represented as collected, ingested, correlated, protocols, and
data formats. Subsequent fusion of context from additive data sources increases
relational complexity, ranging from clear simple comparisons to more ambiguous,
higher dimensional, complex interrelationships. Stated earlier, parallel coordinates
(PC) [28] provide for visually deriving clarity from complex higher dimensional
relations. However, as in supervised learning, PC assume a priori parameterization
has been normalized across data types, and initial interrelationships have been a
priori defined. As stated above, SL algorithms iterate over and process each piece
of new data, comparing each to previously learned data, thus iteratively adding
complexity and higher dimensionality to data interrelationships.

Therefore, we propose an introductory data context leveling step where we apply
axiomatic design principles for improving ML fidelity of a given SL application.
First, AD should be applied to determine the type of complexity (e.g., time-
dependent, time-independent, complexity, imaginary complexity, combinatorial
complexity) [3] surrounding the creation of a collected data set driving a priori
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SL data labeling and boundary approximation decision-making. AD supports the
development of better indicators for unambiguously attributing truth to applied
labels which increases data definition quality through added context and discerni-
bility. Specifically, since SL processes perform data comparisons within specific
ranges or approximations of a priori defined boundaries, AD’s system design
range correlation mechanism enhances understanding of the types of complexity
which can drive SL range approximations. The added knowledge of which type
of complexity was involved in data creation provides added insight into the value
of a given SL algorithm on said data. Thus, this combined approach provides a
candidate complexity reducing tool for reducing cyber and/or other data relationship
complexities and improved efficacy of SL algorithm utilization.

2.2.5 Increasing Cyber Security Event Understanding with Information
Theoretic Methods (ITM)

Novel Data Characterization Using Fractals

For understanding complex data and relationships, Jaenisch et al. [36] describe how
to apply continuous wavelet transform (CWT) to discrete nth order integrable and
differentiable data, and how to automate derivation of analytical functions which
explicitly describe the data, directly from the data. They prove mathematically how
to automate modeling of disparate data types using a new concept of univariate
fluxion, coined as Unifluxion (UF) [36]. The UF formulation employs adaptive
partitioning of data into fractals and then derives a fractal wavelet parent function
for each partition. This enables automated wavelet transformation (integration or
differentiation) across all partitions in a common repeatable manner, across the
complete set of provided time series data [36]. Jaenisch et.al also compare UF to
classical techniques and provide details on enhanced performance [36]. Hence, we
propose that correlated and sequenced time series-based cyber, network, and user
event data can be similarly described and modeled using fractals and UF.

Jaenisch et al. show how the unique formulation of U(f (x)) enables an automated
data model transformation into either an integral or differential model of any order
(an automatically derived differential equation) [36]. They describe how UF is
defined to be a data model because it provides a continuous predictive model that can
be both integrated and differentiated to any order. UF is also derived incrementally,
as each measurement point is piecewise collected, although the final result is a
continuous analytical function across all the time series data [36].

Subsequently, adding credence to the use fractals for improved cyber understand-
ing, Jaenisch et al. [37] provide research examining the hypothesis that decision
boundaries between malware and non-malware is fractal. They characterized the
frequency of occurrence and distribution properties of malware functions compare
them against non-malware functions [37]. They then derived data model–based
classifiers from identified features to examine the nature of the parameter space
classification boundaries between families of existing malware and the general non-
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malware category. Their preliminary results strongly supported a fractal boundary
hypothesis based upon analyses at the file, function, and opcode levels [37].

Security information and event management (SIEM) data and systems are
used extensively throughout industry, incrementally capturing many system-wide
time series events: Data, Network, User Behavioral, Endpoint, Email, Web, etc.
Additionally, security analytics in big data environments present a unique set of
challenges, not properly addressed by the existing SIEM systems that typically
work with a limited set of those traditional data sources [38]. Thus, we propose the
reasonable application of UF to cyber SIEM time series data. UF’s decomposition
of cyber event content into fractal partitions enables the application of wavelet
transformation which increases fidelity of cyber inter-, intra-, data relationships
through the derived analytical functions which explicitly describe the cyber data,
directly from the cyber data. Simultaneously, UF’s continuous analytical function
provides rapid predictive integration and/or differentiation, thereby improving the
speed of cyber event relationship prediction and understanding. Hence, potentially
traditional time-consuming machine learning classification would not be necessary
(k-means, SVMs, etc.)

Spatial Voting (SV) for High Fidelity Data Characterization

Spatial voting is a multidimensional clustering and grouping algorithm. Individual
spatial measurements (e.g., latitude and longitude) are stacked onto a coarse
resolution SV grid. Similar or closely related points are organized into the same
or within neighboring cell locations on the SV grid. The input features for the SV
grid form the x and y axes of the SV grid. Once measurements are stacked on the SV
grid, if required, a 2-D spatial convolution kernel is used to smooth the stack values
in the landscape and connect isolated regions together into regions (subgroups) [39].
As proposed by Jaenisch et al., SV provides an analog data modeling approach to
provide a solution to the “object to assembly” aggregation problem [40]. Generally,
“object to assembly” refers to the perception of objects within their given spatial
relations. For example, information design in advanced augmented reality (AR)
applications requires support for assembly with high demands of spatial knowledge.
SV is based upon combined principles of voting, geometry, and image processing
using 2D convolution [40]. Voting is defined as a democratic process where the
majority decision rules. Votes equate to hard decisions. For example, if sensors
observe a phenomenon and identify it and then rank based upon each different
hypothesis, then as one sums the number of sensors that declare a hypothesis to
be true, then the largest sum becomes the winner [40]. Hence, voting reduces to
probabilities, and typically, this is where Bayesian and other probabilistic analysis
methods are generally used [40]. A presentation summary of the SV process is
shown in Fig. 4. A shows an example plots of.

spatial events(e.g., UAV locations), B shows the detection grid output after initial
ellipse stacking has been performed, C depicts the identification relationships of
the candidate sub-frames, D represents a graphic output after additional feature
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Fig. 4 Spatial voting process summary

covariance analysis has been performed (e.g. sensor reporting locations), and E
depicts the final results after spatial voting was applied. It should be noted that
additional intermediary feature analysis can be applied to further the exactness of
the final output.

Hence, the difference is that conceptually SV and ITMs strive to “explain” rather
than “learn” flash card style as machine learning aka machine remembering does.
The emphasis is that memorization is not considered in academia as a measure
of learning at all. Learning requires understanding which requires insight, the
ability to synthesize (i.e., restate differently), and then generalize to conclusions.
Neither machine learning nor artificial intelligence is focused on a path to achieve
this. Hence, SV employs a matrix/grid where spatial artifacts are captured and
marked/classified based upon their unique identifying characteristics [40]. Objects
are characterized using recursive forms of higher order highly descriptive parametric
and non-parametric (fractal) features and statistics, and the classifiers are derived
for discrimination and classification. Characterizations and formulations are highly
object and situation dependent. The next step is to create a classifier to practically
associate the individual features. As always classifiers and algorithms which
support it must continue to be chosen carefully. Their research has shown that
SV provides significant characterization, discrimination, and performance benefits
for improving object context in physical operational environments [36, 37, 40]. In
the proceeding sections, we will show that spatial constructs can be extended to
high fidelity explanation and characterization of varying types of digital artifact
interrelationships and highly contextual knowledge creation.
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High Fidelity Object/Data Relationship Modeling

When very few examples are available to discern statistical behavior, data models
can be employed. Generally, data models are constructed using a bottom-up
approach in the form of a knowledge base to collect, capture, identifies, encodes
each example encountered. Data models within systems where little intelligence
initially exists and into which intelligence is injected can contain many data models.
Of course, these myriads of models have varying structures, formats and datum,
all created under the influential context of the data model author. Relating similar
and alien/abstract models and context has historically been challenging for many
reasons. Hence, an inductive self-organizing approach, polynomial neural networks
(PNN) or group method of data handling (GMDH), has been applied in a great
variety of areas for deep learning and knowledge discovery, forecasting and data
mining, optimization, and pattern recognition [41]. GMDH algorithms provide
value in automatically finding interrelations in data, in order to select an optimal
model or network structure and to increase algorithm accuracy. GMDH focus is to
minimize modeling influence of the author and enables the computer to find optimal
model structure or laws of the system acting upon the data.

Extending Spatial Constructs to System Learning and System Knowledge
Development

Improving decision quality autonomy of artificially intelligent systems requires re-
liable information discovery, decomposition, reduction, normalization, and context-
specific knowledge recall [22]. Hence, capturing the essence of any given set of
information content is paramount. When describing how science integrates with
information theory, Brillouin [42] defined knowledge as resulting from exercising
thought. Knowledge was mere information without value until a choice was made
based upon thought. Additionally, Brillouin concluded that a hundred random
sentences from a newspaper, or a line of Shakespeare, or even a theorem of Einstein
have exactly the same information value. He concluded that information content had
“no value” until it had been thought about and turned into knowledge.

Artificially infused robotic systems must be able to integrate information into
their cognitive conceptual ontology [43] in order to be able to “think” about,
correlate, and integrate information. Humans think to determine what to do or how
to act. It is this decision-making that can be of great concern when processing ambi-
guity because of the sometimes-serious ramifications which occur when erroneous
inferences are made. Often there can be severe consequences when actions are
taken based upon incorrect recommendations. Inaccurate inferences can influence
decision-making before they can be detected or corrected. Therefore, the underlying
challenge is to reliably understand the essence of a situation, action, and activity
and to significantly increase capability and capacity to make critical decisions from
a complex mass of real-time information content. Harnessing actionable knowledge
from these vast environments of exponentially growing structured and unstructured
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sources of rich interrelated cross-domain data is imperative [44] and a major
challenge for autonomous systems that must wrestle with context ambiguity without
the advantage of human intervention [23]. The next section comprises combining
ITMs with enhancing understanding ambiguous characteristics using knowledge
relativity threads (KRT) [22]. As SV is employed to “explain” spatial characteristics,
KRTs extend mature physical spatial mechanics for defining adaptive knowledge
object presentation and representation.

2.2.6 Physical Representation of Meaning

Research shows that the community of disciplines researching how humans generate
knowledge has traditionally focused upon how humans derive meaning from
interactions and observations within their daily environments, driving out ambiguity
to obtain thresholds of understanding. With similar goals, spatial voting, information
theory, and complexity theory, as described earlier, focus more closely on explaining
actual information content. Zadeh pioneered the study of mechanisms for reducing
ambiguity in information content, informing us about concepts in “fuzzy logic”
and the importance of granular representations of information content [45], and
Suh focused upon driving out information complexity via the use of axiomatic
design principles [3]. Hence, a vast corpus of cognitive-related research continually
prescribes one common denominator, representation of how information content,
knowledge, and knowledge acquisition should be modeled. Gardenfors [46] ac-
knowledges that this is the central problem of cognitive science and describes three
levels of representation: symbolic—Turing machine like computational approach;
associationism—different types of content relationships which carry the burden of
representation; and thirdly, geometric—structures which he believes best convey
similarity relations as multi-dimensional concept formation in a natural way;
learning concepts via similarity analysis has proven dimensionally problematic
for the first two and is also partially to blame for the continuing difficulties
when attempting to derive actionable intelligence as content becomes increasingly
distended, vague, and complex.

Historically, there are many examples and domains, which employ concepts
of conceptual representation of meaning as geometric structures (e.g., cognitive
psychology [47], cognitive linguistics [48–50], transdisciplinary engineering [22],
knowledge storage [14], computer science, e.g., entity relationship, sequence,
state transition, and digital logic diagrams, Markov chains, neural nets, and many
others. It should be noted here that there is not one unique correct way of
representing a concept. Additionally, concepts have different degrees of granular
resolution as Zadeh [45] describes in the fuzzy logic theory. However, geometric
representations can achieve high levels of scaling and resolution [46] especially for
n-dimensional relations, generally difficult if not impossible to visualize above the
fourth dimension. However, high dimensionality can be mathematically represented
within systems in several ways. Hence, mature mathematics within the physical
domain allows this freedom. Therefore, we show the overlay of physics-based
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mathematical characteristics to enhance relational context and develop a unifying
underlying knowledge structure within information theory. We employ knowledge
relativity threads (KRT) [22] to minimize ambiguity by developing detailed context
and for conveying knowledge essence simply and robustly. The next section
describes presentation formation, representation, and the process of organization of
n-dimensional contextual relationships for humanistic prototypical object data types
with application of the common denominators: time, state, and context.

2.2.7 Knowledge Relativity (KR)

Knowledge relativity threads (KRT) [22] primarily originate from computational
physics concepts as an analogy to Hibeller [51] where the concept of relating the
motion of two particles is a frame of reference and is measured differently by
different observers. Different observers measure and relate what they behold, to
a context of what has been learned before and what is being learned presently.
The reference frame of each knowledge building action contains the common
denominators of time, state, and context—the point in time and all the minutia of
detailed characteristics surrounding and pronouncing the current captured state of
all related context. Historically, organization, presentation, representation of knowl-
edge, and context have been researched across many disciplines (e.g., psychology,
computer science, biology, and linguistics) because of the primal need to survive,
understand, and make sense of a domain. However, most systems we engineer today
are increasingly incapable of processing, understanding, presenting, and structurally
representing the volume, velocity, variety, and complexity of content because first,
they are not built to learn, only to store [52], and second, the content systems store
and filter are what is generally or explicitly known to be true, not the more valuable
and higher fidelity tacit knowledge that is context specific to each frame of reference
or situation [53].

Therefore, we build KRTs upon the concept of “occam learning” [54] to construct
continually renegotiable systems [55] with the simplest portrayal (e.g., present and
represent) capable of encapsulating complex n-dimensional causal structures, within
and between the complex data generated from the observed/captured behavior [14].

The KRT concept was developed to take advantage of mature physical universe
n-dimensional relationship calculations relating any celestial object to another
regardless of size or composition. KRTs extend physics space-time mathematics
and apply to information theory to increase contextual knowledge understanding
through a concept of recombinant knowledge assimilation (RNA) [22] or recursive
spatial data model representations consisting of information object relationships.
The logical concept develops from the following:

• An infinite amount of data and data relationships exists in the universe.
• The infinite amount of data doesn’t increase or decrease; it simply changes in

form (knowledge increases).
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• Fundamental increases in data volume increases decision points, which funda-
mentally should result in, but does not guarantee, increased data maturity and
increased quality decision making.

• As data is consumed or processed, an increase in data quality and maturity
appears, if and ONLY if enough relationships are known or can be discerned,
can be captured, and reused to inform.

• Information explosion has always provided a human challenge.
• Humans, by themselves, are not physically capable of rapidly comprehending

vast complex data sets, and then providing associated solutions to complex
problems, the human brain can only handle approximately 7 events at a time
[56].

• Can we capture and establish understanding of the fundamental relationships
among all types structured and unstructured data?

• Can we extend or abstract premier concepts used to capture physical universe
relationships?

2.2.8 High Fidelity Fusion Using Concepts of Space-Time

In the general theory of relativity, the relationship depends upon the observer. This
is similarly the case for fusing data relationships per Joint Directors of Laboratories
(JDL) Fusion Level 5 [57], where the user serves a primary observer role in support
for “decision-making” and defining actionable relationships. Different observers
of the same data may apply different relationships. This is not dissimilar in
Einstein’s theory of special relativity where it is demonstrated that a “correct”
answer is measured differently by different observers [58] for any independent
event. Therefore, any observer of n-data of n-types can have n-independently
observable relationships. Today, complex systems of data stores are developed
from significant research across many different scientists/observers. Research data
considered mundane or unrelated to one observer might be the ultimate piece of the
puzzle or major discovery for another.

Hence, beginning with Reimann, space-time mathematics with respect to rela-
tivity has been in development for more than a century. Extending n-dimensional
relationship mathematics principles to correlate and fuse non-physical data seemed
intuitive. Here we describe Hendrik Lorentz’s and Schrödinger’s use of manifolds
[59, 60] for application to n-related data objects in a linear or non-linear space. In
systems biology, a cell is made up of many things. A strand of deoxyribonucleic
acid (DNA) is made up of numerous bits and pieces of information which define
a genetic blueprint, as well as, the DNA helix like physical shape. A space-time
object in a Lorentzian manifold can be defined by the tangent vectors or signatures
on the curved manifold. These objects can be represented as tensors or metric
tensors which comprise a vector of eigenvalue attributes which define an object
signature in n-dimensions [59]. Multivariate analysis in n-dimensions is applied
to aspects of complexity in the information theory as well [32, 39]. Employing
tensors as vector relationships to systems biology data, we can describe DNA
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attribute relationships mathematically and can store them in a common manner.
Their pedigree is maintained mathematically as a tensor attribute per data element.
Metric tensors or tangent vectors where a manifold intersects a spheroid at a single
point represent the data that describes the attributes of the intersection. Hence,
if the spheroid space represents a locale where data exists and the point on the
curved surface is a datum, then the vector of coefficients and attributes reflects the
characteristics of that datum.

Lorentzian manifolds also have the concept of causal structure. Causal structure
in space-time can describe ordering, past and future, designated by the directionality
of each tensor vector. Consequently, this can also be applied to digital data. For
example, biology can have time-dependent ordering when describing the time lapse
yeast growth characteristics in cell array experimentation, just as described earlier in
Unifluxion and spatial voting time series analysis. Hence, metric tensors or “vectors
of knowledge” intersect at their point of relation, Fig. 5. Hence, as one vector’s
directionality disperses or moves away from another vector, one can logically
deduce that the strength of that relationship decreases or increases. Therefore,
Newton’s law of gravitation is used as an analogy to compare, contrast, associate,
and normalize representations of relationship strength for any type information
(analog or digital) artifact type. Figure 6 depicts an example representation of two
information objects being compared, contrasted, and associated based upon user
and/or system definable characteristics: importance, closeness. Newtonian gravity
defines that the force of two bodies is proportional to their mass and inversely
proportional to the square of their separation. The calculation is then multiplied
by the universal gravitational constant to achieve the final force of gravity result
between two bodies. For application to information theory, Newtonian mass is
extended to denote relative information importance provided by a person or system
as it pertains to a specific knowledge object to knowledge object comparison or any
other smaller or larger context. The importance measure is a user r system defined
scalar diameter in order to provide relative radius to the separation denominator.
The square of separation is analogous to how close (closeness) the two pieces of
information are relative to the overarching context. Figure 6, knowledge object (KO)
#1, depicts the concept of two internal sub-nested objects of information which if
reviewed would show additional context for KO1. The attractive force, A, of the two
pieces of information in Fig. 6 is shown to equal 10. Lastly, a user or system can also
employ a balance variable as an analogy to the Newtonian universal gravitational
constant multiplier. This type of constant is considered a balance factor/variable of
proportionality would be dependent upon user or system situational context which
KO1 and KO2 are part of.

.

2.2.9 Conclusions and Discussion

This is preliminary work and significant research is still required. Here we have
presented adaptive learning methods for enhancing cyber security risk reduction
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Fig. 5 Vector-based data
relationships

Fig. 6 Knowledge relativity threads

by improving knowledge density (KD) (how much do we know about a given
event or subject) and knowledge fidelity (KF) (how well do we know) to improve
cyber event context and decision quality for improved and more autonomous action.
Axiomatic design axioms and design features were recommended for adding to our
KD data analysis prior to machine learning application. High fidelity Unifluxion
fractals, spatial voting research, and improved performance analysis of time series
data was provided. Spatial voting was shown to also operate against cyber digital
time series data (e.g., malware detection) and their benefit comparisons to cyber
machine learning data classification was also provided.

Tensor vector data and knowledge relativity threads (KRT) were shown to
provide spatial constructs for explaining high fidelity relationships and the use of
manifolds and metric tensor vectors as attribute descriptors was also described.
These methods were combined with axiomatic design concepts to organize and
supply complexity reduction techniques for reducing traditional time-consuming
machine learning classification. Together, it was shown that these capabilities
potentially produce support for more efficient decision actuation, due to improved
explanation and relationship context of data and higher data analysis performance,
thereby providing added insights to cyber systems and analysts to reduce security
risk and reduced non-linearity and complexity. Suggested next steps should proto-
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type, design, and implement an architecture to learn on large cyber datasets. Future
papers will present progress and results as available.
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