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1 Introduction

Like human organizations, agent teams are often formed to take advantage of
supplementary similarities or complementary differences [7]. Similarity is leveraged
by scaling the system size up with homogeneous agents that can work in parallel
to increase the task completion rate. Differentiation in heterogeneous systems
allows for specialization to complete diverse sub-tasks that can be integrated into
completion of the full task. Degree of heterogeneity is a major differentiating factor
among multi-agent systems [15]. In addition to heterogeneity based on form factor
(e.g., a team of ground and aerial robots) or hardware-defined function [13], there
are agent teams with identical hardware but heterogeneous behaviors. For example,
it has been shown that a team of 5 robots with identical hardware, whose labor was
divided between digging (prying boxes away from the wall) and twisting (clustering
boxes in the center of the testbed), was able to cluster groups of boxes more
efficiently than homogeneously programmed agent teams [14]. By altering the mix
of diggers and twisters, they showed different levels of efficiency and reliability
of the resultant systems. Heterogeneous behavior can also be achieved by dynamic
state switching, where agents assume different roles based on their local perception
of the environment and task needs, even if they are all running the same behavioral
algorithms [8]. In the case of human–AI centaur chess teams, amateur human
players and their AI teammates are able to achieve better performance than either
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human grandmasters or supercomputers, by crafting their method of interaction to
leverage one another’s strengths [6].

Heterogeneity has also been shown to naturally emerge from homogeneity. In
some insect species, juvenile members can be deferentially nurtured so that they
show marked dimorphism at maturity, enabling differentiation into soldier ants
and drones [11]. So we see that heterogeneity can substantially improve system
performance and can emerge from various environmental constraints such as nurture
or training, hardware, algorithm, or local temporal dependent on-the-fly behavior
differentiation.

The source of heterogeneity we study here is trained behavioral heterogeneity
from a reinforcement learning (RL) approach. This raises interesting questions. If
multiple agents are trained to complete a task over successive trials, do they learn
to differentiate their behavior and take advantage of complementary differences?
If so, does each agent learn a fixed role, or are the roles distributed dynamically?
If a teammate is lost, changed, or compromised, have the other agents learned
robust strategies to compensate? Partial answers to these questions can be found
in previous results. Changing the reward structure in RL from zero sum to shared
rewards can cause qualitatively different behaviors to emerge from the learning
agents [16], implying that they are learning to cooperate. Agents may be allowed to
train individual heterogeneous algorithms, train as a set with mutually known inputs
and actions, or train homogeneously but with differing sensor information so that
they make decisions locally. Even when agents are allowed to train heterogeneously,
it is difficult to definitively say that they are learning to specialize or even consider
their teammates [1]. They may simply be learning to maximize their own reward
in a way that generally scales well to group settings (i.e., learning complementary
similarities even if supplementary differences are possible) or find strategies that
perform well irrespective of their teammates’ actions.

In the following sections, the concept of heterogeneous strategies emerging from
homogeneous capabilities is demonstrated. In the Methods section, we describe our
simulation environment, where we test agents that are guided either by a learning
algorithm or fixed strategies. Next, agent performance is shown with probability
distributions and statistics for both homogeneous and heterogeneous cases in the
Results section. Finally, the Discussion section points to the conclusions that were
drawn from the results and provides further avenues of research associated with
heterogeneous strategies from homogeneous capabilities in multi-agent systems.

2 Methods

A continuous bounded 2D simulation environment was utilized to train and evaluate
a set of four agents (three predators and one prey, represented as circles) per model
in the predator–prey pursuit task [4, 10], and a visualization of the task is shown
in Fig. 1. The predators scored points (i.e., were given reward during training and
evaluated during testing) every time they collided with the prey. Predator agents
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Fig. 1 Predator–prey pursuit
particle environment

were homogeneous in their capabilities (i.e., same size, velocity, and acceleration
limitations), whereas the prey was 33% smaller, could accelerate 33% faster, and
had a 30% max speed advantage. The simulation environment was built upon
the OpenAI Gym library [5] and developed for use with the multi-agent deep
reinforcement learning algorithm, multi-agent deep deterministic policy gradient
(MADDPG) [10]. We assume that the predator agents must cooperate to score a
hit on the prey, given the prey’s capability advantages. Prior work has shown that a
simple greedy policy (i.e., minimize distance to prey) is insufficient for the predators
to succeed [3].

All the agents were trained concurrently using the MADDPG algorithm [10].
MADDPG utilizes a decentralized-actor centralized-critic framework that accounts
for each agent’s observations and actions during training. The predators all received
the same fixed reward (shared/joint reward) when any one of them hit the prey,
while the prey received the negative of the same fixed reward when hit. At the
start of each episode, the initial positions of the agents were randomized, and their
initial accelerations and velocities were set to zero. The state space of each predator
agent contained its absolute velocity, absolute position in the environment, relative
distance and direction to the other predators and the prey, and the prey’s absolute
velocity. The state space of the prey agent contained its velocity, absolute position
in the environment, and relative distance to the predators. The action outputs of
the policy network for an agent are accelerations in the two-dimensional coordinate
system.

In addition to the MADDPG-trained agents, we consider two analytically defined
agents (also referred to in this article as fixed-strategy agents), called a chaser agent
and an interceptor agent. The chaser agent does not leverage any prey velocity
information and only points its own velocity directly at the prey’s instantaneous
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position. In contrast, the interceptor agent considers both instantaneous position
and velocity of the prey. At a moment in time, the Apollonius circle describes the
potential interception locations if both agents continue in a constant direction [9].
Given a prey that is faster than the predator, only a subset of possible constant prey
strategies admit a capture trajectory for the predator [12]. We extend the Apollonius
circle strategy for the predator in the case where capture is not possible. The case
where capture is possible is shown in Fig. 2a. Equal travel time at capture gives
dE

VE
= dP

VP
, and the rule of sines gives dP

sinφ
= dE

sin θ
, resulting in

sin θ = VE

VP

sinφ. (1)

In the case where capture is not possible, we consider a finite time prediction
for prey trajectory and choose the predator’s strategy to minimize the final distance.
This is shown in Fig. 2b, where the dP circle represents how far the pursuer is able
to travel in the time it took the evader to travel distance R. The optimum position
for the purser to minimize the relative distance at the moment the evader reaches the
R circle is to head straight toward that point. Clearly, ψ = π − θ − φ, and

sin θ

R
= sin(θ + φ)

r
. (2)

The critical case between the capture set and non-capture set is sinφ∗ = VP

VE
,

θ∗ = π
2 , and evaluating Eq. 2 at that point gives

R = r√
1 − V 2

P

V 2
E

. (3)

This value for R will result in a continuous policy across all cases.

To compare heterogeneous and homogeneous team structures, the MADDPG-
trained agents and fixed-strategy agents were subdivided into homogeneous and
heterogeneous teams. We took two previously trained models, independently trained
with the MADDPG algorithm for 100,000 episodes and 25 timesteps per episode
[2], and used them for our evaluations. Trained Model 1 and 2 predator agents were
tested as heterogeneous teams consisting of all three agents (i.e., Agents 0, 1, and 2),
labeled as “All Agents” in Figs. 3a, b, or as homogeneous teams in which all three
actors’ behaviors are driven by the policies of either Agent 0, Agent 1, or Agent 2
from each of the models. Similarly, the fixed-strategy predator agents were tested
against both Model 1 and Model 2 prey agents in several types of homogeneous
or heterogeneous team compositions: 3 interceptors, 2 interceptors and 1 chaser, 1
interceptor and 2 chasers, and 3 chasers. All tests were performed for 1000 episodes
at 1000 timesteps per episode.
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Fig. 2 Pictorial of interceptor strategy for capture and non-capture cases. (a) Capture scenario for
interceptor strategy. (b) Finite R interceptor strategy

3 Results

The simulation results show how group performance changes upon replicating
a single agent’s policy network and thus introducing homogeneous strategies.
Further, the performance resulting from this homogeneous strategy implementation
may provide a means of classifying different trained policies that emerge through
collaboration in the multi-agent reinforcement learning process.

Using the data collected during testing, we generated probability density plots of
the hits the predators achieved on the prey to analyze agent performance for each of
the models (Figs. 3a, b). “All Agents” shows the aggregated or team performance of
three predator agents with their independently trained network policies. “Agent 0”
represents the data generated from the replication of “Agent 0” across the three
predator agents. Similarly, “Agent 1” and “Agent 2,” respectively, represent the
replication of their corresponding agent policies. The x-axis shows the number of
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Fig. 3 Probability density performance plots for learning predators. (a) Model 1. (b) Model 2

hits (i.e., number of times the predators collaboratively contacted the prey agent
throughout an episode). The y-axis shows the normalized frequency or probability
density for the hits per episode. We performed the pairwise 2-sample Kolmogorov–
Smirnov (KS) test to show that all the distributions were significantly different from
one another at the alpha = 0.01 level (p-values « 0.001).

We can see from Figs. 3a, b that in the case of the MADDPG-trained agent
strategies the heterogeneous predator team (All Agents) is able to outperform all
of the homogeneous predator teams (Agent 0, Agent 1, and Agent 2) where the
same policy is replicated across each agent. Furthermore, as all the homogeneous
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Table 1 Performance of
fixed-strategy predators

Predators’ strategy Mean CI lower CI upper

(a) Model 1

3 interceptors 1.55 1.46 1.65

2 interceptors, 1 chaser 1.16 1.09 1.24

1 interceptors, 2 chaser 0.876 0.824 0.932

3 chasers 0.154 0.145 0.164

(b) Model 2

3 interceptors 1.44 1.35 1.53

2 interceptors, 1 chaser 1.05 0.990 1.12

1 interceptors, 2 chaser 0.998 0.939 1.06

3 chasers 0.144 0.136 0.153

team performances were significantly different, we can infer that each individual
agent policy learned to utilize a different strategy that benefited the team as whole.

The data in Table 1 shows the performance statistics for the fixed-strategy
predator agents playing against the MADDPG-trained prey. The statistics were
generated by fitting an exponential distribution to the probability density functions
of the data from the respective cases. Note that these data are shown in tables rather
than plots as the probability density functions are all visually similar when presented
with x-axis values on the same scale as Fig. 3a, b.

Overall, the tables allow us to see that the performance of the chaser predators
is an order of magnitude worse than that of the interceptor predators when playing
against trained prey from Models 1 and 2, which was also shown to be significantly
different with 2-sample KS tests (p « 0.001). Interestingly, when we combine a
chaser predator with two interceptor predators (i.e., heterogeneous fixed-strategy
cases), the inclusion of chaser predators results in a significant reduction in group
performance (compare 3 interceptors case to the heterogeneous cases in Table 1). In
addition, across both models, combining an interceptor predator with two chaser
predators significantly improves group performance from the three chasers case
(p « 0.001). Together, these results suggest that overall the interceptor strategy is
significantly better than the chaser strategy, especially in the homogeneous cases.
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