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1 Introduction

Learning outcomes are improved when a learning environment is responsive to the
capabilities, preferences, and needs of individual learners [1, 2]. However, imple-
menting such responsive learning systems is a significant design and engineering
challenge [3]. Creating a learner-adaptive system generally increases the complexity
and cost of the learning environment. Further, because each learning environment is
unique, these additional costs recur when developing adaptive learning capabilities
in a new application or domain. These costs slow research progress; creating an
effective adaptive learning environment is expensive and time-consuming. More
importantly, they also limit reaching full human potential via better and more
widespread training technologies.

This chapter describes one aspect of the adaptive training systems engineering
challenge more thoroughly. We describe past work in terms of solution requirements
and outline how that work fell short of meeting the challenge. We then introduce
a new approach, which combines several elements of previous solutions. This
“event-based keyframing” employs methods from artificial intelligence (AI) to
create a “learner-centric interpretation” of the current learning situation. A machine-
understandable interpretation offers multiple benefits that allow it to mitigate some
of the complexity and engineering cost for developing adaptive learning systems.
We illustrate how we are using this approach in a number of distinct application
domains. Successful use in multiple applications highlights the generality and value
of a solution that is not tied to a particular domain, learning environment, or
algorithmic methods of adaptation.
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2 Systems Requirements for Adaptive Learning

We focus, in this chapter, on the requirements for dynamic adaptation within a prac-
tice environment. Many practice environments are implemented with simulations
of the task or performance environment at various levels of fidelity. Increasingly
simulation (or “virtual”) environments are also being integrated with real or “live”
environments to enable an integrated mix of live, virtual, and constructive actors in
complex, realistic training and practice environments. These learning environments
are realistic and effective for training. However, they are also complex systems
with many dependencies and interactions. Our challenge is to develop algorithms
and software that can “steer” this complex system so that learning needs for an
individual learner at an individual point in time can be met.

Figure 1 illustrates a high-level decomposition of the functions required for
dynamic adaptation in these environments. This figure is drawn from prior work
developing algorithms and software to support dynamic adaptation in training [4].
Learners interact with a simulation environment that provides the opportunity to
practice various skills. We have applied this design pattern across a wide range of
learning tasks, including perceptual skills for observation, awareness, and response
to social cues; cross-cultural communication; tactical aviation; terrain understand-
ing; emergency response; and others. Inputs from the practice environment are used
by a “director” to determine if and when to perform tailoring actions. The concept
of a director guiding action in a simulation or game occurs repeatedly in simulation
environments. It is apt especially when the practice environment includes synthetic
or nonplayer characters (NPCs) that can be directed to perform specific actions that
will support overall system goals.

To achieve individualized adaptation, the director performs three functions:
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Fig. 1 Functional decomposition for adaptive tailoring of simulation-based practice
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• Monitoring: The system must interpret what the learner is doing in the environ-
ment. Generally, monitoring requires some interpretation of learner actions as
well as interpretation the context/situation in which the learner is acting.

• Assessing: The system uses its understanding of what is happening to assess the
individual’s learning state. Monitoring concerns identifying what is happening;
assessing concerns what an understanding of the current situation reveals about
the learner’s progress and needs (e.g., in terms of the learning goals of the
system). Its role is to translate from system state to learner state.

• Acting: The system state and the learner state provide a context for acting to
address learning needs. Action results in adaptation that changes the environment
in some way. Adaptation can include extrinsic (outside of the simulation) direct
feedback, coaching, and intrinsic adaptation of the simulation (also known as
pedagogical experience manipulation).

There are many different methods and algorithms that can be used to realize these
functions, including long-standing cognitive and learner modeling approaches and
task networks for planning actions and more recent, data-driven approaches that
learn to perform these functions via data mining and machine learning. Regardless
of the specific approach(es) adopted, however, one of the immediate challenges
of building an adaptive learning system is incorporating, integrating, and unifying
the various data streams that come from the other components of the learning
environment. Examples of these data are enumerated in Table 1, based on both our
direct experience in building adaptive learning systems and previous analyses of the
requirements for monitoring and interpretation of the learning context [5].

The table enumerates the wide variety of inputs that are used to inform
monitoring. We identify three characteristics of the inputs which vary from source
to source.

Frame specifies the perspective or point of view of the input. In this table, we
distinguish between two distinct frames. Contextual inputs are those that describe
the environment, the situation (including the presence and actions of others), and
other elements of the learning context (e.g., learning objectives). Learner-centric
inputs directly encode information about the learner, such as activities and actions.

Representation distinguishes between largely continuous inputs (e.g., an analog
sensor) and largely discrete ones. To achieve targeted adaptation, continuous and
discrete data must be integrated and fused.

Interpretability characterizes whether meaning is incorporated into the inputs
prior to its presentation to the learning system. For example, a raw sensor feed
typically requires some translation process to extract meaning (translatable). A
symbolic or discrete input may also require translation but the process is typically
more reliable and simpler; we use interpretable in the table to make this distinction.
Finally, some inputs may be presented with formally defined semantics underlying
the input. We term directly machine-interpretable inputs as system-understandable.
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Table 1 Examples of various data needed for monitoring and interpretation of a learner

Name/description Frame Representation Interpretability

Simulation state (whole) Contextual Discrete Interpretable
Current state of the simulation environment.
Often represented as a “window” or “frame”
Simulation state (part) Contextual Discrete Interpretable
Representation of one element or entity in
the simulation. Often used to communicate
state across a network (e.g., DIS PDU)
Physical state Contextual Continuous Translatable
Summary of the current physical state of
some object or entity (in simulation or live).
For example, telemetry conveys location as
f (t)
Sensor state Contextual Continuous Translatable
Outputs/status of a particular domain sensor.
For example, the contacts a radar is detecting
Speech Contextual Continuous Translatable
Speech produced in the course of the
practice, including learner speech and
interactions with others. For example, radio
communications

& learner

Learner sensor Learner Continuous Translatable
Input from a sensor external to the
simulation that supports interpretation of
learner state. Examples include eye tracking,
mouse tracking, postural sensors, facial
expression, etc.
Activity data Learner Discrete Interpretable
Input from the learning environment that
classifies the activities of the learner.
Protocols (e.g., xAPI) increasingly provide
self-describing activity data that can be
immediately understood

Understandable

Learning system state Learner Discrete Interpretable
Feedback inputs from other components
within the learner-adaptation system (e.g.,
estimates of learner proficiency, directives
generated).

Understandable

3 Insights from Past Experiences

As suggested by the diversity and breadth of data types in the table, creating a
generalized adaptation capability depends on developing an approach to monitoring
that can translate/interpret learner and contextual data into a dynamically updating
understanding of the progression of learning. In earlier attempts to address this
challenge across previous efforts and learning domains (as outlined previously),
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we have identified several important insights that further expand and refine the
requirements introduced in the previous section. This section briefly summarizes
these “lessons learned.”

Inseparability of learner and context: Some of initial attempts to fuse learner
data focused the development of standalone middleware that could capture learning
state [5]. In practice, we have concluded that learning context is essential to
interpreting learner state. For example, when attempting to debrief or review learner
actions, some capture of the context in which those actions occurred is needed for
human understanding and assessment of the action. Because the context itself also
requires translation and interpretation (as in the table), monitoring needs to perform
these tasks together because they depend on one another. Thus, solutions need to
aggregate learner and context data.

Common representation of situation and activity: Aggregation of context and
learner data leads to a requirement for a common representation that expresses
what is happening in the environment, regardless of whether it is relevant to the
current learning situation. For example, some situational change or event may not
be relevant to the learner’s activity in the moment, but may have significant bearing
on future learner activities (e.g., an actor makes a decision that is not immediately
visible to the learner but that will result in some interaction with the learner at a
later time in the learning exercise). Just as it is difficult to separate learner and
context for fusion, a common representation that allows representation of learner
and environmental activity supports an integrative perspective on learner activity
and the capability to reason about what has, is, and will happen without requiring
the system to understand the learning implications as those occurrences take place.

Capture of activity at human timescales: The need for common representation
pushes solutions toward fine-grained capture of the situation. For example, if the
largest update frequency is 200 Hz, then data capture tends to occur at that frequency
for all system elements. High frequency capture introduces two needs for the
adaptive learning system that are not generally functional requirements for the target
capability. First, it creates requirements for data throughput and storage that are
marginally useful for the adaptation algorithms. These algorithms will either be
required to sample the data or perform an additional abstraction. Second, for the pur-
poses of using data-driven/machine-learning approaches, increased resolution can
increase complexity of the machine-learning challenge. Data updates at timescales
faster than human reaction times results in noise that the machine-learning system
must learn to ignore (greatly increasing the data requirements for training the
system). Because adaptive learning system will act on a human timescale, we have
concluded that the data moving thru the adaptive system should be captured and
abstracted at a comparable timescale, typically from 100 ms to seconds, even when
incoming data presents with much higher frequency.
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4 Event-Based Keyframing

As a consequence of the previous efforts to provide adaptive training and lessons
derived from these experiences, we are now developing and evaluating a new
approach. This event-based keyframing approach consists of the following:

1. A generalized event representation: We have developed a new knowledge
representation that seeks to capture the occurrences (or “events”) on-going in
a dynamic scenario. The representation is “generalized” both in the sense that
it integrates across multiple modalities within an application as well as being
readily extensible to new application domains.

2. Event-recognition and keyframing: While the representation describes what has
occurred, event-recognition and keyframing algorithms define the processes and
mechanisms by which instances of the event representation (loosely, an “event”)
is generated in the system. Keyframing is a complementary process that marks
some event-instances as being particularly important for understanding how the
learner is progressing.

Figure 2 illustrates the event-based keyframing approach conceptually. As in Fig.
1, a breadth of inputs of various types of various periodicities are presented to the
monitoring system. These inputs are combined and integrated in the aggregation
and event recognition component. The output of this process are instances of
the event representation, resulting in a sequence of “events” produced at human
timescales (e.g., roughly every second). The result of aggregation is a syntactically
regular, semantically consistent, discrete summary of the activity occurring in the
environment. In the diagram, various types of events (see next section) are indicated
using different colors.

Note that the sequence is being generated from right to left. Additionally, the
system creates event instances to mark the “start” and “end” of a real-world
occurrence that has duration/is not instantaneous (in contrast to representing the
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Fig. 2 Decomposition of monitoring functions to support event-based keyframing
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event instance as a duration). Using a consistent representation of real-world events
as “impulses” of various types has several advantages for monitoring. Further, as
suggested by the labels on the output from the monitor, collections of events can
be grouped. In the example, there is some Activity C that the learner is doing that
has sub-activities Co and Cg. Additionally, in the environment, some occurrence
B has begun and ended (B1) and new, similar occurrence (B2) has begun, but has
not yet concluded. This very simple example suggests how the event representation
allows the integration of learner and environment occurrences within the common
representation, which, as above, we have identified as an important requirement for
adaption algorithms.

Having generated events, keyframing processes determine if any of the event
instances generated in the sequence thus far have direct relevance to interpreting
learner activity. The keyframing process looks at the sequence thus far (rather than
only the most recently generated instance), allowing it to mark or identify event
instances earlier in the observation stream as keyframes. Keyframes can also trigger
measurement and assessment activities during keyframing, which then can result in
additional annotation.

Finally, the monitoring process also now includes a “elaborate and repair”
process that analyzes the event/keyframe sequence being produced and attempts
to “fill in” any gaps it identifies in the sequence. As we discuss further below,
a significant advantage of the common and consistent representation is that we
can identify and use general algorithms that operate on event sequences (and the
properties of the event representation) to perform logical entailment and various
kinds of inference without requiring additional encoding of the properties of the
domain.

4.1 Event Representation and Event Recognition

This section briefly outlines the event representation, further detailed in [6], in
the context of the event-based keyframing approach. Events that occur in the
learning environment are represented as event instances that conform to an event
representation. Events may include environmental events (the entry of an actor the
learner will need to interact with) and learner events (the learner acts, such as turning
to face the new actor). As the system recognizes events, it produces a series of event
instances, resulting in an event sequence. This event sequence forms the primarily
method for communicating what is happening in the environment to all downstream
components.

Individual event instances are represented as a defined set of “slots” and “fillers”
for events of particular type. Slots include a subject (the primary actor(s) in an
event), an event type or “verb” which captures what kind of activity or occurrence
is being recorded (“turning toward”). Some event types include an object (what is
being turned toward?) and event-specific parameters (e.g., the new direction that the
learner is facing). The event types are organized into a taxonomy, drawing from
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formal ontology [7], which supports inheritance, property evaluation, and other
functions. For example, “TurnToward” may be a specialization of the more general
event type “Turn” which is where a “facing-direction” property is defined.

Adopting this formal knowledge representation for the event representation,
provides several important advantages. First, the library of event types can be
created progressively, and grow with additional applications. We first developed
“TurnToward” events in the context of aviation training, but the same event
type can be used for a first-person game perspective as well. Second, the event
sequence provides a compact summary of learning activity, that can be expanded
by inspection of the event instances. In an initial experiment, we discovered that the
pattern of event types alone was sufficient for some pattern detection in a learning
context [6]. Third, the event representation provides a well-defined and consistent
target for additional algorithms that can support interpretation and adaptation, as we
discuss in the next subsections.

The primary function of the event recognition process is to identify the specific
items to fill the slot for the particular event instance being recorded. Using the
example in the previous section, when the system observes the learner turning
toward the new actor, then it would identify the learner as the subject of the event,
the new actor as the object, and the learner’s new heading as the key parameter
associated with the turn. As we discuss further in the next section, in many cases,
the initial or triggering observation may be less specific than the event instance that
is finally recorded.

We have explored a number of different mechanisms for recognizing events,
including simple, user-defined programs that look for specific patterns [8], data-
driven machine learning [9], and comparison of observed patterns to previously
observed patterns [6]. Enumerating the various requirements and trade-offs for
these methods is outside the scope of this paper. However, key conclusions are
that event-recognition is a type of pattern-recognition process and existing pattern-
recognition algorithms can be readily applied to this problem. Using these methods
enables acceptably reliable recognition of events during learner activity. The event
representation provides a target that simplifies computational and data requirements
for pattern/event recognition.

4.2 Keyframes and Keyframing

The event sequence summarizes all of the activity and occurrences taking place
in the learning environment. Some of the resulting event instances will be of
particular interest in interpreting or understanding the learner. We term these special
event instances keyframes [10] and the process of identifying or marking them,
keyframing. We first developed keyframes to allow a learner to target specific goals,
actions, or outcomes when the learner was to replay a past practice experience
(whether their own or the experience of another). Providing indices to the “important



Event-Based Keyframing: Transforming Observation Data into Compact. . . 219

Table 2 Examples of keyframes and keyframing processes

Type Description Process

Learner activity Event in which a learner takes some identifiable action
(“TurnToward” when the subject of the event is a learner)

Auto

Measurement Event that measures some aspect of learner activity
(“response time” could record the time that elapses
between the new actor’s entry and the learner initiating
“TurnToward”)

Auto

Assessment Event that assesses some aspect of learner activity (the
response time recorded for “TurnToward” was acceptable)

Auto

Learner cognitive
state

Event that indicates a change in the learner’s
cognitive/affective state (engagement is now above the
threshold)

Auto

Exercise state Event that indicates a change in environment resulting from
learner activity (“TurnToward” allows learner to observe
the new actor)

Semi-auto

moments” within the log or trace of activity helped learner focus and resulted in
more effective use of time.

Although useful, we have discovered that what a user considers “important” can-
not be consistently anticipated. Instead, we have extended the notion of keyframes
so that a system can mark various learner-specific events. Keyframes are tags
or markers added to the “base” events. Table 2 lists examples of keyframes we
have explored in current and prior work. Similar to the event representation, many
keyframes of various types can be automatically identified and tagged. In the case
of changes in the state of the learning environment itself that are due to learner
action, we lack algorithms that can fully automate keyframing for these events, as
that would require some causal model of the domain. However, we can employ
similar mechanisms to those used for event recognition to mark key changes in the
exercise state (a semi-automated solution).

Keyframes provide a means to help interpretation and adaption processes further
abstract from the many sources of data input from the environment to information
most likely to help the system build a model of the learner and progress and chal-
lenges in the domain. Automated keyframing provides a straightforward approach
to capture keyframes, but at the cost of mixing “important” and “routine” events
together. Long term, we plan to continue to research methods that can support the
automatic classification of importance and relevance.

4.3 Elaboration and Repair

The adaptive learning system must be tolerant to noise and observation errors.
Sensors will be mis-calibrated. Packets of data will be dropped. A consistent
representation enables the research of general algorithms and tools that can support
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elaboration and refinement of event sequences as well as recognition of problems
and repair of the sequence and individual instances within it. Three such elabora-
tion/repair algorithms are as follows:

Logical entailment The formal semantics of the event representation enable
deductive elaboration of the event sequence. Every “start” event has a paired “end”
event such as start/stop “TurnToward.” Some events can be defined as inverses of
another event, thus representing the same physical event from different perspectives.
For example, “Learner detects Actor” is the inverse of “Actor is-detected-by
Learner.” Inverse events are particularly useful for elaborating the event sequence
so that all event instances are represented from the perspective of each individual
entity sequence.

Abduction When event instances are missing or appear out of sequence, some
process other than deductive closure is needed to repair the sequence. The repre-
sentation itself can provide signals when the sequence is need of repair. In Fig.
2, the presence of two “start” event instances for the “green” event, without an
intervening “stop” event creates such a signal. An abductive reasoner can evaluate
potential hypotheses about the causes of sequence faults. Abduction can also be
used to specialize event instances as further evidence accrues. In the “TurnToward”
example, the system cannot know when the turn is initiated where it will end and to
what end it is directed; however, when it concludes with the learner facing the new
actor, abduction can specialize the “Turn” event instance to “TurnToward” based on
observation/evidence.

Inference In some cases, there may not be enough evidence to assert a repair in
detail. In this case, we are exploring machine learning to compile patterns from a
large collection of observations and assert the presence of missing event instances
(or missing details from the instance). We are using machine-learned models of
individual parameters within event instances to compare and match event sequences
[6].

While this component is relatively nascent in comparison to event representation
and keyframing, it offers an example of the potential power and value of the
integrated and abstract representational approach. Because these algorithms are
based on the properties of the representation and the statistical properties of
observations within a domain, they are not specific to an individual application. We
anticipate further reuse across multiple applications of the adaptive learning system.
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