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1 Introduction

The quantization error in a fixed-size Self-Organizing Map (SOM) with unsuper-
vised winner-take-all learning [1, 2] has previously been used successfully to detect
meaningful changes across series of medical, satellite, and random dot images [3—
9]. The computational properties of the quantization error in SOM are capable of
reliably discriminating between the finest differences in local pixel color intensities
in complex images including scanning electron micrographs of cell surfaces [10].
Moreover, the quantization error in the SOM (SOM-QE) reliably signals changes in
contrast or color when contrast information is removed from, or added to, arbitrarily
to images, not when the local spatial position of contrast elements in the pattern
changes. While non-learning-based and fully supervised image analysis in terms
of the RGB mean reflects coarser changes in image color or contrast well enough
by comparison, the SOM-QE was shown to outperform the RGB mean, or image
mean, by a factor of ten in the detection of single-pixel changes in images with
up to five million pixels [7, 8]. The sensitivity of the QE to the finest change in
magnitude of contrast or color at the single-pixel level is statistically significant, as
shown in our previous work [8, 9]. This reflects a finely tuned color sensitivity of a
self-organizing computational system akin to functional characteristics of a specific
class of retinal ganglion cells identified in biological visual systems of primates and
cats [11]. Moreover, the QE’s computational sensitivity and single-pixel change
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detection performance surpasses the capacity limits of human visual detection, as
also shown in our previous work [3-10].

The above-mentioned properties of the SOM-QE make it a promising tool for
fast, automatic (unsupervised) classification of biological imaging data as a function
of structural and/or ultrastructural changes that are not detectable by human vision.
This was previously shown in our preliminary work [10] on the example of Scanning
Electron Micrographs (SEM) of HIV-1-infected CD4 T-cells with varying extent of
virion budding on the cell surface [12, 13]. SEM image technology is used in virol-
ogy to better resolve the small punctuated ultrastructural surface signals correlated
with surface-localized single viral particles, so-called virions [12, 13]. A defining
property of a retrovirus such as the HIV-1 is its ability to assemble into particles that
leave producer cells, and spread infection to susceptible cells and hosts, such as CD4
lymphocytes, also termed T-cells or “helper cells.” This leads to the morphogenesis
of the viral particles, or virions, in three stages: assembly, wherein the virion is
created and essential components are packaged within the target cell; budding,
wherein the virion crosses the plasma membrane (Fig. 1), and finally maturation,
wherein the virion changes structure and becomes infectious [12, 13].

Another potential exploitation of SOM-QE in biological image analysis is cell
viability imaging by RED, GREEN, or RED-GREEN color staining (Fig. 2). The
common techniques applied for determination of in vitro cell size, morphology,
growth, or cell viability involve human manual work, which is imprecise and
frequently subject to variability caused by the analyst himself or herself [14]. In
addition, considering the necessity for evaluation of a large amount of material and
data, fast and reliable image analysis tools are desirable. The use of accessible preci-
sion software for the automatic (unsupervised) determination of cell viability on the
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Fig. 1 Color-coded SEM image of a CD4 T-cell with ultrastructural surface signals (left), in
yellow here, correlated with surface-localized single HIV-1 viral particles (virions). Some of our
previous work [8] had shown that SOM-QE permits the fast automatic (unsupervised) classification
of sets of SEM images as a function of ultrastructural signal changes that are invisible to the human
eye (right)
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Fig. 2 Color-coded cell viability image data produced by GREEN (top), RED (middle), and RED-
GREEN (bottom) staining indicating 90% (left), 50% (middle), and 0% (right) cell viability. For
this study here, we generated image data using relative variability of RED and GREEN pixel color
reflecting >50% and < 50% variability in cell viability, and submitted the images to automatic
classification by SOM-QE [3, 8, 9]

basis of color-staining images would allow accurate classification with additional
advantages relative to speed, objectivity, quantification, and reproducibility.

In this study here, we used SOM-QE for the fast and fully automatic (unsuper-
vised) classification of biological imaging data in 126 simulation images. Examples
of the original images used for the SOM-QE analyses here are available online at:

https://www.researchgate.net/publication/340529157_CellSurvivalDeathTrend-
ColorStaininglmageSimulations-2020

The test images variable RED-GREEN color staining indicative of different
degrees of cell viability. For this study here, we chose variations between 44% and
56% of theoretical cell viability, that is, variations below the threshold level that
may carry clinical significance, but are not easily detected by human vision [14].

2 Materials and Methods

A total of 96 cell viability images with variable RED-GREEN color staining are
indicative of different degrees of cell viability between 50% and 56%, indicated


https://www.researchgate.net/publication/340529157_CellSurvivalDeathTrend-ColorStainingImageSimulations-2020
https://www.researchgate.net/publication/340529157_CellSurvivalDeathTrend-ColorStainingImageSimulations-2020
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by an increase in the relative number of GREEN image pixels, and 44% and 50%,
indicated by an increase in the relative number of RED image pixels were computer
generated. All 96 images were of identical size (831 x 594). After training the
SOM on one image (any image from a set may be used for training), the others from
the set were submitted to SOM analysis to determine the SOM-QE variability as a
function of the selectively manipulated image color contents, indicative of variable
theoretical cell viability, expressed in percent (%).

2.1 Images

A cell image indicating 50% cell viability (cf. Figure 2), considered as the
theoretical ground truth image here, displays an equivalent number, or spatial extent,
of RED and GREEN dots with a specific, fixed intensity range in terms of their RGB
values (here R > 100 < 256 and G > 100 < 256). In half of the test images from
this study, the GREEN pixel contents were selectively augmented by a constant
number of 5 pixels per image, yielding 48 image simulations of color staining data
indicative of a theoretical increase in cell viability from 50% to about 56%. In the
other 48 images, the green pixel contents were selectively augmented by a constant
number of 5 pixels per image, yielding image simulations of color staining data
indicative of a theoretical decrease in cell viability from 50% to about 44%. For
a visual comparison between images reflecting 50% and 90% cell viability, based
on relative amounts of combined RED and GREEN staining, see Fig. 2 (bottom).
Image dimensions, RGB coordinates of the selective 5-pixel-bunch RGB spatial
color increments, and their relative luminance values (Y), are summarized here
below in Table 1.

Table 1 Color parameters of the test images

N pixels Relative Luminance of pixels
Cumulated N
COLOR RGBmin  RGBmax _ngroundtuth - Npixels+per Ll o occtest RGBoOf
image/total N image testimage images pixels added
pixels 9 Y=0.2126R+0.7152G+0.0722B
RED 100,0,0 255,0,0 164 538/493 614 +5 +120 255,0,0 55.13
255,65, 65 105.39
GREEN 0,100,0 0,255,0 164 538/493 614 +5 +120 0,65,0 45.79
65, 255, 65 200.89
BLACK 15 0,0 0,0,0 164538/493 614 ) 0
Background
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Fig. 3 Representation of the SOM prototype with 16 models, indicated by the filled circles in the
gray box. Each of these models is compared to the SOM input in the training (unsupervised winner-
take-all learning) process. Here in this study, the input vector corresponds to the RGB image pixel
space. The model in the map best matching the SOM input will be a winner, and the parameters
of the winning model will change toward further approaching the input. Parameters of models
within close neighborhood of the winning model will also change, but to a lesser extent compared
with those of the winner. At the end of the training, each input space will be associated with a

model within the map. The difference between input vector and final winning model determines
the quantization error (QE) in the SOM output

e,
@

2.2 SOM Prototype and Quantization Error (QE)

The Self-Organizing Map (a prototype is graphically represented here in Fig. 3, for
illustration) may be described formally as a nonlinear, ordered, smooth mapping of
high-dimensional input data onto the elements of a regular, low-dimensional array
[1]. Assume that the set of input variables is definable as a real vector x, of n-
dimension. With each element in the SOM array, we associate a parametric real
vector m;, of n-dimension. m; is called a model; hence the SOM array is composed of
models. Assuming a general distance measure between x and m; denoted by d(x,m;),
the map of an input vector x on the SOM array is defined as the array element m,. that
matches best (smallest d(x,m;)) with x. During the learning process, the input vector
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x is compared with all the m; in order to identify its m.. The Euclidean distances
||x-m;|| define m.. Models that are topographically close in the map up to a certain
geometric distance, denoted by h.;, will activate each other to learn something from
the same input x. This will result in a local relaxation or smoothing effect on the
models in this neighborhood, which in continued learning leads to global ordering.
SOM learning is represented by the equation

m(t + 1) = m;(t) + () hei (1) [x(2) —m;(1)] ey

where ¢+ = 1, 2, 3...is an integer, the discrete-time coordinate, h.;(t) is the
neighborhood function, a smoothing kernel defined over the map points which
converges toward zero with time, «(?)is the learning rate, which also converges
toward with time and affects the amount of learning in each model. At the end of
the winner-take-all learning process in the SOM, each image input vector x becomes
associated to its best matching model on the map m,.. The difference between x and
me, ||x-mc||, is a measure of how close the final SOM value is to the original input
value and is reflected by the quantization error QE. The QE of x is given by

QF = I/NZL I1X: —me| 2)

where N is the number of input vectors x in the image. The final weights of the SOM
are defined by a three-dimensional output vector space representing each R, G, and
B channel. The magnitude as well as the direction of change in any of these from
one image to another is reliably reflected by changes in the QE.

2.3 SOM Training and Data Analysis

The SOM training process consisted of 1000 iterations. The SOM was a two-
dimensional rectangular map of 4 x 4 nodes, hence capable of creating 16 models
of observation from the data. The spatial locations, or coordinates, of each of the 16
models or domains, placed at different locations on the map, exhibit characteristics
that make each one different from all the others. When a new input signal is
presented to the map, the models compete and the winner will be the model whose
features most closely resemble those of the input signal. The input signal will thus
be classified or grouped in one of models. Each model or domain acts like a separate
decoder for the same input, that is, independently interprets the information carried
by a new input. The input is represented as a mathematical vector of the same format
as that of the models in the map. Therefore, it is the presence or absence of an active
response at a specific map location and not so much the exact input—output signal
transformation or magnitude of the response that provides the interpretation of the
input. To obtain the initial values for the map size, a trial-and-error process was
implemented. It was found that map sizes larger than 4 x 4 produced observations
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where some models ended up empty, which meant that these models did not attract
any input by the end of the training. It was therefore concluded that 16 models were
sufficient to represent all the fine structures in the image data. The values of the
neighborhood distance and the learning rate were set at 1.2 and 0.2, respectively.
These values were obtained through the trial-and-error method after testing the
quality of the first guess, which is directly determined by the value of the resulting
quantization error; the lower this value, the better the first guess. It is worthwhile
pointing out that the models were initialized by randomly picking vectors from the
training image, called the “original image” herein. This allows the SOM to work
on the original data without any prior assumptions about a level of organization
within the data. This, however, requires to start with a wider neighborhood function
and a bigger learning-rate factor than in procedures where initial values for model
vectors are preselected [2]. The procedure described here is economical in terms
of computation times, which constitutes one of its major advantages for rapid
change/no change detection on the basis of even larger sets of image data before
further human intervention or decision-making. The computation time of SOM
analysis of each of the 98 test images to generate the QE distributions was about
12 seconds per image.

3 Results

After SOM training on the reference image (unsupervised learning), the system
computes SOM-QE for all the images of a given series in a few seconds, and writes
the SOM-QE obtained for each image into a data file. Further steps generate output
plots of SOM-QE, where each output value is associated with the corresponding
input image. The data are plotted in increasing/decreasing orders of SOM-QE
magnitude as a function of their corresponding image variations. Results are shown
here below for the two test image series (Fig. 4). The SOM-QE is plotted as a
function of increments in the relative number, by adding pixel bunches of constant
size and relative luminance, of GREEN or RED image pixels. For the corresponding
image parameters and variations, see Table 1.

4 Conclusions

In this work we exploit the RED—-GREEN color selectivity of SOM-QE [8, 9] to
show that the metric can be used for a fast, unsupervised classification of cell
imaging data where color is used to visualize the progression or remission of a
disease or infection on the one hand, or variations in cell viability before and after
treatment on the other. Similarly successful simulations were obtained previously
on SEM images translating varying extents of HIV-1 virion budding on the host cell
surface, coded by the color YELLOW, in contrast with healthy surface tissue, coded
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Fig. 4 SOM-QE classification of the 96 test images, with the SOM-QE plotted as function of
increasing or decreasing theoretical cell viability indicated by a small and regular increase in the
spatial extent of green or red pixels across the corresponding images. The data show the expected
SOM-QE sensitivity to the relative luminance (Y) of a given color (top), and its color selectivity
(bottom). For any relative luminance Y, the color RED, by comparison with the color GREEN, is
signaled by QE distributions of greater magnitude. Future studies on a wider range of color-based
imaging data will allow to further benchmark SOM-QE color selectivity

by the color BLUE [10]. Our current work, in progress, reveals hitherto unsuspected
properties of self-organized [15] mapping, where the potential of the SOM_QE is
revealed in terms of a computational tool for detecting the finest clinically relevant
local changes in large series [16] of imaging data. Future image simulations will
allow further benchmarking of SOM-QE selectivity for increasingly wider ranges
of color variations in image simulations of biological data. This should, ultimately,
result in providing a basis for the automatic analysis of biological imaging data
where information relative to contrast and/or color is exploited selectively to
highlight disease-specific changes in organs, tissue structures, or cells.
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