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1 Introduction

In recent years, the paradigm of reinforcement learning (RL) has been employed
successfully to solve a multitude of different control tasks from games [1, 2] to
resource management [3] to robotics [4, 5]. The concept of using an autonomously
exploring agent, which is able to leverage experience in order to deduce favorable
strategies from observations and performance indicators promises potential to
automate tasks where a solution strategy is hard to formulate.

The underlying principle of trial-and-error however limits the applicability of
RL. Generating enough experience in order to derive sufficiently accurate control
strategies may present a major challenge. This becomes especially apparent when
using RL to solve real-world tasks in the domain of robotics, where the execution of
actions is time-consuming and costly in comparison to tasks in the digital domain.
In addition, the integral property of exploration implies the possibility of executing
suboptimal actions, which in real-world scenarios may be disproportionately expen-
sive or safety critical.

One possibility of reducing the need for task-specific experience is given by
the application of transfer learning [6, 7]. Transfer learning is based on the idea
of using knowledge acquired from a source task in order to reduce the training
efforts required to learn a target task. One obvious choice of a source task, when
considering real-world RL, is simulations.
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In this chapter, we focus on domain randomization [8] as a method for trans-
ferring RL agents from a simulation to the real world for robotic applications.
In domain randomization, variations are purposefully induced into the simulation
environment. The goal hereby is to increase the robustness of a trained RL agent
with respect to deviations between simulation and the real world. We consider a
robotic task inspired by the work of [9, 10], in which a RL agent is trained end-
to-end on the wire-loop game. The task is designed to be based on real motion
planning scenarios for industrial processes such as welding or gluing. The goal of
the game is to guide a loop over a wire without touching it. Our agents are based
on convolutional neural networks (CNNs) and are able to observe the environment
via a camera. The agents directly control the movement of the robot holding the
loop. In addition to the real-world setup, we use a corresponding simulation in
which parameters, such as colors and textures of loop, wire and background, are
adjustable. The agents are pretrained in the simulation with domain randomization
and subsequently transferred to the real-world task. In our experiments we vary
the parameters chosen for randomization and observe effects on the agents’ ability
to transfer. We finally use Grad-CAM [11] to visualize the attention placed by
the agents on various parts of an observed camera image in order to assess the
robustness of an agent after pretraining in the simulation as well as its data-
efficiency when adapting to the real-world task after transfer.

2 Related Work

2.1 Reinforcement Learning

As RL is thoroughly discussed in various other works [9, 12, 13] only a short
overview of the key aspects is provided. In general, RL describes the concept of
iteratively training an agent in a trial-and-error fashion on solving a task in an
environment E . At each discrete time step t, the agent observes the environment’s
state st ∈ S . Based on the observation, the agent then chooses an action at according
to its policy. The policy is given by a probability distribution over all actions given
an observed state π (a| s). In deep RL, the policy is represented by artificial neural
networks. The execution of action at yields the reward rt and the next state st + 1,
completing one iteration of the learning process. The overall goal of an agent is to
find a policy which maximizes the discounted future reward Rt = ∑∞

i=0γ
irt+i+1,

where the discount factor γ ∈ [0, 1] adjusts the importance attributed to future
rewards.

For tasks with continuous action spaces, actor–critic architectures have proven to
be a suitable approach [14, 15]. They consist of two models, the actor and the critic,
which are trained interdependently. On the one hand, the actor models the agent’s
policy and maps states onto actions. The critic on the other hand learns to evaluate
and improve the actor’s performance. Analogous to [9], we use deep deterministic
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policy gradient (DDPG) [15] to train actor–critic architectures, whereby both actor
and critic are represented by artificial neural networks.

2.2 Simulation-to-Reality Transfer Learning

The aim of transfer learning lies in reusing knowledge acquired during solving one
source task in order to efficiently learn a new target task [7]. Especially in computer
vision, the benefit of transfer learning has successfully been shown for tasks such as
object detection [16], pose estimation [17], or image segmentation [18].

When applying transfer learning to RL setups, the question about suitable source
tasks arises. One intuitive possibility for enriching data from a real-world process
is by using simulations. This option is attractive especially in industrial contexts, as
obtaining experience from suboptimal process situations (e.g., low-quality products
or slower production cycles) or critical conditions (e.g., high wear and tear of a
tool) can be realized in virtual environments without consequences to the real-world
production line.

The major challenge to overcome when using simulation data for pretraining an
agent is the reality gap [19]. The reality gap describes the fact that simulations do
not model the real world perfectly. Deviations arise, for example, from inadequately
modeled parameters or lower resolution of the simulation environment. One strategy
for overcoming the reality gap lies in an effort to improve the quality of a simulation,
making the simulation as realistic as possible [20, 21]. This approach however
assumes a deep understanding of underlying physical principles in the real-world
process in order to be able to model them. In addition, increasing the quality of a
simulation often requires extensive computation, which limits the applicability of
the simulation.

A different strategy is aimed at finding a mapping from the distribution of
simulation data onto the distribution of real-world data using generative adversarial
networks (GANs) [22]. This mapping in turn can be used to enhance the realism of
the artificial training samples. Alternatively, mappings of both simulation and real
data in a shared feature space on which the agent is trained can mitigate the reality
gap [23]. Finding such mappings however relies on the availability of sufficient real-
world data.

In contrast to the aforementioned approaches, domain randomization [8] cir-
cumvents the need for both perfect simulations and real-world experience by
purposefully randomizing visual (e.g., colors, textures) or even physical (e.g.,
friction) properties. This way the agent is exposed to a manifold of environments,
which forces the agent to disregard the parameter variations. Although the majority
of environments are not necessarily realistic, it has been shown by various works
that agents are able to generalize and find robust control policies applicable to
the real-world target task [8, 24–28]. While the successful application of domain
randomization has been demonstrated before, the effects of different randomizations
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regarding the robustness and transferability of pretrained networks, to our knowl-
edge, were not investigated to date.

2.3 Attention Maps

While artificial neural networks have proven to be very powerful tools, their lack of
interpretability remains a key obstacle to the application in industrial environments.
One possibility to gain insights into their decision-making process is to take a look
at what areas of an input influence the final decision the most. This can be achieved
by examining the gradient of an output with respect to the input [29] or the effects
of perturbations to the input to the prediction [30, 31]. In this chapter we employ
Grad-CAM [11], which was developed for CNNs. By calculating the gradient of
an output with respect to the feature maps of convolutional layers, an importance
weighting of the feature maps is determined. Using this weighting the feature maps
are recombined to arrive at attention maps which highlight important regions in the
input image and thusly promote transparency for the network’s decision.

While previous works have covered the application of attention maps for RL
[32], the application of attention maps for investigating the effects of domain
randomization proposed in this chapter is, again to our knowledge, novel.

3 Experimental Setup

3.1 Learning Environment

Our use-case scenario is inspired by the work of Meyes et al. [9], in which a six-axis
industrial robot is tasked with playing the wire-loop game. The loop is constructed
out of a 3D-printed base to which two metal rods are mounted. By measuring the
conductivity between the metal rods and the wire it is possible to determine whether
the loop is touching the wire. The hardware setup is depicted in Fig. 1a.

At every time step, an agent observes the shape of the wire immediately in front
of the loop in the form of a down-sampled image taken by a camera mounted to the
loop (Fig. 1b). The agent subsequently has to decide for a continuous action at ∈R

3,
which describes the longitudinal, lateral, and rotational movement of the loop. The
game is considered lost in case the loop touches the wire or if the agent is not
progressing along the wire. Conversely, the game is won once the agent successfully
arrives at the end of the wire without touching it. We choose our reward function
analogous to Meyes et al. [9], whereby the reward function is continuous between
[−1, 1] and incentivizes progress along the wire.

Our simulation is based on the simulation software V-REP [33] and mirrors the
real-world setup (Fig. 1c–d). In addition to controlling the robot and detecting con-
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Fig. 1 Examples of randomized simulation parameters

tact between wire and loop, we can also dynamically change multiple environment
parameters in order to conduct domain randomization:

• The colors of wire, background, and loop can be set to arbitrary RGB values
• In addition, 20 different textures can be chosen for the wire and the background
• The camera pose can be varied with a maximum displacement of 1.5 cm and a

maximum rotation of 5
◦
in every direction

• Random Gaussian noise the image taken by the camera, normalized between
0 and 1, can optionally be superimposed with random Gaussian noise with a
standard deviation of 0.01.

As shown in Fig. 2, the variation of these environment parameters allows for the
generation of highly diverse scenarios.
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Fig. 2 The experimental setup consisting of a real (a) and a simulated (c) industrial robot. The
environment is observed via real (b) and simulated (d) camera images

3.2 Agent Architecture

Analogous to [9], the agent comprises an actor and a critic network trained with
DDPG and Adam as the optimizer. The actor network consists of three convolutional
layers with 30, 15, and 10 filters and respective kernel sizes of 5 × 5, 5 × 5,
and 3 × 3. After every convolutional layer, batch normalization is performed.
MaxPooling is applied after the first two convolutional layers with a pooling size
of 2 × 2. The CNN is followed by four densely connected layers with sizes of 400,
200, 100, and 3. ReLU is used as activation function after every layer, except for the
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last one. Instead, the last layer has one of its three neurons activated with a sigmoid
function and the remaining two with tanh activations. The three outputs constitute
the longitudinal and lateral movement as well as the rotation of the loop. Using the
sigmoid activation for the longitudinal action results in the prevention of backward
movement.

Similarly, the critic network employs a CNN of the same topology as the actor
network. The output of the CNN as well as the action input of the critic are each
processed by one respective densely connected layer of size 200. The two resulting
outputs are concatenated and further passed through two densely connected layers
of sizes 200, 100, and 1.

3.3 Design of Experiments

The method of domain randomization is applied to improve the generalization of the
agent by artificially increasing the variability of the training data in the simulation.
In our case we uniformly randomize the environment parameters colors, textures,
camera pose, and camera noise for each training run. In order to investigate how
the individual parameters influence the training and the success on the real robot,
we consider six different configurations which randomize different combinations of
the parameters available (Table 1). Parameters which are not randomized are kept at
the value of the standard setup shown in Fig. 1c–d. The agents are tested after every
50th training iteration on the standard setup. Once the wire is traversed successfully
training is stopped.

After pretraining the agents in simulation, we transfer them to the real-world
setup, whereby the actor and critic neural networks including their optimizer states
as well as the experience replay buffer are saved and transferred to maintain
continuous training. We reset the exploration rate back to full exploration, which
enables the agent to collect experience in the real world with high diversity. This
procedure was chosen experimentally, as it resulted in the best performance of the
agents after transfer. Training is continued until the agent is able to complete the

Table 1 Experiment configurations

Configuration Parameter
Colors Textures Camera pose Camera noise

1
2 � �
3 � � �
4 � � �
5 � � �
6 � � � �
Overview of parameters chosen for randomization during the respective training of the 6 agents
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Fig. 3 In order to better understand an agent’s behavior, attention maps are generated for 4 agents
(1, 2, 5, 6) using different states from simulation (states 1–3) and the real world (4 & 5). The states
vary in complexity with regard to colors and textures. A rainbow-coloring scheme is used, which
spans from red (high attention) to blue (low attention)

real-world task as well. Analogous to the simulation, the performance is tested after
every 50th training iteration.

Finally, we take the pretrained actor networks and generate attention maps for
different input images using Grad-CAM. A variety of images are chosen from both
the simulation and the real world (see Fig. 3, left column). In combination with the
behavior observed during training the attention maps are qualitatively examined and
conclusions regarding different randomization strategies are drawn.
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Table 2 Required training
steps until game finished

Agent Simulation (pretraining) Real-world (transfer)

1 400 600
2 1500 250
3 1900 250
4 2400 0

5 700 350
6 2850 0

4 Results

In the following we compare and discuss the training results using the above-
mentioned experimental configurations. Table 2 lists the amounts of training steps
required to learn the wire loop game in simulation using different randomization
strategies, as well as the training steps required once the respective agents are
transferred to and retrained on the real-world setup.

4.1 Training in Simulation

Intuitively, the training effort increases with a growing complexity of the observa-
tions associated with more randomization. The amount of training steps increases by
a factor of 7 when applying full-domain randomization (agent 6) in comparison to
no-domain randomization (agent 1). Especially changes in the camera position and
orientation have a large influence on the learning process, as the number of training
iterations increases only slightly with a fixed camera (agent 5) in contrast to the
other experimental setups where it is randomized. Textures (agent 4) seem to have
a stronger impact on the training than noise (agent 3). One possible explanation is
that even with noise the detection of the wire by color is still fairly straightforward,
whereas changing textures are more likely to confuse the neural network.

4.2 Transfer to Real World

The results of transferring the pretrained agents to the real world are also reported
in Table 2. Two agents were able to complete the task immediately: the agent
trained with full domain randomization (agent 6) and the agent trained with domain
randomization but without noise (agent 4). This confirms the ability of domain ran-
domization toward generating robust agents solely in simulation. Additionally, the
previously observed minor impact of noise randomization is further substantiated.

All agents trained with some form of domain randomization in the simulation
require less additional training in the real world than the agent trained without
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domain randomization. We also observe a strong negative correlation [r(4)= − .94,
p = 0.005] between the required training steps in simulation and the real world.
This intuitively translates into a positive effect of pretraining in more complex
environments, and thusly increasing robustness, for solving the target task.

The added Gaussian noise does not seem to play a major role in the transfer
of policies to the real robot, as the agents trained without additional noise in the
simulation perform as well in the real world as their counterparts trained without
noise. Randomization of the camera pose and textures, however, have a big effect
on the transferability. These findings are plausible, as the mechanical connections
between camera and tool as well as tool and robot experience some mechanical play
in the real-world setup. Additionally, a camera image taken in the real world will
always exhibit some sort of texture compared to the perfectly simulated images.

4.3 Attention Maps

As mentioned above, we apply Grad-CAM to the policies (actor networks) of our
agents after pretraining in simulation. A selection of resulting attention maps is
shown in Fig. 3. The states 1–3 are taken from simulation, and states 4 and 5 from
the real world. To obtain state 5 we removed the black cardboard background from
the demonstrator to increase complexity of the input image.

Each agent is pretrained in simulation. Afterwards training is continued on the
real robot. Each training is run until the agent is able to complete the game. The
enumeration coincides with Table 1 (Configuration n ➔ Agent n).

In general, we expect a well-performing agent to focus on the wire and disregard
the background, as identifying the wire is essential to solving the task. This behavior
can be observed for state 1, for which the differences in attention maps for the agents
are only marginal. This is plausible as the standard setup is part of the state space
for all randomization configurations.

For state 2 we observe a significant degradation of the ability of agent 1 to locate
the wire due to the addition of texture, which the agent did not need to account
for during its training process. Interestingly enough, agent 2 correctly identifies the
wire, even though it was not exposed to texture randomization. This indicates that
the variation of camera poses reinforces the agent to learn a more complete concept
of the wire.

Detecting the wire in state 3 in the lower right corner is a hard task even for
humans, as the dark wire disappears in front of the dark texture stripes. As before,
agent 1 clearly struggles with the texture. In addition, agent 5 is also completely
distracted by the dark stripe. While agent 2 pays attention to the wire, it also falsely
focuses on the upper left corner. The superior attention of agent 2 compared to agent
5 is unexpected considering the training configurations, but again displays that agent
2 seems to have learned a robust representation of the wire due to the variation of
the camera pose. Agent 6 exhibits the best performance for state 3, highlighting the
benefit of combining parameter randomizations to increase robustness.



Effects of Domain Randomization on Simulation-to-Reality Transfer. . . 167

Even though state 4 is very similar to state 1 from a human perspective, agent 1 is
distracted by a gradient induced by the lighting. While agents 4 and 5 pay attention
in the general area of the wire, they seem to be drawn more to the lower left corner
instead of the wire itself. Agent 6 again is the only agent which clearly identifies the
wire.

Similar observations can be found for state 5, where agents 1, 2, and 5 focus
mostly on the sharp background structure in the lower left corner. Although very
weakly, agent 2 at least pays some attention along the wire, again showing the
positive effect of camera-pose randomization. As before, agent 6 demonstrates its
ability to robustly localize the wire despite complex conditions.

Revisiting the agents’ abilities to transfer to the real world, a correlation between
the transfer success and the interpretation of attention maps becomes evident. When
ranking the agents’ abilities to focus on the wire under the discussed conditions,
full randomization (agent 6) clearly resulted in the most robust policy. It is also
apparent that without any randomizations (agent 1) the worst performance is
achieved. Randomizing the camera pose (agent 2) arguably has a higher benefit than
randomizing textures (agent 5), which becomes especially clear for states 3 and 5.
As observed before, applying random Gaussian noise to the camera image does not
have any significant effect.

We thus draw the conclusion that in addition to allowing interpretation of the
decision-making process of artificial neural networks, attention maps are a valuable
tool to assess the prospects of success of simulation-to-reality transfer learning. For
vision-based tasks in particular our results suggest that randomization of the camera
pose results in the highest amount of robustness, whereas the addition of random
Gaussian noise has no effect on the agent’s ability to focus its attention.

4.4 Summary and Outlook

In this chapter we examined domain randomization for pretraining RL agents in a
simulation in order to decrease training effort in the real world. We investigated the
effects of choosing different parameters for randomization on the transferability of
the respective agents. In our experiments we found that domain randomization in
any case improves the training efficiency in the real world. We also discovered a
strong negative correlation between training effort in simulation and the real world
under varying randomization configurations. We attribute this finding to a higher
complexity in simulation leading to more robust agents leading to faster training
in the real world. In addition, we used Grad-CAM to generate attention maps for
pretrained agents and discovered a correlation between the qualitative interpretation
of such attention maps and the exhibited performance of the agents after transferring
them to the real world.

Going forward, the applicability of attention maps as means to predict the success
of transfer learning requires further investigation. Especially for scenarios where
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exploration in the target domain is very costly, attention maps may help to guide
refinement of agent robustness prior to transfer.

Although simulations run significantly faster than the respective real-world
process, the training time of an agent still increases with an increasing number of
parameters chosen for randomization. In addition to optimizing the actual transfer,
attention maps might also prove useful to decrease training time in simulation. As
demonstrated, attention maps hold information regarding which kinds of scenarios
the agent has already learned and more importantly, which ones it is still struggling
with. It is thus conceivable to use this information to purposefully select parameter
variations which will advance the agent’s robustness, instead of the current random
selection. Inspired by GANs, this could potentially be achieved and automated
using an adversarial agent which is rewarded for identifying scenarios beneficial
for training the former agent.
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