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Chapter 17
Application of PSO in Distribution Power
Systems: Operation and Planning
Optimization

Paschalis A. Gkaidatzis, Aggelos S. Bouhouras, and Dimitris P. Labridis

Abstract Being an engineering field, power systems provide an extensive subject
for optimization to be applied upon. Modern power systems have evolved in an
increasingly highly complex system. The liberalization of the energy market and the
introduction of distributed generation and, in particular, distributed renewable
energy resources (DRES) have raised both opportunities and challenges that need
to be tackled. Thus, complex issues related to the operation and planning of the
distribution systems have emerged. Such issues involve many variables and refer to
nonlinear objectives; thus their optimization is significantly based on heuristic
techniques, such as particle swarm optimization (PSO). In this chapter, the imple-
mentation of PSO when contemplating various problems in power systems is
presented. In particular, the utilization of PSO is demonstrated in the optimal
distributed generation placement problem (ODGP), also known as optimal siting
and sizing of distributed generation problem, and in the network reconfiguration
problem. Finally, PSO is implemented in an optimal schedule of electric vehicles
(EVs) charging, providing an apt example of the variety of problems for which PSO
can be utilized and providing useful aid to important decisions, in the field of power
systems.
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17.1 Introduction

Power systems tend to be large, complex, and multivariate systems. Therefore, any
optimization problem applied to any of the three major components of them, that is,
generation, transmission, and distribution (Kothari, 2012), tends to be equally
complex and very difficult to solve, suffering also from the dimensionality curse
(Song, 2013). Optimization techniques are applied also to several aspects of power
systems, such as operation, control, and planning.
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Conventional optimization processes, such as linear programming, have been
deployed for plain and optimal power flow (Alsac, Bright, Prais, & Stott, 1990;
Hyedt & Grady, 1983) or active and reactive power dispatch (Zhu & Irving, 1996).
Nonlinear programming techniques have been used again for providing power flow
solutions, being more accurate than linear but more time-consuming (Sun, Ashley,
Brewer, Hughes, & Tinney, 1984), as well as for the problem of hydrothermal
cooperation scheduling (Kothari, 1989). Additionally, there are problems that
require integer and/or mixed-integer programming approaches, such as the unit
commitment and economic dispatch problems (Chatzivasileiadis, 2018; Defourny
& Terlaky, 2015; Dillon, Edwin, Kochs, & Taud, 1978). Dynamic programming has
been also deemed necessary, when dealing with transmission planning (Partanen,
1990) or reactive power control (Lu & Hsu, 1995).

Apart from the conventional optimization methods, artificial neural network
(ANN) (Dai, He, Fan, Li, & Chen, 1999) and fuzzy logic (Bansal, 2003) are also
among the preferred techniques used to solve several power system problems.

On the one hand, notwithstanding the considerable achievements in conventional
approaches, the latter still have not be applied to fast and reliable real-time
implementations. Thus, significant labor is required to prevent mathematical entrap-
ments, such as ill-conditioning and convergence arduousness. On the other hand,
ANN or fuzzy techniques rely heavily on extensive expert domain knowledge. This
means that they suffer from the expert user’s knowledge in their design and
utilization and moreover the lack of the formal model theory, being vulnerable in
that way to the experts’ depth of knowledge in problem definition (Bansal, 2005).

Metaheuristic techniques on the contrary can access deep knowledge via well-
established mathematical models. There has been a variety of metaheuristic tech-
niques utilized and in equally diverse variety of problems regarding power systems
such as genetic algorithm (GA) in voltage control (Iba, 1994), simulated annealing
(SA) for maintenance scheduling (Satoh & Nara, 1991), and tabu search for fault
diagnosis/alarm processing (Wen & Chang, 1997).

ODGP is another power system problem that has proved quite a challenge itself
(Jordehi, 2016). By strict conditions, ODGP contemplates the best positions, where
the DG units should be connected to the distribution network (DN), and what should
be their size in terms of rated capacity. Distributed generation includes technologies
such as diesel generators (Paliwal, Patidar, & Nema, 2014) and microturbines
(Ismail, Moghavvemi, & Mahlia, 2013), called collectively as conventional DG
units, since they still use fossil fuels to produce electricity; then, there are also



renewable energy sources (RES), such as photovoltaics (PVs) (Palz, 2013), wind
turbines (WTs) (World Wind Energy Association, 2014), and hydroelectric power
plants (HPPs) (Chen, Chen, & Fath, 2015), that use natural resources, such as solar
irradiance, wind, and water kinetic energy, respectively, in order to transform it to
electric energy.
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17.2 Literature Review

A few of the benefits that the integration of the DG in the DN offers are the reduction
of greenhouse gas emissions, more liberated energy strategies, diversity of energy
sources, peak operating cost decrease, network upgrades deferral, reduced power
losses, decreased costs in transmission and distribution, and potential service quality
augmentation towards the end customer (Georgilakis & Hatziargyriou, 2013). How-
ever, all of these, in order to be efficiently applied, require a proper strategic
planning. Otherwise, critical consequences could impact the DN, such as loss
increase (Atwa & El-Saadany, 2011; Gautam & Mithulananthan, 2007), voltage
rise (Schwaegerl, Bollen, Karoui, & Yagmur, 2005; Tu, Yin, & Xu, 2018), reverse
power flow (Delfanti, Falabretti, & Merlo, 2013), and reliability reduction
(Abdmouleh, Gastli, Ben-Brahim, Haouari, & Al-Emadi, 2017; Esmaili, 2013).
Therefore, the siting and sizing of the DGs could greatly affect all of those issues
and thus become significantly important to solve.

The ODGP problem is by its nature mixed-integer nonlinear and therefore quite
complex to solve. Several approaches have been utilized: empirical methods, such as
the “2/3 rule” (Willis, 2000); analytical methods using the exact loss formula (Hung,
Mithulananthan, & Bansal, 2010), loss sensitivity factors, or an improved analytical
technique (Hung & Mithulananthan, 2011); numerical such as gradient search
algorithm (Rau & Wan, 1994), dynamic programming (Khalesi, Rezaei, &
Haghifam, 2011), linear programming (Keane & O’Malley, 2005), and exhaustive
search method (Singh, Misra, & Singh, 2007); and finally metaheuristics techniques
such as GA (Soroudi & Ehsan, 2011), differential evolution (DE) (Arya, Koshti, &
Choube, 2012), artificial bee colony (ABC) (Seker & Hocaoglu, 2013), harmony
search (Rao, Ravindra, Satish, & Narasimham, 2012), cuckoo search (CS) (Moravej
& Akhlaghi, 2013), bacterial foraging optimization algorithm (BFOA)
(Mohammadi, Rozbahani, & Montazeri, 2016), grey wolf pack optimization (Sul-
tana, Khairuddin, Mokhtar, Zareen, & Sultana, 2016), ant-lion optimization (Ali,
Abd Elazim, & Abdelaziz, 2016), and particle swarm optimization (PSO) (Prakash
& Lakshminarayana, 2016).

The empirical methods, as previously stated, rely heavily on the experts’ knowl-
edge depth. Moreover, they are restricted in uniformly distributed loads and radial
DNs. As far as the analytical methods are concerned, they are perfectly suited when
one DG is contemplated. However, when more than one is considered for installa-
tion, the problem becomes perplexed enough to solve via analytical methods.
Numerical methods can tackle this issue. However, in order to do so, they either



require several assumptions, such as considering the problem as linear, instead of
nonlinear, or searching exhaustively all the possible solutions in order to retrieve the
optimal one. The former provides a deviation from reality; the latter proves to be
rather time-consuming.
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As for the metaheuristic techniques, they seem to provide several advantages
when contemplating the ODGP: they are not restricted by type or size of the
examined DN, load considered, or DG unit number. Moreover, they do not require
any assumptions, thus solving the problem in its core. The only disadvantage they
present is that being basically random search methods, they require more than one
trial and are susceptible to local minima entrapment (Parsopoulos & Vrahatis, 2002).
Therefore, the solution that they provide in most cases is near-optimal. Despite of
their drawbacks, however, the benefits of using metaheuristics greatly outweigh their
demerits.

This chapter focuses mainly on PSO and how it performs when applied to the
ODGP problem. A comparison of various PSO versions is presented along with
other metaheuristic techniques, in order to further enhance PSO performance.
Additionally, the application of PSO in the combined problems of ODGP and NR
is described. Finally, the application of PSO in the optimal schedule of EVs is
demonstrated.

17.3 ODGP: Problem Determination

In this section the ODGP problem is determined by defining the objective function
and the constraints that are required to be imposed.

17.3.1 Objective Function

As an objective function, the power losses is examined, that is:

Floss ¼ min
Xlk
k¼1

gm,n V2
m þ V2

n – 2VmVn cos –ð Þ⌈ ð17:1Þ

where:

φm φn

⌉

gm, n: Conductance between buses m and n, respectively

lk: Total network line number

Vm, Vn: Buses m and n voltage magnitudes, respectively

φm, φn: Buses m and n voltage angles, respectively



(continued)

17 Application of PSO in Distribution Power Systems: Operation and Planning. . . 325

17.3.2 Constraints

The problem is bound to several constraints, such as technical constraints imposed
by the DN and power flow constraints:

PG,m – PD,m –
Xln
n¼1

Vmj j Vnj j Ym,nj j cos φm,n – φm þ φn

( ) ¼ 0 ð17:2Þ

QG,m – QD,m þ
Xnn
n¼1

Vmj j Vnj j Ym,nj j sin φm,n – φm þ φn

( ) ¼ 0 ð17:3Þ

Voltage and line limits:

Vmin
m ≤ Vm ≤ Vmax

m ð17:4Þ
S j ≤ Smax

j ð17:5Þ

where:

PG, m, QG, m: Bus m active and reactive power generation, respectively

PD, m, QD, m: Bus m active and reactive power demand, respectively

ln: Total network node number

Ym, n: Bus admittance element m,n

φm, n: Bus admittance element m,n

Vmin
m , Vmax

m : Bus m voltage lower and upper limits, respectively

Smax
j : Line j thermal limit, by terms of apparent power

There are also constraints with respect to the DG units themselves, such as the
technical operation limits of the DG units considered for installation:

SDGmin ≤ SDGi ≤ SDGmax ð17:6Þ
pf DGmin ≤ pf DGi ≤ pf DGmax ð17:7Þ

And permitted DG penetration constraint, that is:

XmDG

i¼1

SDGi ≤ η ∙ SLoadTotal ð17:8Þ

where:

SDGi :: DG unit apparent power

pf DGi : DG unit power factor



326 P. A. Gkaidatzis et al.

SDGmin, S
DG
max :: DG unit apparent power lower and upper limits, respectively

pf DGmin, pf
DG
max: DG unit power factor lower and upper limits, respectively

mDG: DG unit total number

η: Desired DG unit penetration level percentage

SLoadTotal: DN total load

17.4 Penalty Function Formulation

Generally, either deterministic or stochastic techniques have been utilized to solve
optimization problems bound by constraints. Deterministic approaches, for example,
feasible direction and generalized gradient descent, require strict mathematical
properties for the objective function, such as continuity and differentiability. In
addition, using analytical techniques to solve the ODGP problem could prove to
be complex and time-consuming (Del Valle, Venayagamoorthy, Mohagheghi,
Hernandez, & Harley, 2008) or be confined to solutions towards installing only
one DG unit. However, these properties are not always present or easily employed.
In those cases, evolutionary computation offers a reliable alternative option. Most
evolutionary techniques, though, have been primarily designed to address
unconstrained problems. Therefore, constrained handling techniques are usually
accompanying the implementation of evolutionary techniques in order to detect
and avoid any infeasible solutions. The most common practice dictates the use of
a penalty function. Despite its disadvantages, if a proper calibration of the penalty
parameters is undertaken, it performs rather efficiently (Parsopoulos & Vrahatis,
2007). To that end, constraints are expressed using penalty terms that in turn are
incorporated into the objective function. This leads to the formulation of the penalty
function. The latter penalizes any infeasible solutions as follows:

P xð Þ ¼ f xð Þ þ O xð Þ ð17:9Þ

O xð Þ ¼ o g2 xð Þ þ max 0, h xð Þð Þ½ ]2
on

ð17:10Þ

where:

P(x): Penalty function

f(x): Objective function

O(x): Penalty term

o: Penalty factor

g(x): Related equality constraints

h(x): Related inequality constraints
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Thus, in the case of the ODGP problem and using, for the sake of argument only,
the Floss as the objective as expressed in Eq. (17.1) and the DN technical constraints,
that is, the equality constraints as defined in Eqs. (17.2) and (17.3) and inequality
constraints as defined in Eqs. (17.4)–(17.8), the updated penalty function is
expressed as:

P xð Þ ¼ min Floss þ OP þ OQ þ OV þ OLð Þ ð17:11Þ

where OP and OQ refer to the equality constraints:

OP ¼ oP
Xln
m¼1

PG,m – PD,m –
Xln
n¼1

Vmj j Vnj j Ym,nj j cos φm,n – φm þ φn

(( ) ð17:12Þ

OQ ¼ oQ
Xln
m¼1

× QG,m – QD,m þ
Xln
n¼1

Vmj j Vnj j Ym,nj j sin φm,n – φm þ φn

((
ð17:13Þ

and OV and OL to inequality constraints:

OV ¼ oV
Xln
m¼1

max 0,Vmin
m – Vm

( ){ }2 þ oV
Xln
m¼1

max 0,Vm – Vmax
m

({ 2 ð17:14Þ

OL ¼ oL
Xlk
j¼1

max 0, S j – Smax
j

	⎛ ⎞n o2
: ð17:15Þ

As it can be easily deduced, any other constraints such as Eqs. (17.6), (17.7), or
(17.8) can be incorporated in Eq. (17.11) via the same process.

17.5 PSO Analysis

17.5.1 General

In this section the PSO algorithm is presented, as addressed and appropriately
adjusted, in order to contemplate the ODGP problem.

PSO has been developed by Kennedy and Eberhart (Eberhart & Kennedy, 1995)
and was inspired by the movement of fish schools or herds of animals that are trying
to find some food source or avoid a potential enemy. Mathematically, the main idea
is that, having defined the feasible solution space, a swarm of particles explores
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Fig. 17.1 PSO velocity
diagram. Source: Authors’
own creation

Pi

Pg

Xi(t) Vi(t)

Vi(t+1)

Xi(t+1)

Previous 

Velocity

gbest, or 

lbest

pbest

it. Their position within the solution space changes with every iteration step, along
with their velocity. This change in velocity consists of three terms:

1. The personal or cognitive knowledge of the solution space, as gathered by each
individual particle.

2. The social knowledge of the solution space that each particle has gathered after
communicating with other particles.

3. Its previous status.

This can be formulated in the following generalized equations:

vh t þ 1ð Þ ¼ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pg tð Þ – Xh

( )
tð Þ ð17:16Þ

Xhð Þt þ 1 ¼ Xhð Þt þ vh t þ 1ð Þ ð17:17Þ

where:

h ¼ 1, . . ., N: Particle number

Xh(t): Current position of particle h

Xh(t + 1): Next position of particle h

v(t): Current velocity of particle h

vh(t + 1): Next velocity of particle h

Ph(t): Personal best

Pg(t): Social best

c1, 2: Weighting factors, i.e., cognitive and social parameters, respectively

R1, 2: Random variables uniformly distributed within [0,1]

This movement is also depicted in Fig. 17.1.
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17.6 Velocity Limits

In order to address the swarm explosion issues, velocity thresholds have been
imposed separately to each dimension of the particle, i.e.:

vmax ,l ¼ bl – al
d

ð17:18Þ

where:

vmax, l: Maximum velocity threshold for dimension l

bl: Upper bound of dimension l

al: Lower bound of dimension l

d: A denominator factor, most commonly equal to 2

17.7 Particle Formulation

With respect to the dimensions of each particle, i.e., the solution space as demon-
strated in Fig. 17.2, these consist of the bus number where the DG unit should be
installed and of the unit size, expressed via its active and reactive rated power.

This particle formulation implies that the solution space is directly proportional to
the number of DG units considered. The number of DG units is considered equal to
the number of buses of the examined DN.

In order to ensure a more rapid convergence, the initially random values of
particle dimensions at the beginning of the optimization process are considered
within certain limits, such as the maximum number of buses in the examined DN
and the operating technical limits of the examined DG units as described in
Eqs. (17.5) and (17.6). This does not prevent the algorithm from retrieving the
optimal solution. Furthermore it provides a more realistic approach, since it filters
infeasible results especially at the first iteration steps.

Additionally, with respect to the algorithm’s termination, two criteria are consid-
ered: a maximum number of iteration steps and a minimum convergence deviation

Fig. 17.2 Solution space formulation of ODGP problem. Source: Authors’ own creation



between current and previous solution that need both to be met in order for the
algorithm to conclude. This way the algorithm is given the opportunity to explore
and exploit even more the solution space, thus augmenting its performance.

330 P. A. Gkaidatzis et al.

17.8 Reducing Perturbation

The first term of the sum in the second leg of Eq. (17.14), i.e., the previous velocity
term, is the component that describes the previous status of the particle. As that, it
infuses a degree of inertia. However, for the same reason, this term has also been
connected to a certain degree of perturbation. As a result, the local minima entrap-
ment risk is reduced, but at the expense of having the particles oscillate on broad
ranges around the best positions found (Shi & Eberhart, 1998). Two solutions have
been found and applied, that is, the inertia weight and the constriction factor
parameters (Eberhart & Shi, 2000), as presented in the following equations:

vh t þ 1ð Þ ¼ ωvh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2

( )
Pg tð Þ – Xh tð Þ ð17:19Þ

where:

ω tð Þ ¼ ωmax – ωmax – ωminð Þ t
Tmax

ð17:20Þ

where:

ω(t): Current inertia weight

ωmax: Maximum inertia weight

ωmin: Minimum inertia weight

t: Current iteration

Tmax: Maximum iteration number

and:

vh t þ 1ð Þ ¼ ψ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pg tð Þ – Xh

⌉
tð Þ( )⌈ ð17:21Þ

where:

ψ : Constriction factor

Applying these two solutions on a test bus system, i.e., the typical 16-bus system
(Civanlar, Grainger, Yin, & Lee, 1988) presented in Fig. 17.3, bears the results
depicted in Fig. 17.4. For 1000 iteration steps, it shows that the constriction factor
method demonstrates better performance, both in terms of convergence speed and
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Fig. 17.3 Typical 16-bus system. Source: Authors’ own creation
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Fig. 17.4 Convergence comparison of inertia weight (PSO w) and constriction factor (PSO χ).
Source: Authors’ own creation

final solution. Therefore, this scheme proves to be more effective when contemplat-
ing the ODGP problem.
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17.9 Reducing Local Minima Entrapment

17.9.1 Local PSO

In cases of multimodal or extremely complex environments, such as the ODGP
problem, it has been proven that the swarm fragments because of complete diversity
loss (Kennedy, 1999). This indicates that any further exploration of the solution
space is no longer possible, and thus the particles are confined to exploit what
information they already have and converge there. This hindrance can be attributed
to the determination of the Pg(t) term, in the third term of the sum in the second leg of
Eq. (17.14). This term refers to the social knowledge gathered by each particle after
communicating with other particles. If it is determined as the global best, after
creating the global PSO version or GPSO, each particle communicates with all the
other particles in the swarm. This provides great convergence capabilities but leads
to the aforementioned problem, that is, lower exploration of the solution space and
high local minima entrapment risk (Gkaidatzis, Bouhouras, Doukas, Sgouras, &
Labridis, 2017).

However, if the social knowledge is diffused by using smaller overlapping groups
of particles, this problem is being addressed. These smaller groups are called
neighborhoods. There are various schemes under which these neighborhoods can
be formed. One simple and effective schema has proven to be the ring topology
(Hu & Eberhart, 2002; Mendes, Kennedy, & Neves, 2003), depicted in Fig. 17.5 and
described mathematically in Eq. (17.20).

vh t þ 1ð Þ ¼ ψ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pl tð Þ – Xh tð Þð Þ½ ] ð17:22Þ

where:

Pl(t): Local best term

Fig. 17.5 Ring topology.
Source: Authors’ own
creation

Xi

Xi-1 Xi+1

Xi-2 Xi+2
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Therefore, instead of using the global best, the local best is used, creating the local
PSO version or LPSO.

17.9.2 uPSO

A comparison between the two, i.e., GPSO and LPSO, leads to the conclusion that
the former has the advantage of fast convergence, which explains the reason of its
broad use. However, it lacks in solution space exploration. Εrgo the final solution
will not be that optimal. The latter, although it provides greater exploration capabil-
ities, lacks in convergence, leading to greater computation times. Therefore, a
question is raised whether a PSO version can be developed by combining these
two, enhancing their merits while avoiding their drawbacks. This has led to the
development of the unified version of PSO, or uPSO, by Vrahatis and Pasropoulos
(Parsopoulos & Vrahatis, 2002) which is described in the following equations:

VG
h t þ 1ð Þ ¼ ψ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pg tð Þ – Xh

)
tð Þ(⌈ ⌉ ð17:23Þ

VL
hð Þt þ 1 ¼ ψ vhð Þt þ c1R1 Phð Þtð Þ– Xh tð Þ þ c2R2 Plð Þt – Xh tð Þð Þ½ ] ð17:24Þ

with:

vh t þ 1ð Þ ¼
u f R3V

G
h t þ 1ð Þ þ 1– u f

( )
VL
h t þ 1ð Þ, u ≤ 0:5

u f V
G
h t þ 1ð Þ þ 1– u f

( )
R3V

L
h t þ 1ð Þ, u > 0:5

(
ð17:25Þ

where uf 2 [0, 1] is the unification factor that basically controls the combination
schema of LPSO and GPSO and R3 is an extra random variable uniformly distributed
within [0,1] that is applied alternatively on the GPSO and LPSO terms providing
even further diversity and thus exploration to the technique. The rest of the param-
eters of the equation are the same as before.

17.9.3 Unification Factor Schemes

For the determination of the unification factor value, several processes have been
proposed. They are categorized as swarm- and particle-level schemes, depending on
the level in which the value assignment takes place. In the swarm level, the same
value is provided for all particles. In the particle level, each particle presents its own
scheme.

An approach could be an increasing unification factor, thus infusing exploration
at the beginning of the process, by giving leverage to LPSO, over GPSO, and



gradually shifting the balance towards exploitation, by reversing the initial leverage
(Parsopoulos & Vrahatis, 2005, 2007).
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A few examples are as follows:

1. Linear: as in the inertia weight case, the unification factor is linearly increased, as
described in the following equation:

u f tð Þ ¼ t
Tmax

ð17:26Þ

2. Modular: the unification factor increases in repeated pattern, every z iterations,
which is selected as a reasonable fraction of the total number of iteration steps:

u f tð Þ ¼ tmod zþ 1ð Þ
z

ð17:27Þ

3. Exponential: as stated, in this scheme the unification factor increases
exponentially:

u f tð Þ ¼ exp
t ∙ log 2ð Þ
Tmax

	⎛ ⎞
– 1 ð17:28Þ

4. Sigmoid: the unification factor, in this scheme is increased gradually, i.e.:

u f tð Þ ¼ 1
1þ exp –λ t – Tmax

20

( )⌈ ⌉ ð17:29Þ

A few examples of particle-level schemes are the swarm partitioning (SP) and the
self-adaptive (SA).

In the swarm partitioning scheme, the swarm is separated into nonoverlapping
groups called partitions. In each partition a unification factor value is assigned,
within the range of [0,1], and thus all particles belonging to the same partition
share the same unification factor. Since the swarm is already divided into neighbor-
hoods, due to LPSO, in order to avoid having particles with the same unification
factor in the same neighborhood or, differently, increase the possibility to have
particles with different unification factor values in the neighborhoods, an appropriate
assignment scheme should be adopted. An approach would be to assign the first
k particles to the partitions 1 to k, respectively, and then repeat the process for the
next k particles and so on, thus having particle i in the (1 + (i– 1) mod (k)) partition.

In the self-adaptive scheme, the unification factor is considered as an additional
dimension of the solution space and left to be determined by the optimization
process itself.
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Fig. 17.6 Convergence of linear, SA, and SP uPSO version. Source: Authors’ own creation

An indicative comparison between the linear, SP, and SA, when applied to the
typical test 33-bus system, is demonstrated in Fig. 17.6 (Gkaidatzis, Bouhouras,
Doukas, Sgouras, & Labridis, 2016; Gkaidatzis, Bouhouras, Sgouras, Doukas, &
Labridis, 2016).

SP has been determined as the most promising scheme, providing both better final
solutions and better convergence. This uPSO version is further compared to the two
basic PSO versions, as shown in Fig. 17.7, when applied again in the typical test
33-bus system (Kashem, Ganapathy, Jasmon, & Buhari, 2000) depicted in Fig. 17.8.
It becomes immediately apparent that uPSO indeed presents better performance both
in terms of convergence and final solution than either GPSO or LPSO. From
Fig. 17.7 additionally, the different exploration/exploitation ratios of the two basic
PSO versions become also apparent, since GPSO, though converging fast enough,
seems to be locked in a not optimal value, whereas LPSO, though slow at first, it
reaches a far lower value which mean a far better solution.

17.10 Comparison with Other Heuristic Methods

In this section the evaluation of the PSO version as presented will be examined.
More specifically, a comparative analysis among the PSO versions and how well
they fare against other heuristic techniques such as GA, ABC, CS, and HS is
analyzed. To that end, all the techniques have been given an ample time of 1000
iteration steps, i.e., they have been applied 1000 times. The techniques have been
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Fig. 17.7 Convergence comparison between uPSO, GPSO, and LPSO. Source: Authors’ own
creation
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Fig. 17.8 Typical 33-bus system. Source: Authors’ own creation

tested upon the IEEE-30 bus system (Yokoyama, Bae, Morita, & Sasaki, 1988),
presented in Fig. 17.9.

In Table 17.1, results regarding the final solution reached by the various heuristic
methods are shown. More specifically, the optimum loss achieved by each method
and the respective percentage of loss reduction are shown. Moreover, the DG
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Fig. 17.9 IEEE-30 bus
system. Source: Authors’
own creation

Table 17.1 Solution performance comparison of PSO with other heuristic techniques

Technique
Minimum power
loss (kW)

Power loss
reduction (%)

Total DG
No.

Total DG installed
(MVA) P+jQ

GPSO 792.85 67.56 8 52.94+j72.24

LPSO 795.06 67.47 8 53.02+j66.08

UPSO 742.10 69.63 12 53.66+j6.68

GA 1267.80 48.12 17 74.43+j35.46

ABC 761.10 68.86 13 50.12+j86.79

CS 947.67 61.22 19 55.71+j67.53

HS 824.24 66.27 10 52.86+j69.61

number for installation are presented and the total DG rated power in MVA, as they
have been proposed by the best solution that each of the methods has reached. It is
immediately evident that because of the adequate provided time, every method has
reached a considerable reduction in losses and the deviations among their reached
results are virtually insignificant. However, GA appears to be performing the least
efficient than the rest. In Table 17.2 results related to the convergence performance
of the various heuristic methods are presented. More specifically, the information
provided concern the average trial execution time and the average iteration number



Fig. 17.10 Solution space formulation for combined ODGP-NR problem. Source: Authors’ own
creation
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required for each method to reach within 10%, 1%, and 0.1% tolerance of the
optimal solution proposed. For example, in uPSO, since its optimal solution amounts
to 742.10 kW, this means that a 10% tolerance amounts to 816.31 kW loss.
Regarding average execution time, requiring an execution time, less than 4 min,
HS seems to perform the fastest. Additionally, another metric is introduced, and that
is an iteration number required for each method to reach a certain amount of loss
reduction. This amount is determined by the average loss reduction reached by the
method that performs the least. This seems to be GA, and the amount is therefore set
to 35.97%. Despite all methods evidently performing efficiently, it appears that the
PSO versions fare rather more efficient than the rest, especially uPSO. With respect
to convergence and iteration steps, for instance, they reached their final solution in
the least amount of time overall.
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Given that, an argument can be made that, though HS seems more efficient than
uPSO, in terms of computation time, the latter can be applied for fewer iterations and
ergo overcome this issue. This is further demonstrated in Fig. 17.10, where each
method’s average convergence of the 1000 trials is shown, and again in Fig. 17.11,
where the same metric is presented, but zooming in particularly within the 10%
iteration tolerance of the best performing technique, being uPSO.

Furthermore, as demonstrated in Fig. 17.12, the PSO versions, and uPSO in
particular, have the least standard deviation convergence along the 1000 iteration
sample. This means that during the 1000 trials, they do not deviate much from each
other, demonstrating their robustness. This also indicates that even less trials are
possible (Gkaidatzis, Doukas, Bouhouras, Sgouras, & Labridis, 2017).

17.11 PSO in Combination to ODGP with NR

In cases of fault occurrences and outages, network reconfiguration (NR) enables the
distribution system operator (DSO) to rearrange the DN layout to continue to
provide the same services. Over the last decades, this originally reliability-oriented
mechanism has been also considered for loss reduction, since it was discovered that a
DN layout modification could alter the loading of the DN lines (Bouhouras,
Gkaidatzis, & Labridis, 2020).
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Techniques for both the ODGP and NR problems have been regarded as efficient
towards reducing power losses. The means used however in order to achieve this
objective varies, since ODGP aims at the location and size of DG units to be
installed, thus affecting the load composition of the DN, whereas NR aims at
rearranging the DN layout, thus the topology of the DN (Bouhouras, Gkaidatzis,
& Labridis, 2017).

When contemplated individually, the losses are reduced significantly. Therefore,
there is high probability that a combination of them will have a considerable impact
on the reached optimal solution with respect to the total amount of loss reduction. Let
the highest possible loss reduction refer to the ideal 100%. Then, the order at which
these problems are considered affects their contribution towards the solution of the
overall problem. For example, when considering ODGP, a solution with 100% loss
reduction could theoretically be yielded, in the ideal case where DG units are
installed in every bus of the DN and generate the same amount of power requested
by the load at each bus. In that particular case, to consider solving the NR towards
loss reduction is rendered meaningless, since the objective is already achieved.
However, if limited available DG units are considered during the ODGP solving
process, as it is mostly the case, then further examining the NR could achieve more
loss reduction and improve the solution even further.

If the reverse order is contemplated, that is, the NR is examined first and then the
ODGP, then it presents great interest to examine the effect this would have on the
siting and sizing of the DG, since the ODGP problem will now be solved for a
modified DN, that is, with a modified layout, but with the same load composition.
Additionally, it would be of great interest to investigate what the results would be, if
both problems are solved simultaneously, that is, solving both ODGP and NR at the
same time, therefore, formulating the solution space as it presented in Fig. 17.13.

The aforementioned analysis leads to three scenarios to be considered, with
respect to the order of solving ODGP and NR:

• Scn#1: First NR is solved, then ODGP.
• Scn#2: First ODGP is solved, then NR.
• Scn#3: ODGP and NR are solved simultaneously.

The results when using the typical test 69-bus system (Soudi, 2013) are presented
in Tables 17.2, 17.3, and 17.4. Scn#1 seems to bear the more advantageous results,
due to the switching operations relying on the tie switches already in use. This leads
also to less DG capacity required for loss minimization. In Scn#2, as previously
analyzed, it seems hardly possible to reach a NR solution, particularly if the ODGP
problem is solved rather efficiently towards high loss reduction. Finally, in Scn#3,
where both problems are solved simultaneously, the total problem complexity seems
to increase exponentially. The main reason behind this is the fact that the particle
formulation is extended in order to accommodate both the ODGP and the NR
variables, as demonstrated in the following equation:
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Fig. 17.13 Voltage profile of residence No. 79. Source: Authors’ own creation

Table 17.2 Scn#1

NR
results

Initial
losses
[kW]

Opened
sectionalizers

Closed tie
switches

Loss reduction
%

Final losses [kW]

229.8 14, 58, 62 Tie3–Tie5 54.7 104.1

ODGP
results

Initial
losses
[kW]

DG location
(bus number)

Active DG
power [kW]

Reactive DG
power [kVAr]

Loss reduction % and
final losses [kW]

104.1 5
9

12
22
40
53
56

901.7
241.6
427.4
338.3
0
1416.1
318.5

189.2
177.2
299.6
226.6
536.4
938.2
226.7

93.65%
6.6

Sh, l and Th, j , in contrast with xh, l which is an integer and Ph, l and Qh, l that are
real variables, are basically binary variables. PSO however has been mainly devel-
oped for continuous-valued solution spaces. In order to adjust to these new circum-
stances for these particular set of variables, the velocity and position equations are
updated with the use of the following equations (Engelbrecht, 2007):

vh t þ 1ð Þ ¼ 1
1þ e–υh tð Þ ð17:30Þ
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Table 17.3 Scn#2

ODGP
results

Initial
losses
[kW]

DG location
(bus number)

Active power of
each DG unit
[kW]

Reactive power of
each DG unit
[kVAr]

Loss reduction %
and final losses
[kW]

229.8 2
3
9
12
19
40
53

0
539
0
501.2
380.8
717
1674

–53.2
340
184.9
279.8
251.7
512
1178.8

97.35%
6.1

NR
results

Initial
losses
[kW]

Opened
sectionalizers

Closed tie
switches

Loss reduction % Final losses [kW]

6.1 – – 0 6.1

Table 17.4 Scn#3

DG location
(bus
number)

Active power of
each DG unit
[kW]

Reactive power of
each DG unit
[kVAr]

Opened
sectionalizers

Closed
tie
switches

Loss
reduction
%
Final
losses
[kW]

57 2021.5 849.8 20, 42, 46,
58, 61

Tie1–
tie5

68.28%
72.9

where:

Sh, l: Sectionalizer

Th, j: To tie switch

xh t þ 1ð Þ ¼
1,w <

1
1þ e–vh tþ1ð Þ

0, otherwise

><
>: ð17:31Þ

where w is a randomly distributed variable within [0,1], adding diversity in the
process.

Due to this additional complexity, the algorithm seems unable to reach an
effective solution. It still requires further examination, to establish if a better solution
in this case is overweighed by the increased computational burden (Bouhouras,
Andreou, Labridis, & Bakirtzis, 2010; Bouhouras & Labridis, 2012).
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17.12 PSO in Optimal Charging Schedule of EVs

17.12.1 EV Integration in DN

The ever-growing integration of electric vehicles (EV) in LV networks (Nour,
Ramadan, Ali, & Farkas, 2018) is expected to greatly affect the conventional load
patterns both of the residential and commercial sectors. Charging the EVs will bear
additional burden especially during the night. The EVs’ owners are most commonly
expected to connect and charge their EVs the moment they arrive at their homes,
which usually occurs at the afternoon or evening. Moreover, they require to depart
with the EV fully charged early in the morning of the next day (Antúnez, Franco,
Rider, & Romero, 2016), especially during workdays. Thus, any random EV
charging not controlled, or monitored, would cause an intense night load peak,
leading this way to significant voltage drops and power quality issues. This issue
can be tackled by employing optimized coordinated EV charging schedules, setting
the time periods within which each individual EV will be charged with the goal to
satisfy an objective function, for example, voltage profile improvement (Zheng,
Song, Hill, &Meng, 2018), cost minimization (Thomas, Ioakimidis, Klonari, Vallée,
& Deblecker, 2016; Wei, Li, & Cai, 2018), energy loss minimization (Zaidi, 2015),
or combination of them.

17.12.2 Problem Formulation

In this case, as an objective function, the voltage improvement is in the epicenter, as
described below (Bouhouras et al., 2018, 2019; Bouhouras, Gkaidatzis, & Labridis,
2018):

Fvi ¼ min
XT total

Δt¼1

Xln
m¼1

1– Vmj j ð17:32Þ

where:

Δt: The time interval considered, e.g., an hour, half-hour, 15 min, etc.

Ttotal: The total time period considered

uPSO is utilized to solve this problem and is applied to the DN, depicted in
Fig. 17.12.

This DN constitutes a section of a Greek rural-residential DN. In each bus a
residence is connected, and in each residence an EV is assigned in turn. For realistic
purposes, variation of types of chargers, EV battery capacity, time of arrival, and
state of charge at the time of arrival has been considered and is presented in
Table 17.5.
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Table 17.5 EV parameters

Characteristic Type 1 Type 2 Type 3

EV capacity (kWh) 9.2 16 21.4

Number of nodes 54 (50% of the fleet) 43 (40% of the fleet) 11 (10% of the fleet)

Charger type (kW) 3.3 (1-phase AC) 7.4 (1-phase AC)

Number of nodes 54 (50% of the residences) 54 (50% of the residences)

SoC (%) 20–40

Number of nodes 108 (all residences)

Table 17.6 EV charging schedules for residence No. 79

EV at
Residence
No. 79

04/05/2014

20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00

Regular
charge at
arrival

3.3 3.3 3.3 3.3 2.97 0 0 0 0 0

Optimal
schedule
continuous

0 0 0 3.3 3.3 3.3 3.3 2.97 0 0

Optimal
schedule
intermittent

0 3.3 0 3.3 0 3.3 3.3 2.97 0 0

The DN technical constraints, as they have been described in the previous
sections of this chapter, are taken into account, and the DG technical constraints
are replaced by the EV ones, that is, the charger upper and lower operation limits.
The penalty function formulation remains also the same with that described in
previous sections of this chapter.

For practical purposes though, the EVs are assumed that they arrive no earlier
than 20:00 and require to depart with a full battery until 06:00.

In that particular case, the solution space is a combination of binary and real
variables, as presented in Eq. (17.31), where for each time step considered, e.g., 1 h,
of the total amount of time examined, that is 20:00–06:00, it is to be determined if
m EV will charge or not (bi, Δt ¼ k) and with how much power (Pi, Δt ¼ k).

Xi ¼ bi,m,Δt¼1 ∙Pi,m,Δt¼1, . . . , bi,m,Δt¼k ∙Pi,m,Δt¼k, . . . , bi,m,Δt¼T total ∙Pi,m,Δt¼T total½ ]
ð17:33Þ

This formulation provides the flexibility to examine both continuous and inter-
mittent charging of the EVs, thus offering better EV portfolio management to either
the DSO or the EV aggregator, in terms of day-ahead planning. The optimal
schedule for the EVs of various residences is presented in Tables 17.6 and 17.7.

In Fig. 17.13 the results of the optimal schedule for residence No. 79 are
presented, where the initial voltage profile without any EVs considered (green), a
regular EV charging schedule without optimization considered (red), and an optimal
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Table 17.7 EV charging schedules for residence No. 109

EV at
Residence
No. 109

04/05/2014

20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00

7.4 5.1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 7.4 5.1

Regular
charge at
arrival

Optimal
schedule
continuous

Optimal
schedule
intermittent

7.4 7.4 0 0 0 0 0 0 5.1 0
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Fig. 17.14 Voltage profile of residence No. 109. Source: Authors’ Own Creation

EV schedule (blue) are compared. A significant improvement is shown since voltage
drop is decreased and formed in a smoother manner, i.e., not so abruptly. The same is
evident for residence No. 109, i.e., the furthest residence from the substation, ergo
the one with the most voltage drop, as shown in Fig. 17.14.

17.13 Conclusion and Discussion

In this chapter the applications of PSO in various modern power system problems
have been presented, mainly in the solution of ODGP, either alone or in conjunction
with NR and optimal EV charging schedules. PSO has been concluded as quite
effective to all problems addressed. Moreover, since all of the problems have their
own particular requirements, PSO has shown a considerable range and variety of
applications, adding to its broad utilization and wide adoption by many different



topics, fields, and principles. Provided the dynamic and wide nature of the power
system research sector, there is virtually no limitation as to where else PSO can be
applied. A few examples might be in the ever-growing microgrid sector (Hossain,
Pota, Squartini, & Abdou, 2019), reliability (Yang, Zhang, Ma, Zhou, & Yang,
2019), battery energy storage systems implementation (Yang, Gong, Ma, Wang, &
Dong, 2020), and demand-side management and in particular demand response
portfolio management (Sood, Ali, & Khan, 2020).
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