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Preface

This book aims to provide theoretical and empirical research and application of
portfolio optimization for the PSO technique. Therefore, it is hoped that this book
provides the resources necessary for researchers, teachers, engineers, managers, and
practitioners to adopt and implement the PSO technique in portfolio optimization
with a comprehensive discussion on the issues.

The book focuses on one of the heuristic optimization techniques that proceeds
from the inspiration of swarm intelligence: particle swarm optimization (PSO). The
PSO is a very much popular swarm intelligence algorithm. It is a robust and well-
researched optimization technique. It has its roots in artificial intelligence and animal
communication strategy. It is one of the most preferred solution approaches in
optimization problems due to its structure and advantages. Since its inception in
the year 1995 by Eberhart and Kennedy, it is being applied to solve optimization
problems in many domains, including portfolio optimization.

Optimization is the process of obtaining the best solution when performing
certain operations for a given purpose. The problem of portfolio optimization is an
important discipline of risk management in finance that consists in finding the
optimum allocation among several assets. Constructing a highest return for a given
portfolio of assets is a financial expert’s indisputable problem in which investors'
interest is to construct a portfolio having a balance between the investors’ risk and
their expectations about the portfolio returns. The general purpose of portfolio
optimization is to discover an efficient frontier that yields the highest expected return
on each level of portfolio risk. In reality, this problem usually deals with some
constraints, such as the number of assets in a portfolio, transaction costs, and short
sales. Solving this kind of problem is quite difficult because of the large amount of
complex data and other constraints. In recent years, artificial intelligence techniques
are mostly used in portfolio optimization. Before, optimization problems used to be
defined by the mathematical functions. Due to the lack of flexibility and disadvan-
tages of such methods, new methods have been developed and inspired by events in
nature. Optimization algorithms based on natural events are called heuristic algo-
rithms. Heuristic algorithms are the algorithms that are inspired by natural

v



phenomena to accomplish any purpose or goal. There is a convergence to the
optimum solution in the solution space, but no definite solution can be guaranteed
in these algorithms. With the rise of the use of heuristics-based methods in problem
solving, heuristics-based methods are widely used in quantitative decision making.

vi Preface

This book is structured into two parts. In the first part, the theoretical and
mathematical background of portfolio construction and PSO method is mentioned
and portfolio optimization cases solved by using the PSO method are given. The
second part is about other application areas of PSO to give an idea and insight to the
audience. Other than portfolio optimization, PSO applications in other fields such as
renewable energies, operation and planning optimization, and image segmentation
are included. The book totally contains 17 theoretical and empirical chapters.
Chapters 1 through 3 introduce the audience to the theoretical background of utility
theory and portfolio optimization. Chapters 4 through 7 discuss theoretical idea and
detailed explanation of the PSO algorithm, the advantages and disadvantages of
PSO, comprehensive literature review as a comparative study of PSO, and a com-
plete description of the PSO family applied to the portfolio optimization problem.
Chapters 8 through 10 give PSO portfolio optimization case studies for different
stock markets. Chapters 11 through 17 focus on different applications of PSO apart
from portfolio optimization.

The details of the chapters are explained as below:
In the first chapter, titled “Utility: Theories and model,” the aim is to look at utility

theory from a broad perspective. The main hypothesis in the theory of decision is
that the person who is in the position of deciding is entitled to be called the
“economic man.” Also, the individual acts rationally. Thus, utility is the ability to
satisfy (eliminate) human needs of goods and services. Expected utility theory forms
the basis of traditional finance. Expected utility theory assumes that people choose
risky or uncertain opportunities by comparing the expected benefits from them. The
Allais and Ellsberg paradoxes criticize expected utility theory. Kahneman and
Tversky (1979) present that the expected utility axioms are violated for more
reasonable lottery alternatives than in the Allais paradox and put a link between
finance and psychology. The prospect theory of Kahneman and Tversky forms the
basis of behavioral finance.

In the second chapter, titled “Portfolio optimization,”Markowitz's mean-variance
model, which is the main model of modern portfolio theory, is explained and
mathematical representations are given. The subject is supported with mathematical
notations by mentioning concepts such as portfolio risk and return, efficient frontier,
utility theory, asset allocation, indifference curves, Sharpe ratio, and coefficient of
variation.

In the third chapter, titled “Behavioral portfolio theory,” the aim is to explain
behavioral portfolio theory in a theoretical way. The chapter starts with a definition
of portfolio which is a financial asset that consists of various securities such as stocks
and bonds, and derivative products, held by a particular person or group. Behavioral
portfolio theory (BPT) emerged as a descriptive alternative to Markowitz's mean-
variance portfolio theory. BPT connects two issues: the creation of portfolios and the
design of securities. There are two versions of the BPT model. The first is the single
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mental accounting (BPT-SA) in which the portfolio is integrated into one mental
accounting and the multiple mental accounting (BPTMA).

Preface vii

The fourth chapter titled, “A comparative study on PSO with other metaheuristic
methods,” is a comprehensive literature review as a comparative study of PSO
algorithm with the most popular metaheuristic algorithms. The studies carried out
between the years 2010 and 2020 on the comparison of PSO to some other
metaheuristic algorithms are examined and evaluated in terms of the rates of these
studies according to the following criteria: their publishing years, the metaheuristic
algorithms that are compared to PSO, performance evaluation of the compared
algorithms, examined metaheuristic algorithms with their inspirational approaches
and their initial proposed studies, the field of subjects where the algorithms are
applied in these studies, and the used databases in the examined studies. The
intention of this chapter is to be useful for the researchers who want to conduct
research on the PSO and other metaheuristic algorithms as it covers the essential and
helpful analysis of the related research. Since it is an area of active research, there is
no doubt that more metaheuristic algorithms and new applications will emerge in the
future. Therefore, this chapter will be a handbook for the researchers who want to
study this subject, and it will be beneficial in this respect.

The fifth chapter, titled “Mathematical model of particle swarm optimization: For
numerical optimization problems,” is intended to be an introduction to the mathe-
matical bases for the PSO algorithm as applied to numerical optimization problems.
The work also covers some background on relevant topics and terms in computa-
tional intelligence, swarm intelligence, PSO, and optimization. An example of a
single objective problem (DeJong’s test function 1) has been chosen from the
literature. The basic PSO algorithm, equations, supporting preconditions, and
parameter settings are explained in detail. An open library for PSO in Python was
used to illustrate the function landscape and the trajectory of the solutions obtained
via the PSO. A discussion for the advanced reader on variants of PSO is included.
Problems like the portfolio optimization problem are multi-objective (MOP) in
nature; hence, a brief discussion on the concepts concerning multi-objective optimi-
zation is presented for the advanced reader.

The sixth chapter, titled “Particle swarm optimization: The foundation,” lays the
basic PSO foundation and introduces existing PSO variants for researchers who want
to solve the portfolio optimization problem. It starts with the introduction of PSO,
describing the advantages, disadvantages, and applications of PSO. Later, the basic
PSO procedure and its parameter selection mechanisms are presented. The chapter
also presents three popular applications of PSO in finance, including portfolio
optimization. Finally, the chapter ends by introducing the existing PSO variants to
solve the portfolio optimization problem.

In the seven chapter, titled “The PSO family: Application to the portfolio
optimization problem,” a complete description of the PSO family applied to the
portfolio optimization problem is provided. The combination with a model reduction
method to find the set of selected assets provides a very flexible method to improve
the portfolio management.



viii Preface

In the eighth chapter, titled “Constrained portfolio selection by particle swarm
optimization: A literature review and numerical experiments,” the author's purpose is
to examine portfolio optimization models and applications of the PSO technique in
solving these models. A constrained portfolio selection model has been developed,
which is solved by the PSO technique as a metaheuristic approach using data from
the Tehran Stock Exchange (TSE) as an emerging market to assess the developed
model. In this case, the effects of three different risk measures of conditional value at
risk (CVaR), variance, and semi-variance have been analyzed on the constructed
portfolios. This analysis examines the PSO technique's performance on the devel-
oped model utilizing the different risk measures from a portfolio metrics point of
view, such as risk, return, and diversification index.

The ninth chapter, titled “Optimal portfolio selection with particle swarm algo-
rithm: An application on BIST30,” aims to examine the optimum portfolio with
minimum risk by using the PSO technique, for the stocks in the BIST-30 index.
Logarithmic returns are calculated using the price data of the stocks. By using these
returns, the optimum portfolio with minimum risk is created with PSO and nonlinear
GRG (generalized reduced gradient) techniques. The empirical results obtained
indicate that both methods give similar results.

In the tenth chapter, titled “Cardinality-constrained higher order moment portfo-
lios using particle swarm optimization,” authors contribute in two ways to the
literature on applying PSO to portfolio optimization. First, they go beyond the
traditional mean-variance approach by optimizing the mean-variance-skewness-
kurtosis approximation to the investor’s expected utility function. Second, they
investigate improvement to the velocity equation in the special case of optimizing
portfolios under a cardinality constraint. The improvement addresses the issue of
early stagnation. The authors show the gain in a simulation experiment.

There are a large number of applications of PSO. The eleventh chapter, titled
“Different applications of PSO,” tries to present a classified literature review for the
applications of PSO in different fields. The applications are classified into different
sections based on the area. The chapter also presents a table with references to
multiple other applications over and above those covered in the chapter. References
of some largely cited review papers dealing with the applications of PSO are also
mentioned at the end of the chapter.

The twelfth chapter, titled “Particle swarm optimization in global path planning
for swarm of robots,” provides a detailed insight of challenges encountered during
the navigation of a collection of autonomous vehicles in a swarm environment, and
provides a solution using the PSO algorithm for an optimized, collision-free path
planning. The presence of obstacles and boundaries in the search space provides
constraints on the positional variables required by objective function, making it a
constrained optimization problem. The chapter explains various swarm intelligence
algorithms and heuristic methods, gives detailed mathematical models and graphical
explanations of PSO, specifically used for solving the problem, and finally shows its
application with an open source software. This way the chapter also contributes by
providing an example for solving constrained optimization problems similar to
portfolio optimization. The chapter serves as a different application of PSO and



will be beneficial for researchers and students to further their research in the field of
swarm intelligence.

Preface ix

In the thirteenth chapter, titled “Training multi-layer perceptron using hybridiza-
tion of chaotic gravitational search algorithm and particle swarm optimization,” a
novel hybridization strategy, namely chaotic gravitational search algorithm and
particle swarm optimization (CGSAPSO), has been used to train a multilayer
perceptron neural network for the classification task. The CGSAPSO utilizes the
intensification power of PSO and the high exploration capability of CGSA to find the
optimal regions of the solution space. The three classification datasets including
XOR, Iris, and Balloon are employed for performance benchmarking. The experi-
mental results clearly show that CGSAPSO provides better performance than peer
algorithms. Actually, this chapter will be useful to the swarm intelligence researchers
as they can apply CGSAPSO to other classification datasets including nowadays
popular chest X-ray COVID-19 image dataset and other medical datasets. Besides,
the hybridization power of CGSAPSO can be utilized for feature extraction and
engineering optimization.

In the fourteenth chapter, titled “Solving hybrid flow shop scheduling problem
with PSO: Solving hybrid flow shop scheduling problem with particle swarm
optimization algorithm,” one version of hybrid flow shop scheduling problem that
is frequently applied in real life is examined. The proposed problem includes
dynamic job arrivals, setup times, and transportation times which are encountered
in the real-life shop environment. It is in the NP-hard problem class and
metaheuristics have been preferred for solving such problems. The results depict
that PSO is highly effective for the proposed problem.

In the fifteenth chapter, “Constriction coefficient-based particle swarm optimiza-
tion and gravitational search algorithm for image segmentation,” an image segmen-
tation problem has been solved using a hybrid framework, namely construction
coefficient-based particle swarm optimization and gravitational search algorithm
(CPSOGSA). Kapur's entropy method is employed to find the optimal pixels.
Besides, four standard benchmark images from the USC-SIPI image dataset are
used for performance evaluation. The simulation results clearly convey that
CPSOGSA provides optimal values for PSNR (peak to signal noise ratio) and
mean and takes less computational time to find the feasible regions of the pixel
space. This chapter will be beneficial and practically valuable for image processing
professionals who want to utilize the efficiency and applicability of swarm intelli-
gence algorithms like CPSOGSA in solving multilevel thresholding and image
enhancement-related problems. Moreover, CPSOGSA can be employed for medical
data analysis.

The sixteenth chapter, titled “An overview of the performance of PSO algorithm
in renewable energies,” provides an expanded view of the uses of the PSO algorithm
in the field of renewable energy systems which describes how the algorithm can be
developed to cope with problems related to renewable energies to achieve desired
goals. The PSO algorithm was used to solve many problems in the renewable energy
systems, such as in optimal hybrid power systems, optimal sizing, and optimal net
present cost. The renewable energy systems have several issues to discuss, such as



the cost of investment, the feasible technical criteria, optimal control, and ecological
problems as well as the social effect. PSO algorithm uses are summarized around
three main axes: economic, technical, and control, and it has proven best capabilities
and high efficiency by reaching the optimum solutions with great convergence rate.
Studies and research have proved that the PSO algorithm is one of the best algo-
rithms used in the field of renewable energy. This is attributed to the algorithm’s
simplicity, high efficiency, and effectiveness compared to other algorithms and
optimization methods.

x Preface

Modern power systems have evolved in an increasingly highly complex system.
The liberalization of the energy market and the introduction of distributed generation
and, in particular, distributed renewable energy resources, have raised both oppor-
tunities and challenges that need to be tackled. Thus, complex issues related to the
operation and planning of the distribution systems have emerged. Such issues
involve many variables and refer to nonlinear objectives; thus, their optimization
is significantly based on heuristic techniques, such as PSO. In the seventeenth
chapter, “Application of PSO in distribution power systems: Operation and planning
optimization,” the implementation of PSO when contemplating various problems in
power systems is presented, such as the optimal distributed generation placement,
either alone or in conjunction with the optimal network configuration and the
optimal schedule of electric vehicles. In this way, an apt example of the variety of
problems for which PSO can be utilized and provide aid to important decisions in the
field of power systems is provided.

Avcılar/Istanbul, Turkey Burcu Adıgüzel Mercangöz
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Part 1
Applying Particle Swarm Optimization to

Portfolio Optimization



Chapter 1
Utility: Theories and Models

Murat Akkaya

Abstract The aim of this study is to look at utility theory from a broad perspective.
The main hypothesis in the theory of decision is that the person who is in the position
of deciding is entitled to the “economic man.” Also, the individual acts rationally.
Thus, utility is the ability to satisfy (eliminate) human needs of goods and services.
Utility is basically a psychological concept and also is the basis of economics and
finance. Three types of utility take place in the economics and finance literature:
marginal utility, total utility, and average utility. In addition, two main approaches
fall within utility comparison: cardinal utility theory and ordinal utility theory.
Furthermore, expected utility theory forms the basis of traditional finance. Expected
benefit theory assumes that people choose risky or uncertain opportunities by
comparing the expected benefits from them. Allais and Ellsberg paradoxes criticize
expected utility theory. Tversky and Kahneman (Econometrica, 47: 263–291, 1979)
present that the expected utility axioms are violated for more reasonable lottery
alternatives than in the Allais paradox and put a link between finance and psychol-
ogy. The prospect theory of Tversky and Kahneman forms the basis of behavioral
finance.

Keywords Utility · Utility theories · Expected utility · Behavioral finance

1.1 Introduction

The economic and financial system consists of individuals and institutions created
by these individuals. Individual behaviors form the basis of this system. Human has
a developed central nervous system. Individuals gather information about their
natural/social environment and the conditions that make up this framework, through
receptors and sensory nerves, and turn it into a decision or action that they think is
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best for him in his brain. All of these actions are called “mind.” Man started to
perceive the differences between the substances consumed and turned to enjoy this
action during consumption process or get pleasure. Pleasure is a motivation that
characterizes the utility that will be obtained from the energy consumption required
for the survival of human life and motivates the organism in this process. The
situation that is expressed with taste, fun, pleasure, pride, comfort, or such feelings
is defined as benefit or utility. Thus, the word “utility” is used in two different

4 M. Akkaya

meanings such as “usefulness” and “pleasure” in the history of economics.
Economists, like psychologists, are closely related to the behavior of individuals

and require them to work together to uncover a model of behavior in the economic
decision-making process and to reach some theoretical approaches. Human life
passes by making decisions, and various decisions are made every day. Some of
these are momentary and sincere and are the results of emotions. Some decisions are
taken in the long term. The important factors in making decisions vary. When people
make decisions, they try to choose the most appropriate among them by comparing
the pros and cons of the options they can evaluate. The main hypothesis in the theory
of decision is that the person who is in the position of deciding is entitled to the
“economic man” feature. With this assumption, it is accepted that the person knows
all the economic activities that can influence their own decisions in the economy, as
well as the results. It is assumed that the individual also acts rationally, that is, he or
she must keep maximization in her choices and decisions in order to maintain her
standard of living.

Utility in finance means to generate a price for a financial asset called the
indifference price, and utility functions are integrated to risk measures because risk
determines returns, especially investor’s return maximization. Portfolio optimization
is one of the financial applications of utility. Portfolio optimization is the process
where an investor chooses the best portfolio that maximizes utility function or
minimizes risk at investment at the same time.

1.2 Utility

Utility is the ability to satisfy (eliminate) human needs of goods and services. Utility
is basically a psychological concept. The use of goods to meet the needs, on the
another hand, reduces the severity of the need while also reducing the benefits
provided from each unit. The severity of the commodity determines the utility, not
the kind of need. In this case, the benefit will decrease as the amount of a good that
people have increases because as the amount of that good increases, the severity of
the need decreases. Also, utility is subjective. People consume the goods because
they are beneficial. The utility of a good varies from individual to individual. For
example, playing football very well for a football player may not be useful for
someone who does not know how to play football. Even the benefit or utility of the
same goods and services for the same person may be different at different times.



The term “utilita” is first defined by Galiani in 1750 as the capacity to form a
felicity good. Bentham (1789) defines utility as the action in which goods give
superiority, pleasure, goodness, or happiness to the beneficiary (Georgescu-Roegen,
1968). Also, Jevons (1871) defines utility as total of pleasure and prevented pain
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obtained in the use of an object. A rational choice occurs in hedonistic thought to
balance pleasure and pain, or benefit and harm.

The following are the characteristics of utility1:

• It does not possess ethical or moral significance.
• It is a psychological phenomenon.
• It is an individual and relative phenomenon.
• It is not the same with usefulness.
• It cannot be objectively measured.
• It depends on the intensity of desire.
• It differs from pleasure.
• It differs also from satisfaction.

Smith’s book, The Wealth of Nations, published in 1776, forms the necessary
infrastructure to design benefit as an economic system based on human behavior.
Smith (1937) defines utility as a motivation that leads people to action. A rational
and consistent human protects his/her own benefits or utilities. Also, in his other
book, The Theory of Moral Values, published in 1759 before The Wealth of Nations
was published, Smith says that when nature shapes people for society, it has
endowed it with a unique desire to please and dislike an original brother (brethren).
Man is in a creation that seeks the happiness of others as well as himself. Man strives
to maintain his own life. For this purpose, every decision has to take care of its own
interests. This harmony carries its own internal contradiction. Thus, economic
utilitarianism is devoted to philosophical utilitarianism because philosophical utili-
tarianism tries to find a set of rules that will ensure that individual actions are
distinguished as true or false. Economic utilitarianism, on the other hand, tries to
reach a social balance based on moral values and positive or negative emotions
created by human action within the ethical system.

Individuals look for an option that will provide them the most benefit when
making a choice; their purpose is to benefit maximization. There are six assumptions
of the utility analysis put forward by Jevons, Menger (1871) and Walras (1874).

• Individuals are rational. The rational word in the economy is that people are in
search of a combination of goods with their available resources and other
limitations that will provide the highest level of satisfaction for them.
The utility provided by the consumption of the goods can be measured. The
theory of utility is also called cardinal utility theory. Here, the word “cardinal” is

•

used to indicate that the utilities obtained from consumption can be explained
with objective and quantitative measures.

1https://www.economicsdiscussion.net/utility/utility-meaning-characteristics-and-types-econom
ics/13594.

https://www.economicsdiscussion.net/utility/utility-meaning-characteristics-and-types-economics/13594
https://www.economicsdiscussion.net/utility/utility-meaning-characteristics-and-types-economics/13594
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• The marginal utility of the last unit of a good consumed consecutively decreases
as the amount of the good consumed increases.

• As the amount of good consumed increases, the total utility to a certain point also
increases.

• Individuals’ income is limited.
• Individuals are aware of the prices of all goods and services they can buy.

1.3 Types of Utility

Three types of utility take place in the economics and finance literature: marginal
utility, total utility, and average utility.

1. Marginal utility: In the economics and finance literature, marginal utility is the
benefit of the last unit consumed. Marginal utility shows the change that each
additional unit of a good creates in the total benefit obtained from the previous
consumed units. The word “marginal” means the last unit in mathematics. Utility
is satisfaction, which eliminates the need.

The additional utility that the consumer or producer gets as he/she increases
the amount of a product consumed consecutively is called marginal utility.
Marginal utility is the difference that an additional unit of a good consumed
creates in the total utility from the previously consumed unit. In summary, it is the
benefit of the last consumed unit.

According to diminishing marginal utility, as the consumer consumes more
than one product in a row, his satisfaction (pleasure from consumption after a
certain period of time) will decrease. In other words, as the consumption amount
of any commodity is increased, the pleasure gained as a result of the consumption
of that commodity will gradually decrease.

2. Total utility: The utility obtained from all units of a good that a person consumes
in a certain period is called total utility (TU). The total utility curve increases as
the amount of consumption increases. However, when a certain point is reached,
this increase stops and starts to decrease. This stems from the marginal utility law.

3. Average utility: Average utility refers to the utility in which the total unit of
consumption of goods is divided by number of total units.

1.4 Functions of Utility

Two main approaches fall within utility comparison: cardinal unit theory and ordinal
utility theory. Cardinal unit theory argues that utility is measurable. The ordinalist or
ordinal utility theory suggests that the utility is an immeasurable phenomenon, and it
would be sufficient for individuals to list the benefits they receive from consumption
of goods.
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1. Cardinal utility theory: Bentham (1789) assumes that the value defined as
“utility” can be measured numerically (cardinal). According to Bentham, a
standard utility scale that can be applied to all people can be developed.

Assumptions2:

• Individuals are rational. It aims to maximize its benefits under the income
constraint.

• The utility of each good can be measured.
• The marginal utility of money is fixed. This assumption is necessary for

money to become a measurement standard.
• As the people consume more than a good, marginal utility gradually decreases.
• The total utility of a basket of goods depends on the quantity of goods that

makes up that basket: U ¼ f(x1, . . ., xn).

The mathematical acquisition of balance in the cardinal utility theory is as
follows:

Utility function : U ¼ f xð Þ:

If the individual buys x as much as px unit price, he makes a total payment of
(xPx). The purpose of the individual is to maximize the difference between the
benefit received from the consumption of the good and the expenditure made.

maxU xð Þ - xPxð Þ:

For the maximum, the first-order partial derivative with respect to x is set to
zero (first-order condition):

∂U xð Þ
∂x

- ∂ xp x

( )
∂x

¼ 0 ! ∂U xð Þ
∂x

¼ p
x

∂U xð Þ
∂x

¼ p
x

or U
x
¼ p

x
:

The marginal utility of good x is MUx or Ux.
2. Ordinal utility theory: Ordinal utility theory assumes that benefit is an immea-

surable magnitude. The assumptions of the cardinal utility theory that are far from
reality and based on coercion have been criticized by economists, and these
economists have stated that the idea of numerical measurement of the concept
of abstract benefit is unrealistic. Thereupon, a more appropriate approach, ordinal
utility theory, has been developed.

Assumptions:

2https://abs.cu.edu.tr/Dokumanlar/2016/EAS223/833448774_mikro_iktisat_i.pdf.

https://abs.cu.edu.tr/Dokumanlar/2016/EAS223/833448774_mikro_iktisat_i.pdf


• Individuals are rational. They try to maximize benefit when income and prices
are data.

• Utility is ordinal. In other words, an individual puts the goods in a preference
order according to the benefits (satisfaction) obtained from the goods
consumed.

• Preferences are listed in terms of indifference curves, which are supposed to be
convex by origin. Indifference curves have a negative and increasing slope.
The negative sign of the indifference curve slope is called the marginal
substitution rate. The theory of indifference curves is based on the reduced
marginal substitution rate axiom.

• The benefit of the person depends on the amount of good consumed:

U ¼ f q1, q2, q3, ::, qnð Þ:

One of the points that neoclassical economics emphasizes is the rationality
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principle borrowed from classical economics. This principle states that people are
rational in measuring the benefits provided to them by different goods and in
determining their needs in their pain and pleasure. This point of view is taken
from Bentham’s utilitarian philosophy. Simon (1947, 1957) is one of the first critics
of the rational individual and the rational economic model with the proposition of
limited rationality. Another researcher who emphasizes irrational behavior patterns
is Allais (1953), a French economist. Allais argues that the decisions made cannot be
linear and individuals act irrationally when choosing among possible alternatives, in
situations where there is a lack of information and during evaluations that prevent
stereotyped rational preferences. Langer (1975) states that irrational decisions
emerge as a result of behavioral bias, which is illusion of control. This is an element
that causes individuals to take high levels of risk. The framework describing the
uncertainty and risk in economics and finance is the expected utility theory.

1.5 Expected Utility Theory

Expected utility theory, first formulated by Bernoulli (1954) and developed by John
Von Neumann and Oskar Morgenstern in Theory of Games and Economic Behavior,
forms the basis of traditional finance. According to this theory, human is a rational
being. A rational person or an economic person (homo economicus) refers to a
hypothetical person acting in his own interest, purposed to maximize the benefits
while making his decisions, free from emotions. According to the expected benefit
theory, people choose risky or uncertain opportunities by comparing the expected
benefits from them (Kıyılar & Akkaya, 2016).

The basis of the theory of Von Neumann and Morgenstern is the maximization of
the expected utility. The person with 100 USD has the chance to win 10%, and the
expected utility is 0.10 × 100 USD ¼ 10 USD. Von Neumann and Morgenstern



have applied this to optimal decision-making in the case of uncertainty. In the
options of earning 100% with a rate of 25% and 1.000% with a rate of 10%, a
rational individual will choose the second option (0.25 × 100 ¼ 25 USD, while
0.10 × 1.000 ¼ 100 USD).

The event that enables Daniel Bernoulli (1700–1782), who first introduced the
concept of expected benefit, to develop this concept is the St. Petersburg paradox.
The St. Petersburg paradox is a problem that questions how much participation fee
must be paid to participate in the game played with a coin. Daniel Bernoulli argues
that people act to maximize expected utility rather than expected income. By
suggesting a logarithmic function of the expected utility of the paradox, he proposes
that the utility increase, which would follow an equal increase in income, would
decrease. However, it could not provide a rational study on how to measure benefit
(Schoemaker, 1982).

Von Neumann and Morgenstern (1944) assume that individuals have made a
decision to purchase, taking into account the future utilities they will derive from the
consumption of goods or services. Moreover, this utility has a predictable quality
only according to certain possibilities. Therefore, utility has been replaced with the
expected utility function, arguing that the utility function under risk status is not
sufficient to explain consumption decisions. This work has taken its place in the
literature as an important step in economics as a pioneer of modern demand theories
based on the expected utility function, which replaces the traditional demand
theories based on the utility function.

The expected utility theory has four goals (Bailey, 2002):

• Expected utility theory can be used to model the decision process that includes the
risky selection.

• Expected utility theory is seen as predictive and positivist in economics and
finance.

• This theory is optimal provided that the observed human behavior is modeled
under appropriate conditions.

• Expected utility theory is a normative model and assumes that human behavior is
generally semi-optimal.

Von Neumann and Morgenstern’s anticipated utility theory has four basic prin-
ciples (Hanson & Kysar, 1999):

• Ordering: An individual who has to choose between two alternatives may have to
choose one or be uninterested in alternatives. All preferences are transitive. If a
person prefers A over B and prefers B over C, he will choose A over C as well.

• Continuity: Each B preference is not different according to A and C preferences.
• Independence: An individual’s preference will not change even when these two

things are replaced by a significant game of chance. If someone prefers A over B,
the probability of winning A with a 50% probability will prefer the probability of
winning B with a 50% probability.

1 Utility: Theories and Models 9
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• Invariance: Different presentations of the same decision problem will result in the
same choice. No matter how the problem is presented, the decision will not
change.

Von Neumann and Morgenstern (1944) define the expected utility as the value
found by multiplying a possible utility from a decision or event by the probability of
the event. It is assumed that there is a utility function (u) consisting of the results
(x) that each individual will achieve in the formulation. Let us assume that the
probability of an action that will result in x is p and the probability of action b that
will lead to the same result is q (Kıyılar & Akkaya, 2016).

p . U xð Þ > q . U xð Þ ise,

that is, if the expected utility of action a is greater than the expected utility of action
b, the decision maker will definitely prefer action a. In this case, it is assumed that
decision makers know the probability of different events and take the decision that
maximizes its utility.

The total expected utility to be obtained if the basket of goods or services is
selected is calculated according to the following formula. The individual in the risk
environment prefers the alternative with the highest expected utility calculated from
this formula from the baskets of goods or services (m).

ϕ yð Þi ¼
Xn

k¼1
P y

i
k

( )
ϕ y

i
k

( )
i ¼ 1, 2, . . . ,m

The expected utility approach of Von Neumann and Morgenstern is different
from Daniel Bernoulli’s because Von Neumann and Morgenstern prove for the first
time by rationalizing a rational choice based on the expected utility maximization.
The expected utility theory assumptions are as follows.

• When people encounter a situation of uncertainty, using the Bayes theorem, they
determine the “objective possibility” of the realization of this situation. While
doing this process, they do not show bias about any option.

• Much is better than less. If A benefits more than B, the decision maker will
definitely choose A over B.

• The decisions taken are consistent. If A benefits more than B, and B benefits more
than C, the decision maker will prefer A if he/she chooses between A and C.

• After determining the probabilities of the uncertain events faced by people when
making a decision and calculating a row within the utility function, the ultimate
goal of the decision maker is to maximize his/her utility, and for this, he or she
chooses the preference that provides that purpose in the options.

• This utility function is dish shaped. In other words, it shows that the “decreasing
marginal utility rule” is valid.

The axioms of expected benefit maximization are:
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• Completeness: If X and Y are two commodity baskets, X is at least as good as Y,
or Y is as good as X, or both are valid.

• Transitivity: If X and Y are two baskets of goods, if X is at least as good as Y and
Y is at least as good as Z, then X is at least as good as Z.

• Independence: Suppose that X, Y, and Z are three lots. If we confuse the two lots
with the third, the order of preference of these two quotes is not dependent on the
third and is independent of it.

• Continuity: Preferences are continuous.

The axioms above are necessary and sufficient to verify that the preferences listed
according to their expected utility match exactly with the real preferences of
individuals (Schoemaker, 1982) and expected utility maximization and decision-
making approaches reached their peak with the work of Leonard Savage.

The expected utility theory is concerned with the issue of decision-making at risk.
This theory is considered as the normative model in rational decision-making.
Making decisions at risk can be seen as a choice between expectations and gambling.
The individual prefers the option that gives him the highest benefit. This theory has
three basic principles (Tversky and Kahneman 1979):

• Expectation: U (x1p1, . . ., xnpn ¼ p1 u(x1) + ⋯ + pnu(xn). Accordingly, the total
utility (U ) of an option is equal to the expected utility of the results.

• Asset integration: Expectations are accepted if the utility of the individual is more
than the utility of the asset before the acceptance of this option, in the event that it
is combined with the assets previously owned. So the basis of the utility function
is the ultimate state of the individual rather than gains or losses.

• Risk avoidance: Individuals will prefer options with certain outcomes rather than
risky options. According to this theory, the risk aversion is equal to the concave
state of the utility function.

Expected utility theory states that individuals try to maximize the expected
benefit of choices among risky options, and for this purpose, they compare the
benefits of each result with their probabilities and prefer the highest weighted option.
But the basis of the objections to the expected utility theory lies in the fact that the
observed human behavior is different from the theory or assumptions. The first
important criticism of the theory is brought by Allais (1953), who received the Nobel
Prize in economics in 1988. The criticisms known as the “Allais paradox” reveal that
individuals weigh the expected results of the lotteries and the possibilities related to
these results. The utilities obtained in the expected utility theory are found by
weighting with probabilities. People weigh more on realization than actual results,
which is called certainty effect. This is a phenomenon opposite to the principle of
independence in the expected utility theory. Ellsberg (1961) and many researchers
have revealed with empirical studies that the expected utility axioms are systemat-
ically violated. In the Ellsberg paradox, selection is made between a known situation
and an unknown situation. The Allais paradox has been ignored for a long time,
suggesting that it is just an extreme example. However, Tversky and Kahneman
(1979) show that the expected utility axioms were violated for more reasonable



lottery alternatives than in the Allais paradox. This article of Kahneman and
Tversky, published in Econometrica in 1979, is accepted in the literature as the
beginning of behavioral finance. Kahneman and Tversky’s work in the field of
judgment and decision-making started a new era in finance. These studies form a
link between finance and psychology. The prospect theory of Kahneman and
Tversky forms the basis of behavioral finance.

12 M. Akkaya

1.6 Conclusion

In traditional economics, utility is divided into two: ordinal utility, which cannot be
measured, and cardinal utility, which can be measured. Economists (cardinal bene-
ficiaries) who argue that the benefit can be measured accept that every good or group
of goods can be measured in a certain utility unit. Cardinal utility theory is based on
three basic concepts, namely, marginal utility, total utility, and diminishing marginal
utility. The utility maximization assumption is based on Bentham (1789). In the
original use of Bentham, utility is expressed as the experience of pain and pleasure
and emphasizes what to do besides what we will do.

The expected utility theory is also widely used in modeling preferences related to
risky alternatives in many areas where economic, financial, and uncertain decision
processes are examined. However, this theory is far from unproblematic. Findings
from experimental studies in economics have shown that the axioms of the expected
utility theory are violated systematically in real life. In other words, this theory
cannot adequately explain people’s decision-making processes.

Utility has a hidden feature, and this concept finds its place as the utility
experienced in the work of Daniel Kahneman in the field of behavioral economics.
Although the concept of utility has changed since Bentham’s era, it is used by many
economists as the concept of decision utility. Future studies should be on the hidden
side of utility.

Key Terms and Definitions
Utility: Utility is the ability to satisfy (eliminate) human needs of goods and

services. The term “utilita” is first defined by Galiani in 1750 as the capacity to
form a felicity good. Bentham (1789) defines utility as the action in which goods
give superiority, pleasure, goodness, or happiness to the beneficiary (Georgescu-
Roegen, 1968). Also, Jevons (1871) defines utility as total of pleasure and
prevented pain obtained in the use of an object.

Cardinal utility: Bentham (1789) assumes that the value defined as “utility” can be
measured numerically (cardinal). According to Bentham, a standard utility scale
that can be applied to all people can be developed.

Ordinal utility: Ordinal utility theory assumes that benefit is an immeasurable
magnitude.



Expected utility: The expected utility is the result obtained by multiplying the
potential utility, which is the result of a decision under uncertainty, by the
probability of the event taking place.

Expected utility theory: All individuals who follow a rational utility optimization
process calculate the probability of occurrence for each event in the case of
uncertainty by Bayesian methods. The expected utility is maximized by multi-
plying the expected probabilities from the events with the calculated probabilities.

1 Utility: Theories and Models 13
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Chapter 2
Portfolio Optimization

Burcu Adıgüzel Mercangöz

Abstract In portfolio management, it is aimed to create a portfolio that gives the
best combination of risk and return among the assets in the market. There are
different optimization techniques for creating an optimum portfolio depending on
the risk and return variable. Particle swarm optimization (PSO) method is one of the
important and useful techniques used in portfolio optimization in finance. In this
chapter, Markowitz mean-variance model, which is the main model of modern
portfolio theory, is explained, and mathematical representations are given. The
subject is supported with mathematical notations by mentioning concepts such as
portfolio risk and return, efficient frontier, utility theory, asset allocation, indiffer-
ence curves, Sharpe ratio, and coefficient of variation.

Keywords Markowitz mean-variance model · Efficient frontier · Sharpe ratio ·
Coefficient of variation · Utility theory · Asset allocation · Indifference curves

2.1 Basic Concepts: Risk and Return

The purpose of portfolio management is to form a portfolio from different assets, and
this portfolio gives the highest possible return at a given risk level. Portfolio
managers try to form portfolios that allocate funds optimally to stocks, bonds, and
other assets, so the portfolio of which is well diversified and provides the highest rate
of return at the lowest possible level of risk or the lowest level of risk at the highest
possible rate of return. The concept of risk and return is crucially important for
decision-making in finance.

Since the main subject of this book is portfolio optimization with particle swarm
optimization (PSO) technique, in the first chapter of the book, the mathematical
models used in solving the portfolio optimization problem are discussed. The basics
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of Markowitz modern portfolio theory are explained as well as how effective
portfolios are selected with the help of utility theory and indifference curves.
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2.2 Risk and Return

The assets in a portfolio can provide two types of returns. The first one is the capital
gain obtained by changing the price of the financial instrument in the market. In
other words, capital gain/loss arises by the increase/decrease of an asset price. The
second is the interest provided by fixed income instruments. In addition, dividends
can be given by stocks.

Risk is the probability of the actual return of an investment to differ from the
expected return. In other words, the risk represents potential negative impacts on
securities.

When one measures a rate of return of an asset after it was earned, it means a
historical return is measured. However, investors are more interested in the return
that an investment is expected to earn in the future. The expected return is the return
to be obtained from any asset after a certain period of time in a risky world. When it
is mentioned about the expected return, this is a return on a risky asset expected in
the future. Expected return can be measured using both ex post and ex ante variables.
If the assumption is that past returns are the best estimates for the future return
expectations, the expected rate of return may be measured by historical returns. It is
called ex post returns, and the expected return E(r) is calculated by taking the
arithmetic average of a series of historical returns as below:

E rð Þ ¼
Pn
i¼1

rið Þ
n

Ex post return calculation ð2:1Þ

The historical returns can be also calculated as logarithmic.

E rtð Þ ¼ ln pt=pt–1ð Þ Logarithmic historical return ð2:2Þ

where pt is the price of the asset at time t.
Besides, expected returns can be based on the possibilities of potential incomes/

outcomes. The likelihood of certain outcomes determines the expected returns. This
is calculated as follows:

E rð Þ ¼
Xn
i

ri * pi Ex ante return calculation ð2:3Þ

ri : The return in each outcome
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pi : Possibilty of each outcome

Risk is defined as a deviation from expectations and mathematically measured by the
standard deviation. However, there are different measurement methods of risk. For
instance, lower partial moment, mean absolute deviation measures, range, and semi-
variance are also used for risk measurements.

The variance of a variable is the expectation of the sum of the squared deviations
from its mean; also, the square root of the variance represents the standard deviation
of the variable. As with the return measurement, two data can be taken as a base for
risk measurement: ex post and ex ante variables.

Var rið Þ ¼ σ2i ¼
P

ri – ri½ ]2
n– 1

Ex post risk calculation ð2:4Þ

Var rið Þ ¼ σ2i ¼ ri – E ri
2ð Þ * pi½ ] Ex ante risk calculation ð2:5Þ

Std rið Þ ¼ σi ¼ Var rið Þ 1=2½ ] Standard deviation ð2:6Þ

2.3 Markowitz Mean-Variance Portfolio Theory
and Diversification

In traditional portfolio management, it is predicted that the risk level can be reduced
by only increasing the portfolio size, regardless of the relationship between the
returns of different assets in the portfolio. On the other hand, the Markowitz
mean-variance model imposes that only increasing portfolio asset number is not
enough to reduce the portfolio risk level; the direction and the degree of the
relationship between the assets are also important (Markowitz, 1952). According
to the Markowitz portfolio, by adding new assets to a portfolio, investors can reduce
risk, but the correlation coefficients of assets must be lower than 1. However, the
portfolio’s expected rate of return is always estimated as the weighted average of the
expected rate of returns of each asset. In that way, Markowitz is the first who shows
that diversification reduces the variance of a portfolio (Adigüzel Mercangöz &
Eroğlu, 2019; Adiguzel Mercangoz, 2019).

The model has some assumptions. It is assumed that investors in financial markets
are risk-averse. The risk-averse investors are investors that choose the less risky
choice when they are given two assets that have the same expected return. They are
rational and homogeneous expectations. A rational investor prefers a portfolio that
has better expected return between alternatives at a given risk level. (Chen et al.,
2010)

According to the modern portfolio theory, portfolio return is the weighted average
of all expected rate of returns, and the general formula of the expected return of a
portfolio E(rp) for n assets is the following:
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E rPð Þ ¼
Xn

i¼1
wi * E rið Þ Portfolio return ð2:7Þ

where:Pn
i¼1wi¼1.0

n ¼ the number of assets in a portfolio
wi ¼ the weight of each assets
ri, rP ¼ the return on asset i and the return on portfolio p
E() ¼ expectation of a portfolio return or asset return
The variance of a portfolio, portfolio risk, is estimated by multiplying the weights

and covariances of all assets in the portfolio:

Var rp
⎧ ⎫ ¼ σ2p ¼

Xn

i¼1

Xn

j¼1
wi * w j * Cov ri, r j

⎧ ⎫
Portfolio variance ð2:8Þ

The calculation of a variance of a portfolio includes covariance term. Covariance
(Cov) is the measure of how much two variables change together. In other words, it
is a statistic that examines the changes of two random variables together. It is one of
the important concepts in portfolio theory.

The covariance is estimated by taking the average of the cross product of their
deviations.

Cov ri, r j

⎧ ⎫ ¼
Pn
i¼1

ri – E rið Þð Þ * r j – E r j

⎧ ⎫⎧ ⎫

n– 1
Portfolio covariance ð2:9Þ

Covariance is also calculated by correlation coefficient:

Cov ri, r j

⎧ ⎫ ¼ ρij * σi * σ j ¼ σij Portfolio covariance ð2:10Þ

ρij represents the correlation coefficient between returns of two assets: asset i and
asset j.

The correlation coefficient ranges between +1 and –1. The sign of correlation
coefficients represents the direction of the movements of two asset returns at a given
moment. The sign of the correlation coefficient is more important than the magnitude
of it. High positive sign shows that asset returns are moved in the same direction; that
is, an increase/decrease in one return of an asset leads to an increase/decrease in the
other asset return. Oppositely, a negative sign indicates that asset returns are moved
in different direction. An increase/decrease in return of an asset leads to a decrease/
increase in the other asset return (Adigüzel Mercangöz & Eroğlu, 2019).

Var rp
⎧ ⎫ ¼

Xn

i¼1

Xn

j¼1
wi * w j * ρij * σi * σ j Portfolio covariance ð2:11Þ
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2.4 The Markowitz Efficient Frontier

According to the Markowitz mean-variance model, a single optimum portfolio is not
determined. Rather, in this model, a set of effective portfolios that are optimum at a
certain level of return and risk is determined. The reason that the total risk of a
portfolio is not equal to the average of the risks of all assets in the portfolio is the
covariance resulting from the different reactions of the assets in the portfolio.

Therefore, the “number of assets in the portfolio,” which is expressed as the basic
factor determining the portfolio risk in the traditional portfolio theory before Mar-
kowitz, has been replaced with the “the covariance between returns of assets in the
portfolio” in the modern portfolio theory.

Regarding the modern portfolio theory, as long as the correlation coefficient
between two assets is less than 1, the standard deviation of a portfolio being formed
of these two assets is less than the weighted average of the standard deviations of two
assets.

In Markowitz portfolio theory, firstly, “effective portfolios” with higher expected
return rates than others are determined at each risk level, and all investable assets are
determined for a rational investor, and then the selection among these assets is
determined by risk-expected return preferences (risk attitude). Given a certain
level of risk, the entire set of portfolios whose expected return reaches its maximum
value is called “the Markowitz efficient frontier.”

The main assumption of Markowitz is that investors are risk-averse. Therefore,
they choose the portfolio that yields the highest expected returns at a given level of
risk. This means that investors choose a portfolio that is on the efficient frontier.
Where they choose a portfolio on the efficient frontier depends entirely on their risk
attitudes.

Efficient frontier represents portfolios that give the highest expected rate of return
at a certain risk level. When it is plotted risk and returns of each possible asset’s
portfolio combinations in the risk-return graph it can be gotten Fig. 2.1. The portfolio
set that investors can invest in, consisting of all possible combinations of assets in the
market, is known as opportunity set (feasibility set). The line along the upper edge of
the opportunity set is called “efficient frontier.” This line indicates the portfolio set
that gives the highest expected rate of return for each portfolio risk level. According
to the theory, people choose portfolios at the efficient frontier because they are risk-
averse. People have homogeneous expectations.

MVP refers to the “minimum variance portfolio,” which means that there are not
any other portfolio that has a lower risk at this point. The efficient frontier starts at the
MVP point and continues to give the set of portfolios with maximum return.
Portfolios that are under the MVP point in the figure are inefficient; therefore, they
have to be rejected out of hand.



20 B. A. Mercangöz

Fig. 2.1 Opportunity set and efficient frontier. Source: Drawn by the author

2.5 Different Types of Risks

According to the modern portfolio theory, risk can be decreased by diversification.
However, only nonsystematic risk can be reduced by portfolio diversification.
Investors face two groups of risks: systematic and nonsystematic risk. Unsystematic
risk (unique risk) is an existing risk associated with a specific financial asset.
Financial risk, operational risk, management risk, and sector risk are in the
nonsystematic risk group and can be reduced by diversification.

If systematic risk (market risk) is a negative situation that may arise in economic,
social, or political conditions, portfolio returns decrease since all assets in the market
may be affected negatively. Therefore, it is not possible to eliminate market-specific
risks that are not related to the asset. Inflation risk, currency risk, and interest rate risk
are some examples of systematic risk.

When the number of assets in a portfolio is increased, only the diversifiable risk
can be eliminated. Therefore, there should be only left market risk in a well-
diversified portfolio.

While the asset numbers are increasing in a portfolio, their variances become
completely insignificant. Only the covariance part remains. Thus, the portfolio
variance becomes only the average covariance. This concept can be explained by
covariance matrix in Table 2.1.

In this variance-covariance matrix, there will be:



1 2 3

n
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Table 2.1 The number of “n”
assets variance-covariance
matrix

. . . n

1 x21σ
2
1 x1x2Cou12 x1x3Cou13 . . . x1xnCou1n

2 x1x2Cou12 x22σ
2
2 x2x3Cou23 . . .

3 x1x3Cou13 x2x3Cou23 x23σ
2
3 . . .

. . . . . .

. . . . . .

. . . . . .

x1xnCou1n x23σ
2
3

n2 – n ¼ Xn * Xn * Counn
N ¼ X2*

n σ2n

Then variance of portfolio will be:

1
n

⎧ ⎫2

n2 – n
⎧ ⎫

Counn þ 1
n

⎧ ⎫2

n σ2n
⎧ ⎫
1– 1

n
Counn þ

⎧ ⎫1
n

σ2n

When n goes to infinity (1), 1/n will be zero; then the above formula will be only
Counn. This means variance of portfolio will be just covariance when n goes to
infinity.

While the asset numbers in a portfolio go toward infinity, the portfolio
variance will consist of only covariance.

Variance of portfolio ¼ Covariance when n!
goes

1
⎧ ⎫

The consequences of this inference are important. When the number of assets in a
portfolio is increased, their variances become completely insignificant. Only the
covariance (Cou) part remains. Thus, the portfolio variance becomes the average
covariance

⎧ ⎫
Cou (Fig. 2.2).

Total risk of individual asset ¼ Portfolio riskþ Diversifiable risk

Var ¼ Couþ Var – Cou
⎧ ⎫

In Markowitz portfolio theory, investors are assumed as risk-averse and have
homogeneous expectations. Therefore, they create portfolio depending on both
expected rate of return and the standard deviation of return as a risk measure.
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Fig. 2.2 Portfolio risk and number of asset relation. Source: Drawn by the author

Based on assumptions, the problem of portfolio selection is described as minimizing
the standard deviation of the investment (portfolio risk) concerning a given portfolio
return or maximizing the return concerning the standard deviation of the investment
(portfolio risk). This means that the optimal portfolio is obtained by holding
portfolio return constant and solving for the proportion elements (wi) that minimize
the standard deviation of the portfolio or, alternatively, holding portfolio standard
deviation constant and solving for the proportion elements that maximize the
expected return.

When portfolios contain “n” assets, the objection function and the constraints will
be as follows (Kendal & Yan, 2005):

Min σ2p ¼
Xn

i¼1

Xn

j¼1
wi * w j * ρijσiσ j Minimizing portfolio variance ð2:12Þ

The variables in the equation are previously defined in Eq. (2.10).
Subject to w1 + w2 + . . + wn ¼ 1

Xn
i

Wi ¼ 1

0 ≤ Wi ≤ 1 i ¼ 1, 2, . . . n

By using this minimization equation, the minimum portfolio variance is estimated
for any certain level of portfolio return. While solving this minimization formula at a
given point of return level, it should be subjected to the constraint that the sum of the
weights to one.
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One of the criteria used in selecting the portfolio with different expected returns
and risk levels in portfolio management is the coefficient of variation. The coeffi-
cient of variation (CV) is defined as the risk undertaken for each unit return. The CV
is estimated by dividing the standard deviation (risk) by return. A financial asset or a
portfolio with a low coefficient of variation is preferred over another. The formula is
shown as follows:

Minimizationð Þ Coefficient of variation CVð Þ ¼ σp
E rp
⎧ ⎫ :

Similar to the coefficient of variation, another criterion used in the selection of
assets or portfolio is the Sharpe ratio. It is also called “reward to volatility.” The
Sharpe ratio is calculated by dividing the expected return over the risk-free interest
rate by the risk. An investor who is assumed to be indifferent to risk prefers the asset
with the highest Sharpe ratio among different investment alternatives. The Sharpe
ratio is calculated using the following formula:

Maximizationð Þ Sharpe ratio Reward to volatilityð Þ ¼ E rp
⎧ ⎫– r f

σp

r f ¼ risk– free rate of return

After determining the most effective portfolios among all the assets available in
the capital market, revealing the expected rate of return-risk preferences derived
from the specific utility functions of the investors with the indifference curves
answers the question of which portfolio is the optimal portfolio for each investor.

Therefore, the portfolio optimization problem can also be solved by minimizing
the coefficient of variation or maximizing the Sharpe ratio.

2.6 Asset Allocation

Investors who have different risk attitudes will take different positions in a given
opportunity set. An investor who avoids risk will take positions at lower points on
the X-axis. That is, it will hold the portfolio with a lower standard deviation and also
a lower expected return. An investor who is a risk-taker (risk lover) will take
positions at higher points on the X-axis. Regardless of what kind of investors they
are, they want to take positions with highest utility. Based on a specific risk level, the
point that gives the maximum utility will be on the efficient frontier.

The expected utility of a portfolio depends on its expected return and risk level
(Bodie, Kane, & Marcus, 2010).
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U ¼ E rð Þ – 0:0005 * A * σ2

A: Coefficient of risk aversion
A: 0 ¼> Risk neutral investors
Increasing A means higher level of risk aversion.
Utility is inversely proportional to risk but directly proportional to expected return

of an asset:

E rcð Þ ¼ r f þ y * E rpÞ – rp
⎧ ⎫⌈ ⌉

σ2c ¼ y2 * σ2p

If relevant variables are put into the utility formula:

U ¼ E rð Þ – 0:0005 * A * σ2,

this utility formula will be as follows:

max yð Þ U ¼ r f þ y * E rp
⎧ ⎫– r f

⌈ ⌉– 0:005 * A * y2 * σ2p

According to this formula, there is a risky asset ratio that makes the maximum
utility according to A (according to a certain risk attitude.)

For instance, at a given data of 7% risk-free rate, 22% standard deviation, and
15% expected return, one solves the formula for the A ¼ 4; one can get y ¼ 0.41
which shows the proportion of the risky assets that maximize the utility (Fig. 2.3).

The maximization problem is solved by taking the derivative of the statement as
zero. Doing this and solving for y provides the optimal position in opportunity set for
the risk-averse investors between all risky assets.

y* ¼ E rp
⎧ ⎫– r f

0:001 * A * σ2p

This shows that the optimal risky portfolio is directly proportional to the risk
premium offered by the risky asset and inversely proportional to the risk level.

y* ¼ %15–%7
0:001 * 4 * 222 ¼ 0, 41

E rð Þc ¼ 7%þ 0:41 * 15%– 7% ¼ 10:28%½ ]
σc ¼ 0:41 * 22% ¼ 9:02%

Risk premium for complete part ¼> E(rc) – rf ¼ 10.28% – 7% ¼ 3.28%
Reward to variability ratio ¼> 3:28%

9:02% ¼ 0:36



2 Portfolio Optimization 25

Fig. 2.3 Utility function. Source: Redrawn by the author (Bodie et al., 2010)

The utility formula allows us to draw the indifference curves. When it is solved
the formula continuously for different risk levels, estimated expected returns will
provide the same benefit. When all these combinations are given in the chart,
indifference curves will appear (Fig. 2.4).

The risk-taker (risk lover) investor who is more willing to take a risk has
shallower indifference curves than the risk-averse investor who is not so willing to
take a risk. Shallower curves mean that the investor takes a high risk and so expects a
high return to compensate for an increase in portfolio risk.

The point where the indifference curve touches the efficient frontier will give the
effective portfolio that maximizes the utility.

2.7 Conclusion

The global financial markets offer many investment instruments options around the
world for those who want to invest. It is crucially important for investors to create
optimal portfolios between huge numbers of financial assets. Therefore, creating
optimal portfolios using various methods has been studied for many years in finance.
The selection of assets to be included in the portfolio and the proportion of these
assets to be kept are a matter of portfolio management. A portfolio manager should
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Fig. 2.4 Different indifference curves and efficient portfolio. Source: Drawn by the author

choose the optimum portfolio between all opportunity sets. There are many tech-
niques and methods to create an optimal portfolio. PSO technique is one of those,
which is used to determine an optimal portfolio.

Since the main subject of this book is portfolio optimization with PSO technique,
this chapter focuses on the basic concepts of portfolio optimization. Mathematical
calculation methods of portfolio risk and return are given, and the logic of diversi-
fication is explained. The criteria to be taken into consideration when choosing the
optimum portfolio are mentioned.

According to the modern portfolio theory, the correlation coefficient between the
expected returns of the assets in the portfolio should be less than one in order to
reduce the risk with diversification. The risk-return area created by the portfolios
consisting of possible combinations of all assets in the market constitutes an
opportunity set. Investors will prefer a portfolio at the top line of this opportunity
set, as they expect the highest return at a given risk level. In other words, portfolios
that yield the highest returns at a certain risk level are effective portfolios, and this
top line is called the efficient frontier. At what point investors will stand on
the efficient frontier depends entirely on their risk attitude. These are the portfolios
at the point where the indifference curves that maximize the utility are tangent to the
efficient frontier. In summary, after determining the most effective portfolios among
all the assets available in the market, revealing the expected rate of return-risk
preferences derived from the specific utility functions of the investors with the
indifference curves answers the question of which portfolio is the optimal portfolio
for each investor.
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Chapter 3
Behavioral Portfolio Theory

Murat Akkaya

Abstract The aim of this study is to explain behavioral portfolio theory in a
theoretical way. The study starts with the definition of portfolio which is a financial
asset that consists of various securities such as stocks and bonds and derivative
products, held by a particular person or group. Also, portfolio management is the
management of securities according to investors’ returns and risk targets. There are
two basic portfolio management theories in finance literature. The first is the
traditional portfolio (simple diversification) approach based on the diversification
of securities. The second is the modern portfolio theory, which is based on a more
mathematical basis. Modern portfolio theory mathematically shows the measure-
ment of the risk and return of a portfolio of two or more securities and the
determination of optimal portfolios. Markowitz’s mean-variance model is the first
mathematical explanation of the idea of diversifying investments and is the corner-
stone of many risk models developed such as capital asset pricing model and
arbitrage pricing model in later years. The empirical studies reveal that investors
do not act rationally as financial models assume and anomalies occur. Thus, behav-
ioral finance tries to fill the gap in this area and states that investors should be
considered “normal” rather than rational. Prospect theory developed by Kahneman
and Tversky (1979), brings psychological explanations to finance issues. Mental
accounting in behavioral finance prevents the rule of taking into account the corre-
lation between the returns of an investment. Also, herd behavior of investors distorts
the efficiency of the markets and leads to volatility in financial markets. When
investors show herd behavior, they do not care about the information received and
tend to imitate other investor behavior. Behavioral portfolio theory (BPT) emerged
as a descriptive alternative to Markowitz’s mean-variance portfolio theory. BPT
connects two issues, the creation of portfolios and the design of securities. There are
two versions of the BPT model: single mental accounting (BPT-SA) in which the
portfolio is integrated into one mental accounting and multiple mental accounting
(BPT-MA).
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3.1 Introduction

Individual and corporate investors trade stocks, bonds, warrants, bills, repo, foreign
currency, gold, etc., in financial markets. They create portfolios by investing in
different assets. Portfolio means literally a wallet. Portfolio refers to all of the
securities held by investors or used on behalf of the investor. In terms of finance,
the portfolio refers to a cluster of securities and is defined as the new financial asset
created by combining multiple financial assets. Portfolio is a financial asset that
consists of various securities such as stocks and bonds and derivative products, held
by a particular person or group. Various portfolios can be created according to
investors’ different returns and risk preferences. The important thing here is the
preferences of the investor.

The rational investors try to achieve the highest return together with the risk level.
The investor needs to consider the nonsystematic risk as well as the systematic risk
during portfolio creation and evaluation. In this respect, the importance of portfolio
management becomes apparent. Portfolio management is a system of continuing and
updating the evaluation of the success of investors’ goals, preferences, and con-
straints determined and resolved under this information by monitoring the portfolio.
Also, portfolio management is the management of securities according to investors’
returns and risk targets. The portfolio manager tries to provide the expected return to
the portfolio owner or investor with the necessary diversification at an acceptable
risk level. The aim of portfolio management is to reduce the risk through diversifi-
cation. In finance and markets, this situation is defined as “not putting all of the eggs
in one basket.”

In the portfolio management process, requirements are:

• Determination of investment policies according to the investor’s preferences.
• Development of investment strategies in market conditions.
• The values of investment instruments and the constant consideration of the

investor.
• Making changes in portfolio composition according to changing conditions.
• To keep customers informed.

This process includes a sequential analysis when making decisions. In the
portfolio selection process, as a result of the analyses made during the portfolio
planning and investment analysis phase, the financial instruments to be included in
the portfolio are selected. Portfolio management is a dynamic process. The success
of the portfolio needs to be measured in certain periods. Thus, the achievement of the
targets determined at the beginning of the investment process is evaluated. It is
determined whether there is a need to make a change in the portfolio content.

There are two basic portfolio management theories in finance literature. The first
is the traditional portfolio (simple diversification) approach based on the
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diversification of securities. The second is the modern portfolio theory, which is
based on a more mathematical basis. The traditional portfolio approach lasted until
1952 when Harry Markowitz’s modern portfolio management approach emerged.

3.2 Traditional Portfolio Management Approach (Simple
Diversification)

The traditional portfolio management approach (simple diversification) was widely
used until the 1950s. Although this approach has no scientific basis, there is ease of
implementation. Here, it aims to provide maximum return and distribute the risk. In
the traditional portfolio management approach, securities selection and simple
diversification are made according to different sectors. In addition, numerical
methods are not included in the selection of securities. It is assumed that a diversi-
fication of securities of businesses in different sectors will have a positive effect
(Kıyılar & Akkaya, 2016).

Traditional portfolio theory is based on simple diversification. The correlations
between the returns of the securities in the portfolio are not considered, and it is
foreseen that the risk level will be decreased by increasing the number of securities in
the portfolio. The purpose of creating a portfolio is to distribute the risk. The returns
on the securities that make up the portfolio will not move in the same direction, so
the risk of the portfolio will be less than the risk of a single security. Based on this
principle, the traditional portfolio theory is based on the principle of increasing the
number of securities in the portfolio. The purpose of portfolio management is to get
the highest utility from portfolio investments. According to the traditional portfolio
approach, the utility can be obtained by the highest return from the securities
portfolio at the highest acceptable risk level. The investors’ risk attitude determines
the content of the portfolios.

The traditional portfolio approach has many criticisms. This portfolio manage-
ment has some drawbacks. These drawbacks are:

• Inclusion of securities in the portfolio that do not provide the required return
regardless of risk.

• Managerial difficulties of the portfolio with many securities.
• Increasing analysis and research costs from the excess number of securities in the

portfolio.
• Frequent purchase of small amounts of securities so that more commissions

are paid.

This method has been criticized a lot due to the weakness of its scientific basis. In
addition, quantitative information is not considered important in the selection of
securities. The result of these criticisms is modern portfolio theory, based on
mathematical and statistical methods.
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3.3 Modern Portfolio Theory

Harry M. Markowitz presented the mean-variance model and modern portfolio
theory and received a Nobel Prize for his work. Markowitz (1952) introduced the
concept of risk mathematically (standard deviation of the return rate of an asset).
Modern portfolio theory emphasizes that risk cannot be reduced by portfolio diver-
sification and risk can be minimized at a certain return level through diversification
in portfolio management. Modern portfolio theory is a comprehensive approach that
includes issues such as indifference curves, efficient frontier, opportunity set, and
optimal portfolio selection, along with the correlation relationship between the
returns of securities. Modern portfolio theory mathematically shows the measure-
ment of the risk and return of a portfolio of two or more securities and the
determination of optimal portfolios. Correlations between securities returns should
also be taken into account in diversification. The risk of a portfolio of securities such
as A and B depends on the covariance and/or correlation coefficient between the
returns of A and B. With Markowitz diversification, lower risk portfolios can be
obtained compared to simple diversification without considering correlations.

Assumptions of modern portfolio theory (MPT) are as follows:

• The investor determines each investment by looking at the probability distribu-
tions of the expected return to be provided by the alternative.

• Investors try to maximize their expected utilities for a single period. Utility curves
are compatible with decreasing marginal utility.

• Investors identify portfolio risk as a deviation from the expected return.
• Investors make their investment decisions based on expected returns and risks.
• Investors try to increase their returns at a certain risk level.

According to MPT, investors are rational and determine their portfolios according
to the risk-return level. Rational investors will prefer the highest return at a certain
risk level and the portfolio with the lowest risk at a certain return level. Modern
portfolio theory shows ways to achieve maximum return at a certain risk level in
order to create its own optimum portfolio. In this framework, the expected returns,
standard deviations, and covariances among all shares must be calculated.

Markowitz has three important contributions to traditional theory.

1. In portfolio management, the sum of the parts is not equal to the whole.
2. While some portfolios of investors provide the same return, they are more risky;

some portfolios are at the same risk level, and they do not prefer those portfolios
because they provide less returns, so some portfolios are superior to others.

3. Many calculations can be made with the effective limit.

The slope of the indifference curve is different for investors. The investor
determines the slope and location of the indifference curve according to the expected
return and risk level. The fact that the slope of indifference curves is high indicates
that the investor avoids risk. The low slope of indifference curves indicates that the
investor takes more risks. The efficient frontier, on the other hand, is a point in a



two-dimensional diagram with the expected return rate and risk elements, which is
risk on the X-axis and expected return rate on the y-axis. Possible portfolios on the
efficient frontier are listed in terms of risk and return. Portfolios below the efficient
frontier are accessible but not effective. There are portfolios that cannot be accessed
above the efficient frontier.
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The investor’s utility functions comprise the risk and expected return rate.
Modern portfolio theory allows the determination of optimum portfolios for different
investors with utility functions. In line with the risk-return preferences of investors,
effective portfolios can be created that provide more expected return opportunities at
all risk levels. In choosing the optimal portfolio, the risk-expected return rate
preferences derived from the investor’s unique utility functions should be put
forward by indifference curves. The utility function, the attitude to risk, determines
which of the portfolios the investor chooses on the efficient frontier. Investors will
choose the portfolio that will maximize their utility from these portfolios. Therefore,
the investor invests in the portfolio at the point where the indifference curve is
tangent to the efficient frontier. Portfolio is optimal where the indifference curves are
tangent to the limit of effectiveness.

The expected return of a portfolio consists of the weighted average of the returns
on the securities in the portfolio. The total weight of the portfolio must be 1 or 100%.
The expected return of the portfolio is:

E rp
⎧ ⎫ ¼

Xn

i¼1
wi · E rið Þ

E(rp) Expected return of the portfolio
wi Portfolio weight of securities
E(ri) Expected return of the security i
N Number of securities in the portfolio
The risk of a portfolio consists of the weighted average of the standard deviations

of the securities in the portfolio as in the expected return of the portfolio. Thus, the
risk of the portfolio is lower than the standard deviation of the securities that make up
the portfolio. The following is the standard deviation of the portfolio:

σp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

Xn
j¼1

wiw jσij

vuut

σp Portfolio risk
Wi Weight of wi-i securities in the portfolio
Wj Weight of the securities wj-j in the portfolio
σij Standard deviation of each security
The relation between the expected returns of the securities included in the

portfolio is covariance. The covariance shows the direction of the two variables
moving together or changing them. The positive covariance indicates that two
securities move in the same direction at the same time. If the covariance is negative,



it shows that it moves in the opposite direction at the same time. If the two securities
do not move independently, in the same or opposite direction, there is no covariance.
Covariance is calculated as follows:
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Cov i, kð Þ ¼ 1
N – 1

XN
t¼1

Rit – E Rið Þð Þ Rkt – E Rkð Þð Þ

COV(i,k) Covariance between i and k securities
Rit The return of i securities in period t
RKT Return of k securities in period t
E(Ri) Expected return of i security
E(Rk) Expected return of k securities
N The number of possible returns
The correlation coefficient also measures the degree of the relationship between

the returns of the two securities. The correlation coefficient (+1) indicates that there
is a complete and positive linear relationship between securities returns. Securities
returns move together. Having a correlation coefficient (–1) indicates that there is a
complete and negative linear relationship between securities returns. Securities
returns move completely opposite. The correlation coefficient (0) indicates that
there is no relationship between securities returns. Correlation coefficient is calcu-
lated as follows:

ρij ¼ Cov ri, r j

⎧ ⎫
=σiσ j:

ρij Correlation coefficient between i and j securities
Cov(ri,rj) Covariance value between i and j securities
σ Security standard deviation
Markowitz’s mean-variance model is the first mathematical explanation of the

idea of diversifying investments and is the cornerstone of many risk models devel-
oped in later years. The efficient markets hypothesis emerged in the 1960s and
became important in the last quarter of the twenty-first century. This model is based
on “random walk,” and price changes are random and cannot be predicted before-
hand. Stock price changes have no historical connection, and these price series
cannot be used to predict the future in a meaningful way. One of the most important
assumptions of the efficient markets hypothesis is that any investor will not be able
to generate abnormal returns by using any information because prices contain all
available information. The effectiveness of a market depends on the following
conditions (Fama, 1970):

• Prices should reflect the market balance with all available information.
• Prices should reflect the response to new information that is neutral or immediate,

with little delay.

Since price movements in an efficient market will occur in line with the infor-
mation received while the current price of a security reflects all available



information, it will be independent of consecutive price changes or consecutive
quarterly returns. Fama divides market efficiency into three categories: weak form,
semi-strong form, and strong form.
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Sharpe developed the Markowitz method and introduced a simple model (single
index model) in 1963. Sharpe (1964), Lintner (1975), and Mossin (1966) investi-
gated the change of prices if savers invested in securities and especially stocks in
accordance with the modern portfolio theory. As a result of these studies, capital
asset pricing model (CAPM) was developed. Roll (1977) claimed that the model
was inadequate and suggested that the model should not be used in portfolio
management. In the same period, Steve Ross alternatively introduced the model
known as arbitrage pricing theory (APT).

3.4 Index Models

The Sharpe model links the relationship only to the market index, rather than the
relationship (correlation) between stock returns. This model attributes the returns of
various stocks to only a basic factor. There is a linear relationship between all
securities and the market, and this relationship can be expressed with a simple linear
regression model.

The difference of the multi-index model is that it associates the returns of
financial assets with more variables rather than market returns. These variables
include interest, inflation, etc., such as independent macro variables. Arbitrage
pricing model is the extension of multiple index model.

3.5 Capital Asset Pricing Model (CAPM)

CAPM is one of the models used in calculating equity cost, valuation of capital
assets, and determining the optimal portfolio. The approach, which is accepted as the
first of the asset pricing models, accepts the market portfolio as the only variable and
tries to explain the returns of all risky financial assets with the returns of the market
portfolio. It states that the systematic risk expressed as the model beta (β) coefficient
is the only factor affecting returns.

The financial asset pricing model expresses the expected return of a security as a
function of risk-free interest rate, systematic risk of investment, and market portfolio.
In this model, the factor that determines how much the expected return will be than
the risk-free interest rate is the beta (β) coefficient. The return on a stock must be as
much as the risk premium than the risk-free rate return. Risk premium, on the other
hand, is calculated by multiplying the difference between the index return on the
market and the risk-free interest rate by beta. Returns of the market index are
considered to be market returns.
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Expected return ¼ Risk– free interest rateþ Risk premium:

Expected return ¼ Risk– free interest rate
þ ½β × ðMarket return– Risk– free interest rate :Þ

CAPM tries to explain the risk-expected rate of return relationship of portfolios or
assets mathematically. The expected return of an asset in the model consists of the
systematic risk and risk premium of the asset. CAPM measures the risk beta
coefficient and determines the expected rate of return for a security. The expected
rate of return of an asset is a function of the risk-free rate of return and the risk
premium.

Beta (β) is used in the calculation of systematic risk and also expressed as the ratio
of the covariance between the return of an asset and the return of the market portfolio
to the variance of the market return. The mathematical expression of the beta is as
follows.

βi ¼ COV Ri,RMð Þ=σM

The beta coefficient (β) indicates the tendency of the asset’s rate of return to move
with the market. It is used as a measure of the variability of the asset according to the
market portfolio. Securities with a β value¼ 1 are in the middle risk group, and their
returns are at the market portfolio level. Financial assets with a β > 1 have a high
systematic risk, and the expected return will be high. If the β is <1, financial assets
will have low systematic risk, and expected return will be low.

Capital asset pricing model is shaped as follows:

E Rið Þ ¼ R f þ βi E Rmð Þ – R f

⎧ ⎫
:

(Ri) The rate of return expected from the investment
Rf Risk-free interest rate
E(Rm) Expected return of the market
(E(Rm) – Rf) Market risk premium
Β Systematic risk criterion which refers to beta coefficient
The expected return-risk relationship in CAPM is based on a single factor called

the market portfolio, and the variability in return rates is explained only by this
factor. This understanding causes criticism and doubts directed at CAPM. Observing
and experimental testing of the market portfolio is quite difficult. In addition, CAPM
is accepted as a remote and limited theory to real-world conditions. Alternative
forms of FVFM have been developed upon criticism. They are zero-beta CAPM,
multiperiod CAPM, conditional CAPM, multi-beta CAPM, international CAPM,
and consumption-based CAPM.
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3.6 Arbitrage Pricing Theory (APT)

The arbitrage pricing theory (APT) is developed against the criticism brought to
CAPM by Ross (1976). Arbitrage is a transaction based on obtaining risk-free profit
by taking advantage of the price differences of similar financial assets, buying the
relevant asset in the cheap market, and selling it in the expensive market. In APT, it
is accepted that there is a positive relationship between return and risk where the
return on securities is affected by factors in the industry and the market. The basis of
the arbitrage pricing theory is the recognition of important systematic factors that
affect the long-term average returns of financial assets.

The balance prices between the expected return and risk of the portfolio are
calculated using the multiple factor model. The return of each stock or portfolio is
specified as a function of multiple common risk elements for all stocks or portfolio.
There are multiple factors in APT, and asset return rates are a linear function of these
factors. These factors may be macroeconomic variables or company factors. The
model does not explain what factors might affect the price of a financial asset.

The expected returns in APT are assumed to be in a linear relationship with a set
of indices. Accordingly, it is assumed that the returns of the assets are derived by a
linear “k” factor model.

Ri tð Þ ¼ E Ri tð Þ½ ] þ bi1 f 1 tð Þ þ bi2 f 2 tð Þ þ⋯þ bik f k tð Þ þ εi tð Þ:

RI(t) Return rate of the asset i at time t
E[Ri(t)] Expected rate of return of the asset i at the beginning of time t
Bij The sensitivity of the presence of i against the risk factor j ( j ¼ 1, 2, . . ., k)
Fj The value of the risk factor j at time t
Εi The amount of nonsystematic risk
Ross (1976) shows that if the number of assets is large enough, the risk-return

relationship will be as follows.

E Rið Þ ¼ R f þ bi1 E R1ð Þ – R f

⌈ ⌉þ bi2 E R2ð Þ – R f

⌈ ⌉þ⋯þ bij E R j

⎧ ⎫– R f

⌈ ⌉
:

3.7 Behavioral Finance

One of the assumptions of traditional financial theories assumes that all investors are
rational. The results of the empirical researches determine that the investors could
not do this even though they wanted to maximize their benefits and avoid risk. This
is based on cognitive defects. The empirical studies reveal that investors do not act
rationally as financial models assume and anomalies occur. Thus, behavioral finance
tries to fill the gap in this area and states that investors should be considered
“normal” rather than rational. In addition, it assumes that investors consider



variables other than risk and return in their investment decisions and that it is not the
one that maximizes the utility, but at the very best, the decisions that the individual
himself will be satisfied with.
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The articles of Kahneman and Tversky published in Econometrica in 1979 are
accepted in the literature as the beginning of behavioral finance. Kahneman and
Tversky’s work in the field of judgment and decision-making started a period in the
field of finance. These studies form a link between finance and psychology. The
prospect theory of Kahneman and Tversky forms the basis of behavioral finance.
Prospect theory assumes that investors give different weights at different probability
levels to earnings and losses, and losses are more important than earnings. Psycho-
logical factors such as investors’ heuristics and the irrational arbitrage limit consti-
tute behavioral finance (Kıyılar & Akkaya, 2016).

Behavioral finance deals with investor behavior and its impact on financial
markets. It contributes to investor psychology and the inclusion of behavioral
characteristics of investors in asset pricing models. Behavioral finance makes expla-
nations on shaping investor behavior and investment decisions, how basic informa-
tion is interpreted, and other financial factors in addition to financial factors in
investor’s decision (Barberis & Thaler, 2003).

Prospect theory developed by Kahneman and Tversky (1979) brings psycholog-
ical explanations to finance issues. This theory consists of experimental research
results and is a mathematically formulated theory against the expected utility theory.
Prospect theory further incorporates human psychology into the economic model
and forecasts. It is revealed by the findings in this theory that individuals can make
irrational choices. In the prospect theory, as in the expected utility theory, investors
are trying to maximize the utility. However, it is the most multiplexing under special
expectations with new rules. Psychological factors in prospect theory cause people
to deviate from rationality systematically. Individuals give different weights at
different probability levels in terms of their regions of earnings and losses. In
addition, common mistakes of many investors in the same direction cause investor
sentiment (Kıyılar & Akkaya, 2016).

Behavioral finance models emphasize that the efficient market hypothesis is not
valid. It states that markets are not fully active and there are deviations from market
efficiency. Many empirical studies have been done on this subject in the last
20 years. Three models have emerged with these studies:

• The “representative agent” model of Barberis, Shleifer, and Vishny (1998) based
on psychological findings.

• The models of Daniel, Hirshleifer, and Subrahmanyam (1998) based on
overconfidence and biased self-attribution.

• Interactive relationship models of Hong and Stein (1999) and heterogeneous
investors.

The prospect theory emphasizes the effects of investors’ psychological and
emotional tendencies on financial decisions. Investors keep them away from acting
rationally by using their own shortcuts in the decision-making process. Investors use
mental accounting in their financial decisions. As a result of psychological



tendencies, it causes the investor to think of the portfolio as a pyramid of assets. Each
floor of the pyramid corresponds to the desire of the investor to meet its purpose.
Individuals have individual mental calculations suitable for investment purposes and
tend to take different levels of risk. Therefore, individuals select the assets that meet
the expected return and risk of the mental account for each mental account. The basic
need of individuals is security. Individuals first prefer safe beings to satisfy this
mental calculation and then invest in assets that will satisfy mental calculations for
high returns and risk levels that correspond to other layers of the pyramid (Shefrin &
Statman, 2000). Investors build their decisions on beliefs that include the possibil-
ities of uncertain events. These beliefs are expressed as “I think . . .” like “me.” In
rare cases, numerical form or subjective possibilities are used. Three heuristics
(cognitive shortcut) are used to make decisions under uncertainty: representation,
availability, and anchor or correction. These incentives serve to make economic,
easy, and effective decisions. However, it also leads to systematic estimation errors
(Tversky & Kahneman, 1979).
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Existing emotional factors also have an impact on investors’ decisions and
behavior. Cognitive factors are related to how people organize and use information,
while emotional factors are related to the emotional aspect of individuals in the
record of information (Shefrin & Statman, 2000). Ambition, fear, hope, pride, and
regret affect investment decisions. Emotional factors that often appear in financial
markets include avoiding regret, cognitive contradiction, hedonic correction, predis-
position effect, easy money effect, risk avoidance, and break-even effect (Kıyılar &
Akkaya, 2016).

Individuals avoid the actions they will regret and look for events that will make
them proud. The effects of feelings of pride and regret are inverted. The sense of
regret is an emotional state and a negative emotion resulting from the poor outcome
of an investment decision. It is strongly felt by people. The sense of pride is
manifested by the positive outcome of an investment decision and is a state of
emotional pleasure. Pride is on the opposite side of regret. In order not to regret,
people want to rationalize the situation and make changes in the cognitive process.

Herd behavior is also an important phenomenon regarding the effects of investor
behavior on financial markets. In order for herd behavior to occur, it must be
imitation, that is, investors must know the decisions of other investors. It is herd
behavior that investors act together like a lot and also buy the same assets. Herd
behavior of investors distorts the efficiency of the markets and leads to volatility in
financial markets. When investors show herd behavior, they do not care about the
information received and tend to imitate other investor behavior. In addition, mental
accounting is the process of coding and evaluating the results briefly. Thaler (1999)
through the concept of mental accounting defines the accounting system as recording
and summarizing transactions and analyzing, auditing, and reporting the results.
Markowitz’s modern portfolio theory includes methods for reducing portfolio risk
and effective diversification. According to the theory, it is the correlation between
securities that is important in portfolio creation and risk distribution. Mental
accounting in behavioral finance prevents the rule of taking into account the corre-
lation between the returns of an investment, which is the most essential feature of



diversification, because instead of making an effective diversification in reducing
portfolio risk, investors take into account the investments one by one and open
separate mental accounts and evaluate them. Recording the result of a choice in a
mental account affects the evaluation of the choice. Saving different transactions in
different mental accounts and evaluating these accounts separately and indepen-
dently may lead to wrong decisions in investment preferences and timing. How the
results of financial decisions are evaluated is in the subject of mental accounting.
Mental accounting causes investors to make irrational decisions.
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The coexistence of this type of risk-avoiding and risk-seeking behavior patterns
causes deviations from the utility function. In addition, the expected utility theory is
replaced by the expectation theory, and the modern portfolio theory is also replaced
by the behavioral portfolio theory.

3.8 Behavioral Portfolio Theory

The empirical studies on modern portfolio theory to investment portfolios in the real
world present anomalies and problems. Modern portfolio theory is theoretical and
tries to show how transactions take place in capital markets. Also, MPT does not
give any advice on how to design investment portfolios. It is useful under certain
principles, some of which investors know and some of which they are not familiar
with. Thus, modern portfolio theory is descriptive, not prescriptive. Modern portfo-
lio theory’s assumption that all investors are always rational and they are wealth
enhancers is clearly false. Also, as a result of these problems, when financial advisors
try to communicate with their customers about their portfolios using modern port-
folio theory structures, communication is largely stopped (Curtis, 2004). The main
purpose of investors is to make a profit. Investors often focus on performance,
forecast, market timing, and some other factors before investing. Investments
made based on these factors provide average returns. Investors can sometimes
experience dissatisfaction due to their belief that they can do better than an average
return. The difference between expected and realized earnings causes this situation.
Traditional models assume that the subjective probabilistic beliefs of the investors
are objectively correct and indirectly the markets are efficient. In this environment,
the purpose of the portfolio is to manage the risk profile of the investor’s consump-
tion flow based on the initial asset and stochastic labor income (Hoffmann, Shefrin,
& Pennings, 2010).

Behavioral portfolio theory (BPT) emerged as a descriptive alternative to
Markowitz’s mean-variance portfolio theory. BPT connects two issues: the creation
of portfolios and the design of securities (Shefrin & Statman, 2000). BPT by Shefrin
and Statman gets roots from Roy’s (1952) safety first approach. Roy does not use
investor’s portfolio risk but uses the probability of ruin. BPT is also an alternative
portfolio choice model developed to better capture these different features. Also, the
basis of BPT is in sharp contradiction with the fundamental points of modern
portfolio theory. Thaler (1999) presents that individuals divide their current and



future assets into separate and nontransferable parts in the mental accounting
approach. Individuals make different mental calculations that are handled separately
and in different ways. BPT integrates the mental accounting structure of Kahneman
and Tversky (1979) and Tversky and Kahneman (1992) and also helps investors to
view their portfolios as a collection of subportfolios, each suitable for a particular
mental accounting. Das, Markowitz, Scheid, and Statman (2011) combine important
features of modern portfolio theory and behavioral portfolio theory and create a new
mental accounting (MA) framework.
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Pfiffelmann, Roger, and Bourachnikova (2016) clarify that “The three core
features of BPT are: (1) investors seek to secure a minimal level of their wealth;
(2) investors consider their portfolio as a collection of subportfolios, each of them
being optimal for a given mental account; (3) investors do not behave rationally as
they exhibit optimistic and pessimistic behaviors.”

The basis of behavioral portfolio theory presented by Shefrin and Statman (2000)
is the prospect theory and the two-factor Lopes theory (1987). Then they compare it
with modern portfolio theory. The prospect theory by Kahneman and Tversky
(1979) begins with the observation that people facing complex problems turn
these problems into simpler subproblems. Prospect theory divides the decision-
making process into two processes, namely, the editing phase and valuation phase.
The editing phase consists of a preliminary analysis of the preferences evaluated.
These preferences can be expressed simply here. In the evaluation phase, the formed
preferences are evaluated, and the expectation with the highest value is preferred.
The function of the editing phase is to organize and reformulate preferences for easy
evaluation and preference. Following the editing phase, it is assumed that the
decision maker evaluates each corrected option and prefers the option with the
highest value. The editing phase is followed by value function phase. The important
assumption of the prospect theory is that the premise of value is not the final state of
the assets owned, but the change in wealth. This assumption is also compatible with
basic perception and judgment principles. The theory focuses on the evaluation of
changes or differences rather than size. In the prospect theory, the value functions of
gains and losses are different. Investors make decisions based on potential gains and
losses based on a reference point. The risk trend of people varies according to the
area where the value function is located. Individuals tend to take risks if they
evaluate their investments in the area of earnings and if they evaluate in the loss
zone. In many experiments, the utility function of the individual is concave in the
gain area and convex in the loss area (Kıyılar & Akkaya, 2016).

Modern portfolio theory assumes that investors evaluate portfolios as a whole and
consider the covariances between assets when creating their portfolios. Also, aver-
age variance investors not only care about their individual assets but also look for the
expected returns and the variance of the total portfolio. Average variance investors
have consistent attitudes toward risk, and they always avoid risk. Typical investors
ignore covariances between assets, but some traders use procedures that help
consider covariances both institutionally and individually (Shefrin & Statman,
2000). Also, BPT considers it as a probability weighting function rather than the
actual probability distribution used in MPT (Bourachnikova, 2007). BPT shows that
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investors are risk-averse and risk-seeking therewithal. Hoffmann et al. (2010)
present that BPT emphasizes “the role of behavioral preferences in portfolio selec-
tion and proposes that individual investors’ portfolio choices and consequently
return performance reflect characteristics such as aspirations, hope, fear, and narrow
framing.”

The main assumption of BPT is that investors do not consider portfolios as a
whole which is the main proposition of MPT. However, investors have separated
mental account layers, in which each mental account layer is joined with a specific
goal and certain attitude toward risk. Thus, investors’ attitudes and goals in risk
differ across layers (Statman, 2004, 2008). Shefrin (2015) explains mental account
layers. “The first mental account reflects investor’s aversion to risk at the lowest
layer. The second is characterized by a moderate level of risk tolerance, which
explains why a combination of stocks and bonds take place at the middle layer.
The third account explains investor’s preferences to take more risks, that explains
why stocks of a small number of companies, or even of a single company, account
for dominant assets at the topmost layer.” The portfolios in BPT are similar to
layered pyramids. Investors design their portfolios as an asset pyramid on the
basis of layers. Layers are created in relation to specific goals and specific attitudes
to risk. Layers are associated with different targets, and covariances between layers
are ignored. The potential layer above is designed for a chance to get rich. BPT
estimates that an increase in transaction costs will reduce the number of securities in
each layer of the portfolio. An increase in the area allocated to one tier will increase
the number of securities in that tier (Shefrin & Statman, 2000). Investors form
layered portfolios that are protected against risks and form a condition to get profit
simultaneously (Shefrin, 2015). The investors’ main goal is to form a portfolio that
satisfies the goals qualified at each layer of the portfolio pyramid (Das et al., 2011).

Lekovic (2019) clarifies optimal portfolio. “MPT investors have only one effi-
cient frontier to think of, whereas BPT investors have a number of efficient frontiers
to consider—one for each mental account (Das et al., 2011). Therefore, rather than
selecting a single and the most optimal portfolio, normal investors choose several
optimal sub-portfolios—one per each layer of the portfolio pyramid. The optimal
portfolio is constructed by combining optimal sub-portfolios. According to
H. Shefrin and M. Statman (2000, 128), an MPT optimal portfolio is a combination
of the market portfolio and risk-free securities, whereas a BPT optimal portfolio
resembles a mix of bonds and state lottery tickets because it actually represents a
combination of such optimal sub-portfolios.”

MPT assumes that the optimal portfolio varies depending on investor’s attitudes
toward risk. But BPT explains the optimal portfolio variation between investors is
due to the different levels of risk tolerance and also investors’ different needs, biases,
preferences, shortcuts, and emotions. Thus, BPT’s behavioral-wants frontier does
not match with the MPT’s mean-variance frontier, and the optimal portfolios differ
in the optimal MPT and BPT portfolio.

The optimal portfolio in BPT is at preferred risk level that maximizes the all
utilities of an investor as a sum of utilitarian, expressive and emotional utilities.
Portfolio E as a rational investor is on mean-variance frontier. F is on behavioral-



wants frontier. E ignores investor sentiments and emotions. However, F reflects
psychological and emotional benefits. Thus, F is below E. This is because lower
expected return at the same level of risk usually comes from the realization of
psychological and emotional benefits.
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Behavioral portfolio is based on the assumption that the vast majority of investors
make decisions based on emotions and shortcuts. Behavioral portfolio management
(BPM) has two categories for financial market participants: emotional crowds and
behavioral data investors (BDIs) or rational investors. Emotional crowds consist of
investors who make decisions with anecdotal evidence and emotional responses to
uncover events. Emotional investors make decisions quickly, with little or no effort
and voluntary control, avoiding loss automatically. BDIs also make decisions using
detailed and comprehensive analysis of available data. BPM is based on dynamic
interaction between these two investor groups. Rational investors or BDIs react to
distortions that arise by taking positions across the emotional crowd. However, they
are not an important factor in keeping prices at the same level. As a result, the
distortions that occur are measurable and permanent. BDIs can create portfolios that
take advantage of these distortions simply or rationally as crowded investors move in
another direction. Cases that trigger the response of crowded investors may be short-
lived, but subsequent emotions are long-lived. As a result, price distortions are both
measurable and permanent. This provides BDI traders the opportunity to identify
distortions and create portfolios that benefit from them (Howard, 2014).

There are two versions of the BPT model: the single mental accounting
(BPT-SA), where the portfolio is integrated into one mental accounting, and the
multiple mental accounting (BPT-MA), where the portfolio is divided into multiple
mental accounts. BPT traders, i.e., the investors in the Friedman-Savage puzzle,
display a risk-avoiding and risk-seeking behavior at the same time. Portfolios in
BPT-MA are similar to layered pyramids where each layer, for example, mental
calculation, sustains a certain level of aspiration. This is because BPT-MA traders
ignore covariance between layers and also can associate the position in one layer
with another position in the same security in another layer.

Pfiffelmann et al. (2016) clarify that “in BPT, investors maximize their expected
wealth (calculated with decision weights) subject to the constraint that the probabil-
ity of failure to reach the threshold level A does not exceed a given level. This
optimization program writes.

maxE Wð Þ u:c:p W < Að Þ <

where A is the aspiration level, the maximum probability of ruin, W is the nal
wealth distribution and a transformation function of probabilities. The literature
proposes several ways to transform probabilities. We choose to use the specification
proposed by Tversky and Kahneman (1992) in cumulative prospect theory. This
model is detailed in Appendix A.” Pfiffelmann et al. (2016) observe that the optimal
BPT portfolio is on the MPT’s efficient frontier in more than 70% of the cases.
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3.9 Behavioral Asset Pricing Model

Shefrin and Statman (1994) develop behavioral asset pricing model (BAPM) for the
price efficiency by the presence of noise traders and investigate the effects of noise
traders on price efficiency, volatility, return anomalies, and noise trader existence.
BAPM is an alternative to capital asset pricing model (CAPM), Fama-French three-
factor model, and arbitrage pricing theory (APT). CAPM and efficient market
hypothesis (EMH) can be useful for markets where rational investors and informa-
tion traders take place. But in reality, such markets do not exist in the world. They are
hypothetical. Also, various psychological and emotional factors lead investors to
behave irrationally. Noise traders and their irrational decisions also affect the returns.

“BAPM model prices assets based not only on their utilitarian benefits, but also
on expressive and emotional ones. Therefore, in line with the BAPM model, assets
are worthy because they bring utilitarian benefits (low risk, high returns), as well as
expressive (social responsibility, patriotism) and emotional (satisfaction, pride,
excitement caused by trading) benefits” (Leković, 2019).

Statman (2017) compares investment asset pricing models with pricing models
for meals, cars, films, and other products and services. The expected prices of a meal
are same: utilitarian benefits, expressive and emotional benefits and cognitive and
emotional errors which are the theoretical rationales. “Theoretical rationales in
standard asset pricing models account only for wants for utilitarian benefits, whereas
theoretical rationales in behavioral asset pricing models also account for wants for
expressive and emotional benefits and the occurrence of cognitive and emotional
errors.”

BAPM assumes that emotions and affects have a significant role in the pricing of
financial assets because individuals invest the assets with a positive affect or avoid
them with a negative affect. Also, the formation of mental schemas may lead to
irrational decisions because mental schemas are the subjective experiences existing
at the unconscious level and they affect the perception and reasoning. Emotions and
mental schemas may cause the anomalies in financial markets.

Smart beta portfolios are portfolios in which the proportions of assets depart from their
proportions in the market portfolio, aiming at higher ratios of expected returns to standard
deviations than provided by that portfolio. A portfolio tilting toward small and value stocks
is a smart beta portfolio because it assigns greater proportions to small and value stocks than
their proportions in the market portfolio. So is a portfolio tilting toward small and value
stocks and also toward momentum stocks and other stock characteristics associated with
positive excess returns. We can see smart beta portfolios and indexes as reflections of
behavioral asset pricing models in which differences between expected returns of portfolios
depend not only on differences in their market-factor betas but also on differences in the
betas of other factors. They include the small–large factor, value–growth factor, momentum
factor, and other factors that distinguish portfolios with high expected returns from portfolios
with low expected returns (Statman, 2017).
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3.10 Solutions and Recommendations

Behavioral portfolio theory (BPT) emerged as a descriptive alternative to
Markowitz’s mean-variance portfolio theory. BPT connects two issues: the creation
of portfolios and the design of securities. Behavioral asset pricing model (BAPM) is
a new concept.

3.11 Future Research Directions

The aim of this study is to explain behavioral portfolio theory. The main assumption
of BPT is that investors do not consider portfolios as a whole which is the main
proposition of MPT. Behavioral asset pricing model (BAPM) is an alternative to
capital asset pricing model (CAPM), Fama-French three-factor model, and arbitrage
pricing theory (APT). This study aims to draw a general framework of behavioral
portfolio theory, which is one of the behavioral finance models, and to indicate the
points from which it differs from modern portfolio theory. This study focuses on the
teachings of traditional and behavioral finance models in portfolio creation. Thus,
empirical studies based on statistical analysis can be conducted where portfolio
performances configured with behavioral perspective are compared with the perfor-
mances of average variance portfolios.

3.12 Conclusion

Traditional finance theories consider market participants as “rational wealth maxi-
mizers” from the dates that emerged in the 1950s. In addition, according to the
assumptions that form the basis of the modern portfolio theory, investors use only
two parameters in their investment decisions. These are the expected return and
standard deviation (risk). When the portfolio selection is considered in a rational
framework, investors are considered to make completely rational decisions. In this
context, investors try to choose financial assets that maximize the value of utility
functions. This selection process becomes much easier by mean-variance approach.
On the other hand, behavioral finance presents that emotion and psychology affect
investors and therefore market anomalies occur due to the fact that investors are
limited rational or normal. The effect of behavioral factors in the decision-making
process plays an important role in the accuracy of the decisions made by investors.

Behavioral portfolio theory (BPT) emerges as a descriptive alternative to
Markowitz’s mean-variance portfolio theory and connects two issues: the creation
of portfolios and the design of securities. The basis of behavioral portfolio theory is
that the psychological (Kahneman & Tversky, 1979) and emotional characteristics
(Lopes, 1987) of individuals affect their decisions. This theory assumes that



investors are normal and affected by some psychological prejudices during their
decision-making. Behavioral portfolio theory reveals the effect of mental accounting
bias. The concept of mental accounting was first used by Thaler (1999). BPT traders
are at the same time avoiding risk and seeking risk, as in the Friedman-Savage
puzzle.
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Behavioral portfolio theory (BPT) and behavioral asset pricing model (BAPM)
fill the gaps in theory and asset pricing models. BPT and BAPM focus on mental
accounting, bounded rationality, and psychological and emotional utilities. Also,
BPT and BAPM bring financial theories closer to reality.

Key Terms and Definitions

Portfolio: Portfolio is a financial asset that consists of various securities such as
stocks and bonds and derivative products, held by a particular person or group.
Various portfolios can be created according to investors’ different returns and risk
preferences. The important thing here is the preferences of the investor.

Portfolio management: Portfolio management is a system of continuing and
updating the evaluation of the success of investors’ goals, preferences, and
constraints determined and resolved under this information by monitoring the
portfolio. Also, portfolio management is the management of securities according
to investors’ returns and risk targets. The portfolio manager tries to provide the
expected return to the portfolio owner or investor with the necessary diversifica-
tion at an acceptable risk level. The aim of portfolio management is to reduce the
risk through diversification.

Modern portfolio theory: Modern portfolio theory is a comprehensive approach
that includes issues such as indifference curves, efficient frontier, opportunity set,
and optimal portfolio selection, along with the correlation relationship between
the returns of securities. Modern portfolio theory mathematically shows the
measurement of the risk and return of a portfolio of two or more securities and
the determination of optimal portfolios.

Behavioral finance: Behavioral finance deals with investor behavior and its impact
on financial markets. It contributes to investor psychology and the inclusion of
behavioral characteristics of investors in asset pricing models. Behavioral finance
makes explanations on shaping investor behavior and investment decisions, how
basic information is interpreted, and financial factors in addition to financial
factors in investor’s decision.

Behavioral portfolio theory: Behavioral portfolio theory (BPT) emerged as a
descriptive alternative to Markowitz’s mean-variance portfolio theory. BPT con-
nects two issues: the creation of portfolios and the design of securities. BPT is
also an alternative portfolio choice model developed to better capture these
different features. BPT not only integrates the mental accounting structure of
Kahneman and Tversky (1979) and Tversky and Kahneman (1992) but also
enables investors to view their portfolios as a collection of subportfolios, each
suitable for a particular mental accounting. Das et al. (2011) combine important
features of modern portfolio theory and behavioral portfolio theory and create a
new mental accounting (MA) framework.



Behavioral asset pricing model: Shefrin and Statman (1994) develop behavioral
asset pricing model (BAPM) for the price efficiency by the presence of noise
traders and analyze the effects of noise traders on price efficiency, volatility,
return anomalies, and noise trader survival. BAPM is an alternative to capital
asset pricing model (CAPM), Fama-French three-factor model, and arbitrage
pricing theory (APT). CAPM and efficient market hypothesis (EMH) can be
useful for markets where rational investors and information traders take place.
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Chapter 4
A Comparative Study on PSO with Other
Metaheuristic Methods

Serhat Yarat, Sibel Senan, and Zeynep Orman

Abstract The research and development of metaheuristic methods are critical
issues in computer science. In the past decade, metaheuristic algorithms have been
used in many engineering applications such as optimization of engineering prob-
lems, telecommunications, information security, and image processing. Many
metaheuristic algorithms such as particle swarm optimization (PSO), ant colony
optimization (ACO), and genetic algorithm (GA) are recently becoming very
popular.

There are many studies conducted in the literature on the comparison of PSO with
other metaheuristic algorithms. In this chapter, various studies carried out between
the years of 2010 and 2020 about the comparison of PSO with the other
metaheuristic algorithms will be examined. The metaheuristic algorithms to be
considered are simulated annealing (SA), genetic algorithm (GA), differential evo-
lution (DE), ant colony optimization (ACO), artificial bee colony (ABC) algorithm,
particle swarm optimization (PSO), tabu search (TS), harmony search (HS), firefly
algorithm (FF), cuckoo search (CS), bat-inspired algorithm (BA), water wave
optimization (WWO), clonal selection algorithm (CLONALG), chemical reaction
optimization (CRO), sine cosine algorithm (SCA), glowworm swarm optimization
(GSO), and grey wolf optimizer (GWO). This study aims to evaluate and analyze the
covered papers according to several criteria such as (a) rates of studies according to
publishing years, (b) the metaheuristic algorithms that are compared to PSO,
(c) performance evaluation of compared algorithms, (d) the metaheuristic algorithms
with their inspirational approaches and their initial proposed studies and years,
(e) the field of subjects where the algorithms are applied in the reviewed studies,
and (f) used databases in the examined studies.

This study is a comprehensive literature review of the comparison of PSO with
the most popular metaheuristic algorithms. The intention of this review is to be
useful for researchers who want to conduct a survey on this area of the subject as this
chapter will cover the essential and helpful analysis of the related research.
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4.1 Introduction
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Optimization algorithms can be considered among the exact and heuristic algo-
rithms. When an algorithm is exact, it is guaranteed that the optimal solution will
be found in a finite amount of time for the related optimization problem. However,
for NP-hard (nondeterministic polynomial-time) optimization problems, it is often
the case that there are some polynomial-time approximation algorithms, but the best-
known algorithms require exponential time. On the other hand, heuristic algorithms
can guarantee a solution that is close to the best solution in a reasonable amount of
time. Hence, heuristic algorithms are mostly used when approximate solutions are
sufficient. Metaheuristics are the problem-specific implementations of the heuristic
optimization algorithms according to the guidelines expressed in such a heuristic
framework.

Swarm intelligence (SI) refers to the artificial or natural systems composed of
many self-organized individuals that have the collective behaviors of decentralized
control. Swarm intelligence, which is a subset of artificial intelligence (AI), is
becoming more and more critical as more complex problems require solutions that
can be achieved in a less convenient but reasonable time. Swarm intelligence
algorithms can be applied for various research fields such as engineering, industries,
and social sciences. Specific algorithms for SI include particle swarm optimization
(PSO), ant colony optimization (ACO), and artificial bee colony (ABC) algorithms.
Each of these algorithms is a metaheuristic algorithm inspired by the natural, self-
organized behavior of animals.

Particle swarm optimization (PSO) is a simple and effective optimization method,
which has gained interest from many researchers in different fields. PSO is inspired
by the movements of some animals living as a swarm, especially when they supply
the basic needs such as finding food. These animals have also impact on the others in
the swarm and satisfy both their and the swarm’s objectives more easily. It is an
optimization algorithm developed by Kennedy and Eberhart and introduced in 1995
(Eberhart & Kennedy, 1995).

This chapter will focus on the most popular metaheuristic algorithms. We aim to
conduct a survey about the comparison of PSO with the other metaheuristic algo-
rithms. Here are the metaheuristic algorithms that are taken into account: particle
swarm optimization (PSO), simulated annealing (SA), genetic algorithm (GA),
differential evolution (DE), ant colony optimization (ACO), artificial bee colony
algorithm (ABC), tabu search (TS), harmony search (HS), firefly algorithm (FF),
cuckoo search (CS), bat-inspired algorithm (BA), water wave optimization (WWO),
clonal selection algorithm (CLONALG), chemical reaction optimization (CRO),
sine cosine algorithm (SCA), glowworm swarm optimization (GSO), and grey
wolf optimizer (GWO). There are also some other metaheuristic algorithms that



are not covered in this study (Eberhart & Kennedy, 1995; Gavrilas, 2010; Karaboğa,
2014; Lim & Leong, 2018; Sörensen, 2013).
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The sections of this chapter are organized as follows: In the Literature Review
section, various studies that are carried out between the years of 2010 and 2020
related to the comparison of PSO with the other metaheuristic algorithms are
discussed. In the Results section, the results of the examined studies are evaluated
in a general framework perspective. Evaluation results are summarized in the
Conclusions section.

4.2 Literature Review

In this literature review, various research papers have been thoroughly studied, and
particle swarm optimization (PSO) is compared with other metaheuristic methods
within the framework of the previous studies. PSO is a population-based
metaheuristic algorithm inspired by swarm intelligence (Eberhart & Kennedy,
1995; Qiang, Chen, & Li, 2015; Wang, Yang, & Mi, 2014; Yang & Deb, 2010).
PSO has been designed for continuous optimization problems (Ozcan, 2016). There
are many PSO-based algorithms and also hybrid algorithms obtained by combining
PSO with other algorithms.

Hasan Ozcan studied differential evolution and PSO algorithms and compared
them by using various benchmark functions (Ozcan, 2016). Both of these
approaches gained high performance in the optimization of a physical system
which included specific goals and complex constraints. These methods were deter-
mined to be used for solving challenging engineering problems with satisfying
performance and ease of programming.

Assareh et al. presented the application of PSO and GA techniques for the
estimation of oil demand in Iran (Assareh, Behrang, Assari, & Ghanbarzadeh,
2010). They also referenced some studies, which were using the metaheuristic
methods for oil demand prediction in literature.

Yang et al. presented a comparison study for gradient-based algorithms and
nature-inspired metaheuristic algorithms (FF, PSO, ACO, BCO, BA, CS, etc.) in
terms of their advantages and disadvantages (Yang, Deb, Fong, He, & Zhao, 2016).

Dwivedi and Dikshit compared continuous GA and PSO algorithm in their study
(Dwivedi & Dikshit, 2013). This comparison has shown that if the initial population
and the maximum number of generations remained unchanged, then the performance
of PSO algorithm was better than GA. PSO algorithm converged to a global
optimum at a lesser number of iterations.

Arpan Kumar Kar presented a review study including bio-inspired algorithms
such as PSO, GA, ACO, ABC, CS, FF, and BA and the scope of their applications
(Kar, 2016). This study examined the problem domain descriptions and potential
solution objectives of each considered metaheuristic algorithm.

Jia and Lichti aimed to use the heuristic optimization methods which are SA, GA,
and PSO to solve the first-order design problem for a small-volume indoor network



and compare the performances of these algorithms (Jia & Lichti, 2017). The
presented results indicated that PSO and GA gained similar solutions, while SA
did not guarantee an optimal solution within the limited iterations.
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Selvi and Umarani discussed the fundamentals of PSO and ant colony optimiza-
tion (Selvi & Umarani, 2010). By presenting both the application effectiveness and
the theoretical background of these algorithms, this study has demonstrated that they
were one of the most successful methods that can be used in the metaheuristic field.

Azadeh et al. presented hybrid algorithms by combining PSO, GA, and artificial
immune system (AIS) with various metaheuristic algorithms for forecasting the
electricity energy consumption efficiently (Azadeh, Taghipour, Asadzadeh, &
Abdollahi, 2014). In their study, the considered algorithms were compared with
each other, and the AIS method with the clonal selection algorithm (CLONALG) has
been indicated as the preferred approach as it obtained more accurate results than the
other methods.

Yaghoubi and Akrami proposed an integrated approach for solving the optimi-
zation problem for a supply chain management system (Yaghoubi & Akrami,
2019). The proposed model used the ACO and PSO algorithms, and a Taguchi
experimental design method was proposed to set the parameters’ values to enhance
the performance of these algorithms. The comparative results of this study showed
that ACO is better than PSO in terms of speed convergence rates and the number of
solutions iterations.

Yang analyzed the various metaheuristic algorithms, which were GA, SA, ACO,
BA, PSO, HS, and FA for solving engineering optimization problems (Yang,
2010a). This study also covered some of the classic optimization methods.

Kulkarni and Desai analyzed the performances of ABC and PSO algorithms on
multidimensional optimization of benchmark functions (Kulkarni & Desai, 2016).
ABC and PSO algorithms obtained similar results when the unimodal functions were
used. The ABC algorithm performed better than the PSO algorithm when multi-
modal functions were used.

Yang and Deb used the cuckoo search (CS) algorithm to solve engineering design
optimization problems, including the design of springs and welded beam structures
(Yang & Deb, 2010). The results of their study claimed that CS was more efficient
than PSO and GA.

Ziyad Tariq Mustafa Al-Ta’i et al. used PSO and firefly (FF) algorithms for the
design of a fingerprint authentication system (Al-Ta’i & Al-Hameed, 2013).
According to the comparative results of their study, PSO performed better than the
other algorithms in extracting features from fingerprints.

Pal et al. conducted computational experiments by using PSO and FF algorithms
to find optimal solutions of noisy nonlinear continuous mathematical models (Pal,
Rai, & Singh, 2012). In their study, firefly algorithm performed better than PSO
algorithm, especially for higher levels of noise.

Mishra et al. proposed a model for a classification problem by using the bat
algorithm to update the weights of a functional link artificial neural network
(FLANN) classifier (Mishra, Shaw, & Mishra, 2012). The proposed model was
compared with FLANN and PSO-FLANN. The simulation results indicated that



the proposed classification technique is superior and faster than FLANN and
PSO-FLANN.
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Ezgi Deniz Ulker proposed a novel PSO-HS-based algorithm (PH) by using the
significant features of PSO and HS (Ülker, 2017). The experimental results demon-
strated the effectiveness of the proposed algorithm, and it was claimed that PH
obtained more efficient results than PSO and HS algorithms.

Sharma et al. presented a comparative study of three metaheuristic algorithms
which were GA, PSO, and HS (Lim & Leong, 2018). They drew the effect of
different parameters for each algorithm and presented a comparison in terms of
variations and parameters.

Unler and Murat presented a modified discrete PSO algorithm for the feature
selection problem (Unle & Murat, 2010). The proposed approach was compared
with the TS and scatter search algorithms over public datasets. The obtained results
showed that the proposed discrete PSO algorithm performed best for all performance
criteria.

Rezk et al. studied the behavior performance of the two optimization techniques
which were PSO and CS for extracting the global maximum power point (MPP)
from the partially shaded photovoltaic power systems (Rezk, Fathy, & Abdelaziz,
2017). The obtained results indicated that CS- and PSO-based trackers have high
accuracy and stability in extracting the global MPP regardless of the global MPP
located compared with the traditional algorithms.

Sheijani and Izadi estimated the required time to develop a software by using
metaheuristic algorithms (Sheijani & Izadi, 2019). It has shown that the PSO
algorithm was superior to solve such problems when compared to other algorithms.

Adetunji et al. proposed two swarm-based algorithms which are PSO and WOA
to solve optimal placement and the sizing of distributed generation (DG) units in the
quest for transmission network planning (Adetunji, Hofsajer, & Cheng, 2020). This
study showed the strengths and weaknesses of PSO and WOA in the implementation
of optimal sizing of the DG units in transmission networks.

Hussain et al. used the PSO algorithm to solve software clustering problems
(Hussain, Khanum, Abbasi, & Javed, 2015). PSO algorithm was tested on three
different software test systems, and the results were compared with GA. The simu-
lation results showed that the PSO approach had a fast convergence when compared
to GA. However, it was also stated that more studies were required to find the
optimum values of the PSO parameters.

Mousavirad et al. performed a benchmark of many population-based
metaheuristic optimization algorithms which were WOA, imperialist competitive
algorithm (ICA), CS, FA, BA, DE, PSO, GA, GWO, COA, biogeography-based
optimization (BBO), teaching-learning-based optimization (TLBO), and gravita-
tional search algorithm (GSA) for image thresholding in high-dimensional search
spaces (Mousavirad, Schaefer, & Ebrahimpour-Komleh, 2019). In their study, the
results demonstrated that ICA performed better than the other algorithms.

Hussein and Mousa proposed two nature-inspired metaheuristic schedulers based
on PSO and ACO to model two different scheduling algorithms for load balancing
Internet of things (IoT) tasks over the fog nodes (Hussein & Mousa, 2020). In their



study, the proposed algorithms were compared with the round-robin (RR) algorithm.
The evaluation results showed that the proposed ACO-based scheduler presented an
improvement in the response times of IoT applications when compared to
PSO-based and RR algorithms.
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Gholizadeh and Barati conducted a study to analyze the computational perfor-
mances of PSO, HS, and FF for size and shape optimization of truss structures by
examining their convergence behaviors (Gholizadeh & Barati, 2012). The obtained
results showed that FF is superior to HS and PSO.

Padma et al. used the BA for optimal power flow analysis (Padma & Shiferaw,
2019). The obtained results were compared with MANPOWER, DE, and PSO
algorithms. Their study claimed that the BA provided more effective results and
obtained high-quality optimization.

Adnan and Razzaque presented a comparative study of PSO and CS algorithms
(Adnan & Razzaque, 2013). These algorithms were applied to problem-specific
distance functions. It was claimed in this study that the CS algorithm had the same
effectiveness for finding the global optimal solution as the PSO algorithm. However,
CS had a better computational efficiency by using fewer function evaluations.

Adrian et al. proposed the three metaheuristic algorithms, which were GA, PSO,
and ACO, to solve the construction site layout problem (Adrian, Utamima, &Wang,
2014). In their study, various results were derived: (1) the three algorithms
performed equally effective to search for the optimum solution, (2) the ACO was
more efficient than the other two algorithms in terms of speed, and (3) all methods
performed consistently to reach solution.

Babaee and Sharifian analyzed the performance of DE, GA, and PSO-based
calibration of a triaxial AMR magnetometer (Babaee & Sharifian, 2018). The results
of their study showed that all of these algorithms could be used for calibration
alternatively. However, PSO was found to be faster, and it would produce results in
the least error.

Calçada et al. examined the performance of GA and PSO for estimating the
parameters for a yeast growth kinetic model (Calçada, Rosa, Duarte, & Lopes,
2010). In their study, the best objective function was obtained by PSO.

Civicioglu and Besdok analyzed the algorithmic concepts of CS, PSO, DE, and
ABC algorithms (Civicioglu & Besdok, 2011). Comparative results revealed that
the CS algorithm’s problem-solving success was very close to the DE algorithm. The
performances of the CS and PSO algorithms were closer to the performance of the
DE algorithm than the ABC algorithm. The CK and DE algorithms provided more
robust and precise results than the PSO and ABC algorithms.

Voratas Kachitvichyanukul studied three very similar evolutionary algorithms
which were GA, PSO, and DE (Kachitvichyanukul, 2012). The qualitative compar-
isons of these algorithms were also presented.

Kawam and Mansour proposed CS algorithm for the training of a feedforward
MLP (multilayer perceptron), and the obtained results were compared with those of
PSO and guaranteed convergence particle swarm optimization (GCPSO) algorithms
on four benchmark problems (Kawam & Mansour, 2012).
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Cellular automata (CA) is a discrete and dynamic spatiotemporal modeling
system that has been used for various problems. Metaheuristic methods such as
GA, GSA, and PSO have been widely applied to CA modeling systems to generate
more realistic simulation patterns. Feng et al. presented a comparative study of four
CA models combining logistic regression (LR) and three metaheuristic algorithms
(GA, GSA, and PSO) to simulate the land-use change in the Yangtze River Delta
from 2005 to 2015 (Feng, Liu, & Tong, 2018). According to this study, the PSO,
GSA, and GA algorithms showed similar optimization effect on CA transition rules
under the same objective function, coefficient bounds, and default settings of the
control parameters.

Hammouche et al. presented a comparison of six metaheuristic techniques (GA,
PSO, DE, ACO, SA, and TS) to solve the multilevel thresholding problem
(Hammouche, Diaf, & Siarry, 2010). Their experiment results showed that GA,
PSO, and DE are much better in terms of precision, robustness, and time conver-
gence than ACO, SA, and TS. Also, the DE was the most efficient one with respect
to the quality of the solution, and the PSO converges the most quickly.

Various methods are used to solve the process parameter design problem, includ-
ing metaheuristic algorithms. Tatjana Sibalija presented a review study, including a
comparison of the performances of the most used metaheuristic algorithms (GA, SA,
and PSO) in the optimization of industrial processes (Sibalija, 2020). In this study,
three criteria have been taken into account to reach an optimum solution: (1) accuracy
of an obtained optimum, (2) a number of objective function evaluations, and
(3) sensitivity in respect to the algorithm-specific parameters tuning.

Financial decisions should be given to predict the financial crisis of an organiza-
tion using its historical data. Uthayakumar et al. proposed an ACO-based financial
crisis prediction (FCP) model that incorporated two phases: ACO-based feature
selection (ACO-FS) algorithm and ACO-based data classification (ACO-DC) algo-
rithm (Uthayakumar, Shankar, & Lakshmanaprabu, 2018). The comparisons of the
developed ACO-FS and ACO-DC methods between GA, PSO, and GWO algo-
rithms were given in the study. The study showed that the ACO-FS method has
significantly better classification accuracy than GA, PSO, and GWO-based feature
selection methods and the proposed ACO-FCP model was more competitive than
conventional machine learning methods.

Kotti et al. presented a comparison between the PSO and ACO to solve analog
circuit sizing problems (Kotti et al., 2011). In the study, performances of these
algorithms were compared over two applications. Results of the study showed that
the ACO algorithm offers better results in terms of robustness whereas PSO was
faster and requires fewer algorithm parameters to handle.

Security assurance is an important part of an organization or company in the
information and communications technology (ICT) industry to ensure that the
network is secured without fear of intrusion. Oyinloye et al. presented a comparison
of BA and PSO algorithm over a designed security assurance system (Oyinloye,
Thompson, Bamisile, & Alademerin, 2020). The results showed that the PSO works
better in high detection rate and false alarm rate.
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Kumar et al. applied CS to determine optimal coefficients of a fractional delay-
infinite impulse response (FD-IIR) filter (Kumar & Rawat, 2015). The simulation
results of the proposed CS-based approach were compared with GA and PSO. The
performance of the CS-based FD-IIR filter was determined to be superior to that
achieved by GA and PSO.

SMOTE (Synthetic Minority Over-sampling Technique) is a well-known over-
sampling technique to reduce the imbalanced dataset problem. SMOTE has two
important key parameters: the first one is used for controlling the amount of over-
sampling, and the other is used for specifying the area of the nearest neighbors. Since
there are no default values known to be best for these parameters, it is important to
develop methods for obtaining optimum parameters. Li et al. analyzed the BA and
PSO algorithm to optimize these parameters for imbalanced dataset problem (Li,
Fong, & Zhuang, 2015). The study showed that the BA gives better results than the
traditional PSO.

Nayak et al. proposed a CRO-based pi-sigma neural network (PSNN) for data
classification problem (Nayak, Naik, & Behera, 2015). In the study, the performance
of the proposed CRO-PSNN was analyzed over various datasets and was compared
with the performances of PSNN, GA-PSNN, and PSO-PSNN. Experimental results
showed that the proposed method was robust and fast and also provided better
classification accuracy than the others.

Nguyen and Truong successfully applied the CSA method for the distribution
network reconfiguration problem to minimize the active power loss and voltage
profile enhancement of power distribution systems (Nguyen & Truong, 2015).
Numerical results showed that the proposed algorithm was able to find the most
suitable solutions and gave better results than PSO.

Mihai Gavrilas provided basic information on various metaheuristic optimization
techniques including PSO, GA, etc., and how to apply them to common optimization
problems in power systems (Gavrilas, 2016).

Radfar et al. examined the inverse radiative boundary design problem in their
study (Radfara, Amirib, & Arabsolghara, 2019). The GA and PSO and its modified
forms such as PSO with constriction factor (PSO-CF), PSO with repulsion factor
(PSO-RF), and PSO with adaptive inertia weight (PSO-AIW) algorithms were
proposed to solve the related problem. The comparative results showed that the
GA was fast and required less calculations to reach the objective function than the
other techniques.

Rahaman and Kule used conventional sorting-based methods with GA and PSO
to find a proper assignment of different functions in the nanoscale crossbar circuit
that has defective cross-points (Rahaman & Kule, 2018). The proposed GA- and
PSO-based methods performed more effectively than traditional sorting-based
methods.

Ramadan et al. applied the PSO to find the near-optimal solutions for the
capacitor allocation problem in distribution systems for the modified IEEE 16 bus
distribution system connected to wind energy generation (Ramadan, Bendary, &
Nagy, 2017). PSO technique was used to obtain the near optimum solution to the
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losses cost and voltage profile enhancement when compared to the results of GA.
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Ramarao and Chandrasekaran used GA, PSO, DE, and SCA to determine the
lightning channel-base-current (CBC) function parameters for representing the mea-
sured data given in IEC standard 62,305–1: 2010 for the severe case negative
subsequent return stroke (NSS) (Ramarao & Chandrasekaran, 2019). The data
obtained by SCA showed better performance compared to the data obtained by
GA, PSO, and DE.

The correct parameter estimation plays a vital role in the accurate modeling of the
battery. In the study of Sangwan et al., the parameters of two different models (first-
order RC model and second-order RC model) for a proper representation of the
correct nature of the battery were optimized using GA, PSO, ASMO, and DE
algorithms (Sangwan, Sharma, Kumar, & Rathore, 2016). The DE algorithm had
best performance for the first-order RC model, and the ASMO performed best for the
second-order RC model. Overall, it has seen that the DE algorithm was the most
robust as well as computationally cheaper than the other algorithms.

Mohamed and Abdelsalam considered the constrained multicriteria multi-cloud
provider selection problem that was formulated as an integer programming model.
SA, GA, and PSO algorithms were used for solving it, and they were compared with
the analytic hierarchy process (AHP) (Mohamed & Abdelsalam, 2020). It was found
that the algorithms achieve better solutions compared with AHP solution.

In the study of Sukumar et al., the capacity of the battery energy storage system
(BESS) in kWh was handled using different metaheuristic optimization techniques
(Sukumar, Marsadek, Ramasamy, & Mokhlis, 2018). The different optimization
techniques such as GWO, PSO, ABC, GSA, and GA were used to solve the BESS
sizing problem, and a comparison of their performances was also carried out.
According to the study, the GWO produced the most optimal solution compared
to other optimization techniques.

Ahmid et al. presented the performance comparison of five metaheuristic algo-
rithms to solve a discrete optimization problem for a case of a simply supported plate
subjected to biaxial loading conditions (Ahmid, Dao, & Van Ngan, 2019). The
results demonstrated the outperformance of the ACO algorithm over other algo-
rithms, which confirmed the findings of previous studies. Additionally, the TS
algorithm and the discrete-PSO (DPSO) algorithm performed poorly due to their
limited exploration capability. Furthermore, GA and SA exhibited a high level of
reliability but showed an expensive solution cost.

Yusup et al. examined the performance of the HS algorithm for feature selection
phase of classification for different applications (Yusup, Zain, & Latib, 2019).
According to the study, feature selection with HS performed better than other
metaheuristic algorithms such as GA and PSO.

Asghari and Navimipour presented a survey paper for metaheuristic methods
such as ACO, GA, and PSO in cloud computing systems (Asghari & Navimipour,
2015). The authors provided a discussion of covered methods in terms of their
advantages and disadvantages by referring to the articles they reviewed. Obtained
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method.
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Khan and Sahai presented a comparison of BA, GA, and PSO algorithms for
training feedforward neural networks (Khan & Sahai, 2012). The experimental
results showed that the BA outperforms all other algorithms.

Diao and Shen presented some experiments for feature selection techniques and
heuristic search strategies (Diao & Shen, 2012). The results showed that the perfor-
mance of HS was better compared with other algorithms such as GA and PSO.

Krishnaveni and Arumugam proposed a technique to adjust the internal compo-
nents of the HS algorithm automatically (Krishnaveni & Arumugam, 2013).
According to the study’s results, the proposed technique had better performance
for HS compared to PSO and GA.

Ramos et al. presented two distinct comparisons for the problem of feature
selection in the context of nontechnical losses characteristics (Ramos, Nunes de
Souza, Falcão, & Papa, 2012). The first one was comparing OPF with SVM-RBF,
SVM-no Kernel, ANN-MLP, SOM, and NN. The second one was comparing PSO,
HS, and gravitational search algorithm. The authors found that the HS-OPF
performed best.

Das et al. proposed the HS algorithm-based feature selection method for hand-
written Bangla word recognition problem (Das, Singh, Bhowmik, Sarkar, &
Nasipuri, 2016). The HS-based feature selection method obtained a high accuracy
rate and high classification accuracies compared to GA and PSO.

Dalla Vedova et al. made the comparison of GA, PSO, DE, and GWO on the fault
detection and identification (FDI) task for an electromechanical actuator (EMA)
(Mirjalili, Mirjalili, & Lewis, 2014). According to the result of the study, the PSO
was the best optimization algorithm to detect multiple failures, achieving the higher
PC value (more than 90%). Also, they emphasized it must be noted that a suitable
algorithm for a given problem must be chosen case by case.

In the study of Wahab et al., a set of methods including GA, ACO, PSO, DE,
ABC, GSO, and CS were compared to utilize 30 benchmark functions (Wahab,
Nefti-Meziani, & Atyabi, 2015). The results of the study indicated the overall
advantage of differential evolution (DE).

Kulkarni and Desai examined the performances of ABC and PSO algorithms on
the multidimensional optimization of benchmark functions (Kulkarni & Desai,
2016). ABC and PSO algorithms exhibited similar efficiency for unimodal func-
tions. On the other hand, the ABC algorithm was more efficient than the PSO
algorithm for multimodal functions in terms of solution quality.

López-Camacho et al. analyzed GA, DE, and PSO algorithms for solving the
docking problem (García-Nieto, Nebro, & Aldana-Monte, 2015). According to the
results of the study, DE obtained the best performance over other algorithms.

Bashiri and Karimi presented a comparative study between heuristic and
metaheuristic algorithms for quadratic assignment problem (QAP), which is an
NP-hard combinatorial optimization problem. They used 3-Opt, greedy 3-Opt, and
VNZ as the heuristic methods and TS, SA, and PSO as the metaheuristic methods for
the problem (Bashiri & Karimi, 2010). The study’s results showed that 3-Opt as a
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Table 4.1 Rates of studies according to the year of publication

Year of publication [References]
No. of
publications

2010 [Bashiri and Karimi (2010), Civicioglu and Besdok (2011), Hoang et al.
(2010), Selvi and Umarani (2010), Sibalija (2020), Unle and Murat (2010),
Yang (2010a), Yang and Deb (2010)]

8

2011 [Kachitvichyanukul (2012), Oyinloye et al. (2020)] 2

2012 [Diao and Shen (2012), Feng et al. (2018), Gholizadeh and Barati (2012),
Kawam and Mansour (2012), Mishra et al. (2012), Padma and Shiferaw (2019),
Pal et al. (2012), Ramos et al. (2012)]

8

2013 [Adrian et al. (2014), Al-Ta’i and Al-Hameed (2013), Krishnaveni and
Arumugam (2013)]

3

2014 [Azadeh et al. (2014), Babaee and Sharifian (2018), Radfara et al. (2019)] 3

2015 [García-Nieto et al. (2015), Hussain et al. (2015), Li et al. (2015), Nayak
et al. (2015), Nguyen and Truong (2015), Wahab et al. (2015)]

6

2016 [Das et al. (2016), Gavrilas (2016), Kulkarni and Desai (2016), Kuo et al.
(2016), Lim and Leong (2018), Mohamed and Abdelsalam (2020), Ozcan
(2016)]

8

2017 [Jia and Lichti (2017), Medani et al. (2017), Ramarao and Chandrasekaran
(2019), Rezk et al. (2017), Ülker (2017)]

5

2018 [Ahmid et al. (2019), Calçada et al. (2010), Hammouche et al. (2010),
Kotti et al. (2011), Ramadan et al. (2017)]

5

2019 [Adnan and Razzaque (2013), Asghari and Navimipour (2015), Mirjalili
et al. (2014), Mousavirad et al. (2019), Rahaman and Kule (2018), Sangwan
et al. (2016), Sheijani and Izadi (2019), Yaghoubi and Akrami (2019), Yusup
et al. (2019)]

9

2020 [Adetunji et al. (2020), Hussein and Mousa (2020), Kumar and Rawat
(2015), Sukumar et al. (2018), Uthayakumar et al. (2018)]

5

Source: authors’ own creation

heuristic method and TS as a metaheuristic method obtained better results than the
others.

Medani et al. applied the whale optimization algorithm (WOA) for the optimal
reactive power dispatch (ORPD) problem (Medani, Sayah, & Bekrar, 2017). The
obtained results were compared to those of PSO, PSO with time-varying acceleration
coefficients (PSO-TVAC), and some other methods. According to the results of the
study, the WOA algorithm was very effective in terms of fast convergence to the
global optimum.

Kuo et al. used PSO and GA for item clustering in synchronized zoning systems
(Kuo, Kuo, Chen, & Zulvia, 2016). According to the study, the experimental results
showed that PSO and GA performed better than the existing algorithms in the
literature for the item assignment problem. Also, the results showed that PSO had
better performance than GA.

Hoang et al. presented a protocol using the HS for optimization of energy
consumption of the network (Hoang, Yadav, Kumar, & Panda, 2010). In the
study, the comparison of HS with the low-energy adaptive clustering hierarchy
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Table 4.2 Studies with the metaheuristic algorithms that are compared to PSO

Algorithm Studies

Simulated annealing (SA) Ahmid et al. (2019), Bashiri and Karimi (2010), Feng et al. (2018),
Hammouche et al. (2010), Jia and Lichti (2017), Mohamed and
Abdelsalam (2020), Sheijani and Izadi (2019), Sibalija (2020)

Genetic algorithm (GA) Adrian et al. (2014), Ahmid et al. (2019), Asghari and Navimipour
(2015), Azadeh et al. (2014), Babaee and Sharifian (2018), Bashiri
and Karimi (2010), Calçada et al. (2010), Das et al. (2016), Diao
and Shen (2012), Dwivedi and Dikshit (2013), Feng et al. (2018),
García-Nieto et al. (2015), Hammouche et al. (2010), Hoang et al.
(2010), Hussain et al. (2015), Jia and Lichti (2017),
Kachitvichyanukul (2012), Khan and Sahai (2012), Krishnaveni
and Arumugam (2013), Kulkarni and Desai (2016), Kumar and
Rawat (2015), Kuo et al. (2016), Lim and Leong (2018), Mirjalili
et al. (2014), Mohamed and Abdelsalam (2020), Mousavirad et al.
(2019), Nayak et al. (2015), Radfara et al. (2019), Rahaman and
Kule (2018), Ramadan et al. (2017), Ramarao and Chandrasekaran
(2019), Sangwan et al. (2016), Sheijani and Izadi (2019), Sibalija
(2020), Sukumar et al. (2018), Uthayakumar et al. (2018), Yang
and Deb (2010), Yusup et al. (2019)

Differential evolution (DE) Asghari and Navimipour (2015), Babaee and Sharifian (2018),
Civicioglu and Besdok (2011), García-Nieto et al. (2015),
Hammouche et al. (2010), Kachitvichyanukul (2012), Mirjalili
et al. (2014), Mousavirad et al. (2019), Ozcan (2016), Padma and
Shiferaw (2019), Ramarao and Chandrasekaran (2019), Sangwan
et al. (2016)

Ant colony optimization
(ACO)

Adrian et al. (2014), Ahmid et al. (2019), Asghari and Navimipour
(2015), Bashiri and Karimi (2010), Hammouche et al. (2010),
Hussein and Mousa (2020), Kotti et al. (2011), Selvi and Umarani
(2010), Uthayakumar et al. (2018), Yaghoubi and Akrami (2019)

Artificial bee colony algo-
rithm (ABC)

Civicioglu and Besdok (2011), Kulkarni and Desai (2016),
Sukumar et al. (2018), Yang (2010a)

Tabu search (TS) Ahmid et al. (2019), Bashiri and Karimi (2010), Hammouche et al.
(2010), Unle and Murat (2010)

Harmony search (HS) Das et al. (2016), Diao and Shen (2012), Gholizadeh and Barati
(2012), Hoang et al. (2010), Krishnaveni and Arumugam (2013),
Lim and Leong (2018), Ramos et al. (2012), Ülker (2017), Yusup
et al. (2019)

Firefly algorithm (FF) Al-Ta’i and Al-Hameed (2013), Gholizadeh and Barati (2012),
Mousavirad et al. (2019)

Cuckoo search (CS) Adnan and Razzaque (2013), Civicioglu and Besdok (2011),
Kawam and Mansour (2012), Kumar and Rawat (2015),
Mousavirad et al. (2019), Nguyen and Truong (2015), Rezk et al.
(2017), Yang and Deb (2010)

Bat-inspired algorithm
(BA)

Khan and Sahai (2012), Li et al. (2015), Mishra et al. (2012),
Mousavirad et al. (2019), Oyinloye et al. (2020), Padma and
Shiferaw (2019)

Whale optimization algo-
rithm (WOA)

Adetunji et al. (2020), Medani et al. (2017), Mousavirad et al.
(2019)

(continued)
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Table 4.2 (continued)

Algorithm Studies

Clonal selection algorithm
(CLONALG)

Azadeh et al. (2014)

Sine cosine algorithm
(SCA)

Ramarao and Chandrasekaran (2019)

Chemical reaction optimi-
zation (CRO)

Nayak et al. (2015)

Grey wolf optimizer
(GWO)

Mirjalili et al. (2014), Mousavirad et al. (2019), Sukumar et al.
(2018)

Glowworm swarm optimi-
zation (GSO)

Wahab et al. (2015)

Source: authors’ own creation

(LEACH), PSO, and GA as well as the traditional K-means and fuzzy c-means
(FCM) clustering algorithms showed that the HS gave better results to reduce energy
consumption and to improve the network lifetime.

4.3 Results

This chapter presents a survey research for the studies carried out between the years
of 2010 and 2020 on the comparison of PSO with other metaheuristic algorithms.
These studies are evaluated in terms of rates of studies according to the year of
publication, the metaheuristic algorithms that are compared to PSO, the performance
evaluation of compared algorithms, the metaheuristic algorithms with their inspira-
tional approaches and their initial proposed studies and years, the field of subjects
where the algorithms are applied in the reviewed studies, and used databases in the
examined studies.

Table 4.1 presents the rates of the reviewed studies according to their year of
publication. This analysis denotes that the years 2010, 2012, 2016, and 2019 are the
most intense years of the conducted studies on the comparison of PSO with other
metaheuristic algorithms.

In Table 4.2, the reviewed studies are examined according to the metaheuristic
algorithms that are compared to PSO. The genetic algorithm (GA) is the most used
algorithm with PSO in the literature.

Table 4.3 shows the performance evaluation of compared algorithms in the
examined studies. According to Table 4.3, the HS algorithm performs better than
PSO and other metaheuristic algorithms in all reviewed studies except in
(Gholizadeh & Barati, 2012). In general, the PSO algorithm provides better results
when compared to other algorithms in the reviewed studies.

Table 4.4 illustrates the metaheuristic algorithms with their inspirational
approaches and their initial proposed studies and years.
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Table 4.3 Compared algorithms and their performance results

References Algorithms compared
According to the study, which one
performs better?

Ozcan (2016) PSO vs. DE PSO

Dwivedi and
Dikshit (2013)

PSO vs. GA PSO

Yang and Deb
(2010)

PSO and GA vs. CS CS

Yang (2010a) PSO vs. ABC The ABC algorithm obtained high
accuracy results, whereas the PSO
algorithm obtained optimal results in a
shorter time

Kulkarni and Desai
(2016)

PSO vs. ABC ABC

Selvi and Umarani
(2010)

PSO vs. ACO ACO

Mishra et al. (2012) PSO-FLANN and
FLANN vs. BA

BA

Jia and Lichti
(2017)

PSO vs. SA and GA GA

Al-Ta’i and
Al-Hameed (2013)

PSO vs. FF PSO

Pal et al. (2012) PSO vs. FF FF

Azadeh et al.
(2014)

PSO, GA, vs. AIS, CLONALG CLONALG

Ülker (2017) PSO-HS-based
algorithm vs. PSO and HS

PSO-HS-based algorithm

Yaghoubi and
Akrami (2019)

ACO vs. PSO ACO

Unle and Murat
(2010)

PSO vs. TS and scatter search
algorithms

PSO

Rezk et al. (2017) PSO vs. CS CS

Sheijani and Izadi
(2019)

PSO vs. SA and GA PSO

Adetunji et al.
(2020)

PSO vs. WOA Both of the algorithms perform better
than each other for different metrics for
power system networks

Hussain et al.
(2015)

PSO vs. GA PSO

Mousavirad et al.
(2019)

PSO vs. WOA, CS, FA, BA,
DE, GA, GWO, ICA, BBO,
TLBO, and GSA

ICA

Hussein and Mousa
(2020)

PSO vs. ACO ACO

Gholizadeh and
Barati (2012)

PSO vs. HS and FF FF

Padma and
Shiferaw (2019)

BA vs. DE and PSO BA

(continued)
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Table 4.3 (continued)

References

(continue

Algorithms compared
According to the study, which one
performs better?

Adnan and
Razzaque (2013)

PSO vs. CS CS has the same performance for find-
ing the true global optimum with PSO,
whereas PSO is better than CS in terms
of computational performance

Adrian et al. (2014) PSO vs. GA and ACO ACO

Babaee and Sharif-
ian (2018)

PSO vs. DE and GA PSO

Calçada et al.
(2010)

PSO vs. GA PSO

Civicioglu and
Besdok (2011)

PSO vs. CS, DE, and ABC CS and DE

Kachitvichyanukul
(2012)

PSO vs. GA and DE The algorithms perform better than each
other based on qualitative comparisons

Kawam and
Mansour (2012)

CS vs. PSO CS

Feng et al. (2018) PSO vs. GA and generalized
simulated annealing (GSA)

The PSO, GSA, and GA algorithms
perform similar optimization results

Hammouche et al.
(2010)

PSO vs. GA, DE, ACO, SA,
and TS

The PSO, GA, and DE have much better
performance than the other ones

Sibalija (2020) PSO vs. GA and SA The performances of the algorithms
differ according to various criteria con-
sidered in the study

Uthayakumar et al.
(2018)

PSO vs. ACO, GA, and GWO ACO

Kotti et al. (2011) PSO vs. ACO ACO is better than PSO in terms of
robustness, whereas PSO is better than
ACO in terms of speed

Oyinloye et al.
(2020)

BA vs. PSO The comparison between BAT and PSO
shows that PSO works better in accu-
racy and has high detection rate and
false alarm rate

Kumar and Rawat
(2015)

PSO vs. CS and GA CS

Li et al. (2015) PSO vs. BA BA

Nayak et al. (2015) Chemical reaction optimization
(CRO) vs. GA and PSO

CRO

Nguyen and
Truong (2015)

PSO vs. CS CS

Radfara et al.
(2019)

GA vs. PSO, PSO-CF,
PSO-RF, and PSO-W

GA

Rahaman and Kule
(2018)

PSO and GA vs. traditional
sorting-based methods

PSO and GA

Ramadan et al.
(2017)

PSO vs. GA PSO

d)
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Table 4.3 (continued)

References Algorithms compared
According to the study, which one
performs better?

Ramarao and
Chandrasekaran
(2019)

PSO vs. GA, DE, and sine
cosine algorithm (SCA)

SCA

Sangwan et al.
(2016)

PSO vs. GA, ASMO, and DE DE

Mohamed and
Abdelsalam (2020)

PSO vs. GA and SA SA and PSO are robust; they reached
almost the same best solution despite
the initial solution

Sukumar et al.
(2018)

PSO vs. GA, ABC, GWO, and
gravitational search algorithm
(GSA)

GWO

Ahmid et al. (2019) PSO vs. GA, SA, ACO, and TS ACO

Yusup et al. (2019) HS vs. PSO and GA HS

Asghari and
Navimipour (2015)

PSO vs. GA, ACO, greedy
algorithm

PSO

Khan and Sahai
(2012)

BA vs. PSO and GA BA

Diao and Shen
(2012)

HS vs. PSO and GA HS

Krishnaveni and
Arumugam (2013)

HS vs. PSO and GA HS

Ramos et al. (2012) HS vs. PSO HS

Das et al. (2016) HS vs. PSO and GA HS

Mirjalili et al.
(2014)

PSO vs. GA, DE, and GWO PSO

Wahab et al. (2015) GA, PSO, CS, DE, ACO, ABC,
GSO, and other evolutionary
algorithms

DE, closely followed by PSO

Kulkarni and Desai
(2016)

PSO vs. ABC ABC is better than PSO in terms of
optimization. On the other hand, PSO is
better than ABC in terms of speed

García-Nieto et al.
(2015)

PSO vs. GA and DE DE

Bashiri and Karimi
(2010)

TS vs. PSO, ACO, SA, GA TS

Medani et al.
(2017)

PSO vs. WOA WOA

Kuo et al. (2016) PSO, GA vs. an existing algo-
rithm for synchronized zoning
system

PSO

Hoang et al. (2010) HS vs. PSO and GA HS

Source: authors’ own creation
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Table 4.4 Metaheuristic algorithms with their inspiration sources and initial proposed studies

Algorithm Inspiration Study Year

PSO Bird flock Eberhart and Kennedy (1995) 1995

ACO Ant colony Dorigo, Birattari, and Stutzle
(2006)

2006

ABC Honeybee Basturk and Karaboga (2006) 2006

CS Cuckoo birds Yang and Deb (2009) 2009

BA Bat herd Yang (2010b) 2010

FF Firefly Yang (2010c) 2010

GA Natural selection and the survival of the
fittest

Holland (1975) 1975

DE Evolutionary concept Storn and Price (1995) 1995

TS Tabu Glover (1986) 1986

WWO Shallow water wave
theory

Zhang, Zhang, Zhang, and
Zheng (2015)

2015

CLONALG Clonal selection De Castro and Von Zuben
(2000)

2000

SA Analogy with annealing in solids Kirkpatrick, Gelatt, and
Vecchi (1983)

1983

HS The principle of improvising music Geem, Kim, and Loganathan
(2001)

2001

SCA The cyclic form of sine and cosine trigo-
nometric functions

Mirjalili (2016) 2016

GWO Gray wolves Mirjalili et al. (2014) 2014

GSO Glowworms Krishnanand and Ghose
(2009)

2005

Source: authors’ own creation

Table 4.5 shows the field of subjects where the algorithms are applied in the
reviewed studies.

Table 4.6 shows the used datasets in the examined studies. It can be concluded
that the UCI dataset is the most preferred dataset.

4.4 Conclusions

This chapter is a comprehensive literature review of the comparison of particle
swarm optimization (PSO) with other metaheuristic algorithms for optimization.
The studies carried out between the years of 2010 and 2020 on the comparison of
PSO to some other metaheuristic algorithms are examined by covering some of the
most known metaheuristic algorithms related to optimization. In this aspect, this
study will be a handbook for researchers who want to research this subject, and it
will be very beneficial in this field.
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Table 4.5 Application fields of the examined references

Application field References

Optimization in mathematical and
engineering problems

Adnan and Razzaque (2013), Asghari and Navimipour
(2015), Kulkarni and Desai (2016), Li et al. (2015), Nguyen
and Truong (2015), Ozcan (2016), Pal et al. (2012),
Rahaman and Kule (2018), Sibalija (2020), Ülker (2017),
Yang (2010a), Yang and Deb (2010)

Estimation and prediction Assareh et al. (2010), Calçada et al. (2010), Uthayakumar
et al. (2018)

Modeling and design problems Dwivedi and Dikshit (2013), Feng et al. (2018), Gholizadeh
and Barati (2012), Jia and Lichti (2017), Kumar and Rawat
(2015), Radfara et al. (2019), Rezk et al. (2017), Sangwan
et al. (2016), Sukumar et al. (2018)

Control systems Selvi and Umarani (2010)

Classification/clustering Kuo et al. (2016), Mishra et al. (2012), Nayak et al. (2015)

Fingerprint authentication Al-Ta’i and Al-Hameed (2013)

Power system design Adetunji et al. (2020), Azadeh et al. (2014), Gavrilas
(2016), Medani et al. (2017), Ramadan et al. (2017),
Ramarao and Chandrasekaran (2019)

Location-routing problem Yaghoubi and Akrami (2019)

Feature selection Das et al. (2016), Diao and Shen (2012), Krishnaveni and
Arumugam (2013), Ramos et al. (2012), Unle and Murat
(2010), Yusup et al. (2019)

Scheduling problem Sheijani and Izadi (2019)

Software architecture Hussain et al. (2015)

Multilevel thresholding problem Hammouche et al. (2010), Mousavirad et al. (2019)

IoT Babaee and Sharifian (2018), Hussein and Mousa (2020)

Power flow problem Padma and Shiferaw (2019)

Construction site layout problem Adrian et al. (2014)

Training neural networks Kawam and Mansour (2012), Khan and Sahai (2012)

Analog circuit sizing problems Kotti et al. (2011)

Information security Oyinloye et al. (2020)

Cloud computing Ahmid et al. (2019), Mohamed and Abdelsalam (2020)

Fault detection and identification Mirjalili et al. (2014)

Molecular flexible docking
problems

García-Nieto et al. (2015)

Quadratic assignment problem
(QAP)

Bashiri and Karimi (2010)

Wireless sensor networks Hoang et al. (2010)

Source: authors’ own creation

According to the results obtained from the studies in the literature, it can be
mentioned that the PSO algorithm has an important impact in various application
fields. PSO has supported the other methods, and by using it in combination with
other methods, these studies have provided better results for solving optimization
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Table 4.6 Datasets used in the examined studies

Datasets References

The breast cancer dataset Mishra et al. (2012)

The data collected from students at the Institute
of Computer Science in Sulaymaniyah City

Al-Ta’i and Al-Hameed (2013)

The data of GDP Azadeh et al. (2014)

The University of California (UCI) Machine
Learning Repository-UCI dataset

Diao and Shen (2012), Kawam and Mansour
(2012), Krishnaveni and Arumugam (2013),
Unle and Murat (2010)

www.mpsplib.com Sheijani and Izadi (2019)

The Berkeley segmentation dataset: namely,
12,003, 181,079, 175,043, 101,085, 147,091,
101,087, and 253,027

Mousavirad et al. (2019)

IOT data Hussein and Mousa (2020)

Standard (cancer first dataset, diabetes first
dataset, heart first dataset, thyroid first dataset)
and e-learning datasets

Khan and Sahai (2012)

An experimental data Calçada et al. (2010)

The Open Spatial Data Sharing Project (http://
ids.ceode.ac.cn)

Feng et al. (2018)

Qualitative bankruptcy dataset, Analcat data
bankruptcy dataset, Australian Credit dataset,
German Credit dataset, Polish dataset

Uthayakumar et al. (2018)

Sick euthyroid dataset Li et al. (2015)

Monk2 dataset, Pima dataset, Bupa dataset,
New Thyroid, Wine dataset, Balance dataset,
Heart dataset, Hayes-Roth dataset

Nayak et al. (2015)

Two labeled datasets obtained from a Brazilian
electric power company

Ramos et al. (2012)

Dataset of 1020 Bangla handwritten words Das et al. (2016)

The PDB database García-Nieto et al. (2015)

Datasets from QAPLIB Bashiri and Karimi (2010)

Source: authors’ own creation

problems. There are many examples where it is sometimes used in conjunction with
other metaheuristic algorithms.
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Chapter 5
Mathematical Model of Particle Swarm
Optimization: Numerical Optimization
Problems

Ashwin A. Kadkol

Abstract The Particle Swarm Optimization (PSO) algorithm was put forth by
Kennedy and Eberhart in the year 1995. It is widely known for the ease with
which it can be implemented and its simple approach. It is a multi-agent parallel
search metaheuristic technique aimed at global optimization for numerical optimi-
zation problems. It has roots in artificial life techniques like swarm intelligence, fish
schooling, etc. This chapter aims to introduce the mathematical bases for the
algorithm and illustrates a few pictorial aids to understand the technique better. It
is intended to serve as an introduction to spark the interest of the reader. Readers
wishing to learn more about the applications of PSO and its variants to multi-
objective, constrained, dynamic optimization problems and other advanced topics
are recommended to consider the various references at the end of the chapter.

Keywords Artificial Intelligence · Computational Intelligence · Swarm
Intelligence · Evolutionary computation · Metaheuristics · Population heuristics ·
Bio-Inspired Algorithms

5.1 Introduction

Artificial Intelligence or AI is a broad umbrella term that comprises various tech-
niques. Some of the techniques that fall within the purview of AI are Machine
Learning, symbolic AI, and Computational Intelligence (CI). This is an excerpt from
a very popular textbook on Artificial Intelligence (AI), (Russel & Norvig, 2018):
“We define AI as the study of agents that receive percepts from the environment and
perform actions. Each such agent implements a function that maps percept
sequences to actions, and we cover different ways to represent these functions,
such as production systems, reactive agents, real-time conditional planners, neural
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networks, and decision-theoretic systems.” In the context of this chapter, we will
focus on CI. Per the IEEE Computational Intelligence Society, “it is the theory,
design, application and development of biologically and linguistically motivated
computational paradigms. There are three traditional pillars of CI—Neural Net-
works, Fuzzy Systems and Evolutionary Computation (EC)” (IEEE CIS, 2019).
Within CI, here, we will focus on EC. As defined by the IEEE Computational
Intelligence Society, evolutionary computation is defined as “Using the biological
evolution as a source of inspiration, evolutionary computation (EC) solves optimi-
zation problems by generating, evaluating and modifying a population of possible
solutions. EC includes genetic algorithms, evolutionary programming, evolution
strategies, genetic programming, swarm intelligence, differential evolution, evolv-
able hardware, multi-objective optimization and so on” (IEEE CIS, 2019). The main
EC metaphor relates the natural evolution phenomenon to a type of problem-solving
(trial and error) (Eiben & Smith, 2015). A simple analogy is given in the previously
mentioned book to better understand the methods under EC. Any given environment
is constituted of individuals who strive for survival and reproduction. The environ-
ment in which these individuals exist determines the fitness of the individuals or the
chances of survival and/or reproducing. This is compared with a stochastic trial-and-
error type of problem-solving process, where a collection of possible solutions
exists. How well these possible solutions solve the problem determines chances of
them being retained for use as seeds for construction of other possible solutions. This
analogy is further simplified in the book (Eiben & Smith, 2015) with the numerical
problem (which is intended to be solved) likened to the environment, the individuals
in the said environment to a possible solution for the numerical problem, and finally
the individual’s fitness to the quality of the proposed solution.
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Swarm Intelligence falls under EC. Per (Shi, 2006), swarm Intelligence is defined
as “the collective behaviors of simple individuals, interacting with each other and
their respective environment.” The elements of the swarm/population (or agents as
popularly referred to) follow some simple rules (Millonas, 1994)—“proximity”
(population to be capable of carrying out simple space/time computations), “quality”
(population to be responsive to environmental quality factors), “diverse response”
(population to not restrict its movements to very narrow channels), “stability”
(population to not change its behavioral mode based on changes to its environment),
and “adaptability” (population to be capable to change its behavioral mode, in case
computational expense is justified). The individuals are also referred to as agents,
and these agents’ behaviors are summarized well in (Zhang, Wang, & Ji, 2015) as
decentralized, local, and to some extent random. The interactions between the
abovementioned agents/population elements resulted in the emergence of some
global “intelligent” patterns which were hitherto unknown to the individual popula-
tion elements/agents. Some popular examples of Swarm Intelligence are demon-
strated by colonies of ants, flocks of birds, herds of animals, growth of bacteria,
swarms of bees, and schools of fish. Inspired from these emerged the Ant Colony
Optimization (Dorigo, 1992), Particle Swarm Optimization (Kennedy & Eberhart,
1995), Bacterial Foraging Optimization (Muller, Airaghi, Marchetto, &
Koumoutsakos, 2000; Passino, 2002), Artificial Bee Colony (Basturk & Karaboga,



2007), and Glowworm Swarm Optimization (Krishnanand & Ghose, 2005) among
several others.
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Another classification of the EC algorithms in literature is under metaheuristics.
Heuristics are defined in (Martí, Pardalos, & Resende, 2018) succinctly as strategies
that use information that is accessible and loosely applicable to control problem-
solving. Metaheuristics on the other hand are higher-level algorithmic frameworks
providing a set of strategies to develop heuristics (Sörensen, Sevaux, & Glover,
2018). Both these are very old techniques and are called by various names in
literature. In (Sörensen et al., 2018), an insightful categorization of the techniques
in metaheuristics to five periods in time (prior to 1940, 1940–1980, 1980–2000,
2000 to now, and the future) has been shown.

This chapter will cover the mathematical bases for the PSO algorithm. The next
section covers background to origins of the PSO algorithm. First, any assumptions or
preconditions will be called out. Following this, the algorithm structure and
pseudocode will be elaborated. Also included is a pictorial representation of the
algorithm to elucidate the dynamics of the particles as they move through the
decision space. Explanation of parameters, initialization/selection, tuning, boundary
conditions, convergence criteria, and other aspects will be discussed. This is
followed by a brief discussion on topics for an advanced reader around multi-
objective optimization with constraints, PSO variants, and the applicability to the
portfolio optimization problem. The definitions of keywords are consolidated toward
the later part of this chapter.

5.2 Background

The PSO can be called a multi-agent (or population-based) parallel search method
for numerical optimization of nonlinear functions. It has a strong link to A-life (fish
schooling, bird flocking) (Shi, 2006). The authors (Kennedy & Eberhart, 1995) drew
inspiration from simulations of bird flocking by (Heppner & Grenander, 1990;
Reynolds, 1987). The former work took inspiration from the aesthetics of birds
flocking, while the latter work took inspiration by the rules that helped the behavior
of grouping, regrouping, and sharing information. It is a Bio-Inspired Algorithm
which draws inspiration from flocks of birds in flight or schools of fish swimming
together. In the words of Kennedy and Eberhart, who invented the technique, “So
why, after all, did we call our first paradigm a “particle swarm”? Well, to tell the
truth, our very first programs were intended to model the coordinated movements of
bird flocks and schools of fish. As the programs evolved from modeling social
behavior to doing optimization problems, at some point the two-dimensional plots
we used to watch the algorithms perform ceased to look much like bird flocks or fish
schools and started looking more like swarms of mosquitoes. The name came as
simply as that” (Eberhart, Shi, & Kennedy, 2001).

Another perspective to explain the rationale of using the term “particle swarm” is
offered by (Eberhart et al., 2001; Kennedy & Eberhart, 1995) via the “five basic
principles of swarm intelligence” (Millonas, 1994)—“proximity,” “quality,”



“diverse response,” “stability,” and “adaptability” as discussed in the previous
section. They also debate on the word “particle” and mention that members of the
population are essentially massless, volumeless mathematical abstractions which
undergo movements (hence, the analogies to velocity and acceleration terms make
sense).
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Next, a brief look at optimization in context of numerical functions is in order.
The term “optimization” is defined by (Eberhart et al., 2001) as the “process of
adjusting a system to get the best possible outcome.” The same authors discuss the
various spaces of optimization. The parametric space encompasses the allowed
values of all the parameters that can be used to test the function. The function
space is the result of some operations on the parameters in parametric space. Real-
world problems have multidimensional function spaces (i.e., multi-objective opti-
mization). One sample problem is the optimal choice of a cellular/mobile phone, for
instance, where price, aesthetics, connectivity (number of SIMs), and so on being the
various functions that we’d like to optimize for. The fitness space is single dimen-
sional and consists of the levels of success with which some combinations of
parameters can optimize the values in function space. The goal of the optimization
is to find parameters that aid in maximization of fitness. If the goal is single
objective, then the function and fitness spaces could be the same (Eberhart et al.,
2001). For the cell phone example, the fitness is determined by the combination of
criteria which are met. This fitness helps in your decision to buy the device. Of
course in real-world problems like these, not only are the optima many (multi-
objective); there may be multiple solutions of varying optimality to the same
problem (multimodality), several constraints may exist on the values that the param-
eters can take, and the parameters may be many. In such cases, the fitness is
addressed in terms of a landscape which is multidimensional. In case of multimodal
function space, there is also the possibility of the search landing in a local optimum,
but the global optimum may exist elsewhere. The parameter space is also called
population space, and the function space is also called as decision space.

The PSO searches for the optimal values in the real number space (Eberhart et al.,
2001). The numerical optimization function that is intended to be optimized has one
or more independent variables (see Eq. (5.1) which represents the DeJong’s test
function 1 (Jong, 1975) or the sphere function in two dimensions). This is illustrated
by Fig. 5.1. Each combination of independent variables can be thought to represent
the state (say position in an n-dimension parameter space) of a possible solution to
the optimization problem. The algorithm starts with an initial set of guesses like
other population heuristics—called particles (or individuals of the swarm) (see
Fig. 5.2). These particles continuously tend to fly toward each other, influence
each other, and are constantly attempting to tend toward a more optimal state. The
function space is illustrated by Fig. 5.1. The optimality of the solution is measured
by the “fitness function.” As defined in the previous passage, notice that this is a
single-objective case and the function space and fitness space are the same. This
function maps the points via a numerical function that takes on real numbers.
Particles move with the objective to attain an optimal state in the sense of the fitness
function. This search is symbiotic, cooperative in nature (Engelbrecht, 2007). The



5 Mathematical Model of Particle Swarm Optimization: Numerical Optimization. . . 77

Fig. 5.1 Illustration of DeJong’s function 1 (Jong, 1975), with n ¼ 2 in (Eq. 5.1) above. Source:
Author’s own creation using Python language

Fig. 5.2 Illustration of DeJong’s function 1 with the fitness of initial set of particles in function
space. Source: Author’s own creation using Python language

two spaces—population space and decision space—are heterogeneous (some
regions are preferred over others). The intent is to use DeJong’s test function
1 ( f1) as an example to help understand the above concepts. The function is as
shown in Eq. (5.1), and function space is illustrated in Fig. 5.1. The xi constitutes the
population space, and the function f1 takes the xi to decision space (or function
space). The goal is to find the optimum (minima) of this function, i.e., f1!

¼ 0, which
is evident at x ¼ ð Þx1, x2 ¼ ð Þ0, 0 :
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f 1 x
!⎧ ⎫

¼
Xn
i¼1

x2i ; – 5:12 ≤ xi ≤ 5:12 ð5:1Þ

This section covered topics around what a particle is and what the analogy of
movements does mean mathematically. The assumptions and notations necessary to
formally denote the particle, its position, perturbation in population space (paramet-
ric space), and corresponding movement along decision space (function space) are
treated in detail in the next section.

5.3 PSO Algorithm and Mathematics

5.3.1 Key PSO Equations for Particle Motion

A particle’s position can be represented by a vector xdi tð Þ . Here, the subscript
i denotes the ith particle among “n” particles. The superscript “d” denotes the
number of dimensions of the vector. As one would imagine, there are multiple
variants of PSO in terms of how the particles tend toward one another in order to
move toward the optimum. The “full model” is the version that the authors (Kennedy
& Eberhart, 1995) originally proposed (see section below). Other variants are
suggested in (Kennedy, 1997)—the “social-only” or global best model, the “cogni-
tion-only” or local best model, and finally, the “selfless” model. In the “full model,”
as would be evident below, every particle uses the personal best, global best, and its
current position to decide where it should go next (with intent to achieve the best
solution in terms of fitness). In the social-only model, all particles tend toward only
the global best particle to hit the optima. This means that there is no interest toward
the beliefs that lead to the individual bests of the particles. In the cognition-only
model, each particle tends only toward its own hitherto best particle. Another variant
(Engelbrecht, 2007) is where the particle tends toward its own best and an immediate
neighborhood of the particle (as defined by some distance measure). A more detailed
and pictorial treatment of the topic is in a subsequent subsection on neighborhood
topologies (ring, wheel, and star).

5.3.1.1 Full Model of PSO

The particles’ position update and transformations/perturbations/velocity updates
can be represented by the Eqs. (5.2) and (5.3), respectively. These are the two
equations which govern the PSO:

⎫
vdi t þ 1ð Þ ¼ ωvdi tð Þ þ cpr1 pbestdi tð Þ – xdi tð Þ⎧ ⎫þ cgr2 gbestd tð Þ – xdi tð Þ⎧ ð5:2Þ



þð Þ ¼ ð Þ þ þð Þxdi t 1 xdi t vdi t 1 ð Þ5:3
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where xdi tð Þ and xdi t þ 1ð Þ are the positions (along dth dimension) of the ith particle at
time “t” and “t + 1,” respectively; i ¼ 1, 2, . . . . , n and d ¼ 1, 2, . . ., M; vdi tð Þ and
vdi t þ 1ð Þ are the velocities of the ith particle (along dth dimension) at time “t” and
“t + 1,” respectively; pbestdi tð Þ is the position of the personal best particle for the ith
particle (along dth dimension) at time t; gbestd(t) is the global best particle’s position
(along dth dimension) at time t; cp and cg are the personal and global best acceler-
ation constants, respectively, which help accentuate the focus on personal best and
global best, respectively; r1 and r2 are uniform random numbers between 0 and 1 to
add a stochastic property to the flight of the particles; and ω is the inertia weight that
is used to obtain a trade-off between exploration globally (toward global best) and
local exploitation (toward personal best).

Notations above are adapted from (Daneshyari & Yen, 2011; Kadkol, 2010;
Zhang et al., 2015).

The n particles fly through the decision space (or parametric space), and the
fitness of each particle (proximity to the best objective) is measured via an objective
function that maps the decision space to function space.

5.3.1.2 Pictorial Representation of Particle Movement via PSO (Full
Model)

The illustration in Fig. 5.3 shows the movement of a particle through the population
space (or parametric space) and the influence of the personal and global best particles
on the particle.

Fig. 5.3 Particle movement in PSO in the population space/parametric space. Source: Adapted
from (Daneshyari & Yen, 2008, 2011) and redrawn by the author
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Equations (5.2) and (5.3) have been illustrated in vector notation (for individuals
seeking to implement this using a programming language/be able to understand
better):

v11 t þ 1ð Þ ⋯ vd1 t þ 1ð Þ
⋮ v22 t þ 1ð Þ ⋮

v1N t þ 1ð Þ v2N t þ 1ð Þ vMN t þ 1ð Þ

0
B@

1
CA ¼

ω

v11 tð Þ ⋯ vd1 tð Þ
⋮ v22 tð Þ ⋮

v1N tð Þ v2N tð Þ vMN tð Þ

0
B@

1
CAþ cpr1

pbest11 tð Þ ⋯ pbestd1 tð Þ
⋮ pbest22 tð Þ ⋮

pbest1N tð Þ pbest2N tð Þ pbestMN tð Þ

0
B@

1
CA

8><
>:

–
x11 tð Þ ⋯ xd1 tð Þ
⋮ x22 tð Þ ⋮

x1N t x2N t xMN t

0
B@

1
CA

9>=

ð Þ ð Þ ð Þ
>;

þcgr2

gbest11 tð Þ ⋯ gbestd1 tð Þ
⋮ gbest22 tð Þ ⋮

gbest1N tð Þ gbest2N tð Þ gbestMN tð Þ

0
B@

1
CA

8><
>:

–
x11 tð Þ ⋯ xd1 tð Þ
⋮ x22 tð Þ ⋮

x1N t x2N t xMN t

0
B@

1
CA

9>=
ð5:4Þ

ð Þ ð Þ ð Þ
>;

x11 t þ 1ð Þ ⋯ xd1 t þ 1ð Þ
⋮ x22 t þ 1ð Þ ⋮

x1N t þ 1ð Þ x2N t þ 1ð Þ xMN t þ 1ð Þ

0
B@

1
CA

¼
x11 tð Þ ⋯ xd1 tð Þ
⋮ x22 tð Þ ⋮

x1N t x2N t xMN t

0
B@

1
CAþ

v11 t þ 1ð Þ ⋯ vd1 t þ 1ð Þ
⋮ v22 t þ 1ð Þ ⋮

v1N t 1 v2N t 1 vMN t 1

0
B@

1
CA ð5:5Þ

ð Þ ð Þ ð Þ þð Þ þð Þ þð Þ

5.3.1.3 Variant Example: Local Best PSO

The local best version of the PSO particles has the information only of their own and
nearest neighbors’ best individuals (Engelbrecht, 2007). In global best PSO, parti-
cles tend toward the stochastic mean of the pbestdi tð Þ and gbestd(t); here, they move
toward the pbestdi tð Þ and the lbestd(t) (the neighborhood best particle). The size of the
neighborhood is a parameter that can be chosen. The particles’ position update and
transformations/perturbations/velocity updates can be represented by the Eqs. (5.6)
and (5.7), respectively:
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vdi t þ 1ð Þ ¼ ωvdi tð Þ þ cpr1 pbestdi tð Þ – xdi tð Þ⎧ ⎫þ clr2 lbestd tð Þ – xdi tð Þ⎧ ð5:6Þ⎫

xdi t 1 xdi t vdi t 1 5:7þð Þ ¼ ð Þ þ þð Þ ð Þ

–

where xdi tð Þ and xdi t þ 1ð Þ are the positions (along dth dimension) of the ith particle at
time “t” and “t + 1,” respectively; i ¼ 1, 2, . . . . , n and d ¼ 1, 2, . . ., M; vdi tð Þ and
vdi t þ 1ð Þ are the velocities of the ith particle (along dth dimension) at time “t” and “t
+ 1,” respectively; pbestdi tð Þ is the position of the personal best particle for the ith
particle (along dth dimension) at time t; lbestd(t) is the neighborhood’s best particle
position (along dth dimension) at time t; cp and cl are the personal and neighborhood
best acceleration constants, respectively, which help accentuate the focus on per-
sonal best and local best, respectively; r1 and r2 are uniform random numbers (0,1) to
add a stochastic property to the flight of the particles; and ω is the inertia weight that
is used to obtain a trade-off between exploring/tending toward the neighborhood
best and local exploitation (tending toward personal best). Notations above are
adapted from (Daneshyari & Yen, 2011; Kadkol, 2010; Zhang et al., 2015).

5.3.2 Algorithm Structure and Pseudocode

This section gives a brief about the algorithm and pseudocode with the global best
PSO model and is adapted from (Zhang et al., 2015). This pseudocode has been
outlined with a minimization problem in perspective.

Step 1. Initialization step.

1. For every particle “i” in the “n” element population space, do the following:

(a) Initialize particle’s position using a uniform random number such that it lies
within (LB, UB), where LB and UB are the lower and upper bounds of the
population space/parametric space.

(b) Set pbestdi tð Þ to initial position: pbestdi 0ð Þ ¼ xdi 0ð Þ, where xdi 0ð Þ minimizes
function f.

(c) Set gbest to the minimal value of the swarm: gbestd(0) ¼ xdi 0ð Þ leading to the
minimum value of fitness function (assuming it’s a minimization problem).

(d) Initialize velocity: vdi tð Þ based on a uniform random number that lies between
( range, range), where range UB LB .¼ j – j

Step 2. Repeat until some termination condition is met.

1. For every particle i in the n element population space, do the following:

(a) Pick uniform random numbers: r1 & r2 U(0, 1).2
(b) Update the particle’s velocity (Eq. 5.2).
(c) Update the particle’s position (Eq. 5.3).
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(d) If f [xdi t ] < f [pbestdi t ], do the following:ð Þ ð Þ
(i) Update best known particle position: pbestdi t xdi t .ð Þ ¼ ð Þ
(ii) If f xdi tÞð Þ < f gbestd tð Þ⎧ ⎫⎧

, update the swarm’s best known position:

gbestd t xdi t .ð Þ ¼ ð Þ
(e) Move to the next iteration (time step), i.e., t + 1.

Step 3. Output the global best solution (gbestd(t)).

5.3.3 Neighborhood Topologies

The interaction between particles within the swarm is where each particle learns
from others (the local best, personal best, global best). This learning is determined by
how the particles are connected to each other. This can be likened to social networks
(Engelbrecht, 2007). There are multiple topologies that drive the particle movements
in the population space. The PSO algorithm performance is quite strongly influenced
by the structure of the social network or neighborhood topology. The connectivity
between particles, the grouping of particles into clusters (particles with common
neighbors), and the distances between such clusters impact the PSO algorithm
performance (Engelbrecht, 2007). The nature of the function space would help
decide the topology. Three topologies are discussed briefly here. Figure 5.4 illus-
trates the particle interactions in a ring topology—local best PSO model with a
particle neighborhood of two particles. This can traverse big areas of the population
space, but convergence to best solution is slow (Eberhart & Kennedy, 1995;
Kennedy & Eberhart, 1995).

Fig. 5.4 Ring topology
(simple case of Local Best
PSO model). Source:
Adapted from (Shi, 2006;
Talukder, 2011) and
redrawn by the author
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Figure 5.5 shows the particle interactions in a PSO model that resembles a
governance-type model (with each particle interacting only with one particle, also
called a focal). As and when this focal particle finds better solutions from across all
particles, it communicates the same with the rest of the population. This type of
interaction could slow down the transfer of information to the entire swarm.

Figure 5.6 illustrates the particle interactions in a star topology—global best
PSO/full PSO model where every particle interacts with every other particle and
hence any particle tends toward the best particle found in the entire swarm
(Engelbrecht, 2007). This implementation leads to a fast convergence due to this

Fig. 5.5 Wheel topology.
Source: Adapted from (Shi,
2006; Talukder, 2011) and
redrawn by the author

Fig. 5.6 Star topology
(simple case of the global
best PSO model). Source:
Adapted from (Shi, 2006;
Talukder, 2011) and
redrawn by the author



information exchange; however, the downside is being caught in local minima as the
tendency to explore is lesser. This topology works very well for unimodal functions
(Engelbrecht, 2007).
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Other spatial neighborhoods exist (Engelbrecht, 2007), and an example was
proposed by Suganthan, where neighborhoods are established on the bases of spatial
distance between particles (Suganthan, 1999) in Eqs. (5.8) and (5.9).

Two particles, l and m, are said to be in each other’s neighborhood provided:

x
!
l – x

!
m

║║ ║║
dmax

< ξ ð5:8Þ

where dmax is the largest distance between the two particles and ξ is defined as:

ξ ¼ 3iþ 0:6imax

imax
ð5:9Þ

where i is the current iteration count and imax is the maximum number of iterations.
This topology/strategy ensures smaller initial neighborhoods, and as the algorithm
approaches the imax, it approaches the global best particle. The diversity and explo-
ration are increased this way while also avoiding premature convergence
(Engelbrecht, 2007).

5.4 Choice of PSO System Parameters and Tuning

5.4.1 Vmax

The vital PSO parameters are Vmax & cg, cp, and these are tpically initialized at the
start of an iteration and remain unchanged through the iteration (Shi, 2006).

Vmax:

The updates to the velocity are by design of the algorithm, stochastic in nature,
and hence particle perturbations and the path could vary widely and could lead to an
undamped oscillatory nature. To curtail this, one approach is to have a clamp as
under:

• If vdi t > V max , then vdi t Vmaxð Þ ð Þ ¼
• Else if vdi ð Þt < –Vmax, then vdi ð Þt ¼ –Vmax

(Shi, 2006) illustrates the need and the effects of doing this with the assumption of
d ¼ 1.
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5.4.2 Control Parameter/Acceleration Constants (cg, cp, cl, r1,
r2)

The acceleration constants (cg, cp) are also referred as trust parameters (Engelbrecht,
2007), and they determine whether particles trust themselves or their neighbors and
also the rate at which the particles can tend toward the global/local/personal best
particles. A small value causes the particle to follow a wide trajectory to tend toward
the bests in many iterations. A large value causes the particle to follow a tighter
trajectory toward the bests in fewer iterations, but the velocity explosion/clamping
occurs faster. A value of zero means that the particle’s trajectory is largely deter-
mined by its momentum component. The above was assuming both (cg, cp) are
equal. If cg > 0 and cp ¼ 0, all particles are tending toward the global best particle.
Likewise, if cg ¼ 0 and cp > 0, then all particles move on their own independently
and rely on their own best values from the past. The choice of these parameters
depends on the nature of the search space (unimodal, multimodal). Please refer to
(Clerc & Kennedy, 2002; Engelbrecht, 2007) for a detailed treatment of the topic.

5.4.3 Inertia Weight (ω)

The inertia weight was first proposed to reduce the velocities with time (or iterations)
in order to control the exploration and swarm more accurately and efficiently (Shi &
Eberhart, 1999). Large inertia weights cause better exploration, while smaller
weights cause a focus on a smaller region. Most often, the weight is set high initially
and reduced with time (Engelbrecht, 2007).

5.4.4 Swarm Size (n)

Population size/number of particles in swarm needs to be chosen, keeping in mind
certain trade-offs. Large size of swarm causes better initial diversity of particles,
allowing wider search attained in lesser time (or iterations) in population space. The
downsides are increased need for computation, more complexity of operations, and
so on. Empirical studies recommend a swam size between 10 and 30. Another view
which is more practical is that the swarm size should be catered to the problem on
hand based on cross-validation techniques. Refer to (Engelbrecht, 2007) for a more
detailed treatment of the topic.
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5.4.5 Neighborhood Size

This defines and sets context for the social interactions within the swarm. There is a
trade-off as conceivable between small and large neighborhoods with respect to rate
of convergence and optimality. Large neighborhoods have more interactions and
faster convergence but are less reliable to converge to optimal solutions and more
likely to get trapped in a local minimum. The reverse is true for small neighborhoods
(Engelbrecht, 2007). To ensure the best of both worlds are achieved, we could start
with a small neighborhood and move to larger neighborhood with time (or iterations)
(Suganthan, 1999).

5.4.6 Number of Iterations

This is problem-specific. Too many iterations/epochs lead to too much computation
time, and too few iterations/epochs lead to early search termination and hence
inferior solutions.

5.4.7 Constriction Coefficient

(Clerc & Kennedy, 2002) came up with the constriction coefficient χ using which
one could eliminate the need for the Vmax and ω (see Eq. 5.10 below). The proposed
update to velocity update equation is:

vdi t þ 1ð Þ ¼ χ vdi tð Þ þ cp pbestdi tð Þ – xdi tð Þ⎧ ⎫þ cgr2 gbestd tð Þ – xdi tð Þ⎧⌈ ð5:10Þ⎫⌉

where χ 2
2

& ϕ cg + cp.¼
4–ϕ–

ffiffiffiffiffiffiffiffiffiffi
ϕ –4ϕ

p⎹	⎹	 ⎹	⎹	 ¼
This has been designed to hasten the process of convergence (Das, Abraham, &

Konar, 2008). For large values of ϕ, there’s a larger focus on convergence toward the
personal or global bests. This is apt during exploration phase. For smaller values of
ϕ, there’s lesser perturbation and more apt during exploitation phase.

5.5 Initialization and Convergence Criteria

5.5.1 Initialization

Normally, the particles are initialized to cover the population space uniformly. This
initial diversity of the particles influences the efficiency of the PSO (Engelbrecht,



2007). Also, depending on the nature of the function, the choice of particles decides
the convergence and quality of solutions. An implementation of the algorithm with
asymmetrical initialization shows how well the algorithm can escape local minima
and truly explore the population space effectively.
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Particle initial velocities can be set to zero in keeping with the physical analogy;
however if a non-zero value must be set, it’s recommended to set lower values to
avoid the velocities from increasing beyond the bounds too quickly (Engelbrecht,
2007).

5.5.2 Convergence

PSO algorithms are executed until a convergence criterion is met. This could be a
fixed number of iterations or a certain number of fitness function computations, or
the optimal values found are within a tolerance value, or particle position updates
don’t change much across iterations, or the objective functions don’t change much
(Engelbrecht, 2007).

5.5.3 Neighborhood Size

The full model of PSO (global best-based) is the local best PSO with the entire
swarm as the neighborhood. This technique is susceptible to local minima. There is a
trade-off between local minima and convergence. Many neighborhoods with a
smaller size ensure the avoidance of being trapped in local minima, whereas too
large a neighborhood causes delayed convergence (Engelbrecht, 2007).

5.6 Applying PSO to DeJong’s Test Function 1

The PSO was applied to DeJong’s test function 1 (see Eq. 5.1). The population size
(number of particles) was set to 50. For the sake of clearer illustration, the limits of
the parametric space were set to (–2,2) and the limits of the function space to
(–0.1,1). Figure 5.7 illustrates the function space on two separate runs. Each run
constituted an initialization of the 50 particles, application of PSO iteratively and
observation of function space, and convergence of solutions to minima. On run
1, Fig. 5.7a–c represent the visualization (at snapshots in time) in three dimensions
of the function landscape (the horizontal axes represent the parametric values, i.e.,
x
! ¼ x1, x2ð Þ, and the vertical axis represents the fitness value or function value). On
run 2, Fig. 5.7d–f represent the visualization (at snapshots in time) in two
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Fig. 5.7 Images (a–c) constitute snapshots taken during run 1 and are a visualization of 50 particles
in function space and their trajectory as they move toward the optimum x

! ¼ 0, 0ð Þ. Images (d–f)
constitute snapshots taken during run 2 and are a visualization of 50 particles in function space
(represented via a contour plot) as they move toward the optimum (red “X” at x! ¼ 0, 0ð Þ). Source:
Author’s own creation using the Python language package in literature (Miranda et al., 2017)

dimensions, where the two axes represent the parametric values, i.e., !
x ¼ ðx1, x2Þ

and the function landscape is illustrated via the contours.
The function values (or fitness) of the 50 particles are represented by the black

dots and the optimal value by the red cross mark. The particle fitness trajectory using
PSO algorithm in the function space of DeJong’s test function 1 is evident when the
plots for each run are viewed in sequence (e.g., as a, b, and c). This implementation



of PSO was enabled by a Python language package in literature (Miranda, 2018;
Miranda et al., 2017). An empirical study of this function and several others is
available via (Shi & Eberhart, 1999).

5 Mathematical Model of Particle Swarm Optimization: Numerical Optimization. . . 89

5.7 Discussion and Further Reading

The chapter thus far has focused on the mathematical model of PSO for single-
objective optimization problems, the nuances of the core algorithm, and tunable
parameters. Some of the known challenges of the vanilla PSO are being trapped in
local minima (Shi & Eberhart, 1999) and computational complexity. Here, we will
focus on the former as the latter has been addressed by the increased compute
capabilities and by parallelism of compute over the years. For the problem of
being trapped in local minima or premature convergence, this can be imagined
with the context of a multimodal functional space (i.e., many crests and troughs).
There are some techniques to avoid this and ensure an improved trade-off between
exploitation and exploration. A suggestion from literature has been to employ a self-
adapting methodology for inertia weight (ω), based on the problem and the fitness
landscape (Shi & Eberhart, 1999); a fuzzy local search-based method to adapt the
inertia weight (ω) has been proposed (Shi & Eberhart, 2001). There are approaches
around usage of neighborhood-based methods (Kennedy, 1999; Kennedy &
Mendes, 2002; Mendes, Kennedy, & Neves, 2004), which in some sense delay the
exploitation but enhance the exploration. A natural selection-based method was used
to temper the influence of the personal and global bests on the velocity in (Angeline,
1998). A velocity-based reinitialization method has been proposed in (Binkley &
Hagiwara, 2008), where the velocity is used to assess swarm stagnation to reinitialize
the entire swarm population while retaining the hitherto best individuals. In (Clerc,
1999) “no-hope” convergence criterion and “re-hope” methodology is used to
reinitialize the swarm on the basis of some gradient estimates of the objective
function. Other variants include where entire swarm is reinitialized in dynamic
environments (Eberhart & Shi, 2001) and where the global best is checked period-
ically to observe any changes to detect changes in the environment (Hu & Eberhart,
2002). Yet another approach is in (Clerc, 2006), where the number of iterations
without any advancement in the particle’s local best is used as an indicator of
stagnation to reinitialize the swarm. In (Chen, Sun, Wei, & Tang, 2011), the authors
have used the sigmoid function to improve the velocity update equation inspired by
techniques from Reinforcement Learning. Please see prior section on “Choice of
PSO System Parameters and Tuning,” where a constriction-coefficient-based
method to alter the velocity was seen (Clerc & Kennedy, 2002). In prior section
on “Neighborhood Topologies,” forming neighborhoods on the bases of spatial
distance between particles (Suganthan, 1999) was seen. Many more such techniques
have been devised to address this, and an introduction of the trends in PSO that have
been devised to overcome some of the problems, as well as to extend the scope of the
type of problems the original PSO was designed to solve, is available for the



advanced reader (Zhang et al., 2015). The authors have systematically categorized
the variants under the following categories:
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• Modifications to the core PSO algorithm (chaotic PSO, fuzzy PSO, quantum-
behaved PSO, etc.)

• Hybridization of the PSO with some other approaches like Genetic Algorithms,
Artificial Immune Systems, Ant Colony Optimization, Simulated Annealing, etc.

• PSO variants by nature of problems in other fields: multi-objective, constrained,
discrete, etc.

• Parameter selections and convergence analysis.
• Parallel implementations, use of compute power (GPUs).

Many real-world problems are multi-objective in nature, including the problem of
portfolio optimization that this book addresses. Refer to (Kuo & Hong, 2013) for a
treatment on the topic of fusion of Genetic Algorithms with PSO to the topic of
Portfolio Optimization. A combination of categories two and three above is seen in
(Daneshyari & Yen, 2008, 2011), where Cultural Algorithm-based PSO has been
implemented to solve for Multi-objective Optimization problem (MOP) with con-
straints. In some scenarios, the MOPs are such that the objective functions change
with time (dynamic MOP) (Farina, Deb, & Amato, 2004) and the PSO algorithm
implementation has to factor this (Kadkol, 2010) and (Kadkol & Yen, 2012). A
perspective on multi-objective optimization problem is shown below (in Eqs. 5.11
and 5.12) and is adapted from (Hu, Eberhart, & Shi, 2003; Kadkol, 2010):

min
x2Rn

f
!ð x!Þ ¼

h
f 1ð x!Þ, f 2ð x!Þ, . . . , f rð x!Þ

i
, ð5:11Þ

where f1, f2, f3, . . ., fr are each of the r objective functions and x
! ¼

x1, x2, . . . , xn Rn are the n decision variables. The constraints are given by:½ ] 2

g j xð Þ ≤ 0, for j ¼ 1, 2, . . . ,m and h j xð Þ ¼ 0, for j ¼ mþ 1,M

¼ 2, . . . , p: ð5:12Þ

The bounds on the decision space (or parametric space) are xMIN
i ≤ xi ≤

xMAX
i for i 1, 2, . . . , n.¼
The solutions to the aforesaid MOPs (fitness space) include attempting to simul-

taneously optimize all the r objectives (function space or objective space) in an
n dimensional space (decision space or parametric space). These solutions are called
as Pareto optimal solutions. The objectives in the function space have p constraints
(m inequality and p-m equality constraints). The concept of Pareto optimality is the
key here. Some definitions are shown below in this regard as adapted from (Hu et al.,
2003; Zitzler, 1999), which have a more elaborate treatment of the topic. The
definitions that follow have been made from a minimization perspective:
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Definition 1: Feasible Set, Xf Is the set of parametric vectors x
!

which satisfy

constraints g x
! and h x

!
: It is defined as under:j

⎧ ⎫
j

⎧ ⎫

X f ¼ x
! 2 X

n ⎹	⎹	 g j xð Þ ≤ 0, for j ¼ 1, 2, . . . ,m and h j xð Þ ¼ 0, for j ¼ mþ 1,M

¼ 2, . . . , p
o

The feasible region in the function space is denoted as Yf ¼ f(Xf).

Definition 2: Pareto Dominance Any given parametric vector x
! ¼

x1, x2, . . . , xn½ ] 2 Rn is said to dominate x0
! ¼ x1, x2, . . . , xn½ ] 2 Rn strongly if and

! ! ! ! ! !0
only if f x

⎧ ⎫
< f x0

⎧ ⎫
. x is said to be weakly dominating x iff.

f
!

x
!⎧ ⎫

≤ f
!

x0
!⎧ ⎫

and x
!

is said to be indifferent to x
!0

iff f
!⎧

x
!⎫⇍ f

!⎧
x0
!⎫

^
! ! ! !⎧ ⎫ ⎧ ⎫
f x0 ⇍ f x .

Definition 3: Pareto Optimality/Pareto Optimal Set P* For the said multi-objective

optimization problem, a given solution x*
! 2 X f , (where Xf is the feasible solution

space), is said to be Pareto optimal if and only if there is no x
! 2 X f that dominates

x*
!
.

Definition 4: Pareto Front (PF) The solutions which are Pareto optimal are part of
the Pareto front. It can be defined as under:

PF ¼ f
!

x*
!⎧ ⎫n ⎹	⎹	

x*
! 2 P*

o
⎹	

5.8 Conclusion

PSO is one of the powerful Computational Intelligence techniques that has a strong
analogy to nature, is very useful in a wide variety of numerical optimization
problems, and is quick to set up. It has applications in many disciplines including
Portfolio Optimization which is inherently a multi-objective, dynamic optimization
problem with constraints. There are many variants of PSO aimed to handle practical
issues of multiple objectives and modalities, with constraints. The References
section has many authors’ work with variants of PSO for the single-objective case
as well as the multiple-objective case with constraints and dynamic functions. This
chapter has attempted to address the topic of PSO and the relatively simple



mathematics necessary to understand the technique keeping in mind a reader who is
new to this area.
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Key Terms and Definitions
Artificial Intelligence: “We define AI as the study of agents that receive percepts

from the environment and perform actions. Each such agent implements a
function that maps percept sequences to actions, and we cover different ways
to represent these functions, such as production systems, reactive agents, real-
time conditional planners, neural networks, and decision-theoretic systems.”
(Russel & Norvig, 2018).

Computational Intelligence: “Computational Intelligence (CI) is the theory,
design, application and development of biologically and linguistically motivated
computational paradigms. Traditionally the three main pillars of CI have been
Neural Networks, Fuzzy Systems and Evolutionary Computation.” (IEEE CIS,
2019).

Evolutionary Computation: “Using the biological evolution as a source of inspi-
ration, evolutionary computation (EC) solves optimization problems by generat-
ing, evaluating and modifying a population of possible solutions. EC includes
genetic algorithms, evolutionary programming, evolution strategies, genetic pro-
gramming, swarm intelligence, differential evolution, evolvable hardware, multi-
objective optimization and so on.” (IEEE CIS, 2019).

Swarm: “A swarm is a population of interacting elements that is able to optimize
some global objective through collaborative search of space. Interactions that re
relatively local (topologically) are often emphasized. There is a general stochastic
(or chaotic) tendency in a swarm for individuals to move toward a center of mass
in the population on critical dimensions, resulting in convergence to an opti-
mum.” (Eberhart et al., 2001).

Swarm Intelligence: “The collective behaviors of simple individuals, interacting
with each other and their respective environment.” (Shi, 2006).

Metaheuristics: “A metaheuristic is a high-level framework, a set of concepts and
strategies that blend together, and offer a perspective on the development of
optimization algorithms.” (Sörensen, Sevaux, & Glover, 2019).

Population Heuristics: Heuristic techniques that rely on multiple initial guesses/
initializations as a “population” to compute function evaluations as opposed to a
single guess. The heuristic algorithms have strong analogies to social systems
with populations with different levels of fitness (Beasley, 2002).

Bio-Inspired Algorithms: Algorithms that fall under the Computational Intelli-
gence category (above) and are used interchangeably.
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Chapter 6
Particle Swarm Optimization: The
Foundation

Dadabada Pradeep Kumar

Abstract Particle swarm optimization (PSO) is a very much popular swarm intel-
ligence algorithm. Since its inception in the year 1995, it is being applied to solve
optimization problems in many domains, including portfolio optimization. This
chapter lays the basic PSO foundation and introduces existing PSO variants for
researchers who want to solve the portfolio optimization problem. It starts with the
introduction of PSO, describing the advantages, disadvantages, and applied areas of
PSO. Later, the basic PSO procedure and its parameter selection mechanisms are
presented. The chapter also presents three popular applications of PSO in finance,
including portfolio optimization. Finally, the chapter ends by introducing the
existing PSO variants to solve the portfolio optimization problem.

Keywords Portfolio optimization · PSO algorithm · Applications · Fitness · Position
update · Velocity update · Swarm intelligence

6.1 Introduction

Optimization aims at obtaining optimal solutions to a problem from a set of feasible
solutions based on one or several criteria. Optimization techniques cover large
application areas in business, finance, service, industry, engineering, and computer
science. For example, portfolio optimization is an optimization problem to select the
best portfolio (asset distribution) with the objectives of maximizing factors such as
expected return and minimizing costs like financial risk. Constraints, if any, can help
in reducing the search space of feasible solutions. The global optimal solution, if
possibly found, can be the best solution to the problem. However, sometimes,
suboptimal solutions can also be considered the possible optimal solutions to the
problem (Parsopoulos & Vrahatis, 2010).
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Swarm intelligence (SI) is a distributed, intelligent computing mechanism for
solving optimization problems. SI took its inspiration from the flocking of birds,
swarming, and herding phenomenon invertebrates. Sometimes SI is considered a
part of evolutionary computing, as it shares many similarities with it. SI starts
working with individuals, where each individual tries to find out the optimal
solution. The solution is shared among individuals, and then each individual
improves themselves based on the information gathered from others. The most
crucial SI property is that all the individuals work in a coordinated way without a
coordinator’s presence.
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PSO is a population-based SI algorithm developed by Eberhart and Kennedy in
1995, inspired by the social behavior of bird flocking or fish schooling (Eberhart &
Kennedy, 1995). From its inception, it is attracting a lot of researchers to solve
optimization problems in different domains. In the beginning, PSO can only handle
real-valued problems. Later, it has been extended to cover both binary and discrete
problems (Eberhart & Shi, 2004).

PSO is a meta-heuristic algorithm that deals with a population of random
solutions (particles). Each particle in PSO flies through the search space with a
dynamically adjusted velocity and positions according to its own and its compan-
ion’s historical behaviors. The particles move to optimal positions based on objec-
tive functions.

PSO is the most popular algorithm in comparison with other evolutionary algo-
rithms (AlRashidi & El-Hawary, 2008; Eberhart & Shi, 2004; Pradeepkumar &
Ravi, 2014, 2017; Ravi, Pradeepkumar, & Deb, 2017) as it is:

1. Very intuitive and flexible.
2. Less sensitive to the nature of the objective function.
3. Able to handle objective functions with stochastic nature.
4. Derivative-free.
5. Easy to comprehend and implement.
6. With the requirement of fewer user-defined parameters to tweak.
7. Without the requirement of a good initial solution to start its iteration process.

However, PSO also has disadvantages. These include:

– It does not always guarantee the optimal solution to the problem than the
dynamic programming approach; instead, it results in a near-optimal solution.

– It is slow to convergence in the refined search stage (weak local searchability).

As it is advantageous to apply, PSO is used in various domains involving
optimization problems such as antennas, biomedicine, communication networks,
clustering and classification, combinatorial optimization, control, design, distribu-
tion networks, electronics and electromagnetics, engines and motors, entertainment,
fault diagnosis and recovery, finance, fuzzy and neuro-fuzzy systems, graphics and
visualization, image and video analysis, metallurgy, modelling, neural networks,
prediction and forecasting, power systems and plants, robotics, scheduling, security
and military, sensor networks, and signal processing (AlRashidi & El-Hawary, 2008;
Poli, 2008; Poli, Kennedy, & Blackwell, 2007; Pradeepkumar & Ravi, 2018).
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6.2 Background

The particle swarm concept originated with the effort of Reeves (1983), who came
up with the idea of particles. These particles are considered as independent entities
that work in harmony to achieve the objective. Reynolds (1987) then added a
concept of communication between the particles’ social behavior, with the help of
a flocking algorithm, whereby each particle adheres to the flocking rules. Later,
Nowak, Szamrej, and Latané (1990) also helped us understand the principles
underlying how particles are affected by the social environment. In addition to
this, Heppner and Grenander (1990) related a roost concept, i.e., the flock aims for
some roosting area. In these systems, the particles are autonomous, but a class of
rules regulates their movements. These observations on collective behaviors in these
social animals led to implementing this model to solve different optimization
problems.

6.3 The Basic PSO Algorithm

The PSO technique encompasses the following features. PSO is a metaheuristic
because it makes almost nil or very few inferences about the optimization problem. It
can search for vast space with distributed candidate solutions. PSO exhibits SI in its
optimization process. It mainly follows five fundamental principles observed in
SI-based algorithms. Mark Millonas (1993) has stated these principles are followed
by the particles while communicating with other fellow particles in the swarm.

In the procedure of basic PSO and its variants, a population of particles in the n-
dimensional search space gets initialized randomly. Each particle represents a
possible solution. Let Xi ¼ Xi,1, Xi,2, . . ., Xi,d, . . ., XN p be a vector denoting the
position and Vi¼ Vi,1, Vi,2, . . ., Vi,d, . . ., VN p be a vector denoting velocity of particle
i. A particle’s position and velocity can be updated dynamically until optimal values
are obtained. The basic PSO procedure is depicted by a flowchart (see Fig. 6.1) and
described in Algorithm 6.1, and the notations used in the algorithm are presented in
Table 6.1.

It is worth noting that the updated equations, Eqs (1) and (2), are stochastic. As
the velocities are getting updated dynamically, they may become too high, leading
particles to become uncontrolled. Therefore, the Vmax (Eberhart, Shi, & Kennedy,
2001), as in Eq. (6.3), helps in restricting the uncontrolled movement of particles in
search space.

A parameter, namely, inertia weight (G) as in Eq. (6.4) (Shi & Eberhart, 1998a,
1999), helps in adjusting the trade-off between explorative and exploitative capabil-
ities of PSO. The lesser the inertia weight is, the more the PSO’s exploration
capability will be and vice versa. And also, Clerc and Kennedy (2002) introduced
constriction factor y, as in Eq. (6.5), which ensured convergence and improved the
convergence rate of PSO.
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Fig. 6.1 Flowchart of particle swarm optimization’s procedure

6.4 Parameter Selection

Shi and Eberhart (1998b), Rezaee Jordehi and Jasni (2013), and Wang, Tan, and Liu
(2018) surveyed and presented various parameter selection methods found in the
literature. Table 6.2 shows PSO parameters, the purpose of each parameter, and
possible values or selection methods for each of these parameters. These parameter
selections can help in achieving the best output from PSO. Furthermore, sensitivity
analysis (Bartz-Beielstein, Parsopoulos, & Vrahatis, 2002), regression trees (Bartz-
Beielstein, Parsopoulos, Vegt, & Vrahatis, 2004), and statistics (Bartz-Beielstein,



þð Þ ¼ ð Þ þ -ð Þ þ - ð Þ
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Parsopoulos, & Vrahatis, 2004) can help in selecting the optimal parameters of the
PSO algorithm so that PSO algorithm can solve practical problems better.
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Algorithm 6.1: Particle Swarm Optimization

If Vi,dj j > Vmax, thenVi,d - sign Vi,dð ÞVmax ð6:3Þ
Vi,d t 1 ωVi,d t C1r1d Pi,d Xi,d C2r2d Pgd Xi,d

( )
6:4

Vi,d t 1 χ Vi,d t C1r1d Pi,d Xi,d C2r2d Pgd Xi,d
( )(

6:5
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Table 6.1 Notations and their interpretation

Notation Interpretation

Xi Position vector of particle i

Xi,d dth dimension of Xi

Vi Velocity vector of particle i

V dth dimension of V

f(Xi) Objective function value of Xi

n Dimension of problem in hand

t Iteration number or time step

C1 Cognitive acceleration coefficient

C2 Social acceleration coefficient

Pi The best position vector of particle i so far (local best position)

Pbest The best objective of particle i so far (local best fitness)

Pg The best position vector of swarm particles so far (global best position)

gbest The best objective of swarm particles (global best fitness)

Vmax Maximum allowable velocity for particles

ω Inertia weight

χ Construction factor

Np Number of particles in swarm (swarm size)

6.5 PSO in Finance

PSO is applied to solve various optimization problems in finance. This section
presents three such popular applications in finance:

6.5.1 Financial Market Prediction

The goal of financial market prediction problems such as FOREX rate prediction,
stock market prediction, and commodity price prediction is to obtain accurate pre-
dictions to make the right decisions. One of the hybrid approaches using PSO is
proposed by Pradeepkumar and Ravi (2014). In this approach, the artificial neural
network (ANN) is used to obtain predictions. Later, the PSO-based regression model
of errors is used to fine-tune the predictions obtained by ANN. The PSO minimizing
mean squared error (MSE) is used to obtain optimal coefficients of the regression
function of errors. The authors concluded that the proposed hybrid outperformed the
standalone approaches.

Ravi et al. (2017) extended the approach aforementioned using multi-objective
PSO (MOPSO) in place of PSO. The two objectives of MOPSO are the minimization
of MSE and maximization of Dstat (directional change statistic). The authors
concluded that MOPSO could yield optimal coefficients of regression in comparison
with PSO.
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Table 6.2 Parameter selection for PSO

Parameter Purpose Possible values/Selection methods

Swarm size
(Np)

Affects performance of PSO 20–50 (Sörensen & Glover, 2013; Wang
et al., 2018)

Acceleration
coefficients (C1

& C2)

Pull particles towards Pbest and gbest (1) C1 ¼ C2 ¼ 2 (Ozcan & Mohan,
1999)

(2) Time-varying acceleration coeffi-
cients (Achayuthakan & Ongsakul,
2009; Bao & Mao, 2009)

(3) Adaptive acceleration coefficients
(Guo & Chen, 2009; Yun & Xue, 2009;
Zhan, Xiao, Zhang, & Chen, 2007;
Zhengija & Jianzhong, 2009; Ziyu &
Dingxue, 2009)

(4) C1 ¼ C2 ¼ 1.49445 (Clerc & Ken-
nedy, 2002)

(5) C1 ¼ 2.8, C2 ¼ 1.3 (Carlisle &
Dozier, 2001; Schutte & Groenwold,
2005)

(6) Genetic algorithm (Yu, Zhang,
Chen, Song, & Hu, 2005)

(7) Adaptive fuzzy algorithm (Juang,
Tung, & Chiu, 2011)

(8) Differential evolutionary algorithm
(Parsopoulos & Vrahatis, 2002)

Inertia weight
(ω)

Adjusts the trade-off between
exploration and exploitation of
capabilities of PSO

(1) Fixed inertia weight (Shi & Eberhart,
1999)

(2) Fuzzy adaptive (Bajpai & Singh,
2007; Liu, Ouyang, Zhu, & Tang, 2010)

(3) Linearly decreasing (Shi & Eberhart,
1998b, 1999)

(4) Multi-stage linearly decreasing (Xin,
Chen, & Hai, 2009)

(5) Linearly increasing (Zheng, Ma,
Jhang, & Qian, 2003)

(6) Non-linear (Li, Xue, Niu, Chai, &
Wu, 2009)

(7) Random (Lin & Hong, 2007; Zhang,
Tang, Hua, & Guan, 2015)

(8) Chaotic (Feng, Teng, Wang, & Yao,
2007)

(9) Exponential (Jianxin, Xin, Weiguo,
& Rui, 2009)

(10) Gaussian (Pant, Radha, & Singh,
2007)

(11) Parallel (Liu, Su, Gao, & Xu, 2009)
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Table 6.2 (continued)

Parameter Purpose Possible values/Selection methods

(12) Simulated annealing inertia weight
(Hassan, Fayek, & Shaheen, 2006)

(13) ωmax ¼ 0.9 and ωmin ¼ 0.4 (Han,
Yang, Ren, & Sun, 2010)

(14) ω ¼ [0.9, 1.2] (Shi & Eberhart,
1999)

(15) ω ¼ [0.5 + (rnd/2.0)] (Eberhart
et al., 2001)

Maximum
velocity (Vmax)

Constrains the speed of the particles (1) Set to a fixed value (Wang et al.,
2018)

(2) Linearly decreased value with time
(Fan, 2002)

(3) Dynamically reduced based on suc-
cess of search history (Fourie &
Groenwold, 2002)

(4) Vmax
Xmax-Xmin

NI
¼

Where N1 is the number of intervals in
the dth dimension selected by user. Xmax

and Xmin are the maximum and mini-
mum values that particles have achieved
so far, respectively (Abido, 2001, 2002)

Maximum
position (Xmax)

Constrains positions of the particles (1) Absorbing wall, reflecting wall and
invisible wall (Robinson & Rahmat-
Samii, 2004)

(2) Absorbing wall + reflecting wall
(Huang & Mohan, 2005)

(3) Hard position limit+absorbing wall
+reflecting wall (Mikki & Kishk, 2005)

Stopping
Criteria

Terminates the particles conver-
gence process

(1) Prespecified number of iterations.

(2) Achievement of a specified quality in
solution.

(3) Lapsing a specified time.

(4) Lack of change in a certain succes-
sive iteration

(5) a combination of above (Rezaee
Jordehi & Jasni, 2013)

6.5.2 Volatility Forecasting

The volatility forecasting problem’s goal is to obtain accurate predictions to assist
various financial stakeholders. Pradeepkumar and Ravi (2017) presented a
PSO-trained quantile regression neural network (QRNN), namely, PSOQRNN, to
forecast volatility of financial markets. In this approach, the weights of QRNN are
obtained using PSO so that the PSOQRNN could yield accurate forecasts. The



authors concluded that PSO helped QRNN obtain accurate volatility forecasts
compared to standalone QRNN and other similar volatility forecasting approaches.
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6.5.3 Portfolio Optimization

The goal of portfolio optimization is to build the best investment portfolio according
to a defined set of assets. Let us assume that we have selected N financial assets we
want to invest in. They can be (daily, monthly, etc.) stocks, funds, bonds, ETF, etc.
Each of these has many historical returns that are the relative price difference from
one period to another.

Kunwar Madan (https://github.com/KunwarMadan/Optimal-Financial-Portfolio-
Selection), in this context, presented an example of portfolio selection using PSO
and genetic algorithm (GA) in Python. The author solved a 470-dimensional prob-
lem in which 470 stocks were considered in the portfolio. In 470-dimensional search
space, PSO and GA are applied in finding the optimal combination of weights
representing all stocks’ capital using the Sharpe ratio. The author concluded that
GA results after 2000 iterations were not even close to PSO results after 250 itera-
tions. Hence, the author proved that PSO is better than GA to solve the portfolio
optimization problem. The same fact is also proved by Chen and Zhu (2010). And
also, the PSO is applied in constructing optimal risky portfolio (Cura, 2009; Dashti,
Farjami, Vedadi, & Anisseh, 2007; Kendall & Su, 2005; Mercangoz, 2019) and in
solving constrained portfolio selection problem (Chen, Zhang, Cai, & Xu, 2006;
Cui, Cheng, & Bai, 2014; Zhu, Wang, Wang, & Chen, 2011).

6.6 Variants of PSO for Portfolio Optimization

Table 6.3 presents various variants of PSO proposed for solving portfolio optimiza-
tion problem. The authors concluded that the proposed PSO variants outperformed
basic PSO aforementioned and other PSO variants.

Table 6.3 Variants of PSO for portfolio optimization

Year Author(s) PSO variant

2009 Niu, Xue, Li, and Chai (2009) Symbiotic Multi-swarm PSO (SMPSO)

2009 Mario Villalobos-Arias (2009) PSO with stripes (MOPSO-ST)

2012 Sharma, Thulasiram, and Thulasiraman
(2012)

Normalized PSO (NPSO)

2014 Soleimanivareki, Fakharzadeh, and
Poormoradi (2014)

Fuzzy Adaptive PSO

2015 Yin, Ni, and Zhai (2015) Heterogeneous Multiple Population PSO
(HMIPPSO)

https://github.com/KunwarMadan/Optimal-Financial-Portfolio-Selection
https://github.com/KunwarMadan/Optimal-Financial-Portfolio-Selection
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6.7 Conclusion

Portfolio optimization aims at building the best investment portfolio according to a
defined set of assets and constraints. PSO is good at obtaining the near-best global
optimal solution from the search space of feasible solutions. Literature provided a
base for the readers that PSO and its variants are the best fit for achieving the
portfolio optimization problem’s objective. This chapter provided descriptions of
basic PSO, its parameter selection methods, and its variants. The readers can also be
further directed to refer to Yarpiz (2020) for solving portfolio optimization problem
using various classic and other SI algorithms such as imperialist competitive algo-
rithm (ICA), non-dominated sorting genetic algorithm II (NSGA-II), and strength
Pareto evolutionary algorithm 2 (SPEA2).
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Chapter 7
The PSO Family: Application
to the Portfolio Optimization Problem

Lucas Fernández-Brillet, Oscar Álvarez, and
Juan Luis Fernández-Martínez

Abstract Nonlinear high-dimensional optimization problems are generally
ill-posed and ill-conditioned, with different sets of models located in one or different
disconnected valleys of the cost function landscape with similar values. This situa-
tion generates uncertainty in the identification of the optimum model parameters that
should be translated to the decision that has to be made. Therefore, the analysis of the
uncertainty space of this type of problems is required in order to adopt robust
decisions. This is done by sampling the cost function topography within the intricate
solution set valleys that belong to the nonlinear equivalence region and validating
the existence of different scenarios. This is also the case of the portfolio optimization
problem, which admits multiple solutions depending on the expected return-risk
ratio. As the popular wisdom says, you cannot have the butter and the money of
having sold it. This mathematical situation is known as a Pareto front, which aims to
show the boundary of the nonlinear equivalence region of the corresponding deci-
sion problem. In this chapter, we introduce the concept of uncertainty in high-
dimensional problems, proposing the particle swarm optimization family as a
parameter free-tuning global algorithm, capable of sampling the nonlinear equiva-
lent region in parallel with the optimization. For that purpose, these algorithms
should be exploratory. This feature is related to the automatic tuning of the PSO
parameters in the neighborhood of the stochastic second-order stability region of the
particle trajectories. These algorithms are faster than Monte Carlo methods. The
chapter concludes with the application of PSO to the portfolio optimization problem
of the IBEX-35, which is the main stock market index of the Bolsa de Madrid. In this
case, the cost function is constructed in a way that the investors seek to maximize the
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portfolio’s expected return subjected to a given risk. The optimization of the
portfolio composition follows a previous selection of the stocks.
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Keywords PSO family · Uncertainty · Portfolio optimization

7.1 Introduction

The problem of portfolio optimization is an important discipline of risk management
in finance that consists in finding the optimum allocation among several assets.
Nevertheless, this problem can be generalized in its abstract form to different fields.
In general, an investor has a series of possibilities for the composition of his
portfolio, and the question is to choose that composition that maximizes the return
of investment, minimizing the risk. For instance, a similar problem occurs in the field
of betting, in which a player has a series of options (bets) with different probabilities
of success and different quotas (odds), and the problem consists in optimizing the
stake to maximize the gain, minimizing the risk of loss. Generally speaking, we can
talk about different options that provide different pairs of expected return and risk.

As any optimization problem, its result depends on how the cost function is built
and the space of restrictions that is provided to the problem. The first works were
made by Markowitz in 1952, who proposed the mean-variance model and used the
technique of quadratic programming to solve it. It is out of scope of this paper to
analyze all the different approaches that have been proposed to measure risk instead
of the standard deviation (Sortino & Price, 1994; Tyrrell Rockafellar & Uryasev,
2000).

Also, the numerical algorithms used are very diverse and include the use of the
simplex algorithm (Wolfe, 1959) and also the use of heuristic methods such as
genetic algorithms (see, e.g., Chang, Yang, & Chang, 2009) or particle swarm
optimization (Cura, 2009; Xu, Chen, & Yang, 2007). The main difference between
local and global optimization methods is that, while the first try to converge to the
optimum solution, the seconds are able to perform sampling while optimizing along
the low misfit regions if they are tuned to be exploratory enough. This is one of the
main advantages of the PSO family that is presented in this paper, the free parameter
tuning, since the good PSO parameters that ensure a good balance between explo-
ration and exploitation are located in the neighborhood of the upper limit of the
second-order stability region of these algorithms (Fernández-Martínez & García-
Gonzalo, 2009, 2011, 2012; García-Gonzalo & Fernández-Martínez, 2014). Our
particular experience in many inverse problems shows that PSO can achieve this task
much faster than random sampling methods and better than other global optimization
algorithms.

Particularly, Markowitz (1956) introduced the critical line algorithm (CLA) to
simplify the solution of the minimization of the portfolio variance with equality and
inequality constrains. This method, which is used in practice, can be considered as a
local optimization method designed to track the efficient frontier. Compared to the



methodology exhibited in this paper, PSO samples all the possible combinations of
the weights of the preselected assets within some bounds, and the efficient frontier
arises as the result of this sampling approach. Besides, PSO can be viewed as an
intelligent search method (doubled stochastic gradient in the portfolio space) that
does not need any optimization procedure, only the solution of the forward problem
for each particle of the swarm, that is, given the weights of the portfolio, computing
the value of the optimization function. The trick is that with iterations, the swarm
will explore different interesting basins of the cost function landscape where the
efficient portfolios are located. These portfolios belong to the nonlinear equivalence
region of the portfolio optimization problem, and based on that, it is possible to
calculate the posterior distribution of the portfolio composition. Besides, the imple-
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mentation of PSO is much simpler and remains also very fast.
The structure of this chapter is as follows: in Sect. 7.2, we explain the topography

of the cost function in nonlinear high-dimensional problems introducing the
nonlinear region of uncertainty, where the efficient portfolios will be located in the
case of the portfolio optimization problem. The existence of this region is somehow
independent on how the cost function is constructed. In Sect. 7.3, we present PSO,
the PSO continuous model, and some interesting members of the PSO family
introduced by ourselves in the recent past. In Sect. 7.4, we present the application
of PSO to the portfolio optimization problem. The goal is not to compare the
different PSO family members, since all of them behave equally well, but to show
how combining these methods with a preselection of the stocks, we can get very fast
and interesting results. In this case, PSO can optimize the weights of the selected
assets or can also perform the optimization of the selection in the preselected set. In
both cases, the portfolio return-risk regions exhibit different shapes. Anyone should
bear in mind the free lunch theorem for search and optimization (Wolpert &
Macready, 1997) which proves no superiority of any particular algorithm among
the rest when they are used in many different optimization problems. Besides and
finally, models are to be used, not to be believed, that is, mathematical models are
abstractions that serve to analyze and take decisions. The last section is devoted to
the conclusions.

7.2 Nonlinear High-Dimensional Problems and Their Cost
Function Topography

Optimization problems are generally ill-posed, i.e., multiple different sets of model
parameters exist that satisfy a given cost value tolerance. In this sense, let us briefly
analyze the nature of high-dimensional optimization problems in relation to their
cost function topography (or landscape).

Let us consider a modelm 2M ⊂ ℝn, whereM is the set of admissible models.
The optimization problem consists in finding the model mp = min

m2M
C mð Þ having the

minimum value of the scalar cost function C(m) : ℝn ! ℝ. This is a challenging



problem in higher dimensions due to the intricate landscape of the cost function,
which does not have a convex character, with different models located on flat
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curvilinear valleys of low values of the cost function topography.
To show this fact, let us suppose that mp is the global optimum of the cost

function; thus, ∇C(mp) ¼ 0. Considering a Taylor expansion of the energy function
E around the model mp, we have:

C mð Þ ≈ C mp
⎧ ⎫þ∇C mp

⎧ ⎫
∙ m–mp
⎧ ⎫þ 1

2
m–mp
⎧ ⎫T

HC mp
⎧ ⎫

þ o
║║m–mp

║║2
2
,

⎛ ⎞
ð7:1Þ

where HC(mp) is the Hessian or curvature matrix of the cost function C calculated in

model mp, and o
║║m2mp

║║2
2

⎛ ⎞
is a scalar function that vanishes faster than the

squared distance between the models m and mp.

Neglecting the o
║║m2mp

║║2
2

⎛ ⎞
term, that is, approaching C(m) by its second-

order Taylor expansion:

C mð Þ ≈ CS mð Þ

¼ C
⎧ ⎫
mp þ∇C

⎧ ⎫
mp ∙

⎧ ⎫
m2mp þ 1

2

⎧ ⎫
m2mp

T
HC

⎧ ⎫
mp , ð7:2Þ

and taking into account that ∇C(mp) ¼ 0 and the positive definite character of HC
(mp) if mp is the global minimum, then, we have:

CS mð Þ ≤ tol ! 1
2

⎧ ⎫
m2mp

T
HC

⎧ ⎫
mp

⎧ ⎫
m2mp ≤ tol– C mp

⎧ ⎫
: ð7:3Þ

Expression (7.3) implies that the model parameters with a cost function less than
tol belong locally to a hyperquadric centered in mp that have the Hessian, HC(mp),
as matrix. This is obviously a local approximation.

The Hessian is a symmetric matrix and allows orthogonal factorization HC
(mp)¼ VDVT, where V is an orthogonal matrix and the eigenvalues of D (diagonal)
are positive real numbers due to the definite positive character of HC(mp).

By calling Δm ¼ m 2 mp, the hyperquadric that approximates locally the
nonlinear equivalent region of value tol writes:

ΔmTHC
⎧ ⎫
mp Δm ≤ 2 tol– C

⎧ ⎫
mp

⎧ ⎫
, ð7:4Þ

ΔmT
VHC mp

⎧ ⎫
ΔmV 2 tol C mp

⎧ ⎫⎧ ⎫
, 7:5≤ – ð Þ

when the model increments are referred to the V base, ΔmV = VTΔm.
In the case where HC(mp) is full rank, the bounding hyperquadric in (Eq. 7.5) can

be written as:



7 The PSO Family: Application to the Portfolio Optimization Problem 115

Xn
k¼1

ΔmVkffiffiffiffi
λk

p
⎛ ⎞2

¼ 2 tol– C mp
⎧ ⎫⎧ ⎫

, ð7:6Þ

which is an hyper-ellipsoid centered in mp whose principal directions coincide with
the eigenvectors vk (columns of V), and the length axes are 1/√λk, with λk being the
eigenvalues of D. In the case where the Hessian HC(mp) is semi-definite positive,
that is, it has a nontrivial null space associated to the null eigenvalues, then, the
hyperquadric (Eq. 7.6) becomes an elliptical cylinder. As it has been explained
above, the bounding hyperquadric (Eq. 7.6) only delimitates locally in the neigh-
borhood ofmp—the nonlinear equivalent region—that is, the modelsm which fulfill
the condition (Eq. 7.3).

Now, considering the same type of analysis for a different model mn which is
located in the neighborhood of the model mp and belongs to the nonlinear stability
region, we have:

∇C mnð Þ ∙ m–mnð Þ þ 1
2

m–mnð ÞTHC mnð Þ m–mnð Þ ≤ tol– C mp
⎧ ⎫

: ð7:7Þ

Several remarks are important (Fernández-Martínez, Fernández-Muñiz, & Tomp-
kins, 2012) to understand the complexity of the uncertainty analysis in non-convex
optimization problems:

1. It is possible to prove that the center of the hyperquadric (Eq. 7.7) coincides with
one iteration of the Gauss-Newton algorithm applied to min

m2M
C mð Þ taking mn as

initial guess. Therefore, local optimization methods in non-convex optimization
problems wander around different models of the nonlinear equivalent region
searching for the global optimum. Unfortunately, these methods might not
converge, and they do not keep track of the good models that have been visited
during the optimization process.

2. The Hessian matrixHC(mn) might lose its semi-definite positive character. In this
case, the hyperquadric becomes a hyperboloid, and the function landscape shows
saddle points that indicate the presence of different basins of low-cost equivalent
models. Therefore, the cost function topography in the nonlinear case becomes
very intricate.

3. The main orientations of the local hyperquadric change with the model that is
considered, since HC(mn) is the hyperquadric matrix. Thus, the nonlinear region
of the equivalent models exhibits a banana-shape structure. Besides, the cost
function landscape could be multimodal, composed by different low-cost value
elongated basins with almost null gradients. This fact also applies to the portfolio
optimization problem and means that the efficient frontier might be composed by
different disconnected regions.

Fernández-Martínez, Pallero, Fernández-Muñiz, and Pedruelo-González (2014a,
2014b) have studied the effect of noise and that of regularization in linear and
nonlinear problems proving that noise perturbs the location of the global optimum



that is found. Besides, the regularization techniques do not impede the existence of
other equivalent models. This fact is also important. The noise always enters through
the observed data in the cost function construction. In the case of portfolio optimi-
zation, we can conclude that its nonlinear equivalent region has to be related to the
region delimited by the efficient frontier curve, as described by Markowitz (1952).
To the best of our knowledge, this analysis has not been performed before in the case
of the portfolio optimization problem. Nevertheless, it has some similarities with
predicting the protein tertiary structure (Álvarez, Fernández-Martínez, Corbeanu,
et al., 2019), where we have used a similar way of reasoning.
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7.3 PSO: The Continuous PSO and the PSO Family

Particle swarm optimization (PSO) is an evolutionary computation technique for
optimization, which is inspired by the social behavior of individuals in groups in
nature (Kennedy & Eberhart, 1995). In essence, any PSO algorithm consists of the
following:

1. Particles are vectors whose length is equal to the number of degrees of freedom of
the optimization problem.

2. A population of particles is generated as initial conditions with random positions
x0i
⎧ ⎫

and velocities v0i
⎧ ⎫

.
3. At each iteration, a misfit or cost function is evaluated for each particle. The

velocities and positions for each particle are updated as per each particle’s own
history of misfit and the misfit of its neighboring particles. At each time step, k,
positions xki

⎧ ⎫
and velocities vki

⎧ ⎫
are updated according to the mechanical

equations:

vki ¼ wvk–1
i þ ϕ1 ∙ 1 ∙ gk–1 – xk–1

i

⎧ ⎫þ ϕ2 ∙ 1 ∙ lk–1
i – xk–1

i

⎧ ⎫
,

xki ¼ xk–1
i þ vki ∙ 1, ð7:8Þ

where ϕ1 ¼ r1ag, ϕ2 ¼ r2al, r1, r2 ! U(0, 1), and w, ag, al 2 ℝ.lk–1
i is the i-th

particle’s best position, gk – 1 is the global best position found until that iteration, ϕ1,
ϕ2 are the global and local accelerations, and w is a constant, called inertia. The
scalar 1 in Eq. (7.8) stands for the time step necessary to make this algorithm
dimensionally correct, as it corresponds to the relationship between space, velocity,
and acceleration.

The flowchart for the PSO algorithm is very simple:

1. A prismatic search space for the model parameters is given, and an initial swarm
of Ns particles is uniformly distributed in the search space, and their initial
velocities are (usually) set to zero. This is called the initial swarm, and it is
obviously very far from being the solution to the optimization problem. The

https://en.wikipedia.org/wiki/Efficient_frontier
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search space is the only prior information that is used during the optimization. It is
important to remark that no inversion of any matrix is performed; therefore, no
regularization term is needed. Besides, if the search space does not intersect the
low misfit (or cost function value) region, then the algorithm will not be able to
locate low misfit models.

2. The misfit (cost function values) of the initial population is evaluated solving
Ns forward problems (or cost function evaluations), and the global best and the
previous best of each particle are determined. Therefore, to use this kind of
algorithms, the cost function evaluation has to be fast to solve.

3. Choosing of the PSO parameters w, ag, al for each particle of the swarm, drawing
of the random numbers r1, r2,and updating of the velocities and positions of each
particle of the swarm using formula (7.8). This formula only accounts for PSO.
Other PSO family members have different updating expressions for the velocity
and the positions.

4. Iterate to point 2 until the maximum number iterations is reached, or some criteria
are fulfilled. Typically, in this kind of sampling procedures, the algorithm finishes
by iterations, when a correct sampling is performed, and/or the swarm has
collapsed.

There are many papers and implementations devoted to the study of PSO. A
search in Google of the acronym PSO gives more than 28.4 million results. Although
PSO has been originally heuristically proposed based on a bioinspiration and also
many PSO heuristic variants have been published in the literature, the stochastic
convergence of this algorithm is related to the stability of the swarm; particularly, the
first-order stability (stability of the mean trajectories) depends on the total mean
acceleration and on the inertia constant. All these fancy modifications of the original
algorithm are in fact not needed and are due to a poor understanding of the PSO
dynamics (Fernández-Martínez & García-Gonzalo, 2013; García-Gonzalo &
Fernández-Martínez, 2012).

In fact, the random numbers, r1 and r2, affect the local and global acceleration
terms, al and ag, causing the particle trajectory to oscillate at each iteration around its
center, namely:

oki ¼
ϕ1g

k–1 þ ϕ2l
k–1
i

ϕ1 þ ϕ2
: ð7:9Þ

Due to the random effect introduced by the random variables r1 and r2, the
particle trajectories have to be considered as stochastic processes whose first-
(mean) and second-order moments (variance and temporal covariance) are important
to understand the algorithm convergence.

Therefore, the relative values of ϕ1 and ϕ2 will affect the global search and the
local optimum found by the algorithm during iterations. The first-order stochastic
stability region depends on w, ϕ̄ð Þ (see, e.g., Fernández-Martínez, García-Gonzalo,
& Fernández-Alvarez, 2008):
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S1 ¼ w, ϕ̄ð Þ : wj j < 1, ϕ̄ <
1– 2 ωj j þ ω2

1þ ω

⎧ ⎫
: ð7:10Þ

This region has a very important role, because if the PSO values w, ϕ̄ð Þ of the
different particles are chosen outside this region, then the particles are not attracted
toward their oscillation center and the PSO algorithm might not converge. Con-
versely, if the PSO parameters (w, ag, al) fall inside the first-order stability region, the
trajectories of the particles will oscillate around their own center of attraction
(Eq. 7.9), and the algorithm will converge if the global best, gk – 1, and the local
best, lk–1

i , approach the optimum of the cost function, supposing that it exists and it is
unique. As a consequence, it is possible to infer that the algorithm converges to the
global minimum if oki is attracting the particle i toward the cost function’s global
minimum. Nevertheless, as will be shown later on in this chapter, this condition is
not sufficient, because a given amount of exploration is needed to avoid entrapment
in the valley of equivalent solutions, or in local optima. The second-order stochastic
stability analysis serves to clarify this condition (Fernández-Martínez & García-
Gonzalo, 2011). A good balance between exploitation and exploration is needed in
order to avoid being trapped in local minima valleys (such as in the case of
multimodal functions). In that sense, it is very important to achieve a good explo-
ration of the search space, and for that purpose, the best PSO parameters (w, ag, al)
are located close to the second-order stability region, where the attraction of the
particle toward their oscillation center is weak and the exploratory behavior of the
swarm occurs (Fernández-Martínez et al., 2008).

The following difference equation is defined for each particle within the swarm:

xki þ ϕ– w– 1ð Þxk–1
i þ wxk–1

i ¼ ϕ1g
k–1 þ ϕ2l

k–1
i :

x0i ¼ xi0,

x1i ¼ x0i þ wvio þ ϕ ooi – x0i ,
⎧ ⎫

8>><
>>:

ð7:11Þ

where ϕ ¼ ϕ1 + ϕ2 is a random variable with a mean ϕ̄ ¼ agþal
2 , whose statistical

distribution is triangular or trapezoidal. vi0 and xi0 are the initial velocity and position
of particle i, and x1i is the ith particle position in the first iteration.

The PSO algorithm can be physically interpreted as a stochastic damped mass-
spring system (Fernández-Martínez et al., 2008). The PSO continuous model
describes the continuous movement of each coordinate of any particle in the
swarm and physically corresponds to a damped mass-spring system with two
attractors, lk–1

i and gk – 1, and whose rigidity constants are ϕ2 and ϕ1:
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x00i tð Þ þ 1– wð Þx0i tð Þ þ ϕxi tð Þ ¼ ϕ1g tð Þ þ ϕ2li tð Þ,
xi 0ð Þ ¼ xi0,

x0i 0ð Þ ¼ vi0:

8>><
>:>

ð7:12Þ

This model has scalar character since it holds for any of the coordinates of any
particle in the swarm. PSO corresponds to a particular finite difference discretization
of the differential equation. Indeed, considering a discretization of the PSO contin-
uous model, centered in acceleration and backward in velocity:

x00i tð Þ⋍xi tþ Δtð Þ – 2xi tð Þ þ xi t– Δtð Þ
Δt2

, ð7:13Þ

x0i tð Þ⋍
xi tð Þ – xi t– Δtð Þ

Δt , ð7:14Þ

it is possible to deduce the generalized PSO (GPSO) algorithm for any discretization
time step, Δt:

v t þ Δtð Þ ¼ 1– 1– wð ÞΔtð Þv tð Þ þ ϕ1Δt g tð Þ – x tð Þð Þ þ ϕ2Δt l tð Þ – x tð Þð Þ,
x t þ Δtð Þ ¼ x tð Þ þ v t þ Δtð ÞΔt:

ð7:15Þ

PSO equations are obtained from Eq. (7.15) by adopting a time unit discretization
(Δt ¼ 1). A systematic study of this discrete PSO algorithm was performed by
(Fernández-Martínez & García-Gonzalo, 2008); Fernández-Martínez et al. (2008).
In this case, the first-order stability region depends also on Δt. If Δt> 1, the stability
region decreases in size, and the algorithm becomes more exploratory. Conversely if
Δt < 1, this region increases in size, and the algorithm becomes more exploitative.

Fernández-Martínez and García-Gonzalo (2011) proved that GPSO performs
fairly well in a very broad area in the parameter space (inertia weight and mean
acceleration), and these regions are fairly similar for different types of benchmark
functions. The best parameter performance is found when the median line of the first-
order stability triangle (where the covariance between trajectories goes fast to zero
implying iteration non-correlation) intersects with the hyperbola that represents the
upper border of the second-order stability region where the variance of particle
trajectories becomes unbounded. In this case, the trajectories have a high degree of
exploration, that is, high variance and temporal uncorrelation. This result also holds
for other PSO family members (Fernández-Martínez & García-Gonzalo, 2009,
2012) and was also generalized for any statistical distribution of the PSO parameters
(García-Gonzalo & Fernández-Martínez, 2014).

Just till this point, we have presented PSO and its physical analogy, the PSO
continuous model. We have also shown that the generalized PSO (or GPSO) can be
deduced from the PSO continuous using a centered discretization in acceleration and
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Table 7.1 Some interesting PSO family members

Algorithm Expression

GPSO v t þ Δtð Þ ¼ 1– 1– wð ÞΔtð Þv tð Þ þ ϕ1Δt g tð Þ – x tð Þð Þ þ ϕ2Δt l tð Þ – x tð Þð ,Þ
x t þ Δtð Þ ¼ x tð Þ þ v t þ Δtð ÞΔt

PP-GPSO v t þ Δtð Þ ¼ 1– 1– wð ÞΔtð Þv tð Þ þ ϕ1Δt g tð Þ – x tð Þð Þ þ ϕ2Δt l tð Þ – x tð Þð ,Þ
x t þ Δtð Þ ¼ x tð Þ þ v tð ÞΔt

CP-GPSO v t þ Δtð Þ ¼ 1–ϕΔt2
1þ 1–ωð ÞΔt v tð Þ þ ϕ1Δt

1þ 1–wð ÞΔt g tð Þ – x tð Þð Þ þ ϕ2Δt
1þ 1–wð ÞΔt l tð Þ – x tð Þð ,Þ

x(t + Δt) ¼ x(t) + v(t)Δt
RR-GPSO v t þ Δtð Þ ¼ v tð Þþϕ1Δt g tð Þ–x tð Þð Þþϕ2Δt l tð Þ–x tð Þð Þ

1þ 1–wð ÞΔtþ Δϕ t2 ,

x(t + Δt) ¼ x(t) + v(t + Δt)Δt

regressive discretization in velocity and exhibits a good balance between exploration
and exploitation (convergence) if the PSO parameters (w, ag, al) are correctly tuned
in the neighborhood of the upper limit of the second-order stability region. In this
section, we present other interesting PSO family members having medium to high
exploratory character. These PSO variants are obtained by adopting different
discretization methodologies of the continuous PSO model:

• PP-PSO corresponds to a progressive finite difference discretization of both
acceleration and velocity. PP-PSO has medium exploratory character.

• CP-PSO uses a centered discretization in acceleration and progressive in velocity.
PP-PSO has a very high exploratory character.

• RR-PSO uses regressive discretization in both velocity and acceleration. RR-PSO
has a very high exploratory character.

The cloud versions of these algorithms are based on the stochastic stability
analysis of the particle trajectories. The advantage of the cloud versions is that no
parameter tuning (inertia, local and global accelerations) is needed, since each
particle in the swarm has its own PSO parameters that are randomly selected from
a set of PSO parameters that are located in the neighborhood of the upper limit of
their second-order stability regions. Additionally, in the cloud design, each particle
might have a different time stepΔt. As it has been already outlined, Δt is a numerical
parameter that serves to achieve the exploration of the search space when this
parameter increases, and it is greater than 1.0. Conversely, the algorithm freezes
the solution found when Δt is decreased to values lower than 1.0.

Table 7.1 summarizes the analytical expressions of all the PSO family members
that have been cited above.

Particularly, in the case of RR-PSO, the optimum parameter sets are located along
the line mean ϕ̄ ¼ 3 w– 3

2

⎧ ⎫
, mainly for inertia values w> 2 (Fernández-Martínez &

García-Gonzalo, 2012). Therefore, the tuning of the RR-PSO algorithm to achieve a
good exploratory behavior is very simple. This line is located in a region of medium
attenuation and very high frequency for the particle trajectories. This feature confers
to RR-PSO a good equilibrium between exploration and exploitation, allowing for
an efficient and exploratory search. Besides, it remains invariant when the number of



parameters increases for different kinds of cost functions (multimodal or valley
shape). RR-PSO was the best-performing algorithm of the PSO family when using
benchmark functions in different dimensions (Fernández-Martínez & García-
Gonzalo, 2012). Among the rest of family members that have been introduced,
CP-PSO is the most exploratory.
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Therefore, both RR-PSO and CP-PSO constitute an interesting choice for
performing nonlinear uncertainty analysis and exploring the cost function topogra-
phy efficiently. PP-PSO has the same velocity update as GPSO, but the positions of
the particles are in time t instead of t + 1. PP-PSO has a more exploratory character
than GPSO but a lower convergence rate. Finally, CC-PSO has showed in the
numerical analysis the fastest convergence rate.

All these algorithms can perform on the portfolio optimization equally well, since
they have very interesting exploratory and convergence capabilities. In the present
case, the particles of the swarm are the percentages of the stocks in the portfolio.
These algorithms are used as samplers, by increasing the exploration of the search
space. The sampling is performed in a search space, which is a hyperprism of the
dimension of the number of preselected assets. The percentage of each stock varies
between 0 and a maximum percentage that can be fixed by the user to enforce
diversity in the portfolio. Finally, we introduce a variant where a preselected asset
can be taken or not into consideration for the selection. In this case, the assets that are
not considered to have lower and upper bounds in the search space set to zero. We
show these results in the next section for IBEX35.

Besides, it has been shown that the PSO family members are much more efficient
and simpler than other global algorithms in a wide range of inverse problems
(Álvarez et al., 2019; Fernández-Martínez, García-Gonzalo, Fernández-Álvarez,
Kuzma, &Menéndez-Pérez, 2010; Fernández-Martínez, García-Gonzalo, & Naudet,
2010; Fernández-Martínez, Mukerji, García-Gonzalo, & Suman, 2012; Pallero,
Fernández-Martínez, Bonvalot, & Fudym, 2015, 2017). These papers are also a
very good reference to better understand some interesting details about the PSO
family implementation. It is important to note that most of these problems are also
high-dimensional.

7.4 Application to the Portfolio Optimization Problem

Modern portfolio theory was first introduced by Markowitz (1952). This model
assumes that any investor wants to maximize a portfolio’s expected return contin-
gent on any given amount of risk. The portfolios that meet this criterion are defined
as efficient portfolios. This constrained optimization problem does not have a unique
solution, since there is a trade-off between the risk and the expected return. The
representation of the expected return-risk relationship of the different portfolios can
be considered as the uncertainty region of the portfolio optimization problem. Every
point in the expected return-risk region corresponds to a set of selected stocks and
their corresponding weights. Therefore, the portfolio optimization problem can be

https://en.wikipedia.org/wiki/Modern_portfolio_theory


efficiently solved as a sampling problem via particle swarm optimization. This
problem can be divided into several steps:
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1. The selection of the stocks composing the portfolio. The selection is important
due to the curse of dimensionality in inverse and optimization problems
(Fernández-Martínez & Fernández-Muñiz, 2020) that hampers the sampling
procedure in spaces whose dimension is greater than 5 to 10.

2. The cost function definition.
3. The optimization of the weights of each stock composing the portfolio.

7.4.1 The Portfolio Stock Selection

The selection of stocks requires several working hypotheses:

1. The choice of the stock temporality; in this case, we work with closing prices and
a daily temporality.

2. Only long entries are selected. The approach could be also adapted to short entries
(against the market).

3. Some restriction parameters, concerning the risk profile of the investor.

The stock selection can be written as follows, given a set of stocks for potential
investment:

M ¼ sk tð Þ, t 2 t0, tn½ ]f gk¼1,N

finding a subset composed of a maximum number of q shares exhibiting a good
equilibrium between return and risk. In this case, we propose to perform the analysis
adopting a memory of 100 days. This parameter can be changed and influences the
final result that has been obtained.

7.4.2 The Cost Function Definition

Given a set of q potential shares that have been selected in the previous step, the
following concepts are important:

7.4.2.1 Expected Return

The expected return is the profit or loss that an investor anticipates on an investment
that has known historical rates of return. This concept integrates the probability of
gaining and losing:
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r ¼ pGþ 1– pð ÞL, ð7:16Þ

where p is the probability of gaining, G is the gain, and L is the loss. The rate of
return is the net gain or loss of an investment over a specified time period, expressed
as a percentage of the investment initial cost.

The expected return of a portfolio is the linear combination of the expected return
of the shares with the weights of the composition of the assets in the portfolio,
calculated by multiplying the weight of each asset by its return and summing the
values of all the assets together:

Ep wð Þ ¼
Xq

k¼1

wkrk, ð7:17Þ

where rk is the return of each asset in the portfolio.

7.4.2.2 Portfolio Variance

Portfolio variance is a measure of risk of the portfolio: a higher variance indicates a
higher risk for the portfolio. The variance of the portfolio is calculated as the
variance of a combination of random variables, which are the returns of the shares
composing the portfolio:

σ2p wð Þ ¼
Xq

k¼1

w2
kσ

2
kþ

Xq

i¼1

X
j6¼i

wiw jCij ¼
Xq

k¼1

w2
kσ

2
kþ

Xq

i¼1

Xq

j 6¼i

wiw jρijσiσ j ¼

¼
Xq

i¼1

Xq

j¼1

wiw jCij, ð7:18Þ

where σi is the variance of the stock i, ρij is the correlation coefficient between the
returns of the assets i and j, and Cij is the sample covariance of these returns.

The cost function is the ratio between the expected return and the portfolio
standard deviation which is a measure of its risk:

C wð Þ ¼ Ep wð Þffiffiffiffiffiffiffiffiffiffiffiffi
σ2p wð Þ

q : ð7:19Þ

The problem consists in a given portfolio composed of q assets, finding the set of
weights w 2 ℝq, such that C(w) is maximum, that is, we achieve a maximum return
with a minimum risk.
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The idea is that investors can reduce their exposure to individual asset risk by
holding a diversified portfolio of assets. Diversification allows obtaining an expected
return through a reduced risk.

7.4.2.3 Selection of the Stocks and Optimization of the Weights

Let us consider a portfolio composed of q possible investments.
The algorithm workflow is as follows:

1.
q

Defining a swarm of N particles of q weights such that
k

P
wk ¼ 1:

¼1

2. For each particle of the swarm w 2 ℝq, computing Ep(w) and σ2p wð Þ through the
computation of the covariance matrix of the returns among the selected stocks.

3. Applying PSO and finding the set of weights that provide C(w) > Cmin, where
Cmin is the minimum cost function value that we want to maximize. In this case,
the swarm is composed by the weights of the q portfolios. The search space
design is simple because the weights are real numbers between 0 and 1. In the

search, there is always a compulsory normalization, such as
P
k 1

wk ¼ 1:
q

4.
¼

Once this sampling procedure is finished, the different portfolios are analyzed to
find the efficient frontier curve in the expected return-risk sampled region. This
sampling procedure in a reduced dimensional space could also be performed via
other sampling and global optimization methods.

Compared to classical methods used to solve the portfolio optimization problem,
such as, the critical line algorithm (CLA) (Markowitz, 1956), we have bear in mind
that PSO is a search method composed by a double stochastic gradient in the model
space (portfolio composition), that is, PSO does not need to perform any minimiza-
tion, to calculate any gradient of the cost function, linearization, and/or inversion of
the Jacobian matrix as local optimization methods need to do. The stochastic
gradient is different for any particle of the swarm, and they are the differences
between the particle and the global best and the local best of each particle in each
iteration.

The only requirement for the PSO family is to provide the search space for the
portfolio compositions, which is a hyperprism of the dimension of the number of
assets that have been preselected. Besides, the solution of the forward problem, that
is, the cost function calculation for any particle of the swarm (portfolio composition),
should be fast, as it is the case. All additional constraints that are part of the
optimization problem are introduced as penalties in the objective function. Besides,
any a priori (or initial) solution of the portfolio composition can be easily introduced
as an additional particle of the swarm to check if this solution might be improved.
Nevertheless, the PSO sampling is not aimed at finding the global optimum but at
sampling the posterior distribution. Therefore, it can be concluded that PSO is well
suited to address efficiently the portfolio optimization problem.

https://en.wikipedia.org/wiki/Diversification_(finance)
https://en.wikipedia.org/wiki/Efficient_frontier
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Fig. 7.1 Expected return moving window analysis for IBEX35 shares. Source: Author’s own
creation

This algorithm can be used for different approaches of the portfolio optimization
problem that use different definitions of the cost function to measure the risk and the
expected return, as it has been pointed out in the introduction.

Figure 7.1 shows the expected return for the different assets of IBEX35 (includ-
ing the average index in different windows for time lengths between 1 week (5 days)
and 100 days). Then, the median return is calculated, and a proxy of the risk is
established by calculating the distance between the maximum and minimum returns
obtained in this analysis. In this case, the risk is defined as a maximum derivative of
the return. This is a more robust method for selecting the potential assets than
performing the analysis for a given time frame, for instance, 1 year. Figure 7.2
shows the Markowitz’s ratio of the stocks of IBEX35. To produce this plot, we have
performed a historical analysis of the returns of the different assets (see Fig. 7.1).
Note that in this case, the ratios are given with their sign and can be negative if the
median expected return is.

Figure 7.3 shows the medium expected returns and risks that serve to calculate
this plot. These are the two views of this plot. It can be observed that, although ELE.
MC has no highest return, its lower-medium risk makes this asset a very interesting
investment. This analysis served to select the assets with the highest Markowitz’s
ratio. Table 7.2 shows the list of nine companies obtained from this analysis. We also
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Fig. 7.2 Markowitz’s ratio for the stocks of IBEX35. Source: Author’s own creation

provide the proxy of the Markowitz ratio and the best composition obtained after
optimization by using all the stocks.

Concerning the portfolio optimization within this list via PSO, the optimization
tries to maximize expression (7.19). The result provides the weights of the portfolio.
Figure 7.4 shows the Markowitz’s ratio of portfolio risk region. It can be observed
the Pareto front shape. What it is interesting in this approach is that the maximum
Markowitz’s ratio, calculated following Eqs. (7.18) and (7.19), coincides with the
minimum portfolio risk.

This feature is due to the preselection of the stocks before performing the weight
optimization. Figures 7.5 and 7.6 show the other two views of the portfolio optimi-
zation: portfolio return-portfolio risk and Markowitz’s ratio. Figure 7.5 shows the
portfolio return-risk region, which is almost symmetric around the axis of constant
portfolio return equal to 0.9, highlighting the importance of the portfolio weight
optimization. Therefore, risk increase does not compulsory provide better outcomes,
that is, higher portfolio returns.

Figure 7.6 shows that the maximum Markowitz’s ratio does not correspond to the
maximum portfolio return. The region has almost a triangular shape, symmetrical
around the constant portfolio return equal to 0.9. Therefore, risk tuning is crucial.
Finally, Fig. 7.7 shows the histograms of the best compositions of the portfolios.
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Fig. 7.3 Medium returns and risk of the different assets in IBEX35. Source: Author’s own creation

Table 7.2 Selected assets in IBEX35 with highest Markowitz’s ratio

Asset Markowitz ratio (proxy) Best composition (%)

“ELE.MC” [0.3617] 10.23

“FER.MC” [0.3608] 13.43

“IBE.MC” [0.3382] 12.96

“CLNX.MC” [0.3307] 12.47

“AMS.MC” [0.1842] 11.90

“COL.MC” [0.1660] 8.26

“ANA.MC” [0.1516] 11.17

“VIS.MC” [0.1450] 13.59

“SGRE.MC” [0.1268] 6.00

These histograms contain the best portfolio composition shown in Table 7.1. We
believe that giving this kind of information provides a better idea about the limits of
the portfolio composition. It can also be observed that all the histograms show
similar extents and modes. This analysis shows that none of the assets should have
in any case a weight higher than 20%.

A different possibility that also offers this global optimization approach is to
optimize the selection of the stocks and at the same time the optimization of the
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Fig. 7.4 Markowitz ratio-Portfolio risk region obtained by PSO sampling. Source: Author’s own
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Fig. 7.6 Markowitz ratio and portfolio risk region. Source: Author’s own creation

portfolios. In this approach, not all the preselected stocks will take part in the
portfolio optimization. The procedure allows to consider a minimum number of
assets to take part in the portfolio, for instance, one. This might be interesting in very
unstable situations of the stock market. Figure 7.8 shows the views of the new
regions commented previously, which have a more complex shape showing different
basins of the cost function landscape. In this particular case, the optimum portfolio
was just composed by one asset: CNLX.

7.5 Conclusions

This paper shows the application of the PSO family to the portfolio optimization
problem. First, we have introduced the topography of the cost function in high-
dimensional optimization problems, concluding the existence of different equivalent
models with a similar cost function value. All these models belong to the nonlinear
region of equivalence of the optimization problem that has a curvilinear shape and
might be composed of different isolated valleys. Besides, we show that the linearized
hyperquadric, which is oriented by the Hessian matrix, only spans the nonlinear
equivalence region locally, that is, in the neighborhood of the current portfolio
weights. This theoretical development highlights the importance of sampling the
nonlinear region of equivalence, which in the case of the portfolio optimization is
directly related to the efficient portfolio region, first described by Markowitz.



.2

0.4

.2

130 L. Fernández-Brillet et al.

0 0.2 0.4
0

100

200
Fr

eq
ELE.MC

0 0.2 0.4
0

100

200

Fr
eq

FER.MC

0 0
0

50

100

150

Fr
eq

IBE.MC

0 0.2
0

50

100

150

Fr
eq

CLNX.MC

0 0.2
0

50

100

150
Fr

eq

AMS.MC

0 0.2
0

100

200

Fr
eq

COL.MC

0.05 0.1 0.15
Percentage

0

50

100

150

Fr
eq

ANA.MC

0 0.2
Percentage

0

50

100

150

Fr
eq

VIS.MC

0 0
Percentage

0

50

100

150

Fr
eq

SGRE.MC

Fig. 7.7 Histograms of the percentages (compositions) of the best portfolios. These histograms are
obtained using the particles of the swarm (portfolios compositions) with the lower misfits. Source:
Author’s own creation

Although the development is given for minimization problems, it can be also
generalized for maximization as well by switching the sign in the definition of the
cost function. In a second well-differentiated part, we introduced particle swarm
optimization and the family of PSO optimizers that were analyzed in previous
research, explaining how the tuning of the PSO parameters in the neighborhood of
their second-order stability region is a compulsory condition to perform a correct
sampling of the non-equivalence region of the portfolio optimization problem.
Finally, we have presented the application of the methodology to the assets of
IBEX35 via PSO. Although PSO can easily handle 35 dimensions and even more,
to reduce the dimension and allow for a fast optimization, first, we have preselected
the assets on which the optimization is performed. The aim is to find the assets with
the highest potential, being the rest of the assets not optimum for selection and
optimization. We have presented two different approaches on which the weights and
the assets are optimized.
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Fig. 7.8 New regions for the variable number of the selected assets of the portfolio optimization
problem. In this case, PSO performs at the same time the selection of the stocks and the optimization
of their weights. Source: Author’s own creation
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Chapter 8
A Constrained Portfolio Selection Model
Solved by Particle Swarm Optimization
Under Different Risk Measures

Akbar Esfahanipour and Pouya Khodaee

Abstract Portfolio selection has been one of the crucial problems in financial
engineering. Investors’ interest is to construct a portfolio having a balance between
the investor’s risk-taking and his/her expectations about the portfolio returns. The
Markowitz model is a nonlinear constrained multi-objective optimization model that
is usually impossible to solve at a good time. In this chapter, the purpose is to
examine portfolio optimization models and applications of the particle swarm
optimization (PSO) technique in solving these models. A constrained portfolio
selection model has been developed, which is solved by the PSO technique as a
metaheuristic approach using data from the Tehran Stock Exchange (TSE) to assess
the developed model. In this case, the effects of three different risk measures have
been analyzed on the constructed portfolios. The numerical results show that con-
ditional value at risk (CVaR) performs better than the other two risk measures,
including semivariance and variance. However, from the diversification perspective,
the model with the variance risk measure produces a more diversified portfolio
compared to the other two risk measures, although the differences are trivial.

Keywords Constrained portfolio optimization · Particle swarm optimization
(PSO) · Risk measure · Tehran Stock Exchange (TSE)

8.1 Introduction

The construction of investment portfolios has been one of the crucial problems in
financial engineering. Making a balance between risk level and expected return
introduces the concept of investment portfolio optimization (PO), in which Marko-
witz pioneers the construction of its primary mean-variance model (Markowitz,
1959). Based on this model, researchers have done extensive work on this model,
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mainly due to considering real situations. Extensions are more about different risk
measures such as semivariance, MAD,1 VaR,2 CVaR, and spectral risk measures,
which are described in Mao (1970); Chang, Meade, Beasley, and Sharaiha (2000);
and Celikyurt and Özekici (2007). In other developments, different constraints have
been considered to deal with more realistic investment opportunities. Typical con-
straints are about the number of assets in a portfolio, transaction costs, and short
sales, which have been studied by Markowitz and Chang, among others (Markowitz,
1959) (Chang et al., 2000). Markowitz’s basic model and its extensions have a
nonlinear structure and consist of multi-objective functions that make it very difficult
to find optimal solutions with traditional methods and techniques in a good time,
especially when there are a lot of financial assets to be considered. That is why
researchers have resorted to metaheuristic approaches to solve this problem to
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achieve optimal/near-optimal solutions in a short time.
Particle swarm optimization (PSO) has been applied as a metaheuristic approach

to solve these optimization problems. Researchers have proposed different types of
PSOs from different perspectives. Eberhart suggests the PSO technique as a
population-based metaheuristic algorithm to solve multi-objective optimization
problems. These algorithms retain and enhance multiple possible solutions, often
using population features to help the search process (Kennedy & Eberhart, 1995). In
PSO algorithms, the topology of the population directly affects the mechanisms of
information sharing between particles; thus, it affects the solution’s performance.
Clerk proposes a method to produce population topologies in a random manner
(Clerc, 2007). The research mentioned above is on population topology to improve
performance so that the PSO technique can be utilized in more areas of the search
space. In optimizing particle swarm, a particle population in a multidimensional
search space seeks the best values. Each particle’s position is a possible solution that
can be evaluated by its performance, and the best position of the particle and the best
position of the population are updated based on the current position. During the
moving process, the particles converge at the optimal point of a fitting function. The
PSO algorithm is very convenient to use and experimentally has been shown that
performs better in a lot of optimization problems. However, when solving complex
multi-objective problems, the algorithm may get trapped into a local optimal. Due to
these drawbacks, different PSOs have been proposed to improve the performance of
the basic PSO algorithm. Extended models of the PSO technique have enhanced its
ability to moderate a wide range of intricate engineering and science of optimization
issues, improving its final performance.

Another aspect influencing the portfolio optimization problem is to opt for a
suitable risk measure. Risk measures are statistical measures used for risk evaluation
of a set of assets based on changes in those assets’ historical prices. Investors usually
use these measures to be able to control the risk limits of their investments. Many
risk measures have been studied in Momen, Esfahanipour, and Seifi (2019) and

1Mean absolute deviation.
2Value at risk.



Esfahanipour and Mousavi (2011) in detail. The authors in this chapter examine
some of these measures in the literature section. Regarding a diverse set of risk
measures, investors decide to allot a different portion of assets to obtain maximum
return while minimizing the risk. This chapter reports a case study in which the
performance of varying risk measures has been evaluated to select optimal stock
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portfolios in the Tehran Stock Exchange.
This chapter aims to investigate the investment portfolio optimization problem

with constraints and apply the PSO technique to solve this problem. To that end, a
base portfolio optimization model is selected to develop and solving utilizing the
PSO technique. This chapter’s developed model is implemented using data of
20 stocks listed on the Tehran Stock Exchange as a case study. In this implemen-
tation, the effects of different risk measures are examined with the suggested
portfolios from risk-adjusted return and diversification point of views.

The rest of this chapter has been organized as described next. First of all, the
authors review the literature of (1) portfolio optimization problem, (2) particle
swarm optimization technique, and (3) risk measures; besides, they report different
studies that apply the PSO technique to solve constrained portfolio optimization
problems as well as some portfolio optimization models. Then, the authors present
details of a base portfolio optimization model to develop and implement in this
study. A constrained portfolio optimization model has been developed based on the
selected base model from the literature, which is solved by the PSO technique using
data of the Tehran Stock Exchange (TSE) as an emerging market. To sum up, this
chapter ends with some concluding remarks and possible future research directions
in this regard.

8.2 Literature Review

In this section, the portfolio optimization models and the PSO technique, especially
its applications in optimizing portfolio models, are discussed.

8.2.1 Portfolio Optimization (PO) Problem

Markowitz divides the steps of opting for investment portfolios into two phases
(Markowitz, 1959):

(a) Firstly, the selection is started with observation and experience and is terminated
with some confidence about existing assets’ future.

(b) Secondly, the selection is continued with the related confidence about the future
and is terminated with opting for a portfolio.

Markowitz contends that an investor should consider his/her expected return of a
portfolio as a desirable goal and the portfolio return’s variance return as an



unfavorable goal. He shows the geometric relationship between this behavior and the
selection of investment portfolios due to the “expected return-variance of returns”3

rule. An investor wants to maximize the discounted value of future returns. Since the
future is uncertain, it must be “expected” or “anticipated” returns that need to be
discounted. In other words, investors should consider expected returns as an allow-
ance level of risk, which is defined as a variation type of the Markowitz model. The
hypothesis of efficient market is regarded as a simplification assumption for model-
ing and solving the model. This model does not necessarily suggest that a diverse
portfolio is preferable to all non-diversified portfolios. The basic model fails to
indicate diversity because it does not consider how the expected return is formed
and whether the same or various discount rates are applied for multiple assets. It is
not essential how these discount rates are decided upon or how they change during
time. This hypothesis suggests that an investor invests all of his/her capital in
securities having the most significant, discounted value. It also states that if two or
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more assets have equal value, each of them or any composition of them is the same.
Considering the assumptions mentioned above, the model which is applied by

Markowitz for presenting his proposed model is as follows:

Min
XN

i¼1

XN

j¼1
wiw jσij ð8:1Þ

s:to
XN

i¼1
wiri ¼ R* ð8:2Þ

XN

i¼1
wi ¼ 1 ð8:3Þ

0 ≤ wi ≤ 1 i ¼ 1, 2, . . . ,N ð8:4Þ

where N is the number of assets, σij is the covariance between assets i and j, wi is the
weight of each asset in the portfolio, ri is the expected return of asset i, and R

* is the
desired expected return of the portfolio.

Based on the mean-variance model, Salehpoor and Molla-Alizadeh-Zavardehi
(2019) apply three risk measures of MAD,4 SV,5 and VWS6 to develop their
algorithms for portfolio selection. The developed algorithms include EM,7 PSO,
GA,8 GNP,9 and SA.10 Moreover, a diversification strategy has been utilized and
combined with the developed algorithms to enhance diversity and overcome local
optimums. The authors validate their model using data of 20 companies in the

3Mean-variance.
4Mean absolute deviation.
5Semivariance.
6Variance with skewness.
7Electromagnetism-like algorithm.
8Genetic algorithm.
9Genetic network programming.
10Simulated annealing.



Tehran Stock Exchange. Their results indicate that the SA acts much better than the
other techniques, which were evaluated regarding mean-variance, MAD, SV, and
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VWS as risk measures.
Babazadeh and Esfahanipour (2019) develop a model for portfolio optimization

in which the VaR is used as a risk measure, which is estimated by using extreme
value theory (EVT). A set of trading constraints have been considered, such as
cardinality, budget, floor, and ceiling constraints, making the proposed model more
realistic. Since these constraints have given rise to non-convex solution space, this
problem is classified as NP-hard problems. A new design of the GA, the NSGA-II,11

has been proposed to solve their proposed model. Using data from the S&P
100 indices, their results show that their proposed algorithm has an extraordinary
ability to solve the PSO technique in the mean value at risk (VaR) problem. The
results also show that their model in the low-risk area performs better than the Pareto
border. Moreover, the NSGA-II algorithm has a significant improvement in
solving time.

8.2.2 Particle Swarm Optimization (PSO)

This section describes the PSO technique’s applications in the portfolio optimization
problem and the main steps of its implementation. Chen, Zhang, Cai, and Xu (2006)
propose a development for the Markowitz model in which transaction costs and floor
and ceiling restrictions are considered. Due to additional constraints, Chen’s model
is more sophisticated than the Markowitz model, so traditional optimization algo-
rithms cannot find the optimal solution efficiently. Thus, they use the PSO algorithm
to solve the problem. They also provide a numerical implementation of the problem
for selecting investment portfolios to indicate the effectiveness of the proposed
model (Chen et al., 2006).

Cura (2009) uses the mean-variance model with the cardinality constraint as the
investigated model. She applies the PSO technique to solve this investment portfolio
optimization model as an integer quadratic programming problem. Her research’s
numerical results show that the PSO technique is succeeded in optimizing invest-
ment portfolios in comparison with the application of the metaheuristic approaches
of GA, SA, and TS.12

Zhu, Wang, Wang, and Chen (2011) present a metaheuristic approach for invest-
ment portfolio optimization using the PSO technique. Their model was tested on two
types of portfolios, which have considered restricted and unrestricted risk. Addi-
tionally, a comparative study was done with the genetic algorithm. Since the
portfolio optimization model has been selected as a base model to develop and

11Non-dominated sorting genetic algorithm.
12Tabu search.
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implement in the present study’s case study, the authors illustrate more details about
this model in the next section entitled The Base Portfolio Optimization Model.

To solve an investment portfolio optimization model with the generalized mean-
variance model, Yin, Ni, and Zhai (2015) present four algorithms of (RT-AD),13

(RT-D),14 (DRT-AD),15 and (DRT-D)16 to improve PSO method based on random
topology strategies. They have abstracted the PSO method’s topology into an
undirected connected graph, which can be generated randomly with a predetermined
degree. They contend that when a dynamic population topology strategy is adopted,
the topology changes. By determining this degree, the communication mechanisms
in the evolutionary period can be controlled, and the performance of the solving PSO
algorithms can be improved. Their numerical results show that the PSO population
topology directly affects data sharing between particles, so the PSO method’s
performance will improve. In particular, their proposed algorithm (DRT-D) demon-
strates outstanding performance and provides an effective solution to investment
portfolios optimizing.

The model that they chose to optimize the investment portfolio is the CCMV17

model, which is a generalized version of the Markowitz model and is generally
defined as follows:

Min λ
XN

i¼1

XN

j¼1
ziwiz jw jσij

h i
– 1– λð Þ

XN

i¼1
ziwiri

h i
ð8:5Þ

s:to
XN

i¼1
wi ¼ 1 ð8:6Þ

XN

i¼1
zi ¼ K ð8:7Þ

zi wi δizi i ¼ 1, . . . ,N ð8:8Þ
zi 2 0, 1f g i ¼ 1, . . . ,N ð8:9Þ

The above model is different from the basic Markowitz model in two (Eq. 8.7)
constraints and (Eq. 8.8). Constraint (Eq. 8.7) shows the number of assets in a
portfolio that cannot be greater than a known number of K. Constraint (Eq. 8.8)
shows the upper and the lower limits for the number of assets in the portfolio so that
zi as a zero-one variable zi 2 {0, 1}, it will become one if the asset i is in the portfolio,
and it will become zero if the asset i is not in the portfolio (Yin et al., 2015).

Zaheer, Abd Aziz, Kashif, and Raza (2018) present simple models for selecting
and optimizing investment portfolios. They also develop a hybrid algorithm based
on the PSO technique to obtain better solutions. They consider the mean-variance

13Random population topology based on the average degree.
14Random population topology based on the degree.
15Dynamic random population topology based on the average degree.
16Dynamic random population topology based on the degree.
17Cardinality constrained mean-variance.



concept, which presents mean return as a benefit and variance of return as the risk
measure. Besides, the Sharpe ratio (SHR) was considered as the objective function
of the optimization problem. They use the Shanghai Stock Exchange data to evaluate
their models. The algorithm of HPSO18 is a metaheuristic algorithm that is applied in
their study. Their study considers the budget a constraint and examines the two
versions of the model with and without short sales. The results indicate that the
techniques, as mentioned above, perform well in obtaining the optimal solution and
in solution time. They develop a two-stage model of selecting and optimizing
investment portfolios that can be used by investors. The developed two-stage
model is described next, which is based on the following model.
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maxRi i ¼ 1, . . . ,N ð8:10Þ
minVR i ¼ 1, . . . ,N ð8:11Þ

Ri ¼
PD

i¼1Rdi

D
d ¼ 1, . . . :,D ð8:12Þ

Rdi ¼ CPd – CPd–1

CPd–1
ð8:13Þ

VR ¼
PD

i¼1 Rdi – Ri
2

D
d ¼ 1, . . . :,D ð8:14Þ

Ri is the mean return of asset i, Vi is the variance of the return of asset i, Rdi is the
daily return for asset i, and CPd is the close price of the day d.

The Eqs. (8.10)–(8.14) models can be rewritten in two ways of (a) average
conditions with the Sharpe ratio and (b) variance conditions with the Sharpe ratio
as follows.

(a) Average conditions with the Sharpe ratio

maxRi i ¼ 1, . . . ,N ð8:15Þ
max SHR ð8:16Þ

S:to
XN

i¼1
wi ¼ 1 ð8:17Þ

0 ≤ wi ≤ 1 i ¼ 1, 2, . . . ,N ð8:18Þ

(b) Variance conditions with the Sharpe ratio

minVR i ¼ 1, . . . ,N ð8:19Þ

18Hybrid particle swarm optimization.
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max SHR ð8:20Þ

S:to
XN

i¼1
wi ¼ 1 ð8:21Þ

0 ≤ wi ≤ 1 i ¼ 1, 2, . . . ,N ð8:22Þ

The above models are part of the two-stage model in which, at the first step,
the mean of return is maximized regarding the SHR, which is used as a fitness
function. In the second step, the variance is minimized regarding the SHR
as well.

8.2.3 Different Risk-Adjusted Measures

Esfahanipour and Mousavi (2011) categorize risk-adjusted measures by analyzing
different studies, which are described as follows:

(a) Classic risk measures: This category consists of Jensen’s α, Treynor’s ratio, the
Sharpe ratio, and the information ratio based on CAPM19 and portfolio theory.

(b) Drawdown risk measures: Sterling ratio, Calmar ratio, and Burke ratio create
this group based on drawdowns. A drawdown is a loss occurring during a
particular investment period. A drawdown measures the surplus return in com-
parison with the drawdown period.

(c) Lower partial moment risk measures: The Sortino ratio, omega, kappa 3, and
upside-potential ratio have been categorized in this group. The nth order of the
kappa index calculates the extra return as the difference between the return on
securities and the minimum acceptable return. It calculates the risk as the nth
lower partial moment.

(d) VaR risk measures: This category includes conditional Sharpe ratio, R-ratio,
modified Sharpe ratio, excess return on VaR, MVaR,20 and CVaR. These
measures are based on the ratio of the expected excess return of securities over
the risk-free rate and the risk.

Esfahanipour and Mousavi (2011) use the conditional Sharpe ratio for their study
because it uses the CVaR as a coherent risk measure. For the same reason, in this
chapter, CVaR has been used as one of the risk measures.

In Table 8.3, which is shown in Appendix, the reviewed studies have been
summarized on applications of the PSO technique in the portfolio optimization
problem.

19Capital asset pricing model.
20Modified VaR.
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8.3 The Base Portfolio Optimization Model

This section presents a base portfolio optimization model selected for developing
and implementing in the Tehran Stock Exchange as a case study reported in this
chapter. This base model has been chosen by Zhu et al. (2011) as a mean-variance
portfolio optimization model, which is solved by the PSO technique. Based on the
mean-variance model, there are two generalizations for modeling a single-objective
function, as described below.

(a) Efficient Frontier (EF)
Due to having different objective function values for modifying (R*) values,

empirical studies introduce a risk aversion parameter of λ 2 [0, 1]. Due to this
new parameter, the model can be rewritten as follows:

Min λ
XN

i¼1

XN

j¼1
wiw jσij

h i
– 1– λð Þ

XN

i¼1
wiri

h i
ð8:23Þ

s:to
XN

i¼1
wi ¼ 1 ð8:24Þ

0 ≤ wi ≤ 1 i ¼ 1, . . . ,N ð8:25Þ

When the value of λ is zero, the model maximizes the portfolio return
regardless of the risk. When the value of λ is one, the model minimizes the
portfolio risk irrespective of the return. By changing the value of λ, a curve can
be drawn showing the relationship between the portfolio return and the portfolio
risk, called the efficient frontier (EF).

(b) Sharpe Ratio (SHR)
The Sharpe ratio is obtained by combining information of the mean-variance

in an asset. The Sharpe ratio (SHR) is a risk adjustment measurement commonly
used to evaluate portfolio performance as follows:

SR ¼ Rp – R f

StdDev pð Þ ð8:26Þ

where P is a portfolio, RP is the mean return of the portfolio P, Rf is the risk-
free rate of return, and StdDev(P) is the standard deviation of the RP, which is a
portfolio risk measure. By modifying wi, we can diminish the amount of risk
while maximizing the expected return. Zhu uses the SHR as a risk measure for
portfolio selection, which is solved by the PSO. According to Zhu et al. (2011),
PSO implementation includes the following four steps.

(i) Initiation Step
Initially, some particles are known to be the best particles among

neighboring particles due to their fitness function. Then all the particles
accelerate in the direction of these particles and also in the order of their
best solutions they have found before. The PSO technique’s central concept



bestis topositionaccelerateof thetheswamovementrm. With oftheseeachinterpretatiparticleons,towardthe newthe situatibest placeon is
(bestpos)obtained asthatfollhasows:been obtained by this particle till that time and the best
place that has ever been procured by neighboring particles (N_bestpos).
With random weighting, it is fast to move toward one of these directions at
any time. Particles update their positions due to the following steps:
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• Step 1: The instantaneous position
!
Xð Þt

• Step 2: The instantaneous speeds
!
Vð Þt

• Step 3: The distance between the bestpos and the current position
!

P
!

i – Xð Þt
• Step 4: The distance between the N_bestpos and the current position

!
P

!
G – Xð Þt

(ii) Calculate Fitness Function
Each particle in the population of PSO has a unique fitness value.

According to its previous position, a particle moves inside the solution
space where it has seen the best fitness value (bestpos) and its last neighbor
position, which has seen the best fitness value (N_bestpos). In Zhu et al.
(2011), the Sharpe ratio is used as a single-objective function, which is
defined as follows:

f p ¼ SR ¼
PN

i¼1wiri – R fPN
i¼1

PN
j¼1wiw jσij

ð8:27Þ

where fP is the fitness value for each particle. Bestpos and N_bestpos are
changed if an enhancement is seen in any of the best fitness values.

(iii) Particle Position Changing
Every particle is known for its position, speed, and value of its fitness. In

each iteration, each particle moves toward its best own position and the
best-condensed particle ever. The motion of the particles depends on its
current speed, and the pace is changed as follows:

v
!

ij tþ 1ð Þ ¼ wv
!

ij tð Þ þ c1r1 p
!
ij tð Þ
X
– x

!
ij tð Þ

⃓ ⃓þ c2r2 p
!
gj tð Þ – x

!
ij tð Þ

⃓ ⃓ ð8:28Þ

The index j is the number of dimensions of the particles, t is the
sequence of repetitions, and c1 and c2 are the positive constant parameters
called the accelerator coefficients. They are responsible for controlling the
maximum number of steps, r1 and r2, which are random numbers in the
range of (0, 1). w is a constant, and

!
v ijð Þt þ 1 is the velocity of the particle

i in the dimension of j in a repetition of t + 1. !x ij is the location of particle
i in the dimension of j in a repetition of t; !p ijð Þt is the historical individual
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x
!
ij t þ 1ð Þ ¼ v

!
ij t þ 1ð Þ þ x

!
ij tð Þ ð8:29Þ

The parameter can be adjusted as follows to improve the performance of
the PSO:

w ¼ wmax – wmax – wmin

itermax
× iter ð8:30Þ

c1 ¼ c1max –
c1max – c1min

itermax
× iter ð8:31Þ

c2 ¼ c2max –
c2max – c2min

itermax
× iter ð8:32Þ

Iter is the current iteration number, itermax is the predefined maximum
iteration number, w and c are constant accelerator coefficients, and their
values and maximum and minimum values are usually defined with
experiments.

(iv) Apply Portfolio Constraints
Generally speaking, there are two types of portfolio problems: with and

without constraints (Benninga & Mayshar, 2000). In the constrained port-
folio problems, short selling is allowed; it means that the stocks’ weights in
the portfolio can be negative. In the unconstrained one, short selling is not
allowed, in which the portfolio weights can only be positive or zero. In both
cases, the sum of the portfolio weights must be equal to one. The goal of
creating a risky portfolio is to find the optimal composition of assets to
maximize the Sharpe ratio.

• A Constrained Portfolio Optimization Model

MaxSR ¼ Max

PN
i¼1wiri – R fPN

i¼1

PN
j¼1wiw jσij

ð8:33Þ

s:to
N

i¼1
wi ¼ 1 ð8:34Þ

0 ≤ wi ≤ 1 i ¼ 1, . . . ,N ð8:35Þ

• An Unconstrained Portfolio Optimization Model

MaxSR ¼ Max

PN
i¼1wiri – R fPN

i¼1

PN
j¼1wiw jσij

ð8:36Þ
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s:to
XN

i¼1
wi ¼ 1 ð8:37Þ

i ¼ 1, . . . ,N ð8:38Þ

If the risky portfolio is restricted, then the bestpos and N_bestpos are assessed by
Eqs. (8.33)–(8.35). On the contrary, the bestpos and N_bestpos are assessed using
Eqs. (8.36)–(8.38). While a particle comes to a new position in the search space, all
the portfolio’s constraints must be satisfied to ensure a valid movement within the
search space.

8.4 Main Focus of the Chapter

This chapter examines the literature on constraint portfolio optimization models, as
described in the previous section. A constraint portfolio selection model has been
developed, which is described in the next section. Then the performance of the
developed model has been evaluated using different risk measures. The proposed
portfolios from the various risk measures have also been examined from the diver-
sification viewpoint. The numerical results have been achieved using data of
20 stocks listed on the Tehran Stock Exchange.

8.4.1 The Proposed Model

In this chapter, Sarykalin, Serraino, and Uryasev’s (2008) model has been selected as
a base model for implementation since it is an appropriate model for this chapter’s
aim, which is a comparison of different risk measures’ performance. They used the
CVaR as a risk measure for the portfolio selection model. Therefore, the proposed
model is as follows (Sarykalin et al., 2008):

min Risk ð8:39Þ
S:to μP ¼ wTμ ≥ μP0

ð8:40Þ
XN

i¼1
wi ¼ 1 ð8:41Þ

wi ≥ 0 i ¼ 1, 2, . . . ,N ð8:42Þ

where μP represents the mean return of the portfolio, μP0
is the minimum ideal return,

and μ is the return vector whose values are related to the return of each available
stock in the portfolio. In this chapter’s proposed model, the authors use conditional
value at risk (CVaR) as a coherent risk measure shown in Eq. (8.43).
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CVaR ¼ 1
1– c

Z VaR

–1
xp xð Þdx ð8:43Þ

where P(x) is the probability function to obtain the return of portfolio x, and C is the
point of intersection obtained from the VaR analysis, and VaR is the agreed-upon
VaR level.

In the models Eqs. (8.39)–(8.42), constraint (Eq. 8.40) may not be feasible; that
means for a certain level of risk, investors cannot get the ideal return. To solve this
problem, here, the authors add a penalty term to the objective function that by
increasing the level of risk, investors can get the ideal return, which is modified as
follows:

min Riskþ Penalty ð8:44Þ
S:to μP ¼ wTμ ≥ μP0

ð8:45Þ
XN

i¼1
wi ¼ 1 ð8:46Þ

wi ≥ 0 i ¼ 1, 2, . . . ,N ð8:47Þ

The violation part of this penalty function and constraint (Eq. 8.45) are added to the
objective function with the coefficient V(w):

V wð Þ ¼ :
0 μP ≥ μP0

1– μP
μP0

μP < μP0

8<
ð8:48Þ

Hence, the proposed model is provided in Eqs. (8.49)–(8.51).

min Risk wð Þ 1þ βV wð Þ½ ] ð8:49Þ

s:to
XN

i¼1
wi ¼ 1 ð8:50Þ

wi ¼ 0 i ¼ 1, 2, . . . ,N ð8:51Þ

where β is a constant which can be selected based on investor preference. It shows
the percentage of return that an investor passes up when the portfolio’s mean return
is less than the minimum ideal return. This coefficient has been set on 1000 in this
study.
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8.5 A Case Study in the Tehran Stock Exchange

To show the applicability of the developed model, Eqs. (8.49)–(8.51), which can be
solved by the PSO technique, 20 stocks have been selected from the Tehran Stock
Exchange (TSE). Fig. 8.1 shows the main steps of the PSO algorithm which is
applied here along with its parameters as shown in Table 8.1. The selected stocks are
among active stocks in the market from a historical trading point of view. They have
been selected from different activity sectors to be a good representative of the TSE.
The PSO algorithm parameters have been chosen from Ratnaweera, Halgamuge, and
Watson (2004). The data range is from 2019/09/23 to 2020/04/05. We use
MATLAB software for coding and solving the developed model.

Here, the CVaR risk measure with 0.95 confidence level, variance risk measure,
and semivariance risk measure have been used to implement the proposed model.
The portfolio weight of each stock and the return of them are calculated, as shown in
Table 8.2. Table 8.2 indicates that, by utilizing the CVaR, the highest return is
obtained due to a tolerable level of risk. Also, the calculation of the coefficient of
variation (CV) emphasizes the superiority of the CVaR. Coefficient of variation
(CV) is the ratio of portfolio risk by the total portfolio return. It is an excellent ratio to
compare the suggested portfolios considering both the risk and the portfolios’ return.
Moreover, the diversification index (DI) is applied to evaluate the diversity of the
proposed portfolios. The less value of this ratio shows a more diversified portfolio.
Considering the Herfindahl index (HI), which is a measure of economic concentra-
tion, DI is calculated as follows (Yiğit & Tür, 2012):

DI ¼ 1– HI ¼
XN

i¼1
W2

i ð8:52Þ

whereWi is the asset weight and N is the number of total assets. The DI ratio of zero
means ultimate diversification, and the DI ratio of one means no diversification.
Although variance performs slightly better than CVaR and semivariance measures,
this performance does not show its absolute privilege because the differences are
trivial. To make more comparisons, Table 8.2 also indicates metrics of a simple
strategy, “equal weights portfolio,” in which all stocks in the portfolio have the same
weights. Regardless of the DI, which has shown this strategy’s privilege, the other
index in Table 8.2 shows that using a portfolio optimization model helps investors
act much better. Figure 8.2 shows a diagram of the penalty (cost) function used in the
model for each iteration of the PSO algorithm regarding different risk measures. In
this study, the second part of the developed model’s objective function in Eq. (8.49)
is considered the penalty (cost) function. This function as Risk(w)[βV(w)] shows the
percentage of return that an investor passes up when the mean return of the portfolio
is less than the minimum ideal return. Not only it shows a convergence, but also it
shows a trivial amount of penalty. The amount of penalty (cost) in every three risk
measures converges to 4.1%. It means that investors lose only a small portion of
0.041 out of their profit than their ideal return to obtain a better risk level.

As shown in Fig. 8.2, the model with variance risk measure converges faster than
the other two models with CVaR and semivariance risk measures. It can also be seen
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Fig. 8.1 The flowchart depicting our PSO algorithm’s steps. Source: Author’s own creation

that for the 3 risk measures, after 50 iterations, the value of the cost is almost the
same; hence, 100 iterations are good enough to get the optimal solution. As shown in
Table 8.2, solving time in variance risk measure is shorter. One reason is its simple
calculations, and the other is its fast convergence. Figure 8.3 shows efficient frontiers
for each risk measure. From Fig. 8.3, a conclusion can be drawn that the CVaR
measure brings about a better return at a certain risk level. Semivariance and
variance have approximately the same result, but the semivariance shows a little
bit better results. The best value for return due to the level of risk is shown in
Table 8.2.
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Table 8.1 Parameters of the
PSO algorithm

Parameters Value

Maximum number of iterations 100

Population size 40

Inertia weight 0.7298

Inertia weight damping ratio 1

Personal acceleration coefficient (c1) 1.4962

Global acceleration coefficient (c2) 2

Velocity limits Max ¼ 1 Min ¼ 0

8.6 Conclusion and Future Research Directions

In this chapter, the authors have reviewed the various models of stock portfolio
optimization and the PSO technique applications for solving these models. The
authors also proposed a constraint portfolio selection problem, which is solved by
the PSO technique. The proposed model is implemented by using three risk mea-
sures of the CVaR, semivariance, and variance to see its performance on portfolio
risk, return, and diversification. This study shows that the CVaR risk measure
produces better performance on risk and return. The variance risk measure has better
performance on portfolio diversification.

Constructing a profitable portfolio of assets is a financial expert’s indisputable
problem. As shown in the presented case study’s numerical results in this chapter,
the CVaR performs better than the other two risk measures of variance and
semivariance from the risk-adjusted profit viewpoint. Based on that, one can con-
clude that if investors want to invest in the Tehran Stock Exchange, it seems that it
will be preferable to utilize CVaR as a measure to construct their portfolio. This
chapter’s strength is to consider the effects of different risk measures in a constrained
portfolio selection model, which is focused on the implementation of the PSO
technique as a metaheuristic solution method.

For further studies, researchers can consider the following topics:

• Considering more constraints to the portfolio selection model to be more realistic.
• Using various risk measures to compare their performance.
• Using the multi-objective PSO method to solve this problem, which is a multi-

objective problem in nature.
• Implementing the proposed model in other stock markets to compare the results.
• PSO algorithm can be used in reinforcement, machine, and deep learning

methods, which are now very popular in portfolio management.

Key Terms and Definitions
CAPM: This is the abbreviation of the capital asset pricing model, which defines the

relationship between the systematic risk and expected return of a financial asset.
With this model, an asset’s expected return can be estimated using its systematic
risk and expected return of the market portfolio.

Cardinality Constraint: This constraint restricts the number of stocks in an invest-
ment portfolio.
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Table 8.2 Portfolio weights which are obtained by the proposed portfolio optimization model
using different risk measures

Equal weights
portfolio

PSO-
semivariance

PSO-
variance

PSO-
CVaR

AKABER 0.05 0.043896 0.056136 0.107558

BTRANS 0.05 0.066087 0.093738 0.086625

PARS 0.05 0 0.000774 0.000384

TAPIKO 0.05 0.19022 0.175294 0.145712

JAM 0.05 0.039487 0.026256 0.001244

KHESAPA 0.05 0.000307 0 0

KHODRO 0.05 7.63E-06 0.00E+00 0.003276

SHABRIZ 0.05 0.008544 0.023186 0

SHETRAN 0.05 0.007827 0.005634 0.001494

FARS 0.05 0.037053 0.039749 0

FAMELI 0.05 0.110437 0.121528 0.076385

FOLAD 0.05 0.015957 0.017705 0.105798

KHECHAD 0.05 0 1.39E-05 0

KEGOL 0.05 0 8.31E-05 0.003061

MOBIN 0.05 0.002487 0.014051 0.015612

NOORI 0.05 0.013009 0.027995 0.060683

HIWEB 0.05 0.029024 0.037373 0

HAMRAH 0.05 0.09055 0.08538 0.102677

VABEMELLAT 0.05 0.150843 0.139772 0.15202

VATEJARAT 0.05 0.194265 0.135332 0.13747

Total portfolio return 0.639 0.716 0.697 1.16
Portfolio risk 0.00294 0.00073 0.00064 0.00021
Coefficient of
variation

0.0046009 0.0010196 0.0009182 0.000181

Diversification index 0.05 0.127705 0.108106 0.113833

Solving time (sec) – 134 119 186

Coefficient of Variation (CV): This is the portfolio risk ratio by the total portfolio
return. This is a useful measure for comparing risky assets considering both the
risk and the return of those assets.

Efficient Frontier (EF): Each point in this frontier shows a portfolio with the
highest return due to a specific risk level. This is a good curve to show the
relationship between efficient portfolios.

Particle Swarm Optimization (PSO): Particle swarm optimization is a population-
based stochastic optimization technique used as an evolutionary computation
technique to solve many types of multi-objective optimization problems such as
constrained portfolio optimization models.

Risk Measures: These are statistical measures used to measure investment risk and
volatility of portfolios using historical prices of assets of those portfolios.

Sharpe Ratio:As a risk measure, this ratio is the average return gained over the risk-
free rate per unit of volatility or a risky asset’s absolute risk.



0.068

0 20 40

CVaR Semi-Variance Variance

Cost Function

60

Iteration

80 100

C
os

t

0.063

0.058

0.053

0.048

0.043

0.038

150 A. Esfahanipour and P. Khodaee

Fig. 8.2 Cost (penalty) function in each iteration of the PSO algorithm. Source: Author’s own
creation
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Short Sales: It is the sale of a stock that the seller does not own. In this kind
of selling, the investor sells borrowed assets when she/he expects that the price of
those assets will be decreased. The sellers ought to return the same number of
assets at a specific time in the future.

Appendix

Table 8.3 gives a comprehensive view of relevant studies of portfolio optimization
and the applied techniques as solution methods.
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Table 8.3 Summary of some relevant studies in the literature

Risk measure Metaheuristic Multi-
periodvar VaR CVaR Other GA SA PSO OTHER

Markowitz (1959)

Mao (1970)

Konno and Yamazaki
(1991)

Ouederni and Sullivan
(1991)

Eberhart and Kennedy
(1995)

Kennedy (1999) *

Chang et al. (2000)

Mendes (2004)

Yuan, Wang, Zhang, and
Yuan, Wang, Zhang, and
Yuan (2004)

*

Zhao, Li, and Qian
(2005)

*

Chen et al. (2006)

Celikyurt and Özekici
(2007)

Clerc (2007

Sarykalin et al. (2008) * *

Cura (2009)

Assareh, Behrang,
Assari, and
Ghanbarzadeh (2010)

Esfahanipour and
Mousavi (2011)

Zhu et al. (2011)

Kuo, Wang, and Huang
(2011)

*

Bank, Ghomi, Jolai, and
Behnamian (2012)

Reid and Malan (2015)

Yin et al. (2015)

Ni, Yin, Tian, and Zhai
(2017)

Zaheer et al. (2018)

Salehpoor and Molla-
Alizadeh-Zavardehi
(2019)

Almahdi and Yang
(2019)

Babazadeh and
Esfahanipour (2019)

* *

* *

* *

* *

* * * *

* *

* *

* * *

) *

*

* * * * *

* *

* *

* * *

* *

* * *

* *

* * *

* * *

* * * * *

* * *

* *
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Chapter 9
Optimal Portfolio Selection with Particle
Swarm Algorithm: An Application
on BIST-30

Burcu Adıgüzel Mercangöz and Altaf Q. H. Badar

Abstract Optimization is to find the best-performing solution under the constraints
given. It can be something better by optimization process. Heuristic algorithm is an
optimization algorithm which depends on natural events. The algorithms are simple
and easy to implement for the researcher. The portfolio optimization is a process to
find a solution to select the most appropriate combination between all financial assets
under certain expectations and constraints. While solving portfolio optimization
problems, the aim is to create portfolios by selecting the assets that provide the
highest return from huge numbers of financial assets at a certain risk level or provide
the lowest risk at a certain level of return. This chapter aims to examine the optimum
portfolio with minimum risk by using the particle swarm optimization (PSO)
technique, for the stocks in the BIST-30 index. Logarithmic returns are calculated
using the price data of the stocks. By using these returns, the optimum portfolio with
minimum risk is created with PSO and nonlinear GRG (generalized reduced gradi-
ent) techniques. The empirical results obtained indicate that both methods give
similar results.

Keywords Optimization · Particle swarm optimization (PSO) · Portfolio
optimization · Markowitz portfolio theory · Heuristics · Swarm intelligence
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9.1 Introduction

Particle swarm optimization (PSO) is one of the intuitive techniques. This technique
was first introduced by researchers James Kennedy and Russell Eberhart in
the 1990s to find optimum solutions to nonlinear numerical problems inspired by
the collective movements of fish and bird flocks (Eberhart & Kennedy, 1995). The
technique has evolved since then in several ways. The technique itself was improved
through several publications by the duo of Shi and Eberhart (2008). As the robust-
ness of the technique was proved, it was implemented and researched in many
publications. PSO not only sees variations but also has a lot of hybrid versions
introduced, along with different optimization techniques.
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PSO works on a swarm of particles. A single particle represents a probable
solution to the optimization problem. The particles move in the search space based
on their respective velocities. The velocity of a particle is dependent on its own
inertia, for instance, its own previous velocity, individual best, and global best.
Individual best is the best position that a particular particle has achieved until the
current iteration, while the global best is the best position occupied by any of the
particles from within the swarm. Each particle in PSO can be mapped to a fitness
function. As the particle moves in the search space, its fitness function also changes.
PSO tries to obtain the optimal position in the search space through the movement of
particles. Some of the factors that affect the movement of particles in the swarm are
constriction factor, random factors, inertia constant, etc. These factors are responsi-
ble for the explorative and exploitative behavior of the swarm.

The portfolio optimization problem is related to how investors will allocate their
wealth among various assets. Therefore, portfolio optimization problems have been
an important research area in modern finance and risk management. In this study, the
PSO technique issued for optimum solutions of the Markowitz mean-variance model
in the portfolio selection problem. Optimal portfolios are created according to
the PSO and nonlinear generalized reduced gradient (GRG) techniques by using
the logarithmic return data between June 2016 and July 2018 for 25 stocks within the
BIST-30 index. Then, the coefficients of variation are calculated, with the risks and
returns that are obtained. The coefficients of variation of the two techniques are
similar. It has similar results, and PSO can thus be used as an alternative for solving
portfolio optimization problem. Since quite similar results are obtained from two
different techniques, it also proves the reliability of the techniques.

9.2 Portfolio Optimization and Mathematical Model

Investors are willing to get the highest return at a given level of risk or are willing to
take the lowest risk at a given level of return. This is the portfolio optimization
problem, which arises from the desire to maximize return while minimizing the
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investor’s risk. In the stated balance, the best solution tried to be reached. The
Markowitz mean-variance model is described below.

The expected return of the risky portfolio E(Rp) is estimated as Eq. (9.1).

E RPð Þ = WA * RA þWB * RB ð9:1Þ

RA and RB are the returns of two risky assets, RP is the portfolio return, and WA

andWB are the weights of A and B in the risky portfolio, respectively, with two risky
assets.

The variance of the two assets’ risky portfolio is calculated as shown in Eq. (9.2).

σ2p = W2
Aσ

2
B þW2

Bσ
2
B þ 2WAWBCov RA,RBð Þ ð9:2Þ

The standard deviations of the two risky assets are σA and σB. The covariance
between assets A and B is Cov(RA,RB).

This is a just an example for two-asset risky portfolio. This can be extended to
risky portfolios with more than two assets. Eq. (9.3) shows the estimation of
expected return E(Rp) of a risky portfolio of multiple assets. The estimation of
standard deviation (σP) of a multiple-asset risky portfolio uses covariance matrix
of all assets in the portfolio. Portfolio returns of multiple assets depend on the risky
assets’ own returns and the weights that describe how the portfolio investment is
split. Therefore, expected return for “n” assets is calculated as below:

E Rp

( ) =
Xn

E Rð Þi ð9:3Þ
i=1

where n is the number of securities. The return is being finding by compute the
weighted average returns of each security included in the portfolio. Portfolio risk
also can be calculated using the weights and covariances of each asset in the risky
portfolio as given in Eq. (9.4):

Var Rp

( ) = σ2p =
Xn
i=1

Xn
j=1

WiW jCov RiR j

( ) ð9:4Þ

The mathematical indication of portfolio optimization problem by using the
Markowitz mean-variance model is shown in the nonlinear programming model as
below. Equation (9.5) describes the objective function, while Eq. (9.6) represents the
constraint associated with the objective function.
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9.2.1 Objective Function

Min:Var Rp

( ) = σ2p =
Xn
i=1

Xn
j=1

WiW jCov RiR j

( ) ð9:5Þ

9.2.2 Constraints

Xn
Wi = 1 ð9:6Þ

i

0 ≤ Wi ≤ 1 i = 1, 2, . . . n:

The constraints mean that the assets in the portfolio cannot be in short positions.

9.3 A Portfolio Optimization Application by Using PSO
Algorithm

A basic application of the PSO technique is applied for the Markowitz mean-
variance model with stocks of BIST-30 index for the period from June 2016 and
July 2018. The data is obtained from www.investing.com. The daily data is used and
analyzed for 25 common stocks in the index since the data availability and being able
to equalize periods for all stocks.

Coding and running of PSO is done by MATLAB. The information of these
25 stocks in the BIST-30 index traded on the Istanbul Stock Exchange is as in
Table 9.1.

Daily data between June 2016 and July 2018 is used for these 25 stocks in BIST-
30. Logarithmic returns are calculated with 503 daily observations using Eq. (9.7).

Rt = ln Pt=Pt-1ð Þ ð9:7Þ

Table 9.2 shows the log returns, variance, and standard deviation of the stocks.
The variance-covariance matrix is as shown below in Table 9.3.

http://www.investing.com
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Table 9.1 25 Stocks in BIST-30: Code and company names used in the application

Code Company name (*Original Turkish names from public disclosure platform)

1 AKBNK AKBANK T.A.Ş. Unvanı

2 ARCLK ARÇELİK A.Ş.

3 ASELS ASELSAN ELEKTRONİK SANAYİ VE TİCARET A.Ş.

4 BIMAS BİM BİRLEŞİK MAĞAZALAR A.Ş.

5 DOHOL DOĞAN ŞİRKETLER GRUBU HOLDİNG A.Ş.

6 KOZAA KOZA ANADOLU METAL MADENCİLİK İŞLETMELERİ A.Ş.

7 HALKB TÜRKİYE HALK BANKASI A.Ş.

8 GARAN TÜRKİYE GARANTİ BANKASI A.Ş.

9 ISCTR TÜRKİYE İŞ BANKASI A.Ş.

10 SISE TÜRKİYE ŞİŞE VE CAM FABRİKALARI A.Ş.

11 SAHOL SABANCI HOLDING

12 KRDMD KARDEMİR KARABÜK DEMİR ÇELİK SANAYİ VE TİCARET A.Ş.

13 TKFEN TEKFEN HOLDİNG A.Ş.

14 TAVHL TAV HAVALİMANLARI HOLDİNG A.Ş.

15 PETKM PETKİM PETROKİMYA HOLDİNG A.Ş.

16 TOASO TOFAŞ TÜRK OTOMOBİL FABRİKASI A.Ş.

17 SODA SODA SANAYİİ A.Ş.

18 THYAO TÜRK HAVA YOLLARI A.O.

19 TCELL TURKCELL İLETİŞİM HİZMETLERİ A.Ş.

20 TUPRS TÜPRAŞ-TÜRKİYE PETROL RAFİNERİLERİ A.Ş.

21 VAKBN TÜRKİYE VAKIFLAR BANKASI T.A.O.

22 YKBNK YAPI VE KREDİ BANKASI A.Ş.

23 EREGL EREĞLİ DEMİR VE ÇELİK FABRİKALARI T.A.Ş.

24 TTKOM TÜRK TELEKOMÜNİKASYON A.Ş.

25 KCHOL KOÇ HOLDİNG A.Ş.

Source: KAP Public Disclosure Platform

9.4 Portfolio Optimization by Using PSO Algorithm

The problem of portfolio optimization is solved through the implementation of PSO.
The implementation of PSO is realized as indicated in the flowchart of Fig. 9.1.
Figure 9.1 shows how the problem is solved stepwise. In the first step, the problem is
defined, and data required for solving the problem are gathered. Data related to
various stocks is also to be collected in the initial step. Next the problem is
formulated according to the Markowitz mean-variance model along with the data
available. The data available initially is raw and requires to be processed to form
different matrices as shown in the previous section. In the problem, the Markowitz
mean-variance model is the fitness function that is to be optimized. After formulating
the problem, the coding is done. The most common version of PSO is implemented
(Clerc, 1999). The Markowitz mean-variance model and PSO are coded using
MATLAB. The coding of PSO should also be accompanied by the debugging of
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Fig. 9.1 Implementation
step flowchart of basic PSO.
Source: Authors’ own
creation

START

Initialize the problem
and gather data

Formulate the
problem

Design and Apply PSO

Obtain Results and
Analyse

STOP

the program to get perfect results. PSO is then executed to obtain results for the
defined problem.

9.4.1 Problem Definition

PSO is used to solve the optimization problem of portfolio optimization. The main
component of the problem is the fitness function that is the Markowitz mean-
variance model in this study. A separate function is defined for obtaining the fitness
function of a random particle. MATLAB is used to implement PSO as well as the
fitness function.

In the program, PSO uses the fitness function again and again to evaluate various
particles. In the initial part of PSO, the particles are randomly generated within the
search space. These particles represent a candidate solution, i.e., any particle can
represent a full solution to the problem. The solution to the problem is a weight
matrix of size 1 × 25, as the number of stocks is 25. In case the number of stocks is
more or less, the matrix size of the weights will also change accordingly. One row
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Table 9.4 A particle in PSO 0.040936 0.056778 0.055031 0.060798 0.022407

0.053885 0.043314 0.030853 0.004792 0.060705

0.026267 0.047298 0.057676 0.008155 0.009951

0.042759 0.037755 0.069287 0.062166 0.057138

0.003994 0.005671 0.006888 0.062119 0.073375

matrix of size 1× 25 represents one particle. The members of the matrix should be in
the range of 0–1 and should follow the constraint mentioned in Eq. (9.6).

Table 9.4 gives an example of a particle generated randomly at the start of the
program. Due to the space constraint, the values are arranged in five rows, but in the
code, it should be a single row matrix.

If all the values are added of Table 9.4, it is observed that the constraint of the
problem is satisfied and the total comes out to be unity.

In the program, 30 particles are taken which are generated at the beginning of the
program. This collection of 30 particles is called the population. Next it is needed to
evaluate the fitness function of each variable.

The fitness function is separately defined as mentioned earlier. The algorithm for
the same function is given below:

Algorithm for Fitness Function Evaluation
Get Required Data
Get the Particle to be evaluated
SumFF = 0;
for 1 to No of Stocks do
for 1 to No of Stocks do
SumFF = SumFF + Wi * Wj * Cov (Ri, Rj)
end for
end for
Return SumFF

In the above algorithm, Wi and Wj are the weights at positions “i” and “j,”
respectively, in the particle. Also SumFF represents the fitness function value.

Once fitness function values are obtained for all the particles, it is proceeded to
implement PSO. In PSO, all the particles move with a certain velocity to converge at
the end to the global optimal solution. The movement of the particles is termed as its
velocity. The velocity of a particle is dependent on inertia, the influence of its own
best position, and the global best position.

In each iteration of PSO,

(i) Velocity for all the particles is calculated.
(ii) The individual positions of the particles are updated.
(iii) Fitness function is found for all the particles.
(iv) The individual and global best positions are updated.

The same is represented in the algorithm given below:



Algorithm for Particle Swarm Optimization
Input Required Data
Generate Random Particles
Evaluate the Fitness Function of these Particles
for 1 to Max Iterdo
for 1 to Population Size do
Calculate velocity
Update Particle Position
Obtain Fitness Function
Update Individual Best
endfor
Update Global Best
endfor
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9.4.2 Parameters of PSO

Some of the parameters that control PSO are described below:
Maximum Number of Iterations: PSO is an iteration-based optimization model.

The PSO technique can be stopped through three different conditions, viz., (a) based
on the number of iterations, (b) convergence, and (c) if the global best does not
improve for a certain number of iterations. It is gone by the first condition and stops
the PSO method at 200 iterations. A high number of iterations would lead to an
extended solution time.

Population Size: Population size gives the number of particles used to search the
optimal global best position. Usually 30–50 particles are utilized in a PSO method.
In the case, it is created 30 particles to search the global best in the available search
space.

Dimensions of the Search Space: The number of input variables defines the
dimensions of these arch spaces. In portfolio optimization, the number of stocks
shall define the number of dimensions of these arch spaces. Currently, as 25 stocks
have been considered, the dimension of these arch spaces will be 25. In case the
number of stocks changes, the dimensions of these arch spaces will also change.

Inertia Coefficient: Inertia coefficient is a very important parameter in these arch
processes of PSO. A higher value of inertia coefficient represents more exploration
and less exploitation, whereas a lesser value of inertia coefficient represents more
exploitation and lesser exploration. Both exploration and exploitation should be
properly matched for the optimal operation of PSO. Inertia coefficient is modified to
constriction factor in Clerc (1999). The value of the constriction factor is fixed to
0.729 in the present case.

The other parameters of PSO are c1, individual acceleration coefficient, and c2,
social or global acceleration coefficients which are taken as 2.05.

PSO is executed for 200 iterations with 30 particles for the case presented above.
The variation in the global best position is presented in Fig. 9.2.
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Fig. 9.2 Change in objective function value concerning the number of iterations. Source: Authors’
own creation

A comparison of the optimal solution found by PSO and nonlinear GRG methods
is presented in Table 9.5.

Portfolio return is estimated based on the weights which minimize the risk level.
According to the PSO and nonlinear GRG techniques, the optimal portfolio return,
variance, and standard deviation are calculated and shown in Table 9.6.

In Table 9.7, the results obtained by using PSO and nonlinear GRG techniques
give close values. However, the coefficients of variation are calculated here to see
which method gives better results.

It has similar results and PSO can thus be used as an alternative. Since quite
similar results are obtained from two different techniques, it also proves the reliabil-
ity of the techniques.

9.5 Conclusion

Optimization is the process of getting the best solution while conducting specific
operations for a specific purpose. Portfolio selection problem depends on investors’
expectations and model’s constraints. According to the investors’ certain expecta-
tions and model’s certain constraints, the decision is made to create an optimum
portfolio from a variety of assets. Regarding the correlation coefficients of the asset
returns, while adding new assets to a risky portfolio, the total risk decreases.
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Table 9.5 Weights of the
25 stocks in the optimal port-
folio by using PSO and
nonlinear GRG techniques

Weights
PSO

Weights
Nonlinear GRG

AKBNK 0.00000000 0.00000000

ARCLK 0.07329542 0.07304953

ASELS 0.02131277 0.02123730

BIMAS 0.08607284 0.08620884

DOHOL 0.01410830 0.01435069

KOZAA 0.01253312 0.01272358

HALKB 0.04394518 0.04404135

GARAN 0.00000000 0.00000000

ISCTR 0.04603436 0.04640693

SISE 0.10035837 0.10070752

SAHOL 0.07655238 0.07521591

KRDMD 0.02236350 0.02222367

TKFEN 0.00052400 0.00052697

TAVHL 0.02135613 0.02159467

PETKM 0.04458688 0.04490066

TOASO 0.06552657 0.06545679

SODA 0.10943198 0.10966535

THYAO 0.02348696 0.02350349

TCELL 0.03149002 0.03098662

TUPRS 0.05588755 0.05625737

VAKBN 0.00000000 0.00000000

YKBNK 0.00000000 0.00001677

EREGL 0.03970906 0.03976780

TTKOM 0.05026441 0.05014628

KCHOL 0.06116019 0.06101188

Sum 1.00000000 1.00000000

Table 9.6 Optimal portfolio
return, variance, and standard
deviation

Optimal portfolio
PSO

Optimal portfolio
Nonlinear GRG

Portfolio return 0.0006485847 0.0006514079

Portfolio var 0.0000208684 0.0000208690

Portfolio std dev 0.0045681989 0.0045682613

Obtained from PSO and nonlinear GRG techniques

Table 9.7 Coefficient of variation of optimum portfolios

PSO Nonlinear GRG

Coefficient of variation (standard dev./return) 7.043334356 7.01290436

According to the Markowitz portfolio theory, if the correlation coefficients of two
asset returns are less than 1, the total risk of that portfolio constantly decreases
(Markowitz, 1952). Indeed, if the correlation coefficient is negative, the total risk of
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the portfolio can be decreased much more. However, it is an exceedingly difficult
situation to be a negative correlation coefficient of two assets in real life. PSO is one
of the techniques that can be used to determine the optimum portfolio. The technique
depends on animals’ environment. PSO used the ability of animals such as birds and
fish to adapt to their environment by applying a “knowledge-sharing” approach,
finding rich food sources, and avoiding predators. This chapter deals with portfolio
selection problem and tries to indicate how to select financial assets to conduct
optimal portfolio between BIST-30 index stocks by using the particle swarm opti-
mization (PSO) technique, which is the heuristic algorithm. In addition, to compare
the results, the optimization problem is solved by nonlinear GRG techniques. Then,
the results of both techniques are compared.

The data set analyzed in the chapter is organized from simultaneous stocks of
BIST-30 index for the period of June 2016–July 2018. The problem is coded with
MATLAB to evaluate the optimal portfolio algorithm that requires a solution. By
using these returns, the optimum portfolio with minimum risk is created with PSO
and nonlinear GRG techniques.

The results obtained show that both methods give similar results. The results
obtained by both using PSO and nonlinear GRG techniques give close values. The
coefficients of variation are remarkably close. Since quite similar results are obtained
from two different techniques, it also proves the reliability of the techniques. The
application of PSO in solving optimization problems could be the very facilitator in
real financial life.

References

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive particle swarm
optimization. In Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99
(Vol. 3, p. 1957). Washington, D.C.: IEEE.

Eberhart, R., & Kennedy, J. (1995, November). Particle swarm optimization. In Proceedings of the
IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). Citeseer.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. March. 1952.
www.jstor.org.proxy.lib.chalmers.se/stable/10.2307/2975974?origin=api (2012-1030).

Shi, Y., & Eberhart, R. (2008). Population diversity of particle swarms. In IEEE congress on
evolutionary computation. CEC 2008. IEEE World Congress on Computational Intelligence
(pp. 1063–1067). Washington, D.C.: IEEE.

http://www.jstor.org.proxy.lib.chalmers.se/stable/10.2307/2975974?origin=api
http://www.jstor.org.proxy.lib.chalmers.se/stable/10.2307/2975974?origin=api


169

Chapter 10
Cardinality-Constrained Higher-Order
Moment Portfolios Using Particle Swarm
Optimization

Mulazim-Ali Khokhar, Kris Boudt, and Chunlin Wan

Abstract Particle swarm optimization (PSO) is often used for solving cardinality-
constrained portfolio optimization problems. The system invests in at most k out of
N possible assets using a binary mapping that enforces compliance with the cardi-
nality constraint. This may lead to sparse solution vectors driving the velocity in
PSO algorithm. This sparse-velocity mapping leads to early stagnation in mean-
variance-skewness-kurtosis expected utility optimization when k is small compared
to N. A continuous-velocity driver addresses this issue. We propose to combine both
the continuous- and the sparse-velocity transformation methods so that it updates
local and global best positions based on both the drivers. We document the perfor-
mance gains when k is small compared to N in the case of mean-variance-skewness-
kurtosis expected utility optimization of the portfolio.
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moment portfolio
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10.1 Introduction

How to invest in risky assets when the portfolio formation is subject to a cardinality
constraint? Boudt and Wan (2019) show that particle swarm optimization (PSO) is
useful for cardinality-constrained mean-variance utility optimization. This objective
function is suboptimal in case of risk-averse investors and non-normal distributions
as Jondeau and Rockinger (2006) report a non-negligible opportunity cost of
ignoring higher-order moments in such settings. The solution may lie in portfolio
construction for utility preferences beyond mean-variance utility. The investors with
constant absolute risk aversion and positivemarginal utility would prefer oddmoments
and avoid evenmoment (Jondeau&Rockinger, 2006). Such utility preferences may be
summed up into a single expected utility function using Taylor expansion (Martellini &
Ziemann, 2010). The problem at hand may be termed as cardinality-constrained mean-
variance-skewness-kurtosis expected utility optimization.
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The cardinality constraint transforms the efficient frontier to be discontinuous
(Chang, Meade, Beasley, & Sharaiha, 2000) and renders the gradient-based tradi-
tional portfolio optimization methods to be no longer suitable for such a mixed
integer non-linear programming. To solve portfolio optimization problem with a
cardinality constraint, heuristic methods are needed (Crama & Schyns, 2003).
Examples include genetic optimization, differential evolution, tabu search, simulated
annealing, and particle swarm optimization (PSO), are available.

The PSO algorithm was first put forwards by Kennedy and Eberhart (1995). It has
roots in artificial intelligence and animal communication strategy. PSO algorithm is
built on optimal communication strategy where each particle in a flock learns from
their personal best position and from global best particle. Thus, any particle in the
flock will move towards the global best while improving personal positions with a
velocity that is a linear function of its inertia, distance from its personal best and from
the global best at the same time.

The traditional PSO algorithm does not account for the cardinality constraint.
This deficiency was addressed by Deng, Lin, and Lo (2012) through a binary
decision variable that sets the smallest weights to zero, hence affecting velocity of
particles. Boudt and Wan (2019) show that this sparse approach in the velocity
specification may lead to early stagnation and recommend using the
non-transformed solution in the form of continuous-velocity PSO algorithm. The
chapter proposes a mixed continuous-sparse PSO algorithm that accounts for both
sparsity and continuity in particle velocity information and takes the best position.

The chapter extends the existing literature in two ways. First, the cardinality-
constrained mean-variance optimization problem is extended to mean-variance-
skewness and mean-variance-skewness-kurtosis optimization problems. Second,
the velocity equation in sparse-PSO approach is updated to mixed continuous-
sparse-velocity driver.

The chapter investigates two different higher-order moment objective functions
corresponding to mean-variance-skewness (MVS) and mean-variance-skewness-
kurtosis (MVSK) utility preferences. The investigation involves six different
cardinality-constrained portfolios where k is 10, 15, 20, 30, 40, or 50. Each portfolio



⌈ ⌉
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is evaluated for three different particle velocity methods, namely, sparse, continuous,
and continuous-sparse, and three different acceleration coefficient methods, namely,
constant, time-variance, and constriction. The proposed continuous-sparse-velocity
driver, when compared to sparse and continuous drivers, solves the early stagnation
problem in some of the considered cases and produces early gains.
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The remaining parts of the chapter are organized in three sections. The next
section explains the formulation of cardinality-constrained higher-order moment
utility optimization problem and PSO algorithm setups to solve it. Section 10.3
illustrates the performance of the various PSO implementations for the portfolio
optimization problem. The last section concludes the chapter with final remarks.

10.2 Methodology

This section first defines the cardinality-constrained portfolio optimization problem
for higher-order moment preferences. It then introduces the particle swarm optimi-
zation algorithms.

10.2.1 Cardinality-Constrained Portfolio Optimization
Problem

A cardinality-constrained optimization problem may be solved by using a binary
decision variable as proposed by Deng et al. (2012). To optimize function f, a
decision-maker chooses k out of N-dimensional decision vector w, where
k elements of N can be non-zero.

max
w

f wð Þs:t:w 2 0, 1f gN ,w0l ≤ k ð10:1Þ

with l the N-dimensional vector of ones.
We focus on objective functions that depend on the first four moments of the

portfolio return distribution. For the stock returns r ¼ (r1, . . ., rN)
0, the first four

central moments mean μ, covariance Σ, coskewness Φ, and cokurtosis Ψ may be
defined as

μ ¼ E r½ ],
⌈ ⌉

Σ ¼ E r – μð Þ r – μð Þ0 ,
Φ ¼ E r – μð Þ r – μð Þ0 ⊗ r – μð Þ0 ,

Ψ ¼ E r – μð Þ r – μð Þ0 ⊗ r – μð Þ0 ⊗ r – μð Þ0 , ð10:2Þ

where⊗ is Kronecker product (e.g. Martellini and Ziemann (2010); Boudt, Cornilly,
Van Holle, and Willems (2020)).
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Then the first four moments of the portfolio return are

m1 ¼ w0μ,

m2 ¼ w0Σw,

m3 ¼ w0Φ w⊗ wð Þ,
m4 ¼ w0Ψ w⊗ w⊗ wð Þ: ð10:3Þ

We consider a portfolio selection problem that aims at maximizing the investor’s
expected utility. If the utility function U is n-th order differentiable, the investors’
utility of terminal wealth 1 + w0r may be approximated by

U 1þ w0rð Þ ≈ U 1þ w0μð Þ þ
Xn
i¼1

U ið Þ 1þ w0μð Þ
i!

w0r – w0μð Þi
⌈

, ð10:4Þ

where μ is the expected return on investment and w is the vector of weights that
define proportion of investments. We use U(i)(x) to denote the ith order derivative of
utility function evaluated in x. The expected utility may therefore be defined as
function of portfolio’s central moments.

The chapter evaluates two objective functions fMVS(w) and fMVSK(w) which
represent utility maximization problem for mean-variance-skewness and mean-var-
iance-skewness-kurtosis preferences, respectively. The corresponding objective
functions, for investor with constant absolute risk aversion γ and invested capital
proportion w in the portfolio, may be defined by

fMVS wð Þ ¼ m1 wð Þ – γ
2
m2 wð Þ þ γ γ þ 1ð Þ

6
m3 wð Þ, ð10:5Þ

fMVSK wð Þ ¼ m1 wð Þ – γ
2
m2 wð Þ þ γ γ þ 1ð Þ

6
m3 wð Þ

– γ γ þ 1ð Þ γ þ 2ð Þ
24

m4 wð Þ: ð10:6Þ

These objective functions have been used in Martellini and Ziemann (2010),
Jondeau and Rockinger (2006), and Boudt, Lu, and Peeters (2015), amongst others.

10.2.2 Particle Swarm Optimization

Kennedy and Eberhart (1995) proposed an algorithm of optimization that mimics
social behaviour of birds in a flocks or insects in a swarm. It is an evolutionary
computing technique (a heuristic method) that assumes coexistence and cooperation
amongst the pooled particles to find an optimal solution of given problem.

Each particle i at each time t moves from its current position wi(t) with velocity
vi(t) towards a better position wli(t + 1). Each particle then shares the information



⌉

about their best position wli(t + 1) to direct everyone towards global best position wg

of a swarm. Collectively the particles’ position at time t may be represented as
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wi tð Þ ¼ wi1 tð Þ,wi2 tð Þ, . . . ,wiN tð Þð Þ0, ð10:7Þ

and their velocity as

vi tð Þ ¼ vi1 tð Þ, vi2 tð Þ, . . . , viN tð Þð Þ0: ð10:8Þ

Once the information is shared, each particle adjusts its position towards its
current best and global best, which are known as cognitive and social behaviour
adjustments, respectively. The improved current position of a particle depends on the
inertia θ, its velocity vi(t – 1), and its acceleration factor for cognitive and social
behavioural adjustments defined here as c1 and c2, respectively. The cognitive and
social behaviours also include some randomness. This is incorporated by multiply-
ing c1 and c2 coefficients with r1 and r2 random numbers, respectively. Collectively
the particle velocity and position adjustment system may be represented as in the
following equation

vi tð Þ ¼ θvi t – 1ð Þ þ c1r1 tð Þ wli t – 1ð Þ – wi tð Þ½ ] þ c2r2 tð Þ wg t – 1ð Þ – wi t – 1ð Þ⌈
,

wi tð Þ ¼ wi t – 1ð Þ þ vi tð Þ, ð10:9Þ

where w, c1, c2 ≥ 0, and r1, r2 are uniform random variables from [0, 1] and c1, c2
are the fixed acceleration factors for cognitive and social behaviour adjustments,
respectively. For further references on Eq. (10.9), please see Eberhart and Shi
(2001), Deng et al. (2012), and Boudt and Wan (2019), amongst others Algorithm
10.1.

Algorithm 10.1: Particle Swarm Optimization (PSO)

1. Set n to the total number of N-dimensional particles in the swarm and T to the maximum
number of iterations.

2. Initialize the current positions and velocities of the n particles as random draws from the [0,1]
and [–1,1] uniform distributions, respectively.

3. Set the local best position wli of particle i to its current position.

4. Set wg ¼ wlg to the global best position, where g ¼ arg max1 ≤ i ≤ nf(wli).

5. For t ¼ 1 : T

5.1 For each particle i ¼ 1, . . ., N

Set vi(t) ¼ θvi(t – 1) + c1r1(t)[wli(t – 1) – wi(t)] + c2r2(t)[wg(t – 1) – wi(t – 1)]

Set wi(t) ¼ wi(t – 1) + vi(t)

End

5.2 For each particle i ¼ 1, . . ., N

If f(wi(t)) > f(wli), set wli ¼ wi(t)

If f(wli) > f(wg), set wg ¼ wli

End

End

6. Set wG ¼ wg.
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The application of traditional PSO algorithm is not adequate for portfolio opti-
mization problem in Eq. (10.1) as it does not take the cardinality constraint into
account. It is modified with the help of a binary decision variable to account for the
cardinality constraint as proposed by Deng et al. (2012) and is elaborated in
Algorithm 10.2. At each point in time, the algorithm optimizes by selecting the
best asset combination that maximizes the utility.

It is further assumed that a cardinality-constrained investor optimizes his/her
portfolio invested in k out N assets with full investment constraint. Given the
cardinality constraint, a binary mapping function is used to choose K largest values
from N assets. The corresponding mapping for each iteration t is given as

ht wð Þ ¼ I w > w N–Kð Þ tð Þ
⌈ ⌉

, ð10:10Þ

where w(N – K )(t) represents the largest K – N values in w(t) and I[.] the vector
valued indicator function which generates one for first K largest values from N assets
and zero otherwise. This is the same mapping function as in Boudt and Wan (2019).

Algorithm 10.2: Sparse-Velocity PSO

1. Set n to the total number of N-dimensional particles in the swarm and T to the maximum
number of iterations.

2. Initialize the current positions and velocities of the n particles as random draws from the [0,1]
and [–1,1] uniform distribution, respectively.

3. Set ewi ¼ h wið Þ.
4. Set the local best position ewli ¼ ewi.

5. Set wg ¼ wlg to the global best position, where g ¼ argmax 1≤i≤nf ewlið Þ.
6. For t ¼ 1 : T

6.1 For each particle i ¼ 1, . . ., N

Set vi tð Þ ¼ θvi t – 1ð Þ þ c1r1 tð Þ ewli t – 1ð Þ – ewi tð Þ½ ] þ c2r2 tð Þ ewg t – 1ð Þ – ewi t – 1ð Þ .

Set wi tð Þ ¼ ewi t – 1ð Þ þ vi tð Þ.
End

6.2 Set ewi tð Þ ¼ h wi tð Þð Þ.
6.3 For each particle i ¼ 1, . . ., N

If f ewi tð Þð Þ > f ewlið Þ, set ewli ¼ ewi tð Þ.
If f ewlið Þ > f ewg , set ewg ¼ ewli.

End

End

7. Set wG ¼ ewg.

Note: See Boudt and Wan (2019) for further explanation.

However, the results from Algorithm 10.2 have a risk of early stagnation (Boudt
& Wan, 2019). This is because the velocity is sparse and only k out of N of its
elements is non-zero. Hence, its maximum capacity to change the elements is 2K
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which when less than N may cause stagnation. To solve early stagnation problem,
Boudt and Wan (2019) proposed a continuous-velocity (CV-PSO) algorithm that
uses continuous solution vector w that is not affected by the cardinality-induced
mapping function. This allows for the particle position and velocity information to
preserve and pass on from iteration to iteration. Thus, the CV-PSO is more flexible
and thus reduces chances of early stagnation. The CV-PSO also shows early gains in
small k portfolios compared to N. The continuous-velocity PSO is shown in Algo-
rithm 10.3.
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Algorithm 10.3: Continuous-Velocity PSO

1. Set n to the total number of N-dimensional particles in the swarm and T to the maximum
number of iterations.

2. Initialize the current positions and velocities of the n particles as random draws from the [0,1]
and [–1,1] uniform distribution, respectively.

3. Set ewi ¼ h wið Þ.
4. Set the local best position wli ¼ wi and ewli ¼ h wlið Þ.
5. Set wg ¼ wlg to the global best position, where g ¼ arg max1 ≤ i ≤ nf(wli).

6. For t ¼ 1 : T

6.1 For each particle i ¼ 1, . . ., N

Set vi(t) ¼ θvi(t – 1) + c1r1(t)[wli(t – 1) – wi(t)] + c2r2(t)[wg(t – 1) – wi(t – 1)].

Set wi(t) ¼ wi(t – 1) + vi(t).

End

6.2 Set ewi tð Þ ¼ h wi tð Þð Þ.
6.3 For each particle ¼1, . . ., N

If f ewi tð Þð Þ > f ewlið Þ, set wli ¼ wi(t) and ewli ¼ h wlið Þ.
If f ewlið Þ > f ewg , set wg ¼ wli and ewg ¼ h wg .

End

End

7. Set wG ¼ h(wg).

Note: See Boudt and Wan (2019) for further explanation.

The CV-PSO helps resolve early stagnation in small k portfolios and shows some
gains in results, but when k is large enough compared to N, the results from SV-PSO
algorithm are more promising (Boudt & Wan, 2019). The SV-PSO algorithm for
large k might allow frequent recurrence of same security in each iteration. This
phenomenon allows for selective continuity of information due to randomness of
asset selection that results in better long-run optimized values.

This chapter proposes to use both continuous solution vector w and the sparse
solution vector ew for velocity transformation such that the best of w or ew updates
local and global best positions based on both the information sets. This improves the
particle position from iteration to iteration as it is conditioned to select the best
performing particle through both information sets when k is smaller than N. We call
it continuous-sparse-velocity (CSV-PSO) and explain it in Algorithm 10.4.
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Algorithm 10.4: Continuous-Sparse-Velocity PSO

1. Set n to the total number of N-dimensional particles in the swarm and T to the maximum
number of iterations.

2. Initialize the current positions and velocities of the n particles as random draws from the [0,1]
and [–1,1] uniform distribution, respectively.

3. Set ewi ¼ h wið Þ.
4. Set the local best position wli ¼ wi and ewli ¼ h wlið Þ.
5. Set wg ¼ wlg to the global best position, where g ¼ arg max1 ≤ i ≤ nf(wli).

6. For t ¼ 1 : T.

6.1 For each particle i ¼ 1, . . ., N

Set vi tð Þ ¼ θvi t – 1ð Þ þ c1r1 tð Þ ewli t – 1ð Þ – ewi tð Þ½ ] þ c2r2 tð Þ ewg t – 1ð Þ – ewi t – 1ð Þ .

Set wi tð Þ ¼ ewi t – 1ð Þ þ vi tð Þ.
Set vi tð Þ ¼ θvi t – 1ð Þ þ c1r1 tð Þ wli t – 1ð Þ – wi tð Þ½ ] þ c2r2 tð Þ wg t – 1ð Þ – wi t – 1ð Þ .

Set wi tð Þ ¼ wi t – 1ð Þ þ vi tð Þ.
End

6.2 Set ewi tð Þ ¼ h wi tð Þð Þ and ewi tð Þ ¼ h wi tð Þð Þ.
6.3 For each particle i ¼ 1, . . ., N

If f ewi tð Þð Þ > f ewlið Þ, set wli ¼ wi(t) and ewli ¼ h wlið Þ.
If f ewi tð Þ > f ewlið Þ, set wli ¼ wi tð Þ and ewli ¼ h wlið Þ.
If f ewlið Þ > f ewg , set wg ¼ wli and ewg ¼ h wg .

End

End

7. Set wG ¼ h(wg)

10.3 Simulation-Based Performance Evaluation

In this section, simulated data sets of N ¼ 100 and N ¼ 500 assets are used to
evaluate the cardinality-constrained mean-variance-skewness-kurtosis (MVSK) and
mean-variance-skewness (MVS) utility optimization problems, respectively. The
investors are assumed to be risk-averse with γ ¼ 10 for all cases. Further, six
different cardinality-constrained portfolios are formed by setting k equal to 10, 15,
20, 30, 40, and 50. The asset position is set to be long only 0≤ wi≤ 1 with minimum
number of securities equal to 1. The objective functions are then solved using
particle swarm optimization with six parametric variations. The parametric varia-
tions include three different velocity methods, namely, sparse-velocity, continuous-
velocity, and continuous-sparse-velocity, and three different acceleration methods,
namely, constant, time-variant, and constriction coefficient. For each objective
function, 54 setups search T ¼ 1000 iterations for their optimal solution. The results
presented are an average of 10 repetitions.
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To explain this, the section is divided into four sub-sections of which the first
subsection explains the properties of simulated data, second subsection explains
PSO parametric settings, and the third and the final sections present the results.

10.3.1 Properties of Asset Returns

The study considers stylized setup where the stocks in the portfolio are set with mean
excess returns (μ) to 3% and zero for the rest. The annualized standard deviation (σ)
is set to 15% for all stocks with zero correlation between each other. While their third
and fourth moment marginals are set as

σ3i –1ð Þi,

σ4i 3þ i– 4
l mi
4

, ð10:11Þ

where σi is annualized standard deviation of the return of stock i in the portfolio. dxe
is a ceiling function that returns the smallest integer value greater than the given
number x.

10.3.2 Parameters of PSO

The swarm particle velocity is restricted to be between [–1, 1] and is random for
each particle in each iteration. Reaching a target may require many attempts (itera-
tions). It is common practice in PSO algorithm application to set maximum number
of iterations T to 1000 and the swarm size n to 1000 particles. The inertia weight for
particle velocity is set to 0.4, while the acceleration coefficient is taken from three
different studies. The first, the acceleration coefficients are set to be constant with
c1 ¼ c2 ¼ 2, which is a common practice (Boudt & Wan, 2019).

Second, the acceleration coefficient is set using constriction coefficients χ pro-
posed by Clerc and Kennedy (2011), where χ is defined as

χ ¼ 2κ

j 2– ϕ–
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 – 4ϕ
⎧ ⎫q

j
, ð10:12Þ

with kappa κ 2 [0, 1] and ϕ ¼ ϕ1 + ϕ2 ≥ 4.
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It is common practice to set κ ¼ 1 and ϕ1 ¼ ϕ2 ¼ 2.05. The constriction setting
transforms the inertia θ, c1, and c2 to

θ ¼ χ,

c1 ¼ χϕ1,

c2 ¼ χϕ2: ð10:13Þ

Third, the time-varying acceleration coefficients are set as proposed in
Ratnaweera, Halgamuge, and Watson (2004) given as follows

c1 tð Þ ¼ c1,min – c1,maxð Þt
T

þ c1,max ,

c1 tð Þ ¼ c2,max – c2,minð Þt
T

þ c2,max , ð10:14Þ

where c1, max ¼ c2, max ¼ 2.5, c1, min ¼ c2, min ¼ 0.5, T is total number of iterations,
and t is the index of iterations.

10.3.3 Mean-Variance-Skewness Utility Optimization

In this section we use the PSO to find the optimal value for the MVS portfolio
optimization with 500 securities. We use six different cardinality constrained port-
folios by setting k to 10, 15, 20 30, 40, or 50. Three different particle swarm
optimization (PSO) methods, sparse-velocity (SV), continuous-velocity (CV), and
continuous-sparse-velocity (CSV), are used (as explained in Algorithms 10.2–10.4).
Further, three different acceleration coefficient methods, constant, constriction, and
time-variant are used (as explained in Sect. 10.3.2). All the results of MVS-utility
optimization problem for six cardinality-constrained portfolios are presented in
Table 10.1 and Figs. 10.1, 10.2, and 10.3 as the mean over S ¼ 10 replications. As
such we account for the randomness of the generated data.

The results for cardinality-constrained mean-variance-skewness utility optimiza-
tion problem using sparse-PSO methods in Algorithms 10.2–10.4 for constant
acceleration coefficient method c1 ¼ c2 ¼ 2 and for all cardinality levels are
shown in Fig. 10.1. The results show some early gains for CSV-PSO over
CV-PSO and SV-PSO methods for k ≤ 15 and better end-of-iterations results
when k ≥ 40. Further, the early stagnation of SV-PSO method and better continuity
of velocity information in CV and CSV PSO are evident for constant acceleration
method (see Fig. 10.1).
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The results for constriction acceleration coefficient method can be seen in
Fig. 10.2. The SV-PSO algorithm seems to completely stagnate utility values
which may be due to increased inertia with θ ¼ χ ¼ 0.72 and reduce weights of
acceleration coefficients to c1 ¼ c2 ¼ 1.49. The CV-PSO algorithm generates better
MVS-utility values for k ¼ 20, k ¼ 40, and k ¼ 40. For only k ¼ 30, the CSV-PSO
generates better results. The results for time-variant acceleration coefficient method
can be seen in Fig. 10.3. It shows better MVS-utility values for SV-PSO in all
considered cases except when k ¼ 10.

10.3.4 Mean-Variance-Skewness-Kurtosis Utility
Optimization

In this section, we use the PSO to find the optimal value for the MVSK portfolio
optimization with 100 securities. We take less number of securities in the universe as
the number of parameters to be estimated for four comments when N¼ 500 is almost
2.6 billion, which is beyond the memory available in ordinary computing units. With
N ¼ 100 securities, we still estimate around 2.6 million parameters. We use six
different cardinality-constrained portfolios by setting k to 10, 15, 20, 30, 40, or 50.
Three different particle swarm optimization (PSO) methods, sparse-velocity (SV),
continuous-velocity (CV), and continuous-sparse-velocity (CSV) PSO, are used, as
explained in Algorithms 10.2–10.4. Further, three different acceleration coefficient
methods, constant, constriction, and time-variant coefficients, are used (as explained
in Sect. 10.3.2). To account for the randomness of the generated data, the results of
MVSK utility for six cardinality-constrained portfolios are averaged for S¼ 10 repe-
titions and are presented in Table 10.2 and Figs. 10.4, 10.5, and 10.6.

The early stagnation for SV-PSO method and superior results of CV-PSO and
CSV-PSO methods in terms of MVSK utility are prominent using constriction
acceleration coefficient method which can be seen in Table 10.2 and Fig. 10.4.
The CSV-PSO method shows some early gains over CV-PSO method in some
cases here.

The MVSK expected utility for constant acceleration coefficient method where
c1 ¼ c2 ¼ 2 is almost the same for all velocity methods and for all cardinality levels
(see Fig. 10.4). The results for time-variant acceleration coefficient method show
superior overall results for SV-PSO method except when k ¼ 10 (see Fig. 10.6).
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Fig. 10.1 The average MVSK-utility obtained using SV, CV, and CSV PSO algorithms with
constant acceleration method (c1 ¼ c2 ¼ 2) for portfolios with at most 10, 15, 20, 30, 40, and
50 assets selected from N ¼ 500 assets. Source: Authors’ Own Creation
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Fig. 10.2 The average MVS-utility obtained using SV, CV, and CSV PSO algorithms with
constriction acceleration method (Clerc & Kennedy, 2011) for portfolios with at most 10, 15,
20, 30, 40, and 50 assets selected from N ¼ 500 assets. Source: Authors’ Own Creation
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Fig. 10.3 The average MVS-utility obtained using SV, CV, and CSV PSO algorithms with time-
variant acceleration method c1 ¼ c2 ¼ c(t) for portfolios with at most 10, 15, 20, 30, 40, and
50 assets selected from N ¼ 500 assets. Source: Authors’ Own Creation

10.4 Conclusion

The chapter contributes towards further application of particle swarm optimization in
solving cardinality-constrained asset-selection problem under non-normality. It also
extends the continuous-velocity PSO algorithm of Boudt and Wan (2019) to
continuous-sparse-velocity approach.

The chapter investigates two different objective functions corresponding to mean-
variance-skewness (MVS) and mean-variance-skewness-kurtosis (MVSK) utility
preferences. The investigation involves six different cardinality-constrained portfo-
lios where k is 10, 15, 20 30, 40, or 50. Each portfolio is evaluated for three different
particle velocity methods, namely, sparse, continuous, and continuous-sparse, and
three different acceleration coefficient methods, namely, constant, time-variance,
and constriction.

The proposed continuous-sparse-velocity PSO algorithm generates early gains in
some of the cases presented. It particularly performs better when used in combina-
tion with constant or constriction acceleration methods when k is considerably small
compared to N for both objective functions. The early stagnation of sparse-velocity
PSO algorithm was marked in MVS-utility optimization problems in all cases, but
the same was missing in case of MVSK-utility optimization except when used with
constriction method. It was also marked that the sparse-velocity PSO algorithm
when set up with constriction coefficient produced early stagnation for both objec-
tive functions.
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0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Iterations

The results for constriction acceleration method as in Equations 12–13.
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Fig. 10.4 The average MVSK-utility obtained using SV, CV, and CSV PSO algorithms with
constriction acceleration method (Clerc & Kennedy, 2011) for portfolios with at most 10, 15,
20, 30, 40, and 50 assets selected from N ¼ 100 assets. Note: The results in figure show early
stagnation for SV-PSO approach, while CSV-PSO shows some early gains in some cases. Source:
Authors’ Own Creation
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The results for constant acceleration method with c1=c2=2.
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Fig. 10.5 The average MVSK-utility obtained using SV, CV, and CSV PSO algorithms with
constant acceleration method (c1 ¼ c2 ¼ 2) for portfolios with at most 10, 15, 20, 30, 40, and
50 assets selected from N ¼ 100 assets. Source: Authors’ Own Creation
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0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Iterations

The results for time-variant acceleration method as in Equations 14.
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Fig. 10.6 The average MVSK-utility obtained using SV, CV, and CSV PSO algorithms with time-
variant acceleration method c1 ¼ c2 ¼ c(t) for portfolios with at most 10, 15, 20, 30, 40, and
50 assets selected from N ¼ 100 assets. Source: Authors’ Own Creation
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Chapter 11
Different Applications of PSO

Altaf Q. H. Badar

Abstract Particle swarm optimization (PSO) is an evolutionary optimization
algorithm. PSO is a robust and well researched optimization technique. There are
a large number of applications of PSO. “Applications of PSO” chapter tries to
present a classified literature review for the applications of PSO in different fields.
The applications are classified into different sections based on the area of
implementation.

The chapter also presents a table with references to multiple other applications
over and above those covered in the chapter. References of some largely cited review
papers dealing with the applications of PSO are also mentioned at the end of the
chapter.

Keywords Particle swarm optimization · Evolutionary algorithms ·
Application of PSO

11.1 Introduction

Optimization is a part of our daily life where we want to optimize each and every
task. We want to optimize our travel plans, our monetary spending, our time and
resources, and what not. In reality, we solve these problems by our own conscience,
our past experiences, and the experiences of our known ones. If these problems can
be converted into a model, then these problems can also be solved through an
optimization technique.

What is optimization? In simple words, optimization is making the best use of
available situation or resources. In reality, we can only process some of the available
solutions that we know or can think of. But there are multiple optimization problems
which have a lot of possible solutions which we, as humans, cannot analyze. This
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happens because of a lot of possible combinations between the input variables. Just
to get an idea, let us assume that if there are three input variables and each variable
can have four different allowable values, then the number of possible solutions will
be 64. If these numbers of input variables or their possible values are increased, then
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the number of possible solutions shall increase by a huge number.
The magnitude of the above-discussed optimization problem increases merely

due to the increase in the number of possible solutions. It becomes impossible for a
human to evaluate these optimization problems for all the possible solutions. Thus,
we need methods to solve such optimization problems.

Evolutionary-based optimization techniques provide very simple and robust
methods to solve these problems while providing the advantage of consuming less
time. One of such evolutionary optimization technique is particle swarm optimiza-
tion (PSO). PSO was introduced in 1995 and has been developed to perform better
and better over a period of years. The same has been covered in earlier chapters of
the book.

In this chapter, we shall look into various applications of PSO and its variants in
different fields like engineering, medical, etc. This book itself covers an application
of PSO into portfolio optimization. PSO and its applications have a huge number of
publications, and it is not possible to include all of them. The chapter is divided into
different sections based on the field of applications.

Since the numbers of references for some of the applications are so numerous,
that all cannot be referred to; thus, one reference per application has been cited. The
total number of applications has been limited to 40. Some of the review papers are
cited at the end of the chapter for the benefit of the readers.

11.2 Electrical Engineering

Electrical engineering has a large number of PSO applications.

11.2.1 Reactive Power Optimization

In reactive power optimization problem, the objective is to reduce the total amount of
current flowing in the transmission system. Various inputs considered for this
problem are voltage magnitude, transformer tap settings, and capacitor bank settings.
By optimal selection of input variables, the reactive part of the current, flowing in the
transmission system, is reduced (Badar, Umre, & Junghare, 2012).

11.2.2 Load Forecasting

A very important part of job in a power system engineer’s work life is the prediction
of load in the future. The prediction of load is done for long term (some years),



medium term (some months), and short term (some days). PSO is used in combina-
tion of various methods like support vector machines (SVM), wavelets, etc. to
predict load characteristics for short term. In (Huang, Huang, & Wang, 2005),
short-term load forecasting is done using PSO along with autoregressive-moving-
average model with exogenous inputs (ARMAX) model. Akaike’s final prediction
error (FPE) and loss function represent the objective function for the problem
discussed. The basic aim is to reduce the error in the prediction process.
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11.2.3 Maximum Power Point Tracking in Photovoltaic
System

The power generated by the solar panel is adjusted to be maximum for the given
condition by tracking the graphs representing the relations between voltage and
power and voltage and current. PSO is found to give faster results with lesser
oscillations and optimal results in different conditions (Ishaque, Salam, Amjad, &
Mekhilef, 2012).

11.2.4 Proportional-Integral-Derivative (PID) Controller

PID controllers are used for various control applications in electrical engineering and
other fields. The optimal operation of PID controller is obtained through proper
tuning of its parameters, namely, Kp, Ki, and Kd. In (Solihin, Tack, & Kean, 2011),
PID controller is used to control the working of a DC motor.

11.2.5 Phasor Measurement Unit (PMU) Placement

Phasor measurement units are a very important part of measuring instruments being
utilized in the modern-day electrical systems. Their placement is limited with less
number of PMUs being utilized while covering the whole system (Ahmadi,
Alinejad-Beromi, & Moradi, 2011).

11.2.6 Economic Dispatch

One of the long-term applications of PSO in electrical engineering is the problem of
economic dispatch. This problem tries to find the power plants that should supply
power at a given time and how much power each plant should generate. In



(Al Bahrani & Patra, 2017), this problem is applied to modern smart grid conditions
with new constraints.
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11.2.7 Home Energy Management System

Home energy management is a very important field of research. It takes into account
the renewable energy sources, energy storage systems, appliances (controllable and
uncontrollable), tariff rates, and many other factors to reduce the cost of energy bills
for a home. PSO is applied for reduction in energy costs of a home in (Pedrasa,
Spooner, & MacGill, 2010). The home energy management systems usually apply
demand response techniques like peak shaving, load scheduling, etc. to achieve
these goals.

11.2.8 State Estimation

In an electrical system, there are numerous measurements which are taken and
transmitted every second. There are different reasons due to which this measured
data may contain uncertainties or noise. State estimation is applied for the estimation
of power system variables through the identification of errors. In (Tungadio, Numbi,
Siti, & Jimoh, 2015), state estimation is performed using PSO through two objective
functions of weighted least square and weighted least absolute value.

11.2.9 Congestion Management

In electrical systems, the power is transmitted from the generating stations to the
loads through transmission lines. It is necessary to follow the power transfer limits of
the transmission lines. When high power flows through transmission lines, conges-
tion happens. To avoid such situations, congestion management is required. In
(Kamaraj, 2011), congestion management is used for pool-based electricity market
through PSO. The security constraints considered are line loading and voltages of
buses. The method is applied to two standard systems.

11.2.10 Induction Cooker Design

PSO is applied for induction heating design in (Hosseini, Kashtiban, & Alizadeh,
2006). Finite element method is applied alongside PSO to get optimal design. The
objective is to minimize the cost as a function of leakage flux and electromagnetic



forces of induction heating winding. The parameters considered are DC voltage
source, output power, switching frequency, and load resistance and inductance.

11 Different Applications of PSO 195

11.3 Electronics Engineering

11.3.1 Swarm Robots

PSO finds a very interesting application of searching a given target through a swarm
of robots in (Hereford, 2006). PSO eliminates the requirement of having a central
leader for coordinating the movement of the robots and is able to find the target in
lesser time.

11.3.2 Antenna Design

PSO has been used to optimize antenna design for quite a long time now. In
(Robinson & Rahmat-Samii, 2004), PSO is used to design a horn antenna. The
antenna design is applied for different types of walls. The simulation output com-
putes beam width, weight, return loss, and peak cross-polarization. There are large
numbers of publications using PSO on antenna design optimization problem.

11.3.3 Channel Allocation

In communications, it is very necessary that high bandwidth, absence of delay, and
channel availability are provided to users for better quality of service. In (Scott-
Hayward & Garcia-Palacios, 2014), PSO is used for multiple application resource
allocation. The objective function is based on utility function of channel time
allocation for video on demand and Internet protocol television.

11.3.4 Filter Design

PSO has been applied for electronic filters in a large number of research works. In
(Krusienski & Jenkins, 2004), PSO is applied on infinite impulse response filters.
The mean squared error between the output of unknown system and adaptive filter is
related to the cost function which acts as an objective function for the given problem.
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11.3.5 Very-Large-Scale Integration (VLSI) Routing

Very-large-scale integration is used to create integrated circuits through the combi-
nation of a large number of transistors on a single chip. For such circuits, it is very
important to optimize the wire lengths to limit the power delay. Rectilinear Steiner
minimal tree is used to obtain the cost of such a circuit. PSO solves this problem in
(Khan, Laha, & Sarkar, 2013) with approximately 20% reduction in the cost/length
of wire.

11.3.6 Wireless Sensor Network

In wireless sensor network, allocation of workload for each task to proper nodes
efficiently is termed as task allocation (Yang, Zhang, Ling, Pan, & Sun, 2013). The
constraints for the problem are taken as task workload and connectivity. The fitness
function includes time, energy, and lifetime components. The problem has been
solved through many different considerations and constraints in the research
publications.

11.4 Mechanical Engineering

11.4.1 Machinery Fault Detection

Machines are a very important part of our lives, without which nothing would move
and these machines need bearing to run properly. PSO is used to obtain optimal input
features for classifiers like SVM or artificial neural network (ANN) while finding
machine bearing faults (Samanta & Nataraj, 2009).

11.4.2 Cell Formation

Formation of cells in the manufacturing of machine parts is an important step for
optimal process implementation. PSO is used to reduce the setup time and travel of
parts in between different cells in (Anvari, Mehrabad, & Barzinpour, 2010). A
number of problems are solved to prove the performance of PSO. A similar problem
for placement of inventory is handled in (Hochmuth, Lassig, & Thiem, 2011).
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11.4.3 Injection Molding

Injection molding is a process of making parts by injecting molten material into a
mold. In (Bensingh, Machavaram, Boopathy, & Jebaraj, 2019), PSO is used to
predict optimal process parameters, and the whole problem is solved through
ANN and PSO.

11.4.4 Milling

Milling is similar to metal cutting having an objective of obtaining optimal surface
roughness at micro level and economic performance at macro level. In (Pare,
Agnihotri, & Krishna, 2011), surface roughness is optimized, while cutting speed,
feed rate, radial rake angle, and depth of cut are taken as input variables.

11.4.5 Multi-hole Extrusion

A Taguchi method and PSO combination is used to find optimal process parameters
for a multi-hole extrusion process (Chen, Su, Nian, Lin, & Chen, 2013). The
parameters are eccentricity ratio, extrusion velocity, friction coefficient, and billet
temperature. Better values of exit tube bending angles and mandrel eccentricity are
also obtained. Various softwares are used to verify the results.

11.4.6 Nuclear Power Plant Component Design

To improve the thermal efficiency of a nuclear power plant, modified PSO is
proposed in (Liu, Yan, & Wang, 2014). The optimal design is generated for vertical
electrical heating pressurizer in reactor coolant system. Optimization variables are
primary loop operation pressure, reactor inlet and outlet coolant temperature, and
pressurizer inner diameter.

11.5 Computer Engineering

11.5.1 Rule Mining

Association rule mining is a procedure which aims to observe frequently occurring
patterns, correlations, or associations from datasets found in various kinds of



databases such as relational databases, transactional databases, and other forms of
repositories. In (Kuo, Chao, & Chiu, 2011), PSO is applied on standard database to
mine association rules for stock selection behavior.
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11.5.2 Sentiment Analysis

Artificial intelligence has been developing at a very fast pace. Sentiment analysis is
used to analyze the emotions expressed in the text by a human. It is an extremely
helpful tool for multiple applications like social networking, product feedback, etc.
PSO is used for sentiment analysis in (Gupta, Reddy, Ekbal, et al., 2015) automatic
feature selection for aspect term extraction and sentiment classification.

11.5.3 Data Clustering

Clustering is used to partition data based on their similarities. The major problems in
this method are compactness and separating data in clusters. In (Armano & Farmani,
2016), clustering is defined as a multi-objective problem, on the basis of connectivity
and cohesion. The result gives well-defined, connected, and compact clusters.
Around 27 datasets have been implemented in (Armano & Farmani, 2016).

11.5.4 Cloud Computing

Task scheduling is one of the most important requirements in the cloud computing
environment. The task scheduling is responsible for efficient working of cloud
computing facilities. The parameters to be considered for optimal task scheduling
are time, cost, make span, availability, scalability, reliability, throughput, utilization
of resources, etc. In (Awad, El-Hefnawy, & Abdel Kader, 2015), account reliability,
execution and roundtrip time, make span, transmission time, cost of transmission,
and balancing of load between tasks and virtual machine are considered through the
implementation of PSO.

11.5.5 Fuzzy Cognitive Maps

Neural networks and fuzzy modeling methodology make up fuzzy cognitive maps,
which are used to simulate complex systems. The main objective is to obtain optimal
values of fuzzy cognitive map weights so as to get desirable steady-state behavior
from the system while following the constraints of the system. In (Petalas,



Parsopoulos, & Vrahatis, 2009), PSO is used to find these weights, and it is verified
against a number of fuzzy cognitive map applications.
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11.5.6 Video-Based Face Recognition

For artificial intelligence systems, it is important to keep learning, especially when
the new data becomes available during operations. Classifier systems are applied for
the same, and PSO is applied to guide these classifiers in (Connolly, Granger, &
Sabourin, 2012). The proposed method is applied on video-based facial recognition
through a combination of fuzzy logic and artificial neural networks. PSO is used to
generate and evolve diversified pools of classifiers. Real-world video streams are
used to assess the method on the basis of classification rate and resources required.

11.6 Others

11.6.1 Traffic Flow Forecasting

A hybrid combination of PSO and support vector regression (SVR) model is used to
predict the flow of traffic in (Hu, Yan, Liu, & Wang, 2016). In the traffic forecasting
application, PSO is used to optimize the parameters of SVR.

11.6.2 Oil Well Location and Type

For the development of oil and gas fields, it is important to find optimal location and
type for the new wells (Onwunalu & Durlofsky, 2010). The objective function
evaluates the net present value of a location and type of well, which includes all
types of costs including drilling and other costs.

11.6.3 Maintenance and Inventory Management

A novel application of PSO is found in (Samal & Pratihar, 2015) for maintenance
and inventory management of spare parts. It tries to optimize the cost related to
combined cost of maintenance and for purchase of spare parts. PSO provided results
at par with conventional methods.
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11.6.4 Vehicle Routing Problem

Vehicle routing problem is an evolving optimization problem, with practical imple-
mentation and various versions appearing over a period of years. The input data
consists of number of nodes, distance between them, vehicle type, speed, etc. The
objective of the problem is to reduce the time of travel while visiting all the nodes
and reducing the traveling distance. In (Ai & Kachitvichyanukul, 2009), a vehicle
routing problem is solved through modified PSO. In newer versions of the problem,
delivery and pickup details of each node are required.

11.6.5 Submission Decision Process

A multi-objective problem is designed around article submission process and solved
through PSO in (Adewumi & Popoola, 2018). The objectives are denoted by “C” for
the expected number of citations, “P” for the time required from submission to
acceptance for a paper, and “R” for the expected number of submissions.

11.6.6 Ship Design

Barebones PSO has been applied to design the ship in (Yao & Han, 2013). The
optimization problem has three objective functions, six design variables, and nine
inequality constraints. Design variables considered are length, depth, beam, draft,
block coefficient, and speed in knots. Objective functions for the problem are mini-
mization of transportation cost and lightship weight and maximization of annual cargo.

11.6.7 Propylene Reactor Application

An industrial process of Ziegler-Natta propylene polymerization in propylene reac-
tors is solved through non-linear dynamic data reconciliation. PSO is used in (Prata,
Schwaab, Lima, & Pinto, 2010) for parameter estimation for error detection. Real
and system data for different systems are implemented for steady and dynamic
states. The output of PSO leads to a more robust and reliable process. A Welch
estimator is used in the process along with non-linear data reconciliation and
parameter estimation for detection of error.

11.6.8 Fault Selection in Chemical Process

Fault classification based on a large number of variables in a chemical process
industry like Tennessee Eastman process is a tedious task. Authors in (L. Wang &



Yu, 2005) solve this problem having a large amount of data along with irrelevant
variables through PSO. SVM is also implemented for classification of fault. The
proposed work was executed for around 25 h.
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11.6.9 Vapor-Liquid Equilibrium

PSO is used for parameter estimation in (H. Zhang, Kennedy, Rangaiah, & Bonilla-
Petriciolet, 2011) while developing mathematical models for analyzing vapor-liquid
equilibrium process. These problems are non-linear in nature. The research work is
applied on 16 problems. Approaches used in the research work are least squares and
error in variable.

11.6.10 Leukemia Detection

Diagnosis of microscopic images can lead to decision support system for the
detection of acute lymphoblastic leukemia. PSO is used to identify characteristics
that discriminate between healthy and blast cells in (Srisukkham, Zhang, Neoh,
Todryk, & Lim, 2017). It applies two PSO methods with different characteristics for
better results. Around 180 microscopic images and cross-domain sonar dataset from
the UCI Machine Learning Repository are evaluated.

11.6.11 Oil Recovery

Authors in (X. Wang & Qiu, 2013) deal with oil recovery problem from a large
heavy oil reservoir. A comparison of three different versions of PSO is presented.
Even though many parameters can affect the optimization problem, five parameters
selected in this case are injecting fluid temperature, stream and additive gas injection,
rate of injection wells, amount of CO2 in additive gas, and liquid production rate of
production wells.

11.6.12 Microscope Autofocusing

A method to autofocus the microscope for keeping micro-objects within the field of
the lens is studied in (Bahadur & Mills, 2013). The image should have sharp edges,
and the features of the micro-objects should be included in it. The performance of
PSO is validated through image variance for sharpness quotient in the presence of
noise. Micro-beads are used for experimentation.

A summary of the above applications is presented in Table 11.1.
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Table 11.1 Summary of PSO applications

Sr.
No. Topic References

Electrical engg

1 Reactive power optimization Badar et al. (2012)

2 Load forecasting Huang et al. (2005)

3 Maximum power point tracking in photo-
voltaic system

Ishaque et al. (2012)

4 PID controller Solihin et al. (2011)

5 PMU placement Ahmadi et al. (2011)

6 Economic dispatch Al Bahrani and Patra (2017)

7 Home energy management systems Pedrasa et al. (2010)

8 State estimation Tungadio et al. (2015)

9 Congestion management Kamaraj (2011)

10 Induction cooker design Hosseini et al. (2006)

Electronics engg

1 Swarm robots Hereford (2006)

2 Antenna design Robinson and Rahmat-Samii (2004)

3 Channel allocation Scott-Hayward and Garcia-Palacios
(2014)

4 Filter design Krusienski and Jenkins (2004)

5 VLSI routing Khan et al. (2013)

6 Wireless sensor network Yang et al. (2013)

Mechanical engg

1
2
3
4
5
6

Machinery fault detection
Cell formation
Injection molding
Milling
Multi-hole extrusion
Nuclear power plant component design

Samanta and Nataraj (2009)
Anvari et al. (2010)
Bensingh et al. (2019)
Pare et al. (2011)
Chen et al. (2013)
Liu et al. (2014)

Computer engg

1 Rule mining Kuo et al. (2011)

2 Sentiment analysis Gupta et al. (2015)

3 Data clustering Armano and Farmani (2016)

4 Cloud computing Awad et al. (2015)

5 Fuzzy cognitive maps Petalas et al. (2009)

6 Video-based face recognition Connolly et al. (2012)

Other

1 Traffic flow forecasting Hu et al. (2016)

2 Oil well location and type Onwunalu and Durlofsky (2010)

3 Maintenance and inventory management Samal and Pratihar (2015), Hochmuth
et al. (2011)

4 Vehicle routing problem Ai and Kachitvichyanukul (2009)

5 Submission decision process Adewumi and Popoola (2018)

6 Ship design Yao and Han (2013)

7 Propylene reactor application Prata et al. (2010)

(continued)



Topic References
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Table 11.1 (continued)

Sr.
No.

8 Fault selection in chemical process Wang and Yu (2005)

9 Vapor-liquid equilibrium Zhang et al. (2011)

10 Leukemia detection Srisukkham et al. (2017)

11 Oil recovery Wang and Qiu (2013)

12 Microscope autofocusing Bahadur and Mills (2013)

As a last part of the chapter, a collection of review papers dealing with the
applications of PSO is listed below Table 11.2.

11.7 Conclusion

Optimization is an ongoing process, whether it is evolution (long term) or any other
small process. There are various methods from optimizing a process which may vary
from simple observation to very complex mathematical processes.

For problems where large numbers of dimensions are involved along with a
complex search space, it becomes impossible for finding an optimal solution through
simple classical methods. In such cases, evolutionary algorithms like PSO are
utilized. PSO is a robust, dynamic, and adaptive evolutionary optimization tech-
nique. The method has been in the research domain for around two and a half
decades. It has been applied for optimizing a wide variety of problems. It is one of
the most researched optimization techniques. PSO imitates the behavior of flocking
animals/human brain to search to optimal results.

PSO is a multidimensional optimization technique which can handle different
kinds of problems from various fields. PSO is also capable of implementing different
varieties of optimization problems like multi-objective problems, discrete and con-
tinuous problems, complex problems, etc.

The operation of PSO is simple and is dependent on two equations: velocity
calculation and updating of particle position. PSO has been implemented in a wide
variety of fields to solve optimization problems.

This chapter covers PSO applications in the fields of electrical engineering,
electronics engineering, mechanical engineering, computer engineering, and a com-
bination of other topics. A large number of references are also cited related to the
applications of PSO.
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Table 11.2 List of review papers

Sr.
No. Title Author Year References

1 An analysis of publications on
particle swarm optimization
applications

R. Poli 2008 Poli (2008)

2 Applications of particle swarm
optimization in geotechnical
engineering: a comprehensive
review

M. Hajihassani,
D. Jahed
Armaghani,
R. Kalatehjari

2017 Hajihassani, Armaghani,
and Kalatehjari (2018)

3 A comprehensive survey on par-
ticle swarm optimization algo-
rithm and its applications

Yudong Zhang,
Shuihua Wang,
and Genlin Ji

2015 Zhang, Wang, and Ji
(2015)

4 Particle swarm optimization:
basic concepts, variants and
applications in power systems

Yamille del Valle
et al.

2008 Del Valle,
Venayagamoorthy,
Mohagheghi,
Hernandez, and Harley
(2008)

5 Particle swarm optimization:
developments, applications and
resources

R.C. Eberhart,
Yuhui Shi

2001 Shi and Eberhart (2001)

6 Particle swarm optimization and
differential evolution algorithms:
technical analysis, applications
and hybridization perspectives

Swagatam Das,
Ajith Abraham,
and Amit Konar

2008 Das, Abraham, and
Konar (2008)

7 Particle swarm optimization and
intelligence: advances and
applications

Konstantinos
E. Parsopoulos,
Michael
N. Vrahatis

2010 Parsopoulos and
Vrahatis (2010)

8 Review on applications of parti-
cle swarm optimization in solar
energy systems

A. H. Elsheikh,
M. Abd Elaziz

2018 Elsheikh and Elaziz
(2019)

9 Review on the cost optimization
of microgrids via particle swarm
optimization

Sengthavy
Phommixay et al.

2019 Phommixay, Doumbia,
and St-Pierre (2020)

10 A review on particle swarm opti-
mization algorithms and their
applications to data clustering

Sandeep Rana,
Sanjay Jasola,
Rajesh Kumar

2010 Rana, Jasola, and Kumar
(2011)

11 A review on particle swarm opti-
mization algorithm and its vari-
ants to clustering high-
dimensional data

Ahmed A. A.
Esmin, Rodrigo
A. Coelho, Stan
Matwin

2015 Esmin, Coelho, and
Matwin (2015)

12 A review of particle swarm opti-
mization. Part II: hybridisation,
combinatorial, multicriteria and
constrained optimization, and
indicative applications

Alec Banks, Jona-
than Vincent,
Chukwudi
Anyakoha

2007 Banks, Vincent, and
Anyakoha (2008)

13 A survey of particle swarm opti-
mization applications in electric
power systems

M. R. AlRashidi,
M. E. El-Hawary

2009 AlRashidi and
El-Hawary (2008)

(continued)
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Table 11.2 (continued)

Sr.
No.

14 A review of real-world applica-
tions of particle swarm optimiza-
tion algorithm

Michal Pluhacek
et al.

2017 Pluhacek, Senkerik,
Viktorin, Kadavy, and
Zelinka (2017)

15 Particle swarm optimization
applications to mechanical
engineering-A review

Ninad Kulkarni
et al.

2015 Kulkarni et al. (2015)
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Chapter 12
Particle SwarmOptimization in Global Path
Planning for Swarm of Robots

Ritesh Kumar Halder

Abstract Planning of the optimal path of an autonomous swarm of mobile robots is
quite challenging since they may need to meet multiple targets while avoiding
obstacles. This chapter addresses the problem using a method of global navigation
based on particle swarm optimization technique. Since it is a meta-heuristic search
technique, the path can be found following any optimization criteria such as shortest
distance or minimum time. The chapter explores different traditional path planning
approaches in contrast with the evolutionary algorithms. The PSO algorithm is tested
in different scenarios. Several modifications were implemented in the algorithm for
optimization improvements and faster convergence, leading to better results. Geo-
metrical illustrations were used to explain the changes in position of the particles
with respect to the environment and obstacles. Consequently, the experiments are
conducted on a simulated robot, and the visualizations demonstrated the feasibility
of the technique to solve global path planning problem.

Keywords PSO · Autonomous navigation · Evolutionary algorithm · Obstacle
avoidance · Artificial intelligence

12.1 Introduction

Autonomous mobile robots are devices, which use their intelligence to navigate the
environment they work in. The environment can be anything such as a crowded
street, interiors of a house, or rough terrains of the moon. To navigate such
environments, a major challenge encountered by these robots is an optimized,
collision-free path planning. Avoiding collisions with stationary or moving objects
and reaching the target with minimum cost involved is a wide area of ongoing
research. In path planning procedure, the robot needs to find a trajectory connecting
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the start and endpoints while minimizing the cost or the optimization criteria
involved. The trajectory needs to be an optimized collision-free path, according to
some optimization criteria such as path involving shortest distance or minimum time.
This problem is classified into global and local path planning problem. In global path
planning, all the information about the environment is provided to the planner before
the operation, whereas in local path planning, the environment is unknown or partly
known. Since supplying a new map every time minor changes occur in the environ-
ment is costly, local planners are used in combination with the global planner. These
does not need the entire environment model and works in locally limited area. In this
work, the author proposes a method of global navigation based on particle swarm
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optimization technique.
Traditional algorithms for global path planning were mostly deterministic in

nature, such as visibility graph, artificial potential field, cell decomposition, etc.
Particle swarm optimization is a meta-heuristic search technique inspired by the
behavior of the flock of birds. PSO is relatively simple and converges faster, and
movement is updated using population-based feature. Thus, it is a considerable
alternative for solving path planning problem. PSO has been used for target search
applications, such as firefighting, landmine detection, and military surveillance, and
is an effective technique for swarm robotic search problems.

In the next section, the background and origin of PSO algorithm are discussed in
brief along with its modifications over time and its implementation in the domain of
autonomous path planning. The meta-heuristic approach with some of the examples
of evolutionary algorithms and particle swarm optimization theory is described in
Sect. 12.3, along with the justification for its use in path planning. In Sect. 12.4, the
setup for PSO in 2D search space, and the modifications in the algorithms
implemented for the experiments, is explained. This follows the experimental results
obtained from the simulations and the graphical representations, followed by its
implementation and visualization in Robot Operating System. Future research direc-
tions and conclusion are presented in the last two sections.

12.2 Background

Kennedy and Eberhart introduced particle swarm optimization in 1995 (Eberhart &
Kennedy, 1995, November). The optimization algorithm was an effort to integrate
the social behaviors found in various living species, with the tools and techniques
available in modern computer graphics and ideas from social psychology research.

Initially in the domain of computer graphics, Reeves proposed the idea to model
dynamic objects using particle systems (Reeves, 1983), which cannot be represented
by simpler surfaces such as polygons. Objects like smoke, water, and fire are such
objects, which cannot be modelled by conventional techniques, since the particles
are independent of each other. However, we can predict their movement since they
are guided by some set of rules (convection current, gravity, wind direction, etc.).
Reynolds simulated the behavioral movement of flock of birds using a particle



system (Reynolds, 1987, August). Heppner and Grenander used simulated bird flock
model including a roost and simulated birds being attracted to it, following stochastic
differential equations (Heppner & Grenander, 1990). The original PSO algorithm
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used these models as an inspiration to create its own set of rules.
Nowak, Szamrej, and Latané proposed the dynamic theory of social impact, in the

domain of social psychology research (Nowak, Szamrej, & Latané, 1990). The rules
that apply on human social psychology, and lead individuals to adjust their attitudes
and beliefs to be in harmony to those of their peers, are similar to the ones, which
govern the particle movements in the search space. This is also an inspiration for the
development of the first particle swarm optimization algorithm (Kennedy, 2006).

The algorithm was improved by including additional parameters. Shi and
Eberhart introduced the inertia parameter “w,” whose value determines the charac-
teristics of global and local search (Shi & Eberhart, 1998, May). In 2002, Laskari
et al. showed that PSO with a slight modification can be used to solve discrete
optimization problems, by working with continuous variables and rounding off the
real optima to the nearest integer position (Laskari, Parsopoulos, & Vrahatis, 2002,
May). Hassan, B. Cohanim, and O. de Weck have shown that PSO is able to
accommodate multiple objectives and it’s also faster and more efficient than the
GA (genetic algorithm) (Hassan, Cohanim, De Weck, & Venter, 2005, April).
Sedighizadeh and Masehian enumerate and describe briefly 102 algorithms that
are based on PSO (Sedighizadeh & Masehian, 2009). These authors classified the
PSO algorithms according to the type of control variables: continuous, binary, and
discrete. They also used different criteria to cluster these algorithms, e.g., attraction
(there can be attraction, repulsion, or both), swarm topology, activity (a particle can
be in passive state and have no social behavior), and sign of particle trajectories
(particles can follow the worst particle instead of the best one). Other criteria were
hierarchy (higher-level particles have more effect on the evolution of the swarm),
restriction (particles move in a constricted space or not), etc. Hybridized with other
heuristic algorithms such as simulated annealing, ant colony optimization, genetic
algorithms, differential evolution, etc., optimization objective (single-objective or
multi-objective optimization) was also considered. Spears et al. studied the biases in
PSO and found that particles tend to concentrate along paths parallel to the coordi-
nate axes and rotational variance is related to the concentration (Spears, Green, &
Spears, 2012).

In the application of autonomous navigation, Ezequiel Di Mario, Zeynab
Talebpour, and Alcherio Martinoli compared reinforcement learning and PSO for
multi-robot obstacle avoidance and showed that time required by PSO as compared
to Q-learning can be significantly reduced as the algorithm is distributed in nature
(Di Mario, Talebpour, &Martinoli, 2013, June). Guangsheng Li andWusheng Chou
used PSO in combination with self-adaptive learning technique, which would switch
over to the suitable search technique based on different stages of the optimization
process, thus improving the searching ability (Li & Chou, 2018).
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12.3 Meta-Heuristic Algorithms and Particle Swarm
Optimization Theory

Traditionally, heuristic means “to discover” by trial and error. Heuristic algorithms
are designed with the specific problem in mind. However, to solve it in a faster and
more efficient manner than conventional stochastic strategies, often optimality,
precision, or accuracy is compromised. Thus, mostly these algorithms are used
when an exact solution is computationally expensive, whereas approximate solu-
tions are sufficient. Meta-heuristics (meta- meaning “beyond”), on the other hand,
are problem-independent techniques that can be applied to a broad range of prob-
lems. These usually perform better than simple heuristic algorithms. Although
optimal solution is not guaranteed, these are suitable for global optimization prob-
lems. They know nothing about the problem they are applied to; hence, they treat
functions as black boxes.

There is a tradeoff of local search and randomization in most meta-heuristic
algorithms. This includes two components, exploitation and exploration. Explora-
tion creates diverse solutions initially, spread over entire search space for better
coverage. Wherever there is a higher probability of getting good solution, exploita-
tion focuses the search in that region. To increase the rate of convergence, a good
balance between these two components is required during selection of best solutions.
Exploration helps in escaping local optima, whereas selecting best solutions leads to
convergence at optimum. Thus, these algorithms perform better than conventional
methods as well as reaches near-optimal solution better than heuristic algorithms.

12.3.1 Swarm Intelligence

Swarm intelligence systems involve multiple agents, which are capable of
interacting with each other locally in the environment. This kind of collective
behavior is found naturally in many species, such as birds, bees, ants, etc. Thus,
swarm intelligence is used to describe all such decentralized systems, both natural
and artificial. Few noteworthy algorithms belonging to this class of systems are
mentioned below. Each of these is inspired by the self-organizing behavior of such
species.

These algorithms are also known as “evolutionary algorithms,” since they are
similar to the evolutionary mechanism of the species. Evolutionary algorithms are
based on the process of evolution of species. Just as evolution of any population
facing environmental changes and pressure occurs, leading to natural selection, i.e.,
survival of the fittest, similarly these algorithms evolve by increasing the average
fitness of the population. Fitness is the performance criteria for adaptation of the
organism; better fitness signifies better adaptation or higher chances of reaching the
goal. Generally, these algorithms roughly focus on few mechanisms similar to
biological evolutionary process (Figs. 12.1, 12.2, 12.3, and 12.4).
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Fig. 12.1 Ant colony
optimization algorithm.
Source: Redrawn by author
(Wikipedia, 2020)

Fig. 12.2 Genetic
algorithm. Source: Redrawn
by author (Aparra, 2016)
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Few algorithms of this class are:

• Ant colony optimization
• Particle swarm optimization
• Genetic algorithms
• Artificial bee colony
• Cuckoo search

Most commonly used algorithm among these is the particle swarm optimization
(PSO). Ant colony optimization (ACO) and artificial bee colony algorithm are
among other algorithms comparable to PSO, though particle swarm optimization
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Fig. 12.3 Artificial bee colony algorithm. Source: Redrawn by author (Huang & Liu, 2013)

Fig. 12.4 Flowchart of cuckoo search using Lévy flight. Source: Redrawn by author (Xu, Liu, &
Lu, 2016)

is preferred for its simplicity and faster convergence. These algorithms are described
in brief in the following section.
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12.3.1.1 Ant Colony Optimization

This heuristic optimization algorithm is a commonly used solution for the Travelling
Salesman Problem (TSP). In this problem, a salesperson is given a set of locations
for him to visit and the distances between them. The person needs to find the shortest
and closed route visiting all the locations only once. In ACO, a set of artificial agents
or ants constructs the best possible solution. The ants probabilistically choose
the vertices to follow based on a pheromone update model and keep a memory of
the path. Optimal solutions receive higher pheromones and thus are retained until the
end until the termination criteria are satisfied (Dorigo & Di Caro, 1999, July).

12.3.1.2 Artificial Bee Colony

The artificial bee colony algorithm is based on the foraging behavior of the bee
colonies. In this, three types of agents or bees are defined—employed, onlooker, and
scout bees. The employed bees look for food sources and keep a memory of it. The
quality of the source is determined by a fitness function (similar to that in a PSO
algorithm). If the fitness value is greater than the previous best value, it is retained.
The onlooker bees select the higher-quality sources. The employed bees then
abandon the sources from memory and become the scout bees. They discover new
food sources based on certain parameters and boundaries (Xu, Fan, & Yuan, 2013).

12.3.2 Particle Swarm Optimization

In particle swarm optimization, a fixed number of particles are initialized randomly
within the search space. These particles move along the optimization space whose
boundaries are usually defined. Each particle’s positions are considered the solution
of the optimization problem. These particles then follow the velocity and position
update formulas and continuously move toward the optimal solution.

The optimization problem to solve is formulated in the form of the fitness
function. Each particle solves this fitness function and tries to reach the optimal
value. Each ith particle at time t stores the following information—position values (pti
) representing the solution and the velocity values (vti). Along with this, the value of

the fitness function f pti
( )

for the particle, the previous local best solution (ptpBest), the

value of the fitness function for local best f ptpBest

⎛ ⎞
, and also the global best solution

(ptgBest) and fitness function value for the global best f ptgBest

⎛ ⎞
are stored.

Let N be the number of particles assigned in the search space. Starting positions
and velocities of the particles are initialized randomly. Following that, for i¼ 1. . .N,
the velocity and position of the particles are updated using the following formula:
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vtþ1
i ¼ w * vti þ c1:r1: ptpBest – pti

⎛ ⎞
þ c2:r2: ptgBest – pti

⎛ ⎞

ptþ1
i ¼ pti þ vtþ1

i

The velocities are usually bounded within an interval (–Vmax,Vmax) to avoid
extremely large or small update steps. Here r1 and r2 are random number multiplier,
rand() 2 [0,1]. Basic control parameters for PSO operation are discussed below:

• Inertia weight (w): This helps in controlling the continuing motion of the
particles and balances the convergence speed for global and local search. Higher
values help in the global search, while lower values help with the local search.

• Acceleration coefficients (c1 and c2): These influence the local and social
components of the particles. Constant c1 represents the amount of confidence
the particle has on itself, whereas c2 represents the confidence it has on its
neighboring particles. The inclusion of these coefficients gives each particle its
own adaptive acceleration based on the value of the fitness function at the current
particle position.

• Swarm size/number of particles: This is usually problem dependent and needs
to be chosen keeping in mind the complexity of the problem. Large number of
particles will cover search space easily, but it will also increase time complexity
for each iteration. However, a smoother search space will require fewer particles
to achieve an optimized solution easily.

• Number of iterations: This is also problem dependent. It is usually determined
by other stopping conditions such as obtaining a solution within a threshold limit
or if the solution saturates and does not improve with further iterations. Large
number of iterations may also increase computational complexity (Fig. 12.5).

12.3.2.1 Pseudo Code for Particle Swarm Optimization

• For each ith particle:

– Initialize position pti randomly within the search space
– Initialize velocity vti randomly within the search space

• End For
• Iteration k ¼ 1:
• Do:

– For each ith particle:

Calculate fitness value f pti
( )

If fitness value is better than local fitness value; f pti
( )

> f ptpBest

⎛ ⎞
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Fig. 12.5 Updated particle position represented as a sum of vectors. Source: Redrawn by author
(Macedo, 2018)

Set ptpBest ¼ pti

– End For

– If the local best fitness value is better than global fitness value; f ptpBest

⎛
>

⎞

f ptgBest

⎛ ⎞
:

Set ptgBest ¼ ptpBest

– For each ith particle:

Calculate particle velocity according to the equation:

vtþ1
i ¼ w * vti þ c1:r1: ptpBest – pti

⎛ ⎞
þ c2:r2: ptgBest – pti

⎛ ⎞

Update particle position according to the equation:
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ptþ1
i ¼ pti þ vtþ1

i

– End For

k ¼ k þ 1

• While maximum iterations or minimum error criteria is not attained.

12.3.3 Particle Swarm Optimization in Path Planning

Classical path planning algorithms are deterministic in nature. Either a solution
exists or it does not. Thus, these algorithms are unable to cope with uncertainty
and are computationally intensive. For the problem statement at hand, few of the
classical algorithms were applied to check for efficiency. A major difference was
observed when the planning algorithm needed to achieve multiple targets in an
efficient and optimized way, where the meta-heuristic or evolutionary algorithms
fared better. Few classical path planning algorithms previously explored were:

• Dijkstra’s algorithm.
• A-star, D-star.
• Probability roadmaps.
• Rapidly exploring random trees (RRT) and RRT-star (Fig. 12.6).

All these algorithms are deterministic in nature, suited for navigation of a single
bot scenario, where the sensory information is used to determine the costmap and
find out the path.

12.4 Solutions and Recommendations

To overcome the problems faced by classical deterministic algorithms, the evolu-
tionary algorithm particle swarm optimization is applied to the problem at hand.
Here the implementation of a basic PSO algorithm in a 2D search space is
constrained in many aspects. The following assumptions are taken into
consideration:

• The object to traverse is a point object (particle) with no dimensions.
• The movement of the object is holonomic (capable of movement in any

direction).
• Obstacles are circular in shape, and their center and radius values are known.
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In real-world scenario, these assumptions may not hold true as every object has
certain dimension and degrees of freedom that may need consideration. For simplic-
ity, the ideal case conditions are taken into consideration.

12.4.1 PSO Algorithm Implementation in 2D Search Space

The implementation was done in a 2D search space to verify the working PSO
algorithm. Since this is a holonomic case, the dependency on orientation was
nullified. The path generation from a given set of start and goal position was
observed in the presence of various circular obstacles in the search area. The start
and end cells were user given variables. The user can also choose the number of
obstacles and their radius. The algorithm generates a set of obstacles randomly
placed in the entire search space. Certain coefficients such as inertial weight coef-
ficient and individual and social coefficients were chosen via trial and error method
to determine the possible set of parameters which gives the best results. The entire
program was prepared in C++ and the data gathered was stored in a spreadsheet. This
was used to plot the data using python’s plotting tools, to visualize the particles
movement and the path generated.

Since the objective in path planning situation is to get the shortest path between
the start and goal, the distance between two points was taken as the fitness function,
with the objective to minimize this function.

Nomenclature:
pti ¼ xti, y

t
i

( )
is the ith particle position coordinates at time t.

ptgb ¼ xtgb, y
t
gb

⎛ ⎞
is the current global best particle position.

vti ¼ ith particle velocity at time t.
vtgb ¼ velocity of the global best particle.

12.4.2 Basic Fitness Function

The objective is to traverse the vehicle via the shortest path. Thus, the shortest
distance or the Euclidean distance between any two points in the search space is
taken as the fitness function. Formula for the distance function is given by:

F1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xti – xgoal
( )2 þ yti – ygoal

( )2q
ð12:1Þ

where xti, y
t
i are the present coordinates of the particle and xgoal, ygoal are the

coordinates of the goal. Further modifications were done to include the angle
between the goal and the two successive particle position, as discussed in the next
section.
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12.4.3 Modifications and Improvements to the Basic
Algorithm

To improve the performance of the basic algorithm, certain modifications are
suggested by various research works. The improvements in the path planning
algorithm implemented are as follows:

• Applying a slight perturbation to the global best particles so that it is not stuck in
local minima (Adamu, Jegede, Okagbue, & Oguntunde, 2018). This helps in
convergence faster by exploring options near the local minima or maxima. The
particles are updated according to the given set of operations:

Start operation for a fixed number of iterations:

vtþ1
gb ¼ α ∙ vtgb

⎛ ⎞
þ β ∙ r3ð Þ ð12:2Þ

ptþ1
gb ¼ ptgb þ vtþ1

gb ð12:3Þ
Set i ¼ þi 1:

Terminate on convergence or when the iteration limit is reached.
where:
vtþ1
gb is the velocity of the next global best particle and ptgb and vtgb are the

position and velocity of the current global best particle, respectively.
α ¼ 0.1, β ¼ 0.2 are arbitrarily taken constants and r3 is a random variable.

• Inertial weight is an important factor responsible for the convergence of the
algorithm. Thus, instead of using a fixed inertial weight value by trial and error,
non-linear decreasing inertial weight (NDIW) is taken into consideration (Gao,
2018). The formulation takes in boundary conditions of weight values (maximum
and minimum weight value allowed) and changes weight at each iteration. The
formula takes higher weight value in the initial iterations for faster convergence
and lower value near the end to prevent overshoot and improves local optimiza-
tion ability. The formulation is given as follows:

wi ¼ wmin þ wmax – wminð Þ * e– 2:3*i=Tmaxð Þ2 ð12:4Þ

here wmax and wmin are the upper and lower boundaries for the inertial weight,
spectively, usually taken in the range of (0.4, 0.9). i is the present iteration, and
max represents maximum number iterations.

w
re
T
• Basic shortest distance fitness function makes erratic orientation changes and may

cause problems in practical cases. Thus to generate a smooth path, additional
fitness function is used taking the angle between two hypothetical lines
connecting the goal point to the vehicle’s two successive positions in each
iteration, i.e., gbest(t) and gbest(t – 1), into consideration (Masehian &
Sedighizadeh, 2010, March). The formulation is given as follows:
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F2i ¼ cos –1
xti – xgoal
( )

∙ xtgb – xgoal
⎛ ⎞

þ yti – ygoal
( )

∙ ytgb – ygoal
⎛ ⎞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xti – xgoal
( )2 þ yti – ygoal

( )2q
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtgb – xgoal

⎛ ⎞2
þ ytgb – ygoal
⎛ 2⎞r

ð12:5Þ

To combine the two fitness functions, weighted sums of both the fitness values
are considered.

Let the weights be α ¼ 1, β ¼ 0.25.
Thus, total fitness is defined by the formula:

Fi ¼ α * F1i þ β * F2i ð12:6Þ

12.4.3.1 Obstacle Avoidance

For obstacle avoidance, relocation method is used instead of penalty method. In
penalty method, we remove the particles located inside an obstacle, or the path
connecting new and old point passing through the obstacle is removed. However, in
relocation method, particles’ positions are relocated if they are located within the
obstacle. In this way, no particle and in turn no information are lost (Islam,
Tajmiruzzaman, Muftee, & Hossain, 2014).

The algorithm for relocation of particles’ positions is:



12 Particle Swarm Optimization in Global Path Planning for Swarm of Robots 223

12.4.4 Results and Discussion

2D square search space of fixed height and width was taken for the experiment. A
wide range of parameters were used on a trial and error basis to determine the set of
parameters giving the best results in terms of faster convergence, efficient obstacle
avoidance, feasible path generation, avoiding local minima, preventing high over-
shoots, etc. The console printed values for global best position of particle and fitness
are displayed at each iteration for different cases. The final parameters that balance a
trade-off between all these criteria are described here.

12.4.4.1 Metrics Used

The following key metrics are used to measure the input parameters and the out-
comes of the simulation:

12.4.4.2 Simulation Parameters

Input Metrics

• Search space dimensions: height, 3000; width, 3000, unit inches.
• Starting coordinates: (1000, 1000).
• Goal coordinates: (–500, –1000).
• Number of obstacles: 10.
• Swarm size: 100.
• Number of max iterations: 200.
• Inertial weight coefficients: wmin, 0.2; wmax, 0.7.
• Local and social coefficients: c1, 2; c2, 2.
• Max allowed velocity: width/10 inches
• Distance threshold to reach near goal for success criteria: within 10% of shortest

distance.
• Distance threshold to avoid near obstacles (safe distance): radius of obstacle *

0.1 inches.

Output Metrics

• Global best fitness value at each iteration.
• Global best position at each iteration.
• Final global best position (within the threshold to reach near goal).
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The experiment is executed using different parameters to check for convergence.
Finally using the above parameters along with the modifications implemented to the
basic algorithm has resulted in faster convergence. Four such cases/executions are
shown as an example here. The console printed values of the output metrics are
displayed.

Points to Note

• In case (a) and case (d), it took 11 and 5 iterations, respectively, to reach within
10% of the distance to the goal. At iterations 7 and 10 in case (a) and iteration 3 in
case (d), the algorithm is stuck at local minima. The global best particle is then
slightly perturbed according to the modification in Eqs. (12.2) and (3), which
forces the particle to get out of the local minima and converge faster. This can be
observed clearly since after the perturbation, the algorithm did not take much
iterations to converge.

• In case (b) and case (c), the starting point or target points were located inside
obstacles. This happened since the obstacles are randomly placed for the conve-
nience of simulation. There will not be any such case in a practical environment.
The obstacle avoidance module checks for these anomalies and generates these
messages and changes the obstacle positions accordingly (Fig. 12.7).

12.4.4.4 Graphical Representations

The following graphs were plotted using python with the particle position data
gathered from the above experiment.

• Initial point: Point A at top right.
• Final point: Point B at bottom left.
• Obstacles: The red circles represent the obstacles in the area under consideration.
• Final path: The blue line represents the final path from initial to final point.
• Color-coding of particles: The colors of the particles are based on the iterations.

With each iteration, the particles change color from blue (initial particle distribu-
tion) to red (final particle distribution).

Points to Note

• As per the algorithm, the particles are restricted from being placed inside the
boundaries of the obstacles on further iteration using the obstacle avoidance
module.

• Initial particles (blue in color) are randomly placed, thus are more scattered. The
final particles (red in color) converge near the goal point.

• The algorithm finds out the least cost path even when the obstacles are very
closely placed, thus proving efficient in such scenarios (Fig. 12.8).
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Fig. 12.7 Output log messages of four different cases displayed during execution of the experi-
ment, showing the values of global best-fit position and its fitness value
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Fig. 12.8 Graphical representation of the final path connecting the start and goal point for six
different and complex scenarios. Randomly placed obstacles are included to simulate a real-world
environment. Particles are displayed with color-coding to demonstrate the convergence of the
algorithm. Source: Author’s own creation



12.4.5 Implementation in ROS (Robot Operating System)

12 Particle Swarm Optimization in Global Path Planning for Swarm of Robots 227

The Robot Operating System (ROS) is a flexible framework for writing robot
software. ROS uses RViz (Robot Vision) framework for visualization of robots.
The above algorithm was implemented in ROS as a global planner for path planning
in a known environment. The planner works on grid-world environment, where the
map of the search space is already made available. With the provided map, we can
generate a path between our starting and goal coordinates.

Assumptions

• The PSO algorithm only acts as the guiding agent to determine the points on the
search space through which the vehicle should move to the desired point.

• Navigating from one point to another was carried on by the underlying A*
planner.

• Another local planner was working to avoid any dynamic obstacles or obstacles
not mapped earlier.

This kind of setup was created to allow a swarm of robots’ setup, where multiple
bots would be placed in the environment and a single PSO planner would command
all the bots to get to the target position following their individual optimum path.

12.4.5.1 Result Visualizations in ROS

The package utility was tested on a custom four-wheeled non-holonomic robot,
mounted with a laser scanner, IMU, camera, and wheel encoders.

Visualization tool: RViz

Parameters Considered

• Boundary dimensions: 4000*4000 pixels.
• Swarm size: 30.
• Number of max iterations: 200.
• Inertial weight coefficients: wmin, 0.4; wmax, 0.9.
• Local and social coefficients: c1, 2; c2, 2.
• Max allowed velocity: width/10.
• Distance threshold to reach near goal for success criteria: width/60.
Points to Note

• The green dots represent the particles distributed all over the search space.
• The red blob is our custom robot, surrounded by particles helping in localizing

the bot.
• The blue line is the shortest distance (straight-line) plan generated between robot

position and the target.
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• The global planner currently does not handle the obstacle avoidance; instead, the
local planner does it.

• It is observed that the particles are denser near the goal than in any other location.
This is because the images were captured near the end of the run when conver-
gence happens (Fig. 12.9).

12.5 Future Research Directions

As PSO is a part of the evolutionary algorithms, which is further a branch of artificial
intelligence, there are plenty of scope of its applications in optimization problems
involving learning strategies. As a future step, the application can be extended to a
multi-agent multi-target system. Such cases with high dimensionality and multi-
modality will be difficult be solve using classical methods and require improved
meta-heuristic techniques. The algorithm needs to be modified to accommodate such
requirements. The implementation can be further improved by using additional
features to it. The initialization of the particles can be done using uniform random
distribution of particles. This will help in avoiding local optima in the beginning of
the search and help in better global search. Further, the local and social components
c1 and c2 are usually fixed and determined using trial and error. This can be avoided
if these components are considered as function of inertia weight. It will reduce the
dependency of parameters and improve the uniformity of the algorithm.

As a future research, the fitness function dependencies can be modified to make
the algorithm generic for any optimization problem and not just for path planning
purposes. Research has shown that by using different fitness function, it can be used
in neural network architectures for updating weights replacing back-propagation
method. The fitness function can also be modified to assign different weights to
multiple targets. In a multi-agent system, this will avoid cluttering of particles at any
single target, and all the targets can be reached efficiently.

Presently, the algorithm assumes a fixed number of circular obstacles of equal
sizes randomly placed in the search area. Since this is not very practical, obstacles of
different shapes and sizes need to be implemented. Along with that, moving or
dynamic obstacles also need to be considered, and circumference of the obstacle in
the field of vision of the particle must be used as obstacle markers. This will further
improve the obstacle avoidance module.

In this work, it is assumed that the target is static. But in real-world multi-target
situations such as search and rescue scenario, the victims may move from their initial
position. Thus, the algorithm can be extended to handle dynamic goal position
criteria. Cubic spline curves can be implemented to make the orientation changes
smoother for a non-holonomic robot. At each global best particle position, the
algorithm should decide on the best coefficients for the cubic spline curves. This
will ultimately make all cubic spline curves converge on the optimal spline
connecting the start and goal positions. The path followed by the optimal spline
will be used for the path planning.
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Fig. 12.9 Visualizing the robot’s position changes in RViz via ROS at two different time instances.
Source: Author’s own creation

Finally, this work can be implemented into a real-world miniature ground bot
swarm or on a swarm of micro aerial vehicles. Its working in ROS Gazebo simula-
tion already brings it one-step closer to real-world implementation. With minor
calibrations and model changes, this can be done as a future work. In this way, the
algorithm’s efficiency can be further compared against other advanced swarm
robotic algorithms.
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12.6 Conclusion

In this paper, an approach for global path planning of autonomous robots is
demonstrated using particle swarm optimization. In view of the problems of classical
path planning methods, such as being deterministic in nature and computationally
intensive, the meta-heuristic method of particle swarm optimization is used, which
can be further extended in the case of multi-agent swarm system. The working of few
other meta-heuristic methods such as ant colony optimization and artificial bee
colony is discussed in brief. In comparison, PSO was considered for simplicity
and faster convergence. Since basic PSO version also has the problems of falling
into local optimal solutions and low convergence accuracy, it was further modified
following various research works. These included applying perturbations to the
global best particles to avoid local optimal solutions, using non-linear decreasing
inertial weight, and modifying basic fitness function to include the smoothness
criteria. This improved algorithm is tested in various simple and complex environ-
ment, which included up to ten circular obstacles. From the simulation results, it can
be verified that the implemented method is able to deal with the global planning
requirements.

• The convergence is fast and takes very few iterations as can be observed from the
output log messages.

• The obstacles were randomly placed in the environment and the algorithm
avoided all of them.

• None of the generated particles is placed inside the obstacle boundaries after
updating their positions at every step.

• In few cases, the algorithm passed through narrow passages in between bigger
obstacles to reach the goal following the optimal path.

Thus, our algorithm provided faster convergence and performed well in tricky
situations even when the environment was cluttered. For the current ideal scenario,
the optimal global path planning was achieved with high accuracy, but in case of
dynamic and unknown environments, the accuracy may vary slightly. By varying
the parameters, the algorithm can be tweaked according to the problem statement. In
further study, this will be extended in robotic swarm system on ROS or real hardware
platform, to improve its practical applications.
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Chapter 13
Training Multi-layer Perceptron Using
Hybridization of Chaotic Gravitational
Search Algorithm and Particle Swarm
Optimization

Sajad Ahmad Rather, P. Shanthi Bala, and Pillai Lekshmi Ashokan

Abstract A novel amalgamation strategy, namely, chaotic gravitational search
algorithm (CGSA) and particle swarm optimization (PSO), has been employed for
training multi-layer perceptron (MLP) neural network. It is called CGSAPSO. In
CGSAPSO, exploration is carried out by CGSA, and exploitation is performed using
PSO. The sigmoid activation function is utilized for training MLP. Besides, a matrix
encoding strategy has been used for providing a synergy between neural biases,
weights, and CGSAPSO searcher agents. To validate the effectiveness of the hybrid
framework, CGSAPSO is applied to three different classification datasets, namely,
XOR, Iris, and Balloon. The investigation of results is carried out through various
performance metrics like average, standard deviation, median, convergence speed,
execution time, and classification rate analysis. Besides, a pair-wise non-parametric
signed Wilcoxon rank-sum test has also been conducted for statistical verification of
simulation results. In addition, the numerical outcomes of CGSAPSO are also
compared with standard GSA, PSO, and hybrid PSOGSA. The experimental results
indicate that CGSAPSO provides better results in the form of recognition accuracy
and global optima as compared to competing algorithms.

Keywords Gravitational Search Algorithm · Chaotic maps · Hybridization ·
Optimization · Swarm intelligence · Multi-layer perceptron (MLP) · Particle swarm
optimization (PSO) · Exploration · Exploitation
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DE Differential evolution

234 S. A. Rather et al.

CFO Central force optimization
WOA Whale optimization algorithm
BSA Bat-swarm algorithm
ChOA Chimp optimization algorithm
FNN Feedforward neural network
ECA Evolutionary centers algorithm
FA Firefly algorithm
ACO Ant colony optimization
CS Cuckoo search algorithm
CPSOGSA Constriction Coefficient Based PSO and GSA
GWO Grey wolf optimizer
CRate Classification rate

Neural networks (NN) are powerful information processing systems utilized in the
area of meta-heuristics. The first principal mathematical model for NNs was
invented in 1943 by McCulloch and Pitts. Actually the neural network concept is
inspired by the parallelism mechanism of the human brain. The researchers have
introduced different variants of NNs including radial basis function (RFD)
(Dorffner, 1996), FNN (Bebis & Georgiopoulos, 1994), and so on. In fact, FNN is
the most well-known and highly used NN as far as practical real-life problem-
solving is concerned.

It is obvious that various types of NNs have a number of differences in their
structure and numbers of hidden layers; however, learning has been found to be a
common feature among them. Primarily, learning is defined as the process through
which a NN learns from the training samples. Moreover, commonly, there are two
forms of learning, namely, supervised learning (SL) and unsupervised learning (UL).
In SL, the NN needs human-labeled data for prediction. In contrast, UL does not
require any pre-existing labels and external human supervisor for learning purposes.
It is a form of self-organization that creates a channel between input samples and
probability densities.

Likewise, the trainer is another essential element of the neural network informa-
tion processing which is used for learning a NN. Actually, the effectiveness and
accuracy of a NN depend on the trainer because it helps in finding the correct input-
output combinations from the test samples. Moreover, training is the foremost step in
the recognition process in SL in which the performance of the NN increases
iteratively.

It has been found that there are two main mechanisms, namely, deterministic and
stochastic, for training a NN. In deterministic methods, the output of the training
phase is related to the input values and initial conditions. The examples include back



propagation (BP) and gradient descent (GD) methods. However, stochastic methods
consist of randomness and probabilistic values which help to increase the
performance.

Additionally, it has been proved that deterministic methods have the advantages
of simple design and high exploitation power. Also, it has been reported that the
deterministic algorithms provide better convergence toward optimal solutions than
heuristic techniques (Jacobs, 1988; Ooyen & Nienhuis, 1992; Weir, 1991). But they
have the drawbacks of local minima entrapment and sensitivity in initialization.
Moreover, the algorithm revolves around the sub-optimal regions while finding the
best solution. It leads to the unnecessary increase in processing time of the training
process.
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On the other hand, the best characteristic of the stochastic methods is the random
initialization of the candidate solutions when optimization process starts. It helps in
the diversification and local searching of the solution domain which in turn makes
the candidate solutions to avoid local minima traps. Moreover, it has been found that
stochastic algorithms are quite popular among researchers due to their solution
quality, less sensitivity in initialization, and the ability to remain away from infea-
sible solutions.

In literature, there have been a number of stochastic algorithms employed for
training MLP NNs such as (Mendes, Cortez, Rocha, & Neves, 2002), ABC
(Karaboga, Akay, & Ozturk, 2007), GSA (Mirjalili, Mohd Hashim, & Moradian
Sardroudi, 2012), and DE (Llonen, Kamarainen, & Lampinen, 2003). The recent
inclusions into the list of stochastic algorithms for MLP training are CRO (chemical
reaction optimization) (James, Lam, & Li, 2011), CFO-PSO (Green II, Wang, &
Alam, 2012), CSS (charges system search) (Pereira et al., 2013), and SSO (Social
Spider Optimization) (Pereira, Rodrigues, Ribeiro, Papa, & Weber, 2014).

In this chapter, the chaotic gravitational search algorithm and particle swarm
optimization (CGSAPSO) are employed for training multi-layer perceptron neural
network. In CGSAPSO, exploration is carried out by CGSA, and exploitation is
performed using PSO. The sigmoid activation function is utilized for training MLP.
To validate the effectiveness of the hybrid framework, CGSAPSO is applied to three
different classification datasets, namely, XOR, Iris, and Balloon.

The rest of the chapter is structured as follows: First, the literature survey
regarding MLP training algorithms is covered. Then, MLP and chaos theory con-
cepts are explained. Next, a brief discussion of CGSA, PSO, and CGSAPSO is
carried out appropriately. Subsequently, the proposed CGSAPSO-MLP trainer is
introduced. Afterward, the simulation analysis of experimental outcomes is carried
out. Finally, the conclusion and future direction of the chapter are provided.
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13.2 Literature Survey

ANN consists of neurons connected with each other resembling the structure of the
brain. Each neuron is provided with some input data for processing and communi-
cation. Also, a weight is associated with each of the connections. In mathematical
formulation, training NN is to adjust weight coefficients that fulfill certain criteria. In
other words, the ANN is a program that emulates the human brain. The ANN learns
through training and identifies the pattern from the input data depending on the
design structure. Hence, training and layer structure are important steps for an
efficient ANN.

A multi-layer perceptron (MLP) is one of the most popular types of NN. MLP
consists of neurons that are ordered into input, output, and hidden layers, respec-
tively. The backpropagation algorithm (BP) is one of the gradient descent techniques
that is widely used in training MLP. However, BP suffers from slow convergence
rate and trapping in the local minima due to its gradient nature. Therefore,
researchers have made some improvements in the conventional BP algorithm to
increase its intensification. The improvement is made by using modified gain in the
objective function. The simulated results were verified on four recognition bench-
marks. The improved BP provided better results on all four datasets (Nawi, Ransing,
Salleh, Ghazali, & Hamid, 2010).

As compared to BP, heuristic algorithms (HAs) have the property of randomness
and stochasticity. These algorithms find the best solution among the pool of candi-
date solutions. For a meta-heuristic algorithm, it is important to maintain a balance
between exploration and exploitation (Hussain, Salleh, Cheng, & Shi, 2019).
Genetic algorithm (GA) is one of the first heuristic algorithms (HA) used for training
the neural networks among all the evolutionary algorithms (EA) (Itano, DeSousa, &
Hernandez, 2018). GA is inspired by the concept of evolution that belongs to a larger
class of EA. GA uses the biology operators, namely, selection, mutation, and cross-
over, to find the best solution. But, it has the drawback of low exploitation.

Many heuristic algorithms have been inspired by nature. Swarm intelligence is a
new approach to problem-solving which mimics the lifestyle of birds, ants, and
fishes. ACO is a HA based on the group behavior of ants in nature proposed
by Marco Dorigo, Birattari, and Stutzle (2006). On the other hand, PSO is inspired
by the migrating flock of birds. In nature, the birds communicate with one another by
changing position and move towards the one having the best position. In the same
way, the PSO algorithm works considering particles as solutions. The particle with
the optimal position acts as the best solution. The PSO guarantees the exploitation of
the search space. It has been used to train MLP for the classification of the Iris dataset
(Kennedy & Eberhart, 1995). In another study (Gudise & Venayagamoorthy, 2003),
PSO and BP have been compared for training the neural network. The results proved
that PSO is better for applications that require fast learning algorithms. The PSO has
been modified in several ways to improve its exploration ability. One of the
modifications was to add a constriction coefficient to the mathematical equation of
PSO. The constriction coefficient converges the solutions to the global optimum, and



it has been mathematically modeled by Clerc & Kennedy in 2002. An improved
version of PSO and GSA for training MLP has been recently proposed (Rather &
Bala, 2019a, 2020a) where nine different datasets and five benchmark metrics have
been utilized for measuring the performance of CPSOGSA in training MLP. The
CPSOGSA provided better outcomes. However, it was behind BBO in the overall
simulation analysis. Also, the MLP has been widely used in decision-making
systems in the medical sector to help doctors. But, MLP sometimes get trapped in
local optima. To alleviate the aforementioned problem, fuzzy rules were embedded
in PSOGSA for the optimization of PSO and GSA parameters to improve the
performance of the MLP classifier. The simulation results confirm 100% classifica-
tion accuracy of PSOGSA for all the datasets (Huang & Chou, 2019).
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The GWO is another HA based on the swarm hunting behavior of the wolves. It
has been utilized for training MLP. UCI datasets were used to test the performance of
GWO (Mirjalili, 2015). The WOA is a recent HA which models the behavior of
humpback whales. In WOA, the best search agent is used to chase the prey. Besides,
exploration is carried out by simulating the bubble hunting technique of the hump-
back whale. It has been applied to a number of engineering problems (Mirjalili &
Lewis, 2016).

Another well-regarded algorithm in the hierarchy of HAs is GSA. It is based on
the law of gravity and motion. In GSA, all the masses are considered as solutions.
The one having the larger mass is treated as the best solution. The masses get
attracted to each other due to their weights, and the one having the heavier weight
attracts other masses toward itself. Hence, all the solutions are in dynamic motion.
The solution having a large magnitude of mass will have a slower movement. The
position of the optimal mass determines the best solution. It has been reported that
GSA has local minima issues. To overcome this problem, a study was done by
Mirjalili and Gandomi (2017) in which chaos theory concepts were introduced in
GSA. The experiments were conducted on 23 benchmark functions. The hybrid
chaotic GSA has been compared with many other heuristic algorithms including
conventional GSA. The results proved that CGSA has better exploration and exploi-
tation capability as compared to GSA. In a recent work (Rather & Bala, 2020b),
CGSA was used for engineering optimization. The CGSA provided optimal
outcomes.

The researchers have employed hybridization of the heuristic algorithms for
training MLP. Taking the advantages of the GSA and PSO, the hybrid PSOGSA
works effectively for training MLP. The PSO is the algorithm that promises exploi-
tation and GSA provides exploration. In MLP, training is important to minimize the
error. During the training, the goal is to find the connection weight and bias. Using
PSOGSA, the minimum error is achieved by doing experiments on three problems.
The PSO is used to exploit the global best from the solutions explored by the GSA
through updating mass, force, and acceleration of the searcher agents. The simula-
tion results indicated that PSO and PSOGSA have more accuracy compared to GSA.
Moreover, PSOGSA provided the best convergence rate (Mirjalili et al., 2012).

The BBO was introduced by (Simon, 2008) and has also been used to train MLP.
It is inspired by the concepts of biodiversity and the ecosystem. It is obvious that the



balance of the ecosystem is maintained by the habitats and the habitants. The
habitants emigrate and immigrate from one habitat to another. In BBO, HSI (habitat
suitability index) acts as an objective function. Habitants living in the habitat with
high HSI value tend to migrate to the habitat with low HSI value. This mechanism
provides the exploration power of the algorithm. Higher exploration power avoids
trapping in local minima. Besides, the HSI is also improved over generations which
guarantee the exploitation. On the other side, mutation helps in improving the
exploitation of the algorithm, whereas elitism saves the best solutions. The recogni-
tion datasets and mathematical functions were used for benchmarking. In all the
experiments, the BBO trained MLP outperformed conventional BP (Saremi,
Mirjalili, & Lewis, 2014).
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The BA (bat algorithm) (Yang & Gandomi, 2012) is one of the novel HAs based
on the bat echolocation. Bats in nature are different from each other in their physical
characteristics, but when it comes to hunting and chasing prey, all of them have
similar behavior. They have natural sonar used for navigating and hunting the prey.
These characteristics of bat have been used in designing the BA. The mathematical
formulae which represent the vectors guarantee the exploration ability. Besides, a
random walk procedure provides intensification. A binary version of the BA has
been proposed by Mirjalili et al. (Mirjalili, Mirjalili, & Lewis, 2014; Mirjalili,
Mirjalili, & Yang, 2014) in which results were compared with PSO and other
HAs. Binary BA outperformed by giving efficient results. Moreover, chaos theory
concepts have also been introduced into BA. From the 13 chaotic maps, the
sinusoidal map showed optimal performance (Gandomi & Yang, 2014).

In the family of HAs, Chimp Optimization algorithm (ChOA) is a novel stochas-
tic algorithm which models the hunting tactics of chimps and has been used to train
the MLP to classify the underwater acoustical datasets. They hunt in groups by
categorizing themselves as the attackers, barriers, chasers, and drivers, all designated
to do different tasks. The ChOA classifier outcomes were compared with the hybrid
PSOGSA, GWO, and IMO (ion motion algorithm). The measured metrics were the
convergence speed, trapping in local minima, and classification accuracy (Khishe &
Mosavi, 2020). A newly proposed algorithm is the bird-swarm algorithm (BSA)
inspired by the behavior of the birds. It is quite common that HAs normally suffer
from trapping in local minima and slower convergence, and the newly proposed
BSA also has a similar problem in some situations. So, chaos was introduced into
BSA. Moreover, CBSA has been applied to engineering design problems. The
experimental studies depicted that embedding of chaotic maps into standard BSA
has shown significantly better results (Altay & Alatas, 2020). There are also physics-
based algorithms that are used to train the MLP, viz., GSA, CFO, and so on. Another
such algorithm is the newly proposed evolutionary centers algorithm (ECA). The
algorithm is based on the center of the mass of any object. The center of the mass
concept is used to move the worst elements to a better place for the navigation of the
solution space. ECA provided optimal results for mathematical functions confirming
its global optimization capability (Mejía-de-Dios & Mezura-Montes, 2019).

It is now quite clear that researchers prefer stochastic techniques over traditional
GD methods for MLP training as shown in Table 13.1. It is because well-known
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Table 13.1 GD and stochastic algorithms for MLP training

Cited
researcher Simulation verification

Learning
method

Training
algorithm

Behavior of
training
algorithm

Kennedy et al. 1995 PSO HA Benchmark functions

Svozil et al. 1997 HAs and BP Gradient
descent and
HA

Literature survey

Walczak &
Cerpa

1999 Swarm
algorithms

HA Literature survey

Gudise et al. 2003 BP
PSO

Gradient
descent
HA

Nonlinear functions

Marco Dorigo 2006 ACO HA Benchmark functions

Rashedi et al. 2009 GSA HA Benchmark functions

Mirjalili et al. 2010 PSO and GSA HA Benchmark functions

Green II et al. 2012 CFO and PSO HA Recognition datasets

Mirjalili et al. 2012 PSO and GSA HA XOR, Iris, mathematical
functions

Mirjalili et al. 2013 BBA HA Benchmark functions

Gandomi et al. 2014 CBA HA Benchmark functions

Mirjalili et al. 2014 BBO HA Recognition datasets, mathe-
matical functions

Mirjalili et al. 2015 GWO HA Recognition datasets, function
approximation

Mirjalili et al. 2016 WOA HA Optimization problems,
structural design problems

Mirjalili et al. 2017 CGSA HA Benchmark functions

Hussain et al. 2019 PSO, ACO,
FA, ABC, and
CS

HA Benchmark functions

Mejía-de-
Dios &
Mezura-Montes

2019 ECA HA Benchmark functions

Altay & Alatas 2020 BSA
CBSA

HA
HA

Benchmark functions and
real-life engineering design
problems

Khishe and
Mosavi

2020 ChOA HA Underwater acoustical dataset

Huang & Chou 2019 PSO, GSA,
PSOGSA
fuzzy-GSA,
and fuzzy-
PSOGSA

HA Chronic kidney disease,
mesothelioma disease

Rather & Bala 2020b CGSA HA Mechanical engineering
design problems

Rather & Bala 2020a CPSOGSA HA Iris, XOR, Balloon, breast
cancer, heart, sigmoid, cosine,
sine
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Fig. 13.1 Simple MLP
system
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deterministic techniques like BP provide fair enough convergence behavior; how-
ever, they have issues with candidate solution quality during the optimization
process. In contrast, stochastic techniques, like GA, PSO, and so on, have a simple
design and well-defined intensification and diversification operators which help
searcher agents to avoid sub-optimal search space locations. That is why, in this
study, newly proposed stochastic hybrid strategy, namely, CGSAPSO has been
proposed to train MLP to overcome exploitation and solution quality difficulties in
traditional GD techniques like BP.

13.3 FNN and Multi-layer Perceptron (MLP)

The neural networks in which information flows from inputs to outputs are called as
FNN systems. In fact, FNN is a unidirectional computational information network.
Actually, MLP is the most common type of FNN with I-H-O topology in which I and
O represent input and output layers while H indicates hidden layer(s). Figure 13.1
presents the schematic diagram of an MLP system.

In Fig. 13.1, n and h represent inputs and hidden nodes, while m depicts output
nodes of the MLP system. The neural error is determined by the fitness function. The
procedure for fitness function calculation is provided as follows:

It is quite obvious that weights and biases are represented by the first two layers of
MLP. So, the sum of neural inputs is given by Eq. (13.1).

sp ¼
Xn
i¼1

wip · xi –∅p, p ¼ 1, 2, . . . , n ð13:1Þ

where x is the input and w is the weight of the MLP. Moreover, bias is represented by
∅p.

In MLP, the fitness of inputs is determined by sigmoid function as shown in
Eq. (13.2).
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Sp ¼ sigmoid sp
( ) ¼ 1

1þ exp –sp
( ) , p ¼ 1, 2, . . . , n ð13:2Þ

Now, Eqs. (13.3) and (13.4) calculate the output of the trained MLP.

Ol ¼
Xh
i¼1

wpl · sp –∅l, l ¼ 1, 2, . . . ,m ð13:3Þ

Ol ¼ 1
1 exp ol

, l ¼ 1, 2, . . . ,m ð13:4Þþ –ð Þ

It is evident from mathematical equations that the neural biases and weights are
important for proper functioning of the MLP system. So, we have employed the
CGSAPSO algorithm for MLP training to find the proper values of neural inputs.

13.4 Chaos Theory

Chaos theory, broadly speaking, is a branch of mathematics dealing with the study of
dynamic systems. The chaotic systems are highly sensitive to the changes in the
initial conditions. In other words, small transformation in the inputs creates large
variations in the output. It is obvious that chaotic systems have randomized behav-
ior; however chaotic patterns are also shown by deterministic systems. In the past
decade, the researchers have utilized chaos theory for resolving premature conver-
gence and local search issues in HAs.

In this work, ten chaotic maps have been utilized to enhance the performance of
GSA while intensifying its convergence rate. The mathematical equations of ten
chaotic maps are provided in Table 13.2. Also, it can be clearly seen that chaotic
maps show random behavior as shown in Fig. 13.2.

13.5 Chaotic Gravitational Search Algorithm

GSA is one of the highly regarded physics-based HAs. It is inspired by the law of
gravitation and motion. In fact, gravity is one of the four basic forces in nature. The
other three forces are weak nuclear force, electromagnetic force, and the strong
nuclear force (Halliday, Resnick, & Walker, 2000; Rashedi, Nezamabadi-pour, &
Saryazdi, 2009). Moreover, the law of gravitation states that “the attractive force
between two masses is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them” (Rather & Bala,
2019b, 2019c; Rather & Sharma, 2017).
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Table 13.2 Mathematical equations of chaotic maps

Serial
Number

Name of
the map Chaotic equation Domain

I Chebyshev li + 1 ¼ cos (i cos–1 (li)) (1,–1)

II Circle liþ1 ¼ mod li þ q– p
2π

( )
sin 2πlkð Þ, 1(

, p ¼ 0.5 and q ¼
0.2

)
(0,1)

III Gauss

liþ1 ¼
8<
: 1

mod li, 1ð Þ , otherwise
–l, l ¼i 0 (0,1)

IV Iterative li 1 sin pþ ¼ li

⎞ ⎞	
¼π , p 0.7 (–1,1)

V Logistic li + 1 ¼ p li (1 – li), p ¼ 4 (0,1)

VI Piecewise

liþ1 ¼

8>>>>>>>>><
>>>>>>>>>:

li – r
0:5– r

, r ≤ li ≤ 0:5

1– r – li
0:5– r

, 0:5 ≤ li ≤ 1– r

1– li
r

, 1– r ≤ li ≤ 1

, r ¼ 0.4

li
r
, 0 ≤ li ≤ 0

(0,1)

VII Sine liþ1 ¼ p
4 sin πli ,ð Þ p ¼ 4 (0,1)

VIII Singer li + 1 ¼ z (7.86 li – 23.31 li
2 + 28.75 li

3 – 13.302875 li
4),

z ¼ 1.07
(0,1)

IX Sinusoidal li + 1 ¼ p li
2 sin (πli), p ¼ 2.3 (0,1)

X Tent

liþ1 ¼

8><
>: 10

3
1– lið Þ, li ≥ 0:7

0:7 i ≤li , l 0:7 (0,1)
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Fig. 13.2 Random nature of chaotic maps
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The GSA is first initialized with a random distribution of searcher agents in the
form of masses. The force between the point masses is calculated in Eq. (13.5).

Fij ¼ G tð Þmpi tð Þmaj tð Þ
Rij tð Þþ 2 xdj tð Þ þ xdi tð Þ

⎞ ⎞	
ð13:5Þ

where mpi(t) and maj(t) are passive and active gravitational masses, respectively. The
Euclidian distance is represented as Rij(t) , while is a small constant.2

¼

ð

To get a proper balance between exploration and exploitation, the GSA utilizes an
important parameter called gravitational constant represented by “G.” Besides, it
helps in the accuracy of the search. It is given by Eq. (13.6).

G tð Þ ¼ G t0ð Þ e –αCIMIð Þ ð13:6Þ

where G(t) and G(t0) are the values of the gravitational constant at time interval t and
t0, respectively. Also, α is an exponentially decreasing coefficient, whereas CI and
MI correspond to the current iteration and the maximum number of iteration(s).

In standard GSA, the gravitational constant (G) is the main parameter that
specifies the intensity of the gravitational field as shown in Eq. (13.6). In fact, during
the initial iteration phase, the value of G decreases exponentially which results in the
diversification. Moreover, at last iterations, the value of G changes slowly, hence
promoting the exploitation of the candidate solutions toward the global optimum. In
CGSA, ten different chaotic maps have been employed to overcome slow conver-
gence and the local searching issue of standard GSA. Chaotic maps create huge
changes in the output when the initial conditions of the map(s) are modified. This
helps searcher agents to move out of the local minima traps. Besides, chaotic
normalization (Mirjalili & Gandomi, 2017) helps in the proper search of the solution
space. It is mathematically calculated as shown in Eq. (13.7).

Cnorm
i tð Þ ¼ Ci tð Þ – að Þ * d – cð Þ

b– að Þ þ c ð13:7Þ

In Eq. (13.7), (a, b) and (c, d ) are chaotic limits and normal range values,
respectively. Moreover, c 0 and d is calculated using Eq. (13.8).

d ¼ MI– CI
MI

Max–Minð Þ 13:8Þ

Here, MI and CI represent the maximum number of iterations and the current
iteration. Besides, adaptive intervals are indicated by Max and Min.

Hence, the chaotic version of gravitational constant is the sum of Eqs. (13.6) and
(13.7).
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Gc tð Þ ¼ Cnorm
i tð Þ þ G t0ð Þe –αCIMIð Þ ð13:9Þ

Equation (13.9) shows that Gc(t) has the interesting properties of randomness,
chaotic stochasticity, and adaptive learning capability.

Furthermore, after a number of iterations, the heavy masses will be scattered
throughout the search space which represents feasible solutions. So, it is important to
preserve the quality of the best solutions. Therefore, elitism criterion, i.e., kbest
strategy, is used in GSA. It means that only optimal and efficient heavy mass is
having highest intensity after the fulfillment of stopping criteria. It is shown in
Eq. (13.10).

Fd
i tð Þ ¼

Xm

j¼kbest, j 6¼i

γ jF
d
ij tð Þ ð13:10Þ

Moreover, the acceleration of the masses is calculated according to the second
law of motion as given in Eq. (13.11).

adi ðtÞ ¼
Fd
i ðtÞ

miðtÞ ð13:11Þ

In GSA, the point masses get attracted towards heavy masses because they have
the highest intensity and strong force of attraction. Hence, it is pivotal to calculate the
velocity and position of the best solution in order to find the global optimum
as provided in Eqs. (13.12) and (13.13), respectively.

vdi t þ 1ð Þ ¼ γ jv
d
i tð Þ þ adi tð Þ ð13:12Þ

xdi t 1 xdi t vdi t 1 13:13þð Þ ¼ ð Þ þ þð Þ ð Þ

13.6 Particle Swarm Optimization

The PSO is one of the classical techniques in heuristic optimization. It is inspired by
the migrating flock of birds. In nature, the birds communicate with one another by
changing position and move toward the one having the best position. In the same
way, the PSO algorithm works considering particles as solutions. Actually, the
position and velocity of the best solutions are calculated using Eqs. (13.14) and
(13.15).
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vdi ðt þ 1Þ ¼ wðtÞvdi ðtÞ þ c1ri1ðpbest– xdi ðtÞÞ þ c2ri2ðgbest– xdi ðtÞÞ ð13:14Þ
xdi t 1 xdi t vdi t 1 13:15ð þ Þ ¼ ð Þ þ ð þ Þ ð Þ

ð

such that personal and global constants are represented by c1 and c2. Besides,
random numbers for initialization are depicted as (ri1, ri2).

13.7 Hybrid CGSAPSO

It is essential for every HA to have a one-one correspondence between diversifica-
tion and exploitation processes because the former one is important for overall
navigation while the latter one finds the suitable zones of the domain space.
Therefore, in CGSAPSO, CGSA provides global searching support, whereas PSO
makes sure that neighborhood regions are exploited optimally. Moreover, velocity of
the candidate solutions is as under:

Vd
i ðt þ 1Þ ¼ wðtÞVd

i ðtÞ þ c1ri1ðadi ðtÞ – xdi ðtÞÞ þ c2ri2ðgbest– xdi ðtÞÞ ð13:16Þ

In Eq. (13.16), the velocity of CGSAPSO searcher agents is represented by Vd
i .

The location of the best candidate solution is calculated by using Eq. (13.17).

Xd
i ðt þ 1Þ ¼ Xd

i ðtÞ þ Vd
i ðt þ 1Þ 13:17Þ

The pseudo-code of CGSAPSO is presented in Algorithm 13.1. Besides,
Fig. 13.3 shows the block diagram of the algorithm.

13.8 MLP Training Using CGSAPSO

All stochastic algorithms consist of searcher agents that are essential for global
searching and intensification of the solution space. So, in order to train MLP,
searcher agents are encoded as inputs of a neural network. This can be done in
three ways. First is vector encoding, in which agents of an optimization algorithm are
represented by vectors, while bit encoding gives 0 and 1 values to searcher agents.
Moreover, matrix encoding portrays agents as rows and columns of a linear matrix.

When it comes to employ stochastic algorithms for MLP training, the first step is
to provide proper values for inputs by reducing activation function overhead.
Besides, HAs can also be employed for uncovering an efficient MLP neural struc-
ture. In addition, parameter tuning like speed and momentum of neural networks can
also be achieved through HAs.

In this study, matrix encoding has been utilized for representing neural inputs by
CGSAPSO agents. In Fig. 13.4, we have used 2-3-1 MLP model to explain matrix



6

246 S. A. Rather et al.

Fig. 13.3 Hybrid CGSAPSO algorithm
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Fig. 13.4 (2-3-1) MLP neural network



encoding scheme. The matrix representation of neural weights and biases is shown
in Eqs. (13.18) and (13.19).
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Algorithm 13.1: Hybrid CGSAPSO Algorithm
1: Initialize the upper and lower limits of the solution space.

2: Evaluate the fitness of searcher agents.

3: Initialize the parameters including the total iterations (T ), G(t0), and α.

4: Start the iteration counter at t ¼ 0.

5: while t < T do,
6: for each candidate solution do,
7: Find the chaotic behavior, Ci

norm(t) of each point mass with the help of Eq. (13.7).

8: Calculate the chaotic gravitational constant, Gc(t).

9: Using Eq. ( ð Þ13.10) find the gravitational force, Fd
i t

10: Calculate the mass acceleration adi tð Þ by using Eq. (13.11)

11: Update the mass velocity Vd
i t þ 1ð Þ with the help of Eq. (13.16)

12: Update the mass position Xd
i t þ 1ð Þ using Eq. (13.17)

13: end for
14: t ¼ t + 1

15: end while
16: Return the optimal candidate solution

Particle : , : , ið Þ ¼ w1, b1,w
0
2, b2

⌈ ⌉ ð13:18Þ

w1 ¼
w13 w23

w14 w24

w15 w25

2
64

3
75, b1 ¼

θ1

θ2

θ3

2
64

3
75,w0

2 ¼
w36

w46

w56

2
64

3
75, b2 ¼ θ4½ ] ð13:19Þ

such that neural weights are represented by<w1, w2> while neural biases are shown
as <b1, b2>.

Basically, correct labeling of testing samples is the main goal of MLP learning
process. In other words, the classification accuracy of an MLP is crucial for the
minimization of the neural error. Besides, MSE is used to calculate the neural error
as reported in Eq. (13.20).

MSE ¼
Xm
i¼1

oli – Dl
i

( )2 ð13:20Þ

such that o and D are system and target MLP outcomes whereas l is the feature
sample and i is the neural input.

Also, it is essential for MLP to cover the complete training feature vectors for the
better performance. To do that, the average of MSE is calculated as indicated in
Eq. (13.21).
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Fig. 13.5 An amalgamation of CGSAPSO and MLP

MSEAvg ¼
XR
l¼1

Pm
i¼1

oli – Dl
i

( )2

R
: ð13:21Þ

In Eq. (13.21), “R” denotes the number of feature samples. Thus, Eq. (13.22)
clearly conveys that CGSAPSO MLP training is a minimization process in which
solutions (point masses) are modeled as neural weights and biases to increase the
prediction accuracy of the input attributes.

Minimize : F Particleð Þ ¼ MSEAvg ð13:22Þ

The MLP training by CGSAPSO is presented in Fig. 13.5. In this work,
CGSAPSO has been applied to three classification benchmark functions for verify-
ing its pattern recognition ability. In the next section, the simulation outcomes of
different benchmarks using CGSAPSO and other stochastic techniques are reported.
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13.9 Experimental Results and Simulation Analysis

Basically, three recognition datasets (Blake & Merz, 1998) are utilized to check the
implementation conduct of the proposed CGSAPSO-MLP in finding the optimal
neural inputs for training a MLP system. The three datasets are XOR, Balloon,
and Iris.

13.9.1 Experimental Setup and Datasets Used

The simulation results of ten versions of CGSAPSO have been compared with three
different HAs including GSA, PSO, and PSOGSA (Mirjalili & Hashim, 2010).

The experiments were performed on a computer system having system specifi-
cations as mentioned in Table 13.3. Moreover, MATLAB codes are available in
https://github.com/SAJADAHMAD1.

It is quite obvious that optimization algorithms need a solution space to find the
global optimal of the problem. Accordingly, the agents of HAs have been initialized
in a search space having limits of [–10, 10]. For an impartial comparative analysis,
all the algorithms have the same population size of 30. And total iterations of
100 have been chosen as end condition for HAs. The classification datasets are
presented in Table 13.4.

In Table 13.4, it is clearly seen that the minimum number of attributes are present
in XOR dataset. While Iris recognition dataset is somewhat complex as it has
4 attributes and 150 testing samples. Besides, XOR and Balloon have two classes,
whereas the Iris dataset consists of three classes. In addition, the initialization
parameters of HAs have been presented in Table 13.5.

The experiments were repeated 20 times to calculate different statistical mea-
sures. The statistical analysis has been performed considering the stochastic and
random nature of simulation results. Furthermore, CGSAPSO1 to CGSAPSO10 are

Table 13.3 Computer system
specifications

System feature Configuration

Operating system Windows 10 enterprise

Processor High speed Intel CPU

RAM Four giga bytes

Hard disk 500GB

Programming language MATLAB R2013b

Table 13.4 Classification datasets

Dataset Features Training features Test features Class Topology

XOR 3 8 8 2 3-7-1

Balloon 4 16 16 2 4-9-1

Iris 4 150 150 3 4-9-3

https://github.com/SAJADAHMAD1


Table 13.5 Initialization of
HA parameters

Algorithm Parameter Value

GSA Rpower 1

PSO Intensification constants 2

Wmax 0.9

Wmin 0.2

PSOGSA Coefficient (α) 20

G(t0) 100

Table 13.6 XOR logic
values

X (I/P) Y (O/P)

ten chaotic versions of CGSAPSO. The minimum value of mean and standard
deviation does not imply that an algorithm is efficient than others (Derrac, García,
Molina, & Herrera, 2011). However, statistical tests should be performed on the
simulation results to find the optimal competitive algorithm. Therefore, a pair-wise
non-parametric signed Wilcoxon rank-sum test (WRST) has been conducted at a 5%
significance level to statistically verify the outcomes (Wilcoxon, 1945). The reason
behind selecting a Wilcoxon WRST is that it uses median as a statistical measure
which is better than average and STD. Moreover, in the WRST the distribution of
dataset is not considered. Also, p value is calculated for retaining or rejecting the null
hypothesis.

Null hypothesis (H0): Best performing algorithm does not provide optimal values
for the neural inputs of the MLP.

Alternate hypothesis (H1): Best performing algorithm provides optimal values for
the neural inputs of the MLP.

In simpler terms, H0 consists of an algorithm having p value greater than 0.05,
while P ≤ 0.05 is enough to reject the null hypothesis, that is, H1. Besides, N/A
indicates the best competing algorithm (PSO, GSA, PSOGSA, or CGSAPSO) which
has minimum values for mean and STD, while NN represents chaotic versions of
CGSAPSO having large values for mean and STD. The next sections of the chapter
deal with the experimental verification of three different HAs including ten versions
of CGSAPSO.

F F F F

F F T T

F T F T

F T T F

T F F T

T F T F

T T F F

T T T T
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13.10 Classification Problems

Generally, the main aim of the hybridization of heuristic algorithm and MLP neural
network is to increase the classification accuracy through randomized initialization.
In simpler terms, successful training of a neural network means correct labeling of
the classification data. So, if the number of features in a dataset is less, that means
MLP trained algorithm will take minimum iterations and, hence, less computational
time to find the correct values for neural weights. In this work, three classification
datasets have been utilized, namely, XOR, Balloon, and Iris, in which XOR has less
features while Iris has highest attributes. Therefore, in the next sub-sections, exper-
imental results of all the three datasets have been recorded and discussed.

13.10.1 XOR Dataset

The hidden layers in a neural network are mandatory to solve any nonlinear
separable problem. Likewise, XOR is a nonlinear mathematical benchmark. The
logic behind exclusive OR gate is that the output will be a truth value (1), if the input
terminals contain odd number of truth values (1’s); otherwise the value of the output
terminal will be false (0).

13.10.2 Simulation Results of XOR Dataset

The topology used for XOR gate is 3-7-1. Table 13.7 clearly shows that CGSAPSO6
has better values for statistical measures. Also, PSOGSA and other versions of
CGSAPSO also depict efficient performance.

Besides, the classification rate (CRate) of CGSAPSO versions like CGSAPSO1 to
CGSAPSO5 is 100% indicating high local searching power. Similarly, CGSAPSO
takes less execution time than PSOGSA and GSA. However, PSO takes minimum
running time for global optimization as compared to other algorithms. In addition,
the PSOGSA simulation values are more statistically significant than CGSAPSO as
p values are greater than zero.

The convergence curves of the XOR dataset are presented in Fig. 13.6. It clearly
indicates that CGSAPSO has a better convergence rate than GSA and PSO indicat-
ing its efficient intensification power in getting global optimum. The box plots
(Fig. 13.7) convey that CGSAPSO provides better values for XOR fitness function
while PSO has unsatisfactory simulation values for inter quartile range and median.
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13.10.3 Balloon Dataset

The Balloon dataset is another famous classification benchmark. Actually, Balloon
dataset consists of four attributes. During training process, the result of the algorithm
is one and, if the balloon inflates, otherwise zero. Besides, the topology employed for
Balloon classification benchmark is 4-9-1.
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13.10.4 Simulation Results of Balloon Dataset

Table 13.8 provides the simulation outcomes of the participating algorithms.
Clearly, CGSAPSO depicts efficient values for MSEaverage and MSESTD as com-
pared to GSA and PSO. Moreover, PSOGSA also gives good values for the Balloon
dataset. When considering the CRate, most of the CGSAPSO versions including
CGSAPSO3 provide 100% recognition accuracy showing its diversification and
exploitation capability. Besides, CGSAPSO takes less time than GSA. However,
PSO and PSOGSA are faster than CGSAPSO in getting global optimum. In addition,
the p values of PSOGSA are statistically more significant than CGSAPSO.

The convergence graph and box plots of the balloon dataset are shown in
Figs. 13.8 and 13.9, respectively. The convergence curve of PSOGSA is at the
bottom of Fig. 13.8 conveying high exploitation power. On the other hand,
CGSAPSO is also a better optimizer than GSA and conventional PSO because it
provides better MSE values than both of them, and convergence curves clearly
validate this interpretation. Also, box plots indicate that PSO has sub-optimal values,
whereas CGSAPSO and PSOGSA have minimum values indicating global optimi-
zation capability.

13.10.5 Iris Dataset

In 1936, Donald Fisher introduced iris dataset having 150 samples. This dataset is
inspired from the floriculture which includes setosa, versicolor, and virginica as
classes. Moreover, the Iris dataset has five features, namely, petal length, petal width,
sepal length, sepal width, and species. The topology employed is 4-9-3.

13.10.6 Simulation Results of Iris Dataset

The simulation outcomes of competing algorithms are presented in Table 13.9. The
MSEaverage values of CGSAPSO are better than PSO. However, GSA and PSOGSA
also provide competitive values for MSEaverage and MSESTD. Moreover, the CRate of
CGSAPSO1 (80%) is more than the standard GSA (64%). Besides, CGSAPSO takes
less time to find global optimum as compared to GSA and PSOGSA showing its high
convergence power. Additionally, the p values indicate that GSA simulation values
are more valid than PSOGSA.

Also, Figs. 13.10 and 13.11 present convergence graphs and box plots of the Iris
dataset. It can be seen that convergence curves of PSOGSA and GSA overlap with
each other indicating symmetrical intensification power. Moreover, the global opti-
mization capability of CGSAPSO is better than PSO because it provides better MSE
values than PSO, and convergence curves also validate it. In addition, PSOGSA
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depicts minimum values for the median statistical measure, while PSO gives max-
imum quartile and median values showing its sub-optimal performance.
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13.10.7 Overall Simulation Results Discussion

It is clearly evident from the simulation results that CGSAPSO provides the best
classification accuracy for XOR and Balloon datasets while PSOGSA shows a finest
CRate of 87.33% for Iris dataset. Moreover, MSE values are also minimal for
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Fig. 13.10 Convergence curve of Iris dataset
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Fig. 13.11 Box plots of Iris dataset

CGSAPSO versions particularly CGSAPSO3 and CGSAPSO6. Besides, CGSAPSO
takes less execution time to find global optimum and potential features in classifi-
cation benchmarks. In addition, it can also be interpreted from the experimental
results that PSOGSA has statistically more significant MSE outcomes than compet-
ing algorithms particularly PSO and GSA. Quantitatively speaking, the results
validate the high intensification and diversification capability of CGSAPSO. On
the theoretical side, CGSAPSO has been quite successful in overcoming neighbor-
hood search and exploitation drawbacks of GSA-MLP by providing a high recog-
nition rate and optimal MSE values. However, it is also obvious that CGSAPSO has
issues with the convergence speed as it remains behind PSOGSA in Balloon and Iris



datasets. So, proper parameter tuning and enhanced stopping criteria are required to
improve CGSAPSO convergence speed.
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As far as portfolio optimization (PO) (Markowitz, 1952) is concerned,
CGSAPSO can be used to maximize the return and minimize the risk. Actually,
PO is a constrained optimization problem in which constraints are related to the
financial assets and risk. Therefore, CGSAPSO can be employed to find the optimal
portfolio asset(s) for the investor by utilizing the penalty function method to handle
the constraints. Moreover, CGSAPSO can also be used in PO for the analysis of
financial data in order to predict the future market trend(s). Simply, in place of XOR,
Iris, and Balloon datasets (used in the study), financial datasets can be used, and then,
CPSOGSA-MLP will be employed for accuracy check and regression analysis.

13.11 Conclusion and Subsequent Prospects

In this chapter, a newly proposed CGSAPSO optimization method has been used for
MLP learning. Three classification datasets, namely, XOR, Balloon, and Iris, are
utilized for checking the recognition capability of CGSAPSO. In the proposed
CGSAPSO algorithm, diversification power is provided by CGSA, while exploita-
tion is carried out through PSO. The simulation results on three classification
datasets indicate that CGSAPSO provides minimum values for MSE and high
classification accuracy as compared to standard GSA and PSO. Moreover, PSOGSA
also displayed efficient convergence power and simulation accuracy as far as
Balloon and Iris datasets are concerned.

In the future, CGSAPSO will be hybridized with other versatile neural networks
including deep neural networks, LSTM, and radial basis function networks. Besides,
a binary version of CGSAPSO can be applied to feature selection problems. In
addition, CGSAPSO can be employed for the analysis of medical datasets related to
the cancer diagnosis and the brain tumor detection.

Key Terms and Definitions
Chaos theory: Chaos theory is the branch of mathematics dealing with the systems

that are in some kind of motion. These systems are highly sensitive to the changes
in the initial conditions.

Hybridization: It is a mathematical technique in which two or more algorithms are
combined to solve an optimization problem.

MLP (multi-layer perceptron):MLP is a feedforward neural network consisting of
an input layer, one or more hidden layer(s), and an output layer. It uses sigmoid
function as a fitness function to find a suitable candidate solutions. Moreover, it is
utilized for the classification of data in nonlinear systems.

Optimization: It is an iterative technique in which the most suitable candidate
solution is selected at the end of the process.
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Chapter 14
Solving Optimization Problem with Particle
Swarm Optimization: Solving Hybrid Flow
Shop Scheduling Problem with Particle
Swarm Optimization Algorithm

Fatma Selen Madenoğlu

Abstract The flow shop scheduling problem is widely discussed in the literature
since it is frequently applied in real industry. This paper presents a variant of flow
shop scheduling problem with parallel machines. The proposed problem includes
multistage and identical parallel machines at each stage, and the sequence-dependent
setup time and transportation time are considered. The objective function is mini-
mization of makespan. The particle swarm optimization algorithm (PSO) is
addressed to solve the problem and compared with genetic algorithm and heuristics.
The benchmark instances are generated to demonstrate the performance of the PSO.
The numerical results show that the PSO significantly outperforms the
comparison set.

Keywords Hybrid flow shop · Combinatorial optimization · Makespan · Particle
swarm optimization

14.1 Introduction

Due to the increasing use of automation in various sectors, the importance and
function of the production scheduling problem has gradually increased. Organizing
machinery and equipment with the use of automation reveals the need to optimize
the data in the production environment. With increasing problem complexity, it is
dealt with by using metaheuristics.

Production scheduling is an important tool for firms to gain the competitive
advantage in the global market. The different scheduling problem has been discussed
in the literature. One of them is the flow shop scheduling problem (FSP). There is a

F. S. Madenoğlu (*)
Abdullah Gül University, Kayseri, Turkey
e-mail: selen.madenoglu@agu.edu.tr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. A. Mercangöz (ed.), Applying Particle Swarm Optimization, International Series
in Operations Research & Management Science 306,
https://doi.org/10.1007/978-3-030-70281-6_14

mailto:selen.madenoglu@agu.edu.tr
https://doi.org/10.1007/978-3-030-70281-6_14#DOI


set of jobs N¼ {1, 2, . . ., n} that are processed in the same order at a set of machines
M¼ {1, 2, . . . ., m}, i.e., one job goes to machine 1, then goes to machine 2, . . .up to
machine m. The job is processed on at most one machine, and one machine
processes at most only one machine. The most common objective function for this
problem is minimizing total completion time (makespan). The problem includes the
determination of job sequence according to the performance measure(s). Johnson
(1954) introduces the academic research about solving the FSP firstly. Johnson
addresses an exact algorithm for two-machine FSP with makespan. With the increase
in the number of machines and job, the FSP has been included in the combinatorial
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optimization problem.
Nowadays, to provide a competitive advantage, to increase current production

capacities, to meet customer orders, and to follow existing technologies, parallel
machines are used at some of the stages in the flow shop scheduling problem. The
problem turns into a hybrid flow shop scheduling problem (HFSP). There are
alternative machines where operations can be processed in at least one of the stages.
The handled problem is more complex than the FSP. Both assignment and sequenc-
ing of jobs in each stage are addressed in the HFSP.

The HFSP is widely used in various sectors such as steel (Pan et al., 2012), label
sticker manufacturing company (Lin & Liao, 2003), semiconductor industry (Quadt
& Kuhn, 2005), ceramic tiles (Ruiz & Maroto, 2006), textile (Grabowski &
Pempera, 2000), and electronics (Jin, Ohno, Ito, & Elmaghraby, 2002). The high
throughput number and resource utilization are important for real-life application.
For that reason, the objective is to obtain a feasible schedule in which the completion
time of all jobs will be minimal in this paper.

One of the special situations that we encounter on the shop floor where machines
can operate more than one job is setup time. The setup time is not included in the
processing time and is sometimes ignored in literature. In this paper, sequence-
dependent setup time is dealt with separately in process times. A HFSP with
sequence-dependent setup time is a more challenging and difficult class of schedul-
ing problems (Pinedo, 2012).

In addition to the setup times, the transportation time is another important factor
to be considered. As with the setup times, the transportation times are either included
in the processing times by taking an average transportation time or are not evaluated
at all. It is aimed to make the application more realistic by considering the transpor-
tation time between stages.

In this study, a PSO and a genetic algorithm (GA) is proposed to solve the HFSP
considering setup times and transportation times with makespan minimization. PSO
is a population-based algorithm. Structural simplicity, implementation ease, and
rapid speed of acquiring solution are some advantages of the PSO (El-Ghazali,
2009). The generated benchmark instances are used to validate the performance of
the PSO.
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14.2 Background

The simple FSP has two stages (g ¼ 2) and one machine at each stage and is a
nondeterministic polynomial time-hard (NP-hard) problem. The extended HFSP
with setup times and transportation times to be addressed in the study is in the
NP-hard problem class. The solution approaches in which a feasible solution is
obtained at an acceptable time are preferred to tackle the complexity of the problem.
Ribas, Leisten, and Framiñan (2010) and Ruiz and Vázquez-Rodríguez (2010)
present the literature reviews on HFSP. They point out that the makespan is the
most used performance measurement for the HFSP.

Portmann, Vignier, Dardilhac, and Dezalay (1998), Rajendran and Chaudhuri
(1992), and Morita and Shio (2005) propose branch and bound (B&B) algorithms as
an exact solution method for the HFSP with makespan minimization. Vignier,
Dardilhac, Dezalay, and Proust (1996) present another B&B algorithm to solve the
HFSP with total completion time. In the literature, the ordinary HFSP is discussed.
An approximate solution is presented by Gupta (1988) for one machine and
two-stage HFSP. Metaheuristics are developed for the HFSP, such as artificial
immune system (Engin & Döyen, 2004), an improved ant colony algorithm
(Alaykýran, Engin, & Döyen, 2007), IG algorithm (Kizilay, Tasgetiren, Pan, &
Wang, 2014; Öztop, Tasgetiren, Eliiyi, & Pan, 2019), genetic algorithm (Kahraman,
Engin, Kaya, & Kerim Yilmaz, 2008), tabu search (Negenman, 2001), simulated
annealing (Jin et al., 2002, 2006), PSO (Liao, Tjandradjaja, & Chung, 2012),
improved particle swarm optimization (Marichelvam, Geetha, & Tosun, 2020),
and discrete artificial bee colony algorithm (Pan et al., 2014). Genetic algorithm
(Gholami, Zandieh, & Alem-Tabriz, 2009; Mousavi, Mahdavi, Rezaeian, &
Zandieh, 2018), iterated local search (Naderi, Ruiz, & Zandieh, 2010; Naderi,
Zandieh, Balagh, & Roshanaei, 2009), improved simulated annealing algorithm
(Mirsanei, Zandieh, Moayed, & Khabbazi, 2011), water flow-like algorithm (Pargar
& Zandieh, 2012), and hybrid metaheuristics (Behnamian & Zandieh, 2013; Khare
& Agrawal, 2019; Pargar, Zandieh, Kauppila, & Kujala, 2018; Shahvari &
Logendran, 2018) are proposed for HSP with setup times.

Lin and Liao (2003) present a production environment which is a two-stage HFSP
with setup time and dedicated machines. They consider the weighted maximal
tardiness as an objective function. Babayan and He (2004) develop an agent-based
solution method to solve the three-stage HFSP with identical machines considering
makespan minimization. Engin and Döyen (2004) develop an artificial immune
system algorithm (AIS) for solving the HFSP with minimizing makespan. They
compose a procedure to determine the optimum parameter set of AIS. Jin et al.
(2006) present two metaheuristics for solving the HFSP considering parallel identi-
cal machines. They construct the optimization method using simulated annealing
and variable depth search. Janiak, Kozan, Lichtenstein, and Oğuz (2007) propose
some approximation metaheuristics for solving the HFSP with multi-objective (the
total weighted earliness, the total weighted tardiness, the weighted waiting time).
Zandieh and Gholami (2009) introduce the HFSP with setup times and machine



breakdowns, and they tackle this problem by using an immune algorithm. Kahraman
et al. (2010) apply parallel greedy algorithm for the HFSP with multistages.
Khalouli, Ghedjati, and Hamzaoui (2010) study the HFSP with the minimization
of the weighted earliness tardiness. They propose an ant colony optimization to cope
with this problem. Ruiz, Şerifoğlu, and Urlings (2008) investigate complex and
realistic HFSP. They solve the HFSP with release date, unrelated machines, machine
eligibility, skipped stages, setup times, and precedence relationship by using a
mixed-integer programming mathematical model and heuristics. İşler, Toklu, and
Çelik (2012) address two-machine FSP under learning effects to minimize total
earliness and tardiness. They proposed three solution approaches based on genetic
algorithm, based on tabu search, and based on random search. The computational
results show that genetic algorithm is better than tabu search and random search.
Marichelvam et al. (2013) propose a bat algorithm to deal with the HFSP. Su, Yu,
Wu, and Tian (2014) introduce a distributed coevolutionary algorithm for solving
multi-objective HFSP considering minimizing completion time and total tardiness.
Wang, Wang, Liu, and Xu (2013) and Wang, Wang, and Yu (2020) solve the HFSP
with identical parallel machines under minimization makespan by using an enhanced
estimation of distribution algorithm. Chung and Liao (2013) propose an
immunoglobulin-based artificial immune system for the HFSP. Bożejko, Pempera,
and Smutnicki (2013) present a parallel tabu search algorithm to solve the HFSP.
Pan and Dong (2014) develop a novel migrating bird optimization for the HFSP to
minimize total flowtime. The large-size production problems reflect the real-life
production environment. Li and Pan (2015) solve the HFP with limited buffer by
combining the tabu search and the artificial bee colony. They generate large-scale
benchmark instances to conduct the experimental study. Wang et al. (2020) develop
a branch and bound approach, a tabu search, and three heuristics for two-stage
no-wait HFSP with setup times. Pan et al. (2017) introduce iterated search methods
for solving the HFSP with due windows. Dios, Fernandez-Viagas, and Framinan
(2018) propose efficient heuristics for the HFSP with missing operations. Fernandez-
Viagas, Molina-Pariente, and Framinan (2018) develop two constructive heuristics
to solve the HFSP with minimization makespan.
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Naderi et al. (2009) develop a simulated annealing algorithm to handle the HFSP
with sequence-dependent setup times and transportation times under total comple-
tion time and total tardiness criterion. Moccellin, Nagano, Neto, and de Athayde
Prata (2018) investigate heuristic algorithms with priority rules for solving the HFS
problem with machine blocking and setup times. Hidri, Elkosantini, and Mabkhot
(2018) study exact procedures and a two phase’s heuristic to solve the two-center
HFS problem with transportation times. Madenoğlu (2019) presents heuristics for
the hybrid flow shop problem considering missing operations, transportation times,
and sequence-dependent setup times.

The particle swarm optimization algorithm was introduced in 1995 by Kennedy
and Eberhart for solving the nonlinear programming and constrained optimization.
PSO has been adapted to solve various optimization problems. Sha and Hsu (2006)
present the hybrid PSO for the HFSP. Pan et al. (2008) use a discrete PSO to solve
no-wait FSP. Tseng and Liao (2008a, 2008b) propose the HFSP with multiprocessor



tasks by using PSO and propose the improved discrete PSO for lot streaming FSP.
Zhang, Shao, Li, and Gao (2009) combine the PSO and tabu search algorithm for
multi-objective HFSP. Zhang, Ning, and Ouyang (2010) combine the PSO with
genetic operators and annealing strategy for the FSP. In the proposed algorithm, each
particle includes two states to improve the performance of the proposed solution
approach. The computational results show that the proposed algorithm outperforms
the others. Liao et al. (2012) combine PSO with bottleneck heuristic and simulated
annealing to solve the HFSP in an effective manner. The performance of the
proposed algorithm is tested by using the well-known benchmark instance. The
computational results show that the performance of the proposed algorithm is better
than the other existing algorithms in the literature. Liu, Gao, and Pan (2011) address
permutation FSP and use a hybrid PSO to solve this problem. Liao et al. (2012)
hybridize PSO with bottleneck heuristic for exploiting the bottleneck and simulated
annealing for escaping from local optima. Shao, Liu, Liu, and Zhang (2013) address
the HFSP with minimization of makespan, maximal machine workload, and total
workload. They proposed the hybrid discrete PSO. Chou (2013) address the HFSP
with multiprocessor tasks by using PSO. Akhshabi, Tavakkoli-Moghaddam, and
Rahnamay-Roodposhti (2014) propose a hybrid PSO based on memetic algorithm to
solve no-wait FSP. Marichelvam et al. (2020) present an improved PSO for the
HFSP with human factors. They integrate the variable neighborhood search algo-
rithm into the PSO to improve the convergence speed of the proposed algorithm.
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The related literature review provides that the HFSP considering sequence-
dependent setup times and transportation times under makespan criterion has not
been discussed widely. This paper purposes to fill this research gap by presenting
PSO and results for the discussed problem.

14.3 Problem Definition

The problem presented in this paper is defined as follows: There is n jobs (N ¼ {1,
2, . . ., n}) that are processed on a series of k stages (K ¼ {2, . . ., k}) in a multistage
flow shop environment where stage k contains mk parallel machines (Mk¼ {1, 2, . . .,
mk}). The number of stages k must be at least two. The number of parallel machines
mk must be greater than and equal to one in at least one of the k stages. Every job
completes the production process by going through the same multiple stages (k):
stage 1, stage 2, . . ., stage k. The parallel machines in a stage are identical. A job is
processed by any machine mk at stage k. The processing time of mk machines for a
job in stage k is the same. Each operation of the job is assigned to one machine in
each stage. The storages between consecutive stages are unlimited. No interruption
is allowed. The sequence-dependent setup time is handled. While one operation is
processed on the machine, the setup operation is carried out according to the
sequence-dependent setup time. After an operation processed on the machine, this
job is moved from one stage to another stage to process. Transportation time
between consecutive stages is considered. All machines and jobs are available at
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Fig. 14.1 HFSP shop environment. Source: Author’s own creation

zero time. All machines are available if they are not busy. Each machine operates one
operation at a time. There are no machine breakdowns and maintenance operations.
In the HFSP, the aim is to minimize the maximum completion time. The problem is
finding a schedule which optimizes a stated performance measure(s). Figure 14.1
illustrates the HFSP shop environment.

14.4 Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm is a population-based algorithm inspired
by the social behavior of animals living in swarms, such as flocks of birds. It is
widely used in many areas because of fast computing speed and the parallel
processing. It is a population-based algorithm which is preferred to solve complex
scheduling problems. A population of particles initializes the PSO. A candidate
solution is represented by each of the particles, and each particle has its own position
xi(t) and velocity vi(t) in the search space. A population is generated randomly or
based on some rules. Then, every particle updates itself based on the updating rule in
each iteration until the stopping criteria is met. The output is the final best solution.
In a PSO, the velocity and position of particle in (t + 1) h iteration are updated by:

vi t þ 1ð Þ ¼ w * vi tð Þ þ c1 * x*i tð Þ – xi tð Þ
⌈ ⌉

þc2 * x*g tð Þ – xi tð Þ
h i ð14:1Þ

xi t 1 xi t vi t 1 14:2

where w is the inertia weight and c1 and c2 are random numbers between 0 and 1. xi*
(t) is the local best value. xg*(t) is the global best value. The general steps in the
simple PSO algorithm are shown below:

Step 1: Set the swarm size, termination criteria, inertia weight, c1, and c2.



PSO  ALGORITHM

generate initial population randomly
for (t=1 to stopping criteria)

update velocity (vj(t)) and position (xj(t))
update local best (xj*(t)) and global best (xg*(t))

for each particle j∈J

end for
end for
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Fig. 14.2 PSO procedure

Step 2: Determine the fitness function.
Step 3: Generate the initial population.
Step 4: Find the local best position of the particles.
Step 5: Initialize the velocity of the particles.
Step 6: Evaluate the objection function value for each particle.
Step 7: Specify the global best position of the particles.
Step 5: Update the position and velocity of the particles.
Step 6: Check the termination criteria is met, stop; otherwise return to step 4.
In this PSO, the initial population is generated randomly. Then, the position and

velocity of the particle are modified by Eqs. (14.1) and (14.2) in each iteration. The
algorithm runs until the iteration number has reached the stopping criteria. PSO
procedure is defined in Fig. 14.2.

In the proposed algorithm, the forward scheduling approach, which is common in
the relevant literature, is used to evaluate the objective function. In this approach, the
jobs are assigned to the machines starting from the most available machine in the first
production stage. In the following production stages, the jobs are assigned to the
most available machine, depending on the release times from the previous produc-
tion stage. The order of the jobs may be different at each production stage. In this
way, the initial solution (s) is obtained by assigning the jobs to the machines step
by step.

To illustrate, the approach applied with an example has four jobs and two
production stages. The first stage processing times of jobs as 5, 2, 3, 4 and the
second stage processing times of jobs as 2, 3, 5, 3 and initial solution is s ¼ {1, 2, 3,
4} are used to schedule the jobs. The most available machine is selected to process
the jobs at the first production stage. At the second production stages, the jobs are
assigned to the most available machines according to the releasing times. The job
order turns into {2, 1, 3, 4} at the second stage. Figure 14.3 demonstrates the Gantt
chart for initial schedule with a makespan of 12.

The constructive heuristic for solving the flow shop scheduling problem is the
heuristic of Nawaz, Ensore, and Ham (NEH). Nawaz, Enscore Jr, and Ham (1983)
suggest that a job with a longer total processing time should have a higher priority in
the series to make the job easier. NEH is very effective in minimizing time to
complete (Taillard, 1990). In the first step, the jobs are sorted in decreasing order
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Fig. 14.3 Gannt chart for
the initial schedule. Source:
Author’s own creation
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of total processing times. In the second step, two possible partial schedules are
constructed by using the first two jobs and evaluated to select the best sequence. In
the third step, the following job which is stated in the first step is replaced in all
possible positions in the partial schedule and evaluated. Until all jobs are added to
the partial schedule, this step is repeated. Finally, the final job sequence is the
obtained schedule that is employed to the shop floor.

One of the common dispatching rules to arrange the jobs is shortest processing
time rule (SPT). The jobs are sorted in ascending order of the processing time. The
other is longest processing time rule (LPT) which sequences the jobs in descending
order of processing time. In this paper, the results of NEH algorithm, dispatching
rules (SPT and LPT), and genetic algorithm are used as a comparative set.

14.5 Computational Experiments

In this paper, the computational experiments are carried out to the performance of the
heuristics and metaheuristics stated above. All computational experiments have been
run on Intel Core i7-4700 CPU with 2.40 GHz, 16 GB RAM, and with Microsoft
Windows 10 64 bits. MATLAB has been used to code all heuristics and algorithms
used in this paper.

The benchmark problems are generated to evaluate the performance of the PSO.
The processing time of an operation for each job, sequence-dependent setup time
between the consecutive operations, and transportation time from one stage to the
other stage are randomly generated uniform distribution over [1, 100], [1, 20], and
[1, 10], respectively. The different configurations for the number of jobs, number of
stages, number of parallel machines in each stage, number of generations, and
population size are considered as a factor to investigate the effects of these on the
performance of the algorithm.
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Table 14.1 Factor levels Factors Levels

Number of jobs 20, 50

Number of stages 5, 10

Number of machines in each stage 3, 5

Population size 100, 200

Number of generations 200, 500

Table 14.2 MRPD compari-
son of different solution
approaches for the generated
benchmark instances

Solution approaches MRPD

GA 2.86

PSO 0.15

NEH 4.95

SPT 16.38

LPT 22.63

The generated problem data can be categorized by factors, and each factor can
have two levels. These factors and levels are given in Table 14.1. Thirty-two
experiments are conducted. The PSO algorithm is compared with genetic algorithm,
SPT, LPT, and NEH heuristic. The parameters of GA are similar to the respective
paper from literature. The performance measure is relative percentage deviation
(RPD) over the best solutions found in the experiment:

RPD ¼ Cmax–Cbest
max

Cbest
max

× 100 ð14:3Þ

Here RPD refers to the relative percent deviation of the algorithm for a problem,
Cmax is the completion time of a problem, and Cbest

max is the best completion time of a
problem. The average relative percent deviation value of each metaheuristic and
heuristic is calculated, and a comparison is conducted. Each experiment is run
20 times. The mean RPD (MRPD) values are mean value of the RPD values for
the solution approaches.

14.6 Solutions and Recommendations

The MRPD values are given in Table 14.2. According to the MRPD values,
the result of the PSO algorithm is superior to the GA, NEH, SPT, and LPT. The
performance of the proposed algorithm is generally expected to be better than the
heuristic. The results show that the PSO algorithm is more preferred than heuristics.
Likewise, it is seen that PSO is better in finding a good result when compared with
the widely preferred genetic algorithm in the literature.

The statistical tests are performed to compare better the performance of the
solution approaches. The nonparametric statistical tests are preferred to analyze the
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Table 14.3 Wilcoxon sign
test results

Solution approaches p-Value

PSO vs. GA 0.00

PSO vs. NEH 0.00

PSO vs. SPT 0.00

PSO vs. LPT 0.00

multiple problem. The independence, normality, and heteroscedasticity properties
are conducted to check whether to apply or not a parametric statistical test. Inde-
pendence condition can be given that one occurring does not affect the probability
distribution of the other one occurring. Independence condition is satisfied in the
experiments. All the tests which are used in this experiment represent abnormality
shape. All properties are controlled, and the p-value of the experiments are lower
than the level of significance (α ¼ 0.05). This means that the normality condition is
not satisfied. Statistical software package MINITAB is used to conduct all compu-
tations. Heteroscedasticity condition can be controlled by applying Levene’s test,
which checks homogeneity of variances of the different algorithms. Homogeneity
condition is not satisfied, because we reject the null hypothesis at a level of
significance, α ¼ 0.05. The parametric test conditions are not fulfilled perfectly.
These results induce us to use nonparametric statistics for analyzing the results. The
Friedman test is a nonparametric analog of the parametric two-way analysis of
variance. The Friedman test is used to specify differences between two or more
solution approaches. The null hypothesis states that all solutions are equivalent; the
rejection of the null hypothesis means that the performance of the solution
approaches are different. The p-value of the test implies the differences among all
solution approaches. After that, the Wilcoxon signed-rank test is applied to impor-
tance level of two different solution approaches. The Wilcoxon signed-rank test
results are given in Table 14.3. According to these comparisons, the PSO outper-
forms the other algorithms for all test instances.

The results show that PSO can be preferable for solving the HFSP. Compared
with GA, PSO has few parameters to calibrate. During the evaluation process, PSO
only uses mathematical operators; however GA uses complex genetic operators. GA
is slower than PSO. PSO shares the single directional information way, but GA
shares the mutual information way. Since the particles tend to follow the best in the
PSO algorithm, after a certain period, we can see all the particles clustered in one
place looking for the solution. This clustering really means an advantage where the
solution is found, as the solution will be reached more quickly.

14.7 Conclusion

The hybrid flow shop scheduling problems have many real-life applications in
industry. For that reason, many exact algorithms, heuristics, and metaheuristics
have been studied in the literature to solve the HFSP effectively. In this paper, I



address a HFSP which reflects the real-life job floor environment. One of the
situations encountered in dynamic production environments, discussed in the liter-
ature, is setup times required for the settings that need to be made in the transition
between different jobs processed on the machines. In some studies, setup times are
included in the operation times, while in others they are considered separately. As it
is known, setup times affect the job to be assigned to the machine and affect the
quality of the schedule. Another issue is the transportation times between production
stages in production environments where there are more than one production stage
and there is more than one machine that can operate at each production stage. In
today’s modern production environment, transportation operations are carried out
with the help of automatic systems, automated guided vehicle, or different systems.
The evaluation of the transport time contributes to the management of the production
environment and the applicability of the obtained schedule to the production envi-
ronment and to the detection of deviations from the obtained schedule. In the HFSP
dealt with in this paper, setup times and transportation times are also evaluated
separately. In addition, minimization of the total completion time is used as an
objective function. The PSO is proposed to solve the HFSP with setup times and
transportations times. Experimental studies have been carried out to evaluate the
performance of the proposed solution approach. Test problems to be used in
experimental studies have been generated. To analyze the quality of the proposed
solution approach, the results obtained from the proposed approach are compared
with the results of the commonly used dispatching rules that provide fast and quick
solutions and the genetic algorithm approaches. The results of the experimental
study show that the PSO is highly effective for the proposed problem.
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Key Terms and Definitions
Metaheuristic: A problem solution approach that can generate acceptable solutions

within an acceptable time for large-scale optimization problems.
Optimization: The collection of transactions that find the best results among the

alternative solutions.
Scheduling: Scheduling is the method by which operation is assigned to resources

that complete the operation.
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Chapter 15
Constriction Coefficient-Based Particle
Swarm Optimization and Gravitational
Search Algorithm for Image Segmentation

Sajad Ahmad Rather and P. Shanthi Bala

Abstract Image segmentation is one of the pivotal steps in image processing.
Actually, it deals with the partitioning of the image into different classes based on
pixel intensities. In this work, a new image segmentation method has been intro-
duced based on the constriction coefficient-based particle swarm optimization and
gravitational search algorithm (CPSOGSA). The random samples of the image
histogram act as searcher agents of the CPSOGSA. Besides, the optimal number
of thresholds is determined using Kapur’s entropy method. The effectiveness and
applicability of CPSOGSA have been accomplished by applying it to four standard
images from the USC-SIPI image database including airplane, cameraman, clock,
and truck. Various performance metrics have been employed to investigate the
simulation outcomes including optimal thresholds, standard deviation, mean,
run-time analysis, PSNR (peak signal-to-noise ratio), best fitness value calculation,
convergence maps, and box plot analysis. In addition, the experimental results of
CPSOGSA are compared with standard PSO and GSA. The simulation results
clearly indicate that hybrid CPSOGSA takes less computational time in finding the
best threshold values of the benchmark images.

Keywords CPSOGSA · Image segmentation · Multilevel thresholding ·
Optimization · Kapur’s entropy method · Particle swarm optimization (PSO) ·
Hybridization · Constriction coefficient · Meta-heuristics · Optimization ·
Gravitational search algorithm (GSA)
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PSNR Peak signal-to-noise ratio
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SD Standard deviation
SSIM Structural similarity index measure
FSIM Feature similarity index measure
WOA Whale optimization algorithm
MFO Moth flame optimizer
PSO Particle swarm optimization
GA Genetic algorithm
CPSOGSA Constriction coefficient-based GSA and PSO
MSE Mean square error
DE Differential evolution
GSA Gravitational search algorithm
BSA Bat swarm algorithm
CS Cuckoo search
FA Firefly algorithm
ACO Ant colony optimization
GWO Grey wolf optimizer
KHO Krill herd optimizer
HBO Honey bee optimization

15.1 Introduction

Image segmentation (IS) is an important process in image processing and computer
vision. It divides the image into many regions and pixels. In other words, IS
simplifies the features of the image. Over the years, a number of IS methods have
been proposed including edge detection (ED) (Papari & Petkov, 2011), thresholding
(Otsu, 1979), etc. However, thresholding is mostly used IS technique due to its
simple design and robustness (Oliva, Cuevas, Pajares, Zaldivar, & Osuna, 2014).

Basically, thresholding deals with the partitioning of the image into smaller
segments based on grayscale intensity values. In fact, thresholding is classified
into bi-level and multilevel thresholding (MT). The former one divides the image
into two classes by considering only one threshold (th) value. On the other hand, MT
requires more than two threshold values and splits pixels of the image into multiple
classes.

In the research literature, bi-level thresholding has been solved by two famous IS
methods, namely, Otsu’s method (Otsu, 1979) and Kapur’s method (Kapur, Sahoo,
& Wong, 1985). The first method maximizes the class variance of the pixels, while
Kapur’s method deals with maximizing the histogram entropy of the image. How-
ever, when the number of threshold values is increased, the computational cost and
complexity also increase (Horng, 2010). Consequently, aforementioned methods
become incapable of solving real-time practical applications.
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It has been proved that heuristic algorithms (HAs) have simplicity in design and
high convergence speed (Maitra & Chatterjee, 2008). Therefore, nowadays HAs are
readily employed for solving image segmentation problems by considering it as a
constrained optimization task. The HAs which have been used to solve MT problem
includes GA (Lai & Tseng, 2004), PSO (Gao, Xu, Sun, & Tang, 2009; Maitra
& Chatterjee, 2008), HBO (Horng, 2010), BFA (bacterial foraging algorithm)
(Sathya & Kayalvizhi, 2011), equilibrium optimizer (EO) (Abdel-Basset, Chang,
& Mohamed, 2020), and so on.

In this chapter, a novel hybrid optimization technique, namely, constriction
coefficient-based particle swarm optimization and gravitational search algorithm
(CPSOGSA) (Rather & Bala, 2019a, 2020a), has been employed for image segmen-
tation. In CPSOGSA, global exploration of the solution space is performed by GSA,
while exploitation is done by CPSO. The CPSOGSA will maximize Kapur’s entropy
objective function in order to find the high-intensity pixel values of the images.
Besides, standard benchmark images have been used to evaluate the accuracy and
effectiveness of the proposed method. Moreover, for comparative analysis, PSNR,
SD, convergence maps, and box plots have also been considered.

The other parts of the chapter are structured as follows: First, the related works
dealing with image segmentation by HAs are covered. Next, Kapur’s method is
discussed. Subsequently, CPSO and classical GSA are briefly explained. Moreover,
the CPSOGSA and its application for IS task are introduced. Afterward, the exper-
imental outcomes and simulation analysis of the results is carried out. Finally, the
conclusion and future direction of the work are provided.

15.2 Literature Survey

It is obvious that high convergence speed and less time complexity are necessary for
finding the optimal number of thresholds in image segmentation. The aforemen-
tioned features are present in HAs which makes them suitable for multilevel
thresholding (MT) task. Moreover, in a hybrid approach, PSO has been used for
IS in order to provide stochastic initialization. Besides, fuzzy clustering and
Mahalanobis distance were utilized to collect image features and reduce the geo-
metric complexity of classes, respectively. The performance evaluation was done by
using test images from the brain web database. Also, the PSO-based HA indicated
better performance (Benaichouche, Oulhadj, & Siarry, 2013).

In another work, GSA and GA algorithms were combined to provide high
diversification power and fast convergence speed for making IS computationally
inexpensive. Besides, the GSA-GA hybrid algorithm used Otsu’s and entropy
methods as fitness functions. Moreover, six standard images were employed for
simulation analysis (Sun, Zhang, Yao, & Wang, 2016).

Krill herd optimization (KHO) algorithm is one of the recently introduced
optimization technique that is inspired by the group dynamics of krills. The KHO
has been employed for MT in order to find the intense pixels of the test images.



Moreover, the experiments have shown that KHO reduces run time and premature
convergence issues associated with MT (Resma & Nair, 2018). Similarly, He and
Huang (2020) have introduced a modified version of the KHO algorithm for color
IS. They used three fitness functions including Otsu’s between-class variance,
Kapur’s entropy, and Tsallis entropy for finding the best pixel values of the images.
The efficient KHO algorithm was compared with six other HAs. Moreover, different
performance metrics such as PSNR, SSIM (structural similarity index measure),
standard deviation (SD), etc. were used to benchmark the performance. The simu-
lation results indicated the robustness and efficiency of the modified KHO algorithm.
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WOA and MFO are prominent HAs developed to solve complex optimization
problems. They have been employed to solve IS problem. The optimal values of
Otsu’s objective function were used to get the best threshold outcomes. Several
metrics were used for checking the efficiency of the WOA-MT and MFO-MT
methods such as SSIM, PSNR, time complexity, and so on. The simulation results
indicated the efficient performance of MFO as compared to WOA in terms of
computational cost and exploitation rate (Abd El Aziz, Ewees, & Hassanien, 2017).

Statistical region merging (SRM) has also been used for MT in which centroid of
the image histogram provides the best pixels. Moreover, the concept of cross entropy
was utilized to eliminate noisy segmented regions of the output image. The exper-
imental results of SRM were compared with other HAs like PSO, DE, CS, and so on
(Li, Tang, Wang, & Zhang, 2019).

DE is one of the classical evolutionary optimization techniques having good
exploitation power. It has been embedded with maximum Renyi entropy (MRE) for
MT of hyper-spectral satellite images. Besides, SVM acts as a classifier to increase
the recognition accuracy. Moreover, different HAs were employed for comparative
analysis (Sarkar, Das, & Chaudhuri, 2016).

In another hybrid approach, dragonfly algorithm (DA) and DE have been com-
bined for the color IS problem. The DA helps in global searching, whereas DE finds
the optimal candidate solutions in the search space. Besides, standard images from
the Berkeley database were used for performance evaluation. Different efficiency
metrics and statistical tests were employed to check the applicability and potential of
the DA-DE approach for color MT (Xu, Jia, Lang, Peng, & Sun, 2019).

GWO is another famous HA known for its mathematical simplicity and applica-
tion potential. It was applied to the MT problem for finding the optimal features in
the images. Both Kapur’s and Otsu’s methods were used as fitness functions. For
comparative analysis, PSO and BFO algorithms were utilized, while the quality of
the simulation results was measured through the structural similarity index
(Khairuzzaman & Chaudhury, 2017).

HSA is an interesting HA based on the musician’s instrument playing technique.
It has the capability of powerful global exploration potential which is essential for
the resolution of entrapment in local minima problem. Besides, HSA has been
considered for MT to reduce the computational time and intensification issues of
conventional IS methods. Standard test images were selected for performance
benchmarking, and experimental results demonstrated the potential of HSA (Oliva,
Cuevas, Pajares, Zaldivar, & Perez-Cisneros, 2013).
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Quite often it has been reported that computational overhead and exploitation rate
are two main issues that are faced by IS methods. To resolve these problems, crow
search algorithm (CSA) has been employed for pixel optimization. Besides, the
advantages of CSA like high intensification power and appreciable global explora-
tion capability help to find optimal thresholds in less iterations. For comparative
analysis, the simulation results were compared with PSO, DE, GWO, MFO, and so
on (Upadhyay & Chhabra, 2019).

Equilibrium optimizer (EO) is yet another HA inspired by physical science. It is
based on the concept of control V-M balance models. It has been applied to the
grayscale IS problem while using Kapur’s method as an objective function. Besides,
Berkeley segmentation database of test images was employed for performance
evaluation (Abdel-Basset et al., 2020). In addition, electromagnetism optimizer
(EMO) is also used for MT of grayscale images to find high-intensity regions in
test images. Both Otsu’s and Kapur’s methods were utilized to determine the precise
number of pixels. The simulation results showed the efficient performance of EMO
(Oliva et al., 2014).

Elephant herding optimizer (EHO) is another fascinating HA based on the clan
and leadership behavior of elephants. It has been utilized for MT to select the best
thresholds. Six standard test images, namely, barber, living room, boats, Gold Hill,
lake, and aerial, were considered for testing the optimization capability. Besides, SD
and mean values of EMO and other participating algorithms were calculated to
compare simulation results (Tuba, Alihodzic, & Tuba, 2017).

It has been seen that the classical firefly algorithm (FA) has issues with global
exploration which results in getting trapped at local minima. The aforementioned
problem was resolved by combining Cauchy mutation and neighborhood schemes
into FA. Besides, the applicability of improved FA was tested by applying it to IS
problem. It showed efficient results as compared to PSO, DE, and classical FA (Chen
et al., 2016).

Similarly, fireworks algorithm (FA) has been exercised for IS job to reduce the
CPU time and accelerate the convergence speed of the traditional MT methods. Six
benchmark images including lake, Barbara, Gold Hill, aerial, boats, and living room
were used for performance evaluation. Moreover, statistical measures like average
and SD were also calculated, while other HAs like PSO, DE, CS, and so on were
employed for comparative analysis (Tuba, Bacanin, & Alihodzic, 2015).

The researchers have introduced another HA for MT, namely, flower pollination
algorithm (FPA). In fact, some modifications have been introduced in classical FPA
to accelerate its intensification power. The improved FPS equipped with high
convergence capability had been applied to different tests and remote sensing images
to measure its applicability and efficiency (Shen, Fan, & Huang, 2018).

Likewise, the multi-objective knee evolutionary algorithm (KEA) has been
employed for IS problem to calculate the Pareto optimal solutions for different
fitness functions. Various performance metrics were used to check the efficiency
like PSNR, objective values, and convergence maps. The simulation outcomes
depicted the productiveness and accuracy of KEA (Abd El Aziz et al., 2017). In
addition, water cycle algorithm (WCA) is a recent HA inspired from the downward



moment of rainwater towards the sea. It has been considered for MT by employing
two prominent objective functions, namely, Tsallis and Masi entropy. Different HAs
like BA, PSO, grasshopper optimizer (GO), and so on were harnessed for compar-
ative analysis. Moreover, different quality metrics and statistical measures were used
for performance testing (Kandhway & Bhandari, 2019).
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Researchers have applied modified grasshopper optimizer (MGO) for color
segmentation task in order to reduce the time complexity and exploitation of the
candidate solutions. In fact, Tsallis cross entropy was used for determining the
optimal number of image pixels. Besides, simulation results were compared with
the other two MT methods, namely, Otsu’s and Renyi entropy. The experimental
outcomes showed the potential and efficacy of MGO for IS (Liang et al., 2019).

The outline of the related works dealing with IS and MT by HAs are shown in
Table 15.1. It is clear that traditional MT methods like Kapur and Otsu have the
drawbacks of computational overhead and slow intensification rate which makes
them unsuitable for image segmentation task. On the other hand, HAs like GSA, GA,
PSO, etc. have high exploration power and accelerated exploitation potential nec-
essary for determining the optimal thresholds present in the image histograms.
Besides, PSNR, SSIM, FSIM, SD, and objective values are common performance
metrics exploited by researchers for performance evaluation of the recent MT
methods. In the present work, CPSOGSA has been utilized for image segmentation
to find high-intensity pixels in the test images. Besides, different efficiency measures
have been utilized for performance testing of the proposed CPSOGSA with other
HAs.

15.3 Kapur’s Segmentation Scheme

Kapur’s entropy criterion (Kapur et al., 1985) is one of the traditional MTmethods in
image analysis. It deals with the maximization of the histogram entropy of the output
image. It is based on the concept of the Shannon capacity (Shannon, 2001) which
states that the occurrence of an event is directly related to the information content.
Besides, Kapur’s criterion is used for multilevel thresholding of grayscale
images only.

Mathematically speaking, if an image consists of “m” thresholds, that is, t1, t2, t3,
. . ., tm, having “m” classes, namely, C1, C2, C3, . . ., Cm, then Kapur’s fitness function
is represented in Eq. (15.1).

f ðt1, t2, t3, . . . , tmÞ ¼ F0,F1,F2, . . . ,Fm ð15:1Þ

such that
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Table 15.1 HA-based image segmentation techniques

References Algorithm Performance metrics
Thresholding
scheme

Abdel-Basset et al.
(2020)

EO Kapur’s entropy PSNR, SSIM, and fitness values

He and Huang (2020) Improved
KHO

Kapur’s and Tsallis
entropy

SSIM, PSNR, and standard
deviation

Resma and Nair (2018) KHO Kapur’s and Otsu’s
methods

Objective values and convergence
curves

Li et al. (2019) DE Minimum cross
entropy

PSNR, mean shift, NCuts, and
convergence graphs

Xu et al. (2019) DA and
DE

Otsu’s and minimum
cross entropy

PSNR, SSIM, FSIM, SD, and
statistical test

Upadhyay and
Chhabra (2019)

CSA Kapur’s entropy Run time, p-values, SSIM, FSIM,
and fitness values

Abd El Aziz et al.
(2017)

KEA Kapur, Tsallis, Otsu,
and so on

PSNR, SSIM, and run time

Kandhway and
Bhandari (2019)

WCA Masi entropy Objective values and PSNR

Liang, Jia, Xing, Ma,
and Peng (2019)

MGO Tsallis entropy P-value and optimal threshold
values

Shen et al. (2018) FPA Otsu’s method Fitness values, quality measures,
and exploitation curves

Abd El Aziz et al.
(2017)

WOA +
MFO

Otsu’s method PSNR, SSIM, fitness values, and
ANOVA test

Khairuzzaman and
Chaudhury (2017)

GWO Kapur’s and Otsu’s
methods

SSIM and threshold values

Tuba et al. (2017) EHO Kapur’s and Otsu’s
schemes

Mean and SD values

Sun et al. (2016) GSA +
GA

Kapur’s and Otsu’s
methods

Threshold values and statistical
test

Sarkar et al. (2016) DE Renyi entropy ANOVA test, the Wilcoxon test,
and run time

Chen et al. (2016) Improved
FA

Otsu’s between-class
variance

SD, mean, and computational
time

Tuba et al. (2015) FWO Kapur’s entropy Threshold values, mean, and SD

Oliva et al. (2014) EMO Kapur’s and Otsu’s
schemes

Thresholds, SD, PSNR, and
iterations

Benaichouche et al.
(2013)

PSO Fuzzy c-means Segmentation accuracy, run time,
and thresholds

Oliva et al. (2013) HSA Kapur’s and Otsu’s
methods

Objective values, SD, PSNR, and
thresholds



þð Þ ¼ ð Þ þ þð Þ ð Þ

286 S. A. Rather and P. S. Bala

F0 ¼ –
Xt1–1

i¼0

li
φ0

ln
li
φ0

,φ0 ¼
Xt1–1

i¼0

li ð15:2Þ

F1 ¼ –
Xt2–1

i¼t1

li
φ1

ln
li
φ1

,φ1 ¼
Xt2–1

i¼t1

li ð15:3Þ

F2 ¼ –
Xt3–1

i¼t2

li
φ2

ln
li
φ2

,φ2 ¼
Xt3–1

i¼t2

li ð15:4Þ

Fm ¼ –
XL–1

i¼tm

li
φm

ln
li
φm

,φm ¼
XL–1

i¼tm

li ð15:5Þ

Moreover, <F0, F1, F2, . . ., Fm> are histogram entropies. Also, class probabil-
ities are depicted by<φ0, φ1, φ2, . . ., φm>. Besides, li is the number of image pixels,
and L is the upper limit of the grayscale range.

15.4 Constriction Coefficient-Based PSO

Particle swarm optimization is one of the highly popular and widely utilized
optimization techniques in the field of swarm intelligence. It is inspired by the
group behavior of birds and fishes. There are three main operators in PSO which
are important for its optimization process, namely, inertia factor, pbest, and gbest. It
is important to note that pbest and gbest parameters help in finding feasible regions
of the solution space, whereas particle inertia aids in the global search. As particles
change their values continuously in the successive iterations, therefore, updated
particle velocity and position are calculated using Eqs. (15.6) and (15.7).

vdi ðt þ 1Þ ¼ wðtÞvdi ðtÞ þ c1ri1ðpbesti – xdi ðtÞÞ þ c2ri2ðgbest– xdi ðtÞÞ ð15:6Þ
xdi t 1 xdi t vdi t 1 15:7

Where < c1, c2 > are learning constants, while <ri1, ri2> are the numbers in the
range of [0, 1].

It has been seen that during the optimization process, the PSO particles move
outside the solution space which results in the slow convergence of the candidate
solutions towards feasible regions (Rather & Bala, 2019b, 2020b). To resolve the
issue, constriction coefficients were introduced in PSO (Clerc et al., 2002) to
accelerate the exploitation of the particles and, therefore, increase the performance
of the PSO. The various CPSO parameters are as under:



¼ þ ð Þ
¼ – þ –( )( ) ð Þ

2
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φ1 ¼ 2:05,φ2 ¼ 2:05,

φ φ1 φ2 15:8

K 2= φ 2 sqrt φ2 4 15:9

The path of the particles is controlled by the parameters represented by<φ1, φ2>,
while K is the constriction coefficient. Additionally, inertia factor, w(t) ¼ K, indi-
vidual learning factor, c1 ¼ K φ1, and social learning factor, c2 ¼ K φ2, then the
velocity in Eq. (15.6) is written in improved form as shown in Eq. (15.10).

vdi ðt þ 1Þ ¼ ð 2
φ– 2þ sqrtðφ2 – 4Þvdi ðtÞ

Þ þ Kφ1ri1ðpbestiðtÞ – xdi ðtÞÞ

þ Kφ2ri2ðgbest– xidðtÞÞ ð15:10Þ

In order to sustain the balance in the PSO solution space, it is important that the
value of φ should be greater than four. Besides, Eq. (15.10) shows the convergence
of the particles towards global optima which is directly related to the social and
personal learning factors of the particle system.

15.5 Standard Gravitational Search Algorithm (GSA)

GSA is one of the highly regarded physics-based HA. It is inspired by the law of
gravitation and motion. In fact, gravity is one of the four basic forces in nature
(Halliday, Resnick, & Walker, 2000; Rather & Bala, 2019c, 2019d; Rather &
Sharma, 2017). The other three forces are weak nuclear force, electromagnetic
force, and the strong nuclear force. Moreover, the law of gravitation is basically an
inverse square law which states that “the attractive force between two masses is
directly proportional to the product of their masses and inversely proportional to the
square of the distance between them” (Rashedi, Nezamabadi-pour, & Saryazdi,
2009).

The GSA is first initialized with a random distribution of searcher agents in the
form of masses. The force between the point masses is calculated in Eq. (15.11).

Fij ¼ G tð Þmpi tð Þmaj tð Þ
Rij tð Þþ 2 xdj tð Þ þ xdi tð Þ

⎛ ⎞
ð15:11Þ

where mpi(t) and maj(t) are passive and active gravitational masses, respectively. The
Euclidian distance is represented as Rij(t),while is a small constant.

To get a proper balance between exploration and exploitation, the GSA utilizes an
important parameter called gravitational constant represented by “G.” Besides, it
helps in the accuracy of the search. It is given by Eq. (15.12).
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G tð Þ ¼ G t0ð Þe –αCIMIð Þ ð15:12Þ

where G(t) and G(t0) are the values of the gravitational constant at time interval t and
t0, respectively. Also, α is an exponentially decreasing coefficient, whereas CI and
MI correspond to the current iteration and the maximum number of iteration(s),
respectively.

As the masses are moving in the search space, and each of them is exerting a
force. Therefore, the total force is given by Eq. (15.13).

Fd
i tð Þ ¼

Xm

j¼1, j 6¼i

γ jFij ð15:13Þ

where γj has values between 0 and 1.
Furthermore, after a number of iterations, the heavy masses will be scattered

throughout the search space which represents feasible solutions. So, it is important to
preserve the quality of the best solutions. Therefore, cardinality constraint, i.e., kbest
strategy, is used in GSA. It means that only optimal and efficient heavy mass will
execute force in all directions after the fulfillment of stopping criterion. It is shown in
Eq. (15.14).

Fd
i tð Þ ¼

Xm

j¼kbest, j 6¼i

γ jF
d
ij tð Þ ð15:14Þ

Moreover, the acceleration of the masses is calculated according to the second
law of motion as given in Eq. (15.15).

adi tð Þ ¼ Fd
i tð Þ

mi tð Þ ð15:15Þ

In GSA, the point masses get attracted to heavy masses because they have the
highest intensity and strong force of attraction. Hence, the position and velocity of
the heavy mass are pivotal for finding the global optimum which is provided in
Eqs. (15.16) and (15.17), respectively.

vdi t þ 1ð Þ ¼ γ jv
d
i tð Þ þ adi tð Þ ð15:16Þ

xdi t 1 xdi t vdi t 1 15:17
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15.6 CPSOGSA Algorithm

The reason behind designing hybrid CPSOGSA is to use the diversification capa-
bility of the GSA and the convergence power of CPSO. Besides, CPSOGSA also
shields the candidate solutions to go outside the solution space which result in the
faster exploitation of the particles towards global optimum. Moreover, the presence
of gravitational constant, G(t), in CPSOGSA takes searcher agents from low fitness
regions of local minima and, hence, resolves entrapment in local minima problem.
The unification equation that integrates the heuristic approaches is shown in
Eq. (15.18).

Vd
i ðt þ 1Þ

¼
⎛

2
φ– 2þ sqrtðφ2 – 4ÞVd

i ðtÞ
þ Kφ1ri1ðadi ðtÞ–xdi ðtÞÞ þ Kφ2ri2ðgbest– xdi ðtÞÞ

⎞

ð15:18Þ

where Vd
i is the velocity of the swarm particles, adi is the acceleration of the particles,

and g best represents the social capability component of the particle system.
The position of the particles Xd

i is given by Eq. (15.19).

Xd
i t þ 1ð Þ ¼ Xd

i tð Þ þ Vd
i t þ 1ð Þ ð15:19Þ

The pseudo-code of CPSOGSA is presented in Algorithm 15.1.

Algorithm 15.1: CPSOGSA Algorithm
1: Randomized initialization of the search space.

2: Get the objective function values of candidate solutions.

3: Initialize the parameters including the maximum number of iterations (T ), initial value of the
gravitational constant G(t0) and coefficient α.
4: Start the iteration counter at t 0.

5: while t < T do,
6: for each candidate solution do,
7: Update the gravitational constant, G(t).

8: Using Eq. (15.11) find the gravitational force, Fd
i t :

9: Calculate the mass acceleration, adi t by using Eq. (15.15)

10: Update the mass velocity, Vd
i t 1 with the help of Eq. (15.18)

11: Update the mass position, Xd
i t 1 using Eq. (15.19)

12: end for
13: t t + 1

14: end while
15: Return the optimal candidate solution
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15.7 Image Segmentation Using CPSOGSA

In this work, CPSOGSA has been utilized for IS of grayscale images in order to
locate the high-intensity regions of the image histogram. For determining the best
threshold values, Kapur’s entropy method is being exploited. As far as CPSOGSA is
concerned, due to its hybrid nature, it has high diversification capability which
relieves it from entrapment in local minima problem, whereas high intensification
capability makes it immune from slow convergence and high computational over-
head. The aforementioned advantages declare CPSOGSA ideal for IS task and
capable enough to compete with other state-of-the-art HAs for multilevel
thresholding.

The stepwise CPSOGSA algorithm for image segmentation is briefly formulated
as follows:

Step 1: Read the grayscale image
Step 2: Acquire the histograms of the test images
Step 3: Randomized initialization of the CPSOGSA parameters
Step 4: Get the updated value of G(t)
Step 5: Using Eq. (15.11), find the value of Fd

i t
Step 6: Acceleration of the particles is calculated using Eq. (15.15)
Step 7: Find the velocity (Vd

i t 1 ) of the optimal particles
Step 8: Particle positions are calculated by updating the value of Xd

i t 1
It clearly shows that the optimization process starts with the reading of the test

image. Then, Kapur’s entropy acts as an objective function for getting the best
threshold values. Consequently, CPSOGSA parameters change their values with
consecutive iterations. Therefore, at last, it provides a segmented image as output
having high-intensity pixels. In the next section, the simulation analysis of the results
is carried out.

15.8 Experimental Results and Discussion

The applicability of the CPSOGSA has been tested by applying it for multilevel
thresholding of the test images from the USC-SIPI image database. Four standard
grayscale images, namely, aeroplane, cameraman, clock, and truck which have the
same pixel size were utilized for performance evaluation. Figs. 15.1, 15.2, 15.3, and
15.4 depict standard images and their respective histograms.

It can be clearly seen that the histograms have chaotic behavior and complex
solution space(s). The traditional MT methods are unable to handle complex search
spaces, and therefore, HAs like CPSOGSA are employed to find feasible regions of
the solution space and, hence, provide optimal solutions in less computational time.
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Fig. 15.2 Cameraman image and its histogram

15.8.1 Simulation Setup and Parameter Setting

The simulation results of the CPSOGSA have been compared with classical PSO
(Kennedy & Eberhart, 1995) and standard GSA (Rashedi et al., 2009). Besides, the
CPSOGSA will be judged for computational overhead, convergence speed, and
capability of finding the optimal number of threshold values.

The experiments were performed on a computer system having Windows 10 OS,
2.2 GHz Intel Core i5 processor, 4GB RAM, and 500GB hard disk, and implemen-
tation was performed on the R2013a version of MATLAB. Moreover, MATLAB
code is publicly available on the GitHub platform (https://github.com/
SAJADAHMAD1) and the authors’ MathWorks personal web page (https://in.
mathworks.com/matlabcentral/profile/authors/6240015-sajad-ahmad-rather).

The search space of HAs will be the pixel range of images, that is, 0–255.
Besides, the population size of the algorithms is the same (50) throughout the

https://github.com/SAJADAHMAD1
https://github.com/SAJADAHMAD1
https://in.mathworks.com/matlabcentral/profile/authors/6240015-sajad-ahmad-rather
https://in.mathworks.com/matlabcentral/profile/authors/6240015-sajad-ahmad-rather
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Fig. 15.3 Clock image and its histogram

0 50 100 150 200

Gray level

Truck

250 300

F
re

q
u

en
cy

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Fig. 15.4 Truck image and its histogram

optimization process. Moreover, when the objective value remains same for 10% of
the maximum number of iterations (100), then CPSOGSA, PSO, and GSA will be
stopped.

It is important to measure the accuracy and quality of the simulation results.
Therefore, PSNR (peak signal-to-noise ratio) is selected as a potential performance
metric for comparative analysis. In PSNR, the values of the optimal thresholds are
considered. Besides, PSNR deals with the symmetry and accuracy of the output
image. It is mathematically calculated as shown in Eq. (15.20).
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Table 15.2 Initialization of HA parameters

Optimization technique Initialization parameter Value

PSO c1, c2 2

Wmax 0.9

Wmin 0.2

GSA Elitist check 1

Rpower 1

Min_flag (1 : minimum; 0 : maximum) 0

CPSOGSA φ1, φ2 2.05

Coefficient (α

G(t0) 100

PSNR ¼ 10 log 10
2552

MSE
ð15:20Þ

MSE ¼ 1
RC

XR
i¼1

XC
j¼1

ðIði, jÞ–Oði, jÞÞ2 ð15:21Þ

In Eq. (15.20), MSE is the mean square error, while R and C are the rows and
columns of the image matrix, respectively. Besides, I is the input test image and O is
the output image.

For all optimization algorithms, there are some parameters that have to be
initialized for getting suitable simulation results. The initialization parameters of
HAs have been presented in Table 15.2.

In the next section, the simulation results are presented for CPSOGSA, GSA, and
PSO on four standard benchmark images to evaluate their performance. Besides, the
capability of handling complex search spaces will also be checked.

15.8.2 Simulation Analysis of Aeroplane Benchmark

The experimental results of CPSOGSA, GSA, and PSO for aeroplane standard
image are reported in Table 15.3. The fitness values are taken at 2, 3, 4, and
5 thresholds (k) of the sample image. Moreover, the best fitness outcomes of GSA
are better than PSO and CPSOGSA. As far as CPSOGSA is concerned, its mean and
SD values are in proximity with PSO. The optimal performance of CPSOGSA is
validated by its low computational overhead at different threshold values <16.90,
21.47, 27.41, 32.03> as compared to PSO <17.74, 22.42, 28.45, 34.54> and GSA
<21.45, 25.96, 15.91, 37.61>. The PSNR values of CPSOGSA are also appreciable.

The convergence graph and segmented image histogram of CPSOGSA at 100 iter-
ations are shown in Fig. 15.5. It is evident from the convergence curve that fitness
values are close to each other at successive iterations showing efficient performance.
Besides, box plots of PSO, GSA, and CPSOGSA are represented in Fig. 15.6. It



294 S. A. Rather and P. S. Bala

Table 15.3 Simulation results for aeroplane benchmark

Best
valueImage Algorithm k Optimal thresholds SD Mean PSNR

Run
time

Aeroplane PSO 2 7.50, 10.50 0.71 6.12 2.76 6.39 17.74

3 1.57, 4.53, 6.48 1.12 6.46 2.54 6.17 22.42

4 2.43, 6.36, 10.58, 12.48 1.22 8.39 2.81 7.71 28.45

5 6.03, 12.81, 18.57,
21.80, 24.01

0.93 13.67 3.38 13.33 34.54

GSA 2 194.91, 222.07 0.05 11.25 7.91 11.17 21.45

3 148.90, 162.38, 201.99 0.10 13.65 15.34 13.78 25.96

4 177.85, 195.22, 214.77,
228.76

0.16 16.96 10.54 17.15 15.91

5 195.55, 195.84, 208.05,
210.28, 225.80

0.16 17.76 7.77 17.79 37.61

CPSOGSA 2 2.91, 20.88 0.95 6 3.24 5.75 16.90

3 1, 3.04, 4.01 1.82 4 2.45 3.58 21.47

4 1.92, 2.80, 7.07, 6.67 1.93 5.69 2.58 5.32 27.41

5 1.03, 4.79, 5.89, 9.82,
12.90

2.52 7.30 2.86 6.75 32.03

depicts that optimal objective function values of GSA are large, while CPSOGSA
and PSO have proximal outcomes indicating symmetrical performance.

15.8.3 Simulation Analysis of Cameraman Benchmark

Table 15.4 shows the experimental outcomes for the cameraman standard image. It
indicates that CPSOGSA has efficient performance as compared to PSO and GSA. It
is because CPSOGSA has the best values for mean and standard deviation. Besides,
PSNR values also depict the potential of CPSOGSA in finding the optimal regions of
the image histogram. Moreover, the computational overhead of CPSOGSA is also
minimum.

Figure 15.7 presents the convergence curve and histogram structure of the
cameraman test image at k ¼ 5. The fitness values of CPSOGSA show few
deflections during the course of optimization as clearly evident from the exploitation
map. Besides, box plots are presented in Fig. 15.8. It indicates high fitness values for
GSA, while objectives values of CPSOGSA and PSO are in the close neighborhood.

15.8.4 Simulation Analysis of Clock Benchmark

The clock benchmark image is another famous test benchmark utilized for investi-
gating the performance of HAs for MT task. The simulation outcomes are recorded
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Fig. 15.5 CPSOGSA convergence curve and optimal thresholds at k 5 for aeroplane image¼

in Table 15.5. It is evident that the PSNR values of CPSOGSA are better than PSO.
Besides, mean values are also greater than PSO and close to GSA. However, GSA
has optimal values for standard deviation. As far as CPU time is concerned,
CPSOGSA takes less time to convergence towards global optimum. It shows that
CPSOGSA has potential in handling complex search spaces.

15 Constriction Coefficient-Based Particle Swarm Optimization and. . . 295

The exploitation capability of the participating algorithms, namely, CPSOGSA,
GSA, and PSO, is tested by analyzing convergence curves and, consequently,
checking their ability of finding optimal number of thresholds as shown in
Fig. 15.9. In addition, Fig. 15.10 shows the box plots of the clock image. It clearly
indicates that PSO has sub-optimal performance as it has low fitness values. In
contrast, GSA and CPSOGSA have appreciable performance as they have better
values for the median and upper and lower quartiles.
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Table 15.4 Simulation results for cameraman benchmark

Best
valueImage Algorithm k Optimal thresholds SD Mean PSNR

Run
time

Cameraman PSO 2 7.20, 9.40 1.13 4.80 6.11 4.37 16.98

3 1.66, 2.76, 2.88 2.50 3.70 5.76 2.58 22.47

4 12.33, 14.23, 14.70,
15.16

1.29 9.78 6.47 9.01 28.69

5 0.49, 1.20, 1.31, 1.32,
1.49

3.55 1.35 5.64 0 32.19

GSA 2 215.69, 239.38 0.04 11.42 5.67 11.46 8.18

3 47.81, 62.21, 75.13 0.09 12.89 11.08 12.97 26.59

4 202.04, 204.31,
213.26, 235.82

0.10 18.86 5.72 18.98 31.38

5 102.49, 119.40,
124.01, 154.30,
173.32

0.07 18.69 19.95 18.75 36.76

CPSOGSA 2 2.92, 20.31 0.85 8.68 6.78 8.47 20.45

3 8.09, 12.95, 14.11 1.23 8.93 6.41 8.64 22

4 5.81, 10.11, 13.99,
15.11

1.77 8.99 6.47 8.62 26.89

5 2.05, 6.08, 9.05,
13.25, 31.07

1.66 10.52 7.52 9.91 28.94
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Fig. 15.7 CPSOGSA convergence curve and optimal thresholds at k 5 for cameraman image¼

15.8.5 Simulation Analysis of Truck Benchmark

The truck test image is another benchmark image employed for comparative analysis
of the HAs. Table 15.6 clearly shows that PSNR values of CPSOGSA and GSA are
close to each other that indicates symmetrical performance in handling unknown
solution spaces. Besides, the mean outcomes of CPSOGSA are much better than
PSO. Moreover, yet again CPSOGSA has less computational overhead as compared
to GSA and PSO.
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The intensification of the truck image solution space by CPSOGSA is shown in
Fig. 15.11. It indicates that the fitness values undergo huge variation in fitness values
during the optimization process. The box plots are presented in Fig. 15.12. It is
obvious that GSA has large values for objective function, while PSO and GSA have
small values for median and interquartile ranges indicating appreciable performance.

Table 15.5 Simulation results for clock benchmark

Best
valueImage Algorithm k Optimal thresholds SD Mean PSNR

Run
time

Clock PSO 2 5.03, 5.89 1.45 3.54 2.61 3.32 17.28

3 9.33, 9.54, 9.76 1.07 8.07 2.78 7.78 22.69

4 1.63, 1.91, 2.97, 3.86 2.97 3.78 2.52 3 26.74

5 0.64, 0.97, 1.08, 1.49, 2.40 3.09 1.72 2.43 1 31.87

GSA 2 155.10, 197.79 0.04 12.60 13.05 12.66 14.86

3 170.75, 178.90, 188.72 0.13 16.86 11.68 17.04 26.11

4 154.61, 162.29, 172.98,
183.29

0.08 16.57 12.44 16.63 31.40

5 163.36, 168.14, 177.77,
190.80, 193.39

0.09 18.80 12.32 18.86 37.80

CPSOGSA 2 2.94, 7.93 1.32 6.19 2.70 5.91 15.23

3 7.08, 14.14, 30 1.17 10.89 3.72 10.61 19.65

4 7.97, 15.98, 19.96, 29.90 1.07 12.53 3.72 12.30 24.53

5 7.80, 13.24, 24.20, 46.93,
50.24

0.98 16.51 4.75 16.22 28.94
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Fig. 15.9 CPSOGSA convergence curve and optimal thresholds at k 5 for clock image¼

15.8.6 Summary of Experimental Outcomes

The simulation results confirm that CPSOGSA has better performance than PSO and
GSA as far as convergence speed and computational time are concerned. Moreover,
the PSNR values of CPSOGSA were better than PSO and close to GSA. However,
the optimal threshold values for GSA were efficient as compared to CPSOGSA and
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Fig. 15.10 Box plots of clock benchmark

Table 15.6 Simulation results for truck benchmark

Image Algorithm k Optimal thresholds SD Mean PSNR
Best
value

Run
time

Truck PSO 2 2.79, 2.87 1.83 1.79 7.50 1 16.63

3 0.92, 0.95, 1.32 2.68 0.92 7.34 0 20.88

4 4.25, 25.67, 33.41, 33.99 0.91 12.51 10.29 11.37 25.09

5 3.47, 7.58, 22.65, 23.11,
35.38

0.85 14.24 10.40 14.65 29.72

GSA 2 202.39, 216.28 0.12 9.74 7.27 9.83 19.73

3 80.10, 87.66, 115.98 0.05 14.98 18.34 15.01 26.12

4 113.79, 116.90, 153.13,
165.19

0.11 16.67 12.22 16.61 30.96

5 196.82, 198.19, 212.08,
221.29, 221.80

0.15 18.44 7.27 18.22 37.67

CPSOGSA 2 10.99, 18.74 0.67 7.76 8.84 7.60 15.41

3 6.09, 8.15, 16.95 1.61 7.19 8.66 6.78 19.88

4 2.17, 6.94, 17.97, 23.10 1.17 10.57 9.21 10.07 24.35

5 12.98, 22.09, 30.89, 37.98,
38.83

0.81 15.26 10.83 15.12 29.98

GSA. Another observation that can be deduced from the results is that as the number
of threshold values increases, the computational overhead of PSO and GSA also
increases. However, the run time of CPSOGSA is minimum in all four test image
samples, which was quite surprising to see regardless of its hybrid nature. Moreover,
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¼Fig. 15.11 CPSOGSA convergence curve and optimal thresholds at k 5 for truck image

the SD and mean values of PSO and GSA remained close to each other in three
images except the truck image where there was a significant difference in the values.
To sum up, the CPSOGSA has been quite successful in overcoming exploitation and
run time drawbacks of Kapur’s entropy method.
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15.9 Conclusion and Future Directions

In this chapter, a robust multilevel thresholding algorithm has been proposed,
namely, a constriction coefficient-based on particle swarm optimization and gravi-
tational search algorithm (CPSOGSA), for finding the optimal number of thresholds
in the digital images. Moreover, four standard benchmark images, namely, aero-
plane, cameraman, clock, and truck, from the USC-SIPI database have been utilized
to evaluate the performance of the CPSOGSA for image segmentation. Besides,
Kapur’s method acts as a fitness function for the proposed hybrid approach. The
quality of the segmentation is benchmarked through PSNR value which calculates
the symmetry between sample image and segmented image.

The simulation results clearly indicate that CPSOGSA takes less computational
overhead while finding the best thresholds of the benchmark images. Also,
CPSOGSA has a high speed of convergence as compared to classical PSO. In
addition, standard GSA also shows efficient results for the standard benchmark
images.

As far as the future scope of the CPSOGSA is concerned, firstly, it can be utilized
to find the optimal thresholds in the RGB color images. Secondly, Otsu’s variance
method can be used as an objective function in place of Kapur’s method. Nowadays,
it can be seen that medical data analysis is a very active and fertile application area of
machine learning. Therefore, CPSOGSA can be utilized for thresholding of the
complex medical dataset images. Moreover, the chaotic version of CPSOGSA can
also be explored for the segmentation task.
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Key Terms and Definitions
Heuristic algorithm (HA): A HA is basically an optimization algorithm that finds

the global optimum solution after going through successive changes in the vari-
ables. In other words, HA finds the feasible regions of the solution space where
probability of finding the optimal candidate solutions is very high.

Image segmentation (IS): It is the process of dividing the test image into various
regions to remove the complexity and ambiguity from the image. In other words,
IS helps in comprehending the features and information contained in an image.

Multilevel thresholding (MT): It is the process of finding the most suitable
thresholds in the test image histogram. There are two main methods in MT,
namely, Kapur’s entropy and Otsu’s between-class schemes.

Peak signal-to-noise ratio (PSNR): It is a popular performance metric used in the
image analysis. It indicates the similarity between the input sample image and
output optimized image.
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Chapter 16
An Overview of the Performance of PSO
Algorithm in Renewable Energy Systems

Omar Hazem Mohammed and Mohammed Kharrich

Abstract An increase in the penetration of renewable energy sources in the elec-
trical production has been matched by the emergence of many and varied challenges
and problems. Among the most important challenges is finding the smart technolo-
gies and algorithms which are capable of achieving efficient solutions. This chapter
provides an expanded view of the uses of the particle swarm optimization (PSO)
algorithm in the renewable energy systems field. Additionally, it describes how the
algorithm can be developed to cope with problems related to renewable energies to
achieve desired goals. The PSO algorithm was used to solve many problems in the
renewable energy systems, such as in optimal hybrid power systems, optimal sizing,
and optimal net present cost, among others, where the PSO algorithm showed its
high adaptability in problem-solving. Further, many researchers proceeded with the
study and development of the PSO algorithm. In contrast, other researchers tried to
hybridize it with different algorithms to be more efficient and convenient to over-
come some of the problems and challenges that they encountered. The renewable
energy systems have several issues to discuss, such as the cost of investment, the
feasible technical criteria, optimal control, and the ecological problems as well as the
social effect. Overall, studies and research have proven that the PSO algorithm is one
of the best algorithms used in the field of renewable energy. This is attributed to the
algorithm’s simplicity, high efficiency, and effectiveness compared to other algo-
rithms and optimization methods.
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16.1 Introduction

The twentieth century has witnessed a tremendous amount of human progress in
various fields, including energy. This follows the accumulation of knowledge and
scientific progress made at the beginning of the twentieth century to the present.
Among the most important of these advances is technological progress and the need
to develop technologies to solve complex issues in all scientific fields. As a result,
this led to an urgent need in the search for new and smart algorithms to keep up with
the times. The field of renewable energy, like other important areas, has witnessed
unprecedented development in the past decades and is now a recent topic of action
and has more interest in the world. Many researchers used various techniques,
methods, and algorithms to solve and mitigate different problems in the renewable
energy domain such as meteorological prediction, system configurations, design and
sizing problems, and dispatch problems, among others. While the PSO algorithm is
always an efficient and useful metaheuristic algorithm, it’s easy to be adapted in
order to resolve these problems. The PSO algorithm is one of the most important
metaheuristic algorithms and is used to resolve complex problems. Many renewable
energy problems are treated using the PSO algorithm; herein, an overview of the
PSO algorithm uses in different renewable energy fields are presented.
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Optimization methods were limited and constrained because of a series of
developments in this area in the mid-twentieth century. Dantzig developed the
simplex method in 1947 to solve linear programming problems. Moreover, Bellman
in 1957 employed the principle of optimality to solve dynamic programming
problems. Subsequently, several contributions were presented, such as Kuhn and
Tucker in 1951 on the necessary and sufficient conditions for the optimal solution for
nonlinear programming. Zoutendijk and Rosen also made important contributions.

However, Dantzig, Charnes, and Cooper developed stochastic programming
techniques and solved problems by assuming that the design parameters were
independent and normally distributed. Charnes and Cooper in 1961 proposed the
programming of the objectives for linear problems. Recently, modern optimization
methods have emerged as powerful and popular methods of solving complex
problems, especially in the engineering field. These methods include genetic algo-
rithms, simulated annealing, particle swarm optimization, and ant colony optimiza-
tion, among others (Yang, Chen, & Zhao, 2007).

The particle swarm optimization (Kennedy & Eberhart, 1995) is a metaheuristic
algorithm inspired by the social behavior of bird flocking or fish schooling. The PSO
algorithm was and is still very popular and has been extended to the MOPSO which
is able to deal with multi-objective problems using an external memory and a
geographically based approach for maintaining diversity (Coello Coello & Lechuga,
2002). The PSO popularity serves it to be the principal algorithm used in hybridi-
zation with multiple algorithms such as PSO-GWO (Şenel, Gökçe, Yüksel, & Yiğit,
2019), HEA which is a hybrid algorithm of the PSO and GA (Yang et al., 2007),
PSO-SA (Idoumghar, Melkemi, Schott, & Aouad, 2011), and PSO·BFO (Liu
XiaoLong, Li, & Ping, 2010).
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The PSO has been improved in order to obtain more efficiency for the mono-
objective functions. In (Bansal et al., 2011), the authors proposed multiple strategies
of the inertia weight parameter of the PSO, which significantly affects the conver-
gence and exploration-exploitation trade-off in the PSO process besides the multi-
objectives. In (Mahfouf, Chen, & Linkens, 2004), the authors proposed a modified
PSO to improve its performance using an adaptive inertia weight and acceleration
factor to enhance the search capabilities. In addition, a weighted aggregation func-
tion was introduced to guide the selection of personal and global best solutions.

The authors in (Sedighizadeh & Masehian, 2009) provided an overview of the
pre- and post-conditions of the PSO algorithm as well as the opportunities and
challenges. The history of this algorithm, its various methods, and its classification
are discussed, and its various applications are evaluated along with an analysis of
these applications.

In the last decade, the topic of renewable energy has been a trending topic, which
is characterized by huge parameters and technological input. Additionally, lots of
software and smart algorithms have been developed and used to solve complex
issues in renewable energy domains. The PSO algorithm has been adopted in a lot of
research and studies to solve renewable energy problems, and it has proven its
effectiveness compared to the new metaheuristic and smart algorithms used to
solve most complex problems, especially when it is applied to renewable energy
systems (Alshammari & Asumadu, 2020; HassanzadehFard & Jalilian, 2018; Keles,
Alagoz, & Kaygusuz, 2017; Mozafar, Moradi, & Amini, 2017). The authors in
(Kharrich, Sayouti, & Akherraz, 2018a) used the PSO to find the optimal sizing of
a hybrid microgrid based on photovoltaic, wind, diesel, and battery energy storage
systems. This hybrid microgrid was designed using the MOSPO, respecting envi-
ronmental and economic factors (Kharrich, Sayouti, & Akherraz, 2018b).

In (Khaled, Eltamaly, & Beroual, 2017), the authors applied the PSO algorithm in
power flow to avoid the voltage collapse problems by adding renewable energy in a
30-bus IEEE system. In (Yousif et al., 2018) the authors handled the PSO algorithm
for a scheduling strategy of a microgrid system, while authors in (Zhao et al., 2019)
adopted the PSO to simulate and calculate the pricing strategy model in order to find
the optimal price of the microgrid market transactions and the optimal benefits of
sellers. The authors in (Kharrich, Hazem Mohammed, Suliman, & Akherraz, 2019)
introduced a recent review of the optimal sizing methodologies for the hybrid
renewable systems that entails a decisive comparison among single and hybrid
algorithms and software tools applied for optimal sizing of hybrid microgrid sys-
tems. Furthermore, an assessment was achieved for all the possible technical,
economic, environmental, and social indices.

The authors in (Mansouri Kouhestani et al., 2020) tried to achieve the optimal
economic and sizing of hybrid renewable system configuration by developing a
strategy based on the PSO algorithm. The system consisted of PV, wind turbines,
and a battery, taking into consideration environmental, reliability, and economic
factors. In (Singh, Chauhan, & Singh, 2020), the authors proposed applying colony
algorithm, particle swarm optimization, and a hybrid of both to design a hybrid
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to supply an electrical load demand in India.
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The rest of this chapter presents an overview of the different enhancements and
improvements as well as the importance still accorded to the PSO algorithm and its
application in renewable energy systems. This chapter is arranged as follows: Sect.
16.2 presents optimization by using the particle swarm algorithm. Section 16.3
presents the optimization of renewable energy systems. Section 16.4 presents the
PSO algorithm and its application in renewable energy systems. Finally, this chapter
ends in the Conclusions section extracted from this work.

16.2 Optimization by using Particle Swarm Algorithm

The particle swarm optimization (PSO) is a stochastic and metaheuristic algorithm,
developed by Kennedy and Eberhart in 1995. The PSO is a nature-inspired algo-
rithm, motivated by swarm behaviors such as birds or fishes. The PSO algorithm is
based on the displacement of the particles; each displacement is characterized by
defining the actual position and the velocity of each particle, and the position and
velocity are expressed in Eqs. (16.1) and (16.2). Herein, Fig. 16.1 presents the
flowchart of the PSO, which contains the different steps of optimization. We can
generally summarize it in the following steps (Lazinica, 2009; Olsson, 2010):

Step 1: Input the parameters of the system, constraints, and limitations.
Step 2: Initialize the PSO algorithm settings.
Step 3: Set the iteration number equal to zero, and initialize the population of

particles with random values (positions and velocities on dimensions).
Step 4: The objective functions of each particle are calculated and compared with

the individual best value, the best Pb values are rearranged based on higher
values, and the recent position of the particle is always recorded.

Step 5: Elect the particles associated with the best individual fitness value is
known Pbest for all particles, and define the value of Pbest as the overall Gbest

Fig. 16.1 The search
technique of the PSO
algorithm. Source: Authors’
own creation
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indicates to the global best position which reached by all the individuals of the
population.

Step 6: Modernize the position and velocity of each particle.
Step 7: If the number of iterations reaches the final limit, go to Step 8; contrarily,

begin the iteration index as equal to zero, and go to Step 4.
Step 8: The best particle expressed by Gbest provides the optimal solution to the

problem.

Vi t þ 1ð Þ ¼ w Vi tð Þ þ c1r1 tð Þ Pbest ið Þ tð Þ – Xi tð Þ
( )þ c2r2 tð Þ

× Gbest ið Þ tð Þ – Xi tð Þ
( ) ð16:1Þ
Xi χViþð Þ ¼ ð Þ þ þð Þ ð Þ

where:
c1 and c2 represent the acceleration constants that attract each particle

towards PBEST and GBEST positions.
r1 and r2 represent random real numbers dragged from [0, 1].
Xi and Vi represent the position and speed of the particle (i) in the study space.
w is the inertia weight which can be calculated randomly by Eq. (16.3) or

proposed by a constant value such as (0.7). Alternatively, there are many techniques
to estimate the inertia weight such as adaptive inertia weight, sigmoid increasing
inertia weight, sigmoid decreasing inertia weight, and chaotic inertia weight, among
others (Bansal et al., 2011).

χ is the constriction factor and results in the fast convergence of the particles over
time and can be calculated by Eq. (16.4).

Figure 16.1 presents the search technique of the PSO algorithm in a
multidimensional search space (Alam, 2016).

w ¼ 0:5þ rand
2

ð16:3Þ

χ ¼ 2

2– φ–
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 – 4φ

p⎹⎹⎹
⎹⎹⎹
,φ ¼ c1 þ c2 ð16:4Þ

16.3 The Optimization of Renewable Energy systems

The field of renewable energies is one of the modern fields that is developing rapidly.
Consequently, it is difficult to limit it to a chapter; hence, this section focuses on
some of the issues related to the optimization of renewable energy systems. The step
of choosing the method to achieve optimization is one of the most important steps



that must be chosen carefully in order to reach an optimal solution to any problem in
renewable energy systems.
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The objectives of renewable energy systems vary to reach the optimal solution
and achieve the goal function, whether by increasing or decreasing while respecting
the different restrictions and conditions. Various criteria are considered to optimize
renewable energy systems. These criteria are generally be classified as technical,
economic, and controlling criteria.

16.3.1 Technical Criteria

Technical criteria include optimizing the technical objectives when designing renew-
able energy systems. The criteria include factors such as improving the efficiency of
the renewable energy system, increasing their reliability, and maximizing the power
availability. It also comprises environmental goals such as reducing harmful emis-
sions that cause global warming and increasing the participation of renewable
energies in the electric power generation system.

16.3.2 Economic Criteria

Economic criteria are one of the most important criteria for establishing optimal and
cost-effective design of renewable energy systems. The criteria focus on reducing
the total cost of renewable energy systems, minimizing the net present cost (NTPC),
optimizing average generation cost, and reducing the cost of energy production
(levelized cost of energy (LCoE)). Other objectives are minimizing the annual
cost, capital cost, and maintenance and replacement cost, reducing the total cost of
the system life cycle, and all cost-related optimizations such as buying and selling
clean energy.

16.3.3 Control Criteria

The control criteria are conducted through optimal control of renewable energy
systems. It includes various goals such as optimal energy management, optimal
hybrid system allocation and placement, optimal control of the smart grid, and
optimal maintaining of stability of power factor. Other objectives are improving
the level of current and voltage of the system, reducing harmful harmonics in the
supplied power, and optimal controlling of active and reactive power, optimal power
flow, optimal VAR control, optimal dispatching model, and optimal CEED model,
among others.
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16.4 PSO Algorithm and its application in Renewable
Energy systems

The unique abilities of the PSO algorithm have been exploited in various researches
to resolve some of the problems in the field of renewable energy. In addition, optimal
solutions have been achieved for many different goals of renewable energy systems,
which have been mentioned in the previous section.

The results proved that the PSO algorithm has high efficiency in reaching the
optimum solution in a short time compared to other algorithms. It is also useful in
solving complex issues where optimization of renewable energy systems has been
achieved, taking into account different goals and criteria such as technical, eco-
nomic, and control criteria. In general, we can divide the exploitation of the PSO
algorithm to reach the optimization in renewable energy systems into two categories:

1. The first category of researches is to use the classical PSO algorithm, where the
algorithm is used alone without developing or improving its properties. As an
example, in (Bouakkaz, Haddad, Martin-Garcia, Mena, & Castañeda, 2019), the
standard PSO algorithm has been employed to schedule the household appliances
in the stand-alone hybrid energy system to reduce and save the energy consump-
tion cost. Many of scientific studies and researches with different aims and
various subjects in renewable energy systems are tabulated in Table 16.1.

2. The second category is to take advantage of the PSO algorithm after developing
and improving its properties or hybridizing it with other algorithms. These
methods help to improve its capabilities in solving more complex problems that
may also include multiple objects. As an example, in (Gholami & Dehnavi,
2019), the particle swarm optimization algorithm is modified for the optimal
power-sharing among numerous renewable energy systems as wind/PV/com-
bined heat and power plants within a microgrid system with the aim of cost
minimization with and without load uncertainty. Many of researches with differ-
ent aims and various subjects in renewable energy systems are tabulated in
Table 16.2.

In general, it is possible to summarize the employment of the PSO algorithm to
solve the problems of renewable energy systems in the following steps:

1. Initialization of parameters and site data under study such as weather and location
data, wind speed, tidal speed, temperature, solar radiation, humidity, and other
weather parameters.

2. Modeling and configuring parameters for renewable energy system elements such
as the characteristics of solar panels, wind turbines, tidal turbines, storage system,
and battery characteristics and modeling of all renewable energy elements used in
renewable energy generation.

3. Determining the objectives of the project and the feasibility of its establishment
and including all conditions and restrictions required.

4. Initializing the parameters and particles of the swarm algorithm for birds to
represent all variables, goals, and constraints required in the algorithm.
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Table 16.1 Application of PSO in renewable energy systems

Objective
function

PSO Wind/tidal/PV/
battery

Optimal design – TNPC Mohammed, Amirat,
and Benbouzid (2019)

PV/battery on
grid

Optimal control
Operations of a
BESS

– Cost to charge
the battery from
RE

Hossain, Pota, and
Moreno (2019)

Wind/PV/
battery

Optimal eco-
nomic dispatch

– Social welfare Eladl and ElDesouky
(2019)

Wind farms Optimal active
power dispatch

– Captured power
– Fatigue
distribution

Liao et al. (2020)

Wind system Optimal control – Pitch angle Ben Smida and Sakly
(2019)

Wind system Optimal design – Wind turbine’s
blade

Ma, Zhang, Yang, Hu,
and Bai (2019)

PV/wind tur-
bine/batteries/
diesel generator

Optimal schedul-
ing of household
appliances

– Energy saving
– Reducing con-
sumption
– Optimal
scheduling

Bouakkaz et al. (2019)

Wind farms Optimal
placement

– LPC Hou, Hu, Soltani, and
Chen (2015)

– PV/wind/die-
sel/battery
– PV/tidal/bio-
mass/battery
– PV/biomass

Economic and
technical
assessment

– NPC Mohammed Kharrich,
Mohammed, and
Akherraz (2019)

Battery/
microgrid
system

Optimal real-time
energy
management

– Optimum
energy control
– Energy man-
agement
– Cost of charging
and discharging
of energy

Hossain, Pota,
Squartini, and Abdou
(2019)

PV/wind/MHP/
biomass

Optimal sizing – Optimal total
annual cost
– Power
reliability

Chauhan and Dwivedi
(2017)

PV/wind/
biomass

Optimal sizing – Techno-
economic feasi-
bility
– Cost of energy
(COE)
– LPSP

Sawle, Gupta, and
Bohre (2017)

PV/wind/diesel/
battery

Optimal design – NPC Mohammed Kharrich,
Mohammed, and
Akherraz (2020)



Table 16.2 Improved version of PSO and its application

Algorithm Power system Subject Refs.
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Objective
function

DNN-
RODDPSO

Solar system Accurate pre-
dictive model

– MSE Ali Jallal, Chabaa, and
Zeroual (2020)

WIPSO Wind/solar/wave
energies

Optimal
allocation

– Eco-statistic Masoumi, Ghassem-
zadeh, Hosseini, and
Ghavidel (2020)

MPSO – PV/wind/battery
– PV/wind/on grid

Optimal
design

– TIC Hassan, Saadawi,
Kandil, and Saeed
(2015)

PSO-based PV/wind/battery/
diesel

Optimum size – System cost Mohamed, Eltamaly,
and Alolah (2016)

PSO-based PV/wind/battery/
grid

Optimal sizing – System cost
– Environmental
emission
– Purchase elec-
tricity
– The reliability

Mansouri Kouhestani
et al. (2020)

MPBPSO Wind/PV/CHP Optimal
schedule

– System cost Gholami and Dehnavi
(2019)

GPSOA Wind/thermal Optimal
CEED model

– Fuel cost
– Emission

Jiang, Zhang, Wu, and
Chen (2019)

SIP-CO-
PSO-ERS

FC/PV/wind/MT/
diesel/battery

Optimal
dispatching
model

– OMC
– PDE
– LCC

Wang, Zhou, Ren, and
Liu (2017)

CPSO Wind/diesel Optimal VAR
control

– Real power
loss

Hong, Lin, Lin, and
Hsu (2013)

CPSO Solar/wind/battery Optimal
hybrid system

– System cost
– Environmental
emission

Khare, Nema, and
Baredar (2017)

MOPSO Solar/wind/on grid Renewable
penetration

– Payback year
– Power loss
– Voltage
stability

Kayal and Chanda
(2015)

MOPSO PV/CSP/ORC/
TES/battery/LPG

Optimal
design

– Minimum tar-
iff
– Propane
consumption

Sigarchian, Orosz,
Hemond, and
Malmquist (2016)

PSO-GWO PV/wind/BSS/
diesel

Optimal
design
Optimal size

– Cost-effective
– CO2
emissions

Abdelshafy, Hassan,
and Jurasz (2018)

MOPSO Wind/diesel/
battery

Optimum size – Net present
cost
– Energy not
served

Abdoos and Ghazvini
(2018)

MOPSO Hydraulic/gas/
thermal

Load shedding – Lowest swing
frequency
– Amount of
dropped load

Hafez, Hatata, and
Abdelaziz (2019)

(continued)



Algorithm Power system Subject
Objective
function Refs.
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Table 16.2 (continued)

MOPSO PV/wind/energy
storages (ESS)

Optimal
design

– TPC
– LPSP

Kiptoo et al. (2019)

Nested
MOPSO

Wind/PV Optimal sizing
Optimal power
flow

– System cost
– Transmission
line
– Losses
– Environmental
emission

Eltamaly and Al-Saud
(2018)

Advanced
MOPSO

Wind/solar/bio-
mass/capacitor
banks

Optimal place-
ment and
sizing

– Power loss
– Voltage stabil-
ity
– Voltage
deviation

Kumar,
Nallagownden, and
Elamvazuthi (2017)

DMOPSO PV/wind/diesel/
battery/FC/
electrolyzer/H2
tank

Optimal
design

– NPC
– CO2 emis-
sions
– Loss of load
probability

Sharafi and
ElMekkawy (2014)

IBBMOPSO Solar system Optimal
design

– Output power
– Thermal effi-
ciency
– Entropy yield

Niu, Wang, Sun, and
Yang (2019)

PSO-SVR Wind Power Optimal wind
power
prediction

– Wind speed
prediction
– Wind power
prediction
– Combination
model

Zhang, Sun, and Guo
(2019)

Fuzzy-PSO Photovoltaic
system

Maximum
power point
tracking in PV

– Optimal
parameter con-
trol in PV
– Optimal
design and intel-
ligent controller

Soufi, Bechouat, and
Kahla (2017)

5. Exploiting the algorithm to reach optimization by applying the rules of the PSO
algorithm to all variables and characteristics of the renewable energy system
represented by flying particles and updating their speed and distance covered to
determine the objective function to reach the optimal solution.

6. Repeating the previous step and evaluating the results after each repetition after
calculating the objective function until the program reaches the proposed con-
vergence value or the number of proposed iterations and the optimum particles
that represent the optimal solution that will be stored at the end of the program.

Finally, the characteristics of the PSO algorithm can be improved in solving
complex multi-objective problems by developing its capabilities programmatically



or hybridizing it with other algorithms, which studies have proven to increase their
efficiency and their ability to reach the optimal solution.
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16.5 Conclusion

The rapid development taking place in the field of renewable energy in general and
the field of renewable energy systems in particular has led to the emergence of many
complex problems that need the application of smart algorithms to provide the
optimal solutions. Many smart technologies and algorithms have been proposed to
solve problems related to renewable energy systems. One of the most important of
those algorithms is the PSO algorithm. Various researchers and scientists have
focused on solving problems associated with renewable energy systems, especially
in hybrid energy systems. PSO uses are summarized around three main axes:
economic, technical, and control, and it has proven its best capabilities and high
efficiency by reaching the optimum solutions with great convergence rate.

Among the most important advantages of the PSO algorithm are as follows:

– Has a lot of ease and flexibility.
– Has high competence and credibility in finding the optimal solutions.
– Able to perform a parallel calculation.
– Has a few parameters to set.
– Can be smart and powerful.
– Has the capability to reach into the optimal solution in a short time.
– Can be developed and studied with the possibility of improving and hybridizing it

with new algorithms in light of the increasing challenges in renewable energy
systems to solve the most complex problems.

However, among the most disadvantages of the PSO algorithm are the following:

– Has difficulty solving scattering problems.
– Can be fooled by the local minimum, particularly with multiple problems.
– It can be difficult to define basic design parameters.

With all of the above capabilities, the field of the renewable energy system is still
open for many research and studies in the future as well as with regard to integrating
this algorithm with many applications and smart algorithms and technologies to
develop and improve its performance in reaching the optimal solution.

References

Abdelshafy, A. M., Hassan, H., & Jurasz, J. (2018). Optimal design of a grid-connected desalination
plant powered by renewable energy resources using a hybrid PSO–GWO approach. Energy
Conversion and Management, 173, 331–347. https://doi.org/10.1016/j.enconman.2018.07.083.

https://doi.org/10.1016/j.enconman.2018.07.083


318 O. H. Mohammed and M. Kharrich

Abdoos, M., & Ghazvini, M. (2018). Multi-objective particle swarm optimization of component
size and long-term operation of hybrid energy systems under multiple uncertainties. Journal of
Renewable and Sustainable Energy, 10(1), 15902.

Alam, M. N. (2016). Particle swarm optimization: Algorithm and its codes in matlab.
ResearchGate, 8, 1–10.

Ali Jallal, M., Chabaa, S., & Zeroual, A. (2020). A novel deep neural network based on randomly
occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-
axis solar trackers. Renewable Energy, 149, 1182–1196. https://doi.org/10.1016/j.renene.2019.
10.117.

Alshammari, N., & Asumadu, J. (2020). Optimum unit sizing of hybrid renewable energy system
utilizing harmony search, Jaya and particle swarm optimization algorithms. Sustainable Cities
and Society, 60, 102255. https://doi.org/10.1016/j.scs.2020.102255.

Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. (2011). Inertia
weight strategies in particle swarm optimization. 2011 Third World congress on nature and
biologically inspired computing, pp. 633–640.

Ben Smida, M., & Sakly, A. (2019). Smoothing wind power fluctuations by particle swarm
optimization-based pitch angle controller. Transactions of the Institute of Measurement and
Control, 41(3), 647–656.

Bouakkaz, A., Haddad, S., Martin-Garcia, J. A., Mena, A. J.-G., & Castañeda, R. J. (2019). Optimal
scheduling of household appliances in off-grid hybrid energy system using PSO algorithm for
energy saving. International Journal of Renewable Energy Research (IJRER), 9(1), 427–436.

Chauhan, A., & Dwivedi, V. K. (2017). Optimal sizing of a stand-alone PV/wind/MHP/biomass
based hybrid energy system using PSO algorithm. 2017 6th International conference on
computer applications in electrical engineering-recent advances (CERA), pp. 7–12.

Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle
swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No.02TH8600), 2, 1051–1056.

Eladl, A. A., & ElDesouky, A. A. (2019). Optimal economic dispatch for multi heat-electric energy
source power system. International Journal of Electrical Power & Energy Systems, 110, 21–35.

Eltamaly, A. M., & Al-Saud, M. S. (2018). Nested multi-objective PSO for optimal allocation and
sizing of renewable energy distributed generation. Journal of Renewable and Sustainable
Energy, 10(3), 35302.

Gholami, K., & Dehnavi, E. (2019). A modified particle swarm optimization algorithm for
scheduling renewable generation in a micro-grid under load uncertainty. Applied Soft Comput-
ing, 78, 496–514.

Hafez, A. A., Hatata, A. Y., & Abdelaziz, A. Y. (2019). Multi-objective particle swarm for optimal
load shedding remedy strategies of power system. Electric Power Components & Systems, 47
(18), 1651–1666.

Hassan, A., Saadawi, M., Kandil, M., & Saeed, M. (2015). Modified particle swarm optimisation
technique for optimal design of small renewable energy system supplying a specific load at
Mansoura University. IET Renewable Power Generation, 9(5), 474–483.

HassanzadehFard, H., & Jalilian, A. (2018). Optimal sizing and siting of renewable energy
resources in distribution systems considering time varying electrical/heating/cooling loads
using PSO algorithm. International Journal of Green Energy, 15(2), 113–128.

Hong, Y.-Y., Lin, F.-J., Lin, Y.-C., & Hsu, F.-Y. (2013). Chaotic PSO-based VAR control
considering renewables using fast probabilistic power flow. IEEE Transactions on Power
Delivery, 29(4), 1666–1674.

Hossain, M. A., Pota, H. R., & Moreno, C. M. (2019). Real-time battery energy management for
residential solar power system. IFAC-PapersOnLine, 52(4), 407–412.

Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified PSO algorithm for real-
time energy management in grid-connected microgrids. Renewable Energy, 136, 746–757.

https://doi.org/10.1016/j.renene.2019.10.117
https://doi.org/10.1016/j.renene.2019.10.117
https://doi.org/10.1016/j.scs.2020.102255


16 An Overview of the Performance of PSO Algorithm in Renewable Energy Systems 319

Hou, P., Hu, W., Soltani, M., & Chen, Z. (2015). Optimized placement of wind turbines in large-
scale offshore wind farm using particle swarm optimization algorithm. IEEE Transactions on
Sustainable Energy, 6(4), 1272–1282.

Idoumghar, L., Melkemi, M., Schott, R., & Aouad, M. I. (2011). Hybrid PSO-SA type algorithms
for multimodal function optimization and reducing energy consumption in embedded systems.
Applied Computational Intelligence and Soft Computing, 2011, 138078. https://doi.org/10.
1155/2011/138078.

Jiang, S., Zhang, C., Wu, W., & Chen, S. (2019). Combined economic and emission dispatch
problem of wind-thermal power system using gravitational particle swarm optimization algo-
rithm. Mathematical Problems in Engineering, 2019, 5679361.

Kayal, P., & Chanda, C. K. (2015). A multi-objective approach to integrate solar and wind energy
sources with electrical distribution network. Solar Energy, 112, 397–410.

Keles, C., Alagoz, B. B., & Kaygusuz, A. (2017). Multi-source energy mixing for renewable energy
microgrids by particle swarm optimization. 2017 International Artificial Intelligence and Data
Processing Symposium (IDAP), pp. 1–5.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
Khaled, U., Eltamaly, A. M., & Beroual, A. (2017). Optimal power flow using particle swarm

optimization of renewable hybrid distributed generation. Energies, 10(7), 1013.
Khare, V., Nema, S., & Baredar, P. (2017). Optimisation of the hybrid renewable energy system by

HOMER, PSO and CPSO for the study area. International Journal of Sustainable Energy, 36
(4), 326–343.

Kharrich, M., Hazem Mohammed, O. H. M., Suliman, M. Y., & Akherraz, M. (2019). A review on
recent sizing methodologies for hybrid microgrid systems. International Journal on Energy
Conversion, 7, 17813. https://doi.org/10.15866/irecon.v7i6.17813.

Kharrich, M., Mohammed, O. H. M., & Akherraz, M. (2019). Assessment of renewable energy
sources in Morocco using economical feasibility technique. International Journal of Renewable
Energy Research (IJRER), 9(4), 1856–1864.

Kharrich, M, Sayouti, Y., & Akherraz, M. (2018a). Optimal microgrid sizing and daily capacity
stored analysis in summer and winter season. 2018 4th International Conference on Optimiza-
tion and Applications (ICOA), pp. 1–6.

Kharrich, M., Sayouti, Y., & Akherraz, M. (2018b). Microgrid sizing with environmental and
economic optimization. 2018 Renewable Energies, Power Systems & Green Inclusive Economy
(REPS-GIE), pp. 1–6.

Kharrich, M., Mohammed, O., & Akherraz, M. (2020). Design of hybrid microgrid PV/wind/diesel/
battery system: Case study for Rabat and Baghdad. EAI Endorsed Transactions on Energy Web,
7(26), e7.

Kiptoo, M. K., Adewuyi, O. B., Lotfy, M. E., Senjyu, T., Mandal, P., & Abdel-Akher, M. (2019).
Multi-objective optimal capacity planning for 100% renewable energy-based microgrid incor-
porating cost of demand-side flexibility management. Applied Sciences, 9(18), 3855.

Kumar, M., Nallagownden, P., & Elamvazuthi, I. (2017). Optimal placement and sizing of
renewable distributed generations and capacitor banks into radial distribution systems. Energies,
10(6), 811.

Lazinica, A. (2009). Particle swarm optimization. BoD: Books on Demand.
Liao, H., Hu, W., Wu, X., Wang, N., Liu, Z., Huang, Q., Chen, C., & Chen, Z. (2020). Active power

dispatch optimization for offshore wind farms considering fatigue distribution. Renewable
Energy, 151, 1173–1185.

Ma, Y., Zhang, A., Yang, L., Hu, C., & Bai, Y. (2019). Investigation on optimization design of
offshore wind turbine blades based on particle swarm optimization. Energies, 12(10), 1972.

Mahfouf, M., Chen, M.-Y., & Linkens, D. A. (2004). Adaptive weighted particle swarm optimi-
sation for multi-objective optimal design of alloy steels. International Conference on Parallel
Problem Solving from Nature, 3242, 762–771.

Mansouri Kouhestani, F., Byrne, J., Johnson, D., Spencer, L., Brown, B., Hazendonk, P., & Scott,
J. (2020). Multi-criteria PSO-based optimal design of grid-connected hybrid renewable energy
systems. International Journal of Green Energy, 17, 617–631.

https://doi.org/10.1155/2011/138078
https://doi.org/10.1155/2011/138078
https://doi.org/10.15866/irecon.v7i6.17813


320 O. H. Mohammed and M. Kharrich

Masoumi, A., Ghassem-zadeh, S., Hosseini, S. H., & Ghavidel, B. Z. (2020). Application of neural
network and weighted improved PSO for uncertainty modeling and optimal allocating of
renewable energies along with battery energy storage. Applied Soft Computing, 88, 105979.

Mohamed, M. A., Eltamaly, A. M., & Alolah, A. I. (2016). PSO-based smart grid application for
sizing and optimization of hybrid renewable energy systems. PLoS One, 11(8), e0159702.

Mohammed, O. H., Amirat, Y., & Benbouzid, M. (2019). Particle swarm optimization of a hybrid
wind/tidal/PV/battery energy system. Application to a remote area in Bretagne, France. Energy
Procedia, 162, 87–96.

Mozafar, M. R., Moradi, M. H., & Amini, M. H. (2017). A simultaneous approach for optimal
allocation of renewable energy sources and electric vehicle charging stations in smart grids
based on improved GA-PSO algorithm. Sustainable Cities and Society, 32, 627–637.

Niu, Q., Wang, H., Sun, Z., & Yang, Z. (2019). An improved bare bone multi-objective particle
swarm optimization algorithm for solar thermal power plants. Energies, 12(23), 4480.

Olsson, A. E. (2010). Particle swarm optimization: Theory, techniques and applications.
Hauppauge: Nova Science Publishers, Inc..

Sawle, Y., Gupta, S. C., & Bohre, A. K. (2017). Optimal sizing of standalone PV/Wind/Biomass
hybrid energy system using GA and PSO optimization technique. Energy Procedia, 117,
690–698.

Sedighizadeh, D., & Masehian, E. (2009). Particle swarm optimization methods, taxonomy and
applications. International Journal of Computer Theory and Engineering, 1(5), 486.

Şenel, F. A., Gökçe, F., Yüksel, A. S., & Yiğit, T. (2019). A novel hybrid PSO–GWO algorithm for
optimization problems. Engineering with Computers, 35(4), 1359–1373. https://doi.org/10.
1007/s00366-018-0668-5.

Sharafi, M., & ElMekkawy, T. Y. (2014). A dynamic MOPSO algorithm for multiobjective optimal
design of hybrid renewable energy systems. International Journal of Energy Research, 38(15),
1949–1963.

Sigarchian, S. G., Orosz, M. S., Hemond, H. F., & Malmquist, A. (2016). Optimum design of a
hybrid PV—CSP—LPG microgrid with particle swarm optimization technique. Applied Ther-
mal Engineering, 109, 1031–1036.

Singh, S., Chauhan, P., & Singh, N. (2020). Capacity optimization of grid connected solar/fuel cell
energy system using hybrid ABC-PSO algorithm. International Journal of Hydrogen Energy,
45(16), 10070–10088. https://doi.org/10.1016/j.ijhydene.2020.02.018.

Soufi, Y., Bechouat, M., & Kahla, S. (2017). Fuzzy-PSO controller design for maximum power
point tracking in photovoltaic system. International Journal of Hydrogen Energy, 42(13),
8680–8688.

Wang, F., Zhou, L., Ren, H., & Liu, X. (2017). Search improvement process-chaotic optimization-
particle swarm optimization-elite retention strategy and improved combined cooling-heating-
power strategy based two-time scale multi-objective optimization model for stand-alone
microgrid operation. Energies, 10(12), 1936.

XiaoLong, L., Li, R. J., & Ping, Y. (2010). A bacterial foraging global optimization algorithm based
on the particle swarm optimization. 2010 IEEE International Conference on Intelligent Com-
puting and Intelligent Systems, 2, 22–27.

Yang, B., Chen, Y., & Zhao, Z. (2007). A hybrid evolutionary algorithm by combination of PSO
and GA for unconstrained and constrained optimization problems. In 2007 IEEE International
Conference on Control and Automation (pp. 166–170). New York: IEEE.

Yousif, M., Ai, Q., Gao, Y., Wattoo, W. A., Jiang, Z., & Hao, R. (2018). Application of particle
swarm optimization to a scheduling strategy for microgrids coupled with natural gas networks.
Energies, 11(12), 3499.

Zhang, Y., Sun, H., & Guo, Y. (2019). Wind power prediction based on PSO-SVR and grey
combination model. IEEE Access, 7, 136254–136267.

Zhao, W., Lv, J., Yao, X., Zhao, J., Jin, Z., Qiang, Y., Che, Z., & Wei, C. (2019). Consortium
Blockchain-Based microgrid market transaction research. Energies, 12(20), 3812.

https://doi.org/10.1007/s00366-018-0668-5
https://doi.org/10.1007/s00366-018-0668-5
https://doi.org/10.1016/j.ijhydene.2020.02.018


321

Chapter 17
Application of PSO in Distribution Power
Systems: Operation and Planning
Optimization

Paschalis A. Gkaidatzis, Aggelos S. Bouhouras, and Dimitris P. Labridis

Abstract Being an engineering field, power systems provide an extensive subject
for optimization to be applied upon. Modern power systems have evolved in an
increasingly highly complex system. The liberalization of the energy market and the
introduction of distributed generation and, in particular, distributed renewable
energy resources (DRES) have raised both opportunities and challenges that need
to be tackled. Thus, complex issues related to the operation and planning of the
distribution systems have emerged. Such issues involve many variables and refer to
nonlinear objectives; thus their optimization is significantly based on heuristic
techniques, such as particle swarm optimization (PSO). In this chapter, the imple-
mentation of PSO when contemplating various problems in power systems is
presented. In particular, the utilization of PSO is demonstrated in the optimal
distributed generation placement problem (ODGP), also known as optimal siting
and sizing of distributed generation problem, and in the network reconfiguration
problem. Finally, PSO is implemented in an optimal schedule of electric vehicles
(EVs) charging, providing an apt example of the variety of problems for which PSO
can be utilized and providing useful aid to important decisions, in the field of power
systems.
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17.1 Introduction

Power systems tend to be large, complex, and multivariate systems. Therefore, any
optimization problem applied to any of the three major components of them, that is,
generation, transmission, and distribution (Kothari, 2012), tends to be equally
complex and very difficult to solve, suffering also from the dimensionality curse
(Song, 2013). Optimization techniques are applied also to several aspects of power
systems, such as operation, control, and planning.
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Conventional optimization processes, such as linear programming, have been
deployed for plain and optimal power flow (Alsac, Bright, Prais, & Stott, 1990;
Hyedt & Grady, 1983) or active and reactive power dispatch (Zhu & Irving, 1996).
Nonlinear programming techniques have been used again for providing power flow
solutions, being more accurate than linear but more time-consuming (Sun, Ashley,
Brewer, Hughes, & Tinney, 1984), as well as for the problem of hydrothermal
cooperation scheduling (Kothari, 1989). Additionally, there are problems that
require integer and/or mixed-integer programming approaches, such as the unit
commitment and economic dispatch problems (Chatzivasileiadis, 2018; Defourny
& Terlaky, 2015; Dillon, Edwin, Kochs, & Taud, 1978). Dynamic programming has
been also deemed necessary, when dealing with transmission planning (Partanen,
1990) or reactive power control (Lu & Hsu, 1995).

Apart from the conventional optimization methods, artificial neural network
(ANN) (Dai, He, Fan, Li, & Chen, 1999) and fuzzy logic (Bansal, 2003) are also
among the preferred techniques used to solve several power system problems.

On the one hand, notwithstanding the considerable achievements in conventional
approaches, the latter still have not be applied to fast and reliable real-time
implementations. Thus, significant labor is required to prevent mathematical entrap-
ments, such as ill-conditioning and convergence arduousness. On the other hand,
ANN or fuzzy techniques rely heavily on extensive expert domain knowledge. This
means that they suffer from the expert user’s knowledge in their design and
utilization and moreover the lack of the formal model theory, being vulnerable in
that way to the experts’ depth of knowledge in problem definition (Bansal, 2005).

Metaheuristic techniques on the contrary can access deep knowledge via well-
established mathematical models. There has been a variety of metaheuristic tech-
niques utilized and in equally diverse variety of problems regarding power systems
such as genetic algorithm (GA) in voltage control (Iba, 1994), simulated annealing
(SA) for maintenance scheduling (Satoh & Nara, 1991), and tabu search for fault
diagnosis/alarm processing (Wen & Chang, 1997).

ODGP is another power system problem that has proved quite a challenge itself
(Jordehi, 2016). By strict conditions, ODGP contemplates the best positions, where
the DG units should be connected to the distribution network (DN), and what should
be their size in terms of rated capacity. Distributed generation includes technologies
such as diesel generators (Paliwal, Patidar, & Nema, 2014) and microturbines
(Ismail, Moghavvemi, & Mahlia, 2013), called collectively as conventional DG
units, since they still use fossil fuels to produce electricity; then, there are also



renewable energy sources (RES), such as photovoltaics (PVs) (Palz, 2013), wind
turbines (WTs) (World Wind Energy Association, 2014), and hydroelectric power
plants (HPPs) (Chen, Chen, & Fath, 2015), that use natural resources, such as solar
irradiance, wind, and water kinetic energy, respectively, in order to transform it to
electric energy.
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17.2 Literature Review

A few of the benefits that the integration of the DG in the DN offers are the reduction
of greenhouse gas emissions, more liberated energy strategies, diversity of energy
sources, peak operating cost decrease, network upgrades deferral, reduced power
losses, decreased costs in transmission and distribution, and potential service quality
augmentation towards the end customer (Georgilakis & Hatziargyriou, 2013). How-
ever, all of these, in order to be efficiently applied, require a proper strategic
planning. Otherwise, critical consequences could impact the DN, such as loss
increase (Atwa & El-Saadany, 2011; Gautam & Mithulananthan, 2007), voltage
rise (Schwaegerl, Bollen, Karoui, & Yagmur, 2005; Tu, Yin, & Xu, 2018), reverse
power flow (Delfanti, Falabretti, & Merlo, 2013), and reliability reduction
(Abdmouleh, Gastli, Ben-Brahim, Haouari, & Al-Emadi, 2017; Esmaili, 2013).
Therefore, the siting and sizing of the DGs could greatly affect all of those issues
and thus become significantly important to solve.

The ODGP problem is by its nature mixed-integer nonlinear and therefore quite
complex to solve. Several approaches have been utilized: empirical methods, such as
the “2/3 rule” (Willis, 2000); analytical methods using the exact loss formula (Hung,
Mithulananthan, & Bansal, 2010), loss sensitivity factors, or an improved analytical
technique (Hung & Mithulananthan, 2011); numerical such as gradient search
algorithm (Rau & Wan, 1994), dynamic programming (Khalesi, Rezaei, &
Haghifam, 2011), linear programming (Keane & O’Malley, 2005), and exhaustive
search method (Singh, Misra, & Singh, 2007); and finally metaheuristics techniques
such as GA (Soroudi & Ehsan, 2011), differential evolution (DE) (Arya, Koshti, &
Choube, 2012), artificial bee colony (ABC) (Seker & Hocaoglu, 2013), harmony
search (Rao, Ravindra, Satish, & Narasimham, 2012), cuckoo search (CS) (Moravej
& Akhlaghi, 2013), bacterial foraging optimization algorithm (BFOA)
(Mohammadi, Rozbahani, & Montazeri, 2016), grey wolf pack optimization (Sul-
tana, Khairuddin, Mokhtar, Zareen, & Sultana, 2016), ant-lion optimization (Ali,
Abd Elazim, & Abdelaziz, 2016), and particle swarm optimization (PSO) (Prakash
& Lakshminarayana, 2016).

The empirical methods, as previously stated, rely heavily on the experts’ knowl-
edge depth. Moreover, they are restricted in uniformly distributed loads and radial
DNs. As far as the analytical methods are concerned, they are perfectly suited when
one DG is contemplated. However, when more than one is considered for installa-
tion, the problem becomes perplexed enough to solve via analytical methods.
Numerical methods can tackle this issue. However, in order to do so, they either



require several assumptions, such as considering the problem as linear, instead of
nonlinear, or searching exhaustively all the possible solutions in order to retrieve the
optimal one. The former provides a deviation from reality; the latter proves to be
rather time-consuming.
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As for the metaheuristic techniques, they seem to provide several advantages
when contemplating the ODGP: they are not restricted by type or size of the
examined DN, load considered, or DG unit number. Moreover, they do not require
any assumptions, thus solving the problem in its core. The only disadvantage they
present is that being basically random search methods, they require more than one
trial and are susceptible to local minima entrapment (Parsopoulos & Vrahatis, 2002).
Therefore, the solution that they provide in most cases is near-optimal. Despite of
their drawbacks, however, the benefits of using metaheuristics greatly outweigh their
demerits.

This chapter focuses mainly on PSO and how it performs when applied to the
ODGP problem. A comparison of various PSO versions is presented along with
other metaheuristic techniques, in order to further enhance PSO performance.
Additionally, the application of PSO in the combined problems of ODGP and NR
is described. Finally, the application of PSO in the optimal schedule of EVs is
demonstrated.

17.3 ODGP: Problem Determination

In this section the ODGP problem is determined by defining the objective function
and the constraints that are required to be imposed.

17.3.1 Objective Function

As an objective function, the power losses is examined, that is:

Floss ¼ min
Xlk
k¼1

gm,n V2
m þ V2

n – 2VmVn cos –ð Þ⌈ ð17:1Þ

where:

φm φn

⌉

gm, n: Conductance between buses m and n, respectively

lk: Total network line number

Vm, Vn: Buses m and n voltage magnitudes, respectively

φm, φn: Buses m and n voltage angles, respectively
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17.3.2 Constraints

The problem is bound to several constraints, such as technical constraints imposed
by the DN and power flow constraints:

PG,m – PD,m –
Xln
n¼1

Vmj j Vnj j Ym,nj j cos φm,n – φm þ φn

( ) ¼ 0 ð17:2Þ

QG,m – QD,m þ
Xnn
n¼1

Vmj j Vnj j Ym,nj j sin φm,n – φm þ φn

( ) ¼ 0 ð17:3Þ

Voltage and line limits:

Vmin
m ≤ Vm ≤ Vmax

m ð17:4Þ
S j ≤ Smax

j ð17:5Þ

where:

PG, m, QG, m: Bus m active and reactive power generation, respectively

PD, m, QD, m: Bus m active and reactive power demand, respectively

ln: Total network node number

Ym, n: Bus admittance element m,n

φm, n: Bus admittance element m,n

Vmin
m , Vmax

m : Bus m voltage lower and upper limits, respectively

Smax
j : Line j thermal limit, by terms of apparent power

There are also constraints with respect to the DG units themselves, such as the
technical operation limits of the DG units considered for installation:

SDGmin ≤ SDGi ≤ SDGmax ð17:6Þ
pf DGmin ≤ pf DGi ≤ pf DGmax ð17:7Þ

And permitted DG penetration constraint, that is:

XmDG

i¼1

SDGi ≤ η ∙ SLoadTotal ð17:8Þ

where:

SDGi :: DG unit apparent power

pf DGi : DG unit power factor
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SDGmin, S
DG
max :: DG unit apparent power lower and upper limits, respectively

pf DGmin, pf
DG
max: DG unit power factor lower and upper limits, respectively

mDG: DG unit total number

η: Desired DG unit penetration level percentage

SLoadTotal: DN total load

17.4 Penalty Function Formulation

Generally, either deterministic or stochastic techniques have been utilized to solve
optimization problems bound by constraints. Deterministic approaches, for example,
feasible direction and generalized gradient descent, require strict mathematical
properties for the objective function, such as continuity and differentiability. In
addition, using analytical techniques to solve the ODGP problem could prove to
be complex and time-consuming (Del Valle, Venayagamoorthy, Mohagheghi,
Hernandez, & Harley, 2008) or be confined to solutions towards installing only
one DG unit. However, these properties are not always present or easily employed.
In those cases, evolutionary computation offers a reliable alternative option. Most
evolutionary techniques, though, have been primarily designed to address
unconstrained problems. Therefore, constrained handling techniques are usually
accompanying the implementation of evolutionary techniques in order to detect
and avoid any infeasible solutions. The most common practice dictates the use of
a penalty function. Despite its disadvantages, if a proper calibration of the penalty
parameters is undertaken, it performs rather efficiently (Parsopoulos & Vrahatis,
2007). To that end, constraints are expressed using penalty terms that in turn are
incorporated into the objective function. This leads to the formulation of the penalty
function. The latter penalizes any infeasible solutions as follows:

P xð Þ ¼ f xð Þ þ O xð Þ ð17:9Þ

O xð Þ ¼ o g2 xð Þ þ max 0, h xð Þð Þ½ ]2
on

ð17:10Þ

where:

P(x): Penalty function

f(x): Objective function

O(x): Penalty term

o: Penalty factor

g(x): Related equality constraints

h(x): Related inequality constraints
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Thus, in the case of the ODGP problem and using, for the sake of argument only,
the Floss as the objective as expressed in Eq. (17.1) and the DN technical constraints,
that is, the equality constraints as defined in Eqs. (17.2) and (17.3) and inequality
constraints as defined in Eqs. (17.4)–(17.8), the updated penalty function is
expressed as:

P xð Þ ¼ min Floss þ OP þ OQ þ OV þ OLð Þ ð17:11Þ

where OP and OQ refer to the equality constraints:

OP ¼ oP
Xln
m¼1

PG,m – PD,m –
Xln
n¼1

Vmj j Vnj j Ym,nj j cos φm,n – φm þ φn

(( ) ð17:12Þ

OQ ¼ oQ
Xln
m¼1

× QG,m – QD,m þ
Xln
n¼1

Vmj j Vnj j Ym,nj j sin φm,n – φm þ φn

((
ð17:13Þ

and OV and OL to inequality constraints:

OV ¼ oV
Xln
m¼1

max 0,Vmin
m – Vm

( ){ }2 þ oV
Xln
m¼1

max 0,Vm – Vmax
m

({ 2 ð17:14Þ

OL ¼ oL
Xlk
j¼1

max 0, S j – Smax
j

	⎛ ⎞n o2
: ð17:15Þ

As it can be easily deduced, any other constraints such as Eqs. (17.6), (17.7), or
(17.8) can be incorporated in Eq. (17.11) via the same process.

17.5 PSO Analysis

17.5.1 General

In this section the PSO algorithm is presented, as addressed and appropriately
adjusted, in order to contemplate the ODGP problem.

PSO has been developed by Kennedy and Eberhart (Eberhart & Kennedy, 1995)
and was inspired by the movement of fish schools or herds of animals that are trying
to find some food source or avoid a potential enemy. Mathematically, the main idea
is that, having defined the feasible solution space, a swarm of particles explores
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Fig. 17.1 PSO velocity
diagram. Source: Authors’
own creation
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it. Their position within the solution space changes with every iteration step, along
with their velocity. This change in velocity consists of three terms:

1. The personal or cognitive knowledge of the solution space, as gathered by each
individual particle.

2. The social knowledge of the solution space that each particle has gathered after
communicating with other particles.

3. Its previous status.

This can be formulated in the following generalized equations:

vh t þ 1ð Þ ¼ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pg tð Þ – Xh

( )
tð Þ ð17:16Þ

Xhð Þt þ 1 ¼ Xhð Þt þ vh t þ 1ð Þ ð17:17Þ

where:

h ¼ 1, . . ., N: Particle number

Xh(t): Current position of particle h

Xh(t + 1): Next position of particle h

v(t): Current velocity of particle h

vh(t + 1): Next velocity of particle h

Ph(t): Personal best

Pg(t): Social best

c1, 2: Weighting factors, i.e., cognitive and social parameters, respectively

R1, 2: Random variables uniformly distributed within [0,1]

This movement is also depicted in Fig. 17.1.
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17.6 Velocity Limits

In order to address the swarm explosion issues, velocity thresholds have been
imposed separately to each dimension of the particle, i.e.:

vmax ,l ¼ bl – al
d

ð17:18Þ

where:

vmax, l: Maximum velocity threshold for dimension l

bl: Upper bound of dimension l

al: Lower bound of dimension l

d: A denominator factor, most commonly equal to 2

17.7 Particle Formulation

With respect to the dimensions of each particle, i.e., the solution space as demon-
strated in Fig. 17.2, these consist of the bus number where the DG unit should be
installed and of the unit size, expressed via its active and reactive rated power.

This particle formulation implies that the solution space is directly proportional to
the number of DG units considered. The number of DG units is considered equal to
the number of buses of the examined DN.

In order to ensure a more rapid convergence, the initially random values of
particle dimensions at the beginning of the optimization process are considered
within certain limits, such as the maximum number of buses in the examined DN
and the operating technical limits of the examined DG units as described in
Eqs. (17.5) and (17.6). This does not prevent the algorithm from retrieving the
optimal solution. Furthermore it provides a more realistic approach, since it filters
infeasible results especially at the first iteration steps.

Additionally, with respect to the algorithm’s termination, two criteria are consid-
ered: a maximum number of iteration steps and a minimum convergence deviation

Fig. 17.2 Solution space formulation of ODGP problem. Source: Authors’ own creation



between current and previous solution that need both to be met in order for the
algorithm to conclude. This way the algorithm is given the opportunity to explore
and exploit even more the solution space, thus augmenting its performance.
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17.8 Reducing Perturbation

The first term of the sum in the second leg of Eq. (17.14), i.e., the previous velocity
term, is the component that describes the previous status of the particle. As that, it
infuses a degree of inertia. However, for the same reason, this term has also been
connected to a certain degree of perturbation. As a result, the local minima entrap-
ment risk is reduced, but at the expense of having the particles oscillate on broad
ranges around the best positions found (Shi & Eberhart, 1998). Two solutions have
been found and applied, that is, the inertia weight and the constriction factor
parameters (Eberhart & Shi, 2000), as presented in the following equations:

vh t þ 1ð Þ ¼ ωvh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2

( )
Pg tð Þ – Xh tð Þ ð17:19Þ

where:

ω tð Þ ¼ ωmax – ωmax – ωminð Þ t
Tmax

ð17:20Þ

where:

ω(t): Current inertia weight

ωmax: Maximum inertia weight

ωmin: Minimum inertia weight

t: Current iteration

Tmax: Maximum iteration number

and:

vh t þ 1ð Þ ¼ ψ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pg tð Þ – Xh

⌉
tð Þ( )⌈ ð17:21Þ

where:

ψ : Constriction factor

Applying these two solutions on a test bus system, i.e., the typical 16-bus system
(Civanlar, Grainger, Yin, & Lee, 1988) presented in Fig. 17.3, bears the results
depicted in Fig. 17.4. For 1000 iteration steps, it shows that the constriction factor
method demonstrates better performance, both in terms of convergence speed and
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Fig. 17.3 Typical 16-bus system. Source: Authors’ own creation
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Fig. 17.4 Convergence comparison of inertia weight (PSO w) and constriction factor (PSO χ).
Source: Authors’ own creation

final solution. Therefore, this scheme proves to be more effective when contemplat-
ing the ODGP problem.
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17.9 Reducing Local Minima Entrapment

17.9.1 Local PSO

In cases of multimodal or extremely complex environments, such as the ODGP
problem, it has been proven that the swarm fragments because of complete diversity
loss (Kennedy, 1999). This indicates that any further exploration of the solution
space is no longer possible, and thus the particles are confined to exploit what
information they already have and converge there. This hindrance can be attributed
to the determination of the Pg(t) term, in the third term of the sum in the second leg of
Eq. (17.14). This term refers to the social knowledge gathered by each particle after
communicating with other particles. If it is determined as the global best, after
creating the global PSO version or GPSO, each particle communicates with all the
other particles in the swarm. This provides great convergence capabilities but leads
to the aforementioned problem, that is, lower exploration of the solution space and
high local minima entrapment risk (Gkaidatzis, Bouhouras, Doukas, Sgouras, &
Labridis, 2017).

However, if the social knowledge is diffused by using smaller overlapping groups
of particles, this problem is being addressed. These smaller groups are called
neighborhoods. There are various schemes under which these neighborhoods can
be formed. One simple and effective schema has proven to be the ring topology
(Hu & Eberhart, 2002; Mendes, Kennedy, & Neves, 2003), depicted in Fig. 17.5 and
described mathematically in Eq. (17.20).

vh t þ 1ð Þ ¼ ψ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pl tð Þ – Xh tð Þð Þ½ ] ð17:22Þ

where:

Pl(t): Local best term

Fig. 17.5 Ring topology.
Source: Authors’ own
creation
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Therefore, instead of using the global best, the local best is used, creating the local
PSO version or LPSO.

17.9.2 uPSO

A comparison between the two, i.e., GPSO and LPSO, leads to the conclusion that
the former has the advantage of fast convergence, which explains the reason of its
broad use. However, it lacks in solution space exploration. Εrgo the final solution
will not be that optimal. The latter, although it provides greater exploration capabil-
ities, lacks in convergence, leading to greater computation times. Therefore, a
question is raised whether a PSO version can be developed by combining these
two, enhancing their merits while avoiding their drawbacks. This has led to the
development of the unified version of PSO, or uPSO, by Vrahatis and Pasropoulos
(Parsopoulos & Vrahatis, 2002) which is described in the following equations:

VG
h t þ 1ð Þ ¼ ψ vh tð Þ þ c1R1 Ph tð Þ – Xh tð Þð Þ þ c2R2 Pg tð Þ – Xh

)
tð Þ(⌈ ⌉ ð17:23Þ

VL
hð Þt þ 1 ¼ ψ vhð Þt þ c1R1 Phð Þtð Þ– Xh tð Þ þ c2R2 Plð Þt – Xh tð Þð Þ½ ] ð17:24Þ

with:

vh t þ 1ð Þ ¼
u f R3V

G
h t þ 1ð Þ þ 1– u f

( )
VL
h t þ 1ð Þ, u ≤ 0:5

u f V
G
h t þ 1ð Þ þ 1– u f

( )
R3V

L
h t þ 1ð Þ, u > 0:5

(
ð17:25Þ

where uf 2 [0, 1] is the unification factor that basically controls the combination
schema of LPSO and GPSO and R3 is an extra random variable uniformly distributed
within [0,1] that is applied alternatively on the GPSO and LPSO terms providing
even further diversity and thus exploration to the technique. The rest of the param-
eters of the equation are the same as before.

17.9.3 Unification Factor Schemes

For the determination of the unification factor value, several processes have been
proposed. They are categorized as swarm- and particle-level schemes, depending on
the level in which the value assignment takes place. In the swarm level, the same
value is provided for all particles. In the particle level, each particle presents its own
scheme.

An approach could be an increasing unification factor, thus infusing exploration
at the beginning of the process, by giving leverage to LPSO, over GPSO, and



gradually shifting the balance towards exploitation, by reversing the initial leverage
(Parsopoulos & Vrahatis, 2005, 2007).
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A few examples are as follows:

1. Linear: as in the inertia weight case, the unification factor is linearly increased, as
described in the following equation:

u f tð Þ ¼ t
Tmax

ð17:26Þ

2. Modular: the unification factor increases in repeated pattern, every z iterations,
which is selected as a reasonable fraction of the total number of iteration steps:

u f tð Þ ¼ tmod zþ 1ð Þ
z

ð17:27Þ

3. Exponential: as stated, in this scheme the unification factor increases
exponentially:

u f tð Þ ¼ exp
t ∙ log 2ð Þ
Tmax

	⎛ ⎞
– 1 ð17:28Þ

4. Sigmoid: the unification factor, in this scheme is increased gradually, i.e.:

u f tð Þ ¼ 1
1þ exp –λ t – Tmax

20

( )⌈ ⌉ ð17:29Þ

A few examples of particle-level schemes are the swarm partitioning (SP) and the
self-adaptive (SA).

In the swarm partitioning scheme, the swarm is separated into nonoverlapping
groups called partitions. In each partition a unification factor value is assigned,
within the range of [0,1], and thus all particles belonging to the same partition
share the same unification factor. Since the swarm is already divided into neighbor-
hoods, due to LPSO, in order to avoid having particles with the same unification
factor in the same neighborhood or, differently, increase the possibility to have
particles with different unification factor values in the neighborhoods, an appropriate
assignment scheme should be adopted. An approach would be to assign the first
k particles to the partitions 1 to k, respectively, and then repeat the process for the
next k particles and so on, thus having particle i in the (1 + (i– 1) mod (k)) partition.

In the self-adaptive scheme, the unification factor is considered as an additional
dimension of the solution space and left to be determined by the optimization
process itself.
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Fig. 17.6 Convergence of linear, SA, and SP uPSO version. Source: Authors’ own creation

An indicative comparison between the linear, SP, and SA, when applied to the
typical test 33-bus system, is demonstrated in Fig. 17.6 (Gkaidatzis, Bouhouras,
Doukas, Sgouras, & Labridis, 2016; Gkaidatzis, Bouhouras, Sgouras, Doukas, &
Labridis, 2016).

SP has been determined as the most promising scheme, providing both better final
solutions and better convergence. This uPSO version is further compared to the two
basic PSO versions, as shown in Fig. 17.7, when applied again in the typical test
33-bus system (Kashem, Ganapathy, Jasmon, & Buhari, 2000) depicted in Fig. 17.8.
It becomes immediately apparent that uPSO indeed presents better performance both
in terms of convergence and final solution than either GPSO or LPSO. From
Fig. 17.7 additionally, the different exploration/exploitation ratios of the two basic
PSO versions become also apparent, since GPSO, though converging fast enough,
seems to be locked in a not optimal value, whereas LPSO, though slow at first, it
reaches a far lower value which mean a far better solution.

17.10 Comparison with Other Heuristic Methods

In this section the evaluation of the PSO version as presented will be examined.
More specifically, a comparative analysis among the PSO versions and how well
they fare against other heuristic techniques such as GA, ABC, CS, and HS is
analyzed. To that end, all the techniques have been given an ample time of 1000
iteration steps, i.e., they have been applied 1000 times. The techniques have been
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Fig. 17.8 Typical 33-bus system. Source: Authors’ own creation

tested upon the IEEE-30 bus system (Yokoyama, Bae, Morita, & Sasaki, 1988),
presented in Fig. 17.9.

In Table 17.1, results regarding the final solution reached by the various heuristic
methods are shown. More specifically, the optimum loss achieved by each method
and the respective percentage of loss reduction are shown. Moreover, the DG
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Fig. 17.9 IEEE-30 bus
system. Source: Authors’
own creation

Table 17.1 Solution performance comparison of PSO with other heuristic techniques

Technique
Minimum power
loss (kW)

Power loss
reduction (%)

Total DG
No.

Total DG installed
(MVA) P+jQ

GPSO 792.85 67.56 8 52.94+j72.24

LPSO 795.06 67.47 8 53.02+j66.08

UPSO 742.10 69.63 12 53.66+j6.68

GA 1267.80 48.12 17 74.43+j35.46

ABC 761.10 68.86 13 50.12+j86.79

CS 947.67 61.22 19 55.71+j67.53

HS 824.24 66.27 10 52.86+j69.61

number for installation are presented and the total DG rated power in MVA, as they
have been proposed by the best solution that each of the methods has reached. It is
immediately evident that because of the adequate provided time, every method has
reached a considerable reduction in losses and the deviations among their reached
results are virtually insignificant. However, GA appears to be performing the least
efficient than the rest. In Table 17.2 results related to the convergence performance
of the various heuristic methods are presented. More specifically, the information
provided concern the average trial execution time and the average iteration number



Fig. 17.10 Solution space formulation for combined ODGP-NR problem. Source: Authors’ own
creation
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required for each method to reach within 10%, 1%, and 0.1% tolerance of the
optimal solution proposed. For example, in uPSO, since its optimal solution amounts
to 742.10 kW, this means that a 10% tolerance amounts to 816.31 kW loss.
Regarding average execution time, requiring an execution time, less than 4 min,
HS seems to perform the fastest. Additionally, another metric is introduced, and that
is an iteration number required for each method to reach a certain amount of loss
reduction. This amount is determined by the average loss reduction reached by the
method that performs the least. This seems to be GA, and the amount is therefore set
to 35.97%. Despite all methods evidently performing efficiently, it appears that the
PSO versions fare rather more efficient than the rest, especially uPSO. With respect
to convergence and iteration steps, for instance, they reached their final solution in
the least amount of time overall.
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Given that, an argument can be made that, though HS seems more efficient than
uPSO, in terms of computation time, the latter can be applied for fewer iterations and
ergo overcome this issue. This is further demonstrated in Fig. 17.10, where each
method’s average convergence of the 1000 trials is shown, and again in Fig. 17.11,
where the same metric is presented, but zooming in particularly within the 10%
iteration tolerance of the best performing technique, being uPSO.

Furthermore, as demonstrated in Fig. 17.12, the PSO versions, and uPSO in
particular, have the least standard deviation convergence along the 1000 iteration
sample. This means that during the 1000 trials, they do not deviate much from each
other, demonstrating their robustness. This also indicates that even less trials are
possible (Gkaidatzis, Doukas, Bouhouras, Sgouras, & Labridis, 2017).

17.11 PSO in Combination to ODGP with NR

In cases of fault occurrences and outages, network reconfiguration (NR) enables the
distribution system operator (DSO) to rearrange the DN layout to continue to
provide the same services. Over the last decades, this originally reliability-oriented
mechanism has been also considered for loss reduction, since it was discovered that a
DN layout modification could alter the loading of the DN lines (Bouhouras,
Gkaidatzis, & Labridis, 2020).
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Fig. 17.11 Typical 69-bus system with tie switches. Source: Authors’ own creation
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Techniques for both the ODGP and NR problems have been regarded as efficient
towards reducing power losses. The means used however in order to achieve this
objective varies, since ODGP aims at the location and size of DG units to be
installed, thus affecting the load composition of the DN, whereas NR aims at
rearranging the DN layout, thus the topology of the DN (Bouhouras, Gkaidatzis,
& Labridis, 2017).

When contemplated individually, the losses are reduced significantly. Therefore,
there is high probability that a combination of them will have a considerable impact
on the reached optimal solution with respect to the total amount of loss reduction. Let
the highest possible loss reduction refer to the ideal 100%. Then, the order at which
these problems are considered affects their contribution towards the solution of the
overall problem. For example, when considering ODGP, a solution with 100% loss
reduction could theoretically be yielded, in the ideal case where DG units are
installed in every bus of the DN and generate the same amount of power requested
by the load at each bus. In that particular case, to consider solving the NR towards
loss reduction is rendered meaningless, since the objective is already achieved.
However, if limited available DG units are considered during the ODGP solving
process, as it is mostly the case, then further examining the NR could achieve more
loss reduction and improve the solution even further.

If the reverse order is contemplated, that is, the NR is examined first and then the
ODGP, then it presents great interest to examine the effect this would have on the
siting and sizing of the DG, since the ODGP problem will now be solved for a
modified DN, that is, with a modified layout, but with the same load composition.
Additionally, it would be of great interest to investigate what the results would be, if
both problems are solved simultaneously, that is, solving both ODGP and NR at the
same time, therefore, formulating the solution space as it presented in Fig. 17.13.

The aforementioned analysis leads to three scenarios to be considered, with
respect to the order of solving ODGP and NR:

• Scn#1: First NR is solved, then ODGP.
• Scn#2: First ODGP is solved, then NR.
• Scn#3: ODGP and NR are solved simultaneously.

The results when using the typical test 69-bus system (Soudi, 2013) are presented
in Tables 17.2, 17.3, and 17.4. Scn#1 seems to bear the more advantageous results,
due to the switching operations relying on the tie switches already in use. This leads
also to less DG capacity required for loss minimization. In Scn#2, as previously
analyzed, it seems hardly possible to reach a NR solution, particularly if the ODGP
problem is solved rather efficiently towards high loss reduction. Finally, in Scn#3,
where both problems are solved simultaneously, the total problem complexity seems
to increase exponentially. The main reason behind this is the fact that the particle
formulation is extended in order to accommodate both the ODGP and the NR
variables, as demonstrated in the following equation:



17 Application of PSO in Distribution Power Systems: Operation and Planning. . . 341

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

16:00 18:00 20:00 22:00 0:00 2:00 4:00 6:00 8:00 10:00

V
ol

ta
ge

 (p
.u

.)

Time (hh:mm)

Initial without Evs Regular EVs Schedule Optimal Evs Schedule

Fig. 17.13 Voltage profile of residence No. 79. Source: Authors’ own creation

Table 17.2 Scn#1

NR
results

Initial
losses
[kW]

Opened
sectionalizers

Closed tie
switches

Loss reduction
%

Final losses [kW]

229.8 14, 58, 62 Tie3–Tie5 54.7 104.1

ODGP
results

Initial
losses
[kW]

DG location
(bus number)

Active DG
power [kW]

Reactive DG
power [kVAr]

Loss reduction % and
final losses [kW]

104.1 5
9

12
22
40
53
56

901.7
241.6
427.4
338.3
0
1416.1
318.5

189.2
177.2
299.6
226.6
536.4
938.2
226.7

93.65%
6.6

Sh, l and Th, j , in contrast with xh, l which is an integer and Ph, l and Qh, l that are
real variables, are basically binary variables. PSO however has been mainly devel-
oped for continuous-valued solution spaces. In order to adjust to these new circum-
stances for these particular set of variables, the velocity and position equations are
updated with the use of the following equations (Engelbrecht, 2007):

vh t þ 1ð Þ ¼ 1
1þ e–υh tð Þ ð17:30Þ
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Table 17.3 Scn#2

ODGP
results

Initial
losses
[kW]

DG location
(bus number)

Active power of
each DG unit
[kW]

Reactive power of
each DG unit
[kVAr]

Loss reduction %
and final losses
[kW]

229.8 2
3
9
12
19
40
53

0
539
0
501.2
380.8
717
1674

–53.2
340
184.9
279.8
251.7
512
1178.8

97.35%
6.1

NR
results

Initial
losses
[kW]

Opened
sectionalizers

Closed tie
switches

Loss reduction % Final losses [kW]

6.1 – – 0 6.1

Table 17.4 Scn#3

DG location
(bus
number)

Active power of
each DG unit
[kW]

Reactive power of
each DG unit
[kVAr]

Opened
sectionalizers

Closed
tie
switches

Loss
reduction
%
Final
losses
[kW]

57 2021.5 849.8 20, 42, 46,
58, 61

Tie1–
tie5

68.28%
72.9

where:

Sh, l: Sectionalizer

Th, j: To tie switch

xh t þ 1ð Þ ¼
1,w <

1
1þ e–vh tþ1ð Þ

0, otherwise

><
>:

ð17:31Þ

where w is a randomly distributed variable within [0,1], adding diversity in the
process.

Due to this additional complexity, the algorithm seems unable to reach an
effective solution. It still requires further examination, to establish if a better solution
in this case is overweighed by the increased computational burden (Bouhouras,
Andreou, Labridis, & Bakirtzis, 2010; Bouhouras & Labridis, 2012).
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17.12 PSO in Optimal Charging Schedule of EVs

17.12.1 EV Integration in DN

The ever-growing integration of electric vehicles (EV) in LV networks (Nour,
Ramadan, Ali, & Farkas, 2018) is expected to greatly affect the conventional load
patterns both of the residential and commercial sectors. Charging the EVs will bear
additional burden especially during the night. The EVs’ owners are most commonly
expected to connect and charge their EVs the moment they arrive at their homes,
which usually occurs at the afternoon or evening. Moreover, they require to depart
with the EV fully charged early in the morning of the next day (Antúnez, Franco,
Rider, & Romero, 2016), especially during workdays. Thus, any random EV
charging not controlled, or monitored, would cause an intense night load peak,
leading this way to significant voltage drops and power quality issues. This issue
can be tackled by employing optimized coordinated EV charging schedules, setting
the time periods within which each individual EV will be charged with the goal to
satisfy an objective function, for example, voltage profile improvement (Zheng,
Song, Hill, &Meng, 2018), cost minimization (Thomas, Ioakimidis, Klonari, Vallée,
& Deblecker, 2016; Wei, Li, & Cai, 2018), energy loss minimization (Zaidi, 2015),
or combination of them.

17.12.2 Problem Formulation

In this case, as an objective function, the voltage improvement is in the epicenter, as
described below (Bouhouras et al., 2018, 2019; Bouhouras, Gkaidatzis, & Labridis,
2018):

Fvi ¼ min
XT total

Δt¼1

Xln
m¼1

1– Vmj j ð17:32Þ

where:

Δt: The time interval considered, e.g., an hour, half-hour, 15 min, etc.

Ttotal: The total time period considered

uPSO is utilized to solve this problem and is applied to the DN, depicted in
Fig. 17.12.

This DN constitutes a section of a Greek rural-residential DN. In each bus a
residence is connected, and in each residence an EV is assigned in turn. For realistic
purposes, variation of types of chargers, EV battery capacity, time of arrival, and
state of charge at the time of arrival has been considered and is presented in
Table 17.5.



344 P. A. Gkaidatzis et al.

Table 17.5 EV parameters

Characteristic Type 1 Type 2 Type 3

EV capacity (kWh) 9.2 16 21.4

Number of nodes 54 (50% of the fleet) 43 (40% of the fleet) 11 (10% of the fleet)

Charger type (kW) 3.3 (1-phase AC) 7.4 (1-phase AC)

Number of nodes 54 (50% of the residences) 54 (50% of the residences)

SoC (%) 20–40

Number of nodes 108 (all residences)

Table 17.6 EV charging schedules for residence No. 79

EV at
Residence
No. 79

04/05/2014

20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00

Regular
charge at
arrival

3.3 3.3 3.3 3.3 2.97 0 0 0 0 0

Optimal
schedule
continuous

0 0 0 3.3 3.3 3.3 3.3 2.97 0 0

Optimal
schedule
intermittent

0 3.3 0 3.3 0 3.3 3.3 2.97 0 0

The DN technical constraints, as they have been described in the previous
sections of this chapter, are taken into account, and the DG technical constraints
are replaced by the EV ones, that is, the charger upper and lower operation limits.
The penalty function formulation remains also the same with that described in
previous sections of this chapter.

For practical purposes though, the EVs are assumed that they arrive no earlier
than 20:00 and require to depart with a full battery until 06:00.

In that particular case, the solution space is a combination of binary and real
variables, as presented in Eq. (17.31), where for each time step considered, e.g., 1 h,
of the total amount of time examined, that is 20:00–06:00, it is to be determined if
m EV will charge or not (bi, Δt ¼ k) and with how much power (Pi, Δt ¼ k).

Xi ¼ bi,m,Δt¼1 ∙Pi,m,Δt¼1, . . . , bi,m,Δt¼k ∙Pi,m,Δt¼k, . . . , bi,m,Δt¼T total ∙Pi,m,Δt¼T total½ ]
ð17:33Þ

This formulation provides the flexibility to examine both continuous and inter-
mittent charging of the EVs, thus offering better EV portfolio management to either
the DSO or the EV aggregator, in terms of day-ahead planning. The optimal
schedule for the EVs of various residences is presented in Tables 17.6 and 17.7.

In Fig. 17.13 the results of the optimal schedule for residence No. 79 are
presented, where the initial voltage profile without any EVs considered (green), a
regular EV charging schedule without optimization considered (red), and an optimal
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Table 17.7 EV charging schedules for residence No. 109

EV at
Residence
No. 109

04/05/2014

20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00

7.4 5.1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 7.4 5.1

Regular
charge at
arrival

Optimal
schedule
continuous

Optimal
schedule
intermittent

7.4 7.4 0 0 0 0 0 0 5.1 0
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Fig. 17.14 Voltage profile of residence No. 109. Source: Authors’ Own Creation

EV schedule (blue) are compared. A significant improvement is shown since voltage
drop is decreased and formed in a smoother manner, i.e., not so abruptly. The same is
evident for residence No. 109, i.e., the furthest residence from the substation, ergo
the one with the most voltage drop, as shown in Fig. 17.14.

17.13 Conclusion and Discussion

In this chapter the applications of PSO in various modern power system problems
have been presented, mainly in the solution of ODGP, either alone or in conjunction
with NR and optimal EV charging schedules. PSO has been concluded as quite
effective to all problems addressed. Moreover, since all of the problems have their
own particular requirements, PSO has shown a considerable range and variety of
applications, adding to its broad utilization and wide adoption by many different



topics, fields, and principles. Provided the dynamic and wide nature of the power
system research sector, there is virtually no limitation as to where else PSO can be
applied. A few examples might be in the ever-growing microgrid sector (Hossain,
Pota, Squartini, & Abdou, 2019), reliability (Yang, Zhang, Ma, Zhou, & Yang,
2019), battery energy storage systems implementation (Yang, Gong, Ma, Wang, &
Dong, 2020), and demand-side management and in particular demand response
portfolio management (Sood, Ali, & Khan, 2020).
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