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Abstract The air quality US EPA models-3 system consisting of SMOKE—
emission model and pre-processor, MM5—meteorological driver, and CMAQ—
chemical-transport model, is used in many studies of the air quality in the Balkan
Peninsula, and in particularBulgaria. It runs in differentmodel resolutions, depending
on the domain, from European to city scale. The EMEP-MSC-W model is another
chemical transport model, widely used in air quality modelling. Two of the processes
involved in the concentration change of some pollutant are the dry and wet deposi-
tions. The air quality modelling capability depends on many factors, for example,
meteorology and emissions. We study the differences in the simulation of the wet
and dry depositions for Nitrogen and Sulphur compounds, between the CMAQ and
the EMEP-MSC-W model for a period of 8 years.
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1 Introduction

The air pollution nowadays forces many countries to take actions for mitigating its
adverse effects on human health. Therefore, we need a lot of information, which is
increasing in recent years. There are already more direct and indirect data connected
to the air quality from different surface-based and satellite-based observing systems.
However, we need to understand the different processes involved in the creation,
transportation, and transformation of the air pollutant species, which help us to under-
stand their distribution at different spatial and temporal scales. The research commu-
nity performs these tasks by air quality models systems, with chemical transport
models as the main component [4–6]. We use one of these systems with the chem-
ical transport model CMAQ, for modeling the air quality in the Balkan Peninsula.
Previous results from air pollution modelling for the Balkan Peninsula and Bulgaria
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are published in a lot of researchworks [7, 13, 17, 21, 21, 22, 26]. The air composition
is formed by several processes, which involve dry deposition, wet deposition, hori-
zontal and vertical advection, horizontal and vertical diffusion, emission, chemical
transformation, aerosol processes, and aqueous chemistry [12, 14]. They interact in
between and determine the air composition at different scales. There are some studies
with CMAQ of the dry and wet deposition and their influence on the precipitation for
Bulgaria [15, 16, 24, 25] for different periods up to twoyears.Another chemical trans-
port model—EMEP-MSC-W is also widely used for air quality studies in Europe
[23]. Is the objective of the research is to study the seasonal differences between long-
term high-resolution simulations with the CMAQ and the EMEP-MSC-W models
of the Nitrogen (N) and Sulphur (S) dry and wet deposition processes in the Balkan
Peninsula for a long-term period.

2 Methodology

The study is based on air quality simulations with two chemical transport models
over the Balkan Peninsula from 2000 to the 2007 year. One of these simulations is
performed with the US EPA Models-3 system, which includes CMAQ (Community
Multiscale Air Quality) model [1, 2, 10], SMOKE (Sparse Matrix Operator Kernel
Emissions Modelling System) [3, 8, 19] and the regional mesoscale meteorological
model MM5. The CMAQ is a numerical chemical transport model for modelling
the different processes and their contribution involved in changing the surface and
airborne gases and aerosols. That model needs three kinds of input information—
initial and boundary conditions, meteorology, and emissions.

We use the regional mesoscale numerical model MM5 for modelling the weather
and climate conditions [11, 18] over the Balkan Peninsula. It is a non-hydrostatic
high-resolution model, providing the needed raw meteorological output for further
processing. We use the nesting capabilities of the MM5, where the output from each
outer domain excluding the last one, is used as input for the smaller one. The first and
the bigger one (D1) is the European domain with background information, provided
from the NCEP Global Analysis Data with 1° × 1 ° (~81 × 81 km) horizontal
resolution. Our research work is concentrated on the domain D3 with horizontal
resolution9kmandgeographically limited to theBalkanPeninsula and someadjacent
territories. Theoutput from theMM5model, need tobe reprocessed to the right format
for ingesting in the CMAQ. For that purpose, we use theMeteorological—Chemistry
Interface Processor—MCIP, which prepares all meteorological input information
CMAQ needs.

The emissions from the large source sources and area sources for the whole
domain excluding Bulgaria and some adjacent territories are ingested from the TNO
high-resolution emission inventory with spatial resolution 0.25° × 0.125° [9] in a
longitude-latitude grid, reprocessed from the 50-km grid of the EMEP (European
Monitoring and Evaluation Programme) database. The emissions for Bulgaria are
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from the National Emission Inventory. The CMAQ needs also from biogenic emis-
sions. They are provided from the emission pre-processor SMOKE. The input infor-
mation is provided from the TNO emissions, the MCIP output, and the land-use
database.

The CMAQ model accounts for the following processes with a different contri-
bution to the changing of the concentration field for each pollutant (1): horizontal
diffusion (HDIF); horizontal advection (HADV); vertical diffusion (VDIF); vertical
advection (VADV); dry deposition (DRYDEP); emissions (EMISS); chemical trans-
formations (CHEM); aerosol processes (AERO); cloud processes (CLOUD). The
solution of the transport and transformation equations gives (2) the mean concen-
tration change of ith pollutant in the first model layer from time t to time t +
Δt.

It is presented as a sum of the contribution of the former processes:
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We focus on the dry and wet depositions modelled by the CMAQ in this study.
The N deposition (3) contains the contribution from NO2 (Nitrogen dioxide), NO
(Nitrogen oxide), NO3 (Nitrogen trioxide), N2O5 (Dinitrogen pentoxide), HNO3

(Nitric acid), HONO (Nitrous acid), ANH4J (Accumulation-mode ammoniummass),
ANH4I (Aitken-mode ammoniummass),ANO3J (Accumulation-modenitratemass),
ANO3I (Aitken-mode aerosol nitrate mass) and NH3 (Ammonia):

Ndeposition = NO2 + NO+ NO3 + N2O2 + HNO3 + HONO

+ ANH4J+ ANH4I+ ANO3J+ ANO3I (3)

The S deposition (4) contains the contribution from SO2 (Sulphur dioxide),
SULF (Sulphate aerosols), ASO4J (Accumulation-mode aerosol Sulphate mass),
and ASO4I (Aitken-mode aerosol Sulphate mass):

Sdeposition = SO2 + SULF + ASO4J + ASO4I (4)

TheCMAQdeposition output is in 1-h frequency. Therefore, we sumup the hourly
values of the N and S components for every day of the simulation, finding the daily
deposition values.

The second model used for comparison with the previous one is with the Mete-
orological Synthesizing Centre-West (MSC-W) of the European Monitoring and
Evaluation Programme (EMEP). It is a chemical transport model [23], a key tool
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involving in the European air pollution policy assessments. In the beginning, the
model covers the whole of Europe with a resolution of about 50 km × 50 km,
with vertical levels up to the tropopause (100 hPa). The model has changed over
the years, adding different features, and currently, his horizontal resolution ranging
from 5 km to 1 degree with 20 vertical levels. In our study, we use a grid size 0.1°×
0.1° (~14 km). The EMEP-MSC-W model runs with meteorological fields from the
numerical weather prediction system ECMWF-IFS Cycle36r1. The model output is
with daily frequency, so the only further post-processing we need is to re-project it
to the CMAQ horizontal resolution with 9 km.

For comparison of the models, we use two kind of error characteristics. The first
is Normalised Mean Bias noted as NMB (5):

NMB =
∑

i M−∑
i E∑

i E
, (5)

and the second is the Mean Bias MB (6):
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∑
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The notions in these equations are i—ith value,M—the output form CMAQ, E—
the output from EMEP-MSC-W. The model simulations are run for the period from
2000 to 2007 years. We calculated the dry and wet depositions for summer (June-
July–August) and winter (December-January–February). The results are revealed
with the multiyear averaged values of the NMB for each grid point and the annual
spatial-averaged values of the bias of the CMAQ output.

3 Results

The results are given for the N depositions and for the S depositions, separated in dry
component, wet component, and total (dry+wet) component. The winter multiyear
average of the S dry, wet, and total depositions (see Fig. 1) reveals the following
features. We can clearly note especially from the dry and the total depositions, the
missing of some of the S sources in one model, but not in the other. The most
noticeable features in the wet depositions are the missing Southern Italy sources in
the CMAQmodel output. There are also other sources available in the EMEPmodel,
but with smaller intensity in the other one. We can see from the sum of dry and wet
deposition shown on the figure, that the TPP Bobov dol, the TPP Pernik, the Sofia
city, the town of Devnia, the Bucharest city and the Istanbul city are noticeable in
the CMAQmodel output, but not in the EMEP-MSC-W output. There are also other
sources in Serbia, Bosnia and Herzegovina and Hungary modelled by the CMAQ,
but not by the EMEP. On the other hand, Zlatna Panega and Southern Italy sources
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Fig. 1 CMAQ (upper row) multiyear average Sulphur dry deposition (left plot), wet deposition
(middle plot) and dry+ wet (right plot) in winter. EMEP-MSC-W (middle row) multiyear average
Sulphur dry deposition (left plot), wet deposition (middle plot) and dry+wet (right plot) in winter.
The dimension of depositions is mg/m2. Normalized mean bias [%] of the CMAQ model (lowest
row) for Sulphur dry deposition (left plot), wet deposition (middle plot) and dry + wet (right plot)
in comparison to the EMEP-MSC-W for winter

show up in the EMEP output, but not in the CMAQone. Thus, the difference between
the CMAQ and the EMEP-MSC-W model is due to the difference in the emission
inventories, the inputmeteorological data, and themeteorological driver output. Their
influence has a considerable effect on the dry and on the wet deposition modelling
capability. The wet deposition in the EMEP-MSC-Wmodel has more intensive local
maximums on larger areas around the corresponding sources.

The influence of themeteorological conditions and the orography is notable also in
the normalizedmean bias field. The normalizedmean bias of the dry and total deposi-
tions over the land areas reaches 50% andmore and only above some of the sources is
negative. The normalized mean bias of the wet depositions has more complex struc-
ture. The CMAQ and EMEP-MSC-W simulate the annual area-averaged winter dry
plus wet Sulphur deposition in a quite similar way from 2001 and 2002, as is shown
in Fig. 3 and Table 1. The difference is increasing in the other years. The winter S



176 G. Gadzhev and V. Ivanov

Table 1 Seasonal area averaged and multiyear area averaged (YA) Sulphur in winter (DJF) and
summer (JJA) (dry + wet) depositions

Year EMEP dry + wet average
S(mg/m2)

CMAQ dry + wet average
S (mg/m2)

Mean Bias of dry + wet S
(mg/m2)

DJF JJA DJF JJA DJF JJA

2000 4.423 2.377 3.89 1.401 −0.54 −0.975

2001 3.459 2.829 3.703 2.357 0.245 −0.472

2002 3.778 3.595 3.626 2.07 −0.152 −1.525

2003 4.041 1.859 4.436 1.68 0.395 −0.179

2004 3.536 2.389 4.237 2.207 0.701 −0.182

2005 3.346 2.092 4.337 2.504 0.991 0.412

2006 3.209 2.081 3.794 2.114 0.586 0.033

2007 2.564 1.793 3.828 1.814 1.264 0.021

YA 3.476 2.258 4.047 2.093 0.571 −0.164

bias is increasing from 2000 to 2007, and is positive, which is easy to suggest from
the area-averaged total depositions and the CMAQ bias for the whole period.

The results for the summer S depositions (see Fig. 2) have similar patterns, but
there are differences. The dry deposition picture show more intensive local sources
from the CMAQ model, than the ones in the EMEP. The sources in the Southern
Italy are recognized by the EMEP model, but the ones from the Istanbul are spread
over a bigger area in the CMAQ output. The summer S wet depositions have smaller
intensity than the winter ones. The summer S wet depositions are bigger in the
EMEP output. Respectively, they are not so intensive around the sources in CMAQ.
The results for the total dry + wet summer S depositions show similar patterns, but
the local sources are more intensive than in the two components. The normalized
mean bias is generally positive for land dry depositions, except in the proximity of
some sources. The results for the wet and total depositions are more similar than
in the winter season, with negative bias in the western part, and positive one in the
eastern part of the Southeastern Europe. The summer total bias does not follow the
orography features, as much as in the winter. Therefore, the main contribution the
normalized mean bias is the dry deposition for the winter, and wet deposition for the
summer. The area-averaged annual total summer S depositions (see Fig. 3), show
negative bias up to 2004 year, and generally non-increasing behavior from 2003 to
2007. These differences could be due to the modelling capability of the circulation
features of the EMEP andCMAQmeteorological drivers, the emission inventories, as
well as the particular meteorological boundary conditions. The interaction of these
factors together with the complex orography of the domain additionally increase
these differences. For example, the differences in the contributions of the deposition
components in the bias, could be due to the stronger liquid precipitation factor in the
summer.

The result for the winter N depositions is shown in Fig. 4. They have different
spatial and temporal features from theSones.As is seen inFig. 4, themodel difference
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Fig. 2 CMAQ (upper row) multiyear average Sulphur dry deposition (left plot), wet deposition
(middle plot) and dry+wet (right plot) in summer. EMEP-MSC-W (middle row) multiyear average
Sulphur dry deposition (left plot), wet deposition (middle plot) and dry+wet (right plot) in summer.
The dimension of depositions is mg/m2. Normalized mean bias [%] of the CMAQ model (lowest
row) for Sulphur dry deposition (left plot), wet deposition (middle plot) and dry + wet (right plot)
in comparison to the EMEP-MSC-W for summer
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Fig. 3 Seasonal area averaged Sulphur in winter (DJF) and summer (JJA) (dry+ wet) depositions
and mean bias of the CMAQ model
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Fig. 4 CMAQ (upper row) multiyear average Nitrogen dry deposition (left plot), wet deposition
(middle plot) and dry+ wet (right plot) in winter. EMEP-MSC-W (middle row) multiyear average
nitrogen dry deposition (left plot), wet deposition (middle plot) and dry+wet (right plot) in winter.
The dimension of depositions is mg/m2. Normalized mean bias [%] of the CMAQ model (lowest
row) for nitrogen dry deposition (left plot), wet deposition (middle plot) and dry + wet (right plot)
in comparison to the EMEP-MSC-W for winter

between the dry depositions appears in the clear overestimation of the CMAQ with
mean normalized bias more than 40%, in contrast to the EMEP-MSC-W. But, there
are some spots of smaller differences and bigger local spatial gradient mainly in the
places with lower altitude. Generally, the wet N depositions have bigger values. It is
more notable in the CMAQmodel output in the northwestern quadrant of the domain.
The CMAQ also show bigger local gradients, especially in the areas around Adriatic
Sea mad Romania. The spatial gradient of the mean EMEP-MSC-W wet deposition
is smaller than the CMAQ one. Their normalized mean bias have a substantial local
gradients, influenced by the orography. The lower terrain forms except Adriatic Sea
are characterized mainly by negative normalized bias, and the higher terrain ones by
positive. As in the case of S depositions, the wet ones have bigger influence on the
total dry plus wet depositions.
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Table 2 Seasonal area averaged and multiyear area averaged (YA) Nitrogen in winter (DJF) and
summer (JJA) (dry + wet) depositions

Year EMEP dry + wet average
N
(mg/m2)

CMAQ dry + wet average
N
(mg/m2)

Mean Bias of dry + wet N
(mg/m2)

DJF JJA DJF JJA DJF JJA

2000 1.994 2.074 2.366 1.738 0.372 −0.336

2001 1.785 2.274 2.149 2.37 0.364 0.096

2002 1.82 2.523 2.128 1.828 0.308 −0.695

2003 1.962 2.249 2.282 1.881 0.32 −0.368

2004 1.953 2.516 2.438 2.24 0.484 −0.276

2005 2.202 2.505 2.54 2.321 0.338 −0.18

2006 1.891 2.262 1.992 1.967 0.102 −0.295

2007 1.721 2.102 2.275 1.938 0.555 −0.164

YA 1.954 2.346 2.295 2.081 0.341 −0.265

The results for the normalized mean biases of the dry, wet, and sum of the dry
and wet depositions (see Fig. 4) suggest a substantial influence of the meteorological
driver, and the orography on the spatial distribution of the mean wet deposition.
The normalized mean bias of the mean dry deposition reaches 50% on the land and
marine areas, and is negative in few places. The normalized mean bias of the sum
of the dry and wet depositions has a similar spatial stricture with the one of the wet
deposition, but with more areas with positive one, because of the influence of the
dry deposition. The results for the seasonal area averaged total N depositions and the
mean bias (see Fig. 6 and Table 2), show little change in years around 0.4 mg/m2,
with a minimum in 2007.

The results for the N summer depositions are depicted in the Fig. 5. The CMAQ
overestimate the dry depositions in comparison to the EMEP model. It is notable in
the northwestern parts of the continental domain areas. Generally, the CMAQ dry
depositions are bigger than the winter ones, which applies to a lesser extent for the
EMEP model. The normalized mean bias is positive in the land areas, and negative
in the marine ones. There are almost no exceptions.

The wet depositions however, show a different picture. The ones form the EMEP
are bigger than the ones modeled by the CMAQ. The normalized mean bias of wet
depositions (Fig. 5) is negative in almost all areas. That suggests little influence of
orography and emission inventories, and significant one of the meteorological driver,
which in the case of EMEP gives bigger precipitations. The two model outputs give
more similar total depositions than in the winter case. The northwestern parts are
characterized by relatively bigger values in comparison with other areas, which is
more notable than the dry and wet depositions. The normalized mean bias is negative
in themarine areas, and some land ones. It is positive in the eastern parts of theBalkan
Peninsula, inmost parts of the Bulgaria and southern Italy. Therefore, we suggest that
the model differences in the meteorological drivers are modulated by the differences
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Fig. 5 CMAQ (upper row) multiyear average Nitrogen dry deposition (left plot), wet deposition
(middle plot) and dry+wet (right plot) in summer. EMEP-MSC-W (middle row) multiyear average
nitrogen dry deposition (left plot), wet deposition (middle plot) and dry+wet (right plot) in summer.
The dimension of depositions is mg/m2. Normalized mean bias [%] of the CMAQ model (lowest
row) for nitrogen dry deposition (left plot), wet deposition (middle plot) and dry + wet (right plot)
in comparison to the EMEP-MSC-W for summer
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Fig. 6 Seasonal area averaged Nitrogen in winter (DJF) and summer (JJA) (dry+wet) depositions
and mean bias of the CMAQ model
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between the emissions inventories. The mean bias of the seasonal area averaged
summer total depositions (see Fig. 6) is generally negative except in 2001 while
winter one is strictly positive. It could be due to the changes in emissions and/or
weather features at different scales.

4 Conclusion

The results suggest that the Nitrogen annual area-averaged total depositions are rep-
resented more similarly by the two models, than the Sulphur ones. There is a large
orography influence on the sum of dry and wet deposition for both groups of chem-
ical species mainly in the winter. Due to the almost equal resolution of both models
(EMEP-MSC-W and CMAQ), the orography plays a more important role indirectly
through the differences in the model dynamics and physics parameterizations. The
emission inventory is the main factor for the biggest differences in the modelled
Sulphur depositions and the complex orography is the main factor for the differences
in the Nitrogen depositions in the winter. The influence of the meteorological driver
and boundary conditions, modulated by the different emission inventories used in
bothmodels have the biggest contribution to the normalizedmean bias in the summer
Nitrogen depositions. The mean bias of the Seasonal averaged total Sulphur deposi-
tions increases from 2000 to 2007. The one of the Nitrogen is negative, with smaller
absolute values, and with little changes during the years. The variations from 2000
to 2003 are pronounced in both Nitrogen and Sulphur total depositions. The study of
the reasons for that models behavior in the pointed period is one of our future plans.
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