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Abstract Our motivation is to enable non-specialists to use sophisticated biome-
chanical models in the clinic. To further this goal, in this study, we constructed
a framework within 3D Slicer for automatically generating and solving patient-
specific biomechanical models of the brain. This framework allows determining
automatically patient-specific geometry from MRI data, generating patient-specific
computational grid, defining boundary conditions and external loads, assigningmate-
rial properties to intracranial constituents and solving the resulting set of differential
equations.WeusedMeshlessTotal LagrangianExplicitDynamicsMethod (MTLED)
to solve these equations. We demonstrated the effectiveness and appropriateness of
our framework on a case study of craniotomy-induced brain shift.

Keywords Patient-specific modelling (PSM) · Non-linear computational
biomechanics · Brain · Brain shift · Automated computations

1 Introduction

We are at the verge of a new exciting era of personalized medicine based on patient-
specific scientific computations. These computations usually involve solving models
described by boundary value problems of partial differential equations (PDEs).
The most common and useful are models of biomechanics, bioheat transfer and
bioelectricity.
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In this paper, we are especially interested in patient-specific biomechanics as a
tool to compute soft tissue deformations for operation planning and intraoperative
guidance. While the methods for patient-specific biomechanical model generation
[28] and solution [11, 12] exist, they are very sophisticated and require very high level
of specialist expertise from the users. Therefore, the objective of the work described
here is to create an automatic framework so that these sophisticated computations
can be conducted in the clinic by a non-specialist.

We integrated the framework to automate the process of generating and solving
patient-specific biomechanical models into 3D SLICER (http://www.slicer.org/), an
open-source software for visualization, registration, segmentation and quantification
of medical data developed by Artificial Intelligence Laboratory of Massachusetts
Institute of Technology and Surgical Planning Laboratory at Brigham and Women’s
Hospital and Harvard Medical School [6].

We demonstrated the application of our framework using a case study of cran-
iotomy induced brain shift obtained from our collaborator’s database (Computational
Radiology Lab, Harvard Medical School), used by us previously [7, 23, 30]. The
paper is organized as follows: In Sect. 2, we presented the proposed framework. In
Sect. 3, we showed our results based on the case study. Section 4 contains discussion
and conclusion.

2 Proposed Framework

The four main steps of the proposed framework workflow (see Fig. 1) are as follows:

1. Image Pre-processing
Determining patient-specific geometry from medical images

2. Model Construction
Patient-specific computational grid generation
Defining boundary conditions and external load
Assigning patient-specific material properties to brain tissues

3. Model Solution
Computation of tissue deformations using Meshless Total Lagrangian Explicit
Dynamics Algorithm (MTLED)

4. Image Warping, using the computed deformation field

The details of each step are given in Sects. 2.1–2.3. Image warping is done with
example case study under Sect. 3.

http://www.slicer.org/
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Fig. 1 Workflow diagram for patient-specific biomechanical interpretations of organ deformations
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2.1 Image Pre-processing

2.1.1 Determining Patient-Specific Geometry from Medical Images

To obtain the geometry of the brain, the skull needs to be removed from the preoper-
ativeMRI image.We remove the skull and extract the brain volume using FreeSurfer
software (http://surfer.nmr.mgh.harvard.edu/) (see Fig. 2). It is an open source soft-
ware suite for processing and analyzing human brain medical resonance images
(MRIs) [4]. We wrote Python-based scripted modules within 3D Slicer to execute
all the remaining steps.

After extracting brain volume, we use threshold filter [25] of 3D Slicer to select
the brain parenchyma, see Fig. 3a. We created a three dimensional surface model
based on the selected region using model maker module of 3D Slicer, see Fig. 3b
[17].

Information about the location and extent of craniotomy is necessary for biome-
chanical modeling of neurosurgery. We segmented the portion of craniotomy region
and created a surface model using this segmented portion (see Fig. 4) and used it to
select the brain craniotomy region on the brain surface model. We define external
loads on the surface of brain selected through craniotomy segmentation.

Fig. 2 Results of skull stripping for patient-specific preoperative MRI image. a Preoperative MRI
image, b Skull-stripped MRI image aligned with the preoperative MRI image

http://surfer.nmr.mgh.harvard.edu/
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Fig. 3 Results of patient-specific brain geometry extraction from FreeSurfer output. a Results of
threshold filter in 3D Slicer; b Surface visualization of the problem geometry produced by surface
model maker of 3D Slicer with 45% value of Laplacian filter

Fig. 4 a Craniotomy region segment, b 3D model of the patient-specific craniotomy region shown
together with the entire patient-specific brain model

2.2 Model Construction

2.2.1 Patient-Specific Computational Grid Generation

In our method, we use a tetrahedral background integration grid that conforms to the
problem geometry [11]. The volumetric integration (a step in the MTLED solution
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method, see Sect. 3) is performed over this background integration grid (Gauss
integration with four Gauss points per tetrahedron) and displacements are calculated
over the cloud of points formed by the nodes of the tetrahedra, Fig. 5. Creating such
background grids is fully automatic (i.e. does not require any manual correction). It
is very important to note that our tetrahedral integration grid is NOT a finite element
mesh and does not need to conform to strict quality requirements demanded by the
finite element method.

Our framework uses ACVD (Surface Mesh Coarsening and Resampling) [27] to
construct a patient-specific triangulated brain surface (see Fig. 6b) which is then

Fig. 5 Meshless discretization for simulation of craniotomy induced brain shift. In this example
we have 12,014 nodes (black dots) and 28,915 tetrahedral integration cells with four integration
points (green dots) per cell

Fig. 6 a Patient-specific tetrahedral integration grid with triangular surface mesh, b Example
of triangulated patient specific brain surface mesh model, c Example of patient specific brain
volumetric integration grid filled with tetrahedral cells (geometry conforming tetrahedral cells
based biomechanical model)
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Fig. 7 Loaded nodes
(orange dots) on the surface
of the patient-specific brain
exposed by the craniotomy

used for generating a 3D integration grid filled with tetrahedral integration cells (see
Fig. 6c) using Gmsh [8]. The triangulated surface is also used for defining contacts.
All these steps were implemented within 3D Slicer and are automatic.

Similarly, we created a patient specific craniotomy region surface model.We used
this craniotomy surface to define the fiducials (3D points in 3D Slicer).We used these
fiducials to select the nearest triangulated brain cells exposed to craniotomy region.
We applied our nearest neighbor search algorithm in 3D Slicer, which takes into
consideration the problem geometry and the craniotomy region fiducials.

We defined loaded nodes (see Fig. 7) based on the selection of triangulated brain
cells.

2.2.2 Defining Boundary Conditions and External Load

Boundary Conditions

The stiffness of the skull is several orders of magnitude higher than that of the brain.
Therefore, to define the boundary conditions for nodes other than displaced nodes
on the exposed surface of the brain, a contact interface is defined between the rigid
interface model of the skull and the deformable brain model. Nodes on the brain
surface could not penetrate the skull, but could slide without friction or separate
from the skull as described in [14].

We created a skull interface using the triangulated surface cells generated as
described in Sect. 2.2.1 to define contacts automatically on the surface of patient
specific brain biomechanical model.

External Load

Load can be defined either through forces (prescribing natural BCs) or displace-
ments on the boundary (prescribing essential BCs). It is rather difficult to make
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patient-specific measurements of forces acting on the brain during surgery but there
are well-established methods for determining the displacements on the boundaries
from images. Furthermore, if we use forces, to accurately compute intraoperative
deformations, we need accurate information about patient-specific material proper-
ties of the brain tissues. As there is no commonly established method to accurately
determine patient-specific material properties of soft tissues from radiographic (MR,
CT) images, we define the load through imposed motion of essential BCs. This
makes the computed deformations only very weakly dependent on uncertainty in
patient specific information about tissue material properties [21, 22, 29].

To define intraoperative loading, intraoperative information is required such as
measurement of the current position of the exposed surface of the brain. This can be
done through cameras [18] and a pointing tool of a neurosurgical station [26].

2.2.3 Assignment of Patient-Specific Material Properties: Fuzzy Tissue
Classification

Material properties of the intracranial constituents are assigned to integration points
within the problem geometry through fuzzy tissue classification [1] algorithm. Hard
segmentation of brain tissues is difficult to automate [5] and therefore it is incompat-
ible with clinical workflows. Therefore, we integrated a fuzzy tissue classification
algorithm [16, 32, 33] into our framework to automatically assign material prop-
erties to brain tissues. Slight inaccuracies of tissue properties assignment do not
affect the precision of intraoperative displacement prediction because the external
load is defined though prescribed essential boundary condition motion rendering the
problem Dirichlet-type [21, 32, 33].

In this framework, a neo-Hookean constitutive model (see Table 1) was used for
brain tissues and for tumor with Poisson’s ratio of 0.49, whereas 0.1 was used for
the ventricles [29, 30]. This simple model is used as the simulation belongs to the
special class called displacement-zero traction problems (orDirichlet-type problems)
whose solutions are known to be weakly dependent on the unknown patient-specific
material properties of the tissues [3, 24, 29].

Table 1 Material properties of biomechanical model

Model components Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio

Parenchyma 1000 3000 [19] 0.49 [31]

Tumor 1000 9000 [31] 0.49 [31]

Ventricle 1000 10 [19] 0.1 [30, 31]

Skull Rigid
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2.3 Model Solution

2.3.1 Computation of Tissue Deformations: Meshless Total Lagrangian
Explicit Dynamics Algorithm

MTLED is a numerically robust and accuratemeshless algorithm [9, 11]. Themethod
computes deformations at an unstructured cloud of nodes used to discretize the
geometry instead of elements as in finite element methods, which requires a high
quality mesh of problem geometry [28]. The proposed algorithm uses explicit time
integration based on the central difference method. Unlike implicit time integration,
this does not require solving systems of equations at every time-step making the
method robust in performing calculations [9].

MTLED was evaluated extensively in computing brain deformations on problem
geometry based on patient specific MRI data. The simulation results presented were
within limits of neurosurgical and imaging equipment accuracy (~1 mm) [11, 20].
The method is also capable of handling very large deformations as well as cutting
[10].

Meshless methods are preferred as finite element methods, due to excessive
element distortion, are unreliable in scenarios where human soft tissues undergo
very large strains in the vicinity of contact with a surgical tool while MTLED gives
reliable results for compressive strains exceeding 70% [11].

We developed a separate module which integrates the MTLED solver within 3D
Slicer. The MTLED solver uses three input files automatically generated using our
framework,which are: (1) computational grid information file, (2)material properties
and (3) external load information file. All remaining parameters of MTLED are set
by default (see Table 2) and are based on the experience obtained through numerous
applications in computing soft continua and soft tissue deformations. The end user
can change these parameters as per requirements but we recommend that a non-
specialist user leave them unaltered.

Table 2 Default parameters
list for MTLED simulator

MTLED parameters Values

Mass scaling [9] True

Integration points per tetrahedron [9] 4

Shape Function Type [2] mmls

Basic Function Type [2] Quadratic

Use exact derivatives [2] True

Dilation Coefficient [2] 1.8

Load file curve [9] Smooth

Node set Contacts

Surface Skull

Load time for running simulation 1.0

Equilibrium time [13] 5
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3 Craniotomy-Induced Brain Shift Case Study

The image preprocessing was conducted with FreeSurfer and 3D Slicer threshold
filtering as explained in Sect. 2.1. The automatic generation of patient-specific
computational grid, as explained in Sect. 2.2, resulted in 12,014 nodes and 115,660
integration points (see Figs. 5 and 6c). Contacts are defined as described in
Sect. 2.2.2.1. Material properties of brain tissues are defined using fuzzy tissue
classification as explained in Sect. 2.2.3.

For the purpose of this case study, we defined external load using a transform
obtained through using region of interest (ROI), which is brain craniotomy region in
both the preoperative and intraoperative MRI (see Fig. 8a, b). We used crop volume
module in 3D Slicer to obtain the preoperative segment (PS) and the intraoperative
segment (IS). We used Affine with twelve degree of freedom (12 DOF) and BSpline
with greater than twenty seven degree of freedom (>27 DOF) algorithms from 3D
Slicer General Registration Module to obtain a transform that aligns PS to IS. We
applied this transform on loaded nodes selected on the brain surface to get the trans-
formed nodes (see Fig. 8c). We defined external load based on the information of
displaced nodes (loaded nodes) in 3D plane before and after the transform, thus
prescribing external load through essential boundary conditions.

We used nodal displacements computed by MTLED (see Fig. 9) in the scattered
transform module [15] in 3D Slicer to obtain the transform to warp the preoperative
MRI image into the intraoperative configuration of the patient’s brain, see Fig. 9a.

(a) 

                                 (c)(b) 

Brain shift 

Fig. 8 Affine (12 DOF) and BSpline (>27 DOF) transform results generated by using General
registration module within 3D Slicer. a Region of interest (ROI) preoperative segment (PS) aligned
on top of intraoperative segment (IS) before Bspline transform to show the brain shift (see dark
grey area indicated by an arrow, which is the difference between preoperative and intraoperative
MRI), b results of Bspline transform on images, and c Blue dots are pre-transformed fiducials and
green dots indicate transformed fiducials obtained from applying the Bspline
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Fig. 9 Results of the deformation field extracted from deformed model generated by MTLED.
a Warped preoperative (Predicted Intraoperative) MRI with deformation field extracted using
scattered transform from deformed model generated by MTLED, b Intraoperative MRI

We used the warped MRI to identify contours of ventricles and compared them
with contours of ventricles from the intraoperative MRI image. We performed
ventricle segmentation using a threshold filter [25] and an island selector filter [6] in
3D Slicer for both the warped MRI and the intraoperative MRI. We present ventricle
contours comparison without any manual corrections or editing (see Fig. 10).
Figure 10 confirms the acceptable accuracy of the presented modelling approach.

The simulation presented in this study was performed on a HP ProBook with
Intel Core i7 2.7 GHz processor and 8 GB of physical memory. The calculation
time for generating automatically a patient-specific computational model with all
details, including patient-specific geometry construction, craniotomy region selec-
tion, external loading and defining contacts was 156.87 s. The execution time of the
MTLED solution algorithm (i.e. obtaining the deformed model) was 258 s. The time
for warping the preoperative image with the deformation field extracted from the
model was 0.7 s.

4 Discussion and Conclusion

In this paper we described the framework for automated solution of computa-
tional biomechanics problems described by partial differential equations of solid
mechanics.We also demonstrated the effectiveness of this framework using a compu-
tational biomechanics of the brain example. The framework is integrated within 3D
Slicer. It allows automatic generationof patient-specificgeometry alongwith defining
the craniotomy region, external load, material properties and boundary conditions.
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Fig. 10 IntraoperativeMRI overlaidwith contours (green lines) of the deformed ventricles as gener-
ated by MTLED algorithm. The yellow lines represent the ventricle contours of the intraoperative
MRI extracted using the threshold filter and the island selector filter in the 3D Slicer

We obtained a solution to this model using an MTLED-based suite of algorithms
which is also integrated into 3D Slicer. The results (see Fig. 10) of the automatic
simulation showgood agreementwith the ground truth provided by the intraoperative
MRI.

A craniotomy induced brain shift is simulated with 12014 nodes (i.e. ~36000
differential equations are solved) and 28915 integration cells. The patient specific
biomechanical model construction, which involves defining the patient specific brain
geometry fromapreoperativeMRI image, patient-specific tetrahedral integrationgrid
generation, defining boundary conditions and external loads, and assigning material
properties to brain tissues, took 156.87 s of computer processing time. The solution
of the model using our MTLED algorithm took 258 s and finally the image warping
took 0.7 s.

These results indicate that the proposed methodology is compatible with clinical
workflows and in our futureworkwewill attempt to incorporate in operation planning
and neuronavigation systems.
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