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Abstract

The term “phenocopies of primary immunodeficiency diseases” refers to a group 
of diseases mimicking the phenotype of primary immunodeficiencies; however, 
they are caused by somatic mutations or autoantibodies against cytokines rather 
than germline monogenic defects. They are classified as a separate group by the 
International Union of Immunological Societies (IUIS).
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3.1  Introduction

The phenocopies of primary immunodeficiency diseases have been character-
ized during the last decades and manifest as a clinical phenocopy to patients 
with genomic mutations affecting the same biological pathway. In this chapter 
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we will provide an updated description of the clinical manifestations, diagno-
sis, and treatment.

3.2  Phenocopies of PID Caused by Somatic Mutations

The phenocopies of primary immunodeficiency diseases manifest as a clinical phe-
nocopy to patients with genomic mutations affecting the same biological pathway 
(Fig. 3.1) [1].

The traditional definition of a mosaic is any pattern or image made from multiple 
pieces; its individual elements can be recognized just by close inspection. In bio-
logical organisms, mosaicism denotes an individual with more than one genetically 
distinct cell population [2]. It might be imperceptible unless closely analyzed. If it 
takes place during embryonic development, germline and somatic cells will be 
affected. Otherwise, only somatic cells will be affected. Mosaicism can be caused 
by DNA mutations, epigenetic factors, and chromosomal abnormalities [3].

Somatic variants require high-throughput sequencing techniques to be detected. 
During data analysis specific algorithms are fundamental, as these mutations have 
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PID are a group of diseases caused by somatic mutations or autoantibodies against various cyto-
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group are shown in the figure
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very low allele frequencies in the population. High deep reads are recommended in 
order to increase the accuracy [4]. Single-cell sequencing has enabled us to detect 
somatic mutations as heterozygous variants that occur in a subset of cells [5].

Below, we describe several conditions characterized by somatic mutations and 
mimicking primary immunodeficiency diseases (PID) (Table 3.1).

Table 3.1 Phenocopies of PID.  Immunophenotype and clinical characteristics associated with 
their similar genetic counterpart

Disease Immunophenotype
Similar features to primary 
immunodeficiencies

Associated with somatic mutations
ALPS
TNFRSF6

Increased DNT cells Autoimmune cytopenias, defective 
lymphocyte apoptosis, splenomegaly, 
lymphadenopathy

RALD
KRAS

B cells elevated Autoimmune cytopenias, granulocytosis, 
monocytosis, splenomegaly, 
lymphadenopathy

NRAS Increased DNT cells,
B cells elevated

Splenomegaly, lymphadenopathy, 
autoantibodies

Cryopyrinopathies
NLRP3 Neutrophilic leukocytosis Fever, arthropathy, chronic aseptic 

meningitis, urticarial rash
NLRC4 Neutrophilic leukocytosis Urticarial rash, chronic meningitis, and 

arthropathy
Hypereosinophilic 
syndrome
STAT5b

Eosinophilia Persistent eosinophilia with organ 
involvement atopic dermatitis, urticarial 
rash, diarrhea

Associated with autoantibodies
Autoantibodies to 
IL-17,
Autoantibodies to 
IL-22

Normal Recurrent candida infections of the 
mucosal surfaces, nails, and skin. 
Infections may become resistant to 
antifungals
Thymoma

Autoantibodies to 
IFN gamma

Naïve T cells decreased
Hypergammaglobulinemia

Chronic infections with intracellular 
pathogens, particularly lymphadenitis, 
skin, soft tissue, and bone infections; 
constitutional symptoms. Thymoma

Autoantibodies to 
IL-6

Normal Recurrent staphylococcal skin infections

Autoantibodies to 
GM-CSF

Normal Pulmonary alveolar proteinosis. 
Progressive respiratory failure. 
Cryptococcal meningitis

Autoantibodies to 
IFNα

Normal Varicella zoster disseminated

Autoantibodies to 
IL-12p70

Normal Thymoma, myasthenia gravis

ALPS Autoimmune lymphoproliferative syndrome, DNT Double-negative T cells, RALD Ras- 
associated autoimmune leukoproliferative disease
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3.2.1  Autoimmune Lymphoproliferative Syndrome (ALPS) 
Caused by Somatic Mutation in TNFRSF6 Gene

Autoimmune lymphoproliferative syndrome is a condition of impaired lym-
phocyte homeostasis, resulting from mutations in genes involved in the Fas 
pathway. Clinical manifestations include lymphadenopathy, splenomegaly and 
autoimmune cytopenias. Patients have a predisposition to malignancy, espe-
cially lymphomas [6, 7].

FAS (CD95/Apo1) is a cell receptor that belongs to the tumor necrosis factor 
receptor (TNFR) superfamily. It is codified by the gene TNFRSF6. Upon binding to 
its ligand (Fas ligand), Fas starts a series of events leading to apoptosis to maintain 
lymphocyte homeostasis [8]. Its role was initially identified in mouse models with a 
germline mutation in TNFRSF6 that manifest with autoimmunity [9]. In humans, 
patients develop a syndrome known as autoimmune lymphoproliferative syndrome 
(ALPS) [10–12].

If the mutation is clear, ALPS can be categorized as ALPS type Ia (FAS/
TNFRSF6), ALPS type Ib (FAS ligand), and ALPS type II (caspase 8 or 10 
genes). ALPS type III is caused by somatic mutations, and it is the second most 
common type of ALPS. Somatic mutations have been described in patients with-
out germline mutations but a clinical phenotype similar to other types of ALPS: 
lymphadenopathy, splenomegaly, hepatomegaly, autoimmunity, elevated DNT 
cells, increased serum FAS ligand, and elevated levels of IL-10 and vitamin B12 
[13–16]. The number of reported cases due to somatic mutations has increased 
over the last years.

Patients with ALPS type III have a later onset, and the symptoms remain mild for 
a long period and hence lead to diagnostic delay [17]. The clinical phenotype can 
suggest a somatic mutation, but this is not enough to make the diagnosis. In vitro 
studies in cells of these patients have shown Fas-mediated apoptosis, with a higher 
degree compared to patients with ALPS type Ia [14].

Diagnosis is challenging; all patients with ALPS phenotype, elevated serum bio-
markers, and no germline mutation should be evaluated for somatic mutations. The 
identification of somatic mutations is established by sequencing FAS on double- 
negative T cells (DNT) [13]. DNT cells seem to be originated from activated periph-
eral single-positive T cells that received a death-inducing signal but cannot go to 
apoptosis as they harbor a Fas defect [18].

Treatment is similar to ALPS patients with germline mutations. It focuses on 
treatment of disease manifestations such as lymphoproliferation and autoimmune 
cytopenias [19]. Patients require steroid therapy and more than 50% immunosup-
pressive drugs to control autoimmunity. Malignancy can be treated with conven-
tional protocols. As secondary options, intravenous gammaglobulin, plasmapheresis, 
and bortezomib should be considered [20]. Hematopoietic stem cell transplantation 
(HSCT) has been used for refractory patients [21].
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3.2.2  RALD: Ras-Associated Autoimmune Leukoproliferative 
Disease (ALPS like)

Ras-associated autoimmune leukoproliferative disorder (RALD) is characterized by 
autoimmune manifestations, persistent monocytosis, leukocytosis, and non- malignant 
lymphoproliferation. Clinical and laboratory features overlap with those of juvenile 
myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia (CMML) 
[22]. The somatic mutations affect genes of the Ras family, KRAS, NRAS, and RAS, 
involved in myeloid and lymphoid lineages [23]. Mutations found in RALD patients 
are also reported in around 25% of JMML patients, suggesting a shared molecular 
etiology [24]. The presence of autoimmunity supports RALD diagnosis, but these 
patients can have malignant cell transformation and evolve to JMML [25].

RAS (named for their role in forming rat sarcomas) encodes for GTPases impor-
tant in cell division, cell differentiation, and apoptosis. Opposite to ALPS, DNT 
cells or serum vitamin B12 levels are not always increased, and there is no defect in 
Fas-mediated apoptosis. A key feature of RALD is persistent absolute or relative 
monocytosis [23, 26]. The autoimmune manifestations can mimic lupus with low 
complement levels and elevated autoantibodies (dsDNA) [27]. Patients with muta-
tions in NRAS may have DNT cells elevation [28]. Restricted clonal expansion of 
TCR and BCR in one patient has been reported; this might explain the reduce lym-
phocyte repertoire and immunodeficient state in this disease [29].

There are some reported cases with cutaneous involvement known as RALD 
cutis. Patients present with panniculitis-like erythematous plaques and sweet syn-
drome. Usually, they have a benign course [30, 31].

Management is based on corticosteroid therapy and other immunomodulatory 
agents for the autoimmunity. Rituximab has been published as an effective option in 
patients with refractory cytopenias [32].

3.2.3  Cryopyrinopathies

NLRP3 auto-inflammatory disorders (NLRP3-AIDs) were previously known as 
cryopyrin-associated periodic syndromes (CAPSs), including overlapping entities 
with increasing severity: familial cold auto-inflammatory syndrome (FCAS); 
Muckle-Wells syndrome (MWS); chronic infantile neurological, cutaneous, and 
articular syndrome (CINCA); and neonatal-onset multisystem inflammatory dis-
ease (NOMID) [33].

NLRP3-AIDs are autosomal dominant disorders caused by germline mutations 
in NLRP3. The gene encodes for cryopyrin, which leads to hyperactivation of IL-1β 
[33]. Somatic mutations have been described. Patients present a late onset of the 
disease and milder symptoms [34–40]. Clinical manifestations include fever, joint 
involvement, and skin rash. Laboratory workup reveals neutrophilic leukocytosis, 
elevated C-reactive protein, and erythrocyte sedimentation rate.
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A prompt molecular diagnosis is critical; it requires high-deep next-generation 
sequencing techniques and specific pipelines [41].

Treatment targets IL-1β, and anti-IL1 (anakinra, rilonacept, and canakinumab) 
are generally effective [42].

A somatic mutation in NLRC4, the caspase recruitment domain-containing 4 
gene, was found in a Japanese male child with auto-inflammatory symptoms com-
patible with neonatal-onset multisystem inflammatory disease. The patient had 
complete response to anakinra [43].

3.2.4  Hypereosinophilic Syndrome Due to Somatic Mutations 
in STAT5b Gene (STAT5b Gain-of-Function Mutation)

Somatic mutations in STAT5b have been described in hematologic malignancies 
[44–46]. Recently, a somatic mutation in STAT5b was found in two patients with 
eosinophilia, atopic dermatitis, and urticarial rash. The first one, a 3-year-old girl, 
presented autoimmunity manifestations (alopecia totalis). She had history of one 
event of pneumonia and measles-like illness 10 days after MMR vaccination. The 
other patient had a severe clinical presentation with recurrent events of bronchiol-
itis, worsening eosinophilia, failure to thrive, and delayed speech. Gut biopsy 
revealed eosinophilic infiltrates. She underwent umbilical cord stem cell transplant 
but died later. Functional tests in CD3-CD4+ T cells showed increase STAT5B 
responsiveness [47]. Management was based on steroid therapy.

3.3  Phenocopies of PIDs Caused by Autoantibodies against 
Various Cytokines

Autoantibodies can be found in healthy individuals; they are mainly IgM and have 
moderate affinity for self-antigens contributing to the homeostasis of the immune 
system [48]. In contrast, high-affinity and high-titer autoantibodies reflect the loss 
of balance in effector functions of the immune system. Clinical presentation is cor-
related with the affected cytokine pathway. These diseases present as a clinical phe-
nocopy of patients with germline mutations in the same associated pathway [49]. 
Here, we review current knowledge focusing on diseases with increased susceptibil-
ity to infections.

3.3.1  Autoantibodies against IL-17 and/or IL-22

Chronic mucocutaneous candidiasis (CMC) is a disorder characterized by recurrent 
or persistent candida infections involving the skin, nails, and mucous membrane 
[50]. When the disease is associated with autoimmune hypoparathyroidism and 
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primary adrenocortical insufficiency is named APECED (autoimmune 
polyendocrinopathy- candidiasis-ectodermal dystrophy). APECED is caused by a 
loss-of-function mutation in AIRE, an essential gene in central immune tolerance 
[51]. These conditions occur in association with impaired IL-17 and IL-22 immu-
nity [50, 52].

Several genetic mutations lead to impair production of IL-17 and IL-22: IL17F, 
IL17RA, IL-17RC, and TRAF3IP2/ACT1 [53–55]. Autoantibodies against IL-17F, 
IL-17A, and IL-22 have been found in patients with CMC [56]. In one study, high 
titers of autoantibodies against IL-17A, IL-17F, and/or IL-22 were found in 33 
APECED patients; from those 29/33 developed CMC [57]. Along with these find-
ings, autoantibodies against IL-17A (41%), IL-17F (75%), and/ or IL-22 (91%) 
were detected in more than 150 APECED patients, mainly among the CMC group. 
Remarkably, in this study, autoantibodies were also found in patients with thymoma 
who later developed CMC [51].

Diagnosis is based on the detection of autoantibodies by techniques such as 
western blotting and enzyme-linked immunosorbent assay (ELISA). Management 
includes antifungal therapy and treatment of associated endocrine and infectious 
manifestations. Members of the azole family are usually effective for the treatment 
of CMC [58, 59].

3.3.2  Autoantibodies Against IL12p70

IL-12p70 is a heterodimeric molecule consisting of IL-12p35 and IL-12p40 sub-
units; it signals through a heterodimeric receptor complex of IL-12Rβ1 and 
IL-12Rβ2 [60]. The signaling pathway IL-12p40-STAT4-IFNγ is involved in pro-
tection against intracellular pathogens, such as mycobacterium [61].

There is just one case of anti-IL-12p70 autoantibodies detected in one Cambodian 
patient. She presented with severe recurrent Burkholderia gladioli lymphadenitis 
and was demonstrated to have isolated neutralizing anti-IL-12p70 autoantibodies as 
the only immune defect [62]. Interestingly, patients with myasthenia gravis or thy-
moma have high titers of autoantibodies against IL12p40, but they do not develop 
infections [63].

3.3.3  Autoantibodies to Interferon-α (IFN-α)

Type I IFNs include IFN-α, IFN-β, and IFN-ω. IFN-α is involved in the transcrip-
tion of type 1 interferon genes and acts via phosphorylation of STAT1/2 [64, 65]. 
Autoantibodies to type I IFNs have been detected in healthy donors [66], autoim-
mune diseases [67–69], malignancy [70], APECED [71], and thymoma [72, 73]. 
Infections have been reported in a patient with dermatomal varicella zoster reactiva-
tion. IFN-α was given as treatment with good response [74].
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3.3.4  Autoantibodies to IFN-ƴ and Susceptibility 
to Intracellular Pathogens

Interferon-gamma (IFN-ƴ) is produced by type 1 helper T lymphocytes and NK 
cells and is crucial for immunity against intracellular pathogens. The IFN-ƴ recep-
tor is composed of two subunits IFNƴR1 and IFNƴR2, which combine in duplicate, 
to form a tetramer, and bind IFN-ƴ. IFN-ƴ downstream signaling is mainly through 
the JAK-STAT1 pathway [52, 75]. Autoantibodies against IFN-ƴ may impair the 
production of IL-12. Mendelian susceptibility to mycobacterial disease (MSMD) is 
a condition that predisposes to infections by low pathogenicity mycobacteria such 
as nontuberculous mycobacteria (NTM) or bacille Calmette-Guérin (BCG) [76]. 
Patients are also susceptible to Salmonella, Candida, and Mycobacterium tubercu-
losis. Genetic defects along these pathways confer similar infection susceptibil-
ity [77].

The first cases reporting an association between anti-IFN-ƴ autoantibodies with 
severe atypical NMT infection were published in 2004 [78, 79]. Supporting these 
data, several cases are published, including one study in which 85 patients were 
enrolled [78–88]. Other opportunistic infections have been reported, including 
Salmonella, Burkholderia, Penicillium, Histoplasma, Cryptococcus, and viruses, in 
particular varicella zoster virus (VZV) [89]; these infections resemble those observed 
in patients with germline mutations in the IFN-ƴ-IL12 axis.

A high prevalence rate among patients from South East Asia was observed; this 
was later explained by the discovery of a strong HLA association: HLA- 
DQB1*05:01/05:02 and DRB1*15:02/16:02. In addition, a major epitope, P12-131, 
located at the C-terminus of IFN-ƴ was identified [90, 91].

Patients with opportunistic infections and neutrophilic dermatosis (Sweet syn-
drome) were reported to have anti-IFN-ƴ autoantibodies [92]. Lymph nodes are the 
main site of involvement [93], and 80% of patients have skin manifestations such as 
reactive dermatoses, erythema nodosum, pustular psoriasis, and exanthematous 
pustulosis [89, 94].

Laboratory workup reveals features of chronic inflammation including anemia, 
leukocytosis, elevated erythrocyte sedimentation rate, polyclonal hypergammaglob-
ulinemia, and elevated C-reactive protein (CRP) and/or β2-microglobulin. Other 
immunological parameters are normal [89]. Undetectable levels or low levels of 
IFN-ƴ suggest the presence of autoantibodies. Autoantibodies can be measured 
using particle-based technology or ELISA [95, 96]. For screening, QuantiFERON-TB 
Gold In-Tube (QFT-GIT) test can be useful [97].

Management is based on antimicrobial therapy. NTM are usually refractory to 
first-line therapy and often require second-line drugs for months to years. If the 
response is poor, immunomodulatory agents can help to decrease autoantibody pro-
duction. Rituximab has been used in four cases; all patients had a decrease in anti- 
IFN- γ autoantibody levels. Use of rituximab was reported in a series of four cases, 
all of which responded clinically, with commensurate decrease in neutralizing 
capacity [98]. Plasmapheresis and cyclophosphamide were used in one patient [99].
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3.3.5  Autoantibodies Against Granulocyte Macrophage Colony 
Stimulation Factor (GM-CSF)

Granulocyte macrophage colony stimulation factor (GM-CSF) is a growth fac-
tor which promotes the immune activation, proliferation, and differentiation of 
neutrophils, dendritic cells, erythrocyte progenitors, macrophages, and mega-
karyocytes [100]. In the lung, it is essential for function and differentiation of 
alveolar macrophages. GM-CSF induces phosphorylation of STAT5, nuclear 
translocation, and induction of transcription factor PU.1. Together, GM-CSF 
and PU.1 are essential for surfactant catabolism in the pulmonary alveoli 
[101–104].

High titers of neutralizing autoantibodies against GM-CSF are associated 
with pulmonary alveolar proteinosis (PAP) [105]. PAP is a disease linked to con-
genital or acquired defects in the GM-CSF signaling pathway, causing the 
impairment of GM-CSF-dependent catabolism of surfactant and leading to accu-
mulation in pulmonary alveoli [106]. PAP is classified in different types accord-
ing to the underlying pathogenesis: primary PAP characterized by the disruption 
of GM-CSF signaling which can be autoimmune [107] or hereditary (mutations 
in CSF2RA or CSF2RB) [108, 109], secondary PAP in patients on immunosup-
pressive therapy or malignancies [110], and congenital PAP caused by mutations 
in genes involved in surfactant production [86–88]. Histopathological findings 
are alveolar filling with acellular periodic acid-Schiff (PAS)-positive protein-
aceous material [111].

Autoimmune PAP is the most common, representing approximately 90% of 
cases [112]. Autoimmune PAP can cause respiratory failure, and it presents 
between 20 and 50 years of age. The presentation is heterogeneous; it can range 
from asymptomatic to progressive respiratory failure. Autoantibodies can be 
detected in the bronchoalveolar lavage (BAL) fluid [113]. It has been suggested 
its levels may correlate with disease severity and predict the need for additional 
treatment.

Patients with autoimmune PAP can present defects in neutrophil functions, man-
ifesting as infections by Nocardia [114, 115], nontuberculous mycobacteria (NMT) 
[116], Histoplasma [117], and Cryptococcus [118]. Pulmonary and extrapulmonary 
infections do not always develop in the same patient. To date, it remains unknown 
why some patients have just PAP and others just infections.

Useful tools for the diagnostic are pulmonary function tests, which may reveal a 
restrictive pattern [119]; high-resolution computed tomography (HRCT) of the 
lungs, which could show a “crazy paving” pattern [120]; and levels of autoantibod-
ies in BAL lavage [121].

The first-line treatment in PAP are whole-lung lavage to remove the protein-
aceous material contained in the alveoli and long-term antimicrobial agents for 
patients with infections [122]. Inhaled and subcutaneous GM-CSF were effective in 
some studies [123–125]. Rituximab has been used in a small number of patients 
[126, 127].
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3.3.6  Antibodies to Interleukin-6

IL-6 is a cytokine involved in the acute-phase response and in chronic inflamma-
tion. It is produced by B and T lymphocytes, macrophages, endothelial cells, hepa-
tocytes, and synovial cells. It regulates the acute phase response in the liver with 
induction of serum C-reactive protein (CPR) and elevated erythrocyte sedimenta-
tion rate [128–130].

Autoantibodies to IL-6 have been found in healthy controls [131, 132] and in 
four patients associated with severe bacterial infections. The first patient was a 
4-year-old boy with a history of recurrent staphylococcal cellulitis and abscesses 
[133]. The second case was detected in a 20-month-old female with severe septic 
shock [134]. The third was a 67-year-old man with fatal thoracic empyema by 
Escherichia coli and Streptococcus intermedius, and the fourth was a 56-year-old 
woman with multiple abscesses by Staphylococcus aureus [135]. Management 
included supportive care and antibiotic treatment.

All patients had undetectable levels of CRP despite severity of infections, sug-
gesting impaired IL-6 activity. Functional assays with plasma of patients showed 
block of activity of IL-6 in vitro. However, IL-6 production from peripheral blood 
monocytes was normal. Hence, patients with autoantibodies against IL-6 have 
increased susceptibility to staphylococcal infections; a hint toward the diagnosis is 
low levels of CRP, despite severity of infection.

3.3.7  Autoantibodies in Good Syndrome

Good syndrome is defined as the triad of thymoma, immunodeficiency, and hypo-
gammaglobulinemia [136]. Clinical manifestations are increased susceptibility to 
bacterial infections with encapsulated organisms and opportunistic viral and fungal 
infections. Patients have combined B and T cell immunodeficiency [137, 138]. Anti- 
cytokine autoantibodies have been identified in these patients and are a potential 
cause of immunodeficiency [139, 140]. This disorder should be treated by resection 
of the thymoma and immunoglobulin replacement to maintain adequate trough IgG 
values. Anti-cytokine autoantibodies have been also associated with infection in 
patients with thymoma [63]. These need to be further studied.
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