

Genetics of Cellular Immunodeficiencies

Natalie Frede

Abstract

Primary immunodeficiencies (PIDs) constitute a rapidly expanding field. As of 2019 there are 430 distinct human inborn errors of immunity listed in the current IUIS classification (International Union of Immunological Societies) (Tangye et al., J Clin Immunol 40:24–64, 2020).

Within the last 20 years, hundreds of genetic defects underlying PID have been identified. Historically, these were classified into humoral immunodeficiencies, on the one hand, and cellular immunodeficiencies, on the other hand. However, as our understanding has been evolving, these categories have become increasingly complex: genetic defects, for example, can affect multiple cell populations simultaneously, may affect communication between different cell types, may constitute failure of the bone marrow or other compartments to support and regulate certain cell populations, or may be associated with syndromic features. Within this chapter, we aim to provide an overview over the basic concepts of genetics as well as genetics of cellular immunodeficiencies.

Keywords

 $Genetics \cdot Gene \ defect \cdot Mutation \cdot Variant \cdot Sequencing \cdot Primary \ immunodeficiencies \cdot Cellular \ immunodeficiencies$

© Springer Nature Switzerland AG 2021

N. Frede (\boxtimes)

Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany e-mail: natalie.frede@uniklinik-freiburg.de

M. M. D'Elios et al. (eds.), *Cellular Primary Immunodeficiencies*, Rare Diseases of the Immune System, https://doi.org/10.1007/978-3-030-70107-9_2

2.1 Introduction

Primary immunodeficiencies (PIDs) constitute a rapidly expanding field. As of 2019 there are 430 distinct human inborn errors of immunity listed in the current IUIS classification (International Union of Immunological Societies) [1].

Within the last 20 years, hundreds of genetic defects underlying PID have been identified. Historically, these were classified into humoral immunodeficiencies, on the one hand, and cellular immunodeficiencies, on the other hand. However, as our understanding has been evolving, these categories have become increasingly complex: genetic defects, for example, can affect multiple cell populations simultaneously, may affect communication between different cell types, may constitute failure of the bone marrow or other compartments to support and regulate certain cell populations, or may be associated with syndromic features. Within the IUIS classification, this is illustrated by the notion to classify PIDs into ten general categories, each with numerous distinct subcategories [1].

2.2 Importance of Establishing a Genetic Diagnosis

Establishing a genetic diagnosis is essential for confirming a suspected diagnosis and counseling PID patients and their family members regarding treatment options, prognosis, as well as family planning. The in-depth molecular characterization of underlying genetic defects and involved pathways has greatly advanced our knowledge of immunology, in general, and furthered our understanding of specific molecular principles of infection control but also of the termination of immune responses once the infection is controlled. For invasive therapies, such as hematopoietic stem cell transplantation or gene therapy approaches, the prior identification of a molecular defect is an essential prerequisite. A better understanding of defective or involved pathways may furthermore help to identify novel therapeutic targets, both for aiding patients with primary immunodeficiencies and for the development of novel immunosuppressive or antiproliferative drugs used in autoimmune diseases and malignancies, as experienced with JAK inhibitors or the BTK antagonist ibrutinib [2].

2.3 A Brief History of Genetics

The origins of genetics can be found within Augustinian monk Gregor Mendel's experiments on plant hybridization published in 1866, in which he described his observations on the heritability of different traits in peas [3]. However, it took until the early 1900s for the chromosomal theory of heredity to develop, combining Mendel's laws with the idea of chromosomes as the carriers of hereditary information [4]. Nucleic acid was first discovered in 1869 by the Swiss doctor Friedrich Miescher, though its significance was unclear at the time. It took until 1944 for Avery, McLeod, and McCarthy to show that, in fact, DNA constitutes the genetic material of a cell [5]. In 1953 Watson and Crick famously discovered the structure

of DNA and are since often hailed as the founders of modern genetics [6]. Meanwhile the notion of gene mutations as local alterations of a chromosome was derived in the 1920s from Hermann J. Muller's mutagenesis experiments on drosophila. The first description of a human mutation is generally attributed to V.M. Ingram, who described an amino acid exchange as a cause for sickle cell anemia in 1956 [7]. The first molecular defect underlying a primary immunodeficiency was identified by E.R. Giblett with ADA-SCID in 1972 [8], when she described two young girls with recurrent infections without measurable adenosine deaminase enzyme activity in their erythrocytes while their parents had approximately half-normal levels, from which an autosomal recessive inheritance pattern was correctly assumed.

Initial sequencing approaches constituted protein sequencing methods, allowing for the identification of the amino acid sequence of proteins from the 1950s on. At this time the exact mechanisms of transcription and translation had not yet been identified. Subsequently early RNA sequencing methods were developed, while the classical Sanger DNA sequencing method of dideoxy-chain termination was finally published in 1977 by Fred Sanger [9]. The era of PID genetics finally started in the early 1990s with the discovery of BTK mutations as the genetic cause of X-linked agammaglobulinemia more than 40 years after Bruton's first report of the disease in 1952 [10, 11]. Since then, advances in technology including automated sequencing and next-generation sequencing have enabled a rapid growth of the field with numerous exciting discoveries.

2.4 Patterns of Inheritance

Human inborn errors of immunity constitute by definition germline monogenic defects and thus follow Mendelian rules of inheritance. Specifically, monogenic defects can follow an autosomal dominant, autosomal recessive, or X-linked pattern of inheritance.

In the case of an autosomal dominant mode of inheritance, only one affected allele is sufficient to cause disease (i.e., a heterozygous mutation). Males and females will be affected at equal frequency, and the disease will not skip any generations. Autosomal dominant mutations can affect the expression and function of the gene product in different ways, namely, may cause haploinsufficiency, may result in gain of function, or may have a dominant negative effect. Haploinsufficiency arises when a single wild-type allele will not lead to sufficient expression of the gene product, usually a protein, and thus leads to a phenotypic effect. Gain-of-function mutations lead to an increased level of activity, novel function, or prolonged life span of the gene product, thus leading to a gain of function. Gain-of-function mutations are generally less common than loss-of-function mutations. Dominant negative mutations lead to a gene product, which will act antagonistically to the wild-type gene product within the same cell, also referred to as antimorphic mutations. Dominant negative mutations will thus reduce effective expression or function by greater than 50%. A dominant negative effect commonly arises in proteins, which form polymeric structures.

In autosomal recessive inheritance, two copies of an affected allele are required for an individual to express the disease phenotype (i.e., a homozygous or compound heterozygous mutation). Males and females will be similarly affected. Typically, both parents are heterozygous carriers, and statistically one-fourth of their children will be affected. In consanguineous unions, conditions with autosomal recessive inheritance will appear with an increased frequency due to common ancestry alleles. Autosomal recessive mutations generally result in loss of function.

In the case of X-linked inheritance usually only males are affected as they only possess one gene copy. Transmission occurs through female carriers, who are mostly phenotypically unaffected (no father-to-son transmission). The disease often occurs in multiple generations.

Whereas human inborn errors of immunity are generally defined through an underlying germline monogenic defect, some primary immunodeficiencies seem to have a complex pattern of inheritance, also referred to as polygenic inheritance. In particular, IgA deficiency and some forms of common variable immunodeficiency, both, however, not constituting cellular immunodeficiencies, seem to follow a complex inheritance pattern with an increased incidence in some families. The genetics of antibody deficiency was described in detail in the first book of this series, Humoral Primary Immunodeficiencies [12]. A list with explanations of genetic terms can be found in (Table 2.1).

	Defect	Gene	Inheritance
Severe combined immun	odeficiencies (see Chap. 6 of this bo	pok)	
T-B+ SCID	Gamma chain deficiency	IL2RG	XL
	JAK3 deficiency	JAK3	AR
	IL7Ra deficiency	IL7R	AR
	CD45 deficiency	PTPRC	AR
	CD3D deficiency	CD3D	AR
	CD3E deficiency	CD3E	AR
	CD3Z deficiency	CD3Z	AR
	Coronin 1A deficiency	CORO1A	AR
	LAT deficiency	LAT	AR
T-B- SCID	RAG1 deficiency	RAG1	AR
	RAG2 deficiency	RAG2	AR
	Artemis deficiency	DCLRE1C	AR
	DNA PKcs deficiency	PRKDC	AR
	Cernunnos/XLF deficiency	NHEJ1	AR
	DNA ligase 4 deficiency	LIG4	AR
	Adenosine deaminase (ADA) deficiency	ADA	AR
	AK2 defect	AK2	AR
	Activated RAC2 defect	RAC2	AD
Combined immunodefici	encies less severe than SCID (see C	Chap. 7 of this book)	

 Table 2.1
 Genetic defects leading to cellular immunodeficiency, modified from Tangye et al. [1]

 (Springer OA BY CC License 4.0)

Defect	Gene	Inheritance
CD40 ligand deficiency	CD40LG	XL
CD40 deficiency	CD40	AR
ICOS deficiency	ICOS	AR
ICOSL deficiency	ICOSLG	AR
CD3γ deficiency	CD3G	AR
CD8 deficiency	CD8A	AR
ZAP-70 deficiency	ZAP70	AR (LOF
		or GOF)
MHC class I deficiency	TAP1	AR
	TAP2	AR
	TAPBP	AR
	B2M	AR
MHC class II deficiency	CIITA	AR
	RFXANK	AR
	RFX5	AR
	RFXAP	AR
IKAROS deficiency	IKZF1	AD
DOCK8 deficiency	DOCK8	AR
DOCK2 deficiency	DOCK2	AR
Polymerase D deficiency	POLD1	AR
	POLD2	AR
RHOH deficiency	RHOH	AR
STK4 deficiency	STK4	AR
TCRα deficiency	TRAC	AR
LCK deficiency	LCK	AR
ITK deficiency	ITK	AR
MALT1 deficiency	MALT1	AR
CARD11 deficiency	CARD11	AR
BCL10 deficiency	BCL10	AR
IL-21 deficiency	IL21	AR
IL-21 receptor deficiency	IL21R	AR
OX40 deficiency	TNFRSF4	AR
IKBKB deficiency	IKBKB	AR
NIK deficiency	MAP3K14	AR
RelB deficiency	RELB	AR
RelA haploinsufficiency	RELA	AD
Moesin deficiency	MSN	XL
TFRC deficiency	TFRC	AR
c-Rel deficiency	REL	AR
FCHO1 deficiency	FCHO1	AR

(continued)

	Defect	Gene	Inheritance
Combined immunodeficier book)	ncies with associated or syndromic f	features (see Chap. 8	of this
Immunodeficiency with	Wiskott-Aldrich syndrome	WAS	XL
congenital	WIP deficiency	WIPF1	AR
thrombocytopenia	Arp2/3-mediated filament branching defect	ARPC1B	AR
Other DNA repair	Ataxia-telangiectasia	ATM	AR
defects	Nijmegen breakage syndrome	NBS1	AR
	Bloom syndrome	BLM	AR
	Immunodeficiency with	DNMT3B	AR
	centromeric instability and	ZBTB24	AR
	facial anomalies	CDCA7	AR
		HELLS	AR
	PMS2 deficiency	PMS2	AR
	RIDDLE syndrome/RNF168 deficiency	RNF168	AR
	MCM4 deficiency	MCM4	AR
	Polymerase E subunit 1 deficiency (FILS syndrome)	POLE1	AR
	Polymerase E subunit 2 deficiency	POLE2	AR
	Ligase I deficiency	LIG1	AR
	NSMCE3 deficiency	NSMCE3	AR
	ERCC6L2/Hebo deficiency	ERCC6L2	AR
	GINS1 deficiency	GINS1	AR
Thymic defects with additional congenital anomalies	DiGeorge/chromosome 22q11.2 deletion syndrome	Deletion in 22q11.2 (typically spanning TBX1)	AD
	TBX1 deficiency	TBX1	AD
	CHARGE syndrome	CHD7	AD
		SEMA3E	AD
	Winged helix nude FOXN1 deficiency/haploinsufficiency	FOXN1	AR/AD
	Chromosome 10p13-p14 deletion syndrome	Del10p13-p14	AD
	Chromosome 11q deletion syndrome (Jacobsen syndrome)	11q23del	AD
Immuno-osseous	Cartilage hair hypoplasia	RMRP	AR
dysplasias	Schimke immuno-osseous dysplasia	SMARCAL1	AR
	MYSM1 deficiency	MYSM1	AR
	MOPD1 deficiency (Roifman syndrome)	RNU4ATAC	AR
	Immunoskeletal dysplasia with neurodevelopmental abnormalities (EXTL3 deficiency)	EXTL3	AR

	Defect	Gene	Inheritance
Hyper-IgE syndromes (HIES)	STAT3 deficiency (job	STAT3	AD
	syndrome)		
	IL6 receptor deficiency	IL6R	AR
	IL6 signal transducer (IL6ST) deficiency	IL6ST	AR
	ZNF341 deficiency	ZNF341	AR
	ERBIN deficiency	ERBB2IP	AD
	Loeys-Dietz syndrome (TGFBR	TGFBR1	AD
	deficiency)	TGFBR2	AD
	Comel-Netherton syndrome	SPINK5	AR
	PGM3 deficiency	PGM3	AR
	CARD11 deficiency	CARD11	AD
Defects of vitamin B12	Transcobalamin 2 deficiency	TCN2	AR
and folate metabolism	SLC46A1/PCFT deficiency	SLC46A1	AR
	Methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1) deficiency	MTHFD1	AR
Anhidrotic ectodermal	NEMO/IKBKG deficiency	IKBKG	XL
dysplasia with	IKBA GOF mutation	NFKBIA	AD GOF
immunodeficiency	IKBKB GOF mutation	IKBKB	AD GOF
Calcium channel defects	ORAI-1 deficiency	ORAI1	AR
	STIM1 deficiency	STIM1	AR
Other defects	Purine nucleoside phosphorylase (PNP) deficiency	PNP	AR
	Immunodeficiency with multiple intestinal atresias	ТТС7А	AR
	Tricho-hepato-enteric syndrome	TTC37	AR
		SKIV2L	AR
	Hepatic veno-occlusive disease with immunodeficiency (VODI)	SP110	AR
	BCL11B deficiency	BCL11B	AD
	EPG5 deficiency (Vici syndrome)	EPG5	AR
	HOIL1 deficiency	RBCK1	AR
	HOIP deficiency	RNF31	AR
	Hennekam lymphangiectasia-	CCBE1	AR
	lymphedema syndrome	FAT4	AR
	Activating de novo mutations in nuclear factor, erythroid 2 like (NFE2L2)	NFE2L2	AD
	STAT5b deficiency	STAT5B	AR/AD
	Kabuki syndrome	KMT2D	AD
		KDM6A	XL
	KMT2A deficiency (Wiedemann-Steiner syndrome)	KMT2A	AD

(continued)

	Defect	Gene	Inheritance
Congenital defects of phagocytes (see Chap. 9 of this book)			
Congenital neutropenias	Elastase deficiency/severe	ELANE	AD
	congenital neutropenia I(SCNI)	CTU1	4.5
	GFI I deficiency (SCN2)	GF11	AD
	HAX1 deficiency (Kostmann disease) (SCN3)	HAX1	AR
	G6PC3 deficiency (SCN4)	G6PC3	AR
	VPS45 deficiency (SCN5)	VPS45	AR
	Glycogen storage disease type 1b	G6PT1	AR
	X-linked neutropenia/ myelodysplasia	WAS	XL GOF
	P14/LAMTOR2 deficiency	LAMTOR2	AR
	Barth syndrome (3-methylglutaconic aciduria type II)	TAZ	XL
	Cohen syndrome	VPS13B	AR
	Clericuzio syndrome (Poikiloderma with neutropenia)	USB1	AR
	JAGN1 deficiency	JAGN1	AR
	3-Methylglutaconic aciduria	CLPB	AR
	G-CSF receptor deficiency	CSF3R	AR
	SMARCD2 deficiency	SMARCD2	AR
	Specific granule deficiency	CEBPE	AR
	Shwachman-diamond syndrome	SBDS	AR
		DNAJC21	AR
		EFL1	AR
	HYOU1 deficiency	HYOU1	AR
	SRP54 deficiency	SRP54	AD
Defects of motility	Leukocyte adhesion deficiency type 1 (LAD1)	ITGB2	AR
	Leukocyte adhesion deficiency type 2 (LAD2)	SLC35C1	AR
	Leukocyte adhesion deficiency type 3 (LAD3)	FERMT3	AR
	Rac2 deficiency	RAC2	AD LOF
	β actin deficiency	ACTB	AD
	Localized juvenile periodontitis	FPR1	AR
	Papillon-Lefèvre syndrome	CTSC	AR
	WDR1 deficiency	WDR1	AR
	Cystic fibrosis	CFTR	AR
	MKL1 deficiency	MKL1	AR
Defects of respiratory burst	X-linked chronic granulomatous disease (CGD), gp91phox	CYBB	XL
	Autosomal recessive CGD	СҮВА	AR
		CYBC1	AR
		NCF1	AR
		NCF2	AR
		NCF4	AR
	G6PD deficiency class I	G6PD	XL

	Defect	Gene	Inheritance
Other nonlymphoid	GATA2 deficiency	GATA2	AD
defects	Pulmonary alveolar proteinosis	CSF2RA	XL
		CSFR2B	AR
Defects of innate and intri	nsic immunology (see Chap. 10 of	this book)	
Mendelian susceptibility to mycobacterial disease	IL-12 and IL-23 receptor β1 chain deficiency	IL12RB1	AR
	IL-12p40 (IL-12 and IL-23) deficiency	IL12B	AR
	IL-12Rβ2 deficiency	IL12RB2	AR
	IL-23R deficiency	IL23R	AR
	IFN-γ receptor 1 deficiency	IFNGR1	AR/AD
	IFN-y receptor 2 deficiency	IFNGR2	AR
	STAT1 deficiency	STAT1	AD LOF
	Macrophage gp91 phox deficiency	СҮВВ	XL
	IRF8 deficiency	IRF8	AD
	SPPL2a deficiency	SPPL2A	AR
	Tvk2 deficiency	TYK2	AR
	ISG15 deficiency	ISG15	AR
	RORvt deficiency	RORC	AR
	JAK1 deficiency	JAK1	AR
Epidermodysplasia	EVER1 deficiency	TMC6	AR
verruciformis (HPV)	EVER2 deficiency	TMC8	
	CIB1 deficiency	CIB1	
	WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome	CXCR4	AD GOF
Predisposition to severe	STAT1 deficiency	STAT1	AR LOF
viral infection	STAT2 deficiency	STAT2	AR
	IRF9 deficiency	IRF9	AR
	IRF7 deficiency	IRF7	AR
	IFNAR1 deficiency	IFNAR1	AR
	IFNAR2 deficiency	IFNAR2	AR
	CD16 deficiency	FCGR3A	AR
	MDA5 deficiency	IFIH1	AR
	RNA polymerase III deficiency	POLR3A	AD
		POLR3C	AD
		POLR3F	AD
Predisposition to herpes	TLR3 deficiency	TLR3	AR/AD
simplex encephalitis	UNC93B1 deficiency	UNC93B1	AR
	TRAF3 deficiency	TRAF3	AD
	TRIF deficiency	TICAM1	AD/AR
	TBK1 deficiency	TBK1	AD
	IRF3 deficiency	IRF3	AD
	DBR1 deficiency	DBR1	AR

(continued)

	Defect	Gene	Inheritance
Predisposition to	CARD9 deficiency	CARD9	AR
recurrent fungal	IL-17RA deficiency	IL17RA	AR
infections	IL-17RC deficiency	IL17RC	AR
	IL-17F deficiency	IL17F	AD
	STAT1 GOF	STAT1	AD GOF
	ACT1 deficiency	TRAF3IP2	AR
TLR signaling pathway	IRAK4 deficiency	IRAK4	AR
deficiency with bacterial	MyD88 deficiency	MYD88	AR
susceptibility	IRAK1 deficiency	IRAK1	XL
	TIRAP deficiency	TIRAP	AR
Other inborn errors of	Isolated congenital asplenia	RPSA	AD
immunity related to	(ICA)	HMOX	AR
non-hematopoietic	Trypanosomiasis	APOL1	AD
tissues	Acute liver failure due to NBAS deficiency	NBAS	AR
	Acute necrotizing encephalopathy	RANBP2	AR
	Osteopetrosis	CLCN7	AR
		SNX10	AR
		OSTM1	AR
		PLEKHM1	AR
		TCIRG1	AR
		TNFRSF11A	AR
		TNFSF11	AR
	Hidradenitis suppurativa	NCSTN	AD
		PSEN	AD
		PSENEN	AD
Other inborn errors of	IRF4 haploinsufficiency	IRF4	AD
immunity related to leukocytes	IL-18BP deficiency	IL18BP	AR

Table 2.1	(continued)
-----------	-------------

Abbreviations: XL X-linked, AR Autosomal recessive, AD Autosomal dominant, GOF Gain of function, LOF Loss of function

2.5 Germline Versus Somatic Mutations

A **germline** mutation is defined as a heritable mutation, which occurred originally in a germ cell or the zygote at single-cell stage, and thus will be present in all cells in the offspring, including the germ cells. Thus, a germline mutation can be passed on from generation to generation.

In contrast to germline mutations, somatic mutations occur when a mutation arises postzygotically, which will lead to mosaicism. The phenotype of mosaicism depends upon the developmental stage at which the mutation arises. A mutation in early embryonic development will likely affect many different tissues. If only somatic cells are affected, this will be called somatic mosaicism. Somatic mosaicism will not be transmitted to the next generation. If both somatic cells and germ cells are affected, this is defined as gonosomal mosaicism, which will cause symptoms depending on the affected somatic tissues and may be transmitted on to the next generation. In contrast, gonadal mosaicism affects only the germ cells and, thus, typically has no phenotype in the carrier but will be transmitted to the offspring as a germline mutation. Somatic mutations are generally considered phenocopies of PID within the IUIS classification, although we want to point out that mosaicism may in theory cause a phenotype indistinguishable from germline mutations and, if including the germ cells, can lead to full germline mutations in the offspring. Mosaicism should be suspected in case of marked intergenerational phenotypical differences, unexpected intrafamilial reoccurrence in children of seemingly healthy parents without mutation in Sanger sequencing, or unequal height/ intensity of sequencing peaks in Sanger chromatograms [13].

2.6 Types of Mutations

Mutations can be classified either by their impact on DNA or by their impact on the respective protein.

Regarding the impact of a mutation on the DNA, a mutation can further be classified as a substitution, i.e., one or multiple bases are substituted by an equal number of other bases; an insertion, where additional bases are gained; or a deletion, i.e., a loss of bases. Inversions and translocations may also be listed in this category and constitute structural rearrangements of DNA. An inversion is defined as an end-toend reversion of a piece of DNA, whereas a translocation describes the integration of a piece of DNA or a piece of a chromosome at another position. Translocations can be balanced, i.e., an even exchange of DNA, or unbalanced, thus leading to loss or gain of genetic material in daughter cells.

Regarding the impact on the resulting protein, mutations can be classified as silent mutations, missense mutations, or frameshift mutations. A silent mutation is a mutation which does not lead to a change in the amino acid sequence of the protein. A missense mutation is defined as an exchange of a single amino acid within the protein sequence. A nonsense mutation constitutes a change of one amino acid within the protein into a premature stop codon. In contrast, a readthrough mutation constitutes the change of a stop codon into an amino acid. A frameshift mutation arises from a deletion or insertion of bases in the DNA sequence of a number not divisible by three, thus changing the reading frame as the genetic code is organized in base triplets, i.e., codons, each coding for a specific amino acid. Also mutations outside of the coding DNA sequence may have an impact on the protein. Splice site mutations have long been recognized as disease causing; however, deep intronic mutations may have an impact on the protein sequence or expression through inclusion of pseudo-exons due to creation of alternative splice sites or may affect expression when located within regulatory regions, such as promoter or enhancer sequences [14].

2.7 Pleiotropy of PIDs

Many different genetic defects have overlapping phenotypes. Genetic heterogeneity can generally be classified into allelic heterogeneity and locus heterogeneity. Allelic heterogeneity is defined as different mutations (alleles) within the same gene producing a similar phenotype. In contrast, locus heterogeneity implies that a similar phenotype may be caused by mutations in different genes. Similarly, the term genocopy refers to a genotype or mutation resulting in a similar phenotype to another genotype or mutation at a different locus. In contrast, a phenocopy is defined as environmental factors producing the same phenotype as a specific genetic mutation, thus mimicking the phenotype [15]. A phenocopy by definition is not a genetic trait and thus is not hereditary in a strict Mendelian sense, though epigenetic changes may count as phenocopies and can be passed on to daughter cells.

Differences in phenotype despite the same genotype may be caused by a variable expressivity of a trait or phenotype. Expressivity thus constitutes a measure for the extent of phenotypic expression. In contrast, penetrance refers to the proportion of individuals with a certain genotype, who exhibit the associated phenotype. With complete penetrance all individuals with a certain genotype, i.e., a certain mutation, show the associated symptoms/trait, whereas reduced penetrance means that some individuals who carry a genetic defect may in fact be phenotypically healthy.

2.8 Sequencing Technologies

In the past Sanger sequencing constituted the gold standard for genetic diagnostics. Depending on the clinical phenotype, the most likely candidate genes needed to be identified and sequenced sequentially exon by exon. However, this constituted a laborious time- and resource-consuming process and often did not lead to success due to atypical presentations and obvious limitations due to being a hypothesisdriven approach (i.e., the candidate gene needed to be known). In recent years, great advances have been made with the help of next-generation sequencing techniques, which have substituted Sanger sequencing in the diagnostic workup process of PIDs in many places.

Next-generation sequencing technologies allow for the simultaneous massive parallel sequencing of thousands of genes at dramatically reduced costs. With many novel sequencing techniques, several patients can be multiplexed and thus sequenced in the same sequencing run. The introduction of next-generation sequencing methods thus has greatly facilitated the identification of novel genetic defects, which is reflected in the rising number of novel defects described every year. In general, next-generation sequencing methods consist of the following three steps: The first step is the preparation of a library, in which the DNA is fragmented (usually through either restriction enzymes or sonication) and fragments are ligated with custom linkers or sequencing adapters. In panel and exome sequencing, there is an amplification step relying on clonal amplification/PCR, whereas whole genome sequencing, in general, does not necessitate amplification. Lastly, the fragments are sequenced. Depending on the sequencer, different technologies are employed for this step.

Next-generation sequencing approaches can be divided into panel sequencing approaches, whole exome sequencing, and whole genome sequencing, each with their distinct advantages and disadvantages.

Gene panel sequencing provides a high coverage of sequenced regions, which is one of its distinct advantages over whole exome and especially whole genome sequencing and is crucial to reduce errors, particularly in a diagnostic setting. Since less regions are sequenced, panel sequencing results in less variants of unknown significance. Limitations include that panel sequencing is a biased approach (variants can only be detected in sequenced regions, i.e., in identified target genes), preassembled panels are rigid and may not contain all genes of interest, and continuous redesigning and revalidation of the panel may be necessary.

Whole exome sequencing constitutes an unbiased approach, allowing the identification of novel defects. However, in practice, complete coverage of all coding exons is impracticable, and a significant proportion of regions will have a low read depth, necessitating resequencing for use in a clinical context.

Whole genome sequencing is the only method which also allows for the identification of deep intronic variants. However, data interpretation is still difficult and hampered by detection of vast numbers of variants of unknown significance.

All next-generation sequencing approaches necessitate bioinformatic analysis in order to align the sequenced fragments correctly to the reference genome and identify variants. Detected variants subsequently need to be compared with reference databases and evaluated for harmfulness through either prediction tools or experimental validation.

2.9 Interpretation of Sequencing Results

A drawback of the novel sequencing technologies is the detection of numerous variants of unclear significance. Sometimes it may be difficult to establish whether a variant is in fact disease causing or not, which may pose clinical as well as at times ethical and legal challenges.

Sequence variants are common, often benign, and the source of genetic variation. In fact, each genome is thought to have approximately 4 million sequence variants, which mostly constitute single-nucleotide polymorphisms (SNP, by definition frequency above 1%) but may also encompass, e.g., structural variants [16]. The relative occurrence of sequence variants varies between regions and genes, with important functional domains of genes often showing evolutionary conservation through many different species.

To establish whether a variant may be benign or disease causing, several methods can be employed. Firstly, to establish whether a variant has been reported before or is listed as a SNP, bioinformatic analysis including queries of population databases can be employed; useful resources include, e.g., dbSNP, Human Gene Mutation Database (HGMD), ClinVar, and gnomAD (formerly ExAc) [17–20]. If the variant has not been reported as disease associated before, in silico prediction tools, such as CADD, PolyPhen2, or SIFT, may provide helpful insights [21–23]. Additionally, genetic analysis of affected and unaffected family members as well as functional testing including cloning of the mutation may be performed but constitute laborious processes.

To facilitate the classification and interpretation of sequencing results, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology have published recommendations [24]. In particular, they recommend to classify variants into the following categories: (i) pathogenic, (ii) likely pathogenic, (iii) uncertain significance, (iv) likely benign, or (v) benign. Furthermore, they advise to use a standardized nomenclature of variants, as published and regularly updated by the Human Genome Variation Society (HGVS) [25].

As a general rule, variants should always be described at the most basic level possible, which will normally be the DNA level (e.g., c.1650C>T, where ">" is used to label a base substitution and "del," "ins," and "dup" label deletions, insertions, and duplications, respectively). However, in the case of, e.g., frameshifts, the protein sequence may be used, such as p.R908Kfs*15, indicating that the variant leads to an amino acid exchange from R to K in position 908 with a subsequent frameshift (fs) and termination after 15 amino acids. Importantly, a reference sequence or transcript should always be provided. The online tool Mutalyzer (https://mutalyzer.nl) provides both a name generator producing a valid HGVS variant description and a syntax checker to assess existing variant descriptions regarding compatibility with HGVS nomenclature [26].

Furthermore, variants described in only a single patient should be taken with caution. Casanova et al. published criteria aiding the decision whether data establish a causal relationship between phenotype and genotype for this case [27]. In brief, the variant in question should not occur in healthy individuals, there need to be experimental data indicating that the gene product is altered in function or expression by the variant, and a causal relationship between genotype and phenotype must be confirmed in an animal model or a relevant cellular phenotype.

2.10 Genetics of Combined Immunodeficiencies

Combined immunodeficiencies can be classified into severe combined immunodeficiencies (SCID) and combined immunodeficiencies less severe than SCID (CID). In total, the current IUIS classification lists a total number of 50 disorders caused by 58 distinct genetic defects.

Clinically, SCID defects can be classified by presence or absence of T, B, and NK cells. Genetically, SCID defects can be grouped by pathogenic mechanism into VDJ recombination and T cell receptor defects, cytokine signaling defects, defects with toxic metabolite accumulation, and defects with defective survival of hematopoietic precursors. SCID usually follows an autosomal recessive or X-linked pattern of inheritance.

VDJ recombination defects constitute mainly enzymatic defects, which are inherited in an autosomal recessive pattern and include RAG1/RAG2 deficiency, DNA cross-link repair enzyme 1c (DCLRE1C)/Artemis deficiency, nonhomologous end-joining enzyme (NHEJ1)/Cernunnos deficiency, DNA ligase IV (LIG4) deficiency, and DNA PKcs deficiency (PRKDC). Recombination-activating proteins (RAG) 1 and 2 initiate recombination of immunoglobulin and T cell receptor genes in B and T cells to diversify the repertoire through rearrangement of variable (V), diversity (D), and joining (J) segments. Failure to induce VDJ recombination will lead to apoptosis. It is essential that the induced double-strand breaks subsequently are repaired correctly to produce a recombined continuous DNA strand. Defects in nonhomologous end-joining DNA repair mechanisms, such as mutations in DCLRE1C, DNA PKcs, NHEJ1, and LIG4, will thus lead to SCID with increased radiosensitivity as DNA damage cannot be sufficiently repaired. Other DNA repair defects leading to radiosensitivity and immunodeficiency regularly include syndromic features and thus belong to syndromic combined immunodeficiencies.

T cell receptor defects affecting CD3D, CD3E, and CD3Z lead to T-B+NK+ SCID, whereas CD3G deficiency leads to combined immunodeficiency, generally less profound than SCID. Also, CD45 deficiency may be counted toward the T cell receptor defects in that CD45 encodes a receptor-associated tyrosine phosphatase essential for the activation of T cells through the T cell receptor, its deficiency also leads to T-B + NK+ SCID. T cell receptor defects generally follow an autosomal recessive inheritance pattern.

Cytokine signaling defects causing SCID include common gamma chain deficiency (IL2RG), JAK3 deficiency, and IL7R α deficiency (IL7RA). The common gamma chain is a receptor chain shared by the receptors of interleukins IL2, IL4, IL7, IL9, IL15, and IL21. As IL7 and IL15 are essential in the development of T and NK cells, common gamma chain deficiency leads to T-B + NK- SCID. Since the *IL2RG* gene is located on the X chromosome, common gamma chain deficiency follows an X-linked inheritance pattern and thus is also referred to as X-SCID. The Janus kinase 3 mediates the signal transduction downstream of common gamma chain cytokines; therefore, deficiency also leads to T-B+NK– SCID, however, following an autosomal recessive inheritance pattern. IL7 signaling is essential in the early development of lymphocytes but also proliferation and survival of T cells peripherally; thus, deficiency of the IL7 receptor alpha chain also causes T-B+NK+ SCID. Multiple other cytokine and signaling defects lead to less severe primary immunodeficiencies.

Defects with toxic metabolite accumulation include ADA and PNP deficiency. The adenosine deaminase (ADA) is an essential enzyme of the purine salvage pathway, mediating the deamination of adenosine and 2-deoxyadenosine into inosine and deoxyinosine. Deficiency of ADA leads to toxic accumulation of these metabolites, which results in lymphocyte apoptosis (T-B–NK– SCID). The purine nucleoside phosphorylase (PNP) constitutes another key enzyme within the purine salvage pathway downstream of ADA, deribosylating inosine to hypoxanthine and guanosine to guanine. PNP deficiency leads to toxic accumulation of deoxyguanosine and deoxyguanosine triphosphate, leading to apoptosis, mainly affecting the T cells

(T-B+NK– SCID). As PNP deficiency leads to neurological symptoms and autoimmunity, the IUIS classification lists it as a combined immunodeficiency with associated features.

Hypomorphic mutations in any of these SCID genes may lead to less severe phenotypes of leaky SCID/combined immunodeficiency. Detailed descriptions of severe combined immunodeficiencies and combined immunodeficiencies may be found in Chaps. 6 and 7 of this book, whereas Table 2.2 gives an overview of genetic defects associated with cellular immunodeficiencies (Table 2.2).

Patterns of inheritance	
Autosomal recessive inheritance	Two copies of an affected allele are required for an individual to express the disease phenotype (i.e., a homozygous or compound heterozygous mutation); may occur if gene is located on autosomal chromosome
Autosomal dominant inheritance	Only one affected allele is sufficient to cause disease (i.e., a heterozygous mutation); may occur if gene is located on autosomal chromosome
X-linked inheritance	Usually only males are affected as they only possess one gene copy. Transmission occurs through female carriers, who are mostly phenotypically unaffected; only occurs in genes located on X chromosome
Zygosity	
Homozygosity	Cell possesses two identical alleles of a particular gene, one inherited from each parent
Heterozygosity	Cell possesses two different alleles (one wild-type allele and one variant allele) of a particular gene
Compound heterozygosity	Cell possesses two different variant alleles but no wild-type allele of a particular gene
Hemizygosity	Cell possesses only one copy of a particular gene, either through location of that gene on sex chromosome (X,Y) or through loss of homologous chromosome
Types of mutations	
Substitution	Mutation, in which one or multiple bases are replaced with an equal number of other bases
Deletion	Mutation which leads to loss of bases
Insertion	Mutation which leads to gain of additional bases
Inversion	End-to-end reversion of a piece of DNA
Translocation	Integration of a piece of DNA or piece of a chromosome at another position
Silent mutation	Mutation which does not change the amino acid sequence of the protein
Missense mutation	Mutation which leads to exchange of a single amino acid within a protein sequence
Nonsense mutation	Mutation which leads to formation of premature stop codon
Readthrough mutation	Mutation which changes the stop codon into an amino acid
Frameshift mutation	Deletion or insertion of a base number not divisible by three, thus changing the reading frame

Table 2.2 Definitions of genetic terms

Patterns of inheritance		
Mosaicism and germline mutations		
Germline mutation	Heritable mutation, which occurred originally in a germ cell or zygote	
	at single-cell stage and thus will be present in all cells in the offspring	
Somatic mutation	Postzygotic mutation, which will lead to mosaicism of one of the	
	three types listed below:	
Somatic	Affects only somatic cells, thus not transmitted to the next generation;	
mosaicism	will produce phenotype depending on affected cells/tissues	
Gonosomal	Affects both somatic cells and germ cells, may thus cause symptoms	
mosaicism	depending on affected somatic tissues, and may be transmitted to the	
	next generation	
Gonadal	Affects only germ cells, thus, typically has no phenotype in the carrier	
mosaicism	but may be transmitted to the offspring as a germline mutation	
Pleiotropy and heteroge	neity	
Allelic	Different mutations (alleles) within the same gene produce a similar	
heterogeneity	phenotype	
Locus heterogeneity	Mutations in different genes produce a similar phenotype	
Genocopy	Genotype or mutation, which produces a similar phenotype to another	
	genotype or mutation at a different locus	
Phenocopy	Environmental factors produce the same phenotype as a specific	
	genetic mutation, thus mimicking the phenotype	
Expressivity	Measure for the extent of phenotypic expression	
Penetrance	Proportion of individuals with a certain genotype, who exhibit the	
	associated phenotype	

Table 2.2 (continued)

2.11 Genetics of Combined Immunodeficiencies with Associated or Syndromic Features

In most primary immunodeficiencies, the immunodeficiency is the most prominent clinical finding. In contrast, syndromic immunodeficiencies are characterized by associated syndromes or clinical findings taking a front role. Associated features may commonly affect the skeletal, nervous, or ectodermal development or function but may include almost any organ system. In contrast to most other classes of immunodeficiencies, not all syndromic immunodeficiencies are typically caused by a genetic defect in a single gene but may result from underlying cytogenetic abnormalities, i.e., abnormalities of chromosomal number or structure. DiGeorge syndrome caused by 22q11 deletions is the most well-known example. Cytogenetic abnormalities may be detected by karyotyping or fluorescence in situ hybridization (FISH).

As of 2019, there are a total number of 58 combined immunodeficiencies with associated or syndromic features comprising 62 distinct genetic defects [1]. These include immunodeficiencies with congenital thrombocytopenia (WAS, WIPF1, ARPC1B), other DNA repair defects (ATM, NBS1, BLM, DNMT3B, CDCA7, HELLS, PMS2, RNF168, MCM4, POLE1, POLE2, LIG1, NSMCE3, ERCC6L2,

GINS1), thymic defects with congenital abnormalities (22q11.2DS, TBX1, CHD7, SEMA3E, FOXN1, 10p13-p14DS, 11q23del), immuno-osseous dysplasias (*RMRP*, *SMARCAL1, MYSM1, RNU4ATAC, EXTL3*), hyper-IgE syndromes (*STAT3, IL6R, IL6ST, ZNF341, ERBB2IP, TGFBR1, TGFBR2, SPINK5, PGM3, CARD11*), defects in vitamin B12 and folate metabolism (*TCN2, SLC46A1, MTHFD1*), anhidrotic ectodermal dysplasia with immunodeficiency (*IKBKG, NFKBIA, IKBKB*), calcium channel defects (*ORAI1, STIM1*), and other defects (*PNP, TTC7A, TTC37, SKIV2L, SP110, BCL11B, EPG5, RBCK1, RNF31, CCBE1, FAT4, NFE2L2, STAT5B, KMT2D, KDM6A, KMT2A*). A detailed description of combined immunodeficiencies with associated or syndromic features may be found in Chap. 8 of this book.

2.12 Genetics of Defects in Intrinsic and Innate Immunity

Defects of innate immunity comprise multiple heterogeneous groups of defects, out of which some can be counted toward cellular immunodeficiency, others constitute defects of soluble factors such as complement factors, and yet other defects derive from a defective barrier function, which are defects of nonimmune cells, however, predisposing to infection. Furthermore, defects of innate immunity may have an impact on the adaptive immune system through impaired (co-)stimulation or antigen presentation.

In recent years many novel inborn errors of innate immunity have been described, often leading to an increased susceptibility to a narrow range of pathogens. These include Mendelian susceptibility to mycobacterial disease, predisposition to chronic mucocutaneous candidiasis or invasive fungal infections, predisposition to herpes simplex encephalitis, and other severe viral infections. A detailed description of defects of intrinsic and innate immunity may be found in Chap. 10 of this book.

A major subgroup within the defects of innate immunity are the congenital defects of phagocytes; thus, they are often listed separately, and also this book dedicated a separate chapter to them (for congenital defects of phagocytes, see Chap. 9). Congenital defects of phagocytes comprise congenital neutropenias (i.e., defects with reduced neutrophil numbers); defects of neutrophil function including motility, chemotaxis, and adhesion; defects of respiratory burst (chronic granulomatous disease); and other nonlymphoid defects. As of 2019, the IUIS recognizes 41 distinct phagocyte defects [1].

2.13 Outlook

While so far more than 430 genetic defects causing primary immunodeficiencies have been identified, there may be many more novel defects left to discover. In theory, the number of potential human inborn errors of immunity is only limited by the number of genes related to the immune system. The gene ontology (GO) database lists 2782 genes within the category "immune system process"; thus, there may be many discoveries of novel primary immunodeficiencies in the years to come.

As our understanding of molecular as well as regulatory processes evolves, phenocopies of PID with somatic mutations, polygenic traits, and also epigenetic changes, all not constituting PID in the narrower sense, might gain further importance, which may ultimately lead to changes in our understanding of the concept of what constitutes a primary immunodeficiency or an inborn error of immunity.

References

- Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40(1):24–64
- Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al (2011) Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 117(23):6287–6296
- 3. Mendel G (1996) Experiments in plant hybridization (1865). Verhandlungen des naturforschenden Vereins Brünn) Available online
- 4. Morgan TH, Sturtevant AH, Bridges CB, Muller HJ (1915) The mechanism of Mendelian heredity. H. Holt, New York
- Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158
- Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738
- Ingram VM (1956) A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178(4537):792–794
- Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ (1972) Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2(7786):1067–1069
- Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467
- Vetrie D, Vorechovský I, Sideras P, Holland J, Davies A, Flinter F et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361(6409):226–233
- Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72(2):279–290
- 12. D'Elios MM, Rizzi M (2019) Humoral Primary Immunodeficiencies. Springer, Cham
- Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra MT, González-Granado LI et al (2019) Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J Allergy Clin Immunol 143(1):359–368
- Vaz-Drago R, Custódio N, Carmo-Fonseca M (2017) Deep intronic mutations and human disease. Hum Genet 136(9):1093–1111
- 15. Goldschmidt R (1935) Gen und Außeneigenschaft. Z Indukt Abstamm Vererbungsl 69(1):38-69
- Marian AJ (2010) DNA sequence variants and the practice of medicine. Curr Opin Cardiol 25(3):182–185
- Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311
- Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–D10D7
- Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D et al (2017) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45(D1):D840–D8D5

- 20. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443
- 21. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315
- 22. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249
- Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081
- 24. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424
- 25. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J et al (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37(6):564–569
- Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE (2008) Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Hum Mutat 29(1):6–13
- Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD (2014) Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med 211(11):2137–2149