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Preface

Drugs have to be both efficient and safe. In the drug development process, compre-
hensive testing in animals is currently preceding first-in-human studies. The Euro-
pean Union reported the use of around 9.39 Mio animals in 2017 (latest report,
released on the 5th of February 2020, covering the period 2015–2017), with basic
biomedical research and drug development as the dominating purposes. Only agents
found to be active and safe in preclinical (animal) testing proceed to clinical trials.
Since rational drug development is based on detailed insights into the pathophysiol-
ogy, basic biomedical research and drug development are inseparably connected.
Yet, currently 66% (vaccines for infectious diseases) to 96.6% (antitumor drugs) of
the drug candidates introduced into clinical testing fail, most often because of a lack
of efficacy or due to inacceptable adverse drug reactions. The extreme attrition rate
of drug candidates and the high cost of, e.g., improvements in cancer treatment must
be rated against the particularly high number of animals used for this purpose. Drug
candidates for other indications perform better to some extent. In light of this, there is
a major need for translatable preclinical studies and disease models in order to save
time and costs – as well as to reduce human exposure to failing agents and to avoid
preventable animal suffering.

This book summarizes the current state of knowledge on “alternative testing”
which means in particular preclinical or nonclinical studies on cell- and tissue-
cultures. Well-defined cell-lines that reduce variability are an option in the preselec-
tion process. The use of primary cells of human origin also avoids the species gap
and allows to introduce human heterogeneity into the test system by using cells of
several donors. Human-induced pluripotent stem cells (hIPS cells) are expected to
provide a major step forward. Generated from donors with hereditary diseases, hIPS
appear to generate very precise results – yet being juvenile, hIPS cells may be less
suitable for diseases of the elderly. In addition to human cells, the use of scaffold
biomaterials, the exposure of the cultures to nutrients and signaling molecules, and
the removal of waste products are of major relevance for disease model building in
order to adequately reflect the target tissue in man. The mode of drug exposure to the
skin model requires equally careful consideration.

This handbook outlines the benefits and limitations of current approaches and
describes the frontier of knowledge with a strong focus on the testing of effects of
drugs on the human skin. Historically, alternative testing for skin effects has been
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established early – due to the harsh criticism of testing cosmetics in animals.
Subsequently, additional organ-specific models were introduced and are presented
in chapters of this book, including engineered heart, lung, and gut – all of them both
healthy and diseased –which are highly needed in preclinical drug research. Because
of the major relevance of the blood–brain barrier for the access of substances to the
brain, a separate chapter is devoted to this topic. Models and methods for testing
drug uptake following topical exposure to the lung and skin are described. Because
of the very high failure rate of anticancer drugs in clinical studies, two chapters focus
on cancer models: One is focusing on approaches to overcome resistance develop-
ment. Another chapter is presenting a rather complex, though non-human, model for
testing of anticancer drugs – the chicken chorio-allantoic membrane (CAM). In fact,
the CAM has initially been used in one of the first non-animal testing methods to
assess damages on conjunctival tissues.

A major challenge that remains is the inclusion of immune cells which is essential
for modeling the large number of immune-driven diseases. Immune-competent
models are a topic of the chapter on models of diseases of the gut and the skin.
Specific aspects of co-cultures, gene knockdown, bioprinting, and microfluidic
models are also addressed. Another chapter describes recent advances in tissue
engineering to study tissue regeneration. The use of those human-based models in
drug research is quickly becoming more feasible.

The introductory section of the handbook covers important topics of general
relevance. Testing of cosmetics and their ingredients on animals is forbidden in
the EU since 2013. Because of the resulting major need of the cosmetics industry,
several companies started to offer reconstructed human epidermis, in part through
automated production. Today, other test matrices are offered, too. The introductory
section, therefore, also covers the specific aspects of standardized production and
quality assurance of such commercial models. There are a still increasing number of
OECD test guidelines for the hazard identification of chemicals using these tissue
models. This illustrates the potential of human-based approaches for drug develop-
ment. Currently, a discussion is initiated, whether patient-derived models may allow
a step into precision medicine in order to improve success rates in tumor therapy.

To be included into OECD test guidelines, models and methods need to be
validated. In validation ring-trials they have to demonstrate robustness and repro-
ducibility and to prove that the results are in line with previous data generated in
animals or humans. Yet, to the best of authors’ understanding, the extensive valida-
tion effort required by the OECD is not feasible for preclinical drug development.
We, therefore, propose an alternative approach to quality assurance which is appli-
cable to the increasing complexity of the models in the early and advanced stages of
preclinical research.

Berlin, Germany Monika Schäfer-Korting
São Paulo, Brazil Silvya Stuchi Maria-Engler
Ludwigshafen am Rhein, Germany Robert Landsiedel
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Abstract

In regulatory toxicology, in vivo studies are still prevailing, and human-derived in
vitro models are mostly used in testing for local toxicity to the skin and the eyes. A
single in vitro model may be limited to address one or few molecular or cellular
events leading to adverse outcomes. Hence, in many instances their regulatory use
involves the combination of several in vitro models to assess the hazard potential
of test substance. A so-called defined approach combines different testingmethods
and a ‘data interpretation procedure’ to obtain a comprehensive overall assessment
which is used for the regulatory hazard classification of the test substance.

Validation is a prerequisite of regulatory acceptance of new testing methods:
This chapter provides an overview of the method development from an experi-
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mental method to a test guideline via application of GIVIMP (good in vitro
method practice), standardization, validation to the regulatory adoption as an
OECD test guidelines. Quandaries associated with the validation towards refer-
ence data from in vivo animal studies with limited accuracy and limited human
relevance are discussed, as well as uncertainty and limitations arising from
restricted applicability and technical and biological variance of the in vitro
methods.

This chapter provides an overview of human-derived in vitro models currently
adopted as OECD test guidelines: From the first skin corrosion tests utilizing
reconstructed human epidermis models (RhE), to models to test for skin irritation,
phototoxicity, eye irritation, and skin sensitization. The latter is using a battery of
different methods and defined approaches which are still under discussion for
their regulatory adoption. They will be a vanguard of future applications of
human-derived models in regulatory toxicology. RhEs for testing of genotoxicity
and of dermal penetration and absorption, have been developed, underwent
validation studies and may soon be adopted for regulatory use; these are included
in this chapter.

Keywords

Dermal penetration and absorption · Eye irritation · Genotoxicity · Human-
derived model · OECD test guideline · Phototoxicity · Skin corrosion and
irritation · Skin sensitization · Uncertainty · Validation

Abbreviations

AOP Adverse outcome pathway
cat. Category
DA Defined approach
DIP Data interpretation procedure
DPRA Direct peptide reactivity assay
e.g. exempli gratia
EC European Council
ECHA European Chemicals Agency
EIT Eye irritation test
et al. et alii, et aliae
EU European Union
F/RAND Fair, reasonable, and nondiscriminatory
FI Fluorescence intensity
FP False positives
GHS Globally Harmonized System of Classification and Labelling of

Chemicals
GIVIMP Good in vitro method practice
GLP Good laboratory practice
h-CLAT Human cell line activation test
IL Interleukin
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ITS Integrated testing strategy
KE Key event
LLNA Murine local lymph node assay
MIE Molecular initiating event (KE1)
MPD Mean peptide depletion
NPV Negative prediction value
OECD Organisation for Economic Co-operation and Development
PPV Positive prediction value
RhCE Reconstructed human cornea-like epithelium model
RhE Reconstructed human epidermis model
SCT Skin corrosion test
SI Stimulation index
SIT Skin irritation test
STS Sequential testing strategy
TG Test guideline no.
TN True negatives
TP True positives
UV Ultraviolet light

1 Introduction

Traditionally, in toxicology, animal models are used, which require the extrapolation
from observations in animals to humans. On the other hand, animal models provide
the complexity of a whole organism which is not offered by cell or tissue cultures.
Effects on the skin and eye are, however, local and may not involve complex
interactions of different organs in the body. Therefore, human-derived in vitro
models using cell or tissue cultures could avoid interspecies difference and yet be
sufficient to address local effects. Even for local effects, a single in vitro model may
be limited to one or few potential effects or biological events leading to adverse
effects on human skin; this can be addressed by usage of testing batteries of several
in vitro models: Regulatory use of in vitro models usually involves the combination
of several models to assess the hazard potential of test substance. This requires a
battery of testing methods and a data interpretation procedure (DIP) to combine the
outcomes of these tests. A pre-defined set of testing methods and the fitting DIP is
called defined approach.

The present chapter provides an overview of regulatorily accepted test methods
based on human-derived in vitro models and defined approaches. The validation of
testing methods is a prerequisite of their regulatory acceptance. Adopted test
methods are available at the OECD’s webpage.1 OECD-adopted test methods are

1At https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-sec
tion-4-health-effects_20745788.
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usually taken up in the Annex to the EU Test Methods Regulation (Regulation
(EC) No 440/2008 n.d.). Formal adoption of new methods or changes in existing
methods by the OECD test guidelines and subsequently in the Annex to the EU Test
Methods Regulation may take some time. However, “the latest version of an adopted
test guideline should always be used when generating new data, independently of
whether it is published by EU or OECD” (ECHA Endpoint Specific Guidance docu-
ment. ECHA 2017a). In this chapter, we are referring to OECD test guideline methods.

2 Validation and Regulatory Acceptance

Since the early 2000s, several regulations include non-animal test methods (e.g., the
European Chemicals Regulation REACH (Registration, Evaluation, Authorization
and Restriction of Chemicals); (Regulation (EC) No 1907/2006 n.d.)) or even
completely rely on in vitro (and other non-animal) testing methods, such as the
EU Cosmetics Regulation (Regulation (EC) No 1223/2009 n.d.).

The validation of an in vitro method and its adoption in an OECD test guideline
do not inevitably lead to its global regulatory acceptance and use, much less the
complete replacement of the respective in vivo study. The regulatory acceptance of
(in vitro) test data depends on regional authorities’ regulations and may also be
sector specific (e.g., different for pharmaceuticals, chemicals, cosmetics, and agro-
chemical formulations). The differences in regional regulatory needs to address skin
sensitization have been exemplified in Daniel et al. (2018), and hurdles in regulatory
acceptance of in vitro skin irritation and sensitization methods and use have been
described by Sauer et al. (2016) and Eskes (2019).

The so-called mutual acceptance of data (MAD) avoids unnecessary repetition of
tests for individual countries. Instead, all OECD member countries accept a study,
which was performed according to an OECD test guideline and under good labora-
tory practice (GLP). Until writing of this chapter (January 2020), the MAD applies to
individual test methods only, as there are no adopted guidelines for DA yet (see Sect.
3.4.4 Defined Approaches: Combination of in vitro methods to assess skin sensiti-
zation). The lack of mutual acceptance for defined approaches hampers the full
regulatory acceptance of data obtained with human-derived in vitro models and
hence the replacement of in vivo studies (Sauer et al. 2016); the OECD is currently
working on validating and implementing DAs into its test guidelines.

The principles of the modular approach of validation have been described and
evolved in several publications (Hartung et al. 2004, OECD guidance document
no. 34 (OECD 2005), Zuang et al. 2015). A central part of method validation is the
assessment of the method’s reliability (i.e., to determine the test’s intra- and
interlaboratory variability and transferability) and its relevance (i.e., analyzing the
test’s predictive capacity as well as understanding its applicability domain) (Fig. 1).

The intra- (i.e., within a certain lab) and interlaboratory (i.e., between different
labs) reproducibility is typically determined biostatistically using the data generated
in ring trial studies with at least three participating labs which are blinded for test
substances’ identities. The assessment of the predictive capacity of a testing method
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or defined approach requires the testing of substances with well-known reference
data (see also subchapter “Reference Data and Validation Sets”). The predictivity of
the novel methods is assessed by comparing the results obtained with this method to
the reference data. The predicitivity is described by the true positive rate (sensitiv-
ity), true negative rate (specificity), and the overall accuracy which are calculated
according to Table 1 (Cooper et al. 1979).

It shall be mentioned that this comparison of new in vitro models with traditional
in vivo models is questionable: The identification of hazard properties of a test
substance and the classification and labelling criteria were defined according to the
animal models, e.g., and it is grueling to try to accurately reproduce results defined
by the parameters of an in vivo method by in vitro models. Moreover, the reproduc-
ibility of in vivo test results is limited, even though the test methods are highly
standardized: The reproducibility of the refinement in vivo study, the murine local
lymph node assay (OECD test guideline 429, OECD 2010), was found to be 89%
(based on 296 test substances) and 73% for seriously eye-damaging findings in the
Draize rabbit eye irritation (based on 46 test substances) (Luechtefeld et al.
2016a, b). As early as 1971, Weil and Scala reported on the intra- and interlaboratory
variability of rabbit eye and skin irritation tests in 25 different laboratories and
concluded that “The all-or-none, irritant or nonirritant, eye or skin rating of the
reference samples was determined quite differently in different laboratories” (Weil
and Scala 1971). In other words, it is a forlorn task to exactly reproduce the results of
imperfect in vivo animal methods by in vitro models. Instead, we should strive for

Fig. 1 Method development: From an experimental method to a test guideline via standardization,
validation, and regulatory adoption. F/RAND fair, reasonable, and nondiscriminatory (ICH 2010;
FDA 2011), GIVIMP good in vitro method practice (OECD 2018d), SOP standard operating
procedure

Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh 7
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human relevance and address disturbance of relevant physiological processes in
humans.

3 Regulatory-Accepted Human-Derived In Vitro Models

3.1 Skin Irritation and Corrosion

3.1.1 Testing Methods: Reconstructed Human Epidermis (RhE) Used
in OECD Test Guidelines No. 431 and 439

The first regulatory-accepted non-animal method using a human-derived model is
the in vitro skin corrosion test utilizing reconstructed human epidermis model (RhE).
Typically, the RhE are generated from non-transformed human epidermal
keratinocytes forming a multilayered, highly differentiated model of the human
epidermis. They consist of organized basal, spinous, and granular layers and a
multilayered stratum corneum containing intercellular lamellar lipid layers arranged
in patterns analogous to that found in vivo resulting in similar biochemical and
physiological properties to human epidermis.

The skin corrosion test assay was first adopted by OECD in 2004 as OECD test
guideline no. 431 (OECD 2019a). The corresponding skin irritation test was first
adopted in 2010 (and revised several times since then) as OECD test guideline
no. 439 (OECD 2019b). Skin irritation and corrosion tests using RhE are based on
the experience that skin irritant and corrosive substances induce localized trauma as
the underlying mechanism of skin irritation in vivo. The RhE-based tests are
designed to predict a skin corrosion or irritation potential of a test substance after
exposure on a RhE. Testing according to both OECD test guidelines can be
conducted with several commercially available tissues (with similar but distinct
exposure protocols and prediction models for each of the different models and
irritation and corrosion endpoints).

After application of the test material to the stratum corneum surface of the
reconstructed tissue, the induced cytotoxicity is measured by a colorimetric assay.
Cytotoxicity is expressed as the reduction of mitochondrial dehydrogenase activity
measured by the amount of reduced tetrazolium dye. After isopropanol extraction of
the formazan from the tissues, the optical density of the extract is determined
spectrophotometrically and compared to negative control values2 to express relative
tissue viability. Test substances reducing viability below certain cutoffs are then
identified as skin corrosive or irritant according to the prediction models described in
OECD test guidelines no. 431 and 439, respectively.

2Positive and negative controls are typically included in all in vitro assays (but not in all traditional
in vivo assays) as well as lists of reference substances to demonstrate proficiency in a method
(“proficiency chemicals”) and a list of substances to demonstrate a novel assay performs similar
(“performance standards”).

Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh 9



The prediction models of the skin corrosion test according to OECD test guide-
line no. 431 have been initially developed and adopted to identify substances not
corrosive to the skin and those corrosive to the skin. In the EU, evidence of
toxicological effects (at the time of writing this chapter, January 2020, mostly results
of animal studies) trigger classification (and labelling) of substances (Regulation
(EC) No 1272/2008 n.d.). The classification criteria were agreed at the UN level, the
so-called Globally Harmonized System of Classification and Labelling of
Chemicals, GHS (United Nations 2007). When toxicological data on a substance
meet the classification criteria, the hazards of the substance are identified by
assigning a certain hazard category; i.e., a substance is classified in skin corrosion
category 1 if “Destruction of skin tissue, namely, visible necrosis through the
epidermis and into the dermis, in at least one tested animal after exposure � 4 h”
is observed in rabbits tested according to OECD test guideline no. 405 (of note, the
classification criteria are defined based on results of the animal studies). This can
further be subclassified into subcategories 1A, 1B, and 1C.3 This subcategorization
of skin corrosion was initially not addressed by the OECD test guideline no. 431, but
corrosives were distinguished from non-corrosives, only. Since the year 2015, the
OECD test guideline no. 431 now supports the subcategorization into skin
corrosives 1A and a combined 1B/C. Of note, an overprediction rate of approxi-
mately 30% for substances identified as UN GHS subcategory 1A actually belonging
to subcategories 1B or C has been reported (OECD 2019a). In case subcategoriza-
tion of the corrosive classes is needed and in particular in cases where UN GHS
subcategories 1B and 1C have to be differentiated, the biomembrane-based
Corrositex assay (OECD test guideline no. 435, OECD 2015a) can be conducted
(as this assay is not using a human-derived model, it is not discussed further here).

OECD test guideline no. 439 provides a prediction model to identify substances
nonirritant to the skin. In case the test is positive, additional testing is required to
provide information whether a substance should be classified as skin irritant
(UN GHS category 2) or skin corrosive (UN GHS category 1).

3.1.2 Combination of Methods to Assess Skin Irritation and Skin
Corrosion

As can be concluded from the predicted UN GHS categories from OECD test
guidelines nos. 431 and 439 and summarized in Fig. 2, in many cases a combination
of assays (OECD guidance document no. 203, OECD 2014) is needed to cover the
full irritation scale that was covered by the in vivo skin irritation test (OECD test
guideline no. 404, OECD 2015b).

3Subcategory 1A “Corrosive responses in at least one animal following exposure�3 min during an
observation period �1 h,” Subcategory 1B “Corrosive responses in at least one animal following
exposure>3 min and� 1 h and observations�14 days,” and Subcategory 1C “Corrosive responses
in at least one animal after exposures >1 h and � 4 h and observations �14 days” (ECHA 2017b).

10 S. N. Kolle and R. Landsiedel



Fi
g
.2

C
om

bi
na
tio

n
of

in
vi
tr
o
m
et
ho

ds
to

as
se
ss

sk
in

ir
ri
ta
tio

n/
co
rr
os
io
n.

D
ep
en
di
ng

on
th
e
ex
pe
ct
ed

ef
fe
ct
s
(s
ev
er
el
y
ir
ri
ta
tin

g
or

no
ni
rr
ita
tin

g)
,t
he

fi
rs
tt
es
t

co
nd

uc
te
d
is
ch
os
en
.C

at
ca
te
go

ry
,O

E
C
D

O
E
C
D
te
st
gu

id
el
in
e,
SC

T
sk
in

co
rr
os
io
n
te
st
,S

IT
sk
in

ir
ri
ta
tio

n
te
st

Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh 11



3.2 Phototoxicity

Substances applied to the skin may form active substances by sunlight irradiation
causing phototoxic (irritating) effects. Standardized and internationally harmonized
in vitro methods and a tiered testing strategy are available, to test for these effects
(Kolle et al. 2018). The 3T3 Neutral Red Uptake (NRU) phototoxicity test method
(OECD test guideline no. 432, OECD 2019i) is using a mouse fibroblast line
(BALB/3T3). Human-derived methods using RhE were developed and successfully
pre-validated for phototoxicity assessment (Liebsch et al. 1999) and have been
added to the OECD work plan in 2019. Both models were found to be overpredictive
(Jirova et al. 2007), and today testing is usually performed according to a tiered
testing strategy including light absorption, photoreactivity (formation of reactive
oxygen species, ROS; OECD test guideline no. 495, OECD 2019j) of the test
substance, as well as its distribution to the human skin (ICH 2013).

3.3 Eye Irritation

3.3.1 Testing Methods: Reconstructed Human Cornea-Like Epithelium
Models (RhE) Used in OECD Test Guideline No. 492

The eye irritation test (EIT) based on reconstructed human cornea-like epithelium
models (RhCE) was first adopted as OECD test guideline no. 492 in 2015 (OECD
2019c). The RhCE tissue models are three-dimensional, non-keratinized tissue
constructs composed of normal human-derived epidermal keratinocytes used to
model the human corneal epithelium. RhCE have similar biochemical and physio-
logical properties to human cornea epithelium.

After application of the test material to the surface of the RhCE, the induced
cytotoxicity (¼ loss of viability, specifically of mitochondrial dehydrogenase activ-
ity) is measured by a colorimetric assay. Test substances that do not reduce viability
below certain cutoffs are then identified as nonirritant to the eye according to the
prediction model described in OECD test guideline no. 492. OECD test guideline
no. 492 can be conducted with several commercially available tissues (with similar
but distinct exposure protocols and prediction models for each of the different
models and irritation and corrosion endpoints; OECD 2019c).

3.3.2 Testing Methods: Immortalized Corneal Epithelial Cells Used
in OECD Test Guideline No. 494

In the Vitrigel-EIT, immortalized corneal epithelial cells are fabricated in a collagen
Vitrigel membrane chamber. In this assay the time-dependent change in
transepithelial electrical resistance is used to monitor the disruption of the barrier
function. The Vitrigel-EIT assay has been adopted asOECD test guideline no. 494 in
2019 for the identification of ocular nonirritants and seriously eye-damaging
substances (UN GHS category 1) (OECD test guideline no. 494, OECD 2019d).

12 S. N. Kolle and R. Landsiedel



3.3.3 Defined Approaches: Combination of Methods to Assess Eye
Irritation and Serious Eye Damage

In 2010 the concept of top-down and bottom-up approaches has been described for
eye irritation (Scott et al. 2010) for the replacement of the in vivo eye irritation test
(OECD test guideline no. 405, OECD 2017a). Like with skin irritation and corrosion
testing, the first test to be conducted is selected based on the expected ocular irritant
potential (Fig. 3, OECD guidance document no. 263; OECD 2019e). Both human-
derived eye irritation test methods presented above could be employed to identify
ocular nonirritants, while at least an additional method is needed to identify UN GHS
Cat 1 seriously eye-damaging substances. Meanwhile several in vitro methods have
been adopted to identify seriously eye-damaging substances (UN GHS category 1)
by the OECD: the bovine corneal opacity and permeability test using bovine corneas
(OECD test guideline no. 437 (OECD 2017b)), the isolated chicken eye test using
chicken eyes (OECD test guideline no. 438 (OECD 2018c)), the fluorescein leakage
test method using Madin-Darby canine kidney cells (OECD test guideline
no. 460 (OECD 2017c)), the short-term exposure test method using Statens Serum
Institut rabbit cornea cells (OECD test guideline no. 491 (OECD 2018e)), or the
Ocular Irritection test method using a complex macromolecular matrix (OECD test
guideline no. 496 (OECD 2019k)). As none of these assays is using a human-derived
model, they are not discussed further here. Two defined approaches based on in vitro
bottom-up approaches combined with physiochemical properties for ocular toxicity
have been added to the OECD work plan in 2019.

3.4 Skin Sensitization

The underlying mechanism of skin sensitization is quite well understood and has
been broken down into an adverse outcome pathway (OECD 2012a, b). Three of the
key events can be assessed experimentally using non-animal methods (OECD
2018a, b, 2019f). Chemical reactivity has been shown to be well associated with
allergenic potency and has been described as the molecular initiating event in the
adverse outcome pathway. As a second key event of the skin sensitization adverse
outcome pathway, keratinocytes must be activated to induce essential (“danger”)
signalling molecules. The third key event is the activation of the skin dendritic cells
as antigen-presenting cells must upregulate cell surface markers to interact with T
cells.

3.4.1 Testing Methods: Synthetic Peptides Used in OECD Test
Guideline No. 442C

In the direct peptide reactivity assay (DPRA), the reactivity of a test substance
towards synthetic cysteine- and lysine-containing peptides is addressed. For this
purpose, a single test substance concentration is incubated with synthetic peptides
for ca. 24 h at ca. 25 �C, and the remaining non-depleted peptide concentrations are
determined by high-performance liquid chromatography (HPLC) with gradient
elution and UV detection at 220 nm.

Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh 13
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The peptide depletion of test substance incubated samples is compared to the
peptide depletion of the negative control samples and expressed as relative peptide
depletion. The DPRA has been first adopted as OECD test guideline no. 442C in
2015 (OECD 2019f).

The DPRA is not using a human-derived cell- or tissue model nor a
biomacromolecule as test system, but rather a synthetic heptapeptide. The assay is,
however, complementing human-derived models (described below, Sects. 3.4.2 and
3.4.3) in testing batteries to predict a skin sensitization potential in humans.

As the DPRA is not using biological systems, but rather a synthetic heptapeptide,
it is often termed an in chemico rather than “in vitro” assay. Information on the
reactivity of a test substance towards a peptide (as a proxy for skin proteins) can also
be obtained by in silico methods. Several commercial and not-for-profit models have
been evaluated (Teubner et al. 2013; Urbisch et al. 2016b; Fitzpatrick et al. 2018)
and provided a lower overall predictivity, but good concordance with experimental
results with specific models within their applicability domain. So far, peptide
reactivity is used to predict a sensitization potential (presence or absence of hazard).
Recently, the DPRA was extended to also predict potency classes (kDPRA). In the
kDPRA several test substance concentrations are assessed after several incubation
times to determine reaction rate constants which are then used to identify strong
sensitizers (UN GHS category 1A) (Wareing et al. 2017).

3.4.2 Testing Methods: Human-Derived Keratinocytes Used in OECD
Test Guideline No. 442D

As a second key event in the adverse outcome pathway for skin sensitization,
keratinocyte activation can be assessed by the KeratinoSens and LuSens assays
using the genetically modified human keratinocyte cell lines. Both assays employ
the reporter gene for luciferase under the control of an antioxidant response element
and hence monitor Nrf-2 transcription factor activity. The endpoint measurement is
the upregulation of the luciferase activity after incubation with test substances. This
upregulation is an indicator for the activation of the Keap1/Nrf2/ARE signalling
pathway. The ARE-Nrf2 luciferase test methods have been first adopted in 2015 as
OECD test guideline no. 442D (OECD 2018a).

3.4.3 Testing Methods: Human-Derived Dendritic-Like Cells Used
in OECD Test Guideline No. 442E

Dendritic cell activation, the third key event in the adverse outcome pathway for skin
sensitization, is addressed by the test methods described in OECD test guideline
no. 442E first adopted in 2016 (OECD 2018b). The assays evaluate the potential to
activate dendritic cells either by measuring changes in the cell surface marker
expression (human cell line activation test (h-CLAT) and the U937 Cell Line
Activation Test (U-SENS)) or by means of inducing the cytokine IL-8 in the
interleukin-8 reporter gene assay (IL8LUC). The h-CLAT is performed using the
human monocytic leukemia cell line THP-1 as surrogate for dendritic cells. As
readout, the change in the expression of the cell membrane markers CD 54 and
CD 86 is determined by flow cytometry after test substance exposure. Similarly, in
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the U-SENS the change in the expression of the cell membrane marker CD
86 measured by flow cytometry after test substance exposure of U937 cells is
determined. In the IL8LUC a THP-1 derived IL-8-reporter cell line, IL-8 dependent
luciferase activity is determined after test substance exposure (OECD 2018b).

3.4.4 Defined Approaches: Combination of In Vitro Methods to Assess
Skin Sensitization

Although non-animal methods addressing individual key events of the skin sensiti-
zation adverse outcome pathway are available as OECD-adopted test methods, none
of the available methods should be considered as a stand-alone method to address the
endpoint of skin sensitization, but rather the methods have to be combined in defined
approaches. To conclude on the sensitizing potential of a test substance, the data
from several methods are combined to a defined approach in which a fixed data
interpretation procedure serves as prediction model for the combination of results.
Several defined approaches have been described (Table 2, OECD 2016a, b), and in
the following, we briefly describe one of the less complex defined approaches for the
identification of the skin sensitization hazard (Fig. 4, Bauch et al. 2012; Urbisch et al.
2015).

In the 2 out of 3 approach (Case study 1 in Table 2), assays addressing three of
the key events of the skin sensitization adverse outcome pathway are conducted, and
two concordant results determine the overall hazard prediction (i.e., if a test sub-
stance is positive in any two of the three assays, it is predicted to be a sensitizer).

This defined approach (and indeed most defined approaches) is combining the
data of several test methods adopted by OECD. Yet, the adoption of defined
approaches into OECD test guideline is still pending at the time of writing of this
chapter (January 2020) and this is prohibiting defined approaches from providing the
same regulatory recognition and mutual acceptance of data as the animal tests. Since

Table 2 Case studies of defined approaches described in OECD GD 256 (OECD 2016a, b)

1 An adverse outcome pathway-based “2 out of 3” integrated testing strategy approach to skin
hazard identification

2 Sequential testing strategy (STS) for hazard identification of skin sensitizers

3 A non-testing pipeline approach for skin sensitization

4 Stacking meta-model for skin sensitization hazard identification

5 Integrated decision strategy for skin sensitization hazard

6 Consensus of classification trees for skin sensitization hazard prediction

7 Sensitizer potency prediction based on key event 1 + 2: Combination of kinetic peptide
reactivity data and KeratinoSens® data

8 The artificial neural network model for predicting LLNA EC3

9 Bayesian network DIP (BN-ITS-3) for hazard and potency identification of skin sensitizers

10 Sequential testing strategy (STS) for sensitizing potency classification based on in chemico
and in vitro data

11 Integrated testing strategy (ITS) for sensitizing potency classification based on in silico, in
chemico, and in vitro data

12 DIP for skin allergy risk assessment (SARA)

16 S. N. Kolle and R. Landsiedel
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the “2 out of 3” approach has been first submitted for regulatory acceptance to the
European Centre for the Validation of Alternative Methods in 2011, a lot of progress
has been made. A project to draft a guideline has been added to the OECD work plan
in 2017, and a second draft guideline and supporting documents became available in
September 2019 (OECD 2019g, h). The work undertaken to draft these documents
included an extensive review of the human and mouse skin sensitization reference
data (see also Reference Data and Validation Sets for a discussion of reference data
in more general) as well as a discussion about the applicability domains (extending
on the applicability domains of the individual assays).

3.5 Genotoxicity

There is a variety of in vitro genotoxicity and mutagenicity models available and
used within testing batteries (Kirkland et al. 2006; ICH 2011; SCCS 2014). Interest-
ingly none of the regulatorily accepted models is using human-derived models
except for the so-called HuLy assay which is utilizing primary human lymphocytes
(OECD test guideline no. 487, OECD 2016c). Recently, methods to detect genotoxic
and mutagenic effects in human-derived reconstructed epidermal models were
developed and validated in ring trials to detect genotoxicity (Reisinger et al. 2018)
and chromosomal aberrations (Curren et al. 2006; Aardema et al. 2010). These
methods await the finalization of their validation processes and inclusion in OECD
test guidelines to be used within genotoxicity and mutagenicity in vitro testing
batteries with the in vitro genotoxicity test for dermal exposure using 3D models
added to the OECD work plan.

3.6 Dermal Penetration and Absorption

Dermal penetration and absorption methods are not testing for adverse effects on
human skin but are assessing the penetration of dermally applied substance into the
skin and through the skin to become systemically available in the human body. The
OECD-adopted in vitro method (OECD test guideline no. 428; OECD 2004; Fabian
et al. 2017) is utilizing human skin preparations. Non-viable skin can also be used
provided that the integrity of the skin can be demonstrated. Either epidermal
membranes or split-thickness skin (typically 200–400 μm thick) prepared with a
dermatome are acceptable. The principal diffusion barrier of the skin is the
non-viable stratum corneum; active transport of chemicals through the skin has not
been identified, and dermal metabolism (Bätz et al. 2013; Oesch et al. 2018) is not
rate limiting in terms of actual absorbed dose (OECD 2004). Methods to utilize
human reconstructed epidermal or full-thickness skin models have been developed
and pre-validated (Schäfer-Korting et al. 2008; Ackermann et al. 2010) but are not
yet regulatorily accepted.
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4 Limitations

4.1 Technical Limitations

Specific test substances may not be applicable to certain test systems. Some
examples of these technical limitations are listed below (using the example of the
in vitro skin sensitization methods).

In the DPRA (OECD test guideline no. 442C), the depletion of the synthetic
heptapeptide is quantified by its UV light absorption after HPLC elution. Test
substances co-eluting at the same retention times as the model peptides may hamper
the peptide quantification.

The cell-based assay methods (OECD test guidelines no. 442D and 442E) use
luciferase-generated bioluminescence or fluorescence of fluorochrome-labelled
antibodies as detection methods. Test substances quenching the fluorescence or
otherwise interfering with the optical detection may hamper the quantification of
the luciferase induction or the identification of labelled cells.

Dendritic cell activation (OECD test guideline no. 442E) is analyzed by flow
cytometric determination of the cell surface marker expression. Insoluble particles
and polymers may however limit the technical applicability by clogging the flow
cytometer.

4.2 Predictive Limitations

4.2.1 Mechanistic Limitations
In the following we present (and partially discuss) known mechanism limitation of
in vitro assays. This is not to be understood as a comprehensive list; we’d like to
present a few examples based on the in vitro skin sensitization assays.

OECD Test Guideline No. 442C The DPRA is based on reactivity of a test
substance with cysteine and lysine residues. Metals do not form covalent bonds
with those two amino acid residues and hence are out of the applicability domain of
the assay. Also, test substance reacting with amino acid residues different from
cysteine and lysine will not be detected in the DPRA. It has been described that some
test substances favor the dimerization or oxidation of the peptide leading to an
overestimation of a true peptide depletion (or non-covalent, specific binding, e.g.,
Roediger and Weninger 2011).

OECD Test Guideline No. 442D The underlying mechanism for the antioxidant
response element pathway addressed in both the KeratinoSens and LuSens assays is
closely linked to cysteine reactivity. Therefore, test substance primarily reacting with
other amino acid residues (such as acylating agents reacting with lysine) would be
expected to be underpredicted in the KeratinoSens and LuSens assays.
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Metabolic Capacity
The three in vitro skin sensitization tests described above do not contain any external
source of metabolic capacity. Nevertheless, the test systems can detect most pre- and
pro-haptens. In vitro investigations (Urbisch et al. 2016a; Patlewicz et al. 2016)
using test substances requiring molecular transformation to attain a sensitizing
potential have shown that pre-haptens can readily be detected in the DPRA, many
of which involve autoxidation processes. Moreover, many pro-haptens are also
activated by nonenzymatic oxidation (and therefore are pre- and pro-haptens). The
cellular models h-CLAT and LuSens have been shown to detect pro-haptens more
efficiently; respective enzyme activities were detected in the cell lines (Fabian et al.
2013; Oesch et al. 2018). Thus, it can be concluded that potentially relevant
molecular transformations are generally sufficiently considered using the in vitro
skin sensitization tests DPRA, LuSens or KeratinoSens, and h-CLAT.

Water Solubility and Lipophilicity
OECD test guideline no. 442E describes that the h-CLAT result may be
underpredictive (false negative) for test substances with log KOW > 3.5. In this
case a “negative” result is interpreted as “inconclusive.”However, a “positive” result
will be accepted. While with increasing log Kow, less solubility is expected, it should
however not be neglected that OECD test guideline no. 442E (OECD 2018b) and
OECD test guideline no. 442D (OECD 2018a) allow the testing of homogenous but
non-completely dissolved test substances.

4.2.2 Agrochemical Formulation in In Vitro Skin and Eye Irritation
Tests

(Non-animal) tests are typically validated against well-characterized individual
reference chemicals. Different chemistries, use classes, and, e.g., special types of
mixtures can, however, not always (comprehensively) be included in validation
exercises. Therefore, important post-validation experience is gained during routine
testing (frequently after test guideline adoption and regulatory acceptance). We
present here two examples of test methods both based on reconstructed human
tissues. Agrochemical formulations are a special type of mixture (which as such
fall under the GHS mixture definition and could generally be considered within the
applicability domain of the OECD test guidelines) containing a variety of ingredients
to alter the properties of the active ingredient. Oftentimes thereby toxicity is also
affected, and rules of additivity do not simply apply. In 2015 Kolle et al., based on a
comparative dataset of 97 agrochemical formulations, have reported excellent sensi-
tivity of the EpiOcular eye irritation test assay to predict agrochemical formulations
nonirritant to the eye (until the writing of this chapter (January 2020), there is still no
non-animal method to reliably predict seriously eye-damaging agrochemical
formulations) (Kolle et al. 2015, 2017a). This would lead to the notion that maybe
reconstructed human tissues work well for the lower end of the irritation scale also
for skin. This could unfortunately not be confirmed for a comparative dataset of
65 agrochemical formulations which showed that the in vitro skin irritation test was
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neither sufficiently sensitive nor specific (Kolle et al. 2017b). Also proof of concept
with five formulations assessed using a protocol modification of the SIT (using a
15 min exposure followed by a 24 or 42 h post-exposure instead of a 60 min
exposure followed by a 42 h post-exposure in the EpiDerm SIT according to
OECD test guideline no. 439) was not successful (unpublished data). Therefore,
most unfortunately, the in vivo assay (OECD test guideline no. 404) is still needed to
evaluate the skin irritation potential of agrochemical formulations.

At the time of writing of this chapter (January 2020), there is no regulatory-
accepted method available to reliably predict the skin irritation potential of agro-
chemical formulations; the development and validation of such methods should be
fostered.

4.3 Uncertainty

4.3.1 Reference Data and Validation Sets
When evaluating or implementing novel (non-animal) methods, it is of upmost
importance to use substance with critically reviewed reference data. There have
been reports on cases where method implementation based on so-called proficiency
chemicals provided in OECD test guidelines has been hampered (Kolle et al.
2019a, b). Another example is the evaluation of the defined approach for skin
sensitization which started with 128 substances for which human as well as local
lymph node assay data was available. During the review of the guideline, the
reference data was extensively reviewed and resulted in a reduced curated dataset
of 105 substances with local lymph node assay data and 76 substances with human
reference data (OECD 2019h).

4.3.2 Borderline Range: Uncertainty Arising from Technical
and Biological Variance

The borderline range depicts the variance of the individual test methods, including
technical and biological variability (Leontaridou et al. 2017). It addresses the
uncertainty of the three assays around their respective classification thresholds and
represents a range in which the likelihood to obtain a positive or negative result just
below or above the classification threshold is equal (Fig. 5).

The borderline range can be determined statistically (e.g., using pooled standard
deviations), using historical intra-laboratory data (Leontaridou et al. 2017). It is
useful especially for assays for which no individual statistical analysis is possible
due to low number of replicates per treatment (e.g., h-CLAT and DPRA). This
evaluation is an amendment to the evaluation given in the respective OECD test
guidelines, and it also influences a method’s precision (Leontaridou et al. 2019)
(Table 3).

The definition of a borderline range allows the possible prediction as “ambigu-
ous” underlining the fact that a result close to a classification cutoff is rather random.

Table 3 summarizes the borderline range for the in vitro skin sensitization test
methods. Borderline ranges rather than discrete cutoff values should be used in
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prediction models (or data interpretation procedures, DIP), and potential outcomes
of studies which dichotomize continuous data into classes are really “positive,”
“negative,” and “inconclusive.”

References

Aardema MJ, Barnett BC, Khambatta Z, Reisinger K, Ouedraogo-Arras G, Faquet B et al (2010)
International pre-validation studies of the EpiDerm™ 3D human reconstructed skin micronu-
cleus (RSMN) assay: transferability and reproducibility. Mutat Res Genet Toxicol Environ
Mutagen 701(2):123–131

Fig. 5 The borderline range of new and reference methods

Table 3 Pooled standard deviations and borderline ranges of in vitro methods to predict skin
sensitization in humans (Leontaridou et al. 2017)

Testing method Borderline range

DPRA (OECD test guideline no. 442C) MPD ¼ {1.35%, 11.41%}

LuSens (OECD test guideline no. 442D) FI ¼ {1.26, 1.74}

h-CLAT (OECD test guideline no. 442E) CD54 FI ¼ {1.74, 2.26}, CD86 FI ¼ {1.2,
1.81}

LLNA (OECD test guideline no. 429) for
comparison

SI ¼ {2.20, 3.71}

Test results in the range of 3.38%�MPD� 9.38% (DPRA), FI� 3 (LuSens), and CD86 FI� 3 as
well as CD54 FI � 3 (h-CLAT) were considered for quantifying the pooled standard deviation
(Leontaridou et al. 2017)
DPRA direct peptide reactivity assay, h-CLAT human cell line activation test, FI fluorescence
intensity, MPD mean peptide depletion, SI stimulation index

22 S. N. Kolle and R. Landsiedel



Ackermann K, Borgia SL, Korting HC, Mewes KR, Schäfer-Korting M (2010) The Phenion® full-
thickness skin model for percutaneous absorption testing. Skin Pharmacol Physiol 23
(2):105–112

Bätz FM, Klipper W, Korting HC, Henkler F, Landsiedel R, Luch A et al (2013) Esterase activity in
excised and reconstructed human skin–biotransformation of prednicarbate and the model dye
fluorescein diacetate. Eur J Pharm Biopharm 84(2):374–385

Bauch C, Kolle SN, Ramirez T, Eltze T, Fabian E, Mehling A, Teubner W, van Ravenzwaay B,
Landsiedel R (2012) Putting the parts together: combining in vitro methods to test for skin
sensitizing potentials. Regul Toxicol Pharmacol 63(3):489–504

Cooper J, Saracci R, Cole P (1979) Describing the validity of carcinogen screening tests. Br J
Cancer 39:87–89

Curren RD, Mun GC, Gibson DP, Aardema MJ (2006) Development of a method for assessing
micronucleus induction in a 3D human skin model (EpiDerm). Mutat Res 607(2):192–204

Daniel AB, Strickland J, Allen D, Casati S, Zuang V, Barroso J, Whelan M, Régimbald-Krnel MJ,
Kojima H, Nishikawa A, Park HK, Lee JK, Kim TS, Delgado I, Rios L, Yang Y, Wang G,
Kleinstreuer N (2018) International regulatory requirements for skin sensitization testing. Regul
Toxicol Pharmacol 95:52–65

ECHA (2017a) Guidance on information requirements and chemical safety assessment chapter
R.7a: endpoint specific guidance version 6.0. https://echa.europa.eu/documents/10162/13632/
information_requirements_r7a_en.pdf

ECHA (2017b) Guidance to regulation (EC) no 1272/2008 on classification, labelling and packag-
ing (CLP) of substances and mixtures. Version 5.0, July 2017. https://echa.europa.eu/
documents/10162/23036412/clp_en.pdf

Eskes C (2019) The usefulness of integrated strategy approaches in replacing animal experimenta-
tion. Ann Ist Super Sanita 55(4):400–404

Fabian E, Vogel D, Blatz V, Ramirez T, Kolle S, Eltze T, van Ravenzwaay B, Oesch F, Landsiedel
R (2013) Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization
in vitro. Arch Toxicol 87(9):1683–1696

Fabian E, Oesch F, Ott K, Landsiedel R, van Ravenzwaay B (2017) A protocol to determine dermal
absorption of xenobiotica through human skin in vitro. Arch Toxicol 91(3):1497–1511

FDA (2011) Guidance for industry process validation: general principles and practices. https://
www.fda.gov/media/71021/download

Fitzpatrick JM, Roberts DW, Patlewicz G (2018) An evaluation of selected (Q) SARs/expert
systems for predicting skin sensitization potential. SAR QSAR Environ Res 29(6):439–468

Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortaner S, Gribaldo L, Halder M, Hoffmann S,
Roi AJ, Prieto P, Sabbioni E, Scott L, Worth A, Zuang V (2004) A modular approach to the
ECVAM principles on test validity. Altern Lab Anim 32(5):467–472

ICH (2010) ICH harmonised tripartite guideline Q7: good manufacturing practice guide for active
pharmaceutical ingredients. https://database.ich.org/sites/default/files/Q7_Guideline.pdf

ICH (2011) ICH guideline guidance on genotoxicity testing and data interpretation for
pharmaceuticals intended for human use s2(r1) (2011) approval by the steering committee of
S2(R1) under step 4 and recommendation for adoption to the three ICH regulatory bodies
(9 November 2011)

ICH (2013) International conference on harmonisation of technical requirements for registration of
pharmaceuticals for human use. In: ICH harmonised tripartite guideline: photosafety evaluation
of pharmaceuticals. Current step 4 version, 13, 2013

Jirova D, Liebsch M, Basketter D, Spiller E, Kejlova K, Bendova H et al (2007) Comparison of
human skin irritation and photo-irritation patch test data with cellular in vitro assays and animal
in vivo data. ALTEX 14:359–365

Kirkland D, Aardema M, Müller L, Makoto H (2006) Evaluation of the ability of a battery of three
in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens II. Further
analysis of mammalian cell results, relative predictivity and tumour profiles. Mutat Res 608
(1):29–42

Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh 23

https://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf
https://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf
https://echa.europa.eu/documents/10162/23036412/clp_en.pdf
https://echa.europa.eu/documents/10162/23036412/clp_en.pdf
https://www.fda.gov/media/71021/download
https://www.fda.gov/media/71021/download
https://database.ich.org/sites/default/files/Q7_Guideline.pdf


Kolle SN, Rey Moreno MC, Mayer W, van Cott A, van Ravenzwaay B, Landsiedel R (2015) The
EpiOcular™ eye irritation test is the method of choice for the In vitro eye irritation testing of
agrochemical formulations: correlation analysis of EpiOcular eye irritation test and BCOP test
data according to the UN GHS, US EPA and Brazil ANVISA classification schemes. ATLA
Altern Lab Anim 43(3):181–198

Kolle SN, Van Cott A, van Ravenzwaay B, Landsiedel R (2017a) Lacking applicability of in vitro
eye irritation methods to identify seriously eye irritating agrochemical formulations: Results of
bovine cornea opacity and permeability assay, isolated chicken eye test and the EpiOcular™
ET-50 method to classify according to UN GHS. Regul Toxicol Pharmacol 85:33–47

Kolle SN, van Ravenzwaay B, Landsiedel R (2017b) Regulatory accepted but out of domain:
in vitro skin irritation tests for agrochemical formulations. Regul Toxicol Pharmacol
89:125–130

Kolle SN, Teubner W, Landsiedel R (2018) Modern skin toxicity testing strategies. In: Environ-
ment and skin. Springer, Cham, pp 27–40

Kolle SN, Hill E, Raabe H, Landsiedel R, Curren R (2019a) Regarding the references for reference
chemicals of alternative methods. Toxicol In Vitro 57:48–53

Kolle SN, Natsch A, Gerberick GF, Landsiedel R (2019b) A review of substances found positive in
1 of 3 in vitro tests for skin sensitization. Regul Toxicol Pharmacol 106:352–368

Leontaridou M, Urbisch D, Kolle SN, Ott K, Mulliner DS, Gabbert S, Landsiedel R (2017) The
borderline range of toxicological methods: quantification and implications for evaluating
precision. ALTEX 34(4):525–538

Leontaridou M, Gabbert S, Landsiedel R (2019) The impact of precision uncertainty on predictive
accuracy metrics of non-animal testing methods. ALTEX-alternatives to animal
experimentation

Liebsch M, Traue D, Barrabas C, Spielmann H, Gerberick F, Cruse L et al (1999) Prevalidation of
the Epiderm™ phototoxicity test. In: Clark D, Lisansky S, Macmillan R (eds) Alternatives to
animal testing II: proceedings of 2nd international science conference organised by the
European cosmetic industry, Brussels. Belgium CPL Press, Newbury, pp 160–166

Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T (2016a) Analysis of publically
available skin sensitization data from REACH registrations 2008–2014. ALTEX 33(2):135–148

Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T (2016b) Analysis of Draize eye
irritation testing and its prediction by mining publicly available 2008–2014 REACH data.
ALTEX 33(2):123–134

OECD (2004) OECD guideline for testing of chemicals test no. 428: skin absorption: in vitro
method, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris.
https://doi.org/10.1787/9789264071087-en

OECD (2005) OECD series on testing and assessment no 34 guidance document on the validation
and international acceptance of new or updated test methods for Hazard assessment. OECD
Publishing, Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?
cote¼ENV/JM/MONO(2005)14&doclanguage¼en

OECD (2010) OECD guideline for testing of chemicals test no. 429: skin sensitisation: local lymph
node assay. OECD Publishing, Paris. https://doi.org/10.1787/9789264071100-en

OECD (2012a) OECD series on testing and assessment no. 168: the adverse outcome pathway for
skin sensitisation initiated by covalent binding to proteins, part 1: scientific evidence. OECD
Publishing, Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?
cote¼env/jm/mono(2012)10/part1&doclanguage¼en

OECD (2012b) OECD series on testing and assessment no. 168: the adverse outcome pathway for
skin sensitisation initiated by covalent binding to proteins, part 2: use of the AOP to develop
chemical categories and integrated assessment and testing. OECD Publishing, Paris. http://
www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote¼env/jm/mono(2012)10/
part2&doclanguage¼en

OECD (2014) OECD series on testing and assessment no. 203: guidance document on an integrated
approach on testing and assessment (IATA) for skin corrosion and irritation. OECD Publishing,

24 S. N. Kolle and R. Landsiedel

https://doi.org/10.1787/9789264071087-en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2005)14&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2005)14&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2005)14&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2005)14&doclanguage=en
https://doi.org/10.1787/9789264071100-en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part1&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part1&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part1&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part1&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part2&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part2&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part2&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part2&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)10/part2&doclanguage=en


Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote¼ENV/JM/
MONO(2014)19&doclanguage¼en

OECD (2015a) OECD guideline for testing of chemicals test no. 435: In vitromembrane barrier test
method for skin corrosion. OECD Publishing, Paris. https://doi.org/10.1787/9789264242791-en

OECD (2015b) OECD guideline for testing of chemicals test no. 404: acute dermal irritation/
corrosion. OECD Publishing, Paris. https://doi.org/10.1787/9789264242678-en

OECD (2016a) OECD series on testing and assessment no.256 guidance document on the reporting
of defined approaches to be used within integrated approaches to testing and assessment annex
1, OECD Publishing, Paris. http://www.oecd.org/officialdocuments/
publicdisplaydocumentpdf/?cote¼env/jm/mono(2016)28&doclanguage¼en

OECD (2016b) OECD series on testing and assessment no.256 guidance document on the reporting
of defined approaches and individual information sources to be used within integrated
approaches to testing and assessment (IATA) for skin sensitization, annex 2. OECD Publishing,
Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote¼env/jm/mono
(2016)29&doclanguage¼en

OECD (2016c) OECD guideline for testing of chemicals test no. 487: in vitro mammalian cell
micronucleus test, OECD guidelines for the testing of chemicals, section 4. OECD Publishing,
Paris. https://doi.org/10.1787/9789264264861-en

OECD (2017a) OECD guideline for testing of chemicals test no. 405: acute eye irritation/corrosion
OECD. OECD Publishing, Paris. https://doi.org/10.1787/9789264185333-en

OECD (2017b) OECD guideline for testing of chemicals test no. 437: bovine corneal opacity and
permeability test method for identifying (i) chemicals inducing serious eye damage and
(ii) chemicals not requiring classification for eye irritation or serious eye damage, OECD
guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.
1787/9789264203846-en

OECD (2017c) Test No. 460: fluorescein leakage test method for identifying ocular corrosives and
severe irritants, OECD guidelines for the testing of chemicals, section 4. OECD Publishing,
Paris. https://doi.org/10.1787/9789264185401-en

OECD (2018a) OECD guideline for testing of chemicals test no. 442D: in vitro skin sensitisation:
ARE-Nrf2 luciferase test method. OECD Publishing, Paris. https://doi.org/10.1787/
9789264229822-en

OECD (2018b) OECD guideline for testing of chemicals test no. 442E: in vitro skin sensitisation:
in vitro skin sensitisation assays addressing the key event on activation of dendritic cells on the
adverse outcome pathway for skin sensitisation. OECD Publishing, Paris. https://doi.org/10.
1787/9789264264359-en

OECD (2018c) OECD guideline for testing of chemicals test no. 438: isolated chicken eye test
method for identifying (i) chemicals inducing serious eye damage and (ii) chemicals not
requiring classification for eye irritation or serious eye damage, OECD guidelines for the testing
of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264203860-en

OECD (2018d) Guidance document on good in vitro method practices (GIVIMP), OECD series on
testing and assessment, no. 286. OECD Publishing, Paris. https://doi.org/10.1787/
9789264304796-en

OECD (2018e) Test No. 491: short time exposure in vitro test method for identifying (i) chemicals
inducing serious eye damage and (ii) chemicals not requiring classification for eye irritation or
serious eye damage, OECD guidelines for the testing of chemicals, section 4. OECD Publishing,
Paris. https://doi.org/10.1787/9789264242432-en

OECD (2019a) OECD guideline for testing of chemicals test no. 431: In vitro skin corrosion:
reconstructed human epidermis (RHE) test method. OECD Publishing, Paris. https://doi.org/10.
1787/9789264264618-en

OECD (2019b) OECD guideline for testing of chemicals test no. 439: in vitro skin irritation:
reconstructed human epidermis test method. OECD Publishing, Paris. https://doi.org/10.1787/
9789264242845-en

Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh 25

http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
https://doi.org/10.1787/9789264242791-en
https://doi.org/10.1787/9789264242678-en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)28&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)28&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)28&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)28&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)29&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)29&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)29&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)29&doclanguage=en
https://doi.org/10.1787/9789264264861-en
https://doi.org/10.1787/9789264185333-en
https://doi.org/10.1787/9789264203846-en
https://doi.org/10.1787/9789264203846-en
https://doi.org/10.1787/9789264185401-en
https://doi.org/10.1787/9789264229822-en
https://doi.org/10.1787/9789264229822-en
https://doi.org/10.1787/9789264264359-en
https://doi.org/10.1787/9789264264359-en
https://doi.org/10.1787/9789264203860-en
https://doi.org/10.1787/9789264304796-en
https://doi.org/10.1787/9789264304796-en
https://doi.org/10.1787/9789264242432-en
https://doi.org/10.1787/9789264264618-en
https://doi.org/10.1787/9789264264618-en
https://doi.org/10.1787/9789264242845-en
https://doi.org/10.1787/9789264242845-en


OECD (2019c) OECD guideline for testing of chemicals test no. 492: reconstructed human cornea-
like epithelium (RhCE) test method for identifying chemicals not requiring classification and
labelling for eye irritation or serious eye damage. OECD Publishing, Paris. https://doi.org/10.
1787/9789264242548-en

OECD (2019d) OECD guidelines for the testing of chemicals test no. 494: Vitrigel-eye irritancy test
method for identifying chemicals not requiring classification and labelling for eye irritation or
serious eye damage. OECD Publishing, Paris. https://doi.org/10.1787/9f20068a-en

OECD (2019e) OECD series on testing and assessment no. 263 guidance document on integrated
approaches to testing and assessment (IATA) for serious eye damage and eye irritation. OECD
Publishing, Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?
cote¼ENV/JM/MONO(2014)19&doclanguage¼en

OECD (2019f) OECD guideline for testing of chemicals test no. 442C: in chemico skin
sensitisation: assays addressing the adverse outcome pathway key event on covalent binding
to proteins. OECD Publishing, Paris. https://doi.org/10.1787/9789264229709-en

OECD (2019g) Draft OECD guideline defined approaches for skin sensitisation. OECD Publishing,
Paris. https://www.oecd.org/env/ehs/testing/GL%20DASS_22Sep2019v2.pdf

OECD (2019h) Supporting document for evaluation and review of draft guideline (GL) for defined
approaches (DAs) for skin sensitisation. OECD Publishing, Paris. https://www.oecd.org/env/
ehs/testing/DAGL%20supporting%20document_23%20Sep2019.pdf

OECD (2019i) OECD guideline for testing of chemicals test no. 432: in vitro 3T3 NRU phototox-
icity test, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris.
https://doi.org/10.1787/9789264071162-en

OECD (2019j) OECD guideline for testing of chemicals test no. 495: Ros (reactive oxygen species)
assay for Photoreactivity. OECD Publishing, Paris. https://www.oecd-ilibrary.org/docserver/
915e00ac-en.pdf?expires¼1578570534&id¼id&accname¼guest&
checksum¼C7B321D86BFA753562D53BDAC49F6F0A

OECD (2019k) Test No. 496: in vitro macromolecular test method for identifying chemicals
inducing serious eye damage and chemicals not requiring classification for eye irritation or
serious eye damage, OECD guidelines for the testing of chemicals, section 4. OECD Publishing,
Paris. https://doi.org/10.1787/970e5cd9-en

Oesch F, Fabian E, Landsiedel R (2018) Xenobiotica-metabolizing enzymes in the skin of rat,
mouse, pig, Guinea pig, man, and in human skin models. Arch Toxicol 92(8):2411–2456

Patlewicz G, Casati S, Basketter DA, Asturiol D, Roberts DW, Lepoittevin JP, Worth AP,
Aschberger K (2016) Can currently available non-animal methods detect pre and pro-haptens
relevant for skin sensitization? Regul Toxicol Pharmacol 82:147–155

Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November
2009 on cosmetic products (n.d.). http://data.europa.eu/eli/reg/2009/1223/2019-11-27

Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December
2008 on classification, labelling and packaging of substances and mixtures, amending and
repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/
2006 (n.d.). http://data.europa.eu/eli/reg/2008/1272/oj

Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December
2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals
(REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and
repealing Council Regulation (EEC) No 793/93 and Regulation (EC) No 1488/94 as well as
Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/
EC and 2000/21/EC (n.d.). http://data.europa.eu/eli/reg/2006/1907/2014-04-10

Regulation (EC) No 440/2008 of 30 May 2008 laying down test methods pursuant to Regulation
(EC) No 1907/2006 of the European Parliament and of the Council on the Registration,
Evaluation, Authorization and Restriction of Chemicals (REACH) (n.d.). http://data.europa.
eu/eli/reg/2008/440/oj

Reisinger K, Blatz V, Brinkmann J, Downs TR, Fischer A, Henkler F et al (2018) Validation of the
3D skin comet assay using full thickness skin models: transferability and reproducibility. Mutat
Res Genet Toxicol Environ Mutagen 827:27–41

26 S. N. Kolle and R. Landsiedel

https://doi.org/10.1787/9789264242548-en
https://doi.org/10.1787/9789264242548-en
https://doi.org/10.1787/9f20068a-en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)19&doclanguage=en
https://doi.org/10.1787/9789264229709-en
https://www.oecd.org/env/ehs/testing/GL%20DASS_22Sep2019v2.pdf
https://www.oecd.org/env/ehs/testing/DAGL%20supporting%20document_23%20Sep2019.pdf
https://www.oecd.org/env/ehs/testing/DAGL%20supporting%20document_23%20Sep2019.pdf
https://doi.org/10.1787/9789264071162-en
https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf?expires=1578570534&id=id&accname=guest&checksum=C7B321D86BFA753562D53BDAC49F6F0A
https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf?expires=1578570534&id=id&accname=guest&checksum=C7B321D86BFA753562D53BDAC49F6F0A
https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf?expires=1578570534&id=id&accname=guest&checksum=C7B321D86BFA753562D53BDAC49F6F0A
https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf?expires=1578570534&id=id&accname=guest&checksum=C7B321D86BFA753562D53BDAC49F6F0A
https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf?expires=1578570534&id=id&accname=guest&checksum=C7B321D86BFA753562D53BDAC49F6F0A
https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf?expires=1578570534&id=id&accname=guest&checksum=C7B321D86BFA753562D53BDAC49F6F0A
https://www.oecd-ilibrary.org/docserver/915e00ac-en.pdf?expires=1578570534&id=id&accname=guest&checksum=C7B321D86BFA753562D53BDAC49F6F0A
https://doi.org/10.1787/970e5cd9-en
http://data.europa.eu/eli/reg/2009/1223/2019-11-27
http://data.europa.eu/eli/reg/2008/1272/oj
http://data.europa.eu/eli/reg/2006/1907/2014-04-10
http://data.europa.eu/eli/reg/2008/440/oj
http://data.europa.eu/eli/reg/2008/440/oj


Roediger B, Weninger W (2011) How nickel turns on innate immune cells. Immunol Cell Biol 89
(1):1–2

Sauer UG, Hill EH, Curren RD, Raabe HA, Kolle SN, Teubner W, Mehling A, Landsiedel R (2016)
Local tolerance testing under REACH: accepted non-animal methods are not on equal footing
with animal tests. ATLA Altern Lab Anim 44(3):281–299

SCCS (2014) SCCS ADDENDUM to the SCCS's notes of guidance (NoG) for the testing of
cosmetic ingredients and their safety evaluation 8th revision (SCCS/1501/12). 2014. http://ec.
europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_156.pdf

Schäfer-Korting M, Bock U, Diembeck W, Düsing HJ, Gamer A, Haltner-Ukomadu E et al (2008)
The use of reconstructed human epidermis for skin absorption testing: results of the validation
study. Altern Lab Anim 36(2):161–187

Scott L, Eskes C, Hoffmann S, Adriaens E, Alepée N, Bufo M, Clothier R, Facchini D, Faller C,
Guest R, Harbell J, Hartung T, Kamp H, Varlet BL, Meloni M, McNamee P, Osborne R,
Pape W, Pfannenbecker U, Prinsen M, Seaman C, Spielmann H, Stokes W, Trouba K, Berghe
CV, Goethem FV, Vassallo M, Vinardell P, Zuang V (2010) A proposed eye irritation testing
strategy to reduce and replace in vivo studies using bottom-up and top-down approaches.
Toxicol In Vitro 24(1):1–9

Teubner W, Mehling A, Schuster PX, Guth K, Worth A, Burton J et al (2013) Computer models
versus reality: how well do in silico models currently predict the sensitization potential of a
substance. Regul Toxicol Pharmacol 67(3):468–485

United Nations (2007) Globally harmonized system of classification and labelling of chemicals
(GHS). Part 3, Health Hazards. http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/
ghs_rev02/English/03e_part3.pdf

Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle SN, Landsiedel R, Jaworska J,
Kern P, Gerberick F, Natsch A, Emter R, Ashikaga T, Miyazawa M, Sakaguchi H (2015)
Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul
Toxicol Pharmacol 71(2):337–351

Urbisch D, Becker M, Honarvar N, Kolle SN, Mehling A, Teubner W et al (2016a) Assessment of
pre-and pro-haptens using nonanimal test methods for skin sensitization. Chem Res Toxicol 29
(5):901–913

Urbisch D, Honarvar N, Kolle SN, Mehling A, Ramirez T, Teubner W, Landsiedel R (2016b)
Peptide reactivity associated with skin sensitization: the QSAR toolbox and TIMES compared
to the DPRA. Toxicol In Vitro 34:194–203

Wareing B, Urbisch D, Kolle SN, Honarvar N, Sauer UG, Mehling A, Landsiedel R (2017)
Prediction of skin sensitization potency sub-categories using peptide reactivity data. Toxicol
In Vitro 45:134–145

Weil CS, Scala RA (1971) Study of intra- and interlaboratory variability in the results of rabbit eye
and skin irritation tests. Toxicol Appl Pharmacol 19(2):276–360

Zuang V, Desprez B, Barroso J, Belz S, Berggren E, Bernasconi C, Bessems J, Bopp S, Casati S,
Coecke S, Corvi R, Dumont C, Gouliarmou V, Griesinger C, Halder M, Janusch-Roi A,
Kienzler A, Landesmann B, Madia F, Mil-camps A, Munn S, Price A, Prieto P, Schäffer M,
Triebe J, Wittwehr C, Worth A, Whelan M (2015) EURL ECVAM status report on the
development, validation and regulatory acceptance of alternative methods and approaches
JRC97811 — EUR 27474 EN, September 2015, 114pp. European Union, Brussels

Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh 27

http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_156.pdf
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_156.pdf
http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev02/English/03e_part3.pdf
http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev02/English/03e_part3.pdf


How Qualification of 3D Disease Models
Cuts the Gordian Knot in Preclinical Drug
Development

Monika Schäfer-Korting and Christian Zoschke

Contents
1 Current Efficiency in Preclinical Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.1 Phases of Preclinical Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.2 Models and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Reasons for Poor Translational Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 From Validation to Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Quality Function Deployment: Learning from Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Qualification of 3D In Vitro Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Qualification of Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Selection of Relevant Drug Doses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Current Strategies to Rethink Preclinical Drug Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Strategy 1: Characterized Cell Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Strategy 2: Primary Cells to Recapitulate Human Heterogeneity . . . . . . . . . . . . . . . . . . . . . 42
4.3 Strategy 3: Patient-Derived Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Strategy 4: New Technologies in Tissue Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Strategy 5: Comparing New Test Methods to Current Standards . . . . . . . . . . . . . . . . . . . . . 46

5 Phases of Innovative Preclinical Drug Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Preclinical Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Preclinical Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Preclinical Phase III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 The Price of Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Monika Schäfer-Korting and Christian Zoschke contributed equally to this work.

M. Schäfer-Korting (*) · C. Zoschke
Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Berlin, Germany
e-mail: monika.schaefer-korting@fu-berlin.de; christian.zoschke@fu-berlin.de

# Springer Nature Switzerland AG 2020
M. Schäfer-Korting et al. (eds.), Organotypic Models in Drug Development,
Handbook of Experimental Pharmacology 265, https://doi.org/10.1007/164_2020_374

29

http://crossmark.crossref.org/dialog/?doi=10.1007/164_2020_374&domain=pdf
mailto:monika.schaefer-korting@fu-berlin.de
mailto:christian.zoschke@fu-berlin.de
https://doi.org/10.1007/164_2020_374#DOI


Abstract

Preclinical research struggles with its predictive power for drug effects in
patients. The clinical success of preclinically approved drug candidates ranges
between 3% and 33%. Regardless of the approach, novel disease models and test
methods need to prove their relevance and reliability for predicting drug effects in
patients, which is usually achieved by method validation. Nevertheless,
validating all models appears unrealistic due to the variety of diseases. Thus,
novel concepts are needed to increase the quality of preclinical research.

Herein, we introduce qualification as a minimal standard to establish the
relevance of preclinical models and test methods. Qualification starts with
prioritizing and translating scientific requirements into technical parameters by
quality function deployment. Qualified models use authenticated cells, which
resemble the corresponding cells in humans in morphology and drug target
expression. Moreover, disease models differ from normal models in the expres-
sion of relevant biomarkers. As a result, qualified test methods can discriminate
effects of treatment standards and the effects of weakly effective or ineffective
substances. Observer-blind readout, adequate data documentation, dropout inclu-
sion, and a priori power studies are as crucial as realistic dosage regimens for
qualified approaches. Here, we showcase the implementation of qualification.
Adjusting the level of model complexity and qualification to three defined phases
of preclinical research assures the optimal level of certainty at each step.

In conclusion, qualification strengthens the researchers’ impact by defining
basic requirements that novel approaches must fulfill while still allowing for
scientific creativity. Qualification helps to improve the predictive power of
preclinical research. Applied to human cell-based models, qualification reduces
animal testing, since only effective drug candidates are subjected to final animal
testing and subsequently to clinical trials.

Keywords

Aging · Analytical methods · Data quality · Neoplasms · Nonalcoholic fatty liver
disease · Pharmacology · Preclinical drug evaluation · Validation study

Abbreviations

3R Replacement, reduction, and refinement of animal experiments
ADME Absorption, distribution, metabolism, and excretion
AUC Area under the curve
CRISPR Clustered regularly interspaced short palindromic repeats
DXM Dexamethasone
EU European Union
FDA U.S. Food and Drug Administration
HOQ House of quality
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ICH International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use

iPS Induced pluripotent stem cells
LC Liquid chromatography
MS/MS Tandem mass spectrometry
N/TERT Human keratinocyte cell line
NASH Nonalcoholic steatohepatitis
OECD Organisation for Economic Co-operation and Development
QFD Quality function deployment
RhS Reconstructed human skin
STXM Scanning transmission X-ray microscopy

1 Current Efficiency in Preclinical Research

Despite major efforts in 3R from academia, industry, and legislation, the number of
animals being sacrificed in research every year still amounts to almost 9.4 and 1.8
million in the EU and Germany, respectively. Fundamental and applied research
account for 44% and 15%, respectively, of the animals in Germany (European
Commission 2019; Federal Ministry of Food and Agriculture 2019). Concomitantly,
preclinical testing often fails to collect data, being relevant for human patients.
Success rates in clinical trials are as low as 3% in oncology or 15% in neurology
and immunology and question the current methodology of assessing investigational
new drugs in preclinical science. The major shortcoming of preclinical research is
related to the complex architecture of organs like the brain or the immune system as
well as the heterogeneous nature of diseases. The translation from bench to bedside
is only sightly more successful for vaccines and drugs against cardiovascular and
infectious diseases (Table 1, Wong et al. 2019). Poor efficacy and safety stand out as
major reasons for the termination of drug development projects (Arrowsmith and

Table 1 Disease-group-related success rates (%) in clinical Phase 1 and overall (success in Phases
2 and 3) in clinical drug development; from Wong et al. (2019)

Disease groups
Clinical Phase 1 passed transfer
to Phase 2 (%) Overall success rate (%)

Oncology 57.6 3.4

Central nervous system 73.2 15.0

Autoimmune/inflammation 68.8 15.1

Metabolic/endocrinology 76.2 19.6

Genitourinary 68.7 21.6

Infectious disease 70.1 25.2

Cardiovascular 73.3 25.5

Vaccines 76.8 33.4

Ophthalmology 87.1 32.6
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Miller 2013), besides economic considerations of the pharmaceutical company
(Waring et al. 2015).

Despite the marked reduction of drug candidates in early and advanced preclini-
cal testing, still too many substances pass the preclinical phase but fail in clinical
studies. High numbers of volunteers and patients exposed to non-efficacious or
unsafe drugs demand a stricter preclinical selection. Recent developments in tissue
engineering should enable addressing these questions with human cell-based disease
models and rejecting unqualified drug candidates. Rethinking preclinical drug
development will avoid expendable applications to human and animal test subjects
and should reduce costs, from now 2,800 � 106 US dollars per year for preclinical
research that is not reproducible (DiMasi et al. 2016).

1.1 Phases of Preclinical Research

Preclinical drug research comprises all tests from drug discovery to the first-in-
human studies. The current approaches encompass in silico methods and high-
throughput screenings, tests in disease models and pharmacokinetic investigations
in vitro and in vivo, as well as regulatory toxicology and safety pharmacology
studies. Preclinical research starts with simple models to save time and costs,
while sophisticated approaches are used in later phases. This stepwise approach
could be grouped into three phases. We suggest summarizing in silico methods and
high-throughput screening in Phase I; simple pharmacological tests, regulatory
toxicology, and safety pharmacology in Phase II; and sophisticated pharmacokinetic
and pharmacodynamic tests in Phase III. Currently, animal experiments are predom-
inantly used in Phases II and III (according to our definition) and still remain the
backbone for preclinical drug research.

1.2 Models and Test Methods

Here, we define a preclinical model (normal, disease) as a system recapitulating the
hallmarks of the human tissue in animal or cell culture. A test method is an approach
to identify drug effects in the preclinical model, respectively. An efficient selection
of drugs, suitable for human use, requires a tiered procedure with models and test
methods that are as simple as possible but as complex as necessary. This means an
increasing complexity from Phase I to III.

2 Reasons for Poor Translational Success

Five reasons stand out from the causes which limit the translational success of
investigative new drugs from bench to bedside:
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• Animal models are confounded by a major gap between animal and human
biology (Seok et al. 2013; Warren et al. 2015). The animal-based disease fre-
quently aligns poorly with the human indication of interest. New technologies
like CRISPR/Cas offer new opportunities for more human-like disease models,
but transgenic mice and rats remain genetically engineered rodents, except for the
drug target.

• Heterogeneity is excluded, since young male animals from single inbred strains
are preferred (Hartung 2013). In contrast, diseases affect male and female, young,
adult, and senior patients with different genetic backgrounds.

• Currently, cell culture practice faces limitations with cells subcultivated in high
passages or not authenticated (Hartung 2007) and generally the lack of quality
control (OECD 2018).

• The use of cell lines can be unrepresentative of complex diseases. Moreover,
monolayer cultures lack the tissue-specific extracellular matrix (Nallanthighal
et al. 2019).

• Study design in preclinical research frequently does not apply to the same
standard as in clinical trials. In particular, randomization and blinding (van
Luijk et al. 2014) as well as statistical tests for differences are rarely considered.

• Quality assurance and validation for both the model itself and the pharmacologi-
cal test method appear to be expendable with respect to disease models, although
preclinical studies lack reproducibility (Begley et al. 2015; Simeon-Dubach et al.
2016).

Now the time has come to transform preclinical drug development into relevant
and reproducible research, while avoiding suffering animals wherever possible
(German Research Foundation 2019). Nevertheless, even less stressful testing in
the animal will not overcome the genetic differences between animals and humans.

Toxicologists have addressed this issue by the development and validation of
alternatives to animal testing (Leontaridou et al. 2017). Validated toxicological
methods use reconstructed human epidermis for the evaluation of skin corrosion
(OECD 2019a), skin irritation (OECD 2020), and phototoxicity (tier-2; OECD
2019b). Yet, it took about 25 years from the development of reconstructed human
skin (Green et al. 1979) to regulatory acceptance of the respective test methods, and
there is still a gap in fully accepting these in regulatory toxicology (Sauer et al.
2016).

Currently the so-called investigative toxicology shifts pharmaceutical toxicology
from a descriptive to an evidence-based, mechanistic discipline. Outside the
boundaries of regulatory toxicology, investigative toxicology embraces new
technologies to predict human responses. European leaders in the pharmaceutical
industry propose humanized in vitro test systems to improve preclinical decisions
(Beilmann et al. 2019). However, toxicity studies in animals remain essential for
regulatory toxicology because of the limited number of organs which can be
reconstructed and the approach to investigation of the whole organism is at its
infancy. In 2018 the European Medicines Agency started a consultation on the
regulatory requirements for drug development, and the pharmaceutical industry
requested harmonization with the US Food and Drug Administration.
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3 From Validation to Qualification

The ICH M3(R2) guideline clearly states that in vitro alternative methods can be
used to replace current standard methods, if validated and accepted by all regulatory
authorities.

3.1 Validation

A validation study provides the documented approval that a model or a test method
reproducibly shows the desired effect. The extensive requirements make validation
highly time-consuming and costly (Basketter et al. 2012) and might prevent innova-
tive methods from their application in preclinical drug development. Moreover, the
broad spectrum of drug effects and the heterogeneity of diseases increase the
complexity and stand against a timeline in using in vitro disease models.

The overarching goal of validation, proof-of-concepts, performance standards,
and best practice guidelines is to demonstrate the quality of a model or test method.
According to the Latin origin of qualitas, quality is defined by the nature of an
object. Modern perceptions of quality assume that quality must be produced rather
than assured in retrospective validations (Kamiske and Brauer 1993). Quality should
originate from a company- or research group-wide spirit with a clear vision of
quality; it is an inherent responsibility which cannot be delegated or outsourced, as
it is the basis of scientific and industrial success. To apply the vision of quality into
real work, management tools such as “quality management systems” or “failure
mode and effects analysis” have been developed for industrial applications and
recently translated to scientific and academic use (Dirnagl et al. 2018). Even
evidence-based medicine strives to improve model and test method development
(Lefevre and Balice-Gordon 2019). Most often the high aims of such guidance are
perceived to stand against scientific creativity, publication output, and fundraising.
Consequently, the compliance to such guidelines varies among research institutions
which might contribute to the overall low success of preclinical research.

Since the best strategy is useless if not applied, the two major questions to be
answered are:

• How to deploy quality planning and management in the development of novel
in vitro methods for preclinical research?

• Which level of certainty is required for the model and test method, respectively?

We suggest starting with compiling the scientific requirements, which a model or
test method must fulfill. According to the industrial definition “Quality is confor-
mance to customer requirements” (Crosby 1996), these scientific requirements
should be in accordance to the user of the model or test method, from industry or
academia.
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3.2 Quality Function Deployment: Learning from Industry

A relevant model or test method depends on the quality of its planning. Researchers
aiming for a high impact and short time to application should focus on structured
method planning, since in industry 80% of product flaws, which are occurring during
product assembly and product use, originate from insufficient product design. The
car industry took major profit from introducing quality function deployment (QFD)
into the product planning. Thereby, QFD reduced the costs for product development
to 40% of the initial value and diminished the changes necessary to optimize the
original product design (Fig. 1).

The major parts of QFD include the formation of a quality planning team and the
correlation matrix “house of quality” (HOQ, Zoschke 2009). The quality planning
team should consist of the leading and first-stage researchers as well as technical
assistants to involve all concerned group members into the planning. The HOQ
fosters a systematic assessment, categorization, and prioritization of scientific
requirements and technical parameters and clearly documents the results of the
quality planning team’s discussion. To the best of our knowledge, QFD has not
yet been introduced to the development of in vitro models. Here, we present the first
example with the development of an immunocompetent model of head and neck
cancer for the evaluation of local drug effects (Fig. 2). The selection of scientific
requirements and technical parameters and their weighting are the author’s choice to
serve as an example to further develop a recently published tumor oral mucosa
model (Gronbach et al. 2020). However, the definition and weighting of
requirements and parameters must be adapted to the disease model or test method
of interest.

Fig. 1 Impact of quality function deployment in industry. The higher efforts and costs of structured
product planning with quality function deployment (QFD) in the beginning of a car development
are counterbalanced by shorter development times and less flaws of the product following start of
production. Transfer to in vitro model and test method development should reduce the time-to-
application similarly, from Zoschke (1993)
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Fig. 2 House of quality (HOQ) for an immunocompetent 3D model of head and neck cancer. red:
Scientific requirements with weighting. yellow: Technical parameters of the in vitro model. blue:
Correlation between scientific requirements and technical parameters. green: Importance of techni-
cal parameters. white: Interdependencies between technical parameters, from Zoschke (1993)
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First, the scientific requirements need to be listed in the left part (Fig. 2, red).
Since not all requirements are equally important, the next step is to prioritize them.
Therefore, a decision must be made for each requirement if it is less, equal, or more
important than the other requirement. Having done this paired comparison for all
requirements, a rank order of the requirements as well as a weighting factor will be
obtained. Next the technical parameters need to be listed in the upper part of the
HOQ (Fig. 2, yellow). Technical parameters can always be measured and quantified,
which makes them very specific in contrast to scientific requirements. Next, the
quality planning team determines the correlation between the technical requirements
and the scientific requirements. Use an exponential scale with 1 for little correlation,
3 for medium correlation, and 9 for strong correlation; multiply the correlation by the
weighting of the scientific requirements. The results are noted in the correlation
matrix (Fig. 2, blue). Furthermore, the direction of optimization of each technical
parameter is listed in the yellow part to better fulfill the scientific requirements. The
roof of the HOQ serves to list the interdependencies between each technical param-
eter, since the optimization of one parameter can affect the optimization of another
parameter synergistic or antagonistic (Fig. 2, white). If there is an antagonistic
interference between two technical parameters, this will be a major target for
innovation to overcome this antagonism. Moreover, in a synergistic interference,
the deterioration of one parameter can also impair the other. The target values for
each technical parameter are listed at the bottom of the correlation matrix (Fig. 2,
green). The values are either minima, maxima, or a range which should be achieved
for the in vitro model. The quality planning team can also assess the level of
difficulty to achieve these target values. The final output of the HOQ is the impor-
tance of technical parameters. Therefore, the weighted correlations between the
technical parameter and each scientific requirement are summed up. An overestima-
tion of single parameters can be avoided by dividing the sum of one technical
parameter by the sum of all technical parameters (relative relevance). Almost equally
relevant technical parameters should be clustered together. The technical parameter
with the highest value is most important, while the parameter with the lowest value
needs to be addressed at last. After completing the HOQ, the quality planning team
should check for plausibility by confirming that:

• Every scientific requirement correlates strongly to at least one technical parameter
(no empty rows)

• Every technical parameter correlates strongly to at least one scientific requirement
(no empty columns)

• The direction of optimization fits to the target value for each technical parameter
• Antagonistic technical interdependencies should be solved or prioritized
• The correlation matrix should be filled to at least one third to be able to prioritize

technical parameters.

Additionally, the HOQ can be extended by comparisons of the approach to
already existing models or test systems (Zoschke 2009). In conclusion, the HOQ
cannot take the decision for the researcher, but the HOQ helps to systematically
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translate vague scientific requirements into quantifiable and prioritized technical
parameters. According to QFD, the outcome of the HOQ is the basis for the planning
of the in vitro model or test method parts. Quality planning for the parts is the basis
for planning the processes, which is finally leading to the final test method protocol.
This deployment ensures the translation of the scientific requirements for the in vitro
model or test method into feasible protocols for each step of the model or method
development.

3.3 Qualification

We define qualification as minimal standard in model or test method development.
Qualification comprises the sum of evidences that a model or test method is relevant
for the disease at hand. Qualification is based on QFD and uses the state of the art in
tissue engineering and testing in molecular medicine and pharmacology. Qualifica-
tion does not replace validation but will provide a sufficient basis for decision-
making in preclinical drug development.

3.4 Qualification of 3D In Vitro Models

Irrespective of the envisioned use in fundamental research or drug development, a
qualified 3D in vitro model has to fulfill the following key features:

• Use of authenticated human cells
• Comparability between tissue morphology and function with the human disease
• Expression of drug targets in accordance to the human disease
• Concurring endpoints in models and patients, i.e., the change of biomarkers

relevant for disease outcome

If relevant for the disease at hand, assessing graded drug effects should be
preferred over simple yes or no assessments. The model features have to be repro-
ducible over time and in different laboratories. Qualification is not limited to disease
models but also applicable to models for normal tissue and the target structures used,
e.g., in molecular modeling and high-throughput testing. Moreover, we suggest
applying the same requirements for qualified normal models as described for
qualified disease models. On the one hand, the normal models will serve as control
to assess a potential restitutio ad integrum and on the other hand to provide insights
into local adverse effects of drugs.

3.5 Qualification of Test Methods

Test procedures need to be qualified for preclinical drug research. Changes observed
due to drug exposure are only signified if a suitable test protocol is used and the test
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is run under quality assurance. Protocol adaptations during larger test series have to
be avoided as they exclude comparisons over time. Hallmarks of a qualified test
method in all phases include if not indicated otherwise:

• Relevant controls
– Untreated
– If available, an already approved standard treatment with maximum efficacy

(Phase III only)
– If available, an already approved treatment with minimal efficacy (Phase III

only)
– A treatment that showed no or insufficient efficacy in clinical trials (Phase III

only)
• Observer-blind readout when using subjective endpoints
• Adequate data documentation, including dropouts
• Evaluation by explorative data analysis
• A priori definition of the relevant effect size and adapted sample size (power

study, Phase III)
• Relevant dosage regimen and treatment period (Phase III)

Test methods can be qualified only by a range of performance standards, which
are related to the respective drug targets. Thus, test methods designed for evaluating
anticancer drugs are unlikely to be suitable for evaluating, e.g., antimicrobial
endpoints. Yet, the transfer of a test method from one disease model to another
disease model appears easier to achieve than a qualification from scratch. Testing of
investigational new drugs with targets unrelated to the qualification process requires
a requalification for the new performance standards.

3.6 Selection of Relevant Drug Doses

Currently, the extrapolation of drug doses from animal studies to first-in-human
studies remains empirical. The most common approaches are dose-by-factor based
on no observed adverse effect levels (NOAEL or benchmark dose),
pharmacokinetically guided approaches, based on minimal anticipated biological
effect levels, pharmacokinetic-pharmacodynamic models, similar drug approach,
and data from human microdosing (Nair et al. 2018). Nevertheless, interspecies
differences impede the calculation of human equivalent doses from animal data,
despite of the introduction of correction factors.

A failed translation of preclinical dosage regimen into clinical treatments results
in severe toxicity, prolonged dose escalation procedures or patients exposed to
ineffective doses. Dose finding for anticancer drugs is in particular challenging,
since they have steep dose-response curves and narrow therapeutic windows
(Mathijssen et al. 2014). In vitro studies frequently use drug doses far higher than
the maximum tolerated dose in cancer patients (Smith and Houghton 2013) and
contribute to the highest attrition rate of anticancer drug candidates in clinical trials
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(Wong et al. 2019). Moreover, ambiguous dosing in cell culture experiments due to
different physical conditions, like volume of medium and number of cells used,
hamper the reproducibility of in vitro experiments in different phases of preclinical
research (Doskey et al. 2015).

Testing the efficacy of anticancer drugs in 3D in vitro models that recapitulate the
tumor-specific extracellular matrix is crucial to emulate the drug uptake and metab-
olism in the tissue. The dense tumor stroma with extracellular matrix and cancer-
associated fibroblasts (Mueller and Fusenig 2004; Minchinton and Tannock 2006) as
well as the high interstitial fluid pressure may reduce drug uptake into the tumor
despite their endothelial hyperpermeability (Saleem and Price 2008; Dewhirst and
Secomb 2017). Thus, the failure of anticancer drugs in 3D models despite drug
efficacy in monolayer cultures could be related to the absence of a tumor stroma
(Cruz Rodriguez et al. 2019).

The determination of the drug concentration which is high enough to be active in
3D in vitro models, e.g., by automated UHPLC-MS/MS approaches (Joseph et al.
2020), might help to improve the translation of preclinical into clinical dosage
regimen. Another approach uses time-dependent or maximum biomarker modula-
tion as the matching metric, rather than a minimal threshold concentration (Spilker
et al. 2017).

4 Current Strategies to Rethink Preclinical Drug Research

Our concept of qualification can be applied to various approaches in preclinical
research. We highlight already existing strategies using human cell-based 3D in vitro
models and novel test methods. These five strategies in preclinical research fulfill the
criteria of qualification to different extents.

4.1 Strategy 1: Characterized Cell Lines

Studying the N/TERT keratinocyte cell line provides a deep insight into the MAPK/
ERK pathway and revealed the impact of histone deacetylase modulation in skin
diseases like psoriasis, atopic dermatitis, and cancer (Robertson et al. 2012). Induc-
ing filaggrin knockdown in the N/TERT cell line and supplementing the Th-2
cytokine IL-31 result in a skin model with clinical signs of atopic dermatitis: fostered
Staphylococcus aureus colonization, increased IL-8 levels, and reduced human
β-defensin upregulation (van Drongelen et al. 2014a, b). Moreover, patient-derived
material served to generate an iPS cell line for future use of, e.g., in vitro atopic
dermatitis models in drug development (Devito et al. 2018).

In cancer research, human-based models revealed the impact of the dermal
equivalent and the presence of a basement membrane on melanoma invasion
(Commandeur et al. 2014). A 3D in vitro model of cutaneous squamous cell
carcinoma was generated from primary human keratinocytes and fibroblasts as
well as SCC-12 tumor cells, recapitulates the tumor histology, and predicts the
activity of ingenol mebutate (Fig. 3). Ingenol mebutate induced abundant epidermal
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cell necrosis, acantholysis, and microvesicles in normal RhS (Zoschke et al. 2016).
The epidermal growth factor receptor inhibitor erlotinib induced beneficial effects in
another model of cutaneous squamous cell carcinoma and induced severe desqua-
mation in the normal RhS (Commandeur et al. 2012).

This strategy is not limited to skin models but is also used for chronic kidney
disease models. A human podocyte injury model of chronic kidney disease indicated
that the renoprotection induced by sodium-glucose co-transporter 2 (SLGT-2)
inhibitors is linked to normalized podocytes renewal and not to the lowering of
blood glucose in type 2 diabetes. Correction of podocyte morphology and of
associated cytoskeletal architecture renews the adhesion to the glomerulus mem-
brane. Inhibitors of adenosine kinase reduce AMP formation and rescue cell adhe-
sion and the actin cytoskeleton (Abraham et al. 2017).

4.2 Strategy 2: Primary Cells to Recapitulate Human
Heterogeneity

An advanced 3D in vitro model of nonalcoholic steatohepatitis (NASH) was
designed by co-culturing primary human hepatocytes in collagen sandwich with
macrophages and stellate cells, separated by a porous transwell membrane (Fig. 4,
Feaver et al. 2016). Tissue exposure to glucose, insulin, and free fatty acids
corresponding to plasma levels in NASH patients repeatedly induced the lipotoxic
milieu by activating key pathways spanning liver dysfunction in the hepatocytes.
Triacylglycerides, diacylglycerides, cholesterol esters, and glucose levels increased
significantly, and markers of inflammation (alanine amino transferase and caspase-
generated cytokeratin 18, IL-6 and IL-8) as well as of fibrosis triggering TGF-β and
osteopontin did so, too. Moreover, the secretion of smooth muscle α-actin increased.

Next, the model was challenged by the exposure to steady-state serum levels of
obeticholic acid that targets the farnesoid X receptor in hepatocytes. The responses
were compared to the vehicle control and the outcome in a clinical Phase II study
(Hirschfield et al. 2015). Lipid accumulation declined by 25% with the most
significant decrease in triacylglycerides. IL-6 and IL-8 declined significantly by
48% and 25% and other parameters of NASH including TGF-β and osteopontin
were also reduced, indicating beneficial effects. Yet, intracellular cholesterol and
several apolipoproteins including ApoB and ApoE increased (Feaver et al. 2016).

The interim analysis of 931 patients after 18 months treatment in clinical Phase
III study “REGENERATE” indicated a significant improvement of key NASH
factors and fibrosis by obeticholic acid 25 mg/d compared to placebo (Younossi
et al. 2019). According to the positive outcome of the interim analysis, rapid drug
EMA approval of obeticholic acid for NASH is applied for. The improvement of the
intermediate endpoint (histology of liver biopsies) regarded as risk factors for the
long-term outcome might be acceptable despite the lack of formal validation of
intermediate clinical endpoints (Angulo et al. 2015). Yet already today, the Phase III
study demonstrates the predictive power of this NASH model.
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Another NASH model used hepatic cells generated from human skin-derived
precursors. Exposure of these cells to lipogenic (insulin, glucose, fatty acids) and
pro-inflammatory factors (IL-1β, TNF-α, TGF-β) resulted in a characteristic NASH
response. Elafibranor attenuated in vitro key features of NASH and significantly
lowered the lipid load as well as the expression and secretion of inflammatory
chemokines, being responsible for the recruitment of immune cells in vivo. This
reduction in inflammatory response was mediated NFκB (Boeckmans et al. 2019).
The clinical outcome, however, failed to meet the hepatic endpoint (Ratziu et al. 2016).

Treatments for end-stage liver disease, nonalcoholic liver disease in particular,
are allograft liver or hepatocyte transplantation. Main obstacles are donor organ
shortage and the need for efficient immunosuppression. While hepatocytes are more
available than entire livers, the transplantation of hepatocytes tends to be less
successful and requires more immunosuppression than the organ replacement.
Allogeneic hepatocytes appear to be highly antigenic; alternatively, liver sinusoid
endothelial cells or hepatic stellate cells may induce a loss of the antigenicity of
hepatocytes in an allogeneic environment (Iansante et al. 2018). Immunosuppressive
therapy following hepatocyte and liver transplantation include calcineurin inhibitors
(cyclosporine, tacrolimus), everolimus, glucocorticoids, and basiliximab.

The suppression of immune responses was studied in a co-culture of primary
human hepatocytes and allogeneic peripheral blood mononuclear cells (PBMC).
Hepatocytes were isolated from six patients undergoing partial hepatectomy and
grown as monolayers, while PBMC were isolated from blood of healthy donors and
were added to the hepatocyte culture. Drug concentrations matched blood levels in
patients receiving solid organ transplantation. Hepatocyte co-culture for 10 days
strongly enhanced PBMC proliferation, and the secretion of Th-2 cell-associated
cytokines strongly increased. Immunosuppressive drugs like everolimus efficiently
suppressed the pro-inflammatory responses. A reduced metabolic activity of the
hepatocytes, however, may indicate a potential toxicity of everolimus (Oldhafer
et al. 2019). This interesting model demonstrates the immunosuppressive activity of
the clinically used drugs. Given the correct identification of agents failing in the
prophylaxis and therapy of allogenic rejections, the test may enable preclinical drug
research on drug candidates most suitable for use in hepatocyte transplantation. The
introduction of the missing innate immune system may improve predictive capacity.
Moreover, these insights may allow for a pretest of the suitability of hepatocytes
from donor livers for transplantation. Currently, hepatocytes are often isolated from
livers unsuitable for transplantation, which appears to explain the lower success rate
compared to liver transplantation (Iansante et al. 2018).

Primary cells are also essential to study the heterogeneity of aging processes and
to evaluate differences in drug effects within the groups of aging. Monolayer
cultures of fibroblasts from intrinsically aged human skin exhibited more signs of
aging including DNA segments with chromatin alterations reinforcing senescence
versus dermal fibroblasts from middle aged and young donors. Forty-three proteins
confirmed the known hallmarks of aging and led to a consistent picture of eight
biological categories involved in fibroblast aging, e.g., development and differentia-
tion, cell death, and response to stress. Most of the age-associated alterations are
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likely caused posttranscriptionally (Waldera-Lupa et al. 2014, 2015). Next,
fibroblasts from the donors aged 20–30 or 60–70 years were used to investigate
the impact of age and body region on skin homeostasis, epidermal differentiation,
and drug uptake on cell monolayers and reconstructed human skin. Fibroblasts from
juvenile foreskin (<10 years old) served as control. 3D in vitro models containing
aged fibroblasts differed from its juvenile and adult counterparts, especially in terms
of the dermal extracellular matrix composition, IL-6 levels, and wound healing
(Fig. 5). The region of the body from which fibroblasts are derived appears to affect
the epidermal differentiation of the construct. Emulating patient heterogeneity in
preclinical studies might improve the treatment of age-related skin (Hausmann et al.
2019).

4.3 Strategy 3: Patient-Derived Cells

The access to patient-derived cells is limited, and only a few subcultivations are
feasible without cellular dedifferentiation. Plucking hair follicles offers a noninva-
sive approach for the generation of skin disease models. Only minor differences in
morphology, ultrastructure, expression of important structural proteins, or barrier
function are observed between normal reconstructed human skin and the in vivo
counterpart generated from hair follicle-derived or interfollicular keratinocytes and
fibroblasts (Löwa et al. 2018). Next, fibroblasts were isolated from plucked scalp
hair follicles of six healthy volunteers and six atopic dermatitis patients. Some of the
RhS with fibroblasts from atopic dermatitis patients show epidermal thickening and
parakeratosis independent from filaggrin mutations. Moreover, the thymic stromal
lymphopoietin and protease-activated receptor 2 are significantly upregulated in
hyperproliferative RhS (Löwa et al. 2020).

For cancer research, tumor cells are used to generate patient-derived organoids
in vitro and patient-derived xenografts in vivo. One of the largest collections of
patient-derived material is the OncoTrack preclinical platform for colorectal cancer.

Fig. 5 Impact of normal human dermal fibroblast culture (fibroblast monolayers and reconstructed
human skin) on gene expression. (a) Venn diagrams showing the number of genes altered due to
culture conditions. (b) Hit ratios of the altered genes for different biological processes. The
diagrams consider fold changes in gene expression > |1.3| and Ct values � 35 for the 19 groups
of biological processes; the maximum proportion of altered gene expression per biological process
(hit ratio) ¼ 1; from Hausmann et al. (2019)
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The biobank consists of 116 resected tissue samples with matched blood samples,
comprising 89 primary tumors (stage I to IV) and 27 metastases from 106 patients.
Organoids and xenografts are treated with drugs representing the therapeutic gold
standard and experimental substances that address major pathways relevant in
colorectal cancer. The OncoTrack study provides an unprecedented repository of
data and models, which can be exploited further for improved drug discovery and
understanding of cancer biology (Schütte et al. 2017).

4.4 Strategy 4: New Technologies in Tissue Engineering

The ongoing change in drug development will significantly increase the need for
standardized tissues in high numbers. Bioprinting of the tissues, in particular, has the
potential to enhance the delivery of the essential test platforms. For example,
functional cardiac constructs can be printed. The inclusion of conductive gold
nanorods improved the electrical propagation between adjacent cardiomyocytes
(Zhu et al. 2017). Inter alia, bioprinted cardiac tissue reflects the activity of
β-adrenoceptor and m-receptor antagonist as well as the reversibility of the effects
after removal as reviewed recently (Lind et al. 2017). Bioprinting allows for the
generation of models closer to the human morphology and the control of culture
environment. Injecting the cell suspension into a micromold can ensure cell cluster
growth sufficient nutrient supply to avoid cell death and the formation of blood
vessel (Huh et al. 2013; Prabhakarpandian et al. 2013; Hagiwara and Koh 2020).

Transforming the human-on-the-chip technology to the patient-on-the-chip by
the use of miniaturized disease models is ahead of us. For example, a cancer chip has
been developed for drug testing in a vascularized tumor model (Nashimoto et al.
2020). Tissue banks, providing vital tissues and replicable cells of defined quality
over years (Palechor-Ceron et al. 2019), should allow the inclusion of human
heterogeneity into Phase III of preclinical drug development.

The implementation of human-based testing may even open up the path to
improve the therapeutic outcome of the most severe, non-acute diseases by
personalized therapy.

4.5 Strategy 5: Comparing New Test Methods to Current
Standards

The ongoing introduction of high-end analytics will allow for a much more detailed
insight into pharmacokinetics and pharmacodynamics. Recently the label-free quan-
tification of drugs at the highest local resolution of 70 � 5 nm became possible by
scanning transmission X-ray microscopy (Fig. 6a, Yamamoto et al. 2015, 2017).
STXM and LC-MS/MS quantified dexamethasone equally in reconstructed human
skin (Fig. 6b). Moreover, this study compared the drug penetration into
reconstructed human skin with human and SKH1-mouse skin ex vivo. SKH-1 is
reported to be the most human-like (Radbruch et al. 2017). The inter-model
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comparison revealed an overall similar dexamethasone uptake with minor
differences in the penetration rate (Fig. 6c, Wanjiku et al. 2019).

5 Phases of Innovative Preclinical Drug Research

To keep the efforts for the qualification of novel models and test methods as low as
possible, we suggest categorizing preclinical research in three phases and defined the
requirements for qualified approaches accordingly (Fig. 7). Human cell-based
models are preferred in all phases of preclinical testing. The combination of different
in vitro models will provide higher levels of predictive power than relying on only
one sophisticated model. Although human cell-based models are already
revolutionizing fundamental and applied research, today, the entire organism cannot
be recapitulated in vitro. Although animal tests have the clear advantage of getting
an insight into systemic drug effects, risk will remain as seen in the almost fatal

Fig. 6 Dexamethasone penetration of RhS, human, and murine skin determined by LC-MS/MS
and STXM. Dexamethasone (DXM) in hydroxyethyl cellulose gel (600 μg/cm2 DXM, 70%
ethanol) was applied topically for up to 300 min. (a) Spatial analysis of DXM concentrations in
human skin and RhS (STXM) following 10 min of exposure. Tissue surface: 0 μm. (b) STXM
quantification shows the same skin penetration results as observed by LC-MS/MS for t � 100 min.
(n ¼ 1). (c) DXM slowly penetrates into human skin compared to murine skin and RhS. Grouped
bars in order from left to right: human skin (H), murine skin (M), reconstructed human skin (R).
Stacking order from top to bottom: epidermis (dark), dermis (light), heat separation water (white;
human and mouse). LC-MS/MS measurements, mean � SD, n ¼ 3, from Wanjiku et al. (2019)
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cytokine release in the first-in-human study of TGN 1112 (Costello et al. 2018). To
date, we consider final toxicology testing in animals prior to first-in-human studies
indispensable for those drug candidates which passed preclinical efficacy tests.

5.1 Preclinical Phase I

In Phase I, physicochemical parameters of drug candidates like molecular size and
hydro-/lipophilicity are the basis for in silico methods like molecular modeling, read-
across, and quantitative structure-activity relationship screening. This is exemplified
by the in silico identification of hit and lead structures for G-protein-coupled
receptors (Wacker et al. 2017) as well as by recent breakthroughs in the treatment
of HBV, HCV, and HIV as well as of cancer and severe eosinophilic asthma.

The vast knowledge of essential physicochemical features of drugs (Egner and
Hillig 2008) helps to predict their bioavailability and the drugability of the pharma-
cological target (Zuang et al. 2018). Progress in machine learning allows calculating
drug absorption, distribution, metabolism, and excretion very quickly (Tao et al.
2015).

Fig. 7 Assumed impact of qualification on the predictive power of preclinical research. iPS
induced pluripotent stem cells
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Subsequently, high-throughput screening provides a first insight into the profile
of drug effects. Moreover, biotransformation has to be assessed. The metabolism of
substances into carcinogenic intermediates would complicate the therapeutic use of
this drug candidate. Furthermore, the FDA has recently published a guidance
document to plan and evaluate studies on drug-drug interactions (FDA 2020).

Focusing on anticancer drugs, screening can be done in authenticated well-
characterized human tumor cell lines, but the genetic aberrations and epigenetic
modifications will increase with the number of subcultivations. The effects of the
tumor-specific extracellular matrix on tumor progression and drug efficacy cannot be
captured by monolayer cultures at all. Tumor cell lines are known to be more
sensitive to drug treatment than patients, as observed in the false-positive prediction
of effects for more than 90% of the test agents in large surveys (Palechor-Ceron et al.
2019).

If substances appear active without severe adverse effects in Phase I, the drug
candidate will pass to Phase II preclinical development.

5.2 Preclinical Phase II

The desired drug effects predicted by in silico approaches and high-throughput
screening need to be verified in qualified models that reflect the human disease.
Using the right targets, adequate biomarkers and endpoints will allow narrowing the
panel of drug candidates generated in Phase I. Models in Phase II include different
cell types, extracellular matrix, and tissue architecture to obtain a more precise effect
profile of the drug candidate. However, the complexity of models should increase
stepwise with models in Phase II still based on co-cultures of cell lines and/or iPS
cells (Zoschke et al. 2016; Wolff et al. 2019). Another example is the investigation in
the barrier function of skin models generated from the N-TERT keratinocyte cell
line, which corresponds to skin models generated from primary human cells (van
Drongelen et al. 2014a). Yet, the filaggrin knockdown did not alter stratum corneum
lipids in the cell-line-based skin models (van Drongelen et al. 2013), but in primary
cell-based, skin models (Vávrová et al. 2014). Slight deviations to the human patient
as well as the loss of patient heterogeneity will be tolerated in Phase II studies to
limit the numbers of repeats, necessary to observe effects with statistical signifi-
cance. Nevertheless, disease models in Phase II need to be qualified as outlined in
the qualification section.

5.3 Preclinical Phase III

Models in Phase III include different cell types, extracellular matrix, and tissue
architecture to obtain a more precise effect profile of the drug candidate. Testing in
Phase III needs to consider patient heterogeneity by using primary human cells as
well as pharmacodynamics and pharmacokinetics. Models and test protocols must be
qualified for predicting human responses.
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The lack of sufficient amounts of patient-derived cells is increasingly addressed
by the establishment of various biobanks (Simeon-Dubach et al. 2016; Palechor-
Ceron et al. 2019), but cannot satisfy the needs yet. Together with potential ethical
concerns in biopsy taking, e.g., in children, this limitation further supports testing
only the most promising drug candidates in on primary cell-based models in Phase
III. Current approaches to retransform iPS cells of various donors might facilitate the
use of patient-derived material, but the potential dedifferentiation as well as the fact
that all these cultures are juvenile (embryonic) tissues already showed some
limitations in aging research (Christensen et al. 2018).

The use of flow-through chambers in organ-on-a-chip cultures continuously
supplies fresh medium, removes waste, and induces sheer stress related to the
blood flow (Prantil-Baun et al. 2018). These dynamic culture conditions increase
the cultivation times to 28 days, potentially useful for evaluating the efficacy and
toxicity of several treatment cycles. Moreover, microfluidic platforms are suitable to
investigate cancer metastasis (Lin et al. 2020) as well as hematopoietic stem cells
(Sieber et al. 2018). The human-on-the-chip technology can connect several tissue
chambers to an in vivo organ system (Maschmeyer et al. 2015).

The major challenge in preclinical drug development will be the transition to the
patient-on-the-chip. Beyond efficacy testing, the consideration of the higher vulner-
ability of patients can provide a more relevant toxicological risk analysis, currently
lacking in preclinical toxicity testing (Menshykau 2017). Finally, the drug
candidates need to pass the standard tests of regulatory toxicology and safety
pharmacology.

In particular, Phase III studies must be conducted in accordance to clinical trial
protocols: blinding, randomization, and proper controls. Dosage should consider
both the effective concentrations as derived from Phase I and II studies as well as
pharmacokinetic calculations of Phase I.

6 The Price of Quality

The implementation of qualification and quality function deployment into model or
test method development involves higher costs in the beginning and might slow
down the time to the first publication. Moreover, these concepts require the avail-
ability of clinical data. Taking the development of models for skin aging as an
example, reliable clinical data are scarce (Hausmann et al. 2020). Preclinical models
for evaluating drug effects can hardly be better than the clinical knowledge of the
disease. Once human cell-based in vitro models have been qualified, their modular
design offers the opportunity to manipulate single parameters to better understand
the underlying mechanisms of the disease. Despite several strategies in nonclinical
research that already use parts of qualification, the final proof-of-concept is still to be
awaited. Therefore, we suggest developing and qualifying a disease model first and
perform a full validation subsequently. The best proof of our concept will be an
increased success rate of investigative new drugs in clinical trials that have been
evaluated before by qualified models in preclinical drug development.
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The time of wasting costs and time for poorly predictive models and test methods
in preclinical research should come to an end. The increased efforts in model
development will pay off, since publishing “just another disease model” will cost
more time and money than developing a model and test method that fulfill and have a
real impact on preclinical research.
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Abstract

Three-dimensional (3D) reconstructed human skin (RhS) models featuring fully-
differentiated characteristics of in vivo human epidermis have been known for
almost 40 years. In this chapter, the topic of commercial in vitro tissue models is
described, taking RhS models as an example. The need for highly standardised
models is evident for regulatory testing purposes, e.g. the classification and
labelling of chemicals and formulations, as well as for pharmacology-oriented
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research and drug development. Following the standardisation of RhS model
production by commercial developers, international validation studies and regu-
latory acceptance, 3D RhS models are now used globally in both industrial and
academic research laboratories. Industrial production of standardised 3D RhS
models involves GMP-compliant processes together with ISO 9001 documenta-
tion in order to control and ensure reproducibility and quality. Key biological,
functional, and performance features that are addressed in industrial production
include barrier properties, histological and immunohistochemical
characterisation, lipid profile characterisation, and tissue viability before and
after transport. An up-to-date survey of commercial RhS tissue producers and
the regulatory acceptance status of major safety, hazard, and efficacy assays
currently available to chemical and pharmaceutical industries is presented in
this chapter. Safety and ethical concerns related to the use of human tissue in
the industrial production of RhS models are discussed. Finally, innovative
approaches to the production of standardised 3D RhS models including
automated production, development of more representative 3D RhS models
using advanced additive manufacturing tools, microfluidics technologies, and
bioprinting are presented. The future outlook for 3D RhS models includes a
prevalence of high-quality models which will be fabricated by end-users rather
than commercial producers. These will overcome problems with shipments and
customs clearance that many users still face when buying RhS from overseas
commercial suppliers. Open-source technologies and commercial components for
“do-it-yourself” RhS will significantly change the skin model market as well as
regulatory acceptance of open-source models during the next decade. All of these
developments and improvements will together allow more widespread use of
in vitro RhS models for broader application as animal replacements in areas
ranging from industrial and regulatory toxicology and pharmacology, to drug
development and personalised medicine.

Keywords

3D-printing · Automated production · Quality controls · Reconstructed human
skin models · Reproducibility · Validation

1 Introduction

The technologies leading to the three-dimensional (3D) reconstructed skin models
have been known for almost 40 years. First models were produced by James
Rheinwald and Howard Green on a layer of inactivated mouse 3T3 fibroblasts and
were formed of 3–4 layers of keratinocytes (Green et al. 1979; O’Connor et al.
1981). Their primary use was to treat burned patients. One of the essential techno-
logical breakthroughs was a method developed by Pruniéras, where human
keratinocytes cultivated on a de-epidermised dermis are exposed to the air–liquid
interface. This method resulted in a fully-differentiated epidermis featuring
characteristics of human epidermis in vivo (Prunieras 1979; Pruniéras et al. 1983).
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Several other laboratories have reported a similar approach leading to the well-
differentiated three-dimensional epidermis and full-thickness skin that also included
dermal compartment (Augustin et al. 1995; Bell et al. 1991; Cannon et al. 1994;
Naughton et al. 1989; Regnier et al. 1981; Rosdy and Clauss 1990; Tinois et al.
1991).

Apart from the skin grafting use in burned patients, the first tissue models served
mainly for research interests. However, as the technology of tissue reconstruction
improved, skin models started to be used for broader purposes. These included safety
and efficacy testing of cosmetic ingredients and products, as well as hazard assess-
ment of chemicals and pesticides. The models also found their use in the pre-clinical
testing of novel drugs and topically applied pharmaceuticals (Groeber et al. 2011;
Hayden et al. 2015, 2016; MacNeil 2007; Marques et al. 2018). Following the
standardisation of tissue production by commercial developers, international valida-
tion studies and regulatory acceptance, 3D reconstructed human skin models are
used now globally in both industrial and academic research laboratories. They have
found usability in regulatory as well as non-regulatory testing purposes including:

– safety and efficacy of raw materials and formulations intentionally applied on the
skin (cosmetics, pharmaceutical formulations). This process includes an assess-
ment of skin irritation, inflammation, as well as genotoxicity, and phototoxicity,

– hazard and risk assessment of chemicals or formulations with accidental contact
with human skin (regulated, e.g. by REACH and other chemical legislations) and
help to address occupational safety,

– mechanistic information that can be utilised e.g. to determine whether a molecule
or compound can be altered to reduce irritation or toxicity without loss of
efficacy,

– prevention or enhancement of the penetration of a substance into the skin.

In medicine, pharmacology-oriented research and drug development, normal
(i.e. obtained from healthy donors) as well as disease skin models are considered
beneficial for the modelling and understanding of physiological and pathological
skin conditions. Their use has been described for:

– skin cancer, psoriasis, atopic dermatitis, scleroderma research,
– burn and non-burn injuries and wound healing,
– infectious skin diseases,
– drug reactions including the relevance of drug metabolism (e.g. phototoxicity or

skin rashes, adverse reactions to chemotherapy) as well as
– personalised therapies.

The need for highly standardised models, resembling closely healthy human
epidermis (reconstructed human epidermis, RhE) or skin (full-thickness
reconstructed human skin, RhS), is evident mainly for the regulatory testing
purposes, e.g. in the process of classification and labelling of chemicals and
formulations. Thanks to the extensive validation studies conducted in the past
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(Alépée et al. 2010; Desprez et al. 2015; Fentem et al. 1998; Kandárová et al.
2006a, b, 2009; Liebsch et al. 2000; Spielmann et al. 2007) two OECD Test
Guidelines (TGs) refer explicitly to the use of RhE for skin corrosion and irritation
testing, i.e. OECD TG 431 and OECD TG 439 (Kandarova and Liebsch 2017;
OECD 2004, 2009). These test guidelines also define the essential structural and
functional criteria for the tissue models applicable within these TGs. They set several
requirements for the tissue model producers as well as their users. These
requirements are met in the industrial type of production that follows the rules of
Good Manufacturing Practice (GMP), and also have other appropriate quality
systems in place. The use of RhE models has also been considered in pharmaceutical
regulations (ICH 2013; Kandarova and Liebsch 2017; Liebsch et al. 1999) and
medical devices biocompatibility testing procedures as ISO-10993:10 and
23 (De Jong et al. 2018; Kandarova et al. 2018). Recently, validation studies with
RhE and RhS have also been completed for genotoxicity testing using the Comet and
Micronucleus assays (Hu et al. 2009; Reisinger et al. 2018), allowing their use in a
tier-testing strategy. The methods have been accepted into the OECD test guideline
development programme (Pfuhler et al. 2020, 2021) (Table 1).

2 Industrial Production of the 3D Skin Models
in Standardised Conditions

GMP-compliant production together with ISO 9001 documentation practices are
highly useful tools in managing the production process from the initial acquisition of
the cells and raw materials, quality control throughout the production until the final
distribution to the end-user. The aim of the standardised mass production of 3D
tissue models is to ensure batch-to-batch reproducibility and correct prediction of
test substances under the standardised or validated protocols. The production of skin
models can be still manual (by trained lab technicians), but usually includes some

Table 1 Examples of industrial reconstructed 3D skin models adopted into the regulatory toxicity
testing and OECD test guidelines

Skin
model Producer Production sites

Regulatory acceptance
in guidelinesa

EpiDerm MatTek Life Sciences (formerly
MatTek Corporation)

USA and
Slovakia

OECD TG 431, 439
ISO-10993:23

EPISKIN EPISKIN Laboratories France, Brazil,
and China

OECD TG 431, 439

EpiCS Cell Systems, Germany OECD TG 431, 439

SkinEthic
RHE

EPISKIN Laboratories France, Brazil,
and China

OECD TG 431, 439
ISO-10993:23

LabCyte J-TEC Japan OECD TG 431

Skin+TM Sterlab France OECD TG 439
aUse of the reconstructed skin models is also described in the ICH S10 guideline on photosafety
assessment and ISO 10993 on biocompatibility testing of medical devices
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semi-automated processes or in a few cases already runs under the full automation.
In the past decade, there are also promising attempts to produce tissue models using
3D bioprinting technology, but standardisation and validation of these systems are
still underway. Regardless of the type of production, many parameters influence the
lot-to-lot reproducibility of reconstructed tissue models (Rispin et al. 2006). These
are not limited only to the production of skin tissues, but are more general, and
include in particular:

(a) Source of the skin cells and cell type
– Age of the donor (neonatal vs adult cells),
– Skin site (foreskin vs breast or abdominal skin from surgeries),
– Ethnic origin (Asian, Caucasian, African skin types),
– Fibroblasts source (papillary vs reticular dermis),
– Exposure of the donor to xenobiotics (resulting, e.g. into CYP activity

differences),
– Primary cells vs cell lines or induced Pluripotent Stem cells (iPSc),
– Passage number of the cells in the production.

(b) Quality and amounts of the supplements
– Choice of standard culture media,
– Choice and concentrations of growth factors and additional supplements as,

e.g. Ca2+, ascorbic acid, hydrocortisone, etc.,
– Inclusion/non-inclusion of the bovine sera in the production.

(c) Method of production
– Intervals of media exchanges (one-time exchange vs continuous or semi-

continuous flow),
– Air–liquid interphase (ALI) approach,
– Total time of the production (before and after ALI exposure).

(d) A substrate on which the skin model is produced
– Microporous membrane (for instance, polycarbonate or Teflon) and coating

of the membrane (for instance, collagen layer),
– Scaffold (biological origin or engineered) that mimics the underlying dermis

and can also be populated with fibroblasts,
– Type of the insert.

(e) Training of the production personnel
(f) Quality controls (QC) of the tissues in the production process and main QC of

the finalised tissue batch.

2.1 Barrier Properties

A critical feature of the tissue batch release is the ability of the skin model to identify
full spectra of responses (from very weak to very strong) to standard test materials
and the presence of an effective skin barrier able to resist the enhanced penetration of
the cytotoxic materials. A well-established test to address these concerns is the
assessment of the ET-50 value (i.e. Effective Time at which toxic material of a
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fixed concentration and volume reduces the tissue viability to 50% compared to
negative control) or IC-50 value (i.e. Inhibition Concentration of a toxic substance
that causes the 50% reduction in cell viability in the skin model). Usually, 1% Triton
is used for the ET-50 skin test and SDS in at least three concentrations is used in the
IC-50 test.

Every skin model producer has established typical ET-50 or IC-50 ranges into
which the standard production must fall (Rispin et al. 2006). For the validated tissue
models, these values are part of the OECD TGs 431 and 439, but the skin model
producer should provide these values also on the certificate of every tissue batch
released. The range is usually established as a mean of ET-50/IC-50 values over a
one-year production period and �2 standard deviations. It is important to note that
the ET-50/IC-50 values may not be directly comparable between the skin models
since these values are dependent on the dose/area ratio (i.e. the volume of the
material applied and the surface of the tissue model) and concentration of the control
material used for the test.

Recently, impedance spectroscopy has been proposed as a non-destructive com-
plementary method and a reliable parameter to measure the barrier properties of the
skin models (Groeber et al. 2015). This approach, however, is not yet implemented
into the OECD guidelines.

2.2 Histology and Immunohistochemistry

Histology, including immunohistochemistry of the reconstructed skin model, are of
critical importance and thus are assessed by the producers regularly or even for every
tissue batch. In the case of a new skin model development, a full immunohis-
tochemistry profile should be part of the evaluation process. Immunofluorescent
localisation of epidermal markers (such as, e.g. keratins 5, 10, and 14, involucrin,
loricrin, filaggrin, transglutaminase, etc.) should reveal normal epidermal differenti-
ation. In the case of full-thickness models (RhS), it is of importance to evaluate
dermal-epidermal junction markers (laminin 5, collagen-IV, collagen VII) and
dermal fibrillin 1 as well as procollagen I. Cell proliferation marker Ki67 is studied
as well. Once a model has been established, haematoxylin-eosin sections are suffi-
cient for the standard control (Bouwstra and Ponec 2006; Boelsma et al. 2000).

The epidermis model should have functional stratum basale and at least 2–3
supra-basal cell layers of the viable epidermis capable of cell metabolism. The other
layers typical for the native epidermis, i.e. stratum spinosum, stratum granulosum,
and stratum corneum, should be present. The thickness of the well-developed
epidermis model ranges 70–140 μm. The thickness of RhS models may differ
significantly, depending on the thickness of the reconstructed dermis or biological
scaffold used.

In some cases, the thickness of the stratum corneum (SC) may be seen as a
measure of good barrier properties of the model. However, only the combination of
the correct lipid profile and appropriate organisation of the lipids in the SC will
assure that the barrier will resist fast penetration of xenobiotics. Thus, a skin model

62 H. Kandarova and P. J. Hayden



with relatively thick SC may exhibit poor barrier properties if it lacks lipid classes
essential for the barrier formation (mostly ceramides). The highly resistant barrier
structure of the SC is determined by the chemical composition of protein-enriched
corneocytes and the surrounding extracellular lipids.

2.3 Lipid Profile Characterisation

The lipid profile of commercially available skin models has been described many
times in the literature (Boelsma et al. 2000; Kandarova 2006; Ponec et al. 2002). As
mentioned above, lipids in the SC are the critical component to the formation of the
barrier properties of the skin model. The establishment of an appropriate lipid profile
is mostly influenced by the supplements in the culture media, but can be also are
donor-specific (Simard et al. 2019; Bouwstra and Gooris 2010). Alteration of the
lipid profile will be immediately visible in the tests for barrier properties (especially
in the ET-50 test). Since the characterisation of the lipid profile is a significant time
and resource consuming activity, it is not recommended to conduct it as a standard
Quality Control (QC) test for every tissue batch. However, lipid profile
characterisation is essential in the case of new tissue model development or the
occurrence of significant production modifications (Ponec et al. 1997, 2000).

2.4 Tissue Viability and the Effects of Transport

A fourth critical parameter in the industrial tissue model production is tissue viability
before and after shipment of the product to the end-user. The skin model producer
must ensure that the tissue integrity and viability remain comparable to the tissue
viability assessed in the laboratory during the final QC. For that reason, the
producers also invest a considerable amount of time into the evaluation of the
shipping procedures from the manufacturer’s laboratory to the end-users, which
may be either local, national or international. Special attention is required for the
shipping of the products overseas (Kaluzhny et al. 2015). In these cases, the
packaging must ensure that the content will not be exposed to either high or low
temperatures and that it remains intact despite the multiple means of transport. For
that reason, commercial tissue model producers must conduct shipping studies
before the launch of the product to ensure the optimal conditions for the packaging,
transportation as well as the shelf-life of the product. These data should be provided
at request to the end-users.

3 Industrial Production of 3D Disease Tissue Models

Many skin disorders have been successfully modelled with the use of bioengineered
skin, for example, epidermolysis bullosa, psoriasis, skin ulcers or atopic dermatitis
(Semlin et al. 2011; Sarkiri et al. 2019; Roy et al. 2018; Jean et al. 2009). However,
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large-scale or even automated industrial productions of the above-mentioned 3D
skin disease models are not yet feasible. Currently available commercial 3D tissues
are usually too simple to mimic the complex skin diseases, the pathogenesis of which
results from complex interactions between multiple cellular or molecular
components and where even the skin microbiome may play an important role.

There are three main methods of generating skin disease models:

1. reconstruction using patient cells,
2. reconstruction by addition of substances to initially normal bioengineered skin,

acting as disease triggers
3. use of genetically modified cells to construct the skin model.

Because of practical drawbacks in the sourcing of skin from donors suffering
from various diseases, the production of disease models is mostly in the hands of
academic institutions and hospitals with access to the patients. The second and third
types of the 3D models are more frequently described in the scientific reports, but the
experimental approach varies from laboratory to laboratory. Despite the above
mentioned, some of the models of skin diseases are commercially available
(Table 2) and can be used in the pre-clinical testing of drug candidates.

Development of 3D human in vitro tissue models, capable of reliably and
reproducibly mimicking human diseases will be of great importance for the drug
development and also for personalised medicine. For many types of aggressive skin
cancers, but also, e.g. for psoriasis research, the existing animal models poorly
reflect the situation in patients.

Table 2 Examples of industrial reconstructed 3D skin models mimicking skin disease or photo-
ageing

Skin
model

Producer and
country Remark

Psoriasis MatTek Life
Sciences, USA

Non-transformed human epidermal keratinocytes (NHEK)
from neonatal foreskin and psoriatic human dermal
fibroblasts derived from neonatal foreskin and adult psoriatic
explants

Sterlab, France Human epidermal keratinocytes stimulated with psoriasis
inducing substances. Components are added to the media
during tissue reconstruction

Straticell, Belgium Two models available, psoriatic features are induced by
IL-17 and IL-22 exposure

Melanoma MatTek Life
Sciences, USA

The model consists of a human malignant melanoma cell
line (A375), NHEK and non-transformed, human dermal
fibroblasts

Atopic
dermatitis

Straticell, Belgium Atopic dermatitis pathology is induced by interleukins (IL-4,
IL-13, IL-25) exposure

Photo-
aged skin

EPISKIN
Laboratories,
France

NHEK seeded on the photo-aged fibroblasts
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On the other hand, even the best 3D skin model is still an isolated system and
therefore attempts to incorporate immune cells, and structures mimicking
vascularisation into the model/system are of crucial importance for future develop-
ment in this field (Marino et al. 2014). Standardisation of these models will be
significantly more challenging since, e.g. the functional vascularised models will
have to be developed and standardised together with microfluidic and perfusion
devices. This combined approach will, on the other hand, ensure adequate and
reproducible tissue perfusion.

4 Safety and Ethical Concerns in the Industrial Production
of Normal and Disease Models

There are three sources of cells commonly used for building of 3D skin models:
primary cells, cell lines, and stem cell-derived cells. Primary cells used in skin
constructs are isolated from human donor tissue (e.g. neonatal foreskin or breast
surgeries). As such, they present a biological risk and must undergo screening for the
absence of HIV, hepatitis viruses, Treponema pallidum, and other infectious
pathogens (Pedrosa et al. 2017). Particular attention is required for work with
samples generated from cells of diseased donors. Donor consent must be in place.
If the cells are adequately harvested from the target tissue at the desired health/
disease stage, they are the best candidates to recapitulate the specific tissue functions
and responses.

A severe problem in the industrial production is microbial contamination that
might be coming either from the donor cells or can be introduced in the laboratory by
improper culture techniques or by use of non-sterile components. Standard tissue
models are usually produced in the culture media containing antibiotics. However,
antibiotic concentration is typically low, and thus attention must be paid to
maintaining sterility, especially in the mass production of the models. The introduc-
tion of contamination into the semi-automated or automated production will result in
failure of the whole tissue lot and may also be traced to future production lots if the
source cannot be easily and quickly identified and eliminated.

Use of bovine sera or other animal-derived components in the keratinocyte
culture and in the production of the 3D models remains a challenge for many
developers. Animal-derived components provide a broad spectrum of
macromolecules, proteins, nutrients, hormones, and growth factors, that are essential
in the culture of keratinocytes or fibroblasts. The serum is, however, the most
frequent component leading to the high variability of the 3D cultures as its compo-
sition varies from batch to batch. In the last two decades, this knowledge together
with the ethical issues related to the use of foetal or new-born bovine sera led into a
number of chemically defined serum-free media formulations or even use of
human-derived sera in some of the assays. Still, not every laboratory or 3D model
developer may be willing to consider these alternatives that might be more expen-
sive, despite the possibilities for improvement in quality and reproducibility of the
models (Gstraunthaler 2003).
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5 Innovative Approaches to the Production
of the Standardised 3D Skin Models

There are two main areas for innovative approaches that are being introduced to the
standardised 3D skin models:

– the automation of the technological process that results in the reduction of manual
labour, shortening the production time and improvement of the reproducibility of
the production influenced by the human factor,

– development of more representative 3D models using advanced additive
manufacturing tools, microfluidics technologies, additive manufacturing, and
bioprinting.

Every producer of reconstructed human tissue models has at least partly
automated some of the production processes once the tissue demand increased.
For instance, cell counting, feeding procedures, media exchanges, and overall liquid
handling can be semi-automated or fully automated relatively easily. The introduc-
tion of automation, however, requires laboratory hardware adjustments as compared
to the standard manual production. This includes, for instance, change of the shape
or type of the trans-well inserts used to culture tissue models to allow for different
levels of media in the feeding trays. Other necessary steps are adjustments of the
incubators to accommodate tubing and pumping or even a purchase of robotic
production stations that can handle these steps in an aseptic and fully controlled
environment. Automation is also present on the site of the users of the 3D
technologies, and therefore the tissue model producers need to consider innovative
products that could be compatible with the automation in the users’ labs. This
advancement has led, for instance, into the development of the skin models in
24 or 96 well plates.

The fully automated production of 3D skin tissue models is rare but has been
described, e.g. by a Fraunhofer Institute Group. They generated a system called
“Skin Factory”, in which all the bioengineered skin fabrication steps, ranging from
sterilisation of the skin biopsies to the assembly of the cells in the 3D matrix, are
carried out by a robotic arm with no participation of humans. The same group has
managed to automatically generate human epidermis models with the use of a robot
(Sarkiri et al. 2019). Systems such as the “Skin Factory” are, however, costly and
require very complex knowledge that includes programming and mechanical engi-
neering. Industrial production would need several of these production units, which at
the current price, is not an affordable business concept. Moreover, despite the
automation of the production process, it remains time-consuming, as it includes
the same steps as the manual fabrication by laboratory technicians. The only benefit
seems to be the replacement of human hands by robots, which, however, brings
another drawback of this method since robots are barren of human adaptability.

A relatively novel technology that allows for faster semi-automated production of
the full skin models under standardised conditions is lyophilisation and
electrospinning (Yun et al. 2018; Lee et al. 2014; Powell and Boyce 2009). These
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two techniques are of importance for the creation of the scaffolds needed further to
generate RhS models. By lyophilisation, a collagen solution converts into a dry
porous collagen scaffold, and in electrospinning, collagen fibres are attracted
together forming porous collagen structures, too, which give cells space to grow,
proliferate, and migrate. The formation of the scaffolds is not manual; however, the
seeding of the cells is still manually conducted and hence tedious and not
standardised (Sarkiri et al. 2019). Full-thickness models build on the electrospun
dermal scaffolds have been recently described (Yun et al. 2018; Lee et al. 2014;
Powell and Boyce 2009). In these models, fibroblasts infiltrate into the structure and
synthesise extracellular matrix components which self-assemble in situ forming a
robust stromal matrix including the basement membrane, without the need for
animal-derived collagen typically used for the production of RhS (Derr et al.
2019; Marengo et al. 2019).

3D bioprinting is an emerging bioengineering technique that offers an excellent
opportunity to expand output and improve the precision of traditional tissue engi-
neering methods. There are several 3D bioprinting methods, each with its advantages
and limitations. The primary types of 3D bioprinting technologies include inkjet-
based, extrusion-based, and light-assisted printing. Each of these approaches has the
capability to both print scaffolds for cell seeding and encapsulate cells directly
within scaffolds to build tissue constructs. However, these platforms differ in various
aspects, including their printing mechanisms, resolution, time, and material choice.
Based on recent publications, extrusion-based printing seems to be the most used
technique followed by light-assisted and inkjet-based printing approaches (Ma et al.
2018).

There have been notable efforts to generate bioprinted skin equivalents in recent
years. Bioprinting companies like Organovo, CTIBiotech or Poites also teamed up
with, e.g. L’Oréal or BASF to advance the development of bioprinted skin via
research projects and collaboration (Russon 2015; Annon 2018; BASF 2019).
Bioprinting seems to be a novel, highly disruptive technology that may enable
standardised as well as customised production of the reconstructed tissue models
in the end-users laboratories. This technology may lead to the creation of highly
standardised “Open-source models” that by quality and variability will possibly be
same or even better than tissue models manufactured by the industry today.

6 Outlook

The industrial skin model reconstruction technology has achieved over the past
40 years, several important milestones. Multiple validation studies showed that:

– batch-to-batch reproducibility of the skin models, and
– precisely optimised methods addressing particular toxicology concerns,

are the keys to the implementation of the technology into the regulatory framework.
The understanding of the reproducibility importance led most of the manufacturers
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to several significant improvements in the technology process of model fabrication.
Improvements include minimising or complete elimination of the animal
components from the culture medium (bovine sera, collagen, etc.) and use and
semi-automated production.

The disruptive new technologies of the twenty-first century such as automation
and bioprinting, and advances in the material engineering will likely enable in the
near future large scale industrial production of at least partly immuno-competent
skin models for the use on microfluidic chips. Attempts to include reproducible
vascular networks and missing skin appendages in the reconstructed skin models are
already described in the literature. Thanks to the implementation of 3D bioprinting
technology in the testing laboratories, we will see in the following years more
frequently models, that will be fabricated by end-users rather than commercial
skin model producers. The quality of these tissues will be probably equal if not
better than the variety of skin models produced commercially in the past decade.
These advancements will overcome problems with shipments and customs clearance
that many countries still face when buying tissues from overseas. Open-source
technologies and commercial companies offering components for “do-it-yourself”
skin models will probably significantly change the skin model market as well as
regulatory acceptance of the “open-source models” during the next decade. All of
these developments and improvements will together allow more widespread use of
in vitro RhS models for broader application as animal replacements in areas ranging
from industrial and regulatory toxicology and pharmacology, to drug development
and personalised medicine.
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In Vitro Models of the Blood-Brain Barrier
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Abstract

Knowledge about the transport of active compounds across the blood-brain
barrier is of essential importance for drug development. Systemically applied
drugs for the central nervous system (CNS) must be able to cross the blood-brain
barrier in order to reach their target sites, whereas drugs that are supposed to act in
the periphery should not permeate the blood-brain barrier so that they do not
trigger any adverse central adverse effects. A number of approaches have been
pursued, and manifold in silico, in vitro, and in vivo animal models were
developed in order to be able to make a better prediction for humans about the
possible penetration of active substances into the CNS. In this particular case,
however, in vitro models play a special role, since the data basis for in silico
models is usually in need of improvement, and the predictive power of in vivo
animal models has to be checked for possible species differences. The blood-
brain barrier is a dynamic, highly selective barrier formed by brain capillary
endothelial cells. One of its main tasks is the maintenance of homeostasis in the
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CNS. The function of the barrier is regulated by cells of the microenvironment
and the shear stress mediated by the blood flow, which makes the model devel-
opment most complex. In general, one could follow the credo “as easy as
possible, as complex as necessary” for the usage of in vitro BBB models for
drug development. In addition to the description of the classical cell culture
models (transwell, hollow fiber) and guidance how to apply them, the latest
developments (spheroids, microfluidic models) will be introduced in this chapter,
as it is attempted to get more in vivo-like and to be applicable for high-throughput
usage with these models. Moreover, details about the development of models
based on stem cells derived from different sources with a special focus on human
induced pluripotent stem cells are presented.

Keywords

Astrocyte · hiPSC · Microphysiological systems · Neuron · Oligodendrocyte ·
Pericyte

1 The Blood-Brain Barrier

The blood-brain barrier (BBB) separates the periphery from the central nervous
system (CNS) and is responsible for maintaining homeostasis in the CNS. The BBB
can be considered a highly selective, active, bidirectional filtering system that strictly
regulates what enters the CNS and what leaves from the CNS into the blood. The
BBB protects against biological (pathogens), chemical (xenobiotic, toxins), and
physical damage (trauma). Over 95% of the compounds with targets within the
brain cannot enter the CNS (Pardridge 2007). In the case of biopharmaceutics,
almost none can permeate across the BBB in a reasonable, treatment relevant
amount. Therefore, there are great efforts to develop drugs that can overcome the
BBB, as there is an insufficient number and consequently a major need for effective
therapies for a myriad of CNS-related neurological, neurodegenerative, or
neurodevelopmental diseases. On the contrary, in drug development it is also very
important to know whether drugs addressing targets in the periphery can overcome
the BBB and trigger undesired adverse effects in the CNS.

The original concept of a barrier preventing the movement of substances between
blood and the brain stemmed from studies of dye injections made into the circula-
tion. A variety of vital dyes stained almost all animal organs, except for the brain and
spinal cord. Originally, these first findings were attributed to the German scientist
Ehrlich (1885), although more detailed surveys of the publications showed that the
corresponding staining experiments were carried out somewhat later and the idea of
a brain barrier was developed by scientists such as Goldmann, Lewandowski,
Bouffard, and Franke. The term “barrier” was probably first formulated by the
scientist Lina Stern around the year 1920 (Ribatti et al. 2006; Joó 1993; Ehrlich
1885; Saunders et al. 2014). Today we know that the sealing component and the
BBB per se are the brain capillary endothelial cells (BCECs) (Fig. 1a: Scheme of the
BBB). In contrast to peripheral endothelial cells, BCECs are characterized by a
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Fig. 1 Schematic cross-section of a brain capillary (a) showing the brain capillary endothelial cells
(ECs) with a neighbored pericyte (PC) sharing the same extracellular matrix surrounded by the
basal lamina and covered by astrocyte (AC) endfeet. Microglia (MG), oligodendrocytes (OD), and
neurons (N) in the brain side and erythrocytes (RBC ¼ red blood cells), platelets (P), macrophages
(MP), and neutrophils (NP) in the blood are close to the BCECs illustrating the role of the BBB as
interface between the periphery and the CNS. The enlarged picture on the right side illustrates the
different routes across the BBB including the paracellular pathway restricted by tight (occludin,
claudins) and adherens (cadherin) junctions and the transcellular pathways including passive
diffusion and the role of efflux (e.g., ABC-transporters such as P-gp or BCRP) as well as influx
mechanisms (RMT receptor-mediated transcytosis, AMT adsorption-mediated transcytosis, carriers
for, e.g., glucose or amino acids). Schemes of cell culture models are presented (b-f), in particular,
the transwell model with mono-cultured BCECs and triple-cultured BCECs plus pericytes on the
opposite of the membrane and astrocytes on the bottom of the well (b); the BBB spheroid model
with a core of CNS cells ensheathed with pericytes and covered with the outmost layer of BCECs
(c); a hydrogel model with CNS cells embedded in a hydrogel covered with a layer of BCECs on the
top (d); the hollow fiber model consisting of the cartridge with a bundle of capillaries, two
extracellular space (ECS) ports and two apical ports, a growth medium reservoir, a pulsatile
pump, and as a gas exchanger the silicone tubing (e); and a side and a front view of a microfluidic
models made of hydrogel cast with a capillary lumen, in which BCECs are cultured surrounded by
CNS cells within the hydrogel block (f) connected to a tubing and a pump system (not shown in the
figure)
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tightly sealed cell interspace, the absence of fenestrae, and reduced pinocytosis (Joó
1993). The BBB is not only a physical (paracellular) barrier, which makes the
passage of hydrophilic molecules more difficult, but also a transport and metabolic
barrier. BCECs possess an arsenal of ABC (ATP-binding cassette) and SLC (solute
carrier) transporter proteins, which together regulate the transport of substances
across the BBB. Drug development focused on the group of ABC transporters,
which were associated with multidrug resistance. In particular, P-glycoprotein
(P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2), and the group
of multidrug resistance-related proteins (MRPs, ABCCs, especially MRP1-5) were
intensively studied (Mahringer and Fricker 2016). These transporters recognize a
large number of drugs and prevent the transfer from the blood to the CNS under
energy consumption by pumping them back into the blood. A bit less than about
400 SLC transporters are known, including many orphan transporters of which the
function has not yet been elucidated (Suhy et al. 2017; Morris et al. 2017; Geier et al.
2013). Some of the SLC transporters are responsible for supplying the CNS with
nutrients. They transport endogenous substrates such as hormones, amino acids, or
hexoses such as glucose through the BCECs into the CNS and are therefore often
referred to as influx transporters. In this context, there are repeated efforts in the field
of drug delivery to use the SLC transporters (e.g., SLC7A5 ¼ LAT-1) as an influx
shuttle into the CNS or to block the ABC transporters and their efflux function to
overcome the BBB (Scalise et al. 2018; Huttunen et al. 2019; Breedveld et al. 2006;
Pavan et al. 2014; Abdullahi et al. 2017; Wagner et al. 2009).

In addition to the transport barrier, the BBB also represents a metabolic barrier.
BCECs have a significantly higher density of mitochondria compared to peripheral
endothelial cells in order to provide the high energy demand required for barrier
function. Many enzymes are involved in the barrier function (Kalaria and Hase 2019;
Oldendorf et al. 1977; El-Bacha and Minn 1999). These can convert active
substances into less effective metabolites or modify them for subsequent excretion.
The exact knowledge of the enzyme activities in the BCECs can, however, also be
used for prodrug strategies in drug delivery. As an additional barrier component, the
glycocalyx at the cell membrane of BCECs recently receives increasing interest
(Santa-Maria et al. 2019; Hempel et al. 2014). Basically, a distinction is made
between paracellular and transcellular transport routes across cell layers. The
paracellular route across the healthy BBB is normally closed by the tight junctions
(TJs). There are several ways to get transcellular through the BCECs. Substances
that have the appropriate lipophilicity and are not recognized by efflux pumps can
permeate by diffusion through the cell membranes and the cytosol. More hydrophilic
or very lipophilic substances can overcome the cell membranes with the support of
carrier systems (often SLC transporters), whereby the principles can be different
(e.g., mono- or co-transporters) (Abbott et al. 2006). Proteins or particulate drug
delivery systems (nanoparticles, liposomes) can be endocytosed by receptor-
mediated or adsorption-mediated-dependent mechanisms, whereby the cargo of the
membrane-derived vesicles can be released within the cell or also transferred to
coupled transporting vehicles or be transported directly to the other side of the cell
(Abbott et al. 2010).

78 W. Neuhaus



The barrier functions of the BCECs are strongly regulated by their microenviron-
ment. Both studies about BBB development and in vitro studies have shown that
astrocytes, pericytes, and neurons can modulate TJs and transporter systems. At the
same time, BCECs can secrete factors that, for example, alter the function of
astrocytes (Abbott et al. 2006). The term neuro/glia vascular units (NVUs) were
introduced with cope for this essential mutual regulation of functions (Fig. 1a:
Scheme of the NVU). It is currently hypothesized that astrocytes are important for
the induction of BBB properties (TJs and ABC transporter functions), whereas
pericytes are responsible for the suppression of peripheral endothelial cell properties
(e.g., reduced pinocytosis rate) (Daneman and Prat 2015). It can also be assumed that
microglia and oligodendrocytes play an important role in the communication within
the NVUs, although the current number of studies on the interaction between BCECs
and microglia or oligodendrocytes is rather low (Kimura et al. 2019).

Another BBB regulating factor is the shear stress exerted by blood flow on the
BCECs. It is assumed that the shear stress in the brain capillaries is 5 to 25 dyne/cm2

(Koutsiaris et al. 2007; Cucullo et al. 2013; Wang et al. 2019). Shear stress signifi-
cantly reduces proliferation, strengthens the paracellular barrier, increases the
expression of BBB relevant transporter proteins, and changes metabolism (Cucullo
et al. 2011). In addition, the morphology of BCECs is changed into a more elongated
form, and the lifespan of the cells is significantly prolonged (Neuhaus et al. 2006b;
Ott et al. 1995). Based on the barrier functions of the BBB, corresponding general
markers can be used for in vitro studies to verify and validate cell culture models.

For the estimation of the paracellular barrier of the BCEC layers in in vitro
models, the noninvasive measure of transendothelial electrical resistance (TEER)
is often determined. This value reflects the permeability of ions. The more ions can
permeate, the lower the measured TEER. In vivo data of frog and rat experiments
suggested average resistance values of the BBB between 1,500 and 2,000Ω cm2 as a
benchmark also applicable for in vitro models (Crone and Olesen 1982; Butt et al.
1990). When comparing these numbers with the values of in vitro models, however,
the differences in the applied TEER measurement methods (electrode setup, applied
voltage/current and frequency, data calculation formula) should be considered in a
very careful manner. Furthermore, it should not be overlooked that these values
represent an approximation to humans based on ultrastructural similarities of TJs in
animals and permeation data. As the author of this chapter, I would particularly
recommend the comparison of permeation data from paracellular markers as a
benchmark instead of relying on TEER data, especially when it comes to the
transport of drugs (which are significantly larger than ions).

For TJ characterization, the TJ-associated molecules zonula occludens-1 and
occludin are most often tested. Claudin-5 is considered BBB specific in the brain.
Important roles for the TJs at the BBB have also been postulated for claudin-1,
claudin-3, and claudin-12, although the function and their presence in the healthy
BBB have recently been clearly questioned when studying mouse models. A
problem in the analysis of claudins lies in the specificity of the antibodies, since
claudins have high sequence homologies, and therefore often cross-reactions occur
with claudin-detecting antibodies (Castro Dias et al. 2019a, b). For the assessment of
an in vitro BBB model, it is important to know about differences in claudin species-
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dependent expression patterns and intensities between, for example, mouse and
human (Berndt et al. 2019). In addition, both the modes of tissue sampling (e.g.,
laser microdissection of brain section versus isolation of capillaries) and cell culti-
vation alter claudin expression patterns. In principle, almost all of the currently
26 known claudins can be detected in the transcript of human samples. This raises
the question of how close an in vitro model could and should mimic the expression
patterns of the tissue samples. Currently, the focus is mainly on claudin-5 because it
is one of the most abundant claudins and its role for the paracellular barrier is proven
both in vivo and in vitro (Nitta et al. 2003; Neuhaus et al. 2018). For the transporters,
the expression and function of the ABC transporters P-gP, BCRP, and sometimes
MRPs and the SLC transporters Glut-1 and Lat-1 are used as benchmarks; species
differences in the relative expressions should be taken into account. For example, in
contrast to rodents, BCRP expression significantly exceeds P-gP expression in
human capillaries (Shawahna et al. 2011). The transferrin receptor, the insulin
receptor, and the LDL receptor-related proteins are regarded as important markers
for the BBB. BBB markers also include general endothelial cell markers such as von
Willebrand factor (vWF), CD31/PECAM-1, Tie-2 (TEK receptor tyrosine kinase),
VEGFR2 (vascular endothelial growth factor receptor 2; ¼ KDR (kinase insert
domain receptor)), and VE-cadherin (vascular endothelial cadherin or CDH5 as
member of the adherens junctions). These markers should be present to prove
endothelial identity especially when investigating endothelial-specific signaling
pathways.

Most drugs are developed to treat diseases. Therefore, it is of immense impor-
tance to note that the BBB is altered in many diseases. This can affect the physical,
the transport, as well as the metabolic barrier. These changes can clearly influence
the progression of the disease, and the return of the BBB to its healthy state can have
a positive effect on the disease progression. Since the BBB is the interface with the
largest surface between the periphery and the CNS, its important role is not
surprising, as the BBB also transmits the communication of changes in blood
circulation to the CNS and can influence the cells of the CNS such as astrocytes,
microglia, and neurons. Therefore, including the BBB in the examination of CNS
diseases is often helpful to improve the understanding of disease progression and to
develop new therapeutic strategies. Diseases, in which the BBB is altered, include
Alzheimer's disease (Zenaro et al. 2017; Montagne et al. 2017), Parkinson’s disease,
multiple sclerosis (Sweeney et al. 2018), brain tumors (Liebner et al. 2018), pain
(Lochhead et al. 2017), hypertension (Setiadi et al. 2018), epilepsy (Swissa et al.
2019), lysosomal storage diseases (Begley et al. 2008), cerebral malaria (Nishanth
and Schlüter 2019), stroke (Stamatovic et al. 2019), traumatic brain injury
(Shlosberg et al. 2010), amyotrophic lateral sclerosis (Kakaroubas et al. 2019), and
many more (Sweeney et al. 2018). There are also diseases in which mutations lead to
altered transporter function in BCECs, and these mutations at the BBB are causally
involved in these diseases (MCT8-deficiency, role of LAT-1 mutations in autism
(Vatine et al. 2017; Tărlungeanu et al. 2016)).

When selecting and using in vitro models for drug development, many factors
have to be taken into account that are dependent on the particular topic to be
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investigated, such as the following: relevance of the microenvironmental cell types,
type of transport route to be studied (relevance of high TEER/low paracellular
permeability, expression/localization/functionality of relevant transport proteins),
species differences, relevance of disease-specific alterations, relevance of shear
stress, source and availability of BCECs (relation between available cell number
and growth surface of the model), in vitro model-specific properties (scaffold
material – cell interactions (stiffness of the scaffold, pore sizes, porosity)), type of
basal lamina (extracellular matrix determines also BBB properties (Grifno et al.
2019; Zobel et al. 2016; Gaston et al. 2017), and the availability of human data as
benchmark. Human data are recommended to represent the benchmark, especially
functional parameters.

Based on these facts, the chapter is divided in such a way that first a general
overview of BBB in vitro models is given, followed by special parts on cell culture
models. This starts with the description of possible cell sources as they represent the
most important component of the cell culture models; next the variety of cell culture
model setups is described. A special focus is put on the latest developments with
stem cells and microfluidic models.

2 In Vitro Methods to Study the Blood-Brain Barrier

There are a large number of in vitro methods available that can be used in drug
development to estimate the permeability of a substance across the blood-brain
barrier. In addition to cell culture models, brain slices or isolated capillaries can be
used immediately after brain tissue collection, or plasma vesicles can be obtained by
several centrifugation steps to perform drug uptake or transport experiments (Loryan
et al. 2013; Krämer et al. 2001; Peterson and Hawkins 1998; Soldner et al. 2019).
There are also several cell-free methods, such as PAMPA (parallel artificial mem-
brane permeability assay) or IAM-HPLC (immobilized artificial membrane HPLC).
IAM-HPLC or similar techniques are used to estimate the interaction between the
substances and the lipophilic part of the cell membrane. IAM-HPLC involves the use
of special columns coated with lipophilic scaffolds, e.g., lecithin. The resulting
retention times of the active substances are a measure of the interaction with the
lipophilic membrane. It can be assumed that the higher the retention time, the
stronger the interaction with the membrane is and consequently a higher probability
exists that the substance could permeate through the cell layer by passive diffusion
(Alvarez et al. 1993).

PAMPA was developed as a cell-free, two-chamber test system for permeability
studies of small molecules. A multi-well plate is used as a compartment in which a
plate with inserts is inserted. The bottom of the inserts is made of a porous plastic
membrane over which a plastic cell defines the volume of the second chamber. The
plastic membrane is impregnated with lipids immediately before the experiment.
These lipid solutions can be quite simple, e.g., 2% lecithin dissolved in hexane or
can consist of special purified lipid membrane components isolated from tissue,
which can also be purchased. For the test itself, it is important that these lipids do not
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dry out and that the test solutions are applied relatively quickly. A classical test lasts
up to 6–24 h and is carried out with concentrations of 10–100 μM substance at RT or
37�C. The test solutions are usually added into the lower chamber, and the
permeated amount of substance after incubation is measured from the upper chamber
with HPLC/UPLC-UV or MS. The apparent permeability Papp [cm/min], the
permeability coefficient [cm/s], the mass balance [%], or the flux [%] can then be
calculated. Permeated quantities are related to the amounts applied in the donor
chamber, the volume of the acceptor (receiver) fluid, and the surface of the plastic
membrane. Particular attention must be paid to the mass balance to ensure that the
substance does not adsorb in the membrane or on the plastic too much and that the
resulting permeability coefficients are not influenced by this loss of compound in the
system. In addition, the so-called unstirred water layer can be a very relevant
influencing factor in the PAMPA experiments, which is why an additional stirrer
system is often offered in the commercially available models. Here small magnetic
stirrers are introduced into each individual well and stir up the unstirred water layer
so that it no longer represents a too significant barrier for substance permeation
(Kansy et al. 1998, 2004, Di et al. 2003; Avdeef and Tsinman 2006; Bicker et al.
2016). It should also be mentioned that these systems can only be used for estimating
the transport by passive diffusion. The data can be correlated with parameters
describing the lipophilicity of the molecules, such as the logP value. As the degree
of dissociation of certain molecules depends on the pH value, the use of logD values
at certain pH values is recommended. In order to investigate the influence of active
transport processes, vesicle systems expressing the according transporters within the
cell membrane can be used, or one can immediately switch to cellular systems. For
the vesicle-based test systems, cell membranes are prepared from various sources
and used in biochemical assays based either on measuring ATPase activity of ABC
transporters, the translocation of substrates into so-called inside-out vesicles, or the
occlusion of the nucleotide during the transport catalytic cycle of ABC transporters
(Glavinas et al. 2008). Several test setups are also commercially available. In the
special case of testing large molecules such as biopharmaceuticals, cell-based
systems are indispensable.

Brain slices could be very useful to measure the binding and uptake of drugs to
cells of the CNS. These data in connection with results from animal experiments
using the same species as for the brain slice tests and the determination of the free,
unbound fraction Fu, brain of the active substances in the CNS, after they have crossed
the blood-brain barrier, can lead to well-founded pharmacokinetic estimates (Kp u,u,

brain, unbound drug partitioning coefficients) of the truly free and potentially effec-
tive permeated amount of the substances in the CNS (Mihajlica et al. 2018).
Nevertheless, brain slices are not suitable for measuring the permeability of drugs.

Isolated brain capillaries represent a unique tool to simulate transport processes at
the blood-brain barrier. They must be used relatively quickly after the brain tissue
has been removed and the capillaries isolated, as the energy balance decreases fast,
which can be very relevant for the testing of active transport processes. In most
cases, fluorescent substrates are used for readout. In particular, the functional activity
of the transporters is recorded by fluorescence microscopy over time by applying the
fluorescent substrates from the outside and measuring the enrichment of the
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fluorescence in the lumen of the capillaries and then evaluated using image
processing software programs. These experiments can be combined with inhibitors,
signaling pathway modulators, or disease-specific stimuli (Hartz et al. 2004, 2018).
In addition, the capillaries can be used for molecular or protein-chemical
investigations to study underlying mechanisms by harvesting the capillaries and
subject to, e.g., Western blot analysis. Moreover, capillaries from disease animal
models or patients are used to better understand the BBB in health versus disease
(Soldner et al. 2019). Limitations of the applicability are that capillaries have to be
used very quickly after isolation as mentioned above, that the potential for high
throughput is rather low, and that the investigation of transport processes in particu-
lar currently depends on fluorescent substrates, since sampling from the lumen of the
capillaries is quite difficult. Interestingly, the possible contamination of the
capillaries on the outer walls with pericytes or astrocyte endfeet after isolation
previously regarded as a disadvantage (Cornford and Hyman 2005) is nowadays
discussed within the BBB scientific community as an advantage as it allows a more
complete NVU being active during the studies.

In order to study the individual cellular components of the NVU, cell culture
models were developed in which the BCECs were cultivated alone or spatially
separated from the other cells of the NVU. In addition, the systems should allow
for noninvasive characterization of BBB tightness properties by not changing the
cell layers’ integrity, the molecular investigation of the single cell types, and the
accessible sample volumes sufficient for subsequent drug analysis.

3 Cell Sources for Cell Culture Models

In recent decades, various cells have been tested and used for blood-brain barrier
models. A basic distinction is made between tumor cells, immortalized cell lines, and
primary cells. The latest development in this field is the use of stem cells to generate
brain-like endothelial cells. Since BCECs have very specific properties compared to
other biological barriers, it is assumed that only BCECs should be used for blood-
brain barrier models. Nevertheless, now and then barrier models based on epithelial
cells such as Caco-2 or MDCK have been used or are still referred to as blood-brain
barrier models even though they are not derived from the brain (Veszelka et al. 2018;
Avdeef et al. 2015). Since these epithelial cell models express certain ABC
transporters similarly to the blood-brain barrier or derivatives were generated that
even overexpress specific ABC transporters, they can be used as general barrier
models to test whether certain substances are possible substrates of transporters that
are relevant for the blood-brain barrier (Luo et al. 2002; Ozgür et al. 2018). These
data can be used to assess whether a substance can permeate across the blood-brain
barrier and be correlated to in vivo animal data, but it should not be neglected in
interpretation of results that the transporter composition at the blood-brain barrier is
different. This means that the tested transporters may occur at a different frequency
and other transporters relevant for the both efflux and influx of the test substance
may be present as well (Bao et al. 2019).
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Another controversial cell line is the human ECV304, of which apparently
different clones have been used in different laboratories. Genetic fingerprinting
results showed that certain (Drexler et al. 2002) but not all the clones are identical
to the bladder carcinoma cell line T24 (Takahashi et al. 1990; Suda et al. 2001;
Iartseva and Fedortseva 2008). Moreover, different ECV304 clones reacted differ-
ently to astrocyte stimuli. In one clone tight junction function was improved, in the
other not. Other ECV304 clones also showed significant differences in cytogenetic
investigations compared to cell line T24. In summary, the cell line ECV304 is still
used as blood-brain barrier model, especially in Asia. The genesis of this “spontane-
ously transformed” cell line still seems somewhat unclear; ECV304 can be useful as
a barrier model, but validation of the endothelial properties of the applied clone is
essential if ECV304 cells are intended to be used for the investigation of endothelial
signaling pathways or blood-brain barrier disease modeling, since doubts have been
raised about the endothelial origin of ECV304.

For drug development, a human, paracellular very tight cell model of the blood-
brain barrier with a similar transporter and enzyme configuration as in vivo is most
desirable. This model could be used as a benchmark tool and compared with animal
cell culture as well as animal models in order to estimate possible species
differences. Unfortunately, human primary brain endothelial cells build up low
paracellular tightness; the same is true for several human immortalized cell lines
(Eigenmann et al. 2013; Weksler et al. 2005; Megard et al. 2002; Zenker et al. 2003).
In addition, primary human cells are difficult to access in quantity required for drug
screenings. They are obtained from either autopsies or biopsies, for example, from
surgeries on tumors or epilepsy patients. For these reasons (accessibility, weaker
barrier), a number of animal models based on both immortalized cell lines and
primary cells have also been developed. Several cell lines from mice, rats, and
pigs with different barrier properties have been developed, validated, and also
used for drug transport studies, but none of them reach the paracellular barrier
properties of the models from primary cells from, e.g., cows, rats, or pigs (Deli
et al. 2005; Avdeef et al. 2015). Primary cells are not altered like immortalized cells;
monolayer cultures achieve significantly higher paracellular tightness and, above all,
maintain the signaling pathways closest to the in vivo animal models (Galla 2018;
Dehouck et al. 1990; Coisne et al. 2005; Cantrill et al. 2012; Abbott et al. 2012).
Nevertheless, it is important to note that primary cells are also subject to dedifferen-
tiation processes during isolation and culture and can change significantly (Pamies
et al. 2018). For these reasons, the idea was pursued to differentiate brain-like
capillary endothelial cells from human stem cells.

3.1 Criteria for Blood-Brain Barrier In Vitro Models in Drug
Development

Before assessing the success of the generation of BCECs from stem cells, one should
try to establish criteria for what properties a human blood-brain barrier model should
ideally have for use in drug development. Following criteria could be suggested:
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1. Sufficient paracellular tightness: Tight cell-cell contacts are a prerequisite to seal
the paracellular space in order to prevent hydrophilic molecules from paracellular
unregulated permeation and to ensure the likelihood of distinct polarization of
cells into apical and basolateral sites. This can be crucial for transporter proteins
to ensure a clearly directed transport, for example, ABCB1 should be mainly
apically (blood side) localized (Roberts et al. 2008). Functionally, paracellular
tightness is determined by the transendothelial electrical resistance (TEER) or by
the passage of paracellular markers. The comparison of absolute values of the
TEER is difficult, as the values from model to model depend on the measurement
setup (number of electrodes), the applied voltage, the distance between the
electrodes, the electrode material, the mathematical model behind the calculation,
and the practical handling of the devices by the single operators. In addition, very
few TEER data from the animal in vivo models have been published. The most
cited values are averaged values and range 1,500–2,000 Ohm cm2, but the data
basis for these averaged values was between a few hundreds to 6,000–-
8,000 Ohm cm2 (Crone and Olesen 1982; Butt et al. 1990). Moreover, these
values were obtained from electrodes located rather at the pial surface than within
the CNS parenchyma, where the BBB is located. Thus, it is also unclear which
in vivo values can really be used as a benchmark for the in vitro models. In
addition, there are no values available from human brains in vivo. Values for the
human BBB are generally assumed similar to the ones of the animals because of
the similar tight junction ultrastructure and morphology to the BBB of animals.
For in vitro models, several exponential relationships between TEER and the
permeability of paracellular markers were shown (Gaillard and de Boer 2000;
Neuhaus et al. 2006a). These relationships also reveal certain TEER threshold
values above which the permeability of paracellular markers does not change
significantly. It is assumed that further increases of TEER >1,000 Ohm cm2 are
no longer regarded as very relevant for drug transport studies and the proportion
of paracellular transport for the tested molecules (Mantle et al. 2016). Further-
more, a meaningful comparison of the absolute TEER values is complicated
because the values are influenced by the surface of the membrane on which the
cells grew, as well as from the porosity and the material, since this can also
influence the differentiation of the cells. Therefore, it is recommended to compare
the permeability of paracellular marker molecules of similar size. As paracellular
marker molecules, for example, fluorescent Lucifer yellow, fluorescein,
carboxyfluorescein, radiolabeled mannitol or FITC-dextran of different molecular
weights (4, 10, 20, 40, 70 kDa), or inulin can be used. Dextrans have rather
elongated molecular structures. In order to measure the permeability of globular
structures, proteins such as bovine serum albumin (BSA) or horseradish peroxi-
dase can be used as alternatives. Permeability coefficients of <10 μm/min of
smaller markers such as fluorescein or Lucifer yellow are considered sufficient as
quality benchmark for in vitro BBB models to be used for in vitro/in vivo
correlations of drug transport data (Lundquist et al. 2002; Culot et al. 2008;
Mysiorek et al. 2009). Nevertheless, permeability coefficients of small
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paracellular markers <2–3 μm/min are the requirement for in vivo similar, high-
tightness models.

2. In vivo-like structure of tight junctions: TJs can be investigated with methods of
ultrastructural research such as transmission electron microscopy using negative
contrast ratio or freeze fracture. Tight junction proteins are visualized by immu-
nofluorescence (IF) microscopy, and their localization is checked at the cell-cell
contacts. Although IF is used very often to show whether the proteins are
generally located at the cell-cell contacts or whether their localization has
changed, for example, due to treatment, the analysis of single tight junction
proteins could only be regarded as surrogate markers for the entire TJs. Mostly
claudin-5, occludin, and ZO-1 are investigated as BBB markers. In this context,
however, it must be remembered that it is still unclear how many and which TJ
proteins are really relevant for the human BBB (Berndt et al. 2019). Therefore, a
TJ structure check by transmission electron microscopy (TEM) is still a very
important and meaningful method to understand how similar the TJ structure in
the respective cell culture model is to the in vivo TJ structure in animal or human.

3. The presence and activity of efflux transport processes: Research has paid
particular attention to the ABC transporters at the BBB, because ABC
transporters have been held responsible for preventing a large proportion of
drugs from entering the CNS and thus from reaching their target structure.
P-glycoprotein (P-gp, ABCB1) and BCRP (ABCG2) are considered the most
important ones at the BBB. Schinkel et al. (1994) described the important role of
P-gp in mouse BBB using mdr1a knock-out mice exposed to neurotoxic pesticide
ivermectin. Eisenblätter et al. (2003) published the role of the brain multidrug
resistance protein (BMDP) – which is the porcine homologous to human BCRP –

at the porcine BBB with experiments with daunorubicin. In addition to P-gp and
BCRP, a number of multidrug resistance-related proteins (MRPs, ABCCs) are
present at the BBB, which also act as efflux transporters for various substrates
(Neuhaus and Noe 2009). The expression, but above all the localization and
function of these transporters, is regarded as a basic prerequisite and essential
feature for BBB cell culture models. In order to test the function, selective
substrates are used in uptake or transport experiments (e.g., calcein AM or
rhodamine 123 for P-gp, Bodipy-FL-prazosin for BCRP), and the changes in
uptake or transport rates are tested in the presence of specific inhibitors of the
transporters. In addition, the presence of a directed transport is often tested by
comparing the permeability coefficients from the transport direction apical/
basolateral versus basolateral/apical (a/b vs. b/a) or by performing so-called
equilibration studies in which the same concentration of the transporter substrate
is added apically and basolaterally, and it is observed over several hours whether
the substances accumulate in one or the other compartment. In regard to testing
ABC transporter functionality, it is also important to note that species differences
are known. Whereas P-gp was previously classified as the most important ABC
transporter at the BBB, proteomics data showed that significantly more BCRP
than P-gp was found in human brain capillaries (Shawahna et al. 2011).
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4. Presence and activity of influx transporters: A number of influx transporters
belonging to the group of solute carriers (SLC) are known at the BBB. Among
the most important are GLUT-1 (SLC2A1) and LAT-1 (SLC7A5). Both are
responsible for the provision of essential nutrients for the CNS. GLUT-1 is
classified as the most important glucose transporter of the BBB, whereas
LAT-1 is considered as one of the most important amino acid transporters
(Veszelka et al. 2018; Roberts et al. 2008). In addition, both are regulated in
diseases, and mutations of these two transporters at the BBB are seen in direct
causal relation to the etiology of diseases such as GLUT-1 deficiency syndrome
or autism spectrum disorder (Seidner et al. 1998; Cascio et al. 2019). In order to
test their function, uptake and transport experiments with specific substrates and
inhibitors are carried out. For drug delivery these SLC transporters are also used
targets for the transport of pro-drugs. In general, it is important to know both the
influx and the efflux mechanisms of a compound in order to finally be able to
estimate the net flux across the BBB for the concrete substance.

5. Significant large measurement window: In order to classify substances according
to their permeation behavior across the BBB, a large difference between slow-
and fast-permeating substances is helpful. Cell models with high paracellular
tightness can perform better, especially in the case of hydrophilic substances or
compounds that are substrates of active transporter proteins. If lipophilic
substances permeating only via passive, transcellular diffusion using the total
cellular surface, the paracellular tightness of the cell models is not such an
important parameter. In that case, also models with a low paracellular barrier
can be very useful for drug transport studies.

6. Robustness of the model: The changes of the model over a longer period of use
should be detectable. Data on the use of the model over several years would be
best in order to detect drifts in the performance of the models. For this purpose, in
routine applications, a set of standard substances should be studied at defined time
intervals, e.g., every second week or included into the routine runs of the
experiments. For normalizations – also in basic science – within an experiment
or between experiments, the use of internal standards, which are simultaneously
added to the substance to be investigated, is recommended. Substances that are
known to permeate mainly passively across the BBB, such as diazepam for the
transcellular route and paracellular markers such as Lucifer yellow, are particu-
larly suitable for this purpose.

7. Presence of endothelial marker molecules: The endothelial cells lining the inner
lumen of the brain capillaries are the main component of the BBB in mammals
and humans. Especially in studies for which intracellular signaling pathways play
a major role, such as toxicity testing or BBB relevant pathways in diseases, it is
essential that the cell culture models also have endothelial cell characteristics.
This concerns surface markers, receptors, as well as transcription factors. In this
context, it should not be forgotten that BCECs are specialized endothelial cells
that are not necessarily comparable one-to-one with peripheral endothelial cells.
For example, it has often been shown that BCECs have clearly different
transcriptomes compared to endothelial cells of peripheral organs such as the
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lung or heart (Huntley et al. 2014; Munji et al. 2019). Nevertheless, in addition to
BBB-specific markers (TJ proteins, ABC and SLC transporter proteins), general
endothelial cell markers found in the brain should also be found in BBB models
such as vWF, CD31, Tie-2, or VEGFRs. When assessing these markers, it should
also be borne in mind that these are molecules that are also regulated in certain
situations and that absolute numbers should not be used as a benchmark in
expression.

8. Inducibility of BBB markers by cells from the NVU: Since it is known that, e.g.,
astrocytes can upregulate several characteristics of the BBB (P-gp, TJ proteins,
TEER) or that co-culture with astrocytes in disease models is essential to damage
the barrier accordingly (Neuhaus et al. 2014), the influence of cells of the NVU on
relevant barrier molecules and function should be demonstrated for the cell
culture models. For this purpose, it can also be investigated whether the cells
used – as one would expect from endothelial cells – also carry out independent
tube formation in hydrogels or react to stimuli such as VEGF with increased
migration or barrier collapse.

With the help of these criteria, BCECs and their functionality can now be
assessed in a wide variety of models. Depending on the application, further criteria
can be added for the evaluation, such as suitability for long-term experiments, direct
access for microscopic analysis, or the possibility of using other noninvasive mea-
surement parameters such as TEER, sample volume size for subsequent analysis,
complexity, need for direct cell-cell contact between different cell types, separation
of cell types into different compartments for subsequent analysis of the individual
cell types, the need of hydrogels with adjustable stiffness, or the implementation of
shear stress.

3.2 Stem Cell-Derived Brain Capillary Endothelial Cells

The development of protocols for the production of BCECs derived from stem cells
was a milestone for BBB research, as high-tightness BCECs of human origin were
available for the first time. With the publication of Lippmann et al. (2012), the first
protocol for the differentiation of human-induced pluripotent stem cells (hiPSCs)
into BCECs was presented, and the starting signal for further protocol developments
was fired. In addition to hiPSC, protocols have also been developed that have
successfully used other stem cell types (e.g., from cord blood) to develop relevant
tight human BBB in vitro models (Cecchelli et al. 2014). However, the hiPSC might
be the most interesting possibility at the moment, since they can also be
differentiated into other cell types of the NVU due to their pluripotency, and thus
isogenic models with several cell types can be produced, which all originate from
one and the same hiPSC clone. This is particularly advantageous for disease models
and personalized models. On the other hand, the availability of hiPSC is much
higher; they are easily expandable, available via hiPSC cell banks, or
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reprogrammable from different cell types (skin fibroblasts, epithelial cells isolated
from urine samples, B cells from blood, etc.) (Neuhaus 2017).

In the meantime, several protocols for the differentiation of hiPSC into brain-like
endothelial cells have been published. Basically, two general approaches have been
taken so far. In the first strategy, the hiPSC cells are differentiated into a co-culture of
endothelial cells and neural cells, and in further steps, the endothelial cells are
separated from the neural cells and specified to brain-like endothelial cells. This
co-cultivation should reflect the joint growth of these cell types during BBB devel-
opment (Appelt-Menzel et al. 2017; Lippmann et al. 2012). In the second strategy,
the hiPSC are cultured towards mesodermal precursors and further to endothelial
progenitors, which in turn are specialized to brain-like endothelial cells. In recent
years, improvements or adaptations of these protocols were published, with the
current developments mainly aiming at simplifying and improving the robustness
of the protocols. This includes above all the use of defined media and media
additives as well as the search for cheaper alternatives compared to the rather
expensive media for stem cell culture. The majority of the protocols lead to highly
tight, human brain-like endothelial cells with high TEER values of several thousands
ofΩ cm2, whereas the specialization to brain-like endothelial cells could be achieved
by co-cultivation with astrocytes, pericytes, and/or neuronal stem cells or by the
addition of retinoic acid (RA) (Lippmann et al. 2012, 2014; Stebbins et al. 2018;
Neal et al. 2019). The addition of RA is interesting from two aspects. First, it is
known that RA is secreted by astrocytes; thus by adding RA, a part of the astrocyte
secretome is reproduced (Mizee et al. 2014). Second, RA can act as anti-
inflammatory via a number of activated nuclear receptors, which has to be consid-
ered in inflammation or infection studies and limits the possible applicability of the
protocols or has to lead to protocol adaptations (Kim et al. 2017). For the analysis of
tight junctions, claudin-5, occludin, and ZO-1 are analyzed as surrogate markers in
most protocols. Only rarely the TJ structure was examined by TEM and the freeze-
fracture technique (Appelt-Menzel et al. 2017, Lippmann et al. 2012). Several times
it could be shown that not the total expression of the TJ proteins but the localization
was regulated and was decisive for higher TEER values (Canfield et al. 2017). It is
also interesting that mostly only claudin-5, occludin, and ZO-1 are investigated,
although studies with human brain capillaries as well as with brain-like endothelial
cells differentiated from hiPSCs clearly showed that besides claudin-5, at least at the
mRNA level, considerably more claudins such as claudin-11 or claudin-25 occur in
the human BBB (Berndt et al. 2019). RNA-seq data suggested that there may be
many more claudins in the human BBB and hiPSC-derived brain-like endothelial
cells (Lim et al. 2017; Vatine et al. 2017; Delsing et al. 2018). With regard to
transporter functionality, the focus was set on P-gp and BCRP, which have been
detected several times. In addition, a high agreement was found in the expression of
TJ, ABC, and SLC transporters between human primary brain endothelial cells and
the hiPSC-BCECs (Qian et al. 2017). Furthermore, a very high dynamic range
between the permeability coefficients of the slowest and the fastest substances of
up to 60–150 times could be detected in the hiPSC-BCEC models (Appelt-Menzel
et al. 2017; Lippmann et al. 2012). In this context, the importance of blank value
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studies without cells for the transport studies must be pointed out here, since the
inclusion of blank values could lead to a significantly increased dynamic measure-
ment window for drug transport studies (Appelt-Menzel et al. 2017). The hiPSC
co-culture differentiation protocol and slight adaptions based on Lippmann et al.
(2012) were already used to study the influence of the extracellular matrix including
electrospun fibers (Patel and Alahmad 2016; Qi et al. 2018; Al-Ahmad et al. 2019);
the co-culture with hiPSC-differentiated astrocytes mimicking different brain
regions or even isogenic hiPSC-derived pericytes, astrocytes, or neurons (Delsing
et al. 2019; Canfield et al. 2019; Bradley et al. 2019); effects of drugs or drug
transport (Ohshima et al. 2019; Clark et al. 2016; Albekairi et al. 2019); toxicity
(Patel et al. 2018; Martinez and Al-Ahmad 2019); sex differences (Patel et al. 2017);
oxygen/glucose deprivation as model for cerebral ischemia (Page et al. 2016, 2019);
or infections (Alimonti et al. 2018; Kim et al. 2019; Martins Gomes et al. 2019).

However, one of the biggest weaknesses of the hiPSC-based models at the
moment is their minor robustness and lab-to-lab reproducibility; therefore several
protocol developments focus on the simplification of protocols and the exact defini-
tion of media and media supplements. In general, reproducibility of hiPSC cultiva-
tion is very much dependent on the experience of the laboratory staff and who takes
which steps and how. It can already make clear differences for the differentiation
success how the hiPSCs are subcultured (detachment solutions, duration of detach-
ment, steps of centrifugation, intensity of homogenization, etc.) and with which cell
number the differentiations are started. These steps and conditions need to be
optimized for every single cell line. Therefore, the comparability of protocols from
laboratory to laboratory is still a big challenge, and the comparison of data is difficult
due to so many relevant parameters that the importance of internal controls is
immense. In the protocol development of the co-cultivation approach, for example,
E8 Medium was tried as an alternative to mTeSRTM1 medium for the hiPSC on
Matrigel for the first 2–3 days of cultivation. For the unconditioned medium
(UM) for the next 6 days for differentiation initiation, E6 was used, and B-27, N2,
and ITS were tested instead of platelet-poor plasma-derived bovine serum (PDS),
which was added in the endothelial cell-specific medium SFM for the next 2 days to
suppress differentiation of pericytes (Hollmann et al. 2017; Neal et al. 2019). Other
interesting approaches were to use puromycin to inhibit pericyte growth or to adjust
osmolality after endothelial cell specification to generate a slightly longer and more
stable barrier (Roux et al. 2019; Ribecco-Lutkiewicz et al. 2018). In the protocols
that differentiate hiPSC as a monoculture into brain-like endothelial cells, the
mesodermal direction was determined by adding CHIR99021, a glycogen synthase
kinase 3b (GSK-3b) inhibitor and canonical Wnt pathway agonist, or with a mixture
of BMP4 (bone morphogenetic protein 4), bFGF, SB431542 (TGF inhibitor), and
LY294002 (PI3K pathway inhibitor) in E6 medium (Qian et al. 2017; Cader and
Chintawar 2019; Grifno et al. 2019). After CHIR99021 induction, the cells are
cultured with a medium based on DMEM/F12 with MEM-NEAA, Glutamax, and
mercaptoethanol plus B-27 as serum replacement and differentiated into brain-like
endothelial cells in a human endothelial serum-free medium (hESFM) with bFGF,
RA, and B-27. In the case of mesoderm induction with BMP4, bFGF, SB431542,
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and LY294002, after reduction of BMP4 and SB431542, and an intermediate step
with human endothelial serum-free medium with VEGFa and forskolin, the cells are
fully differentiated in the endothelial cell medium EGM-2 with RA, bFGF, rock
inhibitor, Wnt7a, Shh, and Ang1. All these protocols lead not only to high TEER
values and expression of TJ proteins but also to the expression of endothelial
markers (CD31, vWF, VE-cadherin Tie-2, or VEGFR2) and the ability of VEGFa
to enhance tube formation in Matrigel or the uptake of Ac-LDL, another endothelial
characteristic. Nevertheless, the endothelial nature of hiPSC brain-like endothelial
cells is questioned, and there is a discussion about their neuroectodermal epithelial
properties. When comparing the media UM and E6 used for differentiation at the
beginning, it is noticeable that both are based on DMEM/F12 but have different
additives (20% knock-out serum replacement, MEM-NEAA, β-mercaptoethanol
versus ascorbic acid 2-phosphate sesquimagnesium salt hydrate, sodium selenite,
sodium bicarbonate, insulin, or holo-transferrin). Anyhow, interestingly the same E6
medium was also used to differentiate hiPSCs into neuroepithelial cells (Pax6,
N-cadherin, Otx2, Sox-2 positive; E-cadherin reduced, SOX-17 negative) after
4–6 days (Lippmann et al. 2014a, b). In this context, authors of a recently online
accessible but not yet-peer reviewed report claimed that the use of the described
protocols developed by Lippmann et al. could also lead to the expression of epithe-
lial markers such as EpCAM and that a number of essential endothelial markers and
transcription factors were missing (Lu et al. 2019). In addition, transfection with
some of the missing transfection factors should lead to a more endothelial phenotype
(Lu et al. 2019). Two further protocols, some of them with a much longer cultivation
duration, which focused more on the differentiation towards the endothelial pheno-
type with the help of precisely defined media and additives, led to significantly
leakier cell layers and, despite their great potential, require further improvement with
regard to the development of BBB properties (Delsing et al. 2018; Praça et al. 2019).

In summary, some protocols are available that lead to very tight cell barriers with
endothelial and BBB properties. These models are excellent as human barrier
models to test drug transport across the human BBB and to use personalized and
mutation-based disease models of the BBB. Nevertheless, the coming years will
have to bring improvements in order to increase the reproducibility and robustness of
the models so that they can also be used for industrial, high-throughput applications.
Currently, the protocols are still too dependent on the individual laboratories, the
single hiPSC clones, and their cultivation (different hiPSC quality control systems,
too many minor differences in the protocols and the handling influence the differen-
tiation results); moreover the human BBB has to be understood and characterized in
a more comprehensive manner in order to establish a real benchmark for protocol
development.
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4 Cell Culture Models

The appropriate selection of the cells used in the BBB models is decisive for the
success and the significance of the results obtained. The second decisive parameter is
the model design. Basically, one can distinguish between the following model types:
transwell model, BBB spheroids, hydrogel models, hollow fiber model, and
microfluidic models. Each model has advantages and disadvantages, and dependent
on the application question, these have to be weighed against each other (Table 1).

The transwell model is the most widely used model (Fig. 1b). So-called inserts are
inserted in wells of a well plate by standing on the bottom or hanging on the rims of
the wells. The inserts have a porous membrane at the bottom, which is attached to a
circular plastic wall leading upwards. The insertion of these inserts into wells leads
to a two-compartment system, the space inside the circular plastic wall at the top and
the space of the well at the bottom. These compartments are connected via the porous
membrane at the bottom of the insert and can thus communicate with each other. In
the case of BBB modeling, the BCECs are usually grown on the membrane inside
the insert. In addition, other cell types such as astrocytes or pericytes can be grown
either on the bottom of the wells or on the opposite side of the porous membrane. If
the cells are to adhere to the back of the membrane, the insert is usually first turned
upside down; the cells are distributed over the membrane in a sufficiently large drop

Table 1 Classification of BBB cell culture models using parameters for their suitability for
different applications, characterization methods, and drug transport studies

Parameter Transwell
BBB-
Spheroids

Hydrogel
model

Dynamic
hollow-
fiber model

Microfluidic
modelsa

Complexity + ++ ++ +++ +++

Shear stress -b - - +++ ++

Direct cell-cell contact +/- +++ ++ +/- +

Longevity - + +/- +++ ++

Direct microscopical
assessment

+++ + ++ - +++

TEER +++ - - +++ +++/-

Permeability studies +++ + ++ +++ +++

Sample volume for
drug analysis

+++ + ++ +++ +

Growth surface area to
lyse cells for molecular
analysis

+++ - +++ +++ +

Separation of cell types
for molecular analysis

+++ ~ ++ +++ ~

- very difficult or not applicable, ~ difficult, dependent on the specific model, + limited, ++ well
applicable, +++ very well applicable
aSince various microfluidic models have been developed, the parameter assessment can only be
understood as an overall average estimate
bTranswell models could be used with millifluidic pump systems
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of culture medium and after about 2–4 h turned upside down again for subsequent
cultivation or seeding of the BCECs on the other side. Depending on the cells used,
the membrane is often coated with protein solutions before seeding. Typical for
BCECs would be fibronectin or collagen IV (sometimes Matrigel); for astrocytes and
pericytes, poly-L-lysine is often used. Inserts can be obtained from different
manufacturers in different formats (6-well, 12-well, 24-well, 96-well), materials
(PVDF, PC, PET, etc.), pore sizes (0.4, 1, 3 and 8 μm), and porosities. These
parameters can have a significant influence on the results of drug testing by leading
to different barrier properties of the cell culture models on the one hand and having a
direct influence on the drug test on the other hand. For example, lower pore sizes
tend to lead to tighter barriers but also reduce the net flux of active substances.
Different well formats have different ratios between total medium volumes and
growth surface, which can influence the cell cultivation and differentiation, since
in absolute terms, less or more nutrients are available per surface area. Depending on
the properties of the substances to be tested, the material of the membranes can also
be decisive. For example, lipophilic substances may adsorb the substance in the
plastic membrane (or the plastic of the well or the insert walls), which leads to a
significantly lower recovery rate and makes the interpretation of the experiment
more difficult. In this case, more hydrophilic membranes can be used, or proteins
such as BSA in the receiver compartment can be used as substance scavengers. In
order to generally test the influence of the plastic membrane of the inserts, blank
values should always be performed without cells, both to optimize sampling times,
to test the recovery rate, and to include the additional barrier effects of the plastic
membrane in the results. Since the plastic membrane is significantly thicker (about
10 μm) than the extracellular matrix in vivo (20–80 nm), it should be measured as an
additional barrier for drug transport and included in the calculations.

Two general methods for transport experiments have become established. On the
one hand, the samples can be taken at certain times. The volume taken should be
replaced by fresh transport medium after each sampling step in order not to generate
hydrostatic pressure as additional driving force. With this technique, the substances
accumulate in the receiver compartment over time, and thus the concentration
gradient of the substance to be tested is reduced. In order to maintain the concentra-
tion gradient over the time of the experiment, the inserts can alternatively be
transferred into a new well, which has already been filled with fresh transport
medium, at the respective sampling time. In order to minimize the unstirred water
layer, the well plates can also be moved on the shaker during the experiment. If
experiments are carried out in co-culture, the individual cell types must be adapted to
each other for the cultivation time (different cell culture media for each cell type or
one medium suitable for all cell types; increased nutrient consumption that can
negatively influence the barrier formation). Alternatively, the individual cell types
can be grown in parallel and assembled together only 1–2 days or on the test day.
Since the growth medium is not pumped in the transwell model, it is often referred to
as a static model.

In order to incorporate the influence of shear stress, so-called dynamic, hollow
fiber-based models or microfluidic models were developed. Alternatively, transwell
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models could generally be used in so-called millifluidic models (e.g., from company
Kirkstall) for which data from BBB models are not yet available. The advantages
would be not only the application of shear stress but also nutrient supply from a
medium reservoir which ensures constant concentrations of the nutrients during
cultivation. In order to guarantee the missing cell-cell contact in transwell models,
models with cells from the NVU in hydrogel-based models or BBB spheroids were
developed.

BBB spheroids represent a very novel type of BBB in vitro models (Nzou et al.
2018; Bergmann et al. 2018; Cho et al. 2017; Song et al. 2019). Since the current
protocols for the cultivation of brain organoids do not lead to a developed brain
vasculature network (Ham et al. 2020), BBB spheroids have been established as an
alternative. A core of CNS cells such as astrocytes, pericytes, and/or neurons is
surrounded by a layer of BCECs. The pericytes are essential for the self-assembly
and correct arrangement of the brain capillary endothelial cells (Fig. 1c). The
average diameter of the BBB spheroids is 200–400 μm. Thus, the spheroids for
fluorescence studies can be analyzed as a whole mount and do not have to be cut
beforehand, which is a distinct advantage for high-throughput applications. The
main disadvantages of BBB spheroids are that the analyses are currently based on
fluorescence recordings and a significant amount of spheroids have to be pooled both
for molecular biological measurements and for the detection of non-fluorescent
substances. The BBB spheroids can be produced with cell lines as well as with
hiPSC-derived brain-like endothelial cells and thus could be developed to
alternatives to conventional disease models.

For BBB models using hydrogels, there are two basic approaches. The hydrogel
can be used as scaffold for CNS cells on which the BCECs grow as monolayers
(Sreekanthreddy et al. 2015), or the BCECs are introduced into the hydrogels
together with the CNS cells to form 3D capillary structures (Al Ahmad et al.
2011). The second variant is not so useful for drug testing, as complex imaging
and evaluation procedures are necessary to measure the differences in the capillary
structure (number, length and diameter of capillaries, number of branches, etc.). The
first variant is much more exciting for drug testing, because it is possible to carry out
permeability studies and it may also be possible to determine which cell type in the
hydrogel prefers to interact or uptake the test compounds (Fig. 1d, Sreekanthreddy
et al. 2015). This can be of particular interest for biopharmaceuticals such as
antibodies, nanoparticles, or liposomes. However, small molecules must be
extracted from the hydrogel for analysis after the experiment. In addition to the
possible cell-cell contact of cells in the hydrogel with the BCECs on top of the
hydrogel, the stiffness of the hydrogel is a highly relevant parameter for the
formation of barrier properties, as this can also have a positive effect on the
localization of TJ proteins (Grifno et al. 2019). In addition to static models,
hydrogels are also used in microfluidic models (Faley et al. 2019). In order to
incorporate the influence of shear stress in BBB models, hollow fiber models in
the millifluidic scale or microfluidic models were developed.

Hollow fiber models consist of a bundle of capillaries consisting of porous
ultrafiltration membranes (Fig. 1e). These capillaries are encased in a cylindrical
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or ashlar-shaped, transparent housing (made of e.g., polycarbonate), which creates a
two-chamber system consisting of the lumen of the capillaries and the outer space
around the capillaries, the so-called extracapillary space (ECS). The ends on both
sides of the capillaries are fixed in a resin, in that way that the medium coming from
the reservoir bottle is only pumped into the capillaries. The capillary cartridges are
connected via Luer-lock connections to tubes that close the circuit to the medium
reservoir bottle and the pump system. The tubings are often made of silicone, which
allows the gas exchange (oxygen vs. CO2). The pump system enables pulsatile flow
with an adjustable flow rate and beat rates simulating the human circulation. By
setting the pump rate, the applied shear stress is determined, which can be adjusted in
these models in the in vivo relevant range of 5 dyne/cm2. The capillary cartridges are
available from different manufacturers with the corresponding pump systems
(FiberCell, Flocel, Cellmax). Depending on the number of cells available, modules
with different numbers of capillaries (4–320) and thus different growth surface areas
can be selected. Access via connected Luer-lock syringes is available both before
and after the capillaries, as well as at two positions of the ECS, allowing direct access
to the two compartments to introduce cells or substances and also to draw samples. A
disadvantage of these models is that light microscopic control of cell growth and
adherence is not possible. Integrated TEER measurement systems or transport
studies with paracellular markers are used to monitor the formation of the cellular
barrier. In addition, the recovery rates of cell numbers and the consumption of
glucose and the production of lactic acid are measured to determine cultivation
success and the metabolic state. In addition to the TEER electrodes, flow and
pressure sensors could be installed (Cucullo et al. 2013). The hollow fiber models
are highly sophisticated and not intended for high-throughput applications. The
system can be used for long-term experiments over several months (Neuhaus et al.
2006b). Due to the shear stress and the constant nutrient supply, the expression of TJ
and transporter proteins is induced, and the proportion of cytoskeletal proteins
significantly increased. The first data of the Damir Janigro’s group for BBB hollow
fiber models were published in 1996 (Stanness et al. 1996); in the meantime, the
models were used for a number of questions including some disease models with co-
and multi-cultures (Stanness et al. 1997, 1999; Pekny et al. 1998; Cucullo et al.
2002, 2008; Krizanac-Bengez et al. 2006; Santaguida et al. 2006). For transport
studies, the substances can be introduced into the reservoir, and during the study,
they can be pumped in a circle at constant concentration over a longer period of time
simulating an infusion or injected directly in front of the capillaries via a syringe, and
the samples are taken while the substance bolus is pumped through the lumen of the
capillaries. Mathematical models were developed for both test designs to calculate
the permeability coefficients (Neuhaus et al. 2006b; Stanness et al. 1997). Lipophilic
substances can be partially adsorbed by the silicone tubes. This has to be considered
at least with the help of blank value tests without cells during infusion transport tests,
or less adsorbing tube materials are used. In summary, the hollow fiber models are
highly sophisticated models, which lead to more in vivo similar BBB cell layers by
the shear stress and are applicable for complex long-term disease models. Further-
more, the volumes of the compartments are large enough to draw sufficient sample
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volumes for subsequent analyses. However, they are not suitable for high-
throughput analysis and live imaging (latest models include microscopic fields of
view). Microfluidic models were developed to improve these points among others.

The number and variety of microfluidic models have been increasing in the last
years tremendously. In general, the “BBB-on-a-chip” models were classified into
four different categories: (1) 2D microfluidic models, (2) hybrid microfluidic
models, (3) 3D templated models, or (4) self-assembly models (DeStefano et al.
2018). Permeable membranes are incorporated in 2D microfluidic models similar to
conventional transwell inserts separating two compartments. These models could be
applied for, e.g., drug screening. Some of them have included TEER measurement
devices (Booth and Kim 2012; Brown et al. 2015; Yeon et al. 2012;
Prabhakarpandian et al. 2013). Hybrid microfluidic models are more complex but
have no cylindrical geometry and thus are not able to respond to vasodilation/
constriction (Adriani et al. 2017; Wevers et al. 2018). 3D templating approaches
form single cylindrical microvessels embedded within a hydrogel that can be
integrated into a flow system and used for live-cell imaging (Cho et al. 2015;
Herland et al. 2016; Katt et al. 2018; Linville et al. 2019). Lastly, self-assembly
approaches are developed. They exploit the intrinsic, endothelial property for
vasculogenesis and/or angiogenesis and form multicellular models of brain micro-
vascular networks (Al Ahmad et al. 2011; Bang et al. 2017; Campisi et al. 2018).

The complexity of the models, their reproducibility, robustness, and limited
practicality currently make it difficult to use them for drug development. Drug
transport studies are not easy to implement in several microfluidic models, as the
volumes required for drug analysis are hardly available from the apical and
basolateral side. In addition, the models, in which the CNS cells are embedded in
hydrogels, hardly allow a/b - b/a transport experiments to investigate the direction-
ality of a transport process. Currently, tests based on fluorescent substances or
transport substrates that can be detected and evaluated using live imaging have the
best chance of implementation. However, this excludes a large group of active
substances that either do not fluoresce or are not fluorescent-labeled in order not to
fundamentally change their chemical structure and functionality, respectively. Indi-
rect measurements of substances to what extent they can influence the transport of
fluorescent substrates should, however, be possible. In addition, many microfluidic
models are produced by hand in the chip labs and can therefore hardly be reproduced
by other groups, making them unsuitable for drug screening for the other groups
unless they do not collaborate with the chip producers. In this context, Fabre et al.
(2019) suggested to define analytical performance standards to ease the implemen-
tation of microfluidic models for industrial use including throughput capability,
biological platform stability, drug-biomaterial interactions, intra- and inter-
laboratory reproducibility, integration and compatibility with existing laboratory
processes, and feasibility of shipping these delicate systems between vendors and
users (Fabre et al. 2019).

To improve reproducibility, there is, for example, an approach to produce models
in well plate formats for high-throughput applications (Wevers et al. 2018). These
could have the potential for drug screening, especially if sensor technology or
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electrodes for TEER measurements will be incorporated. Basically, there is also a
clear discrepancy between the data on the role of shear stress in different models, and
these often do not allow uniform conclusions to be drawn. There are models in which
the barrier function has been improved compared to the static models without
medium flow. Then, there are models in which it is claimed that shear stress did
not effect on the paracellular barrier. This was justified by the fact that the used
hiPSC-BCECs already possess a very high baseline barrier and thus the shear stress
does not induce any additional effect. Nevertheless, medium pumping led to a
moderate reduction of proliferation and apoptosis (DeStefano et al. 2018). These
are effects, which were already known from hollow fiber models (Cucullo et al.
2011). This raises the question to what extent the shear stress or the continuous
supply of fresh medium is the decisive factor for these effects. Contrary to the
abovementioned publication, in another model a shear-stress dependent, barrier-
improving effect for hiPSC-BCEC at up to 0.3 dyne/cm2 (100 μL/min) was
shown. However, at even higher shear stress values of 1 dyne/cm2, which were
still significantly lower than the values in in vivo capillaries, no additional positive
effect, even a barrier reducing effect, was found (Faley et al. 2019). An additional
point to be considered for the data interpretation is the question to what extent a
lower expression of shear stress receptors like CD31/PECAM-1 (Conway et al.
2013; Privratsky and Newman 2014; Russell-Puleri et al. 2017; Meza et al. 2017)
in the hiPSC-BCEC might lead to a weaker translation of the shear stress signal.
Moreover, in the reported models, hiPSC-BCECs were grown in monoculture
without further cells of the NVU, which might provide stabilization/support of the
hiPSC-BCECs in the hydrogel-formed capillaries.

A positive development with these models is that more and more it is shown that
the cultivation time of some microfluidic models could partly be extended to 6, 9, or
even 21 days, whereas static transwell models are normally used only for 2–3 days
after the cell barrier establishment (Linville et al. 2019; Wevers et al. 2018; Faley
et al. 2019). This reveals the potential for microfluidic models for long-term
experiments. Some publications in very high-ranked journals show that the topic
and the development of microfluidic or microphysiological models is considered
highly relevant in the scientific community (Maoz et al. 2018; Vatine et al. 2019;
Park et al. 2019; Shin et al. 2019; Motallebnejad et al. 2019). In one of these
publications, a very interesting approach to study the communication between the
individual cell types of the NVU separately was to link three individual chips
together in such a way that a BBB chip with BCECs, astrocytes, and pericytes
could communicate with a brain chip with a mixed population of neurons and glia
cells, which in turn was linked to a BBB chip at the other end. In this setup, the
changes and mutual influences in the proteome and metabolism of the individual cell
types were investigated, and the consequences of barrier breakdowns by
amphetamines were analyzed in this primary human brain microvessel endothelial
cell-based model, whose paracellular barrier was significantly lower than that of
hiPSC models. In addition, the shear stress for the endothelial cells was very low
with only 0.02 dyne/cm2 (Maoz et al. 2018). Despite the optimization possibilities, it
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is already a very complex, exciting model, which could be highly relevant for
physiological and pathophysiological studies.

In order to achieve the aimed in vivo-like barrier properties, hiPSC-BCECs were
used in another model, which uses chips of which 12 can be cultivated simulta-
neously on the “Emulate platform.” The influence of different shear stress rates for
48 h was first investigated (exposed to flow using a peristaltic pump at a rate of
30, 1,500, or 6,500 mL/h equivalent to 0.01, 0.5, or 2.4 dyne/cm2), and based on
RNA-seq data, it was confirmed that the mRNA expression of claudins and endo-
thelial cell markers such as vWF or CD31 was flow-dependent. Interestingly, at the
same time, hardly any difference was found comparing samples cultured with 0.5 or
2.4 dyne/cm2. The data indicated that the mechanical forces and not the medium
replenishment were mainly responsible for the effects. The comparison of RNA-seq
data showed a close correlation between hiPSC-BCECs and endothelial lineage cells
but also some similarities to epithelial cells. Co-culture with human primary
astrocytes and pericytes or a cell mixture of astrocytes, neurons, and nestin-positive
progenitors (differentiated from seeded neural EZ spheres) led to an increase of the
barrier. P-gp activity, restricted permeability for proteins (IgG and albumin), but also
transport for transferrin and concentration-dependent barrier-damaging effects of
cytokines TNFα, IL-1β, and Il-8 were successfully demonstrated (Vatine et al.
2019). In addition, differences between healthy controls and models based on
hiPSC-BCECs of Huntington’s disease or MCT8-deficiency patients in the
paracellular barrier or the transport of thyroid T3 hormones confirmed previous
publications with the same cell lines applied in transwell models (Vatine et al. 2017;
Lim et al. 2017). Moreover, hiPSC-BCECs maintained a stable barrier to blood
introduced in the “blood channel” of the chip at 5 dyne/cm2 (60 μL/min). Unfortu-
nately, this model was not suitable for long-term experiments, as the TEER gradu-
ally decreased and could only be kept above 500 Ohm cm2 for 5 days (Vatine et al.
2019).

In another model several important aspects were impressively presented. Hypoxia
or hypoxia-inducing compounds such as CoCl2 significantly increased the expres-
sion of endothelial and BBB markers during the differentiation of hiPSC to BCECs,
which were probably mediated by activation of the transcription factor HIF1α. These
improved hiPSC-BCECs were cultured at a flow rate of 100 μL/min (¼ 6 dyne/cm2)
in a two-chamber microfluidic system with primary human astrocytes and pericytes
over 2 weeks leading to a stabilized barrier function over time and significant effects
on the expression of barrier markers. The model was suitable for both transporter
function and receptor-mediated transport studies. Furthermore, barrier damage by
hyperosmolar mannitol used in the clinic to open the BBB could be recapitulated in
this model, and the analysis of the drug citalopram by mass spectrometry was
applicable (Park et al. 2019).

In summary, the microfluidic systems represent a field of BBB models that has
developed enormously in recent years. Great partial successes have already been
achieved. Nevertheless, no model has been established until now that optimally
resembled the NVU. With regard to drug development, the hiPSC-BCEC models in
particular could become very valuable for modeling diseases especially with a
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specific genetic background. With regard to the microfluidic models, a clear state-
ment is still missing on cutoff values of minimum shear stress, which should be
applied to achieve the maximum induction of the aimed barrier properties. More-
over, more detailed analyses are lacking linking the functional observations with
omics data. In general, the success of the models depends very much on the choice of
the best suitable cells and in the case of the hiPSC-BCECs also on the appropriate
differentiation protocols. Already these two factors are highly variable in the cur-
rently developed models and complicate the comparison of the data obtained from
the different models. In addition, the conduct of transport experiments needs to be
standardized, and blank experiments without cells are needed for control – especially
in the case of microfluidic models. Currently, these are not included for permeability
coefficient calculations neglecting the barrier formed by the scaffold itself. Finally,
since cultured human primary brain endothelial cells are already in clearly
dedifferentiated form when used for analysis, it would be a better benchmark to
use fresh, human brain tissue for the analysis and evaluation of the cells derived from
the in vitro BBB models.
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Abstract

Animal models have been greatly contributing to our understanding of physiol-
ogy, mechanisms of diseases, and toxicity. Yet, their limitations due to, e.g.,
interspecies variation are reflected in the high number of drug attrition rates,
especially in central nervous system (CNS) diseases. Therefore, human-based
neural in vitro models for studying safety and efficacy of substances acting on the
CNS are needed. Human iPSC-derived cells offer such a platform with the unique
advantage of reproducing the “human context” in vitro by preserving the genetic
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and molecular phenotype of their donors. Guiding the differentiation of hiPSC
into cells of the nervous system and combining them in a 2D or 3D format allows
to obtain complex models suitable for investigating neurotoxicity or brain-related
diseases with patient-derived cells. This chapter will give an overview over stem
cell-based human 2D neuronal and mixed neuronal/astrocyte models, in vitro
cultures of microglia, as well as CNS disease models and considers new
developments in the field, more specifically the use of brain organoids and 3D
bioprinted in vitro models for safety and efficacy evaluation.

Keywords

Bioprinted neuronal models · Brain organoids · CNS disease models ·
Developmental neurotoxicity (DNT) · Human induced pluripotent stem cells
(hiPSCs) · Microglia culture · Neurotoxicity (NT)

1 Introduction into In Vitro Neurotoxicity Evaluation

Adult neurotoxicity occurs when exposure to natural or human-made toxic
substances (neurotoxicants) alters the normal activity of the nervous system. It can
eventually disrupt or even kill neurons or the surrounding glial cells, influencing the
transmission and processing of signals in the brain and other parts of the nervous
system. Neurotoxicity can result from exposure to substances used in radiation
treatment, chemotherapy, other drug therapies, and organ transplants, as well as
exposure to heavy metals such as lead and mercury; certain foods and food additives;
pesticides; industrial and/or cleaning solvents; cosmetics, i.e., mercury for skin
bleaching or new actives with unknown systemic effects; and some naturally
occurring substances (Massaro 2002). Symptoms may appear immediately after
exposure or be delayed. They may include limb weakness or numbness; loss of
memory or vision; headache; intellect, cognitive, and behavioral problems; and
visceral, including sexual dysfunction. Individuals with certain disorders may be
especially vulnerable to neurotoxicants (National Institute of Health Neurotoxicity
Information 2019).

The recognized test method for evaluating the neurotoxic potential of chemicals
is the OECD Guideline 424 (Neurotoxicity studies in rodents). This method uses
complex in vivo tests which are often labor-intensive and expensive (Crofton et al.
2012) and might also not well reflect the human situation because of interspecies
variation (Leist and Hartung 2013). Such interspecies variation is also thought to be
one of the reasons for the high attrition rates in drug development. Before a drug
candidate can be taken into human clinical trials, it must be tested for safety and
efficacy in animals that display relevant disease characteristics. This poses unique
challenges in central nervous system (CNS) research, because of the difficulties to
induce or quantify, e.g., depression, anxiety, or impairment of social interaction. In
addition, pharmacokinetics and pharmacodynamics might differ between species
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and thus cause poor prediction for beneficial or adverse effects in humans (Toutain
et al. 2010). It stands to reason that diseases with the most complex and least
understood etiologies are typically the ones that are the hardest to develop treatments
for, which is reflected in the translation failure of CNS drug discovery (Danon et al.
2019; Gribkoff and Kaczmarek 2017).

Understanding compounds’ modes of action (MoA) and pathophysiology of
disease in the human context is of high importance for correct safety and efficacy
predictions. This is exemplified by the activation of peroxisome proliferator-
activated receptor alpha (PPARα) via PPARα agonists inducing liver tumors in
rodents, yet not in humans, probably due to lower PPARα and/or co-activators/co-
repressors expression in the latter (Klaunig et al. 2003). Here, animal models
overestimate PPARα agonists’ hazard for human health. In the case of searching
for drugs curing Alzheimer’s disease, animal models, which are genetically
predisposed to generate Aβ plaques or neurofibrillary tangles of Tau protein, have
been used. Yet no results have translated from these animal disease models into
effective human medication, probably because they do not represent human AD
pathophysiology sufficiently (Danon et al. 2019).

These two examples nicely pin down the issue of model predictivity in compound
safety and efficacy evaluation and their translation to human health. One strategy to
overcome such translational shortcomings lies in the use of test systems of human
origin. Therefore, the biomedical achievement of producing human induced plurip-
otent stem cells (hiPSC) from somatic cells (Takahashi et al. 2007) opened up a
whole new arena in the ethically sound production of an unlimited number of human
cells, including neurons and glia. In addition, the recent surge in tissue modeling, by
culturing such cells in three dimensions (3D), is producing a paradigm shift in
disease modeling and in pharmacological as well as toxicological testing strategies
(Lancaster and Knoblich 2014; Lancaster et al. 2017; Pasca 2018). In vitro cultures
are currently also taken to the next level by their growth in bioreactors, which, when
connected, can be assembled as organs-on-the-chip and designed to mimic in vivo
environments (Park et al. 2019).

Such new approach methods (NAMs) cannot be used in an isolated manner, as a
cell culture does not represent a whole organism, even if cells grow in 3D. Therefore,
frameworks are needed that allow the interpretation of data generated with human
2D or 3D in vitro methods (Fig. 1). One general deficiency of in vitro methods is the
lack of picturing pharmacokinetics that is crucial for toxicity and efficacy evaluation.
Here, physiology-based pharmacokinetics modeling can be of great help (Paini et al.
2019; Zhuang and Lu 2016) as it provides wet-lab researchers with target tissue
concentrations as rationales for their in vitro studies. Finding that human exposure-
relevant concentrations is fundamental, yet how to choose and proceed with the
readouts of in vitro studies? Here, the “Adverse Outcome Pathway” (AOP) concept
is of tremendous help. The AOP is an organizational model that identifies a sequence
of biochemical and cellular events (molecular initiating event, MIE; key events, KE)
required to produce a toxic effect (adverse outcome, AO) when an organism is
exposed to a substance (Fig. 1). Construction of an AOP can (1) organize informa-
tion about biological interactions and toxicity mechanisms into models that describe
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how exposure to a substance might cause illness or injury, (2) suggest cell- or
biochemical-based tests for pathway elements that could be used to develop testing
strategies for targeted toxicity, and (3) identify data gaps in a pathway of toxicity that
need more information with the final goal of using fewer resources and experimental
animals (Ankley et al. 2010). This concept was soon also applied to neurotoxicity
(Bal-Price et al. 2015). Recently it was suggested that the AOP framework is also
applicable to understanding disease pathways for prevention, diagnosis, and treat-
ment and in biomedical and clinical research for drug discovery, efficacy, and safety
testing (Carusi et al. 2018). Studying cellular effects with in vitro methods in a
conceptual framework for toxicity or disease provides drug developers and basic or
regulatory scientists with greater confidence in the meaningfulness and thus appli-
cability of generated in vitro data (Fig. 1). In the end, higher human relevance of
scientific outcomes will protect society and the individuum and also reduce health-
care costs.

Neurotoxicity can be triggered by a multitude of MoA (Masjosthusmann et al.
2018). In vitro, this MoA can either be measured as specific changes in endpoints,
like effects on ion currents, specific receptor activation, or loss in myelin. In
addition, MoA can cause neuronal cell death, an endpoint relevant for in vitro and
in vivo neurotoxicology. For example, excitatory cell death can occur through
stimulation of glutamatergic neurotransmission, or dopaminergic cell death can be

Fig. 1 Framing of data from in vitro models with pharmacokinetics information from PBPK
modeling and endpoint judgment according to the AOP concept
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induced via mitochondrial dysfunction. Although neural cell death is indeed a
relevant endpoint, it does not inform on the underlying MIE. Moreover, a compound
not inducing neural cell death cannot be excluded as a neurotoxicant. When studying
neurotoxicity in vitro, knowledge about molecular equipment of cells is crucial for
defining the application domain of the respective model.

This chapter now intends to fill the red box in Fig. 1 by summarizing the current
state of the art on hiPSC/ESC-based 2D or secondary 3D neuronal and mixed
neuronal/glial as well as microglial models, neural organoids, bioprinted neural
models, and 2D or 3D neurological disease models. Such find their application in
pharma- and toxicological studies by investigating endpoints in vitro that lead to
AOs or possibly represent relevant therapeutic targets. A summary of the main
toxicological targets is given in Table 1. Although historically most brain-related
in vitro data has been derived from rodents (Masjosthusmann et al. 2018), this
chapter will focus on published human test systems due to the species specificities
discussed above.

1.1 Stem Cell-Based Human 2D Neuronal and Mixed Neuronal/
Astrocyte Models

Stem cells (SC) are divided into adult stem cells and embryonic stem cells (ESC),
depending on their origin and potency (Singh et al. 2015). ESCs are derived from the
inner cell mass of the blastocyst and have the ability to self-renew and to generate all
cell types of the body except extraembryonic cells (placenta) and are therefore
termed pluripotent (Guenther 2011). In 1998 the first human ESC line was isolated
from human embryos initially produced for in vitro fertilization (Thomson et al.
1998).

Yamanaka and co-workers created the basis for a new generation of neural
in vitro models by developing the Nobel Prize-winning cell system of human
induced pluripotent stem cells (hiPSC). These cells can be derived from human
mature somatic cells by different reprogramming methods (Janabi et al. 1995; Lowry
and Plath 2008; Warren et al. 2010; Zhang et al. 2013; Victor et al. 2014) and thus
avoid the ethical issues of human ESC (Takahashi et al. 2007; Yu et al. 2007).
Human iPSC can be differentiated into cells from all three germ layers (Takahashi
et al. 2007; Shi et al. 2017).

Using hiPSC, it is possible to induce a variety of neural cell types. Neural stem
cells (NSCs) and neuronal progenitor cells (NPCs) can be differentiated from hiPSC
in large quantities with high reproducibility (Farkhondeh et al. 2019). Cheng and
co-workers describe a method to generate NPC from hiPSC using a multistep
protocol including embryoid body formation and formation of neural rosettes,
followed by multidimensional fluorescence-activated cell sorting (FACS) to purify
NPCs by using a set of cell surface markers (Cheng et al. 2017). The authors claim
that these cells are suitable for probing human neuroplasticity and mechanisms
underlying CNS disorders using high-content, single-cell level automated micros-
copy assays. Still, a proof-of-concept study remains to be published.
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Human iPSC-derived neurons can be generated directly from hiPSC or with
NSCs/NPCs as an intermediate step (Yu et al. 2014; Ghaffari et al. 2018). The latter
protocol takes about 2 weeks and can be used for the evaluation of drug efficacy,
although purity and maturity of the cells are in question and need further characteri-
zation (Farkhondeh et al. 2019; Dai et al. 2016).

Numerous protocols have been published describing the generation of specific
neuronal subtypes as well as glial cells from hiPSC such as cortical neurons (Shi
et al. 2014; Eiraku et al. 2008; Boissart et al. 2013), glutamatergic neurons (Boissart
et al. 2013; Cheng et al. 2017; Wang et al. 2017; D’Aiuto et al. 2014; Sanchez-Danes
et al. 2012; Yu et al. 2009; Nehme et al. 2018), GABAergic neurons (Yang et al.
2017; Liu et al. 2013; Flames et al. 2007; Manabe et al. 2005), serotonergic and

Table 1 Mode of action (MoA) relevant for human neurotoxicity identified within a systematic
review investigating 248 individual chemical compounds, 23 compound classes, and 212 natural
neurotoxins (Masjosthusmann et al. 2018; modified from Appendix D)

# Mode of action MoA related to

1 Stimulation of cholinergic neurotransmission Neurotransmission

2 Inhibition of cholinergic neurotransmission

3 Stimulation of GABAergic neurotransmission

5 Inhibition of glycinergic neurotransmission

6 Stimulation of glutamatergic neurotransmission

7 Inhibition of glutamatergic neurotransmission

8 Stimulation of adrenergic neurotransmission

9 Inhibition of adrenergic neurotransmission

10 Stimulation of serotoninergic neurotransmission

11 Inhibition of serotoninergic neurotransmission

12 Inhibition of dopaminergic neurotransmission

13 Neurotransmission in general

14 Activation of sodium channels Ion channels/receptors

15 Inhibition of sodium channels

16 Inhibition of potassium channels

17 Inhibition of calcium channels

18 Activation of chloride channels

19 Inhibition of chloride channels

20 Effects on other neuronal receptors

21 Mitochondrial dysfunction/oxidative stress/apoptosis Cell biology

22 Redox cycling

23 Altered calcium signaling

24 Cytoskeletal alterations

25 Neuroinflammation

26 Axonopathies

27 Myelin toxicity

28 Delayed neuropathy

29 Enzyme inhibition

30 Other Other
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dopaminergic neurons (Chambers et al. 2009; Cooper et al. 2012; Kriks et al. 2011;
Sanchez-Danes et al. 2012; Li et al. 2017), motor neurons (Corti et al. 2012; Sareen
et al. 2012, 2013; Kiskinis et al. 2014; Maury et al. 2015), sensory neurons (Boisvert
et al. 2015; Stacey et al. 2018), astrocytes (Lundin et al. 2018; Suga et al. 2019),
oligodendrocytes (Osaki et al. 2018; Ehrlich et al. 2017; García-León et al. 2018b),
and microglia (McQuade et al. 2018), just to name a few. In this chapter, we will
focus on published in vitro systems that have already been used for screening
approaches or are at a state of assay development that will allow substance screening
in the near future.

Malik and co-workers established a high-throughput screening platform using
hiPSC-derived NSCs and rat cortical cells to screen a compound library of 2,000
chemicals including known drugs (50%), natural products (30%), and bioactive
compounds (20%) for their cytotoxic potential (Malik et al. 2014; Efthymiou et al.
2014). In a follow-up study, a subset of 100 compounds was screened in hiPSC,
NSC-derived neurons (Efthymiou et al. 2014), and fetal astrocytes. This approach
enabled the authors to identify species- and cell type-specific differences in
responses to compounds. Specifically, they found that human NSCs were more
sensitive to the screened compounds than rodent cultures. In addition, they identified
compounds with cell type-specific toxicities. A limitation of the study is the assess-
ment of cytotoxicity as the sole endpoint, which might not be the most sensitive one.
Another restriction of this approach is the lack of co-culture of neuronal and glial
cells. Moreover, in the species comparison, cells from different maturation stages
and single (human) versus co-cultures (rat) were related, making data interpretation
difficult.

Another study used small molecule-based NPCs differentiated from three differ-
ent hiPSC lines, which were then differentiated into neurons and astrocytes within
15 days, using a highly standardized protocol (Seidel et al. 2017). The authors used
multi-microelectrode arrays (MMEA) for monitoring neuronal network activities
via field potential measurements. Such recordings assess multiple endpoints
stipulating that different neuronal receptors are expressed by the cells (Table 1).
Here, they show reactivity towards dopamine, GABA, serotonin, acetylcholine, and
glutamic acid, but not norepinephrine. To date, there are no general guidelines for
the analysis and quantification of MMEA measurements. Seidel et al. use single
electrodes as the statistical unit, but using different chips or experiments as an
individual “n” number would be preferable to assess the reproducibility and
standardization between experiments (Masjosthusmann et al. 2018).

In recent years, more and more companies have been offering commercially
available hiPSC-based neuronal cells. One study compared different commercially
available hiPSC-derived mature neurons (excitatory and inhibitory) from different
suppliers, with and without astrocyte co-culture, again utilizing MMEA activity as a
functional readout, this time in combination with measurements of calcium signaling
(Tukker et al. 2016). Treatment with glutamate and GABA strongly reduced the
mean spike rate of the analyzed cultures. Calcium transients of individual neurons
were generated upon treatment with glutamate, GABA, and acetylcholine. Here,
astrocytes seem to be crucial for neuronal network generation because pure neuronal
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cultures in the absence of astrocytes lack bursting, a sign for neuronal network
maturity. In this study, the statistical unit was chosen as one well of a 48-well plate,
not allowing assessment of reproducibility and standardization between experiments
(Masjosthusmann et al. 2018). A follow-up study in 2018 also used commercially
available hiPSC-derived neurons and astrocytes, this time exploring the effect of the
ratio of mixed neurons and astrocytes (Tukker et al. 2018). This study strongly
supports the previous observation that the addition of astrocytes to the model in near-
physiological proportions of 50% (glia/neuron ratio 1:1; von Bartheld et al. 2017)
and a ratio of 1:5 for GABAergic inhibitory neurons and excitatory neurons (Hendry
et al. 1987; Sahara et al. 2012) indeed promotes neuronal network formation and
maturation best. This study primarily indicates that hiPSC-derived neuronal models
must be carefully designed and characterized before their large-scale use in neuro-
toxicity screenings, as each model exerts different responses to compounds,
depending on the composition of the networks. The importance of the presence of
astrocytes was also assessed by another study using commercially available cortical
neurons on MMEAs (Kayama et al. 2018).

For controlled plating of neuron/astrocyte ratios, cells must be differentiated
separately. A recent protocol instructs how to differentiate hiPSC into astroglia
(NES-Astro) within 28 days (Lundin et al. 2018). These cells were extensively
characterized using transcriptomics, proteomics, glutamate uptake, inflammatory
competence, calcium signaling response, and APOE secretion and were compared
to primary astrocytes, commercially available hiPSC-derived astrocytes, and an
astrocytoma cell line. The data show large diversity among the different analyzed
astrocytic models and strongly suggest to take the cellular context into account when
studying astrocyte biology. Taking this to the next level, it indicates the importance
of choosing the right astrocytic model to combine with hiPSC-derived neurons for
the testing of substances acting on the CNS.

One major challenge in the field is the availability of a sufficient number of cells
for large-scale screening approaches. Stacey et al. (2018) describe the concept of
cryopreserved “near-assay-ready” cells, which decouples complex cell production
from assay development and screening. Using this approach, the authors developed a
384-well veratridine-evoked calcium flux assay which assesses neuronal excitability
and screened 2,700 compounds to profile the range of target-based mechanisms able
to inhibit veratridine-evoked excitability using hiPSC-derived sensory neurons. In
order to be able to use this approach for the identification of active compounds with
unknownMoA, further secondary assays (e.g., using MMEA-technology) need to be
developed to characterize the hits on a mechanistic level (Stacey et al. 2018). In
addition, experiments were performed using pure neuronal cultures without the
addition of astrocytes, probably leading to different neuronal responses than with
astrocytes present.

Along those lines another high-throughput screening using 11 different com-
pound libraries with a total of 4,421 unique substances, all bioactive small
molecules, which include approved drugs, well-characterized tool compounds, nat-
ural products, and human metabolites, has been described lately (Sherman and Bang
2018). The authors use high-content image analysis, focusing on neurite outgrowth
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of commercially available hiPSC-derived neurons, consisting primarily of
GABAergic and glutamatergic neurons, but no astrocytes. They identified 108 hit
compounds containing 38 approved drugs (outgrowth: erlotinib, clomiphene,
tamoxifen, 17β-estradiol, dehydroepiandrosterone-3-acetate (DHEA), alfacalcidol,
lynestrenol, benztropine, dibucaine, fluphenazine, perphenazine, prochlorperazine,
trifluoperazine, sertindole, quetiapine, ifenprodil, meclizine, alverine, econazole,
oxiconazole, letrozole, SAHA (Vorinostat); inhibition: methyltestosterone, thiorida-
zine, methotrimeprazine, colchicine, docetaxel, vincristine, mebendazole, emetine,
daunorubicin, doxorubicin, mitoxantrone, topotecan, hexachlorophene, ouabain,
digoxin, suramin) which fall into the following categories: kinase inhibitors, steroid
hormone receptor modulators, and channel and neurotransmitter system modulators
(Sherman and Bang 2018). Inhibition of neurite outgrowth is one key characteristic
in developmental neurotoxicity (Fritsche et al. 2018a, b), yet its implication in adult
neurotoxicity is not clear.

Using a similar readout, hiPSC-derived peripheral-like neurons were applied to
study the effect of chemotherapeutic agents on neuronal cytotoxicity and neurite
length, again using high-content image analysis (Rana et al. 2017). This approach
identified compounds that cause interference in microtubule dynamics but failed to
depict the adverse effects of platinum and anti-angiogenic chemotherapeutics, which
are compounds that do not act directly on neuronal processes. Here the addition of
astrocytes to the model might lead to a higher predictivity, as the administration of
fluorocitrate, an astrocyte-specific metabolic inhibitor, increased the pain tolerance
of the animals in a rat model of oxaliplatin-induced neuropathic pain (Di Cesare et al.
2014; Kanat et al. 2017), indicating the role of astrocytes in sustaining platinum-
mediated neurotoxicity.

One important cell type for neurotoxicological assessment of substances is
myelin-producing oligodendrocytes. Yet publications on hiPSC-derived oligoden-
drocyte are scarce, and the protocols that are available are very time-consuming and
of limited efficiency (Wang et al. 2013; Douvaras et al. 2014; Djelloul et al. 2015).
Therefore, they are not suitable for medium- to high-throughput screening
approaches. In contrast, the three transcription factors SOX10, OLIG2, and
NKX6.2 produced 80% O4+ oligodendrocytes from hiPSC within 28 days and
might thus be a promising approach for future neurotoxicological applications
(Ehrlich et al. 2017). Another recent study even reports that the overexpression of
the transcription factor SOX10 alone is sufficient to generate 60% O4+ and 10%
MBP+ cells in only 22 days (García-León et al. 2018b).

Although this part of the chapter primarily covers the use of hiPSC for the
generation of neural in vitro models for studying substances acting on the CNS,
the method of direct reprogramming of neuronal cells from somatic cells should not
be disregarded. Lee et al. (2015) directly reprogrammed human blood to NPC
without the intermediate step of hiPSC generation. These induced neurons (iNs)
can be generated by overexpression of a set of transcription factors (Ichida and
Kiskinis 2015; Vierbuchen et al. 2010; Ambasudhan et al. 2011; Hu et al. 2015;
Wapinski et al. 2017) or miRNAs (Victor et al. 2014; Yoo et al. 2011; Abernathy
et al. 2017) that promote chromatin remodeling and drive direct neural lineage
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differentiation (Silva and Haggarty 2019). Especially for research regarding
age-associated neurodegenerative diseases, like Alzheimer’s disease (AD) or
Parkinson’s disease (PD), this method is of high interest, as bypassing the hiPSC
reprogramming process reduces the disruption of epigenetic markers associated with
the age of the somatic cell, therefore allowing to create neuronal models at “patho-
genic ages” (Mertens et al. 2018). This method preserves multiple age-associated
markers, including DNA methylation patterns, transcriptomic and microRNA
profiles, oxidative stress, DNA damage (loss of heterochromatin and nuclear orga-
nization), and telomere length (Mertens et al. 2018; Silva and Haggarty 2019), and is
therefore a promising approach to study substances acting on the aged CNS or
screening for pharmaceuticals as a treatment for these conditions.

When working with either of these models, it is of utmost importance to have a
well-characterized cell system, which suits the research question in case of basic
research or contains a defined application domain for neurotoxic MoA (Table 1)
when used for screening applications. Lack of characterization or definition of the
application domain might result in false-negative data due to a lack of cellular
targets. In addition, as with other in vitro approaches, the multicellular context of
cultures seems to be crucial, possibly resulting in false predictions of chemicals
when pure neuronal cultures lacking glia are used.

1.2 In Vitro Cultures of Microglia

Microglia constitute 5–10% of total brain cells and represent the resident innate
immune cells of the CNS (Arcuri et al. 2017). Microglia discovery dates back to the
end of the nineteenth century, but the name was coined in the 1920s by del Rio
Hortega who phenotypically characterized the only immune cells resident in the
brain parenchyma (Pérez-Cerdá et al. 2015). The function of microglia was for a
long time underestimated because of the misconception that the brain is an immune-
privileged site; moreover it was initially wrongly thought that this cell type
originates from the neuroectoderm. To date, it is known that microglia arise from
embryonic yolk sac (YS) precursors (Ginhoux et al. 2010) which give rise to YS
macrophages that colonize the embryo, including the brain, to generate all types of
tissue-resident macrophages (Li and Barres 2018). In the CNS, microglia maintain
their population by self-renewal (Ajami et al. 2007) and by recruiting monocytes
from the bloodstream (Hashimoto et al. 2013). The presence of microglia in the brain
parenchyma is fundamental because of the variety of functions they perform from
early brain development throughout the entire life of the organism, both in brain
homeostasis and disease (for an extensive review, see Li and Barres 2018).

Considering the pivotal contribution of microglia to brain functions, it is impor-
tant to have in vitro models containing microglia when studying the influence of
drugs and toxicants on the brain. The majority of published in vitro studies mainly
used primary microglia cultures from embryonic/neonatal rodent brain (mouse or
rat). Still, fetal microglia seem to be quite different from adult ones. Due to ethical
reasons, it is challenging to obtain brain-derived microglia from humans. The few
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human microglia cell lines generated, such as HMO6 (Nagai et al. 2005) and HMC3
(Janabi et al. 1995), are not considered as an optimal model because long-term
culture and genetic manipulation altered their functions and morphology. Finally,
the low number of cells collected from humans does not allow large-scale neurotox-
icity in vitro studies.

Starting from these premises, Leone and colleagues set up a monocyte-derived
microglia-like cell model by culturing human monocytes with astrocyte-conditioned
medium (Leone et al. 2006). This protocol was successively standardized using
human peripheral blood mononuclear cells (PBMCs) stimulated with four recombi-
nant human cytokines. The microglia cells obtained display a ramified morphology
after 2 weeks in culture and express surface markers typical for the known pattern of
microglia (Etemad et al. 2012).

More recently, human microglia-like cells were obtained from hESC and hiPSC.
As previously stated, microglia derive from non-monocytic primitive myeloid cells,
unlike adult bone marrow-derived macrophages. Thus microglia-like cells derived
from PBMCs do not mirror this ontogeny. Muffat and co-workers established a
robust protocol that allows the derivation of microglia-like cells from hiPSC,
obtained from reprogrammed fibroblasts, using a serum-free medium that mimics
the environment of the CNS interstitial milieu and adding interleukin 34 (IL-34), an
alternative ligand for colony-stimulating factor 1 receptor. The microglia-like cells
obtained with this protocol are highly phagocytic, and their gene expression profile
resembles human primary microglia. They progressively adopt a ramified morphol-
ogy when cultured in isolation, while when co-cultured in the presence of hiPSC-
derived neurons, microglia-like cells refine their molecular signature. In terms of
activity and response to stressors, unstimulated microglia-like cells secrete detect-
able levels of various cytokines and chemokines, which were enhanced after stimu-
lation with lipopolysaccharide (Muffat et al. 2016) (Fig. 2).

Similar protocols were published a few months later reprogramming fibroblasts
or PBMCs. In the paper of Pandya et al. (2017), hiPSCs were sequentially
differentiated into myeloid progenitor-like intermediate cells and then into cells
with the phenotypic, transcriptional, and in vitro functional signatures of brain-
derived microglia. Abud and co-workers demonstrated that microglia-like cells
obtained from hiPSC secrete cytokines in response to inflammatory stimuli, migrate,
undergo calcium transients, and phagocytose (Abud et al. 2017). All those protocols
require from 30 to about 70 days of time to obtain mature glia (McComish and
Caldwell 2018). Taken together, those data suggest that microglia obtained from
reprogrammed hiPSC better mirror the developmental stages of microglia matura-
tion and ontogeny, in comparison to microglia-like cells derived from PBMCs
stimulated with a cocktail of factors.

The potential applications of hiPSC-derived microglia include drug discovery
studies, neurotoxicity screening assays, and use in disease modeling. Microglia-
mediated inflammation can negatively impact the brain, and much evidence shows
that microglial activation plays a role in neurodegeneration, contributing to the
etiology of neurodegenerative disorders (Ransohoff and El Khoury 2016). The
availability of robust protocols to generate and maintain microglia from patients
with different brain dysfunctions in culture would facilitate the study of the
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pathology and the discovery of new pharmacological approaches. The first evidence
of in vitro culturing disease-related microglia cells from patients was in 2012, when
Almeida and colleagues generated multiple induced hiPSC lines from subjects with
frontotemporal dementia (Almeida et al. 2012). More recently, Ryan and co-workers
performed, on human monocyte-derived microglia-like cells, a quantitative expres-
sion trait locus study to examine the effects of common genetic variation on the
expression of genes found in susceptibility loci for Alzheimer’s disease, Parkinson’s
disease, and multiple sclerosis (Ryan et al. 2017). Microglia-like cells obtained by
reprogramming PBMCs were also combined with neural progenitor cells and
synaptosomes from hiPSC-derived neurons to create patient-specific cellular models
useful to model CNS diseases facilitating high-throughput drug screening and
neurotoxicity assays based on microglia function in the future (Sellgren et al. 2017).

Fig. 2 Human iPSC-derived microglia protocols. (a) Haenseler et al. (2017), (b) Abud et al.
(2017), (c) Douvaras et al. (2017), (d) Pandya et al. (2017), (e) Muffat et al. (2016). PFs patterning
factors, DFs differentiation factors, BMP4 brain morphogenetic protein 4, VEGF vascular endothe-
lial growth factor, SCF stem cell factor, IL-3 interleukin 3, M-CSF macrophage colony-stimulating
factor, FGF2 or bFGF fibroblast growth factor 2, TPO thrombopoietin, IL-6 interleukin 6, IL-34
interleukin 34, TGFbeta-1 transforming growth factor beta 1, CD200 cluster of differentiation
200, CX3CL1 fractalkine, VEGF-A vascular endothelial growth factor A, FLT-3 fm-like tyrosine
kinase 3, GM-CSF granulocyte-macrophage colony-stimulating factor, G-CSF granulocyte colony-
stimulating factor, CSF1 colony-stimulating factor 1, Iba1 ionized calcium-binding adapter mole-
cule 1,MERTK tyrosine kinase phagocytic receptor, GPR34 G protein-coupled receptor 34, PROS1
protein S1, C1QA complement C1q subcomponent subunit A, GAS6 growth arrest-specific
6, P2RY12 purinergic receptor P2Y, TREM2 triggering receptor expressed on myeloid cells
2, CD11b cluster of differentiation 11b, CX3CR1 CX3C chemokine receptor 1, TMEM119 trans-
membrane protein 119, CD11c cluster of differentiation 11c, CD45 cluster of differentiation
45, CD43 cluster of differentiation 43, CD39 cluster of differentiation 39, HLA-DR human
leukocyte antigen – DR isotype, CD34 cluster of differentiation 34

122 E. Fritsche et al.



In conclusion, different protocols for the derivation of human microglia are
available that enable experiments in authentic human in vitro systems. Unlike
methods for the derivation of neurons and astrocytes, protocols for microglia lack
regionality and do not reflect microglia subtypes found within the brain (Grabert
et al. 2016), which is a true challenge for the future.

1.3 Moving In Vitro Cultures into the Third Dimension with Brain
Organoids

For investigating possible CNS disease mechanisms or screening drugs or toxins for
safety and efficacy, it is thought to be advantageous to use complex 3D systems such
as brain organoids. The benefits of organoids compared to “conventional” cultures
lie in their composition of multiple cell types, which are functional in an in vivo-like
manner and display morphological features of the organ to be modeled (Lancaster
and Knoblich 2014). Yet, one has to be aware that there are major differences
between in vivo embryogenesis or organogenesis and in vitro organoid formation,
since even extremely well-controlled in vitro conditions strongly differ from real,
regionally defined, physiological in vivo conditions (Bayir et al. 2019).

Different protocols for generating brain organoids have been established.
Lancaster et al. (2017) used a floating scaffold out of poly(lactide-co-glycolide)
copolymer (PLGA) fiber microfilaments to generate elongated embryoid bodies,
called microfilament-engineered cerebral organoids (enCORs). Other groups used
shaking platforms (Matsui et al. 2018), self-made spinning bioreactors (Qian et al.
2016), or soft matrices for embedding the cells (Lindborg et al. 2016; Bian et al.
2018) to let them form self-organized brain organoids. While neural organoids
mostly mimic the early phases of embryonic development of the human brain,
Matsui et al. (2018) cultivated their organoids up to 6 months and showed cell
differentiation into functional neurons and myelin basic protein (MBP)-positive
oligodendrocytes. The cerebral organoids fabricated by Quadrato et al. (2017)
contained mature neurons including dendritic spine-like structures that gener-
ated spontaneously active neuronal networks as well as photosensitive cells after
8–9 months. These CNS models that display a later developmental status can now
be used for safety and efficacy evaluations in medium to high throughput. One has
to note that integration of microglia into organoids will be necessary in the future
to better model toxicity and disease. This advanced technology is currently
evolving (Ormel et al. 2018). In addition, although seemingly much more complex
than 2D models, organoids also need definition of their applicability domains, with
regard to the presence of cellular targets mediating neurotoxicity or drug efficacy
(Table 1). Because reproducibility of organoid formation is still an issue with high
variation making well-to-well comparison difficult, this neurotoxicity/efficacy
target characterization has to be performed with great caution focusing on repro-
ducibility of results.

As an example, hiPSC-derived brain organoids were recently employed for drug
efficacy screening against ZIKA virus infection (Zhou et al. 2017) indicating that it is
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possible to use such complex in vitro systems for medium- to high-throughput
applications. The authors’ high-content imaging approach identified a compound
prohibiting organoid ZIKA virus infection and eliminating virus from infected
organoids (Zhou et al. 2017). Other ZIKA virus-infected organoids were also
published recently (Cugola et al. 2016; Garcez et al. 2016; Dang et al. 2016; Qian
et al. 2016). Two groups (Watanabe et al. 2017; Xu et al. 2016) used these organoids
similar to Zhou et al. (2017), for drug screening against ZIKA virus. Since the
declaration of a public health emergency of international concern by the Word
Health Organization in 2016, a lot of drug candidates against ZIKA virus were
tested in in vitro as well as in in vivo systems, but only few of them with anti-ZIKA
virus activity in animal models made it to clinical trials (Bernatchez et al. 2019).

Due to the higher throughput of such models, they are logistically superior over
the low-throughput mouse models and can thus screen a large number of
compounds. Moreover, their translational success to the human in vivo situation
might be higher due to the human nature of cells. However, as already pointed out in
Fig. 1, kinetic modeling is crucial for correct predictions that has to go hand in hand
with the in vitro work.

While brain organoids are good models to examine the effects of disease and
genetic aberrances on brain development, they lack to model the blood-brain barrier
(BBB) of the adult human cortex. Many drugs for neurologic diseases and disorders
fail to pass the BBB; therefore, there is a need for a BBB model that enables the
examination of the permeability of these drugs. BBB organoid models can be
derived from three (Cho et al. 2017; Bergmann et al. 2018) or from six (Nzou
et al. 2018) different cell types that include astrocytes, pericytes, and endothelial
cells. Both models are able to reproduce the properties and functions of the BBB
through the exhibition of tight/adherent junctions, efflux pumps, and transporters.
Nzou et al. (2018) showed in their organoids also the impenetrability of the BBB for
specific molecules: by adding MPTP, MPP+, and mercury chloride to the medium
they proofed that their models indeed have a charge-selective barrier. Data from such
models might also be useful for feeding PBPK models.

In conclusion, there are currently several different organoid models in develop-
ment, both normal and disease models. However, these are still in the process of
establishment and characterization and are not yet in use for substance screenings.

1.4 3D Bioprinted In Vitro Neural Models

The next generation of in vitro models already arising is fabricated by 3D
bioprinting. The state of the art of 3D bioprinting of brain cells was recently
comprehensively reviewed by Antill-O’Brien et al. (2019). 3D bioprinting of brain
cells is faced with a variety of challenges needing sophisticated solutions. The first is
the choice of biomaterial biomimicking brain tissue from extracellular matrix
components as well as the mechanical, structural, biochemical, and diffusive
properties of the brain with high cellular biocompatibility. Here, especially, the
tremendous softness of brain tissue poses a great challenge for bioengineers.

124 E. Fritsche et al.



Biomaterials currently used for neural cell culture are hydrogels. These hydrophilic
polymers can be reversibly or irreversibly cross-linked via chemical or physical
triggers to maintain their structure over a long period of time. Hydrogels are an
attractive material for culturing cells in 3D due to their biocompatibility, high water
content, and tuneable physical and chemical properties. For neuronal cultures, the
pore structure of the hydrogel must be able to support neural cell bodies, which are
10–50 μm in diameter, and allow neurite extension (Antill-O’Brien et al. 2019).
Once a suitable biomaterial is identified, the biofabrication strategy has to be defined.
Prior to printing, 3D neural tissue can be manufactured via layering. Cell embedding
in gels and manual layering thereby allow studying cytocompatibility of hydrogels.
Printing of soft materials is often challenging. A major hurdle to 3D biofabrication of
such soft structures is their shaping into 3D structures with high spatial resolution to
achieve an anisotropically accurate mimic of the brain microstructure. Sacrificial
scaffolds, e.g., from gelatine, have previously been used to support soft gels like
0.5% alginate, which otherwise fall below the printable viscosity range. Usage of
this sacrificial scaffold improved cell survival in the hydrogel (Naghieh et al. 2019).
For scaffold-free 3D bioprinting, extrusion-based printing has mainly been
employed due to its economy, ease of use, and capability to print with high cell
density with a wide range of materials. Despite a small number of studies using rat or
hiPSC-derived neurons for extrusion-based bioprinting, one study should be
highlighted. Joung et al. (2018) developed a bioengineered spinal cord combining
bioprinting with 3D printed scaffolds in the only example of functional neurons with
extensive axon propagation from bioprinted neural precursor cells. Pre-differentiated
spinal NPC and oligodendrocyte progenitor cells from hiPSC were bioprinted in
precise alternating points in silicon channels. After 4 days, β-III tubulin-positive
axons spread throughout the channel, and after 14 days the cells were found to have
differentiated into mature glutamate-responsive neurons with synchronous
responses to K+ and glutamate (Joung et al. 2018). This method of a spinal cord
model could be applied to CNS neural tissue engineering.

This paragraph is not supposed to give a comprehensive overview of 3D
bioprinting of neural structures, yet should touch on the challenges of this rising
technique. 3D bioprinting of neural models is still in the early stages of development
and offers great potential for exquisite spatial bioink patterning to recapitulate the
microarchitecture of brain tissue. Although 3D bioprinted neural disease models
have not yet been developed, the potential advantages over animal models include
species- and patient-specific disease modeling. For more detailed information on
cells, materials, techniques, and readouts, the reader is referred to Antill-O’Brien
et al. (Antill-O’Brien et al. 2019).

1.5 CNS Disease Models

Improvement of the hiPSC technology allows to obtain and culture neurological
patient-specific hiPSC lines, which recapitulate molecular and cellular phenotypic
aspects of the respective disease. These offer a unique opportunity to generate
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physiologically relevant in vitro models to understand disease etiology and progres-
sion, as well as to support preclinical drug discovery. Genomically unaltered human
iPSC-derived neurons and astrocytes have been derived from Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral
sclerosis (ALS), and idiopathic autistic spectrum disorder (ASD) patients (Table 2),
to provide 2D and, most recently, 3D cultures reproducing features of these neuro-
logical diseases. In addition to patient-derived iPSCs, inserting genetic changes
manually into iPSCs can also generate disease models. Manipulating gene expres-
sion of LIS1, the most common gene mutated in patients with lissencephaly, and
using an on-chip organoid approach as an exciting example, allowed studying the
emergence of folding during in vitro development and the physical mechanisms of
folding reproducing pathogenesis of lissencephaly using organoids (Karzbrun et al.
2018).

In 2D cultures, patient-derived iPSCs are generally committed to differentiate
into neuronal monoculture representative of the affected cell type: in PD research
iPSCs are differentiated into dopaminergic neurons (TH-positive) functionally
characterized by dopamine decarboxylase and the dopamine transporter (Hartfield
et al. 2014), while cortical glutamatergic neuron or motor neurons are derived to best
represent AD or ALS features, respectively.

More recently, greater attention has been dedicated to both microglia (Haenseler
et al. 2017) and patient-derived astrocytes (Kondo et al. 2013; Qian et al. 2017;
Hsiao et al. 2015), due to the recognition of the relevance of glial cells in
contributing to disease initiation and progression. Similar to toxicity evaluation
described above, the aim here is to develop co-cultures, which take the complexity
of neuron-glia interactions into account, hence also considering inflammatory
responses, which have a high impact on the course of pathology (Haenseler et al.
2017). In addition, the presence of multiple cell type allows to address neuron-glia
cross-talk in drug discovery. The diversity of cell types in a single culture is also
retained in organoid models, which add a further step of complexity by respecting
brain cytoarchitecture.

A clarifying example on the potentiality of patient-derived stem cell models
comes from AD patients (for extensive review, see Arber et al. 2017). Extracellular
amyloid plaques composed of amyloid beta peptide (Aβ) and Tau protein intracellu-
lar neurofibrillary tangles are considered hallmarks of AD. Aβ is the product of β-
and γ-secretase processing of amyloid precursor protein (APP). Autosomal domi-
nant mutations in APP and alternative subunits of γ-secretase presenilin 1 and
2 (PSEN1 and PSEN2) have been detected in AD patients, implicating an altered
APP processing and Aβ imbalance in AD pathogenesis. Reprogramming cells
derived from patients with genetic predisposition to AD into cortical glutamatergic
neurons, cortical interneurons, and cholinergic neurons (Table 2) allowed to repro-
duce AD features like increased Aβ42:40 ratio and enhanced Tau phosphorylation
(Table 2). These models were then used to gain insight into biochemical
pathomechanisms of AD (Kondo et al. 2013), contribution of neurons and astrocytes
to pathophysiology (Kondo et al. 2013; Oksanen et al. 2017) and identify drug
targets potentially relevant in the progression of the disease. In these studies, also
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novel mechanisms like endoplasmic reticulum and oxidative stress were identified
(Kondo et al. 2013; Muratore et al. 2014). In addition, iPSCs derived from patients
carrying multiple genetic variants allow investigations of AD risk factors, i.e.,
linking mutations to increased risk of late onset AD (Duan et al. 2014; Young
et al. 2015; Huang et al. 2017; Schröter et al. 2016). The organization of genomically
unaltered iPSC-derived neurons in a 3D structure, thereby reproducing brain
cytoarchitecture, favors the retention of proteins secreted by cells that are lost in a
2D culture, like Aβ peptides. In 3D their local concentration is increased and
pathology better recapitulated (Raja et al. 2016). 2D and 3D models obtained from
iPSCs derived from AD patients have been used to investigate drug efficacy and
toxicity, so far targeting β- and γ-secretase with specific inhibitors (Yagi et al. 2011;
Shi et al. 2012; Kondo et al. 2013; Duan et al. 2014; Raja et al. 2016; Woodruff et al.
2013) and inflammation with nonsteroidal anti-inflammatory drugs (Yahata et al.
2011).

Although the models obtained from patients’ hiPSCs exhibit clear advantages,
their use to model aging and neurodegenerative diseases poses a relevant challenge
due to the fact that differentiation protocols mimic neurodevelopmental processes.
Indeed, derived cells retain molecular characteristics closer to the fetal than the adult
stage (Patani et al. 2012; Camp et al. 2015), which might limit the full development
of an AD model. For example, Tau isoform expression is tightly regulated during
development (Bunker et al. 2004), and the lack of formation of aggregated Tau in
non-manipulated patients’ hiPSCs might reflect the absence of the adult isoforms. In
general, this implicates that any disease phenotype has to be discriminated from
phenotypes of earlier developmental stages. So far this issue that represents a
possible limit in drug discovery has been solved by generating footprint-free triple
MAPT-mutant human iPSCs (García-León et al. 2018a), overexpressing mutant
PSEN1 (DE9) and APP (K670N/M671L plus V7171; Choi et al. 2014), or could
be overcome by direct reprogramming, thus skipping the intermediate step of hiPSC
(for details on this, see second to last paragraph of Sect. 1.1 of this chapter).

In the context of CNS pathologies recapitulated by an hiPSC approach,
neurodevelopmental and psychiatric diseases are worth a note. CNS cells derived
from patients by reprogramming allow to capture a complex genetic architecture of
diseases that are highly polygenic in nature, overcoming the difficulty to generate
genetically accurate animal models of psychiatric disorders. Patient hiPSC-derived
neural cells allow to dissect the gene network associated with features of altered
neurodevelopment that controls the phenotypic trait and the signaling pathways
involved (Mariani et al. 2015; Haggarty et al. 2016).

As listed in Table 2, patients’ hiPSCs replicate disease phenotypes to an extent to
represent clinically relevant features of the illness, thus providing human cellular
assays that may improve drug preclinical evaluation and translation of the results to
clinical trial in the process of drug discovery (Silva and Haggarty 2019). Clinically
relevant targets and phenotypes displayed in hiPSC-derived disease models may
drive the testing of candidate drugs selected on a hypothesis-driven screening or the
screening of large compound libraries for identification of novel molecules for their
ability to rescue disease phenotypes. In addition, the generation of large numbers of
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patients’ cell models representative of the heterogeneity of each disorder may
represent a strategy to identify patient subpopulations with specific responsiveness
to therapeutic agents. Finally, by interlinking a patient’s genetic background with
specific disease characteristics, hiPSCs apply to the concept of personalized medi-
cine, possibly allowing the development of personalized drug evaluation in the
future (Engle and Puppala 2013).

2 Summary and Conclusion

Animal models have been greatly contributing to our understanding of physiology,
mechanisms of diseases, and toxicity. Yet, they have limitations due to interspecies
variation, which determines the lack of information of the “human context,” and
deficiency in pathophysiologically relevant disease models. This deficiency has a
tremendous negative impact on the understanding of basic physiology, human
disease, mechanisms of toxicity, and the process of successful drug discovery.

Human iPSC-derived cells offer a platform with the unique advantage of
reproducing the “human context” missing in animal models, by preserving the
genetic and the molecular phenotype of donors. Forcing the differentiation of
hiPSC into cells of the nervous system and combining them in a 2D or 3D format
allows obtaining complex models suitable to investigate neurodevelopmental pro-
cesses and to reproduce neurodegenerative diseases with patient-derived cells. This
has the potentiality to drive the identification of molecular targets that may be
predictive for the evolution of specific human diseases as well as for beneficial
and/or adverse drug responses. Thus, with such cell platforms, screening assays can
be set up that are based on human-relevant targets and thus are useful for drug testing
and discovery with the hope of overcoming the low success rate of CNS drug
development due to poor clinical efficacy or elevated toxicity. Cell culture
standardization is mandatory in this process. Well-characterized and overall repro-
ducible cell systems that contain neural and immune cells of the CNS, are based on
standardized protocols and procedures to generate differentiated and mature cells
representative of different brain areas, and are able to address the fundamental
unanswered questions of drug discovery and toxicity are urgently needed.
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Abstract

Classical drug development is compromised by considerable clinical failure of
promising drug candidates after decades of costly preclinical work. Failure can be
because of previously unrecognized safety concerns or more commonly lack of
clinical efficacy. Classical drug discovery and safety pharmacology programs
rely heavily on well-established in vitro and preclinical animal models. The
availability of human pluripotent stem cells and the possibility to direct them
into any somatic cell type suggest that a paradigm shift in drug development may
be possible and timely, with the opportunity to test safety and efficacy of
candidate drugs on the human target cells and tissue. However, there is consider-
able uncertainty as to whether human models would only qualify as replacement
for well-established tools or add substantially more information to the preclinical
data package, to facilitate translation of more promising drug candidates into
clinical practice. This chapter provides an overview of tissue-engineered macro-
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scale heart muscle models for applications in drug discovery and safety
pharmacology.
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Cardiomyocytes · Heart · Phenotypic drug screens · Stem cells · Tissue
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Abbreviations

ABCF-I Activin A, BMP4, CHIR, and FGF2 followed by IWP4
ACTN2 Sarcomeric alpha-actinin 2
BMP4 Bone morphogenetic protein 4
CHIR99021 6-((2-((4-(2,4-Dichlorophenyl)-5-(4-methyl-1H-imidazol-2-yl)

pyrimidin-2-yl)amino)ethyl)amino)nicotinonitrile
CiPA Comprehensive in vitro proarrhythmia assay
CSA Cross-sectional area
DKK1 Dickkopf-related protein 1
EB Embryoid body
EHM Engineered heart muscle or engineered human myocardium
EHT Engineered heart tissue
ESC Embryonic stem cells
FBS Fetal bovine serum
FGF2 Fibroblast growth factor-2
FOC Force of contraction
FT Force transducer
GiWi Staged GSK and Wnt inhibition
GSK Glycogen synthase kinase
hERG Ether-à-go-go-related gene-related channels
hvCOC Human ventricular cardiac organoid chambers
hvCTS Human ventricular cardiac tissue strips
ICH International Conference on Harmonization of Technical

Requirements for Registration of Pharmaceuticals for Human Use
iPSC Induced pluripotent stem cells
IWP2 Inhibitor of Wnt processing and secretion 2 – N-(6-methyl-2-

benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]
pyrimidin-2-yl)thio]-acetamide

IWP4 Inhibitor of Wnt processing and secretion 4 – N-(6-methyl-2-
benzothiazolyl)-2-[[3,4,6,7-tetrahydro-3-(2-methoxyphenyl)-4-
oxothieno[3,2-d]pyrimidin-2-yl]thio]-acetamide

KLF4 Krüppel-like factor 4 (reprogramming factor)
KY02111 N-(6-Chloro-2-benzothiazolyl)-3,4-dimethoxy-

benzenepropanamide
MaPS Macro-physiological systems
MiPS Micro-physiological systems
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MYC Myelocytomatosis proto-oncogene (reprogramming factor)
MYH7 Myosin heavy chain beta
NT-proBNP N-terminal pro-B-type natriuretic peptide
OCT4 Octamer-binding transcription factor 4 (reprogramming factor)
PB Pole bending
SOX2 Sex-determining region Y-box 2 (reprogramming factor)
TdP Torsade de pointes
TNNT2 Cardiac muscle troponin T
VEGFA Vascular endothelial growth factor-A
Wnt Wingless and Int-1
Wnt-C59 Inhibitor of mammalian porcupine acyltransferase activity –

4-(2-methyl-4-pyridinyl)-N-[4-(3-pyridinyl)phenyl]
benzeneacetamide

XAV939 3,5,7,8-Tetrahydro-2-[4-(trifluoromethyl)phenyl]-4H-thiopyrano
[4,3-d]pyrimidin-4-one

1 Introduction

After typically decades of fundamental academic research, the most promising
therapeutic concepts are recognized and taken over by industry for the ultimate
translation into clinical practice (Spector et al. 2018). Once at the industry level, drug
development and in particular safety pharmacology testing are highly standardized.
Cell culture models and animal models expressing the drug target are at the core of
preclinical development. After a plausible mode of action has been experimentally
confirmed, safety pharmacology testing is the bottleneck for a further advancement
of promising drug candidates into clinical testing. Despite a wealth of knowledge as
to how to synthesize drug candidates with low clinical risk, it is the safety pharma-
cology units, which have the final say as to either promoting or rejecting new drug
candidates.

In cardiovascular drug development, a key safety concern relates to the blockade
of ether-à-go-go-related gene (hERG)-related channels, which can induce torsade de
pointes (TdP) arrhythmia and consequently sudden cardiac death. After the intro-
duction of the ICH (International Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals for Human Use) S7B and E14
guidelines, no newly introduced drugs failed in clinical practice because of the risk
of hERG-related TdP arrhythmia (Wisniowska et al. 2017). This demonstrates that
available test batteries are sufficient to evaluate hERG-related liabilities in preclini-
cal drug development. Aiming at safety pharmacological studies beyond hERG-
related issues, the more recent Comprehensive in vitro Proarrhythmia Assay (CiPA)
initiative aims at introducing “a new paradigm for assessment of clinical potential of
TdP that is not measured exclusively by potency of hERG block and not at all by QT
prolongation.” Data from multichannel patch clamp studies and in silico modelling
as well as confirmatory studies in human primary and pluripotent stem cell-derived
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cardiomyocytes are main fields of research of the CiPA consortium (Strauss et al.
2019).

As in vitro heart muscle models, human pluripotent stem cell (PSC)-derived
cardiomyocytes in 2D or 3D culture formats are particularly attractive, primarily
because they harbor an individual human genome, which encodes for the specific
human drug target, and secondarily because of available standardized protocols to
grow, maintain, manipulate, and analyze these cultures. A pivotal step toward the
introduction of human cardiomyocytes was the adoption of protocols for the deriva-
tion of embryonic stem cells (ESCs) from mouse (Evans and Kaufman 1981; Martin
1981) to non-human primate and eventually human (Thomson et al. 1998). This in
turn provided the ground for the development of induced pluripotent stem cells
(iPSCs), first in mouse (Takahashi and Yamanaka 2006) and then in human
(Takahashi et al. 2007), by making use of transcription factors known to be involved
in the maintenance of pluripotency, i.e., OCT4, KLF4, SOX2, and MYC or alterna-
tively OCT4, SOX2, NANOG, and LIN28 (Yu et al. 2007). Using appropriate
culture conditions, human iPSCs and ESCs have been confirmed as biologically
similar and, for the most part, interchangeable in drug screening applications. Given
the ethical concerns associated with the use of human ESCs, iPSCs are the most
logical choice for applications in drug development. The possibility to derive and
create iPSC models from any individual (healthy subject and patient) and apply them
as patient-in-the-dish model is another strong argument for the use of iPSCs. In
combination with genome editing, a powerful toolbox to individualize drug devel-
opment in rare disease indications, but also in non-communicable diseases without a
primary genetic cause, exists (Soldner and Jaenisch 2018).

After the first introduction of an undirected embryoid body differentiation proto-
col for the derivation of human cardiomyocytes from human embryonic stem cells
(Kehat et al. 2001), numerous serum-free protocols have been developed for the
derivation of cell populations highly enriched for ventricular-like cardiomyocytes
(Table 1). Subtle, but important, refinements of the protocols are, however, required
for every PSC line for optimal results. Purification can be supported by metabolic
selection as required, taking advantage of cardiomyocyte survival under glucose-
free/lactate-containing culture medium (Tohyama et al. 2013). Importantly, avail-
able protocols can be adapted to bioreactor cultures for scalable production of human
cardiomyocytes (Chen et al. 2015b). Note that for tissue engineering applications,
not cardiomyocyte purity, but the use of carefully optimized mixtures of
cardiomyocytes and stromal cells is advantageous (Tiburcy et al. 2017).

Applications of PSC-derived cardiomyocytes can be as (1) unstructured or
patterned monolayer cultures (Agarwal et al. 2013; Feinberg et al. 2007; Grosberg
et al. 2011; Lind et al. 2017; Ribeiro et al. 2015a, b; Stancescu et al. 2015);
(2) aggregate cultures, also known as cardiac bodies (Huebsch et al. 2016; Kelm
et al. 2004; Mathur et al. 2015); and (3) tissue-engineered formats, also referred to as
organotypic or organoid cultures (Boudou et al. 2012; Breckwoldt et al. 2017; Chen
et al. 2015a; Conant et al. 2017; Kensah et al. 2013; Li et al. 2018; Mills et al. 2017;
Nunes et al. 2013; Ronaldson-Bouchard et al. 2018; Schaaf et al. 2011; Shadrin et al.
2017; Soong et al. 2012; Tiburcy et al. 2017; Tulloch et al. 2011; Turnbull et al.
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2014). Tissue-engineered formats for applications in drug discovery and safety
pharmacology can further be distinguished in micro- and macro-physiological
systems (MiPS and MaPS (Meyer et al. 2019)).

This overview has a focus on tissue-engineered heart muscle MaPS. We define
MaPS by size (>1 mm to centimeter scale) and macroscopically visible contractility,
allowing for simple video-optic or organ bath analyses. Automation of MaPS
production, culture, and analyses is important to lower costs and facilitate high-
throughput applications in drug discovery. Acceptance by regulatory authorities as
potency assay would greatly support the consideration of MaPS in safety pharma-
cology studies. Of additional interest may be the application of iPSC-based and
potentially individualized MaPS in studies paralleling clinical trials to gather addi-
tional comprehensive organ-specific data (e.g., long-term efficacy and toxicity) and
validate or even enhance the knowledge base as to the mode of action associated
with drug candidates.

Table 1 Overview of protocols for the derivation of cardiomyocytes from human PSCs (all can be
applied in tissue engineering with or without addition of stromal cells)

Protocol Growth factors
Small
molecules

Cardiomyocyte
yield Reference

EB
differentiation

n/a (20% FBS) n/a 8% of EBs Kehat et al. (2001)

Growth
factor-
directed

Activin A, BMP4 n/a 30% MYH7+ Laflamme et al.
(2007)

Stage-specific
induction

Activin A, BMP4,
FGF2, DKK1,
VEGFA

n/a 50% TNNT2+ Yang et al. (2008)

Small
molecules
(GiWi)

n/a CHIR +
KY or
XAV
CHIR +
IWP4

98% TNNT2+
85% TNNT2+

Minami et al.
(2012), Lian et al.
(2012)

Chemically
defined

n/a CHIR +
Wnt-C59
CHIR +
IWP2

95% TNNT2+
88–98%
TNNT2+

Burridge et al.
(2014), Lian et al.
(2015)

ABCF-I Activin A, BMP4,
FGF2

CHIR +
IWP4

>90% ACTN2
+/TNNT2+

Tiburcy et al.
(2017)

EB Embryoid body, FBS fetal bovine serum, GiWi staged GSK and Wnt inhibition, ABCF-I
mesoderm induction with activin A, BMP4, CHIR, and FGF2 followed by cardiac specification
with IWP4.Growth factors: BMP4 bone morphogenetic protein 4, FGF2 fibroblast growth factor-2,
DKK1 Dickkopf-related protein 1, VEGFA vascular endothelial growth factor-A
Small molecules used in GiWi protocol: (1) Wnt activator – CHIR (CHIR99021) – a highly specific
glycogen synthase kinase (GSK)-3 inhibitor; (2) Wnt inhibitors, KY (KY02111), XAV (XAV939),
IWP2, IWP4, and Wnt-C59. Muscle-specific protein signatures used for the identification of
cardiomyocytes by flow cytometry: MYH7 myosin heavy chain beta, TNNT2 cardiac muscle
troponin T, ACTN2 sarcomeric alpha-actinin 2
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2 Macro-scale Heart Muscle Models for Drug Discovery

Several engineered heart tissue models have been introduced over the past 30 years
(selection of human MaPS in Table 2). Hydrogel-based models are most widely used
and typically formulated by mixing cardiomyocytes with supporting stromal cells in
collagen or fibrin. In the original collagen-hydrogel studies in rodent models,
Matrigel™ was essential to support spreading and formation of a functional syncy-
tium of neonatal rat cardiomyocyte preparations (Zimmermann et al. 2000). The first
human PSC-based heart muscle engineering studies adopted the use of Matrigel™
(Schaaf et al. 2011; Soong et al. 2012; Tulloch et al. 2011). Further protocol
refinements, mainly by applying defined cultures comprising extracellular matrix
producing stromal cells in fibrin- (Ronaldson-Bouchard et al. 2018) and collagen-
(Tiburcy et al. 2017) based models, allowed for an omission of Matrigel™ without a
compromise in function. These models can be scaled up and down according to the
respective need (Mills et al. 2019; Tiburcy et al. 2017) and are typically developed
under dynamic mechanical strain to simulate the hemodynamic load of the heart.
While proper mechanical loading, ideally to support auxotonic contractions, is an
essential requirement (Schaaf et al. 2011; Soong et al. 2012; Tulloch et al. 2011),
electrical stimulation may be applied in addition to support maturation (Nunes et al.
2013). Advanced cardiac MaPS exhibit a postnatal level of maturation (Ronaldson-

Table 2 Human macro-scale 3D (organoid) heart muscle models for applications in drug devel-
opment (cardiac MaPS)

Model Hydrogel Cardiomyocytes
Max
FOC Reference

Engineered heart
tissue (EHT)

Collagen
+matrigel

2 � 106/EHT 16 μN
(FT)

Tulloch et al.
(2011)

Biowire Collagen
+fibrin
+matrigel

150,000/
biowire

33 μN
(PB)

Conant et al.
(2017)

hvCTS (cardiac tissue
strips)
hvCOC (cardiac
organoid chambers)

Collagen
+matrigel
Collagen
+matrigel

1 � 106/hvCTS
1 � 107/hvCOC

0.7 mN
(FT)
1.26 mm
H2O

Turnbull et al.
(2014)
Li et al. (2018)

Engineered heart
tissue (EHT)

Fibrin 2 � 106/EHT 0.9 mN
(FT)

Ronaldson-
Bouchard et al.
(2018)

Engineered heart
tissue (EHT)

Fibrin
+matrigel

1 � 106/EHT 0.15 mN
(PB)

Breckwoldt et al.
(2017)

Engineered human
myocardium (EHM)

Collagen 1 � 106/EHM 2.5 mN
(FT)

Tiburcy et al.
(2017)

Note that this is a selection of human MaPS with applications in drug development and not a full
overview of tissue-engineered heart muscle models. Contractile force was assessed video-optically
by pole bending (PB) assays, force of contraction (FOC) measurements using force transducers
(FT), or the recording of hydrostatic pressure. Max. FOC (in mN) was either reported as indicated or
recalculated according to data (e.g., cross-sectional area in case FOC was presented as mN/CSA)
provided in the cited references
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Bouchard et al. 2018; Tiburcy et al. 2017), which is evident by the documentation of
the following structural and functional features: (1) the presence of sarcomeric
M-bands (identified by electron microscopy) and (2) a positive force-frequency
response (identified under isometric suspension conditions and electrical stimula-
tion; Fig. 1).

The development of T-tubules, often referred to as a hallmark of maturation,
appears to be primarily associated with cardiomyocyte volume, which increases with
postnatal heart development by hypertrophy in the by then mostly post-mitotic
cardiomyocytes. At the first 6 months after birth, cardiomyocyte volume has been
reported with ~2,500 μm3 (Bergmann et al. 2015). Cardiomyocytes in EHM
(engineered human myocardium) exhibit a similar length (~92 μm) but smaller
width (~13 μm; (Tiburcy et al. 2017)) in comparison with the reported dimensions
in the adult human heart (length/width: 60–150/20–35 μm (Severs 2000; Tracy and
Sander 2011)). With a volume of ~12,000 μm3 in EHM (Tiburcy et al. 2017), and an
anticipated maximal volume of 35,000 μm3 at the age of 25, cardiomyocyte in EHM
resembles cardiomyocytes in 5–10-year-old humans (Bergmann et al. 2015). This
observation is in line with the observed ultrastructural and function parameters
(Fig. 1) and further supports the interpretation that PSC-derived cardiomyocytes in
EHM formulations exhibit an advanced degree of maturation and “physiological”
hypertrophic growth behavior.

Contractile performance in heart muscle MaPS are best assessed by video-optic
recordings (Nunes et al. 2013; Schaaf et al. 2011; Thavandiran et al. 2020; Tiburcy
et al. 2020) or classical organ bath force of contraction measurements under isomet-
ric conditions ((Soong et al. 2012; Tiburcy et al. 2017; Tulloch et al. 2011); Fig. 2).
While video-optic recordings allow, in principle, for a high parallelization of data
acquisition and multimodal imaging of, for example, motion and fluorescing dyes or
genetically encoded reporters (e.g., for calcium and membrane voltage imaging),
organ bath assessments under freely adjustable preloading and electrical stimulation
remain the gold standard for comprehensive contractile phenotyping. Importantly,
engineered in contrast to bona fide heart muscle is not compromised by a significant
rundown in function and may be assayed for hours or days without compromise in
function, with in addition the opportunity to sample tissues during a screening

Fig. 1 Properties of postnatal heart muscle in engineered human myocardium. (a) Presence of
M-bands (indicated by white arrows) and (b) a positive force-frequency behavior recorded in
engineered human myocardium (Tiburcy et al. 2017)
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exercise for supplemental studies of, for example, structure, transcriptome, or
proteome. In addition, culture medium supernatant may be used to analyze the
effective soluble drug concentration, biomarker release (e.g., NT-proBNP, cardiac
troponin), or the metabolic state (e.g., lactate, glucose, fatty acids).

3 Pros and Cons of Tissue-Engineered Myocardium in Drug
Screening Applications

Bringing preclinical drug development closer to clinical reality is without doubt an
important aspiration. Whether established pluripotent stem cell models with their
intrinsic cellular immaturity can indeed bridge this gap and add more information
than available through standard models is commonly and rightfully questioned. It is
without doubt that advanced monolayer and tissue-engineered (organoid) cultures do
not fully resemble the patient heart, not only with respect to maturity but also as to
cellular heterogeneity and typical age-acquired deficiencies. However, it is also
absolutely clear that animal models, with their often fundamentally different cardio-
vascular pathophysiology and a common lack of specific drug targets, do not
resemble the human heart either. Despite these fundamental limitations associated

Fig. 2 Automated engineering and culture of heart muscle for applications in drug testing. Tissue
production can be automated by the use of dedicated culture dishes and combined with video-optic
recordings for phenotypic screens at a high throughput. Alternatively, engineered heart muscle may
be transferred into standard organ baths for analyses under defined isometric conditions (i.e.,
defined preload) and electrical stimulation for deep contractile phenotyping
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with animal models and the availability of human models, as of today there appears
to be little motivation to modify established drug development pipelines. A common
concern toward the use of iPSC-derived heart muscle models relates to the lack of
proof for a successful application in clinical risk assessment and the (additional)
costs associated with the introduction of another ex vivo model into classical drug
development pipelines. Nevertheless, the following advantages associated with the
use of tissue-engineered heart muscle at the MaPS scale should be considered:
(1) the possibility to engineer organotypic physiology (e.g., anisotropic syncytia
demonstrating positive force-frequency and force-preload as well as physiological
drug response (Ronaldson-Bouchard et al. 2018; Tiburcy et al. 2017)); (2) the
possibility to simulate clinical pathologies (e.g., induced heart failure phenotypes
either by neurohumoral overstimulation with phenylephrine or endothelin-1
(Tiburcy et al. 2017); (3) analyses of contractile parameters using highly
standardized and well-established methods (video-optic or even more so isometric
force measurements (Schaaf et al. 2011; Thavandiran et al. 2020; Tiburcy et al.
2020); and (4) higher reproducibility and stability as compared to native heart
muscle preparations. Obvious disadvantages include (1) limited experience as to
applications in industry drug discovery and safety pharmacology programs; (2) con-
sideration as in-between technology, i.e., more complex than cells, but not a human
heart; (3) lower degree of maturity as compared to the typically aged patient heart;
(4) higher costs apparently inhibitory for high-throughput drug discovery
applications; and (4) no agreement on or regulatory acceptance of a reference
method.

4 Conclusion

Tissue engineering of heart muscle at the MaPS scale was introduced at the end of
the last millennium. Compelling evidence as to an advanced degree of maturation
compared to monolayer cultures, the possibility of functional studies, and its use
with human pluripotent stem cell-derived cardiomyocytes has resulted in a steep
increase of reports (Fig. 3) using tissue-engineered heart muscle in fundamental
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studies of heart pathophysiology, target validation, drug screening, and tissue-
engineered heart repair. Although not yet broadly applied as standard model in
drug discovery and safety studies by pharma industry, there is a clear trend away
from flat cultures to 3D cultures not only in academia, and it only seems a matter of
time until tissue-engineered heart muscle models will be applied routinely in modern
drug development pipelines as advanced patient-in-the-dish models.
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Abstract

Lung diseases have increasingly attracted interest in the past years. The all-known
fear of failing treatments against severe pulmonary infections and plans of the
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pharmaceutical industry to limit research on anti-infectives to a minimum due to
cost reasons makes infections of the lung nowadays a “hot topic.” Inhalable
antibiotics show promising efficacy while limiting adverse systemic effects to a
minimum. Moreover, in times of increased life expectancy in developed
countries, the treatment of chronic maladies implicating inflammatory diseases,
like bronchial asthma or chronic obstructive pulmonary disease, becomes more
and more exigent and still lacks proper treatment.

In this chapter, we address in vitro models as well as necessary in vivo models
to help develop new drugs for the treatment of various severe pulmonary diseases
with a strong focus on infectious diseases. By first presenting the essential hands-
on techniques for the setup of in vitro models, we intend to combine these with
already successful and interesting model approaches to serve as some guideline
for the development of future models. The overall goal is to maximize time and
cost-efficacy and to minimize attrition as well as animal trials when developing
novel anti-infective therapeutics.

Keywords

Air-blood barrier · Air-liquid interface (ALI) · Biofilm · Cystic fibrosis ·
Deposition · Mycobacterium tuberculosis · Pseudomonas aeruginosa ·
Transepithelial electrical resistance (TEER) · Tuberculosis

Abbreviations

ALI Air-liquid interface
AT-I/AT-II Alveolar type I/II pneumocytes
CF Cystic fibrosis
CFBE41o- Cystic fibrosis human bronchial epithelial cells
CFTR Cystic fibrosis transmembrane conductance regulator
COPD Chronic obstructive pulmonary disease
ECM Extracellular matrix
EMA European Medicines Agency
FDA Federal Drug Administration
hAELVi Human alveolar epithelial lentivirus immortalized
hAEpCs Human alveolar epithelial cells
IPF Idiopathic pulmonary fibrosis
LCC Liquid-covered conditions
LPS Lipopolysaccharide
NHBE Normal human bronchial epithelial cells
PQS Pseudomonas quinolone signal
TB Tuberculosis
TEER Transepithelial (-endothelial) electrical resistance
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TNF Tumor necrosis factor
WHO World Health Organization

1 Introduction

The lung is exposed to potential harmful noxae with every taken breath. These
agents range from toxic particulate matter that can cause inflammatory disease to
pathogenic microorganisms causing infectious respiratory diseases. Although novel
inhaled medicines for the treatment of most of the inflammatory conditions are
available, they rather serve as a maintenance treatment to delay the progression of
the disease but not as a curative treatment (Strong et al. 2018). The recently approved
triple combination Trelegy Ellipta (GlaxoSmithKline, London, United Kingdom)
comprises an inhaled glucocorticoid, a long-acting muscarinic antagonist, and a
long-acting β2-agonist (fluticasone furoate/umeclidinium/vilanterol) for the treat-
ment of chronic obstructive pulmonary disease (COPD). This combination product
was more effective in reducing severe to moderate COPD exacerbations compared to
therapy with fluticasone furoate-vilanterol or umeclidinium-vilanterol (Lipson et al.
2018). However, while this triple therapy reduces inhaler use to one inhalation per
day as well as the rate of hospitalization due to COPD per patient, it remains
symptomatic and still does not cure the underlying disease.

In the case of infectious respiratory disease, the need for more effective treatment
options might be even higher. It is estimated that 33,000 deaths in the EU alone are
attributed to antimicrobial-resistant infections; on a global scale, the number
increases to 700,000 deaths (Cassini et al. 2019; O’Neill 2014). From all the isolates
that were reported to the European Antimicrobial Resistance Surveillance Network
(EARS-Net), a third of the Klebsiella pneumoniae isolates, a respiratory pathogen,
showed resistance at least against one antimicrobial group under regular surveil-
lance. Moreover, some countries reported that more than 10% of the Klebsiella
pneumoniae isolates showed resistance against carbapenems – a critically important
class of broad-spectrum antibiotics. The percentage of carbapenem-resistant isolates
is even higher for Pseudomonas aeruginosa (P. aeruginosa), a respiratory pathogen
that puts a high burden, especially on cystic fibrosis (CF) patients by forming hard to
target biofilms (ECDC 2018). Taken all together, respiratory conditions globally
account for four of the top ten causes of death estimated by the World Health
Organization (WHO) (World Health Organisation 2019).

To tackle these challenges, the inhalation route seems to have distinct advantages,
since pulmonary drug delivery can be utilized for local drug targeting inside the lungs
as well as for systemic pulmonary delivery (Newman 2017). For the treatment of
pulmonary microbial infections, higher local concentrations can be achieved – that in
turn would lead to higher bacterial eradication efficacy – further reducing the risk for
resistance development (Flume and VanDevanter 2014; Geller et al. 2002; Ho et al.
2019; Wenzler et al. 2016). The well-perfused respiratory mucosa is characterized by a
very thin diffusion barrier (~0.6 μm) that spans over a large surface area, which is in
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contact with air (~100 m2) (Crapo et al. 1982; Gehr et al. 1978). In combination with a
low local enzymatic activity that circumvents first-pass metabolism, systemic pulmo-
nary delivery can lead to a rapid onset of action and favorable plasma levels as it was
shown for inhaled insulin (Santos Cavaiola and Edelman 2014).

However, contrary to the proposed benefits of inhalation therapy, the success rate
for market approval of a compound in the respiratory therapeutic area is one of the
lowest in the industry (Mestre-Ferrandiz et al. 2012). Roughly one third out of
33 respiratory projects reported by AstraZeneca that entered clinical trials were
canceled due to lung-specific toxicity (Cook et al. 2014). This high attrition rate,
also within preclinical drug development and discovery, is one of the two major
hurdles slowing down R&D productivity, together with an increasing regulatory
demand relating to preclinical testing, to prevent harm to human trial participants
(Marx et al. 2016; Rovida et al. 2015). The strategy of employing more advanced
in vivo tests on laboratory animals, next to conventional in vitro testing of cell lines,
grown on titer plates in the context of preclinical safety evaluation did neither reduce
attrition rates nor did it raise predictivity of human toxicity for novel medicines
during the last years (Gintant et al. 2016; Leist and Hartung 2013). By now well-
known, as well as unknown species-species variations between humans and model
organisms (e.g., in lung anatomy, cellular composition, gene expression, or protein
synthesis) will further prevent the acquisition of new mechanistic knowledge about
human disease. There is a high need for interconnected reliable models of human
origin that comprise the different epithelia of the airway as well as the respiratory
mucosa together with noncellular barriers, like, e.g., mucus and pulmonary surfac-
tant, for advanced drug testing.

Advanced dynamic in vitro models of human origin are far away from and not
even aimed to replicate the full complexity of living organisms. Instead, their
purpose is to reflect certain (patho)physiological parameters or conditions that are
likely to be important when developing a pharmaceutical product. We want to give
an overview of such techniques from already available standard monocultures to
more complex co-cultures as well as promising developments, especially in the
context of infection research that may lead to innovative disease models for use in
preclinical drug development in the near future.

2 Morpho-functional Characteristics of the Lung

Looking at the three major outer human epithelia the skin, the gastrointestinal tract,
and the lung, their morphology complements their function. The skin protects the
human body from light, injuries, or infections by covering the body’s outer surface
like a coat. The gastrointestinal tract can be simplified as a tube that selectively
absorbs nutrients and eliminates solid waste in a directed motion. The lung, how-
ever, better compares to a bucket, i.e., input and output coming from the same
opening (mouth/nose). The respiratory tract is designed for effective gas exchange
during breathing and thus comprises different sections with distinct morphological
and physiological features (Fig. 1).
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Starting from the nasal region, continuing along the trachea, the conductive
airways of the central lung expand into the terminal respiratory region of the
peripheral lung. The trachea and the large bronchi are lined by a pseudostratified
epithelium that predominantly consists of columnar epithelial cells next to mucus-
secreting goblet cells that are both supported by basal cells (McDowell et al. 1978).
The bronchioles of the lower conducting airways are lined by a columnar ciliated
epithelium, containing some non-ciliated secretory cells, also known as club cells,
and still some individually dispersed goblet cells. With further ramifications of the
bronchiolar tree, the bronchioles develop into respiratory bronchioles until they
terminate into pulmonary acini. Each pulmonary acinus includes several alveolar
ducts that further extend into two to three alveolar sacs. Every alveolar sac contains
multiple alveoli, whereby a single alveolus, lined by alveolar epithelial cells,
represents the functional unit of gaseous exchange. In the human lung, the average
number of alveoli is estimated to be 480 million, thereby extending the surface of the
alveolar epithelium to more than 100 m2 (Gehr et al. 1978; Ochs et al. 2004).

Two morphological and functional distinct types of pneumocytes essentially form
the “air-blood barrier” of the alveolar epithelium: the squamous AT-I cells aid gas
exchange as well as the diffusion and transport of solutes, while the cuboidal AT-II
cells mainly contribute to immune responses, function as progenitors to AT-I
pneumocytes, and are responsible for the homeostasis of pulmonary surfactant.
AT-I cells are only part of 8% of all lung cells, but as a result of their average cell
surface of ~5,000 μm2, they contribute 95–98% to the internal surface area of the
human lung (Crapo et al. 1982). AT-II cells constitute ~18% of all cells in the human
alveolar region, but they only cover a surface area of 2–5% (Stone et al. 1992).

As a noncellular element, pulmonary surfactant covers the respiratory epithelium,
and particularly the alveoli, as part of the alveolar lining fluid – a thin aqueous layer
mainly composed of water and pulmonary surfactant. Consisting of ~90% lipids and
~10% proteins, including the bioactive surfactant proteins (SP-A, -B, -C, and -D),
pulmonary surfactant prevents the alveoli from collapsing by reducing surface
tension and also demonstrates antimicrobial activity (Goerke 1998).

Another noncellular element of mucosal epithelia is mucus, a mesh-like hydrogel,
mainly consisting of water (~95%), the high molecular glycoprotein mucin (~2–5%)
as well as smaller amounts of lipids. Mucus is secreted by goblet cells and lines the
upper airways (Boegh and Nielsen 2015). Particulate matter or microorganisms are
trapped in mucus and subsequently transported towards the pharynx by the so-called
mucociliary escalator, as a result of coordinated movement of the cilia located on the
apical side of the airway epithelial cells.

In the past few years, scientific interest in mucus, as well as lung surfactant, has
much increased. Insights about the complex biochemical as well as biophysical
characteristics of mucus led to drug delivery approaches like mucoadhesion or
mucopenetration, where utilization of the mucous structure in the case of the former
leads to sustained drug release or enhancement of permeability when favoring the
latter (Murgia et al. 2018). Pulmonary surfactant is considered to be the first layer of
interaction with airborne particles, forming a protein, and lipid-rich corona after the
first contact (Raesch et al. 2015). However, its systematic integration into respiratory
in vitro models is still erratic (Garcia-Mouton et al. 2019).
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Below the basal epithelial membrane, there is a plethora of different other cell
types present in the lungs. Interstitial fibroblasts mainly secrete components of the
extracellular matrix (ECM). Airway smooth muscle cells, for example, manage
airflow into the lung by changing the diameter of the bronchioles. A variety of
immune cells like dendritic cells, neutrophils, eosinophils, as well as B and T
lymphocytes or tissue and alveolar macrophages are involved in the control of
infections and inflammatory reactions. Three-dimensional in vitro co-culture
systems of epithelial cells together with endothelial cells and or immune cells have
already been developed in order to model some diseases and will be discussed in
some more detail below.

3 Requirements to Model the Lung In Vitro

3.1 Technical Prerequisites

The Danish physiologist Hans Henriksen Ussing enabled the first investigations of
transport processes across an epithelium with the introduction of the Ussing chamber
in the early 1950s, by mounting frog skin epithelium between two fluid-filled
chambers (Ussing and Zerahn 1951).

Continuing with excised bullfrog alveolar epithelium, this setting was used
among other also mammalian epithelia to study pulmonary transport in the years
after (Kim and Crandall 1983; Wall et al. 1993). Although the classic Ussing
chamber can still be purchased today, newer devices emerged that led to more
precise electrophysiological as well as diffusion measurements. The combination
of membrane-based inserts with such devices permitted the study of not only excised
but also reconstituted epithelial tissues of primary cells or cell lines cultured on
porous supports. Integration of these microporous membranes into multiwell plates
via embedded inserts (e.g., Transwell®) enabled the standardized culture of
polarized epithelial cells in vitro.

The epithelial division into an apical as well as basolateral compartment inside a
standard culture allows not only for convenient well-based permeability assays but
also for exposing the cells to air at the apical surface, as it is the case for the
pulmonary epithelia in vivo. Thus, when culturing pulmonary epithelial cells
in vitro, it is essential to differentiate between air-liquid interface (ALI) conditions
and liquid-covered culture (LCC) conditions. Cells cultivated under ALI conditions
show enhanced cellular differentiation and enable in vivo-like deposition of
aerosolized liquids or dry powders (Hiemstra et al. 2017; de Jong et al. 1994). On
the contrary, the critical advantage of cells cultured under LCC conditions is that
bioelectrical measurements can be performed inside the well without any changes to
the ion equilibrium. ALI cultures need to be transferred to LCC conditions before
any electrophysiological measurements across the epithelium are possible. Besides,
the time for the re-establishment of a steady ion equilibrium over such epithelia also
needs to be taken into account. Measuring the transepithelial electrical resistance
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(TEER) can be a predictor of the barrier properties of an epi- or endothelial
monolayer before conducting drug transport experiments.

As a widely accepted quantitative method, TEER values (typically: Ω cm2) are a
representative measurement of the tightness of intercellular junctions in the cell
monolayer, which develop because of cellular differentiation. The most applied
method to measure TEER in order to evaluate pulmonary epithelial integrity is the
combination of a chopstick electrode connected to an epithelial Volt-Ohm meter.
Based on a plethora of Ussing chamber experiments, the cellular resistances of
different gastrointestinal epithelia from multiple species were classified. Epithelia
with TEER values of ~2,000 Ω cm2 were considered to be “tight,” whereas “leaky”
epithelia displayed TEER values of 50–100 Ω cm2 (Powell 1981). For example,
monolayers of Caco-2 cells, a commonly used in vitro model of the gastrointestinal
tract, develop moderate TEER values of 150–400 Ω cm2 when cultured on perme-
able growth supports while still generating a barrier that restricts the diffusion of
hydrophilic substances (Artursson et al. 1993; Hidalgo et al. 1989).

Conversely, mammalian alveolar epithelia should be considered electrically tight,
since they need to develop a certain resistance to the flow of solutes and water pressing
from the vasculature. Based on this assumption, TEER values of ~2,000 Ω cm2 and
higher have been first described for monolayers of rat alveolar epithelial cells
cultivated on porous supports in vitro and later also for primary human alveolar
epithelial cells cultured in vitro (Cheek et al. 1989; Elbert et al. 1999; Kim et al. 1991).

3.2 Sources of Cells

When cultured in vitro, primary cells from human donors most closely resemble the
in vivo morphology as well as the physiology of pulmonary epithelia. Depending on
the cell type of interest, different isolation protocols have been described.

Bronchial epithelial cells can be isolated following bronchoscopic biopsies or
from lung tissue rejected for transplantation, respecting all biosafety and ethical
procedures (Bucchieri et al. 2002; Devalia et al. 1999; Galietta et al. 1998). Growing
the cells for 14 days in differentiation media supplemented with retinoic acid, on
collagen-coated permeable supports under ALI conditions, these cells display the
morphology of normal human bronchial airways (Karp et al. 2002). Commercial
sources are also available that comprise normal human bronchial epithelial cells
(NHBE; Lonza), MucilAir™ (Epithelix), or EpiAirway™ (MatTek) among others.

In case of the alveolar epithelium, procedures for the isolation of human AT-II
pneumocytes, as well as methods to support their trans-differentiation into AT-I-like
cells, have been established and steadily improved (Elbert et al. 1999; Fuchs et al.
2003). The most recent version of this protocol allows for the reliable isolation of
human alveolar epithelial cells (hAEpCs), that when cultured on permeable mem-
brane supports, develop a diffusive and electrically tight barrier characterized by
TEER values of ~2,000–2,500 Ω cm2 after ~7 days of culture (Daum et al. 2012).

Although primary cell cultures are considered the gold standard to mimic pulmo-
nary epithelia in vitro, limitations of these systems include their limited availability,
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donor-to-donor variations or potentially unknown pathologies from the donor. A
further problem is that primary respiratory epithelial cells can only be sub-cultivated
for a limited amount of passages, before they dedifferentiate (Zabner et al. 2003).
This restricted proliferative capacity of primary cells fostered the development of
continuous cell lines that can be expanded over several passages and conveniently
cryopreserved. Bosquillon et al. compared the permeability between two of the best-
characterized human bronchial epithelial cell lines, Calu-3 and 16HBE14o-, as well
as primary normal human bronchial epithelial (NHBE) cells, showing that all three
human bronchial epithelial models compared well with published absorption rates
from rat lungs measured in vivo (Bosquillon et al. 2017). They measured the
apparent permeability of seven test substances widely varying in size and
lipophilicity (imipramine, propranolol, metoprolol, terbutaline, mannitol, dextran,
and formoterol) on monolayers of either cell line as well as the absorption of the
same substances in ex vivo perfused rat lungs. Because of their widespread avail-
ability, the lung cancer cell line Calu-3 is for many groups now the first choice for
routine permeability screening studies.

To find a cell line applicable for in vitro permeation and absorption studies that
also reflects the characteristics of the human alveolar epithelium was more compli-
cated than for the bronchial epithelium. As a promising candidate, the human A549
cell line, initially isolated from a lung explant of an adenocarcinoma patient, was
considered to show AT-II-like properties because the formation of lamellar bodies
was initially reported (Giard et al. 1973; Lieber et al. 1976). Although later reports
questioned the suitability of A549 cells as a cell line model for primary AT-II cells, a
more recent study demonstrated that A549 cells cultured in Ham’s F12 culture
medium over 25 days showed a gene expression pattern that was similar to primary
AT-II cells (Cooper et al. 2016; Corbière et al. 2011; Swain et al. 2010). Unfortu-
nately, A549 cells are functionally deficient in tight junction formation. An elevated
permeability towards low molecular weight molecules, compared to Calu-3 or
16HBE14o- monolayers, thus excludes A549 cells from in vitro transport studies
at least for small molecules (Winton et al. 1998). Remarkably enough, the human
alveolar epithelial lentivirus immortalized (hAELVi) cell line shows the meaningful
synthesis of functional tight junction proteins Occludin and ZO-1. Further, these
cells develop an electrically tight barrier with more than 1,000Ω cm2 under LCC and
ALI conditions while preserving a permeability barrier for sodium fluorescein at the
same time (Kuehn et al. 2016). hAELVi cells seem to be so far a promising cell line
for the assessment of permeability and absorption studies of the alveolar epithelium.

A common limitation of the aforementioned cell-based models is that they mostly
comprise single epithelial cell types. In the context of inflammatory or infectious
disease, the interplay between several cell types and even pathogens is the root cause
of the condition. In addition, as described in the paragraphs above, also the culture
devices evolve alongside with increasingly advanced cell models (Fig. 2).
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4 Modeling Pulmonary Diseases In Vitro

4.1 Asthma

The airway epithelium is not only a barrier to inhaled materials or pathogens. It
indeed plays an active role in the host defense. Airway epithelial cells collaborate
with the immune system, with mucociliary clearance, production of lytic enzymes,
and antimicrobial proteins (Parker and Prince 2011). Asthma is an allergic disorder
that results from a combination of factors, for instance, a dysregulation of the
epithelial response towards environmental antigens and genetic susceptibility. A
main characteristic of asthma is the remodeling of bronchial airways, which includes
subepithelial fibrosis, hyperplasia of myofibroblasts, and myocytes. Moreover, an
increase in smooth muscle fibers, airway inflammation, mucus hypersecretion,

Fig. 2 Technological evolution of different cell culture devices. Standard culture dishes are limited
to submerged culture conditions and also prevent epithelial cells from polarization. The introduction
of well-based permeable growth supports (e.g., Transwell) not only enabled the growth of polarized
epithelial cells in vitro but also allowed permeability assays as well as the establishment of ALI
conditions. With the advent of advanced organs-on-chip devices even dynamic breathing motions
or fluid flow could be incorporated into epithelial in vitro models (organs-on-chip picture from
Artzy-Schnirman et al. 2019)
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infiltration of eosinophils, and T cells, as well as high angiogenesis, were also
observed (Blume and Davies 2013; Elias et al. 2003). Airway remodeling
contributes to the deposition of the ECM. The epithelial-mesenchymal transition
has been identified as the primary source of fibroblasts (Pain et al. 2014).

Several animal species have been used in asthma studies, for instance, mice, rats,
guinea pigs, cats, dogs, horses, and the fruit fly Drosophila (Kirschvink and
Reinhold 2008). Even so, those models fail to emulate human lungs, mainly due
to the lack of functional homology between the two species (Blume and Davies
2013). In addition, most of the animals do not spontaneously develop the disease
(Szelenyi 2000).

In humans, one of the main hallmarks in asthma is the remodeling of the airways,
leading to disease chronicity. Human airway remodeling thereby more closely
resembles allergic Th2 driven immune responses, whereas studies based on animal
models rather predicted a mechanism similar to inflammation (Parker and Prince
2011; Saglani et al. 2007). Therefore, the animal models of asthma have some
intrinsic limitations to be considered when translating results from animal models
to humans.

Access to human airway tissue has allowed for the development of several
experimental models to study human asthma, for instance, ex vivo and in vitro
models (Blume and Davies 2013). Ex vivo tissue explants are the simplest human
models for studying airway responses in a limited period, which is a limitation to
study mechanisms associated with chronicity. Precision-cut slices or bronchial
biopsies from asthmatic individuals have contributed to shed light on several
signaling pathways related to asthma, with the advantage that these models retain
the lung tissue architecture (Wohlsen et al. 2003). However, they have a short period
of viability and a compromised epithelial barrier.

In asthma, human cell culture models have mainly been used to study fundamen-
tal cellular responses or cell signaling pathways in the airways. The most straight-
forward and readily accessible cell models are those based on immortalized cell
lines. The bronchial airways have been studied through the use of established cell
lines. The SV-40 transformed human bronchial epithelial cell line BEAS-2B was
highly used in studies aiming to understand signaling pathways like inflammatory
responses or mitogen-activated protein kinase (MAPK) (Stokes et al. 2011; Tacon
et al. 2012). When it comes to the evaluation of epithelial barrier functionality upon
toxicological or drug transport studies, the SV-40 transformed human cell line
16HBE4o- or the human adenocarcinoma cell line Calu-3 has been widely used as
a model for the bronchial epithelium in vitro. Although representing an alternative
for in vivo studies, these cells fail to reproduce the genetic or epigenetic changes
observed in asthma patients. Primary human airway cells from healthy or asthmatic
individuals offer a possibility to study the disease-related mechanisms or pathways.
However, it is not easy to replicate in vivo conditions for in vitro primary human
airway cell cultures due to the lack of sophisticated elements like the basement
membrane, smooth muscle cells, and dendritic cells (McLellan et al. 2015).

The use of differentiated cells allows for better recapitulation of the in vivo
airways. Culture conditions such as ALI vs. LCC conditions play an essential role
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here, to mimic the in vivo situation as closely as possible. For example, once
cultured at ALI in the presence of retinoic acid, primary bronchial epithelial cells
differentiate into ciliated and mucus-producing goblet cells (McLellan et al. 2015;
Pezzulo et al. 2011).

The complex interaction between different cell types remains a challenge. Many
efforts have been made in the development of relevant co-culture models and 3D
tissue constructs that integrate not only cells but also an ECM. For instance, in vitro
co-cultures of primary human airway epithelial cells and human lung fibroblasts
showed differential expression of ECM components (e.g., collagen I, collagen III,
and hyaluronic acid). These components were higher expressed when human lung
fibroblasts were co-cultivated with airway epithelial cells from pediatric asthmatic
patients compared to the cultivation with airway epithelial cells from healthy
children intubated during anesthesia for elective surgery (Reeves et al. 2014).

4.2 Chronic Obstructive Pulmonary Disease (COPD)

Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammation
leading to progressive, non-reversible obstruction. COPD patients suffer from
emphysema and chronic bronchitis, too. The latter involves mucus hypersecretion,
hyperplasia of goblet cells and submucosal glands, and in the last stage, fibrosis
(Puljic and Pahl 2004). The leading causes of COPD are noxious gases and cigarette
smoke; lethality is high (Bodas et al. 2016). Although having some aspects in
common with asthma, like inflammation and progressive changes, COPD is quite
different. It involves different cells, like epithelial cells, macrophages, neutrophils,
and CD8 lymphocytes (Puljic and Pahl 2004; Saetta et al. 1999; Tetley 2002).
Finally, the epithelial cells, which are a physicochemical barrier to the external
environment, are also able to react with several inflammatory mediators (e.g.,
chemokines) in response to this injury (Puljic and Pahl 2004). Chemokines are
essential regulators of leukocyte homeostasis and inflammation and have a wide
range of effects, namely, cellular recruitment, activation, and differentiation (Sabroe
et al. 2002).

Animal models for COPD include the mouse, rat, and guinea pig. Even as such,
they are not ideal since they do not reflect all aspects of the clinical pathology,
especially the complex interaction between genetic and environmental stimuli
(Bucchieri et al. 2017). Significant species differences, like respiratory anatomy,
breathing patterns, and lung protein expression profiles impair the translatability of
results from animals to humans (Adamson et al. 2011). Initial studies using
monocultures of human alveolar epithelial cells could show that cigarette smoke
conditioned medium induces secretion of several important chemokines like IL-8,
MCP-1, RANTES, and IL-1 (Puljic and Pahl 2004). Although it was possible to
observe such endpoints with relatively simple A549 cultures, the role of immune
cells in this response was not yet addressed at that time.

Many efforts have been made towards more physiologically relevant in vitro
systems to analyze the effects of aerosols from e-cigarettes to the lung. Neilson et al.
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used the commercially available EpiAirway™ model (MatTek Corporation, Boston,
MA), which was implemented into an aerosol deposition robot (VITROCELL®) for
the controlled exposure to e-cigarette aerosol (Neilson et al. 2015). The authors
could show that it is possible to assess parameters like epithelial barrier integrity via
TEER measurements and toxicological responses to e-cigarettes, in combination
with an appropriate exposure system. Ex vivo explants and lung slices have also
been used. Together with primary cell-based models, explants and lung slices have
the advantage of carrying relevant genetic and epigenetic information that may
contribute to COPD (Bucchieri et al. 2017).

To overcome the limitations of a supporting membrane, epithelial cells and
fibroblasts may also be grown as a mixed 3D co-culture in Matrigel® to mimic the
epithelial-mesenchymal tropic unit of the bronchial mucosa. Upon exposure to
cigarette smoke extract, this bronchial mucosa model showed structural changes
similar to those observed in vivo, with the added benefit of allowing long-term
experiments (Bucchieri et al. 2017). Another important aspect is the dynamic
interstitial flow, which is missing in all in vitro models so far. This would allow
assessing, for instance, the impact of aerosol inhalation (e.g., drugs or environment
particulate matter) as well as the effect of cytokines and systemic medications in the
mesenchymal compartment. Such a model could be used to study not only COPD
but also asthma.

As COPD is a chronic disease, reproducible and robust in vitro models that allow
for long-term cultures and therefore suitable to assess such chronicity are of need.
The interplay between different cell types in COPD reinforces the demand for more
complex culture systems taking into account the interaction between different cells.
In vitro co-cultures of different cell types to study COPD have been established
(Mertens et al. 2017). Clinical and experimental studies have shown that during
chronic inflammation in respiratory diseases like asthma and COPD, the remodeling
of ECM components plays an important role in the impairment of lung function (Ito
et al. 2019). Changes that involve remodeling of different types of collagen fibers or
excess of fibronectin deposition are challenging to emulate with the current in vitro
models (Fig. 3).

Future models of COPD should reflect not only the inflammatory aspect of the
disease but also the infection scenario. Respiratory infections can lead to a higher
rate of acute exacerbations in COPD and asthma patients. As epithelial dysfunction
is a hallmark of most respiratory diseases, it is a key parameter to identify new
targets and thereby to develop therapeutic strategies in asthma and COPD pathogen-
esis. It is still a challenge to model those epithelial changes in vitro (Mertens et al.
2017). Advanced in vitro models like lung-on-a-chip and precision-cut lung slices
allow for mimicking the in vivo situation even closer. However, in the context of
asthma and COPD, the complex environmental challenges observed in vivo should
be combined with more physiologically relevant in vitro models to allow for a better
understanding of these diseases and thereby the development of more effective
therapies.
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4.3 Pulmonary Fibrosis

Pulmonary fibrosis is an inflammatory lung disease accompanied by poor quality of
life and high mortality rates. Triggered by several noxae and lesions, the bronchial or
alveolar epithelium can be inflamed. By still not wholly known mechanisms, lung
inflammation becomes unbalanced and chronic. The initial attraction of inflamma-
tion factors is followed by the migration of inflammatory cells like macrophages and
T cells. These further secrete cytokines like TGF-ß and IL-1ß that trigger fibroblasts
to emerge from the bone marrow or transdifferentiate from epithelial cells.
Myofibroblasts are releasing ECM proteins like fibronectin and hyaluronic acid for
wound closing. In the case of fibrosis, this step is dysregulated and leads to excessive
scarring of lung tissue (Wynn 2011). Pulmonary fibrosis can be caused by radiation,
medication (e.g., the anticancer drug bleomycin), or environmental noxae but also
by genetic disposition like in CF (further illustrated later). Many cases of pulmonary
fibrosis do not have a detectable cause and are called “idiopathic pulmonary fibrosis”
(IPF) with a life expectancy of about 3 years (Ahluwalia et al. 2014).

To date, only nintedanib (angiokinase inhibitor, which targets the receptors
crucially involved in angiogenesis and tumor growth) and pirfenidone (immuno-
modulatory drug blocking TGF-ß and TNF-α production) are approved as drugs to
treat IPF (Maher and Strek 2019). While animal models of bleomycin-induced
fibrosis have been instrumental to develop these new drugs based on specific
pathophysiological endpoints, the comparison of animal to human lungs still
remains limited (Borie et al. 2008; Nagano et al. 2006; Sato et al. 2016). This
holds not only true for the varying dimensions but also because of the different
cell types involved (Miller and Spence 2017; Sundarakrishnan et al. 2018). The
impact of nintedanib and pirfenidone on pulmonary fibrosis was compared between
3D ex vivo precision-cut lung slices and primary murine AT-II cells from mice
(bleomycin model) as well as lung slices from human origin (fibrosis induction by a
TGF-ß containing cocktail). Collagen1a1 and Fibronectin gene expression declined
following treatment with both drugs. Nintedanib additionally upregulated AT-II cell
marker expression and restored epithelial gene expression. Such ex vivo models are
close to reality but are cost- and time-intensive. Also, ethical questions have to be
carefully considered (Lehmann et al. 2018).

Sato and colleagues hypothesized that metformin acting via AMP-activated
protein kinase to reduce reactive oxygen species could also be used to lower the
TGF-ß-induced myofibroblast differentiation. Lung fibroblasts cultivated under
submerged conditions indicated reduced NOX4 expression. In mice, bleomycin-
induced fibrosis could be normalized with metformin. These findings demonstrate a
distinct in vitro/in vivo correlation (Sato et al. 2016), but so far only within the same
species. Moreover, tacrolimus inhibited TGF-ß-induced collagen synthesis in vitro
on a human fibroblast cell line derived from fetal lung (TIG-3-20) as well as in mice.
Both in vivo and in vitro, the TGF-ß type-1 (TßR-I) receptor was less expressed after
treatment (Nagano et al. 2006). Results in clinical studies are to be awaited.

Marinković and colleagues showed an attractive model focusing on the stiffness
of lung fibroblasts that originated from healthy humans or IPF diseased patients.
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Cells are seeded on polyacrylamide gel substrates with different stiffness grades to
analyze differences in contractile function. IPF fibroblasts show resistance to PGE2,
while less stiffness corresponds to a less contractile function of fibroblasts
(Marinković et al. 2013). This model could be beneficial also to test new drugs
that counteract fibrosis.

4.4 Bacterial Infections in the Context of Cystic Fibrosis
and Pneumonia

CF is a genetically inherited disease that affects the cystic fibrosis transmembrane
conductance regulator (CFTR) gene. This gene codes for the CFTR protein, a
chloride channel on the apical side of epithelial cells that regulates epithelial ion
and water transport. Misfolded CFTR channels cause less water being osmotically
attracted to the apical side due to lower chloride concentrations, leading to thicker
body fluids in these parts. This causes gastrointestinal problems, for example,
pancreas tubes, are blocked, leading to reduced release of pancreatic enzymes to
the digestive tract (Saint-Criq and Gray 2017). Most predominantly, thick body
fluids affect the bronchial region of the lung. In a healthy state, mucus is easily
transported by the mucociliary escalator. With the help of this mechanism, which
includes the synchronized beating of the cilia of bronchial epithelial cells in a layer
of thin fluid moving the mucus layer towards the throat, humans get rid of excess
fluids by coughing or swallowing. In CF, this process is disturbed; cilia cannot move
anymore due to the excess of thick mucus physically inhibiting the beating mecha-
nism (Bhagirath et al. 2016). Mucus plugs are the eventual result of it. These inhibit
not only normal breathing processes but are also an ideal niche for all sorts of inhaled
pathogens landing on it. The mucus is the scaffold for bacteria like S. aureus and
P. aeruginosa that can build biofilms. In CF, those biofilms persist when not
consequently being treated with antibiotics. The details for antibiotic resistance in
biofilms go beyond the scope of this chapter and can be found in other reviews
(Alhede et al. 2014; Høiby et al. 2010).

Antibiotics are usually administered orally, with higher severity grades, intrave-
nous delivery could be beneficial. In CF, most physicians prescribe drug regimens
intending to completely eradicate the bug after the first encounter, e.g.,
P. aeruginosa. With bacterial eradication in 70–80% of the cases within 1 month,
tobramycin inhalation is an effective treatment option (Elborn 2016).

In contrast to oral or parenteral administration, inhaled tobramycin has the
advantage to be more targeted, so more antibiotic reaches the site of infection in
the lung. Because systemic exposure is reduced, less adverse drug reactions are
induced (Maselli et al. 2017). Currently, tobramycin, aztreonam, colistimethate
sodium, levofloxacin, and amikacin are approved either by EMA or FDA or both
for anti-infective inhalation therapy in different pharmaceutical forms. Other
antibiotics active against P. aeruginosa as ciprofloxacin are currently in develop-
ment (Ho et al. 2019; McKinzie et al. 2019; Velino et al. 2019).
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In contrast to the underlying CF, pneumonia has no genetic cause. There are two
main types of pneumonia: hospital-acquired pneumonia and community-acquired
pneumonia (Torres et al. 2017). Patients suffering from community-acquired pneu-
monia are infected most commonly by bacteria like Streptococcus pneumoniae or
Haemophilus influenzae or by atypical bacteria like Mycoplasma pneumonia (Prina
et al. 2015). In severe cases, also P. aeruginosa is involved (Knapp et al. 2005).
Also, viruses can be causative. There are classic symptoms like cough, fever, and
dyspnea. If necessary, oral antibiotics against the most common bacteria are pre-
scribed, which are amoxicillin, tetracycline, or macrolides (Prina et al. 2015).

Tests for new anti-infectives require preclinical evaluation steps regarding the
safety and efficacy of the drug. In vitro models could support these studies and may
provide additional information, for instance, on the mode of action of the drugs
(Castellani et al. 2018). For any model, it is crucial to know the purpose of the
investigation. The following part refers to models testing the efficacy of anti-
infectives mainly in the context of CF, but also pneumonia. Models addressing
pneumonia more specifically are still based on animals.

4.4.1 Modeling the Treatment of Bacterial Infections on Cells In Vitro
There is a particular need for in vitro infection models to monitor the success of a
given treatment in an in vivo-like setting. The simple killing of bacteria grown on
abiotic surfaces (e.g., petri dishes or well plates) is the first step to identify novel anti-
infective drug candidates. Nevertheless, the following findings indicate that the
outcome of such tests is more comparable to the processes in vivo if host cells or
even secretions like mucus are present. Also, it makes a difference if a model is
aiming to better understand the cause and pathophysiological mechanisms of a
disease or to evaluate the efficacy and safety of drugs and delivery systems for the
treatment of such disease. This chapter deals with the latter case.

Before proceeding to drug testing in models that are more complex, like animals
or even in humans, it appears advisable to dissect the host response from antimicro-
bial efficacy. In this case, also host-bound factors other than cells may be essential
and act as barriers that delimit drug action and bioavailability. Müller et al. described
a model of human mucus inoculated with P. aeruginosa to test susceptibility to
tobramycin and colistin. Tobramycin in solution was significantly less effective in
mucus compared to buffer. In contrast, there was no difference when using colistin.
Tobramycin could not diffuse well through the biofilm formed in mucus, which
could explain the different susceptibility in the presence of mucus (Müller et al.
2018). This and other findings in mucus research underscore the importance of this
noncellular barrier (Co et al. 2018; Wheeler et al. 2019).

Furthermore, as pulmonary delivery means inhalation of aerosolized medicines,
ALI conditions are of interest and often not addressed in pertinent in vitro models.
To close this gap, the lab strain P. aeruginosa PAO1 was cultivated on Snapwell®

inserts for 3 days to form a mature biofilm. At ALI, these biofilms were then treated
with nebulized ciprofloxacin, mannitol, and their combination on a special insert
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mounted in a modified Andersen Cascade Impactor. The combined treatment with
ciprofloxacin and mannitol had better efficiency than the drug alone (Loo et al.
2018). This approach shows the possibility to display mature biofilms under ALI
conditions and allows to determine the efficiency of nebulized drug formulations.
Still, drug deposition methods have also to be improved for the deposition of dry
powder formulations and the inclusion of epithelial cells.

4.4.2 Experimental Conditions to Build an In Vitro Model of CF
First question of a CF model should be “Which factors are most important to include
in the model to get the answer to the question I have?” Bowler et al. answered this
question by cultivating A549 cells with the P. aeruginosa PAO1 bacteria growing in
the biofilm mode to show differences to planktonic infection. They used the
so-called Calgary biofilm device (Ceri et al. 1999), developed to test antibiotics
against biofilms. A549 cells grown on the bottom of multiwell plates in submerse
conditions were incubated either with planktonic bacteria or with 24-h-old biofilm
covered pegs. The data suggests that P. aeruginosa, in the planktonic state, shows a
higher internalization into A549 cells, than P. aeruginosa grown as a mature biofilm
on pegs. Cells that were exposed to planktonic P. aeruginosa, however, showed less
IL-8 release, than cells exposed to P. aeruginosa biofilm grown on pegs. Further-
more, planktonic bacteria caused more cell death compared to biofilms (Bowler et al.
2014). Even though the assay is quite simple, it contains already several essential
components: Epithelial lung cells, a biofilm of a well-known bug of CF patients
causing death, and, most importantly, the model cover both cell response and
bacterial response. The disadvantages are that A549 cells are not bronchial but
alveolar epithelial cells and do not feature any of the CFTR mutations. Also, in
submerse cultivation in a standard multiwell plate, these cells do not polarize, and
typical lung functions are not displayed. Nevertheless, this model could be used as a
platform to test drugs as the Calgary biofilm device has already shown.

4.4.3 Testing Drug Efficacy on Infected Cell Lines
Testing antimicrobial activity on bacteria grown on abiotic surfaces (i.e., plastic)
might be useful for fast and efficient drug screening, but relevant host factors cannot
be analyzed. Therefore, many research groups aim to combine drug testing on
microorganisms together with mammalian cells. Modeling host-pathogen-drug
interactions becomes possible by testing on infected host cells, which asks for
applicable and reasonable culture conditions. The following part gives some
examples as well as advice on modeling the infected lung and treatments thereof.

Biofilms form in vivo by assembling microorganisms on specific surfaces,
including mammalian cells. The O’Toole laboratory in Dartmouth started to mimic
this process using the CF human bronchial epithelial cell line CFBE41o- that
contains the ΔF508 deletion to be found in CF. Using submerse cultures in either
static mode or in a flow cell chamber, they generated a model to be stable at least for
up to 8 h after P. aeruginosa infection by supplementation of cell culture medium
with arginine (Anderson et al. 2008). Due to the increased iron amount in ΔF508-
deleted cells, biofilm formation is enhanced 1,500-fold. Antibiotic resistance
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increased by 25-fold compared to biofilms on plastic, and the bactericidal effects of
clinically used anti-infectives (tobramycin, ciprofloxacin, and imipenem) in clini-
cally relevant concentrations declined (Moreau-Marquis et al. 2008, 2010).

The model developed by the O’Toole lab was used repeatedly after that to test
various drugs. First, Anderson et al. proved that Pseudomonas quinolone signal
(PQS) biosynthesis and type III secretion system are downregulated following
tobramycin treatment. Pre-treated bacteria had lower virulence compared to not
pre-treated bacteria in terms of lactate dehydrogenase release of mammalian cells.
Yu et al. could show that aztreonam was less active than tobramycin, and no synergy
was observed. Nevertheless, results can vary when using clinical isolates instead of
the laboratory strain PAO1 (Yu et al. 2012). In the O’Toole model, the novel orphan
drug ALX-109 (Alaxia, Lyon, France) composed of iron-binding lactoferrin and
bactericidal hypothiocyanite (OSCN�), a component of the innate immune system
which is deficient in CF, was proven to be synergistic with tobramycin and
aztreonam on PAO1 as well as on clinical isolates (Moreau-Marquis et al. 2015).

Nevertheless, the inclusion of epithelial cells is still the critical factor in such
models as nicely shown by Price and colleagues. Co-addition of mannitol and
tobramycin showed enhanced killing on an abiotic surface, yet this was not observed
in the described biofilm model when exposing the PA14 strain and various clinical
isolates (Price et al. 2015). To combat drug resistance, also antimicrobial peptides
have attracted interest. Lashua et al. tested engineered cationic antimicrobial
peptides on P. aeruginosa biofilm grown on CFBE41o-. The substance WLBU2
proved to be synergistic with tobramycin, ciprofloxacin, ceftazidime, and
meropenem but not with colistin (Lashua et al. 2016).

In ALI grown cultures of primary human bronchial epithelial cells from CF
patients and CFBE41o- cells, nitrite was shown to reduce biofilm amount and
worked additionally with colistin (Zemke et al. 2014). The findings from ALI
cultures should translate to clinical settings of a developing biofilm, yet the drug
efficacy on a mature biofilm remains open.

Because of the relevance of fungal infections in CF, there is the need for testing
also antifungal drugs as well in CF models. Seidler et al. published a protocol to
transfer Aspergillus fumigatus on CFBE41o- and HBE cells and the ability to grow
biofilms on it. The authors reported a higher MIC of a variety of antifungal drugs on
A. fumigatus grown on plastic surfaces than on cells (Seidler et al. 2008).

Taking back the initial idea of building models for drug testing on infected cells,
the alveolar A549 cell line is still a valuable tool. In the present example, A549 cells
were co-cultured together with U937 human monocytes. On submerged co-cultures
with P. aeruginosa PAO1, the efficacy of bacteriophages PEV2 and DMS3 was
tested. While the release of cytokines IL-6 and TNF-α was increased with incubation
of PEV2 only, DMS3 could preserve cell viability after up to 24 h, PEV2 only to a
much lesser extent (Shiley et al. 2017). Even though this model does not feature CF
cells, it is an example of an easy setup treatment model to test new treatment options
like the bacteriophage therapy, which could be a future option to treat lung
infections.
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In vitro models featuring mammalian cells give a good insight into host response.
Nevertheless, there are also investigations on comparing these models with animal
trials. Cory et al. were interested in dissecting the role of azithromycin in improving
lung function, e.g., in CF. Azithromycin decreases inflammation by polarizing
macrophages. Therefore, the authors build a co-culture model consisting of mouse
fibroblast and macrophage cell lines in submerged conditions. They first stimulated
their model with IFNγ and then added heat-inactivated P. aeruginosa or LPS to
simulate bacterial infection. These findings were compared to mice infected and
treated with azithromycin. Azithromycin increased fibronectin (mammalian glyco-
protein of extracellular matrix) and ECM degrading matrix-metalloproteinase
9 (MMP-9) levels in vitro, whereas both levels were decreased mice (Cory et al.
2013). The human-based in vitro model provides additional insight into the host
response and could be beneficial in testing drugs.

A brief overview of the different setups for testing drugs on infected in vitro
models gives Fig. 4.

4.5 Tuberculosis

Tuberculosis (TB) is still a significant infectious disease worldwide, killing over 1.8
million people every year. Moreover, over 10.4 million new individuals are infected
with Mycobacterium tuberculosis per year, and nearly 2 billion people worldwide
have the latent form of TB (World Health Organisation 2019). This alarming data
reinforce the urgent need for better therapies to cure this disease and to overcome the
challenges of bacterial resistance. The latency stage is an essential part in several
diseases, in which the individual asymptomatic state is closely correlated to the host
immune response (Fonseca et al. 2017). The bacteria can persist in the organism for
several years without causing clinical disease. In general, the latent mycobacterium
is characterized by slow growth in vitro, a downshift of metabolic pathways,
inability to be cultivated on solid media, and resistance to antimycobacterial agents
(Alnimr 2015). While immune cells like dendritic cells, T and B cells, and
eosinophils can be found in so-called granulomas and participate in the

Fig. 4 Graphical representation of different methods to model infection in vitro. (a) Infected
mucus in a standard well (Müller et al. 2018), (b) ALI deposition of anti-infectives on biofilm
grown on blank filter inserts (Loo et al. 2018), (c) biofilm on PEG infecting indirectly epithelial cells
in medium (Bowler et al. 2014), (d) early biofilm grown from planktonic infection of epithelial cells
on filter inserts (e.g., Moreau-Marquis et al. 2008, and others)
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inflammation, macrophages are still the main protagonist of this enigmatic immuno-
logical structure (Pagán and Ramakrishnan 2018). Tuberculous granuloma can
undergo necrosis leading to patient morbidity and transmission of the bacteria
(Grosset 2003).

Our understanding of TB is largely based on animal models; even so, the
translation of findings in those models is restricted due to the species-specific
responses, and it is challenging to establish latent TB in animal models (Fonseca
et al. 2017). These factors reinforce the need for suitable human-based models for
TB that allows us to understand the mechanism of control and disease progression
and thereby be able to develop target medicine or vaccines. The animal models used
in TB research range from zebra fish to nonhuman primates; between those, the
mouse is the leading model (Gupta and Katoch 2005). However, the mouse is not a
natural host for M. tuberculosis and thereby fails to adequately reflect human
immunity to TB, in particular as it does not form typical granuloma, a hallmark of
M. tuberculosis in the lung (Fonseca et al. 2017). Their role, however, may vary and
be both protective and pathogenic (Pagán and Ramakrishnan 2018).

Several efforts have been made to develop cell culture systems of tuberculous
granulomas, which are characterized by a caseous center and can become necrotic or
fibrotic; such a caseous center is surrounded by myeloid and lymphatic cells (Pagán
and Ramakrishnan 2018). Kapoor and colleagues developed a 3D model of
M. tuberculosis dormancy in a collagen matrix (Kapoor et al. 2013). Human
peripheral blood mononuclear cells are embedded into an ECM to allow the forma-
tion of 3D structures and granulomatous aggregates in response to virulent
M. tuberculosis. This model nicely demonstrates the development of
M. tuberculosis latency and reactivation once immunosuppressed with antitumor
necrosis factor-alpha (anti-TNF-α), which makes it a useful tool to understand the
host-pathogen interaction during latency. However, the limitation of this model is
the low-throughput capability and the challenge to add further cells to allow for a
dynamic model. Parasa and colleagues developed a second model by using an
existing human in vitro lung tissue model and infected it with M. tuberculosis
(Parasa et al. 2014). This model is based on a permeable filter membrane containing
a collagen matrix with a human fibroblast cell line, primary macrophages, and a
human epithelial cell line. The cells are cultured at ALI, and the infection is done
with an infected macrophage, which carries M. tuberculosis working as “Trojan
horses.” The limitation of such a model, however, is the absence of immune cells like
lymphocytes or neutrophils and the relatively low-throughput capacity. The same
restriction is valid for organoid models, which so far have not been used to study
lung infection (Fonseca et al. 2017).

The three current challenges in TB are the development of better vaccines,
diagnostics tools, and therapies. The models described above still leave considerable
room for improvement to address the complexity of chronic host-pathogen
interactions. M. tuberculosis is predominantly a human pathogen that has a
prolonged coevolution period with humans of approximately 70,000 years
(Lienhardt et al. 2016). Therefore, an advanced human in vitro model that mimics
the main features of human tuberculosis over a more extended time period would be
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of high relevance, not only for understanding the fundamental biological processes
of the disease but also for testing new diagnostic, therapeutic, and vaccine
interventions (Elkington et al. 2019). Strategies like vaccination ask for models
that mimic both innate and adaptive immune responses. Effective models as drug
development tools are not aimed to be as complex as possible, but instead are aimed
to reduce the (patho)physiological complexity to the key events related to TB
in vivo.

5 Outlook

Cell and tissue models of the human air-blood barrier for testing orally inhaled drugs
against inflammation and infection require air-liquid conditions and must allow for
the controlled deposition of aerosol medicines. The use of permeable supports (e.g.,
Transwell®) allows growing monolayers of polarized epithelial cells with functional
tight junctions. Transepithelial electrical resistance (TEER) is a readily measurable,
but important biophysical readout for epithelial barrier function, because it rapidly
drops upon pathophysiological changes, like inflammation or in the course of
bacterial infections. Vice versa, its restoration may be used as an indicator to
evaluate some positive drug effects. Including macrophages or other immune cells
in more complex 3D co-cultures allows to address additional factors, like e.g.,
epithelial transmigration, phagocytosis, or cytokine release.

Further expanding these models to additional cell types (e.g., endothelial or
smooth muscle cells) may make them particularly useful for testing and evaluating
the mechanism of action of novel drugs against COPD or pulmonary fibrosis.
Expanding these models to study bacterial or viral infections requires to additionally
introduce such pathogens into mammalian host cell cultures. As bacteria grow much
differently in absence than in the presence of noncellular host factors, like e.g.,
mucus or surfactant, it is evident that such elements are highly relevant to be
included as well. Although technically demanding, it appears as possible to identify
experimental conditions under which, e.g., biofilm-forming bacteria can be grown
on top of mucosal cell (co-)cultures for several days. Measuring how the pathogens
can be kept under control or eventually eradicated by repeated administration of
novel anti-infective modalities (e.g., antibiotics, patho-blockers, or nanocarriers of
the same) will provide valuable readouts regarding the efficacy of such new investi-
gational drugs. Monitoring host parameters like epithelial barrier function, cytotox-
icity, or cytokine release may complement these data and also provide relevant
information regarding the safety of such candidates. Animal models of chronic
pulmonary infections are challenging to set up, therefore scarce and moreover,
often not truly reflecting the pathophysiological situation in patients at all. Advanced
human-based in vitro models would therefore not only be an alternative to animal
testing but would also enable scientists to generate relevant preclinical data where
adequate animal models are not available or even not existing.
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Abstract

Investigative skin biology, analysis of human skin diseases, and numerous
clinical and pharmaceutical applications rely on skin models characterized by
reproducibility and predictability. Traditionally, such models include animal
models, mainly rodents, and cellular models. While animal models are highly
useful in many studies, they are being replaced by human cellular models in more
and more approaches amid recent technological development due to ethical
considerations. The culture of keratinocytes and fibroblasts has been used in
cell biology for many years. However, only the development of co-culture and
three-dimensional epidermis and full-skin models have fundamentally
contributed to our understanding of cell–cell interaction and cell signalling in
the skin, keratinocyte adhesion and differentiation, and mechanisms of skin
barrier function. The modelling of skin diseases has highlighted properties of
the skin important for its integrity and cutaneous development. Examples of
monogenic as well as complex diseases including atopic dermatitis and psoriasis
have demonstrated the role of skin models to identify pathomechanisms and drug
targets. Recent investigations have indicated that 3D skin models are well suitable
for drug testing and preclinical studies of topical therapies. The analysis of skin
diseases has recognized the importance of inflammatory mechanisms and
immune responses and thus other cell types such as dendritic cells and T cells
in the skin. Current developments include the production of more complete skin
models comprising a range of different cell types. Organ models and even multi-
organ systems are being developed for the analysis of higher levels of cellular
interaction and drug responses and are among the most recent innovations in skin
modelling. They promise improved robustness and flexibility and aim at a body-
on-a-chip solution for comprehensive pharmaceutical in vitro studies.

Keywords

Atopic dermatitis · Congenital ichthyosis · Cytokines · Drug delivery ·
Fibroblasts · Gene knockdown · Induced pluripotent stem cells · Keratinocytes ·
Langerhans cells · Macrophages · Protein replacement · Psoriasis · Reconstructed
human epidermis · Reconstructed human skin · Skin barrier · Skin equivalent ·
T cells

Abbreviation

AD Atopic dermatitis
ARCI Autosomal recessive congenital ichthyosis
ATRA All-trans retinoic acid
dPG Dendritic polyglycerol
ECVAM European Centre for the Validation of Alternative Methods
EDC Epidermal differentiation cluster
ETR Etanercept
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H/E Hematoxylin/eosin
HUVEC Human umbilical vein endothelial cell
iPS cell Induced pluripotent stem cell
OECD Organisation for Economic Cooperation and Development
pNIPAM Poly(N-isopropylacrylamide)
RAMBA Retinoic acid metabolism blocking agents
RhE Reconstructed human epidermis
RhS Reconstructed human skin
TLR Toll-like receptor
tPG Thermoresponsive polyglycerol

Gene Symbols

ABCA12 ATP binding cassette subfamily A member 12
ALOX12B Arachidonate 12-lipoxygenase, 12R type
ALOXE3 Arachidonate lipoxygenase 3
CERS3 Ceramide synthase 3
FLG Filaggrin
KRT14 Keratin 14
LCE3B Late cornified envelope 3B
LCE3C Late cornified envelope 3C
LOR Loricrin
NIPAL4 NIPA like domain containing 4
PSORS4 Psoriasis susceptibility 4
TGM1 Transglutaminase 1
TMEM45A Transmembrane protein 45A

1 Introduction

The study of organ development, as well as the investigation of diseases and
identification of drug targets, requires the availability of comprehensive model
systems that are able to recapitulate reproducibly the developmental and physiologi-
cal milestones. This has long been done with cells cultured in vitro and with animal
experiments. Regarding the skin, which is the largest and among the most exposed
human organs, animal models were used, for instance, to analyze irritation from
chemical exposure and characteristics of complex diseases affecting the skin since
only certain aspects of underlying mechanisms could be analyzed in a monolayer
cell culture system. While animal models are still valuable and needed for specific
studies, their use has been strictly reduced and partly banned in recent years for
technological, ethical, and financial reasons. Skin structure and physiology are rather
different between humans and rodents, which limits the suitability of rodent models
for the characterization of pathological mechanisms in cutaneous biology. More-
over, the ban of using animal tests for the assessment of cosmetic products and their
ingredients, which was established in the UK in 1998 and across the EU in 2013, has
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strongly increased the need for alternative methods. Such limitations resulted in the
development of co-culture and more and more complex three-dimensional systems
that were able to replicate, at least to some extent, the physiological context of the
human skin.

2 History

The modelling of skin diseases in vitro is an old perspective for researchers in
dermatology. Still, it naturally and progressively took benefit from the long process
that led to the more and more sophisticated development of skin models, most
usually based on cultured cells and tissue reconstruction. Whilst one of the first
steps has been dermal reconstruction based on the immediate and natural organiza-
tion of collagen components in an extracellular matrix produced by interacting
fibroblasts (Bell et al. 1979), next steps soon involved epidermal keratinocytes,
which were seeded onto dermal components in order to reconstitute a kind of living
skin (Bell et al. 1983). Such models opened almost immediately new ways to study
cutaneous diseases by taking advantage of the controlled culture conditions (Saiag
et al. 1985).

In the field of toxicology, the emerging availability of innovative tools to
reconstruct skin in vitro rapidly became a strong incentive for the development of
alternative procedures devoted to replace and reduce the use of laboratory animals.
More simple to produce, and thus cheaper than full-thickness living skin associating
dermal and epidermal tissues, human epidermis reconstructed solely by cultured
keratinocytes grown over a porous membrane or a filter (Rosdy and Clauss 1990)
became rapidly recognized as suitable for essential cutaneous toxicology. Indeed,
reconstructed human epidermis (RhE) produced in vitro in large numbers provides
materials that satisfy the ethical expectations expressed in many countries and
represent validated alternatives with strong potentials for prediction of harmful
characteristics of chemicals (Alépée et al. 2010). Evaluating corrosive, irritant, and
even sensitizing properties of compounds by means of RhE became a reality
(Coquette et al. 1999, 2003) that triggered a collaborative open-source dissemination
of knowledge in tissue reconstruction and initiated fine analysis of this material
(Gazel et al. 2003; Poumay and Coquette 2007; Poumay et al. 2004). RhE models
are nowadays available in a ready-to-use format from commercial sources like
SkinEthic™ (Episkin) or EpiDerm™ (MatTek), to name a few. They can be also
produced rather easily with the help of a do-it-yourself kit offered by CELLnTECH.
RhE production is possible using cultured keratinocytes and following published
procedures provided as part of the initiative to share protocols and improvements
intended to allow in-house autonomy and flexibility. These approaches are
appreciated by researchers in skin toxicology, skin pharmacology, and dermatology
(De Vuyst et al. 2014; Frankart et al. 2012; Mewes et al. 2016).
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RhE is valuable as it displays the stratification of the epidermis with a functional
epidermal barrier; it lacks a dermal equivalent and the important interaction between
keratinocytes and fibroblasts (Fig. 1). Organotypic co-culture systems have been
aimed at combining a dermal extracellular environment, potentially containing
fibroblasts, and an epidermal equivalent of differentiating keratinocytes, either
HaCaT cells or primary human keratinocytes (Stark et al. 1999, 2004). Characteri-
zation with hematoxylin/eosin (H/E) and antibody staining identified the replication
of layered epidermis in these models. Approaches with collagen matrices and
de-epidermized dermis demonstrated the importance of stabilized dermal structures
and interaction between fibroblasts and keratinocytes for the development of regular
epidermal stratification, barrier function, and improved lipid synthesis
(El Ghalbzouri et al. 2002a, b; Stark et al. 2006). Three-dimensional full-thickness
skin models with a dermis equivalent populated with fibroblasts and an epidermal
equivalent made of keratinocytes (Fig. 1) are now available for a range of
applications including studies of epidermal homeostasis, skin absorption and pene-
tration, corrosion, irritation, wound healing, and drug testing. Studies have shown
that epidermal barrier function is diminished in these models compared to human or
pig skin but self-consistent and well suitable for the investigation of pathogenic
changes of barrier activity (Ackermann et al. 2010; Batheja et al. 2009; Schäfer-
Korting et al. 2006; Thakoersing et al. 2012). Several full-skin models have now
been marketed and are commercially available, such as EpiDermFT™ (MatTek),
T-Skin™ (Episkin), and Phenion® FT (Henkel). Commercial systems have been
validated for several applications (Pfuhler et al. 2020), including skin absorption
(OECD TG 428), corrosion (TG 431), and irritation (TG 439) following guidelines

Fig. 1 Examples of skin
models characterized with
hematoxylin/eosin staining.
(a) Normal human skin
obtained by skin biopsy. (b)
Reconstructed human
epidermis (RhE). (c) Full-
thickness skin model
(reconstructed human skin,
RhS) with epidermis
equivalent and fibroblast-
populated dermis. (d) Full-
skin model with MUTZ-
derived Langerhans cells
integrated into the epidermis
on a fibroblast-populated
collagen matrix. Langerhans
cells were stained with
HLA-DR
immunohistochemistry.
Obtained from Rodrigues
Neves and Gibbs (2018) under
Creative Commons license
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of the Organisation for Economic Cooperation and Development (OECD). Model
systems have been optimized for reproducibility and predictability; however, they
still show some differences between themselves regarding morphology and differ-
entiation and they might have to be tested and compared for their use for more
specific applications.

3 Monogenic Diseases

3.1 Monolayer Versus Three-Dimensional Cultures

An early interest and a major application of in vitro skin models is the investigation
of skin diseases. Cell cultures have been used to study cellular features and responses
to drugs. Monogenic diseases that affect primarily a single cell type seem to be
straightforward for the analysis in vitro. Intriguingly, culturing a cell type underlying
the clinical phenotype, namely keratinocytes or fibroblasts, would provide a fast and
elegant technique to obtain a culture model of the genetic disease; initial
experiments, however, have demonstrated a number of limitations for this idea.
First and foremost, only 3D models can reproduce the cellular microenvironment of
stratifying keratinocytes or even an epidermis combined with a fibroblast-populated
dermis. Such models would be able to represent the epidermal differentiation and
thus most characteristic features of cutaneous pathologies (Ojeh et al. 2001; Stark
et al. 2004, 2006). Second, the availability of primary keratinocytes is often very
limited and they can be passaged only few times. Third, the behavior of fibroblasts in
a dermal matrix can strongly differ depending on age, properties of the cultured
environment, and the disease phenotype (Eisen et al. 1987; Oakley and Priestley
1985). Finally, the mechanistic complexity of human skin with various levels of
cellular interaction is still not fully represented even in advanced, recent models.

When keratinocytes from a child born with a congenital Darier lesion on
the scalp, for instance, became available for culture after a surgical resection of the
affected area, cultures were initially performed as monolayers in order to expand the
cell population; they did not show any peculiarities (Lambert de Rouvroit et al.
2013). Similarly, monolayers were not suitable to provide interesting information
regarding proteins involved in 3D structural aspects of the epidermis (Arnette et al.
2016). Conversely, once 3D cultures were established, the connection between
desmosomal components and their function in tissue organization could be analyzed
and decrypted (Arnette et al. 2016). The importance of interactions between cell
types has been shown in attempts to model forms of epidermolysis bullosa in vitro.
In an attempt to model the rare form of recessive epidermolysis bullosa simplex
caused by inactivating mutations in the gene KRT14 (El Ghalbzouri et al. 2003),
patient skin biopsies were cultured on a collagen matrix with patient fibroblasts.
These experiments reproduced the bullous phenotype but not the epidermolytic
hyperkeratosis of recessive epidermolysis bullosa simplex. The vacuolar phenotype
was reverted when patient biopsies were cultured on a matrix with normal
fibroblasts, showing a compensatory mechanism involving keratin 17 and thus
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indicating the importance of fibroblasts for the integrity and pathological destabili-
zation of the epidermal layers.

3.2 Patient-Derived 3D Models

Many human genodermatoses affect properties of the skin that can be modelled
in vitro. Co-culture systems and 3D approaches have significantly contributed to the
understanding of the importance of microenvironment and cellular interaction
between fibroblasts and keratinocytes for pathologies. When keratinocytes can be
collected from donors suffering from a monogenic disease, using biopsies or
autopsies, or following surgical interventions, cultured cells from these patients
can then be employed for tissue reconstruction and even for skin barrier formation
and analysis of barrier function in vitro. In this case, cells can be expected to
reproduce anomalies encountered in the patient skin while being involved in the
cultured tissue. For instance, keratinocytes isolated from the skin of patients
suffering from ichthyosis vulgaris can be used to recreate in vitro this pathological
condition of the epidermis (Niehues et al. 2017). Similarly, studies dealing with two
genetic conditions that affect calcium pumps and exhibit acantholytic patterns in
diseased epidermis have been using 3D epidermal reconstruction. Both for Darier
disease (Lambert de Rouvroit et al. 2013) and for Hailey-Hailey disease (Matsuda
et al. 2015), reconstruction of the epidermis on polycarbonate filters using patient
keratinocytes produced epidermis that exhibited a disruption of cell–cell adhesion,
thereby mimicking morphological alterations such as acantholysis typically reported
in corresponding skin biopsies. Moreover, corps ronds and grains, which character-
ize Darier disease rather than Hailey-Hailey disease, were absent in monolayers and
appeared solely in reconstructed Darier epidermis (De Vuyst et al. 2014; Lambert de
Rouvroit et al. 2013), pledging confidence in the reproducible representation of
pathological features in such models.

Epidermal differentiation, cell adhesion, lipid synthesis, and barrier function are
successful topics for the characterization of genetic diseases using skin models.
Lipid metabolism of reconstructed skin has long been studied and shown to contrib-
ute critically to the barrier activity of models, even though some differences in lipid
composition were described between native and reconstructed human skin (Ponec
et al. 1997, 2000). Critical changes of lipid metabolism associated with disease have
been revealed using skin equivalents; this is true for complex diseases such as
filaggrin-deficient atopic dermatitis (AD) (Wallmeyer et al. 2017) as well as mono-
genic skin diseases. Congenital ichthyoses are characteristically associated with
disturbed epidermal barrier function. The majority of mutant genes underlying
forms of congenital ichthyosis have been assigned to a role in epidermal lipid
synthesis. Harlequin ichthyosis, the most severe form of autosomal recessive con-
genital ichthyosis (ARCI), is caused by loss of a member of the adenosine triphos-
phate (ATP)-binding cassette (ABC) family of transporters. Modelling of ABCA12
mutations identified the characteristic premature epidermal differentiation and an
abnormal lipid content with a reduction in nonpolar lipids (Thomas et al. 2009).
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Most forms of ARCI are associated with alterations in the ceramide metabolism.
Ceramides play a crucial role in the formation of the cornified lipid envelope and the
activity of the skin barrier (Feingold and Jiang 2011; Janssens et al. 2011; Janušová
et al. 2011; Rabionet et al. 2014). Ceramide synthase genes are expressed in a strictly
cell-type specific manner; accordingly, ARCI can be caused by mutations in the
epidermal ceramide synthase gene CERS3 (Eckl et al. 2013; Radner et al. 2013). The
importance of ultra-long acyl chain ceramides for regular cornified lipid envelope
formation and barrier function has been revealed using 3D skin models (Eckl et al.
2013), which is in line with the projected barrier organization of stacked lipid
bilayers shown with cryo-EM of vitreous skin sections and EM simulation (Iwai
et al. 2012). Full-skin models were also able to replicate the importance of cell–cell
adhesion for epidermal integrity and barrier activity. Using a range of methods,
including the application of mechanical stress on modelled skin, disturbed adhesion
was shown to be associated with the loss of adhesion proteins such as
corneodesmosin, underlying peeling skin disease (Oji et al. 2010), or epidermal
protease inhibitors cystatin A and serpin B8, a member of the serpin B family of
serine protease inhibitors, which can cause exfoliative ichthyosis (Blaydon et al.
2011; Pigors et al. 2016).

3.3 Knockdown and Knockout Models

The availability of keratinocytes, which would normally be isolated in small num-
bers from skin biopsy specimens, and their inaptitude to proliferate over more than
few passages, are major bottlenecks for the generation of patient-based models for
genetic skin diseases. The inactivation of single genes using RNA interference
(RNAi) is a useful strategy to overcome this limitation. RNAi can be applied
using transfection of siRNA (small interfering RNA) or viral transduction of
shRNA (short hairpin RNA). Using this approach, a gene can be specifically
switched off to produce a knockdown model of keratinocytes. The cells can be
used for short-term (siRNA) or long-term (shRNA) studies and a number of down-
stream applications. In particular, they are similarly suitable for the generation of
full-skin models that can be analyzed for keratinocyte adhesion and differentiation
(Thomas et al. 2009) and the formation of cornified envelopes, other structural
components and aspects of immune responses (Hönzke et al. 2016). Epidermal
barrier function, which is disturbed in monogenic epidermal diseases such as
ARCI as well as in complex diseases such as AD, is of particular interest for such
studies. Genes mutant in cases of ARCI, including TGM1, ALOX12B, ALOXE3,
NIPAL4, and CERS3, have been knocked down in normal keratinocytes. The same
approach has been used for FLG, the gene for filaggrin, which can be mutated in
ichthyosis vulgaris and is a major susceptibility factor for AD. These keratinocytes
were used for the generation of full-skin models, which demonstrated a critical
impairment of barrier activity using the analysis of skin absorption and penetration
(Eckl et al. 2011, 2013; Mildner et al. 2010). Such studies have opened an avenue for
the identification of novel drug targets and offered important tools for the in vitro
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assessment of innovative treatments for skin diseases. There are still limitations;
RNAi is sometimes not sufficiently specific for a single target gene and the transfec-
tion or transduction are significant manipulations that might alter keratinocyte
behavior.

A highly flexible approach to the manipulation of target genes in keratinocytes,
both for corrections and the generation of knockout lines, is the use of CRISPR/Cas9
technology. This was demonstrated for Harlequin ichthyosis using CRISPR/Cas9
mediated inactivation of ABCA12 (Enjalbert et al. 2020). Skin equivalents made with
these cells recapitulated the Harlequin ichthyosis phenotype and were suitable for
the analysis of differential gene expression, revealing dysregulated pathways and
potential targets for more specific therapies.

4 Atopic Dermatitis

4.1 Barrier Function

Atopic dermatitis, most likely because of its complexity, is a common disease that
has been and is still studied by means of skin disease models. Whereas the clinical
initiation of AD is still undetermined, one can be sure that the process involves
alterations in the epidermal barrier and some over-activation of the immune system,
mainly in the form of a Th2 immune response (Guttman-Yassky et al. 2019). In AD,
a weakened epidermal barrier might open a gate for the entry of foreign substances
into the skin and thereby be the initial event responsible for the occurrence of the
pathological process. However, a multitude of mechanisms have been considered as
responsible for the barrier failing its crucial role. Absence of filaggrin is found in
ichthyosis vulgaris and directly involved in the observed scaly phenotype. Expres-
sion levels of FLG are correlated with the risk for eczema and variants in FLG are
thus a major predisposing factor for AD and can also strongly alter the proper
formation of the cornified most superficial layer in the epidermis (McLean 2016).
However, such mutations of filaggrin do not explain all cases of AD. Indeed, several
other genes may be linked to the development of the disease, and activation of an
immune response has been found to create signal-dependent responses that resulted
in reduced expression levels for filaggrin (as well as for other proteins) and an
accompanying altered barrier.

4.2 Monolayer Cultures

Investigating the epidermal processes involved in AD by solely studying epidermal
keratinocytes can hardly reach satisfaction since the interaction with immune
components is major in this disease. Several kinds of in vitro models are available
and their main characteristics were part of a previous review (De Vuyst et al. 2017).
However, certain culture conditions imposed on epidermal keratinocytes grown as
monolayers on a plastic Petri dish can trigger alterations in the phenotype of these
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cells; these alterations closely mimic the diseased status identified as the epidermal
phenotype of keratinocytes inside AD lesions (Mathay et al. 2011). Exposure of
keratinocyte monolayers to Th2 cytokines like IL-4 and IL-13 indicates as well that
such culture conditions can alter the phenotype of keratinocytes in a way that
hampers the expression of genes involved in differentiation, or involved in the
establishment and maintenance of the epidermal barrier (Omori-Miyake et al.
2014). Of special interest, the expression of filaggrin in keratinocytes cultured as
monolayers is also highly regulated by the presence of Th2 cytokines like IL-4 and
IL-13 (Howell et al. 2009).

4.3 Knockdown and Knockout Models

4.3.1 Filaggrin
Once filaggrin had been identified as a frequently deficient protein in the cornified
layer of AD patients (Brown and McLean 2012), numerous attempts were made to
downregulate its expression in keratinocytes and to investigate its missing role in the
pathological epidermis. For instance, filaggrin expression has been targeted with
siRNA introduced into keratinocytes before creating an organotypic skin model
(Küchler et al. 2011; Mildner et al. 2010). Alterations in the diffusion barrier were
demonstrated in the model but also enhanced UV sensitivity was reported since an
increased apoptotic response was observed in tissues with reduced filaggrin expres-
sion in comparison with tissues expressing filaggrin at normal levels. Lentiviral
transduction of shRNA was used to knock down filaggrin expression in normal
keratinocytes before reconstructing the human epidermis on a polycarbonate filter in
order to investigate the roles of this protein in the epidermal barrier function (Dang
et al. 2015; Pendaries et al. 2014). Indeed, the authors observed that hypogranulosis
was the result of the missing profilaggrin in the granular layer. An increased
permeability of the barrier accompanied the downregulation of filaggrin, as well as
reduced levels of filaggrin-2 and loricrin, two filaggrin-related proteins, and caspase-
14 and bleomycin hydrolase, two proteases involved in filaggrin degradation,
together with reduction in caspase 14 activation and suppressed natural moisturizing
factor components. Intriguingly enough, while studying cells from patients with
ichthyosis vulgaris fully lacking filaggrin, Niehues et al. (2017) did not find
alterations of the barrier, suggesting that possibly a compensatory mechanism
could work in those cases. In addition, in another study, Van Drongelen et al.
(2013) achieved the stable expression of shRNA targeting the coding sequence of
FLG in N/TERT keratinocytes originally prepared by Dickson et al. (2000) and
successfully used these cells to reconstruct skin equivalents with a functional barrier.
Again, the reduced expression of filaggrin in the epidermal cells was insufficient to
significantly alter epidermal differentiation markers in the knockdown tissue
according to that study and was neither responsible for modified lipid organization
nor barrier function (Van Drongelen et al. 2013).
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4.3.2 TMEM45A
In a screening experiment intending to identify proteins induced during hypoxic
conditions that might bring some chemoresistance to cancer cells, the protein
TMEM45A, which contains a putative transmembrane domain, was identified in
breast and liver cancer cells (Flamant et al. 2012; Schmit and Michiels 2018).
TMEM45A expression is particularly elevated in growth-arrested keratinocytes,
especially in the upper epidermis where its association with the trans-Golgi has
been confirmed in concomitance with keratinization (Hayez et al. 2014). In an
attempt to understand the epidermal roles of the protein TMEM45A in vivo and
in vitro, knockout mice and reconstructed epidermis made with knockdown
keratinocytes were produced. Whereas the significance of this protein has been
largely confirmed in several cell types during the development of malignant tumors
(Schmit and Michiels 2018) and although its expression is particularly inducible in
keratinocytes, suppression of the protein TMEM45A did not give any clue to its
epidermal function (Hayez et al. 2014, 2016). Indeed, neither the epidermal mor-
phogenesis nor its keratinization was altered when the protein was absent. Similarly,
the epidermal barrier was as efficient in knockout and knockdown tissues as in wild-
type epidermis, both in vivo and in vitro.

4.4 The Role of Cytokines

The role of Th2 cytokines, especially IL-4 and IL-13, in the onset of atopic
dermatitis is rather complex. Therapies targeting signalling through IL-4 and IL-13
receptors, e.g. using dupilumab to impede access of the interleukin ligands to their
receptors, have proven efficient to clear AD lesions (Guttman-Yassky et al. 2019).
Epidermal keratinocytes naturally express such receptors and are thereby reactive to
the presence of their ligands in the epidermal environment. A clear effect of
keratinocyte exposure to IL-4 and IL-13 is the suppressed expression of filaggrin
but other components involved in the normal epidermal keratinization and epidermal
barrier formation are simultaneously reduced by these cytokines (De Vuyst et al.
2017; Smits et al. 2017), reinforcing the weakening effect on the epidermal barrier,
and of course opening the tissue for the penetration of foreign substances, allergens,
and microorganisms as a direct consequence. Such a tissue entry of exogenous
compounds further contributes to the activation of the immune response and thus
reinforces the claimed vicious circle suspected in the etiology of AD that often hides
the cause by which the process has initially started (De Vuyst et al. 2018).

In reconstructed tissues based on either normal human epidermal keratinocytes or
on immortalized keratinocytes like N/TERT keratinocytes, incubation with IL-4 and
IL-13 produces phenotypic alterations that mimic the incomplete differentiation
observed in lesions of AD. Indeed, some variable alterations in gene expression
levels are observed when monitoring several different barrier components. The
reduction of filaggrin expression, for instance, results in significant disappearance
of the keratohyalin granules usually found in the granular layer and hence can be
considered responsible for the absence of this layer. Simultaneously, a reduced
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function of the epidermal barrier is observed, together with some intercellular
swelling that recalls the so-called spongiosis phenomenon, observed between
keratinocytes in the skin of AD patients (De Vuyst et al. 2018; Hubaux et al.
2018; Smits et al. 2017).

5 Psoriasis

Psoriasis is a common inflammatory disease with a complex etiology. Several large
studies into the genetics of psoriasis, mainly using genome-wide association studies
followed by meta-analyses, have found several susceptibility loci associated with
types of psoriasis. However, only few genes involved in mechanisms contributing to
the development of the disease were identified so far (Capon 2017; Hwang et al.
2017; Ogawa and Okada 2020). Genetic studies have demonstrated that different
mechanisms can contribute to different subtypes, where psoriasis vulgaris is clearly
the most common form. Psoriatic skin shows morphological features, including
acanthosis and parakeratosis, and is characterized by hyperproliferative
keratinocytes, as detected, for instance, by strong Ki-67 staining and keratin
16 expression. The immunological profile is mediated by CD4+ T cells but several
other types of immune cells, including macrophages and neutrophils, are found in
psoriatic skin. Th1 and Th17 are predominantly involved in the immunological
mechanisms of the disease, characterized by overrepresentation of TNF-α, IFN-γ,
IL-17, and IL-23 among other cytokines. Members of these pathways are major drug
targets in current therapeutic strategies for psoriasis.

5.1 Barrier Function

Like many genetic skin diseases, psoriasis can be associated with epidermal barrier
dysfunction. In accordance with other monogenic and complex skin diseases, altered
transepidermal water loss has been associated with changes in the ceramide compo-
sition in the stratum corneum of psoriatic plaques (Motta et al. 1994). Though the
molecular background of the compromised barrier function is not so clear, it could
be partly attributed to genetic mechanisms. The gene cluster of the so-called
epidermal differentiation complex (EDC), which comprises several genes mainly
expressed in terminally differentiating keratinocytes, includes the filaggrin gene
FLG and lies within PSORS4, one of the early identified psoriasis loci (Bhalerao
and Bowcock 1998; Capon et al. 2001). A deletion of two genes in the cluster,
LCE3B and LCE3C, was associated with psoriasis vulgaris (de Cid et al. 2009;
Riveira-Munoz et al. 2011). The late cornified envelope proteins encoded by these
two genes are supposed to contribute directly to the disturbance of terminal
keratinocyte differentiation and epidermal barrier function. Moreover, other genetic
variants associated with psoriasis might affect cystatins, proteinase inhibitors impor-
tant for epidermal integrity such as cystatin A and cystatin M/E (Cheng et al. 2009;
Samuelsson et al. 2004; Vasilopoulos et al. 2008). Synthesis of further proteins of
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terminally differentiating keratinocytes, namely filaggrin, loricrin and involucrin, is
disturbed in psoriatic skin, with an upregulation of involucrin and a downregulation
of filaggrin and loricrin. These proteins are important for the function of the
epidermal barrier and null mutations in FLG are associated with ichthyosis vulgaris
and atopic dermatitis. Secondary genetic effects are thus also involved in the barrier
dysfunction seen in psoriasis, as TNF-α can modulate the expression of FLG and
LOR (Kim et al. 2011).

5.2 Cell Signalling

With this complex make-up of alterations in psoriasis in mind, in vitro models for the
analysis of psoriatic skin and the assessment of drugs are necessarily limited and
various approaches have been chosen for psoriasis models. Both RhE and full-skin
models have been used for psoriasis investigations and proven suitable for drug
delivery studies. RhE are relatively cheap and easy to use, which makes them useful
for certain defined applications. Considering the importance of cell–cell and cell–
matrix interaction and skin barrier function, psoriasis full-skin models have clear
advantages. Full-skin models can be successfully generated using keratinocytes and
fibroblasts obtained from lesional psoriatic skin (Barker et al. 2004). These models
showed typical changes in cytokine levels and hyperproliferation but not full
morphological hallmarks of the disease. Similar characteristics, with additional
macroscopic features, were seen in models made with various combinations of a
normal and psoriatic fibroblast-derived matrix, and normal and psoriatic
keratinocytes (Jean et al. 2009); only models that contained psoriatic keratinocytes
showed upregulation of involucrin and downregulation of filaggrin and loricrin,
which are supposed to contribute to the disturbed barrier function in psoriasis. The
importance of cell–cell interaction and lesional fibroblasts for the phenotype, how-
ever, is also demonstrated in one of the few commercially available psoriasis skin
models (MatTek), which uses normal human epidermal keratinocytes and psoriatic,
lesional fibroblasts and represents typical morphological features and cytokine
profiles of psoriasis skin. Other models, in particular those without psoriatic cells,
did not exhibit any hyperproliferation of keratinocytes. In another approach, the
pathological phenotype can be triggered with psoriasis-associated cytokines such as
TNF-α, IL-1α, IL-6, and IL-22 in models made of normal keratinocytes cultured on a
de-epidermized dermis (Tjabringa et al. 2008). These models demonstrated expres-
sion patterns of psoriasis including upregulation of SKALP/elafin, keratin 16 and
CXCL8, which were responsive to retinoic acid.

5.3 Immune Cells

For a more integrated view of the disease, significant improvements of in vitro skin
models for psoriasis would involve the addition of immune cells, which is an option
rendered possible when using full-thickness skin models. Considering the pathology
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of psoriasis, a primary choice is the addition of T cells. A model of normal
keratinocytes grown on de-epidermized dermis and populated with CD4+ T cells
showed typical inflammatory signs of psoriasis after 4 days (Van den Bogaard et al.
2014), which were responsive to anti-inflammatory drugs such as all-trans retinoic
acid. These models also showed the typical downregulation of filaggrin but not the
morphological signs of psoriasis or keratinocyte hyperproliferation (Fig. 2). A
further psoriasis model combined a full-skin model produced with lesional psoriatic
skin cells with the addition of activated T cells. These models demonstrated the
spectrum of psoriasis features of disturbed epidermal differentiation and
keratinocyte hyperproliferation, together with typical cytokine patterns (Lorthois
et al. 2019). The models, also illustrating their suitability for drug studies, showed a
clear response to the immunosuppressant methotrexate.

Fig. 2 Epidermal response to T cells represents a psoriasiform phenotype. (a) mRNA expression
levels of proinflammatory cytokines and chemokines by keratinocytes after 2 days and 4 days of
T-cell migration. (b) Immunostaining of psoriasis-associated proteins hBD2, keratin 16, and
SKALP/elafin after 2 and 4 days of T-cell migration. Bar ¼ 100 μm. (c) Epidermal differentiation
proteins filaggrin and involucrin demonstrated by immunostaining. Bar ¼ 100 μm. (d) Ki-67
mRNA levels of control and T cell-populated skin equivalents. **p < 0.01 relative to control
skin equivalents. Obtained with permission from Van den Bogaard et al. (2014)

200 H. C. Hennies and Y. Poumay



6 Infection and Immunity

Regarding skin fungal infections with dermatophytes or yeasts of the Malassezia
genus, several models of interaction between in vitro reconstructed skin and patho-
logical species have become available for investigation. At least three models of
dermatophytosis describe how human tissues prepared in vitro by cell culture can be
exposed to several species of anthropophilic and zoophilic dermatophytes
(Achterman et al. 2015; Faway et al. 2017; Liang et al. 2016). Studies performed
this way have shown morphological analysis of the progressive steps of infection;
they were characterized for kinetics and analyzed to monitor multiple parameters
that identified the kind of biological responses provided by the infected human tissue
when dermatophytes penetrate into the epidermis. Colonization of the human epi-
dermis by Malassezia yeasts and their interactions with cells composing the tissue
were also recently described through studies that used RhE (Pedrosa et al. 2019a, b).
In all cases of fungal infection, the role of toll-like receptors (TLR) in detecting
infectious agents can be investigated with those experimental tools, and the initiation
of an alerting epidermal response analyzed in this context.

7 Immunocompetent Skin Models

The example of psoriasis has demonstrated the importance of immune cells for
analyzing skin pathology in vitro and especially for identifying drug targets and
assessing drug responses. Psoriasis is a complex disease involving major (auto)-
immune pathological mechanisms. The activation of T cells is accompanied by an
activation of innate immune cells; accordingly, the cathelicidin LL37 plays a crucial
role to cause the secretion of interferon-α, which is associated with psoriasis as well
as other autoimmune diseases. The activation of macrophages and secretion of
proinflammatory cytokines and chemokines then leads to the inflammatory
mechanisms involved in psoriasis.

The introduction of T cells has played an important role in developing skin
models for psoriasis, identifying features of psoriatic lesions and assessing genetic
factors that might underlie the susceptibility to psoriasis. However, the study of
psoriasis showed that also macrophages, dendritic cells, and neutrophils are critically
involved in the development of the phenotype. Considering the limitations of using
animal models and the fact that several, in particular common skin diseases have an
immunological component, there is a need for the development of skin equivalents
with compounds of the immune system. Significant progress has been made initially
with regard to single types of immune cells. CD34+ hematopoietic progenitor cells
were integrated into an endothelialized full-skin model, consisting of an epidermis of
differentiating keratinocytes and a dermal equivalent comprising fibroblasts and
human umbilical vein endothelial cells (HUVECs). This integration resulted in a
complex model with epidermal Langerhans cells and dermal dendritic cells
(Dezutter-Dambuyant et al. 2006). These models would thus allow the study of
dendritic cell differentiation in an environment with vascular components. Similar
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mechanisms are important for age-related alterations. Full-skin models populated
with CD14+ monocytes demonstrated the importance of ageing-associated
glycation. The use of glycation-modified collagen showed an increase in
monocyte-derived dendritic cells and macrophages and the presence of receptors
for advanced glycation end products such as class A scavenger receptor on these
cells (Pageon et al. 2017).

In a full-skin sensitization model, monocyte-derived dendritic cells were
incorporated into an agarose/fibronectin gel to form an “immune layer” on top of a
microfiber scaffold populated with fibroblasts (Chau et al. 2013). The dendritic cells
were able to migrate and remained responsive to stimulation with skin sensitizers.
Monocyte-derived macrophages can be incorporated into a collagen/chitosan/chon-
droitin sulfate scaffold populated with fibroblasts (Bechetoille et al. 2011). The
macrophages retained their surface markers and produced IL-10 in response to
lipopolysaccharide. Similarly, full-skin models with Langerhans cells could be
constructed using CD34+ human acute myeloid leukemia cell line MUTZ-3 for
the generation of Langerhans cells (Masterson et al. 2002). MUTZ-Langerhans cells
were able to migrate into the epidermis and were attracted by chemokines CCL5 and
CCL20 (Ouwehand et al. 2012). Their migration upon skin irritation could be
blocked with antibodies against CCL5. Irritant exposure led to a switch of MUTZ-
Langerhans cells to a macrophage-like phenotype in the dermis, which was blocked
by anti-IL-10 antibody (Kosten et al. 2015). Strong contact sensitizers such as
dinitrochlorobenzene induced secretion of IL-6 and CXCL8 in full-skin models
containing either MUTZ 3 or monocyte-derived Langerhans cells and demonstrated
enhanced migration of Langerhans-like cells from epidermal to dermal equivalent
(Bock et al. 2018). These studies using skin models have strongly contributed to the
understanding of Langerhans cells and macrophages and have given insight into the
mobility of dendritic cells in the skin. They have demonstrated that skin sensitization
and immunological aspects of autoimmune diseases can well be analyzed using
advanced in vitro skin models. Many of these systems, however, are experimental
models and not readily available for systematic approaches and testing purposes.
Moreover, they still do not fully cover the immunocompetence of the skin and
represent the complexity of responses to environmental or genetic challenges. Future
developments will have to demonstrate to which extent access to automation and
approaches to extend the spectrum of cellular differentiation in vitro, for instance
using induced pluripotent stem (iPS) cells, will be able to provide the tools for a
comprehensive analysis of immune responses and cell–cell and cell–environment
interactions in 3D skin modelling.

8 Drug Development and Testing

RhE and full-skin models have been used in a vast range of applications for the
assessment of chemicals and other components, for instance regarding skin irritation,
corrosion, absorption, and penetration. Such procedures have been validated and
standardized by the European Centre for the Validation of Alternative Methods
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(ECVAM) and the OECD in their guidelines. In addition to these applications, skin
models have gained major interest as they can play a critical role in the evaluation of
drug targets and the development of topical therapies against skin diseases. While
these approaches rely on the generation of more comprehensive and long-lasting
skin models, present models have already contributed to significant progress in drug
development and a reduced need for animal experiments. Skin equivalents have been
used to study properties of skin barrier function and its disturbance in disease; they
are also helpful to assess the permeability of the stratum corneum that is needed for
effective epidermal drug delivery. Its ability to prevent the penetration of larger
compounds and preference for lipophilic substances represents a major hindrance for
transdermal drug delivery (Choy and Prausnitz 2011). Physical or chemical
disruptions and various nanotransporters can be used to overcome the barrier activity
but most approaches are not suitable for the transport of large and active compounds
and their targeted delivery. Because in vitro skin models can be used to mimic barrier
function and pathological conditions, their availability opens up multiple and inter-
esting use in the search, testing, and validation of drugs.

8.1 Retinoic Acid Metabolism Blocking Agents (RAMBA)

Skin tissue models allowed evaluation of the potential benefits of different retinoids
through precise analysis of regulated gene expression, studying differentiation
markers, junction components, production of cytokines and growth factors, and
through the monitoring of their secretion (Bernard et al. 2002). A confirmation of
well-known effects produced by this class of biologically active molecules in vivo in
such in vitro models was initially proving that reconstructed epidermis might be
considered as a highly predictive model regarding the efficacy of drugs targeting the
human skin. Furthermore, because the sensitivity of the assays studying retinoids is
elevated and since serum is excluded from culture procedures devoted to reconstruct
human epidermis (De Vuyst et al. 2014), such models were tested in the evaluation
of retinoic acid metabolism blocking agents (RAMBA), such as liarozole or
talarozole compounds. For instance, the analysis of RhE treated with RAMBA
combined with tiny amounts of 10�9 M retinoic acid demonstrated that the effects
produced were similar to the treatment performed with more elevated concentrations
(10�6 M) of retinoic acid alone (Giltaire et al. 2009). Recently, novel candidate
CYP26B1-selective inhibitors were tested using skin models and their evaluation
allowed one of them to be considered as a potentially new therapeutic for keratini-
zation disorders (Veit et al. 2020).

8.2 Antifungal Compounds

In the context of fungal infection of the skin, in vitro models are available to study
the interaction between dermatophytes and the human epidermis (Achterman et al.
2015; Liang et al. 2016). Besides investigation of infectious mechanisms themselves
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in the epidermal context, such models open up interesting new conditions to evaluate
whether antifungal compounds exhibit sufficient efficacy. For instance, the well-
known antifungal compound miconazole stopped the infection in RhE previously
inoculated with pathological fungi. Miconazole was also able to prevent infection by
its use as a pre-treatment before the RhE was exposed to dermatophytes (Faway et al.
2017). The infection of RhE with dermatophytes and the study of responding
signalling pathways created additional opportunities for the identification of novel
potentially antifungal compounds (Faway et al. 2019).

8.3 Protein Replacement

Targeted epidermal drug delivery can be achieved by making use of the temperature
change upon entry into the epidermis (Fig. 3a) (Cuggino et al. 2011; Witting et al.
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and targeted release in the epidermal equivalent, preserving enzyme structure and bioactivity.
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2015). Thermoresponsive nanotransporters were generated by combining dendritic
polyglycerol (dPG) with thermosensitive poly(N-isopropylacrylamide) (pNIPAM).
These dPG nanogels undergo a phase transition at ~33�C; if the critical temperature
is exceeded, the nanogels (~200 nm diameter) shrink and release water and drugs
loaded onto them. Efficient release at lower temperatures was shown for bovine
serum albumin (BSA) (~68 kDa; Fig. 3b) (Witting et al. 2015). The clinical
relevance was demonstrated for ARCI, which is most frequently caused by
inactivating mutations in TGM1, the gene for transglutaminase 1. ARCI is associated
with epidermal barrier impairment, which is replicated in full-skin models with
knockdown of TGM1 (Eckl et al. 2011). Disturbed barrier function was detected
by increased permeability for testosterone in the model (Alnasif et al. 2014; Witting
et al. 2015). Targeted dPG nanogel-mediated delivery of recombinant human
transglutaminase 1 (~89 kDa) resulted in restoration of barrier function almost to
the normal level (Fig. 3c). In a similar approach, normal RhE models (EpiDerm™,
MatTek) were treated with single filaggrin units (Stout et al. 2014). Epidermal
penetration was facilitated by using a fusion construct consisting of a murine
filaggrin monomer (mFLG) and a cell-penetrating peptide (RMR) protein motif.
The filaggrin unit penetrated to the stratum granulosum of RhE; internalization,
processing and restoration of the normal phenotype after treatment with tagged
mFLG-RMR (~50 kDa) were then shown in the skin of filaggrin-deficient flaky
tail mice.

The efficacy of nanogel-mediated protein delivery was further demonstrated with
etanercept (ETR), an anti-TNF-α fusion protein used for the treatment of psoriasis
(~150 kDa). Thermoresponsive polyglycerol (tPG) or pNIPAM-based nanogels,
both shown to be biocompatible in human keratinocytes (Gerecke et al. 2017),
were loaded with ETR. Application to full-skin models showed the delivery through
the stratum corneum into the viable epidermis (Giulbudagian et al. 2018). Supple-
mentation of skin equivalents with TNF-α caused an inflammation-like state that was
suitable to visualize the success of the ETR treatment, even though these models did
not contain any immune models. Application of ETR to stimulated skin models
resulted in reduced levels of TNF-α, ICAM-1, and TSLP (Fig. 4).

Using skin models made with keratinocytes and fibroblasts from ARCI patients
with TGM1mutations, the restoration of the impaired skin barrier function, the major
pathophysiological feature of ARCI, was demonstrated in vitro after treatment with
recombinant transglutaminase 1 (Plank et al. 2019). These approaches showed
delivery of enzyme through the stratum corneum into the viable epidermis and,
importantly, its preserved activity during maturation of the models (Fig. 5). The
enzyme activity resulted in formation of an efficient barrier function, as
demonstrated using several barrier tests such as testosterone permeability, Lucifer
yellow permeation, and N-hydroxy-sulfosuccinimide-LC-biotin permeability. These
experiments clearly showed that full-skin models were not only suitable for the
analysis of morphological and physiological features of skin diseases, but also
helpful to assess treatments and test drugs. Barrier function is critical in several
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dermatological diseases affecting keratinocytes. The ability of skin equivalents to
form an active barrier with properties similar to human skin in vivo and to respond to
treatments with active proteins makes them suitable for drug delivery tests, for the
development of topical therapies, as well as for studies of the skin barrier and its
changes in disease, during ageing, or under certain environmental conditions
(Weinmüllner et al. 2020).

Fig. 5 (a) Transglutaminase 1 (TG1) staining and activity in ARCI patient skin equivalents treated
with TG1/PBS (i), normal equivalents treated with TG1/tNG (ii), TG1 knockdown equivalent
treated with TG1/tNG (iii), and ARCI patient equivalent treated with TG1/tNG (blue ¼ DAPI,
green ¼ TG1 protein and activity staining, respectively). Scale bars ¼ 50 μm. (b) Lucifer yellow
permeation into normal skin equivalent (i), ARCI patient skin equivalent (ii), patient skin equivalent
treated with unloaded tNGs (iii), patient skin equivalent treated with TG1 in PBS (iv), and patient
skin equivalent treated with TG1/tNG (v) (blue ¼ DAPI, green ¼ Lucifer yellow). Scale
bars ¼ 75 μm. Obtained with permission from Plank et al. (2019)
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9 Future Directions

Recent developments in the composition of skin models have proven their useful-
ness in a broad range of applications. Models are versatile, robust, and adjustable.
Several commercial models are readily available, which can be used off the shelf,
including a number of disease models. Yet, there are still limitations. Improvements
and sophistication are necessary to render models adequate for further reduction of
the number of animals needed for biological and pharmacological investigations and
for the development of a definitive in vitro model that will fully represent the human
skin. Such models will have to override the biological constraints of animal models
due to the differences between human skin and skin of rodents and other model
animals with regard to structural and protective properties, developmental processes,
and many other aspects. Several skin diseases involve a compromised barrier
function, which can be due to altered lipid metabolism or other mechanisms. As
discussed herein, existing models are already able to replicate skin barrier function
and suitable for some analysis of drug targets, reasonably taking into account the
modulation of barrier function during chronic diseases or ageing.

Most human skin diseases have an immunological origin and/or impact. The
development of skin models populated with immune cells has already improved
their suitability for the study of autoimmune diseases and immune responses;
however, many models are still under experimental design and still quite compli-
cated to produce. They do not yet represent the full complexity of integrated immune
responses and do not contain the full variety of immune cells, which interact with
each other and with the cutaneous tissues, and remain mobile in the skin. Another
issue with currently available skin models is still their longer-term use. In fact, many
processes will have to be studied over time; we can analyze barrier formation,
changing expression profiles or lipid synthesis over a period of days, or a few
weeks, but to date, the investigation of ageing-associated mechanisms is, for
instance, not well feasible. This problem involves the renewal of the epidermal
equivalent and the structure of the dermis. The latter has been addressed with
variations of scaffolds for the dermal matrix and the introduction of novel materials.
A silk-collagen composite system has been developed to reduce the loss of dermal
matrix strength and make it more sustainable. This approach allowed the introduc-
tion of another layer, a hypodermis equivalent containing adipocyte-like cells
generated from adipose-derived stem cells, which also further adds to the complexity
of the model (Bellas et al. 2012). Such skin models become suitable for the addition
of other cellular components such as those from the nervous system (Vidal et al.
2019). Considering the importance of the nerve system to understand and solve
itching, but also for immune responses and to investigate the interaction between
neurons and immune cells, this kind of development can be crucial for the actual
immunocompetence of skin models (Vidal Yucha et al. 2019).

Another important development regarding the complexity of the skin is the use of
induced pluripotent stem (iPS) cells. They can be generated from fibroblasts or other
adult cells and may provide a source for a large variety of cells; basically, they will
allow the generation of all cell types needed for organ and disease modelling on an
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individual basis, thus they are able to create a lasting patient-based resource. iPS
cells have been differentiated into keratinocytes and fibroblasts and used for the
generation of iPS cell-derived skin equivalents (Guenou et al. 2009; Itoh et al. 2013;
Petrova et al. 2014). Further cell types were added to iPS cell-based skin models,
such as melanocytes (Gledhill et al. 2015) and endothelial cells (Abaci et al. 2016).
These iPS cell-based models promise a great deal of innovation and a cellular
versatility that is impossible with conventional approaches to isolate and culture
cells. On the other hand, the targeted differentiation of iPS cells is still complicated
and the generation of a variety of different immune cells for the incorporation into
series of skin models might not be realistic.

The role of iPS cells for the future of skin modelling is important in combination
with another promising development, the generation of skin-on-chip or more gener-
ally organ-on-chip models. These models are based on microfluidics technology and
provide flexible systems for various test systems. They benefit from a defined
environment and allow highly controlled conditions and exchange of cells and
compounds. Few systems were established that are suitable for immunocompetence,
such as a microfluidic co-culture system comprising HaCaT cells and a human
leukemic monocyte lymphoma cell line (Ramadan and Ting 2016). Skin-on-chip
systems were used for the introduction of vascularization (Abaci et al. 2016; Mori
et al. 2017) and a co-culture system using a commercial full-thickness skin equiva-
lent (EpiDermFT™) with hair follicles (Ataç et al. 2013). In an attempt to model the
organ environment and interaction between cell types composing different organs,
microfluidics systems can be extended to a multiple-organ-on-chip strategy.
Examples include the combination of skin and liver culture (Maschmeyer et al.
2015a; Wagner et al. 2013) or a four-organ chip for interconnected long-term
co-culture of human intestine, liver, skin, and kidney equivalents (Maschmeyer
et al. 2015b). Though not yet there to take the full complexity of human skin into
account, in particular with regard to immune responses, the microfluidics systems
are already suitable for drug testing and the analysis of transdermal delivery (Abaci
et al. 2015). Safety and efficacy tests could be extended to repeat dose studies such as
an anti-EGFR cetuximab analysis in a microfluidic co-culture system of human
H292 lung cancer microtissues and human full-thickness skin equivalents (Hübner
et al. 2018). The study allowed the simultaneous evaluation of anti-EGFR-induced
tumor effects and potential adverse skin effects, such as the loss of proliferative
keratinocytes in the basal layer of the skin microtissue and the antibody-associated
modulation of CXCL8 and CXCL10 release. These findings clearly indicate the
potential of these systems for pharmacological studies and, possibly in combination
with the progress in our understanding of iPS cell differentiation, promising
directions in the use of in vitro model systems to further replace animal studies
and provide advanced research tools for cutaneous biology.
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Abstract

The intestinal epithelial barrier, together with the microbiome and local immune
system, is a critical component that maintains intestinal homeostasis. Dysfunction
may lead to chronic inflammation, as observed in inflammatory bowel diseases.
Animal models have historically been used in preclinical research to identify and
validate new drug targets in intestinal inflammatory diseases. Yet, limitations
about their biological relevance to humans and advances in tissue engineering
have forced the development of more complex three-dimensional reconstructed
intestinal epithelium. By introducing immune and commensal microbial cells,
these models more accurately mimic the gut’s physiology and the pathophysio-
logical changes occurring in vivo in the inflamed intestine. Specific advantages
and limitations of two-dimensional (2D) and three-dimensional (3D) intestinal
models such as coculture systems, organoids, and microfluidic devices to study
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inflammatory and immune-related responses are highlighted. While current cell
culture models lack the cellular and molecular complexity observed in vivo, the
emphasis is put on how these models can be used to improve preclinical drug
development for inflammatory diseases of the intestine.

Keywords

Animal model replacement · Cell culture · Immune cells · Immunocompetent · In
vitro · Inflammatory disease · Microbiome · Small intestine · Tissue engineering

Abbreviations

2D Two-dimensional
3D Three-dimensional
E. coli Escherichia coli
EMI Epithelial-microbiome-immune
IBD Inflammatory bowel disease
IEC Intestinal epithelial cell
IFN Interferon
IL Interleukin
LPS Lipopolysaccharides
PBMC Peripheral blood mononuclear cell
TNF Tumor necrosis factor

1 Introduction

In tissue engineering, substantial progress has been made over the last years leading
to improved pathophysiological relevance and predictivity of in vitro models.
Human in vitro models of normal and diseased tissues have gained much attention
since they can deliver important information about human-specific pathophysiology,
the mode of action of drugs and drug toxicity prior to animal studies in vivo and
clinical studies (Alepee et al. 2014; Basketter et al. 2012; Leist et al. 2014).
Ultimately, such models may accelerate drug discovery by reducing wrong
predictions from drug candidate screening and failure rates in late development
stages.

Providing a physiological environment, reconstructed human tissues display
highly relevant test systems in biomedical research and toxicological risk assessment
and adhere to the principles of the 3Rs (Replacement, Refinement, and Reduction),
defined by Russell and Burch in 1959. Advances in tissue engineering and
microfabrication have led to novel in vitro models of diseases of many different
organs as well as models of cancer and infectious diseases (Benam et al. 2015).
Simulating inflammatory and immunological processes by in vitro models is still
challenging, yet with the increasing complexity of multicellular models and the
introduction of immune cells, the models more closely mimic pathophysiological
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changes related to inflammatory diseases. The incorporation of immune cells into,
e.g., mucous membranes is one of the most advanced examples that allows the
assessment of molecular key events in the pathogenesis of localized fungal
infections (Weindl et al. 2007; Schaller and Weindl 2009). Important advances in
modeling the pathophysiology of inflammatory disorders have been also made for
other epithelial barriers including the intestine.

In this book chapter, the recent progress made in the development of in vitro
models of the intestine to study inflammatory and immune-related effects in preclin-
ical drug development is highlighted. Furthermore, not only the potential of the
models but also their limitations in replacing animals in inflammatory-related gut
research are presented. Since the focus is on immunocompetent models, the reader is
referred to other recent reviews on healthy intestinal in vitro models (Billat et al.
2017; Lee et al. 2019; Yin et al. 2019; Bein et al. 2018).

2 Inflammatory Responses in the Intestine

The human intestine is one of the most complex organs in the body and has a wide
range of physiological functions, including digestion and absorption of nutrients and
secretion. It contains an enteric nervous system and is an essential organ of defense,
providing a barrier against pathogens, toxins, and antigens. As the major site for
absorption of oral drugs, the intestine is of great interest to study oral bioavailability
which is also influenced by intestinal metabolism. Importantly, the intestine is the
largest compartment of the immune system and intestinal epithelial cells (IECs),
myofibroblasts, stromal cells, myeloid cells, T and B cells, innate lymphoid cells,
and the microbiota play a central role in health and disease (Round and Mazmanian
2009; Garrett et al. 2010). The three major players in intestinal homeostasis are also
referred to as the epithelial-microbiome-immune (EMI) axis.

The intestine is known for specific immune-related diseases such as inflammatory
bowel diseases, celiac disease, and cancer as well as bacterial infections but has been
implicated also in the development of non-enteric diseases. It is now well established
that changes in the composition and function of the human gut microbiome have
been associated with many chronic diseases (Durack and Lynch 2019; Arrieta et al.
2014).

The two main phenotypes of human inflammatory bowel diseases (IBDs),
Crohn’s disease and ulcerative colitis, are characterized by chronic inflammation
of the intestinal tract caused by environmental, genetic, as well as commensal
microbial factors (De Souza and Fiocchi 2016; Friedrich et al. 2019) (Fig. 1).

The immunopathology of IBD is still not fully understood, however, in recent
years novel therapeutic agents such as biologics against integrin α4β7 (vedolizumab)
and p40 subunit of both interleukin (IL)-12 and IL-23 (ustekinumab), as well as
Janus kinase inhibitors targeting multiple cytokine signaling pathways are success-
fully used to treat severe corticosteroid-refractory IBD (Chudy-Onwugaje et al.
2019). The rapidly increasing incidence and prevalence of this disease (GBD
Inflammatory Bowel Disease Collaborators 2020), together with high failure rates
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in IBD drug development (Harris et al. 2019), highlight that continued efforts are
needed to optimize preclinical test systems. Traditionally, the study of intestinal
inflammatory diseases has been empowered by mouse models and, more recently, by
single-cell analysis of samples from patients, which has revealed new potential drug
targets; however, drug development in IBD faces specific challenges (Danese et al.
2020). In addition, animal models of IBD that are modified genetically, chemically,
or immunologically (Kiesler et al. 2015) may not be representative of human disease
with respect to the genetic heterogeneity and the microbiome, among others, even-
tually leading to species-specific pharmacological responses. These technical
challenges have encouraged the development of advanced human-based in vitro
models to simulate and study intestinal inflammatory responses.

3 Human In Vitro Models for Intestinal Inflammation

In vitro models facilitate the study of complex in vivo phenomena in a simplified
context and under well-controlled conditions. The focus of intestinal in vitro models
during the last decades has been put on drug absorption studies. The development of
more complex tissue models has paved their way for broader preclinical drug
development in the search for new drugs in inflammatory diseases of the gut.

Alternative methods for gut research include different models, from
two-dimensional (2D) to highly complex three-dimensional (3D) culture systems.
At present, the most promising tool for preclinical drug development and screening
of drug candidates is represented by cocultured systems that have evolved from
simple models containing a monolayer of IECs to more complex cell architecture
systems with incorporated immune cells and microbiome to reconstruct the polarized
EMI axis (Fig. 2). Intestinal organoids, microfluidic devices, and 3D bioprinting
represent an improvement towards recapitulating the intestine’s structural,

Fig. 1 Key events in the pathogenesis of IBD. Image created with BioRender
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functional, and molecular aspects to more accurately simulate physiological and
pathophysiological processes.

An ideal human in vitro model of the inflamed intestine should (1) contain all
representative cell types of the epithelium under inflammatory conditions that retain
the most important functional properties during cell culture, (2) permit adequate
oxygenation and nutrition of the tissue for long-term studies, and (3) allow crosstalk
between epithelium, immune cells, and microbiota. However, the anatomical and
physiological complexity of the intestine which is further complicated during
inflammatory processes prevents the general applicability of a single model in
preclinical drug development. Some of the challenges have recently been overcome
by more advanced in vitro models of the inflamed intestine as outlined below.

3.1 Coculture Models

Generally, it is still challenging to differentiate normal human intestinal epithelial
cells in culture, despite the progress made in tissue engineering. The human colon
carcinoma cell line Caco-2 on a microporous membrane (i.e., transwell insert) still
remains the most used 2D model of the intestinal epithelial barrier since its introduc-
tion in the late 1980s (Hidalgo et al. 1989), although alternatives such as models

Fig. 2 Human (immunocompetent) in vitro models of the intestine. Image created with BioRender
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derived from induced pluripotent stem cell lines are emerging (Akazawa et al. 2018).
Caco-2 cells form a differentiated and polarized confluent monolayer and can be
readily used to study drug absorption and permeability, but its limitations in terms of
villi formation, mucus production, or drug metabolism compared to normal intestinal
epithelium are well documented (Hidalgo et al. 1989; Sun et al. 2008).

Conventional coculture systems with intestinal epithelial cells, mostly Caco-
2 cells, provide apical and basolateral compartments to incorporate microbes and
immune cells, respectively, either derived from primary immune cells or cell lines to
mimic inflammatory conditions. A simple coculture system of Caco-2 monolayer
cells, grown on microporous membranes, and peripheral blood mononuclear cells
(PBMCs) (Haller et al. 2000; Parlesak et al. 2004), THP-1 monocytes (Kanzato et al.
2001), or macrophages (Watanabe et al. 2004; Satsu et al. 2006; Moyes et al. 2010;
Ishimoto et al. 2011; Kämpfer et al. 2017, 2020) in the lower chamber is used.
Coculture of Caco-2 monolayer with whole blood seems possible too (Schmohl et al.
2012). In these settings, the presence of immune cells allows analysis of the crosstalk
between both cell types. It mimics an inflamed intestine when cells are stimulated
with pro-inflammatory cytokines or lipopolysaccharides (LPS). Standard read-out
parameters such as barrier integrity of the intestinal epithelial cells, release of
cytokines and chemokines by epithelial and immune cells and cytotoxic effects are
used to characterize the inflammatory responses in the coculture system; however,
only a few anti-inflammatory drugs such as ibuprofen and prednisolone (Schmohl
et al. 2012) and the tumor necrosis factor (TNF) inhibitor etanercept (Satsu et al.
2006) have been tested in these models.

Apart from Caco-2 cells, also coculture models based on HT29 cells are devel-
oped and supplemented with U937 macrophages and PBMCs to study enteric host–
pathogen interactions and inflammatory responses mediated by activation of pattern
recognition receptors, respectively (Barrila et al. 2017; de Kivit et al. 2011).

To further improve the coculture system and mimic an inflamed intestine more
closely, macrophages and dendritic cells have been incorporated, resulting in a triple
coculture model. In contrast to the above-mentioned studies, immune cells are
embedded in a collagen matrix in a transwell insert and IECs are seeded on top.
Among the tested IEC lines Caco-2, HT29 and T84, only Caco-2 cells respond to
pro-inflammatory stimuli such as LPS, IL-1β or interferon (IFN)-γ by upregulating
pro-inflammatory cytokines and decreasing epithelial barrier function. In the pres-
ence of immune cells, the inflammatory response in the model is more pronounced
compared to inflamed Caco-2 monocultures. Noteworthy, Caco-2 cells have been
cultured with macrophages and dendritic cells derived from the immune cell lines
THP-1 and MUTZ-3, respectively, (Susewind et al. 2016) but also from PBMCs
(Leonard et al. 2010). Thus, this model can be supplemented both with primary
immune cells and cell lines, depending on the scope of the study. These models are
successfully used to characterize and evaluate the safety of engineered nanoparticles
in the context of inflammation (Leonard et al. 2010; Susewind et al. 2016) and to
differentiate the therapeutic efficacy of different formulations of budesonide
(Leonard et al. 2012, 2020), a glucocorticoid which is clinically relevant in IBD
therapy. Alternative approaches aim to better simulate the intestinal barrier by

224 G. Weindl



establishing a transwell-like setting with Caco-2 cells on the apical and endothelial
cells attached to the basolateral surface of a collagen scaffold, respectively (Schulte
et al. 2020). Peripheral blood leukocytes are integrated into the culture compartment.
This model is proposed to mimic human gastroenteritis when infected with Salmo-
nella and reveals human-specific local immune responses that are different from the
situation in infected mice.

Instead of increasing the number of different immune cell types, other approaches
focus on improving in vitro models for drug absorption by integrating additional
cells into the intestinal epithelium. The most studied coculture of Caco-2 and mucus-
producing HT29 cells better mimics the intestinal drug transport than simple Caco-
2 monolayers (Lozoya-Agullo et al. 2017). Using a hydrogel scaffold, this coculture
model can be maintained up to 12 weeks and following stimulation with
pro-inflammatory cytokines, inflammatory responses and their long-term influence
on intestinal permeability can be monitored (Dosh et al. 2019). The integration of
THP-1 macrophages into the lower chamber and stimulation with LPS leads to
increased release of several pro-inflammatory mediators and chemokines and
reduced barrier function that is reversed in the presence of budesonide (Weber
et al. 2020). In conventional transwell cultures with Caco-2 and HT29 cells,
human blood monocyte-derived macrophages and dendritic cells are incorporated
to monitor inflammatory responses of ingested microplastics (Lehner et al. 2020).

A further step towards more complex coculture systems is the triple coculture of
epithelial (Caco-2) and goblet (HT29) cells together with THP-1 cells embedded in a
collagen matrix which is combined with a synthetic microbiome of the small
intestine (Calatayud et al. 2019). Stimulation with LPS from pathogenic E. coli
reduces epithelial barrier function and increases cytokine and chemokine production,
thus resembling inflamed intestinal epithelium in the microbiome model. The inte-
gration of different commensal strains may foster studies on host–microbiome
interactions using coculture systems.

To overcome the limitations of models derived from immortalized cell lines, a
macrophage-enteroid coculture model consisting of primary human cells has been
developed to study interactions and signaling between epithelial cells and
macrophages. Acute bacterial infections can be followed under controlled conditions
and the modular model may be further improved by the addition of other cell
lineages including immune cells (Noel et al. 2017). The use of sponge scaffolds
instead of membranes further improves the physiological relevance of models with
non-transformed cells. Monocyte-derived macrophages embedded in the
subepithelial 3D layer enhance responses to inflammatory stimuli indicating the
applicability as an experimental model for inflammatory bowel disease (Roh et al.
2019).

3.2 Intestinal Organoids

Intestinal organoids are miniaturized organs that contain various cell types of the
intestine in a 3D environment. First developed a decade ago, it is now widely
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acknowledged that organoids better mimic native intestinal epithelium compared to
other intestinal in vitro models (Wells and Spence 2014; In et al. 2016). Human
organoid cultures are derived either from intestinal crypts or from induced pluripo-
tent stem cells that differentiate into self-organizing intestinal stem cells that main-
tain themselves as stem cell niches and recapitulate tissue turnover (Date and Sato
2015). These organoids are an excellent tool to investigate and analyze stem cell
differentiation and intestinal histogenesis; however, organoids are difficult to stan-
dardize, and they are limited when it comes to studying pharmacological agents able
to modulate inflammatory and immune responses since current models lack immune
cells. Yet, organoids have a great potential as preclinical models to study gut
disorders and the addition of immune cells or a functional immune system, among
other improvements, will make organoids suitable for personalized drug testing in
IBD (Angus et al. 2019).

3.3 Microfluidic Gut-on-a-Chip Models

The organ-on-a-chip technology has emerged as a novel in vitro alternative to
simulate complex interactions within the tissue and more importantly between
different organs. By placing multiple organs on a single chip, the dynamics of a
human organism can be monitored under more physiological conditions compared to
a static model of a single organ. This approach seems highly promising in academia
and industry to screen drug candidates (Prantil-Baun et al. 2018). It may accelerate
drug discovery by reducing the notoriously high failure rates in preclinical drug
development. The organ-on-a-chip technology is successfully applied to develop
intestinal models based on IEC lines or primary cells (Bein et al. 2018). Over the last
years, gut-on-a-chip models with increasing complexity have been engineered
including the integration of endothelial cells to form a capillary endothelium,
immune cells, and commensal as well as pathogenic bacteria.

The microfluidic cell-based system NutriChip allows studying the response of
immune cells to pro-inflammatory stimuli or immunomodulators in food (Ramadan
et al. 2013; Ramadan and Jing 2016). The dynamic in vitro model consists of a
confluent monolayer of epithelial cells (Caco-2) that interact through a permeable
membrane with immune cells (U937-derived macrophages) cultured in the lower
compartment. Barrier permeability can be monitored in the presence of LPS or TNF,
however, it remains to be demonstrated whether this test system may serve as a
simple and reliable tool for screening of drug candidates.

A more sophisticated microfluidic gut-on-a-chip device has been developed with
peristalsis-like motions to model small intestinal bacterial overgrowth and inflam-
mation over a period of weeks (Kim et al. 2016). To reconstitute intestinal inflam-
mation and injury, the model is cocultured with pathogenic bacteria, commensal
microbes, and primary immune cells (i.e., PMBCs) and the inflammatory responses
are recapitulated at the organ level. In the presence of enteroinvasive Escherichia
coli, secretion of pro-inflammatory cytokines including IL-1β, IL-6, IL-8 and TNF is
increased. Furthermore, intestinal injury is evident by villus blunting and impaired
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intestinal barrier function. Probiotic bacteria and antibiotics largely protect from
injury induced by E. coli. Of note, bacterial overgrowth is observed when peristalsis-
like mechanical motions were ceased, which closely mimics the situation in patients
with ileus. This model is further developed as “human gut inflammation-on-a-chip”
to study host–microbiome crosstalk during chemically (i.e., dextran sodium sulfate)
induced inflammation (Shin and Kim 2018). In this model, impaired barrier function
was identified as one of the most critical factors that drives intestinal inflammation.
Overall, this modular platform has the potential not only to analyze interactions
between the intestine and microbiome and the development of intestinal inflamma-
tion but also for testing of antibacterial and anti-inflammatory drug candidates. Since
PBMCs are a source of T, B, and natural killer (NK) cells and monocytes and can be
easily differentiated into macrophages and dendritic cells, it seems feasible to
integrate immune cells of the gut-associated lymphoid tissue as well. The same
group reported a radiation injury model of the gut to evaluate protective effects of a
potential radiation countermeasure drug (Jalili-Firoozinezhad et al. 2018), however,
immune cells that are involved in radiation toxicity are not included in these studies.

More recently, Caco-2 cells have been cultured with vascular endothelial cells
(i.e., HUVECs) on a peristaltic microfluidic chip (Jing et al. 2020). To induce
intestinal inflammation, E. coli and U937-derived macrophages are added to the
epithelial cells or incorporated into the vascular cavity. E. coli-induced intestinal
damage, as documented by a disrupted intestinal barrier and injured villi, as well as
inflammatory responses is suppressed by the probiotic Lactobacillus casei or the
antibiotics penicillin and streptomycin confirming the suitability of this test system
for drug screening.

In a modular, microfluidics-based model, termed HuMiX (human–microbial
crosstalk), the Caco-2 monolayer is physically separated from microbial cells by a
nanoporous membrane which allows coculture with commensal bacteria under
anaerobic conditions (Shah et al. 2016). Supplementation of a perfusion
microchamber with primary CD4+ T cells seems feasible which underlines the
potential of this model to study host–microbe interactions in the presence of immune
cells. However, this model is currently limited to short-term exposure (<24 h) and
mechanical deformations of the IEC monolayer have not been considered. To
simulate immune tolerance in the gut, tissue resident innate immune cells
representing mucosal macrophages and dendritic cells are included in an intestine-
on-chip model that allows functional studies on the interaction between microbes,
IECs, and immune cells (Maurer et al. 2019).

Microfluidic devices with intestinal tissue ex vivo are emerging as alternative
models to study pathophysiological processes and drug transport, metabolism, and
toxicity. Recent proof-of-concept studies demonstrate that whole intestinal segments
from mice can be used for up to 24 h to dissect complex inflammatory and immune
responses to microbes (Yissachar et al. 2017). Viability and integrity of human
intestinal tissues can be maintained for an increased period time, too, although
studies are less advanced and the ex vivo models seem not suitable for preclinical
drug testing (Dawson et al. 2016; Baydoun et al. 2020; Richardson et al. 2020).
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4 Limitations of Current In Vitro Models of the Inflamed
Intestine

As outlined, different approaches to obtain 3D immunocompetent models of the
intestine have several drawbacks similar to tissue models without immune cells
(Hewes et al. 2020). Conventional static coculture models normally fail to create a
physiologically relevant culture environment, they lack specialized epithelial cell
types and artificial membranes are not representative for the complexity observed
in vivo. Furthermore, physiological biomechanics cannot be simulated, and long-
term studies to simulate chronic disease are difficult to accomplish. Intestinal
organoids cannot be easily modified to have additional tissue components such as
vasculature and immune cells, whereas microfluidic gut-on-a-chip models remain
challenging to scale and the limited amount of biomaterial restricts downstream
analyses.

Although most in vitro models of the inflamed intestine have a limited complexity
regarding cell types and signaling pathways, they provide a cost-effective approach
for pharmacological screening and mechanistic evaluation of treatment strategies in
inflammatory diseases under standardized and reproducible experimental conditions.

5 Conclusions and Outlook

By harnessing in vitro models much progress has been made, however, currently
only a few immunocompetent intestinal models are applied in preclinical drug
development in inflammatory and immune-related diseases of the gut. This may be
partially explained by an as yet incomplete understanding of disease pathology
compared to a more advanced knowledge in risk assessment such as skin irritation
and sensitization (Almeida et al. 2017; Bock et al. 2018). The establishment of key
events in adverse outcome pathways (AOPs) and hypothesis-driven Integrated
Approaches to Testing and Assessment (IATA) provided a major step forward in
the development of specific in vitro test systems in toxicology (Leist et al. 2017;
Tollefsen et al. 2014). By defining advanced test methods for key events in early
phases of drug development, drug candidates may be better prioritized. However, for
complex chronic inflammatory diseases it will be challenging to define
inflammation-related key events and in vitro test systems for a specific disease
(Villeneuve et al. 2018).

Other state-of-the-art approaches in tissue engineering such as 3D bioprinting of
human tissues and organs using primary cells may have superior physiological
relevance and improved performance in ADME (absorption, distribution, metabo-
lism, and excretion) and toxicity studies compared to conventional in vitro models
(Murphy and Atala 2014). Indeed, bioprinting allows deposition of primary human
intestinal cells and biomaterials to build a structure similar to the native human
intestine (Madden et al. 2018). By integration of immune cells and a living
microbiome, these models may serve as flexible platform for future preclinical
drug discovery and the development of personalized, precision medicine. Further
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development of intestinal in vitro models will be a key component to obtain more
accurate simulations of the processes observed in vivo and to accelerate drug
discovery and development using test systems with enhanced scientific rigor and
reproducibility.
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Abstract

Musculoskeletal injuries and associated conditions are the leading cause of
physical disability worldwide. The concept of tissue engineering has opened up
novel approaches to repair musculoskeletal defects in a fast and/or efficient
manner. Biomaterials, cells, and signaling molecules constitute the tissue engi-
neering triad. In the past 40 years, significant progress has been made in devel-
oping and optimizing all three components, but only a very limited number of
technologies have been successfully translated into clinical applications. A major
limiting factor of this barrier to translation is the insufficiency of two-dimensional
cell cultures and traditional animal models in informing the safety and efficacy of
in-human applications. In recent years, microphysiological systems, often
referred to as organ or tissue chips, generated according to tissue engineering
principles, have been proposed as the next-generation drug testing models. This
chapter aims to first review the current tissue engineering-based approaches that
are being applied to fabricate and develop the individual critical elements
involved in musculoskeletal organ/tissue chips. We next highlight the general
strategy of generating musculoskeletal tissue chips and their potential in future
regenerative medicine research. Exemplary microphysiological systems mimick-
ing musculoskeletal tissues are described. With sufficient physiological accuracy
and relevance, the human cell-derived, three-dimensional, multi-tissue systems
have been used to model a number of orthopedic disorders and to test new
treatments. We anticipate that the novel emerging tissue chip technology will
continually reshape and improve our understanding of human musculoskeletal
pathophysiology, ultimately accelerating the development of advanced
pharmaceutics and regenerative therapies.

Keywords

Biological induction · Biomaterial · Disease modeling · Drug testing · Growth
factors · Microphysiological system · Organoid · Regenerative medicine · Stem
cells · Tissue chip

1 Introduction

The human musculoskeletal system, also known as the locomotor system, provides
the human body with structural support and load-bearing capacity and offers protec-
tion to the delicate internal organs. The musculoskeletal system enables mechanical
functions that subject the tissues to wear and tear as well as injuries over a lifetime of
use, leading to debilitating pain and weakening or even loss of functions. In fact,
musculoskeletal conditions are the leading cause of physical disability worldwide
(James et al. 2018). As musculoskeletal disorders are most prevalent in the elderly,
the world’s aging population represent the major contributing factor to the increasing
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medical and socioeconomic burdens of treating musculoskeletal impairments. Con-
ventional treatments include the use of autografts, allograft, and xenografts, but have
several drawbacks such as disease transmission, limited availability and reproduc-
ibility, donor scarcity, sterilization-induced alteration in natural matrix properties,
and immune rejection. Tissue engineering represents a promising strategy of regen-
erative medicine to restore musculoskeletal structures and functions.

The field of tissue engineering interfaces engineering, life science, and medicine,
with the capability of creating living tissues outside the human body (Langer and
Vacanti 1993). Traditionally, these in vitro grown tissues are intended to be
implanted into the human body to restore, maintain, augment, or replace diseased,
injured, or degenerated tissues. Regenerative medicine, as the term indicates, aims to
enable and enhance the body’s natural repair mechanisms to restore the function of
otherwise irreparable tissues or organs in situ.

The tissue engineering triad consists of three key elements: scaffolds, cells, and
signaling molecules (O’Brien 2011). In the past few decades, considerable progress
has been made in the tissue engineering and regenerative medicine (TERM) field,
which continues to evolve rapidly. In particular, new biomaterials are being
designed, and novel approaches are emerging to fabricate scaffolds with existing
biomaterials; the identification of new stem cell sources and functions and the
establishment of more biologically accurate organotypic models promise to broaden
the applications of TERM technologies; and innovative delivery and administration
strategies are being proposed for growth factors and other biologically active
molecules. These exciting developments underscore the importance of comprehen-
sive evaluation of the three TERM components to gain an in-depth understanding of
their safety, efficacy, and optimal use. In this chapter we focus specifically on the
essential TERM elements of relevance to orthopedic applications.

Successful translation of TERM techniques and products requires evidence-based
safety and efficacy assessment prior to the clinical trial. Currently, animal models are
an essential component in preclinical studies and have been used to assess various
biomaterials, cells, and signaling molecules for musculoskeletal regeneration. Small
rodents, especially mice and rats, are the most commonly used animal models in
musculoskeletal research. The past few decades have witnessed a continuous
increase in the use of mice in orthopedic research, while the use of rats remains
relatively unchanged due to the difficulties in genetic manipulations (Ericsson et al.
2013). However, in recent years, concerns have risen about the benefit of animal
research to humans. A number of studies have shown that most animal experiments
are unable to predict the observations in human trials (Mak et al. 2014; Pound and
Bracken 2014). In fact, among the 76 highly influential animal studies (each with
>500 citations) published on 7 prominent scientific journals, only 37% could be
replicated in human randomized trials (Hackam and Redelmeier 2006). Therefore,
the benefits of animal models still need to be supported by more systematic
evaluations.

In addition to the many commendable achievements in tissue repair, TERM
applications have also been successfully extended to disease modeling and drug
development over the past decade. Exemplary in vitro models have been established
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using TERM principles for mimicking musculoskeletal tissues, including bone and
cartilage (Lin et al. 2014; Occhetta et al. 2019; Arrigoni et al. 2020), and skeletal
muscle (Truskey 2018), and other tissue/organ systems, such as lung (Huh et al.
2010), blood-brain barrier (Phan et al. 2017), gut (Kim et al. 2012), kidney (Jang
et al. 2013), liver (Ribeiro et al. 2019), pancreas (Shik Mun et al. 2019), and heart
(Nunes et al. 2013). These exciting studies have suggested that in vitro organotypic
models and microphysiological systems (MPS), generated with tissue engineering
principles and technologies, may serve as convenient and versatile platforms for the
comprehensive evaluation of multiple TERM elements. Once the clinical relevance
is validated, in vitro models like MPS will be a powerful alternative to current animal
models.

We begin this chapter by describing the properties and performances – both
in vitro and in vivo – of the scaffolds, cells, and signaling molecules in musculo-
skeletal tissue engineering. The derivation of organoids from stem cell aggregates
and their potential applications are introduced. We then describe the optimal use of
the three TERM elements in representative MPS established thus far for modeling
musculoskeletal tissues. Finally, we summarize the advantages and disadvantages of
different models and envision their utility in the development of drugs/treatments in
the future.

2 Key Elements of Musculoskeletal Tissue Models

Scaffolds, cells, and signaling molecules are considered the three key, enabling
components of tissue engineering. For musculoskeletal regeneration, the structure
and function of native bone, cartilage, skeletal muscle, tendon, and ligament tissues
have significant implications on the selection of the three elements mentioned above.
Best reparative and regenerative outcomes are achieved when the three elements act
synergistically, where the appropriate cell types are seeded into a scaffold that
possesses mechanical, structural, and biochemical characteristics akin to those of
the native tissue and are given the biochemical and physical signals that induce
anabolic and regenerative responses.

2.1 Biomaterials and Scaffolds

Enormous progress in biomaterials research has been made in the past decades.
Many different types of natural and synthetic biomaterials have been utilized to
fabricate tissue engineering scaffolds, which can be cell-laden or cell-free when
implanted. The safety and efficacy of a new biomaterial have to be rigorously
assessed prior to its clinical application. This evaluation process routinely includes
both in vitro and in vivo tests. We recognize the myriad biomaterial types that have
been utilized to regenerate musculoskeletal tissues. This section thus does not intend
to provide a thorough description of existing biomaterials, but rather focuses on an
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analysis of the assessment and performances of the representative, novel
biomaterials and scaffolds developed in the past decade.

Bone Biomaterial preparation for bone regeneration has been facing a persistent
challenge to recapitulate the mechanical, structural, and functional characteristics of
native bone. Natural biomaterials such as acellular bone matrix and extracellular
matrix (ECM) generated by in vitro cultured mesenchymal stem cells (MSCs) have
led to robust osteogenesis (Ni et al. 2014; Liu et al. 2019; Rothrauff and Tuan 2020).
A myriad of synthetic biomaterials, including metals, ceramics, polymers, and
composites, have been developed to address the unmet medical need of bone grafts.
Metallic biomaterials still dominate the market of load-bearing bone substitute
materials (Chen and Thouas 2015). One of the most commonly used biometals is
Ti-6Al-4V alloys. Human MSCs were cultured on additive manufactured Ti-6Al-4V
scaffolds, and surface anodization was found to increase the alkaline phosphatase
(ALP) production, osteocalcin (OCN) and type I collagen expression, and mineral
deposition (Li et al. 2020a; Groessner-Schreiber and Tuan 1992). A major drawback
of most metallic implants is the associated “stress shielding effect.” Biodegradable
metals such as magnesium alloys have thus been proposed to address this issue.
Fracture repair with magnesium-containing orthopedic implants has shown consid-
erable efficacy. Magnesium intramedullary rods were implanted in rat femur, leading
to abundant new bone formation through an osteogenic mechanism that involves
calcitonin gene-related polypeptide-α (CGRP) (Zhang et al. 2016). It has been noted
that there exists a large gap in mechanical properties between existing biodegradable
materials and traditional metallic implants. Biodegradable zinc alloys have therefore
been developed, tested in vitro with MC3T3-E1 mouse preosteoblast cells and
human umbilical vein endothelial cells (HUVECs), and implanted in rat femur to
evaluate their degradability (Yang et al. 2020). This group of newly designed zinc
alloys was found to show excellent promise in load-bearing orthopedic applications.

Bioceramics mostly possess high chemical stability and biocompatibility; bioac-
tive ceramics are usually osteoconductive and/or osteoinductive. Osteoconductivity
is the ability of a surface to support the attachment, proliferation, and migration of
bone-forming osteoblasts, while osteoinductivity implies the recruitment and induc-
tion of undifferentiated stem cells to become osteoprogenitors (Albrektsson and
Johansson 2001). Hydroxyapatite and Bioglass®, as two extensively studies bioac-
tive ceramics, can form direct chemical bonds with surrounding tissues. Because of
the close compositional resemblance of calcium phosphates (CaP, minerals
containing Ca2+ and phosphate anions) to the inorganic phase of natural bone, CaP
ceramics are among the most frequently used bone biomaterials (Bose and Tarafder
2012). The suitability of bioceramics for bone repair is typically assessed by
culturing osteoblast-like cells and MSCs on bioceramic surfaces or in bioceramic-
conditioned medium (Li et al. 2017a, b, 2020b). As a relatively new bioceramic, 2D
nanosilicates have become a topic of increasing interest in bone tissue engineering
because of their outstanding osteoconductivity and osteoinductivity. Nanosilicate
platelets can be conveniently mixed in three-dimensional (3D) hydrogels to form
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nanocomposites. A 2D in vitro culture model has been used to assess the osteogenic
responses of the MC3T3 E1 subclone 4 cells to nanosilicate-containing scaffolds
(Xavier et al. 2015). The cells showed higher quantitative ALP activity and calcium
deposition induced by nanosilicate addition. In another study, both in vitro and
in vivo models were employed to examine silicate/methacrylated glycol chitosan
scaffolds. The in vitro osteoinductivity tests showed markedly increased ALP
activity and mineralization as well as upregulated osteogenic gene expression by
the encapsulated MSCs in the presence of silicate. In a mouse nonunion calvarial
defect model, the silicate-containing, cell-free composites were found to overtly
promote native cell infiltration as well as cause remarkably higher bone volume
density, bone growth surface area, and trabecular number than either constituent
material (Cui et al. 2019).

A main limitation of many bioceramics is their low fracture toughness. To deal
with this issue, bioceramics have been combined with biopolymers to obtain
composites with improved ductility and toughness (Rezwan et al. 2006). A broader
application of biopolymers, especially hydrogels, for musculoskeletal repair is seen
in cell- or drug-delivery therapies (Nöth et al. 2010), as will be discussed in Sects.
2.2 and 2.3.

Cartilage Various natural and synthetic biopolymers have been utilized to maintain
or enhance the chondro-phenotype of chondrocytes or chondrogenic differentiation
of stem cells, a process where new cartilage ECM is synthesized and deposited.
Cartilage scaffolds come in various forms such as porous sponges (Wang et al.
2005), fibers/meshes (Li et al. 2005), and hydrogels (Deng et al. 2019). As a natural
biomaterial, MSC-derived ECM was shown in our previous study to be a robust
substrate for enhancing the chondrogenesis of articular chondrocytes (Yang et al.
2018). A composite hydrogel, consisting of gelatin, fibrinogen, hyaluronan (HA),
and glycerol, was used to 3D print scaffolds containing rabbit articular chondrocytes
(Kang et al. 2016). In vitro culture and in vivo implantation in mouse dorsal
subcutaneous pockets both showed abundant new cartilage matrix deposition in
the 3D printed structure. Sharma et al. (2013) designed a poly(ethylene glycol)
diacrylate hydrogel and used it in conjunction with a bioadhesive to repair focal
cartilage defects in a caprine model and in human patients (Fig. 1a–c). This soft
hydrogel could augment the microfracture treatment and promote cartilage regener-
ation. Electrospun polymer fiber meshes are usually too dense for cell infiltration. To
tackle this issue, cryoelectrospinning, with the mandrel kept at �78 �C, was
employed to create an ultraporous nanofiber network that permits the infiltration of
cell-laden hydrogels (Formica et al. 2016). The scaffolds were assessed with both
bovine and human chondrocytes and led to robust production of type II collagen and
sulfated glycosaminoglycans (GAGs), characteristic markers of cartilage, in vitro.

Native cartilage undergoes substantial mechanical shear, wear, and compression
during a lifetime. The recapitulation of the mechanical and frictional properties has
become a key consideration in the design of cartilage biomaterials and scaffolds
(Liao et al. 2013). By virtue of its high biocompatibility and safety (and with FDA
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approval), poly(ethylene glycol) (PEG) has been widely utilized, despite their low
mechanical strength, to prepare various hydrogel scaffolds (Benoit et al. 2008;
Brandl et al. 2010). An injectable hydrogel derived from 4-arm star PEG showed a
local maximum strength of ~20 MPa. This high-strength PEG-based hydrogel
supported the proliferation and phenotype maintenance of encapsulated murine
chondrocytes, and the injected chondrocyte-laden hydrogels resulted in formation
of new hyaline cartilage integrated with the host tissue in a murine osteochondral
defect model (Wang et al. 2017). We recently developed a photo-crosslinkable poly-
D,L-lactide acid/PEG hydrogel and assessed its chondrogenic potential with human
MSCs (Sun et al. 2017). This hydrogel possesses a compressive modulus in the
physiological range of native cartilage and supports the differentiation and mainte-
nance of human MSCs and thus holds promise in point-of-care treatment of cartilage
defect.

Skeletal Muscle Generally there are two approaches to skeletal muscle tissue
engineering: (1) transplantation of biomaterial scaffolds seeded with muscle cells
and other supporting cells and (2) delivery of biomaterial scaffolds, with or without
paracrine signaling cells, growth factors, or cytokines, to induce in situ muscle tissue
engineering (Kwee and Mooney 2017). In the design of biomaterials for skeletal
muscle tissue engineering, it is important to consider the microstructural, physical,
and biochemical properties, such as porosity (Hill et al. 2006), degradability (Hong
et al. 2011), 2D and 3D patterns (Ku et al. 2012), injectability (Rossi et al. 2011), and
native biochemical cues (Perniconi et al. 2011). Electrospinning is suited to a wide
variety of natural and synthetic biomaterials, capable of fabricating fibers with
varying diameters and orientations and generating scalable, ECM-mimicking
scaffolds with desired degree of anisotropy. An alginate-based bioink containing
HUVECs has been electrospun onto uniaxially micropatterned PCL/collagen struts,
generating scaffolds that provide both topographical and biochemical cues that
facilitated the alignment and differentiation of subsequently seeded myocytes (Yeo
and Kim 2020). Hydrogels are also commonly used biomaterials for muscle repair.
Interestingly, 3D free-standing skeletal muscle fibers engineered from muscle cell-
laden Matrigel were found to be able to support the differentiation of neural stem
cells into neurons to form neuromuscular junctions (NMJs) (Morimoto et al. 2013).

Fig. 1 (continued) with injectable, photo-crosslinkable hydrogel (b), which trapped bleeding from
the microfracture holes (c). In MSC-based cartilage tissue engineering, an optimized differentiation
protocol with exposure to Wnt/β-catenin inhibitor and shorter TGF-β treatment time was found to
significantly inhibit chondrocyte hypertrophy both in vitro (d, e) and in a mouse intramuscular
implantation model (f, g). Scale bars: 100 μm. A 3D printed scaffold (h) infused with collagen
hydrogel and with/without TGF-β3 loading was used to replace a rabbit proximal humeral joint.
After 4 months’ implantation, TGFβ3-infused scaffolds showed full articular surface coverage by
newly formed cartilage (i) similar to the native tissue (k), while TGFβ3-free scaffolds had only
isolated tissue formation (j). Reproduced with permission from Sharma et al. (2013), Deng et al.
(2019), and Lee et al. (2010)
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Cell-free scaffolds used in regenerative medicine eliminate the stringent cell
harvest and administration process and obviate the associated regulatory hurdles
and possible immune responses. A biologic-free ferrogel, without the incorporation
of any bioreagents or cells, could generate externally actuated mechanical
suppressions to reduce fibrosis and inflammation and heal myotoxin-induced severe
muscle injuries (Cezar et al. 2016). To regenerate volumetric muscle loss (VML), the
self-regeneration capability of native muscle does not suffice. Decellularized bladder
ECM was used to repair VML in both mice and human patients and resulted in de
novo muscle remodeling linked to the recruitment of perivascular stem cells (Sicari
et al. 2014).

Tendon and Ligament Tendons are tough connective tissues that bind muscles to
bone, while ligaments connect bones to other bones. A number of design factors,
including native tissue anatomy, physical and chemical properties of the materials,
and material interactions with native cells, need to be considered to select an optimal
biomaterial in tendon and ligament tissue engineering (Kuo et al. 2010).

Our previous study explored the potential application of decellularized tendon-
derived, solubilized extracellular matrix (tECM) in adipose stem cell (ASC)-based
tendon tissue engineering (Yang et al. 2017). The tECM-supplemented 3D scaffolds
not only enhanced the tenogenic differentiation of ASCs and the scaffolds’ mechan-
ical properties but also downregulated the expression of osteogenic markers and
matrix metalloproteinases. Decellularized tendon ECM combined with stem cells
has also been researched for tendon repair, and the natural, decellularized scaffolds
were found to provide an inductive environment for the tenogenic differentiation of
MSCs (Youngstrom et al. 2013; Ning et al. 2015). Using the synthetic, degradable
biopolymer poly(ε-caprolactone), Wang et al. (2018) fabricated a 3D scaffold with
tendon-like mechanical properties and microstructural and hierarchical anisotropy.
This scaffold supported tenogenic matrix production by human tenocytes, and the
acellular scaffolds showed robust pro-tenogenic properties in a micropig model.

Ligament and tendon have very similar structure in spite of differences in
collagen and water content in their ECM. Many biomaterials have, therefore, been
designed to engineer both tissues and tested with similar methods (Barber et al.
2013). While tenocytes are the major cellular component of tendons, the cells
residing in ligaments are mostly fibroblasts. In in vitro studies, ligament biomaterials
and scaffolds are typically evaluated with fibroblasts and MSCs (Correia Pinto et al.
2017; Chang et al. 2020), and in vivo models for ligament tissue engineering are
mostly created in small-scale animals.

Tendons and ligaments attach to bone at junctions known as entheses.
Biomaterials for enthesis tissue engineering are expected to facilitate integration
and smooth load transfer between tendon/ligament and bone. Such biomaterials have
been investigated in a number of previous studies and are not detailed here (Font
Tellado et al. 2015; Tang et al. 2020).
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2.2 Cells

The common cell sources employed to engineer musculoskeletal tissues are shown
in Fig. 2a. Because of their multipotency, high proliferative capacity, and relative
ease of isolation and expansion, MSCs remain the most promising cell source in
musculoskeletal regeneration and in general TERM applications. Although embry-
onic stem cells (ESCs) have wide differentiation potential and extensive expansion
properties, for TERM applications, the hurdles include not only ethical issues related
to sourcing but also the risks of tumorigenicity and immune rejection as well as the
absence of a standardized protocol for ESC differentiation into musculoskeletal
tissues (Jukes et al. 2010). Induced pluripotent stem cells (iPSCs) have received
much attention for their pluripotency and virtually unlimited supplies. Since iPSCs
can be reprogrammed from somatic cells, they not only obviate the need for embryos
but can be made individual-specific, thus avoiding immune rejection issues
(Takahashi and Yamanaka 2006). Primary cells from native tissues have also been
employed for musculoskeletal regeneration, but they usually have lower availability,
are more difficult to culture, and show larger patient-to-patient variability.

Bone Human/animal primary osteoblastic cells and stabilized osteoblastic cell lines
have both been used in in vitro investigations. Osteoblastic cell lines, including
SaOs-2, MG-63, and MC3T3-E1, have been compared with primary human
osteoblasts (HOBs) in terms of their proliferation ability, mineralization behavior,
and gene expression profile. It was found previously that HOBs only share some of
the characteristics with each of the cell lines (Czekanska et al. 2014). Although the
uses of HOBs are more clinically relevant than cell lines, their applications are
limited by the complicated isolation procedures and heterogeneous phenotypes
(Czekanska et al. 2012). As a multipotent stem cell, MSCs can be readily
differentiated into osteoblasts and have been applied in various scaffolds to induce
osteogenesis. Tissue-engineered bone scaffolds are designed to mimic bone ECM
and recruit surrounding cells, forming a bone tissue to repair the bone defect (Amini
et al. 2012). Recent studies show that MSCs possess robust osteogenic ability when
seeded in collagen scaffolds, polymer-mineral scaffolds, fibrous nanocomposite
scaffolds, silica-coated scaffolds, as well as their own ECM (Kuttappan et al.
2020; Duan et al. 2018; Gandhimathi et al. 2019; Harvestine et al. 2018; Meinel
et al. 2003). However, autologous MSCs have limited availability. Due to patient
heterogeneity, allogeneic MSCs show donor age-dependent proliferation rates and
raise immunogenic concerns; MSC isolation involves invasive harvesting
procedures in the case of bone marrow MSCs. iPSCs have emerged as a novel
alternative to MSCs. Osteoblasts derived from iPSC were seeded on a gelatin
scaffold and were found to secret calcium, OCN, and bone sialoprotein in vitro
and in vivo (Bilousova et al. 2011). Retinoic acid was used to induce human iPSCs
to differentiate into osteoblast-like and osteocyte-like cells, and these cells could
generate human bone tissues in mouse calvarial defects (Kawai et al. 2019). Never-
theless, with current differentiation protocols, the multi-lineage differentiation
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Fig. 2 Commonly used cell sources (a) and growth factors (b) for musculoskeletal tissue
engineering
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capability of iPSCs generally does not match that of MSCs (Diederichs and Tuan
2014), and the optimization of differentiation protocols is warranted in future
research.

Cartilage Chondrocytes are the only cell type present in articular cartilage and exist
within abundant ECM that is neither vascularized nor innervated. The presence and
functional state of chondrocytes are of significant orthopedic clinical importance in
the case of degenerative joint diseases, such as osteoarthritis (OA), where the
articular cartilage suffers from extensive degeneration, resulting in serious physical
debilitation. In order to understand OA progression, it is important to examine the
changes in chondrocytes within the cartilage. There has been a relentless pursuit of
an optimal chondrocyte culture method to reduce their dedifferentiation during
in vitro expansion (Caron et al. 2012), and a number of chondrogenic cell lines
from mouse or rat, including C1, C3H10T1/2, ATDC5, CK2, and RCJ3.1, have been
generated and widely used (Brown et al. 2014). It is now accepted that abnormal
biomechanical and genetic factors target chondrocytes and alter their normal
functions (Goldring 2000). Dudek et al. (2016) reported that the chondrocyte
clock gene BMAL1 plays a key role in the normal function of articular chondrocytes
and hence in cartilage integrity. Besides chondrocytes, MSCs, iPSCs, and ESCs
have also been utilized to form cartilage tissues. One of the key challenges in the
long-term culture of chondrocytes, either native or derived from chondrogenically
differentiated stem or progenitor cells, is the process of hypertrophy, whereby the
cells enlarge and enter terminal differentiation, accompanied by apoptosis and
calcification. While this differentiation and maturation of chondrocytes is a normal
process of long bone development from transitional cartilage as part of the process of
endochondral ossification (Saito et al. 2010), the hyaline cartilage of the articular
joint surface is a permanent cartilage, and the appearance of hypertrophic
chondrocytes is in fact part of the degenerative process in OA (Wang et al. 2004).
Researchers have thus explored different methods to generate non-hypertrophic,
hyaline cartilage. We found in our previous study that inhibiting the WNT signaling
pathway during the differentiation process can promote the MSC chondrogenesis
and suppress chondrogenic ossification in vitro and in vivo (Fig. 1d–g) (Deng et al.
2019; Narcisi et al. 2015). Different protocols have been proposed for iPSC
chondrogenic differentiation (Dicks et al. 2020; Lach et al. 2019; Hu et al. 2020),
and further research is needed for protocol optimization and standardization.

Skeletal Muscle Regeneration of skeletal muscle is a complex process orchestrated
by heterogeneous cell populations. Satellite cells/muscle-derived stem cells
(MDSCs) and MSCs are among the most frequently used cell types for repairing
defective muscles (Sacco et al. 2008; Montarras et al. 2005; Koponen et al. 2007;
Usas and Huard 2007). Human pluripotent stem cells can be successfully
differentiated into induced myogenic progenitor cells, which can readily form 3D
contractile multinucleated myotubes (Rao et al. 2018). Other less commonly used
cell types in muscle regeneration include adipose-derived stem cells and pericytes
(Dunn et al. 2019). Satellite cells are positive for PAX7 and PAX3 (Relaix et al.
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2005) and generally considered to stay dormant when there is no injury to the
muscle. Interestingly, Keefe et al. (2015) demonstrated that satellite cells contribute
to myofibers in both injured and healthy adult mouse muscles. Collins et al. (2005)
transplanted as few as seven satellite cells in a single intact myofiber into radiation-
ablated muscles, where the satellite cells vigorously self-renewed and expanded,
generating clusters of new, compact myofibers. Satellite cells have also been deliv-
ered in HA hydrogels to a muscle ablation model in mouse, resulting in both
structural and functional recovery (Rossi et al. 2011). Multipotent MDSCs have
been employed to regenerate muscle and other musculoskeletal tissues (Usas and
Huard 2007). A preplate technique was introduced to isolate MDSCs. In this
procedure, the minced muscle tissues first undergo enzymatic digestion, and the
resultant slurry is plated on collagen-coated flasks. Non-adhering cells in the culture
medium are transferred and plated in new collagen-coated flasks, and this process is
repeated ~5 times to obtain a slowly adhering cell population that contains MDSCs
(Gharaibeh et al. 2008). The maintenance of MDSC potency and quiescence is
challenging in in vitro culture. Quarta et al. (2016) created collagen-based artificial
muscle fibers that extended the quiescence of mouse and human MDSCs. Bone
marrow-derived MSCs, as another promising cell source for muscle repair, have
been seeded onto 3D, porous alginate scaffolds loaded with vascular endothelial
growth factor (VEGF) and insulin-like growth factor 1 (IGF1), where the local
growth factor stimulation could enhance MSC paracrine signaling and support
endogenous muscle regeneration in a rat muscle injury (blunt crush) model
(Pumberger et al. 2016). The trophic actions of MSCs have been proposed to be a
major mechanism underlying the enhanced endogenous muscle repair and regenera-
tion (Sassoli et al. 2012).

Tendon and Ligament Both terminally differentiated cells and stem cells have
been utilized for tendon/ligament regeneration. Tenocytes are characterized by
specific markers, such as Scleraxis, Mohawk, and early growth response factor
(Asahara et al. 2017). To maintain tenocyte phenotype, many collagen-based
scaffolds have been engineered. It was reported that collagen-GAG scaffolds were
helpful for the long-term maintenance of tenocyte transcriptomic stability (Caliari
et al. 2012). In addition, supplementation of growth/differentiation factor 5 (GDF5)
and IGF1 together can rescue the tenocyte phenotype and drive cell proliferation
(Caliari and Harley 2013). Tendon stem/progenitor cells (TSPCs) possessing the
universal characteristics of stem cells were first identified by Bi et al. (2007). TSPCs
reside in a biglycan- and fibromodulin-rich niche and can regenerate tendon-like
tissues both in vitro and in vivo. Many studies have explored MSC-based tendon
tissue engineering strategies, where MSCs were successfully induced to express
tenocyte phenotypes (Kryger et al. 2007; Lee et al. 2011; Li et al. 2015; Tokunaga
et al. 2015). It has also been shown that co-culture with stem cells derived from bone
marrow or adipose tissue can promote tenocyte proliferation (Chen et al. 2018;
Kraus et al. 2013). Recently, Komura et al. (2020) generated a tenocyte induction
protocol to differentiate murine iPSCs into tenocyte-like cells, which could signifi-
cantly reduce scar formation and promote tendon regeneration when implanted in
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injured mouse tendons. In ligament tissue engineering, ligament-derived fibroblasts
(Chang et al. 2020), human dermal fibroblasts (Correia Pinto et al. 2017), and human
MSCs have all been employed.

3D Organoids ESCs, adult stem cells (including MSCs), and iPSCs have been used
to engineer almost every musculoskeletal tissue (Fig. 2a), because these cells possess
extensive proliferation potential and multi-differentiation potency. Aggregates of
stem cells can form 3D structures that recapitulate certain architectural and func-
tional characteristics of some native tissues in vitro, and such 3D cell structures are
termed organoids (Takahashi 2019). Various ESC- and iPSC-derived organoids
have been derived by employing developmental biology principles, and a number
of other organoids were generated by subjecting adult stem cells to conditions that
mimic tissue renewal or repair processes in vivo (Clevers 2016). For example,
organoids derived from pluripotent stem cells have been studied previously to
model the brain (Lancaster et al. 2013), retina (Eiraku et al. 2011), adenohypophysis
(Suga et al. 2011), stomach (McCracken et al. 2014), liver (Takebe et al. 2013), lung
(Dye et al. 2015), and kidney (Takasato et al. 2014); adult stem cells, which can also
undergo extensive proliferation and differentiation to form organoids, have been
utilized to mimic stomach (Stange Daniel et al. 2013), prostate (Chua et al. 2014),
lung (Desai et al. 2014), salivary gland (Maimets et al. 2016), and esophagus
(DeWard et al. 2014), just to name a few. Organoid cultures can often proliferate
extensively and thus generate sufficient cells to replace damaged or diseased tissues
(Yui et al. 2012). In addition, organoids offer several advantages over animal models
and conventional cell culture systems in studying human development, physiology,
and pathobiology. Organoids possess multiple cell types as well as 3D structural and
morphological characteristics similar to native tissues; shorter duration and lower
cost can generally be expected for experimentation with organoid models than with
animal models; using patient-derived iPSCs and gene manipulation techniques such
as the CRISPR/Cas9 system, patient- and disease-specific organoids with edited
genome can greatly advance precision medicine research (Ran et al. 2013; Takebe
and Wells 2019). In the history of musculoskeletal research, in 1929, Fell and
Robison (1929) cultured skeletal tissue fragments from fowl embryos to model the
skeletal development process in vitro. However, a relatively small number of
musculoskeletal organoids have been established thus far (Mori et al. 2019). To
engineer skeletal muscle tissues, a biomaterial scaffold is usually required to induce
myofiber alignment under tension (Maffioletti et al. 2018). Recently, mouse iPSCs
were used to fabricate 3D spherical bone/cartilage complex by micro-space culture
followed by mechanical shaking (Limraksasin et al. 2020). We recently showed that
after brief trypsinization, MSC-impregnated ECM experienced mesenchymal con-
densation and robust chondrogenesis (Yang et al. 2019).
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2.3 Signaling Molecules

Cells residing in native musculoskeletal tissues receive a broad array of signals
which can be chemically transmitted via growth factors and other molecules
(Fig. 2b) or physically exerted through the immediate ECM. The application of
such complex signals in TERM has considerable influences on the outcome. This
section focuses on the signaling molecule-conveyed biochemical signals for muscu-
loskeletal regeneration. The effects of some other signals are described in Sect. 3.

Bone Bone is a highly vascularized tissue that undergoes constant remodeling
throughout our lifetime, and signaling molecules play an important role in the
complex bone remodeling process. Bone morphogenetic proteins (BMPs), particu-
larly BMP2 and BMP7, show outstanding osteoinductivity and have therefore been
widely incorporated in bone scaffolds (Yilgor et al. 2009). BMP2 was previously
co-spun with hydroxyapatite-containing silk fibroin/poly(ethylene oxide) solution to
fabricate fibrous bone scaffolds (Li et al. 2006; Lee et al. 2013). The presence of
BMP2 markedly enhanced mineralization and upregulated osteogenic gene expres-
sion. Platelet-derived growth factor-BB (PDGF-BB), one of the five isomeric forms
of PDGF, was found to enhance osteogenesis of adipose-derived MSCs and promote
bone formation in a distraction osteogenesis rat model (Hung et al. 2015; Moore
et al. 2009).

Vascularization plays a critical role in sustaining transplanted cells and/or
scaffolds. The use of angiogenic growth factors, especially VEGF, in bone repair
has led to encouraging outcomes (Murphy et al. 2000). Poly(lactic-co-glycolic acid)
scaffolds containing human bone marrow-derived MSCs and condensed plasmid
DNA encoding for BMP-4 and for VEGF were implanted into SCID mice, and the
scaffolds containing all three components produced robust bone regeneration
(Huang et al. 2005). Besides signaling molecules that act locally, systemic agents
such as human growth hormone and parathyroid hormone are also important for
bone regeneration (Dimitriou et al. 2011).

Cartilage Unlike bone, articular cartilage is avascular and recalcitrant to repair and
regeneration. Despite the relatively simple tissue composition of cartilage, i.e.,
chondrocytes embedded in a dense ECM, clinically successful cartilage tissue
engineering remains a challenge. The survival and efficacy of transplanted cells in
cartilage scaffolds remain controversial. Many approaches utilize biologically active
molecules, such as growth factors, to enhance the recruitment of endogenous cells
for expedited tissue regeneration. Transforming growth factor beta (TGF-β) plays a
critical role in the maintenance of both articular cartilage and subchondral bone
homeostasis (Zhen et al. 2013; Zhen and Cao 2014). TGF-β1 promotes MSC
chondrogenesis (Miura et al. 1994); TGF-β1 releasing alginate-sulfate scaffold
was shown to promote chondrogenesis both in vivo and in vitro (Re’em et al.
2012). Another member in the TGF-β family, TGF-β3, also possesses strong
chondrogenic effects (Barry et al. 2001). It was reported that TGF-β3 incorporated
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within collagen-hyaluronic acid scaffolds could support the chondrogenesis of
MSCs and produce cartilage-like ECM (Matsiko et al. 2015). Lee et al. (2010) 3D
printed an anatomically correct scaffold and infused it with TGF-β3-loaded collagen
hydrogel. It was found that these scaffolds led to regeneration of hyaline cartilage
with superior compressive and shear properties and recruited cells significantly more
than the TGF-β3-free scaffolds in a rabbit humeral head defect model (Fig. 1h–k).
The use of biologically active molecules, therefore, holds promising potential in
facilitating cell homing without cell delivery.

BMPs and the growth differentiation factors (GDFs), as members of the TGF-β
superfamily, are also able to enhance cartilage regeneration. BMP2, BMP4, and
BMP7 have been incorporated in various controlled delivery strategies for cartilage
repair (Lam et al. 2015). Sun et al. (2019) found that GDF5 enhanced the migration
and chondrogenesis of MSCs in vitro; furthermore, implanting a 3D-bioprinted
GDF5-conjugated MSC-laden scaffold led to robust cartilage regeneration in a rabbit
knee defect site.

Muscle Several growth factors, including IGF1, fibroblast growth factor 2 (FGF2),
nerve growth factor (NGF), placenta-derived growth factor (PIGF), and VEGF,
contribute to muscle repair through different mechanisms (Wei and Huard 2008).
IGF is capable of mediating the proliferation and differentiation of muscle stem cells
(Adams 2000). Gel delivery of VEGF to ischemic muscle tissue increased the
expression of neurotrophic factors and promoted the regrowth and maintenance of
damaged axons via NGF/GDNF (nerve growth factor/glial-derived neurotrophic
factor) signaling (Shvartsman et al. 2014). The co-delivery of the myogenic factor
IGF1 and the angiogenic factor VEGF via an injectable alginate gel has been shown
to recover muscle functions from ischemic injuries in a mouse model (Borselli et al.
2010). Wang et al. (2014) engineered a degradable, shape-memory alginate scaffold
that delivers myoblasts, IGF, and VEGF through a minimally invasive approach to
injured mouse muscle. The implant led to reduced muscle fibrosis, enhanced vascu-
larization, and enhanced functional recovery. A 3D PEG-fibrinogen hydrogel
incorporating mouse mesoangioblasts transduced with a PIGF lentivirus was found
to attract host vessels and nerves and generate newly formed tissues histologically
similar to native muscle in an ablated muscle injury model (Fuoco et al. 2015).

Tendon and Ligament No consensus has been reached on the optimal tenogenic
induction protocol. Previous studies have proposed the use of growth factors such as
IGF1, FGF2, PDGF-BB, GDF-5, TGF-β3, connective tissue growth factor (CTGF),
and BMP12 to promote tendon cell proliferation and enhance tendon regeneration
(Raghavan et al. 2012; Rossi et al. 2011; Wolfman et al. 1997). Many of these
growth factors were similarly used for ligament repair (Pauly et al. 2017; Hee et al.
2012). It was previously shown that a 12 h BMP-12 (10 ng/ml) treatment could
significantly enhance MSC tenogenic marker expression, and this phenotype could
be sustained in vivo in rat tendon defects (Lee et al. 2011). Barsby et al. (2014) found
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that by loading TGF-β3 into an ESC-seeded 3D collagen scaffold, tendon-associated
gene and protein expression by the ESCs could be significantly upregulated.

3 Musculoskeletal Microphysiological Systems

As an in vitro experimental research platform, MPS mimic a tissue or organ by
providing living cells with a microenvironment in which the cells can display tissue-
or organ-specific phenotypic, structural, and functional characteristics. Successful
MPS have been shown to exhibit characteristics that bear high structural and
biologic fidelity to tissues that are difficult to achieve in conventional, static 2D, or
3D cultures (Grayson et al. 2010). Namely, MPS-derived musculoskeletal tissues
aim to present tissue maturation and complexity as seen in in vivo models, where
diverse cellular composition, structurally complex ECM, and interactive signals
from biochemical and physical stimuli co-exist. More importantly, the application
of MPS not only contributes to achieving musculoskeletal regeneration via the
technology of fabricating tissue implants but may also impact the field by
establishing disease models that facilitate understanding of musculoskeletal patho-
genesis and expediting the development of potential therapies and therapeutic
agents. Over the past decade, MPS have been utilized to model various musculo-
skeletal diseases such as OA (Lin et al. 2019), bone metastasis (Marturano-Kruik
et al. 2018), and muscle injury (Agrawal et al. 2017). Examples of pharmacological
agents that were tested in musculoskeletal MPS for treating OA include the
glucocorticoids dexamethasone and triamcinolone, celecoxib, rapamycin, and
HYADD®4 (hyaluronic acid alkylamide) (Lin et al. 2019; Occhetta et al. 2019;
Rosser et al. 2019). The physiological relevance and clinical applicability of the
MPS depends critically on optimal combination of biomaterial scaffold, appropriate
cells, and biochemical and physical signals. Table 1 summarizes the biomaterials,
cells, and signals utilized in representative MPS developed to recapitulate musculo-
skeletal tissues.

Selection of Biomaterials Most MPS employ hydrogels as the cell carrier to create
a 3D culture environment. In addition to their biocompatibility and high water
content, a major advantage of hydrogels in MPS is their injectability, allowing the
cell-laden structure to crosslink in situ and conform to a desired geometry. Among
the frequently used hydrogels are collagen (Sakar et al. 2012), fibrin (Rosser et al.
2019), and gelatin (Lin et al. 2014). Devitalized bone, as a natural biomaterial,
possesses the microstructural, biochemical, and mechanical properties of native
bone, provides an inductive niche for mineralization and angiogenesis, and has
been successfully used in bone-on-a-chip systems (Marturano-Kruik et al. 2018;
Grayson et al. 2010).

Cell Types As multiple cell types are found in the majority of human tissues, MPS
must also replicate this characteristic. Both stem cells and terminally differentiated
cells have been utilized to construct MPS. Previous research has shown the
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feasibility of generating heterogeneous tissues from a single stem cell source through
the perfusion of separate induction medium streams (Lin et al. 2014). Cells isolated
from diseased tissues can bring with them “memories” of the disorders, thus
displaying different phenotypes in vitro compared to those harvested from healthy
tissues. For example, chondrocytes from healthy and OA joints were found to
possess altered chondrogenic potential (Yang et al. 2006). Many musculoskeletal
diseases are patient-specific, with varying stages, genetics, etiology, and drug
sensitivity in different individuals. Using individual-specific cells, MPS offer a
personalizable approach to understanding disease mechanisms and testing treatment
options. Although the use of primary patient cells best recapitulates patient specific-
ity, it is impractical when large cell numbers are needed. iPSCs, with an almost
unlimited proliferative capacity, overcome this limitation. Although there is still a
long way to go to realize wide clinical applications of iPSCs due to their possible
immunogenicity and tumorigenicity and the presence of genetic and epigenetic
aberrations, the use of patient-specific iPSCs has contributed significantly to the
advancement of precision medicine (Tabar and Studer 2014; Sayed et al. 2016). For
example, MPS engineered from iPSCs can serve as an individualized platform for
various preclinical tests, thus facilitating the identification of potentially efficacious
therapies tailored to individual patients.

Stem cell-derived organoids have been extensively researched to study human
physiology and build disease model-in-a-dish (Lancaster et al. 2013). As tissue
analogs generated in vitro, organoids are recognized for their higher biological
fidelity and have been used in MPS to generate organoid-on-a-chip systems (Skardal
et al. 2016). MPS create a dynamic microenvironment mimicking in vivo conditions
such as continuous fluidic flow and varying oxygen concentrations, promoting
communications between multiple cell/tissue components, and generating poten-
tially more clinically relevant organoid responses to toxins, drugs, and potential
medications. In the organoid-on-a-chip research community, increasing attention has
been drawn to the use of custom-designed MPS that allow multi-organoid integra-
tion to ultimately generate body-on-a-chip systems with sufficient physiological
relevance for accurate prediction of native tissue/organ responses to selected
treatments (Skardal et al. 2016).

Biochemical and Physical Stimulations Cells and tissues grown in musculoskele-
tal MPS can be subjected to various forms of environmental signals, including
biochemical (Lin et al. 2014), mechanical (Occhetta et al. 2019), optical (Sakar
et al. 2012), and electrical (Santhanam et al. 2018) stimulations, and the elicited
responses constitute the MPS readouts. Generally, the application of MPS cultures
involves three distinct stages: (1) tissue maturation, (2) disease modeling, and
(3) therapeutic drug testing. In the first stage, biochemical signals provided by
signaling molecules such as growth factors are usually required if the differentiation
of stem cells or progenitors is involved. Other stimulations, including mechanical
loading or stretching, interstitial fluid flow, and electromagnetic field, have been
shown to be beneficial for enhancing matrix deposition and/or functions of
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musculoskeletal tissues (Langelaan et al. 2011; Mauck et al. 2000; Grayson et al.
2010). The most common strategy for generating musculoskeletal disease models in
MPS is through the introduction of biochemical insults by proinflammatory
cytokines or toxins (Lin et al. 2014; Agrawal et al. 2017). Given the high prevalence
of mechanical injury-caused musculoskeletal disorders, hyperphysiological mechan-
ical stress-induced pathogenesis is also believed to be of high clinical relevance
(Occhetta et al. 2019). Once tissue abnormalities are observed, potential therapeutics
targeting the corresponding mode of tissue injury can be introduced to test efficacy in
disease modification as well as to evaluate potential toxicity. In some studies disease
modeling and drug testing steps occur simultaneously (Rosser et al. 2019). When
therapeutics are introduced prior to and/or along with disease causative agents, MPS
may provide valuable information on the drugs’ efficacy in not only disease treat-
ment but also disease prevention.

Generally, in the design of the MPS, there exists a tradeoff between device
complexity and throughput in the process of balancing the level of biological
accuracy and the required technological elements, and it is highly dependent on
the needs of the application (Arrigoni et al. 2020). In basic, mechanistic studies,
much higher levels of physiological accuracy are desired than in drug screening
applications, where throughput and access to resources are important considerations.

As an example, MPS modeling of human synovial joints can serve different
purposes. For investigating the pathogenesis and etiology of joint disorders like OA,
it is critical to take into account the crosstalk and communication among different
joint tissues because OA has long been considered a whole-joint disease (Loeser
et al. 2012). The incorporation of multiple tissue components, including cartilage,
bone, synovium, and infrapatellar fat pad, in the MPS would be critical to create
sufficient physiological relevance. A particular challenge posed by the highly prev-
alent and debilitating disease of OA is the absence of an effective, FDA-approved
disease-modifying medication. A number of candidate disease-modifying OA drugs
have been proposed for OA treatment, and there is thus an urgent need of a
convenient, efficient, and reliable model for high-throughput drug screening. For
this purpose, MPS with low technical sophistication and high cost-effectiveness
would be more appropriate. Nevertheless, we believe that investigations using a
physiologically relevant and complex MPS, after extensive evaluation and valida-
tion, can offer useful guidance, e.g., identification of key readouts, to inform the
design of practical and high-throughput systems.

4 Summary and Future Perspectives

It has become clear that intimate crosstalk between different cell types and cell-
matrix interactions significantly influence cell proliferation, migration, and differen-
tiation during the regeneration process (Kuraitis et al. 2012; Marsell and Einhorn
2011). Therefore, the traditional 2D culture using one cell type is less informative in
predicting future clinical outcomes of potential regenerative treatments. However,
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2D cultures are relatively fast and inexpensive and have lower technical
requirements compared to animal models and MPS. Thus, conventional 2D dish
culture should serve as the first and high-throughput platform to exclude the drugs
that display obvious cytotoxicity or inefficacy for further tests. In addition, a 2D dish
model allows the easy manipulation of cells, such as gain- or loss-of-function
assessment, which enables mechanistic study. The use of animal models is able to
partially mimic the local and global physiological changes in humans, recapturing
the cell-cell and tissue-tissue crosstalk in tissue injury and repairing processes. In
addition, by targeting different mechanisms, animal models are able to simulate
different injuries in humans. Therefore, animal models, in particular those using
clinically relevant animals, still represent the most powerful models in predicting
treatment outcomes in humans. However, as has been recognized for a long time,
due to the inherit difference in physiology and anatomic structure, the translation
from animal models to human is challenging and not straightforward (Muschler et al.
2010). For example, autologous chondrocyte implantation, a clinically used regen-
erative method to treat chondral defects, showed robust cartilage repair in the first
animal study in rabbits (Grande et al. 1989). However, this technology is mostly
only applicable for the treatment of focal defects, and the clinical benefits over older
techniques such as microfracture are sometimes questioned (Mollon et al. 2013).
Such potential outcome discrepancies between animal models and human patients
must be considered when translating regenerative therapies from animal studies to
human clinical applications.

As mentioned above, the MPS and organoids have emerged as the next genera-
tion of models to assess the utility of regenerative medicine in treating musculoskel-
etal diseases. The advantages and disadvantages of these technologies, however, are
both obvious. With the use of human cells and connective tissues in the manner that
is observed in vivo, we may be able to recapitulate the tissue crosstalk and repair
processes in humans. The major limitation of current MPS is the insufficient fidelity
in replicating native tissues on the anatomical structure, phenotype, or function. In
addition, the simulation of some physiological activities, such as mechanical load-
ing, still presents significant technical challenges. Kaarj and Yoon (2019) recently
reviewed the methods of delivering mechanical stimuli to MPS. With the progress in
scaffold fabrication technologies, in particular 3D printing, as well as the tissue-
specific differentiation of iPSCs, the rapid evolution of MPS is expected in the near
future. It is noteworthy that immune cells, such as macrophages, which have been
shown to play a major role in tissue regeneration (Wynn and Vannella 2016), are
often neglected in current MPS. Therefore, successful development and application
of MPS requires collaboration among experts from different disciplines and research
fields.

The different etiologies and pathogenesis of musculoskeletal injuries and diseases
further amplify the challenges in developing generally accepted regenerative
treatments. Additional heterogeneity of musculoskeletal injuries and responses to
treatments also arise from the patient’s genetic background; for example, single
nucleotide polymorphisms between the major and minor alleles of expressed genes
have recently reported to display significantly different regulatory activities (Klein
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et al. 2019). Therefore, future models must have the capacity to model patient-
specific physiology and pathology, in order to allow the development of
personalized regenerative treatments. MPS will be the most promising models for
such applications. In particular, given that iPSCs have theoretically unlimited
expansion capacity as well as potential to generate all human tissues/organs (Shi
et al. 2017), MPS derived from patient-specific iPSCs should possess unique
advantages over animal models in developing personalized medicine (Fig. 3). How-
ever, significant technological advances in stem cell biology to achieve controlled
differentiation of iPSCs are clearly needed.

The key requirement for a clinically relevant model is the capability to replicate
the human physiology, under both normal and disease conditions, as well as to
precisely predict the human response to a treatment. Achieving this relies on
extensive validation. In particular, the model should be able to replicate the success
or failure of known treatments that have been used clinically. Owing to the limited
number and relatively short history of regenerative medicine products that have been
used in clinical applications, the validation of new regenerative medicine products
with known treatment is often not feasible. Thus, the establishment of a “gold
standard” translation pathway is urgently needed, which will require the collabora-
tion among practitioners of life science, pathology, engineering, and clinical
medicine.
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Fig. 3 Schematic of traditional and next-generation drug development pipelines
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Abstract

The landscape of cancer treatment has improved over the past decades, aiming to
reduce systemic toxicity and enhance compatibility with the quality of life of the
patient. However, at the therapeutic level, metastatic cancer remains hugely
challenging, based on the almost inevitable emergence of therapy resistance. A
small subpopulation of cells able to survive drug treatment termed the minimal
residual disease may either harbor resistance-associated mutations or be pheno-
typically resistant, allowing them to regrow and become the dominant population
in the therapy-resistant tumor. Characterization of the profile of minimal residual
disease represents the key to the identification of resistance drivers that underpin
cancer evolution. Therapeutic regimens must, therefore, be dynamic and tailored
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to take into account the emergence of resistance as tumors evolve within a
complex microenvironment in vivo. This requires the adoption of new
technologies based on the culture of cancer cells in ways that more accurately
reflect the intratumor microenvironment, and their analysis using omics and
system-based technologies to enable a new era in the diagnostics, classification,
and treatment of many cancer types by applying the concept “from the cell plate
to the patient.” In this chapter, we will present and discuss 3D model building and
use, and provide comprehensive information on new genomic techniques that are
increasing our understanding of drug action and the emergence of resistance.

Keywords

2D- and 3D-culture models · Cancer drug resistance · Cancer system biology ·
Drug-testing platform
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2D Two-dimensional space
3D Three-dimensional space
ABL Abelson murine leukemia viral oncogene homolog 1
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1 Introduction

In the last decades, tumor therapies have changed from an era of a majority of
nonspecific chemotherapeutics to one characterized by therapies targeted against
specific molecules crucial for tumor survival and growth. This breakthrough was
only possible with the discovery of specific molecules that could be pharmaco-
logically targeted to improve the success rate in treatment, with the added benefit of
reducing toxicity in patients (Peeper 2014). Initial achievements included drugs
targeting the tyrosine kinase BCR-ABL for chronic myeloid leukemia (CML),
HER2 (human epidermal growth factor receptor-type 2) in breast cancer, PARP
(Poly ADP-ribose polymerase) inhibitors for breast cancer gene BRCA-positive,
ovarian and prostate cancer, and BRAF (v-Raf murine sarcoma viral oncogene
homolog B) and MEK (Mitogen-activated protein kinase kinase) inhibitors for
BRAF melanomas (Afghahi and Sledge 2015; Curtin and Szabo 2013).

Unfortunately, although such highly targeted drugs can exhibit substantial initial
success, drug resistance leading to relapse is a frequent and sometimes almost
inevitable undesirable reality. Resistance can present as an acquired resistance
after an initial and successful response or as intrinsic resistance, in which resistance
is present since the beginning of the treatment (Schmidt and Efferth 2016; Peeper
2014). For example, in a study with melanoma patients harboring an activating
BRAF mutation, around 15% were observed to present intrinsic resistance to BRAF
inhibitors, and the rest, despite the initial response, became resistant and relapsed in
the first year (Girotti et al. 2014).

Drug resistance, the primary cause for therapy failure in cancer patients, arises
from intratumor heterogeneity that can be subdivided into genetic and non-genetic or
phenotypic heterogeneity. While genetic heterogeneity can arise through a variety of
mechanisms, including replication errors, therapy-induced DNA damage, and repair
defects, phenotypic heterogeneity occurs as a consequence of the impact of the
intratumor microenvironment (Rambow et al. 2019).

While irreversible genetic lesions acquired in tumor progression may provide a
selective advantage in some circumstances, leading to clonal selection, once the
selective pressure is removed, the same lesions may confer a disadvantage. An
example is tumor cells in a proliferative state demanding more nutrient uptake. To
solve this, the tumor grows in a chaotic way through abnormal vessels generating
nutritional and hypoxic stress due to the poor blood flow. In that way, distant cells
will be even more exposed to nutritional stress than before (Keibler et al. 2016; Nagy
et al. 2009; Vaupel et al. 2004).

By contrast, phenotypic heterogeneity imposed by a dynamic microenvironment
is not fixed but may be reversible, allowing cells to exploit the plasticity of the cancer
genome to promote growth and survival in the face of different microenvironmental
stressors. These might include hypoxia, nutrient limitation, inflammatory signaling,
and interactions with components of the stroma (García-Jiménez and Goding 2019).
Most notably, some phenotypic states are tolerant to both targeted and
immunotherapies and can therefore act as a therapy-resistant reservoir from which
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cells may emerge that are genetic or epigenetically therapy-resistant (Rambow et al.
2019).

Although tumors usually have a monoclonal origin and substantial genome-wide
data from bulk tumors is available from genomic and transcriptomic databases,
including the The Cancer Genome Atlas (TCGA) and the International Cancer
Genomics Consortium (ICGC), recent advances in lineage tracing, genomic
sequencing (Burrell and Swanton 2014), as well as single-cell RNA sequencing
are beginning to dissect the contribution of genetic and phenotypic heterogeneity to
tumor progression. For example, in melanoma, single-cell RNA sequencing evi-
dence suggests that within tumors there coexist multiple phenotypic states, each
underpinned by a distinct gene expression program, some of which may be induced
by therapy and exhibit drug tolerance. Among the drug-tolerant populations, increas-
ing evidence appears to suggest that for many, and perhaps most cancer types, there
exist so-called cancer stem cells (CSCs) that resemble like physiological stem cells
(SCs) that preserve the ability for self-renewal and differentiation leading to hetero-
geneous clones. CSCs also retain high tumorigenicity capacity and are resistant to
radiation, chemo-, and immunotherapies, allowing them to fuel relapse and tumor
expansion after treatment (Fig. 1) (Al-Hajj et al. 2003).

Fig. 1 Cancer stem cells (CSC) inside the heterogeneous tumor niche, enclosed by cancer-
associated fibroblasts (CAF), tumor-associated macrophages (TAM), endothelial cells (EC), mes-
enchymal stem cells (MSC), and extracellular matrix (ECM). The CSCs are positioned in a hypoxic
region and are getting stimuli from adjacent cells that increase drug resistance
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Although the origin of CSCs has been the topic of debate, it seems likely that they
arise as an adaptive pro-survival response to exposure to prolonged stresses within
the intratumor environment where cells less able to adapt undergo cell death.
Frequently, CSCs reside in specific niches that consist of different types of stromal
cells, including endothelial cells, mesenchymal cells, immune cells, and fibroblasts
(Li and Xie 2005; Liu et al. 2013) that secrete signals that may affect the probability
of CSCs remaining dormant, or may boost an imbalance between CSC self-renewal
and differentiation, leading to the proliferation of tumor cells and subsequently
invasion and metastasis (Ishimoto et al. 2014; Daverey et al. 2015). Notably,
while the process of metastasis is notoriously inefficient, those cells that survive
dissemination may frequently stay in a dormant state for long periods of time and
reawaken at a later resulting in disease relapse. Since the disease arising as a
consequence of reawakening of dormant cells will recapitulate heterogeneity, dor-
mant cancer cells may also represent a form of CSC (Aguirre-Ghiso 2007; Rambow
et al. 2019).

Thus while therapies based on targeting specific driver mutations can be success-
ful, the emergence of resistance means that alternative therapeutic strategies may be
needed. Most notably, therapeutic vulnerabilities arising as consequence of the
stresses present in the tumor microenvironment may be exploited by targeting the
adaptive responses that promote survival. Equally, directed phenotype switching by
which phenotypically therapy-resistant subpopulations may be induced to adopt a
sensitive phenotype may also provide significant patient benefit. Consider that,
contrasting to drug resistance, drug tolerance associates to a state in which tumor
cells can survive, but not proliferate during therapy (Chisholm et al. 2015). To put in
another way, oncogenic mutations are driven cancer progression (Bernards and
Weinberg 2002) create an opening in which a phenotypic transition may occur
(Hoek and Goding 2010). In fact, the phenotypic plasticity can also be used as a
target for pharmacologic intervention aiming to stimulate cells to a state that is drug-
sensitive (Sáez-Ayala et al. 2013) or by targeting the changes that lead to the specific
phenotypic states (Gupta et al. 2009; Rambow et al. 2018).

Although it is increasingly apparent that phenotypic heterogeneity plays a key
role in metastatic dissemination, resistance to therapy, and disease relapse, it is also
evident that cell monolayer culture systems are inadequate to address key outstand-
ing questions regarding the origins of cancer cell quiescence, drug-detoxifying
capability, resistance to DNA damage, and tolerance to therapy (Viale and Draetta
2016).

In this sense, multi-OMICS data may help to improve drug efficacy and resensi-
tize resistant cells to targeted therapies in a way to improve the quality of life of
patients (Chakraborty et al. 2018). This chapter therefore focuses on the different
models available that have been employed to elucidate microenvironmental regula-
tion of tumor cell progression and resistance. In particular, we discuss alternatives to
animal testing, such as 2D and 3D models, microfluidic-based models, and system
biology approaches. Collectively, such microenvironment-mimicking model
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systems provide new opportunities and tools to probe therapy-resistant niches and to
elucidate the molecular mechanisms regulating tumor progression.

2 Methods for Modeling and Overcoming Resistant Tumors

2.1 2D Models

Although 2D cell culture was developed in the early nineteenth century, it persists as
the most frequently used in vitro method for drug discovery owing to its simplicity,
reproducibility, and low cost (Breslin and O’Driscoll 2013; Chatzinikolaidou 2016;
Niu and Wang 2015; Zips et al. 2005). In 2D models, cells are usually cultured and
grown as a monolayer on flat surfaces such as in cell culture flasks or wells. For
nutrients like glucose, the medium acts as a finite source and needs to be replaced
periodically (Kieninger et al. 2018). In this sense, cultures of only one cell type are
intrinsically limited in terms of generating a suitable environment for the study of
tumors. This can be improved by co-culture with different cell types, resulting in
cell–cell communication and interactions that cannot be assessed in a monoculture of
a single-cell type (Mao et al. 2013; Kapałczyńska et al. 2016).

The main advantage of the 2D co-culture model is that it allows an easy and
simple method to study specific conditions of the tumor microenvironment (Horvath
et al. 2016; Imamura et al. 2015). Although conventional 2D culture can be used to
perform a vast range of experiments such as protein expression, cytotoxicity,
migration, and adhesion assays, all aspects of cancer progression in vivo, cancer
cells grow in 3D and interact with the stroma, something that cannot readily be
mimicked with a 2D model. For instance, melanoma cancer cells grown in 2D
cultures can easily be killed by low doses of chemotherapeutic drugs or low doses
of radiation, while in vivo their activity can be affected by key factors such as
restricted access of tumor cells to nutrients and oxygen, the metabolic conversion of
drugs within the cells, or the effect of the immune response (Cruz Rodríguez et al.
2019).

It is not an overstatement to say that all work aimed at studying drug resistance
will rely at an early stage on traditional cell culture. As an example, Stebbing et al.
(2018) studied the effects of LMTK3 (Lemur tyrosine kinase 3) expression in
doxorubicin resistance. In this paper, they began by comparing the cytotoxicity in
both 2D and 3D models, before moving to RNA-seq, animal models, and
immunohistochemistry of patient-derived tissue. Lovitt et al. (2018) showed that
3D cultures demonstrated a higher resistance to therapies than 2D cell cultures,
showing the importance of cell-to-extracellular matrix interaction and the different
environment of cells in 3D in resistance.
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2.2 3D Models

Traditional in vitro culture techniques can also create three-dimensional tumor
arrangements which are more physiologically relevant than 2D models and more
cost-efficient and ethically acceptable than animal models (Asghar et al. 2015).
Three-dimensional (3D) cell cultures are attractive because they mimic the in vivo
microenvironment more closely and show more organotypic features than 2D
cultures. These properties make them promising models for drug and toxicity
screening (Griffith and Swartz 2006; Pampaloni et al. 2007; Simian and Bissell
2017).

Today, spheroids are one of the most used 3D cell culture models. Tumor
spheroids resemble avascular in vivo tumors and present similar diffusional aspects
of oxygen transfer, nutrients, and waste through cell–cell interactions and cell–
extracellular matrix interactions. With appropriate culture conditions, it is possible
to achieve layers of cells within the tumorsphere with normoxic and hypoxic states,
which reflect the in vivo microenvironment encountered by many cells within a
tumor (Grimes et al. 2014; Raghavan et al. 2016). 3D cell culture systems do not
require specialized equipment and remain a very useful tool to understand specific
aspects of each tumor and to develop and test drugs and appropriate drug delivery
systems in a more physiological relevant situation (Vörsmann et al. 2013; Huanga
and Gao 2018). Their more accurate recapitulation of the intratumor microenviron-
ment makes 3D cultures attractive in the study of several aspects of basic tumor
biology, such as tumor growth kinetics, metabolism, invasion and migration, cancer
stem cells and their niche, microenvironment signaling crosstalk, and mechanisms of
therapy evasion (Nunes et al. 2019; Nath and Devi 2016).

3D culture methods can be divided into those which are scaffold-free, such as
suspension cultures as well as non-adherent surface or hanging drop methods and
scaffold-based cultures. Scaffold-free 3D cell cultures self-assemble with no artifi-
cial platforms being used to promoting normal or tumoral cell growth (Fig. 2) and
can be used to promote the formation of 3D microtissues as cellular aggregates like
spheroids or multicellular tumor spheroids in which cells release their own extracel-
lular matrix (Knight and Przyborski 2015).

Hanging droplets are a method for scaffold-free culture of non-adherent
microtissues. Cells aggregate and form spheroids at the bottom of the hanging
drop under the influence of gravity, where only a liquid/gas interface exists. Droplet
size can be constantly maintained through balancing inflow and outflow by active
pumping, or surface tension-driven flow (Frey et al. 2014; Kim et al. 2015; de Groot
et al. 2016). Importantly, there are commercial plates specially designed to generate
hanging drops in a reproducible way using an automated robot to achieve high-
throughput drug screening (Tung et al. 2011; Penfornis et al. 2017).

To generate spheroids by suspension culture, cells are suspended in swirling
liquid medium using a rotational motion to prevent cell attachment to the culture
surface. The swirling cells then form spheroids through collisions and subsequent
agglomeration (Carpenedo et al. 2007; Yagi et al. 1993; Mehta et al. 2012).
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Instead of agitating medium, the non-adherent surface method avoids cell adhe-
sion by using adhesion-free surfaces and facilitates spheroid formation directly
(Fennema et al. 2013). It is also possible to use extracellular matrix (ECM) and
protein-based hydrogel coatings to create spheroids (Ekert et al. 2014; Ivanov et al.
2014). For instance, in vitro 3D mesenchymal stem cells/stromal cells (MSC) culture
using spinner flasks and a rotating wall vessel bioreactor can be beneficial for
retaining MSC properties for a prolonged period (Bellotti et al. 2016; Cha et al.
2015; Frith et al. 2010). This technique has been used for large-scale production of
tumor spheroids to test the efficacy of chemotherapy or immunotherapeutic drugs
(Kloss et al. 2015; Phung et al. 2011; Youn et al. 2005). It has high reliability and
reproducibility, but the fluid volume is limited and the method is not good for long-
term culture due to difficulty in changing the culture medium (Mehta et al. 2012;
Breslin and O’Driscoll 2013).

These 3D culture methodologies have been widely used to investigate several
anticancer treatment approaches, such as chemotherapy and combination chemo-
therapy (LaBarbera et al. 2012; Patel et al. 2015), drug delivery systems (Kim et al.

Fig. 2 Scaffold-Free and Scaffold-Based methods for 3D cell cultures
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2010; Mehta et al. 2012; Patel et al. 2015), gene and oncolytic virus therapy
(Lamfers and Hemminki 2004), immunotherapy (Herter et al. 2017), photodynamic
therapy (Dubessy et al. 2000; Evans 2015), phototherapy (Xiao et al. 2005),
photothermal therapy (Moreira et al. 2016), and radiotherapy (Dubessy et al. 2000;
Schwachöfer 1990). Especially regarding resistance, Lee et al. (2012), using 3D cell
culture models, demonstrated that the efficacy of the chemotherapeutic response was
strictly dependent on cell and tissue polarity and architecture. The combination
reverted the phenotype and led to the development of a phenotype-based functional
genetic screen that allowed the identification of novel genes associated with EGFR-
TKI resistance (Lee et al. 2012).

In accordance, Ryabaya et al. (2019) proposed a combination of metformin and
the selective MEK inhibitor binimetinib as a promising therapy against BRAF and
NRAS mutant melanoma cells in vitro using both 2D and 3D human melanoma
cells. They showed the combined treatment led to cell cycle arrest, reduced the
number of melanoma-formed colonies, and inhibited cell invasion and migration
associated with p-AMPKα upregulation and p-ERK downregulation, suggesting that
this could be promising for clinical applications.

Tiago et al. (2014) compared melanoma cell growth in 2D culture and in a dermal
equivalent model consisting of fibroblasts embedded in type I collagen matrix. They
showed that the 3D model presented decreased expression of p53 after doxorubicin
treatment, and this outcome was accompanied by induction of interleukin, IL-6,
IL-8, and matrix metalloproteinases 2 and 9, suggesting that this dermal model more
accurately reflects drug responses by recapitulating important pro-survival features
of the tumor microenvironment.

In scaffold-based approaches, 3D cell cultures are maintained by cell growth on
artificial 3D structures, where the cells attach, migrate, and fill the interstices within
the structure resembling a microtissue (Knight and Przyborski 2015). The artificial
structure could act as a simple mechanical support, but their properties are usually
improved to contribute to interactions within the microenvironment, such as
moieties, polarity, hydrophobicity, porosity, surface area, stiffness, and porous
interconnectivity, and enable the exchange of nutrients, gases, and waste material
in a similar way to that seen in vivo (Carletti et al. 2011; Knight and Przyborski
2015; Langhans 2018).

Patient-derived organoids (PDOs) have recently emerged as robust 3D models
where a matrix is used as a scaffold to cultivate the cell from patients without any cell
isolation. Vlachogiannis et al. (2018) published a model of metastatic gastrointesti-
nal organoids and found 100% sensitivity, 93% specificity, 88% positive predictive
value, and 100% negative predictive value in forecasting tumor response to targeted
agents or chemotherapy in patients. Thus this “tumor-in-a-dish” allows to compare,
and in the future to predict drug responses of patients. Thus, functional genomics
tools and molecular pathology can guide the decision-making process of early phase
clinical trials.

Artificial 3D structures can be produced with materials including ceramics, glass,
polymers, and metals. Among these, natural or synthetic polymers are the most used
because they allow their chemical and structural properties to be controlled (Carletti
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et al. 2011). To recreate the 3D structure in a fashion much more mimetic to the
tissue, it is possible to make use of resources such as 3D printing, electrospinning,
foaming, freeze-drying, leaching, lithography, particulate molding, selective laser
sintering, and solvent evaporation (Lu et al. 2013; Sultana et al. 2015). Natural
biomaterials are attractive for in vitro applications because they are biocompatible
and allow cell adhesion sites and exposure to endogenous chemokines and growth
factors, which contribute to enhancing the viability and growth of the cells (Nath and
Devi 2016). However, there are some disadvantages of scaffold-based 3D cell
culture models, for instance, for drug toxicity studies suggest that interactions
between the materials and drugs might affect their absorption and adhesion. Besides
that, it is not trivial to isolate the cells, protein, and nucleic acids for further
molecular investigation (Asghar et al. 2015; Gupta et al. 2016).

The generation and improvements of in vitro 3D skin tissue over the past decades
provide models that can replace the need for animal experimentation and advance
the ability for more personalized therapies. This is a more complex structure that
uses primary skin-derived cells cultured in 3D that also allows for personalized
mechanistic and translational studies. The 3D skin model is composed of fibroblasts
and keratinocytes, but might also include melanocytes and cancer cells such as
melanoma cells. Novel technologies can facilitate the automated production of the
skin tissue in a reproducible and functional way. Currently, there are commercially
available constructs for applications in humans and also for large-scale production,
for example, pigmented skin transplants in the range of 100 cm2 (Randall et al. 2018;
Min et al. 2018).

The overlap of different biofabrication approaches, such as bioprinting and
electrospinning, will address many important challenges, such as the incorporation
of immune cells and other cell types to increase the ability to develop a physiological
skin for drug testing and even personalized medicine and other pre-clinical
applications. The incorporation of a microbiome to these physiologically relevant
skin components is possible with novel bioengineering technologies and will pro-
vide cost-effective and reproducible generation of physiological skin in vitro
(Randall et al. 2018).

Magnetic levitation is another technique that uses hydrogels containing gold and
magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophages. Cells are
treated with MIO-containing hydrogels, incubated overnight, and then plated into an
ultra-low attachment plate with a lid with a neodymium magnet. Spheroids start
forming within a few hours at the air–liquid interface due to levitation toward the
magnet, and the speed of growth is high when compared to other methods. The size
is in a range of mm2 and is ideal for reproducing necrotic and hypoxic areas.
Unfortunately, these beads are expensive and can be toxic to cells at a high
concentration (Souza et al. 2010; Nath and Devi 2016; Tseng et al. 2013; Hoarau-
Véchot et al. 2018).

Sandri et al. 2016 used different 2D and 3D models to investigate drug resistance
in melanoma cells. They applied a 2D transwell invasion assay, a 3D spheroid
model, and a reconstructed skin model to show that resistance to vemurafenib
induces significant changes in the tumor microenvironment, mainly by upregulation
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of MMP-2, with a corresponding increase in cell invasiveness. In a similar approach,
Faião-Flores et al. (2017) suggested that targeting the Hh pathway in BRAFi-
resistant melanoma may represent a viable therapeutic strategy to restore
vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance
in melanoma patients. Also, the same group improved the human skin reconstruct
model by mimicking aging skin, as described in Pennacchi et al. (2015). In this
context, Kaur et al. (2016) used a similar model to evaluate whether age-related
changes in dermal fibroblasts could drive melanoma metastasis and response to
targeted therapy. They found that aged fibroblasts secrete a Wnt antagonist,
sFRP2, which activates a multi-step signaling cascade in melanoma cells that result
in a decrease in β-catenin and microphthalmia-associated transcription factor (MITF)
and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuated the
response of melanoma cells to DNA damage induced by reactive oxygen species,
rendering the cells more resistant to targeted therapy (vemurafenib).

In summary, the use of organotypic cultures, such as artificial human skin,
enables cell interactions with the ECM and with other cell types to be reproduced
with greater fidelity. For these reasons, studies exploring the effects of drugs on
tumor cells cultured in a biomimetic environment in vitro can better assist in
unraveling the therapeutic action on tumor cells in a situation more closely resem-
bling that which occurs in vivo.

2.3 Microfluidic Devices

Microfluidic devices have been used as in vivo-like physiological models that
recapitulate cellular interactions and metabolism in health and disease. The inclusion
of 3D matrices into microfluidics devices has allowed the evolution from 2D culture
to 3D and multi-organ models. More recently, advances in bioengineering have
culminated in highly complex 3D models that mimic several types of cancer, such as
breast, lung, liver, or bone cancer. Importantly, the main application areas are in
screening for anticancer drugs and basic research into cancer metastasis (Rothbauer
et al. 2018; Whitesides 2006).

The main disadvantage of most on-chip models used for drug screening is that
these microdevices usually have limited chambers that don’t support the high-
throughput needed to be an effective screening tool. In order to improve that, Xu
et al. (2013) developed a system comprising hydrogel culture chambers in parallel
for anticancer drug screening using co-culture of a human non-small cell lung cancer
cell line (SPCA-1), a human lung fibroblast cell line (HFL-1), and patient-derived
lung cancer cells. The model enabled detailed screening for the sensitivities of eight
samples of patient-derived lung cancer cells to different anti-tumor therapies at the
same time, enabling the correct doses and single as well as multi-drug chemotherapy
schemes to be established. Another 3D microfluidic system containing a concentra-
tion gradient generator, called SpheroChip, enabled the on-chip development of
spheroids of liver and colon cancer for drug sensitivity testing (Kwapiszewska et al.
2014). A different but promising method was established by Imura et al. (2010,
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2012), who developed a bioassay system that can determine intestinal absorption,
hepatic metabolism, and bioactivity of ingested molecules, including anticancer
therapeutic drugs. This system assesses the output following administration of an
anticancer drug to a microsystem that includes or excludes digestion processes. If
drug activity was lost after passing through the system, the result indicates whether
the drug was degraded by synthetic gastric juices.

Microfluidic systems represent more complex models because they capture
important features of the tumor microenvironment such as vasculature, co-culture
of multiple cell types, shear stress, pressure, and chemical and oxygen gradients
(Fig. 3) (Shang et al. 2019).

The use of an endothelial cell monolayer is the most used approach to mimic
blood vessel function in a microfluidic chip. The monolayer design also has the
advantage of easily generating shear stress. Shear stress makes cells organize
themselves to create a barrier function, and the level of complexity improves with
the use of the endothelial cell monolayer to generate a circular endothelial cell tube
and ultimately a functional vascular network (Bogorad et al. 2015). As an example, a
device was developed to integrate a monolayer of human dermal blood microvascu-
lar endothelial cells (HMVECs) onto a porous polydimethylsiloxane (PDMS) layer
to mimic blood vessels in a drug screening model (Dereli-Korkut et al. 2014). It was
reported that human PC9 non-small cell lung cancer cells cultured in these devices
had greater drug resistance to four different apoptotic inducers than two-dimensional
cultured PC9 cells (Bai et al. 2015; Riahi et al. 2014). Similarly, Agarwal et al.
(2017) created an approach to develop 3D vascularized human tumors with a
complex 3D vascular network and used this model to investigate the effect of
vascularization on cancer drug resistance using a high-throughput non-planar
microfluidic encapsulation technology.

With the knowledge that tumors exhibit interstitial flow, there is also a
corresponding fluid shear stress that, while very small compared with the intravas-
cular one, could stimulate some oncogenic signaling pathways on cancer cells and
favor vascular angiogenesis against the direction of the interstitial flow (Mitchel and
King 2013; Avvisato et al. 2007; Swartz and Lund 2012; Song and Munn 2011).
Elevated extracellular stresses increase tumor cell growth and generate a transport
barrier to drug delivery, lowering the efficacy of therapies. Atypical solid stress is
developed by the deregulated growth of tumor cells and increases drug resistance
that could influence tumor cell gene expression, rearrange the ability of immune cells
to kill cancerous cells, or even turn macrophages into tumor-promoting cells,
enhancing the invasive potential of cancer cells (Stylianopoulos et al. 2012;
Demou 2010; Facciabene et al. 2011; Goel et al. 2011; Wilson and Hay 2011).

Another feature addressed by microfluidic systems is the generation of chemical
or oxygen gradients either by diffusion or convection that also can affect cancer
progression and therapeutic efficacy (Somaweera et al. 2016; Brennan et al. 2014).
Most of the microfluidic systems control the oxygen levels in culture chambers and
can work by either inserting oxygen scavenging chemicals, gas supply channels near
to the cell chamber, or oxygen impermeable materials (Byrne et al. 2014; Chang
et al. 2014; Khan et al. 2017). Although the current devices can control chemicals

Tumor Models and Cancer Systems Biology for the Investigation of Anticancer. . . 281



Fig. 3 Microfluids can play a critical role in mimicking the aspects of the tumor niche, including
vasculature architecture, co-culture, shear stress, pressure, and chemical and oxygen gradients that
tumors are exposed
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and oxygen gradients independently, in order to better mimic the tumor microenvi-
ronment, they should be coordinated (Chang et al. 2014; Rodenhizer et al. 2016).

Finally, Pandya et al. (2017) described a 3D microfluidic device that can be
applied for a real-time analysis of the success rate of a chemotherapeutic drug. The
platform is integrated with microsensors that measure the change of electrical
response in cancer cells in a 3D extracellular matrix when a chemotherapeutic
drug is flowed next to the matrix. The authors showed that the device was able to
delineate drug-susceptible, drug-tolerant, and drug-resistant cells in <12 h.

2.4 Bioinformatics/System Biology

Recent advances in biotechnology and bioinformatics have led to a dramatic increase
in large-scale data acquisition, genomic and metagenomic data, and their
corresponding related databases (Tang et al. 2015; Tatusova 2016). This has led to
attempts using computer and mathematical modeling to understand how biological
systems operate as a whole. Cancer systems biology methods can be used at different
scales, from analysis of the behavior of an individual cell to a patient with a tumor.
The most attractive feature of a systems biology approach is the possibility to
combine the molecular aspects of tumors at different levels (DNA, RNA, protein,
epigenetics, imaging), different intervals (seconds, days), and different conditions
(before and after treatment) with integrative analysis. The major challenges are
represented both by consequences of tumor heterogeneity and by the problems
associated with the acquisition of high-quality data describing clinical attributes,
pathology, and treatment response and consolidating the data into accurate predic-
tive models (Werner et al. 2014).

A combination of advances in high-throughput, cost-effective, tissue-sparing
technologies and high-speed computing resources that can analyze tumors at multi-
ple levels has enabled a shift toward an integrated systems biology approach (Cancer
Genome Atlas Network 2012; Gentles and Gallahan 2011; Basu et al. 2013). A
system investigation of the molecular aspects of non-responsive or therapy-resistant
tumors is appealing both in terms of unveiling mechanisms underlying resistance
and the identification of approaches to overcome resistance (Fig. 4) (Werner et al.
2014).

The ability to access terabytes of data generated by large-scale “omics”
approaches and online resources containing well-annotated high-throughput datasets
including thousands of “omics” data collected from sensitive and resistant tumors
provides an unparalleled opportunity for a systems biology approach to cancer
management (Fornecker et al. 2019; Guang et al. 2018; Huang et al. 2019;
Sadanandam et al. 2013; Nieman et al. 2011).

Integration of multi-OMICS data provides a platform that can link genomic and
epigenomic alterations to associated transcriptomic, proteomic, and metabolomic
profiles in response to a specific disease and/or treatment (Chakraborty et al. 2018).
The multi-OMICS models underlying the investigation of cancer cells have the
promise to reveal the complex molecular mechanisms underlying the expression of
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specific cancer hallmarks such as metastasis and angiogenesis. Additionally, multi-
OMICS approaches can be used to explore the cellular response to chemo- or
immunotherapy as well as recognizing molecular features with diagnostic and
prognostic value (Chakraborty et al. 2018).

Mathematical modeling is a convenient approach to help understand the cellular
dynamics system, by hypothesizing the phenomena affecting cellular dynamics.
These computational models are increasingly used to help interpret biomedical
data produced by high-throughput genomics and proteomics projects. The applica-
tion of advanced computer models enabling the simulation of complex biological
processes generates hypotheses and suggests experiments. Appropriately interfaced
with biomedical databases, models are necessary for rapid access to and sharing of
knowledge through data mining and knowledge discovery approaches (Motta and
Pappalardo 2013; Hagiwara and Koh 2020). The lack of reliable experimental model
systems that mimic patient heterogeneity and clonal evolution is an important limit
for bringing adaptive therapies to the clinic (Acar et al. 2020). 3D tissue models and
disease models can provide reliable data that consider different phenotypes, clonal
evolution, microenvironment, and response to treatments. Computational models, in

Fig. 4 Combining tumor molecular profiles with pharmacogenomics for personalized treatments.
Cancer system biology can connect the broad amount of molecular characteristics of the tumors
with pharmacogenomics to provide personalized therapy. Using systems biology models to com-
bine patient-specific datasets with drug response profiles can allow the prognosis of successful
patient-specific treatments
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vice versa, are also providing valuable data about changes at DNA, RNA, and
protein level that help the improving of experimental models as a result.

2.4.1 Sequencing Technologies

RNA Sequencing
RNA sequencing (RNA-seq) is a high-throughput technology for transcriptome
(total RNA) analysis, acquiring strand information with very high precision. Using
RNA-seq analysis, it is possible to promptly recognize and quantify transcripts,
either rare or common, among a large number of samples, including low-quality
samples, and provide information on sequence variants that can inform on genomic
mutations, gene expression, RNA start and termination sites, and differential splic-
ing (Kukurba and Montgomery 2015; Wang et al. 2009).

MicroRNA sequencing (miRNA-seq) uses material enriched in small RNAs that
enables the detection of specific sets of short, noncoding RNAs (miRNAs) that are
each capable of controlling a range of genes by affecting mRNA stability and
translation. miRNA sequencing can determine tissue-specific miRNA expression
profiles, isoforms, and can link miRNA expression with disease and phenotypic state
within a specific lineage or cancer type (Bartel 2009; Farazi et al. 2011; Sandhu and
Garzon 2011; Gunaratne et al. 2012). The power of transcriptome analysis is
exemplified by the study from Rathe et al. (2014), where gene expression analysis
was combined with CRISPR/TALEN-based knockouts to recognize and verify the
involvement of specific genes related to drug resistance in acute myeloid leukemia
cell lines. Sciarrillo et al. (2016) investigated the transcriptomes from many in vitro
models of solid tumors and hematological cancers through RNA-seq and showed a
higher PKM2/PKM1 ratio, which was not found in the Panc-1 gemcitabine-resistant
counterpart, thereby suggesting a different mechanism of drug resistance induced by
gemcitabine treatment.

Single-Cell Sequencing
RNA-seq has in general been applied to bulk samples containing many cells and
consequently generates an average gene expression across the population. More
recently, single-cell sequencing methods have considerably upgraded our ability to
examine tumor heterogeneity and recognize even the contribution of rare cells to
tumor complexity and drug resistance, particularly in patients and animal models
(Seth et al. 2019). Unlike techniques based on population analysis, as its name
suggests, single-cell RNA sequencing (scRNA-seq) is focused on transcriptomic
analysis of an individual cell. Combining high-throughput sequencing and bioinfor-
matic pipelines, scRNA-seq is able to detect more than 10,000 transcripts in one cell
to discriminate individual gene expression programs underpinning specific cell
states. Using pseudotime bioinformatic analysis, this approach can be used to infer
trajectories of specific cell populations over time, for example, in response to drug
treatments. scRNA-seq can provide full-length mRNA information as well as in situ
sequencing that allows transcripts to be quantified in their native spatial contexts in
single cells.
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In cancer research, scRNA-seq technologies promise to improve prognosis and
allow more precise targeted therapy by identifying druggable subclones underpinned
by distinct gene regulatory networks. To date scRNA-seq of tumor samples has
revealed more complex intratumoral heterogeneity than previously anticipated using
standard bulk RNA-seq, provided correlations between signaling pathways,
stemness, drug resistance, and the tumor architecture shaping the microenvironment,
and importantly has also revealed the repertoire of tumor-associated stromal and
immune cells. Moreover, scRNA-seq studies of circulating tumor cells showed that
several genes cooperate to provide a propensity toward stemness and the epithelial–
mesenchymal transition, to improve anchoring and adhesion, and to be involved in
mechanisms of anoikis resistance and drug resistance (Xiao and Guo 2018; Zhu et al.
2017). Efforts to understand therapy resistance at the single-cell level were made by
Shaffer et al. (2017) in a study showing that melanoma cells can present deep
transcriptional variability at the single-cell level that anticipates which cells will
become resistant to the treatment. Rambow et al. (2018) applied single-cell RNA
sequencing to cells isolated from BRAF mutant patient-derived xenograft melanoma
cohorts exposed to concurrent RAF/MEK inhibition. They identified distinct drug-
tolerant transcriptional states; one of these exhibited a neural crest stem cell tran-
scriptional program identified as key drivers of resistance and illustrated the thera-
peutic potential of minimal residual disease-directed therapy.

Very recently, Acar et al. (2020) described a novel approach for evolutionary
herding based on a combination of single-cell barcoding, very large populations of
cells grown without replating, and mathematical modeling of tumor evolution. They
showed that herding allows shifting the clonal composition of a tumor, leading to
collateral drug sensitivity and proliferative fitness costs. Through genomic analysis
and single-cell sequencing, they were also able to determine the mechanisms that
drive such evolved sensitivity.

ChIP Sequencing
Chromatin immunoprecipitation sequencing (ChIP-seq) is a combination of the
chromatin immunoprecipitation method followed by heavily parallel sequencing.
Chromatin immunoprecipitation allows the identification of specific DNA sequences
within the genomes that are recognized by proteins of interest and provide a
powerful tool to investigate gene regulation in multiple conditions at remarkable
resolution and scale. Proactive quality-control and appropriate data analysis
techniques are of crucial importance to obtain the most meaningful results from
the data (de Santiago and Carroll 2018). This technique is based on the fixation of
chromatin with formaldehyde by covalent linkages between DNA-binding proteins
and DNA, cell lysis, and subsequent fragmentation of DNA, where specific DNA–
protein complexes are separated by immunoprecipitation with protein-specific
antibodies. After reversal of the crosslink, the DNA isolated is amplified by PCR
and sequenced using new generation sequence technologies. The reads resulting
from sequencing are then aligned to the genome, and the location of the isolated
DNA may be identified (Shin et al. 2012; Sá et al. 2018). Studies employing ChIP-
Seq have allowed the understanding of the functional interactions between the
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binding sites of transcription factors and the DNA sequence elements regulating
their target genes (Shin et al. 2012).

This technique has been employed in several studies of drug resistance in tumors,
for example, the potential correlation of tubulin alterations and taxane resistance in
breast cancer (Nami and Wang 2018) and the pre-existing histone modifications at
genes in a poised chromatin state that lead to epigenetic silencing during acquired
drug resistance in ovarian carcinomas (Curry et al. 2018). Similarly, estrogen-
mediated downregulation of the Par-4 tumor suppressor in hormone-dependent
cells could reinstate Par-4 apoptosis-inducing abilities in resistant gynecological
cancers by directly binding to its DNA regulatory elements to inhibit estrogen
signaling (Brasseur et al. 2017).

Reverse-Phase Protein Array
Reverse-phase protein array (RPPA) is a highly sensitive method that is able to
recognize nanograms of proteins. Its advantages rely on reproducibility, high-
throughput, functional, and quantitative proteomic analysis for large-scale protein
expression profiling, biomarker discovery, and cancer diagnostics. RPPA is an
antibody-based technique that provides analysis of >1,000 samples with up to
500 different antibodies at the same time and results in data on protein expression
and concentration and, if an appropriate antibody is available, also protein post-
translational modification (Spurrier et al. 2008; Stanislaus et al. 2008; Akbani et al.
2014). As an example of the utility of this technique, Li et al. (2017) studied the
expression levels of around 230 key cancer-related proteins in more than 650 inde-
pendent cell lines by RPPA, many of which have publicly available genomic,
transcriptomic, and drug screening data. This study outlined the effects of mutated
pathways on protein expression observed in patient samples and showed that
proteins and particularly phosphoproteins provide information for predicting drug
sensitivity that is not available from the corresponding mRNAs.

2.4.2 Public Genomic Databases
A new era of genome-wide sequencing and bioinformatics has shed new light on the
cancer genome with the launching of a range of public databases (Stratton et al.
2009; Samur et al. 2013). Large-scale projects such as The Cancer Genome Atlas
(TCGA) and the International Cancer Genomics Consortium (ICGC) that started
after the success of the Human Genome Project are supporting the “parts list” of
cancer, while cancer systems biology will provide the regulatory logic (TCGA 2019;
ICGC 2019; Lefebvre et al. 2012). Diversified data categories are used and
integrated, including clinical data. Although the range of input cancer biology data
is broad, so are the computational methods applied in cancer systems biology,
including mathematical and computational algorithms that reflect the dynamic
interplay between experimental biology and the quantitative sciences. Here, we
highlight the main public databases available that can be used to investigate drug
profiles and the interaction with different tumor tissues.
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The Cancer Genome Atlas
The aim of the National Institute of Health (NIH) was to make available a compre-
hensive “atlas” of cancer genomic profiles. As a consequence, in 2005, The Cancer
Genome Atlas (TCGA) was created to help the understanding of cancer through
genome analysis technologies and has been used for the development of new cancer
treatments, diagnostic, and preventive strategies (TCGA 2019, Chin et al. 2011).
TCGA is a public funded project that aims to catalogue cancer-causing genome
alterations in large cohorts of 33 human cancer types using patient-derived tissue
through large-scale genome sequencing and integrated multidimensional analyses
by RNA-seq, miRNA-seq, DNA-seq, SNP-based platforms, array-based DNAmeth-
ylation sequencing, and reverse-phase protein arrays (Wang et al. 2016). TCGA has
contributed to the generation of information concerning drug resistance. The culmi-
nation of this effort has been a series of manuscripts published over recent years,
including drug resistance studies. Most use TCGA data to confirm and give more
weight to a hypothesis is already seen using other approaches, such as cell culture
and 3D models. Most publications in this context reveal patterns of genes expression
among patients that can be correlated with drug response/resistance and tumor
staging that can contribute to new personalized therapy strategies (Han and Puri
2018; Corre et al. 2018; Yu et al. 2018; Oliveira et al. 2017). For example, the study
of Nabavi (2016) compared sensitive and resistant tumors to generate possible
resistance biomarkers, while Yu et al. (2018) published a lncRNA
pharmacogenomics landscape after integrating data of cancer cell lines and drug
response of anti-tumor drugs.

In 2015, ICGC and TCGA worked together for a combined analysis of over
800 terabytes of data from 1,350 cancer whole genomes. They used infrastructure
and platforms developed by Sage Bionetworks to integrate distribution of data and
analytical results of the more than 400 researchers involved in the project (ICGC
2019). This new TCGA-atlas called the “Pan-Cancer initiative” has been created and
is focused on the genomic, epigenomic, and transcriptomic landscapes of many
tumor types (Cancer 2013). The Pan-Cancer analysis associating multi-OMICS data
in combination with potent bioinformatics and statistical methods allows a single
platform to recognize frequent molecular signatures for the classification of patients
with different cancer types and reveal common molecular pathologies of different
tumors with the aim of developing targeted therapies. This concept provides an
opportunity to understand cellular responses to therapies on a system level but at the
same time is also a challenge for systems biology-driven modeling. The ultimate aim
is to determine the best therapy for each patient (Chakraborty et al. 2018;
Guhathakurta et al. 2013).

In summary, these multi-OMICS datasets may help to improve drug efficacy and
defeat the chemo/immunotherapy resistance phenotypes of cancer cells making them
sensitive to targeted therapies and finally improving the quality of life of patients
(Chakraborty et al. 2018).
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The International Cancer Genomics Consortium
The International Cancer Genomics Consortium (ICGC) was created to initiate and
organize an extensive number of research projects with the common aim of
deciphering the genomic alterations present in cancer that are responsible for cancer
in people throughout the world. Currently, there are over 20,000 tumor genomes
available worldwide. This enables the generation of a global archive of genomic
alterations associated with cancer, a compilation of data that is already helping to
reveal the list of mutations that cause this disease and that helps define clinically
relevant subtypes of cancer (ICGC 2019).

The main goal is to make genomic alteration data from many cancer subtypes
available to the research community, as well all information about the methodology
necessary to analyze and integrate the different datasets. The ICGC intends to ease
communication among the members and promote forums for discussions, with the
objective of maximizing efficiency among the scientists working to understand,
treat, and prevent these diseases (ICGC 2019).

An outstanding contribution of this project is the possibility to correlate cancer
with differences in the environment of the patient and consequently evaluate how a
geographic area influences the prevalence of a determined mutation or response. We
can see this kind of approach as a successful tool for understanding, for example, the
molecular profiles that favor tumor relapse in Asian women and premenopausal
breast cancer association, as described by Yap et al. (2018) and Gröbner et al. (2018)
that published studies analyzing genetic alterations in a Pan-Cancer cohort between
children and adults.

The Gene Expression Omnibus
The Gene Expression Omnibus (GEO) is an international public functional geno-
mics data repository supported by the National Center for Biotechnology Informa-
tion (NCBI) at the National Library of Medicine (NLM) that stores and disseminates
data from high-throughput gene expression and genomics analyses, facilitating the
use of such databases and software by the research and medical community
(Tatusova 2016; Clough and Barrett 2016; GEO 2019).

The GEO database is already 18 years old and focused on making the data easily
accessible, as the leading public repository for direct deposits of high-throughput
gene expression and other functional genomics datasets. In that sense, the GEO has
developed different tools for data query, visualization, and analysis that can be
performed directly on the GEO website and do not require the download or manipu-
lation of the data files. Several thousand studies have been already published with
GEO data used to develop and test new hypotheses. It is notable that researchers are
using GEO data to investigate problems far beyond those the initial studies which
were intended to tackle (Clough and Barrett 2016). As an example of an application
related to drug resistance, Cato et al. (2019) defined a set of potential biomarkers for
resistant-prostate cancer using different GEO databases containing data of tumor
metastases samples and genome-wide expression profiling of radical
prostatectomies. Moreover, they deposited the RNA-seq and ChIP-seq datasets
that they generated, contributing to the expansion of the repository.
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Drug Response Databases
The Genomics of Drug Sensitivity in Cancer (GDSC) database is the largest public
platform for data on drug sensitivity in cancer cells and molecular markers of drug
response. The Genomics of Drug Sensitivity in Cancer Project is part of a Wellcome
Trust funded collaboration between The Cancer Genome Project at the Wellcome
Sanger Institute (UK) and the Center for Molecular Therapeutics, Massachusetts
General Hospital Cancer Center (USA). The GDSC consists of drug sensitivity data
from around 75,000 different studies, describing the response to 138 anticancer
drugs in almost 700 tumor cell lines. This data is associated with genomic datasets
available from the Catalogue of Somatic Mutations in Cancer database in order to
help to identify molecular markers of drug response, including information on
somatic mutations in cancer genes, gene amplification and deletion, tissue type,
and transcriptional data (Yang et al. 2013).

Cokelaer et al. (2018) developed GDSC Tools that allow users to reproduce
published results from GDSC and to implement new analytical methods. Pozdeyev
et al. (2016) also developed a new drug sensitivity metric, the area under the dose-
response curve adjusted for the range of tested drug concentrations, which allows the
integration of heterogeneous drug sensitivity data from the Cancer Cell Line Ency-
clopedia (CCLE), the GDSC, and the Cancer Therapeutics Response Portal (CTRP).
The results of the largest cancer cell line drug sensitivity data analysis to date are
accessible through the online portal, which serves as a platform for high power
pharmacogenomics analysis.

A deep cascaded forest model, Deep-Resp-Forest, was created by Su et al. (2019)
to classify the anticancer drug response as “sensitive” or “resistant.” They evaluated
the proposed method on the Cancer Cell Line Encyclopedia (CCLE) and the
Genomics of Drug Sensitivity in Cancer (GDSC) datasets and then compared with
the support vector machine. The proposed Deep-Resp-Forest has demonstrated the
promising use of deep learning and deep forest approaches to drug response predic-
tion tasks. The molecular profiles and the pharmacological information are
integrated, allowing the investigation of the response of individual cell lines to
anticancer drugs and the relevant biomarkers.

Among the public databases, the initiatives of smaller groups have been
published, for example, in the CancerDR (cancer drug resistance database)
(Kumar et al. 2013). This group developed a database which contains information
about 148 anticancer drugs (36 FDA-approved drugs, 48 drugs in clinical trials, and
64 experimental drugs) for different cancer cell lines. The aim of CancerDR is to
make available pharmacological profiling data of anticancer drugs, which will
improve the understanding of the effects of mutations in drug targets on acquired
drug resistance. In general, the pharmacological profiling data of each drug is
available with a clustering module based on IC50 values that can be changed to
tissue or drug. Also included are gene sequences making it possible to link mutations
in the drug targets with resistance (Kumar et al. 2013).

With the future prospect of easy access to whole genome sequences from cancer
patients, platforms such as this will become increasingly useful to identify anticancer
drugs that will be effective for defined patient subsets, improving the rate of success.
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This tool can potentially facilitate personalized medicine. However, the information
is based in cell lines that lack the microenvironment context present within tumors,
and as such it is yet unclear how relevant the information will be for use in a clinical
setting. Nevertheless, the outline of these databases and the information available
does provide a foundation for future studies in which drug sensitivities are
established in a more complex setting in which 3D architecture is maintained
(Gautam et al. 2016).

3 Challenges and Future Directions

To understand the mechanisms underlying therapy resistance, better models that
mimic the microenvironment and its signaling are needed. Despite the increase in the
application of 3D models in the in vitro evaluation of the efficacy of several drugs,
2D cell cultures remain the most used cell culture model for initial drug screening
and validation. Yet, it is already of common knowledge that the behaviors of cells
when cultured as monolayers diverge substantially from how they would behave in
patients. The 3D models highlighted here will enable the pursuit of a reductionist
approach and thereby an understanding how individual microenvironmental signals
interact with the genomic plasticity of cancer cells to drive the phenotypic heteroge-
neity that is key to cancer progression and therapy resistance. A summary of the
advantages and disadvantages of the models described here is shown in Table 1.

Unfortunately, several issues influence the adoption of 3D culture models in the
pharmaceutical industry. Methodologies must be enhanced to reduce cost and allow
production on a large scale, under controlled conditions and in a way that accurately
reflects tumors. Moreover, the protocols and techniques that can be used for
analyzing the effects of drugs in 3D cell cultures are limited leading to issues with
the standardization of the output data analysis. The outputs from 3D culture systems
and animal models need to be integrated with the information available from

Table 1 Main advantages and disadvantages of models to study drug resistance

Method Advantages Disadvantages

2D Easy, simple and cheap
Often used as preliminary tests before using more
elaborated models

Limited in
generate suitable
environment

3D Mimic microenvironment, organotypic features, do not
require specialized equipment

High cost,
interactions
between materials

Microfluidic
devices

Multi-organ model, capture important essences of the
tumor microenvironment

High cost

Sequencing
technologies

High-quality data, combination of different molecular
aspects of tumors at different levels, cost-effective,
tissue-sparing, high-throughput data

High cost

Public
databases

Diversified data, population data Complexity,
limited time frame

Tumor Models and Cancer Systems Biology for the Investigation of Anticancer. . . 291



publicly available genomic and gene expression databases including understanding
the complex relationships between specific phenotypic states, expression of drug-
metabolizing enzymes and transport proteins, mutations in drug targets, and
epigenomics. By focusing on a personalized medicine approach to improve the
benefit to patients, 3D models along with cancer systems biology will in the near
future be regarded as the gold standard for translational medicine, although
extremely costly, decreasing the quantity of pre-clinical in vivo studies to be
performed as well as accelerating the drug discovery process.
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Abstract

In the last decade, the chicken chorioallantoic membrane (CAM) assay has been
re-discovered in cancer research to study the molecular mechanisms of anti-
cancer drug effects. Literature about the CAM assay as an alternative in vivo
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cancer xenograft model according to the 3R principles has exploded in the last
3 years. Following a summary of the basic knowledge about the chicken embryo,
we compare advantages and disadvantages with the classical mouse xenograft
model, exemplify established and innovative imaging techniques that are used in
the CAM model, and give examples of its successful utilization for studying
major hallmarks of cancer such as angiogenesis, proliferation, invasion, and
metastasis.

Keywords

3R model · Angiogenesis · Anti-angiogenesis · CAM model · CAM xenografts ·
Chorioallantoic membrane · Drug delivery · In vivo model · Metastasis ·
Tumor growth
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GFP Green fluorescent protein
HET-CAM assay Hen’s egg test on the CAM
MGUS Monoclonal gammopathies of undermined significance
MM Multiple myeloma
MMP Matrix metalloproteinases
MR Magnetic resonance
MRI Magnetic resonance imaging
MTT Tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide
OECD Organisation for Economic Co-operation and Development
PDcE Patient derived chicken egg tumor
PDGFR Platelet derived growth factor receptor
PDX Patient derived tumor xenograft
PET Position electron tomography
RB Retinoblastoma
SAHA Suberanilohydroxamic acid
VEGFR-2 Vascular endothelial growth factor receptor-2
ZEB1 Zinc finger E-box-binding homeobox 1
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1 General Remarks: Development and Structure of the Chick
Chorioallantoic Membrane (CAM)

The chorioallantoic membrane (CAM) is a highly vascularized membrane that
serves as the primitive respiratory organ of the chicken embryo and is rich in growth
factors and oxygen. The CAM forms on days 3–4 of embryonal development
(Fig. 1a) by the fusion of the chorion and the allantois. It consists of three layers,
ectoderm (from the chorion), mesoderm (fused somatic mesoderm from the cho-
rion), and splanchnic mesoderm (from the allantois) (Fig. 1b) (Romanoff 1960). The
CAM has a rich vascular system with arteries, capillaries, and veins. Immature blood
vessels scattering in the mesoderm (fused somatic mesoderm from the chorion and
splanchnic mesoderm from the allantois), and endoderm (from the allanotis) instead
of mesoderm (fused somatic mesoderm from the chorion), and splanchnic mesoderm
(from the allantois) grow very rapidly until day 8. Capillary proliferation continues
until day 10 and attains its final arrangement on day 12 (Ausprunk et al. 1974).

Being naturally immunodeficient, the chick embryo accepts transplantation from
various tissues and species without immune response. The chick immune system
does not begin to function until about 2 weeks (Jankovic et al. 1975; Weber and
Mausner 1977). As other vertebrates, chickens are protected by a dual immune
system comprised of B and T cells, controlling the antibody- and cell-mediated
immunity, respectively. T cells can be first detected at day 11 and B cells at day
12 (Janse and Jeurissen 1991), and by day 18 chicken embryos become immuno-
competent (Jankovic et al. 1975; Weber and Mausner 1977).

Fig. 1 (a) Macroscopic in ovo features of the chick chorioallantoic membrane (CAM) at day 5 of
incubation. Original magnification, 30�. Reproduced with permission from Ribatti (2014). (b) A
semi-thin section of the CAM, showing the chorionic epithelium (CH), the intermediate
vascularized mesenchyme (M), and the deep allantoic epithelium (AL). Original magnification,
160. Reproduced with permission from Ribatti (2014)
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2 CAM Model: History and Regularities

Originally the CAMmodel was developed for teratological studies (Goerttler 1962).
Later it was considered as an alternative system used to evaluate the potential ocular
irritancy of a test substance as measured by its ability to induce toxicity in the CAM
of a chicken. It was proposed as a substitutive to the classical Draize rabbit eye test
which effects are measured by the onset of (1) hemorrhage; (2) coagulation; and
(3) vessel lysis. These assessments are considered individually and then combined to
derive a score, which is used to classify the irritancy level of the test substance
(Leighton et al. 1985; Steiling et al. 1999). Meanwhile, the HET-CAM assay is used
by cosmetics industry to identify potential irritating materials in in-house testing (ec.
europa.eu), but it is still in validation discussion by OECD to be included as a
guideline. Nevertheless, the CAM model has received important attention also in
cancer research as a “non-animal” experiment. Embryos and fetus are not mentioned
in the German Animal Right Law (https://www.gesetze-im-internet.de/tierschg/
BJNR012770972.html). In the official gazette of the European Union 1986 Art.
2a, they are not defined as an animal (https://eur-lex.europa.eu/legal-content/DE).
According to the actual Directive 2010/63/EU of the European parliament and of the
Council, experiments with avian embryos are considered as “no animal”
experiments until the hatching (http://data.europa.eu/eli/dir/2010/63/oj).

3 CAM Model in Cancer Research

All studies of mammalian tumors in the CAM model have utilized solid biopsy
specimens, tumor cell suspensions, or, more traditionally, tumor cell lines (Tables 1
and 2) (Ribatti 2010). Tumor cells mixed with Matrigel as support material are
transplanted onto the CAM between days 6 and 9 of embryonal development. Two
to five days after tumor cell inoculation, the tumor xenografts become visible,
supplied with vessels of CAM origin, and begin a phase of rapid growth. Tumor

Table 1 Human tumor samples (biopsies) implanted onto the CAM

• Adenocarcinoma of the endometrium Palczak and Splawinski (1989)

• Ovarian endometrioma Ria et al. (2002)

• Glioblastoma Klagsbrun et al. (1976)

• Head and neck squamous cell carcinoma Petruzzelli et al. (1993)

• Hepatocellular carcinoma Marzullo et al. (1998)

• Lipoma Lucarelli et al. (1999)

• Lymphoma Mostafa et al. (1980)

• B-cell non-Hodgkin’s lymphoma Ribatti et al. (1990)

• Meningioma Klagsbrun et al. (1976)

• Neuroblastoma Ribatti et al. (2002)

• Vascular anomalies Jedelska et al. (2013)
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cells can be applied also intravenously to study invasion and metastasis. Dependent
on their potential to metastasis, they will colonize in embryonic organs.

Already in 1911, Rous and Murphy demonstrated historically the growth of the
Rous 45 chicken sarcoma transplanted onto the chick embryo CAM (Rous and
Murphy 1911). Knighton et al. investigated the time course of rat Walker 256 carci-
noma specimens transplanted on the CAM surface. Tumors did not exceed a mean
diameter of 0.93 � 0.29 mm during the pre-vascular phase (approximately 72 h).
Rapid growth started 24 h after vascularization, and tumors reached a mean diameter
of 8.0 � 2.5 mm by 7 days. When tumor grafts from 1 to 4 mm were implanted on
the 9-day CAM, grafts larger than 1 mm undergo necrosis and autolysis during the
pre-vascular phase (Knighton et al. 1977).

Table 2 Tumor cell lines tested onto the CAM

• Chinese hamster ovary cells transfected
with endothelin-1 (CHO-ET-1)

Cruz et al. (2001)

• Colorectal carcinoma cells Böhm et al. (2019), Ndreshkjana et al. (2019),
Steinmann et al. (2019), Lindner et al. (2020),
Maiuthed et al. (2018)

• Plasma cells isolated from patients with
multiple myeloma

Ribatti et al. (2003)

• Endothelial cells isolated from patients
with multiple myeloma

Vacca et al. (2003)

• Friend erythroleukemia cells Pacini et al. (2008)

• GM7373 endothelial cells
overexpressing uPA

Ribatti et al. (1999)

• Gynecologic tumor cell lines Ishiwata et al. (1988)

• Hepatocellular carcinoma (HepG2)
cells

Muenzner et al. (2018)

• Lymphoblastoid cells Vacca et al. (1998)

• Mammary tumor cells transfected with
int-2 oncogene

Costa et al. (1994)

• Mammary tumor cells transfected with
VEGF

Ribatti et al. (2001b)

• Melanoma cells – mouse Auerbach et al. (1976)

• Melanoma cells – human, primary Monteiro et al. (2019)

• Neuroblastoma cells Ribatti et al. (2002)

• Neurofibroma Schwann cells Sheela et al. (1990)

• Ovarian carcinoma cells Lokman et al. (2012)

• Osteosarcoma cells Kunz et al. (2019)

• Pancreatic duct cells Rovithi et al. (2017)

• Retinoblastoma cells Busch et al. (2017, 2018)

• Urothelial carcinoma cells with low
MKP-1 expression

Shimada et al. (2007)

• Walker carcinoma 256 cells Klagsbrun et al. (1976)
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4 The CAM Model Compared to the Mouse Xenograft Model

The CAM model has the potential to replace mouse xenograft experiments in order
to study hallmarks of cancer as well as anti-cancer drug effects. Table 3 summarizes
the advantages and disadvantages of the CAM assay in comparison with mouse
xenografts. Being naturally immunodeficient, the chick embryo may receive
transplantations from different tissues and species, without immune responses.
Moreover, CAM allows a rapid vascularization of the tumors placed on its surface.
Dependent on the aggressiveness of tumor cells, CAM vessels are attracted to grow
into the developing tumor. Then tumor cells might intravasate into the vasculature.
In contrast to standard mouse models, most cancer cells arrested in the CAM
microcirculation survive without cell damage, and a large number of them complete

Table 3 Comparison between CAM model and mouse xenograft model

Advantages of the CAM model

• Short experimental time

• Easy handling, easy accessibility

• High reproducibility

• Low costs

• High-throughput – more than one tumor on the CAM (ex ovo system)

• Biology and physiology well known

• In vivo imaging, real-time visualization, monitoring over time

• Natural immune-deficient model

• Fast vascular growth, natural bioreactor (full with growth factors, oxygen, and electrolytes) with
connection to blood vessels

• Reproducibility and reliability

• Analysis of growth characteristics/hallmarks of cancer such as proliferation, angiogenesis,
invasion, metastasis, and drug response

• Accepted model for drug testing, rapid screening platform in scientific community

• No application necessary for approval of an animal test

• High flexibility for planning of experiments

• No pain perception before day 12

• Need more than 1,000 times less drug

Disadvantages

• Limited availability of reagents, antibodies, etc.

• Limited amount of tissue for analysis

• Relative immunodeficiency

• Rapid changes of the CAM during embryogenesis (vessel density, morphology)

• Sensitive to environmental changes (shell dust)

• Different in drug metabolism compared to humans

• Low standardization of protocols

• No oral drug administration possible

• Non-specific inflammatory reactions

• Short post-treatment observation period
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extravasation within 24 h after injections (Koop et al. 1994). Compared with
mammalian models, where tumor growth takes between 3 and 6 weeks, chick
CAM is faster: between 2 and 5 days after tumor cell transplantation, microtumors
become visible. Finally, the simplicity and low cost strengthen the use of this assay.
The major drawback of the CAM model is the fact that most tumor cells cannot form
macroscopic visible colonies in secondary organs, due to short time (8–10 days)
between the implantation and chick hatching. Another disadvantage is that the CAM
already contains a well-developed vascular network and neovascularization is only
hardly distinguishable from vasodilation and rearrangement of pre-existing vessels.
Moreover, despite the immaturity of the chick immune system, non-specific inflam-
matory reactions are observable. In view of these limitations, two different assays
(sprouting assays, stimulation of HUVEC cells, etc.) should ideally be performed in
parallel to confirm the pro-angiogenic or anti-angiogenic activity of a drug.

5 Analysis of CAM Xenografts

The in vivo growing CAM tumors are easily accessible for modern imaging
techniques such as magnetic resonance (MR) imaging (MRI; Zuo et al. 2017). The
biodistribution of MR contrast agent-labeled compounds has been successfully
imaged in different chicken organs as well as in transplanted mammary tumors
(Zuo et al. 2017). High-resolution MRI of tumors grown on the CAM delivered
excellent anatomical structures, and tumor growth could be monitored over time
(Zuo et al. 2015). Thus, the CAM model could be used as a promising initial test
model for novel radio-labeled substances. Moreover, PET imaging demonstrated
successfully tumor glucose metabolism and protein synthesis in human glioblastoma
cells that were transplanted and grown on the CAM. The authors consider the CAM
model to have the potential for replacing the mouse model for many in vivo
oncology research especially when novel PET tracers have to be tested (Warnock
et al. 2013).

Different post-experimental analysis techniques are available when analyzing
CAM xenografts. Tumor size can be measured. The tumors can be harvested as
fresh material for RNA and protein preparation. The tumors can also be fixed in
formalin with subsequent embedding in paraffin for immunohistochemical studies.
Because the human genome is uniquely enriched in Alu sequences, it is possible to
detect disseminating tumor cells by Alu-PCR (Alu-specific human repetitive DNA
sequences) when harvesting the embryonic organs. When cells have been
pre-labeled, they can be detected in the body of the chicken embryo by in vivo
imaging. Tumor blocks can be easily archived, and for further analysis, they will be
cut into 4 μm paraffin sections and stained with hematoxylin-eosin (H&E) to make
tumor cells visible. Although the nude mouse is still the gold standard as an in vivo
xenograft model, also the H&E staining of CAM xenografts allows to evaluate
angiogenic effects (chicken embryo vessels can be differentiated by their nucleated
erythrocytes), tumor budding at invasion front, proliferation and tumor growth
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characteristics, cell density, and cellular phenotype (spindle or cobble stone mor-
phology) as described for mouse xenotransplants.

Drug effects are evaluated microscopically as desmoplasia, necrosis, and pres-
ence of pycnotic nuclei or massive bleeding (Fig. 2) and by immunohistochemical
staining of cell death markers, PCR and Western blotting of specific apoptosis
markers.

6 The CAM and Study of Hallmarks of Cancer

6.1 Angiogenesis

Angiogenesis-associated effects can be studied by directly applying substances onto
the CAM using gelatin sponges as a carrier. Patient-derived multiple myeloma
plasma cells pre-soaked to gelatin sponges and placed on the CAM from day 8 to
day 12 induced a remarkable vaso-proliferative response. This angiogenic response
was significantly higher with plasma cells from patients with active multiple

Fig. 2 H&E staining of CAM xenografts grown from untreated or 5-Fluorouracil (15 μM)-treated
colorectal cancer cells. 5-FU induces massive bleeding in the surrounding CAM (acknowledged to
Dr. Benardina Ndreshkjana, Experimental Tumor Pathology University Hospital, Erlangen)
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myeloma as from those with non-active multiple myeloma (Fig. 3; Ribatti et al.
2003). Implants made from chick embryo developmental day 8 to day 10 were
strongly angiogenic, while those made from day 11 to day 12 were not. This might
be due to the fact that the high mitotic rate of the endothelium of the CAM declines
rapidly after day 10 (Ausprunk et al. 1974).

When implanting multiple myeloma cells using Matrigel as carrier, the mRNA
expression of endostatin is significantly lower compared to the control CAM,
suggesting that the angiogenic switch in multiple myeloma may involve the loss
of an endogenous angiogenesis inhibitor, such as endostatin (Fig. 4), (Mangieri et al.
2008). By implanting human tumor biopsy tissues on the CAM surface, the tumor
graft disintegrated within 24 h, and proliferating host vessels penetrated into the
tumor tissue mainly due to angiogenic factors released from the tumor cells
(Ausprunk and Folkman 1976). Moreover, the authors compared these rat tumor
grafts to grafts of normal adult and embryo rat tissues. In grafts from embryonic
tissue, pre-existing rat vessels disintegrated and anastomosed to the CAM vessels,
while in adult human tissues, this ability was lost, and pre-existing rat graft vessels
disintegrated and did not further stimulate capillary proliferation of the CAM
(Ausprunk et al. 1975).

Steinmann et al. investigated the invasive potential of CAM-transplanted colo-
rectal tumor cells that have lost the cytoskeleton-associated protein kinase Death-
associated protein kinase (DAPK1) by CRISPR/Cas technology. A significant
increase in tumor budding and vasculature of CAM xenografts under DAPK1 loss
indicated metastasis inhibitory and anti-angiogenic roles of DAPK1, respectively.
Moreover, a DAPK1-dependent altered collagen structure in the chicken extracellu-
lar matrix was shown by two-photon microscopy (Steinmann et al. 2019).

Recently the CAM model has been used for studying in vivo alterations of
epigenetic players under induction of epithelial-to-mesenchymal transition (EMT)

Fig. 3 Time course of the macroscopic appearance of a CAM implanted at day 8 (a), with a sponge
loaded with 18,000 plasma cells of an active multiple myeloma patient. Note that whereas on day
9 (b), no vascular reaction is detectable, on day 12 (c), numerous allantoic vessels develop radially
toward the implant in a “spoked-wheel” pattern. Reproduced with permission from Ribatti et al.
(2003)
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in colorectal cancer cells. EMT leads to a spindle cell like more mesenchymal cell
shape promoting migration and invasion of tumor cells. The in vivo findings on
CAM tumors verified that an increase in the protein expression of the EMT tran-
scription factor Zinc finger E-box-binding homeobox 1 (ZEB1) was associated with
higher expression of the methyltransferase SET Domain Containing 1B (SETD1B)
that activates gene expression by acetylation of histone H3 (Lindner et al. 2020).

Fig. 4 Expression levels of mRNA coding for human vascular endothelial growth factor (VEGF),
fibroblast growth factor 2 (FGF-2), angiopoietin 1 (Ang-1), hypoxia-inducible factor 1α (HIF1-α),
and endostatin evaluated by semiquantitative RT-PCR. Transcript levels from the CAM assay are
referred to endothelial cells obtained from six multiple myelomas (MM) and six monoclonal
gammopathies of undetermined significance (MGUS) patients, and the error band represents the
standard deviation of six experiments. Reproduced with permission from Mangieri et al. (2008)
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6.2 Tumor Invasion and Metastasis

The metastasis chick embryo model, based on the grafting of human tumor cells on
the CAM, has provided valuable information regarding tumor cell penetration of the
chorionic epithelium, invasion of the mesenchyme, survival of tumor cells in the
circulation, their arrest in the vasculature, extravasation, and proliferation in the
distant organs, including the lung, liver, and brain (Armstrong et al. 1982; Kim et al.
1998; Lugassy and Barnhill 2007; Ribatti et al. 2013; Scher et al. 1976). The model
of spontaneous metastasis is based on grafting human tumor cells on the CAM
surface. Tumor cells disseminate throughout the vascular system of the chick.
Specific serine proteases and matrix metalloproteinases (MMPs), including tumor-
derived MMP-9, are involved in this invasive process (Kim et al. 1998). Vice versa,
invasion of tumor cells can be blocked by the inhibition of urokinase plasminogen
activator (uPA) activity or uPA production suggesting that invasion is associated
with cell surface-associated proteolytic activity (Ossowski 1988a, b). More than
80% of injected cells survive in the microcirculation and have extravasated by
1–3 days later. Cancer cells migrate through the mesenchyme, attach to arterioles,
and accumulate in the vicinity of pre-existing vessels (Koop et al. 1994). The
changes in morphology of cancer cells arrested in the CAM microcirculation can
be readily observed by in vivo microscopy, and also after extravasation, most of
them survived without significant cell damage.

Within few days after inoculation of human melanoma cells on the CAM, tumor
cells can be identified in CAM areas distant from the inoculation site, as well as in
internal organs, including chick lung, liver, and brain (Chambers et al. 1992). mRNA
levels of several metastasis-related genes in cancer cells increased temporarily
during the early phases of this process, and the levels of vascular endothelial growth
factor receptor-2 (VEGFR-2) mRNA increased 6 h after injection by triggering
both, angiogenesis and an increase in vascular permeability (Shioda et al. 1997). A
remarkable increase in invasive capabilities of stem cell-enriched human hepatocel-
lular carcinoma cells has been shown by in vitro 3D spheroid model and in vivo
imaging of CAM xenografts. Cell sub-clones with highest invasive characteristics in
3D spheroids showed the highest tumor cell budding and a significant higher
frequency of disseminating tumor cells in the embryonic organs of the chicken
(Muenzner et al. 2018).

When comparing the pattern of experimental metastasis in chick and mouse after
intravenous injection of murine melanoma cell lines, differences between the two
models became obvious: (1) the number of developed tumors for a given number of
cells injected is much higher in the chick than in the mouse; (2) B16-F1 tumors grew
in all embryonic chick organs, while growth was restricted primarily to the lungs in
the mouse; and (3) in the chick B16-F1 and B16-F10 cells formed a comparable
number of tumors in embryonic organs after intravenous injection, whereas B16-F10
cells formed more tumors in the lung than B16-F1 cells after intravenous injections
into mice (Chambers et al. 1992).
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6.3 Visualization and Detection of Tumor Cells (Table 4)

Several methods for semiquantitative analysis of disseminating tumor cells in the
chick embryo have been developed including morphometric quantitation of individ-
ual fluorescent-labeled metastasized cells by video microscopy (Ossowski and Reich
1980), detection of microscopic tumor colonies (MacDonald et al. 1992), detection
of human urokinase plasminogen activator within secondary organs of the embryo
(Ossowski and Reich 1980), the use of green fluorescent protein (GFP), and in vivo
video microscopy (Khokha et al. 1992; Koop et al. 1996). PCR-mediated amplifica-
tion of human-specific Alu sequences was used for semiquantitative detection of
disseminating cells arrested in specific embryonic organs (Kim et al. 1998), followed
by sensitive real-time Alu-PCR assay (Mira et al. 2002; van der Horst et al. 2004;
Zijlstra et al. 2002). Bobek et al. (2004) developed a GFP-labeled tumor cell assay
transplanted to the chick embryo for screening anti-metastatic agents. Yet, extrava-
sation or real metastasis formation cannot be differentiated from accumulation of
tumor cells in highly vascularized embryonic organs.

7 The CAM Model and Molecular Pathways

In the last 2 years, the number of publications that implemented the CAM assay as an
alternative in vivo test system for validating molecular pathways and functional
aspects remarkably rose. Here we give some recent examples how the CAM model
supported findings from pharmacological functional in vitro studies and helped for
interpretation of the findings.

7.1 Pharmacological Inhibition of Angiogenesis

The inhibition of angiogenesis seems to be a promising anti-tumor strategy particu-
larly in the adjuvant setting. In this regard the CAM assay can be utilized as a
powerful model to measure drug effects on vasculature. In accordance, human U87

Table 4 Most common techniques to visualize and detect tumor cells in the CAM assay

• In vivo video microscopy Ossowski and Reich (1980)

• Detection of human urokinase plasminogen activator Ossowski and Reich (1980)

• Green fluorescent protein (GFP)-labeled tumor cells Bobek et al. (2004)

• PCR-mediated amplification of human-specific Alu
sequences

Muenzner et al. (2018)

• Viral nanoparticles Cho et al. (2014)

• MRI, high-resolution MRI Zuo et al. (2015), Zuo et al.
(2017)

• PET/CT imaging Warnock et al. (2013)
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glioblastoma cells implanted on the CAM formed avascular tumors within 2 days,
which progressed in the next days through VEGFR-2-dependent angiogenesis.
Blocking of VEGFR-2 and platelet-derived growth factor receptor (PDGFR) sig-
naling pathways with small molecule receptor tyrosine kinase inhibitors such as
PTK787/ZK 222845 and imatinib, respectively, suppressed vessel density and tumor
growth. Indeed, gene expression analysis during the angiogenic switch identified
genes associated with tumor vascularization and growth (Hagedorn et al. 2005).

There are several reports on the effects of anti-cancer drugs on angiogenesis in the
CAM model. As an example, the angiogenic response induced by neuroblastoma
cell-derived conditioned medium, neuroblastoma tumor xenografts, and human
neuroblastoma biopsy specimens could be effectively blocked by the proteasome
inhibitor bortezomib. These anti-tumor effects have been also shown in parallel in
mouse models (Brignole et al. 2006). Treating neuroblastoma cells with combination
of bortezomib and the synthetic retinoid fenretinide induced a marked reduction in
intra-tumoral vessel density in mouse tumor grafts. Transplanting these tumors on
the CAM and treating them according to the combination protocol confirmed a clear
anti-angiogenic response when morphometrically assessing the micro-vessel area
(Di Paolo et al. 2009). Exposing neuroblastoma cells to the chemotherapeutics
vinblastine and rapamycin alone as well as in combination significantly reduced
the growth of tumor and endothelial cells as observed in vitro and in the CAM
model. Interestingly, also the conditioned supernatant of treated tumor cells had a
reduced capacity to induce angiogenesis (Marimpietri et al. 2005, 2007).

When pre-treating melanoma cells with the angiogenesis inhibitor axitinib,
smaller tumor masses were detected, and tumor cells showed a remarkably reduced
capability to invade the CAM. Different antibodies have been used for immunohis-
tochemical staining to evaluate the proliferation index or mitotic counts. Using the
CAMmodel, this study linked angiogenesis with tumor aggressiveness in melanoma
(Monteiro et al. 2019). For aggressive highly vascularized uveal melanoma grown
on the CAM, efficacy of bleomycin chemotherapy increased when coupled with
electroporation (electrochemotherapy – ECT) due to enhanced membrane perme-
ability for the drug. Cytotoxic effects were measured by evaluating the tumor size,
viability with MTT assay, and Ki67 proliferation index in histological slices. Tumor
necrosis was induced in the bleomycin only and the ECT group, yet a significant
reduction of tumor growth was seen only following additional ECT treatment
(Fiorentzis et al. 2019).

7.2 Pharmacological Inhibition of Tumor Growth

Primary ovarian cancer cells grown on the CAM and treated with the hyaluronan
inhibitor 4-methylumbelliferone (4-MU) showed a significant decrease of invasion
accompanied by a reduction of CD44 stem cell marker expression determined by
immunohistochemistry. 4-MU when combined with the chemotherapeutic drug
carboplatin even increased the response of chemoresistant primary cells (Lokman
et al. 2019).
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When exposing tumor cells to anti-cancer drugs before transplanting them on the
CAM, it is possible to analyze drug effects against cancer stem cells since only
cancer stem cells should be able to self-renew and to rebuild the tumor. Here a novel
hybrid linking 5-fluoruracil (5-FU) and the plant-derived compound thymoquinone
showed high efficacy against the colorectal CD133+ tumor population while
inhibiting the Wnt signaling pathway. Immunohistochemically it was observed a
strong nuclear staining pattern for ß-catenin and E-cadherin in agreement with a
decreased ß-catenin activity in vitro. High vessel density in CAM xenografts was
observed under 5-FU, whereas vasculature was strongly inhibited under hybrid
exposure (Fig. 2) (Ndreshkjana et al. 2019). The accumulation of cytoplasmic
p21WAF1, a cell cycle inhibitor, has been identified as a possible mechanism for
5-FU resistance in colon cancer cells and was confirmed in vivo using the CAM
model (Maiuthed et al. 2018).

In addition, the CAM model served to investigate the response of a colon tumor
cell line to 3-deazaneplanocin A (DZNep), an inhibitor of the histone
methyltransferase enhancer of zeste homolog 2 (EZH2). The Ki67 proliferation
marker confirmed the drug-induced growth arrest as shown in monolayer cultures
of the tumor cell line. The reduction of EZH2 expression at the tumor invasion front
as observed in human primary tumor samples was also visible in the CAM
xenografts grown from a colon tumor cell line (Böhm et al. 2019).

When hypoxia pre-conditioned GFP-labeled neuroblastoma cells were
transplanted on the CAM, inhibitors for cyclin-dependent kinases, palbociclib and
RO-3306, reduced the metastatic capability of these tumor cells (Swadi et al. 2019).
Retinoid-induced effects on the differentiation of myc-activated neuroblastoma cells
were monitored by changes in morphology, Ki67 proliferation index, and gene
expression of different stem cell markers. Interestingly, retinoid treatment had higher
anti-tumor efficacy than the treatment with the Aurora kinase A inhibitor MLN8237
(Swadi et al. 2018).

Busch et al. characterized different etoposide- and cisplatin-resistant retinoblas-
toma (Rb) cell lines for their morphological changes compared to their
chemosensitive counterparts using 3D imaging for tumor size and different staining
on cryo-sectioned material (Busch et al. 2018). Trifoil factor 1-overexpressing Rb
tumor cells showed a remarkably reduced tumor formation and migratory potential
when injected intravenously or transplanted on the CAM (Busch et al. 2017).

In CAM xenografts grown from urothelial carcinoma cell lines, topical applica-
tion of the combination of cisplatin and the histone deacetylase inhibitor
suberanilohydroxamic acid (SAHA) (day 11 of embryonal development) led to an
additive anti-tumor effect. The drug dose was adjusted to the estimated blood
volume of the corresponding embryo developmental day. Tumor size was evaluated
by bio-imaging and immunohistochemistry (Skowron et al. 2017).
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8 CAM Use in Drug Delivery Studies

Importantly the CAM model is also suitable for monitoring drug delivery to the
tumor, including targeted delivery of diagnostics when loaded to nanoparticles.
Recently, nanoparticles reinforced the medical imaging technology having a high
potential for early detection of cancer. Indeed, viral nanoparticles injected into the
bloodstream of the chicken embryo can be imaged for several hours or days in the
newly formed xenografts showing that the CAM model is very suitable for intravital
and tumor imaging studies (Cho et al. 2014). Viral nanoparticles are also suitable to
visualize newly formed vasculature in expanding tumors (Leong et al. 2010). High-
resolution imaging of human tumors grown on the CAM reveals fluid and small
molecule dynamics within tumors (Cho et al. 2011).

When different doses of biodegradable organosilica nanoparticles loaded with
doxorubicin were intravenously injected into the chicken egg, it was possible to
monitor drug effects in CAM tumors grown from human ovarian cancer. Doxorubi-
cin led to an effective and selective tumor elimination without major side effects,
whereas the treatment with free doxorubicin induced intensive damage of chicken
embryonic organs (Vu et al. 2018). When treating transplanted feline fibrosarcoma
cells with doxorubicin-conjugated glutathione-stabilized gold nanoparticles tumor
growth reduction could be successfully monitored (Zabielska-Koczywas et al.
2017), too.

9 The CAM Model and Personalized Medicine

The patient-derived tumor xenograft (PDX) model is well established for
transplanting patient tumor samples to immunocompromised mice, and hence, by
principle, personalized therapies can be approved for every single patient. As an
example, the Epo GmbH (Berlin, Germany) has meanwhile more than 500 well-
characterized PDX, xenografts, and syngeneic and humanized tumor models avail-
able for research and preclinical testing of novel compounds (https://www.epo-
berlin.com/). The major limitation of this model with respect to personalized therapy
is the long cultivation time with sequential harvest/splitting/re-transplantation cycles
that need about several months before being ready for drug testing, a time frame that
many patients do not survive. Moreover, during the propagation of tumors, the
human stroma is replaced stepwise by mouse stroma components changing the
tumor over time. Besides that, costs are not covered by health insurance so far,
and the maintenance and feed of animals are cost- and time-intensive (DeBord et al.
2018).

The patient-derived chicken egg tumor (PDcE) model has been developed as an
alternative system to overcome the shortcomings of the mouse PDX model using
ovarian tumors (Vu et al. 2018; Komatsu et al. 2019). Since tumors are formed in
3–4 days after transplantation of tumor cells, a library of 10–20 CAM tumors could
be produced in short time to screen patient-specific anti-cancer drugs. Successful
grafting or re-grafting of biopsies from bladder tumor, laryngeal squamous cell
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carcinoma, neuroblastoma, endometrial adenocarcinoma, and vascular anomalies
was already reported. Tumor biopsies survived and showed the typical morphologi-
cal and proliferative characteristics of the original tumor (Dohle et al. 2009; Uloza
et al. 2015; Ribatti et al. 1997, 2001a; Balciuniene et al. 2009). PDcE like PDX
retain the characteristic tumor features, tumor heterogeneity, and pathophysiology of
the donor tumor (reviewed by DeBord et al. 2018). Yet, so far there are only a few
success studies about therapeutic intervention on PDcE. Freshly transplanted
biopsies of malignant ovarian tumors have been treated by photodynamic therapy
on the CAM, and remarkable anti-cancer effects could be observed and even
reinforced when tumors have been serially re-grafted (Ismail et al. 1999). There is
a recent paper showing that the CAMmodel has been successfully integrated into the
clinical workflow for oral squamous cell carcinoma (Kauffmann et al. 2018).

10 Outlook

Besides very promising data, there is still a lack of standardization and general
acceptance among the researcher’s community for the CAMmodel. Thus, there is an
urgent need for more publicity about this promising alternative in vivo model. We
need to establish standard operation procedures for this model corresponding to the
respective research question. For drug testing this would involve the definition of the
best application window for the drugs, the most suitable imaging technique, as well
as the exact handling of the transplanted specimens. The future will show, if this
might improve the selection of drug candidates and reduce the high failure rate of
anti-cancer drugs in clinical studies (Wong et al. 2019), not less important, the model
might contribute to the 3R concept being an experimental alternative to a classical
animal test.
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