Indications for Cardiac Resynchronization Therapy

Douglas Darden and Jonathan C. Hsu

Clinical Vignette

A 70-year-old man with chronic ischemic cardiomyopathy (New York Heart Association III, left ventricular ejection fraction (LVEF) 20%), percutaneous coronary intervention to left anterior descending artery and right coronary artery one year prior, and hyperlipidemia presents to clinic to discuss cardiac resynchronization therapy (CRT) candidacy. He is currently tolerating maximal doses of carvedilol, lisinopril, and spironolactone. Electrocardiogram shows normal sinus rhythm, left axis deviation, and nonspecific intraventricular conduction delay with QRS duration 140 ms. Repeat echocardiogram shows a severely dilated left atrium and mildly dilated left ventricle with LVEF 20% and global hypokinesis, unchanged in the past year. Is CRT recommended for this patient?

Introduction

Impaired electromechanical coupling is frequently seen in the progression of heart failure (HF), manifesting as prolonged interventricular conduction on the electrocardiogram or a prolonged QRS duration >120 ms (ms). Approximately one-third of patients with heart failure with reduced ejection fraction (HFrEF) have prolongation of the QRS duration. Furthermore, those with a wide QRS with left bundle branch block (LBBB) morphology have increased mortality compared to those with right bundle branch block (RBBB) [1]. Such dyssynchrony can result in further reductions in cardiac output, worsening functional mitral regurgitation,

D. Darden · J. C. Hsu (🖂)

Division of Cardiology, Department of Internal Medicine, University of California, 9452 Medical Center Dr, MC7411, La Jolla, San Diego, CA 92037, USA e-mail: Jonathan.Hsu@ucsd.edu

[©] Springer Nature Switzerland AG 2021

U. Birgersdotter-Green and E. Adler (eds.), *Case-Based Device Therapy for Heart Failure*, https://doi.org/10.1007/978-3-030-70038-6_18

adverse left ventricular (LV) remodeling, and ultimately, worse prognosis [2–7]. Cardiac resynchronization therapy (CRT), by allowing simultaneous pacing of the ventricles, has emerged as a therapeutic strategy to promote reverse remodeling and improvement in mitral regurgitation, systolic function, and cardiac chamber dimensions [8, 9]. Robust data from several large randomized control trials (RCTs) have firmly established the clinical benefit of CRT in alleviating symptoms, preventing hospitalizations, and improving mortality in appropriately selected patients [10, 11].

In this chapter, an overview of the current indications for CRT will be discussed with an emphasis on the 2012 American College of Cardiology (ACC)/American Heart Association (AHA)/Heart Rhythm Society (HRS) Focused Update on Guidelines for Device-Based Therapy and highlighting the landmark trials.

Indications for CRT

Over the last two decades, the use of CRT has rapidly evolved from a last resort in select patients with severe LV systolic dysfunction and LBBB to a standard therapy in heart failure as tested and validated in large randomized controlled trials, as shown in Table 1. Prior to understanding the specifics of the indications, it is important to first understand when to consider a potential candidate for CRT. The appropriate patient has HFrEF as defined as LVEF \leq 35%, on maximally tolerated doses of guideline-directed medical therapy (GDMT) for HF for at least three months, at least 40 days after a myocardial infarction without revascularization or three months after revascularization, and have treated any reversible cause of LV dysfunction [12]. It is also important to avoid implantation in those with significant comorbidities and/or frailty that limits expected survival to less than a year.

1. Recommendations for Patients in Sinus Rhythm

The 2012 ACC/AHA/HRS Focused Update on 2008 Guidelines for Device-Based Therapy proposed several key changes in the recommendations for CRT, as seen in Table 2 [12]. First, a Class I indication was limited to patients with NYHA II, III, or ambulatory IV symptoms despite optimal GDMT and QRS duration \geq 150. Multiple trials and analyses have showed that the benefit of CRT appears dependent on QRS duration, particularly with more favorable outcomes in those with QRS \geq 150 ms as compared to those with QRS <150 ms [13–16]. A Class II recommendation is given to patients with QRS \geq 120 to 150 ms who otherwise qualify for CRT. Those with a QRS <120 ms fail to benefit from CRT even with evidence of mechanical dyssynchrony on echocardiogram, thus CRT is a contraindication in these patients in the absence of a need for frequent ventricular pacing [17, 18].

Secondly, the current guidelines also limit the Class I indication to patients with LBBB. In a meta-analysis of four trials including 5,356 patients, CRT significantly

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 1 Landmark trials in cardiac resynchronization therapy	s in cardi	iac resynchronization t	herapy		
CRT-P versus Primary: NYHA class, QOL OMT (6 mo) Secondary: Peak VO ₂ , LYEDD, OMT (6 mo) Secondary: all-cause mortality and Versus OMT Primary: all-cause mortality and versus OMT Nospitalization (15 mo) Secondary: all-cause mortality or CV 0MT (29.4 hospitalization 0MT (29.4 Primary: all-cause mortality or CV 0MT (29.4 hospitalization mo) Xernoversus mo) NYHA, QOL mo) NYHA, QOL mo) Secondary: LVESV index, HF no) NYHA, QOL mo) NYHA, QOL mo) NYHA, QOL no) Secondary: LVESV index, HF no) NYHA, QOL no) NYHA, QOL no) Secondary: LVESV index, HF no) NYHA, QOL no) Secondary: LVESV index, HF no) NYHA, QOL no) Secondary: LVESV index, HF no) Secondary: All-cause mortality or HF No NYHA, QOL no) Secondary: All-cause mortality or	Trial, year of publication	Z	Patient population	Trial design (follow-up duration)	Endpoints	Findings
453NYHA III-IV LVEF \leq 35%CRT-P versus OMT (6 mo)Primary: NYHA class, QOL Secondary: Peak VO2, LVEDD, Clinical composite response1520NYHA III-IV LVEF \leq 35%CRT-P/CRT-D NYHA III-IVPrimary: all-cause mortality and 	Normal Sinus Rhythm ar	nd Advan	rced Heart Failure			
41520NYHA III-IV LVEF $\leq 35\%$ ersus OMT PRImary: all-cause mortality and ersus OMT PRImary: all-cause mortality or CV bospitalization bospitalization mont Mild Heart FailurePrimary: all-cause mortality or CV bospitalization Secondary: all-cause mortality, NYHA, QOL7]813NYHA III-IV CRT-P versus EVEF $\leq 35\%$ OMT (29.4 D>30 mm MOPrimary: all-cause mortality or CV bospitalization NYHA, QOL7]610NYHA I-II CRT-off (12 CRT-off (12 CRT-off (12 CRT-off (12 Secondary: LVED>5.5 cm MOPrimary: HF clinical composite score mortality, NYHA, QOL7]1820NYHA I-II CRT-off (12 CRT-off (12 CRT-off (12 Secondary: LVED>5.5 cm MOPrimary: HF clinical composite score mortality7]1820NYHA I-II CRT-off (12 CRT-off (12 CRT-off (12 Secondary: LVESV index, HF hospitalizations and all-cause mortality or HF hospitalizations and all-cause mortality or HF hospitalizations and all-cause mortality or HF1820NYHA I-II CRT-D versus CD (2.4 years)Primary: All-cause mortality or HF hospitalizations Secondary: All-cause mortality or HF hospitalizations1798NYHA II-III CRT-D versusCRT-D versus Primary: All-cause mortality or HF hospitalizations1798NYHA II-III CRT-D versusCRT-D versus Primary: All-cause mortality or HF hospitalizations1798NYHA II-III CRT-D versusCRT-D versus Primary: All-cause mortality or HF hospitalizations1798NYHA II-III CRT-D versusCRT-D versus Pospitalizations1798NYHA II-III CRT-D vers		453	• NYHA III-IV • LVEF $\leq 35\%$ • QRS $\geq 130 \text{ ms}$	CRT-P versus OMT (6 mo)	Primary: NYHA class, QOL Secondary: Peak VO ₂ , LVEDD, clinical composite response	CRT-P \uparrow 6MWD (+39 m versus +10 m), \uparrow QOL, \downarrow NYHA class, \uparrow peak VO ₂ , \uparrow LVEF (4.6 vs -0.2%)
7]813NYHA III-IV LVEF $\leq 35\%$ OMT (29.4CRT-P versus hospitalizationPrimary: all-cause mortality or CV hospitalization $1.VEF \leq 35\%$ $0KS \geq 120 ms$ 0MT (29.4 $0KS \geq 120 ms$ NYHA, QOL $1.VEDD > 30 mm$ NNSecondary: all-cause mortality, NYHA, QOL $7]$ 610NYHA I-II $1.VEDD > 5.5 cm$ CRT-off (12 score $208 S \geq 120 ms$ $0.00000000000000000000000000000000000$	COMPANION, 2004 [10]	1520	• NYHA III-IV • LVEF≤35% • QRS≥120 ms	CRT-P/CRT-D versus OMT (15 mo)	Primary: all-cause mortality and hospitalization Secondary: all-cause mortality	 ↓ primary endpoint for CRT-P and CRT-D (34% and 40%, respectively) versus OMT; ↓ all-cause mortality (CRT-P ↓ 24% [p=0.06], CRT-D ↓ 36%)
m and Mild Heart Failure7]610NYHA I-IICRT-off (12Primary: HF clinical compositeLVEF \leq 40%CRT-off (12LVEDD > 5.5 cmmo)LVEDD > 5.5 cmmo)LVET > CRT-D versusPrimary: all-cause mortality or HFLVEF \leq 30%ICD (2.4 years)PospitalizationsSecondary: All-cause mortality or HFLVEF \leq 30%ICD (2.4 years)PossitalizationsPrimary: all-cause mortality or HFLVEF \leq 30%ICD (2.0 mo)eQRS \geq 120 msPrimary: all-cause mortality or HFeQRS \geq 120 msPrim	CARE-HF, 2005 [37]	813	 • NYHA III-IV • LVEF ≤ 35% • QRS ≥ 120 ms • LVEDD > 30 mm 	CRT-P versus OMT (29.4 mo)	Primary: all-cause mortality or CV hospitalization Secondary: all-cause mortality, NYHA, QOL	CRT-P \downarrow all-cause mortality or hospi- talization; \downarrow all-cause mortality; \uparrow LV measures and QOL
7]610NYHA I-IICRT-on versusPrimary: HF clinical composite $\cdot LVEF \leq 40\%$ $CRT-off (12$ score $\cdot UVEF \leq 40\%$ $\cdot UVED > 5.5 cm$ $\cdot ORS \geq 120 ms$ $no)$ $\cdot Secondary: LVESV index, HF$ $\cdot UVEDD > 5.5 cm$ $no)$ $\cdot ORS \geq 120 ms$ $no)$ $\cdot LVEDD > 5.5 cm$ $no)$ $\cdot ORS \geq 120 ms$ $no)$ $\cdot LVEDD > 5.5 cm$ $no)$ $\cdot ORS \geq 130 ms$ $\cdot ORS \geq 130 ms$ $\cdot QRS \geq 130 ms$ $\cdot CRT-D versus$ $\cdot Primary: all-cause mortality or HF - ORS > 130 ms$ $\cdot UVEF \leq 30\%$ $\cdot QRS \geq 130 ms$ $\cdot CRT-D versus$ $\cdot DRS marrix : all-cause mortality or HF - ORS > 130 ms$ $\cdot UVEF \leq 30\%$ $\cdot QRS \geq 130 ms$ $\cdot CRT-D versus$ $\cdot Drimary: all-cause mortality or HF - ORS > 130 ms$ $\cdot CRT-D versus$ $\cdot QRS \geq 130 ms$ $\cdot CRT-D versus$ $\cdot Drimary: all-cause mortality or HF - ORS > 120 ms$ $\cdot CRT-D versus$ $\cdot QRS \geq 120 ms$ $\cdot CRT-D versus$ $\cdot Crondary: all-cause mortality or HF - ORS > 120 ms$ $\cdot Crondary: all-cause mortality or HF - ORS > 120 ms$	Normal Sinus Rhythm ar	nd Mild	Heart Failure			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	REVERSE, 2008 [47]	610	• NYHA I-II • LVEF $\leq 40\%$ • QRS $\geq 120 \text{ ms}$ • LVEDD > 5.5 cm	CRT-on versus CRT-off (12 mo)	Primary: HF clinical composite score Secondary: LVESV index, HF hospitalizations and all-cause mortality	No improvement in primary endpoint in CRT-on versus CRT-off (16% vs 21%, p=0.10). CRT-on did have \downarrow LVESV, \uparrow LVEF, and delay in time-to-first hospitalization (HR: 0.47, p=.03)
1798• NYHA II-IIICRT-D versusPrimary: all-cause mortality or HF• LVEF $\leq 30\%$ ICD (40 mo)hospitalizations• QRS ≥ 120 msSecondary: all-cause mortality or cardiovascular death	MADIT-CRT, 2009 [48]	1820	• NYHA I-II • LVEF ≤ 30% • QRS ≥ 130 ms	CRT-D versus ICD (2.4 years)	Primary: all-cause mortality or HF hospitalizations Secondary: All-cause mortality or LVESV	↓ primary endpoint with CRT-D (17% vs 25% with HR 0.66, p=0.001) driven by 41% reduction in HF events. ↓ LVSEV. No reduction in all-cause mortality
	RAFT, 2010 [11]	1798	• NYHA II-III • LVEF ≤ 30% • QRS ≥ 120 ms	CRT-D versus ICD (40 mo)	Primary: all-cause mortality or HF hospitalizations Secondary: all-cause mortality or cardiovascular death	CRT-D↓ primary endpoint (33% vs 40%).↓ mortality (29% vs 35%).

 Table 1
 Landmark trials in cardiac resynchronization therapy

289

Table 1 (continued)					
Trial, year of publication N	z	Patient population	Trial design (follow-up duration)	Endpoints	Findings
Chronic RV Pacing and Permanent Atrial Fibrillation	Permane	nt Atrial Fibrillation			
BLOCK-HF, 2013 [32] 91	918	 NYHA I-III LVEF < 50% Indication for pacing with AV 	CRT versus RV pacing (37 mo)	Primary: all-cause mortality, acute HF, increase in LVESV>15% Secondary: composite of all- cause mortality, acute HF, and	CRT \$\u03e4\$ composite outcome (HR 0.74; 95% CI, 0.60-0.90); CRT \$\u03e4\$ secondary outcomes except death
		block		hospitalization	
APAF-CRT, 2018 [49]	102	 Permanent atrial fibrillation Narrow QRS (≤110 ms) One HF hospital- ization in previous year 	AV junction ablation and CRT versus OMT (16 mo)	Primary: Death due to HF, HF hospitalization, worsening HF Secondary: All-cause mortality, HF hospitalization, worsening HF.	Ablation+CRT ↓ primary endpoint (20% vs 38%) and ↓ secondary endpoint in ablation+CRT
Narrow QRS					
RethinQ, 2007 [17]	172	• NYHA III • LVEF $\leq 35\%$ • QRS < 130 ms	CRT-D versus ICD (6 mo)	Primary: Peak VO ₂	No change in peak VO ₂
ECHO-CRT, 2013	1680	 NYHA I-IV LVEF ≤ 35% QRS <130 ms Evidence of echo dyssynchrony 	CRT-on versus Primary: all-ca CRT-off (19 mo) hospitalization Secondary: HF	Primary: all-cause mortality or HF hospitalization Secondary: HF events	Study stopped with significant \uparrow in mortal- ity with LVEF \leq 35% and narrow QRS
Abbreviations: NYHA, N	lew Yorl	k Heart Association; L	VEF, left ventricu	lar ejection fraction; OMT, optimal r	Abbreviations: NYHA, New York Heart Association; LVEF, left ventricular ejection fraction; OMT, optimal medical therapy; CRT-P, cardiac resynchroni-

zation therapy pacing: CRT-D, cardiac resynchronization therapy defibrillator; QOL, quality of life; LVEDD, left ventricular end diastolic dimension; HR; hazard ratio; CV, cardiovascular; LVESV, left ventricular end systolic volume; ICD, implantable cardiac defibrillator; AV, atrioventricular reduced the composite adverse clinical events by 36% in those with a LBBB [19]. No benefit was observed in those with right bundle branch block (RBBB) or non-specific intraventricular conduction delay (NICD). Nonetheless, other studies still suggest a wide QRS duration in patients with advanced HF and non-LBBB morphologies is associated with enhanced reverse remodeling and improved long-term outcomes following CRT [11, 20].

Lastly, perhaps the most significant changes of the updated guidelines include the expansion of Class I recommendation to NYHA class II patients (with QRS \geq 150 ms and LBBB) and the addition of a Class IIb recommendation to patients with NYHA class I patients (with LVEF \leq 30%, ischemic etiology of HF, and LBBB \geq 150 ms). These changes are largely due to the publication of three major trials: REVERSE (Resynchronization Reverses Remodeling in Systolic LV Dysfunction), MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with CRT), and RAFT (Resynchronization-Defibrillation for Ambulatory HF Trial) as described in Table 1.

2. Recommendations for Patients in Permanent Atrial Fibrillation

Another update based on the most recent guidelines from 2012 involves a class II recommendation for CRT in patients with permanent AF and LVEF < 35% with important caveats: if the patient requires ventricular pacing or otherwise eligible for device therapy, and atrioventricular (AV) nodal ablation or pharmacological rate control will allow near 100% ventricular pacing [12]. As clinical trials of CRT have included patients mainly in sinus rhythm, concerns exist in whether patients with permanent atrial fibrillation (AF) derive similar benefit. The presence of AF may compete with CRT pacing due to sensed events, preventing effective biventricular pacing. RAFT remains the largest randomized trial to date to include a substantial portion of patients with AF receiving a CRT device (n = 229 or 12.7%)[11]. A post hoc analysis of RAFT failed to show a benefit in patients with permanent AF who were randomized to CRT-D as compared to ICD alone [21]. However, several studies have suggested that benefit from CRT is most evident in patients when it is coupled with atrioventricular nodal ablation, thereby avoiding potentially deleterious effects of chronic RV pacing [22-26]. Although AV nodal ablation combined with CRT may be considered in those with permanent AF with persistently high ventricular rates, it is not without risk and concerns exist that AV nodal ablation renders patients pacemaker-dependent. Other strategies, particularly the use of ablation with pulmonary vein isolation in patients with HF and paroxysmal or persistent AF, should be considered first [27].

3. Recommendations for Anticipated Significant Ventricular Pacing

Chronic right ventricle (RV) pacing can mimic the dyssynchronous effects of LBBB, leading to progressive LV dysfunction, particularly in patients with pre-existing LV dysfunction [28]. The deleterious effects of chronic RV pacing were evaluated in the DAVID (Dual Chamber and VVI Implantable Defibrillator) trial. The trial showed that patients with LVEF $\leq 40\%$ with an implantable cardiac defibrillator (ICD) programmed to dual-chamber pacing had increased HF admissions

and mortality rate compared to sinus rhythm [29]. A post hoc analysis found that patients with RV pacing cut-off of>40% was associated with worse outcomes [30]. A similar finding was observed in the MADIT II trial where those with >50% RV pacing had worse outcomes [31]. Based on the available literature at the time, the current guidelines provide a Class IIa recommendation for CRT in patients with LVEF \leq 35% and are undergoing new or replacement device with anticipated requirement for significant (>40%) RV pacing.

Since the publication of the 2012 updated guidelines, the results of the BLOCK-HF (Biventricular Pacing for Atrioventricular Block and Systolic Dysfunction) demonstrated the benefit of CRT in a select group of patients not currently represented by the guidelines. Published in 2013, the trial demonstrated superior outcomes in patients implanted with CRT as compared to RV-only pacing in those with NYHA class I-III, LVEF \leq 50% and atrioventricular block, in which ventricular pacing is obligatory [32]. The results of the BLOCK-HF study have already changed clinical practice and will likely liberalize the LVEF cut-off in those with high anticipated RV pacing in future guidelines.

4. Recommendations for Upgrade to CRT

Based on extrapolation from the 2012 updated guidelines, in patients with HFrEF who have a single or dual chamber pacemaker or ICD that subsequently develop worsening HF with high burden of RV pacing or a wide QRS that then meet criteria for CRT, an upgrade to CRT may be considered. Despite lack of evidence-based data, upgrade procedures are becoming increasingly common, particularly with heightened awareness of detrimental high RV pacing burden [33]. Importantly, upgrade procedures may be associated with worse outcomes than de novo implantations [34–36]. Thus, the benefits of CRT upgrade should be weighed against the procedural risk and complexity of adding the additional lead.

5. Recommendations for CRT-D versus CRT-P

The guidelines do not make specific recommendations regarding the choice between CRT-D and CRT-P. The COMPANION trial failed to show a difference in outcomes between CRT-P and CRT-D, although it lacked powered [10]. The CARE-HF trial was the first to provide evidence that CRT-P alone reduces mortality compared to medical therapy, but CRT-D was not compared [37]. It remains unclear if CRT reduces the need for an ICD by reverse remodeling and reduction in arrhythmia burden. Although a post hoc analysis from the REVERSE trial demonstrated that reverse remodeling with CRT was associated with a reduction of ventricular tachycardia (VT) [38], causal inferences cannot be made. Understandably, if a patient is scheduled for ICD implantation based on the current recommendations and is also eligible for CRT with life expectancy >1 year, then CRT-D should be considered. However, there may be a role for CRT-P in

Patients in sinus rhythm with moderate	e to severe heart failure (NYHA III-IV)	
Class I, Level of Evidence A	 LVEF ≤ 35% despite OMT LBBB QRS > 150 ms 	
Class IIa, Level of Evidence A	• LVEF $\leq 35\%$ despite OMT • Non-LBBB • QRS ≥ 150 ms	
Class IIa, Level of Evidence B	 • LVEF ≤ 35% despite OMT • LBBB • QRS 120–149 ms 	
Class IIb, Level of Evidence B	 • LVEF ≤ 35% despite OMT • Non-LBBB • QRS 120–150 ms 	
Class III: No Benefit	Comorbidities and/or frailty limit survival with good functional capacity <1 year	
Patients in sinus rhythm with mild hea	rt failure (NYHA II)	
Class I, Level of Evidence B	 LVEF ≤ 35% despite OMT LBBB QRS ≥ 150 ms 	
Class IIa, Level of Evidence B	 • LVEF ≤ 35% despite OMT • LBBB • QRS 120–149 ms 	
Class IIb, Level of Evidence B	 • LVEF ≤ 35% despite OMT • Non-LBBB • QRS ≥ 150 ms 	
Class III: No Benefit	• LVEF $\leq 35\%$ • Non-LBBB • QRS ≤ 150 ms	
Patients in sinus rhythm and mild hear		
Class IIb, Level of Evidence C	 LVEF ≤ 35% despite OMT LBBB QRS ≥ 150 ms Ischemic cardiomyopathy 	
Class III: No Benefit	• QRS ≤ 150 ms • Non-LBBB	
Special CRT indications	· · ·	
Class IIa, Level of Evidence B	Anticipated to require frequent ventricular pacing (>40%) with LVEF $\leq 35\%$	
Class IIa, Level of Evidence B	Atrial fibrillation, if ventricular pacing is required and rate control will result in near 100% biventricular pacing	

 Table 2
 Indications for CRT implantation based on the 2012 ACCF/AHA/HRS focused update guidelines for device-based therapy

Abbreviations: NYHA; New York Heart Association; LVEF, left ventricular ejection fraction; OMT; optimal medical therapy; LBBB, left bundle branch block

select patients for relief of symptoms without defibrillation back-up, such as elderly and frail patients with significant co-morbidities, such as severe renal insufficiency or dialysis, advanced heart failure [12, 39, 40], or controversially, those with non-ischemic cardiomyopathy [41, 42]. Until randomized data provides insight into this clinical dilemma, the choice of the device will largely be decided by the implanting physician.

6. Pre-Implantation Considerations for Predicting Response in CRT Recipients

At least one-third of patients fail to achieve benefit from CRT [43]. Although there currently does not exist a standard definition to define response, several studies have used various clinical, functional, and structural measures with various predictors of response (Table 3). In a subanalysis of the MADIT-CRT, Hsu et al. identified six baseline factors that predicted LVEF super-response in CRT-D patients, defined as the top quartile of LVEF change (mean increase $17.5 \pm 2.7\%$) [44]. The predictors included female sex, no prior myocardial infarction, left bundle branch block, QRS duration ≥ 150 ms, body mass index < 30 kg/m², and smaller baseline left atrial volume index. As evidenced by the trials and guidelines, those with LBBB and QRS duration >150 ms have the highest likelihood of response, thus earning the highest recommendation [12]. However, women have consistently been under-represented in large-scale clinical trials of CRT and guidelines fail to differentiate gender. Gender has been shown to have differing impacts on CRT response in relation to QRS duration, as women tend to respond favorably to CRT at a markedly higher rate than men at QRS < 150 ms [45]. Furthermore, the benefits of CRT in those with RBBB, regardless of ORS duration, may have little benefit from CRT [46]. Understanding the clinical predictors that can affect the likelihood of CRT response will help with optimizing patient selection and maximizing response.

1 1	*	
High likelihood of response	Less likely to respond	Likely no benefit
Female	QRS duration 120-150 ms	RBBB
LBBB	High LV scar burden	End stage renal disease
QRS duration \geq 150 ms	Atrial fibrillation	$QRS \le 120 \text{ ms}$ without pacing requirement
Nonischemic cardiomyopathy	Advanced co-morbidities	Life expectancy < 1 year
Body mass index <30 kg/m ²	Medical therapy not optimized	
Small left atrial volume index ^a	NICD	
	Right ventricular dysfunction	

Table 3 Pre-implantation predictors of CRT response

^aPer 1-U standard deviation below mean

Case Conclusion

To review, the patient is a 70-year-old man with ischemic cardiomyopathy (LVEF 20%) despite OMT, NYHA class III, normal sinus rhythm with a QRS duration of 140 ms with a non-LBBB morphology. He is expected to live >1 year. CRT recommendation for this patient is currently a Class IIb, level of evidence B. Importantly, the patient has unfavorable characteristics that suggest he is less likely to respond to CRT, such as ischemic etiology, non-LBBB, QRS <150 ms, and male gender. After a shared decision-making discussion regarding continued symptoms, potential benefits, and risks of the procedure, the patient elected to proceed with CRT implantation. Given his life expectancy and personal choice, he elected for CRT-D.

Future Directions

Improved algorithms are being developed and tested to optimize patient selection and optimization for CRT and LV lead targeting using electrocardiographic and imaging techniques to identify sites of dyssynchrony.

Key Points:

- The highest recommendation for CRT is in those with patients in sinus rhythm, LVEF <35%, QRS >150 ms with a LBBB morphology.
- As QRS duration shortens or in those with non-LBBB morphology, the guideline recommendations become weaker for CRT.
- Patients in permanent atrial fibrillation derive less benefit from CRT than patients in sinus rhythm and may benefit from AVN ablation with CRT.
- Patients with HF and anticipated or high RV pacing (>40%) benefit from CRT as opposed to dual chamber pacemaker.
- Data is limited on the CRT-D versus CRT-P and is often left to physician discretion.

References

- Baldasseroni S, Gentile A, Gorini M, Marchionni N, Marini M, Masotti G, Porcu M, Maggioni AP and Investigators INoCHF. Intraventricular conduction defects in patients with congestive heart failure: left but not right bundle branch block is an independent predictor of prognosis. A report from the Italian Network on Congestive Heart Failure (IN-CHF database). Ital Heart J. 2003;4:607–13.
- Vaillant C, Martins RP, Donal E, Leclercq C, Thébault C, Behar N, Mabo P, Daubert JC. Resolution of left bundle branch block-induced cardiomyopathy by cardiac resynchronization therapy. J Am Coll Cardiol. 2013;61:1089–95.
- Sze E, Dunning A, Loring Z, Atwater BD, Chiswell K, Daubert JP, Kisslo JA, Mark DB, Velazquez EJ, Samad Z. Comparison of incidence of left ventricular systolic dysfunction

among patients with left bundle branch block versus those with normal QRS duration. Am J Cardiol. 2017;120:1990–7.

- 4. Baldasseroni S, Opasich C, Gorini M, Lucci D, Marchionni N, Marini M, Campana C, Perini G, Deorsola A, Masotti G, Tavazzi L, Maggioni AP and Investigators INoCHF. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143:398–405.
- 5. Khan NK, Goode KM, Cleland JG, Rigby AS, Freemantle N, Eastaugh J, Clark AL, de Silva R, Calvert MJ, Swedberg K, Komajda M, Mareev V, Follath F, Investigators EFS. Prevalence of ECG abnormalities in an international survey of patients with suspected or confirmed heart failure at death or discharge. Eur J Heart Fail. 2007;9:491–501.
- Iuliano S, Fisher SG, Karasik PE, Fletcher RD, Singh SN and Failure DoVASToATiCH. QRS duration and mortality in patients with congestive heart failure. Am Heart J. 2002;143:1085–91.
- Masci PG, Marinelli M, Piacenti M, Lorenzoni V, Positano V, Lombardi M, L'Abbate A, Neglia D. Myocardial structural, perfusion, and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy: a tagged cardiac magnetic resonance and positron emission tomography study. Circ Cardiovasc Imag. 2010;3:482–90.
- Yu CM, Chau E, Sanderson JE, Fan K, Tang MO, Fung WH, Lin H, Kong SL, Lam YM, Hill MR, Lau CP. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation. 2002;105:438–45.
- Saxon LA, De Marco T, Schafer J, Chatterjee K, Kumar UN, Foster E, Investigators VCHF. Effects of long-term biventricular stimulation for resynchronization on echocardiographic measures of remodeling. Circulation. 2002;105:1304–10.
- Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM and Comparison of Medical Therapy Pc, and Defibrillation in Heart Failure (COMPANION) Investigators. Cardiacresynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.
- Tang AS, Wells GA, Talajic M, Arnold MO, Sheldon R, Connolly S, Hohnloser SH, Nichol G, Birnie DH, Sapp JL, Yee R, Healey JS, Rouleau JL and Investigators R-DfAHFT. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363:2385–95.
- 12. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA, Freedman RA, Gettes LS, Gillinov AM, Gregoratos G, Hammill SC, Hayes DL, Hlatky MA, Newby LK, Page RL, Schoenfeld MH, Silka MJ, Stevenson LW, Sweeney MO, Tracy CM, Darbar D, Dunbar SB, Ferguson TB, Karasik PE, Link MS, Marine JE, Shanker AJ, Stevenson WG, Varosy PD, Foundation ACoC, Guidelines AHATFoP and Society HR. ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines and the heart rhythm society. J Am Coll Cardiol. 2012;2013(61):e6–75.
- Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, Garrigue S, Kappenberger L, Haywood GA, Santini M, Bailleul C, Daubert JC and Investigators MSiCMS. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001;344:873–80.
- McAlister FA, Ezekowitz J, Hooton N, Vandermeer B, Spooner C, Dryden DM, Page RL, Hlatky MA, Rowe BH. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA. 2007;297:2502–14.
- Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C,

McAtee P, Messenger J and Evaluation MSGMIRC. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.

- 16. Stavrakis S, Lazzara R, Thadani U. The benefit of cardiac resynchronization therapy and QRS duration: a meta-analysis. J Cardiovasc Electrophysiol. 2012;23:163–8.
- Beshai JF, Grimm RA, Nagueh SF, Baker JH, Beau SL, Greenberg SM, Pires LA, Tchou PJ, Investigators RS. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. N Engl J Med. 2007;357:2461–71.
- 18. Thibault B, Harel F, Ducharme A, White M, Ellenbogen KA, Frasure-Smith N, Roy D, Philippon F, Dorian P, Talajic M, Dubuc M, Guerra PG, Macle L, Rivard L, Andrade J, Khairy P, Investigators L-E. Cardiac resynchronization therapy in patients with heart failure and a QRS complex <120 milliseconds: the Evaluation of Resynchronization Therapy for Heart Failure (LESSER-EARTH) trial. Circulation. 2013;127:873–81.</p>
- Sipahi I, Carrigan TP, Rowland DY, Stambler BS, Fang JC. Impact of QRS duration on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Arch Intern Med. 2011;171:1454–62.
- Rickard J, Bassiouny M, Cronin EM, Martin DO, Varma N, Niebauer MJ, Tchou PJ, Tang WH, Wilkoff BL. Predictors of response to cardiac resynchronization therapy in patients with a non-left bundle branch block morphology. Am J Cardiol. 2011;108:1576–80.
- Healey JS, Hohnloser SH, Exner DV, Birnie DH, Parkash R, Connolly SJ, Krahn AD, Simpson CS, Thibault B, Basta M, Philippon F, Dorian P, Nair GM, Sivakumaran S, Yetisir E, Wells GA, Tang AS, Investigators R. Cardiac resynchronization therapy in patients with permanent atrial fibrillation: results from the Resynchronization for Ambulatory Heart Failure Trial (RAFT). Circ Heart Fail. 2012;5:566–70.
- 22. Gasparini M, Auricchio A, Regoli F, Fantoni C, Kawabata M, Galimberti P, Pini D, Ceriotti C, Gronda E, Klersy C, Fratini S, Klein HH. Four-year efficacy of cardiac resynchronization therapy on exercise tolerance and disease progression: the importance of performing atrioventricular junction ablation in patients with atrial fibrillation. J Am Coll Cardiol. 2006;48:734–43.
- Brignole M, Botto G, Mont L, Iacopino S, De Marchi G, Oddone D, Luzi M, Tolosana JM, Navazio A, Menozzi C. Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: a randomized trial. Eur Heart J. 2011;32:2420–9.
- 24. Wilton SB, Leung AA, Ghali WA, Faris P, Exner DV. Outcomes of cardiac resynchronization therapy in patients with versus those without atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm. 2011;8:1088–94.
- Ganesan AN, Brooks AG, Roberts-Thomson KC, Lau DH, Kalman JM, Sanders P. Role of AV nodal ablation in cardiac resynchronization in patients with coexistent atrial fibrillation and heart failure a systematic review. J Am Coll Cardiol. 2012;59:719–26.
- Doshi RN, Daoud EG, Fellows C, Turk K, Duran A, Hamdan MH, Pires LA and Group PS. Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (the PAVE study). J Cardiovasc Electrophysiol. 2005;16:1160–5.
- Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, Merkely B, Pokushalov E, Sanders P, Proff J, Schunkert H, Christ H, Vogt J, Bänsch D, Investigators C-A. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417–27.
- Hussain MA, Furuya-Kanamori L, Kaye G, Clark J and Doi SA. The effect of right ventricular apical and nonapical pacing on the short- and long-term changes in left ventricular ejection fraction: a systematic review and meta-analysis of randomized-controlled trials. Pacing Clin Electrophysiol. 2015;38:1121–36.
- Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, Kutalek SP, Sharma A and Investigators DCaVIDT. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002;288:3115–23.

- Sharma AD, Rizo-Patron C, Hallstrom AP, O'Neill GP, Rothbart S, Martins JB, Roelke M, Steinberg JS, Greene HL, Investigators D. Percent right ventricular pacing predicts outcomes in the DAVID trial. Heart Rhythm. 2005;2:830–4.
- Steinberg JS, Fischer A, Wang P, Schuger C, Daubert J, McNitt S, Andrews M, Brown M, Hall WJ, Zareba W, Moss AJ, Investigators MI. The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol. 2005;16:359–65.
- 32. Curtis AB. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013;369:579.
- 33. Linde CM, Normand C, Bogale N, Auricchio A, Sterlinski M, Marinskis G, Sticherling C, Bulava A, Pérez Ó, Maass AH, Witte KK, Rekvava R, Abdelali S, Dickstein K. Upgrades from a previous device compared to de novo cardiac resynchronization therapy in the European Society of Cardiology CRT Survey II. Eur J Heart Fail. 2018;20:1457–68.
- 34. Cheung JW, Ip JE, Markowitz SM, Liu CF, Thomas G, Feldman DN, Swaminathan RV, Lerman BB, Kim LK. Trends and outcomes of cardiac resynchronization therapy upgrade procedures: a comparative analysis using a United States National Database 2003-2013. Heart Rhythm. 2017;14:1043–50.
- 35. Vamos M, Erath JW, Bari Z, Vagany D, Linzbach SP, Burmistrava T, Israel CW, Duray GZ, Hohnloser SH. Effects of upgrade versus de novo cardiac resynchronization therapy on clinical response and long-term survival: results from a multicenter study. Circ Arrhythm Electrophysiol. 2017;10:e004471.
- 36. Poole JE, Gleva MJ, Mela T, Chung MK, Uslan DZ, Borge R, Gottipaty V, Shinn T, Dan D, Feldman LA, Seide H, Winston SA, Gallagher JJ, Langberg JJ, Mitchell K, Holcomb R, Investigators RR. Complication rates associated with pacemaker or implantable cardiovert-er-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry. Circulation. 2010;122:1553–61.
- Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L and Investigators CR-HFC-HS. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.
- 38. Gold MR, Linde C, Abraham WT, Gardiwal A, Daubert JC. The impact of cardiac resynchronization therapy on the incidence of ventricular arrhythmias in mild heart failure. Heart Rhythm. 2011;8:679–84.
- 39. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P and Group ESD. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.
- Normand C, Linde C, Bogale N, Blomström-Lundqvist C, Auricchio A, Stellbrink C, Witte KK, Mullens W, Sticherling C, Marinskis G, Sciaraffia E, Papiashvili G, Iovev S, Dickstein K. Cardiac resynchronization therapy pacemaker or cardiac resynchronization therapy defibrillator: what determines the choice?-findings from the ESC CRT Survey II. Europace. 2019;21:918–27.
- 41. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Bruun NE, Eiskjær H, Brandes A, Thøgersen AM, Gustafsson F, Egstrup K, Videbæk R, Hassager C, Svendsen JH, Høfsten DE, Torp-Pedersen C, Pehrson S, Investigators D. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375:1221–30.
- 42. Leyva F, Zegard A, Acquaye E, Gubran C, Taylor R, Foley PWX, Umar F, Patel K, Panting J, Marshall H, Qiu T. Outcomes of cardiac resynchronization therapy with or

without defibrillation in patients with nonischemic cardiomyopathy. J Am Coll Cardiol. 2017;70:1216-27.

- 43. Sieniewicz BJ, Gould J, Porter B, Sidhu BS, Teall T, Webb J, Carr-White G, Rinaldi CA. Understanding non-response to cardiac resynchronisation therapy: common problems and potential solutions. Heart Fail Rev. 2019;24:41–54.
- 44. Hsu JC, Solomon SD, Bourgoun M, McNitt S, Goldenberg I, Klein H, Moss AJ, Foster E and Committee M-CE. Predictors of super-response to cardiac resynchronization therapy and associated improvement in clinical outcome: the MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy) study. J Am Coll Cardiol. 2012;59:2366–73.
- 45. Varma N, Manne M, Nguyen D, He J, Niebauer M, Tchou P. Probability and magnitude of response to cardiac resynchronization therapy according to QRS duration and gender in nonischemic cardiomyopathy and LBBB. Heart Rhythm. 2014;11:1139–47.
- 46. Kawata H, Bao H, Curtis JP, Minges KE, Mitiku T, Birgersdotter-Green U, Feld GK, Hsu JC. Cardiac resynchronization defibrillator therapy for nonspecific intraventricular conduction delay versus right bundle branch block. J Am Coll Cardiol. 2019;73:3082–99.
- 47. Linde C, Abraham WT, Gold MR, St John Sutton M, Ghio S, Daubert C and Group RRrRiSlvdS. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol. 2008;52:1834–43.
- Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes NA, Foster E, Greenberg H, Higgins SL, Pfeffer MA, Solomon SD, Wilber D, Zareba W and Investigators M-CT. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329–38.
- 49. Brignole M, Pokushalov E, Pentimalli F, Palmisano P, Chieffo E, Occhetta E, Quartieri F, Calò L, Ungar A, Mont L, Investigators A-C. A randomized controlled trial of atrioventricular junction ablation and cardiac resynchronization therapy in patients with permanent atrial fibrillation and narrow QRS. Eur Heart J. 2018;39:3999–4008.