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1 Introduction

The world is currently facing industrial revolution 4.0 where digitalization plays an
important part in our daily lives. Businesses are racing to start using digitalization
to their benefit as it is seen to improve performance and efficiency, leading to cost
optimization, which in turn generates more revenues for the company to thrive in
today’s competitive environment. One area of interest is the application of digital-
ization for the efficient maintenance of equipment. The maintenance of equipment
is crucial for businesses as it eliminates or reduces the number of failures that may
occur during production which may disrupt the supply chain.

Maintenance and diagnosis are key to ensure equipment availability and help to
optimize operating costs. This is because the total operating expenditures of the plant
can exceed by 30% due to equipment maintenance, or fall within the range of 60—
75% of the equipment lifecycle cost [1]. The impaired function of machinery that
operates outside the design specification may disrupt production yield. On the other
hand, equipment maintenance can positively increase the revenue of a company by
improving the machine lifetime. With the right maintenance strategy, corrective main-
tenance can be reduced and maintenance costs can be further reduced through predic-
tive and preventive maintenance strategies [2]. Predictive maintenance is favoured
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due toits ability to predict failure and decrease hands-on tool time required to perform
maintenance work in the field, making it an economical and cost-efficient approach.

To date, there has been an increase in the number of ageing assets requiring
pipeline facilities. Pipeline maintenance can be complex especially when it involves
subsea, underground, or remote locations. There is significant interest in developing
fit for purpose maintenance strategy of the pipeline to minimize repair cost and
downtime of equipment due to plan or unplanned activities. Pipeline maintenance in
subsea, underground, or remote locations incurs high maintenance costs involving
logistics arrangement. Under pressure by regulations, safety in managing pipelines
is a top priority for any pipeline operator. When a leak suddenly occurs, the response
time in managing this repair needs to be as short as possible to minimize impact and
exposure.

Several conventional methods for pipeline condition prediction have shown
promising outcomes such as reliability analysis, split system approach, standard data
structure, Monte Carlo simulation method, and other types of modelling. However,
these methods have limitations in terms of accuracy and effectiveness of the methods.

The machine learning algorithm method seems to be the popular choice in this
era due to its ability to process real-time information and handle a big volume of
data whilst giving instant results on the status of the pipeline condition. Due to this
reason, several kinds of research are trying to compare the prediction accuracy of
the different machine learning methods.

Most of the studies conducted on the pipeline prediction methods were primarily
focusing on accuracy-either on improving the accuracy of the method in question
or comparing the accuracy of various types of pipeline prediction methods. None of
the work involved cost analysis to evaluate the most economical and cost-efficient
pipeline predictive maintenance method. This paper is an extension to our previous
publication [3] to examine the existing studies on methods of pipeline condition
prediction and compares their areas of focus, the objective of prediction, the types
of data collected, and the outcomes. The objective of this literature review is to
screen the most effective Machine Learning Methods that currently exist which can
be considered for the pipeline operator. This analysis will also be used to conduct a
future study on the economic cost of these methods.

1.1 Opverview of the Literature Review

In this comparative analysis, 34 articles related to pipeline prediction methods have
been referred to. The overview of the pipeline prediction method is represented in
Figs. 1, 2 and 3.

The full breakdown of the machine learning algorithm methods considered in this
literature review is shown below.

The articles used in this comparative analysis were based on the following
considerations:
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Fig. 3 Machine learning method articles breakdown

e Major above ground, an underground or subsea pipeline that has the same prob-
lems such as wall thickness loss, leaks, and etcetera. Major focus is put on subsea
pipelines since many factors could affect pipeline integrity.

e Research work should be based on how the methods can be applied to existing
and ageing pipelines. Future installation improvements were not included in this
literature review.

e Only methods that are commonly used and giving promising results were
considered.
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1.2 Scope of This Comparative Analysis and Contributions

The main contributions of this paper can be summarized as follows:

Section 2 provides an overview of the motivation for the comparative analysis
between conventional methods against machine learning methods. Section 3 justi-
fies the case for predicting pipeline conditions and then outlines the different types
of methods that have been developed. A full summary of the prediction methods
under this comparative analysis was tabulated in Sect. 4 and Sect. 5 by addressing
the problem, objectives of the studies, type of data collected for the methods used in
both conventional and machine learning. Section 5 further outlines the comparison
between conventional methods and machine learning methods as well as the compar-
ison among the machine learning methods. Section 6 suggested future research
challenges in these fields (Fig. 4).

Section 2 Section 3
Motivation of using ML for Pipeline Prediction Cases for Pipeline Prediction

ing Pipeli i [ 1l
Exiting Pipeline Maintenance Progrom and ls Challenges | | Vs Tl A ]

ML based Sclution for Pipeline Prediction | Methads Used for Pipeline Prediction

v v

Comernitional Method ML Method
I | |

Section 4 Section 5
Pipeline Prediction Using Conventional Method ML Based Solution for Pipeline Prediction

| Type of ML used in Pipeline Prediction | Comparison of ML methods in Pipeline
Prediction
| Summary of Survey for Pipeline Prediction
Uising Machine Learning Method

Summary of Survey for Pipeline Prediction Using
Conventional Method

Accuracy of Machine Learning Algorithm
Accurscy of Prediction and Challenges on [« b and C Method
Comventional Method Method
Future Research Challenges
Awailability of Data il | Capabiity in Handiing ML | [ f I for ML and Complexity ]

Fig. 4 Taxonomy of comparative analysis between conventional method and machine learning
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2 Motivation for Using Machine Learning for Pipeline
Prediction

2.1 Existing Pipeline Maintenance Program and Its
Challenges

The existing pipeline maintenance program is time-based and mainly derived from
reliability analysis using codes and standards published by engineering bodies or
associations. The drawbacks of using this method are as follow:

e The existing pipeline maintenance program tends to be too conservative since it
is a time-based approach. This increases OPEX cost and minimizes production
availability especially if the pipeline involves in-line pigging.

e Most of the time, failure could happen in between the planned inspection (or
maintenance) leading to unplanned shutdown and production interruption.

2.2 Machine Learning Based Solution for Pipeline Prediction

The constant push towards safer pipeline operation driven by legislative requirement
has made pipeline operators extra vigilant in maintaining their pipelines. Further-
more, there is also a need for pipeline operator to maximize their revenue by opti-
mizing their production while ensuring safe operation. The latter could potentially
be solved through the deployment of machine learning by making use of past data
for existing infrastructure or by installing sensors for a new set up. Machine learning
could use past data or process existing signals to predict the condition of the pipeline.

3 Cases for Pipeline Prediction

3.1 Pipeline Problem Areas

Most of the problem areas widely focused on pipeline failures due to corrosion and
creep [4]. Sun et al., have studied the effect of preventive maintenance (PM) on
pipeline system reliability and how it could contribute to a cost-effective mainte-
nance strategy. They emphasized that pipelines are a complex system and imperfect
repairs would need to be considered since the majority of the maintenance program
of the assets are time-based preventive maintenance methods (TBPM). However, it
has to be noted that in their research work, they claimed that for a pipeline with
different preventive maintenance actions carried out, TBPM was not suitable for
effective pipeline reliability and system configuration model. They proposed that
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imperfect maintenance modelling needs to use a similar method as an improve-
ment factor method so that the changes in the pipeline reliability requires good
prediction accuracy to make an optimal decision. They also highlighted the existing
models/methodologies are not able to meet the industrial need to improve pipeline
reliability nor does it able to consider multiple imperfect repairs on a pipeline since
the result of the PM only requires sectional replacement of the pipeline. Therefore,
they proposed to address this issue by considering the split system approach (SSA)
method to predict pipeline reliability consisting of multiple imperfect PM actions
resulting from both TBPM and RBPM strategy. They have developed a model for
the effects of PM activities from pipeline repair history and inspection results using
reliability function [4].

Alison et al. have conducted a study to understand the typical failure modes and
mechanisms for underground infrastructure systems that are used in a municipal
water system. Their research has also considered the pipe material’s advantages and
disadvantages as well as to understand all the parameters affecting water pipe infras-
tructure systems [5]. The standard data structure was established based on physical
or structural parameters, operational or functional parameters, and environmental
parameters to predict the remaining life of water pipes. The correlation between
different pipe material types and their life cycle failure modes and mechanisms is
crucial to define the key parameters affecting water pipelines [5].

Ahammed [6] has used deterministic approaches to addresses the problem of esti-
mating the remaining strength of corroded pipelines that are free of any uncertainty.
In his research, he carried out the remaining life assessment of the corroded pipeline
with rapid corrosion growth. The information obtained was used to predict safe oper-
ating pressure of the pipeline at any time and hence, both an economic inspection
plan as well as corrective maintenance can be scheduled effectively [6].

Hallen et al. have proposed structural reliability analysis in their research work
to evaluate the integrity of in-service corroded pipelines in Mexico using high-
resolution magnetic flux leakage (MFL) or ultrasonic technology-based (UT) inline
inspection tool [7].

Pandey has used reliability analysis to deal with uncertainties in pipeline mainte-
nance decision-making. He also took into account the future preventive maintenance
inspection frequency and the estimated costs involved in pipeline condition assess-
ment. The primary objective of his research was to come up with an optimal pipeline
inspection frequency. The repair strategy would then be based on a quantitative prob-
abilistic approach to secure the pipeline’s reliability before reaching its end of life [8].

Mahmoodian and Li have explored the use of a reliability-based methodology
and stochastic model to assess and determine key factors that can affect the residual
strength of corroded steel pipes. They mentioned that a pipeline failure will occur
when its residual strength is below the pipeline operating pressure. The probability
of failure as a result of corrosion can be estimated using an analytical time-variant
method. This will help to estimate the remaining life of the pipeline which requires
maintenance action. For the pipeline with more than one corrosion pit, the assessment
was done using the system reliability analysis method. The methodology has enabled
the quantitative assessment of pipeline failures and this method can also be used for
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other structures that are subject to localized deterioration. The verification of the
results was carried out using the Monte Carlo simulation technique [9].

Shuai et al. have conducted a study to define an alternative method to predict
burst capacity. The existing conservative methods for burst capacity prediction in the
pipeline are costly in terms of maintenance. In their research, Shuai et al. developed a
new burst prediction model with good precision for corroded pipelines. Failure proba-
bility of corroded pipeline was predicted using Monte Carlo (MC) simulation method.
The parameters that have the most influence on corroded pipelines were investigated
by analyzing the uncertainties from both parameter and model sensitivity [10].

Shu Xin li et al. have used the cumulative distribution function (CDF) to esti-
mate cumulative probable failure for a pipeline, calculated using the Monte Carlo
simulation technique [11].

Ossai et al. have examined the problem of failure probability estimation on
corroded pipelines that have limited information. They used the pipeline corrosivity
index (PCI) based on the retained pipe-wall thickness at a given time to estimate the
failure probability of corroded pipelines. Based on their research, Markov modelling
and Monte Carlo simulation have been used in other research for the quantification
of the corrosion growth size in a pipeline. Therefore, based on this info, they have
used Markov modelling and Monte Carlo simulation to predict the pipeline failure
based on different corrosion wastage rates. The exposure time for the pipeline to
leak was then estimated using the Weibull probability function [6, 8, 12—14]. They
believed the method that they have developed in their research is useful to manage
the integrity of ageing or corroded pipeline [15].

Reza et al. research was focusing on dynamic modelling for predicting pipeline
performance. The motivation around their research was based on the fact that the
majority of other research works were only focusing on static modelling using corro-
sion rates which were derived from either past inspection data and sometimes based
on the subjective judgment from technical experts. Therefore, the main objective
of their research work was to come up with a dynamic reliability model to predict
pipeline performance. The model that they developed was based on the remaining
life assessment of the pipeline by taking into account the rate of internal and external
corrosion as well as other factors that can affect the system performance. Qualitative
input was used in their initiatives such as experts’ judgment and assumptions to fill
the data gap. Hence, to overcome all of the uncertainties stated, they believed the
Bayesian Network would be a suitable method for a dynamic probabilistic model.
In their research, they have studied the causality of each variable that could result
in the pipeline failures and the outcome was demonstrated in the network diagram
that they have developed. Based on their study from the inspection records of several
years, corrosion failure is a time-dependent process [16].

Amit et al. addressed the challenges of locating the internal corrosion damage in
hundred miles long of oil and gas pipelines. Despite advances in inline inspection
technology, the pipelines still have large uncertainties due to their pre-existing condi-
tions, corrosion resistance, elevation data, and test measurement. They developed a
method based on probabilistic methodology and using Bayesian Network to predict
the damage location along the pipelines. The prediction was based on the pipeline
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internal corrosion direct assessment (ICDA). The model is dependent on character-
istics such as flow, corrosion rate, and past inspection data. The accuracy could also
be affected as a result of uncertainties such as elevation data, pipeline geometry, and
flow characteristics [17].

3.2 Methods Used for Pipeline Prediction

3.2.1 Conventional Method

The conventional methods for pipeline prediction are typically derived from reli-
ability analysis, standards, and codes published by a reputable organization, risk-
based approach, and other deterministic or probabilistic assessment methods. The
methods developed were based on calculations from the available codes and stan-
dards. The codes were reviewed periodically and improvement is normally made
based on research activity, industry experience, and technical professionals review.
The conventional methods require on the spot data, either online measuring system
or through inspection exercise to deduce the existing condition of the piping.
Among the conventional methods that have been considered in this literature
review is the split system approach, Standard Data Structure approach, Reliability
analysis approach. There are many methods developed based on reliability analysis
which includes program based methods and also the traditional calculation method.
Examples of program-based Reliability analysis included in this literature review are
the Stochastic Method, Monte Carlo Simulation, and Bayesian Network methods.

3.2.2 Machine Learning Method

Machine learning, in essence, is an algorithm based program derived from histor-
ical data. The mathematical model is built directly from data through the theory of
statistics without the need (or minimal) to have a predefined mathematical model.
The developed model then study the pattern and derived inferences from the inputs
introduced. Once the developed model is optimized, it can then make an accurate
prediction for the future state, or to gain knowledge of the existing state, or both.
There are three types of Machine Learning algorithm (MLA) namely, supervised
MLA, unsupervised MLA, and semi-supervised MLA [18].
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4 Pipeline Prediction Using Conventional Method

4.1 Summary of Survey for Pipeline Prediction Using
Conventional Methods

See Table 1.

4.2 Accuracy of Prediction and Challenges on Conventional
Method

Despite the conventional methods above have met the accuracy of the prediction,
however, the methods were limited to specific parameter rather than a holistic
approach. Furthermore, the methods are less flexible to changes since the predic-
tion output is based on the predefined parameter, and hence, any changes outside
the predefined parameter that is believed that could affect the pipeline condition will
not be able to contribute to the prediction. This has led to the improvement in the
conventional methods less impactful for pipeline predictive maintenance. As aresult,
the conservative factor would still need to be maintained in the calculation to ensure
the risk of reducing the preventative maintenance interval of the pipeline is mitigated.

S Machine Learning (ML) Based Solution for Pipeline
Prediction

5.1 Type of ML Prediction (Classification/Regression)

The most common type of machine learning used in pipeline prediction is regression
and classification methods. The output of prediction for regression is a numerical
value derived from the input data set. Whereas for classification method, it uses a
class value for the prediction. Both types of Machine Learning prediction above are
supervised Machine Learning as it requires data sets to be fed and trained before it
can analyze and predict the new input data (Table 2).

5.2 Comparison Between Machine Learning
and Conventional Methods

The summary of the comparison between Machine Learning and Conventional
methods were tabulated in Table 3. Based on the tabulated summary, the pipeline
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Table 3 Comparison between Machine Learning and Conventional Methods

Characteristics | Machine learning Conventional
Capability Can perform beyond conventional The conventional methods can
methods capability and can accommodate limited variables only
accommodate multiple variables Heavily reliance on a static model to
Dynamic modelling capability deduce the results of the prediction
that are coming from corrosion rates,
past inspection data, and pipeline
expert recommendations [16]
Accuracy High prediction accuracy can be Less accurate and results are derived
obtained compared to conventional based on probability assessment which
methods can be too conservative due to high
safety factor consideration [11]
Complexity Less complex as the MLA software is | Can be complex to set up and costly
readily available. Data can be trained | especially when it involves a subsea or
once-off and can be updated from time | underground pipeline
to time
Effectiveness | More effective as it uses past data to | Effective with less precision. The

train the model and uses the model to
deduce the newly feed data

calculation is unable to detect changes
in variables and the data used are
based on “on the spot” measurement

prediction using the Machine Learning method would have a clear advantage over
the conventional method for the pipeline operator. It is believed that the Machine
Learning method could easily be deployed and operationalized with a minimum
set up cost which in turn will significantly reduce the operating cost of pipeline

maintenance. However, this is yet to be justified.

The comparison between Machine Learning and Conventional methods were
based on 5 main characteristics that are believed could contribute to the overall
performance of the pipeline prediction:

e The capability criteria are to assess to what extent the method can be used for the
prediction (are there any variables that are almost impossible to obtain?).

e The accuracy criteria refer to how good or accurate the prediction would be.

e The complexity criteria refer to how easy the method can be deployed i.e. is
there any additional hardware setup is required to enable the prediction? Or can
it readily use the available infrastructure set up?

e The effectiveness refers to the positive results that the prediction method had
achieved based on the previous research works.
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Table 4 Comparison among machine learning methods used in pipeline prediction

Methods Regression analysis Support vector Fuzzy logic
machine

ANN ANN outperforms SVM outperforms ANN performance is
Regression Analysis in | ANN and has a high very close to Fuzzy
terms of accuracy. accuracy rate Logic. However, based
ANN is more popular | The flexibility of on the charts ANN
compare to Regression | training: The obtained better
analysis parameters of neural accuracy compared to

Neural network models
are more flexible
compared to the
regression method,
however, it may prone
to overfitting issues
[39]

classifiers can be
adjusted for
optimization at the
string level. SVM,
however, can only be
trained at the level of
the holistic pattern [40]
Storage and execution
complexity: SVM
occupies a large
number of Support
Vectors which takes up
a lot of memory space.
Neural Network,
however, has fewer
parameters that are
easy to control [40]

the Fuzzy Logic
ANN is easier to
implement since it
uses the non-linear
technique. Fuzzy logic,
on the other hand, is
useful in interpreting
data uncertainties
using fuzzy rules [41]
ANN requires large
data to be trained
whilst Fuzzy Logic
does not [41]

Regression analysis

SVM outperforms
Regression Analysis
SVM tries to find the
best margin that
separates the classes
and thus, reducing the
risk of error. Logistic
regression can have
different decision
boundaries

SVM works well with
unstructured and
semi-structured data
while regression is only
limited to identified
independent variables
SVM is based on the
geometrical properties
of the data while
regression is based on
statistical approaches
Regression is prone to
risk in overfitting as
compared to SVM [42]

The fuzzy logic can
approximate both
linear and non-linear
relationships between
the input and output
variables, while the
accuracy of regression
analysis is dependent
on the linearity
between input and
output variables
Fuzzy logic is suitable
for decision-making
problem that has
incomplete and
uncertain information.
It can be applied for
both linear and
non-linear
relationships between
independent and
dependent variables
[43]

(continued)
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Table 4 (continued)

Methods Regression analysis Support vector Fuzzy logic
machine

Support vector SVM outperforms

machine Fuzzy Logic

Fuzzy logic can
manage uncertainties
inherent in complex
systems

Based on the statement
quoted in Chen, the
Fuzzy classifier was
not friendly to use in
high dimensions or
complex problems
with a lot of features
SVM is known to have
good generalization
abilities and can
perform best in high
dimensional feature
spaces [44]

5.3 Comparison of Machine Learning Methods in Pipeline
Prediction

Table 4 compares the accuracy of the methods as gathered from the comparison.
Based on the screening, only Support Vector Machine (SVM), Artificial Neural
Network (ANN), Regression Analysis and Fuzzy Logics have been considered. This
is because the methods mentioned had been used in pipeline prediction studies and
had demonstrated good performance in accuracy prediction. When dealing with the
comparison of these methods, most of the studies only outline the pros and cons
of each method individually. The Table 4 aims to help the reader to understand the
performance of each machine learning methods relative to others.

5.4 Accuracy of Machine Learning Algorithm Methods

A separate literature review was carried out to compare the accuracy among the
Machine Learning methods. The data were collected from the reviewed articles
related to medical and pipeline. Uddin et al. [45], have carried out studies to analyze
the performance among different types of supervised machine learning algorithms
including trending and its use for a different type of disease prediction. They tabulated
the prediction accuracy of the machine learning algorithm methods obtained from
various sources of research work related to disease prediction. Out of all the machine
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learning comparison that was carried out in their studies, the ANN, SVM, Naive
Bayes, Random Forest, and Logistic Regression (LR) methods were frequently used
and had displayed promising outcome in the field of disease prediction.

Although Random Forest and Decision Tree consistently showing better accuracy
among other methods with smaller sample sizes, these methods have been excluded in
this comparative analysis since there is limited research work for pipeline prediction
that was carried out using these methods. Based on the findings from their studies,
the ANN has demonstrated good prediction accuracy among the three methods,
compare to SVM and LR. SVM on the other hand outperforms the LR. The graphical
representation of the accuracy can be seen in Figs. 5, 6 and 7 [45].

Based on the reviewed machine learning articles related to pipeline, most of the
studies were concentrating on the use of ANN, SVM, and Logistics Regression. The
data were represented in Figs. 8,9, 10 and 11. The most common ANN method used
in the pipeline studies were Back Propagation Neural Network (BPNN). The data
collected for BPNN were from [22, 26, 28, 32, 34, 38]. For Logistic Regression, the
data were collected from [26, 28, 29] and SVM data were collected based on the
work done by [32, 34].

The results show that the PSO-SVM method could achieve up to 99.99% accuracy
compared to the BPNN and Logistic Regression method. BPNN however, outperform
Logistic Regression where BPNN’s highest prediction accuracy was 99.59% and
99.40% for LR.

In a study conducted by Senouci et al. [38], Fuzzy Logic Neural Network was
another promising pipeline prediction method that can be considered. In their studies,

ANN

94.70 93.10
90.90 .
85.00 87.04 85.53 86.04 87.30

80.70 77.80 81.00
I I I 1 I I I I I

Aneja and Ahmad et al Delen etal Malik etal Tapaketal Longetal Tangetal Kimetal Bhatlaand Luetal Anietal Hungetal
Lal Jyoti

Fig. 5 ANN prediction accuracy in disease prediction

SVM
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Fig. 6 SVM prediction accuracy in disease prediction
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Fig. 7 Logistic regression prediction accuracy in disease prediction
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Fig. 8 BPNN accuracy for pipeline prediction
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the Fuzzy model was developed and compared against the previous ANN and Regres-
sion model that they have developed. The outcome of the study showed that the Fuzzy
Logic method outperforms the ANN and Regression model.

Application Domain: Medical
See Figs. 5, 6 and 7.

Application Domain: Pipeline
See Figs. 8,9, 10 and 11.

6 Future Research Challenges

6.1 Availability of Data

To come up with the most efficient and economical machine learning method for
pipeline prediction, the availability of quality data is critical. For pipelines that have
been operational for many years, old preventive maintenance inspection records and
repair history would be beneficial to accurately determine the predictive outcome,
thus will help the pipeline operator to understand the pipeline failure mode. The
availability of these data is dependent on their record management shelf life and
could impose a big challenge if data are no longer available.

6.2 Modification of Infrastructure for Machine Learning
and Complexity

Some of the data that is required by machine learning may not be available and
this requires the pipeline operator to do modification to their asset. The pipeline
operator may also need to assess the technical and cost impact before considering any
modification. This is to ensure the maintenance cost as a result of the machine learning
method will not contribute to more maintenance cost and to avoid the increase in
technical complexity in operating and interpreting the data. This may lead to an
ineffective pipeline prediction program.

6.3 Organizational Capability in Handling Machine

Learning

Despite the promising prospect of machine learning in pipeline predictive mainte-
nance, another important factor to be considered is the capability of the organization
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to handle the machine learning program. The existing conventional methods are using
a preset program that is readily available in the market for the ease of an engineer or
end-user to interpret the results of the pipeline inspection. Machine learning on the
other hand would require knowledge of data science to feed or induce the right data
to come up with a credible predictive outcome.

7 Conclusion

Based on the literature review, many methods can be used for the prediction
of pipeline conditions and each method has its limitations. Though conventional
methods have demonstrated successful outcomes, however, the accuracy is still seen
as the major limitation for pipeline prediction methods. Often the conventional
methods would require the deployment of inspections at that particular instant to
come up with future predictions. Reliability analysis has often been used in conven-
tional methods along with Monte Carlo Simulation. The results of the methods
deployed under the conventional approach can be too conservative. As a result, this
can lessen the actual benefits of reducing preventive maintenance frequency.

Machine Learning methods have been widely used for predictive maintenance.
With no exceptions, machine learning methods have demonstrated good predic-
tion accuracy for the pipeline. Based on this literature review, a few methods that
are promising to be considered for pipeline condition monitoring are SVM, ANN,
Regression Analysis, and Fuzzy Logics method.

Support Vector Machine (SVM) and Artificial Neural Network (ANN) are widely
used for pipeline prediction and the extent of the prediction can go beyond the internal
corrosion based on pipeline failure history. SVM outperforms ANN in most of the
studies conducted. SVM also works well with unstructured and semi-structured data
with the ability to find the best margin that separates the classes and thus, reducing
the risk of error. The only major drawback for SVM is it occupies a large number of
Support Vectors which takes up a lot of memory space.

The Fuzzy Logic method and Regression Analysis is also seen as the next
promising methods after SVM and ANN. Fuzzy logic can outperform ANN, but
it can be inaccurate if the models are not trained enough. For probabilistic analysis,
Monte Carlo simulation is generally used to calculate or analyze the reliability of the
pipeline.

The methods that have been identified here would be used for future works on
economics assessment to determine the most viable method. This would help the
pipeline operator in selecting the best methods technically and economically fit for
their pipeline predictive maintenance program in the long run.
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