
A Workflow for Automatic Code
Generation of Safety Mechanisms
via Model-Driven Development

Lars Huning(B), Padma Iyenghar, and Elke Pulvermüller

Institute of Computer Science, University of Osnabrück, Wachsbleiche 27,
49090 Osnabrück, Germany

{lhuning,piyengha,epulverm}@uni-osnabrueck.de

Abstract. Due to the increasing size and complexity of embedded sys-
tems, software quality is gaining importance in such systems. This is
especially true in safety-critical systems, where failure may lead to seri-
ous harm for humans or the environment. Model-Driven Development
(MDD) techniques, such as model representation with semi-formal design
languages and automatic code generation from such models may increase
software quality and developer productivity. This paper introduces a
workflow for automatically generating safety mechanisms from model
representations. In summary, safety mechanisms are specified in class dia-
grams of the Unified Modeling Language (UML) via stereotypes along-
side the remainder of the application. In a subsequent step, these model
representations are used to perform model-to-model transformations.
The resulting model contains all the information required to automat-
ically generate source code for the application, including the specified
safety mechanisms. Then, common MDD tools may be used to generate
this productive source code. We demonstrate the application of our work-
flow by applying it to the automatic code generation of timing constraint
monitoring at runtime.

Keywords: Code generation · Embedded software engineering ·
Embedded systems · Functional safety · Model-driven development

1 Introduction

The size and complexity of embedded software systems is increasing steadily [39].
This trend affects the software quality of the developed systems, e.g., because
the complexity makes the system harder to understand or because the increased
size leads to more programming errors. A potential solution for dealing with
the increasing complexity of systems is the use of semi-formal design languages,
such as Unified Modeling Language (UML) [14,15]. The number of program-
ming errors may be reduced by automatic code generation features. This also
has the advantage of increasing developer productivity, thus reducing the total
costs of the developed systems. Both techniques, semi-formal design languages
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 420–443, 2021.
https://doi.org/10.1007/978-3-030-70006-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_17


A Workflow for Automatic Code Generation of Safety Mechanisms 421

and automatic code generation, are part of Model-Driven Development (MDD).
This development paradigm promotes the use of models as central artifacts in
the development process. Such models may be specified with the aforementioned
semi-formal design languages. Furthermore, if the level of detail in the mod-
els is sufficient, productive source code may be generated automatically from
these models. This paper introduces a workflow to model software safety mecha-
nisms in a semi-formal design language and to automatically generate productive
source code from these model representations in a subsequent step.

As described above, the usage of semi-formal design languages and auto-
matic code generation may increase software quality. Furthermore, software
safety mechanisms may also contribute to software quality. In the context of
safety-critical systems, which are a category of systems whose failure may harm
humans or the environment [35], the use of specific safety mechanisms to mit-
igate potential hazards is even required [19]. These requirements are described
in safety standards, such as IEC 61508 [19] or ISO 26262 [20]. In many safety-
critical domains, certification for the domain-relevant safety standard is required
for admission to market. Modeling and automatic code generation of safety mech-
anisms, as proposed by our approach, may contribute to meet the requirements
of these safety standards. Furthermore, the two key concepts of our approach,
the use of semi-formal design languages and automatic code generation, are also
encouraged by the safety standard IEC 61508 [19], which is a generic safety stan-
dard for electrical/electronic/programmable electronic safety-related systems.

In summary, our approach consists of the following steps: Developers create
an application model of their system with UML. Afterwards, they apply a set
of stereotypes to their application. These stereotypes model safety mechanisms
from IEC 61508 or another relevant safety standard. These model representa-
tions are parsed in a subsequent step. The obtained information serves as the
input to model-to-model transformations. The resulting model, which we call
intermediate model in this paper, contains UML model elements for the safety
mechanisms that were specified via the respective stereotypes. We use state-
charts and opaque behavior for the generated safety mechanisms to capture the
required amount of detail, so that common MDD tools, such as IBM Rational
Rhapsody [32] or Enterprise Architect [9], may be used to generate productive
source code from the intermediate model. This paper does not only describe the
above process in detail, but also provides guidelines on how to represent safety
mechanisms via UML stereotypes and how to generate code for these mecha-
nisms efficiently. Last but not least, we also provide a generic workflow for the
model transformation process for the safety mechanisms.

This paper is an extended version of a previously published paper [18]. It
provides a more in-depth discussion of the workflow initially conceived in [18].
Furthermore, it presents a novel, non-trivial application of this workflow by
presenting an approach to the automatic code generation of timing constraint
monitoring via MDD.

The remainder of this paper is organized as follows: Sect. 2 presents some
background regarding the development lifecycle of safety-critical systems and



422 L. Huning et al.

code generation via MDD. Afterwards, we present an extended discussion of the
workflow initially described in [18] in Sect. 3. In Sect. 4 we present a novel appli-
cation of this workflow for the automatic code generation of timing constraint
monitoring mechanisms via MDD. Sections 5 presents an updated version of
related work compared to the initially published paper [18]. Section 6 concludes
this paper and presents future work.

2 Background

This section provides some background knowledge regarding the development of
safety-critical systems relevant to our approach. In these systems, safety is a non-
functional quality requirement. First, we discuss the IEC 61508 lifecycle in order
to show in which development context our approach is located (cf. Sect. 2.1).
Afterwards, we discuss code generation within MDD and on which technologies
our approach depends (cf. Sect. 2.2).

2.1 IEC 61508 Lifecycle

IEC 61508 is a safety standard for “Functional safety of electrical/electronic/
programmable electronic safety-related systems” [19]. The terms electrical/
electronic/programmable electronic are often abbreviated as E/E/PE. IEC 61508
is the basis for many domain specific safety standards, such as ISO26262 in the
automotive domain. As our approach is not limited to any specific domain, we
choose the safety recommendations of IEC 61508 as the basis for our work.

IEC 61508 defines a safety lifecycle for safety-related systems, which is illus-
trated in Fig. 1. The steps 1–5 are concerned with the overall safety of the sys-
tems, not yet limited to E/E/PE aspects. For example, they may also consider
mechanical safety aspects. At the end of step 5, a safety requirements alloca-
tion exists that describes which safety aspects are covered by which parts of the
developed system. This is used in step 9, which explicitly formulates the safety
requirements for the E/E/PE system. Based on these requirements, the E/E/PE
system is realized in step 10. Steps 6–8 are executed in parallel to steps 9 and 10.
They are concerned with planning further aspects of the lifecycle, e.g., validation
and maintenance of the system. The results of this planning are used in steps
12–14, in which the system is installed, validated and subsequently maintained.
Step 15 foresees the potential modification of the system after it is in use. The
safety lifecycle ends with step 16, in which the system is decommissioned.

The contributions of this paper are conceptually located in step 10 of the
safety lifecycle, i.e., during the realization of the E/E/PE system. We assume
that a (correct) safety requirements specification related to the E/E/PE system
exists (step 9 of the lifecylce). This safety requirements specification contains a
set of safety mechanisms that are to be included within the final application.
Our approach enables developers to model the safety mechanisms via UML and
automatically generate the source code for these safety mechanisms afterwards.
This may decrease the number of manual implementation errors and provide
productivity gains.



A Workflow for Automatic Code Generation of Safety Mechanisms 423

Fig. 1. Safety lifecycle of IEC-61508 [19]. The dotted box around step 10 was added
and indicates in which step of the safety-lifecycle this paper is conceptually located.

2.2 Model-Driven Development

There exist integrated development environments that allow for the creation
of UML models and subsequent code generation from these models, e.g., [9,
28,32]. Most of these tools are capable of generating code for UML elements
that have a 1:1 mapping in object-oriented programming languages, e.g., classes.
Some of them also provide the ability to generate code for UML diagrams and
elements where such a 1:1 mapping does not exist. For example, [32] allows the
code generation from statecharts by introducing a suitable framework for that
purpose. Our approach builds upon these tools and assumes that they are used



424 L. Huning et al.

by the developers. We distinguish two types of usages of these MDD tools, both
of which are supported by our approach.

The first type of usage is a “pure” type of usage of the MDD tools. The
entire application is modeled within the tool and all source code is generated
directly from the tool. This includes structural and behavioral diagrams. The
opaque behavior feature of UML operations allows developers to write any man-
ual code they require. This opaque behavior is then automatically copy-pasted
into the source code of the specific operations that are generated by the tool. Our
approach (cf. Sect. 3.1) uses model-to-model transformations in order to gener-
ate safety mechanisms. For this first type of usage, these model transformations
may be applied in two ways. The first alternative is to execute the model-to-
model transformations once on the developer model A and obtain a modified
application model B with which the developers work from then on. The sec-
ond alternative is that the model-to-model transformations are executed before
each code generation. This way, developers work on an application model A,
which contains the model representation of the safety mechanisms. The model-
to-model transformations create a modified application model B, which is the
input for subsequent code generation. However, as the transformation from A
to B is entirely automatic, developers continue to work with the model A. Both
approaches have their merits and depend on whether the additional abstraction
provided by model A over model B is seen as benefit by the developers.

The second type of usage is a more restricted use of the MDD tools. In this
scenario, only a structural model of the application, i.e., a class diagram, is cre-
ated. The MDD tools are used to generate code skeletons from this UML model,
i.e., classes, variables and operations without implementation. The implemen-
tation is written manually by developers in a subsequent step and may involve
other development technologies, e.g., the use of text-based integrated develop-
ment environments like Eclipse IDE [37]. For this second type of usage, there is
only one way how developers may use our approach. The model-to-model trans-
formations described in this paper are used to create a modified UML model
B that includes the safety mechanisms. Afterwards, code is generated from this
modified model. This generated code includes the safety mechanisms that have
previously been added to the model B via the model-to-model transformations.
Thus, the developers may start their manual implementation not only with a
code skeleton of the classes, attributes and operations, but also with the safety
mechanisms already implemented for them.

3 Workflow

This section first describes a high-level overview of the approach presented in
this paper (cf. Sect. 3.1). Afterwards, the approach itself is described in Sect. 3.2.

3.1 High-Level Overview of the Approach

This section presents the high-level concept of our approach to preserve the
non-functional requirement “safety”. We also show, how this approach may be



A Workflow for Automatic Code Generation of Safety Mechanisms 425

applied to the development of a fire detection system. Figure 2(a) shows the
generalized concept of our approach, while Fig. 2(b) shows how this concept is
applied to the fire detection system.

Step (A1) of Fig. 2(a) marks the start of our approach, in which a UML model
of the system is realized on the basis of the functional requirements specifica-
tion. In step (B1) of Fig. 2(b) we show a simplified version of this model for a fire
detection system. For the purpose of illustration, the fire detection example is
extremely simplified. It consists of a single class with a smokeThreshold variable
that represents the maximum carbon monoxide concentration in the air before
the system sounds an alarm. The checkFire() method is used to periodically
measure the carbon monoxide concentration and raise an alarm if the mea-
sured value is greater than smokeThreshold. This model contains the functional
features of the fire detection system, i.e., measuring the carbon monoxide con-
centration and raising an alarm when appropriate. However, it does not contain
any specific safety mechanisms yet. The specification of such safety mechanisms
is added in step (A2) of Fig. 2(a), in which appropriate stereotypes are added
to the UML model based on the safety requirements specification. Step (B2) of
Fig. 2(b) shows an example for one such stereotype. A mechanism for timing
constraint monitoring is added to the checkFire() operation by applying the
<<TimingMonitoring>> stereotype to the operation. This stereotype models
that the checkFire() operation has to execute within a certain time frame,
e.g., one second. If the operation executes for longer than this time frame, an
error in the system is likely and thus the system should give an appropriate
warning, e.g., a maintenance tone. For example, such errors may be program-
ming errors leading to infinite loops or malfunctioning sensors that temporarily
block the execution thread, as no data can be read.

After the safety mechanisms have been specified in the UML model, these fea-
tures may be automatically realized via model-to-model transformations, result-
ing in an intermediate model that contains these features (step (A3) of Fig. 2(a)).
The specific structure of the intermediate model depends on the safety mech-
anism that is realized. Step (B3) of Fig. 2(b) shows an example for the timing
check safety mechanism. The fire detection class contains a composition to a
TimingMonitoringWatchdog class, which is responsible for checking the exe-
cution duration of the checkFire() method. The details of this approach are
explained in Sect. 4. As the intermediate model already contains all required
safety mechanisms, automatic code generation mechanisms from existing MDD
tools, such as [9,28,32] may be employed to generate corresponding source code
(cf. steps (A4) and (B4) of Fig. 2). Finally, this generated source code may be
translated into binary code by employing a suitable compiler. Depending on the
realized safety mechanism, additional source code for the safety mechanism may
need to be linked (cf. steps (A5) and (B5) of Fig. 2).

3.2 Enabling the Automatic Code Generation of Safety Mechanisms

While Sect. 3.1 gives an overview of how our approach is intended to be used,
this section describes how to model safety mechanisms and generate code from



426 L. Huning et al.

Fig. 2. High-level concept of the proposed approach for the generation of safety mech-
anisms via MDD. Vertical arrows show transitions from one code generation step to
another. Horizontal arrows indicate the use of additional, external elements that are
not part of the application model.



A Workflow for Automatic Code Generation of Safety Mechanisms 427

these model representations. For this, we present a workflow in Fig. 3 that has
previously been presented in the original conference paper [18]. In the beginning
(cf. action 1 in Fig. 3), a safety mechanism has to be identified for modeling
and automatic code generation. Once such a safety mechanism has been found,
existing model representations and software architectures for the mechanism may
be researched (cf. action 2 in Fig. 3). Based on the acquired information model
representations and software architectures may be adapted for the purpose of
automatic code generation (cf. action 3 and 4 in Fig. 3). These two actions may
be carried out concurrently, as the software architecture may influence the model
representation and vice versa. Finally, a set of model-to-model transformations
is required that receive the model representation of the safety mechanism as the
input and produce the intermediate model with all the required safety elements
as the output (cf. action 5 in Fig. 3). In the following, we discuss each of these
steps in detail.

Action 1: Identify a Safety Mechanism. In action 1 of Fig. 3, a safety mech-
anism suitable for automatic code generation has to be identified. Such safety
mechanisms may be identified during industry collaboration, i.e., safety mecha-
nisms designed to prevent a specific hazard inside an application. Some classes
of hazards and their corresponding safety mechanisms are well known. These
mechanisms are actively encouraged or even mandated by safety standards, e.g.,
IEC 61508. Therefore, safety standards may be another source of information
for finding potential safety mechanisms.

Last but not least, the literature on safety is steadily evolving. Some
approaches, such as [34], already describe safety mechanisms and their possi-
ble software architectures, but do not present an approach to modeling and/or
automatic code generation. Therefore, these approaches are another source for
enabling modeling and automatic code generation of safety mechanisms.

Action 2: Gather Relevant Information. In the second action of Fig. 3,
knowledge about the safety mechanism identified in action 1 has to be gathered.
At a high-level, this includes existing model representations and software archi-
tectures of the mechanism. Even if these existing representations are unsuited
for automatic code generation, they may serve as a basis for actions 3 and 4 of
Fig. 3.

At a more fine-grained level, this includes detecting the configuration param-
eters of the safety mechanism. As these may change between different applica-
tions, it is important that these values are known and considered during the
design of the model representation (cf. action 3 of Fig. 3).

Besides configuration parameters, there may also be several safety mech-
anisms that are similar to the one selected. For example, there exist different
types of voting approaches that differ only in their specific method of voting [18].
The general process, however, i.e., multiple input sources being voted on and
producing one output, is the same. Thus such related approaches may also be



428 L. Huning et al.

Fig. 3. UML 2.5 activity diagram showing a workflow for providing automatic code
generation of safety mechanisms based on UML stereotypes. This figure is taken from
the initial publication [18].

considered during the design of the model representation and software architec-
ture (cf. actions 3 and 4 of Fig. 3).

Action 3: Design a Suitable Model Representation. In the third action
of Fig. 3, a suitable model representation for the safety mechanism has to be
found. This model representation has to enable a level of detail that enables
the automatic code generation. In this paper, we focus on model representations
based on UML stereotypes.

For a model representation of a safety mechanism based on UML stereotypes,
a suitable UML model element needs to be identified to which the stereotype
may be applied. As a rule of thumb, the UML model element that should be
protected by the safety mechanism is a good candidate for this. For example,
[16] applies stereotypes to attributes for a safety mechanism that protects these
attributes from spontaneous bit-flips. Another example is shown in Sect. 4, where
operations should be protected. There, the stereotype is applied to the operation
that should be protected.

Configuration parameters for the safety mechanism may usually be repre-
sented as key-value pairs via the tagged values of the stereotype. However, for
some safety mechanisms, this is not sufficient. This is the case when the safety
mechanism depends on multiple input sources and where each input source may
have its own configuration values. In this case, a second stereotype that is applied



A Workflow for Automatic Code Generation of Safety Mechanisms 429

to each input source may be necessary. An example for this is the voting mech-
anism described in [18], where a second stereotype is applied to the associations
between a voter class and the input classes for the voting process.

In case a safety mechanism exists in a group of related approaches that differ
not only in their configuration values, but also in the number of parameters,
stereotype inheritance may be used to represent these variants. An example for
this is shown in Sect. 4.

All stereotypes that are part of the model representation may be grouped in
an appropriate UML profile.

Action 4: Design a Suitable Software Architecture. In the fourth action
of Fig. 3, a suitable software architecture for the safety mechanism has to be
found. In the context of this paper, this means that the software architecture
has to be suitable for automatic code generation. This includes several key points
that have to be taken into consideration:

No Manual Developer Actions Required: In order to keep the code generation
truly automatic, no manual developer actions should be required besides apply-
ing the stereotype that represents the safety mechanism. If this is not possi-
ble, e.g., due to inherent application-specific characteristics of the safety mech-
anism, the number of manual developer actions for code generation should be
minimized.

Localized Changes: The model transformations in action 5 of Fig. 3 change the
application model. In general, a single change may result in a large number of
subsequent additional changes that need to be performed. For example, if the
number of constructor parameters of a class x is changed, the entire application
model has to be scanned for invocations of this constructor and the additional
parameters need to be added to the constructor invocation. This might entail
even more changes, as the constructor parameters for x might have to be initial-
ized by the instantiating class y. Such chains of changes quickly become difficult
to manage. Therefore, it is important that the software architecture for the safety
mechanism is as localized as possible, i.e., avoids such chains of changes.

Low Overhead: Safety-critical systems often operate in the context of embed-
ded systems. In these systems runtime and memory constraints are a common
requirement. Therefore, the software architecture should minimize the overhead
the safety mechanism imposes on runtime and memory.

Programming Standards in Safety Domains: Due to the nature of the safety
mechanisms, the software architecture should respect programming standards
intended for safety-critical domains. For example, the MISRA1-C++ stan-
dard [24], prohibits the use of dynamic heap memory allocation, which has
consequences for the software architecture.
1 Motor Industry Software Reliability Association.



430 L. Huning et al.

Action 5: Design Model Transformations. In the fifth and final action
of Fig. 3, model-to-model transformations have to be designed. The input of
these transformations is the model representation designed in action 3 of Fig. 3
and the output is the software architecture designed in action 4 of Fig. 3. These
model transformations may be implemented in an extensible manner, so that new
variants of the safety mechanism may easily be integrated into the approach. This
may be achieved by dividing the transformation process into two steps. In the
first step, the information from the stereotype in the models is parsed and stored
temporarily. In the second step, an interface is used to actually transform the
model with the parsed information. New variants may be added as realizations
of this interface.

Another aspect of the model transformations is their scalability. For exam-
ple, the configuration parameters of the safety mechanism are modeled by the
UML stereotype, i.e., they are known at compile time. As the constructor of
the transformed class should not be changed (cf. description of action 4), this
leaves two alternatives for the realization of the parameters in source code. The
first is the use of constant member variables within a class that represent the
configuration values. The second alternative is the use of template classes and
specifying the configuration values as template parameters. The first alternative
requires the creation of a new class in the model for each set of unique con-
figuration parameters for the safety mechanism. The second alternative, on the
other hand, only requires the creation of a single template class during model
transformation. The different template instantiations are later inserted by the
compiler. Thus, the template alternative performs fewer steps in code generation
and therefore results in a lower execution time for the model transformations.

From a theoretical perspective, the model transformations should require a
linear runtime, depending on the number of elements within the UML application
model. This runtime occurs, because in the beginning of the model transforma-
tions, each model element has to be checked for whether it contains a relevant
safety stereotype. Then, a usually fixed number of modifications are performed
on the identified model elements. These theoretical observations have been sup-
ported by experimental measurements in the original paper [18], which we omit
to reproduce due to space constraints.

4 Application Example: Generation of Timing Constraint
Monitoring Mechanisms

This section applies the workflow presented in Sect. 3.2 to enable the model-
driven code generation for timing constraint monitoring during runtime. The
structure of this section resembles the workflow steps described in Sect. 3.2.

4.1 Need for Timing Constraint Monitoring at Runtime

Some safety-critical applications have to react to external events within a certain
time frame to ensure safety, e.g., the brakes within a car [22,23]. Because timing



A Workflow for Automatic Code Generation of Safety Mechanisms 431

is such an issue within safety-critical embedded systems, the timing behavior
of the system is often modeled and analyzed in early design phases [21,22].
These analyses aim to ensure that the finished application satisfies the tim-
ing constraints. However, due to the uncertainty of the operating environment,
some authors argue that runtime monitoring of these timing constraints is also
required [1,26]. While these authors represent their own approach to monitoring
timing constraints, they either provide no integration in a MDD process [1,26]
or only consider animation and not the generation of productive source code [7].
Thus, an automated approach for the generation of timing constraint monitoring
that is integrated within a MDD process is a research gap.

4.2 Information on Timing Constraint Monitoring

As timing is an important issue in many safety-critical embedded systems, many
approaches to timing analysis during the system design phase exist. There are
multiple modeling languages for timing analysis, e.g., [2,27] and (semi-) auto-
mated approaches for creating timing analysis models, e.g., [18,21]. While these
approaches have their relevance in the whole development process, they are not
intended for modeling additional timing checks during runtime. This is also
reflected by the modeling overhead of approaches such as [2,27], which require
extensive modeling of certain timing characteristics. For their intended purpose,
i.e., timing analysis before the system is actually fully developed, this is a good
approach. However, for the purpose of only modeling timing constraints that
should be observed during runtime, these modeling languages contain unnec-
essary complexity. Therefore, a reduced model representation for timing con-
straints, without this unnecessary complexity, is beneficial (cf. Sect. 4.3).

On the software architecture level, several approaches for the monitoring
of timing constraints during runtime have been proposed. A survey of these
approaches has been published in [1]. These approaches may serve as inspiration
for the software architecture designed in Sect. 4.4.

Another relevant issue for monitoring timing constraints during runtime is
during which points in time the timing should be monitored. In timing analysis,
an end-to-end execution path of the software refers to the chain of system activ-
ities in between obtaining a sensor input and executing an according response
with an actuator. Such an execution path may consist of several tasks, which
in turn may consist of several runnables. Runnables may be mapped directly
to executable elements of the software source code, i.e., methods (operations)
of classes [21]. This direct mapping facilitates automatic code generation, thus,
we choose to provide runtime monitors for the timing constraints of individ-
ual runnables. While this does not consider latencies between the execution of
runnables and other timing effects, our approach still detects when an individual
runnable violates its timing constraints. Future work could extend our approach
to include monitoring of task elements and execution paths.



432 L. Huning et al.

4.3 A Model Representation for Timing Constraint Monitoring

This section presents a UML profile for modeling the runtime monitoring of tim-
ing constraints. The profile is shown in Fig. 4. A top-level stereotype (<<Tim-
ingMonitoring>>) contains relevant information that is focused on the timing
constraint itself. These include the maximum time limit before the operation
has failed its timing constraint, as well as the unit in which this time is speci-
fied. Additionally, developers may also specify the name of an operation that is
invoked for error handling in case a timing constraint has been violated.

Fig. 4. UML 2.5 profile for modeling runtime monitoring mechanisms of timing con-
straints.

The stereotypes that represent the different monitoring mechanisms extend
the <<TimingMonitoring>> stereotype. This differentiates the monitoring
mechanisms at the model-level, while allowing mechanism-specific tagged val-
ues to be included. We identify four different monitoring mechanisms to observe
timing constraints of operations during runtime. These include classic dead-
line supervision that checks whether the timing constraint has been met only
after the operation has ended (<<DeadlineSupervision>>), as well as watchdog-
inspired mechanisms that may generate an alarm as soon as a timing con-
straint has been violated, even if the monitored operation is not yet fin-
ished. These watchdog-inspired mechanisms inherit from the <<Watchdog-
Monitoring>> stereotype. They differ in their preconditions and probe over-
head. They are based on threads (<<TM Concurrent>>), hardware timers
and interrupts (<<TM HWTimer>>), as well as dedicated watchdog hardware
(<<TM HWWatchdog>>). The <<WatchdogMonitoring>> stereotype has an
additional tagged value, which is a second error handling mechanism. The need
for this additional error handling mechanism is further explained in Sect. 4.4.



A Workflow for Automatic Code Generation of Safety Mechanisms 433

4.4 A Model-Driven Software Architecture for Monitoring Timing
Constraints at Runtime

This section describes a software architecture that is suited for the automatic
code generation of the timing monitoring mechanisms modeled in Sect. 4.3. Here,
we differentiate between the relatively simple deadline supervision and the more
complex watchdog variants. The basis for the software architecture in both
cases is a UML class with an operation that has been stereotyped with one
of the stereotypes from the profile presented in Fig. 4. Additionally, the class
may contain a method for error handling. Naturally, the class may contain other
attributes and operations that are independent of our approach but relevant
for the application logic. Figure 5 shows a UML class diagram of this basis.
Representative for the timing monitoring stereotypes from the profile shown in
Fig. 4, the <<DeadlineSupervision>> stereotype is applied to the checkFire()
method. An annotation shows the tagged values for the stereotypes, e.g., that
the checkFire() method has to finish its execution within 1000 ms. The oper-
ation errorHandlingOp is to be invoked in case this timing constraint is not
met.

Fig. 5. UML 2.5 class diagram showing the model of the protected operation, before
code generation is applied.

Software Architecture for Deadline Supervision. Adding deadline super-
vision to an operation is relatively straightforward. This is shown in Fig. 6, where
Fig. 6 (a) shows the original operation body and Fig. 6 (b) shows the modified
operation body after code generation. At the beginning of the operation body,
the current time is measured and stored temporarily. At the end of the opera-
tion, just before the return statement, the current time is measured again. Now,
the execution time of the operation may be calculated and the error handling
operation may be executed in case the timing constraint has been violated.

This approach assumes a single return statement within the operation. This is
in line with programming standards such as MISRA C++ [24]. However, multiple
return statements may also be accommodated by our approach, by inserting the
relevant code lines before every return statement within the operation.



434 L. Huning et al.

Fig. 6. Pseudocode for the body of the protected operation before code generation (a)
and after code generation (b). The highlighted code in (b) has been added automatically
during code generation.

Software Architecture for Watchdog Mechanisms. Generating code for
the watchdog variants of our approach is more complex than the deadline super-
vision described above, as the method of starting and stopping the watchdog
may be dependent on system hardware. For example, the concurrent watchdog
shown in Fig. 4 requires the use of different thread classes, depending on the oper-
ating system. For the <<TM HWTimer>> variant, the application program-
ming interface (API) for invoking interrupts and working with timers may differ
between different microcontrollers. Furthermore, the <<TM HWWatchdog>>
stereotype requires different method calls for individual controllers, as the hard-
ware watchdog requires a method of address unique to the controller.

In order to deal with this type of variability, we introduce the
TimingMonitoringWatchdog interface. A realization of this interface is automat-
ically added to the class with the protected operation during code generation.
This status after code generation is shown in Fig. 7. The concurrent version of
the watchdog is used as a representative. The interface contains a method for
starting and stopping the watchdog. The specific implementation of how to start
and stop the watchdog, is left to the realizations of this interface.

While the interface realizations of TimingMonoitoringWatchdog may be
implemented anew for each application, they may also make use of abstrac-
tion mechanisms to be usable on several systems. For example, in our imple-
mentation of the concurrent watchdog (<<TM Concurrent>> in Fig. 4), we
use the thread abstraction provided by the MDD tool IBM Rational Rhap-
sody [32] to keep the implementation operating system independent (provided
Rhapsody contains a thread abstraction for this operating system). A similar
abstraction may be found for the watchdog that makes use of timers and inter-
rupts (<<TM HWTimer>> in Fig. 4). For this variant, hardware abstraction
layers may be used to implement this watchdog for a broad range of different
microcontrollers. In theory, this approach is also applicable to the hardware



A Workflow for Automatic Code Generation of Safety Mechanisms 435

Fig. 7. UML 2.5 class diagram of the watchdog code generation. The attributes and
operations are discussed in Sect. 4.5.

watchdog variant (<<TM HWWatchdog>> in Fig. 4). However, the variabil-
ity between the hardware watchdogs between different microcontrollers is larger
than for timers and interrupts. Therefore, such a hardware abstraction layer may
be harder to create (and to the best of the authors’ knowledge, does not exist
at the time this paper is written).

Runtime Behavior of the Software Architecture for Watchdog Mecha-
nisms. The runtime behavior of the generated watchdog classes is shown in Fig. 8
for the case of a single protected operation. Initially, the program runs in its main
thread (action 1 in Fig. 8). At the same time, the watchdog waits for its activa-
tion (signal reception 7 in Fig. 8). Depending on the type of watchdog (cf. Fig. 4),
this waiting occurs concurrently (<<TM Concurrent>>), interrupt-based
(<<TM HWTimer>>) or in parallel on extra hardware (<<TM HWWatch
dog>>). For legibility purposes, we only refer to the concurrent variant in the
remainder of this section. The other variants work analogously. Once the main
thread of the application calls an operation op to which one of the stereotypes
inheriting from <<WatchdogMonitoring>> (cf. Fig. 4) is applied, the watchdog
is activated (cf. action 2 and signal 3 in Fig. 8). Now, the watchdog and the main
thread execute concurrently. We will first describe the behavior of the watchdog,
before we describe the behavior of the main thread.

Once the watchdog starts, it activates a timer that corresponds to the maxi-
mum execution time specified in the stereotype that is applied to the operation.



436 L. Huning et al.

Fig. 8. UML 2.5 activity diagram showing the runtime behavior of the generated watch-
dogs.

Either this time elapses (time event 9 in Fig. 8) or the operation op finishes prior
to the elapsed time (signal reception 8 in Fig. 8). If the operation finishes before
the time has elapsed, then the watchdog returns to its waiting mode until oper-
ation op is called again. If the time elapses before operation op is finished, then



A Workflow for Automatic Code Generation of Safety Mechanisms 437

the watchdog has detected a violation of a timing constraint. In this case, this
violation is reported to the main thread by changing a boolean variable within
the class in which operation op is located (signal 10 in Fig. 8). Afterwards, the
watchdog thread may execute an error handling method that is concurrent to
the main thread (action 12 in Fig. 8). This is further explained in Sect. 4.4.

Concurrently to the watchdog behavior, the main thread executes the pro-
tected operation op. Once this operation is finished (including all sub-operations
that are called by op), a boolean variable b within the class in which op is located
is checked. This variable b represents whether the watchdog for the operation
op has detected a timing violation. In case a timing violation has been detected,
a sequential error handling method is executed. We assume, that this method
restores the system to a safe state (cf. Sect. 4.4). Afterwards, as the system is
in a safe state again, the main thread continues its normal execution. In case b
indicates that no timing violation has occurred, the corresponding watchdog is
informed that the operation has finished. Afterwards, the main thread continues
its normal execution.

Error Handling. Error handling for the deadline supervision described above is
straightforward: in case a timing violation is detected at the end of the operation,
a previously specified error handling operation is called within the same thread.
For the watchdog variant, this behavior is more complex, as the timing violation
is detected in a concurrent thread. This offers the chance to react to the timing
violation as soon as it has occurred, instead of waiting for the operation op
that violated the timing constraint to finish. This may offer a crucial timing
advantage, especially when the operation op requires a lot of additional time to
finish, or even contains an endless loop.

At the same time, concurrent error handling may only influence the execution
of the main thread in a limited fashion. This is especially important in case
the operation opv that violated the timing constraint quickly finishes after the
violation of the timing constraint. In this case, the concurrent error handling
method may not yet be finished before the main thread resumes its operation.
For these reasons, we also include a sequential error handling operation in the
main thread, after the operation opv has finished. This also allows for greater
changes in the control flow of the main thread, e.g., by modifying the return
value or throwing an exception.

For this reason, the stereotypes inheriting from <<TimingMonitoringWatch-
dog>> (cf. Fig. 4 in Sect. 4.3) allow to specify two error handling operations.
One that is executed concurrently (tagged value “watchdogErrorHandling”),
while the other is executed sequentially (tagged value “errorHandling”), as
described above. The tagged values only refer to the names of these opera-
tions. As error handling is heavily application dependent, developers are required
to implement these methods manually (errorHandlingOpSequential() and
errorHandlingOpConcurrent() in Fig. 7).



438 L. Huning et al.

Regardless of the type of error handling, our approach assumes that this error
handling brings the system to a safe state. In the worst case, this may mean
stopping the application in systems where fail-stop is an acceptable behavior.

4.5 Model Transformations for the Automatic Code Generation
of Timing Constraint Monitoring at Runtime

This section describes the model transformations that transform the stereotypes
introduced in Fig. 4 to the software architecture described in Sect. 4.4.

Model Transformations for Deadline Supervision. Similar to the software
architecture for deadline supervision, the model transformations are relatively
straightforward for this type of timing monitoring. Initially, each operation in
each class of the application model is checked for whether the <<DeadlineSu-
pervision>> stereotype (cf. Fig. 4) is applied to it. Each operation, for which
this is the case, is modified as shown in Fig. 6. At the beginning of the operation
code is added that measures the current time, which is evaluated at the end of
the operation. If the timing constraint is violated, the previously specified error
handling operation is executed.

Model Transformations for Watchdog Variants. This section describes the
model transformations that realize the watchdog variants of the timing monitor-
ing mechanisms. Similar to the model transformations for deadline supervision,
all operations in the application model are checked for whether a stereotype
inheriting from <<WatchdogMonitoring>> (cf. Fig. 4 in Sect. 4.3) is applied to
them. For each operation op where this is the case, the class C in which op
resides is modified to contain an instance of the TimingMonitoringWatchdog
interface (cf. Fig. 7 in Sect. 4.4). The specific instance this interface is realized
with depends on the specific stereotype that is applied to op. For example,
in Fig. 7, the interface is realized with the class ConcurrentWatchdog, as the
<<TM Concurrent>> is applied to the checkFire() operation. The template
parameters of the ConcurrentWatchdog class correspond mostly to the tagged
values specified in the <<TM Concurrent>> stereotype. An exception is the
setTimingViolation function pointer, as the operation this pointer refers to is
added automatically and thus is not specified by the developer.

Besides adding the TimingMonitoringWatchdog to the class C, an additional
boolean variable b is added to C, alongside a setter method for this variable
(timingViolationCheckFire and setTimingViolationCheckFire()in Fig. 7).
Furthermore, the operation op is also modified. At the beginning of the operation,
the start() method of the TimingMonitoringWatchdog interface is called. At
the end of the method, just before the return statement, the stop() method
of the same interface is called. Moreover, the variable b is checked for whether
a timing violation has been detected. If this is the case, the sequential error
handling operation inside C is called (method errorHandlingSequential() in
Fig. 7.



A Workflow for Automatic Code Generation of Safety Mechanisms 439

5 Related Work

This section discusses research approaches that are related to our work. This
includes related work on improving the development of safety-critical systems
(cf. Sect. 5.1) and general code generation via model-driven development (cf.
Sect. 5.2). Furthermore, the workflow presented in this paper has already been
applied for the generation of some safety mechanisms, i.e., memory protec-
tion [16], graceful degradation [17] and voting [18].

5.1 Related Work on Improving the Development of Safety-Critical
Systems

In Sect. 2.1 we describe the safety development lifecycle as defined by IEC 61508.
While our approach targets the actual realization, i.e., implementation, of the
system, many other approaches focus on earlier stages of the safety lifecycle, e.g.,
hazard and risk analysis or defining safety requirements. For example, [36,40]
focus on specifying safety hazards and safety analysis, while [3] focus on specify-
ing safety requirements. These approaches are complimentary to ours and may
help to decide which safety mechanisms the application should contain. Once
a set of safety mechanisms for the application has been decided, our approach
may be used to model and automatically generate these safety mechanisms.

Besides related research that focuses on other phases of the safety lifecy-
cle, there is also some research aiming to improve the realization of the sys-
tem, similar to ours. These usually focus on automatically generating a single
selected safety mechanism, e.g., [5,6,29] for the issue of memory protection.
These approaches often do not consider modeling or code generation from mod-
els and are therefore separate from our approach, which uses models at its core.
However, depending on the specific approach, they might be adapted to fit within
the workflow presented in Sect. 3.2.

Some approaches, such as [39] or [30], consider the generation of safety mech-
anisms at a general application level, similar to the idea presented in this paper.
The approach presented in [39] presents its own, text-based domain-specific mod-
eling language for the generation of safety mechanisms in the automotive indus-
try. Our approach, in contrast, uses UML as its modeling language, whose nota-
tion and syntax are more familiar to developers. Furthermore, UML allows for
a graphic representation of the application model, which we believe to be an
advantage. The approach presented in [30] introduces a pattern-based approach
for the generation of safety mechanisms in fail-operational systems. However, as
stated by the authors, their approach only allows for partial code generation,
while our approach enables full code generation.

There also exists research that provides improvements for the development
of safety-critical systems at more of a system level, while our approach focuses
on the application level. Thus, the approaches may be used in a complemen-
tary fashion. Some examples include approaches for the operating system level,
e.g., [8,31], the network level, e.g., [25,38] or timing issues in multicore environ-
ments, e.g., [10–12].



440 L. Huning et al.

5.2 Related Work on Code Generation via Model-Driven
Development

Code generation from UML models is commonplace, e.g., in commercial tools,
such as [9,32], or in open source tools, e.g., [28]. These tools usually provide map-
pings between UML and source code, e.g., a mapping between a UML class and
a class in C++. This works well for object-oriented programming languages, as
UML is an object-oriented modeling language and therefore many 1:1 mappings
exist. Some tools, such as [32], go a step further and provide code generation
for UML concepts where no 1:1 mapping exists, e.g., code generation for state-
charts. However, they focus on providing code generation for basic UML, which
does not contain any safety mechanisms a priori. Therefore, these tools are not
capable of generating safety mechanisms a priori. Our approach provides model
representations in UML to model safety mechanisms and describes the model
transformations required to generate code from them. Therefore, our approach
enables the aforementioned tools to automatically generate safety mechanisms.
Conversely, our approach assumes that developers make use of some type of
MDD tool that is capable of generating code from UML.

UML itself has been extended with the MARTE profile for the development
of embedded systems [27]. However, it does not consider safety mechanisms or
code generation. Some dependability and rudimentary safety aspects have been
provided by the profile presented in [4]. However, its level of detail is too low
to be usable for code generation. The same applies to the approach presented
in [33], which provides modeling for safety and security in combination.

Aside from UML, model-driven code generation is also discussed for other
modeling languages, e.g., [13]. We chose to build our approach atop UML, as it is
far more widespread than these other modeling languages and thus our approach
is potentially more useful to a wider range of developers.

6 Conclusion

Safety standards, such as IEC 61508, define a number of safety mechanisms that
mitigate the risk in safety-critical systems. Many of these safety mechanisms are
at least partially application independent and may therefore be automatically
generated. Such an automatic code generation may decrease the number of bugs
in system and increase developer productivity. This is especially important, as
the size and complexity of safety-critical embedded systems is steadily increasing.

We propose a model-driven approach for the automatic code generation of
safety mechanisms. UML stereotypes are used to model the safety mechanisms
with a UML application model. Model-to-model transformations take the infor-
mation from these stereotypes and generate the safety mechanisms within the
application model. In a subsequent step, with the help of common MDD tools,
source code that contains these safety mechanisms is generated automatically.

We demonstrate our approach by applying it to the automatic generation of
runtime timing monitoring. This enables the observation of timing constraints for
individual operations within the application. In case such a timing constraint is



A Workflow for Automatic Code Generation of Safety Mechanisms 441

violated, this violation is detected automatically and a predefined error handling
operation is executed.

Future work may combine our approach with requirements engineering in
order to automatically apply safety stereotypes to the UML application model
based on the requirements specification. This may further be leveraged to
improve safety certification. Furthermore, more safety mechanisms may be pro-
vided for automatic generation with our approach.

Acknowledgments. This work was partially funded by the German Federal Ministry
of Economics and Technology (Bundesministeriums fuer Wirtschaft und Technologie-
BMWi) within the project “Holistic model-driven development for embedded systems
in consideration of diverse hardware architectures” (HolMES). The authors would also
like to thank Nikolas Wintering for software development assistance.

References

1. Asadi, N., Saadatmand, M., Sjödin, M.: Run-time monitoring of timing constraints:
a survey of methods and tools. In: The Eighth International Conference on Software
Engineering Advances (ICSEA) (2013)

2. AUTOSAR: Specification of timing extensions (2017). https://www.autosar.
org/fileadmin/user upload/standards/classic/4-3/AUTOSAR TPS TimingExtens
ions.pdf. Accessed 20 Aug 2020

3. Beckers, K., Côté, I., Frese, T., Hatebur, D., Heisel, M.: Systematic derivation
of functional safety requirements for automotive systems. In: Bondavalli, A., Di
Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 65–80. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 5

4. Bernardi, S., Merseguer, J., Petriu, D.: A dependability profile within
MARTE. Softw. Syst. Model. 10, 313–336 (2011). https://doi.org/10.1007/s10270-
009-0128-1

5. Borchert, C., Schirmeier, H., Spinczyk, O.: Generative software-based memory
error detection and correction for operating system data structures. In: Proceed-
ings of the 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 1–12. IEEE Computer Society, Washington, DC
(2013). https://doi.org/10.1109/DSN.2013.6575308

6. Chen, D., et al.: JVM susceptibility to memory errors. In: Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and Technology Symposium,
vol. 1. USENIX Association, Berkeley (2001)

7. Das, N., Ganesan, S., Jweda, L., Bagherzadeh, M., Hili, N., Dingel, J.: Supporting
the model-driven development of real-time embedded systems with run-time mon-
itoring and animation via highly customizable code generation. In: Proceedings
of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2016, pp. 36–43. Association for Computing
Machinery, New York (2016). https://doi.org/10.1145/2976767.2976781

8. Elektrobit. EB tresos Safety (2020). https://www.elektrobit.com/products/ecu/
eb-tresos/functional-safety. Accessed 20 Aug 2020

9. Enterprise Architect (2020). https://sparxsystems.com/products/ea/index.html.
Accessed 20 Aug 2020

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://doi.org/10.1007/978-3-319-10506-2_5
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1109/DSN.2013.6575308
https://doi.org/10.1145/2976767.2976781
https://www.elektrobit.com/products/ecu/eb-tresos/functional-safety
https://www.elektrobit.com/products/ecu/eb-tresos/functional-safety
https://sparxsystems.com/products/ea/index.html


442 L. Huning et al.

10. Fernandez, G., et al.: Seeking time-composable partitions of tasks for COTS mul-
ticore processors. In: 2015 IEEE 18th International Symposium on Real-Time Dis-
tributed Computing, pp. 208–217 (2015). https://doi.org/10.1109/ISORC.2015.43

11. Fernandez, G., Jalle, J., Abella, J., Quinones, E., Vardanega, T., Cazorla, F.J.:
Computing safe contention bounds for multicore resources with round-robin and
FIFO arbitration. IEEE Trans. Comput. (2016). https://doi.org/10.5281/zenodo.
165812

12. Girbal, S., Jean, X., Le Rhun, J., Pérez, D.G., Gatti, M.: Deterministic platform
software for hard real-time systems using multi-core COTS. In: 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC) (2015). https://doi.org/10.
1109/DASC.2015.7311481

13. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code
generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems, MODELS 2016, pp. 125–135. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2976767.2976812

14. Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., Jones, P.: Certifiably safe software-
dependent systems: Challenges and directions. In: Proceedings of the Conference
on The Future of Software Engineering, FOSE 2014, pp. 182–200. ACM, New York
(2014). https://doi.org/10.1145/2593882.2593895

15. Heimdahl, M.P.E.: Safety and software intensive systems: challenges old and new.
In: 2007 Future of Software Engineering, FOSE 2007, pp. 137–152. IEEE Computer
Society, Washington (2007). https://doi.org/10.1109/FOSE.2007.18

16. Huning, L., Iyenghar, P., Pulvermueller, E.: UML specification and transformation
of safety features for memory protection. In: Proceedings of the 14th International
Conference on Evaluation of Novel Approaches to Software Engineering, pp. 281–
288. INSTICC, SciTePress, Heraklion (2019)

17. Huning, L., Iyenghar, P., Pulvermueller, E.: A UML profile for automatic code
generation of optimistic graceful degradation features at the application level.
In: Proceedings of the 8th International Conference on Model-Driven Engineer-
ing and Software Development, MODELSWARD, vol. 1, pp. 336–343. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0008949803360343

18. Huning, L., Iyenghar, P., Pulvermueller, E.: A workflow for automatically gen-
erating application-level safety mechanisms from UML stereotype model repre-
sentations. In: Proceedings of the 15th International Conference on Evaluation of
Novel Approaches to Software Engineering, ENASE, vol. 1, pp. 216–228. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0009517302160228

19. IEC 61508 Edition 2.0. Functional safety for electrical/electronic/programmable
electronic safety-related systems (2010)

20. ISO 26262 Road vehicles - Functional safety. Second Edition (2018)
21. Iyenghar, P., Pulvermueller, E.: A model-driven workflow for energy-aware schedul-

ing analysis of IoT-enabled use cases. IEEE Internet Things J. 5(6), 4914–4925
(2018)

22. Iyenghar, P., Huning, L., Pulvermueller, E.: Automated end-to-end timing anal-
ysis of autosar-based causal event chains. In: Proceedings of the 15th Interna-
tional Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE, vol. 1, pp. 477–489. INSTICC, SciTePress (2020). https://doi.org/10.
5220/0009512904770489

23. Iyenghar., P., Huning., L., Pulvermueller., E.: Early synthesis of timing models in
autosar-based automotive embedded software systems. In: Proceedings of the 8th

https://doi.org/10.1109/ISORC.2015.43
https://doi.org/10.5281/zenodo.165812
https://doi.org/10.5281/zenodo.165812
https://doi.org/10.1109/DASC.2015.7311481
https://doi.org/10.1109/DASC.2015.7311481
https://doi.org/10.1145/2976767.2976812
https://doi.org/10.1145/2593882.2593895
https://doi.org/10.1109/FOSE.2007.18
https://doi.org/10.5220/0008949803360343
https://doi.org/10.5220/0009517302160228
https://doi.org/10.5220/0009512904770489
https://doi.org/10.5220/0009512904770489


A Workflow for Automatic Code Generation of Safety Mechanisms 443

International Conference on Model-Driven Engineering and Software Development,
MODELSWARD, vol. 1, pp. 26–38. INSTICC, SciTePress (2020). https://doi.org/
10.5220/0009095000260038

24. MISRA C++2008 Guidelines for the use of the C++ language in critical systems
(2008)

25. Moestl, M., Thiele, D., Ernst, R.: Invited: towards fail-operational ethernet based
in-vehicle networks. In: 2016 53nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pp. 1–6 (2016). https://doi.org/10.1145/2897937.2905021

26. Mok, A.K., Liu, G.: Efficient run-time monitoring of timing constraints. In: Pro-
ceedings Third IEEE Real-Time Technology and Applications Symposium, pp.
252–262 (1997)

27. A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Sys-
tems. Technical report, Object Management Group (2008)

28. The Eclipse Foundation. Eclipse Papyrus Modeling Environment (2020). https://
www.eclipse.org/papyrus. Accessed 20 Aug 2020

29. Pattabiraman, K., Grover, V., Zorn, B.G.: Samurai: protecting critical data in
unsafe languages. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pp. 219–232. ACM, New York (2008).
https://doi.org/10.1145/1352592.1352616

30. Penha, D., Weiss, G., Stante, A.: Pattern-based approach for designing fail-
operational safety-critical embedded systems. In: 2015 IEEE 13th International
Conference on Embedded and Ubiquitous Computing, pp. 52–59 (2015). https://
doi.org/10.1109/EUC.2015.14

31. Vector. PrEEVision (2020). https://www.vector.com/int/en/products/products-
a-z/software/preevision/. Accessed 20 Aug 2020

32. IBM. Rational Rhapsody Developer. https://www.ibm.com/us-en/marketplace/
uml-tools. Accessed 20 Aug 2020

33. Architecture models and patterns for safety and security. Deliverable D2.2 from
EU-research project SAFURE (2017). https://safure.eu/publications-deliverables.
Accessed 3 Feb 2020

34. Saridakis, T.: Design patterns for graceful degradation. In: Noble, J., Johnson, R.
(eds.) Transactions on Pattern Languages of Programming I. LNCS, vol. 5770, pp.
67–93. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10832-7 3

35. Storey, N.: Safety-Critical Computer System. Addison-Wesley, Harlow (1996)
36. Tanzi, T.J., Textoris, R., Apvrille, L.: Safety properties modelling. In: 2014 7th

International Conference on Human System Interactions (HSI), pp. 198–202. IEEE
Computer Society (2014). https://doi.org/10.1109/HSI.2014.6860474

37. The Eclipse Foundation: Eclipse IDE. https://www.eclipse.org/eclipseide/. Acces-
sed 20 Aug 2020

38. Thiele, D., Ernst, R., Diemer, J.: Formal worst-case timing analysis of Ethernet
TSN’s time-aware and peristaltic shapers. In: 2015 IEEE Vehicular Networking
Conference (VNC), pp. 251–258. IEEE (2016). https://doi.org/10.5281/zenodo.
55528

39. Trindade, R.F.B., Bulwahn, L., Ainhauser, C.: Automatically generated safety
mechanisms from semi-formal software safety requirements. In: Bondavalli, A.,
Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 278–293.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 19

40. Yakymets, N., Perin, M., Lanusse, A.: Model-driven multi-level safety analysis
of critical systems. In: 9th Annual IEEE International Systems Conference, pp.
570–577. IEEE Computer Society (2015). https://doi.org/10.1109/SYSCON.2015.
7116812

https://doi.org/10.5220/0009095000260038
https://doi.org/10.5220/0009095000260038
https://doi.org/10.1145/2897937.2905021
https://www.eclipse.org/papyrus
https://www.eclipse.org/papyrus
https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1109/EUC.2015.14
https://doi.org/10.1109/EUC.2015.14
https://www.vector.com/int/en/products/products-a-z/software/preevision/
https://www.vector.com/int/en/products/products-a-z/software/preevision/
https://www.ibm.com/us-en/marketplace/uml-tools
https://www.ibm.com/us-en/marketplace/uml-tools
https://safure.eu/publications-deliverables
https://doi.org/10.1007/978-3-642-10832-7_3
https://doi.org/10.1109/HSI.2014.6860474
https://www.eclipse.org/eclipseide/
https://doi.org/10.5281/zenodo.55528
https://doi.org/10.5281/zenodo.55528
https://doi.org/10.1007/978-3-319-10506-2_19
https://doi.org/10.1109/SYSCON.2015.7116812
https://doi.org/10.1109/SYSCON.2015.7116812

	A Workflow for Automatic Code Generation of Safety Mechanisms via Model-Driven Development
	1 Introduction
	2 Background
	2.1 IEC 61508 Lifecycle
	2.2 Model-Driven Development

	3 Workflow
	3.1 High-Level Overview of the Approach
	3.2 Enabling the Automatic Code Generation of Safety Mechanisms

	4 Application Example: Generation of Timing Constraint Monitoring Mechanisms
	4.1 Need for Timing Constraint Monitoring at Runtime
	4.2 Information on Timing Constraint Monitoring
	4.3 A Model Representation for Timing Constraint Monitoring
	4.4 A Model-Driven Software Architecture for Monitoring Timing Constraints at Runtime
	4.5 Model Transformations for the Automatic Code Generation of Timing Constraint Monitoring at Runtime

	5 Related Work
	5.1 Related Work on Improving the Development of Safety-Critical Systems
	5.2 Related Work on Code Generation via Model-Driven Development

	6 Conclusion
	References




