
A Study of Maintainability in Evolving
Open-Source Software

Arthur-Jozsef Molnar(B) and Simona Motogna

Faculty of Mathematics and Computer Science, Babeş-Bolyai University,
Cluj-Napoca, Romania

{arthur,motogna}@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro

Abstract. Our study is focused on an evaluation of the maintainability
characteristic in the context of the long-term evolution of open-source
software. According to well established software quality models such as
the ISO 9126 and the more recent ISO 25010, maintainability remains
among key quality characteristics alongside performance, security and
reliability. To achieve our objective, we selected three complex, widely
used target applications for which access to their entire development
history and source code was available. To enable cross-application com-
parison, we restricted our selection to GUI-driven software developed
on the Java platform. We focused our examination on released versions,
resulting in 111 software releases included in our case study. These cov-
ered more than 10 years of development for each of the applications.
For each version, we determined its maintainability using three distinct
quantitative models of varying complexity. We examined the relation
between software size and maintainability and studied the main drivers
of important changes to software maintainability. We contextualized our
findings using manual source code examination. We also carried out a
finer grained evaluation at package level to determine the distribution
of maintainability issues within application source code. Finally, we pro-
vided a cross-application analysis in order to identify common as well as
application-specific patterns.

Keywords: Software quality · Software metrics · Software
maintainability · Software evolution · Maintainability index · SQALE
model · Technical debt · Open-source

1 Introduction

Maintenance includes all activities intended to correct faults, update the target
system in accordance to new requirements, upgrade system performance and
adapt it to new environment conditions. As a consequence, maintenance effort
becomes very costly, especially in the case of large-scale complex applications,
especially since in many cases they include third party components sensitive to
updates.
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 261–282, 2021.
https://doi.org/10.1007/978-3-030-70006-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_11&domain=pdf
http://orcid.org/0000-0002-4113-2953
http://orcid.org/0000-0002-8208-6949
https://doi.org/10.1007/978-3-030-70006-5_11


262 A.-J. Molnar and S. Motogna

The causes of high maintenance costs can be tracked to multiple reasons.
The first such reason regards the inherent complexity of code comprehension
tasks, due to the fact that maintenance teams are different from the development
team, causing further delays for understanding source code and locating software
defects. Another important issue is that maintenance is approached only during
the late stages of the development lifecycle, when issues have already built up in
the form of technical debt [11]. These reasons can be overcome by considering
maintainability issues earlier in the development process and employing existing
tool support that can help identify future maintenance “hotspots”, namely those
parts of code that can generate more problems. If we consider agile practices,
then integration of maintenance tasks with development processes becomes a
necessity. When these issues are not addressed at the right moment they tend
to accumulate in the form of technical debt that can later lead to crises during
which development is halted until the bulk of the issues are addressed [29].

The focus of this study regards the long term assessment of maintainability
in large software applications; software evolution plays an important part that
is observed through the release of a consistent number of software versions. In
many of these applications we find that complexity is increased by function-
alities end-users rely on. They are usually implemented as plugins, which can
create additional dependencies on the main code base. Our empirical investiga-
tion targets open source applications where full access to the source code was
available over the entire application life span. This not only allows the usage
of quantitative quality models based on software metrics, but also facilitates
the manual examination of source code, which can be used to understand the
rationale behind observed changes to application architecture and structure.

Previous studies have identified some of the existing relations between the
maintainability characteristic and software metric values [9,17,18,23,25,27]. Our
goal is to employ several quantitative models having well studied strengths and
weaknesses [34] in order to determine some of the patterns in the evolution of
open-source software, to understand the rationale behind important changes to
source code, as well as to improve our understanding of the quality models and
their applicability.

The present study continues our existing research regarding the maintainabil-
ity of open-source software [34] and brings the following novel contributions: (a) a
longitudinal study of software maintainability that covers the entire development
history of three complex, open-source applications; (b) a detailed examination
of the relation between maintainability, expressed through several quantitative
models and software size measured according to several levels of granularity;
(c) an examination of sudden changes to maintainability as well as “slopes” -
significant modifications that occur over the span of several releases; (d) a finer-
grained analysis at package and class level regarding software maintainability
and its evolution; (e) an analysis of the maintainability models themselves as
applied to real-life open-source software systems.



A Study of Maintainability in Evolving Open-Source Software 263

2 Software Quality Models

The importance of software quality continues to pose a key interest in both
the academic and industry communities after more than 50 years of research
and practice. Furthermore, as the number of complex networked systems and
critical infrastructures relying on them is increasing, it is expected to remain an
issue of continued interest in software research, development and maintenance.
Previous research into software quality resulted in a large number of quality
models. Most of them describe a set of essential attributes that attempt to
characterize the multiple facets of a software system from an internal (developer-
oriented), external (client-oriented) or both perspectives.

Fig. 1. ISO 25010 hierarchical quality model (from [35]).

The introduction of the first software quality model is attributed to McCall
in 1976, followed by the Dromey model which improved it [1]. Later on, these
initial contributions became a part of the ISO 9126 standard, which expressed
software quality using a hierarchical model of six characteristics that are com-
prised of 31 sub-characteristics. The ISO 25010 model [19] illustrated in Fig. 1
represents the current version, and it considers maintainability as the ensemble of
six sub-characteristics: Modularity, Reusability, Analysability, Modifiability and
Testability. Like its previous versions, ISO 25010 does not provide a method-
ology to evaluate quality characteristics or to improve them, which precludes
practitioners from using them directly. However, this shortcoming can be over-
come using software metrics, which measure different properties of source code
and related artefacts. Basic metrics such as lines of code, number of functions or
modules have been widely used and in turn, superseded by the introduction of
the object oriented paradigm and its related set of metrics. Nowadays we find a
multitude of object oriented metrics [9] defined and used to detect code smells,
design flaws or in order to improve maintainability. These metrics were also har-
nessed by researchers to evaluate software quality in general. However, these
tasks have remained difficult and tedious in the context of large-scale software
systems.

Authors of [42] study the relation between object-oriented metrics and soft-
ware defects. They report the response for a class (RFC) and weighted method
count (WMC) as most suited for identifying defect potential. A similar study



264 A.-J. Molnar and S. Motogna

using the Mozilla application suite [16] showed the coupling between objects
(CBO) and lines of code (LOC) as accurate fault predictors. These findings were
backed by [45], where a NASA data set was the target of defect estimation efforts,
and [7], where evaluation was carried out using eight C++ applications. This
also leads to the issue of the target application’s programming language, with
authors [23] claiming that metric value expectations have to be adapted to each
language in particular. The over-arching conclusion of metric-based evaluations
is that further work is required before definitive expectations can be formalized
regarding the relation between software quality characteristics and metric values.

3 Maintainability Models

3.1 Maintainability Index

There exists long-term interest regarding the correct estimation of the required
effort for maintaining software systems. Initially defined in the late ’70, the com-
putational formula for the Maintainability Index (MI) was introduced in 1992
[38]. The formula takes into consideration source code size, measured according
to variants of the lines of code metric and two views of complexity expressed in
terms of the modular paradigm; they are the number of operations and operators,
also known as the Halstead volume and the number of possible execution paths
generated by existing conditional and loop statements. The variant employed in
our research is [38]:

MI = 171 − 5.2 ∗ ln(aveV ) − 0.23 ∗ aveG − 16.2 ∗ ln(aveSTAT )

where aveV denotes average Halstead volume, aveG is the number of possible
execution paths (cyclomatic complexity) and aveSTAT is the average number
of statements. Several versions of this formula exist, such as considering the
LOC metric instead of statement counts, or including the number of lines of
comments into the formula. The presented version returns values between 171
(best maintainability) and negative numbers, which are evaluated as very poor
maintainability. Several implementations [30] normalize the formula to return
values in the [0, 100] range by translating all negative values to 0. Different
development, metric or code inspection tools compute the MI [24,30,41,43], and
some provide good practices [30], stating that values below 20 correspond to
poor maintainability.

Several criticisms to this maintainability assessment formula have been
reported in the literature [12,17,44]. They are related to the fact that aver-
age values are used in the computation, ignoring the real distribution of values,
or that the defined threshold values are not very accurate. Also, the index was
defined for modular and procedural programming languages, thus not taking into
consideration object oriented features that defined new relations such as inheri-
tance, coupling and cohesion. These have been reported to have a considerable
effect on maintainability [9,23,27,31].



A Study of Maintainability in Evolving Open-Source Software 265

3.2 ARiSA Compendium Model

The Compendium of Software Quality Standards and Metrics1 was created by
ARiSA and researchers from the Linnaeus University. It aims to study the rela-
tion between software quality characteristics and software metric values. The
Compendium models software quality according to the ISO 9126, an older ver-
sion in the ISO family for software quality standards. Like the more recent ISO
25010 incarnation, it is a hierarchical model made up of six characteristics, which
in turn have 27 sub-characteristics. Similar with ISO 25010, Maintainability is
one of the characteristics, with sub-characteristics Analyzability, Changeability,
Compliance, Stability and Testability. For each characteristic, with the notable
exception of Compliance, the set of influencing metrics is provided. For each met-
ric influence, the Compendium details the direction and strength of the influence,
as detailed using Table 1. The direction of the influence can be direct, or inverse,
represented using upward, or downward chevrons, respectively. These illustrate
whether increased values for the given metric lead to an improvement or degra-
dation of maintainability. The number or chevrons represent the strength of this
correlation, with two chevrons representing a stronger relation. For example, the
weighted method count (WMC) metric relates strongly and inversely with ana-
lyzability, changeability and testability, and inversely (but not strongly) with
stability.

The VizzMaintenance [3] Eclipse plugin implements a quantitative model of
class-level maintainability. It is based on the relations from the Compendium and
uses a number of structural, complexity and design class-level object-oriented
metrics that are shown in Table 1. They are the coupling between objects
(CBO), data abstraction coupling (DAC), depth of inheritance tree (DIT), local-
ity of data (LD), lack of cohesion in methods (LCOM) and its improved variant
(ILCOM), message pass coupling (MPC), number of children (NOC), tight class
cohesion (TCC), lines of code (LOC), number of attributes and methods (NAM),
number of methods (NOM), response for class (RFC), weighted method count
(WMC), number of classes in cycle (CYC) length of names (LEN) and lack of
documentation (LOD). They are formally defined within the Compendium [3]
and were used in previous research [6,36].

The proposed quantitative model relies on the relations presented in Table
1 and the extracted metric values. The level of maintainability is calculated for
each class on a [0, 1] scale, with smaller values representing improved maintain-
ability. First, the percentage of metric values within the top or bottom 15% of
each metric’s value range across all classes is calculated. Then, they are aggre-
gated across the four criteria according to the direction and strength of the
relations shown in Table 1, resulting in the maintainability score of the class. As
such, a score of 0 means that none of the metrics has an extreme value for the
given class, while a value of 1 is obtained when all metric values belong in the top
(or bottom) 15%. As an example, let us consider a class having a single metric
value in the top 15%, that of the WMC. The analyzability score for WMC is 2

33 .

1 http://www.arisa.se/compendium/.

http://www.arisa.se/compendium/


266 A.-J. Molnar and S. Motogna

Table 1. Metric influences on maintainability according to the ARiSA Model [3].

C
B
O

D
A
C

D
IT

L
D

L
C
O
M

IL
C
O
M

M
P
C

N
O
C

T
C
C

L
O
C

N
A
M

N
O
M

R
F
C

W
M

C

C
Y
C

L
E
N

L
O
D

Analyzability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Changeability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Stability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Testability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Structure Complexity Design

The numerator is the weight WMC has for analyzability, and the denominator is
the sum total of weights for that criteria (the number of chevrons). The influence
of WMC in Changeability is 2

34 , in Stability it is 1
26 and in testability it is 2

33 .

As such, the maintainability score will be calculated as
2
33+

2
34+

1
26+

2
33

4 ≈ 0.0546,
or 5.46%.

When compared with the MI, the ARiSA model employs a wider selection of
metrics. In addition to the commonly used LOC metric, it also employs the WMC
as a complexity metric, together with many well-known object-oriented ones,
covering object-oriented concerns such as cohesion, coupling and inheritance.
While the MI can be calculated at several granularity levels, by default the
ARiSA model is limited to class level. In order to scale it to system level, we
calculate its geometric mean value across all system classes.

3.3 SQALE Model

The SQALE (Software Quality Assessment Based on Lifecycle Expectations)
methodology was first introduced by J.L. Letouzey [22] as a method to evaluate
the quality of application source code, in an independent way from programming
language or analysis tools. SQALE is tightly linked with the measurement of
technical debt2, especially in the context of Agile development methodologies.
The first definition for technical debt was provided in 1992 [11] and predates
the SQALE model. Cunningham borrowed terminology from the financial sec-
tor and compared shipping immature code with “going into debt”, and opined
that doing so was fine “so long as it is paid back promptly with a rewrite” [11].
More recently, Fowler agreed that the presence of technical debt showed that
delivering functionality to customers was prioritized above software quality [15].
Given the focus from both researchers and practitioners on controlling software
quality resulted in several tools that implement SQALE in order to produce a
quantitative assessment of code quality.

Perhaps the most well-known such tool is the SonarQube platform for code
quality and security. Its entry-level Community Edition is free and open-source.
Analysis support is provided through language-specific plugins, with the free
version providing the required plugins for analyzing source code in 15 languages
including Java, XML and HTML. Support for additional languages or features
can be deployed in the form of plugins; for instance, C++ code can be analyzed
2 Found as design debt in some sources.



A Study of Maintainability in Evolving Open-Source Software 267

using a free, community developed plugin3. Plugins usually include a number of
rules4, against which the source code’s abstract syntax tree is checked during
analysis.

Each rule is characterized by the programming language it applies to, its
type, associated tags and severity. Rule type is one of maintainability (code
smell), reliability (bug) or security (vulnerability). Tags serve to provide a finer-
grained characterization, each rule being associated with one or more tags5 such
as unused, performance or brain-overload (e.g. when code complexity is too high).
Breaking a rule results in an issue, which inherits its characteristics from the
rule that was broken. For example, Java rule S1067 states that “Expressions
should not be too complex”. It generates critical severity issues that are tagged
with brain-overload for expressions that include more than 3 operators. The time
estimated to fix the issue is a 5 min constant time to which 1 min is added for
each additional operator above the threshold.

An application’s total technical debt is calculated as the sum of the estimated
times required to fix all detected issues. SonarQube normalizes the level of tech-
nical debt relevant to application size using the Technical Debt Ratio (TDR),
with TDR = TD

DevTime ; TD represents total technical debt quantified in min-
utes, while DevT ime represents the total time required to develop the system,
with 30 min of time required to develop 1 line of production level code. The
application is graded according to the SQALE rating between A (best value,
TDR < 5%) and E (worst value, TDR ≥ 50%). SQALE provides a high-level,
evidence-backed and easy to understand interpretation of the system’s internal
quality. In our case study we calculate SQALE ratings using SonarQube version
8.2, which integrates the Eclipse Java compiler and uses more than 550 rules to
detect potential issues in source code.

While SonarQube and similar tools provide quantitative models of software
quality, existing research also pointed out some existing pitfalls. Authors of a
large-scale case study [26] showed that many of the reported issues remained
unfixed, which could be the result of these tools reporting many false-positive,
or low-importance results. A study of SonarQube’s default rules [21] also showed
most of them having limited fault-proneness. These findings are also mirrored
in our work [33], where we’ve shown that issue lifetimes are not correlated with
severity or associated tags.

4 State of the Art

The role and impact of maintainability as a software quality factor was investi-
gated in existing literature [13,17,18,37]. The SIG Maintainability model [13,17]
is based on the idea of relating different source code properties such as volume,
complexity and unit testing with the sub-characteristics of maintainability as
described according to the ISO 9126 model [20]. The SIG Maintainability model
3 https://github.com/SonarOpenCommunity/sonar-cxx.
4 https://docs.sonarqube.org/latest/user-guide/rules/.
5 https://docs.sonarqube.org/latest/user-guide/built-in-rule-tags/.

https://github.com/SonarOpenCommunity/sonar-cxx
https://docs.sonarqube.org/latest/user-guide/rules/
https://docs.sonarqube.org/latest/user-guide/built-in-rule-tags/


268 A.-J. Molnar and S. Motogna

was evaluated on a large number of software applications. Authors of [18] pro-
posed a framework in which quality characteristics defined according to the ISO
25010 model [19] could be assessed directly or indirectly by associated measures
that can be easily computed using existing software tooling. The framework
remains a proof of concept with more measures required for consideration before
the measurement of quality characteristics such as maintainability becomes pos-
sible.

The ARiSA model [25,39] detailed in Sect. 3.2 remains one of the most
exhaustive studies that analyzes the relations between a significant number of
software metrics and quality factors and sub-factors as defined according to ISO
9126.

The influence object-oriented metrics have on maintainability received a con-
tinuous interest in the research community ever since their introduction [9], with
existing research showing the existence of a relation between maintainability,
coupling and cohesion [2,10,23,28,31]. The influence different metrics have on
maintainability has also received intense scrutiny. However, we find that in many
cases author conclusions are limited to the identified relation between a singu-
lar metric and target system maintainability [23,39]. While important in itself,
these do not provide a definitive quantitative model for maintainability, partly
due to their strong empirical nature. Thus, in order to develop more precise and
easily applicable methods for assessing software quality characteristics we find
that more investigations need to be carried out and reported.

As such, the distinctive feature of our study is that it describes and analyzes
three approaches of different complexity that enable an evaluation of maintain-
ability in the case of large applications. Furthermore, we analyze and compare
results across the application versions and maintainability models themselves
in order to improve our understanding of the evolution of open-source appli-
cations on one hand, as well as the applicability, strengths and weaknesses of
maintainability models on the other.

5 Case Study

The presented case study is the direct continuation of the work presented in
[34]. The work was organized and carried out according to currently defined best
practices [40,46]. We started by stating the main objective of our work, which we
distilled into four research questions. We structured the current section according
to Höst and Runeson’s methodology [40]. We first discuss the selection of target
applications, after which we present the data collection process. We used Sect.
5.4 to discuss the results of our analysis, after which we address the threats to
our study’s validity.

5.1 Research Questions

We defined our work’s main objective using the goal-question-metric approach [8]
to be “study the maintainability of evolving open-source software using quantita-
tive software quality models”. We refined our stated objective into four research



A Study of Maintainability in Evolving Open-Source Software 269

questions. They serve to guide the analysis phase of the study, as well as to
provide an in-depth view when compared with our previous work [34].

RQ1: What is the Correlation between Application size and Maintainability?
In our previous work [34] we have disproved the näıve expectation that lower
maintainability is reported for larger applications. However, we employ RQ1

to ensure that maintainability scores reported using the proposed quantitative
models are not excessively influenced by software size. While in our previous
work [34] we have examined this relation using the number of classes as a proxy
for system size, we extend our investigation to cover the number of packages,
methods and lines of code. We aim to employ system size measurements in order
to study their effect on reported maintainability, as both the MI and ARiSA
models include class and line counts in their assessment.

RQ2: What Drives Maintainability Changes between Application Versions? In
our previous study we identified important changes in the maintainability scores
reported for the target applications. We expect the answer to RQ2 will help us
identify the rationale behind the large changes in maintainability reported in
each of the target applications studied in our previous work. We aim to trian-
gulate collected data [40] by carrying out a cross-application examination. We
expect this will facilitate identifying common causes and help alleviate exter-
nal threats to our study. In order to properly contextualize observed changes to
maintainability, we carry out a detailed manual source code examination.

RQ3: How are Maintainability Changes Reflected at the Package Level? We
employ RQ1 in order to study the relation between reported maintainability and
software size, each measured according to several quantitative metrics. Then, the
answer to RQ2 helps determine the amplitude and rationale behind the reported
changes. We take the following step via RQ3, where we carry out a finer grained
analysis at package level, in order to improve our understanding of the impact
software evolution has on application component maintainability.

RQ4: What are the Strengths and Weaknesses of the Proposed Maintainability
Models? In our previous research we determined the TDR to be the most rele-
vant quantitative model from a software development perspective [34]. However,
we also discovered that both the ARiSA model and the MI can provide action-
able information in the right context. This is especially true since the ARiSA
model was created for class-level usage, while the MI works from system down
to method levels. As such, as part of our data analysis we examine our answers
to RQ2 and RQ3 and highlight the insight that each model can provide together
with its drawbacks.

5.2 Target Applications

Since the present paper builds upon and expands our previous research [34],
we maintained our selection of target applications. In this section we reiterate
our rationale and briefly discuss inclusion criteria. Our main goal was to select
a number of complex, widely-used and open-source applications that facilitate



270 A.-J. Molnar and S. Motogna

Table 2. Information about the earliest and latest target application versions in our
study.

Application Version Release date Statements Maintainability rating

MI ARiSA SQALE

FreeMind 0.0.3 July 9, 2000 1,359 81.30 0.22 3.10

1.1.0Beta2 Feb 5, 2016 20,133 73.92 0.19 3.2

jEdit 2.3pre2 Jan 29, 2000 12,150 73.38 0.16 3.00

5.5.0 April 9, 2018 43,875 66.90 0.17 3.50

TuxGuitar 0.1pre June 18, 2006 4,863 71.53 0.12 2.10

1.5.3 Dec 10, 2019 51,589 75.99 0.17 1.20

evaluating maintainability in the context of software evolution. Previous empir-
ical research in open-source software has shown that many of these systems
go through development hiatuses, or are abandoned by the original developers
[5]. In other cases, available source code is incomplete, with missing modules
or libraries, or contains compile errors [6]. Other applications include complex
dependencies which are required to compile or run them, such as Internet ser-
vices, database servers or the presence of additional equipment.

Taking these considerations into account, we set our inclusion criteria to
applications with a long development history and no external dependencies. In
order to allow comparing results across applications and in order to alleviate
external threats to our study, we limited ourselves to GUI-driven applications
developed using the Java platform.

Our selection process resulted in three Java applications. Each of them is avail-
able under permissive open-source licensing, has a fully documented development
history including an important number of version releases and a consistent user
base. They are the FreeMind6 mind mapper, the jEdit7 text editor and the Tux-
Guitar8 tablature editor. Table 2 provides relevant information for the first and
last target application version included in our case study. We refer to all releases
included in our study using the version numbers assigned to them by developers.
We believe this provides additional context on the magnitude of expected changes
between versions, and facilitates replicating our results, as it allows third parties
to unambiguously identify them within the code base. Furthermore, as we iden-
tified several hiatuses in the development of the studied applications, we found
version numbers were more representative than release dates.

FreeMind is a mind-mapping application with a consistent user base, rich
functionalities and support for plugin development and integration. The first
version in our study is 0.0.3. Released in July, 2000, it consisted of around 1,350
code statements and around 60 classes, which make it the smallest release in
our study. This is reflected on a functional level, with early versions of Free-

6 http://freemind.sourceforge.net/wiki/index.php/Main Page.
7 http://jedit.org.
8 http://www.tuxguitar.com.ar.

http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://jedit.org
http://www.tuxguitar.com.ar


A Study of Maintainability in Evolving Open-Source Software 271

Fig. 2. Size and release date information for FreeMind (top), jEdit (middle) and Tux-
Guitar (bottom) versions included in our study.

Mind having limited functionalities, in contrast with later versions. We take this
into account in our research when studying the difference between early and
mature application versions. Several of its versions were used in previous empir-
ical research [4]. Figure 2 illustrates the development across the versions in our
case study using system size and release dates. Versions 0.8.0 and 0.8.1 show an
important increase in system size, which is tempered in version 0.9.0Beta17, after
which system size remains stable. We also note the 2 1

2 years of hiatus between
versions 0.8.0 and 0.8.1. Major changes are recorded for version 0.9.0Beta17,
released only 3 months after the previous one. While the most recent version
released at the start of 2016, FreeMind maintained a consistent user base, with
681k application downloads during last year and over 21 million over its lifetime9.

jEdit is a plugin-able text-editor targeted towards programmers. As shown in
Fig. 2, its first public version, 2.3pre2 was released in January 2000. Having over
300 classes and 12,000 statements, it is the most polished entry version in our

9 Download data points from https://sourceforge.net/, only consider application
releases. Recorded August 25th, 2020.

https://sourceforge.net/


272 A.-J. Molnar and S. Motogna

study. In opposition to FreeMind, we did not record multi-year hiatuses during
the development of jEdit. Class and statement counts showed a gradual, but
steady increase version to version, which we found reflected at the user experience
and functional levels. jEdit was also the subject of software engineering research
that targeted GUI testing [4,47] and software quality [31,36]. The application has
managed to maintain a large user base, having over 92k application downloads
last year and over 5.8 million over its lifetime.

TuxGuitar is a tablature editor with multi-track support, which support
data import and export across multiple formats. This is implemented in the form
of plugins that are included in the default code distribution, which we included in
our case study. TuxGuitar was developed with support for several GUI toolkits,
and we selected to use its SWT implementation across all versions. As illustrated
in Fig. 2, TuxGuitar’s evolution is similar to that of jEdit, with a steady increase
in application size across most versions. While its development seemed to be
halted between versions 1.2 and 1.3.0, its latest version was released in 2020,
with the project being actively developed. TuxGuitar also has a consistent user
base, recording 266k application downloads during the last year and over 6.9
million over its lifetime.

5.3 Data Collection

We limited our selection to publicly released versions in order to address the risk
of compiler errors or missing libraries, as reported by previous research [6]. We
handled the case of many incremental version releases in the span of days by only
considering the last of them, which helps keep the number of versions manage-
able. This resulted in 38 releases of FreeMind, 45 releases of jEdit and 28 releases
of TuxGuitar included in our study. Each release was then imported into an IDE,
where a manual examination of its source code was carried out. A common recur-
ring issue concerned the presence of library code shipped together with applica-
tion source code. Several jEdit versions included code for the com.microstar.xml
parser or BeanShell interpreter. Our solution was to extract these into a separate
library that was added to the application classpath. FreeMind and jEdit source
code was analyzed without any plugin code, although both applications pro-
vide plugin support. In the case of TuxGuitar, we kept the data import/export
plugins included in the official distribution.

Metric data was extracted using the VizzMaintenance plugin for Eclipse,
which was also used to calculate the ARiSA maintainability score of each class.
We employed the Metrics Reloaded plugin for IntelliJ to calculate the compo-
nents of the MI, while the SQALE rating was obtained using the community
edition of SonarQube 8.2.

5.4 Analysis

In this section we present the most important results of our analysis, structured
according to the research questions defined in Sect. 5.1. In order to facilitate



A Study of Maintainability in Evolving Open-Source Software 273

Table 3. Spearman rank correlation between software size according to package, class,
method or statement count and system maintainability. FreeMind data on top row,
jEdit on middle row and TuxGuitar on bottom row.

Package Class Method Statement

MI −0.46 −0.67 −0.71 −0.77

−0.32 −0.29 −0.40 −0.45

0.76 0.71 0.69 0.57

ARiSA −0.29 −0.49 −0.53 −0.62

−0.51 −0.53 −0.54 −0.55

0.64 0.63 0.64 0.69

SQALE −0.23 0.10 0.19 0.38

0.12 0.14 0.21 0.24

−0.68 −0.73 −0.74 −0.79

replicating or extending our results, we made available the entire set of collected
and processed metric data [32].

RQ1: What is the Correlation between Application size and Main-
tainability? In our previous research [31,34] we showed that maintainability
measured according to quantitative metrics was not correlated with software
size, at least not when the latter was expressed using the number of the system’s
classes. We extended our investigation to also cover the number of a system’s
packages, methods and statements10. Since target applications were developed
using Java, there was a strong and expected correlation between class and source
file counts, so this evaluation was omitted.

We first carried out a Spearman rank correlation between the size measures
for each application. We found very high correlation between all measures for
application size (ρ ≥ 0.8), especially between the number of classes, methods
and statements (ρ ≥ 0.96) for each target application.

We repeated the correlation analysis between the size measurements and
reported values for maintainability, which we report using Table 3. Note that
higher scores correspond to a decrease in maintainability according to the ARiSA
and SQALE models, and an increase according to the MI. Results for FreeMind
and jEdit show similarity across all three models. We note that increased values
for the MI are accounted for by joint increases across its components (state-
ment count, Halstead volume and cyclomatic complexity). Values produced by
our generalization of the ARiSA model are skewed by small files added in later
software versions; these keep mean values low, leading to what we believe are
under-reported changes to maintainability. The SQALE model is driven by static
analysis of the abstract syntax tree, and is not directly influenced by size-related
metric values. This also explains the weak correlation with the number of state-
ments, which is the lowest-level size metric considered.
10 Collected using the Metrics Reloaded plugin for IntelliJ.



274 A.-J. Molnar and S. Motogna

As shown in Fig. 3, TuxGuitar was evaluated as having very good maintain-
ability [34]. All releases remained well below the 5% threshold required to receive
an A rating according to SQALE. We believe this to be the result of a conscien-
tious effort on the behalf of its developers. Important increases to system size,
such as those for versions 1.0rc1, 1.3 and 1.5 did not have an important effect
on measured maintainability. In version 1.0rc1, an increase in system size was
actually coupled with improved maintainability according to SQALE.

Our analysis showed the MI and ARiSA models to be influenced by software
size, which is known to have a confounding effect [14]. The SQALE model did not
appear to have been influenced by it, as it does not rely on size-related software
metrics.

RQ2: What Drives Maintainability Changes between Application Ver-
sions? We base our answer to RQ2 on the data from Fig. 3, which shows
system-level maintainability according to the three models. Data is normalized
to the [0, 100] range. Our previous research [34] showed that of the proposed
quantitative models, technical debt was the most suitable for evaluating system-

Fig. 3. Maintainability of FreeMind (top), jEdit (middle) and TuxGuitar (bottom)
versions in our study. SQALE model uses the scale on the right side.



A Study of Maintainability in Evolving Open-Source Software 275

level quality. As such, we focus on the SQALE rating to quantify system-level
maintainability [34]. According to it, most application versions have good main-
tainability, with most studied versions receiving an A rating; the only exceptions
were FreeMind versions 0.8.0 and 0.8.1, which earned a B SQALE rating. We
also note that most TuxGuitar versions have a TDR ≤ 2%, as during our pre-
vious evaluation we found evidence of concerted developer action to improve
software quality.

Examining the data in Fig. 3 revealed that system-level maintainability did
not suffer major changes across most versions. As such, we identified key ver-
sions [34] during which quantitative changes were detected. In the case of Free-
Mind, versions 0.8.* were the result of significant application development that
increased application size from 12.5k LOC to 65.5k LOC, with an additional
370 days worth of technical debt added [33,34]. Most of the added debt was
fixed in version 0.9.0Beta17 with no loss to functionality; our detailed analysis
of subsequent versions only revealed small-scale maintainability changes [33].

Our evaluation of jEdit version 4.0pre4 revealed that additional function-
alities such as improved management of the text area, buffer events and the
document model, implemented using 11k LOC added an extra month of tech-
nical debt. However, our detailed examination [33] revealed that versions after
4.0 gradually reduced the level of debt and the addition of significant additional
quality issues appears to have been avoided.

Most of the changes observed within TuxGuitar were of smaller significance,
as it already presented very good maintainability. The most significant version
shown in Fig. 3 is 1.0rc1; here, we observed that extensive refactoring efforts on
existing debt were coupled with the introduction of additional issues [33], most
likely as part of the additional support for the song collection browser and the
inclusion of new plugins. Overall, technical debt was improved to a level that
was maintained until the most recent released version.

RQ3: How are Maintainability Changes Reflected at the Package
Level? Our previous evaluation [34] revealed that among studied models,
SQALE was the one best suited for system and package-level quality assessment.
As such, we used SonarQube’s estimation of required maintainability effort at
package level for each of the application versions in our study. We identified
core packages that existed within all studied versions, as well as packages intro-
duced at some point and removed at a later time. We found this to be typical of
TuxGuitar, for which we counted a total of 354 packages across all versions.
On the other hand, jEdit’s entire code base consisted of 30 packages, while the
FreeMind code base covering all releases was comprised of 41 packages.

We represent the estimated time to address at least half the total maintain-
ability effort for each application in Fig. 4. We show that most maintainability
issues were concentrated on a small subset of application packages. For instance,
the six packages represented for jEdit account for almost 80% total maintenance
effort, while the 24 packages illustrated for TuxGuitar cover half the required
effort.



276 A.-J. Molnar and S. Motogna

Fig. 4. Estimated maintainability effort at package level according to the SQALE
model for FreeMind (top), jEdit (middle) and TuxGuitar (bottom, * stands for
org.herac.tuxguitar) versions. Represented packages account for at least half of total
effort per application.

Figure 4 shows FreeMind and jEdit versions to be very stable with regards
to the distribution of the required maintenance effort. In the case of FreeMind,
we discovered it was mainly generated code from the [...].generated.instance.impl
package that caused the severe decrease in maintainability, while in the remaining
application packages the maintenance effort did not change significantly. For
TuxGuitar, we noted the changes in versions 1.0rc1 and 1.3.0. While our previous
evaluation already showed system maintainability to be affected within these
versions [34], it was package-level examination that revealed changes to plugin
code from the org.herac.tuxguitar.io.gp package as the cause of changes in version
1.0rc1.

Figure 4 also reveals information about application architecture. Both Free-
Mind and jEdit were built around a relatively small, but constant set of packages
and suffered most changes during the development of their early versions [31].
In the case of TuxGuitar, we found each plugin to have a separate package, with
many input-output plugins maintaining separate packages for each implementa-
tion versions. This resulted in a more complex and change-prone hierarchy.



A Study of Maintainability in Evolving Open-Source Software 277

Fig. 5. Value of the Spearman correlation coefficient between maintainability mod-
els applied at class level for FreeMind (top), jEdit (middle) and TuxGuitar (bottom)
versions.

We found that the main advantage of drilling down to package level regarded
the precise identification of the locations and dimensions of the maintenance
effort. When combined with a longitudinal analysis [33], a package-level evalu-
ation can help with program comprehension and testing, as it can be used to
discard application areas that have not undergone changes.

RQ4: What are the Strengths and Weaknesses of the Proposed Main-
tainability Models? Our answer for RQ4 takes into account our existing
research in software maintainability [31,34] and the long-term evolution of tech-
nical debt [33], as well as the results of the detailed examination carried out for
RQ2 and RQ3. We found that the SQALE model, and its implementation in
the form of technical debt to be the most accurate quantitative quality measure
among those studied. Technical debt evaluation provides a general assessment
of a given system, but can also be employed at a finer level of granularity to
uncover the root causes of detected issues [33]. However, existing criticism out-
lined in Sect. 3.3 point against using it without prejudice to evaluate software
quality.

The ARiSA model is strictly based on the evaluation of extreme values for
class level object-oriented metrics. We found that aggregating class-level scores
did not produce useful results, as in many cases quality issues were masked,
or completely countered by large numbers of small, low complexity classes that



278 A.-J. Molnar and S. Motogna

influenced mean values. The same criticism can be brought against the MI, com-
puting which is limited to three metrics, none of which specific to the object-
oriented domain. The important advantage of the MI is that it remains language-
independent and has a straightforward implementation. As such, in order to
examine its potential for usage at a finer-grained level, we carried out a Spear-
man rank correlation between the result produced using the proposed models at
class level, as shown in Fig. 5. The only consistent correlation observed occurred
between the MI and technical debt with ρ ≈ −0.6. We believe this is an indi-
cation that the MI can be employed to quickly discover code complexity issues
at method and class levels. However, a more detailed examination is required in
order to fully describe and characterize this result.

We believe the ARiSA model remains well suited to discovering quality hot
spots within the context of a singular application [34]. While it employs an
important number of object-oriented measurements, the model derives value
thresholds from the evaluated system’s context, making it unsuitable for cross-
application and cross-version comparisons.

5.5 Threats to Validity

We structured the case study according to existing best practices [40]. First, the
main objective and research question were defined, after which target application
selection took place. This was followed by the data collection and analysis phases.
We carried out a manual examination of source code in order to complement the
results from the quantitative models, and open-sourced the data to facilitate
replicating or extending our study [32].

Internal threats were addressed by complementing automated evaluation
with a manual examination of the source code; this step was also assisted by
source code in order to prevent any observer bias. Data analysis was carried out
using previously used research tooling [31,33,34,36] to avoid the possibility of
software defects influencing evaluation result.

Quantitative models employed were selected according with their previous
use in research and practice, as well as varying implementation complexity.
MI values were calculated using both statement count and LOC, while for the
ARiSA model we studied the effect of calculating the final value using all three
Pythagorean means.

We addressed external threats by limiting target application selection to GUI-
driven Java applications. While this limited the applicability of our study’s con-
clusions, it also enabled data triangulation and directly comparing results across
applications. To the best of our knowledge, there were no overlaps between tar-
get application development teams. Furthermore, neither of the present study’s
authors were involved with their development.

The entire data set of extracted metric values together with versions pro-
cessed by our tooling are open-sourced and freely available. We believe this to
be the most important step required in order to solidify our results and encourage
further work to extend them.



A Study of Maintainability in Evolving Open-Source Software 279

6 Conclusion and Future Work

In the present paper we continued our empirical research targeting the relation
between metric values and software product quality [31,33,34,36]. We confirmed
our initial findings regarding the independence of maintainability effort from soft-
ware size [34]. We also confirmed initial expectations regarding the gradual, but
sustained increase in application size during development. However, we could
also identify key versions where extensive refactoring kept application size and
complexity in check. Another interesting observation was that mature applica-
tion versions no longer introduced significant quality issues. We first observed
this when studying software metric values [35,36] and confirmed it through eval-
uating the data summarized in Fig. 3. We believe this can be explained through
an already matured application architecture, together with the existence of a
core of experienced contributors.

Our evaluation also uncovered the existence of milestone versions, character-
ized by significant changes at source code level and the addition of many new
features. Versions such as FreeMind 0.8.0, jEdit 4.0pre4 or TuxGuitar 1.0rc1
are such examples, where changes to the application had an important effect on
software quality. The case of TuxGuitar 1.0rc1 is especially worth mention, as a
development milestone was coupled with refactoring efforts that lowered main-
tenance effort. With regards to the root causes of changes to maintainability,
we consistently found the main drivers to be significant changes to application
presentation, functionality and extensive refactoring.

Most of the existing research is limited to evaluating software quality at
system level. In our study, we carried out a finer grained analysis at applica-
tion package level in order to improve our understanding of the distribution
and evolution of the maintenance effort. Figure 4 illustrates this for the most
maintenance-heavy application packages. This allowed us to discover the root
cause of the maintenance spike in FreeMind 0.8.0, as well as the effects of the
plugin-centered architecture on the distribution and evolution of maintenance
effort for TuxGuitar. Especially in the case of TuxGuitar, Fig. 4 illustrates how
maintenance effort was redistributed across the packages in versions with signif-
icant changes to source code.

Finally, our study provided an opportunity to examine the maintainability
models themselves. We found the MI to remain useful at a very fine granularity
level, and can be used at method or class level to ensure code complexity remains
in check. We found the ARiSA model to be useful at application level, but its
particularities preclude it from being useful when comparing applications. This
can be achieved using the SQALE methodology and its implementations, which
provide a language agnostic measurement scale.

Further directions targeting this research topic include extending the evalu-
ation from two perspectives. First, to consider other types of software systems,
such as mobile or distributed applications. Second, to investigate the effect the
development platform and programming language have on maintenance effort.



280 A.-J. Molnar and S. Motogna

References

1. Al-Qutaish, R.E., Ain, A.: Quality models in software engineering literature:
an analytical and comparative study. Technical report 3 (2010). http://www.
americanscience.org. editor@americanscience.org166

2. Almugrin, S., Albattah, W., Melton, A.: Using indirect coupling
metrics to predict package maintainability and testability. J. Syst.
Softw. 121, 298–310 (2016). https://doi.org/10.1016/j.jss.2016.02.024.
http://www.sciencedirect.com/science/article/pii/S016412121600056X

3. ARISA Compendium, VizzMaintenance: Technical documentation of the
VizzMaintenance metric extraction tool (2019). http://www.arisa.se/products.
php?lang=en

4. Arlt, S., Banerjee, I., Bertolini, C., Memon, A.M., Schaf, M.: Grey-box GUI testing:
efficient generation of event sequences. CoRR abs/1205.4928 (2012)

5. Avelino, G., Constantinou, E., Valente, M.T., Serebrenik, A.: On the abandon-
ment and survival of open source projects: an empirical investigation. In: 2019
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–12 (2019)

6. Barkmann, H., Lincke, R., Löwe, W.: Quantitative evaluation of software quality
metrics in open-source projects. In: 2009 International Conference on Advanced
Information Networking and Applications Workshops, pp. 1067–1072, May 2009.
https://doi.org/10.1109/WAINA.2009.190

7. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Software Eng. 22(10), 751–761 (1996).
https://doi.org/10.1109/32.544352

8. Caldiera, V.R.B.G., Rombach, H.D.: The goal question metric approach. Encycl.
Softw. Eng. 528–532 (1994)

9. Chidamber, S., Kemerer, C.: A metric suite for object- oriented design. IEEE
Trans. Software Eng. 20(6), 476–493 (1994)

10. Counsell, S., et al.: Re-visiting the ‘Maintainability Index’ metric from an object-
oriented perspective. In: 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications, pp. 84–87 (2015)

11. Cunningham, W.: The WyCash portfolio management system. SIGPLAN
OOPS Mess. 4(2), 29–30 (1992). https://doi.org/10.1145/157710.157715.
http://doi.acm.org/10.1145/157710.157715

12. van Deursen, A.: Think twice before using the maintainability index
(2014). https://avandeursen.com/2014/08/29/think-twice-before-using-the-
maintainability-index/

13. Döhmen, T., Bruntink, M., Ceolin, D., Visser, J.: Towards a benchmark for the
maintainability evolution of industrial software systems. In: 2016 Joint Conference
of the International Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM-MENSURA),
pp. 11–21 (2016)

14. Emam, K.E., Benlarbi, S., Goel, N., Rai, S.N.: The confounding effect of class size
on the validity of object-oriented metrics. IEEE Trans. Softw. Eng. 27(7), 630–650
(2001). https://doi.org/10.1109/32.935855

15. Fowler, M.: Technical debt (2019). https://martinfowler.com/bliki/TechnicalDebt.
html

16. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Software Eng. 31(10),
897–910 (2005). https://doi.org/10.1109/TSE.2005.112

http://www.americanscience.org
http://www.americanscience.org
https://doi.org/10.1016/j.jss.2016.02.024
http://www.sciencedirect.com/science/article/pii/S016412121600056X
http://www.arisa.se/products.php?lang=en
http://www.arisa.se/products.php?lang=en
https://doi.org/10.1109/WAINA.2009.190
https://doi.org/10.1109/32.544352
https://doi.org/10.1145/157710.157715
http://doi.acm.org/10.1145/157710.157715
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://doi.org/10.1109/32.935855
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html
https://doi.org/10.1109/TSE.2005.112


A Study of Maintainability in Evolving Open-Source Software 281

17. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintain-
ability. In: Quality of Information and Communications Technology, 6th Interna-
tional Conference on the Quality of Information and Communications Technology,
QUATIC 2007, Lisbon, Portugal, 12–14 September 2007, Proceedings, pp. 30–39
(2007). https://doi.org/10.1109/QUATIC.2007.8

18. Hynninen, T., Kasurinen, J., Taipale, O.: Framework for observing the maintenance
needs, runtime metrics and the overall quality-in-use. J. Softw. Eng. Appl. 11, 139–
152 (2018). https://doi.org/10.4236/jsea.2018.114009

19. ISO/IEC 25010: Software quality standards (2011). http://www.iso.org
20. ISO/IEC 9126–1: Software quality characteristics (2001)
21. Lenarduzzi, V., Lomio, F., Huttunen, H., Taibi, D.: Are SonarQube rules inducing

bugs? In: 2020 IEEE 27th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER) (2020). https://doi.org/10.1109/saner48275.
2020.9054821. http://dx.doi.org/10.1109/SANER48275.2020.9054821

22. Letouzey, J.L.: The SQALE method for evaluating technical debt. In: Proceedings
of the Third International Workshop on Managing Technical Debt, MTD 2012, pp.
31–36. IEEE Press (2012). http://dl.acm.org/citation.cfm?id=2666036.2666042

23. Li, W., Henry, S.: Maintenance metrics for the object oriented paradigm. In: IEEE
Proceedings of the First International Software Metrics Symposium, pp. 52–60
(1993)

24. Metrics library, N.: (2019). https://github.com/etishor/Metrics.NET
25. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: Pro-

ceedings of the 2008 International Symposium on Software Testing and Analysis -
ISSTA 2008 (2008). https://doi.org/10.1145/1390630.1390648

26. Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz, W., Pinto, G.: Are
static analysis violations really fixed? A closer look at realistic usage of Sonar-
Qube. In: Proceedings of the 27th International Conference on Program Com-
prehension,ICPC 2019, pp. 209–219. IEEE Press (2019). https://doi.org/10.1109/
ICPC.2019.00040. https://doi.org/10.1109/ICPC.2019.00040

27. Marinescu, R.: Measurement and quality in object oriented design. Ph.D. thesis,
Faculty of Automatics and Computer Science, University of Timisoara (2002)

28. Marinescu, R.: Measurement and quality in object-oriented design, vol. 2005, pp.
701–704, October 2005. https://doi.org/10.1109/ICSM.2005.63

29. Martini, A., Bosch, J., Chaudron, M.: Investigating architectural technical debt
accumulation and refactoring over time. Inf. Softw. Technol. 67(C), 237–253
(2015). https://doi.org/10.1016/j.infsof.2015.07.005

30. Microsoft VS Docs (2020). https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values

31. Molnar, A., Motogna, S.: Discovering maintainability changes in large software
systems. In: Proceedings of the 27th International Workshop on Software Mea-
surement and 12th International Conference on Software Process and Product
Measurement, IWSM Mensura 2017, pp. 88–93. ACM, New York (2017). https://
doi.org/10.1145/3143434.3143447. http://doi.acm.org/10.1145/3143434.3143447

32. Molnar, A.J.: Quantitative maintainability data for FreeMind, jEdit and Tux-
Guitar versions, September 2020. https://doi.org/10.6084/m9.figshare.12901331.
v1. https://figshare.com/articles/dataset/Quantitative maintainability data for
FreeMind jEdit and TuxGuitar versions/12901331

33. Molnar, A.J., Motogna, S.: Long-term evaluation of technical debt in open-source
software (2020). https://dl.acm.org/doi/abs/10.1145/3382494.3410673

https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.4236/jsea.2018.114009
http://www.iso.org
https://doi.org/10.1109/saner48275.2020.9054821
https://doi.org/10.1109/saner48275.2020.9054821
http://dx.doi.org/10.1109/SANER48275.2020.9054821
http://dl.acm.org/citation.cfm?id=2666036.2666042
https://github.com/etishor/Metrics.NET
https://doi.org/10.1145/1390630.1390648
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICSM.2005.63
https://doi.org/10.1016/j.infsof.2015.07.005
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values
https://doi.org/10.1145/3143434.3143447
https://doi.org/10.1145/3143434.3143447
http://doi.acm.org/10.1145/3143434.3143447
https://doi.org/10.6084/m9.figshare.12901331.v1
https://doi.org/10.6084/m9.figshare.12901331.v1
https://figshare.com/articles/dataset/Quantitative_maintainability_data_for_FreeMind_jEdit_and_TuxGuitar_versions/12901331
https://figshare.com/articles/dataset/Quantitative_maintainability_data_for_FreeMind_jEdit_and_TuxGuitar_versions/12901331
https://dl.acm.org/doi/abs/10.1145/3382494.3410673


282 A.-J. Molnar and S. Motogna

34. Molnar., A., Motogna, S.: Longitudinal evaluation of open-source software main-
tainability. In: Proceedings of the 15th International Conference on Evaluation
of Novel Approaches to Software Engineering - Volume 1: ENASE, pp. 120–131.
INSTICC, SciTePress (2020). https://doi.org/10.5220/0009393501200131

35. Molnar, A.-J., Neamţu, A., Motogna, S.: Evaluation of software product quality
metrics. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2019.
CCIS, vol. 1172, pp. 163–187. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40223-5 8

36. Molnar, A., Neamçu, A., Motogna, S.: Longitudinal evaluation of software qual-
ity metrics in open-source applications. In: Proceedings of the 14th International
Conference on Evaluation of Novel Approaches to Software Engineering - Vol-
ume 1: ENASE, pp. 80–91. INSTICC, SciTePress (2019). https://doi.org/10.5220/
0007725600800091

37. Motogna, S., Vescan, A., Serban, C., Tirban, P.: An approach to assess maintain-
ability change. In: 2016 IEEE International Conference on Automation, Quality
and Testing, Robotics (AQTR), pp. 1–6 (2016). https://doi.org/10.1109/AQTR.
2016.7501279

38. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintainabil-
ity. In: Proceedings Conference on Software Maintenance 1992, pp. 337–344 (1992).
https://doi.org/10.1109/ICSM.1992.242525

39. Lincke, R., Lowe, W.: Compendium of Software Quality Standards and Metrics
(2019). http://www.arisa.se/compendium/quality-metrics-compendium.html

40. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. (2009). https://doi.org/10.1007/
s10664-008-9102-8

41. SonarSource: SonarQube (2019). https://www.sonarqube.org
42. Tang, M.H., Kao, M.H., Chen, M.H.: An empirical study on object-oriented met-

rics. In: Proceedings of the 6th International Symposium on Software Metrics,
METRICS 1999, pp. 242–249. IEEE Computer Society, Washington (1999). http://
dl.acm.org/citation.cfm?id=520792.823979

43. Virtual Machinery: Discussion on measuring the Maintanability Index (2019).
http://www.virtualmachinery.com/sidebar4.htm

44. Welker, K.: Software Maintainability Index revisited. J. Defense Softw. Eng. (2001).
https://www.osti.gov/biblio/912059

45. Xu, J., Ho, D., Capretz, L.F.: An empirical validation of object-oriented design
metrics for fault prediction. J. Comput. Sci. 4, 571–577 (2008)

46. Yin, R.K.: Case Study Research and Applications - Design and Methods. SAGE
Publishing, Thousand Oaks (2017)

47. Yuan, X., Memon, A.M.: Generating event sequence-based test cases using
GUI run-time state feedback. IEEE Trans. Softw. Eng. 36(1), 81–95 (2010).
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.68

https://doi.org/10.5220/0009393501200131
https://doi.org/10.1007/978-3-030-40223-5_8
https://doi.org/10.1007/978-3-030-40223-5_8
https://doi.org/10.5220/0007725600800091
https://doi.org/10.5220/0007725600800091
https://doi.org/10.1109/AQTR.2016.7501279
https://doi.org/10.1109/AQTR.2016.7501279
https://doi.org/10.1109/ICSM.1992.242525
http://www.arisa.se/compendium/quality-metrics-compendium.html
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://www.sonarqube.org
http://dl.acm.org/citation.cfm?id=520792.823979
http://dl.acm.org/citation.cfm?id=520792.823979
http://www.virtualmachinery.com/sidebar4.htm
https://www.osti.gov/biblio/912059
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.68

	A Study of Maintainability in Evolving Open-Source Software
	1 Introduction
	2 Software Quality Models
	3 Maintainability Models
	3.1 Maintainability Index
	3.2 ARiSA Compendium Model
	3.3 SQALE Model

	4 State of the Art
	5 Case Study
	5.1 Research Questions
	5.2 Target Applications
	5.3 Data Collection
	5.4 Analysis
	5.5 Threats to Validity

	6 Conclusion and Future Work
	References




