
Raian Ali
Hermann Kaindl
Leszek A. Maciaszek (Eds.)

15th International Conference, ENASE 2020
Prague, Czech Republic, May 5–6, 2020
Revised Selected Papers

Evaluation of Novel Approaches
to Software Engineering

Communications in Computer and Information Science 1375

Communications
in Computer and Information Science 1375

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Raian Ali • Hermann Kaindl •

Leszek A. Maciaszek (Eds.)

Evaluation of Novel Approaches
to Software Engineering

15th International Conference, ENASE 2020
Prague, Czech Republic, May 5–6, 2020
Revised Selected Papers

123

Editors
Raian Ali
Hamad Bin Khalifa University
Doha, Qatar

Hermann Kaindl
TU Wien
Vienna, Austria

Leszek A. Maciaszek
Wrocław University of Economics Institute
of Business Informatics
Wrocław, Poland

Department of Computing
Macquarie University
Sydney, Australia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-70005-8 ISBN 978-3-030-70006-5 (eBook)
https://doi.org/10.1007/978-3-030-70006-5

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-70006-5

Preface

The present book includes extended and revised versions of a set of selected papers
from the 15th International Conference on Evaluation of Novel Approaches to Soft-
ware Engineering (ENASE 2020), held as an online event from May 5 to 6, 2020.

ENASE 2020 received 96 paper submissions from 30 countries, of which 20% are
finally included in this book as extended versions. These papers were selected by the
event chairs and their selection is based on a number of criteria that include the
classifications and comments provided by the program committee members, the session
chairs' assessment and also the program chairs' global view of all papers included in the
technical program. The authors of selected papers were then invited to submit a revised
and extended version of their paper having at least 30% innovative material. In addi-
tion, an extended version of a paper from ENASE 2019 and a keynote paper of ENASE
2020 are included in this book.

The mission of ENASE (Evaluation of Novel Approaches to Software Engineering)
is to be a prime international forum to discuss and publish research findings and IT
industry experiences with relation to novel approaches to software engineering. The
conference acknowledges evolution in systems and software thinking due to contem-
porary shifts of computing paradigms to e-services, cloud computing, mobile con-
nectivity, business processes, and societal participation. By publishing the latest
research on novel approaches to software engineering and by evaluating them against
systems and software quality criteria, ENASE conferences advance knowledge and
research in software engineering, including and emphasizing service-oriented,
business-process–driven, and ubiquitous mobile computing. ENASE aims at identi-
fying the most hopeful trends and proposing new directions for consideration by
researchers and practitioners involved in large-scale systems and software develop-
ment, integration, deployment, delivery, maintenance and evolution.

The papers included in this book contribute to the understanding of relevant trends
of current research on novel approaches to software engineering for the development
and maintenance of systems and applications, specifically with relation to: business
process management and engineering, requirements engineering, ontology engineering,
software architecture, aspect-oriented programming, parallel programming support,
automated program repair, software patterns, cloud services, middleware, model-based
software engineering, security risks, functional safety, big data, open-source software,
energy-efficient software design, IoT systems development, and self-adaptive systems.

We would like to thank all the authors for their contributions and the reviewers for
ensuring the quality of this publication.

May 2020 Raian Ali
Hermann Kaindl

Leszek A. Maciaszek

Organization

Conference Chair

Leszek Maciaszek Wroclaw University of Economics, Poland
and Macquarie University, Australia

Program Co-chairs

Raian Ali Hamad Bin Khalifa University, Qatar
Hermann Kaindl TU Wien, Austria

Program Committee

Marco Aiello University of Stuttgart, Germany
Frederic Andres National Institute of Informatics, Japan
Issa Atoum The World Islamic Sciences and Education University,

Jordan
Richard Banach University of Manchester, UK
Jan Blech Aalto University, Finland
Iuliana Bocicor Babeș-Bolyai University, Romania
Jessie Carbonnel LIRMM, CNRS and University of Montpellier, France
Glauco Carneiro Universidade Salvador (UNIFACS), Brazil
Ruzanna Chitchyan University of Bristol, UK
William Chu Tunghai University, Taiwan, Republic of China
Rebeca Cortázar University of Deusto, Spain
Guglielmo De Angelis CNR - IASI, Italy
Fatma Dhaou FSEG Tunis El Manar, Tunisia
Sophie Ebersold IRIT, France
Angelina Espinoza University College Cork (UCC), Ireland
Vladimir Estivill-Castro Griffith University, Australia
Anna Fasolino Università degli Studi di Napoli Federico II, Italy
Maria Ferreira Universidade Portucalense, Portugal
Tarik Fissaa ENSIAS Mohammed V University Rabat, Morocco
Stéphane Galland Université de Technologie de Belfort-Montbéliard,

France
Claude Godart University of Lorraine, France
José-María

Gutiérrez-Martínez
Universidad de Alcalá, Spain

Hatim Hafiddi INPT, Morocco
Peter Herrmann NTNU, Norway
Lom Hillah LIP6 (CNRS, Sorbonne Université), France
Mirjana Ivanović University of Novi Sad, Serbia

Stefan Jablonski University of Bayreuth, Germany
Stanisław Jarząbek Bialystok University of Technology, Poland
Dongwon Jeong Kunsan National University, Korea, Republic of
Özgür Kafalı University of Kent, UK
Georgia Kapitsaki University of Cyprus, Cyprus
Osama Khaled The American University in Cairo, Egypt
Siau-Cheng Khoo National University of Singapore, Singapore
Diana Kirk The University of Auckland, New Zealand
Piotr Kosiuczenko WAT, Poland
Jurgita Lieponienė Panevezys Applied Sciences University, Lithuania
Jorge López Airbus Defense and Space, France
Ivan Luković University of Novi Sad, Serbia
Lech Madeyski Wroclaw University of Science and Technology,

Poland
Nazim Madhavji University of Western Ontario, Canada
Johnny Marques Instituto Tecnológico de Aeronáutica, Brazil
Patricia Martín-Rodilla University of A Coruña, Spain
Francesco Mercaldo National Research Council of Italy (CNR), Italy
Breno Miranda Federal University of Pernambuco, Brazil
Arthur-Jozsef Molnar Babeș-Bolyai University, Romania
Ines Mouakher University of Tunis El Manar, Tunisia
Pornsiri Muenchaisri Chulalongkorn University, Thailand
Malcolm Munro Durham University, UK
Cornelius Ncube The British University in Dubai, UAE
Andrzej Niesler Wroclaw University of Economics, Poland
Zsuzsanna Onet-Marian Babeș-Bolyai University, Romania
Janis Osis Riga Technical University, Latvia
Meriem Ouederni IRIT/INPT, France
Mourad Oussalah Laboratoire Lina CNRS Fre 2729,

University of Nantes, France
Siew Hock Ow University of Malaya, Malaysia
Claus Pahl Free University of Bozen-Bolzano, Italy
Ricardo Pérez-Castillo Instituto de Tecnologías y Sistemas de Información

(ITSI), University of Castilla-La Mancha, Spain
Dana Petcu West University of Timișoara, Romania
Alexander Poth Volkswagen Aktiengesellschaft, Germany
Deepika Prakash NIIT University, India
Naveen Prakash IIITD, India
Adam Przybyłek Gdansk University of Technology, Poland
Elke Pulvermüller Osnabrück University, Germany
Łukasz Radliński West Pomeranian University of Technology

in Szczecin, Poland
Philippe Roose LIUPPA/IUT de Bayonne/UPPA, France
Irina Rychkova Université Paris 1 Panthéon-Sorbonne, France
Camille Salinesi Université Paris 1 Panthéon-Sorbonne, France
Antonella Santone University of Molise, Italy

viii Organization

Markus Schatten University of Zagreb, Croatia
Rainer Schmidt Munich University of Applied Sciences, Germany
Richa Sharma Lock Haven University, USA
Josep Silva Universitat Politècnica de València, Spain
Michał Śmiałek Warsaw University of Technology, Poland
Ioana Sora Politehnica University of Timișoara, Romania
Andreas Speck Christian-Albrecht University of Kiel, Germany
Maria Spichkova RMIT University, Australia
Witold Staniszkis Rodan Development, Poland
Chang-ai Sun University of Science and Technology Beijing, China
Jakub Swacha University of Szczecin, Poland
Stephanie Teufel University of Fribourg, Switzerland
Hanh Nhi Tran University of Toulouse, France
Christos Troussas University of West Attica, Greece
Feng-Jian Wang National Chiao Tung University, Taiwan,

Republic of China
Bernhard Westfechtel University of Bayreuth, Germany
Danny Weyns KU Leuven, Belgium
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
Igor Wojnicki AGH University of Science and Technology, Poland
Michalis Xenos University of Patras, Greece
Nina Yevtushenko Ivannikov Institute for System Programming of RAS,

Russian Federation
Alfred Zimmermann Reutlingen University, Germany

Additional Reviewers

Natalia Kushik Telecom SudParis, France
Abdelfetah Saadi Houari Boumediene University of Science

and Technology, Algeria

Invited Speakers

Xavier Franch Universitat Politècnica de Catalunya, Spain
Alon Halevy Facebook AI, USA
Stanisław Jarząbek Bialystok University of Technology, Poland

Organization ix

Contents

Service Science and Business Information Systems

Resilient Process Modeling and Execution Using Process Graphs 3
Frank Nordemann, Ralf Tönjes, Elke Pulvermüller, and Heiko Tapken

Application of Fuzzy Logic to Evaluate the Performance
of Business Process Models . 24

Mariem Kchaou, Wiem Khlif, and Faiez Gargouri

Cloud Services Discovery Assistant for Business Process Development 51
Hamdi Gabsi, Rim Drira, and Henda Hajjami Ben Ghezala

Software Engineering

Data-Driven Requirements Engineering: A Guided Tour 83
Xavier Franch

BiDaML in Practice: Collaborative Modeling of Big Data Analytics
Application Requirements . 106

Hourieh Khalajzadeh, Andrew J. Simmons, Tarun Verma,
Mohamed Abdelrazek, John Grundy, John Hosking, Qiang He,
Prasanna Ratnakanthan, Adil Zia, and Meng Law

Challenges and Decisions in WOBCompute Design, a P2P Computing
System Architecture . 130

Levente Filep

Reflections on the Design of Parallel Programming Frameworks 154
Virginia Niculescu, Adrian Sterca, and Frédéric Loulergue

Energy-Aware Pattern Framework: The Energy-Efficiency Challenge
for Embedded Systems from a Software Design Perspective 182

Marco Schaarschmidt, Michael Uelschen, Elke Pulvermüller,
and Clemens Westerkamp

Towards Evolvable Ontology-Driven Development with Normalized
Systems . 208

Marek Suchánek, Herwig Mannaert, Peter Uhnák, and Robert Pergl

Improving Node-RED Flows Comprehension with a Set
of Development Guidelines . 232

Diego Clerissi, Maurizio Leotta, and Filippo Ricca

A Study of Maintainability in Evolving Open-Source Software 261
Arthur-Jozsef Molnar and Simona Motogna

Risk Treatment: An Iterative Method for Identifying Controls. 283
Roman Wirtz and Maritta Heisel

Combined Similarity Based Automated Program Repair Approaches
for Expression Level Bugs . 311

Moumita Asad, Kishan Kumar Ganguly, and Kazi Sakib

A Multi-engine Aspect-Oriented Language with Modeling Integration
for Video Game Design . 336

Ben J. Geisler and Shane L. Kavage

Model-Based Timing Analysis of Automotive Use Case Developed
in UML . 360

Padma Iyenghar, Lars Huning, and Elke Pulvermueller

Internal Software Quality Evaluation of Self-adaptive Systems Using
Metrics, Patterns, and Smells . 386

Claudia Raibulet, Francesca Arcelli Fontana, and Simone Carettoni

A Workflow for Automatic Code Generation of Safety Mechanisms
via Model-Driven Development . 420

Lars Huning, Padma Iyenghar, and Elke Pulvermüller

HumaniSE: Approaches to Achieve More Human-Centric Software
Engineering . 444

John Grundy, Hourieh Khalajzadeh, Jennifer McIntosh, Tanjila Kanij,
and Ingo Mueller

Finding and Use of Source Code Changes for Aspect-Oriented Software 469
Marija Katic

Author Index . 495

xii Contents

Service Science and Business
Information Systems

Resilient Process Modeling and Execution
Using Process Graphs

Frank Nordemann1(B), Ralf Tönjes1, Elke Pulvermüller2, and Heiko Tapken1

1 Faculty of Engineering and Computer Science,
Osnabrück University of Applied Sciences,
Albrechtstr. 30, 49076 Osnabrück, Germany

{f.nordemann,r.toenjes,h.tapken}@hs-osnabrueck.de
2 Institute of Computer Science, University of Osnabrück,

Wachsbleiche 27, 49090 Osnabrück, Germany
elke.pulvermueller@informatik.uni-osnabrueck.de

Abstract. Unreliable communication challenges the execution of busi-
ness processes. Operation breaks down due to intermittent, delayed or
completely failing connectivity. The widely used Business Model and
Notation 2.0 (BPMN) provides limited flexibility to address connectivity-
related issues and misses a technique to verify process resilience. This
paper presents a graph-based approach to identify resilient process paths
in BPMN business processes. After a process-to-graph transition, graph-
based search algorithms such as shortest-path and all-paths are applied
to list resilient configurations. Evaluation of the approach confirms rea-
sonable performance requirements, good scalability characteristics, and
a significant resilience improvement. Recommendations for the practical
insert of algorithms and metrics conclude the paper.

Keywords: BPMN · Business process resilience · Directed acyclic
graphs · Unreliable communication environments

1 Introduction

Resilient modeling and execution of business processes can be a challenging
task. Depending on the scenario and application environment, communication
conditions between process participants may change over time. BPMN, the major
process definition language in the industry, does not focus on modeling and
maintaining resilient operation in terms of communication. For instance, there
are no options to verify resilient operation of a process at design time. The
integration of alternatives for failing message flows is often cumbersome and
inflexible. Domain experts are unsure whether or not processes will work as
expected. This results in breaking process executions, especially in unreliable
communication environments.

Based on the concepts of resilient BPMN (rBPMN), a BPMN metamodel
extension for unreliable environments, a graph-based approach to identify
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-70006-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_1

4 F. Nordemann et al.

resilient process paths is introduced. While the transition of process models
to directed acyclic graphs is explained in depth in [19], this paper focuses on
the evaluation of the graph-based resilience analysis of business processes. The
evaluation observes the performance requirements and scalability characteristics
of graph-based search algorithms operating on typical process graphs. Resilience
of identified paths is evaluated using scenario-driven metrics, recommendations
are provided for the practical insert of the approach. The main research contri-
butions of the paper include:

1. Implementation of a process graph generator for resilience evaluation.
2. Evaluation of graph algorithm performance requirements/scalability charac-

teristics on different devices.
3. Resilience evaluation of identified paths using scenario-driven metrics.
4. Recommendations for the practical insert of graph algorithms and resilience

metrics.

The paper is organized as follows: Challenges of resilient process operation are
outlined in Sect. 2, including a brief introduction of rBPMN. Section 3 describes
the transition of process models to directed graphs and the algorithms to identify
resilient process paths. The approach is evaluated in Sect. 4, followed by a dis-
cussion of evaluation results and recommendations for practical usage in Sect. 5.
Section 6 presents related work before a conclusion is presented in Sect. 7.

2 Challenges of Resilient Process Operation

This section outlines the shortcomings of BPMN when modeling and executing
processes taking place in unreliable communication environments. Furthermore,
rBPMN and its resilience strategies are introduced.

2.1 Business Model and Notation 2.0

BPMN 2.0 is one of the most prominent process definition languages in the indus-
try. Its metamodel allows to use a variety of modeling elements in different appli-
cation areas. If needed, an extension/adaptation of the metamodel is possible.

Unreliable communication challenges resilient process operation. Processes
may break down due to intermittent, delayed, or broken connectivity between
process participants. BPMN was not explicitly designed to handle unreli-
able communication. Domain experts often end up in cumbersome and time-
consuming process modeling. Many models only provide limited flexibility to
address connectivity issues. No mechanisms to verify resilient process design
exist, resulting in failing process executions.

The shortcomings of BPMN in aspects of addressing connectivity issues are
elaborated in the example presented in Fig. 1. A process Ex1 is calling service
functionality from a third party participant. Since message flows may fail due to
connectivity issues, alternatives for the service call have been implemented by a
domain expert.

Resilient Process Modeling and Execution Using Process Graphs 5

Ex
1

Process
succeeded

Call
Service A

Call
Service B

Call
Service C

Process
failed

Connectivity
issues

Connectivity
issues

Connectivity
issues

Service CService B

Service A

Fig. 1. Process Ex1 with limited flexibility, modeled in BPMN.

The process model only includes limited flexibility: If a service is not avail-
able, the next service is chosen. The sequence order of calling services is fixed.
If no service is callable, the process will fail. Instead of using interrupting error
events, gateways could be used to design the service choice in an agile way.
However, modeling effort would increase rapidly to intercept and to react on
failing message flows. The resulting process could still break down if no service
is available. As further outlined in [18], other modeling elements such as business
rule tasks can enhance the flexibility of process models. However, the required
knowledge about handing and modeling connectivity issues rises. The focus of
the actual model shifts from the original objective of the application domain to
handling technical aspects of communication. Furthermore, a domain expert is
not able to verify the model for reasons of resilience optimization.

2.2 Resilient BPMN

The metamodel extension resilient BPMN (rBPMN) adds new modeling ele-
ments to the BPMN tool palette addressing the issues of unreliable communica-
tion. The modeling elements are depicted in Fig. 2.

MovTask
(moveable) OppTask OppDynTask Autonomy

attribute
MovSubProc.
(moveable)

OppMessageFlow

MessageFlow (BPMN) OppPriorityFlow
1

a OppDecisionFlow Seamless
Opportunistic

Pool-Connectivity

MovParticipant
(moveable)

a
a

required
optional

Message Flow

Fig. 2. Modeling elements introduced by resilient BPMN (rBPMN).

6 F. Nordemann et al.

First of all, rBPMN extends traditional message flows of BPMN to inte-
grate opportunistic message flow types. Opportunistic message flows (OppMes-
sageFlows) represent data transfers between participants which may fail due to
connectivity issues. A scenario-related description of the estimated connectivity
characteristics is part of OppMessageFlows. Connectivity characteristics may be
i) estimated or be ii) based on statistics of previous process runs. The connec-
tivity descriptions are the foundation for the verification of process resilience,
elaborated subsequently.

Opportunistic Priority Flows (OppPriorityFlows) and Opportunistic Deci-
sion Flows (OppDecisionFlows) are specializations of OppMessageFlows. Both
types enable the definition of alternatives for failing message flows. While Opp-
PriorityFlows allow defining alternatives with fixed priorities, OppDecisionFlows
dynamically choose the most appropriate alternative based on characteristics of
the alternatives (e.g. resilience, accuracy of operation, cost).

Complete prevention of breaking message flows is not possible in many sce-
narios. Hence, rBPMN allows to move functionality across participants. By
moving functionality locally to a participant, process resilience is ensured even
if message flows break down. Movable Tasks, Sub-Processes and Participants
(MovTasks, MovSubProc., MovParticipants) offer functionality, which may be
used by Opportunistic Tasks (OppTaks/OppDynTasks). OppDynTasks further
extend process flexibility by adding dynamically appearing participants, which
have not been explicitly modeled before, as alternatives. Finally, annotations
allow to indicate locally moved functionality, the connectivity type of partici-
pants, and to label message flows as required or optional.

OppMessageFlows and its derivatives are associated with scenario-related
connectivity descriptions. A description includes expected characteristics like
the minimum and mean bandwidth as well as the possibility and timeout frame
for communication outages. Additional descriptions map out the message prop-
erties (e.g. message size, message interval) and the required Quality of Service
(QoS, e.g. delivery time, failure probability). Correlating the connectivity, mes-
sage and QoS descriptions allows to state whether or not a message can be sent
successfully. Calculations also allow predicting how likely the transfer is to fail.
Background information about resilience calculations of message flows and the
depicted rBPMN elements of Fig. 2 can be found in [18].

Resilience calculations in [18] only consider message flows and do not present
a process-wide resilience analysis. Besides, the paper misses mechanisms to auto-
mate the resilience analysis and to compare different resilient process paths.
These facts motivate the graph-based resilience approach developed in [19] and
evaluated in this paper.

3 From Process Models to Directed Acyclic Graphs

Resilience metrics, the transition from BPMN process models to graphs, and
the graph analysis are elaborated in this section. Since many of the contents
have been originally covered in [19], the presentation is shortened and focuses
on reader understanding for the remaining paper parts.

Resilient Process Modeling and Execution Using Process Graphs 7

3.1 Resilience Metrics

A communication-resilient process will not fail its operation in case of connec-
tivity failures. But, what is the right way to measure resilience? Can resilient
process configurations be compared to each other? Is one process path more
resilient than another? Is it possible to rank paths according to their resilience?

Whether a process path is resilient or not depends on the edges part of the
path. If a single edge (representing a message flow) is non-resilient based on
rBPMN’s calculation, the whole path will be non-resilient. Unforeseen changes
of communication characteristics at runtime may turn a path from resilient to
non-resilient.

A path includes a number of edges n ∈ N between process start and end.
The range of weight values representing resilience calculation results can be
defined according to the scenario requirements. An edge weight may be a value
Re ∈ R, a normalized value Re ∈ R|0 ≤ Re ≤ 1 or an inverted, normalized value
Re ∈ R|0 ≤ Re ≤ 1. Inverted values are useful when applying shortest-path
algorithms, which find the path with the minimum total edge weight.

Most scenarios require to differentiate resilient paths from each other. An
option is to apply the shortest-path approach by summarizing the edge weights
along the path, and to pick the path with best total weight value Rt =

∑n
i=1 Rei .

However, the chosen path probably includes non-resilient edges depending on the
concrete characteristics of the process graph.

If resilient operation is the main factor, the path which is most unlikely to
change to non-resilient operation due to unforeseen scenario behavior is desired.
A concept is to choose the path with the best path level Rl = min(Re1 , ..., Ren),
which represents the minimum edge weight along the path. Another option is to
calculate the total distance to non-resilient edges Rd along the path. Here, the
ranking of resilient paths is possible by prioritizing the path with the highest
distance to non-resilient operation. In scenarios missing a resilient process path,
Rd may help to find a path that barely misses resilient operation.

Other metrics such as the average Ra = Rt/n and maximum edge weight
Rmax = max(Re1 , ..., Ren) or the range of the path Rr = Rmax − Rl are useful
to understand the characteristics of the applied scenario. Keep in mind that
inverting edge weights also requires to invert metrics (e.g. min → max). The
evaluation in this paper focuses on metrics for the total path weight Rt, the path
level Rl, and the path distance Rd.

3.2 Transition Rules

Applying graph-based search algorithms on process models requires to translate
models into a graphs first. An example process Ex2 is provided in Fig. 3. Ex2
includes XOR-gateways to either call P1 using T1 or to execute T2, which
requires no communication to another participant.

8 F. Nordemann et al.

P1

Ex
2

T2

T1

Fig. 3. Process example Ex2.

T1

T2

P1 T1'

Ex2 Ex2

Fig. 4. Process graph of Ex2.

The corresponding process graph of Ex2 is depicted in Fig. 4. It is an Acyclic
Directed Graph (DAG) with a start vertex Ex2 and an end vertex Ex2’. Two
paths exist between both vertices: The upper path follows T1, and within T1 the
participant P1 is called. The lower path simply calls T2 and ends the process.

The graph transition completes with the addition of edge weights represent-
ing calculated resilience values. Two message flows that may fail are part of the
process: A service at P1 is requested and a reply is sent back to T1. The cor-
responding results of rBPMN’s resilience calculations are assigned to these two
edges. All other edges are assigned with resilient edge weights since they are not
exposed to unreliable communication.

A graph analysis of Ex2 will find at least one resilient process path (Ex2
→ T2 → Ex2’). The second path using T1 may be identified as resilient if the
connectivity between T1 and P1 is adequate.

The transition of process example Ex2 is fairly simple. Including BPMN ele-
ments such as inclusive gateways, parallel gateways with merging XOR-gateways,
multi-instance activities, (interrupting) events, loops, and alternatives for mes-
sage flows into process models leads to a much more complex transition proce-
dure. Decisions have to be taken if a process path needs to be separated/split
or extended. A detailed description of the process-to-graph transition including
a list of transition rules is provided by [19].

3.3 Graph Analysis

Graph-based search algorithms can find resilient process paths in a graph. The
following options should be considered for analysis.

Resilient Process Modeling and Execution Using Process Graphs 9

Shortest-Path. Shortest-path algorithms are typically used to find the graph
path with minimum cost. Therefore, edge weights along a path are summarized
and the path with the minimum total weight is selected. Different shortest-path
algorithms like Dijkstra, Bellman-Ford and A* are available.

All-Paths. All-paths algorithms find all available paths between a source and
a destination vertex. The provided list of paths is an optimal input for resilience
metrics, which may identify the path with best path level Rl or best path distance
Rd. If useful, it is also possible to combine metrics. For instance: If multiple paths
with the best path level Rl exist, the best total path weight Rt can be selected.

Shortest-Path on Adjusted Graph. Shortest-path algorithms do not prevent
the inclusion of non-resilient edges in the chosen path. Removing non-resilient
edges from the graph before analysis leads to finding a resilient path, if one is
available. However, an analysis can also result in finding no path, since edges
have been removed from the graph.

4 Evaluation

This section evaluates the usage of graph-based search algorithms for the iden-
tification of resilient process paths. A broad variety of possible process graphs
is analyzed. The evaluations’ focus is on identifying performance/time require-
ments to run the algorithms as well as their scalability in growing graphs. Fur-
thermore, the resilience of identified process paths is evaluated in regard to
operation in unreliable environments.

4.1 Evaluation Scenario

Processes often include a variety of participants, geographically distributed
across the area of application. The technical configuration of the partici-
pants/their devices may be represented by Cloud-Systems, PCs, smartphones,
sensors, and actors. Since many processes in unreliable communication envi-
ronments use performance-restricted devices, the evaluation is performed on a
Raspberry Pi Zero WH. This Raspberry-configuration features an ARM-1GHz-
processor (BCM 2835 SOC) and 512 MB of RAM.

The software measuring the performance requirements is written in Java
and executed on the Raspberry using the OpenJDK Runtime Environment 1.8.
The JGraphT-Library [13] provides the implementations for graph-based search
algorithms used in the evaluation.

4.2 Generation of Process Graphs

Depending on the objectives and application areas, business processes differ in
their characteristics in terms of structure and size.

10 F. Nordemann et al.

While the concrete structure of different processes varies, most include a
number of decision points. Based on the configuration and the value of process
variables, one path or another is chosen. In a graph, these decision points are
represented by multiple edges originating from a common vertex and splitting
the path to the process end. When analyzing graph-based search algorithms,
the number of graph decision points is the challenging aspect. Path sequences
avoiding decision points do not affect their performance significantly. Hence,
these sequences are not considered in this evaluation.

A process graph generator has been designed and implemented for the evalu-
ation of process resilience. The generator builds up a graph by splitting paths at
each following vertex. To reflect the varying sizes of possible process graphs, hor-
izontal and vertical graph layers (H-Layers/V-Layers) are introduced. H-Layers
define how often a path is split (horizontally) at a vertex. In other words, H-
Layers describe the number of outgoing edges of a vertex.

Additionally, V-Layers configure the number of follow-up vertices in which
the process path is split by outgoing edges. After the defined number of V-Layers,
the following vertical layers are used to merge the previously separated paths
again. This results in a DAG with a starting and an ending vertex, including a
high number of different process paths.

During the graph generation, a random weight value Re ∈ R|0 ≤ Re ≤ 1 is
assigned to every created edge. The weights represent normalized and inverted
resilience values. Inversion allows to easily comply with shortest-path algorithms.
In regard to resilience, a low weight has the meaning of a high resilience value
and vice versa. The threshold until what value a weight is considered to be
resilient is adjusted during different types of analysis in the evaluation.

The graph generation process with a continuous H-Layer of 2 is illustrated
in Figs. 5, 6, 7 and 8. Increasing the number of V-Layers quickly increases the
number of decision points in the graph. The graphs generated in this evaluation
include up to 7 V-Layers. However, the majority of business processes is expected
to use up to 5 V-Layers. Table 1 illustrates the number of vertices, number of
edges, and the edge-vertex-ratio in graphs with different H-Layers and V-Layers.

P

V10.4

V2

0.3 P'

0.3

0.6

-1--0-

Fig. 5. A generated process
graph with 1 V-Layer.

P

V10.3

V2

0.5 P'

V3
0.6

V40.8

V50.2

V6

0.5

V7

0.9

0.3

V81.0

0.3

0.9

0.1

-1- -2--0-

Fig. 6. Process graph with 2 V-Layers.

Resilient Process Modeling and Execution Using Process Graphs 11

P

V1
0.9

V2

0.9

P'

V3

0.5

V40.3

V50.1

V6

0.1

V7
0.4

V80.2

V9
0.2

V10
0.2

V11
0.8

V12
0.4

V130.8

V14

0.3

V15

0.5

0.9

V16
0.9

0.1

V17

0.8

0.5

V180.5

0.9

V19

0.8

0.6

V200.0

0.5

0.2

0.6

-1--0- -2- -3-

Fig. 7. Graph with 3 V-Layers.

P

V1

0.2

V2

0.6

P'

V3

0.8

V40.7

V50.1

V6

1.0

V7

0.0

V80.7

V91.0

V10
0.1

V110.1

V12
0.2

V130.3

V14

0.5

V15
0.9

V160.3

V171.0

V18

0.8

V19
0.1

V200.5

V210.7

V22

0.4

V23
0.5

V240.1

V250.1

V26

0.3

V270.3

V28

0.4

V290.2

V30

0.3

V31

0.1

0.5

V32

0.3

0.8

V33

0.9

0.8

V340.8

0.5

V35

0.5

0.3

V360.9

0.6

V37
0.1

1.0

V380.3

0.4

V39

0.4

0.0

V40

0.5

0.7

V41

0.4

0.5

V420.4

0.4

V43

0.9

0.3

V441.0

0.1

0.5

0.8

-3- -4--2--1--0-

Fig. 8. Graph with 4 V-Layers.

Table 1. Characteristics of generated graphs.

H-Layers V-Layers Vertices Edges Edge-Vertex-Ratio

2 1 4 4 1.0

2 2 10 12 1.2

2 3 22 28 1.27

2 4 46 60 1.31

2 5 94 124 1.32

2 6 190 252 1.33

2 7 382 508 1.33

3 3 53 78 1.47

3 4 161 240 1.49

4 3 106 168 1.58

4 4 426 680 1.60

4.3 Performance Analysis

The performance requirements are identified by measuring the time of a path
search operation. Time frames required to create new graph objects and to allo-
cate memory for them are excluded for reasons of comparability. The H-Layer is
configured to a value of 2, resulting in two outgoing edges of every splitting ver-
tex. The number of V-Layers varies throughout the performance analysis. The
JGraphT implementations of the shortest-path algorithms Dijkstra, Bellman-
Ford, and A* as well as an all-paths algorithm based on Dijkstra are part of the
evaluation.

12 F. Nordemann et al.

The computation times for a path search from process start to end are
depicted in Figs. 9 and 10. The charts are based on 1000 repetitions per V-Layer
and algorithm, the lines represent the mean values of these repetitions. The eval-
uation indicates the lowest computation time for Dijkstra, followed closely by
Bellman-Ford. Starting at V-Layers around 5 to 6, A* requires more compu-
tation time compared to the other two shortest-path algorithms. This may be
due to A* requiring a list of vertices as it’s heuristic, where only start and end
have been provided. At V-Layers 1 to 4, only minor differences exist between
shortest-path algorithms. Computations finish after 4 ms on average.

The most computation time was consumed by the all-paths algorithm since
it identifies all available paths from start to end. However, the difference to
shortest-path calculations only starts to increase radically at 5 to 7 V-Layers.
At V-Layers of 1 to 4, all-paths calculations end after up to 10 ms on average.

A closer look at the distribution of the computation times is provided by
Figs. 11 and 12. Each box encapsulates 50% of the measured time frame values,
the median is depicted by a (green) line within each box. The whiskers on top
and at the bottom of a box show the distribution of remaining values according
to [23], outliers are omitted.

The boxplot in Fig. 11 illustrates computation times at 7 V-Layers. Times for
the all-paths algorithm show a distribution around 75 to 120 ms. The shortest-
path algorithms take roughly 10% of that computation time (10–30 ms). At 4
V-Layers, the all-paths algorithm is able to operate in a closer range to the
shortest-path algorithms (cf. Fig. 12). Computation times stay below 12 ms.

Figure 13 depicts computation times for Dijkstra at V-Layers 1 to 7. While
computation times are about equal for graphs with up to 2 V-Layers (cf. Fig. 14),
the effort increases consistently with growing V-Layers. However, computation
times stay below 15 ms at all V-Layers in the evaluation.

The corresponding Cumulative Distribution Function (CDF) and Kernel
Density Estimations (KDE) for V-Layers 7 and 4 are illustrated in Figs. 15,
16, 17 and 18. Again, differences in required computation times at V-Layer 7
are identifiable between A* and all-paths compared to Dijkstra/Bellman-Ford.
The distribution of all-paths computation times varies more than the times of
the other algorithms. At V-Layer 4, some minor differences exist between the
shortest-path algorithms.

Summarizing the results for the computation time evaluation of the different
algorithms indicates minor differences at V-Layers 1 to 4. At V-Layers 5 to 7,
the gap between shortest-path and all-paths algorithms grows increasingly.

4.4 Resilience Analysis

Shortest-path algorithms calculate the lowest cost by summarizing the edge
weights of a path. As described in Sect. 3.3, this may not be optimal. The ques-
tion arises if the path level Rl or the path distance Rd are a better choice to mea-
sure and optimize resilience. Besides, the removal of non-resilient edges before
shortest-path calculations seems to be promising. These aspects are evaluated
subsequently.

Resilient Process Modeling and Execution Using Process Graphs 13

The all-paths algorithm returns a list of possible graph paths between start
and end of the process. Using this list, a path with an increased path level Rl

compared to the path level provided by a shortest-path analysis may be identi-
fied. Depending on the scenario-based definition of resilient edges, an increased
path level may result in a resilient path compared to a non-resilient shortest-
path.

Figure 19 compares the path level Rl of an all-paths and a Dijkstra shortest-
path analysis. While the total path weight Rt is lower (→ better) for Dijkstra,
the path level Rl is lower (→ better) for the all-paths analysis. The boxplot in
Fig. 20 illustrates the path level distribution for V-Layers 1 to 7. The all-paths-
variant can optimize the path level within limits. Depending on the resilient edge
definition this may result in a resilient all-paths choice against a non-resilient
shortest-path.

Fig. 9. Path computation times. Fig. 10. Computation times close-up.

Fig. 11. Distribution of computation
times at 7 V-Layers. (Colour figure
online)

Fig. 12. Distribution of computation
times at 4 V-Layers. (Colour figure
online)

14 F. Nordemann et al.

Fig. 13. Distribution of computation
times for Dijkstra.

Fig. 14. Close-up of computation time
distribution for Dijkstra.

Another optimization approach is to minimize the total distance to resilient
edges Rd (cf. Sect. 3.3). For the evaluation in Fig. 21 and Fig. 22, edges are defined
as resilient for Re ∈ R|0 ≤ Re ≤ 0.75. The charts indicate an optimized path
distance compared to the shortest-path, especially at high V-Layers. The median
in the boxplot of Fig. 22 remains at 0 for the all-paths analysis, which maps to
at least 50% of resilient paths. This is a considerable improvement compared to
the shortest-path outcomes.

Besides selecting paths from an all-paths analysis list based on chosen met-
rics, shortest-path algorithms can be tweaked to increase resilience. By deleting
all non-resilient edges from a graph before a shortest-path analysis, the resulting
path will represent a resilient configuration. However, there may not necessarily
be a path in the adjusted graph anymore.

Figure 23 and Fig. 24 illustrate the total path weights Rt and path levels
Rl for Dijkstra operating on an adjusted graph without non-resilient edges and
operating on an unmodified graph. Again, a resilient edge was configured as
Re ∈ R|0 ≤ Re ≤ 0.75. The charts indicate improvements for Rt and Rl.

Fig. 15. CDF at 7 V-Layers. Fig. 16. KDE at 7 V-Layers.

Resilient Process Modeling and Execution Using Process Graphs 15

Fig. 17. CDF at 4 V-Layers. Fig. 18. KDE at 4 V-Layers.

The most relevant aspect to compare the different approaches is to measure
the resilience of the identified paths. Resilient edge values of Re ∈ R|0 ≤ Re ≤
0.75 and Re ∈ R|0 ≤ Re ≤ 0.5 have been chosen for the evaluation. The number
of non-resilient paths within a test out of 1000 runs is depicted in Fig. 25 and
Fig. 26. The lines of a Dijkstra analysis based on an adjusted graph and two
all-paths analysis (based on path level Rl/path distance Rd) are compared to
a Dijkstra analysis on the original graph. In both charts, the all-paths analysis
and the Dijkstra adjusted graph analysis map on the same line. Results show a
significant improvement by reducing the number of non-resilient paths. However,
the improvements are minor when using a resilient edge value of 0.5.

Since the comparison between the optimized analysis variants shows no differ-
ence in terms of their resilience, it is unclear which analysis should be preferred.
A comparison of the computation times of the optimized analysis methods with
their original Dijkstra and all-paths variants is depicted in Fig. 27 and Fig. 28.
The results indicate a slightly larger computation time for the adjusted Dijkstra
analysis compared to Dijkstra on an unmodified graph. This is due to additional
effort for removing non-resilient edges from the graph. However, this is only valid
for up to 4 V-Layers. At higher V-Layers, the adjusted variant saves computation
time since many possible, but non-resilient paths have already been removed by

Fig. 19. Optimizing the path level Rl. Fig. 20. Distribution of Rl.

16 F. Nordemann et al.

Fig. 21. Path distance Rd. Fig. 22. Distribution of Rd.

deleting corresponding edges. The additional computation effort for the two all-
paths-based variants is minor. A difference between all-paths and all-paths-level
can be hardly identified in Fig. 27 and Fig. 28.

4.5 Scalability Analysis

The scalability of using graph-based search algorithms to find resilient paths
in process graphs is indicated by the Figures presenting the computation times
at different V-Layers in Sect. 4.3. This section continues the evaluation by fur-
ther increasing the graph size and adding a second, more powerful computation
device.

In addition to evaluations based on an H-Layer of 2, analysis for H-Layers of
3 and 4 have been added. An Apple MacBook Pro (Early 2015) with a 3,1 GHz
Dual-Core Intel Core i7 processor and 16 GB of RAM acts as a second device.
The Java Runtime Environment is configured to only use 0.5 GB of the available
RAM.

The charts for the extended analysis on the Raspberry Pi Zero are depicted in
Fig. 29 and Fig. 30. The Raspberry is challenged at a growing number of vertices

Fig. 23. Dijkstra operating on unmodi-
fied and on adjusted graphs.

Fig. 24. Rl-Distribution of Dijkstra
variants.

Resilient Process Modeling and Execution Using Process Graphs 17

Fig. 25. Resilient edge Re ∈ R|0 ≤
Re ≤ 0.75.

Fig. 26. Resilient edge Re ∈ R|0 ≤
Re ≤ 0.5.

and edges. Dijkstra shortest-path computations may take up to 1 s on average,
while all-paths computations may require up to 12 s.

The performance of the MacBook Pro is illustrated in Fig. 31 and Fig. 32.
Computations for all-paths may take up to 250 ms on average for an H-Layer
of 4. However, the results indicate that the MacBook Pro is not challenged by
graphs with high amounts of vertices and edges. This is especially the case for
shortest-path algorithms.

5 Discussion and Recommendations

The results of the evaluation executed on a Raspberry Pi Zero WH indicate
no performance and scalability issues when computing resilient paths in typi-
cal process graphs. The computation effort for all-paths algorithms is signifi-
cantly higher compared to shortest-path algorithms, especially in large graphs.
However, the required average time frame of about 90 ms for an all-paths cal-
culation at V-Layer 7 is comparatively small. In particular, this is true if a
process employs full-feature BPM runtime engines which usually show higher
performance demands. The extended evaluation with even larger graphs on a

Fig. 27. Path computation times. Fig. 28. Close-up of comp. times.

18 F. Nordemann et al.

Fig. 29. Computation times on
Raspberry Pi Zero WH.

Fig. 30. Close-up of computation
times on Raspberry Pi Zero WH.

Raspberry Pi Zero WH and a MacBook Pro demonstrates the scalability of the
graph-based resilience analysis. If computation time is not highly critical, a low-
performance device such as the Raspberry may be used. In other scenarios, a
more powerful device is suggested to speed up computation time.

Comparing the different shortest-path algorithms Dijkstra, Bellman-Ford,
and A* shows minor differences at V-Layers 1 to 5. Noticeable differences can
be identified between A* and Dijkstra/Bellman-Ford at V-Layers 6 and 7. This
may be due to A* requiring provision of vertices as a heuristic, and only the start
and end vertex were provided. In practice, selecting a shortest-path algorithm
may be based on available implementations and implementation effort.

It is believed that the majority of process graphs will not exceed the number
of 46 vertices/60 edges (e.g. 2 H-Layers/4 V-Layers). At least, this was deter-
mined for the OPeRAte research project [22]. OPeRAte orchestrates process
chains in the area of agriculture, where multiple actors cooperate in unreliable
communication environments (e.g. on farms and fields). The agricultural process
chains including slurry applications and maize harvest scenarios typically range
between V-Layers 2 to 4 with an H-Layer of 2. Here, a Raspberry Pi Zero WH
would fully address the performance requirements.

Computations for a resilient process path may be repeated multiple times
during process runtime. Communication conditions may change over time, result-
ing in changed resilience values/corresponding edge weights. Scenarios including
a high variability or new processes missing solid statistics are prone to recalcu-
lations. This should be considered when planning performance requirements.

A more critical performance consideration of graph algorithms should be
done when devices less powerful than the Raspberry Pi Zero WH are used. When
using sensors, actors, or microcontrollers, computation times may be significantly
larger with impacts on process operation.

The evaluation of process resilience with defined values for resilient edge
weights outlines a problem of shortest-path algorithms. The traditional way of
minimizing cost may include non-resilient edges in the path, resulting in failing
processes. Since all shortest-path algorithms follow the same objective, there is
no difference in the chosen process path among them.

Resilient Process Modeling and Execution Using Process Graphs 19

Fig. 31. Computation times on
MacBook Pro.

Fig. 32. Close-up of computation
times on MacBook Pro.

Analyzing the path list examined by an all-paths algorithm may result in
finding more resilient process paths. Choosing the path with the best path level
Rl is reducing the number of non-resilient paths. Considering the path with
the best path distance Rd represents another possibility. Although there is no
difference in resilience optimization between path level and path distance in
this evaluation, other scenarios may show different outcomes. The additional
computation effort for both all-paths variants is reasonable.

There is also a possibility to benefit from the reduced computation effort
of a shortest-path analysis and to identify resilient paths at the same time. By
removing non-resilient edges from the process graph prior to a shortest-path
algorithm, no unreliable edges are chosen as part of the shortest-path anymore.
The Dijkstra-Adjusted-Graph procedure is able to keep up with the two all-
paths variants in terms of reducing non-resilient process paths. However, this
approach may not be able to identify any path between start and end. This is not
recommended for dynamic scenarios with changing communication conditions,
where a previously considered non-resilient path may become resilient over time.

In general, it is recommended to examine the resilience of a process at design
time. Resilience may be estimated by using statistics about communication con-
ditions from previous process executions. In the case of new or dynamically
changing scenarios, it is suggested to include a buffer into the resilience estima-
tion values. If the conditions are worse than expected, there is still a chance that
the included buffer takes over the difference.

Design time analysis also helps to get familiar with the concrete scenario
characteristics. This eases to decide which resilience metric and graph-based
algorithm fulfill the requirements best. Finally, the process itself may be adapted
if the danger for non-resilient operation is too high.

The all-paths algorithm using the best path level and the Adjusted-Graph-
Dijkstra approach operated well in the evaluation. Both reduced the number
of non-resilient paths in the analysis and seem to be a good choice for many
application areas. If computation time is critical, the Dijkstra algorithm oper-
ating on an adjusted graph without any non-resilient edges has to be preferred.
The computation effort for the adjusted Dijkstra is less compared to all-paths

20 F. Nordemann et al.

algorithms, especially for high V-Layers. Adjusted Dijkstra is also a good choice
when there is solid knowledge about the resilience behavior of edge weights in a
scenario. The approach may be a suboptimal choice in dynamic scenarios since
there is a possibility of not finding any path.

In addition, the path level seems to be a good indicator to enhance resilience.
Choosing the path with minimum distance to resilience may also work well for
scenarios that do not find any resilient process path. The advantage of an all-
paths analysis is to have all available options on hand. If performance require-
ments are less strict, a combination of different metrics to choose the best avail-
able path may be an optimal, scenario-based solution.

As a recommendation, an all-paths analysis with selected metrics should
be compared to shortest-path analysis at design time. Identification of scenario
characteristics and the suitability of different metrics support the development of
a performance-optimized approach for runtime analysis. Using the graph-based
approach, automation of the resilience analysis at process runtime is possible. In
scenarios that have a high chance of becoming non-resilient, a warning may be
sent to the user about expected connectivity-issues in the future.

While resilience may be an important aspect of many business processes,
there are often other aspects to consider for process execution. A typical example
is provided in [20], which presents a graph-based approach to find an optimal
process path in terms of resilience, accuracy, cost, and time. The same applies to
the evaluation results of this paper: Edges do not have to describe the resilience
between activities and participants in unreliable communication environments,
but basically can be used for any aspect relevant to a process.

6 Related Work

The Business Process Model and Notation has been in the interest of research
and industry since its first release in 2004. The second version was released in
2011 [21] and is part of numerous publications and products, such as commercial
BPMN runtime engines. It has been extended in various ways for different use
cases [4], such as the Internet of Things [6,17] and Cyber Physical Systems [3,12].
It is applied in Wireless Sensor Networks [25] and was extended to inspect and
include Quality of Information [10,14].

Business process resilience is a major topic in the literature. Different aspects
of resilient operation are considered. An important topic is the reliability of tasks
and processes [1,2,24]. Effects of human, nun-human and ambient assisted living
behavior are studied [9,15]. Compensation of faulty tasks for process service plan
execution is addressed [16].

Business processes and DAG’s have been part of other publications in the
past. In general, the publications map activities to graph vertices and sequence
flows/message flows to graph edges. Mostly, XOR-gateways are translated by
separating a graph path in different outgoing edges of a vertex. The transla-
tion of other modeling elements differs. Specifically, parallel and inclusive gate-
ways, merging XOR-gateways splitting the BPMN token, multi-instance activ-
ities, loops and events are often not addressed or are translated following the

Resilient Process Modeling and Execution Using Process Graphs 21

objectives of the concrete approach. Furthermore, the process definition language
of choice and the kinds of applied algorithms are divers.

[8] elaborates a transition procedure based on formal semantics for mapping
BPMN processes to Petri Nets. The objective is to apply existing process anal-
ysis methods available for Perti Nets. The same authors extend the approach
for task and control flow similarity checking of processes in [7]. The application
of performance optimization techniques originating from the area of databases
motivates [11] to translate processes to directed graphs. The optimization proce-
dure reorders activities and tries to parallelize process parts. Finally, [5] advises
on human activities by using DAG’s.

None of the listed publications focuses on analyzing and optimizing pro-
cess operation in terms of communication-resilient execution. To the best of
the author’s knowledge, no publication translates processes to graphs to apply
graph-based search algorithms for finding and verifying resilient process opera-
tion. The process-to-graph transition differs from existing approaches due to the
objective off a connectivity-related resilience analysis.

7 Conclusion

Graph-based search algorithms can be used along scenario-driven metrics to
analyze the resilience of business processes. Based on process-to-graph transi-
tion rules for BPMN processes, resilience requirements and characteristics of a
scenario are determined at design time. Following, suitable resilience metrics and
graph algorithms are selected for application at process runtime.

Shortest-path algorithms like Dijkstra and Bellman-Ford performed with
minimum computation time in the evaluation. The evaluation shows that the
identified shortest-path not necessarily is an ideal choice.

An all-paths analysis requires more computation time in large graphs. The
resulting path list helps to compare the variety of available paths with resilience
metrics to pick the most appropriate path. Considering a path with the highest
path level reduced the number of non-resilient paths significantly in the eval-
uation. The same outcome is provided by operating a shortest-path algorithm
on an adjusted graph. Removing all non-resilient edges from the graph prior to
graph analysis leads to a higher amount of resilient shortest-path.

The presented graph-based approach may be adapted for non-
communication- oriented aspects of processes. Examples are process character-
istics such as accuracy, cost, and time.

References

1. Bocciarelli, P., D’Ambrogio, A.: A BPMN extension for modeling non functional
properties of business processes. In: Proceedings of the 2011 Symposium on Theory
of Modeling & Simulation, pp. 160–168. Society for Computer Simulation Interna-
tional (2011)

22 F. Nordemann et al.

2. Bocciarelli, P., D’Ambrogio, A., Giglio, A., Paglia, E.: Simulation-based perfor-
mance and reliability analysis of business processes. In: Proceedings of the 2014
Winter Simulation Conference, pp. 3012–3023. IEEE Press (2014)

3. Bocciarelli, P., D’Ambrogio, A., Giglio, A., Paglia, E.: A BPMN extension for
modeling cyber-physical-production-systems in the context of Industry 4.0. In:
14th International Conference on Networking, Sensing and Control (ICNSC), pp.
599–604. IEEE (2017)

4. Braun, R., Esswein, W.: Classification of domain-specific BPMN extensions. In:
Frank, U., Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP,
vol. 197, pp. 42–57. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45501-2 4

5. Ceballos, H.G., Flores-Solorio, V., Garcia, J.P.: A probabilistic BPMN normal
form to model and advise human activities. In: Baldoni, M., Baresi, L., Dastani,
M. (eds.) EMAS 2015. LNCS (LNAI), vol. 9318, pp. 51–69. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26184-3 4

6. Chiu, H.H., Wang, M.S.: A study of IoT-aware business process modeling. Int. J.
Model. Optim. 3(3), 238 (2013)

7. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Rei-
jers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03848-8 5

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of BPMN process models. Preprint 7115 (2007)

9. Domingos, D., Resṕıcio, A., Martinho, R.: Using resource reliability in BPMN
processes. Procedia Comput. Sci. 100, 1280–1288 (2016)

10. Domingos, D., Resṕıcio, A., Martinho, R.: Reliability of IoT-aware BPMN health-
care processes. In: Virtual and Mobile Healthcare: Breakthroughs in Research and
Practice, pp. 793–821. IGI Global (2020)

11. Gounaris, A.: Towards automated performance optimization of BPMN business
processes. In: Ivanović, M., et al. (eds.) ADBIS 2016. CCIS, vol. 637, pp. 19–28.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44066-8 2

12. Graja, I., Kallel, S., Guermouche, N., Kacem, A.H.: BPMN4CPS: a BPMN exten-
sion for modeling cyber-physical systems. In: 25th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
pp. 152–157. IEEE (2016)

13. JGraphT-Library: Java library of graph theory data structures and algorithms
(2020). https://jgrapht.org. Accessed 31 Aug 2020

14. Martinho, R., Domingos, D.: Quality of information and access cost of IoT
resources in BPMN processes. Procedia Technol. 16, 737–744 (2014)

15. Martinho, R., Domingos, D., Resṕıcio, A.: Evaluating the reliability of ambient-
assisted living business processes. In: ICEIS (2), pp. 528–536 (2016)

16. Mazzola, L., Kapahnke, P., Waibel, P., Hochreiner, C., Klusch, M.: FCE4BPMN:
on-demand QoS-based optimised process model execution in the cloud. In:
2017 International Conference on Engineering, Technology and Innovation
(ICE/ITMC), pp. 305–314. IEEE (2017)

17. Meyer, S., Ruppen, A., Magerkurth, C.: Internet of Things-aware process modeling:
integrating IoT devices as business process resources. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 84–98. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38709-8 6

https://doi.org/10.1007/978-3-662-45501-2_4
https://doi.org/10.1007/978-3-662-45501-2_4
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-642-03848-8_5
https://doi.org/10.1007/978-3-319-44066-8_2
https://jgrapht.org
https://doi.org/10.1007/978-3-642-38709-8_6

Resilient Process Modeling and Execution Using Process Graphs 23

18. Nordemann, F., Tönjes, R., Pulvermüller, E.: Resilient BPMN: robust process
modeling in unreliable communication environments. In: 8th International Confer-
ence on Model-Driven Engineering and Software Development (MODELSWARD).
Scitepress (2020)

19. Nordemann, F., Tönjes, R., Pulvermüller, E., Tapken, H.: A graph-based approach
for process robustness in unreliable communication environments. In: 15th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE). Scitepress (2020)

20. Nordemann, F., Tönjes, R., Pulvermüller, E., Tapken, H.: Graph-based multi-
criteria optimization for business processes. In: Shishkov, B. (ed.) BMSD 2020.
LNBIP, vol. 391, pp. 69–83. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-52306-0 5

21. Object Management Group (OMG): Business Process Model and Notation
(BPMN) 2.0 Specification (2011). www.omg.org/spec/BPMN/2.0/About-BPMN.
Accessed 21 June 2020

22. OPeRAte: Osnabrueck University of Applied Sciences: OPeRAte research project
(2019). http://operate.edvsz.hs-osnabrueck.de. Accessed 03 Sept 2019

23. Pandas-Framework: Description of boxplots (2020). https://pandas.pydata.org/
pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html. Accessed 31
Aug 2020

24. Resṕıcio, A., Domingos, D.: Reliability of BPMN business processes. Procedia
Comput. Sci. 64, 643–650 (2015)

25. Sungur, C.T., Spiess, P., Oertel, N., Kopp, O.: Extending BPMN for wireless sensor
networks. In: 2013 IEEE 15th Conference on Business Informatics, pp. 109–116.
IEEE (2013)

https://doi.org/10.1007/978-3-030-52306-0_5
https://doi.org/10.1007/978-3-030-52306-0_5
www.omg.org/spec/BPMN/2.0/About-BPMN
http://operate.edvsz.hs-osnabrueck.de
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html

Application of Fuzzy Logic to Evaluate
the Performance of Business Process Models

Mariem Kchaou(B), Wiem Khlif(B), and Faiez Gargouri(B)

Mir@cl Laboratory, University of Sfax, Sfax, Tunisia
mariem.kcha@gmail.com, wiem.khlif@gmail.com,

faiez.gargouri@isims.usf.tn

Abstract. Performance is one of the major topics for organizations seeking con-
tinuous improvements. Evidently, evaluating the performance of business process
model is a necessary step to reduce time, cost and to indicate whether the company
goals are successfully achieved or not. In the literature, several researchers refers
to different techniques that aim at improving a BP model performance. Some
approaches assist BP designers to develop high-performance models while others
propose measures to assess the performance. This paper adopts performance mea-
sures and targets models represented in Business Process Modeling and Notation
(BPMN). It proposes amethodology based on fuzzy logic alongwith a tool system
developed under eclipse to evaluate the performance of business process models
in terms of characteristics related to the actor (i.e. availability, suitability and cost)
and characteristics related to BPMN elements (i.e. time behaviour, cost). The
preliminary experimental evaluation of the proposed system shows encouraging
results.

Keywords: Business process · Performance measures · Fuzzy logic ·
Thresholds · Characteristics related to BPMN elements · Characteristics related
to the actor

1 Introduction

Business process performance is vital for organizations seeking continuous improve-
ments. Obviously, the business process performance is highly influenced by decisions
taken during the modelling phase. This justifies the motivation of several researchers to
invest in finding solutions to define, manage and evaluate the performance of a business
process model.

In the literature, different solutions have been proposed to assess BP model’s per-
formance. These solutions are based on two trends of approaches: those based on the
application of formal verification methods [13] or those centered on the use of a set of
performance measures calculated on the BP model [9, 11, 14].

The first trend provides for the verification of performance properties like measure-
ment process and feedback process [13]. However, their application stills delayed by
their time and cost. In addition, they are unable to express any qualitative analysis of

© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 24–50, 2021.
https://doi.org/10.1007/978-3-030-70006-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_2

Application of Fuzzy Logic to Evaluate the Performance 25

the model in terms of time behaviour and cost of BPMN elements; and availability,
suitability and cost of the actor. These characteristics influence the BP performance.

In the second trend, several researchers conduct a qualitative evaluation of BPmodels
by proposing a set of performance measures that are calculated either on the BP model
(i.e., [11, 12]), or the simulatedBPmodel [2, 7]. Thesemeasures are exploited to evaluate
several quality characteristics [4, 16] or to predict the BP performance (case of simulated
model assessment) [2, 7].

Since the variety of measures, several researchers proposed frameworks to assess
BP model [11, 12, 21]. The main challenge is the lack of consensus about threshold
values of the performancemeasures, which are needed to interpret/evaluate a BPmodel’s
performance.

This paper, which is a revised and extended version of our paper presented at the 15th

International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2020) [10], overcomes the problem of threshold identification based on fuzzy
logic methodology which asses the BP performance in terms of characteristics related
to the actor and characteristics related to BPMN elements.

The proposed methodology followed two major phases: threshold identification and
fuzzy logic application. First, it applies data mining precisely decision tree in order
to define approximate thresholds for each performance measure. These thresholds per-
mit the designer to interpret the characteristic associated to the actor (i.e., availability,
suitability or cost levels) and those related to the Business Process Modelling Nota-
tion (BPMN) elements (i.e., time behaviour, and cost levels). To this end, we used a
database baptized “Business Process Database”1, developed by our Mir@cl laboratory
team which contains 100 business processes of organizations operating in different sec-
tors. Then we annotate the collected processes by temporal and semantic information in
conjunction with design instructors from IT department of our university (considered as
experts).

The approximate thresholds produced in the first phase are considered as the input of
the second phase. The latter uses the fuzzy logic [22] in order to obtain precise thresholds
values.

The proposed methodology is developed in a tool called “FuzzPer” that help to
assess the performance of BPMN models in terms of availability, suitability and cost of
the actor; and time behaviour and cost of BPMN elements. To illustrate the efficiency of
our performance tool, we rely on two types of experimental evaluation. The former is
accomplished with students while the second is done through the proposed tool. These
preliminary experimental evaluations of the proposed tool display encouraging results.

In summary, this paper presents three contributions: the first one expresses the
imprecise thresholds determination for performance measures in terms of characteristics
related to the actor (i.e., availability, suitability and its cost) and characteristics related
to BPMN elements (i.e., time behaviour, cost). The second one handles the imprecise
nature of the identified thresholds by applying fuzzy logic. The third one develops a tool
that supports the proposed methodology.

The remainder of this chapter is organized as follows: Sect. 2 summarizes existing
related works on the BP performance measures. In Sect. 3, we present the proposed

1 https://sites.google.com/site/kchaoumariemsi/resources.

https://sites.google.com/site/kchaoumariemsi/resources

26 M. Kchaou et al.

methodology mining measures thresholds. Section 4 expresses how we apply fuzzy
logic to support the imprecise thresholds. Section 5 illustrates the developed system of
BP model performance assessment. Section 6 evaluates the proposed system through
two types of experiments. Section 7 identifies threats to the validity of our methodology.
Finally, Sect. 8 summarizes the presented work and outlines its extensions.

2 Related Work

In this section, we introduce the BP measures used for assessing BP performance.
They are classified into two categories: measures related to the actor characteristics
and measures associated to BPMN elements characteristics.

Based on their formula, the presented measures below can be calculated and then
each one has its corresponding value. Depending on this criterion, we keep all of them
for the determination of their thresholds.

2.1 Measures Related to the Actor Characteristics

To evaluate the performance of an actor, [9, 11] propose measures related to the actor
characteristics such as availability, suitability and cost.

By definition, availability is the capability of the actor to be able to perform the
activity in the required unit of time. Suitability expresses the skills that cover his qual-
ification, expertise, social competence, skills, motivation and performance ability. The
cost is expressed as a price or monetary value.

The following measures evaluate the availability and suitability of the actor:

• Planned Production Time of an Actor to Perform anActivity (PPTAct(A)): is calculated
by subtracting the Actor’s breaks from Shift time.

PPTAct(A) = ShTAct(A)_BRAct(A) (1)

• Working Time Spent by an Actor to Perform an Activity (WTAct(A)): is calculated by
the difference between the Planned Production Time and Stop Time (the time where
the actor was intended to work but was not due to unplanned or planned stops).

WTAct(A) = PPTAct(A)_STAct(A) (2)

• Total Working Time Spent by an Actor in a Lane per Day (TWTDayAct(L)): the sum
of working time spent, in a day, by an actor in the corresponding lane.

TWTDayAct(L) =
∑f

p=1
WTAct(Ap) (3)

• Total Working Time Spent by an Actor in the whole Process per Day (TWTDayAct(P)):
the sum of working time spent by an actor in all lanes in the process.

TWTDayAct(P) =
∑q

k=1
TWTDayAct(Lk) (4)

Application of Fuzzy Logic to Evaluate the Performance 27

• Performance of an Actor per Day (PerDayAct): compares the working Time spent by
an actor per day to the Ideal Cycle Time which is defined as the theoretical minimum
time to perform an activity by an actor.

Per DayAct = TWT DayAct
ICT DayAct

(5)

• Availability of an Actor in a Day (AVDayAct): is calculated as the ratio of Working
Time spent by an actor to Planned Production Time.

AVDayAct = TWTDayAct
PPTDayAct

(6)

• Ratio of Defected Activities by an Actor per day (RDAAct): is calculated by the Total
Number of Defected Activities performed by an actor divided by the Total number of
Activities performed by the same actor.

RDAAct = TDADayAct
TADayAct

(7)

• Ratio of Good Activities Performed by an Actor (RGAAct): is calculated by the Total
Number of Good Activities realized by an actor in a day divided by the Total number
of Activities performed by the same actor in one day.

RGAAct = TGADayAct
TADayAct

(8)

In addition, several measures are proposed in [9, 11] to assess the cost of an actor
such as

• Cost of an actor in a Lane per Day (CosDayAct(L)) which is calculated by the product
of the total working time spent by an Actor in a Lane per Day (TWTDayAct(L)) and
its actual Labour Costs per Hour (LCHAct).

CosDayAct(L) = TWTDayAct(L) ∗ LCHAct (9)

• Cost of an actor in a Pool per Day (CosDayAct(P))which is determined by the product
of the total working time spent by an Actor in a Pool per Day (TWTDayAct(P)) and
its actual Labour Costs per Hour (LCHAct).

CosDayAct(P) = TWTDayAct(P) ∗ LCHAct (10)

2.2 Measures Related to BPMN Elements Characteristics

Time behaviour and cost are the characteristics of BPMN elements to evaluate the
performance efficiency [6].

By definition, time behaviour is defined as the appropriate transport time between
different BPMN elements and processing times when executed; while cost expresses the
price or monetary value related to BPMN elements.

[9, 11] propose the following measures to assess the time behaviour of BPMN
elements:

28 M. Kchaou et al.

• Gateway Duration (GD (Gateway) represents the duration of a gateway.

GD = ETG − STG (11)

Where ETG represents End Time of a Gateway and STG represents Start Time of a
Gateway.

• Sequence Flow Duration (SeqFD) represents the transfer time between BPMN
elements (activity, gateway and event).

SeqFD = ST(BPMN elementi+1) − ET(BPMN elementi) (12)

Where ST: Start Time, ET: End Time.
In addition, [14] present other temporal measures such as Activity/Process Duration

(AD)which is calculated by the difference between the end time of the activity (Process)
and the start time.

AD = ETA − STA (13)

Where ETA represents End Time of an Activity and STA represents Start Time of
an Activity.

On the other hand, [9, 11] proposed a set of measures to evaluate the cost of BPMN
elements such as

• Cost of an Activity Realized by an Actor (CAAct) is calculated by the product of the
actor actual Labour Costs per Hour and the working time spent by an Actor to perform
an Activity.

CAAct = LCHAct ∗ WTAct(A) (14)

• Cost of a Gateway (CosGat(Gatway)) represents the product of the gateway duration
and the actor’s actual Labour Costs per Hour (LCHAct).

CosGatAct = GD ∗ LCHAct (15)

• Cost of a Sequence Flow (CosSeqFAct) expresses the product of the Sequence Flow
Duration (SeqFD) and the actor’s actual Labour Costs per Hour (LCHAct).

CosSeqFAct = LCHAct ∗ SeqFD (16)

Table 5, 7 and 8 display respectively the usability of the presented measures to
evaluate the actor characteristics and BPMN element characteristics. However, to our
knowledge, there is no works that focus on the determination of measures thresholds
values.

3 Design Methodology for Thresholds Determination

Figure 1 illustrates our methodology for determining approximate thresholds related to
performance measures. It aims to evaluate the performance of business process models

Application of Fuzzy Logic to Evaluate the Performance 29

in terms of characteristics related to the actor (i.e., availability, suitability and its cost)
and to BPMN elements (i.e., time behaviour, cost). This methodology is organized in
two major activities: “Analyze Data” and “Validate Data”.

The “Analyze data” activity goes through three stages: 1) Collect a set of BPMN
models that we annotated by semantic information covering the cost, organizational
aspect, and temporal constraints related to the actor and BPMN elements, 2) Prepare
these models through creating matrices related to actors and to BPMN elements to
evaluate their characteristics and 3) Apply Data mining to build decision trees using
WEKA system. The latter is based on algorithms that construct decision trees.

The “Validate Data” activity is composed of two activities: Training Database based
Validation and Test Database based Validation.

Fig. 1. Design methodology for thresholds determination [10].

3.1 Analyze Data

The Analyze data activity is composed of three major stages: the first one collects data
based on a set of business process models annotated by semantic information that covers
the cost, organizational aspect, and temporal constraints related to the actor and BPMN
elements. The second step prepares data through creating matrices related to actors and
to BPMN elements to evaluate their characteristics and the third one apply data mining
technique to build decision trees using WEKA system. The latter is based on algorithms
that construct decision trees.

30 M. Kchaou et al.

Collect Database. As a part of research of our Mir@cl laboratory, we collect around
100 BPMN models having small/medium size. The collected BPMN models belong to
different organizations (banks, healthcare, institutions, commercial enterprises, etc.) in
order to guarantee that our methodology is generic. Next, we annotate them by temporal
constraints and semantic information (cost and organizational aspects) associated to
the actor and BPMN elements. For more details, reader can refer to [9, 11]. The main
objective of this information is to evaluate the actor and BPMN elements characteristics.

Then, we examined business processes with design instructors from IT department
of our university according to measures values related to each characteristics associated
to the actor and to BPMN elements. The objective is to organize them according to the
level of each characteristic related to the actor and BPMN elements.

To end this purpose, we organized ourselves into two groups. First, each one examine
50 processes in term of characteristics related to the actor and to the BPMN elements.
Then, we verify the cross-validation process among two groups.

Finally, to evaluate the process in terms of characteristics associated to the actor, we
classified the “Business Process Database” in two levels of availability (actor is always
available and rarely available), two levels of suitability (having the best skills and having
low skills) and three levels of cost (expensive, acceptable and cheap).

To assess business processes based on the BPMN elements characteristics, we orga-
nized the “Business Process Database” into three levels of time behaviour (minimal,
normal and maximal) and three levels of the cost (expensive, acceptable and cheap).

Prepare Data. In order to prepare data for the next stage, we produce nine matrices
based on the “Business Process Database”. Three matrices are dedicated to the actor
in order to evaluate his availability, suitability and cost; while the rest is devoted to
the BPMN elements (activity, gateway and sequence flow) in order to assess their time
behavior and cost. These matrices take as input performance measures values and the
level of each characteristics related to actors and to BPMN elements.

Each row in each matrix expresses the actor (respectively BPMN element); and each
column depicts a performance measure used to assess the availability, suitability and
cost of the actor (respectively time behaviour and cost of BPMN elements). The corre-
sponding case representing the intersection of row and column details the values of these
performance measures calculated for a specific actor (respectively BPMN elements).

The last column of each matrix represents the level of each actor characteristic
(respectively BPMN element). For example, the last column of each matrix associated
to the actor expresses the level of each characteristic: his availability (i.e., actor is always
available and rarely available), suitability (i.e., having the best skills and having low
skills) and cost (i.e., expensive, acceptable and cheap); Whereas the last column of each
matrix related to BPMN elements depicts levels of their characteristic time behaviour
(i.e., minimal, normal and maximal) and cost (i.e., expensive, acceptable and cheap).

The elaborated matrices are used to create two sub-datasets: one for learning “Train-
ing Dataset” and one for testing needs “Test Dataset”. The first one includes 70% of
the “Business Process Database” while the second one comprises the rest of the “Busi-
ness Process Database”. The percentage choice is justified by the fact that the “Training
Dataset” is the one on which we train and fit our model to adjust thresholds. Whereas
“Test Dataset” is used only to assess the BP performance.

Application of Fuzzy Logic to Evaluate the Performance 31

Data Mining. To identify thresholds for performance measures from the “Business
Process Database”, we used in the first step decision trees and in the second step decision
rules. For more details about decision trees readers are referred to [15, 17].

To create decision trees, we use the training dataset which contains the values of the
performancemeasures calculated for a specific actor (respectivelyBPMNelements). The
required nine decision trees is classified into three for the actor characteristics (Avail-
ability, suitability and cost) and six for BPMN elements characteristics (time behaviour
and cost), we used WEKA system [5]. The latter is a collection of machine learning
algorithms for data mining tasks. It contains tools for data pre-processing, classification,
regression, clustering, association rules, and visualization.WEKA is based on algorithms
(J48, RandomTree, REPTree, etc.) that construct decision trees.

Wenote that the J48 algorithm is an implementation ofC4.5 algorithm [1]. It produces
decision tree classification for a given dataset by recursive division of the data. It works
with the process of starting from leaves that overall formed tree and do a backward
toward the root.

The RepTree uses the regression tree logic and creates multiple trees in different
iterations. After that, it selects best one from all generated trees.

The Random Tree is a supervised classifier; it is an ensemble learning algorithm that
generates many individual learners. It employs a bagging idea to produce a random set
of data for constructing a decision tree.

In our work, we apply all of the algorithms, and then we select the best one which
have a lower error rate based on the validation phase (Sect. 3.2).

3.2 Validate Data

To assess the quality of a prediction model, we used the following ratios: (17) precision,
(18) Recall, (19) F-measure and (20) Global Error Rate. Next, we select themost popular
and best algorithms (J48, RandomTree and REPTree) according to the values of the
calculated ratios.

Precision = CorrectEntitiesFound

TotalEntitiesFound
(17)

Recall = CorrectEntitiesFound

TotalCorrectEntities
(18)

F_mesure = 2 ∗ Precision ∗ Recall

Precision + Recall
(19)

GlobalErrorRate = 1 − CorrectEntitiesFound

TotalEntities
(20)

Training Database Based Validation Mining. We calculate the ratios after testing the
resulting decision trees based on characteristics trees related to the actor (availability,
suitability and cost), and also based on characteristics trees associated toBPMNelements
(time behaviour and cost). In this section, we applied decision trees on the “Training
Database”.

32 M. Kchaou et al.

Table 1 indicated that we realized very acceptable results with REPTree algorithm,
for assessing the BP model actor characteristics. Concerning the availability, the values
of precision, recall and F-measure are 94.5%, 94.1% and 94.2% while the global error is
equal to 5.8%. In addition, regarding the suitability, the values of precision, recall and F-
measure are 76.4%, 76.5% and 76.3% while the error is equal to 2.3%. To evaluate the
cost, the values of precision, recall and F-measure are 98.6%, 98.5% and 98.5% while
the global error rate is 1.4%.

Table 1. J48 vs RandomTree vs REPTree for decision tree of availability, suitability and cost of
the actor using the “Training Database” [10].

Ratios Availability Suitability Cost

J48 RandomTree REPTree J48 RandomTree REPTree J48 RandomTree REPTree

Precision 0,815 0,869 0,945 0,748 0,724 0,764 0,972 0,986 0,986

Recall 0,824 0,863 0,941 0,706 0,725 0,765 0,971 0,985 0,985

F-Measure 0,808 0,866 0,942 0,704 0,724 0,763 0,971 0,985 0,985

Global error rate 0.176 0.137 0.058 0.029 0.027 0.023 0.029 0.014 0.014

Table 2 displays that we reached very acceptable results with REPTree algorithm, for
evaluating BPMN elements characteristics. To evaluate each characteristic, we calculate
for each one the values of precision, recall and F-measure and the corresponding errors.

Table 2. J48 vs RandomTree vs REPTree for decision tree of time behaviour and cost of each
BPMN element using the “Training Database” [10].

BPMN elements Ratios Time behaviour Cost

J48 RandomTree REPTree J48 RandomTree REPTree

Activity Precision 0,987 0,987 0,991 0,968 0,964 0,969

Recall 0,986 0,986 0,991 0,968 0,964 0,968

F-Measure 0,986 0,986 0,991 0,968 0,964 0,968

Global error rate 0,013 0,013 0,009 0.031 0.036 0.031

Gateway Precision 0,989 0,989 0,989 0,955 0,932 0,980

Recall 0,988 0,988 0,988 0,955 0,932 0,977

F-Measure 0,988 0,988 0,988 0,955 0,931 0,978

Global error rate 0,011 0,011 0,011 0.045 0.068 0.022

Sequence Flow Precision 0,980 0,975 0,980 0,967 0,983 0,983

Recall 0,980 0,975 0,980 0,964 0,982 0,982

F-Measure 0,980 0,975 0,980 0,964 0,982 0,982

Global error rate 0,020 0,025 0,020 0.035 0.017 0.017

Test Database based Validation Mining. To assess the performance of the proposed
decision tree and select the best algorithm provided by WEKA, we used the “Test
Database” which is extracted from the “Business Process Database”.

Application of Fuzzy Logic to Evaluate the Performance 33

Then, we evaluate the level of each characteristic related to the actor and BPMN
elements by applying each decision tree to all BPs of the “Test Database”. Then, we
compare this evaluation to that elaborated by design instructors from IT department of
our university. The objective behind is to compare the obtained decision treeswith design
instructors judgment and therefore, to determine the error rate of our decision trees.

Tables 3 and 4 show the values of the ratios presented in Sect. 3.2 for evaluating
the performance of the proposed characteristics of decision trees (availability, suitability
and the cost of the actor and time behavior and cost of BPMN elements).

Table 3 depicts thatwe reached very acceptable results using the “TestDatabase”with
REPTree algorithm, for evaluating the actor characteristics. Concerning the availability,
the values of precision, recall and F-measure are 91.7%, 91.7% and 91.7% while the
global error is equal to 8.3%. In addition, regarding the suitability, the values of precision,
recall and F-measure are 87%, 86.7% and 86.7% while the error is equal to 1.3%. To
evaluate the cost, the values of precision, recall and F-measure are 96.5%, 96.2% and
96.2% while the global error rate is 3.8%.

Table 3. J48 vs RandomTree vs REPTree for decision tree of availability, suitability and cost of
the actor using the “Test Database” [10].

Ratios Availability Suitability Cost

J48 RandomTree REPTree J48 RandomTree REPTree J48 RandomTree REPTree

Precision 0,917 0,887 0,9 0,702 0,634 0,870 0,889 0,923 0,965

Recall 0,917 0,875 0,917 0,700 0,633 0,867 0,885 0,923 0,962

F-Measure 0,917 0,879 0,917 0,700 0,627 0,867 0,884 0,923 0,962

Global error rate 0.083 0.125 0.083 0.030 0.036 0.013 0.115 0.076 0.038

In addition, based on Table 4, we deduce that the achieved results with REPTree
algorithm are very acceptable, for evaluating BPMN elements characteristics. To assess
each characteristic, we calculate for each one the values of precision, recall and F-
measure and the corresponding errors.

34 M. Kchaou et al.

Table 4. J48 vs RandomTree vs REPTree for decision tree of time behaviour and cost of each
BPMN element using the “Test Database” [10].

BPMN
elements

Ratios Time behaviour Cost

J48 RandomTree REPTree J48 RandomTree REPTree

Activity Precision 0,987 0,987 0,991 0,968 0,964 0,969

Recall 0,986 0,986 0,991 0,968 0,964 0,968

F-Measure 0,986 0,986 0,991 0,968 0,964 0,968

Global
error rate

0,013 0,013 0,009 0.031 0.036 0.031

Gateway Precision 0,989 0,989 0,989 0,955 0,932 0,980

Recall 0,988 0,988 0,988 0,955 0,932 0,977

F-Measure 0,988 0,988 0,988 0,955 0,931 0,978

Global
error rate

0,011 0,011 0,011 0.045 0.068 0.022

Sequence
Flow

Precision 0,932 0,979 0,979 0,946 0,946 0,946

Recall 0,932 0,977 0,977 0,946 0,946 0,946

F-Measure 0,931 0,977 0,977 0,946 0,946 0,946

Global
error rate

0,068 0.022 0.022 0.054 0.054 0.054

3.3 Discussion

According to the level of availability, suitability and cost of the actor (respectively time
behaviour and cost levels of each BPMN element), we used decision trees to classify
actors (respectively BPMN element), extracted from “Business Process Database”. This
classification is based on the values of the used performance measures.

In addition, we used these decision trees in order to define a set of decision rules
and performance measures thresholds to evaluate the characteristics related to the actor
such as availability, suitability and cost (respectively the characteristics associated to the
BPMN element such as the time behaviour and cost of each BPMN element).

Evaluation of Actor Characteristics Levels. Table 5 shows the defined thresholds
values and their interpretations which are determined by design instructors from IT
department of our university.

Table 6 displays an excerpt of the decision rules which specify the performance
measures values for each characteristic level of the actor.

Evaluation of BPMN Elements Characteristics Levels. Table 7 presents the defined
thresholds and the corresponding linguistic interpretations for the assessment of the
time behaviour characteristic associated to each BPMN elements (activity, gateway and
sequence flow), which are determined by design instructors from IT department of our
university.

Application of Fuzzy Logic to Evaluate the Performance 35

Table 5. Identified thresholds values for the evaluation of the characteristics related to the actor
[10].

Characteristics Performance
measures

Threshold Linguistic
interpretation

Availability PPTAct(A) PPTAct(A) < 5 Low

5 ≤ PPTAct(A) < 7 Moderate

7 ≤ PPTAct(A) < 9 High

PPTAct(A) ≥ 9 Very high

WTAct(A) WTAct(A) < 3 Low

WTAct(A) ≥ 3 High

PerDayAct PerDayAct < 78 Low

PerDayAct ≥ 78 High

AVDayAct AVDayact < 72.5 Low

AVDayact ≥ 72.5 High

Suitability PPTAct(A) PPTAct(A) < 12.5 Low

12.5 ≤ PPTAct(A) < 17.5 Moderate

17.5 ≤ PPTAct(A) < 25 High

PPTAct(A) ≥ 25 Very high

WTAct(A) WTAct(A) < 3 Very low

3 ≤ WTAct(A) < 10.5 Low

10.5 ≤ WTAct(A) < 12.5 Moderate

12.5 ≤ WTAct(A) < 21 High

WTAct(A) ≥ 21 Very high

TWTDayAct(L) TWTDayAct(L) < 17.5 Low

17.5 ≤ TWTDayAct(L) < 24.5 Moderate

TWTDayAct(L) ≥ 24.5 High

TWTDayAct(P) TWTDayAct(P) < 60 Low

TWTDayAct(P) ≥ 60 High

PerDayAct PerDayAct < 79.2 Low

PerDayAct ≥ 79.2 High

AVDayAct AVDayact < 72.5 Low

AVDayact ≥ 72.5 High

RGAAct RGAAct < 37.5 Low

37.5 ≤ RGAAct < 75 Moderate

(continued)

36 M. Kchaou et al.

Table 5. (continued)

Characteristics Performance
measures

Threshold Linguistic
interpretation

RGAAct ≥ 75 High

RDAAct RDAAct < 58.3 Low

RDAAct ≥ 58.3 High

Cost CosDayAct(L) CosDayAct(L) < 4.8 Low

4.8 ≤ CosDayAct(L) < 9 Moderate

CosDayAct(L) ≥ 9 High

CosDayAct(P) CosDayAct(P) < 10.16 Low

CosDayAct(P) ≥ 10.16 High

Table 6. Extract of decision rules to assess the level of actor’s characteristics [10].

Characteristics Rule Decision rules

Availability R1 If (AVDayact < 72.5 and PPTAct(A) < 9 and WTAct(A) < 3) then
the actor is rarely available

R2 If (AVDayact < 72.5 and PPTAct(A) ≥ 9 and PerDayAct ≥ 78 and
TWTDayAct(L) < 15.5) then the actor is always available

R3 If (AVDayact ≥ 72.5 and PPTAct(A) < 7 and PPTAct(A) < 5) then
the actor is always available

Suitability R1 If (PerDayAct < 79.2 and RDAAct < 58.3 and WTAct(A) < 3) then
the actor has low skills

R2 If (PerDayAct < 79.2 and RDAAct < 58.3 and WTAct(A) ≥ 3 and
AVDayact < 72.5) then the actor has low skills

R3 If (PerDayAct ≥ 79.2 and 37.5 < RGAAct < 75 and WTAct(A) <
12.5) then the actor has low skills

Cost R1 If CosDayAct(L) < 4.8 then the cost of the actor is Cheap

R2 If CosDayAct(L) ≥ 4.8 and CosDayAct(P) < 10.16:then the cost of
the actor is Acceptable

R3 If CosDayAct(L) < 9 and CosDayAct(P) ≥ 10.16 then the cost of
the actor is Acceptable

Table 8 shows the defined thresholds and the corresponding linguistic interpretations
for the assessment of the cost characteristic related to each BPMN elements (activity,
gateway and sequence flow).

Table 9 illustrates an extract of decision rules that determine the time behaviour level
of each BPMN element according to the values of performance measures.

Application of Fuzzy Logic to Evaluate the Performance 37

Table 7. Identified thresholds values for the evaluation of the time behaviour characteristic related
to BPMN elements.

BPMN elements Performance measures Time behaviour

Threshold Linguistic
interpretation

Activity AD Activity AD < 6.5 Low

6.5 ≤ AD < 14.5 Moderate

AD ≥ 14.5 High

Process AD < 19.5 Low

19.5 ≤ AD < 28.5 Moderate

AD ≥ 28.5 High

Gateway GD GD < 2.5 Low

2.5 ≤ GD < 4.5 Moderate

GD ≥ 4.5 High

Sequence Flow SeqFD SeqFD < 4.5 Low

4.5 ≤ SeqFD < 8 Moderate

SeqFD ≥ 8 High

Table 8. Identified thresholds values for the evaluation of the cost characteristic related to BPMN
elements.

BPMN
elements

Performance measures Cost

Threshold Linguistic
interpretation

Activity CAAct Activity CAAct < 4.92 Low

4.92 ≤ CAAct < 10 Moderate

CAAct ≥ 10 High

Process CAAct < 18.67 Low

8.67 < CAAct ≤ 24.95 Moderate

CAAct ≥ 24.95 High

Gateway CosGat(Gateway) CosGat < 0.45 Low

0.45 ≤ CosGat < 0.97 Moderate

CosGat ≥ 0.97 High

Sequence
Flow

CosSeqF CosSeqF < 0.45 Low

0.45 ≤ CosSeqF < 0.99 Moderate

CosSeqF ≥ 0.99 High

38 M. Kchaou et al.

Table 9. Extract of decision rules to assess the level of each time behaviour’s BPMN element.

BPMN elements Rule Time behaviour

Activity Activity R1 If AD < 6.5 then the time of the activity is Minimal

R2 If 6.5 ≤ AD< 14.5 then the time of the activity is Normal

R3 If AD ≥ 14.5 then the time of the activity is Maximal

Process R1 If AD < 19.5 then the time of the process is Minimal

R2 If 19.5 ≤ AD < 28.5 then the time of the process is
Normal

R3 If AD ≥ 28.5 then the time of the process is Maximal

Gateway R1 If GD < 2.5 then the time of the gateway is Minimal

R2 If GD ≥ 2.5 then the time of the gateway is Normal

R3 If GD ≥ 4.5 then the time of the gateway is Maximal

Sequence Flow R1 If SeqFD < 4.5 then the time of the sequence flow is
Minimal

R2 If 4.5 ≤ SeqFD < 8 then the time of the sequence flow is
Normal

R3 If SeqFD ≥ 8 then the time of the sequence flow is
Maximal

Table 10 illustrates an extract of decision rules that identify the level of each BPMN
element cost.

Table 10. Extract of decision rules to assess the level of each cost’s BPMN element.

BPMN elements Rule Cost

Activity Activity R1 If CAAct < 4.92 then the cost of the activity is Cheap

R2 If 4.92 ≤ CAAct < 10 then the cost of the activity is Acceptable

R3 If CAAct ≥ 10 then the cost of the activity is Expensive

Process R1 If CAAct < 18.67 then the cost of the process is Cheap

R2 If 18.67 < CAAct ≤ 24.95 then the cost of the process is Acceptable

R3 If CAAct ≥ 24.95 then the cost of the process is Expensive

Gateway R1 If GD < 2.5 then the cost of the gateway is Minimal

R2 If 2.5 ≤ GD < 4.5 then the cost of the gateway is Normal

R3 If GD ≥ 4.5 then the cost of the gateway is Maximal

Sequence Flow R1 If CosSeqF < 0.45 then the cost of the sequence flow is Cheap

R2 If 0.45 ≤ CosSeqF < 0.99 then the cost of the sequence flow is Acceptable

R3 If CosSeqF ≥ 0.99 then the cost of the sequence flow is Expensive

In summary, the obtained thresholds are persist and imprecise because they are
predisposed by the judgment of design instructors from IT department of our university

Application of Fuzzy Logic to Evaluate the Performance 39

when we collect the database. In order to manage this problem, we use the fuzzy logic
which is details in the next section.

4 Fuzzy Logic for BP Performance Assessment

Fuzzy Logic is an appropriate approach for handling approximate and imprecise values
like those for the performancemeasures thresholds. Fuzzy-logic applicationgoes through
three stages: fuzzification, inference and defuzzification.

Fuzzification is the process of converting a crisp input value representing the per-
formance measures to a fuzzy membership function expressing linguistic values (i.e.,
High, Moderate and Low). The inference used the decision rules presented in Sect. 3.3
to obtain a set of fuzzy decision rules written in a linguistically natural language.

The defuzzification produces crisp values of each performance measure as well as
the degree of certainty using the one of the technique proposed in the literature.

In this section, we present in detail how we use the fuzzy logic to evaluate the
performance of BP.

4.1 Fuzzification

Fuzzification transforms crisp values of performance measures representing the input
variables into linguistic values that express fuzzy sets. This transformation is realized
thanks to the membership functions that are determined based on the identified approx-
imate thresholds (Sect. 3.3). One membership function is proposed for each possible
fuzzy set per performance measure.

The first part of Fig. 2 expresses the membership without fuzzification. In this part,
the two values (x and y) express the approximate thresholds obtained based on the use
of decision trees and fuzzy sets that are defined in different intervals. These intervals
are determined by design instructors from IT department of our university (i.e., Low,
Moderate and High).

Fig. 2. Membership function definition [10].

40 M. Kchaou et al.

Figure 2 illustrates that each performance measure value, which has a membership
degree equals to 1, belongs only to a single fuzzy set.

This situation is true if the identified thresholds are exact and precise. Nevertheless,
since this case cannot be applied, we use in this paper, the membership function with
fuzzification reflects the ranges by different design instructors from IT department of our
university. It is depicted in the second part of Fig. 2. In this part, the design instructors
defined four values (x′, x′′, y′, y′′) for each performance measure. Each value inside the
interval [x′, x′′] and [y′, y′′] fits respectively in two fuzzy sets with different membership
degrees. For instance, the value “z” belongs to the two fuzzy sets “Low” and “Moderate”
with membership degree of “z1” and “z2”.

4.2 Inference

The inference step used a set of fuzzy decision rules written in a linguistically natural
language. A fuzzy rule is a simple IF-THEN rule with a condition and a conclusion.
It should be written based on the following syntax: “if D is X and/or E is Y then F is
Z”. D and E represent the input variables, F is the output variable and X, Y, Z are their
corresponding linguistic values.

These rules are crucial to determine the values of the output variables representing
levels of the actor characteristics (his availability, suitability and cost) and levels of
each BPMN element characteristics (time behavior and cost) based on the input values
expressing the set of performance measures.

To obtain the fuzzy rules, we start by using the set of decision rules obtained from
the decision tree (Sect. 3.3). We changed the crisp values of performance measures
with their corresponding linguistic values and rewrote the rules according to the syntax
defined above. Table 11 shows the total number of defined fuzzy rules for each actor’s
and BPMN element characteristic.

Table 11. Total number of defined fuzzy rules for the actor characteristic and those corresponding
to BPMN elements [10].

Total number of fuzzy rules

Actor Availability 50

Suitability 207

Cost 15

BPMN element Time behaviour Activity 12

Gateway 6

Sequence Flow 6

Cost Activity 12

Gateway 6

Sequence Flow 6

Application of Fuzzy Logic to Evaluate the Performance 41

Table 12 represents an excerpt of the identified fuzzy decision rules for the actor
characteristics such as availability, suitability and cost.

Table 12. Extract of fuzzy decision rules to evaluate the level of availability, suitability and cost
of the actor [10].

Fuzzy rule Fuzzy decision rules

Availability Suitability Cost

FR1 If (AVDayact is low and PPTAct(A) is
High and WTAct(A) is low) then the
AvailabilityLevel is rarely available

If (PerDayAct is low and RDAAct is low
and WTAct(A) is very low) then the
SuitabilityLevel is having low skills

If CosDayAct(L) is low then the
CostLevel is Cheap

FR2 If (AVDayact is low and PPTAct(A) is
Very high and PerDayAct is High) then
the AvailabilityLevel is always available

If (PerDayAct is low and RDAAct is low
and WTAct(A) is low and AVDayact is
low) then the SuitabilityLevel is having
low skills

If CosDayAct(L) is moderate and
CosDayAct(P) is low then the
CostLevel is Acceptable

FR3 If (AVDayact is high and PPTAct(A) is
Moderate) then the AvailabilityLevel is
always available

If (PerDayAct is low and RDAAct is low
and WTAct(A) is low and AVDayact is
high and TWTDayAct(L) is low) then the
SuitabilityLevel is having low skills

If CosDayAct(L) is moderate and
CosDayAct(P) is high then the
CostLevel is Acceptable

Table 13 shows an excerpt of the identified fuzzy decision rules for the time behaviour
of each BPMN element (activity, gateway and sequence flow).

Table 13. Extract of fuzzy decision rules to evaluate the level of time behavior corresponding to
each BPMN element.

BPMN elements Fuzzy rule Time behaviour

Activity Activity FR1 If AD is low then the TimeBehaviorLevel is Minimal

FR2 If AD is moderate then the TimeBehaviorLevel is Normal

FR3 If AD is high then the TimeBehaviorLevel is Maximal

Process FR1 If AD is low then the TimeBehaviorLevel is Minimal

FR2 If AD is moderate then the TimeBehaviorLevel is Normal

FR3 If AD is high then the TimeBehaviorLevel is Maximal

Gateway FR1 If GD is low then the TimeBehaviorLevel is Minimal

FR2 If GD is moderate then the TimeBehaviorLevel is Normal

FR3 If GD is high then the TimeBehaviorLevel is Maximal

Sequence flow FR1 If SeqFD is low then the TimeBehaviorLevel is Minimal

FR2 If SeqFD is moderate then the TimeBehaviorLevel is Normal

FR3 If SeqFD is high then the TimeBehaviorLevel is Maximal

Table 14 displays an excerpt of the identified fuzzy decision rules for the cost of each
BPMN element (activity, gateway and sequence flow).

42 M. Kchaou et al.

Table 14. Extract of fuzzy decision rules to evaluate the level of cost associated to each BPMN
element.

BPMN elements Fuzzy rule Cost

Activity Activity FR1 If CAAct is low then the CostLevel is Cheap

FR2 If CAAct is moderate then the CostLevel is Acceptable

FR3 If CAAct is high then the CostLevel is Expensive

Process FR1 If CAAct is low then the CostLevel is Cheap

FR2 If CAAct is moderate then the CostLevel is Acceptable

FR3 If CAAct is high then the CostLevel is Expensive

Gateway FR1 If CosGat is low then the CostLevel is Cheap

FR2 If CosGat is moderate then the CostLevel is Acceptable

FR3 If CosGat is high then the CostLevel is Expensive

Sequence flow FR1 If CosSeqF is low then the CostLevel is Cheap

FR2 If CosSeqF is moderate then the CostLevel is Acceptable

FR3 If CosSeqF is high then the CostLevel is Expensive

4.3 Defuzzification

Defuzzification is the process of producing a quantifiable result in crisp logic, given
fuzzy sets and corresponding membership degrees. This conversion is ensured thanks
to a set of membership functions that we defined based on several rules that transform
a number of variables into a fuzzy result, that is, the result is described in terms of
membership in fuzzy sets.

Several defuzzification techniques are proposed in the literature such as Center Of
Gravity (COG), Centroid Of Area (COA), Mean OfMaximum (MOM), Center Of Sums
(COS), etc.We use the Center Of Sums (COS) since it is faster thanmany defuzzification
methods that are presently in use. In addition, the method is not restricted to symmetric
membership functions. The defuzzified valueX*of the output variable is given byEq. 21:

X∗ =
∑M

i=1 xi ∗
∑m

j = 1 µAj(Xi)∑m
j = 1 µAj(Xi)

(21)

Where m is the number of fuzzy sets, M represents the number of fuzzy variables
and expresses the membership function for the j-th fuzzy sets.

Defuzzification determines the level of each actor and BPMN element characteristic
as well as the degree of certainty of each level. For example, an actor can be estimated
as the most suitable having best skills with a certainty degree of 80%.

5 FuzzyPer: Fuzzy Performance Tool

We have developed a tool, bapized “FuzzPer” which supports our methodology for
evaluating the actor characteristics (suitability, availability and cost of the actor) and
assessing the BPMN elements characteristics (time behaviour and cost time of each
BPMN element). Our tool is implemented in Java as an EclipseTM plug-in [3]. It is

Application of Fuzzy Logic to Evaluate the Performance 43

composed of four main modules: Extractor, Measures calculator, Decision Maker and
Fuzzy-logic control. The functional architecture of this tool is presented in Fig. 3.

Fig. 3. Architecture of “FuzzPer” tool [10].

The extractor takes as input a business process modeled by BIZAGI tool [8] trans-
formed into XPDL file [18]. Based on the generated file, the information extracted by
the extractor reflects the semantic (cost and organizational aspects), temporal and the
structural information. This information involves all BPMN elements contained in the
business process model and the actors. The use of the standard ensures that our tool can
be integrated within any other modeling tool that supports this standard.

The measures calculator takes as input the XPDL file, calculates and displays the
crisp values of each used performance measures for estimating either the cost or time of
each BPMN elements or the suitability, availability and cost of the actor.

The Decision Maker takes the crisp values of performance measures representing
the input variables and transfers them to the fuzzy control module. This module runs
the Fuzzy Control Language (FCL) for approximating the performance of the actor and
BPMN elements.

Fuzzy-logic Control is implemented in Fuzzy Control Language (FCL) which is a
standard for Fuzzy Control Programming. It was standardized by IEC 61131–7. FCL is
composed of fourmainmodules: FunctionBlock Interface, Fuzzification, Rule identifier,
Defuzzification.

• Function Block Interface: defines input and output parameters.
• Fuzzification: converts the input variables which represents crisp values of perfor-
mance measures into linguistic values (fuzzy sets) using the membership functions.
The latter are determined based on the identified approximate thresholds.

• Rule Identifier: defines the level of the actor characteristic (his availability, suitability
and cost), and the level of each BPMN element characteristic (time behavior and
cost) using a set of fuzzy decision rules written in a linguistically natural language
(Sect. 4.2).

• Defuzzification: determines the level of availability, suitability and cost of the actor
and the level of time behaviour and cost of each BPMN element as well as the degree
of certainty of this level using the Center Of Sums (COS) technique (Sect. 4.3).

Based on the obtained result provided by the Defuzziification, the decision maker
estimates the performance of the actor and BPMN elements.

44 M. Kchaou et al.

6 Experiments

In order to validate our methodology, we rely on two types of experimental evaluation.
The former is accomplished with students while the second is done through the proposed
“FuzzPer” tool. These experiments use the following additional resources:

• Business Process Model: we use the “Travel Agency process” example modelled
with BPMN in Fig. 4. The model is annotated by semantic information that covers the
cost, organizational aspect and temporal constraints related to the actor and BPMN
elements.

• Participants: During these experiments, we asked 50 students to evaluate the actor
characteristics (availability, suitability and cost) and to assess BPMN elements
characteristics (time behaviour and cost of each BPMN element).

• Actor characteristics exercise2: students should answer to a set of questions to assess
the performance of the actor. The questions are classified into three categories: those
that related to the availability of the actor, those focus on the suitability of the actor
and those associated to the actor cost. Finally, each student should choose the level of
each actor characteristic (i.e., availability, suitability and cost). For instance, the actor
is always available or rarely available.

• BPMN elements characteristics exercise (See footnote 2): students had to evaluate the
time behaviour of each BPMN element (the time performing an activity, the time of
make decision and the transfer time) and the cost of each one (the cost of an activity,
the cost of make decision and the cost of the transfer time). Finally, each one select
the time level and the cost level of each BPMN element. For instance, the activity’s
cost is cheap, acceptable or expensive.

Experiment 1: Figure 5 represents the number of correct and incorrect answers
for the actor characteristics exercise. In this figure, 75% of the responses are correct.
The result expresses that the majority of students can evaluate the performance of the
actor. This result is also established based on their answers to the last question for each
category of the first exercise, which is about the availability, suitability and cost of the
actor.

2 https://sites.google.com/site/kchaoumariemsint/resources.

https://sites.google.com/site/kchaoumariemsint/resources

Application of Fuzzy Logic to Evaluate the Performance 45

Fig. 4. “Travel Agency process” example [10].

Fig. 5. Correct and incorrect answers for the actor characteristics exercise.

Indeed, Fig. 6 displays that 78% of students considered the actor as always available,
22% as rarely available.

Fig. 6. Students’ judgments about the availability levels.

In addition, Fig. 7 shows that 69% of students considered the actor as has low skills,
31% as has best skills. They show that a good number of students have correctly assess
competences of actors.

46 M. Kchaou et al.

Fig. 7. Students’ judgments about the suitability levels.

Furthermore, Fig. 8 represents that 52% of students considered the actors as
expensive, 29% as acceptable, and 19% as cheap.

Fig. 8. Students’ judgments about the cost levels.

Figure 9 shows the number of correct and incorrect answers for the BPMN elements
characteristics exercise. In this figure, 67% of the responses are correct. Based on this
result, we can deduce that the majority of students can evaluate the performance of
BPMN elements. This result is also established based on their responses to the last
question for each category of the second exercise, which is about the time behaviour and
cost of BPMN elements.

Fig. 9. Correct and incorrect answers for the BPMN elements characteristics exercise.

Indeed, Fig. 10 depicts students’ judgments about the characteristics levels of activ-
ities. 61% of students consider the time of activities in the BPMN model as normal,
23% as maximal and 16% as minimal (see Fig. 10 (a)). In addition, 74% of students
considered activities as expensive, 16% as acceptable, and 10% as cheap (see Fig. 10
(b)).

Experiment 2: Uses our tool to estimate the actor characteristics levels and the
BPMN element characteristics levels of the business process model illustrated in Fig. 4.

Application of Fuzzy Logic to Evaluate the Performance 47

(a) (b)

Fig. 10. Students’ judgments about the characteristics levels of activities.

Our BPMN model is annotated by temporal constraints and semantic information (cost
and organizational aspects).

Considering the limited space, we present an example of the actor characteristic
(suitability) and an example of BPMN element characteristic such as the time behaviour
of an activity.

If the designer selects “Measures calculator thresholds” menu and then “Perfor-
mance measures” and choose the actor “Omar” with the “Suitability” characteristics,
then the system displays the numeric values and their linguistics interpretations of differ-
ent performance measures used for assessing the suitability of the actor. It also displays
the estimated level of suitability.

For instance, the estimated suitability level of the actor “Omar” is “Having LowSkills
with a certainty degree of 63%”. Figure 11 displays the interface for actor suitability
evaluation.

Fig. 11. Availability characteristic assessment interface [10].

48 M. Kchaou et al.

In addition, if the designer selects “Measures calculator thresholds” menu and then
“Performance measures” and choose the BPMN element “Activity” with the “Time
behavior” characteristic, then the system displays the numeric values and their lin-
guistics interpretations corresponding to the different activities used for assessing the
time behaviour. It also displays the estimated level of time behaviour.

For instance, the estimated time behaviour level of the BPMN element “Activity” is
“Normal with a certainty degree of 67%”. Figure 12 presents the interface for the activity
evaluation.

Fig. 12. Time behaviour characteristic evaluation interface [10].

Based on answers of students to the suitability questions, experiments reveal that
the suitability of actors as having low skills. This result is conform with the assessment
realized by “FuzzPer”,which reflects that the actors in the presentedBPmodel as “having
low skills”. As the same, regarding the time behaviour, students consider the time of
activities in the BPMN model “Travel agency process” as “normal”.

These compliant results demonstrate that our methodology provides promising
results that should be shown based on further experiments.

7 Threats to Validity

This study, as every other empirical business process study, is subject to two type of
threats: internal, external [20].

The internal validity threats are related to the following issues: The first issue is the
use of three algorithms (J48, RandomTree and REPTree) to find the imprecise thresholds

Application of Fuzzy Logic to Evaluate the Performance 49

using our methodology. We chose REPTree algorithm for finding threshold values as it
is the one that yielded the best results. Of course, we should find other algorithms to
determinemore objectively the values of thresholds. The second issue is that although the
annotation ofBPMNmodels are listed in the datasets used, these information has not been
tested. Therefore, some errors may not have been discovered in some BPMN models.
Considering this, our thresholds could have found faults that are yet undiscovered.

The external validity is related to the limited number of the used databases (one
database). Our study covers only BPMNmodels having small/medium size. This means
that the findings of this study cannot be generalized to all BPMN models, particularly
those having complex size. Further tests onmany other BP from different domains would
be needed to generalize obtained results.

8 Conclusion

BP modeling is crucial for enterprises seeking to improve their performance. In this
context, several researchers refers to different techniques that aim at improving a BP
model performance [19, 21]. Some approaches assist BP designers to develop high-
performance models while others propose measures to assess the performance [9, 11,
14]. However, despite all these initiatives, there is a lack of consensus about the used
performance measures, their thresholds, etc.

To tackle these challenges, we proposed, in this paper, a fuzzy-based approach for
assessing the performance of BPMN-based BP models with emphasis on two cate-
gories of characteristics: actor characteristics and BPMN elements characteristics. The
approach is based on a set of performancemeasures such as Activity Duration (AD), Per-
formance of an Actor per Day (PerDayAct), etc. In addition, for a concise interpretation
of the performance measures, the approach uses data mining techniques (decision tree)
to determine thresholds that high-performance BPmodels should attain and/or maintain.
The use of fuzzy logic aims at dealing with the approximate and imprecise nature of the
obtained thresholds.

Furthermore, we automated the assessment process with a Java-based tool that cal-
culates the values of the different metrics. Based on these values the tool determines
levels of the actor’s availability, suitability and cost; and levels of BPMN element’s time
behaviour and cost.

The preliminary experiments’ results are very supportive of mixing data mining and
fuzzy logic for better assessment of BP model performance.

In terms of future work, we focus on three main axes: 1) examine the integration of
other performance measures and characteristics, like fault tolerance and maturity, into
our methodology 2) Developing recommendations to BP engineers for higher perfor-
mance BPmodels, And 3) validate the proposed fuzzymethodology for BP performance
evaluation through some real case studies with business experts.

References

1. Chen, J., Wang, X., Zhai, J.: Pruning decision tree using genetic algorithms. In: International
Conference on Artificial Intelligence and Computational Intelligence, pp. 244–248 (2009)

50 M. Kchaou et al.

2. D’Ambrogio, A., Paglia, E., Bocciarelli, P., Giglio, A.: Towards performance-oriented per-
fective evolution of BPMN models. In: 49th International Conference on Spring Simulation
Multi-Conference, SpringSim 2016, p. 15 (2016)

3. Eclipse Specification (2011). www.eclipse.org/documentation
4. Gonzalez-Lopez, F., Bustos, G.: Business process architecture design methodologies - a

literature review. Int. J. Bus. Process Manag. 1317–1334 (2019)
5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data

mining software: an update. ACM SIGKDD Explor. Newsl. 10–18 (2009)
6. Heinrich, R., Paech, B.: Defining the quality of business processes. In: 4th International

Conference of Modellierung, Modellierung 2010, pp. 133–148 (2010)
7. Heinrich, R.: Aligning business process quality and information system quality. Ph.D. thesis

(2013)
8. ISO/IEC 19510: information technology - object management group business process model

and notation (2013)
9. Kchaou, M., Khlif, W., Gargouri, F.: Temporal, semantic and structural aspects-based trans-

formation rules for refactoring BPMNmodel. In: The 16th International Joint Conference on
e-Business and Telecommunications, Prague, Czech Republic, pp. 133–144 (2019)

10. Kchaou, M., Khlif, W., Gargouri, F.: A methodology for determination of performance mea-
sures thresholds for business process. In: The 15th International Conference on Evaluation
of Novel Approaches to Software Engineering, pp. 144–157 (2020)

11. Khlif, W., Kchaou, M., Gargouri, F.: A framework for evaluating business process per-
formance. In: The 14th International Conference on Software Technologies, pp. 371–383
(2019)

12. Kis, I., Bachhofner, S., Di Ciccio, C., Mendling, J.: Towards a data-driven framework for
measuring process performance. In: Reinhartz-Berger, I., Gulden, J., Nurcan, S., Guédria,
W., Bera, P. (eds.) BPMDS/EMMSAD -2017. LNBIP, vol. 287, pp. 3–18. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59466-8_1

13. Kluza, K., Nalepa, G.: Formal model of business processes integrated with business rules.
Inf. Syst. Front. 21(5), 1167–1185 (2018). https://doi.org/10.1007/s10796-018-9826-y

14. Lanz, A., Reichert, M., Weber, B.: Process time patterns: a formal foundation. Int. J. Inf. Syst.
57, 38–68 (2016)

15. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
16. Razzaq, S., et al.: Knowledge management, organizational commitment and knowledge-

worker performance. Int. J. Bus. Process Manag. 25, 923–947 (2019)
17. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans.

Syst. Man Cybern. 21(3), 660–674 (1991)
18. Shapiro, R.M.: XPDL 2.0: Integrating process interchange and BPMN, pp. 183–194 (2006)
19. van der Aa, H., del-Río-Ortega, A., Resinas, M., Leopold, H., Ruiz-Cortés, A., Mendling, J.,

Reijers, H.: Narrowing the business-IT gap in process performance measurement. In: Nurcan,
S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 543–557. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_33

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Academic Publishers, Kluwer (2000)

21. Wynn,M.T., Low,W.Z., Nauta,W.: A framework for cost-aware process management: gener-
ation of accurate and timelymanagement accounting cost reports. In: Asia-Pacific Conference
on Conceptual Modelling, APCCM’9, pp. 79–88 (2013).

22. Zadeh, L.: Is there a need for fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008). https://doi.
org/10.1016/j.ins.2008.02.012

http://www.eclipse.org/documentation
https://doi.org/10.1007/978-3-319-59466-8_1
https://doi.org/10.1007/s10796-018-9826-y
https://doi.org/10.1007/978-3-319-39696-5_33
https://doi.org/10.1016/j.ins.2008.02.012

Cloud Services Discovery Assistant
for Business Process Development

Hamdi Gabsi(B), Rim Drira, and Henda Hajjami Ben Ghezala

RIADI Laboratory, National School of Computer Sciences,
University of Manouba, La Manouba, Tunisia

{hamdi.gabsi,rim.drira,henda.benghezala}@ensi-uma.tn

Abstract. Business Process (BP) development can be defined as the
process of constructing a workflow application by composing a set of
services performing BP’s activities. In this respect, cloud services prove
indispensable to build business applications with higher performance,
lower operating cost, and faster time-to-market. The crucial challenge
facing several companies in cloud-based BP development is to effectively
address the business activities and cloud services matching issue. For-
merly, we present this issue as a discovery challenge of suitable cloud
services performing abstract BP’s activities. Business activities are gen-
erally named and described with non-standard format based on natural
language and subjective terminology. In parallel, the great variety and
the exponential proliferation of cloud services over the Web introduce
several functionally similar offers with heterogeneous descriptions. There-
fore, efficient and accurate cloud service discovery performing business
activities requires a high level of expertise and a steep documentation
curve. To address this challenge, firstly, we offer a publicly availaible
cloud data-set, named ULID (Unified cLoud servIces Data-set), where
services offered by different cloud providers are collected, unified and
classified based on their functional features. Secondly, we introduce the
concept of cloud-aware BP by proposing a Domain-Specific Language
(DSL) named “BP4Cloud” to enrich BP modeling and specify cloud ser-
vices requirements. Based on ULID data set and “BP4Cloud” language
we propose an Activity-Services Matching algorithm that automates the
discovery of cloud services performing BP’s activities. As a part of the
evaluation, we set up by clarifying the specification of BP4Cloud ele-
ments through a proof of concept implementation applied on a real BP.
Then, we proceed by evaluating the precision and recall of our Activity-
Service Matching algorithm.

Keywords: Cloud services discovery · Business process development ·
Natural language processing · Activity-service matching algorithm

1 Introduction

Cloud services are becoming the prominent paradigm for business process devel-
opment. A business process can be defined as the combination of a set of activ-
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 51–80, 2021.
https://doi.org/10.1007/978-3-030-70006-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_3

52 H. Gabsi et al.

ities which are performed in coordination within an organizational and tech-
nical environment. These activities jointly realize a business goal [1]. The BP
development leads to define a workflow application which consists of coordi-
nated executions of multiple activities that require access to high performance
IT services [1]. For this reason a great interest has been paid to cloud comput-
ing environments which provide a dynamic provisioning of on demand shared
IT services based on a pay-as-you-go model. The increasing interest for cloud
services in business process development has led to an expeditious diversity of
provided services to cover all the needs. Nonetheless, this diversity brings several
challenges, essentially, the business activities and cloud services matching which
can be defined as a discovery issue. In fact, the discovery process is defined as
the process of detecting automatically or semi-automatically services perform-
ing business activities and delivering their related information [2]. Cloud services
discovery is considered as a challenging task for different reasons. First, cloud
providers often publish their services descriptions, pricing policies, and Service
Level Agreement (SLA) rules on their portals in various and heterogeneous for-
mats. Therefore, most of the available cloud services come with non-standard
format (e.g., HTML documentation and textual descriptions). To deal with this
heterogeneity, a steep documentation curve is required to clearly identify relevant
services’ functional features and compare several offers. Second, cloud services
are continuously evolving (the update of existing services and the emergence of
new services), handling this evolution during the discovery process is known to
be a challenging task for business applications’ developers. Several studies have
been carried out to address these challenges using different approaches such as
semantic-based approach [3] and syntactic-based approaches [4]. Through inves-
tigating different research studies, two main observations are deduced. First, the
discovery scope cloud services is often limited to some services that are published
in a specific description standard such as OWL-S [3] or Web Services Description
Language (WSDL) [6]. This limitation is impractical since it expects available
cloud services to have semantic tagged descriptions or WSDL describing files,
which is not the case in a real-world scenario. Therefore, a general approach that
ensures an automatic discovery of cloud services without making any assump-
tions about cloud services description language is needed. Second, the discovery
of concrete cloud service performing an abstract business activity needs an align-
ment between the business activity requirements and cloud service specifications,
this challenge can be defined as a business and IT alignment. Unfortunately, the
business and IT alignment is not clearly conducted in several research studies [7].
As a result of which many cloud services relevant to the request may not be con-
sidered in the service discovery process. The above mentioned observations are,
practically, conducted, in our work, through three main perspectives presenting
our contributions.

– We handle the business and IT alignment by assisting the cloud resources
requirements specification during BP modeling, thus we introduce the con-
cept of cloud-aware BP. We propose a semantic enrichment of business activi-
ties description realized in full compliance with the standard Business Process

Cloud Services Discovery Assistant for Business Process Development 53

Model and Notation (BPMN) to cover both business and technical require-
ments and pave the way to the cloud services discovery step.

– We propose a cloud data-set, named ULID (Unified cLoud servIces Data-set),
where services offered by different cloud providers are collected, unified and
classified based on their functional features without making any assumptions
about cloud services description language.

– We propose a discovery approach based on an activity-services matching algo-
rithm ensuring the discovery of relevant cloud services performing business
activities.

– We demonstrate the effectiveness of the proposed algorithm through experi-
mental validation.

The present work is a comprehensive extension to our previous work [8]. We
expand the discovery approach presented in [8] in order to assist SMEs and
startups in cloud-based business process development. Precisely, we present
three extensions to our initial discovery approach and demonstrate the improved
framework that encompasses the enhancements of our cloud services discovery
process. First, we consider, in this work, BP’s activities as developer’s require-
ments instead of keyword-based queries defined in [8]. This fact requires mod-
eling business and technical requirements with regard to cloud services discov-
ery process. Therefore, we propose a Domain-Specific Language (DSL) named
“BP4Cloud” defining the concept of cloud-aware business process that ensures
the enrichment of BP modeling. Second, we enrich the cloud services meta-model
proposed in [8] in order to present relevant cloud services meta-data needed to
define the service-activity matching. Third, considering BP’s activities as dis-
covery queries expects several improvements of our discovery approach to be
suitable to the context cloud-based business process development. Therefore, we
propose a new Activity-Services Matching algorithm that automates the discov-
ery of cloud services performing business activities. The remainder of this paper
is organized as follows: Sect. 2 presents the problem statement. In Sect. 3, we
details our discovery assistant. Section 4 illustrates the evaluation of our work.
In Sect. 5, we discuss the related work. Section 6 concludes the paper and outlines
our ongoing works.

2 Problem Statement

Our main focus in this paper is to assist the discovery of cloud services required
for BPs development. To effectively achieve our purpose, we propose to outline
a substantial interaction between business designers and technical developers
during the resources modeling and resources discovery. The resources modeling
presents the specification of abstract entities that carry out the work related
to activities which are in our context cloud services [1]. The resources discovery
presents the identification of concrete cloud services needed to (i) the deployment
and (ii) the performing of abstract BP’s activities. The deployment of the BP
requires identifying suitable infrastructure and platform services. These services
provide virtualized resources and software tools needed for business development.

54 H. Gabsi et al.

Fig. 1. BPMN process example.

The performing of BP activities requires a matching between abstract business
activities and concrete software services. To illustrate, let us suppose the follow-
ing scenario presented in Fig. 1. This scenario describes a simple BPMN process
for online bank accounts opening: which initiates with an application request
sent from a customer.

The first activity consists on checking the customer summary, if a simi-
lar request is already in process, his/her request will be rejected. Otherwise,
the process evaluates the customer application, if the application is approved,
a provisional account Id is generated and sent. In order to develop the bank
account opening process using cloud service, two major steps should be con-
ducted: First, we need to define technical cloud resources, essentially, IaaS and
PaaS requirements. For instance, the evaluation application activity requires
a computing resource to evaluate the customer’s application. The check cus-
tomer summary activity requires a database server to verify if the customer has
already an account Id. The whole process may require a load-balancer to dis-
tribute the application traffic across the allocated compute resources. However,
BPMN, which is the most used standard for the high-level description of BPs,
supports neither the modeling of the required cloud resources nor their configu-
ration features. This fact presents an important challenge for business designers.
The second step consists of the discovery of software services performing abstract
activities. For instance, the sending account Id activity can be performed by a
service which sends notifications or emails. Our main purpose is to assist business
designers in the above-mentioned steps.

3 Cloud Services Discovery Assistant

Our proposed cloud services discovery assistant is based mainly on three basic
steps. First, we define a cloud aware business process based on our DSL
“BP4Cloud” which enriches BP modeling in order to assist cloud services dis-
covery. Second, we propose a centralized data-set that references scattered cloud
services regardless of their providers and their heterogeneous descriptions in uni-
fied data-set publicly available. Third, we propose an activity-service matching
algorithm in order to identify relevant cloud services satisfying technical and
business requirements of business activities. An overview of our proposed dis-
covery approach is presented in Fig. 2. Each step is detailed in the next sections.

Cloud Services Discovery Assistant for Business Process Development 55

3.1 BP4Cloud Language

BP4Cloud consists of a set of extension elements that allow the attachment of
cloud resource perspectives to the BPMN standard. BP4Cloud comprises various
aspects of specification namely, business specification and technical specification.
The technical specification presents cloud services, mainly IaaS “Infrastructure
as a Services” and PaaS “Platform as a Services” services, allowing to define the
run-time environment responsible of business process execution. The business
specification aims to assist SaaS “Software as a Service” services discovery to
perform abstract business activities.

Fig. 2. Cloud services discovery assistant.

Technical Cloud Resources Specification. The technical specifications
define the cloud infrastructure ensuring the execution of the business process.
Figure 3 illustrates the meta model presenting the technical specifications.

The “infrastructure-requirements” meta-class presents the requirements in
terms of compute capacity, storage devices and network resources necessary to
perform business activities in the cloud. We present the “compute”, “storage”
and “network” meta-classes inheriting from the “infrastructure-requirements”
meta-class. The “compute” meta-class is used to specify the computation capac-
ities required to deploy and execute business activities. This class defines the
configuration of servers and virtual machines offering highly scalable compute

56 H. Gabsi et al.

Fig. 3. BP4Cloud meta-model.

capacities that can be adjusted on demand. We assist business designers in spec-
ifying the configuration of cloud computing capabilities through the “configura-
tion” meta-class. We define the following configuration attributes; the machine’s
RAM memory, internal storage capacity, clock frequency, and number of virtual
CPUs. We provide default values for these configuration attributes ensuring the
specification of a medium virtual machine to perform a given business activity.
The virtual machine proposed by default is characterized by a RAM memory of
8 Gb, an internal storage capacity of 16 Gb, a clock frequency of 10,000 Mbit/s
and a number of virtual CPU equal to 2. The “storage” meta-class defines the
storage of data exchanged between business activities. The goal of this class is
to assist business designers in modeling cloud resources presenting data backup
based on business process flow control. Indeed, depending on the flow control
model, an appropriate type of storage will be recommended. The parallel or
conditional flow control models present an exchange of data in a shared way
between different activities, this fact requires a temporary online storage. For
a sequential flow control model, the data exchanged between the activities can
be private, this requires permanent storage or archiving, so we recommend a
“backup” or archiving type storage. The “Network” meta-class presents net-
work resources providing communication mechanisms between different actors
of the business process. It ensures an exchange of several information presenting
the execution state of business activities. We support the specification of net-

Cloud Services Discovery Assistant for Business Process Development 57

work resources as well as their characteristics such as bandwidth and through-
put through the “Network” meta-class. The “platform-requirements” meta-class
provides hardware and software tools for the implementation and execution of
business activities. It offers middleware components, such as; web server, appli-
cation server, databases, ensuring the development, customization and testing
of business activities. Our goal is to help business designers define the technical
specifications necessary to model the business process execution infrastructure in
the cloud. We consider business designers to be non-cloud experts with an inter-
mediate level of expertise. Therefore, these specifications have been presented
in a simple way by defining basic cloud resources which can be exhaustively
extended.

Business Cloud Resources Specification. Business specifications are used
to enrich the modeling of activities to support the discovery of cloud services.
In practice, these services are identified using our proposed Activity-Services
Matching algorithm. To improve the performance and the results of the algo-
rithm, we need accurate specifications related to the business logic of BP’s activ-
ities. For these reasons, we introduce the Business Logic meta-class which clas-
sifies activities according to their business logic. This classification is basically
inspired by Workflow Pattern Activity (WPA) [9]. We take advantage of cloud
services categories detailed in ULID in order to assist services discovery by iden-
tifying f a set of cloud services sharing the same business context as the activities.
Figure 4 presents the “Business-Logic” meta-class.

Fig. 4. Business-logic meta-class.

58 H. Gabsi et al.

3.2 ULID: Unified cLoud ServIces Data-Set

After modeling the required cloud services using BP4Cloud, we propose a unified
cloud services data-set “ULID” presenting a centralized source of services to
efficiently assist the discovery process. We present ULID construction’s steps
dealing with several cloud services proprieties.

First, we manage the heterogeneous nature of cloud service by properly
extracting relevant services capabilities from ambiguous services’ descriptions.
To do so, we propose an automated process for services ‘capability extraction in
order to identify services’ functional features. Based on these features, we define
a services’ functional clustering to unify functionally similar services. Thus, we
can reduce the search scope and we improve the response time of the discovery
process.

Second, we deal with the huge diversity of scattered cloud services by propos-
ing a structured main source that provides relevant services meta-data and avoids
laborious documentation task in several providers web portals. In that respect,
we introduce ULID which presents a centralized cloud service data-set to which
the business designer has access to.

Last but not least, we manage the dynamic evolution of cloud services by reg-
ularly updating our data-set. Based on each commitment presented previously,
we present ULID construction steps. In fact, Our data-set is based on three main
steps which are: Meta-data Extraction & Unification, Merging & Clustering and
Update detection. We give further details about these steps in the next sections.

Fig. 5. Meta-model of cloud services meta-data.

Meta-data Extraction and Unification. This step aims to collect cloud
services meta-data which are scattered in HTML pages of cloud providers web
portals. To do so, we use a HTML parser to harvest relevant cloud services

Cloud Services Discovery Assistant for Business Process Development 59

meta-data from these portals. The collected meta-data is stored in conformance
with a unified meta-model of services description given in Fig. 5. Our meta-
model defines relevant services meta-data that can facilitate services discovery
and assist selection decisions.

The class “Service” provides the name, the description, the endpoint and
the available regions of the service. Each cloud service has a category and offers
multiple operations. A service’s operation has a category that can be infor-
mation request (IR) or manipulation request (MR). Information requests (IR)
aim to retrieve diverse information regarding a particular request such as get
attributes(), list methods() etc. Manipulation requests (MR) present several
modification functions such as: create(), recommend(). The class “Provider”
presents information related to the service’s provider.

Identifying services functional features is considered as an important pillar
in cloud services discovery. In order to automatically extract relevant keywords
presenting the functional features of cloud services, we use a natural language
processing tool named Stanford Parser [10]. The Stanford Parser can identify
the grammatical structure of each sentence of service descriptions by creating
grammatical relations or type dependencies among elements in the sentence.
These dependencies are called Stanford Dependencies SDs [10]. In our work,
we model keywords as a set of binary relations <action, object>, where action
denotes the functional feature of the service. Object denotes the entities affected
by the action. Then, we use the SD sets to properly identify the grammatical
relations between <action, object>. In fact, each SD is a binary relation between
a governor (also known as a regent or a head) and a dependent [10].

To illustrate, let’s suppose this sentence “This service offers compute capacity
in order to deploy workloads in a public cloud”. We use the following SD:

– Relation direct object: dobj(governor, dependent) generally appears in the
active voice, in which the governor is a verb, and the dependent is a noun
or noun phrase as the direct object of governor. In our case, we obtain
dobj(offers, capacity) and dobj(deploy, workloads).

– Relation adverbial clause modifier: advcl(governor, dependent), an adver-
bial clause modifier of a verb phrase or sentence is a clause modifying the
verb (consequence, conditional clause, purpose clause, etc.). For instance,
advcl(offers, deploy).

– Relation prepositional modifier: prep(governor, dependent), is any preposi-
tional phrase that serves to modify the meaning of the verb, adjective, noun,
or even another preposition. In our case, we obtain prep in(deploy, cloud).

The basic keywords extracted above may not present relevant functional fea-
tures semantics. For example, the pair {offers, capacity}, we expect that it is
{offers, compute capacity}. Likewise, the pair {deploy, cloud} was expected to be
{deploy, public cloud}. Therefore, the semantic extension of the basic extracted
keywords is necessary. The semantic extension mainly refers to the noun part of
the service functional feature. In fact, the semantic extension of nouns mainly
includes qualifiers, adjectives, nouns, gerunds, and adverbs. Through the analy-
sis of the text description of cloud services, we note that qualifiers, adverbs do

60 H. Gabsi et al.

not provide the semantic information, we need only a few adjectives to contain
useful business semantic information. Therefore, we consider nouns and gerunds
as modifiers for semantically extending the keywords. In the Stanford Parser,
we mainly consider the noun compound modifier; nn(governor, dependent) rela-
tionship, which indicates that both the governor and dependent are nouns, and
dependent is treated as a modifier to modify the governor.

Finally, we created a stop-word list to remove the meaningless functional
features which contain verbs such as “allow, get, can, helps, etc.”. We presented
in our previous work [8], a real example tested on a text description of a compute
service offered by AWS [11] (Fig. 6).

Fig. 6. Functional keywords extraction [8].

Merging and Clustering. We classify services referenced in our data-set in
unified categories. Our main purpose, in this step, is to provide unified services
categories regardless of cloud providers. These categories are basically inspired
by Workflow Pattern Activity (WPA) [9]. WAP describes a business function
frequently found in BPs. Thom et al. [12] performed a manual analysis to iden-
tify relevant WAPs as well as their cooccurrences within a collection of 214 real
wold BPs. Based on the frequency of appearance and potential reuse of a busi-
ness function in the analyzed models, the authors define seven WPAs which
are: Approval, Question-answer, Uni/Bi-directional Performative, Information
Request, Notification, and Decision Making. Therefore, we offer a classification
of cloud services inspired by WPAs in order to create a relationship of correspon-
dence based on the business aspect between the activities of a business process
and the cloud services. As a result, we ensure a pre-selection of a set of cloud
services sharing the same business context as the activities, this fact can improve
the performance and accuracy of our discovery algorithm. To do so, first of all,
we extract appropriate keywords expressing the functional features of services
categories as explained previously for services description. Second, we calcu-
late the semantic similarity between each pair of categories based on extracted
keywords and WPAs keywords descriptions. Finally, we gather categories into

Cloud Services Discovery Assistant for Business Process Development 61

clusters using a modified K-means clustering algorithm. We detail each step as
the following:

Classes Similarity Computation: We base our clustering approach on the
following heuristic: Services’ categories over different providers tend to respond
to the same business requirements if they share the same or similar keywords
describing their functional features.

After identifying categories’ functional features which are the set of pairs
<action, object>, we calculate the similarity SC(C1,C2) between services cate-
gories over different providers. We denote Ci = {pi1, pi2, pi3, ..., pin} a category’s
functional features, where pin is the pair <action, object> and |Ci| the cardinal-
ity of Ci, (the number of pairs pi).

The similarity SC(C1,C2) is inspired from [13]. Indeed, the authors prove the
relevance of the proposed similarity formula in the context of words pairs simi-
larity. The main asset of this work is defining similarity in information theoretic
terms which ensure the universality of the similarity measure. The main issue of
many similarity measures is that each of them is tied to a particular application
or assumes a particular domain model. Dealing with this issue, the proposed sim-
ilarity measure has significantly improved words’ pairs similarity. The similarity
formula SC(C1,C2) presents the sum of the similarities between each pair p1i of
C1, and the pairs {p21 , p22 , p23 , ..., p2n} of C2, normalized by the cardinality of
C1. Formally, we obtain;

SC(C1,C2) =

∑|C1|
i=1 (

∑|C2|
j=1 S(p1i,p2j)

|C2|)

|C1| (1)

where S(p1i, p2j) is the pairs similarity. We define the pairs similarity as follows:

– Let A1 and A2 respectively denote the actions in the pair p1 and p2.
– Oi1 and Oi2 respectively denote objects in the pair p1 and p2.
– w1, w2 denote the weight of the action part and the object part. We suppose

that some predefined action has a higher weight such as; offer, provide, deliver,
etc. These weights are defined by the developers.

– m is the minimum number of objects of the pair p1 and p2
(min number objects(p1, p2)) whereas n is the maximum number of objects
of the pair p1 and p2 (max number objects(p1, p2)).

The pair similarity is calculated as:

S(p1,p2) = w1S(A1,A2) + w2

∑m
i=1 S(Oi1,Oi2)

n
(2)

where S(Oi1,Oi2) is words similarity. We use Jacard Similarity Coefficient to cal-
culate the word similarity. In fact, the Jaccard coefficient measures similarity
between finite sample sets, and is defined as the size of the union divided by the
size of the intersection of the sample sets.

J(E,F) =
E ∪ F

E ∩ F
(3)

62 H. Gabsi et al.

where E and F are two given sets of words. We create a feature set F(w) for
each word ‘w’ (i.e for each object which is presented by a word in our context)
containing the synonym set, generic word and interpretation of the word w. F(w)
is created using BabelNet [14]. Based on [13], we define the similarity between
the two words as follows:

S(w1,w2) =
2 × I(F (w1) ∩ F (w2))
I(F (w1)) + I(F (w2))

(4)

where I(S) represents the amount of information contained in a set of features
S. I(S) is calculated as:

I(S) = −
∑

f∈S

logP (f) (5)

The probability P (f) can be estimated by the percentage of words that have the
feature f among the set of words that have the same part of speech in the entire
BabelNet library database. When two words have the same feature set, then the
maximum similarity is 1. The minimum similarity is 0 when the intersection of
two words’ features is empty.

Modified K-means Clustering Algorithm: The K-means algorithm is an
algorithm widely used in the field of data mining. It aims to partition n elements
(observations) into k clusters presented by k data centroids. Usually, k-means
uses the Euclidean distance or Manhattan distance to assign each observation to
the nearest cluster. We propose a modified K-means algorithm in order to have
meaningful clusters and enhance the basic K-means algorithm results.

To do so, first, we left frequent and rare words unclustered. This fact is
approved by the (Information Retrieval) IR community in order to have the
best performance in automatic query expansion and avoids over-fitting.

Second, we enhance the cohesion and correlation conditions defined in the
basic K-means algorithm by quantifying the cohesion and correlation of clusters
based on our semantic functional similarity instead of Euclidean distances used
in the basic K-means algorithm. The Euclidean distance is not consistent in our
context because it does not provide meaningful information related to semantic
similarity.

Third, to ensure that we obtain clusters with high cohesion, we only add
an item (in our case a services’ category) to a cluster if it satisfies a stricter
condition, called cohesion condition. Given a cluster C, an item ’i’ is called a
kernel item if it is closely similar to at least half of the remaining items in C.
Our cohesion condition requires that all the items in the cluster be kernel items.
Formally;

i ∈ C ⇒ ||∀j ∈ C, i �= j, Sim(i, j) ≥ ||C|| − 1
2

(6)

We illustrate the major steps of the modified K-means algorithm as follows.
To keep our data-set up-to-date and manage the dynamic evolution of cloud

services, we verify, first, if a cloud provider offers a services update’s detection
API. In this case, we take advantage of this API by using an agent-based sys-
tem able to execute existing update’s APIs. Otherwise we revisit providers’ web

Cloud Services Discovery Assistant for Business Process Development 63

Algorithm 1. Modified K-means Algorithm.

Input: classes scopes set (S = s1, ..., sn)
Input: k the number of clusters

Let sim(s1, s2)be the similarity function
Let C = c1, c2, ..., ck (set of cluster centroids)
Let L = L(si)|i = 1, 2, ..., n (set of cluster labels)
for all ciinC do

ci ← sjInitialize Centroid (ci)
end for
for all siinS do

l(ci) ← indexmaxSim(si,cj)

end for
CentroidChange ← False
cohesioncondition() ← True
while Until(CentroidChange ∧ V erify(cohesioncondition())) == True do

for all ciinC do
UpdateCentroid(ci)

end for
for all siinS do

M ← indexmaxSim(si,cj)

if M <> l(si) then
l(si) ← M
CentroidChange < − − True

end if
V erify(cohesioncondition(si,sl))

lin(1, 2, ..., n)l <> i
end for
lin(1, 2, ..., n)l <> i

end while

portal periodically using the web scraper to detect new cloud services or those
frequently updated. After updating ULID, we apply the clustering algorithm in
order to assign each new service to the suitable cluster.

3.3 Activity-Services Matching Algorithm

After modeling the required cloud resources, we need to particularly discover
concrete services that will be invoked to perform BP’s activities. To do so, we
propose the Activity-Services Matching algorithm which is accomplished through
two main steps: the technical matching and the business matching. Figure 7
illustrates an overview of the matching algorithm steps.

Technical Matching. The main purpose of the technical matching is discover-
ing the infrastructure environment based on technical requirements specified by
BP4Cloud. To do so, we establish, first, a mapping relationship between “agnos-
tic cloud resources” specified in BP4Cloud and “concrete cloud resources” refer-
enced in ULID. Figure 8 illustrates this mapping. However, this is not enough to

64 H. Gabsi et al.

Fig. 7. Matching algorithm steps.

precisely define the infrastructure environment. Indeed, IaaS services need to be
correctly configured. Several and conflicting criteria have to be considered such
as VCPU, RAM, etc. No single service exceeds all other services in all criteria
but each service may be better in terms of some of the criteria. Therefore, we
consider IaaS services discovery and configuration as a MultiCriteria Decision
Making (MCDM) problem. In our previous works [15] and [16], we have clearly
addressed the technical matching.

Business Matching. The business matching is conducted through two steps.
The context matching and the functional matching. Figure 9 illustrates the busi-
ness matching steps.

Context Matching. The context matching discovers cloud services sharing
the same business context as BP’s activity. To identify the business context of
BP’s activities, we annotate each activity by scope and objective that clearly
define the business context such as Send Notification, Database Access. The
scope and objective are defined by the business designer. Defining the busi-
ness context of a CS is more challenging due to its heterogeneous description
and the abundant use of adjectives for commercial purposes. To deal with this
challenge, we extract relevant keywords presenting the functional features of
cloud services from its provided descriptions in supplier’s web portals. To do
so, we use the meta-data Extraction & Unification component of ULID allowing

Cloud Services Discovery Assistant for Business Process Development 65

Fig. 8. Technical matching.

Fig. 9. Business matching.

66 H. Gabsi et al.

the properly extract functional keywords modeled as a set of binary relations
<action, object>. After defining services functional features, the context match-
ing is based on the semantic similarity between service’s keywords and activity’s
scope and objective. We use the semantic similarity SIM(S1,A1) detailed in the
Merging & Clustering component of ULID.

SIM(S1,A1) =

∑|S1|
i=1(

∑|A1|
j=1 SIM(s1i,a1j)

|A1|)

|S1|
where S(s1i, a1j) is the pairs similarity. If the semantic similarity SIM(S1, A1)
is greater than a specific threshold (experimentally fixed in our work as 0.5), Si

is considered as candidate for the functional matching.

Functional Matching. The output of the context matching is a set of can-
didate cloud services that share the same business context as the activity. The
functional matching aims to identify the CS’s operations that can perform the
BP’s activity. Inspired by [17], we perform the functional matching by evaluat-
ing how a service operation fulfills an activity requirement. This is performed
by answering two symmetric questions: (1) how the activity can fulfill required
inputs for the service operation; and (2) how the service operation can fulfill
expected outputs of the activity. To do so, first, we classify cloud services oper-
ations and business activities into two categories: information request (IR) and
manipulation request (MR). Based on this classification, we identify candidate
operations according to the activity request type. We define a matched operation
if two main elements are verified: a matched context and matched inputs/out-
puts. A matched context is defined through two steps. First, we take advantage
of the structure of cloud services operations’ naming, which is typically a pair
<action object>, to calculate the semantic similarity between the operation
and the activity’s action. If this similarity is greater than a fixed threshold, the
second step consists on verifying if the operation’s object is a generic word of
the activity’s object, that means the activity’s object satisfies the relationship
“is a” an operation’s object. We consider an operation is a candidate for the
inputs/outputs matching if it satisfies the two above-mentioned conditions. The
input/output matching consists of a matching level and matching degree. The
matching degree consists of four elements: SIF: Service’s operation Input Fulfill-
ment, AIR: Activity’s Input Redundancy, AOF: activity’s Output Fulfillment,
and SOR: Service’s operation Output Redundancy. SIF and AOF are, respec-
tively, the ratio of the fulfillment of the service operation’s inputs and activity’s
outputs by the activity’s inputs and service operation’s outputs. AIR and SOR
are, respectively, the ratio of redundancy (unused) of the activity inputs and
service operation outputs in fulfilling the service operation inputs and activity
outputs. SIF, AIR, AOF, and SOR have values in [0.1]. Formally:

SIF =
matchedinputscount

Operationinputsize

Cloud Services Discovery Assistant for Business Process Development 67

SOR =
Unusedoperationoutputs

Operationoutputsize

AIR =
Unusedactivityinputs

Activityinputssize

AOF =
matchedoutputscount

Activityoutputssize

A match level can be precise, over, partial, or mismatch and it is specified based
on SIF, AIR, AOF, and SOR in the following rules:

– Precise: if (SIF = 1 ∧ AOF = 1) ∧ (AIR = 0 ∧ SOR = 0)
– Over if (SIF = 1 ∧ AOF = 1) ∧ (AIR > 0 ∨ SOR > 0)
– Partial if (SIF >= iMT ∧ SIF < 1) ∧ (AOF >= oMT ∧ AOF < 1)
– Mismatch if SIF < iMT ∨ AOF < oMT

iMT and oMT are customized matching thresholds for the ratio of fulfillment
of service operation inputs and activity outputs by activity inputs and service
operation outputs, respectively. Depending on particular business context, we
can set suitable values for iMT and oMT to get more or less partial matched
services, e.g. they can be set to 0.5. The match degree is based on how much
fulfillment of data elements between an activity and a service operation. If there
are more than one service operations which are matched with the activity then
the list of matched service operations is sorted according to the following rules:

1. precise>over>partial>mismatch
2. If two operations are both over match then

(a) The smaller the value SOR is the better the matched operation is.
(b) If they have the same value SOR then the smaller the value AIR is the

better the matched operation is.
3. If two operations are both partial match then

(a) The larger the value AOF is the better the matched operation is.
(b) If they have the same value AOF then the larger the value SIF is the

better the matched operation is.
(c) If they have the same values AOF and SIF then we apply the rules of the

values SOR and AIR as in case of over match above.
4. If two operations are both mismatch then they are considered as the same.

Algorithm 2 illustrates the Acitivity-Services Matching Algorithm.

4 Application and Performance Analysis

In order to illustrate our discovery assistant, we set up, firstly, by clarifying
the specification of BP4Cloud elements applied on the use case, “Online Bank
Accounts Opening”. Then, we evaluate each step of ULID construction process
as well as the modified K-means clustering algorithm. Finally, we proceed eval-
uating the overall performance of our Activity Service Matching Algorithm.

68 H. Gabsi et al.

Algorithm 2. Acitivity-Services Matching Algorithm.

Input: Business Activity A
Let S be a Cloud Service
Let CS be set of the Candidate Services
{Context Matching}
Select S where S.Class == A.BusinessLogic
if Sim(A.ScopeObjective, S.KeywordsSet) >= 0.5 then

Add(CandidateServices, S)
end if{Functional Matching}
for all SinCandidateServices do

Select S.OperationsSetwhereA.RequestT ype == S.OperationCategory

if SSim(A.V erb, S.OperationV erb) >= 0.7 then
if A.Objectisa(S.OperationObject then

Add(CandidateOperaton, S.Operation)
end if

end if
end for
matchCount = 0
unusedCount = 0
for all opinCandidateOpereration do

for all inpinop.Inputset do
m = match(inp,A.input) (the match function checks the compatibility
between data types.)
if m <> ”mismatch” then

matchCount + +
end if

end for
end for
for all ainputinA.input do

if ainput.used == ”false” then
unusedCount + +

end if
end for
Sif = matchCount/S.Input.size()
unusedCount/A.Input.size()
if Sif == 1 ∧ Air == 0 then

matchingInput.Level = ”precise”
else if Sif == 1 ∧ Air > 0 then

matchingInput.Level = ”over”
else if Sif < 1 ∧ Sif >= iMT (0, 5) then

matchingInput.Level = ”partial”
else if Sif < iMT (0, 5) then

matchingInput.Level = ”mismatch”
end if{ We apply the same algorithm for matching the outputs as matching the
inputs}
if (matchingInput.Level == ”precise” ∧ matchingOuput.Level == ”precise”
then

matchingOperation.Level == ”precise”
else if matchingInput.Level == ”precise” ∧ matchingOutput.Level == ”over”
then

(matchingInput.Level = ”over”
else if matchingInput.Level == ”partial” ∧ matchingOutput.Level <>
”mismatch” then

(matchingInput.Level = ”partial”
else if matchingInput.Level == ”mismatch” ∨ matchingOutput.Level ==
”mismatch” then

(matchingInput.Level = ”mismatch”
end if

Cloud Services Discovery Assistant for Business Process Development 69

4.1 BP4Cloud Evaluation

We present an extract of BP4Cloud file specifying the activity “Check customer
summary” requirements. The activity requires a compute server, as IaaS require-
ment, and a database server as PaaS requirements. Its business logic is “Dat-
achecking and Analytics”.

1 <is_composed_of

2 xsi:type="CloudBusinessProcess:Service_Task"

3 name="Check customer summary"

4 description="Verify if a customer has already made an

application earlier"

5 key_words="Check summary" , "Verify application", "Validate

Summary"

6 preconditins=""

7 effects=""

8 id="1">

9 <use_data

10 href="Data.xmi#/" input_data_type="String" output_data_type="

Boolean"/>

11 <requirements

12 xsi:type="CloudBusinessProcess:Data_Base_Server"

13 href="Data_Base_Server.xmi#/">

14 <requirements

15 xsi:type="CloudBusinessProcess:Compute"

16 href="Compute.xmi#/" id="1" vmsize="Meduim">

17 <business_logic

18 href="Datachecking_and_Analytics.xmi#/"/>

To practically evaluate our specification, we measure the complexity of two
process models, one using the standard BPMN and the other using BPMN
extended by BP4Cloud. The complexity of a process model can be defined as
the degree to which a BP is difficult to analyze and understand. [18]. Huber et
al. [18], propose to categorize BP complexity metrics. We consider the following
metrics:

– The number of activities and control-flow elements in a process metric
(NOAC). It counts the activities and control-flow elements of a process, which
are the gateways in BPMN.

– McCabe’s Cyclomatic Complexity metric (MCC) measures the number of
control paths through the process. MCC is defined to be e−n+2, where e is
the number of edges and n is the number of nodes in the control flow graph.

– Control-flow Complexity metric (CFC) is defined as the number of mental
states that have to be considered when a designer develops a process. It is
calculated as CXOR +COR +CAND, where CXOR is complexity of XOR-split
(equals to number of branches that can be taken), COR complexity of OR-
split (equals to number of states that may arise from the execution of the
split), and CAND complexity of AND-split (always equals 1). The higher the
value of CXOR, COR, and CAND, the more complex is the process design.

70 H. Gabsi et al.

The online bank accounts opening process designed using BP4Cloud has the
same control-flow elements (NOAC), activities elements (NOA, control paths
(MCC) (in our use case e=15 and n=15) and the control-flows (CFC). Using the
presented metrics, we can clearly demonstrate that using BP4Cloud is not in
any view more complex. In fact, BP4Cloud does neither modify the control-flow
elements of the BP nor its activities.

4.2 ULID Construction Component Evaluation

To ensure a proper evaluation of ULID construction component, essentially, the
merging & clustering step, we proceed by an external evaluation, namely, the
clustering results are evaluated based on data that was not used for the clus-
tering, such as known class labels and external benchmarks. These types of
evaluation methods measure how close the clustering is to the predetermined
benchmark classes [19]. To do so, we test the UCC on a real data-set presenting
Azure Microsoft cloud services. The test-set is composed of 205 cloud services
offered by Azure Microsoft [20]. It is created by parsing Azure Microsoft web
portal [20] and collecting services meta-data.

Services Functional Keywords Extraction. By analyzing the description
of 205 services using the Stanford Parser, it is worth pointing that the func-
tional keywords extraction highly depends on the terms used by the service
providers in describing their services. In some cases, we obtain non-meaningful
pairs <action, object> due to the abundant use of adjectives for commercial
purpose. In our case, we obtained 14 non-meaningful pairs. In order to ver-
ify the effectiveness of our method of extracting functional keywords (pairs
<action, object>), we randomly selected 50 services as experimental data. We
ask five developers to manually extract the sets of functional keywords pairs
for each service, and compare them to the sets of functional keywords pairs
automatically extracted. We evaluate the experimental results by calculating
the precision and recall rate. The formula of the precision and recall rates are
defined as follows:

Precision =
SA ∩ SM

SA
Recall =

SA ∩ SM

SM
(7)

F1 =
2 × Precision × Recall

Precision + Recall
(8)

Where SM represents the set of functional keywords pairs that is extracted
manually, SA denotes the set of functional keywords pairs that is automatically
extracted. Based on [8], we present the Table 1 that shows the experimental
results (for reason of space restraint, we display a sample of five sets). For the
extraction result, we have 0,7 as precision average, 0,98 as recall average and
0.817 as F- Measure average.

From Table 1, it can be concluded that the results of the functional keywords
extracted by developers are different. The reason is that each developer has a

Cloud Services Discovery Assistant for Business Process Development 71

Table 1. Extracted functional keywords results [8].

Automatically extracted set of functional
keywords pairs

Manually Extracted set of functional keywords
pairs

Precision Recall F- Measure

S1 : {<Create, V irtual machine>} S1 : {<Create, V irtual machine>} 1 1 1

S2 : {<Create,Mobile application>,
<Build,Mobile application>,
<Deploy,Mobile application>}

S2 : {<Create,Mobile application>,
<Deploy,Mobile application>}

0,67 1 0,8

S3 : {<Detect,Human faces>,
<Identify, People>, <Organize, images>,
<Compare, Image>, <V erify, Features>,
<Provide, Face algorithm>}

S3 : {<Detect,Human faces>,
<Identify, People>, <Compare, Image>,
<V erify, Features>,
<Provide, Face algorithm>}

0,83 1 0,9

S4 : {<Create,Data pipelines>,
<Monitor,Data pipelines>,
<Orchestrate, workflows>}

S4 : {<Create,Data pipelines>,
<Monitor,Data pipelines>,
<Accelerate,Data integration>,
<Orchestrate, workflows>}

0,75 1 0,86

S5 : {<Protect,Data>,<Provide,Backup>} S5 : {<Protect,Data>,<Provide,Backup>} 1 1 1

different understanding of services description. The recall rate of the extracted
results is almost close to 1.0. This shows that the automatically extracted sets
of functional keywords pairs can cover all the keywords sets of each service. The
precision average of the extraction results is 0,7, lower than the recall rate. The F-
measure average is 0.817. This means that the automatically extracted functional
keywords pairs provides acceptable results, but it leaves scope for enhancements
due to the non- standardized description used by services providers.

Modified K-Means Clustering Algorithm. While presenting our approach,
we mention that we take advantage of the proposed services categories already
offered by services providers. Thus, we applied our clustering algorithm on ser-
vices’ categories to unify them over different providers. Our approach remains
accurate if we apply it directly on cloud services, namely we cluster services
instead of services’ categories. In that respect, we test our clustering algorithm
on the test-set composed of 205 services offered by Azure Microsoft [20]. These
services are functionally clustered, by the provider, in 18 categories (Machine
learning, Analytics, Compute, Management services, etc) which present the pre-
determined benchmark classes.

We use the Purity of the Cluster as a metric to analyze the effectiveness of
the modified K-means algorithm [19]. The following is the definition of cluster
purity: suppose that D is the set of services to be clustered and C is the result of
a clustering on D. Ci ∈ C denotes a cluster in C, whereas S denotes the standard
classification result on D, s ∈ S denotes a class s in S, pi denotes the largest
number of services in the cluster Ci which are in common with s. The cluster
purity CP (Ci) is defined as:

CP (Ci) =
1

|Ci|max(pi) (9)

The clustering purity of the whole set of service to be clustered is defined as:

CP (C) =
C∑

i=1

|Ci|
|D| CP (Ci) (10)

72 H. Gabsi et al.

We set up our modified K-means algorithm on k = 18. Figure 10 presents the
clusters returned by the algorithm. To correctly interpret our results, inspired
by [8] we compare the purity values given by our algorithm to those given by he
basic K-means algorithm. Table 2 shows the clustering results.

Fig. 10. Services clustering results [8].

Using the modified K-means algorithm, the number of services in each cluster
is slightly different from that obtained according to the pre-classified services.
This difference is due to some confusing descriptions basically for services in the
integration and management tools clusters as well for the security and identity
clusters. This explains the reason why the CP value is not very high for these
clusters.

In light of the clustering results, we have 0,78 as purity value. It is worth
mentioning that the proposed modifications (the cohesion condition, the weak
correlation and the semantic similarity function) made on the basic K-means
algorithm have contributed to better purity values (0,78 instead of 0,60).

4.3 Activity-Service Matching Algorithm Evaluation

In order to evaluate the effectiveness of our algorithm, experiments were con-
ducted to evaluate its precision and recall on the BP presented in the problem
statement section. The precision evaluates the capability of the algorithm to
retrieve top-ranked services that are most relevant to the activity. The recall
evaluates the capability of the algorithm to get all the relevant cloud services [21].

Formally;

P =
|SRel|
|SRet| R =

|SRel|
|Rel|

Cloud Services Discovery Assistant for Business Process Development 73

Table 2. Cluster purity results [8].

Cluster results Central service of cluster Number
of services

Purity
values

Basic K-means
purity

Cluster 1: Analytics Azure Analysis Services 15 0,87 0,67

Cluster 2: Compute Virtual Machines 13 0,85 0,62

Cluster 3: Containers Container Registry 7 1 0,57

Cluster 4: Databases Azure Database 11 0,91 0,72

Cluster 5: AI + Machine Learning Machine Learning Services 31 0,90 0,65

Cluster 6: Developer Tools Azure Lab Services 9 1 0,67

Cluster 7: DevOps Azure DevOps Projects 8 0,88 0,63

Cluster 8: Identity Azure Active Directory 6 0,67 0,50

Cluster 9: Integration Event Grid 5 0,60 0,40

Cluster 10: Web Web Apps 7 0,86 0,57

Cluster 11: Storage Storage 13 0,92 0,69

Cluster 12: Security Security Center 11 0,55 0,42

Cluster 13: Networking Virtual Network 13 0,85 0,62

Cluster 14: Mobile Mobile Apps 8 0,88 0,50

Cluster 15: Migration Azure Migrate 5 1 0,60

Cluster 16: Media Media Services 8 1 0,75

Cluster 17: Management Tools Azure Managed Application 21 0,67 0,48

Cluster 18: Internet of Things IoT Central 14 0,92 0,64

Clustering
Purity

0,78 0,60

Pk =
|SRel,k|

k
Pr = P|Rel| =

|SRel,|Rel|
|Rel|

where Rel denotes the set of relevant services, SRet is the set of retuned services,
SRel is the set of returned relevant services and SRel,k is the set of relevant
services in the top k returned services. Among the above metrics, Pr is considered
to most precisely capture the precision and ranking quality of the algorithm. We
also plotted the recall/precision curve (R-P curve). In an R-P curve figure, the
X-axis represents recall, and the Y-axis represents precision. An ideal discovery
result presents a horizontal curve with a high precision value. The R-P curve
is considered by the IR community as the most informative graph showing the
effectiveness of the discovery algorithm [21].

In order to evaluate our proposed algorithm, we asked several BP designers
and technical developers who are familiar with cloud services uses to identify the
relevant services meeting the business activities. Table 3 illustrates the online
bank account process results. For reason of space restraint, we display some
relevant services related to the activities “check customer summary” and “send
account id”.

We evaluated the precision of the proposed services and report the average
top-2, top-5, and top-10 precision. To ensure the top-10 precision is meaningful,
we selected activities for which we can identify more than 15 relevant services
over different providers. Figure 11 illustrates the results. The top-2, top-5, and

74 H. Gabsi et al.

top-10 precisions related to the context matching of our algorithm are, respec-
tively, 91%, 87%, 74%. The precision related to the functional matching can be
1 or 0. Finding the suitable operation performing the activity is considered as 1
in terms of precision value, else the precision is estimated to 0.

Fig. 11. Top-k precision for retrieved services.

The evaluation demonstrates that taking into account the context of both
the business process and activity using their business features during the context
matching can effectively provide acceptable precision values (91%, 87%), which
means, we can identify suitable candidate services. The discovery of suitable
service operation can more challenging since the functional matching involves
different matching level. The inputs/outputs matching is considered as the main
important step to validate if a candidate operation can perform the activity.

We plot the average R-P curves to illustrate the overall performance of the
matching algorithm. As mentioned previously, an appropriate discovery result
has a horizontal curve with a high precision value. Typically, precision and recall
are inversely related, ie. as precision increases, recall falls and vice-versa. A
balance between these two needs to be achieved. As presented in our previous
work [8], Fig. 12 illustrates that for a recall average equals to 0,63 we have 0,85
as precision value. As an example, for the service activity “Check customer
summary”, we have 20 services considered as relevant in ULIT i.e |Rel| = 20,
the matching algorithm returns a total of 16 services i.e |SRet| = 16, among
them 13 services are considered relevant i.e |SRel| = 12. We obtain a precision
value P = 13/16 = 0, 81 and a recall value R = 13/20 = 0, 65.

It is worth pointing out that in some cases, depending on particular context,
high precision at the cost of a recall or high recall with lower precision can
be chosen. Thus, evaluating a matching algorithm for services discovery must
be related to the purpose of the discovery. In our case a compromise between
the recall and the precision values is necessary. Therefore, we can announce the
proposed algorithm provides accurate results for cloud services discovery.

Cloud Services Discovery Assistant for Business Process Development 75

Fig. 12. R-P curves [8].

5 Related Work

Despite various efforts made to assist cloud services discovery for business pro-
cess development, several challenges remain for further investigation, particularly
business activities and cloud services matching. This matching is considered as
a discovery challenge. In that respect, the research efforts can be presented in
two different points of view, namely: architecture view and matchmaking view
[3]. From one side, the architecture view is divided into centralized and decen-
tralized. The centralized architecture depends on one central node that provides
a complete view of all cloud services being offered in the market. This archi-
tecture can be achieved by proposing a cloud services registry or using cloud
broker platforms. Actually, several cloud broker platforms have been proposed.
Jrad et al.[23] developed a cloud broker system to select cloud services based
on the user QoS requirements and SLA attributes. The authors developed a
utility-based algorithm for matching user functional and non-functional require-
ments to SLA attributes of cloud providers. Rajganesh et al. [24] proposed a
broker based cloud computing framework for enabling the users to specify their
services requirements in terms of numerical representation. With respect to the
user specification, the proposed broker constructs the cloud ontology to repre-
sent the available services from the service repository. The appropriate services
are represented using semantic network which enables the user to know about
the available services as per their posted requirements. It is worth pointing that,
even though cloud broker platforms can provide assistance in the discovery pro-
cess, most of them are based on an additional layer between the provider and
the final cloud user which can complicate the service’s delivery chain and cer-
tainly increase the services’ cost. In our work, we aim to propose an assistance

76 H. Gabsi et al.

T
a
b
le

3
.
A

ct
iv

it
y
-S

er
v
ic

es
M

a
tc

h
in

g
a
lg

o
ri

th
m

E
va

lu
a
ti

o
n
.

A
c
ti
v
it
y

S
c
o
p
e
/
O
b
je
c
ti
v
e

R
e
le
v
a
n
t
S
e
rv

ic
e
s

C
o
n
te
x
t
M

a
tc
h
in
g

B
u
si
n
e
ss

M
a
tc
h
in
g

R
e
tu

rn
e
d

S
e
rv

ic
e
s

E
x
tr
a
c
te
d

k
e
y
w
o
rd

s
S
IM

(S
.K

W
,

A
.S
c
o
p
e
)

R
e
tu

rn
e
d

O
p
e
ra

ti
o
n

C
h
e
ck

su
m
m
a
ry

D
a
ta

b
a
se

A
c
c
e
ss
/
A
v
a
il
-

a
b
il
it
y

C
h
e
ck

A
m
a
z
o
n

S
im

p
le
D
B

A
m
a
z
o
n

D
y
n
a
m
o
D
B

A
m
a
z
o
n

R
D
S

A
m
a
z
o
n

A
u
ro

ra

A
m
a
z
o
n

N
e
p
tu

n
e

A
m
a
z
o
n

R
e
d
sh

if
t
O
ra

c
le

D
a
ta

b
a
se

A
m
a
z
o
n

S
im

p
le
D
B

(‘
q
u
e
ry

’,
‘d
a
ta

it
e
m
s’
)

(‘
st
o
ri
n
g
’,

‘d
a
ta

it
e
m
s’
)

(‘
se
rv

in
g
’,

‘r
e
q
u
e
st
s’
)

0
.7
9
6

Q
u
e
ry

()

A
m
a
z
o
n

R
D
S

(‘
q
u
e
ry

’,
‘d
a
ta

it
e
m
s’
)

(‘
re
p
li
c
a
te
’,

‘d
a
ta

b
a
se
s’
)

(‘
sc
a
le
’,

‘d
a
ta

b
a
se

se
tu

p
’)

0
.7
9
6

–

A
m
a
z
o
n

D
y
n
a
m
o
D
B

(‘
h
a
n
d
le
’,

‘r
e
q
u
e
st
s’
)

(‘
C
re
a
te
’,

‘t
a
b
le
’)

(‘
h
a
n
d
le
’,

‘d
a
ta

’)

0
.6
4
2

Q
u
e
ry

()

A
m
a
z
o
n

N
e
p
tu

n
e

(‘
b
u
il
d
’,

‘q
u
e
ri
e
s’
)

(‘
q
u
e
ry

in
g
’,

‘d
a
ta

b
a
se
’)

0
.5
9
7

S
e
le
c
t
()

O
ra

c
le

D
a
ta

b
a
se

(‘
re
tr
ie
v
e
’,

‘i
n
fo
rm

a
ti
o
n
’)

0
.5
0
3

Q
u
e
ry

()

S
e
n
d

a
c
c
o
u
n
t
ID

S
e
n
d
/
R
e
c
e
iv
e

M
e
ss
a
g
e

A
m
a
z
o
n

S
Q
S

A
m
a
z
o
n

S
N
S

A
m
a
z
o
n

S
im

p
le
M

a
il

A
m
a
z
o
n

W
o
rk

M
a
il

IB
M

B
lu
e
M

ix
T
w
il
io

IB
M

B
lu
e
M

ix
S
e
n
d
G
ri
d

A
m
a
z
o
n

S
Q
S

(‘
se
n
d
’,

‘m
e
ss
a
g
e
s’
)

(‘
re
c
e
iv
e
’,

‘m
e
ss
a
g
e
s’
)

(‘
lo
si
n
g
’,

‘m
e
ss
a
g
e
s’
)

1
S
e
n
d

M
e
ss
a
g
e
()

A
m
a
z
o
n

S
N
S

(‘
fa
n

o
u
t’
,
‘m

e
ss
a
g
e
s’
)

(‘
fa
n

o
u
t’
,
‘n
o
ti
fi
c
a
ti
o
n
s’
)

0
.6
7
4

P
u
b
li
sh

()

A
m
a
z
o
n

S
im

p
le
M

a
il

(‘
se
n
d
’,

‘e
m
a
il
’)

(‘
se
n
d
’,

‘m
a
rk

e
ti
n
g
‘)

(‘
in
te
g
ra

te
’,

‘e
m
a
il

c
li
e
n
ts
’)

0
,7
9
1

S
e
n
d

E
m
a
il
()

A
m
a
z
o
n

W
o
rk

M
a
il

(‘
a
c
c
e
ss
’,

‘b
u
si
n
e
ss

e
m
a
il
’)

(‘
u
se
’,

‘e
m
a
il

jo
u
rn

a
li
n
g
’)

(‘
e
n
c
ry

p
t’
,
‘d
a
ta

’)

0
.5
6
2

S
e
n
d

M
e
ss
a
g
e
()

Cloud Services Discovery Assistant for Business Process Development 77

framework which allow business designer to fulfill seamless discovery process
without any intermediaries, so that, they can better assume their decisions, and
control their budgets. The centralized architecture can be achieved using public
registries such as Musabah et al. [25] who provided a centralized cloud service
repository. The authors propose a harvesting module to extract data from the
web and make it available to different file format. The harvesting module uses an
algorithm for learning the HTML structure of a web page. This work requires the
user to determine specific control parameters such as targeted web page URL and
the required information from in the targeted web page. Moreover, the collected
data sets lack main service information such as services’ description and opera-
tions. From another side, the matchmaking view is divided into syntactic-based
and semantic-based. The semantic-based matchmaking approaches are based on
semantic description to automate the discovery and selection process. [3] pro-
posed a cloud services ontology with automated reasoning to support services
discovery and selection. However, the discovery scope, in this work, is depending
on the pre-existence of providers specific ontologies (OWL-S services descrip-
tion files) that require mapping techniques to coordinate the difference between
agnostic (abstract) and vendor dependent concepts to support interoperability.
Even though many semantic approaches are scientifically interesting [3], they
require that the business designers have intimate knowledge of semantic services
and related description and implementation details which makes their usage dif-
ficult. Moreover, from the service requestor’s perspective, the requestor may not
be aware of all the knowledge that constitutes the domain ontology. Specifically,
the service requestor may not be aware of all the terms related to the service
request. As a result of which many services relevant to the request may not be
considered in the service discovery process. The syntactic-based approaches are,
generally, based on WSDL description of cloud services. [6] proposed a cluster-
ing algorithm based on similarity between users query concepts and functional
description parameters of cloud services expressed in a WSDL document. Despite
the high precision values found in this work, generally assuming that the candi-
date cloud services are described using WSDL files, is considered as impractical
limitation. In [26], the authors proposed the use of BPSim, which is a standard
that provides a framework for structural and capacity analysis of BP models
specified by the use of BPMN or XPDL (XML Process Definition Language).
However, it is limited to introduce BPMN extensions to enhance its expressive
capabilities without considering the runtime environment. In fact, the resource
perspective may change depending on the runtime environment, notably, cloud
environments require specific resources that are different from other runtime
environments. The analysis of several research studies illustrates the main moti-
vations of our proposal which are:

– First, the relevance of a centralized architecture that references scattered
cloud services regardless of their providers and their heterogeneous descrip-
tions in unified data-set. This fact can practically assist the developers in a
seamless search for relevant cloud services.

78 H. Gabsi et al.

– Second, the need to integrate cloud services requirements specification during
business process modeling in order to handle the business and IT alignment.

– Third, the need for an efficient matching approach which does not make any
assumptions, such as particular standard or specific semantic representation,
about the description language of available cloud services.

6 Conclusion

This paper aims to provide efficient support to discover cloud services required
for business process development. To achieve our aim, we define a cloud-aware
BP by proposing BP4Cloud which is a BPMN extension that supports the design
of cloud resource perspective requirements. BP4Cloud offers a solution for coor-
dinating cloud resources between business designers and technical developers.
Following the modeling of the required cloud resource, we propose a public
cloud service data-set named ULID which is available on [22]. ULID services
are classified according to their functional features using our clustering algo-
rithm. We used ULID in our Activity-Services Matching algorithm to assist
technical developers in discovering the required cloud services. Our proposed
algorithm is conducted through two steps; the context matching which aims to
discover services that share the same business context as the business activity
and the business matching which aims to identify the suitable operation per-
forming the activity. Our experimental evaluation has demonstrated that the
Activity-Services Matching algorithm can potentially assist technical developers
owing to its precision. Although we believe that our algorithm leaves scope for
a range of enhancements, yet it provides suitable results. As ongoing work, we
intend to conduct the composition of the discovered cloud resources in order to
develop the cloud workflow application.

References

1. Carrillo, A., Sobrevilla, M.: BPM in the cloud: a systematic literature review. In:
Software Engineering (cs.SE) (2017)

2. Sun, L., Dong, H., Khadeer, F., Hussain, Hussain, O.K., Chang, E.: Cloud service
selection: state of the-art and future research directions. J. Netw. Comput. Appl.
45, 134–150 (2014)

3. Martino, B.D., Pascarella, J., Nacchia, S., Maisto, S.A., Iannucci, P., Cerr, F.:
Cloud services categories identification from requirements specifications. In: Inter-
national Conference on Advanced Information Networking and Applications Work-
shop, vol. 1, pp. 436–441 (2018)

4. Lizarralde, I., Mateos, C., Rodriguez, J.M., Zunino, A.: Exploiting named entity
recognition for improving syntactic-based web service discovery. J. Inf. Sci. 45,
9–12 (2018)

5. Bey, K.B., Nacer, H., Boudaren, M.E.Y., Benhammadi, F.: A novel clustering-
based approach for SaaS services discovery in cloud environment. In: Proceedings
of the 19th International Conference on Enterprise Information Systems, vol. 1,
pp. 546–553. SciTePress (2017)

Cloud Services Discovery Assistant for Business Process Development 79

6. Nacer, A.A., Godart, C., Rosinosky, G., Taria, A., Youcef, S.: Business process
outsourcing to the cloud: balancing costs with security risks. Comput. Ind. 104,
59–74 (2019)

7. Nagarajan, R., Thirunavukarasu, R., Selvamuthukumaran: Cloud broker frame-
work for infrastructure service discovery using semantic network. Int. J. Intell.
Eng. Syst. 11, 11–19 (2018)

8. Gabsi, H., Drira, R., Ghezala, H.H.B.: Cloud services discovery and selection assis-
tant. In: Evaluation of Novel Approaches to Software Engineering, pp. 158–169
(2020)

9. Workflow Resource Patterns (2018). http://www.workflowpatterns.com/patterns/
resource/. Accessed 02 Sept 2020

10. Marneffe, M.-C., Manning, C.D.: The stanford typed dependencies representation.
In: Proceedings of the Workshop on Cross-Framework and Cross-Domain Parser
Evaluation, pp. 1–8 (2015)

11. Amazon compute service description (2020). https://aws.amazon.com/ec2/?
nc1=h ls. Accessed 05 Sept 2020

12. Lucineia, T., Manfred, R., Iochpe, C.: Activity patterns in process-aware informa-
tion systems: basic concepts and empirical evidence. Int. J. Bus. Process Integr.
Manag. 4, 93–110 (2009)

13. Lin, D.: An information-theoretic definition of similarity. In: 15th International
Conference on Machine Learning, pp. 296–304 (1998)

14. Pamungkas, E.W., Sarno, R., Munif, A.: B-BabelNet: business-specific lexical
database for improving semantic analysis of business process models. In: Proceed-
ings of the workshop on Cross-Framework and Cross-Domain Parser Evaluation,
vol. 15, pp. 407–414 (2017)

15. Gabsi, H., Drira, R., Ghezala, H.H.B.: Personalized IaaS services selection based
on multi-criteria decision making approach and recommender systems. In: Interna-
tional Conference on Internet and Web Applications and Services, pp. 5–12 (2018).
ISBN 978-1- 61208-651-4

16. Gabsi, H., Drira, R., Ghezala, H.H.B.: A hybrid approach for personalized and
optimized IaaS services selection. Int. J. Adv. Intell. Syst. (2019)

17. Tran, V.X., Punthee Ranurak, S., Tsuji, H.: A new service matching definition and
algorithm with SAWSDL. In: IEEE International Conference on Digital Ecosys-
tems and Technologies, vol. 1, pp. 371–376 (2009)

18. Huber, J., Polančič, G., Kocbek, M., Jošt, G.: Towards the component-based app-
roach for evaluating process diagram complexity. In: Shishkov, B. (ed.) BMSD
2018. LNBIP, vol. 319, pp. 260–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94214-8 17

19. Rendan, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external
cluster validation indexes. Int. J. Adv. Intell. Syst. 1 (2011)

20. Microsoft Azure Services (2020). https://azure.microsoft.com/en-us/services/.
Accessed 05 Sept 2020

21. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: International Conference on Machine Learning, pp. 233–240 (2006)

22. ULID (2020). https://doi.org/10.17632/7cy9zb9wtp.2. Accessed 05 Sept 2020
23. Jrad, F., Tao, J., Streit, A., Knapper, R., Flath, C.: A utility based approach for

customised cloud service selection. Int. J. Comput. Sci. Eng. 10, 32–44 (2015)
24. Rajganesh Nagarajan, R.T., Selvamuthukumaran: A cloud broker framework for

infrastructure service discovery using semantic network. Int. J. Intell. Eng. Syst.
11, 11–19 (2018)

http://www.workflowpatterns.com/patterns/resource/
http://www.workflowpatterns.com/patterns/resource/
https://aws.amazon.com/ec2/?nc1=h_ls
https://aws.amazon.com/ec2/?nc1=h_ls
https://doi.org/10.1007/978-3-319-94214-8_17
https://doi.org/10.1007/978-3-319-94214-8_17
https://azure.microsoft.com/en-us/services/
https://doi.org/10.17632/7cy9zb9wtp.2

80 H. Gabsi et al.

25. Alkalbani, A.M., Hussain, W., Kim, J.Y.: A centralised cloud services repository
(CCSR) framework for optimal cloud service advertisement discovery from het-
erogenous web portals. IEEE Access 7, 128213–128223 (2019)

26. Heidari, F., Loucopoulo, P., Frances Brazier, J.B.: A meta-metamodel for seven
business process modeling languages. In: IEEE Conference on Business Informatics,
pp. 216–221 (2013)

Software Engineering

Data-Driven Requirements Engineering:
A Guided Tour

Xavier Franch(B)

UPC-BarcelonaTech, Universitat Politècnica de Catalunya, Barcelona, Spain
franch@essi.upc.edu

Abstract. Data-driven approaches are becoming dominant in almost every single
software engineering activity, and requirements engineering is not the exception.
The analysis of data coming from several sourcesmay indeed become an extremely
useful input to requirements elicitation and management. However, benefits do
not come for free. Techniques such as natural language processing and machine
learning are difficult to master and require high-quality data and specific com-
petences from different fields, whilst their generalization remains as a challenge.
This paper introduces the main concepts behind data-driven requirements engi-
neering, provides an overview of the state of the art in the field and identifies the
main challenges to be addressed.

Keywords: Requirements engineering · Data-driven requirements engineering ·
Feedback · Natural language processing · Software analytics ·Monitoring ·
Decision-making · Release planning

1 Introduction

Identifying, documenting andmanaging requirements has been part of engineering tasks
from old times. In the realm of software systems, requirements engineering (RE) [1]
as a discipline originated more than 40 years ago [2]. The importance of managing
requirements properly became evident very soon. Several studies quantified the cost of
fixing errors to be about 10–100 times greater in later phases of software development
and maintenance than in the requirements phase [3, 4]. This observation motivated the
fast emergence of research related to requirements and the consolidation of RE as a
well-established software engineering area on its own.

In recent years, we still find evidence that RE plays a central role in software project
success. Requirements understanding and “-ilities” (non-functional requirements) are
reported to be the most influential factors on cost1 and in the particular case of non-
functional requirements, failure to satisfy them can be catastrophic (resulting in a system
worse than useless) [5]. Industry reports go along the same direction. For instance, the
Project Management Institute (PMI) reported that inaccurate requirements management

1 Quote from Ricardo Valerdi (U. Arizona & SpaceX) slides in seminar “Cost Estimation in
Systems Engineering” given at UPC-BarcelonaTech, Sept. 2017.

© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 83–105, 2021.
https://doi.org/10.1007/978-3-030-70006-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_4&domain=pdf
http://orcid.org/0000-0001-9733-8830
https://doi.org/10.1007/978-3-030-70006-5_4

84 X. Franch

is the primary cause of unsuccessful projects (i.e., not meeting their original goals and
business objectives) almost half of the times (47%) [6].

Given that requirements are aimed to express needs of all system’s stakeholders, the
question that arises is: how to ensure that a system is delivering the right value to its
stakeholders? Among the several directions of research addressing this question, data-
driven RE is a prominent, emerging strand of research. Data-driven RE adopts a different
perspective than traditional RE methods, shifting the focus from the interaction with the
stakeholders at system design time, to the exploitation of runtime data.

2 An Overall View of Data-Driven Requirements Engineering

The term data-driven requirements engineering (DDRE)was proposed to the community
in a seminal paper byMaalej et al. published in 2016 [7], in which they defined DDRE as
“RE by the masses and for the masses”. The main motivation for DDRE is to take profit
of the existence of large amounts of data in the form of feedback to guide requirement
engineers in their decisions about what requirements to include in subsequent system
releases. While the concept of feedback is very generic and exists from long ago [8,
9] (e.g., in the form of issues stored in an issue tracker in open source projects), it has
been with the emergence of applications for mobile devices (apps) that feedback has
gained momentum. Apps’ users can easily comment and provide their opinions through
adequate feedback gathering mechanisms in app stores [10] while gathering data about
system usage is also commonplace today.

DDRE conveys the need of a continuous cycle to make actionable the gathered data.
This is illustrated in Fig. 1, which adapts the cycle proposed in the Q-Rapids project
[11, 12]. At the topmost left part of the figure we find the set of requirements for the
software system, which can be stored in a product backlog or some other format (even
a word file). Requirements are prioritized in a way that a software development team
implements a subset of them in the next release (possibly after refining them into concrete
development tasks). Again, this can be done in different ways depending on the software
development process, ranging from a traditional process to an agile one, even in the
extreme a continuous software development process [13] where the concept of release
gets diluted and instead, requirements are continuously selected and implemented.

Once the (latest release of the) software system is deployed, users will use it for their
own purposes. While they use it, some data can be collected in a transparent manner,
through usage logs, system monitors and similar instruments. These data are known as
implicit feedback, since their gathering does not require the explicit intervention of the
user. Besides, the user can provide explicit feedback provided that some communication
channels are available. Explicit feedback will be often textual, although other modalities
exist.

Feedback can be seen as a stream of data with potential to deliver insights that ideally
can be made actionable. Therefore, the DDRE cycle inherently includes an activity
for data analysis. The capabilities provided by this activity are a key point in every
DDRE approach. Typically, this activity will clean, combine and analyse the feedback
in order to compute values for factors or indicators, uncover patterns of behaviour, raise
alerts, etc. In the ideal case, these consolidated data are rendered through a software

Data-Driven Requirements Engineering: A Guided Tour 85

analytics tool. Beyond advanced visualization techniques, this type of tool offers diverse
capabilities to support requirement engineers in deciding upon new or modified (even
removed) requirements, which are eventually implemented, generating new data for the
next iteration in the cycle.

In the following sections, we examine the key elements of this cycle.

Fig. 1. The data-driven Requirements Engineering cycle (adapted from [11]).

3 Explicit Feedback Management

Explicit feedback is the term that denotes the feedback directly provided by the system’s
users. User involvement is what differentiates explicit feedback from implicit feedback:
users may choose if and when to provide such type of feedback. It is worth to mention
that many researchers still use the traditional term “user feedback” with the meaning of
explicit feedback. However, we find “explicit feedback” more accurate and less prone
to ambiguity.

Roughly speaking, explicit feedback management comprises two phases: gathering
and analysis.

3.1 Explicit Feedback Gathering

Explicit feedback gathering is determined by the following characteristics.

Types of Explicit Feedback. As it happens with requirements themselves, explicit
feedback ismost usually provided in natural language. But differently than requirements,
the language used in explicit feedback is normally unstructured, eventually with typos or
careless grammar, including emoticons or punctuation signs to emphasise the message
given, and hints and clues that makes difficult its analysis [14]. In addition, explicit

86 X. Franch

feedback may be multi-modal, i.e. may include images (photos, screenshots, …), audio
recordings, videos or other attachments. Together with text, or alternatively to text,
explicit feedback may include some type of evaluation, through ratings (typically using
stars or a number) or emoticons.

Communication Channel. In order to be processable in a DDRE cycle, the commu-
nication channel needs to be persistent and accessible for easy processing. In the case
of apps, app stores are the most popular channel nowadays. Forums, ticket systems and
social media (typically Twitter) are also widely used, although the difficulty of discrim-
inating the information increases. There are also tools in the market such as UserVoice2

and Usabilla3 aimed at adding feedback channels to existing software systems or web
pages.

Communication Style. Whilst the typical style is push, in which the user has the lead
and decides when to provide the feedback, we may find also the pull style, in which
the system prompts the user at designated moments, either a fixed moment (e.g., Skype
when finalizing a call) or when some condition happens.

Advanced Features. For instance, the capability given to requirement engineers or
developers to rate the quality of the given explicit feedback, which may help to identify
the most valuable users from the perspective of feedback provision. Also, the possibility
to establish a bidirectional feedback channel in which the requirements engineer may
interact with the user, to ask for clarifications or more details on the feedback initially
given.

3.2 Explicit Feedback Analysis

Given that, as said above, explicit feedback consists mostly of text written in natural
language, we focus on this type of feedback in the rest of the subsection.

The complexity of dealing with natural language is well known from many decades
ago. As a response to this difficulty, the research area of natural language processing
(NLP) emerged in the late 40 s. NLP explores how computers can be used to understand
andmanipulate natural language text or speech to do useful things [15].Many disciplines
have used and are increasingly using NLPwith different purposes, and RE is one of them
[16, 17]. NLP techniques in RE research are complementedwithmachine learning (ML),
which allows learning from data (in different variations, which may involve the human
in the loop, e.g. supervised learning [18]).

In RE, NLP is used for undertaking different types of analysis. In this paper, we
cover three of them:

• Categorization: the supervised grouping of feedback items into predefined categories.
• Sentiment analysis: the capability of understanding the person’s intention behind her
feedback.

2 https://usabilla.com/.
3 https://www.uservoice.com/.

https://usabilla.com/
https://www.uservoice.com/

Data-Driven Requirements Engineering: A Guided Tour 87

• Topic modelling: the unsupervised organization of feedback items into one or more
thematic topics.

All of these activities have a common need, namely the need of preprocessing the
natural language text that forms the feedback communicated explicitly by the user.

Preprocessing. The main purpose of preprocessing is transforming a stream of charac-
ters that form a piece of text, in our case the explicit feedback provided by a user, into
a syntactic structure formed by lexical units. This activity is typically broken into the
following steps:

• Tokenization, which splits a stream of text into a list of words or phrases (the tokens)
[19]. Stopwords like “the”, “an” or “with” are usually removed (some authors consider
stop words removal as a step on its own). Stop words are either predefined or are
computed analysing their frequency, discrimination power and prediction capability
[20].

• Stemming or Lemmatization, both aimed at reducing variant forms into a base form
(for instance, past/present/future of a verb; plural/singular of a noun).While stemming
basically “cuts” suffixes [21], lemmatization is able to find inflections of variant forms
(e.g., “be” and “was”), looking up headwords in a dictionary [22]. Lemmatization is
not always convenient, e.g. the use of verb tenses may help classifying a feedback
item into bug or feature request.

• Part-of-speech (PoS) tagging [23], segments the sentence into syntactic units with
tags as “adjective” or “verb”). It can be followed by a parsing step that creates a parse
tree showing the syntactic nature of the text.

All these techniques face several challenges. For instance, tokenization needs to
handle multi-word terms. For PoS tagging, the main problem is to determine the right
tags for those words that allow for more than one; for instance, the word “back” that can
be labelled as a noun, as a verb or as part of a phrasal verb.

Once the text is preprocessed,we can further apply other techniques over the resulting
syntactic structure.

Categorization. The classical example of categorization in the field of explicit feedback
analysis is the classification of an explicit feedback item as bug report of feature request.
For instance, Morales et al. proposed a categorization technique [24] based on speech-
act analysis [25]. This technique first gathers feedback from discussions held in online
media (e.g., forums). Then it applies a preprocessing pipeline based on the techniques
mentioned above, first removing noisy text and then annotating the resulting input with
speech-acts using lexico-syntactic rules. Last, it runs some ML algorithms over the
annotated sentence in order to classify the feedback into three possible categories: new
feature request, enhancement request or bug report.

This simple categorization can be further elaborated usingfiner-grained classification
schemas. For instance, Guzman et al. implemented a detailed classification of twitter
opinions on software [26]. Their classification schema shows that feedback can be related
not only to particular features (shortcoming, strength, request) or bug reports, but also

88 X. Franch

general feedback as “General praise”, “Software price” and others. Furthermore, their
schema proposes some general-purpose categories: “Noise” (which means “impossible
to process”, e.g. toomany illegible symbols), “Unclear” (ambiguous), “Unrelated” (valid
tweet but out of scope of the study) and “Other” (valid but it cannot be classified in the
predefined categories).

Sentiment Analysis. It is the process of deciding if a piece of text expresses a particular
affect or mood [27].

Current approaches to sentiment analysis combine the use of dictionaries and other
syntactic elements [28] with machine learning or even deep learning techniques [29].
Guzmán and Maalej [30] proposed an approach based on the assignment of quantitative
values to different sentence tokens that compose an explicit feedback item. In the general
case, a sentence may combine positive and negative messages (e.g., “had fun using
it before but now it is really horrible: (help!!”). Therefore, the individual values are
combined into two values, the aggregated positive score and the aggregated negative
score. Constructs as booster words (“really”), emoticons and punctuation emphasis are
crucial in this assignment of values.

In DDRE, sentiment analysis may help requirement engineers to understand the
general position of the user. For instance, consider the sentences “pleeeeeeease add an
unlike button and I will love you forever!!” and “uploading pictures with the app is
so annoying!” [30]. While both of them are stating some dissatisfaction (asking for an
additional feature the first, and complaining about a feature the second), the tone is very
different and sentiment analysis will show that the first user is basically happy with the
system while the second one is really complaining.

Topic Modelling. This type of unsupervised analysis identifies the topics that best
describe a corpus of knowledge, where each topic is a repeating pattern of co-occurring
terms in such corpus, described by a probability distribution ofwords (i.e., the probability
that a word pertains to a topic) [31].

Topic modelling is well known in information retrieval for the analysis of large
documents, e.g. in order to recommend contents to readers of newspapers [32], but it has
spread into software engineering in general, and RE in particular [33]. The most popular
algorithmused to identify the topics and their words is LatentDirichlet Allocation (LDA)
[34], where the word “latent” means that the distribution emerges during the analysis
by statistical inference. Results are not unique and in fact, one of the most challenging
issues on putting LDA into action is parameterization. There are several parameters to
determine: number of topics, number of words per topic, number of iterations in the
LDA algorithm for convergence, and others. Another challenging property of LDA is
instability meaning that it suffers from “order effects”, i.e. the output of the algorithm
may depend on the order in which the terms are processed. Given these problems, other
algorithms have been formulated, such as the Biterm Topic Model (BTM) [35] that
models topics by exploring word-word (i.e., biterm) patterns. BTM has overperformed
LDA in the context of short texts [33], which is a typical situation in explicit feedback.

Putting All Together. All of the techniques above and others that are not covered in
this paper (e.g., summarization [36, 37]) deal with a particular NLP-related activity,

Data-Driven Requirements Engineering: A Guided Tour 89

but usually it is necessary to combine them in order to achieve a research goal. For
instance, the ultimate goal of Guzman and Maalej’s paper cited above [30] is to identify
the positive or negative sentiment that users may have with respect to app features. They
used two apps as examples, Pinterest in Android and Dropbox in iOS, mined reviews in
their app stores and computed the number of positive and negative reviews they found for
these features. In order to get these results, they built the workflow presented in Fig. 2.
From the user reviews, they extracted titles and comments and initiated two parallel
paths. On the one hand, for each review, they applied the sentiment analysis technique
outlined above (without preprocessing, in order not to eliminate for instance stop words
or other elements that may convey emotions). On the other hand, they extracted the
features in the review by preprocessing their contents first and then extracting fine-
grained features. Last, their grouped the fine-grained features into high-level features
using topic modelling, combining adequately the sentiment scores. This example is
representative of the type of solutions prevalent in explicit feedback analysis.

Fig. 2. Guzman and Maalej’s approach to sentiment analysis in app reviews (as appears in [30]).

It is also worth to mention the existence of a large number of libraries of components
that implement some of the algorithms mentioned here, e.g. Standford CoreNLP toolkit
[38]4, NLTK5 and GenSim6 (for similarity analysis).

4 Implicit Feedback Management

Implicit feedback is the term that denotes the feedback gathered from the system usage
as it is used by their users. The main difference with explicit feedback, as said, is that

4 https://stanfordnlp.github.io/CoreNLP/.
5 https://www.nltk.org/.
6 https://pypi.org/project/gensim/.

https://stanfordnlp.github.io/CoreNLP/
https://www.nltk.org/
https://pypi.org/project/gensim/

90 X. Franch

data comes from the users without their explicit communication, but with their explicit
consent. This unobtrusiveness is the main advantage over explicit feedback, although
instrumentation is generally more complex.

The origins of implicit feedback come from the information retrieval discipline,
where implicit feedback techniques are used for query expansion and user profiling in
information retrieval tasks [39]. Also, the concept was heavily used in the web page
ranking [40]. In software engineering, implicit feedback is having a momentum in the
last years. For instance, with the advent of the Internet of Things and smart cities, sensors
are continuously gathering data from users and their context. Also, big corporations and
governments are going in the direction of collecting more and more information from
citizens, and responses to crisis such as COVID-19 are increasing this trend [41]. In the
rest of the section, we focus on the use of implicit feedback in DDRE.

4.1 Types of Implicit Feedback

The first type of implicit feedback we mention is quality of service (QoS). This is an
old topic emerging in the 70 s–80 s in the areas of networking, real-time applications
and middleware, adopted in the 2000s in the fields of service-oriented computing [42]
and cloud-based systems [43], but still it plays an important role for analysing con-
temporary systems. QoS include attributes as response time, availability and security,
which can provide very useful information to understand which parts of the system need
improvement.

The second type is usage data. It may include the individual clicks of the users [44],
telemetry7, interactions with the user interface and navigational paths (clickthroughs)
[45]. Usage data can be especially useful for detecting patterns of behaviour that may
serve to discover unused functionalities or different ways to organize the user interface
more fit to the real needs of the system users.

We mention a third type of data, non-verbal human data that can be sensed through
appropriate sensors [46]. The most popular technique is eye tracking [47], but we can
also mention gesture, heartrate, face muscles, etc.

Different types of feedback may be combined. For instance, Joachims et al. report an
empirical study in which clickthroughs and eye-tracking are combined to achieve better
results in web page ranking [48].

4.2 Gathering Implicit Feedback

Implicit feedback is usually stored in logs. Logs are files that contain a trace of the
behaviour of the user when using the system, in the form of implicit feedback of any
of the types mentioned above. Each entry in the log represents an interaction. The data
fields that compose an entry are not standard but we will usually find: the timestamp,
the user ID, the event type, the type of element, the URL or endpoint invoked, etc.
From these logs, some typical observations are: which functionalities are most used,
which navigational paths prevail (or not, even if expected), which calls result often in
error codes, etc. This information may be enriched with QoS (which may require some

7 https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/index.html.

https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/index.html

Data-Driven Requirements Engineering: A Guided Tour 91

additional monitoring infrastructure, e.g. in the case of cloud-based systems [49]). All in
all, this is valuable input for understanding functionalities that are problematic, features
that are missing (e.g., because the users often follow bizarre navigational paths), features
that can eventually be merged (because they are always used one after the other), etc.

4.3 Importance of Context

Whenanalysing feedback, context is utterly important.Both the response of a user and the
behaviour of the system can be strongly influenced by some contextual characteristic. For
instance, a systemmay have a good user interface as a web application but a terrible user
interface in its version for mobile phones. Although context can be provided explicitly,
the usual case is that it is collected as part of the system’s implicit feedback, using the
same gathering instruments and channels.

Context is a very wide term and includes classical concepts as time and location,
but also others as user’s profile and type of device for the connection. Therefore, a great
amount of context ontologies has been devised especially in the field of context-aware
computing and self-adaptive systems [50], which can be used as a basis to implement
the concept of context in an implicit feedback gathering and analysis approach.

From the point of view of RE, there are some approaches that deal with context by
defining contextual requirements [51]. A contextual requirement is a requirement whose
satisfaction is guarded by a condition that represents a context. The context is opera-
tionalized as a function over a set of context variables. Each variable is sensed through
one or more monitors whose values are gathered with a monitoring infrastructure. While
the concept of contextual requirement is clear and intuitive, many challenges arise, as
dealing with uncertainty [52] and in general, discovering unknown unknowns [53] (e.g.,
context conditions that are not known in advance).

4.4 Combining Explicit and Implicit Feedback

We have seen that explicit and implicit feedback are very different in nature. Explicit
feedback ismostly related (still) to natural language,while (contextual) implicit feedback
has to be mainly with analysing streams of data stored in logs. However, they are two
different kinds of input for the main purpose: to gather feedback from the user in order
to understand the actual use and acceptance of the system. The natural question that
arises is: may these two types of feedback be combined into one single input? For
instance, if a user provides an explicit complaint about a concrete functionality of the
system, it may be useful to have available as many implicitly collected data as possible.
Maybe the user entered the review in a moment where the network experienced some
downtime, or maybe she was using a particular type of device that does not support well
this functionality.

This mixed approach is a hot topic of investigation in the field. One example is the
FAME approach [54], which implements two streams for data acquisition (see Fig. 3):
explicit feedback using feedback forms, and runtime events in the form of logs that were
captured by a monitoring infrastructure. Since implicit feedback comes as a continuous
flow, FAME uses a data lake to ensure performance. Both streams are combined in a

92 X. Franch

component that uses domain ontologies [55] to be able to match concepts and inform
the requirements engineer in order to elicit new requirements.

Fig. 3. The ontology-based FAME approach to integrated explicit and implicit feedback analysis
(as appearing in [54]).

As a particular case on this combination of explicit and implicit feedback, we find the
concept of crowd-based RE. As defined by Groen et al., crowd-based RE “is an umbrella
term for automated or semiautomated approaches to gather and analyse information from
a crowd to derive validated user requirements” [56]. Implicit feedback is aggregated to
multi-modal explicit feedback similarly as done in the FAME approach [54] (Fig. 4).

Fig. 4. Actors and their relationships in crowd-based RE (as appearing in [56]).

Other approaches to combine explicit and implicit feedback in DDRE exist. Wüest
et al. follow a different strategy, inwhich implicit feedback is used as a trigger for explicit
feedback [57]. Their argument is that this approach will engage users to provide more
explicit feedback, and it will be provided when some situation uncovered by the implicit
feedback requires to be analysed. It remains as a challenge to transfer these approaches
into industry projects, which still rely mainly on explicit feedback [58].

Data-Driven Requirements Engineering: A Guided Tour 93

5 Decision-Making

As Fig. 1 shows, once feedback is gathered and analysed, requirements engineers still
need some support to make informed decisions. There are two key dimensions to
decision-making in DDRE. First, to visualize the data in an actionable manner and
to have at hand techniques for further analysis; to this end, requirements engineers may
use software analytic tools. Second, to arrange these decisions in the form of a software
release plan.

5.1 Software Analytic Tools

According to the outcome of the Dagstuhl Seminar 14261, software analytics is “to
utilize data-driven approaches to obtain insightful and actionable information to help
software practitioners with their data related tasks” [59]. This very generic definition
accommodates a large variety of tools, some of them heavily used by the software
engineering community during the development process, e.g. SonarQube8.

Buse and Zimmermann defined several guidelines for software analytics tools, such
as easiness of use and interactivity [60]. In addition, they suggested to map indicators
to features, and this links well to DDRE: when applied to DDRE, the ultimate goal of
a software analytics tool is to assist in the evolution of a requirements specification.
This means suggesting new requirements, or modifying existing ones (e.g., by enforcing
some threshold in a quality requirement, or by changing the priority or business value
of a requirement).

To obtain the aforementioned indicators, it is necessary to aggregate the data that was
gathered as feedback into more elaborated attributes until we reach a level of indicator.
These indicators convey actionable information for requirements engineers, e.g. product
quality, time to market or business value. Usually, the aggregation is multi-level and
can be conducted bottom-up using the classical concept of quality model as driver
[61]. For instance, the Q-Rapids dashboard (a software analytics tool aimed at eliciting
quality requirements) [62] builds upon the Quamoco approach to software quality model
construction [63]. Quamoco proposes the use of utility functions and weighted sums
in order to define qualitative values for these quality factors. In Q-Rapids, top-level
indicators are visualized in a gauge form with three values (ok, warning and failure)
depending on their distance to a given threshold.

The Q-Rapids dashboard also implements several techniques suggested by Buse and
Zimmermann [60], among which we can mention:

• Visualization capabilities as drill-down navigation, from one indicator to the quality
factors that compose it.

• Analysis of trends and summarization of results, to understand the direction of a
software project.

• Prediction of the evolution of a particular indicator or some of the quality factors used
to compute it [64].

8 https://www.sonarqube.org/.

https://www.sonarqube.org/

94 X. Franch

• Definition and triggering of alerts, to report underperformance or (in combined use
with prediction) to anticipate future threshold violations.

• Simulation throughwhat-if analysis, using sliders to understand the effects of changes
in factors’ values over the indicators.

Oriol et al. propose to associate mitigation actions to alerts triggered by underper-
forming quality factors, so that these mitigation actions operate over the requirements
specification [65]. The new requirements are proposed to the requirements engineer as
instantiations of requirements patterns stored in a catalogue [66]. Possible instantiations
of the patterns with a description of their consequences are presented to the requirements
engineer through the software analytics tool. With a similar aim of identifying require-
ments, Dalpiaz and Parente proposed the RE-SWOT method [67]. RE-SWOT aims
at eliciting requirements from app store reviews through competitor analysis. Results
are presented to the requirements engineer by means of a dashboard that visualizes a
Strengths-Weaknessess-Opportunities-Threats analysis of identified features.

5.2 Release Planning

The next activity in order to close the data-driven cycle is deciding how to allocate the
requirements that have emerged or changed, to the next or even further system releases.
The problem of software release planning is well known in software engineering [68,
69] and can be stated as follows: given a set of requirements to be allocated, and a set
of constraints in terms of resources, budget, and similar criteria, maximize some utility
or multi-objective function and thus design a release plan, where every requirement has
a release assigned (or eventually remains undecided or is even discarded) [70].

When applied to DDRE, feedback becomes the critical object that guides release
planning. Having an app’s release strategy is a factor that affects the ongoing success of
mobile apps [71]. For instance, Villaroel et al. [72] propose a technique that processes
feedbackby forming clusters of related reviews (bug reports andnew feature suggestions)
and then prioritizes the clusters according to their: (i) number of reviews, (ii) average
rating, (iii) difference of cluster average rating and app average rating, (iv) difference
of ratings assigned by users who reviewed older releases of the app, and (v) number of
different devices from which users reported reviews (which is a basic but still useful
combination of explicit and implicit feedback).

Maalej et al. [7, 73] mention other possible ways to adapt usual release planning
approaches to DDRE characteristics: involving an increasing number of stakeholders
in the process (from single person to group-based process), relying on real-time and
rigorous data analytics instead of intuition, or allowing stakeholders to play a more
proactive role. Several techniques to involve the right stakeholders have been proposed,
mainly in relation to gamification [74], but also others as applying the concept of liquid
democracy to requirements engineering [75], so that a stakeholder can nominate others
to rank a requirement on her behalf when she is not knowledgeable on the requirement’s
facet.

Data-Driven Requirements Engineering: A Guided Tour 95

6 Challenges

In this section we outline some challenges ahead for DDRE, both from research and
from practical perspective.

Integration with Data-oriented Analysis Cycles. The first challenge is to be able to
integrate DDRE with existing development processes. Given the data-driven nature,
companies may need to adopt some data management method, e.g. CRISP-DM [76].
CRISP-DMwas formulated in the early 2000s as a cycle aimed at supporting data scien-
tists in making data actionable through several well-defined stages: business understand-
ing, data understanding, preparation,modelling, evaluation anddeployment.Reconciling
DDRE and CRISP-DM is a research direction that has been already subject of attention
[77].

Integration with Other Software Engineering Approaches. Beyond integration with
data-oriented approaches, DDRE needs to be integrated also in the software life cycle.
DDRE is usually connected to agile approaches [78] but we can imagine integration with
other processes. For instance, Franch et al. [79] explore the integration of DDRE into
a model-driven development software life cycle, where the generation of the feedback
gathering infrastructure is integrated with the generation of the system itself, supporting
thus evolution of the embedded mechanisms as the system requirements evolve.

User Motivation and Trust. While implicit feedback mainly depends on the avail-
ability of a feedback gathering infrastructure (although of course privacy concerns are
also a challenge to consider), explicit feedback requires the engagement of users. Gam-
ification is the most usual strategy to motivate users to provide explicit feedback [80],
although it has shownmixed results in this field; instead, tangible incentives can be more
attractive to users (e.g., in the gaming domain, alpha/beta players get early versions of
games). A problem in the opposite direction to having scarce data is the reliability of the
explicit feedback given. Especially in the app market, the fight against fake reviews has
become critical. A recent empirical study by Martens and Maalej analysed thoroughly
the business behind fake reviews, ultimately revealing their significant impact [81].

Context-Driven Feedback Gathering. To make any feedback management approach
fully contextual, the feedback gathering instruments themselves need to adapt to context.
For instance, the frequency of monitoring can decrease when the device executing the
system is running out of battery, or on the contrary, it can be increased when it comes
to monitoring the behaviour of a problematic feature. Approaches for context-driven
implicit feedback gathering exist in the form of adaptive monitoring infrastructures
[82]. For explicit feedback, Almaliki et al. use the concept of Persona [83] to gather
explicit feedback depending on the profile of the user [84].

Analysis of Implicit Feedback. The analysis of usage logs faces several recurrent
challenges. First, data is usually noisy, both in terms of log entries that are useless, and
fields that are not useful for the purpose of DDRE. Second, data is often incomplete, so
that fields may be missing or may be too coarse-grained to be useful. Third, the concept
of session is not always evident. Sessions are useful because they represent chunks of

96 X. Franch

work of a user, and it is convenient to delimit them in the log files. Fourth, as applications
evolve, so should do log files, but then it is difficult to analyse them along time. Fifth, data
collection should be non-intrusive and as minimal as possible according to the objectives
sought. Last but not least, anonymization is critical and required by law.

Use of Domain Knowledge. While DDRE is based on analysing as much data as
possible, it remains a challenge to investigate whether it can be effectively leveraged
using domain knowledge. For instance, we have already mentioned in Sect. 4.4 the use
of domain ontologies for matching explicit and implicit feedback concepts [54]. If we
look into the details, this domain ontology bridges both worlds through some connecting
concepts, for instance TimeStamp, User and Application.

Adoption by Companies. In the addition to the research-oriented challenges above,
other more practical barriers emerge for companies to adopt DDRE [62, 85]. We may
classify them into three categories:

• Organizational. First, the general concept of DDRE needs to be tailored to every
company. For instance, the indicators to be used for decision-makingwill be ultimately
determined by both the business priorities of the company and the availability of data.
Second, integrationwith the companyway of working, since it cannot be expected that
a company will completely change its current processes and practices. Last, aligning
the vocabulary, which may seem not so important at a first glance, but it becomes an
important impediment, especially when it comes to discuss about particular types of
quality requirements.

• Value-Related. Two complementary challenges are: providing explanations (infor-
mative dashboards and generation of reports, for instance), and transparency, allowing
decision-makers to drill from recommendations in terms of requirements or decisions,
down to data.

• Technological. Given that it is necessary to implement a software infrastructure to
gather, analyse anddecide upon feedback, the technologyneeds to be as less invasive as
possible, simplifying the installation of the tool and making efficient its configuration.

7 Discussion

7.1 Related Areas

While DDRE is a recent research direction, it is clear from this guided tour that it
benefits from consolidated results produced in other software engineering areas that
exist for many years, some of them already mentioned. We highlight:

• User-Centred Design. This area emerged in the 70 s [86] and originated the concept
of user feedback. For instance, as early as in 1971, Hansen reported the following in
the design of a text editor called Emily: “A log is kept of all user interactions, user
errors, and system errors. There is a command to let the user type a message to be
put in the log and this message is followed by a row of asterisks. When the user is
frustrated he can push a ‘sympathy’ button. In response, Emily displays at random

Data-Driven Requirements Engineering: A Guided Tour 97

one of ten sympathetic messages. More importantly, frustration is noted in the log and
the system designer can examine the user’s preceding actions to find out where his
understanding differed from the system implementation” [87].

• Process Mining. The area of process mining appeared in the mid-90 s under the label
of process discovery, and more related to software process and workflow technologies
[88, 89]. These approaches used event-based logs to capture the actions that occurred
during the execution of the process [90]. In the early 2000s, there was a shift of
focus into business process and information systems [91] and service design [92].
Techniques appearing in these areas [93] can be used in DDRE.

• Mining Software Repositories. Software repositories, such as issue and bug tracking
systems and project management tools, are a valuable source of information that can
be used to understand software development practices and uncover software quality
issues [94]. It is used for many purposes like fault prediction, productivity analysis,
impact analysis and in general, product and process dynamics [95]. In the last years,
given the large amounts of data to be processed and the complexity to analyze them,
there is a corpus of knowledge delivering increasingly sophisticated analysis solutions
[96]. Connection toDDREappears especiallywhen considering software repositories’
data as a possible source for software quality defects, which can eventually generate
internal quality requirements (related to maintainability, portability, etc.) [61].

• ServiceMonitoring.With the advent of service-oriented computing in the early 2000s
[97], one of the areas of research was that of service monitoring. Oriol et al. surveyed
the different areas in which monitoring is important, and remarkably monitoring
quality of service is one of them [98]. An ample body of research on this topic
appeared, with special emphasis on using the monitoring infrastructure for checking
service level agreements [99] and even suggesting explanations or repair rules when
those agreements were violated [100].

• Requirements Monitoring. The concept of requirements monitoring emerged in the
mid-90 s [101] and is still present in the RE area [102]. Requirements monitoring
has been frequently used over goal-oriented models, for instance in the context of
self-adaptive systems [103] and obstacle resolution [104]. This concept can also be
connectedwithDDRE, by considering requirementsmonitoring as part of the software
analytics activities, and especially focusing onmonitoring of user requirements [105].

It is also worth to mention the relationship of DDRE with the topic of online con-
trolled experimentation [106]. This approach to software product development proposes
to collect data from users based in two competing versions that differ in a particular
feature [107]. It is a generalization of the concept of A/B testing and shares several prin-
ciples with DDRE, as the need of quality data and the convenience to establish necessary
competencies [108].

Other areas not part of software engineering, as information retrieval or linguistics,
have also had an influence to DDRE, as shown in this paper.

7.2 Lessons Learned

The concepts presented in this paper have been applied in the last years in several EU
collaborative projects (Q-Rapids [109], SUPERSEDE [110] and OpenReq [111]) where

98 X. Franch

large corporations and small-medium enterprises have adopted DDRE at some extent.
Some observations arising from these projects follow:

• DDRE is not for free.AdoptingDDRErequires both adapting organizational processes
and mindset and developing some infrastructure in order to make it happen.

• DDRE is different for every company. There are not two companies adopting the
proposed DDRE approach in the same way. This means that DDRE needs to define
general process with high customization capabilities. Situational method engineering
[112] can be helpful in dealing with such diversity, as we have explored in one of
these projects, SUPERSEDE [113].

• DDRE requires expertise in terms of specialized roles, e.g. data scientists accompa-
nying the requirements engineers and software engineers.

• DDRE needs to be implemented in an incremental way, in order to gradually master
its intricacies and complexities, and create awareness in the organization.

• DDRE requires full transparency. Decisions made during data-informed software
analysis need to be clearly justified [114] and with a rationale behind such that the
requirements engineer can understand the decision and then accept or decline, or
elaborate further.

8 Conclusions

In this paper, we have presented a guided tour to data-driven requirements engineering
(DDRE). The main message is that DDRE offers a great opportunity for delivering
more business value to systems’ stakeholders by evolving the system according to the
real needs elicited through the analysis of the gathered feedback and tool-supported
decision-making. In line with Ebert et al. [77], we can say that those companies that
do not consider data from system usage in their development processes are increasingly
putting themselves at competitive disadvantage.

DDRE changes the focus of traditional requirements engineering from human-
oriented to data-oriented, although this does not mean that it can replace completely
the existing requirements engineering management approaches and in particular, data
will still need to be analysed and validated by humans. First, data (mainly represented
by feedback) is agnostic per se, and therefore interpretation by humans is still necessary,
even if machine learning techniques are adopted. This is why we have presented the
decision-making process as tool-supported but not as automatic. Second, in order to
gather feedback, an initial system needs to be made available to users. Requirements
for this minimal viable product need to be gather without data, i.e. using traditional
requirement elicitation and prioritization techniques [1].

Data-Driven Requirements Engineering: A Guided Tour 99

Considering the paragraph above, and the challenges and lessons learned enumerated
in previous sections, we can conclude that it may not be appropriate to blindly adopt
DDRE in the context of some companies or systems. At the end, DDRE is another
approach that composes the requirements engineer toolbox, adding some new activities
to those that are more traditional [115], to be used wisely in the right moment with the
right customization.

Acknowledgment. This work is partially supported by the GENESIS project, funded by the
Spanish Ministerio de Ciencia e Innovación under contract TIN2016-79269-R. The author wants
to deeply thank Fabiano Dalpiaz, SilverioMartínez-Fernández andMarc Oriol for their comments
and suggestions over a first draft of the paper.

References

1. Pohl, K.: Requirements Engineering: Fundamentals, Principles and Techniques. Springer,
Heidelberg (2010)

2. Ross, D.T. (ed): Special Collection on Requirement Analysis. IEEE Trans. Softw. Eng.
SE-3(1), 2–84 (1977)

3. Boehm, B.: Software engineering. IEEE Trans. Comput. C-25(12), 1226–1241 (1976)
4. Kuffel, W.: Extra time saves money. Comput. Lang. (1990)
5. Spinellis, D.: Code Quality – The Open Source Perspective. Pearson (2006)
6. PMI: Pulse of the Profession® In-Depth Report: RequirementsManagement—ACoreCom-

petency for Project and Program Success (2014). https://www.pmi.org/-/media/pmi/docume
nts/public/pdf/learning/thought-leadership/pulse/requirements-management.pdf

7. Maalej,W., Nayebi,M., Johann, T., Ruhe, G.: Toward data-driven requirements engineering.
IEEE Softw. 33(1), 48–54 (2016)

8. Lucas, H.C.: A user-oriented approach to systems design. In: Proceedings of the 26thAnnual
Conference of the Association for Computing Machinery (ACM), pp. 325–338. ACM Press
(1971)

9. Trotter, P.: User feedback and how to get it. In: Proceedings of the 4th Annual Conference
on User Services (SIGUCCS), pp. 130–132. ACM Press (1976)

10. Pagano, D., Maalej, W.: User feedback in the appstore: an empirical study. In: Proceedings
of the 21st International Requirements Engineering Conference (RE), pp. 125–134. IEEE
Press (2013)

11. Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo,M.: How can quality
awareness support rapid software development? – A research preview. In: Grünbacher, P.,
Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0_12

12. Franch, X., et al.: Data-driven requirements engineering in agile projects: the Q-rapids
approach. In: Proceedings of the 25th International Requirements Engineering Conference
Workshops (REW), pp. 411–414. IEEE Computer Society (2017)

13. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

14. Hosseini, M., Groen, E.C., Shahri, A., Ali, R.: CRAFT: a crowd-annotated feedback tech-
nique. In: Proceedings of the IEEE 25th International Requirements EngineeringConference
Workshops (REW), pp. 170–175 (2017)

15. Chowdhury, G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37, 51–89 (2003)

https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/requirements-management.pdf
https://doi.org/10.1007/978-3-319-54045-0_12

100 X. Franch

16. Zhao, L., et al.: Natural language processing (NLP) for requirements engineering: a
systematic mapping study. arXiv:2004.01099v2 [cs.SE] (2020)

17. Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: Natural language processing for
requirements engineering; the best is yet to come. IEEE Softw. 35(5), 115–119 (2018)

18. El Shawi, R., Maher, M., Sakr, S.: Automated machine learning: state-of-the-art and open
challenges. arXiv:1906.02287v2 [cs.LG] (2019)

19. Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: Proceedings of the 14th
Conference on Computational Linguistics (COLING),vol. 4, pp. 1106–1110. ACM Press
(1992)

20. Ladani, D.J., Desai, N.P.: Stopword identification and removal techniques on TC and IR
applications: a survey. In: Proceedings of the 6th International Conference on Advanced
Computing and Communication Systems (ICACCS), pp. 466–472. IEEE Press (2020)

21. Singh, J., Gupta, V.: A systematic review of text stemming techniques. Artif. Intell. Rev. 48,
157–217 (2017). https://doi.org/10.1007/s10462-016-9498-2

22. Balakrishnan, V., Lloyd-Yemoh, E.: Stemming and lemmatization: a comparison of retrieval
performances. Lect. Notes Softw. Eng. 2(3), 262–267 (2014)

23. Abney, S.: Part-of-speech tagging and partial parsing. In: Young, S., Bloothooft, G. (eds.)
Corpus-Based Methods in Language and Speech Processing. Text, Speech and Language
Technology, vol. 2, pp. 118–136. Springer, Heidelberg (1997). https://doi.org/10.1007/978-
94-017-1183-8_4

24. Morales-Ramirez, I., Kifetew, F.M., Perini, A.: Speech-acts based analysis for requirements
discovery from online discussions. Inf. Syst. 86, 94–112 (2019)

25. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press, Cambridge (1969)

26. Guzman, E., Alkadhi, R., Seyff, N.: A needle in a haystack: what do twitter users say about
software? In: Proceedings of the 24th International Requirements Engineering Conference
(RE), pp. 96–105. IEEE Computer Society (2016)

27. Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language
processing. In: Proceedings of the 2nd international Conference on Knowledge Capture
(K-CAP), pp. 70–77. ACM Press (2003)

28. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for
sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

29. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Data Min.
Knowl. Discov. 8(4), e1253 (2018)

30. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment anal-
ysis of app reviews. In: Proceedings of the 22nd International Requirements Engineering
Conference (RE), pp. 153–162. IEEE Computer Society (2014)

31. Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd
International Conference on Machine Learning (ICML), pp. 977–984. ACM Press (2006)

32. Jacobi, C., van Atteveldt, W., Welbers, K.: Quantitative analysis of large amounts of
journalistic texts using topic modelling. Digit. J. 4(1), 89–106 (2016)

33. Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., Schneider, K.: What works better?
A study of classifying requirements. arXiv:1707.02358 [cs.SE] (2017)

34. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003)

35. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In Proceedings
of the 22nd International Conference on World Wide Web (WWW), pp. 1445–1456. ACM
press (2013)

36. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggarwal, C.,
Zhai, C. (eds.) Mining Text Data, pp. 43–76. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-1-4614-3223-4_3

http://arxiv.org/abs/2004.01099v2
http://arxiv.org/abs/1906.02287v2
https://doi.org/10.1007/s10462-016-9498-2
https://doi.org/10.1007/978-94-017-1183-8_4
http://arxiv.org/abs/1707.02358
https://doi.org/10.1007/978-1-4614-3223-4_3

Data-Driven Requirements Engineering: A Guided Tour 101

37. Allahyari, M., et al.: Text summarization techniques: a brief survey. arXiv:1707.02268v3
[cs.CL] (2017)

38. Manning, C.D., Surdeanu,M., Bauer, J., Finkel, J., Bethard, S.J.,McClosky, D.: The stanford
CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics: SystemDemonstrations (ACL), pp. 55–60
(2014)

39. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. ACM
SIGIR Forum 37(2), 18–28 (2003)

40. Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user
behavior information. In: Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR), pp. 19–26. ACM
Press (2006)

41. Carvalho, V.M., et al.: Tracking the Covid-19 crisis with high-resolution transaction data.
CEPR Discussion Paper No. DP14642 (2020)

42. Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing. Commu-
nun. ACM 46(1), 24–28 (2003)

43. Abdelmaboud, A., Jawawi, D.N.A., Ghani, I., Elsafi, A., Kitchenham, B.: Quality of service
approaches in cloud computing: a systematic mapping study. J. Syst. Softw. 101, 159–179
(2015)

44. Janes, A.: Non-distracting, continuous collection of software development process data. In:
Nalepa, G.J., Baumeister, J. (eds.) Synergies BetweenKnowledge Engineering and Software
Engineering. AISC, vol. 626, pp. 275–294. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-64161-4_13

45. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the
8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pp. 133–142. ACM Press (2002)

46. Harrigan, J., Rosenthal, R., Scherer, K. (eds.): The NewHandbook ofMethods in Nonverbal
Behavior Research. Oxford University Press, Oxford (2005)

47. Sharafi, Z., Soh, Z., Guéhéneuc, Y.-G.: A systematic literature review on the usage of eye-
tracking in software engineering. Inf. Softw. Technol. 67, 79–107 (2015)

48. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting
clickthrough data as implicit feedback. In: Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),
pp. 154–161. ACM Press (2005)

49. Kertesz, A., et al.: Enhancing federated cloud management with an integrated service mon-
itoring approach. J. Grid Comput. 11(4), 699–720 (2013). https://doi.org/10.1007/s10723-
013-9269-0

50. Cabrera, O., Franch, X., Marco, J.: Ontology-based context modeling in service-oriented
computing: a systematic mapping. Data Knowl. Eng. 110, 24–53 (2017)

51. Ali, R., Dalpiaz, F., Giorgini, P.: Reasoning with contextual requirements: detecting
inconsistency and conflicts. Inf. Softw. Technol. 55, 35–57 (2013)

52. Knauss, A., Damian,D.E., Franch,X., Rook,A.,Müller, H.A., Thomo,A.: ACon: a learning-
based approach to deal with uncertainty in contextual requirements at runtime. Inf. Softw.
Technol. 70, 85–99 (2016)

53. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In Pro-
ceedings of the 21st International Requirements Engineering Conference (RE), pp. 92–104.
IEEE Press (2013)

54. Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combining
user feedback and monitoring. In: Proceedings of the 26th International Requirements
Engineering Conference (RE), pp. 217–227. IEEE Computer Society (2018)

http://arxiv.org/abs/1707.02268v3
https://doi.org/10.1007/978-3-319-64161-4_13
https://doi.org/10.1007/s10723-013-9269-0

102 X. Franch

55. McDaniel, M., Storey, V.C.: Evaluating domain ontologies: clarification, classification, and
challenges. ACM Comput. Surv. 52(4), Article 70 (2019)

56. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and challenges.
IEEE Softw. 34(2), 44–52 (2017)

57. Wüest, D., Fotrousi, F., Fricker, S.: Combining monitoring and autonomous feedback
requests to elicit actionable knowledge of system use. In: Knauss, E., Goedicke, M. (eds.)
REFSQ 2019. LNCS, vol. 11412, pp. 209–225. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-15538-4_16

58. Johanssen, J.O., Kleebaum, A., Bruegge, B., Paech, B.: How do practitioners capture and
utilize user feedback during continuous software engineering? In: Proceedings of the 27th
International Requirements Engineering Conference (RE), pp. 153–164. IEEE Press (2019)

59. Gall, H.,Menzies, T.,Williams, L., Zimmermann, T. (eds.): Software development analytics.
Dagstuhl Rep. 4(6), 64–83 (2014)

60. Buse, R.P.L., Zimmermann, T.: Information needs for software development analytics. In:
Proceedings of the 34th International Conference on Software Engineering (ICSE), pp. 987–
996. IEEE Press (2012)

61. The ISO Organization: ISO/IEC 25010:2011 –Systems and Software Engineering—Sys-
tems and Software Quality Requirements and Evaluation (SQuaRE)—System and Software
Quality Models (2011)

62. Martínez-Fernández, S., et al.: Continuously assessing and improving software quality with
software analytics tools: a case study. IEEE Access 7, 68219–68239 (2019)

63. Wagner, S., et al.: Operationalised product quality models and assessment: the quamoco
approach. Inf. Softw. Technol. 62, 101–123 (2015)

64. Choraś, M., Kozik, R., Pawlicki, M., Hołubowicz, W., Franch, X.: Software development
metrics prediction using time seriesmethods. In: Saeed, K., Chaki, R., Janev, V. (eds.) CISIM
2019. LNCS, vol. 11703, pp. 311–323. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-28957-7_26

65. Oriol, M., et al.: Data-driven and tool-supported elicitation of quality requirements in agile
companies. Softw. Qual. J. 28(3), 931–963 (2020). https://doi.org/10.1007/s11219-020-095
09-y. (in press)

66. Renault, S., Mendez-Bonilla, O., Franch, X., Quer, C.: PABRE: pattern-based requirements
elicitation. In: Proceedings of the 3rd International Conference on Research Challenges in
Information Science (RCIS), pp. 81–92. IEEE Press (2009)

67. Dalpiaz, F., Parente, M.: RE-SWOT: from user feedback to requirements via competitor
analysis. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 55–70.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_4

68. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A sys-
tematic review on strategic release planning models. Inf. Softw. Technol. 52(3), 237–248
(2010)

69. Ameller, D., Farré, C., Franch, X., Rufian, G.: A survey on software release planningmodels.
In: Abrahamsson, P., Jedlitschka, A., NguyenDuc, A., Felderer,M., Amasaki, S.,Mikkonen,
T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 48–65. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49094-6_4

70. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf.
Softw. Technol. 46(4), 243–253 (2004)

71. Nayebi, M., Adams, B., Ruhe, G.: Release practices for mobile apps – what do users
and developers think? In: Proceedings of the 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pp. 552–562 (2016)

72. Villarroel, L., Bavota, G., Russo, B., Oliveto, R., di Penta, M.: Release planning of mobile
apps based on user reviews. In: Proceedings of the 38th International Conference onSoftware
Engineering (ICSE), pp. 14–24. IEEE Computer Society (2016)

https://doi.org/10.1007/978-3-030-15538-4_16
https://doi.org/10.1007/978-3-030-28957-7_26
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.1007/978-3-030-15538-4_4
https://doi.org/10.1007/978-3-319-49094-6_4

Data-Driven Requirements Engineering: A Guided Tour 103

73. Maalej, W., Nayebi, M., Ruhe, G.: Data-driven requirements engineering - an update. In:
Proceedings of the IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 289–290 (2019)

74. Kifetew, F.M., et al.: Gamifying collaborative prioritization: does pointsification work? In:
Proceedings of the 25th International Requirements Engineering Conference (RE), pp. 322–
331. IEEE Press (2017)

75. Johann, T., Maalej, W.: Democratic mass participation of users in requirements engineer-
ing? In: Proceedings of the 23rd International Requirements Engineering Conference (RE),
pp. 256–261. IEEE Press (2015)

76. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous.
4(5), 13–22 (2000)

77. Ebert, C., Heidrich, J., Martinez-Fernandez, S., Trendowicz, A.: Data science: technologies
for better software. IEEE Softw. 36(6), 66–72 (2019)

78. Svensson,R.B., Feldt, R., Torkar,R.: The unfulfilled potential of data-driven decisionmaking
in agile software development. In:Kruchten, P., Fraser, S.,Coallier, F. (eds.)XP2019.LNBIP,
vol. 355, pp. 69–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19034-7_5

79. Franch,X., et al.: Towards integrating data-driven requirements engineering into the software
development process: a vision paper. In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi, S.
(eds.) REFSQ 2020. LNCS, vol. 12045, pp. 135–142. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-44429-7_10

80. Dalpiaz, F., Snijders, R., Brinkkemper, S., Hosseini, M., Shahri, A., Ali, R.: Engaging
the crowd of stakeholders in requirements engineering via gamification. In: Stieglitz, S.,
Lattemann, C., Robra-Bissantz, S., Zarnekow, R., Brockmann, T. (eds.) Gamification. PI,
pp. 123–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45557-0_9

81. Martens, D., Maalej, W.: Towards detecting and understanding fake reviews in app stores.
Empir. Eng. 24, 3316–3355 (2019). https://doi.org/10.1007/s10664-019-09706-9

82. Zavala, E., Franch, X., Marco, J.: Adaptive monitoring: a systematic mapping. Inf. Softw.
Technol. 105, 161–189 (2019)

83. Pruitt, J., Grudin, J.: Personas: practice and theory. In: Proceedings of the 2003 Conference
on Designing for User Experiences (DUX), pp. 1–15. ACM Press (2003)

84. Almaliki, M., Ncube, C., Ali, R.: Adaptive software-based feedback acquisition: a persona-
based design. In: Proceedings of the 9th International Conference on Research Challenges
in Information Science (RCIS), pp. 100–111. IEEE Press (2015)

85. Choras, M., et al.: Measuring and improving agile processes in a small-size software
development company. IEEE Access 8, 78452–78466 (2020)

86. Kling, R.: The organizational context of user-centered software designs. MIS Q. 1(4), 41–52
(1977)

87. Hansen, W.J.: User engineering principles for interactive systems. In: Proceedings of the
Fall Joint Computer Conference (AFIPS), pp. 523–532. ACM Press (1971)

88. Cook, J.E., Wolf, A.L.: Automating process discovery through event-data analysis. In: Pro-
ceedings of the 17th International Conference on Software Engineering (ICSE), pp. 73–82.
IEEE Press (1995)

89. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs.
In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT 1998. LNCS, vol. 1377,
pp. 467–483. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0101003

90. Wolf, A.L., Rosenblum, D.S.: A study in software process data capture and analysis. In: Pro-
ceedings of the 2nd International Conference on the Software Process-Continuous Software
Process Improvement (SPCON), pp. 115–124. IEEE Press (1993)

91. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

https://doi.org/10.1007/978-3-030-19034-7_5
https://doi.org/10.1007/978-3-030-44429-7_10
https://doi.org/10.1007/978-3-319-45557-0_9
https://doi.org/10.1007/s10664-019-09706-9
https://doi.org/10.1007/BFb0101003
https://doi.org/10.1007/978-3-642-19345-3

104 X. Franch

92. van der Aalst, W.: Service mining: using process mining to discover, check, and improve
service behavior. IEEE Trans. Serv. Comput. 6(4), 525–535 (2013)

93. Garcia, C.D.S., et al.: Process mining techniques and applications – a systematic mapping
study. Expert Syst. Appl. 133, 260–295 (2019)

94. Hassan, A.E.: Mining software repositories to assist developers and support managers. In:
Proceedings of the 22nd IEEE International Conference on Software Maintenance (ICSM),
pp. 339–342. IEEE Press (2006)

95. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for mining
software repositories in the context of software evolution. J. Softw. Evol. Process 19(2),
77–131 (2007)

96. Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software Data.
Elsevier, Amsterdam (2016)

97. Papazoglou,M.P.,Georgakopoulos,D.: Introduction: service-oriented computing.Commun.
ACM 46(10), 24–28 (2003)

98. Oriol, M., Franch, X., Marco, J.: Monitoring the service-based system lifecycle with
SALMon. Expert Syst. Appl. 42(19), 6507–6521 (2015)

99. Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and monitoring
SLAs in complex service based systems. In: Proceedings of the 2009 IEEE International
Conference on Web Services (ICWS), pp. 783–790. IEEE Press (2009)

100. Müller, C., et al.: Comprehensive explanation of SLA violations at runtime. IEEE Trans.
Serv. Comput. 7(2), 168–183 (2014)

101. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Pro-
ceedings of the 2nd IEEE International Symposium on Requirements Engineering (ISRE),
pp. 140–147. IEEE Press (1995)

102. Vierhauser, M., Rabiser, R., Grünbacher, P.: Requirements monitoring frameworks: a
systematic review. Inf. Softw. Technol. 80, 89–109 (2016)

103. Oriol, M., Qureshi, N.A., Franch, X., Perini, A., Marco, J.: Requirements monitoring for
adaptive service-based applications. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS,
vol. 7195, pp. 280–287. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28714-5_25

104. Cailliau, A., van Lamsweerde, A.: Runtime monitoring and resolution of probabilistic
obstacles to system goals. ACM Trans. Auton. Adapt. Syst. 14(1), Article 3 (2019)

105. Robinson, W.N.: Seeking quality through user-goal monitoring. IEEE Softw. 26(5), 58–65
(2009)

106. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online controlled exper-
iments at large scale. In: Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 1168–1176. ACM Press (2013)

107. Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Holmström Olsson, H., Bosch, J.:
Experimentation growth: evolving trustworthy A/B testing capabilities in online software
companies. J. Softw. Evol. Process. 30, e2113 (2018)

108. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation
in product development. Inf. Softw. Technol. 77, 80–91 (2016)

109. Franch, X., Lopez, L., Martínez-Fernández, S., Oriol, M., Rodríguez, P., Trendowicz, A.:
Quality-aware rapid software development project: the Q-rapids project. In: Mazzara, M.,
Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS, vol. 11771, pp. 378–392.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29852-4_32

110. Perini, A.: Data-driven requirements engineering. The SUPERSEDE way. In: Lossio-
Ventura, J.A., Muñante, D., Alatrista-Salas, H. (eds.) SIMBig 2018. CCIS, vol. 898,
pp. 13–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11680-4_3

https://doi.org/10.1007/978-3-642-28714-5_25
https://doi.org/10.1007/978-3-030-29852-4_32
https://doi.org/10.1007/978-3-030-11680-4_3

Data-Driven Requirements Engineering: A Guided Tour 105

111. Felfernig, A., Stetinger, M., Falkner, A., Atas, M., Franch, X., Palomares, C.: OpenReq:
recommender systems in requirements engineering. In: Proceedings of the International
Workshop on Recommender Systems and Social Network Analysis (RS-SNA), pp. 1–4.
CEUR 2025 (2017)

112. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational Method Engineering.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41467-1

113. Franch, X., et al.: A situational approach for the definition and tailoring of a data-driven soft-
ware evolutionmethod. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816,
pp. 603–618. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_37

114. Dam, H.K., Tran, T., Ghose, A.: Explainable software analytics. In: Proceedings of the
40th International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), pp. 53–56. ACM Press (2018)

115. Franch, X., Palomares, C., Gorschek, T.: On the requirements engineer role. Commun. ACM
(in press). http://dx.doi.org/10.1145/3418292

https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1007/978-3-319-91563-0_37
http://dx.doi.org/10.1145/3418292

BiDaML in Practice: Collaborative
Modeling of Big Data Analytics

Application Requirements

Hourieh Khalajzadeh1(B), Andrew J. Simmons2, Tarun Verma1,
Mohamed Abdelrazek2, John Grundy1, John Hosking3, Qiang He4,

Prasanna Ratnakanthan5, Adil Zia5, and Meng Law5

1 Monash University, Clayton, VIC 3800, Australia
{hourieh.khalajzadeh,john.grundy}@monash.edu, tver0005@student.monash.edu

2 Deakin University, Burwood, VIC 3125, Australia
{a.simmons,mohamed.abdelrazek}@deakin.edu.au

3 University of Auckland, Auckland 1010, New Zealand
j.hosking@auckland.ac.nz

4 Swinburne University, Hawthorn, VIC 3122, Australia
qhe@swin.edu.au

5 Alfred Health, Melbourne, VIC 3000, Australia
{P.Ratnakanthan,A.Zia,Meng.Law}@alfred.org.au

https://www.monash.edu/it/humanise-lab

Abstract. Using data analytics to improve industrial planning and
operations has become increasingly popular and data scientists are more
and more in demand. However, complex data analytics-based software
development is challenging. It involves many new roles lacking in tradi-
tional software engineering teams – e.g. data scientists and data engi-
neers; use of sophisticated machine learning (ML) approaches replacing
many programming tasks; uncertainty inherent in the models; as well
as interfacing with models to fulfill software functionalities. These chal-
lenges make communication and collaboration within the team and with
external stakeholders challenging. In this paper, we describe our experi-
ences in applying our BiDaML (Big Data Analytics Modeling Languages)
approach to several large-scale industrial projects. We used our BiDaML
modeling toolset that brings all stakeholders around one tool to specify,
model and document their big data applications. We report our expe-
rience in using and evaluating this tool on three real-world, large-scale
applications with teams from: realas.com – a property price prediction
website for home buyers; VicRoads – a project seeking to build a dig-
ital twin (simulated model) of Victoria’s transport network updated in
real-time by a stream of sensor data from inductive loop detectors at
traffic intersections; and the Alfred Hospital – Intracranial hemorrhage
(ICH) prediction through Computed Tomography (CT) Scans. These
show that our approach successfully supports complex data analytics
software development in industrial settings.

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 106–129, 2021.
https://doi.org/10.1007/978-3-030-70006-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_5&domain=pdf
https://realas.com/
https://doi.org/10.1007/978-3-030-70006-5_5

BiDaML in Practice 107

Keywords: Big data analytics · Big data modeling · Big data
toolkits · BiDaML · Domain specific visual languages · End-user tools

1 Introduction

Big data analytics applications have become increasingly widespread in business
[18,24]. However, building such software systems requires considering roles from
many different skill backgrounds compared to traditional software development
teams. Therefore, it is not straightforward to manage collaborations, teamwork
and task specification. Nor is it easy to choose a language that is communicable
for the diverse range of users from programmers and analysts to business man-
agers. Such systems require complex, ML-based approaches, deployed at scale
and that undergo rapid evolution, as business goals change and new data sources
become available. A challenge reported by data scientists in [17] is that it is hard
to convey the resulting insights to leaders and stakeholders in an effective manner
and to convince teams that data science approaches are in fact helpful. More-
over, results of a large-scale survey [28] of data science workers show that even
though they engage in extensive collaboration across all stages of data science
work, there are gaps in the usage of collaborative tools. In order to success-
fully develop such big data analytics systems, a range of perspectives, tasks and
interactions need to be taken into consideration [11]:

– Business perspective, including management need for the solution;
– Domain experts, who understand the various datasets available and how anal-

ysis of these can lead to usable value;
– Target end-users of the data analytics solution, i.e. the data visualizations

produced - sometimes this is business management and/or domain experts,
and sometimes other end users e.g. business staff, planners, customers and/or
suppliers;

– Data analysts who have deep knowledge of available analytics toolsets to
integrate, harmonize, analyze and visualize complex data;

– Data scientists or ML experts who have the expertise to deploy sophisticated
ML software solutions;

– Software engineers with expertise to deploy solutions on large scale hard-
ware for data management and computation, and end-user devices for data
presentation;

– and Cloud computing architects who deploy and maintain large-scale solu-
tions and datasets.

Existing ML-oriented tools only cover the technical ML and data science part of
such problems, i.e. a very small part of the data analytics software engineering
life cycle [25]. Current frameworks do not adequately capture multiple stake-
holder perspectives and business requirements and link these to support the
development of domain models. In this paper, we discuss the challenges in mul-
tidisciplinary data analytics teams. We then report on our experiences using our
BiDaML approach [10,12,14], to help stakeholders to collaborate (using visual

108 H. Khalajzadeh et al.

diagrams) in specifying, modeling and documenting what and how the software
should perform. BiDaML is a suite of domain-specific visual languages (DSVL)
that we created to support the teams through the development of data analytics
systems. Different visual languages support modeling of complex, big data soft-
ware at differing levels of abstraction, using big data analytics domain constructs,
and can be translated into big data solutions using Model-Driven Engineering
(MDE)-based partial code generation. We also describe our experience working
on three different industry use-cases to model and capture the requirements of
their big data analytics applications. This paper is an extended version of an
earlier one that appeared at ENASE 2020 [14]. The key contributions of this
paper include:

– Important new insights into the key challenges in developing big data software
solutions;

– Validating these challenges though three large, real-world data intensive
industry projects and reporting on the experiences of using our approach
for these usecases, and

– Identifying key future directions for researchers in the field of data analytics
software development.

The rest of this paper is organized as follows. Section 2 presents our three
large scale real world data intensive system examples. Section 3 provides key
background and related work analysis. Section 4 outlines our approach to tack-
ling such challenging big data system development and Sect. 5 presents the
results of our industry case studies. Section 6 presents the results of research
studies conducted to evaluate the usability of the BiDaML notations and tools.
Section 7 discusses key findings and key future work directions, while Sect. 8
summarizes conclusions from this work.

2 Our Motivating Industrial Case Studies

In this section, we will show examples of real world data analytics projects to
discuss some of the problems data scientists and software engineers face during
the solution design process.

2.1 ANZ REALas

REALas1 is a property price prediction website owned by the Australia and New
Zealand Banking Group (ANZ). Launched in 2011, REALas claims to provide
Australia’s most accurate price predictions on properties listed for sale. ANZ had
acquired Australian property start-up REALas to help home buyers access better
information about the Australian property market in 2017. Being acquired by
ANZ means more users and customers, and consequently, more data, leading to
the need for an updated algorithm and retrained models, and therefore a need for
1 https://realas.com/.

https://realas.com/

BiDaML in Practice 109

data scientists. In this use-case, a complex new model needed to be developed to
improve the accuracy and coverage of the property price prediction model. The
project team originally comprised a project leader, a business manager, a product
owner, three software engineers, and one data scientist. There were an existing
working website and an ML model, as well as a dataset purchased from a third
party. Two new data analysts/scientists were appointed to this project in order
to create new models and integrate them with the existing website. The solution
had initially been developed without the use of our tool, and the challenges
the team faced to communicate and collaborate through the process was a key
motivation for our research. Data scientists initially lacked an understanding
of the existing dataset and solution as well as domain knowledge. Therefore, it
took them some time to be able to start the project. Communicating progress
to the business manager and other members of the team was another challenge.
With the REALas team, we used our tool to document the process from business
analysis and domain knowledge collection to deployment of final models.

2.2 VicRoads

VicRoads2, the Victorian road traffic authority, utilizes the Sydney Coordinated
Adaptive Traffic System (SCATS) to monitor, control and optimize traffic inter-
sections. Transport researchers within the Monash University Civil Engineering
department sought to build a traffic data platform that would ingest a real-time
feed of SCATS data from VicRoads and integrate it with other transport datasets
such as public transport travel history and traffic incidents reported through
social media. Initially, the Civil Engineering department consulted with a soft-
ware outsourcing company, who proposed a platform composed of industry stan-
dard big data tools. However, the software outsourcing company lacked under-
standing of the datasets and intended use of the platform, thus were unable to
begin work on the project. Furthermore, it was unclear who would maintain the
computing infrastructure, monitor data quality, and integrate new data sources
after the initial phase of the project. We worked with transport researchers and
used our tool to document the intended software solution workflow from data
ingestion to traffic simulation and visualization. This allowed us to assist in the
formation of an alternative software solution making better use of systems and
services already available.

2.3 Alfred Hospital and Monash Clinical Data Science

In this project, a group of radiologists, researchers and executives from Alfred
hospital have used AI for predicting Intracranial hemorrhage (ICH), pulmonary
embolism, spine/rib fractures, lung nodules/cancer through CT Scans, work tra-
ditionally done by radiologists. These AI platforms would enable them to prior-
itize the CT Scans based on the results and forward them to the radiologist for

2 https://www.vicroads.vic.gov.au/traffic-and-road-use/traffic-management/traffic-
signals/scats.

https://www.vicroads.vic.gov.au/traffic-and-road-use/traffic-management/traffic-signals/scats
https://www.vicroads.vic.gov.au/traffic-and-road-use/traffic-management/traffic-signals/scats

110 H. Khalajzadeh et al.

an urgent double check and follow up. Hence, a CT Scan with positive outcome
could be reported in a few minutes instead of a few days. The team wanted
to analyze the data before and after using the AI platform and based on the
turnaround time (TAT) and cost analysis decide whether to continue using the
AI platform or not. Human radiologists would then also spend more time inter-
rogating scans which have been flagged to be abnormal by AI, and perhaps less
time on scans analysed as normal. These clinical AI algorithms have already
been found to detect abnormalities that have been missed by human radiolo-
gists, even though as that time, they did have some false positives. Currently
with another AI clinical product used to detect lung nodules, the AI has in a few
months detected 4–5 nodules which radiologists have missed. They were looking
towards improving these models to provide near human or supra-human accu-
racy. However, due to the diversity of the team, it was difficult to communicate
the medical terms to the data analysts and software engineers, and the analysis
methods and software requirements and solution choices to the radiologists and
the executive team. We used our approach with clinical, data science and soft-
ware team members to model and document steps and plan further key project
stages.

3 Data Analytics Software Development Challenges
and Related Works

As illustrated using our motivating examples, there is no trace back to the busi-
ness needs/requirements that triggered the project. Furthermore, communicat-
ing and reusing existing big data analytics information and models is shown to
be a challenge for many companies new to data analytics. Users need to be able
to collaborate with each other through different views and aspects of the problem
and possible solutions. Current practices and tools do not cover most activities of
data analytics design, especially the critical business requirements. Most current
tools focus on low-level data analytics process design, coding and basic visualiza-
tion of results and they mostly assume data is in a form amenable to processing.
In reality, most data items are in different formats and not clean or integrated,
and great effort is needed to source the data, integrate, harmonize, pre-process
and cleanse it. Only a few off-the-shelf ML tools offer the ability for the data
science expert to embed new code and expand algorithms and provide visualiza-
tions for their needs. Data processing and ML tasks are only a small component
in the building blocks necessary to build real-world deployable data analytics
systems [25]. These tasks only cover a small part of data and ML operations
and deployment of models. Business and management modeling tools usually do
not support many key data analytics steps including data pre-processing and
ML steps. There is a need to capture the high-level goals and requirements for
different users such as domain expert, business analyst, data analyst, data scien-
tist, software engineer, and end-users and relate them to low level diagrams and
capture details such as different tasks for different users, requirements, objec-
tives, etc. Finally, most of the tools covering ML steps require data science and

BiDaML in Practice 111

programming knowledge to embed code and change features based on the user
requirements.

3.1 Key Challenges

Data analytics are widely used in different organizations to improve decision
making. Developing big data software solutions to support an organization’s
data analytics needs requires a multidisciplinary team of data analysts, data
scientists, domain experts, business managers, software engineers, etc. Domain
experts, business analysts and business managers do not necessarily have a back-
ground in data science and programming, and therefore, they do not know how
to convert their problem to a data analytics problem, where to start the project
from and how to use the myriad of existing data science tools. Similarly, data
scientists may be able to create small, bespoke solutions but lack software engi-
neering skills to scale solutions. Software engineers generally lack detailed data
science and domain expertise. As identified in [9,11], while many techniques and
tools exist to support the development of such solutions, they have many lim-
itations. In general, developing big data software solutions suffers from several
key challenges.

Challenge 1 (C#1): Domain Experts, Business Analysts and Business
Managers Do Not have a Background in Data Science and Program-
ming. Domain experts and business users of big data analytics solutions know
the target domain, the data in the domain and the intended benefits from the
solution. However, they lack the expertise to design and develop, and sometimes
to adequately understand such solutions.

Challenge 2 (C#2): Data Analysts, Data Scientists and Software
Engineers do Not have Domain Knowledge. Data analytics is applied
to a variety of different applications from health and education to finance and
banking, and data scientists with technical data science and programming back-
ground do not necessarily have a background in any of the applications they work
on. Therefore, it takes some time for them to collect background knowledge, get
familiar with the domain, what has been done so far, the existing solutions, etc.

Challenge 3 (C#3): Data Scientists Lack Software Engineering Exper-
tise. Data analysts and data scientists are an emerging IT workforce and are
to describe a problem domain, analyze domain data, extract insights, apply ML
models, do evaluations and deploy models. However, most do not have many
of the skills of software engineers, including solution architecture, coding and
large-scale data analytics software deployment. Often data science models lack
ways to describe these aspects of the solution requirements and do not scale.

112 H. Khalajzadeh et al.

Challenge 4 (C#4): Lack of a Common Language between Team Mem-
bers. Domain experts, business analysts and business managers have a high-level
knowledge of the problem, objectives, requirements, users, etc. while data ana-
lysts and data scientists are more from a technical background with expertise
in data science and programming. Communicating and collaborating between
users from different backgrounds is a bottleneck in data analytics application
development. Data scientists spend most of their time preparing data to make it
usable by downstream modeling algorithms. There are no communicable mod-
els or outputs for different stakeholders to enable mutual understanding and
agreement.

Challenge 5 (C#5): Evolution of the Solution is Poorly Supported.
After the solution is developed and deployed, emerging new data, changing
business needs and usage of the application all typically result in a need to
update and re-train the models to improve performance. However, the data sci-
ence group originally employed to develop the initial solution is often disbanded
upon completion, leaving others to attempt to maintain their models. In contrast
to software artifacts, the processes and decisions involved in gathering, cleansing
and analyzing data are rarely fully documented even in scientific research [2], let
alone industry projects with tight deadlines and limited resources for producing
documentation.

Challenge 6 (C#6): Re-using of the Existing Solutions is Not Feasible.
Whether a new group of data scientists is appointed to update and improve out-
of-date models and software or the team is left struggling with it, traditional
documentation approaches mean it will take a long time for the new team to
understand the existing model, as different data scientists have their own method
of modeling and programming. In addition, as they often use specific tools, it
is not normally the case for them to spend time understanding and modifying
the existing solutions. Often, the new team ends up creating new models and
therefore repeating all these steps and facing all the same problems again. This is
not only a problem within a single group but in different parts of organizations,
where data analytics solutions are created without common models being shared
and reused.

3.2 Related Work

There are many data analytics tools available, such as Azure ML Studio3, Ama-
zon AWS ML4, Google Cloud ML5, and BigML6 as reviewed in [11]. However,
these tools only cover a few phases of DataOps, AIOps, and DevOps and none

3 https://studio.azureml.net/.
4 https://aws.amazon.com/machine-learning/.
5 https://cloud.google.com/ai-platform.
6 https://bigml.com/.

https://studio.azureml.net/
https://aws.amazon.com/machine-learning/
https://cloud.google.com/ai-platform
https://bigml.com/

BiDaML in Practice 113

cover business problem description, requirements analysis and design. Moreover,
since most end-users have limited technical data science and programming knowl-
edge, they usually struggle using these tools. Some DSVLs have been developed
for supporting enterprise service modeling and generation using end-user friendly
metaphors. An integrated visual notation for business process modeling is pre-
sented and developed in [19] using a novel tree-based overlay structure that
effectively mitigates complexity problems. MaramaAIC [8] provides end-to-end
support between requirements engineers and their clients for the validation and
improvement of the requirements inconsistencies. SDLTool [16] provides statisti-
cian end-users with a visual language environment for complex statistical survey
design/implementation. These tools provide environments supporting end-users
in different domains. However, they do not support data analytics processes,
techniques, data and requirements, and do not target end-users for such appli-
cations. Scientific workflows are widely recognized as useful models to describe,
manage, and share complex scientific analyses and tools have been designed
and developed for designing, reusing, and sharing such workflows. Kepler [20]
and Taverna [27] are Java-based open source software systems for designing,
executing, reusing, evolving, archiving, and sharing scientific workflows to help
scientists, analysts, and computer programmers. VisTrails [5] is a Python/Qt-
based open-source scientific workflow and provenance management system sup-
porting simulation, data exploration and visualization. It can be combined with
existing systems and libraries as well as your own packages/modules. Finally,
Workspace [6], built on the Qt toolkit, is a powerful, cross-platform scientific
workflow framework enabling collaboration and software reuse and streamlin-
ing delivery of software for commercial and research purposes. Users can easily
create, collaborate and reproduce scientific workflows, develop custom user inter-
faces for different customers, write their own specialized plug-ins, and scale their
computation using Workspace’s remote/parallel task scheduling engine. Differ-
ent projects can be built on top of these drag and drop based graphical tools
and these tools are used in a variety of applications and domains. However, they
only offer a limited number of data analysis steps and no data analytics and
ML capabilities and libraries. Finally, some software tools implement algorithms
specific to a given graphical model such as Infer.NET [21]. This approach for
implementing data analytics techniques is called a model-based approach to ML
[3]. An initial conceptualization of a domain specific modeling language support-
ing code generation from visual representations of probabilistic models for big
data analytics is presented in [4] by extending the analysis of the Infer.NET.
However, it is in very early stages and does not cover many of the data analytics
steps in real-world problems.

4 Our Approach

Since the exisitng big data analytics tools provide only low-level data science
solution design, despite many other steps being involved in solution development,
a high-level presentation of the steps to capture, represent, and communicate

114 H. Khalajzadeh et al.

the business requirements analysis and design, data pre-processing, high-level
data analysis process, solution deployment and data visualization is presented
in [10,14].

Fig. 1. BiDaML notations (from [14]).

4.1 BiDaML Visual Language

BiDaML, presented in [10] and extended in [12,14], is a set of domain-specific
visual languages using different diagram types at different levels of abstraction
to support key aspects of big data analytics. Overview of the BiDaML app-
roach, high level to low level diagrams, and their notations are shown in Fig. 1.
A brainstorming diagram is defined for every data analytics project. Then, at a
lower level to include more details and involve the participants, we use a pro-
cess diagram. Every operation in a process diagram can be further extended by
technique and data diagrams, and then, the technique and data diagrams are
connected to a result output diagram. Finally, the deployment diagram, defined
for every data analytics problem, models deployment related details at a low
level. The updated diagrams presented in [12] include:

Brainstorming Diagram. A data analytics brainstorming diagram’s scope
covers the entirety of a data analytics project expressed at a high-level. There

BiDaML in Practice 115

are no rules as to how abstractly or explicitly a context is expanded. The diagram
overviews a data analytics project in terms of the specific problem it is associ-
ated with, and the task and subtasks to solve the specific problem. It supports
interactive brainstorming to identify key aspects of a data analytics project such
as its requirements implications, analytical methodologies and specific tasks.
Brainstorming diagram comprises an icon representing the data analytics prob-
lem, tasks which the problem is associated with, a hierarchy of sub-tasks for each
task, and finally the specific information about sub-systems used or produced.
We group the building blocks of an AI-powered system into four groups: Domain
and business-related activities (BusinessOps); data-related activities (DataOps);
artificial intelligence and ML-related activities (AIOps); and development and
deployment activities (DevOps).

Process Diagram. The key business processes in a data analytics applica-
tion are shown in a process diagram. We adapt the Business Process Modeling
Notation (BPMN) [23] to specify big data analytics processes at several levels of
abstraction. Process diagrams support business process management, for both
technical users such as data analysts, data scientists, and software engineers as
well as non-technical users such as domain experts, business users and customers,
by providing a notation that is intuitive to business users, yet able to repre-
sent complex process semantics. In this diagram type, we use different “pools”
for different organizations and different “swim lanes” for the people involved
in the process within the same organization. Different layers are also defined
based on different tasks such as business-related tasks (BusinessOps), technical
(DataOps and AIOps), and operational tasks (DevOps and application-based
tasks). Preparation of data items or different events trigger other events and
redirect the process to the other users in the same or different pool.

Technique Diagram. Data analytics technique diagrams extend the brain-
storming diagram to low-level detail specific to different big data analytics tasks
and sub-tasks. For every sub-task, the process is broken down into the specific
stages and the technique used to solve a specific sub-task specified.

Data Diagram. To document the data and artifacts consumed and produced
in different phases described by each of the above diagrams, one or more low-
level data diagrams are created. Data diagrams support the design of data and
artifacts collection processes. They represent the structured and semi-structured
data items involved in the data analytics project in different steps. A high-
level data diagram can be represented by connecting the low-level diagrams for
different BusinessOps, DataOps, AIOps, and DevOps. We initially had an output
diagram to represent the reports and outputs, that has eventually been merged
with data diagram.

116 H. Khalajzadeh et al.

Deployment Diagram. Deployment diagrams represent the software artifacts
and the deployment components and specify the deployment related details.
In the deployment diagram, we focus on distributed cloud platforms, services,
and frameworks rather than individual nodes/devices. We had initially adopted
the deployment diagram concepts from the context of Unified Modeling Lan-
guage (UML) that has eventually changed to our new deployment representation.
Details can be found in [12].

4.2 BiDaML Support Tool

We have developed an integrated design environment for creating BiDaML dia-
grams. The tool support aims to provide a platform for efficiently producing
BiDaML visual models and to facilitate their creation, display, editing, stor-
age, code generation and integration with other tools. We have used MetaEdit+
Workbench [26] to implement our tool. Using MetaEdit+, we have created the
objects and relationships defined as the notational elements for all the diagrams,
different rules on how to connect the objects using the relationships, and how
to define low level sub-graphs for the high level diagrams. Figures 2 and 3 show
examples of BiDaML tool in use for creating brainstorming diagram and an
overview of all the diagrams. They show the outputs generated from the tool
including Python code and word document.

4.3 BiDaML-Web

We have implemented a web based auto layout user interface for BiDaML.
BiDaML-web7 [15] uses Node.js as a runtime environment that executes

Fig. 2. Brainstorming diagram created in BiDaML tool for the traffic analysis example
and snippets of the generated Python code (from [13]).

7 https://bidaml.web.app/.

https://bidaml.web.app/

BiDaML in Practice 117

Fig. 3. Overview of all the diagrams created in BiDaML tool for the traffic analysis
example and the final report in word generated from the overview diagram (from [13]).

JavaScript and for server-side scripting. The application uses Vue.js which is
a JavaScript framework for building user interfaces. Our web-based implemen-
tation of BiDaML8 is based on the auto-layout web-based tool vue-graphViz9

[7] which includes features to adjust placement of items to avoid clutter (such
as lines crossing symbols on the graph) in order to improve readability. Hosting
of the application, Real-time database, Google Analytics, and authentication
services have been also been implemented using Firebase’s APIs. We include a
set of quick-start questions to help the user rapidly generate the initial diagram
with minimal clicks, then provide a minimal interface through which the user
can modify the diagram as needed. To increase the user’s awareness of relevant
algorithms and datasets specific to their problem, we utilise Papers with Code
and Google/Kaggle Datasets Search for recommending algorithms and datasets.
Finally, our tool includes a technique recommender in order to help end users
decide which techniques are appropriate given their dataset, and to consider
questions such as the type of prediction or classification task, and whether they
have access to sufficient labelled data. An example of using BiDaML-web for
creating a brainstorming diagram for the property price prediction is shown in
Fig. 4.

8 https://github.com/tarunverma23/bidaml.
9 https://github.com/yusufades/vue-graphViz.

https://github.com/tarunverma23/bidaml
https://github.com/yusufades/vue-graphViz

118 H. Khalajzadeh et al.

Fig. 4. BiDaML-web used for creating a brainstorming diagram for the property price
prediction example.

5 BiDaML in Industry Practice

In this section, as the main contribution of this paper, we report on the experi-
ences using our tool in three industry projects to validate the challenges we iden-
tified earlier as well as evaluating the usability and suitability of our approach
in a real setting. We used our tool in 3 different real-world industry problems. In
each case, we create a high-level view of an existing problem and use it to uncover
assumptions and allow communications and collaborations to successfully evolve
in a measured manner.

ANZ REALas. Our tool was used to model REALas development from ini-
tial requirement analysis and data collection through the entire life cycle of
its deployment. The first issue (C#1) appeared when the team was unable to
develop data analytics solutions or update the existing models due to the lack of
necessary knowledge and therefore appointed new data scientists to work on it.
There was no documentation available from the existing models, and the data
scientist who had developed the existing model was not available to work on the
project, therefore data scientists needed to spend hours talking to the existing
members, and going through the existing source code, where available, to under-
stand the existing solution. Moreover, new data scientists were not from finance
and banking backgrounds and needed to go through documents in different for-
mats, and dataset dictionaries to understand the concepts (C#2).

Since there was no common language (C#4), it took a long time for them
to transfer information and convert them from domain knowledge to data sci-
ence knowledge. Moreover, new data scientists needed to spend weeks to even
months to analyze the existing dataset, clean and wrangle datasets, acquire
more datasets, integrate all these models and try many new features to be

BiDaML in Practice 119

able to improve the existing model since data scientists spend most of their
time preparing data. However, due to the lack of a platform or common lan-
guage, they could not share and communicate their progress with the business
manager/leader/owner. Data scientists finally recreated new models instead of
reusing and modifying the existing models due to the lack of documentation and
also since there was no common framework and they had to use a different plat-
form than used for the existing models (C#6). They eventually created a new
model to replace the existing model and finally had communicable results. They
still needed to integrate it with the website, requiring software engineers in the
final step (C#3). However, this was not the end of the story for the team, and
the models needed to be later updated and retrained after a while, and therefore,
the need for updated models, new data scientists, and another round of all these
challenges (C#5).

We used our tool to redesign the whole project, in order to communicate
and collaborate through the project, as well as automatically document all the
above development steps. A brainstorming diagram was designed in the first
place to help all the stakeholders fully understand and communicate the steps
and existing solutions through a visualized drag-and-drop based platform. Once
agreements were made on all the steps, a process diagram was created to assign
the tasks to the existing stakeholders. These two steps only took a few hours
from the whole team, and they could also incrementally modify these two during
the process. Data scientists were now fully aware of the domain knowledge,
background of the project and existing models and could further leave comments
and ask questions if further information was required.

In the next step, data scientists worked on the data and ML parts, however
this time, needed to visually record and keep track of the data items, artefacts,
models, reports, etc. that they tried, whether they were successful, failed, or were
just being planned. This made it easy for them to communicate their progress
and also reach agreement on the results. Our tool has a code generation feature
that could help data scientists start from a template instead of starting from
scratch. Our tool provides a way to automatically document and embed their
code templates for future usage. They gradually developed new models, and
finally, worked with software engineers on a deployment diagram to define where
and how to deploy the items generated in different steps. The new method was
efficient in the way it took less time for the stakeholders to communicate and
collaborate, and the step-by-step automatic documentation made the solution
reusable for future reference. Based on the product owner’s feedback “this tool
would have been helpful to understand and communicate the complexity of a new
ML project within an organisation. It would assist the wider team to collaborate
with data scientists and improve the outputs of the process”.

Examples of some of the diagrams generated throughout the process are
shown in Fig. 5. A full list of the diagrams and the generated report is available
in [1]. In Fig. 5, a brainstorming diagram shows high-level tasks designed for the
problem and how they are divided based on the nature of the operations (Busi-
nessOps, DataOps, AIOps and DevOps). For instance, “price prediction website

120 H. Khalajzadeh et al.

deployment” is a high-level DataOps task consisting of lower-level tasks such as
“store”, that is later supported by the “Real Estate MySQL DB” component on
top of an AWS Cloud DB Server shown in the deployment diagram. Report data
diagram enables agreement on the reports expected to be generated or shown
on the website.

Fig. 5. Examples of the diagrams created for the property price prediction use-case.

VicRoads. In this use-case, there was a need to formally capture detailed
requirements for a traffic data platform that would ingest a real-time stream
of traffic data received from VicRoads (the Victorian road transport authority),
integrate this with other transport data sources, and support modeling and visu-
alization of the transport network at a state-wide level. The first issues (C#1
and C#3) arose in the initiation of the project. The project leader and traffic
modeling experts identified the need for a big data platform. However, without
a background in software engineering or familiarity with modern data science
tools, they were unable to determine whether the technology stack offered by
the software outsourcing company would meet their needs.

The second issue (C#2) arose in requirements elicitation; the software out-
sourcing company lacked understanding of the domain and thus did not under-
stand what tasks were required of them. To overcome the communication dif-
ficulties, a meeting was arranged between the project leader, the traffic mod-
eling expert, a data engineer/visualization designer, the project team from the
software outsourcing company, and the eResearch High Performance Comput-
ing services team. However, the lack of a common language (C#4) meant that
communication could only take place at a high-level rather than at the level
of detail necessary to initiate direct technical action. The software outsourcing

BiDaML in Practice 121

company produced a plan for the software they intended to deploy; however, no
plan existed for who would monitor and maintain the software and systems after
deployment (C#5), such as responding to faults in real-time data ingestion or
adding support for new types of data. To justify the cost and time investment
into the project, the project leader wanted to be able to reuse (C#6) the plat-
form for related projects, such as a smart city. However, it was unclear whether
the work invested in the design of the transport data platform could be reused
in other projects.

We performed in-depth interviews with the project leader and traffic model-
ing expert, then used our tool to document the entire data analytics workflow
including data ingestion, transport modeling, and result visualization. The traffic
prediction brainstorming diagram was initially created as a handwritten sketc.h
on paper, then later recreated using the tool. The process diagram, technique
diagram, data diagram, and deployment diagram were created directly using the
tool. While most diagram types took only 15–30 minutes to create, the process
diagram proved the most time consuming, taking almost 3 h due to the need to
detail tasks to integrate each system and determine roles of individuals (we have
since simplified the process diagram notation in order to streamline the process).
As our tool forces the user to consider all phases of the project, the modeling pro-
cess helped reveal gaps in planning that required attention. Notably, no budget
or personnel had been assigned to maintain the system after initial deployment,
integrate new data sources, and monitor data quality/security. Indeed, in the
process diagram, we were forced to label both the organization and participant
for these tasks as To Be Determined (TBD).

We presented the diagrams to the traffic modeling expert for feedback. This
took place over a course of an hour session, in which we presented each diagram
in the tool. The tool supported live corrections to the diagrams such as creation,
modification or reassignment of tasks as we discussed the diagrams with the
traffic modeling expert. Feedback from the expert was positive: “I think you
have a good understanding of the business... how do you know about all of this?
I think this is very interesting, very impressive what you are proposing. It covers
a lot of work that needs to be done.” While the expert stated that the diagrams
were helpful to “figure out all the processes and what tasks need to be done”
they were reluctant to use our tool to communicate with external stakeholders
in other organizations: “to use this tool, it will be likely not possible, because
they [the other organizations involved] have their own process, they don’t want
to follow a new one”. We subsequently presented printouts of the diagrams to
the project leader who expressed some uncertainty about the purpose of the
notation; however, noted that an adaptation of the data diagrams as a means to
document data provenance (i.e. the ability to trace the origins of data analysis
results back to raw data used) would be “very useful”.

Examples of the diagrams generated throughout the process are shown in
Fig. 6. A full list of the diagrams and the generated report is available in [1].
For instance, the “Simulation Data Diagram” shows that the Origin-Destination
Matrix (where vehicles enter the traffic network and where they travel to) used

122 H. Khalajzadeh et al.

for traffic modeling is partially derived from “15 min Volume Average” sensor
data fed into an optimization/simulation process to find the most likely Origin-
Destination matrix given the reported sensor readings. Documenting this using
our approach can assist future users of the resultant Origin-Destination Matrix
to better understand the original source of their data and to recompute the
result. For the purpose of live traffic prediction, it was desired to automatically
recompute the Origin-Destination Matrix from recent data. The “Live Prediction
Technique Diagram” shows the consideration of different techniques to achieve
this. Periodic re-execution of the workflow every 5 to 15 min emerged as an
option to facilitate live predictions without requiring traffic modeling experts to
have a software engineering background.

Fig. 6. Examples of the diagrams created for the VicRoads use-case.

Alfred Hospital and Monash Clinical Data Science. The team at the
Alfred hospital needed to analyze data before and after using an AI platform
to decide whether to continue using the tool or not. The team consisted of
radiologists and medical researchers without a background in data analytics.
The AI platform provider claimed that by using the AI platform they would be
able to reduce the TAT time from days to minutes. Without a background in data
analytics and ML they would not be able to collect, integrate, cleanse, analyze
and compare the results after using the AI platform and ensure the AI platform
was able to meet their requirements (C#1). They decided to talk to a data
analysis researcher to discuss the possible solutions, however, the data analysis
researcher had no background in medical and radiology terms and concepts and
communicating the requirements was a challenge (C#2) as there initially was
a lack of a common language between these people (C#4). Deploying the final
software (C#3), who would be responsible for different tasks (C#5) and whether
they could reuse the analysis for the future projects (C#6) were other challenges
they would face if they wanted to continue the project with no clear definition
and documentation of the detailed tasks.

We briefly introduced our tool to the team and since it seemed to be a
well-designed fit for the project due to the diverse nature of the stakeholders,
we decided to use the tool to model and analyze the requirements and capture
the details. We had an initial one-hour meeting with one of the radiologists and
started developing the models and collecting a deep understanding of the project,

BiDaML in Practice 123

Fig. 7. Examples of the diagrams created for the alfred hospital use-case.

requirements, concepts, and objectives through the brainstorming diagram. Then
we spent almost 30 min to document the entire data analytics workflow includ-
ing data collection and wrangling, comparing the methods, making the final
decision and deploying the final product through process, technique, data and
deployment diagrams. Since we needed to deeply think about all the details and
plans, the tool forced us to consider all phases and details of the project. We then
organized a follow-up meeting with the team from the hospital, including two
radiologists and the team leader and presented the diagrams for their feedback.
The meeting took 30 min. During the meeting, we modified the organizations
and users involved as well as the expected reports and outcomes and the infras-
tructure in the deployment diagram. Going through the diagrams made us think
about these and plan for them. We then shared the report generated from the
tool with the team for their feedback.

Feedback from the team was that “BiDaML offered a simplified visual on
different components of the project. These diagrams could be circulated to the
project team and would clarify the workflow, requirements, aims and endpoints
of each role and the entire project. In large-scale projects, BiDaML would be of
even greater benefit, with involvement of multiple teams all working towards a
common goal”. However, “The user interface seemed quite challenging to navi-
gate. However, this could be easily negated with appropriate training and instruc-
tional material”. Examples of the diagrams generated throughout the process are

124 H. Khalajzadeh et al.

shown in Fig. 7. A full list of the diagrams and the generated report is available
in [1]. For instance, the process diagram, as one of the high-level diagrams gen-
erated for this example, clarified that there are three groups from the hospital
involved in this project, and there are currently no data analysts involved in the
project and the research team are recording TAT, testing the algorithm, plan-
ning to compare the results, etc. before the executive team decides on purchasing
the AI platform or not.

6 Evaluation

In addition to our experiences of using BiDaML in practice within Sect. 5, we
have evaluated the usability and suitability of our visual languages and tool
suite in two ways (preliminary results originally reported in [10,14] and the
comprehensive extended experiments originally presented in [12,15]). The first
was an extensive physics of notations evaluation [22]. This was a useful end-user
perspective evaluation without having to involve a large-scale usability trial.
The second was a series of user studies to understand how easy BiDaML is
to learn and use. The user studies performed were: a cognitive walkthrough of
the original BiDaML support tool with several target domain expert end-users,
including data scientists and software engineers, as test participants; a group
user study to compare handwritten BiDaML diagrams to other notations; and
finally a user study of BiDaML-web.

6.1 Physics of Notations Evaluation

Semiotic clarity specifies that a diagram should not have symbol redundancy,
overload, excess and deficit. All our visual symbols in BiDaML have 1:1 cor-
respondence to their referred concepts. Perceptual discriminability is primarily
determined by the visual distance between symbols. All our symbols in BiDaML
use different shapes as their main visual variable, plus redundant coding such
as color and/or textual annotation. Semantic transparency identifies the extent
to which the meaning of a symbol should be inferred from its appearance. In
BiDaML, icons are used to represent visual symbols and minimize the use of
abstract geometrical shapes. Complexity management restricts a diagram to
have as few visual elements as possible to reduce its diagrammatic complexity.
We used hierarchical views in BiDaML for representation and as our future work,
we will add the feature for users to hide visual construct details for complex dia-
grams. Cognitive integration identifies that the information from separate dia-
grams should be assembled into a coherent mental representation of a system;
and it should be as simple as possible to navigate between diagrams. All the
diagrams in BiDaML have a hierarchical tree-based structure relationship.

Visual expressiveness defines a range of visual variables to be used, result-
ing in a perceptually enriched representation that exploits multiple visual com-
munication channels and maximizes computational offloading. Various visual
variables, such as shape, color, orientation, texture, etc. are used in designing

BiDaML in Practice 125

BiDaML visual symbols. Dual coding means that textual encoding should also
be used, as it is most effective when used in a supporting role. In BiDaML, all
visual symbols have a textual annotation. Graphic economy discusses that the
number of different visual symbols should be cognitively manageable. As few
visual symbols as possible are used in BiDaML. Cognitive fit means that the
diagram needs to have different visual dialects for different tasks or users. All
the symbols in BiDaML are usable for different users and tasks. However, in
the future, we will provide different views for different users in our BiDaML
support tool, and users will be able to navigate between views based on their
requirements.

6.2 Cognitive Walk-Through of BiDaML Support Tool

We asked 3 data scientists and 2 software engineers (all experienced in big data
analytics) to carry out a task-based end-user evaluation of BiDaML. The objec-
tive was to assess how easy it is to learn to use the visual models and how
efficiently it can solve the diagram complexity problem. BiDaML diagrams were
briefly introduced to the participants who were then asked to perform three pre-
defined modeling tasks. The first was to design BusinessOps, DataOps, AIOps,
or DevOps part of a brainstorming diagram for a data analytics problem of their
choice from scratch. In the second, each participant was given a process diagram
and asked to explain it, comment on the information represented and provide
suggestions to improve it. The third involved participants designing a technique
diagram related to a specific task of the data analytics problem they chose for
the first part of the evaluation.

Overall, user feedback from the participants indicated that BiDaML is very
straightforward to use and understand. Users felt they could easily commu-
nicate with other team members and managers and present their ideas, tech-
niques, expected outcomes and progress in a common language during the project
before the final solution. They liked how different layers and operations are
differentiated. Moreover, they could capture and understand business require-
ments and expectations and make agreements on requirements, outcomes, and
results through the project. These could then be linked clearly to lower-level
data, technique and output diagrams. Using this feedback we have made some
minor changes to our diagrams such as the shape and order of some notations,
and the relationships between different objects. However, several limitations and
potential improvements have also been identified in our evaluations. Some users
prefer to see technique and data diagrams components altogether in a single
diagram, while some others prefer to have these separate. Moreover, in the
process diagram, some users prefer to only see the operations related to their
tasks and directly related tasks. Finally, one of the users wanted to differentiate
between tasks/operations that are done by humans versus a tool. In future tool
updates, we will provide different views for different users and will allow users
to hide/unhide different components of the diagrams based on their preference.
Moreover, in our future code generation plan, we will separate different tasks
based on whether they are conducted by humans or tools.

126 H. Khalajzadeh et al.

6.3 Group User Study of Handwritten BiDaML Diagrams

To address limitations of the first user study, we performed a second user eval-
uation in a more structured manner, with feedback collected anonymously. In
order to evaluate the suitability of the BiDaML notation for new users in a
diversity of scenarios, the participants were asked to create BiDaML diagrams
to model the project of their choice. Moreover, to see how BiDaML compared
to other notations, participants were asked to create both a BiDaML diagram
as well as diagram using another notation, then share their diagrams with other
participants. The results of our study, reported in [12], showed that users prefer
BiDaML for supporting complex data analytics solution modeling more than
other modeling languages.

6.4 BiDaML-Web User Study

To evaluate BiDaML-web, we performed a user study with a group of 16 end-
users. Given we had conducted comprehensive evaluations of BiDaML notations
and its comparison in our previous works [10,12], we only evaluated the auto-
layout web based user interface and the recommender tools in this study. Our aim
was to evaluate the usability of BiDaML-web and whether users paid attention
to recommendations and found the code, paper, project and dataset recommen-
dations, helpful. In this study (originally reported in [15]), we first introduced
the BiDaML concept, notations, and diagrams and then asked a group of 16
data analysts, data scientists, domain experts and software engineers to use
BiDaMl-web tool to model and describe a project of their choice. We finally
asked participants to fill in a questionnaire and asked to rate whether BiDaML-
web is easy to understand/learn/use and how they found the recommender tool.
The group study consisted of 9 PhD students, and 7 academic staff. 8 partici-
pants categorised themselves as software engineers, 4 as data analysts/scientists,
5 as Domain expert/business analyst/business manager, and 2 as “other” (some
participants identified as multiple categories). The distribution of data analyt-
ics/data science experience was: 7 participants with less than 1 year; 2 partic-
ipants with 2 years; 2 participant with 3 years; and 5 participants with 5 to
9 years. The distribution of programming experience was: 2 participants with
0–1 year, 1 participant with 1 year, 3 participants with 2 years, 2 participants
with 3 years, 2 participants with 4 years, 2 participants with 5 to 9 years, and
4 participants with 10 or more years. Study participants found the integrated
recommender tools helpful, and also responded positively to the tool overall, as
detailed in [15]. The primary reasons selected were “it made me think of details
that I never noticed” (9 of 16) and “introduced resources I wasn’t aware of” (9
of 16); it was possible for a participant to select multiple reasons or provide a
custom response to this question.

7 Discussions

We applied our approach on three different real world usecases to validate these
challenges as well as our approach in a real setting. Our aim was to evaluate

BiDaML in Practice 127

and gain experience with applying our method to conduct requirements analysis
and modeling part of complex data analytics applications. We have found that
our method: has been practical to a variety of real-world large-scale applica-
tions. It helped communication and collaboration between team members from
different backgrounds by providing a common platform with mutual language
(C#1–C#4). It also helped identify and agree on details in the early stages
(C#5). Thus our tool can reduce costs and improve the speed of business under-
standing by addressing these details during the requirement analysis stage. It
also provided automatic documentation that can be re-used for retraining and
updating of the models (C#6). Based on our radiologist users’ experience: “As
the frequency of multidisciplinary, collaborative projects is increasing, there is
a clear benefit with the use of BiDaML as a tool for designing data analytics
processes. Furthermore, the automatic code generation capabilities of BiDaML
would greatly aid those who do not have experience in large-scale data analysis.
We do see use of BiDaML in this specific project and would be interested in seeing
its results”. There are some notable issues we faced while working with indus-
trial partners on these data analytics requirement engineering problems. Our
tool can be accessed by all the stakeholders in different geographical locations.
However, our intervention has been required so far, as our original BiDaML tool
depends on MetaEdit+ modeling development tool [26] and a license required to
be purchased by users. Users make benefits of the early requirement engineering
part. However, they continue using existing tools and programming languages
to develop the ML and application development parts once they have completed
the requirement analysis, modeling and planning part of the project. To over-
come the first issue, we re-implemented the tool as a stand-alone web-based
tool that users can work on individually without us being required to manage
the modeling part. To overcome the second, we aim to develop recommenda-
tions and integrations for popular existing tools to encourage users to continue
using our approach through the entire development of the final product. We
see considerable scope for providing back end integration with data analytics
tools such as Azure ML Studio, RapidMiner, KNIME, etc. Our tool can be used
at an abstract level during requirements analysis and design, and then connect
to different tools at a low-level. Therefore, our DSVLs can be used to design,
implement and control a data analytics solution.

8 Conclusions

We have identified several key challenges in data analytics software engineer-
ing, compared to traditional software teams and processes. We described our
BiDaML domain-specific visual-language based technique for requirements mod-
eling and documentation of big data analytics systems. Our experience in three
different real-world case studies in finance, transportation and health has been
that our method is easy to apply to diverse real-world large-scale applications
and greatly assisted us in identifying the requirements as well as domain and
business knowledge that will potentially lead to improvements in planning and

128 H. Khalajzadeh et al.

developing the software. Additionally, an initial web-based interface for BiDaML
is presented and evaluated in this paper. Being able to successfully apply our
practical method in designing and analyzing different big data analytics applica-
tions encouraged us to further extend BiDaML as a stand-alone web-based tool
and connect it to the existing ML recommendation toolboxes as a step toward
realising our vision of an integrated end-to-end modelling platform for big data
solutions.

Acknowledgements. Support for this work from ARC Discovery Projects
DP170101932 and from ARC Laureate Program FL190100035 is gratefully acknowl-
edged. We would also like to acknowledge Prof. Hai Vu and Dr. Nam Hoang from the
Monash Institute of Transport Studies for their collaboration, and thank the Depart-
ment of Transport (VicRoads) for sharing the transport data.

References

1. BiDaML big data analytics modeling languages. http://bidaml.visualmodel.org/
2. Baker, M.: 1,500 scientists lift the lid on reproducibility (2016)
3. Bishop, C.M.: Model-based machine learning. Philos. Trans. Roy. Soc. A: Math.

Phys. Eng. Sci. 371(1984), 20120222 (2013)
4. Breuker, D.: Towards model-driven engineering for big data analytics-an

exploratory analysis of domain-specific languages for machine learning. In: 2014
47th Hawaii International Conference on System Sciences, pp. 758–767. IEEE
(2014)

5. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.:
VisTrails: visualization meets data management. In: Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, pp. 745–747 (2006)

6. Cleary, P., Thomas, D., Bolger, M., Hetherton, L., Rucinski, C., Watkins, D.:
Using workspace to automate workflow processes for modelling and simulation in
engineering. in ‘modsim2015. In: 21st International Congress on Modelling and
Simulation’, Broadbeach, Queensland, Australia, pp. 669–675 (2015)

7. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: a constraint-based network dia-
gram authoring tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol.
5417, pp. 420–431. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00219-9 41

8. Kamalrudin, M., Hosking, J., Grundy, J.: MaramaAIC: tool support for consis-
tency management and validation of requirements. Autom. Softw. Eng. 24(1),
1–45 (2017)

9. Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.: A survey of
current end-user data analytics tool support. In: 2018 IEEE International Congress
on Big Data (BigData Congress), pp. 41–48. IEEE (2018)

10. Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.: BiDaML: a
suite of visual languages for supporting end-user data analytics. In: 2019 IEEE
International Congress on Big Data (BigDataCongress), pp. 93–97. IEEE (2019)

11. Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.: Survey and
analysis of current end-user data analytics tool support. IEEE Trans. Big Data
(01), 1 (2019). https://doi.org/10.1109/TBDATA.2019.2921774

http://bidaml.visualmodel.org/
https://doi.org/10.1007/978-3-642-00219-9_41
https://doi.org/10.1007/978-3-642-00219-9_41
https://doi.org/10.1109/TBDATA.2019.2921774

BiDaML in Practice 129

12. Khalajzadeh, H., Simmons, A.J., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.:
An end-to-end model-based approach to support big data analytics development.
J. Comput. Lang. 58, 100964 (2020)

13. Khalajzadeh, H., Simmons, A.J., Abdelrazek, M., Grundy, J., Hosking, J., He,
Q.: End-user-oriented tool support for modeling data analytics requirements.
In: 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 1–4. IEEE (2020)

14. Khalajzadeh, H., Simmons, A.J., Abdelrazek, M., Grundy, J., Hosking, J.G., He,
Q.: Visual languages for supporting big data analytics development. In: ENASE,
pp. 15–26 (2020)

15. Khalajzadeh, H., Verma, T., Simmons, A.J., Grundy, J., Abdelrazek, M., Hosking,
J.: User-centred tooling for the modelling of big data applications. In: MODELS
2020: ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems. ACM (2020)

16. Kim, C.H., Grundy, J., Hosking, J.: A suite of visual languages for model-driven
development of statistical surveys and services. J. Vis. Lang. Comput. 26, 99–125
(2015)

17. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: Data scientists in software teams:
state of the art and challenges. IEEE Trans. Software Eng. 44(11), 1024–1038
(2017)

18. Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.: A survey of open
source tools for machine learning with big data in the Hadoop ecosystem. J. Big
Data 2(1), 24 (2015)

19. Li, L., Grundy, J., Hosking, J.: A visual language and environment for enterprise
system modelling and automation. J. Vis. Lang. Comput. 25(4), 253–277 (2014)

20. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Con-
curr. Comput.: Pract. Exp. 18(10), 1039–1065 (2006)

21. Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.net 2.4, 2010. Microsoft research
Cambridge (2010)

22. Moody, D.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

23. OMG: Business process model and notation (BPMN) (2011). https://www.omg.
org/spec/BPMN/2.0/

24. Portugal, I., Alencar, P., Cowan, D.: A preliminary survey on domain-specific lan-
guages for machine learning in big data. In: 2016 IEEE International Conference
on Software Science, Technology and Engineering (SWSTE), pp. 108–110. IEEE
(2016)

25. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances
in Neural Information Processing Systems, pp. 2503–2511 (2015)

26. Tolvanen, J.P., Rossi, M.: MetaEdit+ defining and using domain-specific modeling
languages and code generators. In: Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 92–93 (2003)

27. Wolstencroft, K., et al.: The taverna workflow suite: designing and executing work-
flows of web services on the desktop, web or in the cloud. Nucleic Acids Res.
41(W1), W557–W561 (2013)

28. Zhang, A.X., Muller, M., Wang, D.: How do data science workers collaborate?
Roles, workflows, and tools. arXiv preprint arXiv:2001.06684 (2020)

https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
http://arxiv.org/abs/2001.06684

Challenges and Decisions
in WOBCompute Design, a P2P
Computing System Architecture

Levente Filep(B)

Faculty of Mathematics and Computer Science, Babeş-Bolyai University,
Cluj-Napoca, Romania
f.levi@cs.ubbcluj.ro

Abstract. In the field of large-scale computing, Cloud Computing Ser-
vices gained popularity due to their low cost and availability. Alterna-
tives exist in the form of distributed computing systems, most of which
combine existing, cheap, commodity hardware into clusters of comput-
ing and storage resources. Most of these implementations are Client-
Server model-based. Decentralized solutions employ a form of Peer-to-
Peer (P2P) design, however, without major benefits besides the decen-
tralized task coordination, and due to increased design complexity com-
pared to the Client-Server models, these implementations haven’t gained
widespread popularity. In this paper, the architecture of WOBCompute
is presented, which is P2P based, and features decentralized task coor-
dination, the possibility of workload transfer via checkpoints, and task
tracking and location queries with the possibility of messaging between
parallel branches of a distributed application. Architecture design consid-
erations and choices are also presented. The overlay of the P2P system
is a super-peer driven clusters organized into an extended star topol-
ogy. Using backup super-peers, and distributing the cluster members
between them, the size and stability of the clusters are improved; query
and lookup messages are limited to only the super-peers and the topol-
ogy employed reduces the longest message path. The complexity of the
system mandates the use of a middleware, which hides these and pro-
vides a simplified interface for a distributed application to take advantage
of the computing resources, being a combination of in-house computing
devices, personal or volunteer donated resources, as well as Cloud-based
VMs.

Keywords: Peer-to-peer networks · Super-peer topology · Distributed
computing · Middleware · P2P computing architecture

1 Introduction

Harnessing cheap computing resources is the focus of many distributed com-
puting systems that gained popularity in the past couple of decades. With the

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 130–153, 2021.
https://doi.org/10.1007/978-3-030-70006-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_6&domain=pdf
http://orcid.org/0000-0003-2095-0161
https://doi.org/10.1007/978-3-030-70006-5_6

Challenges and Decisions in WOBCompute Design 131

advent of Cloud Computing Services and its ever-cheaper prices and availability,
this has gained popularity in the large-scale computing landscape. Nonetheless,
this is out of reach of some individuals or small research groups. For them, an
alternative solution is combining existing, cheap commodity hardware resources
into computational clusters. These can be in the form of grid computing, volun-
teer computing (VC), etc. [14].

VC frameworks utilize a specialized middleware for harnessing idle computing
resources within a preset allowed limit from volunteer machines. Such a middle-
ware can also be deployed with the combination of in-house computer networks
and even Cloud VMs. Depending on the model of asymmetric communication
between the participating hardware, such frameworks can implement either a
centralized architecture such as the Client-Server, or a decentralized one such as
the Peer-to-Peer (P2P) model.

The overwhelming majority of popular solutions are fully centralized in
nature. Here, centralized server(s) are responsible for task coordination, namely
the creation, deployment, and result collection. Participating nodes (clients)
download and execute the tasks, and the results are sent back to the centralized
servers. Decentralized solutions, on the other hand, utilize some form of P2P
architecture. Here, each node participates in both task execution, as well as task
coordination. Meanwhile, hybrid approaches utilize P2P architecture with some
centralized elements (e.g. centralized storage servers for workload, etc.).

Comparing these types of architectures, the centralized ones, due to their
reduced complexity, are the easiest to implement and deploy. The most popular
and widespread framework is BOINC [2]. The downside of such implementa-
tion is the server bottleneck, namely, with the growing number of participating
parties, more and more servers are needed to handle the task coordination in a
timely manner, which in turn increases the cost of framework ownership. This
is not necessarily a problem, since the cheap computing resources offset the cost
of these servers. Even if P2P based solutions can eliminate this bottleneck, due
to their increased design complexity and without additional benefits [14], these
never gained popularity and widespread.

Task coordination, workload tracking, remote checkpointing with recovery,
and messaging are implementable on the Client-Server model using high-perfor-
mance centralized servers. However, in the P2P model, these can be offloaded
and implemented in a distributed manner, which can be a cost-effective solution.

This paper presents the architecture of WOBCompute, a P2P based comput-
ing system architecture. The network topology employs hierarchical and struc-
tured elements in the form of super-peers and clustering, with the organization of
these clusters into an extended star topology. An additional benefit of the system
is the possibility of communication between the parallel tasks, which is achieved
using a decentralized task tracking (location tracking and query) mechanism
to first find the location of a task and then to exchange messages. The system
also features task object relocation in the form of checkpoint migration, and
remote backups and recovery. For deployment in a combination of existing com-
puter networks and even volunteer machines, it harnesses idle resources. Such a

132 L. Filep

system comes with enormous complexity in maintaining network structure and
providing the above functionalities, therefore it features a middleware that hides
this complexity from the computing applications and provides a simple interface
for application developers.

This paper extends the previously published paper [10] with more in-depth
explanation and additional content. The capacity based selection is discussed
and evaluated, a new selection method based on predicted node availability is
also present and discussed. The simulation results of these methods and their
impact on network overlay is presented, compared, and discussed. Computing
application design for this framework is discussed. The main logic of such an
application is present and discussed. While this paper presents the architecture
design, the original concept model the framework is based on was presented in
[9].

2 Related Work

Nowadays, the usage of P2P architecture is common in data networks, such
as streaming or data sharing, however, in computing networks, as opposed to
the Client-Server architecture, arguably due to the implementation and design
complexities, it has not gained widespread interest.

2.1 P2P Computing Systems

Despite less attention in the literature, P2P architecture has influenced sev-
eral computing system designs. CompuP2P [12] is a lightweight architecture for
internet computing; ad hoc Grid [22] is a self-organizing computing grid based
on OurGrid [3] middleware; HP2PC [11] is a system proposal with a hierarchi-
cally distributed P2P architecture; P2P-HTC [16] is high throughput computing
system utilizing Cassandra (a distributed DHT based database) for a distributed
queue based scheduling with FCFS (First Come First Served) scheduling policy;
DisCoP [4] is also a P2P based system that utilizes idle resource harnessing and
a clustered topology for efficient resource search within. In another paper [6] a
computing system for overlay network was proposed that uses centralized track-
ers on top of the overlay system which can be responsible for task scheduling
and workload location tracking.

2.2 P2P Topologies

The P2P architecture organizes the participating nodes (peers) into a virtual
topology on top of the physical one. The structure of this topology is a direct
result of the rules used to connect the nodes. We can classify these into two
main categories: structured and unstructured. An unstructured topology is easy
to build and maintain, however, resource query is inefficient as query messages
must reach all nodes, therefore, without some form of centralized data-service,

Challenges and Decisions in WOBCompute Design 133

some structure is desired to improve on resource availability and search speed
[19].

DHT based topologies are also a form of structure. Chord [21] organizes the
nodes into a ring topology and uses finger tables for improved search efficiency.
Tapestry [26] introduced the concept of backup neighbor nodes for better avail-
ability in case of node failures.

Other topologies have been proposed with complex structures, such as the
AFT [17], which is an adaptive and self-organizing topology, and uses a circle
having multiple rings on it to organize the nodes into; a topology that provides
fast resource location.

2.3 Clustering and Super-Peers

Clustering consists of organizing several peers into clusters. Each of these having
a cluster leader, called a super-peer, that indexes the resources of all member
peers, thus the search can be limited only to this single node. This concept
exploits the heterogeneity of a P2P system by introducing a two-level hierarchy
of peers: super-peers and regular peers (or members). The super-peer concept
was proposed for several topologies over the years, such as for the Gnutella
protocol [25], or even recently for file sharing system search [23].

However, the concept of super-peer introduces one-point of failure into the
topology, namely, if this node fails, the entire cluster fails, requiring the members
to be reorganized into the overlay. As a solution, the notion of super-peer with
redundancy was proposed and evaluated [24], where the authors concluded that
this technique has no significant impact on the overall bandwidth usage. Since
the connection capacity of nodes is limited, cluster splitting was also proposed
for handling an increased number of connecting nodes, and cluster merging in
case of decreasing node numbers; however, no exact solution was presented on
how to perform these operations.

Several studies have focused on the reliability of super-peer based topolo-
gies. In [15], the authors find that a super-peer ratio of less than 5% sharply
decreases reliability. Such topologies are also vulnerable to churn [8]. Churn is a
phenomenon when a large number of continuously connecting and disconnecting
nodes can divide the network into isolated parts. For data survivability in such
cases, data replication was proposed [18].

Super-peer election is the process of electing a node into the role of a super-
peer. P2P systems are often described as where peers are equal, but this is not the
case as each node differs in computational performance, storage availability, and
bandwidth [5,13], which affect the selection of super-peers and topology boot-
strapping. Several election methods exist, but usually, they are system-specific
or are not carried out in a distributed manner [20]. For instance, in the gossip-
based SG-2 protocol [13] a proximity-based election is proposed utilizing a node
associated latency distance. However, the most straight-forward election type is
a connection capacity-based with cutoff threshold values that are system-related,
such as bandwidth, available storage space, etc. With the constant change in par-

134 L. Filep

ticipating peers, the maintained super-peer based topology is highly dynamic in
nature [13].

3 System Architecture

WOBCompute is a P2P based computing system. The base model was presented
in a previous paper [9], but for context, its main characteristics will be summa-
rized here:

• Task (or workload) coordination (creation, deployment, result collection) is
offloaded from centralized servers to the peers. Each task starts as a whole and
it is split based on requests by idle nodes. The splitting, thus the creation of
workload is handled by the application itself. A workload request contains the
hardware characteristics of the requester so that the workload can be split
accordingly. This, in turn, can offer a better, decentralized load balancing.
Completed workload result collection occurs at the parent workload, and is
also handled by the application itself.

• The computation of a workload can be suspended (checkpoint creation),
stored, or transferred to another node where computation can be resumed.
Checkpointing is strictly an application-specific job, which then is stored by
the system. The use of periodic checkpoints allows the possibility of partial
result recovery. The recovered workload can be resumed on any node having
the required hardware capabilities.

• Workload tracking and query features are essential for the above points,
namely to query the status of a workload (for computation status, location,
communication purposes) and recover it from backup if it’s lost.

• Possibility of initiating communication between parallel branches of the appli-
cation, using location query to first determine the task location address.

Since WOB creation is controlled by the application, at any stage of the com-
putation, if a sufficiently large part of this can be parallelized, then a new WOB
can be created and launched into the network for parallel execution on a differ-
ent node (given there are free nodes with the required hardware capabilities to
accept it).

Node bandwidth can be arbitrary, especially when dealing with volunteer
participants, therefore checkpointing should only contain the minimal set of data,
from which computation can be resumed at another node with the required
hardware capabilities. Besides bandwidth, latency is also arbitrary in a P2P
system. As the system allows the communication between tasks, any application
taking advantage of this must be latency tolerant.

To improve search efficiency, and backup availability, a super-peer based clus-
tering was proposed. Super-peers are also referred to as supervisors in the system
model, as they perform additional functions compared to regular peers.

For achieving the above objectives, in the previous paper [9] the notion of
workload unit was extended to workload objects, which contains additional data
fields, such as: unique identifier (ID), application identifier, parent and children

Challenges and Decisions in WOBCompute Design 135

identifier (for result merging), checkpoint data (allows the transfer and contin-
uation of computation), boundary information (identify data-set boundaries; if
required), estimated total and remaining computational effort, state of com-
putation, result data (partial or complete computation result) and metadata
(application-specific use). The chosen data format to represent a WOB struc-
ture is JSON. Besides being human-readable, it has wide-spread support in many
programming languages. Since the WOB only contains workload related data,
malicious code injection is not possible here.

It must be mentioned, that when a node exits the network, the computed
WOB is suspended and stored at its supervisor. These stored WOBs are prior-
itized in workload requests, meaning, if a super-peer has a stored WOB, it will
not forward the request further but will offer the stored WOB instead to the
requester node [9]. This reduces the fragmentation of the main workload while
also easing the load on the indexing and backup storage.

3.1 Topology Considerations

Choosing an appropriate topology is an important design factor in a P2P system
as it must suit the functionalities provided by the system. Starting from the base
model, we need a search protocol for WOB queries (status and location) and a
storage system for backups.

As it was mentioned, WOBs can migrate from node to node, child WOB
objects are constantly created (by workload request; and if a workload can be
further split) and removed when the result is processed at their parent WOBs.
Furthermore, new workloads can be injected into the network, which undergoes
the same process. As WOB creation is driven by requests, a request must reach
each node. This presents a problem: as the overall project computation nears
its end, more and more nodes will become idle, hence a proportional number
of workload request messages will be sent out, which in turn can overwhelm
the network. A solution would be the possibility to limit the spread of this
type of message but without a centralized tracker. Several efficient topologies
ware proposed and demonstrated to be both resilient and efficient in search,
for instance, the ADP, however, none of these offer the possibility for request
message cutoff.

3.2 Clustering

Given the previously mentioned considerations, foremost, clustering offers the
better solution. With the indexing of WOBs present in a cluster, a query message
is limited only to the super-peer. Furthermore, if idle nodes are present in the
cluster (the cluster is “starved” of workload), the super-peer can cut off any
workload request messages. In other words, the bigger the cluster, the more
efficient are the WOB requests and searches.

136 L. Filep

Cluster Stability. As also proposed in the literature, backup super-peers can
significantly improve cluster stability, and also comes with an additional benefit,
as we can balance the member nodes between the primary supervisor and its
backups [9], the size of the cluster can be dramatically increased. Connections
to other clusters, as illustrated in Fig. 1, is also handled by a super-peer. To
improve cluster stability, this paper further refines the base-model.

Fig. 1. Cluster topology with interconnection [10].

An isolated node can be defined as the node whose super-peer fails but the
node is not relocated to another backup super-peer, therefore it becomes iso-
lated from the topology and must reconnect to the network to join a different
cluster. While the reconnecting process is ongoing, the node cannot receive work-
load requests. Nonetheless, the WOB location query still works as the WOB in
question is still located on the respective node, thus the location address is valid.

Temporary increasing super-peer capacity until a new backup super-peer is
elected may not be a viable solution as nodes with limited connection bandwidth
or hardware capability can be overwhelmed. This, in turn, can cause them to
become unresponsive, leading to further failures in the topology. As a solution, a
reserved connection capacity is proposed, which can temporarily accommodate
member nodes (either newly connecting ones or from an exited supervisor) until
a new backup supervisor is elected.

Connection capacity of a node only referrers to the permanent connections:
between supervisors and supervisor-members. Cluster supervisors are intercon-
nected using a mesh topology. These connections are maintained during the
participation of any node in the system as it’s more efficient for constant mes-
sage delivery, and it’s also used as a heartbeat for detecting peer failures. The
system allows for messaging between tasks, but these are handled as temporary
connections only. Therefore, the total connection capacity of a super-peer can
be defined as:

CT = CS + CR + CN (1)

where CT denotes the total capacity (minus the inter-cluster connection if
present), CS the number of connections to all other supervisors within the clus-
ter, CR is the reserved capacity, and CN the leftover capacity available for regular

Challenges and Decisions in WOBCompute Design 137

member connections [10]. As cluster members are balanced between the super-
visors, we can notice that the overall cluster capacity increases with each new
supervisor, however, there is also an upper limit of cluster size, influenced by
the average super-peer capacity.

Using a uniform capacity of 100 (fairly regular setting on BitTorrent clients)
for each node and a CR value of 0.1 (10%) of CT , as illustrated in Fig. 2, a CS

value of 0.45 (45%) of super-peer connections allocated capacity produces the
optimal cluster size, namely, a size of 2070. Above this percentage, due to the
mash interconnection between the super-peers, the available capacity remaining
for member connection decreases, thus the maximum cluster size also decreases.

Fig. 2. Super-peer count influence on cluster size [10].

Super-Peer Promotion. A new backup super-peer election is triggered when
all existing supervisors exhaust their available CN capacity, but only if the CS

threshold is not yet reached; otherwise, the cluster is marked as “full” and fur-
ther cluster entries are rejected. The promotion process consists of the selection
process from available candidates and integrating the selected node into the
super-peer hierarchy. The process is handles by the primary supervisor and con-
sists of the following steps:

1. Score each candidate; select the one with the best core
2. Notify candidate of promotion; candidate changes its status to supervisor
3. All other supervisors are notified of the promotion; each initiates a permanent

connection with the new supervisor

If any steps fail, the candidate is marked to be excluded from further selections
in its current session, and the process is repeated.

Super-Peer Election. The super-peer election is the automated process where
a new super-peer is selected for promotion within a cluster.

138 L. Filep

Capacity Based Selection (CapS). In the super-peer election, the capacity-based
selection (CapS), as the name suggests, consists of selecting the highest capac-
ity node to maximize cluster size. With higher capacity, the reserved capacity
also increases which allows more nodes to be temporarily connected, for instance
when a supervisor exits and its connected members are redistributed between
the remaining super-peers. The reserved capacity value can be tuned to accom-
modate for a certain number of nodes, for example, to accommodate for the
connected members of the largest capacity super-peer to lower the chance for
isolated nodes, but at the cost of additional complexity to cluster maintenance.

A downside of this type of selection is the possibility of selecting the seemingly
best node, only for that node to exit the network shortly afterward. In other
words, this selection method does not give any guaranty regarding the node’s
future availability.

Predicted Availability Selection (PAS). As mentioned before, the disadvantage of
CapS selection is the occurrence of selecting high capacity peers with low on-line
time or in other words, low availability. The selection process can be improved
if the future availability of a candidate node can be predicted. The basis of
this idea is to assume that a node will behave, or better said will be available
in similar pattern to its past availability history. To avoid generating too much
data, we can use a simple hourly patter, where each value denotes the probability
of a node being online. We can define this as the availability pattern function
AvPt(Ni, d, h) ⊆ [0..1] where h represents the hours of a day with values between
[0..23] and d represents the day of a week with values between [0..6]. Since AvPt
represents the average observed probability of a node availability over the same
time periods, the AvPt(Ni, d, h) = 1 means the node was online the whole time
in the given time-period. However, a AvPt(Ni, d, h) = 0.5 translates to either a
node was online at one week and offline in the next, or is regularly online half
the time in the given time-interval.

Using the AvPt function in the election process, we can assign a score to
each candidate node in the following manner:

Score(Ni) =

hr≤23
AvPt(Ni,d,hr) �=0∑

hr

((TClAv − ClAvPt(hr)) ∗ AvPt(Ni, d, hr)) (2)

where Ni represents the i-th candidate node, and the cluster availability pattern
is defined as:

ClAvPt(hr) =
∑

i

AvPt(Si, d, h) (3)

where Si represents the i-th super-peer and is always the current day of week,
and total cluster availability is:

TClAv =
h≤23∑

hr

ClAvPt(h) (4)

Challenges and Decisions in WOBCompute Design 139

In other words, the Score function (Formula 2) rewards those candidate nodes
that a have high probability of availability where the cluster has a lower one. For
any given hour, this score is calculated by multiplying its AvPt value with the
cluster availability value (Formula 3) with respect to the total cluster availability
value (Formula 4). This translates to higher scores for the candidate nodes that
have a better contribution to cluster availability.

In the selection process, we only care about the probability that a candidate
node will be available from the current time forward, therefore, the represents
the hours from now on until a maximum of 24 h or until the AvPt returns
0 (meaning the node was never observed to be available in that specific time-
interval). When AvPt(...) = 0 is found, the score calculation is terminated, and
the final score is the current summed value. Even if the node returns to the
network after that, it may not join the same cluster, and furthermore if exits,
another super-peer can be elected in its place, therefore, the score is evaluated
only until a 0 value in the AvPt function.

It must be noted that nodes can be in different time zones, therefore, if not
considering only the future availability, the score calculation algorithm would
need to compensate for the shifts in the hour parameter. To avoid this, the
cluster members regularly send the pattern of availability for the next 24 h.

The election method can also fail, for instance, if the cluster is comprised of
nodes without a history of availability pattern or all candidate nodes is predicted
to go offline. In the case of each candidate node having a score of 0, we can fall
back to the CapS method. If all nodes go offline, then the cluster will become
defunct and dismembered.

The selection method can be extended with additional parameters, for
instance, if we have a ranking system, then the rank of the node can also be
taken into account.

One downside of this idea relates to the availability of pattern data. Given the
gateway assignment algorithm of joining nodes to clusters, a node is unlikely to
join the same cluster as previously a member of. This means that a single cluster
cannot store the availability pattern for any given node. Without overloading the
gateway with database for the availability patterns, or employing a distributed
database, we can only rely on the middleware to transmit this information. As
this information is stored on the node itself, it can be subject to manipulation.

Supervisor Demotion. As previously discussed, a higher number of super-
visors is beneficial for the cluster. On the other hand, maintaining the WOB
indexes and backups up to date requires storage space and an update message
for each change to be passed to each supervisor. Therefore, if the size of a clus-
ter shrinks, it is also beneficial to reduce the supervisor count. The threshold
value for triggering demotion highly depends on the number of connection and
disconnecting nodes, so no exact values can be given. Nonetheless, an average
value below 0.5CN with a minimum of 3 supervisors seems to work sufficiently
well in simulations. A good strategy is to demote the supervisor with the least
amount of contribution to the cluster, namely, the one with the lowest score.

140 L. Filep

3.3 Overall Topology

With the most important aspects of clustering discussed, the question remains
on how to interconnect these. As query speed is impacted by the number of
hops a message takes, the goal is to minimize this, subsequently, minimize the
maximum path between any two clusters.

A mash topology would be the best solution, as it interconnects each cluster;
however, the connection capacity of nodes makes this topology impractical when
dealing with a large number of clusters. The next best one is the extended star
topology [1], which is frequently employed in LAN design; however, here each
node is a single point of failure, meaning, if one fails, all subsequently connected
nodes are isolated. In our case, however, this is less of an issue, since the topology
nodes are whole clusters, which are more resilient due to the backup supervisors.
By using a maximum of 10 child clusters, this topology can quickly organize a
large number of clusters with a minimum path length.

DHT Consideration. Regarding search, DHT based solutions have proven
to be extremely efficient. In the current model, the number of new entries and
updates into the DHT can far exceed the number of queries, however, their exact
number is highly dependent on the type of the distributed application and its
workload. The above statement is only an assumption; the performance of a
DHT system under such conditions was not tested experimentally. If the newly
created WOBs are located within the same cluster, then the parent-child related
location queries only take a single hoop, otherwise, the worst-case scenario is
the longest path in the topology. The question is how this tradeoff compares to
a DHT implementation.

Choosing this form of topology does not exclude further improvements. For
example, for search improvement on a very large overlay, a DHT system can still
be implemented on top of the clusters, as these have high reliability. Roughly
put, a cluster would participate as a DHT node, represented by its super-peers,
meaning that a super-peer will actively handle search requests while other super-
peers serve as its backup.

Network Gateways. Although the model eliminates the need for centralized
servers, the network requires an entry point for new nodes to connect through,
which will be referred to as the network gateway. The gateway also plays an
essential role in bootstrapping the network, maintaining the topology, and has
the following functions:

• assigning connecting nodes to clusters
• isolated nodes and clusters can use the gateway to reconnect to the topology
• acts as failsafe storage for WOBs and their backups (if all nodes exit)
• new WOBs are injected, while results are collected through it
• auxiliary functions, such as data collection for statistics, project progress, etc.

Challenges and Decisions in WOBCompute Design 141

As no persistent connection is required to be maintained to the gateway, this
can be implemented as a web application. Update messages can be accomplished
using a simple HTTP protocol. Another benefit of web implementation is the
possibility of scaling, if required, using well-established techniques.

The topology is maintained by prioritizing the assignment of newly connect-
ing nodes to the lower level but not yet saturated clusters. This ensures that the
existing clusters are filled before creating any new ones, thus maintaining their
number at a minimum. Algorithm 1 presents the node connection mechanism.

In normal operation, the gateway answer contains a list of supervisors for the
target cluster for the node to attempt a connection with. This method is more
reliable than just sending one address, as one may be temporarily unavailable,
requiring the restart of the connection process.

Algorithm 1. Node connection mechanism.
1 success, answer ← QueryGateway() // Query the gateway
2 // If failed, attempt previous cluster
3 if !success then
4 if len(PrevSups) > 0 then
5 success ← AttemptToConnect(PrevSups)
6 if !success then
7 Wait()
8 Reconnect()
9 else

10 if answer.wait then
11 Wait()
12 Reconnect()
13 // Check for the bootstrap command
14 if answer.bootstrap then
15 CreateCluster with answer.ClusterID
16 Set Node to Supervisor status
17 UpdateGateway()
18 else
19 // Attempt connection to any supervisor from SupList
20 success ← AttemptConnect(answer.SupList)
21 if !success then
22 Reconnect()

For the gateway to answer, it stores a list of active clusters, their level (how
far is from the root cluster), and whether it’s overloaded or not. Moreover, for
each cluster, a list of active supervisors is stored. Each cluster is responsible for
updating the gateway about its status and free supervisors, thus maintaining an
up-to-date information.

Bootstrapping is the process of creating the initial overlay. If no prior clusters
exist, then the gateway will answer a bootstrapping message with an initial
ClusterID and will await the cluster update message from the node or timeout.

142 L. Filep

Meanwhile, all other nodes are given a wait status, to allow for the initial node
to enter supervisor mode and initialize the cluster data. If the timeout occurs,
then the bootstrapping process is repeated.

Regarding volunteers who donate their resources to a specific project, using
the same overlay for multiple projects is unfair, as it forces them to participate
in maintaining the topology of other projects. Also, smaller overlays improve the
search and workload request efficiency as fewer clusters must be queried. There-
fore, each project has its own independent overlay, with their own gateways.
However, this does not exclude a node from participating in multiple projects at
the same time.

Cluster Splitting. Cluster capacity limit is considered reached when CS (no
more supervisor election is possible) and CN is exhausted. In such cases, if
possible, we split the current cluster, create a child cluster, and migrate a cer-
tain number of supervisors and members over. A less intensive operation is to
move just one supervisor and its connected members. A cluster splitting is fol-
lowed by updating the WOB indexes and backups, setting up the primary and
backup interconnections, selecting backup supervisors, plus updating the gate-
way. Cluster splitting is not possible when the maximum number of child clusters
is reached. In this case, new join requests are rejected.

Cluster Merging. If the total members count within a cluster falls below a
minimum threshold, we can consider the cluster defunct and begin a merging
operation with its parent. The threshold value depends on the frequency of
connecting and disconnecting nodes, however, a value of 5 worked sufficiently
well in simulations. Depending on whether the cluster in question is a leaf in the
overlay or not, there are two ways to carry out the merging operation.

Leaf Clusters. The merging operation is always carried out with the parent
cluster. The stored WOB backups and members are transferred to the parent,
followed by the dismemberment of the cluster and gateway update.

Branch Clusters. Rather than merging with the parent, one of the child clusters
is absorbed. In other words, one of the child clusters is forced to merge with
the cluster in question, while child cluster connections (if any) are carried over.
Normally this should be a rear case, as the connection algorithm favors the
branch clusters, meaning that the leaf clusters should empty first.

3.4 Communication and Messages

Data communication between nodes is through TCP protocol, and messages
are encoded into a JSON structure. To reduce bandwidth utilization, and if
both parties support it (determined at handshake), communication is compressed
using ZLIB [27]. Generic message fields are presented in Table 1. Depending on
the type of message, some fields can be omitted.

Challenges and Decisions in WOBCompute Design 143

A separate NodeID (SenderID, DestID) is used for relaying messages to nodes
behind a NAT; this id also identifies nodes between IP address changes. NodeID
is generated by hashing the OS provided machine-id. Message types are prefixed
according to their type, which helps with faster routing within the middleware
without needing to parse the payload. Given their role, the messages can be
grouped as:

• Cluster specific messages (prefixed “CL ”) are used for cluster operations,
such as supervisor entry request, election, demotion, node migration, balanc-
ing, splitting and merging, and also WOB index and backup updates.

• WOB related messages (prefixed “WOB ”), which contains the workload
request, offer, accept, transfer, query, query answer, backup, location update,
and any affiliated acknowledge (ACK) messages.

• Peer messages (prefixed “NODE ”), which include messages such as hand-
shake, capacity advertisement, status update, and so on.

• Application-specific message (prefixed “APP ”), which are passed directly to
the distributed application running on the node, and can be used for arbitrary
purposes.

Although messages can be sent to nodes behind NAT via a connected supervisor,
these nodes are not allowed to become supervisors unless a port forwarding is
set up from the external IP address. Otherwise, as no direct external connection
can be made, they cannot contribute to maintaining the network topology.

Table 1. Message wrapper structure [10].

Field Description

ApplicationID Distributed app unique ID

Message UUID Unique message identifier

MessageType Type of message

SenderID Sender node unique identifier

SenderAddress Sender node IP:Port

DestID Destination node unique identifier

DestAddress Destination node IP:Port

Relayed Set to 1 if message was relayed by a super-peer, otherwise 0
or not present

Payload Contents of message

3.5 Middleware

The presented system employs specialized middleware to harness idle resources.
This process is achieved by strictly controlling the distributed application
resource usage (app) by imposing limits on it. Therefore, the middleware is

144 L. Filep

responsible for monitoring the available resources on a node, such as CPU, GPU,
etc.

Probably the most important role of the middleware is to hide the system
complexities from the app and provide a simple interface for its app-related func-
tionalities, which is the task coordination and app messaging. The other network
features and their operation, such as clustering and topology organization, WOB
indexing, and backup storage is hidden from the app itself.

Nonetheless, the middleware itself generates some additional communication
and computing overhead.

Fig. 3. Middleware internal structure [10].

For easy maintainability and separation of the code, as illustrated in Fig. 3,
the middleware is broken up into components, each with its own distinct func-
tion, managing own data and threads. A “component linker” provides a reference
to each component, thus allowing function calls between them. Next, the func-
tion of the components is summarized.

Network Manager. Responsible for maintaining all connections (both per-
manent and temporary), and handles transmitting and receiving of messages.
Incoming messages are forwarded to the MessageRouter ; however, outbound
messages are sent by other components by directly calling the send functions
from this component using the component link. This reduces the need to pro-
cess the messages before sending them.

The component also abstracts the connections by encapsulating all connec-
tion related data into a Node structure. At the other components, it’s sufficient
to only use NodeID to refer to connected nodes as the rest of the address (IP,
Port, and source address) in messages are filled automatically if left empty. Fur-
thermore, a broken connection is also handled here and notification is sent to
ClusterManager.

Challenges and Decisions in WOBCompute Design 145

Message Router. This component is responsible for routing the incoming
messages received from the NetworkManager to the corresponding component.
A small amount of logic is incorporated here for two reasons: the first one is to
decide which message handler function to call from a component, which avoids a
second message type check at the destination component; the second is that some
messages overlap multiple components. Such an example would be the handling
of the workload request message, where, first the WOB Storage is checked for
any stored WOBs and if one found, then an appropriate response message will
be sent; if none found, the message is forwarded to the AppManager and the
ClusterManager.

Relaying messages is another function of this component. This is decided
by checking the DestID against the current NodeID. If they don’t match, then
NetworkManager is queried for the given DestID, and if the node is found, the
message is relayed. This is a solution to message nodes behind NAT, however, a
large number of messages can overwhelm the supervisor.

Cluster Manager. If the node is a supervisor, then this component handles all
supervisor functions, such as maintaining WOB indexing, responding to search
queries, and storing WOBs (utilizing the WOBStorage component), synchro-
nizing between supervisors using differential update messages (only changes are
advertised), balancing, and so on. However, if the node is just a regular member,
then this component is only responsible for maintaining the supervisor connec-
tion and advertising capacity and status.

Workload requests forwarding is also handled here. If the cluster is not
“starved”, then the request is forwarded to all supervisors, which in turn for-
wards it to their connected nodes. The message is also forwarded to each cluster
that is not “starved”.

Cluster status updates, namely, “starved” or “workload available”, are broad-
cast to adjected clusters, thus, a limitation in the number of workload requests
and their propagation can be achieved.

WOB Storage. Handles the effective storage of WOB objects, their backups,
and transfers with associated ACK messages. If the node gets disconnected from
the network, the WOB backup, and in case of a shutdown, the suspended WOB,
is stored here. On reconnect, a consistency check is performed for any stored
WOBs, as these might have been recovered, thus they are outdated and can be
removed. For any received WOBs, a location update message is sent out.

Application Manager. The primary responsibility of this component is the
application scheduling (starting, suspending, or stopping) but also monitoring
and imposing resource usage limits based on settings received from the Admin-
Component. A secondary role is the regular checkpoint request to the app, cre-
ating the backup WOB and dispatching this to the supervisor. An optional
role, based on the computing application setting, is the workload management,

146 L. Filep

namely, acquiring the workload, notifying the app on a lost child or parent WOB,
and acquiring completed child WOBs and forwarding to the app for processing
their results. For any received WOB, a location update message is sent, updating
its location in the cluster’s index.

Application properties are defined in the project configuration file. This con-
tains the download link, install, run, and uninstall commands, which are executed
by this component.

Admin Component. With the combination of the Project Manager and Web-
server parts, this component is responsible for administration related tasks, such
as adding projects, downloading and storing applications and related configura-
tion, and providing the middleware admin interface. Remote access is also an
option via a WebAPI secured by a configured security key or predefined allowed
IPs to use in group management; in this case, the local administration page can
be disabled.

Application Side Middleware and API. For ease of application develop-
ment, a small app-side middleware is provided, which translated messages into
callback functions and provides an API on which a developer can build on.
The app-side middleware can be skipped, thus messages can be directly handled
(Fig. 4).

Fig. 4. Middleware internal structure [10].

The app-middleware intercepts the following type of messages to which offers
callback functions for the app to register to:

• Workload related: receive offers and select one, receive WOB object, receive
a workload request from another node

• App related: allow computing, suspend computation, quit request
• Checkpoint request
• Handle child WOB completion (the child WOB is transferred to the parent,

which then can extract and process its results)

Challenges and Decisions in WOBCompute Design 147

• Handle missing WOB notification (child or parent)
• Application specific message
• Handle location query answer messages
• Handle generic messages (for futureproof purposes, called for any other mes-

sages forwarded to the app but not handled in the above points)

The more important messages and API callbacks ware enumerated in the
previous paper [10], and due to their large number, they will not be enumerated
again in this paper. The next section, Application design, will shed more light
on the related operating principles.

3.6 Application Design

As in many computing systems, an application must collaborate with the mid-
dleware. To support a multitude of programming languages, the choice was to
handle the app-middleware communication through a TCP channel on “local-
host”. Due to the low frequency of messages, the benefit outweighs the associated
overhead. The startup of the application consists of connecting to this channel
and completing the handshake with the middleware.

The application design for this system reflects the operational principles of
the base model. The main loop of a sample application, as presented in the
skeleton Algorithm 2, starts with the acquiring of a workload, which then is
computed until finished or the middleware asks to suspend work or to quit.

Algorithm 2. Application main logic.
1 Set up API callbacks or message listener
2 Main:
3 InitWorkload()
4 Acquire any required hardware resource (eg. GPU)
5 // Effective computation cycle
6 while CanCompute and !Completed do
7 Compute workload chunk
8 if available workload size changed then
9 Notify middleware

10 end
11 Release any required hardware resource
12 Create a checkpoint // Pack data into WOB
13 if Completed then
14 WOBFinished() // Notify middleware, offload WOB
15 if !AppExitRequested then
16 Goto Main // Repeat the process

The InitWorkload abbreviated part is responsible for acquiring the WOB.
The process starts by sending the workload request message to the middleware.
This completes the message with the hardware capability of the node and dis-
patches it to the network. The node side of the middleware then awaits the offers

148 L. Filep

(or times out), which then are packed into a response message for the app. From
there, it’s the app’s decision which one to select, generate the ACK message for
the selection, and dispatch it. If no failure occurs, the WOB is received next,
and the app can extract the necessary data for the computation.

The CanCompute basically can be just a bool variable, which is set to false
when the middleware sends the suspend or quit message. If the computation
cannot be done in distinct pieces, then adequate checks of CanCompute must be
performed within. The middleware gives a threshold time for the app to send the
checkpoint and exit, which, if crossed, will forcefully terminate the app, causing
any not checkpointed results to be lost.

The system offers the possibility of passing application-specific messages;
however, these messages are passed through the middleware, thus they have
a higher overhead when compared to direct message exchange. For frequent
messaging, a better option would be the use of MPI [7] or a similar protocol,
bypassing the middleware. Location query can be used to first acquire the address
of the target node.

4 Simulation Results

In this chapter, the results of topology and election simulation are presented and
discussed.

4.1 Topology Simulations

The evaluation of the topology model was conducted using a custom, purpose-
built simulator. To simulate real-life VC participation, each node joining the
network was assigned, at random, a different connection capacity. The enter
and exit times of each node was generated using an estimated online pattern of
computers per week. Since this pattern differs very little between the weekdays,
one pattern was used for these and one pattern for the weekends, as illustrated
in Fig. 5. The online patterns ware obtained from a local internet provider.

Fig. 5. Node online patterns [10].

Challenges and Decisions in WOBCompute Design 149

Simulation parameters are presented in Table 2. In practice, node capacity
is adjusted to reflect the physical bandwidth, therefore, connection bandwidth
is assumed adequate to each node’s connection capacity.

Table 2. Simulation parameters [10].

Parameter Value

Number of nodes 50, 000

Node capacity (CT) Random from: 50, 75, 100, 125, 150

Reserved cap. (CR) 0.1

Min. supervisors 3

Max. supervisors 0.45 of Min(Ct) Sup.

Cluster split threshold 0.9

Cluster interconnection 2

The presented results were obtained by running the simulation for two weeks
(simulation time). As illustrated in Fig. 6, at the end of the simulation, the
obtained results ware: peak number of online nodes: 35, 995, isolated nodes: 264,
total clusters formed 85 and defunct clusters: 79. Due to the joining methodology
(Algorithm 1), the first clusters to become defunct ware the leaf clusters. The
branch clusters had enough members to survive a large number of nightly exiting
nodes.

Fig. 6. Topology simulation result [10].

The advantages of the presented clustering technique becomes apparent as
almost 36, 000 nodes ware organized in as little as 8 clusters (average cluster size:
4, 499, smallest: 4, 489, largest: 4, 501) with the longest messaging path of 3 hops.
On the opposing side, in the worst-case scenario was 15 clusters (average size:

150 L. Filep

2, 399, smallest: 2, 360, largest: 2, 406) and 5 hops for the longest path. During
the simulation, no isolated clusters ware observed. Nonetheless, this can occur
due to catastrophic physical network failures.

4.2 Election Impact Simulation

Table 3 presents the simulation result extracted data averages from the same
period of two weeks (simulation time). The result was obtained from a number of
10 simulations with the capacity-based (CapS), and an additional 10 simulations
using predicted node availability selection type (PAS). The availability pattern
for each node was pre-generated and reused at each simulation, which did not
guaranty that the node will be available, but only an increased chance of this.

A threshold value for the node score (Formula 2) was experimented with,
meaning, that a contribution to the cluster’s availability at a specific hour was
only accounted if the cluster availability at that moment was below this thresh-
old, however, this approach didn’t yield any significant benefits.

Table 3. Result comparison of CapS and PAS methods.

Election
type

Cluster size Number of clusters AVG. number
of elections

Isolated
nodesAVG AVG Min Max

CapS 2, 391.74

(σ : 60.75)

7.47

(σ : 0.31)

3 16 258, 672.33 207.50

(σ : 38.62)

PAS 2, 135.29

(σ : 124.28)

8.54

(σ : 0.55)

3 23 211, 034.83 24.83

(σ28.08)

From the results presented in Table 3, we can observe that super-peer election
based on predicted node availability has both advantages and disadvantages.

As for the advantages of the PAS selection type, we observe the number
of elections decrease by 22.57% and the number of isolated nodes is reduced
by an average of 735.57% (with σ : 28.08). It is to be noted that 2 out of 10
simulations had a number of 0 isolated nodes. This can be explained by the
fact that as the nodes with the longest predicted online time are elected as
super-peers, the regular cluster members disconnect first, thus the cluster size
is gradually reducing, easing the connection load on the supervisors. Therefore,
as super-peers disconnect, the reduced number of connected nodes can easily be
distributed among the remaining super-peers without exceeding their maximum
capacity.

As for the disadvantages of the PAS selection type, as the simulation results
indicate it, the average size of the clusters is reduced by 12.01%, and the maxi-
mum number of clusters that the overlay can organize the same number of nodes
is increased by 23.53% (from an average of 15.17 to 19.83). This can easily be
explained by the fact that as the “most reliable” nodes are selected instead of

Challenges and Decisions in WOBCompute Design 151

the ones with the highest capacity, therefore the clusters can hold fewer mem-
bers, thus more clusters are needed to accommodate all connected nodes; hence,
instead of 16 clusters, 23 was required.

The number of clusters at night hours usually decreased to only 3–6. This
happens as the new nodes are connecting to the“prime” clusters, the leaf clus-
ters are emptying and become defunct, and removed from the topology. As the
number of clusters increased, subsequently the number of defunct clusters also
increased, which translates to more backup WOBs to be transferred between
clusters. In conclusion, the availability based super-peer election offers the advan-
tage of reducing the number of elections, thus the message number and data-
transfer when synchronizing the new supervisors, and the number of isolated
nodes, translating to better cluster stability.

5 Conclusions

This work contains the design consideration, discussions, and evaluation of the
more important characteristics of the presented P2P system architecture.

P2P topology is influenced by system operations, especially by the decen-
tralized task coordination, the ability to suspend, migrate, resume and recover
WOBs, remote backup and storage, WOB location tracking, and affiliated search
mechanism. To improve on search efficiency, and location indexing, a super-peer
driver clustering was chosen. With the use of backup super-peers and the bal-
ancing of the connected members between them, both the availability and size of
the clusters are increased. To reduce the average length of message paths, which
directly impact the search speed, the clusters are arranged into an extended star
topology. The stability of the topology is maintained by prioritizing the lower
level clusters regarding the distribution of connecting nodes.

All features of WOBCompute, including the task tracking and location query,
and remote checkpointing with workload recovery, can also be implemented using
the centralized Client-Server model. However, in the CS model, the increase in
network size leads to the inevitable increase in server-side hardware require-
ments, thus an increasing associated cost in maintaining the system; this being
the primary motivation of developing decentralized architectural systems.

The multitude of functions required for system operation leads to the
inevitable complexity increase. This mandates the use of middleware to hide
these complexities and provide a simple interface for the distributed applica-
tion and its developers. Even so, the applications are more complex in nature
compared to those using computing systems based on the Client-Server model.
This complexity is balanced by the system’s features mentioned above. With
idle resource harnessing, the system offers the possibility to combine in-house
computing devices with volunteer donated resourced, and even with Cloud VMs.

152 L. Filep

References

1. Akers, S.B., Harel, D., Krishnamurthy, B.: The star graph: an attractive alternative
to the n-cube. In: Proceedings of International Conference on Parallel Processing,
pp. 393–400 (1987)

2. Anderson, DP.: Boinc: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop, Pittsburgh, PA, USA,
pp. 4–10 (2004). https://doi.org/10.1109/GRID.2004.14

3. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: an approach to
easily assemble grids with equitable resource sharing. In: Feitelson, D., Rudolph,
L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer,
Heidelberg (2003). https://doi.org/10.1007/10968987 4

4. Castellà, D., Solsona, F., Giné, F.: DisCoP: a P2P framework for managing and
searching computing markets. J. Grid Comput. 13(1), 115–137 (2014). https://
doi.org/10.1007/s10723-014-9318-3

5. Chandra, J., Mitra, B., Ganguly, N.: Effect of constraints on superpeer topologies.
In: 2013 Proceedings IEEE INFOCOM, pp. 60–64. IEEE, Turin (2013). https://
doi.org/10.1109/INFCOM.2013.6566735

6. Chmaj, G., Walkowiak, K.: A P2P computing system for overlay networks. Future
Gener. Comput. Syst. 29(1), 242–249 (2013). https://doi.org/10.1016/j.future.
2010.11.009

7. CORPORATE The MPI Forum: MPI: a message passing interface. In: Proceedings
of the 1993 ACM/IEEE Conference on Supercomputing (Supercomputing 1993),
pp. 878–883. Association for Computing Machinery, New York (1993). https://doi.
org/10.1145/169627.16985

8. De, S., Barik, M.S., Banerjee, I.: Goal based threat modeling for peer-to-peer cloud.
Proc. Comput. Sci. 89, 64–72 (2016). https://doi.org/10.1016/j.procs.2016.06.010

9. Filep, L.: Model for improved load balancing in volunteer computing platforms. In:
Themistocleous, M., Rupino da Cunha, P. (eds.) EMCIS 2018. LNBIP, vol. 341, pp.
131–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11395-7 13

10. Filep, L.: WOBCompute: architecture and design considerations of a P2P com-
puting system. In: Proceedings of the 15th International Conference on Evaluation
of Novel Approaches to Software Engineering - Volume 1: ENASE, pp. 39–49.
SciTePress (2020). https://doi.org/10.5220/0009343100390049

11. Gomathi, S., Manimegalai, D.: Hierarchically distributed peer-to-peer architecture
for computational grid. In: 2013 International Conference on Green High Perfor-
mance Computing (ICGHPC), pp. 1–4. IEEE, Nagercoil (2013). https://doi.org/
10.1109/ICGHPC.2013.6533906

12. Gupta, R., Sekhri, V., Somani, A.: CompuP2P: an architecture for internet com-
puting using peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 17(11),
1306–1320 (2006). https://doi.org/10.1109/TPDS.2006.149

13. Jesi, G.P., Montresor, A., Babaoglu, O.: Proximity-aware superpeer overlay topolo-
gies. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006. LNCS, vol. 3996, pp.
43–57. Springer, Heidelberg (2006). https://doi.org/10.1007/11767886 4

14. Lavoie, E., Hendren, L.: Personal volunteer computing. In: Proceedings of the 16th
ACM International Conference on Computing Frontiers (CF 2019), New York, NY,
USA, pp. 240–246 (2019). https://doi.org/10.1145/3310273.3322819

15. Mitra, B., Ghose, S., Ganguly, N., Peruani, F.: Stability analysis of peer-to-peer
networks against churn. Pramana 71(2), 263–273 (2008). https://doi.org/10.1007/
s12043-008-0159-0

https://doi.org/10.1109/GRID.2004.14
https://doi.org/10.1007/10968987_4
https://doi.org/10.1007/s10723-014-9318-3
https://doi.org/10.1007/s10723-014-9318-3
https://doi.org/10.1109/INFCOM.2013.6566735
https://doi.org/10.1109/INFCOM.2013.6566735
https://doi.org/10.1016/j.future.2010.11.009
https://doi.org/10.1016/j.future.2010.11.009
https://doi.org/10.1145/169627.16985
https://doi.org/10.1145/169627.16985
https://doi.org/10.1016/j.procs.2016.06.010
https://doi.org/10.1007/978-3-030-11395-7_13
https://doi.org/10.5220/0009343100390049
https://doi.org/10.1109/ICGHPC.2013.6533906
https://doi.org/10.1109/ICGHPC.2013.6533906
https://doi.org/10.1109/TPDS.2006.149
https://doi.org/10.1007/11767886_4
https://doi.org/10.1145/3310273.3322819
https://doi.org/10.1007/s12043-008-0159-0
https://doi.org/10.1007/s12043-008-0159-0

Challenges and Decisions in WOBCompute Design 153

16. Pérez-Miguel, C., Miguel-Alonso, J., Mendiburu, A.: High throughput computing
over peer-to-peer networks. Future Gener. Comput. Syst. 29(1), 352–360 (2013).
https://doi.org/10.1016/j.future.2011.08.011

17. Poenaru, A., Istrate, R., Pop, F.: AFT: adaptive and fault tolerant peer-to-peer
overlay - a user-centric solution for data sharing. Future Gener. Comput. Syst. 80,
583–595 (2016). https://doi.org/10.1016/j.future.2016.05.022

18. Qi, X., Qiang, M., Liu, L.: A balanced strategy to improve data invulnerability in
structured P2P system. Peer-to-Peer Netw. Appl. 13(1), 368–387 (2019). https://
doi.org/10.1007/s12083-019-00773-9

19. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001).
https://doi.org/10.1145/964723.383072

20. Sacha, J.: Exploiting heterogeneity in peer-to-peer systems using gradient topolo-
gies, Doctor of Philosophy (Computer Science) (2009)

21. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord - a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001). https://doi.org/10.1145/964723.383071

22. Tiburcio, P.G.S., Spohn, M.A.: Ad hoc grid: an adaptive and self-organizing peer-
to-peer computing grid. In: 2010 10th IEEE International Conference on Computer
and Information Technology, pp. 225–232. IEEE, Bradford (2010). https://doi.org/
10.1109/CIT.2010.504

23. Vimal, S., Srivatsa, S.K.: A file sharing system in peer-to-peer network by a
nearness-sensible method. Int. J. Reason.-Based Intell. Syst. (IJRIS) 11(4) (2019).
https://doi.org/10.1504/IJRIS.2019.103510

24. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings 19th
International Conference on Data Engineering, pp. 49–60. IEEE, Bangalore (2003).
https://doi.org/10.1109/icde.2003.1260781

25. Ye, F., Zuo, F., Zhang, S.: Routing algorithm based on Gnutella model. In: Cai,
Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. CCIS, vol. 51, pp. 9–15. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04962-0 2

26. Zhao, H., Huang, L., Stribling, R., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry - a resilient global-scale overlay for service deployment. IEEE J. Sel. Areas
Commun. 22, 41–53 (2004). https://doi.org/10.1109/JSAC.2003.818784

27. zlib Library. http://zlib.net/index.html. Accessed 25 Aug 2020

https://doi.org/10.1016/j.future.2011.08.011
https://doi.org/10.1016/j.future.2016.05.022
https://doi.org/10.1007/s12083-019-00773-9
https://doi.org/10.1007/s12083-019-00773-9
https://doi.org/10.1145/964723.383072
https://doi.org/10.1145/964723.383071
https://doi.org/10.1109/CIT.2010.504
https://doi.org/10.1109/CIT.2010.504
https://doi.org/10.1504/IJRIS.2019.103510
https://doi.org/10.1109/icde.2003.1260781
https://doi.org/10.1007/978-3-642-04962-0_2
https://doi.org/10.1109/JSAC.2003.818784
http://zlib.net/index.html

Reflections on the Design of Parallel
Programming Frameworks

Virginia Niculescu1(B), Adrian Sterca1, and Frédéric Loulergue2

1 Faculty of Mathematics and Computer Science, Babeş-Bolyai University,
Cluj-Napoca, Romania

{virginia.niculescu,adrian.sterca}@ubbcluj.ro
2 University of Orleans, LIFO, Orléans, France

frederic.loulergue@univ-orleans.fr

Abstract. Since parallel programming is much more complex and dif-
ficult than sequential programming, it is more challenging to achieve
the same software quality in a parallel context. High-level parallel pro-
gramming models, if implemented as software frameworks, could increase
productivity and reliability.

Important requirements such as extensibility and adaptability for dif-
ferent platforms are required for such a framework, and this paper reflects
on these requirements and their relation to the software engineering
methodologies that could put them in practice. All these are exemplified
on a Java framework – JPLF; this is a high-level parallel programming
approach being based on the model brought by the PowerLists associ-
ated theories, and it respects the analysed requirements. The design of
JPLF is analysed by explaining the design choices and highlighting the
design patterns and design principles applied.

Keywords: Parallel programming · Frameworks · Software
engineering · Separation of concerns · Design patterns · Recursive data
structures

1 Introduction

Nowadays, in order to leverage the full computing power of current processors
and also because the computing demand is increasing more and more, parallel
programming is used in almost all software applications. Parallel programming
requires considerably more skills than sequential programming since it intro-
duces an additional layer of complexity and new types of errors. One way to
master this complexity is to use frameworks and specialized APIs that make
the programmers more productive in writing quality software. Besides perfor-
mance, these should also provide reliability and flexibility that assures support
for various system paradigms.

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 154–181, 2021.
https://doi.org/10.1007/978-3-030-70006-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_7

Reflections on the Design of Parallel Programming Frameworks 155

Since the frameworks for parallel programming are generally built around
models of parallel computation, the analysis of requirements for an effi-
cient framework has to start from the general requirements of a good model
of parallel computation. We intend to provide in this paper an analysis
of these requirements in relation to the software engineering that allow us
to put them in practice. A general architecture is proposed for this kind
of frameworks – MEDUGA (Model-Executors-DataManager-UserInteracter-
GranularityBalancer-metricsAnalyser). This design is exemplified on a concrete
framework –JPLF: Java Parallel Lists Framework [27,30]. This paper is an
extension of the conference paper [28], in which the patterns and software devel-
opment principles used for the JPLF implementation were analysed.

By being based on the PowerList theory introduced by J. Misra [25], JPLF is
a high-level parallel programming framework that allows building parallel pro-
grams that follow the multi-way divide-and-conquer parallel programming skele-
ton with good execution performances both on shared and distributed memory
architectures.

The provided shared memory execution is based on thread pools; the current
implementation uses a Java ForkJoinPool executor [40], but others could be
used too. For distributed memory systems, we considered MPI (Message Passing
Interface) [39] in order to distribute processing units on computing nodes. So,
JPLF is a multiparadigm framework that supports both multi-threading in a
shared memory context and multi-processing in a distributed memory context,
and it is open for other types of execution systems, too.

Allowing the support of multiple paradigms requires the framework to be
flexible and extensible. In order to achieve these characteristics, the framework
was implemented following object-oriented design principles. More specifically,
we have employed separations of concerns in order to facilitate changing the low-
level storage and the parallel execution environment, and in order to overcome
the challenges brought by the multiparadigm support, we have used different
design patterns, decoupling patterns having a defining role.

Outline: The remaining of the paper is organized as follows. First we analyse the
general requirements for an efficient parallel programming framework in Sect. 2.
Section 3 is devoted to a complex analysis of the JPLF framework design and
implementation. Related work is discussed in Sect. 4. We give the conclusions
and the specification of further work in Sect. 5.

2 Requirements for a Multiparadigm Parallel
Programming Framework

In [36] Skillicorn and Talia analyse the usefulness requirements for a model of
parallel computation. This kind of models should address both abstraction and
effectiveness, which are summarized in a set of specific requirements: abstract-
ness, software development methodology, architecture independence, cost mea-
sures, no preferred scale of granularity, efficiently implementable.

156 V. Niculescu et al.

In computer programming, a model is seen as an abstract machine providing
certain operations to the programming level above and requiring implementa-
tions for each of these operations on all of the architectures below. It is designed
to separate software-development concerns from effective execution. We need
models because we need both abstraction to assure easy development, but also
stability to assure reliability. In general, models are valuable if they are theoret-
ically consistent, fit the real world, and have predictive power.

A software framework is considered an integrated collection of components
that collaborate to produce a reusable architecture for a family of related applica-
tions. A software framework provides software with generic functionality that can
be specialized by additional user-written code, and thus providing application-
specific software. It provides a structured way to build and deploy applications
from a particular area or domain, and the use of frameworks has been shown to
be effective in improving software productivity and quality. In parallel program-
ming they are very important due to the complexity of the parallel execution
that make parallel programming writing difficult and error prone. In contrast
to libraries, frameworks are characterized by: inversion of control – the flow
of control is not dictated by the user, but by the framework; default behaviour;
extensibility – through concrete software extension points (usually entitled “hot-
spots”); non-modifiable code (usually entitled “frozen-spots”) [20,34].

In relation to the models of computation, software frameworks come with a
more empirical meaning, as they have the role to put the models into practice.
They come as a further layer in the development process, providing the structure
needed to implement and use a model.

So, in order to build a useful parallel programming framework, we have to
rely on a model of parallel computation and provide the context of a concrete
implementation for it. This means that we should carefully analyze the require-
ments of a model for parallel computation and the challenges imposed by the
need to put them into practice on actual systems.

2.1 Requirements for a Model of Parallel Computation

We will analyse the requirements stated in [36], and based on them we emphasize
what further requirements are implied for the corresponding frameworks.

– Easy to Understand and Program. A model should be easy to understand in
order to secure a large mass of programmers that could embrace it. If paral-
lel programming models are able to hide the complexities and offer an easy
interface, they have a greater chance of being adopted. Parallel execution is
a very complex process and a model must hide most of the execution details
from programmers in order to allow productivity and reliability. In the same
time it is well known that the most challenging issue, for such a computa-
tional model is to find a good trade-off between abstraction/readability and
performance/efficiency [11].
The corresponding frameworks should provide well defined constructs that
assure easy definition of the computation. Generic code facilitates this very

Reflections on the Design of Parallel Programming Frameworks 157

much, but also creational patterns (e.g.. Abstract Factory or Builder) could
provide mechanisms that allow the user to easily define correct and efficient
programs inside the framework.

– Architecture-Independence. Parallel systems are not only very different and
non-homogeneous, but are also highly modifiable, being in a continuous pro-
cess of improvement. We may notice here the big change brought by the
GPU devices that modified a lot the world of parallel implementators. So,
the models should be independent on this low level of execution, but this
rises big challenges for the parallel programming frameworks based on mod-
els.
There are now, many parallel systems that define many computation
paradigms, each having particular characteristics. The most used architecture
classes are shared-memory, and distributed memory systems, together with
their hybrid variants. The hybrid variants may include very important accel-
erators, as GPUs and FPGAs, that introduce other computing paradigms.
A very clear separation between the level of specification and definition of
the computation and the execution level should be provided by the frame-
work. The model provides the tasks, and the ‘executors’, that are separately
defined, should have the ability of executing the tasks in an efficient way.
These executors represent a “hot-spot” in the framework, since they should
be specialized for different platforms, and/or improved in time.

– Software Development Methodology. This is needed because rising the level
of abstraction leads to a gap between the semantic structure of the program,
and the detailed structure required for its execution. In order to bridge this
gap a solid semantic foundation on which transformation techniques can be
built is needed. Correctness by construction is very important in the paral-
lel programming setting, since in this case debugging is a very difficult task.
This requirement is intrinsically related to the abstract machine defined by
the model.
The concrete execution should be provided by the framework, and if the model
provides a good development methodology, this could be used for the execu-
tors definition. They should assure correct execution of the task generated
inside the model for different types of parallel system.

– Guaranteed Performance. Even if it is not expected to extract absolutely
all the performance potential when implementing a model on a particular
architecture, the model should assure the possibility to obtain a good imple-
mentation on each architecture type. If the corresponding abstract machine
associated to the model imposes restrictions about the data access, commu-
nications, or other low level computational aspects, then it doesn’t qualify as
a good general model.
Also, the model doesn’t have to impose certain levels of granularity since the
systems could come with different scales of dependencies on granularity.
A framework built based on a model has to be flexible enough to provide the
possibility to improve and adapt the execution to new conditions brought by
various systems. This requires flexibility and adaptability. The model being
theoretical, could and should emphasize the maximum level of parallelism for

158 V. Niculescu et al.

a computation. But this maximum level of parallelism could lead to a very
fine granularity that may not be appropriate for the concrete system. The
adaptation of the task granularity to different system granularity levels is
very important and the framework should tackle this issue, by providing a
functionality that could inject the desired level of granularity.
Another important issue in achieving performance is related to data manage-
ment. Parallel computation is in many cases related to huge volumes of data
that have to be read, computed and stored. The computation defined inside
the model should be connected to the data, and these operations could have
a huge impact on the final cost of computation. Considering the impact of
data management on computational costs, this has to be reflected in a well
defined framework component, that could be transformed and improved in
time.

– Cost Measures. The most important goal in a parallel program design and
construct is increasing the performance. Execution time is the most impor-
tant of the concerns, but there are others such as processor utilization or even
the development costs that are important too. They all describe the cost of a
program, and the model should provide cost measures. At the abstract level,
the model provides measures that are independent on the concrete execution
level, but these measures should be parameterized well enough, such that
they are able to assess the real costs that could be achieved on real machines.
Since the best solution is many times obtained through empirical tests (and
not only based on a theoretical analysis inside the model), it would be desir-
able for the framework to provide functions that automatically gives the eval-
uation of some metrics – e.g. number of certain functions calls, number of
threads/processes created, execution time, etc. – and correlate them with
some concrete platform system parameters.

By summarizing the previous requirements, we may emphasise the main com-
ponents of the architecture of a good framework for parallel programming:

– Model – the implementation of the model of parallel computation that satisfies
the specified requirements;

– Executors – a component that treats the execution on different types of par-
allel systems;

– Data Manager – a data management component that deals with data acqui-
sition and management;

– User Interacter – a component that facilitates the easy development of new
programs inside the framework.

– Granularity Balancer – a component able to adjust the granularity of the
tasks that should be executed by the executors.

– Metrics Analyser – a component that could automatically provide cost mea-
sures of the execution in order to evaluate the performance.

The model should be efficiently connected with the other components:
it provides the necessary information (e.g. executors receive tasks), but also
uses the components functionality when needed (e.g. receive data from Data

Reflections on the Design of Parallel Programming Frameworks 159

Fig. 1. MEDUGA - architecture scheme of a framework built based on a model of
parallel computation.

Manager). The defined components represent the “hot-spots” of the frame-
work. Figure 1 emphasises the proposed architecture of a framework for paral-
lel programming – MEDUGA – Model-Executors-DataManager-UserInteracter-
GranularityBalancer-MetricsAnalyser. This architecture could assure a good
level of extensibility (through the component), but also stability (through the
model).

2.2 The Importance on Relying on Software Engineering
Methodologies and Patterns

In general, software engineering methodologies proved to be essential in the
development of quality software of any kind. In order to satisfy the analysed
requirements, the development of a framework that is based on a model of par-
allel computation, even more important than in the sequential case, must rely on
appropriate software engineering methodologies, due to the complexity of such
systems.

Parallel programming emphasizes specific parallel programming patterns and
they are mainly related to the parallel programming paradigms that have been
inventoried [23]. The model should provide well defined relations with these pat-
terns, and their possible implementations. Many popular parallel computation
models are defined based on skeletons [3], which structure and simplify the com-
putational process. They are in direct connection to the parallel design patterns,
which offer essential advantages in the development of software processes. They
could provide the necessary flexibility and adaptability much needed in this case.

Besides the parallel programming patterns, general design patterns used in
the common software design and software development methodologies are also
important because the framework should assure correct separation of concerns,
flexibility, adaptability and extensibility.

160 V. Niculescu et al.

3 The JPLF Framework

The JPLF framework has been built following the requirements analysed in the
previous section. PowerList and associated theories [17,25] have been selected as
a model of computation, and this model was proved to fulfill the general require-
ments for a model of parallel computation in [26]. PowerLists allow an efficient
and correct derivation of programs of divide-and-conquer type; PList extensions
allow multi-way divide-and-conquer computation, but also “embarrassingly par-
allel computation” [12]. Extensions with PowerArrays, resp. PArrays are possi-
ble, in order to move to multidimensional data organisation.

3.1 PowerList Theory as a Model of Parallel Computation

The theory of Powerlists data structures introduced by J. Misra [25] offers an
elegant way for defining divide-and-conquer programs at a high level of abstrac-
tion. This is especially due to the fact that the index notations are not used, and
because it allows reasoning about the algorithm correctness based on a formal
defined algebra.

A PowerList is a linear data structure with elements of the same type, with
the specific characteristic that the length of a PowerList is always a power of two.
The functions on PowerLists are defined recursively by splitting their arguments
based on two deconstruction operators (tie and zip).

Similar theories such as ParLists and PLists were defined [17], for working
also with lists with non power-of-two lengths, and divide-and-conquer functions
that split the problem in any number of subproblems. They extend the set of
computation skeletons that could be defined using these data structures.

Besides the fact the inside these theories we have a solid software methodol-
ogy that allows proving program correctness, the main advantage and specificity
of the PowerList is the fact that there are two constructors (and correspondingly
two desconstructors) that could be used: two similar Powerlists (with the same
length and type), p and q, can be combined into a new, double length, power
list data structure, in two different ways:

– using the operator tie, written p | q, the result containing elements from p
followed by elements from q,

– using the operator zip, written p � q, the result containing elements from p
and q, alternatively taken.

To prove the correctness of properties on PowerLists a structural induction
principle is used: this considers a base case (for singletons), and two possible
variants for the inductive step: one based on the tie operator, and the other
based on zip.

Functions are defined based on the same principle. As a PowerList is either a
singleton (a list with one element), or a combination of two PowerLists, a Pow-
erList function can be defined recursively by cases. For example, the high order
function map, which applies a scalar function to each element of a PowerList is
defined as follows:

Reflections on the Design of Parallel Programming Frameworks 161

map(f, [a]) = [f(a)]
map(f, p | q) = map(f, p) |map(f, q) (1)

The classical reduce function could be defined in a similar manner.
For both map and reduce, alternative definitions based on the zip opera-

tor could also be given. These could be useful if - depending on the memory
allocation, and access – one could be more efficient than the other.

Moreover, the existence of the two decosntruction operators could be essential
for the definition of certain functions. An important example is represented by
the algorithm that computes the Fast Fourier Transform defined by Cooley and
Tukey [4]; this has a very simple PowerList representation, which has been proved
correct in [25]:

fft([a]) = [a]
fft(p � q) = (P + u × Q) |(P − u × Q) (2)

where P = fft(p), Q = fft(q) and u = powers(p). The result of the function
powers(p) is the PowerList (w0, w1, .., wn−1) where n is the length of p and w is
the (2 × n)th principal root of 1.

The operators + and × used in the fft definition are extension of the binary
addition and multiplication operators on PowerLists. They have simple defini-
tions that consider as an input two similar PowerLists, and specify that the
elements on the similar positions are combined using the corresponding scalar
operator.

The parallelism of the functions is implicitly defined: each application of
a deconstruction operator (zip or tie) implies two independent computations
that may be performed independently in two processes (programs) that could
run in parallel. So, we obtain a tree decomposition, which is specific to divide-
and-conquer programs. The existence of two decomposition operators eases the
definition of different programs, but at the same time may induce some problems
when these high-level programs have to be implemented on concrete parallel
machines.

The PList data structure was introduced in order to develop programs for
the recursive problems which can be divided into any number of subproblems,
numbers that could be different from one level to another [17]. It is a generalisa-
tion of the PowerList data structure and it has also three constructors: one that
creates singletons from simple elements, one based on concatenation of several
lists, and the other based on alternative combining of the lists. The correspond-
ing operators are [.], (n-way |), and (n-way �); for a positive n, the (n-way |)
takes n similar PList and returns their concatenation, and the (n-way �) returns
their interleaving.

In PList algebra, ordered quantifications are needed to express the lists’ con-
struction. The expression

[| i : i ∈ n : p.i]

162 V. Niculescu et al.

is a closed form for the application of the n-way operator |, on the PLists p.i, i ∈ n
in order. The range i ∈ n means that the terms of the expression are written
from 0 trough n−1 in the numeric order.

The PList axioms, also define the existence of a unique decomposition of a
PList using constructors operators. Functions over PList are defined using two
arguments. The first argument is a list of arities: PosList, and the second is the
PList argument (if there are more than one PList argument, they all must have
the same length).

Usually the arity list is formed of the prime factors obtained through the
decomposition of the list length into prime factors. Still, we may combine these
factors, if convenient. The functions could be defined only if the product of the
numbers in the arity list is equal to the PList argument length. If the arity list
is reduced to one element – the PList argument length – the decomposition is
done only once, and we arrive to an ‘embarrassingly parallel computation’ type.

We illustrate PList functions’ definitions with a simple example: the reduc-
tion function that computes the reduction of all elements of a PList using an
associative binary operator ⊕:

defined.red(⊕).l.p ≡ prod.l = length.p
red(⊕).[].[a] = a
red(⊕).(x � l).[|i : i ∈ x : p.i] = (⊕i : 0 ≤ i < x : red(⊕).l.(p.i))

(3)

where prod.l computes the product of the elements of list l, length.p is length
of p, [] denotes the empty list, and � denotes cons operator on simple lists. This
function could also be defined using the � operator because the ⊕ operator is
associative.

The existence of the two decomposition operators differentiates these theories
from other list theories, and also represents an important advantage in defining
many parallel algorithms.

3.2 JPLF Design and Implementation

We will present in this section some details about the design and implementation
of the major components of the framework.

Model Implementation. The main elements of the model are interconnected,
although they have different responsibilities, such as:

– data structures implementations,
– functions implementations.

Design Choice 1. Impose separate definitions for these elements allowing them
vary independently.

The motivation of this design choice is that separation of concerns enables
independent modifications and extensions of the components by providing alter-
native options for storage or for execution.

Reflections on the Design of Parallel Programming Frameworks 163

Fig. 2. The class diagram of the classes corresponding to lists implementation [28].

PowerList Data Structures. The type used when dealing with simple basic
lists is IBasicList. In relation to the PowerList theory, this type is also used as
a unitary super-type of specific types defined inside the theory. The framework
extension with types that match the PList and ParList data structures is also
enabled by this.

Design Choice 2. Use the pattern Bridge [10] to decouple the definition of the
special lists’ types from their storage. Storage could be:

– a classical predefined list container where all the elements of a list are stored,
but this doesn’t necessarily mean that two neighbor elements of the same list
are actually stored into neighbor locations in this storage: some byte distance
could exist between the locations of the two elements;

– a list of sub-storages (containers) that are combined using tie or zip depending
on the list type (Composite storage).

The storage part belongs to the DataManager component of the framework,
since it may vary from one platform to another, and could be extended, too.

The reason for this design decision is to allow the same storage being used
in different ways, but most importantly to avoid the data being copied when a
split operation is applied. This is a very important design decision that influences
dramatically the obtained performance for the PowerList functions execution.

The result of splitting a PowerList is formed by two similar sub-lists but
the initial list storage could remain the same for both sub-lists having only the

164 V. Niculescu et al.

storage information updated (in order to avoid element copy). Having a list
(l), the storage information SI(l) is composed of: the reference to the storage
container base, the start index start, the end index end, the increment incr.

From a given list with storage information SI(list) = (base,start,end,incr),
two sub-lists (left_list and right_list) will be created when either tie and zip
deconstruction operators are applied. The two sub-lists have the same storage
container base and correspondent updated values for (start, end, incr).

Op. Side SI

tie Left base, start, (start+end)/2, incr

Right base, (start+end)/2, end, incr

zip Left base, start, end-incr, incr*2

Right base, start+incr, end, incr*2

If we have a PList instead of a PowerList the splitting operation could be
defined similarly by updating SI for each new created sub-list. If we split the list
into p sub-lists then the kth (0≤k<p) sub-list has size = (end − start)/p and
SI is:

Op. Sub-List SI

tie kth base, start+size*(k/p),

start+size*((k+1)/p), incr

zip kth base, start+k*incr,

end-(p-k-1)*incr, incr*k

The operators tie and zip are the two characteristic operations used to split
a list, but they could also be used as constructors. This is reflected into the
constructors definition.

There are two main specializations of the PowerList type: TiePowerList and
ZipPowerList. Polymorphic definitions of the splitting and combining operations
are defined for each of these types, which determine which operator is used.
Since a PowerList could also be seen as a composition of two other PowerLists,
two specializations with similar names: DTiePowerList and DZipPowerList are
defined in order to allow the definition of a PowerList from two sub-lists that
don’t share the same storage. This is particularly important for executions on
distributed memory platforms. The Composite design pattern is used for this.
The corresponding list data structure types are depicted in the class diagram
shown in Fig. 2.

Reflections on the Design of Parallel Programming Frameworks 165

PowerList Functions. A PowerList function is expressed in our model by
specifying the tie or zip deconstruction operators for splitting the PowerList
arguments and by a composing operator in case the result is also a PowerList.

Design Choice 3. Use a type driven implementation for PowerList functions:
if an argument’s type is TiePowerList, then the tie operator is used for splitting
that argument, and if an argument’s type is ZipPowerList, the zip operator is
used for it.

This is possible because for the considered PowerList functions, one Pow-
erList argument is always split by using the same operator (and so it preserves
its type – a TiePowerList or a ZipPowerList). In case the result is a PowerList,
the same operator (depending on the concrete type) is also used at each step of
the construction of the result.

Fig. 3. The class diagram of classes corresponding to functions on PowerLists and their
execution [28].

PowerList functions may have more than one PowerList argument, each
having a particular type: TiePowerList or ZipPowerList. The PowerList func-
tions don’t need to explicitly specify the deconstruction operators. They are
determined by the arguments’ types: the tie operator is automatically used for
TiePowerLists and the zip operator is used in case the type is ZipPowerLists. It
is very important when invoking a specific function, to call it in such a way that
the types of its actual parameters are the appropriate types expected by the spe-
cific splitting operators. The two methods toTiePowerList and toZipPowerList,
provided by the PowerList class, transform a general PowerList into a specific
one.

The result of a PowerList function could be either a singleton or a Pow-
erList. For the functions that return a PowerList, a specialization is defined –
PowerResultFunction – for which the result list type is specified. This is impor-
tant in order to specify the operator used for composing the result.

Design Choice 4. In order to support the implementation of the divide-and-
conquer functions over PowerLists, use the Template Method pattern [10].

166 V. Niculescu et al.

The divide-and-conquer solving strategy is implemented in the template
method compute of the PowerFunction class. PowerFunction’s compute method code
snippet is presented in Fig. 4.
The primitive methods:

– combine

– basic_case

– create_right_function and create_left_function

are the only ones that need to be implemented in order to define a new PowerList
function.

Fig. 4. The template method compute for PowerList function computation.

For the create_right_function and create_left_function functions we
should provide specialized implementations to guarantee that the newly cre-
ated sub-functions (left and right) correspond to the function being computed.
For the other two, there are implicit definitions in order to free the user from
providing implementations for all of them. For example, for map we have to
provide a definition only for basic_case, whereas only a combine implementation
is required for reduce.

The function test_basic_case implicitly verifies if the PowerList argument
is a singleton, but there is the possibility to override this method and force an
end of the recursion before singleton lists are encountered.

The compute method should be overridden only for functions that do not
follow the classical definition of the divide-and-conquer pattern on PowerLists.

Figure 3 emphasizes the classes used for PowerList functions and some con-
crete implemented functions: Map, Reduce, FFT. The class PowerAssocBinOperator

corresponds to associative binary operators (e.g.. +, ∗ etc.) extended to Pow-
erLists. TuplePowerResultFunction has been defined in order to allow the def-
inition of tuple functions, which combine a group of functions that have the
same input lists and a similar structure of computation. Combining the compu-
tations of such kind of functions could lead to important improvements of the
performance. For example, if we need to compute extended PowerList operators
< +, ∗,−, / > on the same pair of input arguments, they could be combined
and computed in a single computation stream. This has been used for the FFT
computation case [29].

Reflections on the Design of Parallel Programming Frameworks 167

3.3 Executors

Multithreading Executors. The simple sequential execution of a PowerList
function is done simply by invoking the corresponding compute method.

In order to allow further modifications or specializations, the definition of
the parallel execution of a PowerList function is done separately. The executors’
supertype is the IPowerFunctionExecutor interface that covers the responsibility
of executing a PowerList function. This type provides a compute method and also
the methods for setting and getting the function that is going to be executed.
Any function that complies with the defined divide-and-conquer pattern could
be used for such an execution.

Fig. 5. The class diagram of classes corresponding to the multithreading executions
based on ForkJoinPool.

Design Choice 5. Define separate executor classes that rely on the same oper-
ations as the primitive methods used for the PowerList function definition.

The class FJ PowerFunctionExecutor relies on the ForkJoinPool Java execu-
tor, which is an implementation of the ExecutorService interface. Figure 5 shows
the implemented classes corresponding to the multithreading executions based
on ForkJoinPool. A FJ PowerFunctionExecutor uses a ForkJoinPool to execute a
FJ PowerFunctionComputationTask that is created to compute a PowerList func-
tion. The simple definition of the recursive tasks that we choose to execute in
parallel is enabled by this executor: new parallel tasks are created each time a
split operation is done.

As the PowerLists functions are built based on the Template Method pat-
tern, the implementation of the compute method of the FJ PowerFunctionComputa

tionTask is done similarly. The same skeleton, is used in this implemen-
tation, too. The code of the compute template method inside the FJ Power

FunctionComputationTask is shown in the code snippet of Fig. 6.
In this example, separate execution tasks wrap the two PowerFunctions that

have been created inside the compute method of the PowerFunction class (right
and left). A forked execution is called for the task right function exec, while
the calling task is the one computing the left function exec task.

168 V. Niculescu et al.

Fig. 6. The compute method in PowerFunctionComputationTask.

In order to define other kinds of executors, we need to define a new class
that implements IPowerFunctionExecutor, and define its compute method based
on the methods defined by the PowerFunction class.

MPI Execution. The ability to use multiple cluster nodes for execution could
be attained by introducing MPI based execution of the functions [27]. This
assures the needed scalability for a framework that works with regular data
sets of very large sizes.

The command for launching a MPI execution has, generally the following is:

mpirun -n 20 TestPowerListReduce_MPI

where the -n argument defines the number of MPI processes (20 is just an
example) that are going to be created. It could be easily observed that the
MPI execution is radically different from the multithreading execution: each
process executes the same Java code and the differentiation is done through
the process rank and the number of processes variables that are used in the
implementing code.

The advantage brought by list splitting and combining without element mov-
ing (just changing the storage information SI), which is possible for the execution
on shared memory systems, is no longer possible for the distributed memory exe-
cution paradigm. On a distributed memory system, based on an MPI execution,
the list splitting and combining costs could not be kept so small because data
communication between processes (sometimes on different machines) is needed.
Since the cost for data communication is much higher than the simple computa-
tion costs, we had to analyze very carefully when this communication could be
avoided.

Reflections on the Design of Parallel Programming Frameworks 169

During the PowerList functions computation when we apply the definition of
the function on non-singleton input lists, each input list is split into two new lists.
In order to distribute the work, we need to transfer one part of the split data to
another process. Similarly, the combining stage could also need communication,
since for combining stages, we need to apply operations on the corresponding
results of the two recursive calls.

For identifying the cases when the data communication could be avoided, the
phases of PowerList function computation were analyzed in details:

1. Descending/splitting phase that includes the operations for splitting the list
arguments and the additional operations, if they exist.

2. Leaf phase that is formed only by the operations executed on singletons.
3. Ascending/combining phase that includes the operations for combining the

list arguments and the additional operations, if they exist.

The complexity of each of these stages is different for particular functions.
For example, for map, reduce or even for fft , the descending phase does not

include any additional operations. It has only the role of distributing the input
data to the processing elements. The input data is not transformed during this
process.

There are very few functions where the input is transformed during the
descending phase. For some of these cases it is possible to apply some function
transformation—as tupling—in order to reduce the additional computations.
This had been investigated in [29].

Similarly, we may analyze the functions for which the combining phase
implies only data composition (as map) or also some additional operations (as
reduce).

Through the combination of these situations we obtained the following classes
of functions:

1. splitting ≡ data distribution
The class of functions for which the splitting phase needs only data distribu-
tion.
Examples: map, reduce, fft

2. splitting �≡ data distribution
The class of functions for which the splitting phase needs also additional
computation besides the data distribution.
Example: f(p�q) = f(p + q)�f(p − q)

3. combining ≡ data composition
The class of functions for which the combining phase needs only the data
composition based on the construction operator (tie or zip) being applied to
the results obtained in the leaves.
Example: map

170 V. Niculescu et al.

Fig. 7. The classes used for different types of execution of a PowerList function [28].

4. combining �≡ data composition
The class of functions for which the combining phase needs specific compu-
tation used in order to obtain the final result.
Examples: reduce, fft .

One direct solution to treat these function classes as efficiently as possible
would be to define distinct types for each of them. But the challenge was that
these classes are not disjunctive. The solution was to split the function execution
into sections, instead of defining different types of functions.

Design Choice 6. Decompose the execution of the PowerList function into
phases: reading, splitting, leaf, combining, and writing.
Apply the Template method pattern in order to allow the specified phases to vary
independently.
Apply the Decorator pattern [10] in order to add specific corresponding cases.

The Fig. 7 emphasizes the operations’ types corresponding to the different
phases. For MPI execution, we associated a different computational task (CT) for
each phase. The computational tasks are defined as decorators, they are specific
to each phase, and they are different for functions that return PowerLists by
those that return simple types (PowerResultFunction vs. PowerFunction):

– MPI_PowerCT_split,
– MPI_PowerCT_compose, resp. MPI_PowerResultCT_compose,

Reflections on the Design of Parallel Programming Frameworks 171

– MPI_PowerCT_read,
– MPI_PowerResultCT_write.

Some details about the implementations of these classes are presented in
Fig. 8. The class MPI_CTOperations provides a compute template method and
empty implementations for the different step operations: read, split, compose,
. . . (details are given in Fig. 9).

The leaf operation encapsulates the effective computation that is performed
in each process. It can be based on multithreading and this is why it could use
FJ_PowerFunctionExecutor (the association between MPI_PowerFunctionCT and
FJ_PowerFunctionExecutor). Hence, an MPI execution is implicitly a combina-
tion of MPI and multithreading execution.

Fig. 8. Implementation details of some of the classes involved in the definition of MPI
execution [28].

Fig. 9. The template method compute for MPI execution.

172 V. Niculescu et al.

The compose operations in MPI_PowerCT_compose and MPI_PowerResultCT_

compose are defined based on the combine operation of the wrapped PowerList
function.

The input/output data for domain decomposition of parallel applications are
in general very large, and so these are usually stored into files. This introduces
other new phases in the computation function if reading and writing are added
as additional phases (case 1), or if they are combined with splitting (respectively
combining phases; in this case they introduce new variations of the computation
function phases) (case 2).

If the data are taken from a file, then:

case 1: a reading is done by the process 0, followed by an implementation of
the decomposition phase based on MPI communications;

case 2: concurrent file reads of the appropriate data are done by each process.

The possibility of having concurrent reads of the input data is given by the
fact that each process needs to read data from different positions in the input file,
and also because the data depends on known parameters: the type of the input
data (TiePowerList or ZipPowerList), the total number of elements, the number
of processes, the rank of each process, and the data element size (expressed in
bytes).

The difficulty raised from the fact that all the framework’s classes are , while
almost all MPI Java implementations used only simple data types to be used in
communication operations. The chosen solution was to use byte array transfor-
mations of the data through serialization.

Design Choice 7. Use the Broker design pattern in order to define specialized
classes for reading and writing data (FileReaderWriter) and for serializing/de-
serializing the data (ByteSerialization).
These specialised classes belong to the DataManger component of the frame-
work.

When the decomposition is based on the tie operator, reading a file is very
simple and direct: each process receives a filePointer that depends on its rank
and which represents the starting point for reading; all processes read the same
number of data elements.

When the decomposition is based on the zip operator, file reading requires
more complex operations: each process receives a starting filePointer and a
number of data elements that should be read, but for each reading, another seek
operation should be done. The starting filePointer is based on the bit reverse
(to the right) operation applied on the process number.

For example, for a list equal to [1, 2, 3, 4, 5, 6, 7, 8] a zip decomposition on 4
processes leads to the following distribution: [[1, 5], [3, 7], [2, 6], [4, 8]].

In order to fuse the combining phase together with the writing, we applied a
similar strategy. The conditions that allow concurrent writing are: the output file
should already be created and each process writes values on different positions,
these positions are computed based on the process rank, the operator type, the
total number of elements, the number of processes, and the data element size.

Reflections on the Design of Parallel Programming Frameworks 173

In order to use this MPI extension of the framework, we don’t need to define
specific MPI functions for each PowerList function. We just define an executor
by adding the needed decorators for each specific function: a read operation, or
a split operation, and a compose operation or a write operation, etc. The order
in which they are added is not important. At the same time, the operations:
read, write, compose, etc. are based on the primitive operations defined for each
PowerList function (which are used in the compute template method). Also, they
are dependent on the total number of processes and the rank of each process.

To give better insights of the MPI execution we will present the case of the
Reduce function (Sect. 3.1). The following test case considers a reduction on a
list of matrices using addition. The code snippet in Figure 10 emphasizes what
is needed for the MPI execution of the Reduce function.

Fig. 10. The MPI execution of the Reduce function.

3.4 Granularity Balancer

In an ideal case, the execution of parallel programs defined based on PowerLists
implies the decomposition of the input data using the tie or zip operator and each
application of tie and zip creates two new processes running in parallel, such that
for each element of the input list, there will be a corresponding parallel process.

If we consider the FJ PowerFunctionExecutor, this executor implicitly creates
a new task that handles the right part function. So, the number of created tasks
grows linearly with the data size. This leads to a logarithmic time-complexity
that depends on the loglen of the input list.

Adopting this fine granularity of creating a parallel process per element may
hinder the performance of the whole program. One possible improvement would
be to bound the number of parallel tasks/processes, i.e. to specify a certain level
until which a new parallel task is created:

174 V. Niculescu et al.

Design Choice 8. Introduce an argument – recursion depth – for the Executor

constructors; the default value of this argument is equal to the logarithmic length
of the input list (loglen l) and the associated precondition specifies that its value
should be less or equal to loglen l. When a new recursive parallel task is created
this new task will receive a recursion depth decremented with 1. The recursion
stops when this recursion_depth reaches zero.

This solution will lead to a parallel recursive decomposition until a certain
level and then each task will simply execute the corresponding PowerList func-
tion sequentially.

In the same time, there are situations when for a sequential computation
of the requested problem, a non recursive variant is more efficient than the
recursive one. For example, for map, an efficient sequential execution will just
iterate through the values of the input list and apply the argument function.
The equivalent recursive variant (Eq. 1) is not so efficient since recursion comes
with additional costs.

In this case we have to transform the input list by performing a data distri-
bution. A list of length n is transformed into a list of p sub-lists, each having
n/p elements. If the sub-lists have the type BasicList then the corresponding
BasicListFunction is called. In the framework, this responsibility is solved by
the following design decision:

Design Choice 9. Define a Transformer class that has the following responsi-
bilities:

– transforming a list of atomic elements into a list of sub-lists and,
– transforming a list of sub-lists into a list of atomic elements (flat operation).

How the sub-lists are computed depends on the two operators tie and zip, and
the transformation should preserve the same storage of the elements.

For the Transformer class implementation, the Singleton pattern [10] should
be used.

The transformation described above does not imply any element copy andit
preserves the same storage container for the list. Every new list created has p
BasicList elements with the same storage. On creation, the storage information
SI is initialized for each new sub-list according to which decomposition operator
was used (tie or zip) to create this new sub-list. The time-complexity associated
to this operation is O(p). The Transformer class has the following important
functions:

– toTieDepthList and toZipDepthList,
– toTieFlatList and toZipFlatList.

The execution model for these lists of sub-lists is very similar and only differs
for the basic case. If an element of a singleton list, that corresponds to the basic
case is a sub-list (i.e. has the IBasicList type), a simple sequential execution
of the function on that sub-list is called. Sequential execution of functions on

Reflections on the Design of Parallel Programming Frameworks 175

sub-lists is implicitly based on recursion which is not very efficient in Java. If
an equivalent function defined over IBasicList (based on iterations) could be
defined, then this should be used instead.

3.5 User Interactor

In order to define a new program/function, the user only needs to special-
ize the functions: combine; basic_case; create_right_function and create_left_

function; as it was described in Sect. 3.2. For the first two functions there are
implicit definitions, such that they should be overwritten, only when combine is
not a simple concatenation, and when basic_case is different from the identity
function.

As specified before, PowerList functions don’t have to explicitly specify the
deconstruction operators since they are determined by the arguments’ types;
this simplifies a lot the definition of new functions. For the parallel execution,
different executor types could be used and the user has to choose one depending
on the available platform.

Fig. 11. Sequential and multithreading execution of Map function – squaring applied
on a list of matrices.

In Fig. 11 we present the steps needed to execute the map function, which
applies a square function on a list of matrices; the sequential execution based on
an iterative list traversal is directed by the use of the BasicList type, recursive
sequential execution is directed by the TiePowerList (ZipPowerLis also could

176 V. Niculescu et al.

be used), and for parallel multithreading execution, an executor based on Java
ForkJoinPool is created, and the function is executed through it.

As it can be noticed from the code represented in Fig. 10, for an MPI exe-
cution of a PowerList function we only need to specify the ‘decorators’, and the
files’ characteristics (if it is the case). The general form of a Powerlist function
has a list of PowerLists arguments. The reading should be possible for any num-
ber of PowerLists arguments. This is why we have arrays for the files’ names
and lists’ and elements’ sizes. For reduce we have only one input list.

Design Choice 10. Apply the Factory Method pattern [10] in order to simplify
the specifications/creation of the most common functions.

The most common functions as map, reduce, or scan are provided by the
framework since they have many applications, and many other functions could
be obtained through their composition.

3.6 Metrics Analyser

For testing, we have used external scripts (under Linux OS) that allow us to
executes several times one program with different parameters: number of MPI
processes, number of threads of each process, recursion granularity, and depth
of the data list (as explained in Sect. 3.4). The performance results were written
into files. The parameterization has been done through command line arguments,
and so, we may consider that we have used a very simple form of dependency
injection.

3.7 Extensions

For PList, the functions and their possible multiparadigm executors are defined
in a similar way to those for PowerList. PList is a generalization of PowerList
allowing the splitting and the composition to be done into/from more than two
sub-lists. So, instead of having the two functions: create_right_function and
create_left_function, we need to have an array of (sub)functions. Still, the
same principles and patterns are applied as in the PowerList case.

PowerArrays and PArrays are defined similarly to the unidimensional coun-
terparts, and so are their corresponding functions, too. Including their imple-
mentation into the framework could be done based on the same principles as
those followed for PLists.

4 Related Work

Algorithmic skeletons are considered an important approach in defining high
level parallel models [3,32]. PowerLists and their associated theory could be
used as a foundation for a domain decomposition divide-and-conquer skeleton
based approach.

Reflections on the Design of Parallel Programming Frameworks 177

There are numerous algorithmic skeleton programming approaches. Most
often, they are implemented as libraries for a host language. This languages
include functional languages such a Haskell [22] with skeletons implemented
using its GpH extension [13]. Multi-paradigm programming languages such as
OCaml [24] are also considered: OCamlP3L [5] and its successor Sklml offer a
set of a few data and task parallel skeletons and parmap [7]. Although OCaml is
a functional, imperative and object oriented language, only the functional and
imperative paradigms are used in these libraries.

Object-oriented programming languages such as C++, Java, or even Python
are host languages for high-level parallel programming approaches. Very often
object-oriented features are used in a very functional programming style. Basi-
cally classes for data structures are used in the abstract data-type style, with
a type and its operations, sometimes only non-mutable. This is the approach
taken by the PySke library for Python [33] that relies on a rewriting approach
for optimization [21]. The patterns used for the design of JPLF, are also mostly
absent from many C++ skeleton libraries such as Quaff [8] or OSL [18]. These
libraries focus on the template feature of C++ to enable optimization at compile
time though template meta-programming [38]. Still, there are also very complex
C++ skeleton based frameworks – e.g. FastFlow [6] – that are built using a
layered architecture and which target networked multi-cores possibly equipped
with GPUs systems.

Java is one of the programming languages chosen often for implementing
structured parallel programming environments that use skeletons as their foun-
dation. The first skeleton based programming environment developed in Java,
which exploits macro-data flow implementation techniques, is the RMI-based
Lithium [1]. Calcium (based on ProActive, a Grid middleware) [2] and Skandium
[19] (multi-core oriented) are two others Java skeleton frameworks. Compared
with the aforementioned frameworks, JPLF could be used on both shared and
distributed memory platforms.

Unrelated to architectural concerns, but related to the implementation of
JPLF is that Java has been considered as a supported language by some MPI
implementations which offer Java bindings. Such implementations are OpenMPI
[37] and Intel MPI [41]. There are also 100% pure Java implementations of MPI
such as MPJ Express [14,35]. Although there are some syntactic differences
between them, all of these implementations are suitable for MPI execution. We
have also used Intel Java MPI and MPJ Express and the obtained results were
similar.

There are many works that emphasize the need of using well defined soft-
ware engineering concepts and methodologies for increasing the reliability and
productivity in parallel software development [15,16,23,31]. They refer either
methodologies as I. Foster in [9], or patterns as the high impact book “A Pat-
tern Language for Parallel Programming” [23], or both. Structured approaches
are necessary since the technologies are various, there are many execution plat-
forms, and also, the parallel software development is difficult.

178 V. Niculescu et al.

5 Conclusions and Further Work

Starting from an analysis of the requirements for a reliable parallel programming
framework, we tried to identify the main components of such a framework and
we arrived to an architecture that is based on a model of parallel computation,
but contains also well defined “hot-spot”s as components – MEDUGA (Model-
Executors-DataManager-UserInteractor-GranularityBalancer-metricsAnalyser).

We emphasized also how this was applied on the development of a concrete
framework - JPLF.

The jplf framework has been architectured using design patterns. Based on
the proposed architecture, new concrete problems can be easily implemented and
resolved in parallel. Also, the framework could be easily extended with additional
data structures (such as ParList or PowerArray [17]).

The most important benefit of the framework’s internal architecture is that
the parallel execution is controlled independently of the PowerList function defi-
nition. Primitive operations are the foundation for the executors’ definitions, this
allowing multiple execution variants for the same PowerList program. For exam-
ple, sequential execution, MPI execution, multithreading using ForkJoinPool exe-
cution or some other execution model can be easily implemented. If we have a
definition of a PowerList function we may use it for multithreading or MPI
execution without any other specific adaptation of that particular function.

For the MPI computation model it was mandatory to properly manage the
computation steps of a PowerList function: descend, leaf, and ascend. These
computation steps were defined within a Decorator pattern based approach.

Many frameworks are oriented either on shared memory or on distributed
memory platforms. The possibility to use the same base of computation and
associate the execution variants depending on the concrete execution systems
brings important advantages.

The separation of concerns principle has been intensively used. This facili-
tated the data-structures’ behavior to be separated from their storage, and to
ensure the separation of the definition of functions from their execution.

As further work we propose to enhance the metrics analyser component of
the framework by allowing the injection of some metrics evaluation into the com-
putation. Through this, the computation would be augmented with the required
metrics computation.

Several executions have to be done, overhead regions identification could
improve the performance very much, resource utilization evaluation (e.g. number
of threads that are created/used) may improve the efficiency, etc.

As we presented in Sect. 4 there are many parallel programming libraries
(that could be assimilated to frameworks), which are based on skeletons, and
which provide implementations of the considered parallel skeletons on different
systems. It would be interesting to investigate the measure in which they have
been built following software engineering methodologies that assure the expected
levels of software quality. How this aspects affect the performance, but also
maintainability is another interesting subject of study.

Reflections on the Design of Parallel Programming Frameworks 179

References

1. Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment supporting struc-
tured parallel programming in Java. Future Gener. Comput. Syst. 19(5), 611–626
(2003)

2. Caromel, D., Leyton, M.: Fine tuning algorithmic skeletons. In: Kermarrec, A.-M.,
Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 72–81. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74466-5 9

3. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge (1991)

4. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex fourier
series. Math. Comput. 19(90), 297–301 (1965)

5. Cosmo, R.D., Li, Z., Pelagatti, S., Weis, P.: Skeletal parallel programming with
OcamlP3l 2.0. Par. Proc. Lett. 18(1), 149–164 (2008)

6. Danelutto, M., Torquati, M.: Structured parallel programming with “core” Fast-
Flow. In: Zsók, V., Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp.
29–75. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15940-9 2

7. Di Cosmo, R., Danelutto, M.: A “minimal disruption” skeleton experiment: seam-
less map & reduce embedding in OCaml. In: Proceedings of the International
Conference on Computational Science, vol. 9, pp. 1837–1846. Elsevier (2012)

8. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.T.: QUAFF: efficient C++ design
for parallel skeletons. Parallel Comput. 32, 604–615 (2006)

9. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Par-
allel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston
(1995)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

11. Gorlatch, S., Lengauer, C.: Abstraction and performance in the design of parallel
programs: an overview of the sat approach. Acta Inf. 36(9–10), 761–803 (2000)

12. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. Addison Wesley, Boston (2003)

13. Hammond, K., Rebón Portillo, Á.J.: HaskSkel: algorithmic skeletons in haskell. In:
Koopman, P., Clack, C. (eds.) IFL 1999. LNCS, vol. 1868, pp. 181–198. Springer,
Heidelberg (2000). https://doi.org/10.1007/10722298 11

14. Javed, A., Qamar, B., Jameel, M., Shafi, A., Carpenter, B.: Towards scalable Java
HPC with hybrid and native communication devices in MPJ Express. Int. J. Par-
allel Prog. 44(6), 1142–1172 (2016). https://doi.org/10.1007/s10766-015-0375-4

15. Jelly, I., Gorton, I.: Software engineering for parallel systems. Inf. Softw. Technol.
36(7), 381–396 (1994). Software Engineering for Parallel Systems

16. Kiefer, M.A., Warzel, D., Tichy, W.: An empirical study on parallelism in modern
open-source projects. In: SEPS 2015 (2015)

17. Kornerup, J.: Data structures for parallel recursion. Ph.D. dissertation, University
of Texas (1997)

18. Légaux, J., Loulergue, F., Jubertie, S.: OSL: an algorithmic skeleton library with
exceptions. In: Proceedings of the International Conference on Computational Sci-
ence, pp. 260–269. Elsevier, Barcelona (2013)

19. Leyton, M., Piquer, J.M.: Skandium: multi-core programming with algorithmic
skeletons. In: 18th Euromicro Conference on Parallel, Distributed and Network-
based Processing (PDP), pp. 289–296. IEEE Computer Society (2010)

https://doi.org/10.1007/978-3-540-74466-5_9
https://doi.org/10.1007/978-3-319-15940-9_2
https://doi.org/10.1007/10722298_11
https://doi.org/10.1007/s10766-015-0375-4

180 V. Niculescu et al.

20. Lopes, S.F., Afonso, F., Tavares, A., Monteiro, J.: Framework characteristics -
a starting point for addressing reuse difficulties. In: 2009 Fourth International
Conference on Software Engineering Advances, pp. 256–264 (2009)

21. Loulergue, F., Philippe, J.: Automatic optimization of python skeletal parallel
programs. In: Wen, S., Zomaya, A., Yang, L.T. (eds.) ICA3PP 2019. LNCS, vol.
11944, pp. 183–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38991-8 13

22. Marlow, S. (ed.): Haskell 2010 language report (2010). https://www.haskell.org/
definition/haskell2010.pdf

23. Massingill, B.L., Mattson, T.G., Sanders, B.A.: A Pattern Language for Parallel
Programming. Software Patterns Series. Addison Wesley, Boston (2004)

24. Minsky, Y.: OCaml for the masses. Commun. ACM 54(11), 53–58 (2011)
25. Misra, J.: Powerlist: a structure for parallel recursion. ACM Trans. Program. Lang.

Syst. 16(6), 1737–1767 (1994)
26. Niculescu, V.: Pares - a model for parallel recursive programs. Roman. J. Inf. Sci.

Technol. (ROMJIST) 14, 159–182 (2012)
27. Niculescu, V., Bufnea, D., Sterca, A.: MPI scaling up for powerlist based parallel

programs. In: 27th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, PDP 2019, Pavia, Italy, 13–15 February 2019, pp.
199–204. IEEE (2019)

28. Niculescu., V., Loulergue., F., Bufnea., D., Sterca., A.: Pattern-driven design of a
multiparadigm parallel programming framework. In: Proceedings of the 15th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering -
Volume 1: ENASE, pp. 50–61. INSTICC, SciTePress (2020)

29. Niculescu, V., Loulergue., F.: Transforming powerlist based divide&conquer pro-
grams for an improved execution model. J. Supercomput. 76 (2020)

30. Niculescu, V., Loulergue, F., Bufnea, D., Sterca, A.: A Java framework for high
level parallel programming using powerlists. In: 18th International Conference on
Parallel and Distributed Computing, Applications and Technologies, PDCAT 2017,
Taipei, Taiwan, 18–20 December 2017, pp. 255–262. IEEE (2017)

31. Pankratius, V.: Software engineering in the era of parallelism. In: KIT-
Nachwuchswissenschaftler-Symposium (2010)

32. Pelagatti, S.: Structured Development of Parallel Programs. Taylor & Francis
(1998)

33. Philippe, J., Loulergue, F.: PySke: algorithmic skeletons for Python. In: Interna-
tional Conference on High Performance Computing and Simulation (HPCS), pp.
40–47. IEEE (2019)

34. Pressman, R.: Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-
Hill Science, New York (2009)

35. Qamar, B., Javed, A., Jameel, M., Shafi, A., Carpenter, B.: Design and implemen-
tation of hybrid and native communication devices for Java HPC. In: Proceedings
of ICCS 2014, Cairns, Queensland, Australia, 10–12 June 2014, pp. 184–197 (2014)

36. Skillicorn, D.B., Talia, D.: Models and languages for parallel computation. ACM
Comput. Surv. 30(2), 123–169 (1998)

37. Vega-Gisbert, O., Román, J.E., Squyres, J.M.: Design and implementation of Java
bindings in Open MPI. Parallel Comput. 59, 1–20 (2016)

38. Veldhuizen, T.: Techniques for scientific C++. Computer science technical report
542, Indiana University (2000)

39. X***: MPI: A message-passing interface standard. https://www.mpi-forum.org/
docs/mpi-3.1/mpi31-report.pdf. Accessed 20 Nov 2019

https://doi.org/10.1007/978-3-030-38991-8_13
https://doi.org/10.1007/978-3-030-38991-8_13
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Reflections on the Design of Parallel Programming Frameworks 181

40. X***: Oracle: The Java tutorials: ForkJoinPool. https://docs.oracle.com/javase/
tutorial/essential/concurrency/forkjoin.html. Accessed 20 Nov 2019

41. X***: Intel MPI library developer reference for Linux OS: Java bindings for MPI-2
routines (2019). https://software.intel.com/en-us/mpi-developer-reference-linux-
java-bindings-for-mpi-2-routines. Accessed 20 Nov 2019

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://software.intel.com/en-us/mpi-developer-reference-linux-java-bindings-for-mpi-2-routines
https://software.intel.com/en-us/mpi-developer-reference-linux-java-bindings-for-mpi-2-routines

Energy-Aware Pattern Framework:
The Energy-Efficiency Challenge

for Embedded Systems from a Software
Design Perspective

Marco Schaarschmidt1(B) , Michael Uelschen1 , Elke Pulvermüller2,
and Clemens Westerkamp1

1 Faculty of Engineering and Computer Science,
University of Applied Sciences Osnabrück, Osnabrück, Germany

{m.schaarschmidt,m.uelschen,c.westerkamp}@hs-osnabrueck.de
2 Software Engineering Research Group, University of Osnabrück,

Osnabrück, Germany
elke.pulvermueller@informatik.uni-osnabrueck.de

Abstract. Driven by the success of Internet of Things, the number of
embedded systems is constantly increasing. Reducing power consump-
tion and improving energy efficiency are among the key challenges for
battery-powered embedded systems. Additionally, threats like climate
change clearly illustrate the need for systems with low resource usages.
Due to the impact of software applications on the system’s power con-
sumption, it is important to optimize the software design even in early
development phases. The important role of the software layer is often
overlooked because energy consumption is commonly associated with the
hardware layer. As a result, existing research mainly focuses on energy
optimization at the hardware level, while only limited research has been
published on energy optimization at the software design level. This work
presents a novel approach to propose an energy-aware software design
pattern framework description, which takes power consumption and time
behavior into account. We evaluate the expressiveness of the framework
by defining design patterns, which use elaborated power-saving strategies
for various hardware components to reduce the overall energy consump-
tion of an embedded system. Furthermore, we introduce a dimensionless
numerical efficiency factor to make energy savings quantifiable and a
comparison for design patterns applied in various use cases possible.

Keywords: Embedded software engineering · Embedded systems ·
Software design pattern · Energy efficiency · Power consumption

1 Introduction

Embedded systems are nowadays ubiquitous, due to advances in high-perfor-
mance hardware and new fields of applications, such as Internet of Things (IoT)
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 182–207, 2021.
https://doi.org/10.1007/978-3-030-70006-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_8&domain=pdf
http://orcid.org/0000-0001-8260-5326
http://orcid.org/0000-0002-0841-6954
https://doi.org/10.1007/978-3-030-70006-5_8

Energy-Aware Pattern Framework 183

and Industrial Internet of Things (IIoT). IoT itself has a huge potential in solving
parts of the climate change by addressing environmental issues like water and air
pollution [1]. It is obvious that those systems should be economical in the use of
resources itself. But not only because of the climate change debate, power con-
sumption, energy efficiency, real-time behavior, durability, and maintainability
are important Non-Functional Requirements (NFR) in the design process of an
embedded system. For battery-operated systems, energy efficiency is a challeng-
ing problem and often the bottleneck in the development process [5], especially
when they operate at places that are difficult to maintain (e.g. buried under-
ground [12]). From a software perspective, the complexity of tasks is constantly
increasing, which results in more detailed and complex software architecture.
The control flow (e.g. access and utilization of hardware components) and algo-
rithms of software applications have a direct impact on the energy efficiency
of the system. Pang et al. [25] stated, that software developers often have a
good understanding of the application and hardware platform. However, when
it comes to energy efficiency, they often have limited knowledge of how an appli-
cation consumes energy as well as best practices for reducing power consump-
tion. In the process of software development, design patterns are documented
best practice solutions for recurring problems. During the software design and
architecture phase, significant energy savings can be achieved [35]. However, to
the best of our knowledge, there is only limited work towards design patterns,
which include NFR like energy efficiency and power consumption of a system
in their description. To address the gap between software design patterns and
hardware designs, the following contributions are presented in this paper:

– To take the complete system into account, we identify and describe power-
related characteristics of hardware components. This can also be addressed
by software applications.

– As part of our framework, we define the tow metrics energy balance EBP and
efficiency factor ηP . EBP represents the difference between the ability to
save energy and additional energy consumption. ηP describes a quantitative
estimation of the efficiency of energy savings. We also propose a uniform
power-timing diagram to outline the behavior of each design pattern.

– We revise and update our framework, first published in [32], and extend our
pattern catalog by adding two new energy-aware design pattern descriptions.

The remainder of this paper is organized as follows: Sect. 2 summarizes existing
research related to our approach. Section 3 presents an overview of power con-
sumption characteristics, the impact of software on those characteristics and the
definitions of the design pattern framework. A pattern catalog to evaluate the
framework is part of Sect. 4. Section 5 discusses the advantages and limitations
of our proposed design pattern framework. A conclusion is provided in Sect. 6.

2 Related Work

Power analysis and power optimization can be addressed at various levels of
hardware and software design domains, as shown in Fig. 1. From a software

184 M. Schaarschmidt et al.

Fig. 1. Power reduction and analysis efficiency, adapted from [35].

perspective, optimizations can be performed on Architecture Level, Program
Code Level and Instruction Level. They are equivalent to various hardware lev-
els starting from Transistor Level to Behavior Level. Tan et al. [35] mentioned
that optimizations on the Architecture Level, as the most abstract level, lead to
significantly higher power savings. At the same time, applying and evaluating
changes regarding energy optimization takes less time compared to lower levels.
This paper focuses on a energy efficiency analysis at the software design level
as part of the Architecture Level, while other work like [13] and [28] covers the
system-related part of the Architecture Level like networks and cloud systems.

Software design patterns are typically used to address challenges during the
process of software development. They describe generic and programming lan-
guage independent proven best practice solutions for recurring problems. The
work of Gamma et al. [11], commonly known as Gang of Four (GoF), describe
basic and widely accepted best practices for software design problems in object-
oriented software development. Their work includes concepts for structural,
behavioral and creational related problems without limitation to a specific tech-
nology or programming language. The main drawback in [11] is the lack of
fields for typical NFRs, such as power consumption and time behavior, which
are important aspects of embedded systems. In common representations [7,8],
only time-related aspects are slightly addressed for a subset of patterns without
relation to power consumption. The approach in [4] extends common represen-
tations to consider safety aspects as part of NFRs in the pattern description
for safety-critical applications. Several approaches target the challenge of ana-
lyzing and improving energy efficiency focusing on software development and
design patterns to lower the overall power consumption of a system. There
are also approaches to optimize design pattern on lower levels and close to the
instruction level, as described in Fig. 1. Litke et al. [18] analyzed the consump-
tion and performance of software designs before and after design patterns (e.g.
Factory Method, Observer, and Adapter) are applied to an embedded system.
Maleki et al. [19] compare the power consumption of different GoF design pat-
terns. Feitosa et al. [10] propagate alternative pattern solutions with lower power
consumption. The main reason for energy-efficiency differences in [10,19] is due
to the usage of overloading, inheritance, virtual functions and dynamic binding
in each alternative pattern solution. However, these techniques are programming

Energy-Aware Pattern Framework 185

language-specific and the effect on power consumption also depends on the com-
piler settings. Noureddine & Rajan [21] improve energy efficiency by optimizing
design patterns at compile time by taking specific aspects of programming lan-
guages like memory management and compiler optimizations automatically into
account. Abdulsalam et al. [2] mentioned, that changing the programming lan-
guages and compiler settings can heavily influence the overall performance and
the impact on energy efficiency of the software in particular. Additionally, all
aforementioned optimizations are targeting the efficiency of the used processor.
For embedded systems, especially IoT devices with multiple sensors, LEDs, and
wireless communication capabilities, the processor is not the main energy con-
sumer of the system [38,40]. Bunse & Höpfner [6] stated, that optimization of
source code during compile time is often inefficient because the usage of exist-
ing resources cannot be predicted. The strategy of accessing and using connected
resources (e.g. peripheral devices) is an important factor when it comes to energy
efficiency for embedded systems. Even though hardware and software must ful-
fill the same NFRs, typical design patterns are strictly divided into software-
and hardware-based patterns [4]. To take a complete system and the close rela-
tionship between software and hardware into account, a more general approach
is required to describe the impact of energy efficiency for embedded systems
from a software perspective. Reinfurt et al. [29,30] propose a pattern framework
describing more abstract design patterns for IoT devices. Their work addresses
energy efficiency by considering energy supply, energy harvesting, and energy-
saving approaches in software architectures at system level of IoT ecosystems
(e.g. server systems and infrastructure). The optimization of a single IoT node
from a software perspective is not covered by their work. However, to the best
of our knowledge, the aforementioned work is not taking the close connection
between the software and hardware layer into consideration and there is no app-
roach to include power consumption and time behavior as two closely related
NFRs in the definition of software design patterns.

3 Approach

This section describes the updated and extended approach, based on our previous
work [32]. First, we describe the calculation of power consumption for different
peripheral devices of an embedded system. Afterward in Sect. 3.2, we outline how
the software can influence the parameters proposed in the previous Sect. 3.1 to
close the gap between the hardware and software layers. Section 3.3 introduces
the design pattern framework as the basic template for all energy-aware design
pattern of the pattern catalog described in Sect. 4.

3.1 Power Consumption of Embedded Systems

This chapter contains the definition of power consumption as part of the energy
consumption for embedded systems. Modern embedded systems can be highly
complex devices consisting of several different components like actuators (e.g.

186 M. Schaarschmidt et al.

Table 1. Average power consumption of hardware components taken from datasheets.

Device Power consumption

NXP LPC54114
(ARM Cortex M4 & M0+ dual-core MCU)

Active: 32.67 mW
Sleep: 2.97 mW

ams TSL2591 Digital Light Sensor 0.825 mW

Bosch BME280 Sensor (Indoor Navigation) 1.14 mW

Bosch BMM150 Geomagnetic Sensor 11.76 mW

Futurlec Red LED (0805 SMD) 40 mW

Melexis MLX90640 Far Infrared Thermal Sensor 66 mW

Atmel WINC1500-MR210PA IEEE 802.11 b/g/n TX: 880.2 mW, RX: 297 mW

motors, LEDs, and displays), sensors, and radio modules. As mentioned in [38,
40], the processor of an embedded system is not the main energy consumer
by default. Table 1 contains examples of components with their average power
consumption. More complex sensors can exceed the power consumption of the
processor by the factor 2 and communication interfaces like the WINC1500-
MR210PA in transfer mode by factor 27.

Optimization approaches must consider each component of a system individ-
ually. Therefore, the total energy consumption Etot defines the power consump-
tion for a given time interval [0, T] can be calculated as:

Etot =
∫ T

0

(n∑
i=1

P i
dyn(t) + P i

stat(t)

︸ ︷︷ ︸
complex

+
m∑

j=1

V j(t) · Ij(t)

︸ ︷︷ ︸
simple

)
dt (1)

In general, possible energy optimization approaches depend on the character-
istics of peripheral devices. The categories of simple and complex components
were defined in our previous work [32]. Complex components are based on CMOS
technology and are clock-driven. Their power consumption contains a static
part Pstat, which is the leakage current of transistors [15], and a dynamic part
Pdyn = n · C · V 2 · f [26] with n as the number of transistors, C as the capac-
itance, V as the supply voltage, and f as the operating frequency. The power
consumption for simple components is defined as P = V · I and can only be
optimized by adjusting the voltage V and electric current I. If more components
are used, power consumption optimizations from a software perspective can be a
challenging task. Furthermore, optimization regarding overall energy consump-
tion cannot be analyzed in isolation, because of its impact on other requirements
like temporal behavior.

3.2 Impact of Software on Power Characteristics

This chapter discusses the impact of a software application on energy-related
parameters (c.f. Sect. 3.1) to address the overall energy consumption during

Energy-Aware Pattern Framework 187

execution by reducing the power consumption of individual hardware compo-
nents. In general, typical energy bugs in software applications like unnecessary
wait cycles and misusage of peripheral devices can lead to a higher power con-
sumption. The misusage can also heavily influence the overall power consump-
tion (c.f. Table 1) no matter how optimized the application executing on the
processor is. Both problem domains can be addressed by energy-aware design
patterns described with our framework. The following power characteristics can
be influenced by a software application:

1. Voltage (V): Adjusting the voltage V of the system and single components.
Alternatively, turn off the power from separated parts of the system, which
requires hardware layer support. Software applications do not always have
control over those features (e.g. Dynamic Voltage Scaling) [17,24].

2. Frequency (f): Adjusting the operation frequency of components (e.g. pro-
cessors, sensors) in particular situations. This requires support from the hard-
ware layer and is not always directly manageable by the application. Tech-
niques like Dynamic Frequency Scaling (DFS) [27] are not or only partially
supported by low-costs and low-end processors (e.g. ARM Cortex M family).

3. Capacity (n · C): Controlling the active states of components and functional
units. A strategy to control components can be implemented statically before
compilation or executed dynamically during runtime.

4. Time (t): The parameter (t) targets the time a system or component is oper-
ating in active mode with high power consumption. The software application
can minimize the total runtime by reducing the workload, using effective
algorithms, and optimizing control flows.

The impact of energy-aware design patterns on each of the presented parameters
can be outlined and included in the description based on the proposed design
pattern framework in Sect. 3.3. By this, the gap between the software design
layer and the hardware layer can be addressed.

3.3 Energy-Aware Design Pattern Framework

This section describes our framework for the specification of energy-aware soft-
ware design patterns. The framework is intended to meet the following goals:

1. Create a uniform template to describe the key elements of energy-aware
design patterns without dependencies on programming languages and spe-
cific peripheral devices.

2. Provide a section to describe the impact on power consumption using the
proposed power characteristics (c.f. Sect. 3.2) in order to address the gap
between hardware and software layers.

3. Include a uniform graphical description of the behavior resulting from apply-
ing a design pattern w.r.t. power consumption and time behavior aspects.

188 M. Schaarschmidt et al.

Fig. 2. Energy-aware design pattern framework structure, adapted from [32].

The design of the framework is related to the concepts proposed in [4] but
modified to take power consumption instead of safety aspects into account.
Additionally, the decoupling of hardware and software for power consumption
is removed. The structure of the proposed framework description is divided into
the three main parts General Information, Description, and Impact on Non-
Functional Requirements, as shown in Fig. 2.

General Information: This part describes the meta-information of a design
pattern and contains the following elements:

– Pattern Name: A unique name that identifies the design pattern.
– Other Names: Existing other well-known names (e.g. from other disciplines

or domains).
– Strategy : A description of how power consumption parameters (c.f. Sect. 3.3)

are addressed and influenced by the design pattern.
– Related Patterns : Names of other design patterns realizing the same or a

closely related concept, if available.
– Known Uses: Other domains or disciplines (e.g. electrical engineering) or

existing solutions using this design pattern successfully.

Description: This part covers the basic definitions of the design pattern concept
and general conditions for an effective utilization. The structure is based on [11]
and contains the following elements:

– Abstract : A short description of the pattern to provide a first overview.
– Context : Description of the situation in which this pattern can be applied.
– Preconditions: Conditions including requirements and properties of the under-

lying hardware architecture, which must be fulfilled to apply the pattern suc-
cessfully.

– Problem: Description of the problem to be solved by this design pattern. The
problem statement should be expressed as a question.

– Realization: Contains a description of the implementation details. As a gra-
phical representation of the implementation details, Unified Modeling Lan-
guage (UML) [23] diagrams (e.g. structure, class, and object diagrams) can

Energy-Aware Pattern Framework 189

be added to the textual description. Additionally, other UML diagrams like
state, timing, activity, or sequence diagrams can be used to define aspects of
the implementation.

Impact on Non-functional Requirements: This section describes the
impact on power consumption, execution time as energy-related NFRs, and con-
sequences like development costs or modifiability. Design patterns addressing
energy-related problems can have a negative influence on other NFR like exe-
cution time. Furthermore, this results in a trade-off between additional energy
overhead and total energy savings.

– Power Consumption: For a unified description, we introduce the energy bal-
ance EBP and the efficiency factor ηP to describe the impact on power
consumption. EBP indicates possible savings, where a higher value of EBP

suggests greater possible savings. ηP enables a quantitative evaluation of the
efficiency of energy savings (effort-saving ratio). ηP ≥ 1 means a design pat-
tern applied in a specific situation saves energy without additional effort.
Otherwise, when a design pattern is not effective and does not save energy,
ηP ≤ 0. Values within]0, 1[describe a trade-off between additional energy
overhead and energy savings. A power-timing diagram is added to the descrip-
tion to outline the behavior of a design pattern.

– Execution Time/Latency : Describes the impact of a design pattern on the
execution time and additional latencies.

– Consequences: Drawbacks and side-effects regarding the behavior and control
flow as well as additional hardware requirements. This can lead to adapta-
tions, which must be addressed by the software developer.

4 Introduction of the Pattern Catalog

In this section, we use the design pattern framework introduced in Sect. 3.3 as
a template to describe energy-aware design patterns. The pattern catalog con-
tains a total of six different energy-aware design patterns. Four are revised and
extended versions of design patterns presented in [32], while two are newly intro-
duced in this paper. Each description contains a uniform power-timing diagram
as a graphical representation of the behavior related to power consumption, com-
putation power, and execution time. Based on this diagram, design patterns are
evaluated with the proposed metrics EBP and ηP , described in Sect. 3.3.

4.1 Pattern: Energy-Aware Sampling (EAS)

General Information
Other Names: Adaptive Sampling (proposed in [33]) or Energy-Aware Switching
when this pattern is used for a processor (c.f. Strategy description).

190 M. Schaarschmidt et al.

Strategy : Energy-Aware Sampling (EAS) influences the time t a peripheral device
is operating in an active state. By lowering the sampling rate (respectively the
active time), a peripheral device can be inactive for longer periods and the pro-
cessor can enter a lower power state. Increasing the sampling rate increases the
power consumption of the component due to a longer active period. This pat-
tern can also be used to switch periodically between a processor’s active and low
power states.

Related Patterns : Cost-Aware Sampling and Quality of Service Based Sampling
as two specializations of the generic EAS pattern are described in [20]. The first
pattern adapts the sampling rate according to energy consumption, memory size,
and communication bandwidth, while the second pattern affects the sampling
rate based on transmission network performance.

Known Uses: A dynamically adapting sampling frequency is used in [33] to save
approx. 31% of the system’s battery energy during a three months continuous
water quality monitoring period.

Description
Abstract : The main purpose of EAS is to adjust the sample rate of peripheral
devices or to switch between the power modes of processors. The sample rate
itself has a strong impact on the power consumption of the system [36]. When
EAS is used in combination with a sensor, the lowest sample frequency fsample

should be fsample > 2 · fmax to extract all the necessary information [16].

Context : This pattern is highly suitable for periodic systems (e.g. constant sam-
pling rates) without interrupts. EAS can be used for peripheral devices in situ-
ations when signal characteristics are known and algorithms for data processing
can handle varying sample rates. For processors, EAS can be applied when the
application flow contains a high percentage of idling time.

Preconditions: Peripheral devices addressed by this pattern must have the capa-
bilities to adjust the sampling rate. When used in combination with a processor,
a dynamic change of power states must be supported.

Problem: How can the energy consumption of a system be optimized by adjusting
the sample rate of a peripheral device or by reducing the active state duration
of a processor?

Realization: EAS has a minimal impact on the software application. A static
adjustment of the sample rate for peripheral devices can be achieved during the
startup process of software applications. If the adjustment is supposed to vary
during runtime, further software components (e.g. algorithms, data transmis-
sions) need to be considered. When EAS is used to adjust the active time of

Energy-Aware Pattern Framework 191

processors, parts of the application containing idling times need to be identified.
For those parts, the processor can be set to a lower power state.

Impact on Non-functional Requirements
Figure 3 shows the power-timing diagram for the basic definition of EAS applied
on a processor without considering peripheral devices and sensors.

Fig. 3. EAS power characteristics [32].

Energy Consumption: The power consumption is defined in the upper part of
Fig. 3, where the sleep mode is defined as P0 and the normal mode as P1. The
lower part represents the computing power, where CP1 described the computing
power in normal mode. The power (duty) cycle for such applications is defined as:

D =
c

T
c = t3 − t1 T = t3 − t0 (2)

D′ =
c

T ′ T ′ = t4 − t0 (3)

with the duration c when the processor is in normal mode and T as the overall
period. When EAS is applied, a new period T ′ > T is defined, leading to a
new relaxed power cycle D′. EBP can be calculated using the Eq. (2)–(3) and
ΔP10 = P1 −P0. When taking other peripheral devices like sensors into account,
Eq. (4) needs to be extended, which is beyond the scope of this paper.

EBP = Enormal − Erelaxed

= (D · ΔP10) − (D′ · ΔP10)
= ΔP10 (D − D′)

(4)

There exists a linear relationship between relaxing the duty cycle and energy
savings. Since additional power or computing power effort is not required, the
efficiency factor can be defined as ηP = 1.

192 M. Schaarschmidt et al.

Execution Time/Latency : The execution time of a software application is
effected, when adapting the duty cycle. Furthermore, periodic latencies like wait-
ing periods during measurements of a sensor can be reduced.

Consequences: When using EAS to adjust the reading of a sensor, the number
of total data points, and the accuracy of the sampled signal decreases.

4.2 Pattern: Event-Based Computing (EBC)

General Information
Other Names: None

Strategy : Processors can achieve a low energy consumption by minimizing the
time spent in an active mode and maximizing the time operating in a low power
mode. This pattern reduces the active time (t) of a processor by using interrupts
instead of polling loops. The processor can instead operate in a low power mode
and will be triggered by a peripheral device when an event occurs.

Related Patterns : None

Known Uses: In event-based development, internal and external interrupts can
be used to trigger specific software functions which can cause spontaneous behav-
ioral changes. Peripheral devices like an analog-to-digital converter (ADC) and
external devices (e.g. NXP CLRC663 plus [22]) are using interrupts to signal the
host processor when thresholds are reached or changes detected.

Description
Abstract : The Event-Based Computing (EBC) design pattern optimizes the
power consumption of the processor by replacing polling loops in the software
application with interrupt implementations. Interrupts can be used by internal
and external peripheral devices to indicated state changes directly. They serve
as triggers for events and cause a spontaneous change in the state of a software
application. Peripheral devices can operate without intervening the processor,
which only needs to be active for data processing purposes.

Context : EBC can be used when a software application has to react to events
caused by a peripheral device. This pattern is suitable for time-critical systems.

Preconditions: This pattern requires peripheral devices with interrupt support
and build-in trigger functionalities e.g. ADCs combined with comparators or
external devices (e.g. NXP CLRC663 plus).

Energy-Aware Pattern Framework 193

Problem: How can a system be able to process discrete events but remain in a
low power state most of the time?

Realization: Polling forces the application to constantly query peripheral devices.
This behavior produces wait cycles and keeps the processor in active mode per-
manently, which leads to a significantly increased power consumption. Avoidable
wait cycles can be replaced by interrupts and interrupt service routines (ISR).
An application can enable the processor to enter a low power mode and configure
peripherals to wake up the processor if necessary.

Impact on Non-functional Requirements
Figure 4 outlines the basic power characteristics of the EBC design pattern.

Fig. 4. EBC power characteristics.

Energy Consumption: The upper part of Fig. 4 contains the power levels P0 for
the low power mode and P1 for the active mode of a processor. When no pattern
is applied, the application in this basic example constantly queries a peripheral
device at a fixed interval. For a better understanding of the behavior, we intro-
duce the terms miss and hit. A miss is defined as a polling operation where the
result does not lead to a behavioral change of the application (e.g. a following
data processing). In case of a hit, the result exceeds an internal threshold and
the data from a peripheral device leads to computationally intensive operations.
When this pattern is applied, the processor will be notified and can query periph-
eral devices if necessary and directly start computationally intensive operations.
To reduce complexity, the duration of a hit and the interrupt solution are equal.
The following declarations are required to describe the behavior:

Δtmiss = t1 − t0 Δthit = Δtinterrupt = t2 − t3 ΔP10 = P1 − P0 (5)

194 M. Schaarschmidt et al.

In Eq. 6, n defines the number of polling requests which do not lead to further
data processing (miss). Energy savings result from the avoidance of such polling
requests. The efficiency factor ηP = 1 since the basic implementation of this pat-
tern doesn’t produce additional power-related overhead, if Δthit = Δtinterrupt.

Epolling = n · (Δtmiss · ΔP10) + Δthit · ΔP10 (6)
Einterrupt = Δthit · ΔP10 (7)

EBP = Epolling − Einterrupt = n · (Δtmiss · ΔP10) (8)

Execution Time/Latency : Changing from a polling to an event-based approach
has no negative effect on time-behavior. Event-driven software applications are
suitable for real-time requirements. Because the processor operates in a low
power mode in this basic example, additional overhead based on context switch-
ing when handling interrupts is not considered.

Consequences: Interrupts generally causing changes in the workflow and struc-
ture of the application, which has to be considered. Pin-based interrupts require
additional wires or lines which can lead to hardware design changes.

4.3 Pattern: PowerMonitor

General Information
Other Names: None

Strategy : The PowerMonitor design pattern [37] reduces the active time (t) of
a peripheral device and the overall capacity (n · C) of the system. It automati-
cally disables all peripheral devices and interfaces which are no longer in use or
requested by any part of the application.

Related Patterns : None

Known Uses: Known as power-gating [14], the principle of this design pattern is
used at the block level of the integrated circuit design (hardware layer).

Description
Abstract : This design pattern considers the power consumption properties of
internal peripheral devices of a system on a chip (SoC) and external periph-
eral devices. This also includes interfaces with various devices connected to it.
The centralized approach allows a deep knowledge of devices and can disable or
change their power modes dynamically when they are temporarily not needed.

Context : The PowerMonitor can be used when an application has to periodically
access peripheral interfaces and devices. It can also be applied when a central-
ized and fine-grained hardware access control has to be achieved.

Energy-Aware Pattern Framework 195

Preconditions: The software application requires access of all considered inter-
faces (e.g. I2C) and must have the capability to disable and enable external
devices (e.g. sensors and actuators) as well as clocks of functional units.

Problem: How can a software application with a fine-grained dynamic power
consumption strategy be implemented, which only enables peripheral devices on
request? Additionally, how can conflicts between sleep modes (e.g. preventing
software from being executed) and use cases with continuous tasks be addressed?

Realization: A reference implementation follows a template meta-programming
approach is described in our previous work [37].

Impact on Non-functional Requirements
The power-timing diagram in Fig. 5 sketches the power characteristics of the
PowerMonitor design pattern.

Fig. 5. PowerMonitor power characteristics [32].

Energy Consumption: In this example we assume, that the considered functional
unit and the peripheral device are disabled before t0. This state is denoted
as P1. At first, the functional unit (e.g. I2C) to access devices is enabled at
t0. Afterwards at t1, the peripheral device (e.g. sensor connected via I2C) gets
enabled. The following declarations are required to describe the behavior:

T = t4 − t0 ΔP21 = P2 − P1 ΔP31 = P3 − P1 (9)
Δt10 = t1 − t0 Δt21 = t2 − t1 Δt32 = t3 − t2 (10)

For the time frame Δt21, the application can use the device without any loss of
functionality. During Δt21 the power consumption level is P3. After utilization,
the PowerMonitor dynamically disables the external device and the functional

196 M. Schaarschmidt et al.

unit while the power consumption drops back to the previous level P1. Possible
energy savings can be calculated using Eq. (9)–(10) and are related on the power
consumption of the SoC’s functional unit ΔP21 and the external device ΔP31.

Enormal = T · ΔP31

Emonitor = (Δt10 + Δt32) · ΔP21︸ ︷︷ ︸
≈0

+Δt21 · ΔP31

EBP = Enormal − Emonitor

= ΔP31 · (T − Δt21)

(11)

The first part of Emonitor can be ignored since enabling functional units usually
takes only a few clock cycles. The computing power (lower part of Fig. 5) is not
affected by this pattern and remains constant at level CP1. The efficiency factor
ηP = 1 because the basic concept does not require additional energy.

Execution Time/Latency : Additional latencies are caused by application over-
head and during switching affected hardware on and off. These kinds of latencies
cannot be generalized because they depend on the specific implementation of the
software application and hardware layer characteristics. Therefore, latencies are
not considered in the description of the basic concept shown in Fig. 5.

Consequences: Switching peripheral devices on and off in a short interval can
lead to increased power consumption, e.g. by re-establishing a radio connection
or the preheating phase of gas sensors.

4.4 Pattern: Direct Memory Access Delegation (DMAD)

General Information
Other Names: None

Strategy : The process of transferring a huge amount of data can take a long time
and depends on the clock settings of the used transfer bus, the source’s reading
speed as well as the destination’s writing speed. During this transfer time, the
processor core is operating in active mode. The strategy of this pattern is to
use the Direct Memory Access (DMA) peripheral to handle the data and mem-
ory transfer without the usage of a processor, which can be set to a low power
mode to reduce power consumption. This leads to a lower overall capacity (n ·C)
if devices can be turned off completely. Additionally, DMA transfer is usually
faster, which also reduces the active time t of a system.

Related Patterns : None

Known Uses: High Speed Serial Port [9] describes a hardware interface design
pattern where the DMA is used to transfer data between a serial device and
memory without intervention of the processor.

Energy-Aware Pattern Framework 197

Description
Abstract : The Direct Memory Access Delegation (DMAD) pattern optimizes the
power consumption of a system by using the DMA for data transfers between
peripheral devices and memory units. The processor, which would otherwise be
responsible for the communication, can be set to a lower power mode.

Context : This design pattern is highly suitable for use cases, where larger data
transfers or continuous data streams need to be processed automatically. The
processor can be set to a low power state if no other application workload has to
be computed for the data transfer period. This pattern should also be considered
if a high-speed data transfer up to 100 Mbps is needed since a DMA needs fewer
clock cycles compared to a processor.

Preconditions: This design pattern requires a processor with DMA capability.

Problem: How can data be transferred between peripheral devices or memory
units without using the processor?

Realization: DMAD is independent of the software application but depends on
the hardware platform and the wiring of the DMA. DMA controllers and inter-
rupts are typically configured during the application’s initialization phase. The
processor only needs to respond to those interrupts and ISRs which for example
are triggered when a data transfer task by the DMA is finished. Common use
cases are audio and video data streams and continuous ADC values, which can
be directly transferred into the memory or to other peripheral devices.

Impact on Non-functional Requirements
Figure 6 outlines the power characteristics of the DMAD design pattern.

Fig. 6. DMAD power characteristics.

198 M. Schaarschmidt et al.

Energy Consumption: For a basic understanding of the impact on power con-
sumption and time behavior, the power-timing diagram describes only a simpli-
fied use case. The upper part in Fig. 6 shows the temporal behavior and the
power consumption levels of the pattern. P0 is defined as the state where the
processor core and DMA are operating in a low power mode. In P1 the DMA is
active and in P2 the processor is operating. For simplification, the configuration
overhead and possible power consumption when the DMA is idling are ignored.
To calculating the energy balance EBP , we define:

ΔP10 = P1 − P0 ΔP20 = P2 − P0 (12)
Δt10 = t1 − t0 Δt20 = t2 − t0 (13)

For this pattern EBP can be calculated using Eq. (12)–(13):

EBP = Enormal − Edma (14)
= (Δt20 · ΔP20) − (Δt10 · ΔP10 + Δt21 · ΔP20) (15)
= Δt10 · (ΔP20 − ΔP10) (16)

Since DMAD not require additional power consumption or computing power
effort, the efficiency factor can be defined as ηP = 1.

Execution Time/Latency : Due to the use of the DMA, this pattern accelerates
the data transfer which has a positive impact on the overall execution time. Fur-
thermore, the processor core can use the number of cycles saved for other tasks.

Consequences: An additional overhead is caused by the configuration of the
DMA device. For example, if only a few data values have to be read from the
ADC, additional processor cycles for setting up the DMA controller neutralize
the effect of the design pattern. In addition, the structure of the application has
to be reviewed to support interrupts.

4.5 Pattern: Mirroring

General Information
Other Names: None

Strategy : This design pattern describes strategies to lower the time (t) and capac-
ity (n ·C) (cf. Sect. 3.2) of a system by shifting the application (partly) between
processor cores during runtime. The execution time of compute-intensive parts
can be reduced by migrating from an energy-efficient to a high-performance core.
When a significant amount of idle time exists, tasks can be moved from a high-
performance to an energy-efficient core.

Related Patterns : If multiple cores are used simultaneously for a short period of
time to finish the workload earlier, it corresponds to the Race-To-Sleep design
pattern (c.f. Sect. 4.6).

Energy-Aware Pattern Framework 199

Known Uses: ARM’s big.LITTLE describes a technology for heterogeneous mul-
tiprocessor architectures. With this architecture, ARM is able to assign threads
either to a high-performance or energy-efficiency core depending on the expected
computational intensity [39].

Description
Abstract : The Mirroring design pattern is able to migrate an application or parts
of the workload (tasks) between processor cores with different levels of power
consumption. It can be adapted for heterogeneous and multi-core processors.

Context : Developing energy-efficient applications in situations where the under-
lying hardware architecture contains multiple cores and the execution environ-
ment of tasks can be controlled dynamically.

Preconditions: A typical configuration consists of a fast, high-performance pro-
cessor core alongside a slower, energy-efficient core. Each processor/core must be
able to communicate with other processors/cores (e.g. signaling) and to change
the operation mode or the operating frequency during runtime.

Problem: How can a software application or parts of the application (tasks) be
switched dynamically between individual cores of a multi-core system or proces-
sors during runtime to increase energy efficiency?

Realization: The concept of this pattern can be applied to different processor
architectures. A proposed software-based implementation was presented in [32].
With support of technologies like ARM’s big.LITTLE, tasks can be switched
between cores without the need to extend parts of the software design.

Impact on Non-functional Requirements
Figure 7 outlines the basic power characteristics of the Mirroring design pattern.
Energy Consumption: The purpose of this pattern is to optimize the power
consumption by dynamically controlling different cores of a processor or mul-
tiple processors of a system. The impact on power consumption depends on
how the cores are controlled. Figure 7 shows the power-timing diagram as an
example for a dual-core processor consisting of an energy-efficient core and a
high-performance core. The use case describes a migration of a task running on
a high-performance core to an energy-efficient core. The upper part of Fig. 7
describes the power consumption P of the processor, with P0 if both cores are in
sleep mode, P1 if the energy-efficient core is active, P2 if the high-performance
core is active and P3 if both cores are active. The computing power CP is
defined as CP1 for the energy-efficient core, CP2 for the high-performance core,
and CP3 as the computing power for both cores. The mirroring of a task starts
at t0. The application moves relevant tasks from the high-performance to the
energy-efficient core. During this time frame, both cores are active and causing a
power-consumption overhead. At t1, the high-performance core is set into a low

200 M. Schaarschmidt et al.

Fig. 7. Mirroring power characteristics.

power mode. Between t1 and t2, the system is utilizing the low-power core. At
t2, the process of task mirroring by shifting back to the high-performance core.
We define:

Δt10 = t1 − t0 Δt21 = t2 − t1 Δt32 = t3 − t2 (17)
ΔP21 = P2 − P1 ΔP32 = P3 − P2 (18)
ΔP32

ΔP21
= qP < 1

Δt10
Δt21

= qt < 1 (19)

and assume that Δt32 = Δt10. Using Eq. (17)–(19), EBP can be calculated:

EBP = Esave − Eadd

= ΔP21 · Δt21 − 2 · ΔP32 · Δt10

= ΔP21 · Δt21(1 − 2 · qP qt)
(20)

The efficiency factor is specified as ηP = (1 − 2 · qP qt). For a given qp = 0.125
and qt = 0.1, efficiency factor can be calculated as ηP = 0.975. The efficiency
of this design pattern highly depends on the application’s workflow as well as
processor characteristics. Each change of a state (e.g. go-to-sleep and wake-up)
consumes energy by the process of loading and unloading transistors, which has
to be considered in the application design [38].

Execution Time/Latency : This pattern impacts the execution time in two differ-
ent ways. The first impact is related to the overhead during the execution of the
application responsible for the task control. The second impact is caused by the
migration process itself. Additionally, if a task is moved between two differently
clocked cores, the execution time can be shortened or extended.

Energy-Aware Pattern Framework 201

Consequences: This pattern can be modified to assign m different tasks to n
cores (m ≥ n) . Development costs are low if processors/cores have the same
architecture, compiler, and programming language. If source code for a task has
to be ported from e.g. C++ to Assembler, the development costs will increase
due to the variety of implementations for the same task.

4.6 Pattern: Race-To-Sleep

General Information
Other Names: Race-To-Idle, Race-To-Halt, Race-To-Zero, Race-To-Black.

Strategy : Race-To-Sleep can be applied in two basic variants to influence the time
behavior (t). In a single-core environment, the processor uses the highest possi-
ble operating frequency to compute the application workload as fast as possible.
After the associated task is finished, the processor switches to a low-power state
to save energy. The second variation is defined for a multi-core environment,
where the application can be split and executed on different processor cores.

Related Patterns : When applied to a single-core environment, the concepts is
equal to DFS [27].

Known Uses: The basic concept of this pattern is used for speed scaling in [3].
A multi-core scenario is described in [31].

Description
Abstract : This design pattern can influence the dynamic part Pdyn and static part
Pstat of the power consumption described in Sect. 3.1. The implementation type
depends on processor characteristics and the application structure. Computing-
intensive applications can profit especially from this pattern. In single-core usage,
the highest possible operating frequency can be used. Applied on a multi-core
processor, the application can be split and executed on different processor cores.

Context : Race-To-Sleep can be used in situations where applications are com-
putationally intensive or contain computational intensive sections.

Preconditions: The processor must be able to change the frequency during run-
time when used in single-core environments. In multi-core setups for parallel
processing, software developers must ensure, that the application can be (partly)
parallelized and does not induct bottlenecks due to serialization.

Problem: How can an application be computed as fast as possible while also
maximizing the time a system can operate in a low-power mode?

Realization: The basic concept of this design pattern can be applied by adjusting
the frequency or by splitting the workload to different cores. Frequency alteration

202 M. Schaarschmidt et al.

has to be supported by the operating system or has to be implemented using
software libraries and advanced algorithms. A simple approach can be achieved
by measuring the current workload or using provided performance counters of
the processor. For a dual-core processor, a fork-join approach can be used to
split the workload and speed-up the computation.

Impact on Non-functional Requirements
The impact of this pattern is demonstrated using a dual-core processor example.

Energy Consumption: The upper part of the power-timing diagram (Fig. 8)
shows the temporal behavior of the pattern with the power consumption lev-
els P0 for the low-power or sleep mode, P1 for the normal mode, and P2 for the
race mode. In this example, only one processor core is active in P1 while in P2

both cores are used.

Fig. 8. Race-To-Sleep power characteristics [32].

When a single-core processor is used, P2 defines the mode where the maxi-
mum frequency is used. In the lower part of Fig. 8, CP1 describes the computing
power for the normal mode and CP2 for the race mode. The time between t0
and t1 specifies the active time of the race mode while t2 defines the beginning
of the sleep mode. With this pattern applied, the application enters race mode
at t0, where the computing power and power consumption, are increased. When
the computation is finished, the application switches back to the sleep mode at
t1. To calculate the effectiveness, the following declarations and assumptions are
required:

Energy-Aware Pattern Framework 203

ΔP10 = P1 − P0 ΔP21 = P2 − P1 ΔP21 < ΔP10 (21)
Δt10 = t1 − t0 Δt21 = t2 − t1 Δt10 ≥ Δt21 (22)

ΔP21

ΔP10
= qP < 1

Δt10
Δt21

= qt ≥ 1 (23)

qP is defined as the quotient between the power consumption and qt as the
quotient between the duration of the race mode P2 and normal mode P1. EBP

can be calculated using Eq. (21–23) and is positive if the energy savings are
larger than the additional energy required to finish the computing earlier.

EBP = Esave − Eadd (24)
= ΔP10 · Δt21 − ΔP21 · Δt10 (25)
= ΔP10 · Δt21(1 − qP qt) (26)

The efficiency factor ηP can be defined as (1 − qP qt). As an extension of our
previous work, we evaluate our model using Amdahl’s law [26] which describes
the execution time of an application when switching from a sequential to a
parallel approach. The speedup S can be defined as:

S =
TS

TP
=

1
f + 1−f

p

(27)

TS is defined as the sequential execution time, f is the sequentially performed
proportion of an algorithm with 0 ≤ f ≤ 1, p defines the number of used processor
cores and TP the parallel execution time with TP = f · TS + (1 · f)/p · TS . Those
definitions can be used to redefine some of our calculations:

Δt20 = TS Δt10 = TP (28)
ΔP21

ΔP10
= g · (p − 1) = qP

Δt10
Δt21

=
TP

TS − TP
=

1
S − 1

= qt (29)

g = [0, 1] is defined as the relative proportion (ΔP21
ΔP10

) of the power consumption
of an additional processor core.

EBP = (ΔP10 · (TS − SP)) − (ΔP10 · g · (p − 1) · TP) (30)

= ΔP10 · (TS − TP)(1 − qP · TP

TS − TP
) (31)

= ΔP10 · Δt21(1 − qP · qt) (32)

ηP = 1 − g · (p − 1) · 1
(S − 1)

= 1 − qP · qt (33)

Considering the MPC8641 multi-core system [34] as an example. The additional
energy consumption is 30% (g = 0.3) higher compared to a single-core usage.
With an overhead of 10% (non-parallelizable part of the application) f = 0.1 and
a dual core setup (p = 2), the following calculations for ηP can be performed.

S =
1

0.1 + 0.45
= 1.81 =⇒ qt ≈ 1.2, qp = 0.3 (34)

ηP = 1 − (0.3 · 1.2) = 0.64 (35)

204 M. Schaarschmidt et al.

Execution Time/Latency : The pattern accelerates the processing and has there-
fore a positive effect on the application’s runtime. The overall execution time
of an application is difficult to predict if power consumption levels are changing
dynamically during runtime.

Consequences: Developers have to consider other peripheral devices (e.g. timers)
when adjusting the frequency of a processor, because they may use the same
clock generators. Clock-rate changes can also lead to negative side-effects and
undefined behavior when timer-related intervals are used. The application has to
be designed without blocking accesses and waiting periods, because they cannot
be parallelized and are reducing the overall efficiency.

5 Discussion

The design pattern framework has been evaluated by achieving a uniform
description of various design patterns. The power-timing diagram sketches the
behavior of each pattern focusing on power consumption during runtime. The
introduced metrics are a helpful tool to quantifiably describe power-related
aspects and to compare the energy efficiency of a pattern implemented on differ-
ent systems. While the framework enables the described advantages, it currently
also has two limitations. First, the efficiency factor is not suitable for comparing
different patterns used on the same hardware configuration. Second, meta-design
patterns like energy-aware user interfaces (e.g. energy-adaptive displays) are cur-
rently not supported the framework.

6 Conclusion

In this paper, we presented a novel approach to include power consumption in
the description of software design patterns for embedded systems. First, we iden-
tified power consumption characteristics and described the impact of software
on those characteristics. Second, a framework to describe energy-aware software
design patterns has been proposed. The approach extends well-known pattern
descriptions with attributes related to power consumption and time behavior,
which are also part of the proposed power-timing diagram as a uniform graphi-
cal behavior description. Additionally, we introduced two metrics energy balance
EBP and efficiency factor ηP to express the effectiveness of a design pattern
for a given use case. EBP describes the difference between the ability to save
energy and additional energy consumption. ηP makes possible energy savings
quantifiable and can describe the trade-off between energy savings and energy
overhead of a pattern. The introduced design pattern framework can be used
by both researchers and software developers. Researches can uniformly doc-
ument new design patterns using the provides framework structure, metrics,
and power-timing diagram while software developers use the introduced design
pattern catalog to address energy-related problems. Furthermore, the uniform

Energy-Aware Pattern Framework 205

representation achieved by the framework can help to speed-up the selection of
best-fitting design pattern and the overall decision-making process.

Future work following the current results includes an analysis of the impact
on power consumption in situations where more than one pattern is used simulta-
neously. Additionally, we want to extend framework description for energy-aware
user interfaces.

References

1. Abd El-Mawla, N., Badawy, M., Arafat, H.: Iot for the failure of climate-change
mitigation and adaptation and IIot as a future solution. World J. Environ. Eng.
6(1), 7–16 (2019). https://doi.org/10.12691/wjee-6-1-2

2. Abdulsalam, S., Lakomski, D., Gu, Q., Jin, T., Zong, Z.: Program energy efficiency:
The impact of language, compiler and implementation choices. In: International
Green Computing Conference (IGCC), pp. 1–6. IEEE, Piscataway (2014)

3. Albers, S., Antoniadis, A.: Race to idle. ACM Trans. Algorithms 10(2), 1–31
(2014). https://doi.org/10.1145/2556953

4. Armoush, A.: Design patterns for safety-critical embedded systems. Ph.D. thesis,
Aachen (2010). http://publications.rwth-aachen.de/record/51773

5. Banerjee, A., Chattopadhyay, S., Roychoudhury, A.: On testing embedded soft-
ware. In: Advances in Computers, vol. 101, pp. 121–153. Elsevier (2016)

6. Bunse, C., Höpfner, H.: Resource substitution with components - optimizing energy
consumption. In: ICSOFT - Proceedings of the 3rd International Conference on
Software and Data Technologies, Volume SE/MUSE/GSDCA, Porto, Portugal, 5–8
July, pp. 28–35. INSTICC Press (2008)

7. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems. The Addison-Wesley Object Technology Series. Addison-Wesley,
Boston, London (2003)

8. Douglass, B.P.: Design Patterns For Embedded Systems in C: An Embedded Soft-
ware Engineering Toolkit. Newnes/Elsevier, Oxford and Burlington (2011)

9. EventHelix.com Inc.: High speed serial port design pattern (2019). http://www.
eventhelix.com/RealtimeMantra/PatternCatalog/high speed serial port.htm.
Accessed 03 Aug 2020

10. Feitosa, D., Alders, R., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Investi-
gating the effect of design patterns on energy consumption. J. Softw. Evol. Process
29(2), e1851 (2017). https://doi.org/10.1002/smr.1851

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Bosto (1994)

12. Grunwald, A., Schaarschmidt, M., Westerkamp, C.: Lorawan in a rural context:
Use cases and opportunities for agricultural businesses. In: Mobile Communication
- Technologies and Applications; 24. ITG-Symposium, pp. 134–139. VDE-Verl.
GmbH, Berlin (2019)

13. Hammadi, A., Mhamdi, L.: A survey on architectures and energy efficiency in data
center networks. Comput. Commun. 40, 1–21 (2013)

14. Jiang, H., Marek-Sadowska, M., Nassif, S.R.: Benefits and costs of power-gating
technique. In: International Conference on Computer Design. pp. 559–566. IEEE
Computer Society, Los Alamitos (2005)

15. Kim, N.S., et al.: Leakage current: Moore’s law meets static power. Computer
36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885

https://doi.org/10.12691/wjee-6-1-2
https://doi.org/10.1145/2556953
http://publications.rwth-aachen.de/record/51773
http://www.eventhelix.com/RealtimeMantra/PatternCatalog/high_speed_serial_port.htm
http://www.eventhelix.com/RealtimeMantra/PatternCatalog/high_speed_serial_port.htm
https://doi.org/10.1002/smr.1851
https://doi.org/10.1109/MC.2003.1250885

206 M. Schaarschmidt et al.

16. Landau, H.J.: Sampling, data transmission, and the Nyquist rate. Proc. IEEE
55(10), 1701–1706 (1967). https://doi.org/10.1109/PROC.1967.5962

17. Lim, C., Ahn, H.T., Kim, J.T.: Predictive dvs scheduling for low-power real-time
operating system. In: 2007 International Conference on Convergence Information
Technology, pp. 1918–1921. IEEE Computer Society, Los Alamitos (2007)

18. Litke, A., Zotos, K., Chatzigeorgiou, A., Stephanides, G.: Energy consumption
analysis of design patterns. Int. J. Electr. Comput. Energ. Electron. Commun.
Eng. 1(11), 1663–1667 (2007)

19. Maleki, S., Fu, C., Banotra, A., Zong, Z.: Understanding the impact of object ori-
ented programming and design patterns on energy efficiency. In: 8th International
Green and Sustainable Computing Conference (IGSC), pp. 1–6. IEEE (2017)

20. Mískowicz, M.: Event-Based Control and Signal Processing. Embedded Systems.
CRC Press, Boca Raton (2016)

21. Noureddine, A., Rajan, A.: Optimising energy consumption of design patterns. In:
Proceedings of the 37th International Conference on Software Engineering, ICSE
2015, vol. 2, pp. 623–626. IEEE Press, Piscataway (2015)

22. NXP Semiconductors: An11783 - clrc663 pluslow power card detection (2017).
https://www.nxp.com/docs/en/application-note/AN11783.pdf

23. Object Management Group: Unified Modeling Language, Version 2.5.1. OMG Doc-
ument Number formal/17-12-05 (2017). https://www.omg.org/spec/UML/2.5.1/

24. Oshana, R., Kraeling, M.: Software Engineering for Embedded Systems: Methods,
Practical Techniques, And Applications. Newnes/Elsevier, Waltham (2013)

25. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about
software energy consumption? IEEE Softw. 33(3), 83–89 (2016)

26. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/Software Interface. The Morgan Kaufmann Series in Computer Architecture
and Design. Elsevier/Morgan Kaufmann, Amsterdam and Boston (2014)

27. Pering, T., Burd, T., Brodersen, R.: The simulation and evaluation of dynamic
voltage scaling algorithms. In: Chandrakasan, A., Kiaei, S. (eds.) Proceedings. pp.
76–81. ACM Order Dept, NY (1998). https://doi.org/10.1145/280756.280790

28. Procaccianti, G., Lago, P., Bevini, S.: A systematic literature review on energy
efficiency in cloud software architectures. Sustain. Comput. (SUSCOM) 7(9), 2–10
(2015). https://doi.org/10.1016/j.suscom.2014.11.004

29. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of
things patterns for devices. In: 2017 Ninth international Conferences on Pervasive
Patterns and Applications (PATTERNS), pp. 117–126 (2017)

30. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of
things patterns for devices: Powering, operating, and sensing. Int. J. Adv. Internet
Technol. 10, 106–123 (2017)

31. Rossi, D., Loi, I., Pullini, A., Benini, L.: Ultra-low-power digital architectures for
the internet of things. In: Alioto, M. (ed.) Enabling the Internet of Things, pp.
69–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51482-6 3

32. Schaarschmidt, M., Uelschen, M., Pulvermüller, E., Westerkamp, C.: Framework
of software design patterns for energy-aware embedded systems. In: Proceedings of
the 15th International Conference on Evaluation of Novel Approaches to Software
Engineering, vol. 1: ENASE. pp. 62–73. INSTICC, SciTePress (2020)

33. Shu, T., Xia, M., Chen, J., Silva, C.D.: An energy efficient adaptive sampling
algorithm in a sensor network for automated water quality monitoring. Sensors
17(11), 2551 (2017). https://doi.org/10.3390/s17112551

https://doi.org/10.1109/PROC.1967.5962
https://www.nxp.com/docs/en/application-note/AN11783.pdf
https://www.omg.org/spec/UML/2.5.1/
https://doi.org/10.1145/280756.280790
https://doi.org/10.1016/j.suscom.2014.11.004
https://doi.org/10.1007/978-3-319-51482-6_3
https://doi.org/10.3390/s17112551

Energy-Aware Pattern Framework 207

34. Svennebring, J., Logan, J., Engblom, J., Strömblad, P.: Embedded multicore:
An introduction (2009). https://www.nxp.com/files-static/32bit/doc/ref manual/
EMBMCRM.pdf

35. Tan, T.K., Raghunathan, A., Jha, N.K.: Software architectural transformations: a
new approach to low energy embedded software. In: Design, Automation, and Test
in Europe Conference and Exhibition. pp. 1046–1051. IEEE Computer Society, Los
Alamitos (2003). https://doi.org/10.1109/DATE.2003.1253742

36. Tobola, A., et al.: Sampling rate impact on energy consumption of biomedical
signal processing systems. In: IEEE 12th International Conference on Wearable
and Implantable Body Sensor Networks (BSN), pp. 1–6. IEEE (2015)

37. Uelschen, M., Schaarschmidt, M., Fuhrmann, C., Westerkamp, C.: Powermonitor:
design pattern for modelling energy-aware embedded systems. In: Proceedings of
the International Conference on Embedded Software Companion, EMSOFT 2019,
ACM, New York (2019). https://doi.org/10.1145/3349568.3351551

38. Urard, P., Vučinić, M.: IoT nodes: system-level View. In: Alioto, M. (ed.) Enabling
the Internet of Things, pp. 47–68. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-51482-6 2

39. Yu, K., Han, D., Youn, C., Hwang, S., Lee, J.: Power-aware task scheduling for
big.LITTLE mobile processor. In: International SoC Design Conference (ISOCC),
2013, pp. 208–212. IEEE (2013)

40. Zurawski, R.: Embedded Systems Handbook: Networked Embedded. Network
Embedded Systems, Systems. CRC Press, Boston (2017)

https://www.nxp.com/files-static/32bit/doc/ref_manual/EMBMCRM.pdf
https://www.nxp.com/files-static/32bit/doc/ref_manual/EMBMCRM.pdf
https://doi.org/10.1109/DATE.2003.1253742
https://doi.org/10.1145/3349568.3351551
https://doi.org/10.1007/978-3-319-51482-6_2
https://doi.org/10.1007/978-3-319-51482-6_2

Towards Evolvable Ontology-Driven
Development with Normalized Systems

Marek Suchánek1,2(B) , Herwig Mannaert2,3 , Peter Uhnák4 ,
and Robert Pergl1

1 Faculty of Information Technology, Czech Technical University in Prague,
Thákurova 9, Prague, Czech Republic

marek.suchanek@fit.cvut.cz, robert.pergl@fit.cvut.cz
2 Faculty of Business and Economics, University of Antwerp,

Prinsstraat 13, Antwerp, Belgium
herwig.mannaert@uantwerpen.be

3 Normalized Systems Institute, University of Antwerp,
Prinsstraat 13, Antwerp, Belgium

4 NSX bvba, Wetenschapspark Universiteit Antwerpen,
Galileilaan 15, 2845 Niel, Belgium

peter.uhnak@nsx.normalizedsystems.org

Abstract. Normalized Systems (NS) enables sustainable software devel-
opment and maintenance using code generation of evolvable information
systems from models of so-called NS Elements. To promote semantic
interoperability with other conceptual models, RDF and OWL technolo-
gies can be used for knowledge representation in NS as it is common
within the Semantic Web and Linked Open Data domains. Previous
research resulted in initial NS-OWL bi-directional transformation and
a prototype tool for its execution. In this extended paper, these efforts
are further elaborated into an evolvable solution based on NS Expanders.
The transformation utilizes RDF to encode all domain-specific structural
knowledge of an NS model to ensure bi-directionality. In addition, it also
maps entities of NS metamodel to OWL concepts to serve as an ontol-
ogy for underlying data. Because of the metacircular NS metamodel, any
NS model including the metamodel itself, can be transformed. Moreover,
the transformation of application data to or from RDF is also possible.
Having the NS metamodel, NS models, and potentially also data in RDF
opens further research possibilities in terms of analysis and integrations.
The use of NS Expanders caused that the solution can be easily extended
and refined, e.g. when the metamodel is updated. The results of our
research are expected to help with the design of real-world information
systems, including the NS tooling and the metamodel.

Keywords: Normalized systems · Ontology engineering ·
Model-driven development · Transformation · RDF · Expanders

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 208–231, 2021.
https://doi.org/10.1007/978-3-030-70006-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_9&domain=pdf
http://orcid.org/0000-0001-7525-9218
http://orcid.org/0000-0003-2424-7190
http://orcid.org/0000-0003-1057-6073
http://orcid.org/0000-0003-2980-4400
https://doi.org/10.1007/978-3-030-70006-5_9

Towards Evolvable Ontology-Driven Development with Normalized Systems 209

1 Introduction

Normalized Systems (NS) theory [20] describes how to build evolvable systems as
fine-grained modular structures. The theory is applicable to any domain related
to building some systems, for example, electrical or civil engineering. However, it
also describes how to build evolvable-proven software using so-called Elements.
NS theory is used already in practice to build, maintain, and evolve various
real-world and large-scale information systems [8,22]. The realization of the NS
theory exists in the form of code expanders and related tools to support their
execution, modelling NS Elements, and manage systems as applications and their
instances. The expanders are used to produce evolvable enterprise information
systems from models of its components, custom code fragments, and technologi-
cal settings. When change occurs in a model or technologies, the application can
be easily expanded again with the new modifications [7,15].

The NS models currently tie domain-specific knowledge (entities, their
attributes, processes, or views on entities) together with implementation-specific
configurations (data validation, form-rendering, attributes visibility, schedule
triggers, or integrations with external systems). The import and export func-
tionalities use XML format that is convenient to store data but not efficient for
integration and analysis. This is where help can be sought in ontologies that
are widely used in the software engineering domain to describe the meaning of
data in a machine-actionable and yet flexible format [3]. We aim to eliminate the
issues using the Resource Description Framework (RDF) and the Web Ontology
Language (OWL). More specifically, our goal is to devise bi-directional trans-
formation between NS models and OWL ontologies and to implement a tool for
executing this transformation similarly to the existing custom-XML import and
export. Having RDF representation of the NS model will allow to (re-)use many
of existing tools and techniques widely used in the Semantic Web and Linked
Data domains.

This paper extends the previous [27], where we designed initial bi-directional
transformation between Normalized Systems Elements and OWL domain ontolo-
gies. It also describes how we implemented a prototype using Java technologies.
The extension first focuses on an essential issue of our previous work – evolvabil-
ity. The prototype tested and proved the possibilities of exchanging OWL ontolo-
gies and NS Elements models (including the NS metamodel), but as a standalone
tool with dependencies of NS-related Java libraries, it would be unsustainable
for the longer term when changes in NS metamodel occurs. Moreover, we deal
also with other issues, such as violation of the “Don’t Repeat Yourself” (DRY)
principle, that we discuss further. All those issues are solved using the transition
from the standalone tool into NS expanders. Finally, valuable comments from
experts on the transformation are incorporated.

The paper first introduces relevant topics and related work together with
our previous research in Sect. 2. Then, we describe our approach in three parts.
Section 3 clarifies the design of the transformation for both directions between
OWL and NS as well as shows the differences from the original transformation.
Then, Sect. 4 explains the transition from standalone Java tool to NS Expanders

210 M. Suchánek et al.

for running the transformation. The transformation is then demonstrated in
the example case in Sect. 5. Various aspects of our solution, together with the
comparison between the current and the previous tools are discussed in Sect. 6.
Finally, Sect. 7 suggests possible future steps.

2 Related Work

In this section, we provide a brief overview of the relevant topics together with
references that are vital for our research. The overview provides a necessary
context for our approach and describes the previous work done on the transfor-
mation between NS and OWL.

2.1 RDF and OWL Technologies

An ontology in terms of computer science is a definition of concepts together with
their taxonomies, properties, and relationships. Sometimes it is also defined as
a “specification of a conceptualization”, which shows the relations to concep-
tual models [12]. Both ontologies and conceptual models share the same goal
to capture the semantics of a particular domain. The Web Ontology Language
(OWL) is a declarative language for expressing ontologies, i.e. sets of precise
descriptive statements [14]. OWL is built on top of the Resource Description
Framework (RDF); however, OWL is a higher conceptual language and provides
additional semantics not available in RDF. OWL provides a machine-actionable
and straightforward way of describing a domain using classes, properties, and
individual using so-called triples: statement with subject, predicate, and object.
International resource identifiers (IRIs) are commonly used for unique and per-
sistent identification of concepts [3].

Ontology engineering is a discipline dealing with designing and building
ontologies. It encompasses various formal methods and languages for express-
ing ontologies and extending their capabilities, there not just well-known RDF
and OWL – but also SHACL, ShEx, OntoUML, Gellish, and others. The versa-
tility and generality of these technologies allow them to be applied in any field
to solve the semantic interoperability problems and to bring semantic clarity for
different use cases. Currently, the most significant uses of ontology engineering
are observable in fields that are data-intensive, require a lot of data integration,
or are based on artificial intelligence method, e.g., life sciences or computational
linguistics [13]. By RDF/OWL, we denote a model represented as RDF knowledge
graph that also contains OWL constructs to form an ontology from that model.

2.2 Normalized Systems

Normalized Systems (NS) theory [20] explains how to develop highly evolvable
systems by eliminating combinatorial effects or by putting them systematically
under control. It is based on well-known engineering concepts, including basic
combinatorics, theoretic stability, or thermodynamic entropy. The book [20]

Towards Evolvable Ontology-Driven Development with Normalized Systems 211

describes avoiding combinatorial effects in the system using four elementary
principles: Separation of Concerns, Data Version Transparency, Action Version
Transparency, and Separation of States. It results in a fine-grained modular
structure composed of so-called Elements. The theory is already applied in prac-
tice for several years to develop and maintain evolvable enterprise information
systems for various organisations.

To achieve evolvable information systems, it applies a code generation tech-
nique producing skeletons from the NS model and custom code fragments. In NS
context, the code generators are called Expanders as they expand the system
from the NS model, custom code fragments, technological (e.g. Java version)
and other configuration options. An Expander is simply said a string template
and a definition of mapping to NS model, i.e., what is used from the model
in the template. Custom code is then inserted during the expansion to places
marked by anchors. Such anchors also exist for so-called expander features that
are making even expanders themselves easily extensible. A system can be then
built executing various expanders based on the configuration options, e.g., use
expanders for Java 1.8, PostgreSQL, and UI styling specific to the organisation.
To automate the whole process, Prime Radiant tool serves to design the models
in components, configure the application, and maintain deployments. Still, exe-
cuting expanders and other tasks is possible to do using prepared scripts directly
as well [21].

NS theory defines five types of NS Elements: Data, Task, Flow, Connector,
and Trigger. Data Elements carry structural information about entities and their
attributes and relationships. The current implementation defines Components as
re-usable modules describing a specific part of a system, e.g., account is a generic
component for user accounts and permissions. An Application is then a collection
of used components together with additional metadata such as a name or version.
Transformation of Data Elements and Components is the primary concern of our
work, whereas remaining Elements are concerned with behaviour, orchestration,
and interaction. The core of NS metamodel describes these NS Elements and
is itself described by them, thus forming a metacircular model (e.g. the Data
Element in metamodel is an instance of Data Element). There are various utility
tools and libraries that are expanded directly from the NS metamodel that keep
them evolvable. For example, the Prime Radiant tool is itself also an evolvable
application [19,21].

2.3 Ontology-Based Information Systems

Similarly to the use of conceptual models in the Model-Driven Development
(MDD), ontologies as a domain description can be used in the software
development cycle in various ways. First, some libraries and frameworks, e.g.
RDF4J [10], Apache Jena [31], rdflib [24], allow to efficiently query and use OWL
and RDF specifications to in software. Then, there are persistence libraries for
integrating data classes with OWL ontologies or other RDF data and use triple-
stores as storage similarly to the concept of Object-Relational Mapping (ORM)
and relational databases. Example of such approach is, for instance, JOPA [18].

212 M. Suchánek et al.

Moreover, ontologies can directly serve as a mean for the design and specifica-
tion of a software information system itself [17]. That can lead to more precise
semantics provided to multiple applications and to controlled correctness of data
integration.

There is a whole specialized field on ontology mapping and semantic integra-
tion that strives to allow simple and generic re-use, linking, and transformations
of ontologies as well as underlying data [26]. In the terms of transformations
between various conceptual models (in different language) to OWL ontologies
and back, several attempts for UML and especially its Class Diagrams has been
made in [11,25], and [32]. There is also a working transformation from ontology-
based conceptual modelling language OntoUML (UML profile) to OWL and
SWRL [2]. Even closer to our work is the transformation of Extended ER models
into OWL described in [30]. These related works represent potential for integra-
tion with our bi-directional conversion between NS and OWL.

2.4 Bi-directional Transformations

Bi-directional transformations (often abbreviated as BX) are designed for main-
taining consistency between two or more representations of the same or overlap-
ping information [6]. If a transformation is bijective can be tested using executing
forth and back, and comparison of result with input. Various aspects of trans-
formation can be then evaluated to measure its quality, e.g., completeness, that
is subject of benchmarking [1]. There are multiple languages and methods for
the specification of bi-directional transformations between models using their
respective metamodels.

The most of the existing methods focus on information captured using XML,
for example, biXid [16] that is based on programming-by-relation paradigm for
relations over XML documents, or Multifocal [23] incorporated algebraic rewrite
system to transform XML using XSD schemas. In the field of model-driven devel-
opment, the Janus Transformation Language (JTL) [5] supports non-bijective
transformations, including change propagation. The last example, BOTL [4] uses
a unique approach to focus on the transformation of objects. As our requirements
and goals are very specific and implementation follows certain constraints, it pre-
vents using the existing methods. Nevertheless, the methods of designing BX are
a valuable source of information for our design. Naturally, developing a custom
tool for transformation is often the most viable solution for custom formats or
special needs. In our case, the special need is relating the transformation to
specific metamodel whilst retaining its evolvability.

2.5 Transformation Between OWL and NS

In our original work [27], we presented an initial bi-directional transformation
between NS Elements models and OWL ontologies. The transformation has been
designed for all domain-specific parts of the NS Metamodel (mainly components,
data elements and related entities such as fields, projections, and several types of
options). To maintain consistency, every construct of NS model is recorded in the

Towards Evolvable Ontology-Driven Development with Normalized Systems 213

ontology as an individual – an instance of its type from NS metamodel ontology
(or meta-ontology). It allows transforming NS models to OWL and back without
losing any domain-specific information. Then to form a real OWL ontology, it
was identified how classes, datatype properties, and object properties together
with certain constraints, should be created from the NS model. However, those
constructs are ignored for the other direction, and the NS model from OWL is
built purely from individuals.

The transformation has been implemented as a prototype standalone applica-
tion using Java, Apache Jena, and NS packages to manipulate with NS models and
their XML representation. We extend the previous work both in transformation
rules and implementation as the target is to use NS Expanders to achieve evolv-
ability and increase usability that was limited with the standalone transformation
tool. We highlight the additions to the previous research in the respective parts
as modifications are done in both transformation design and implementation.

3 Transformation Between RDF/OWL and NS

Our approach first targets the analysis and mapping of NS metamodel and OWL
constructs. The mapping is then the basis for designing rules of the bi-directional
transformation.

3.1 Transformation Requirements and Resources

To design the desired mapping and transformation, it is needed to specify require-
ments, i.e., define expectations and available resources. There are significant
additions to the previous work [27] as working with the XML representation of
NS models is no longer a target and implementation as NS Expanders is pursued.
Furthermore, we also refined the existing requirements as follows:

1. Essential parts of the NS metamodel that hold domain-specific structural
information must be identified and will be subject of the transformation.

2. The transformation must be lossless, i.e., when the NS model is transformed
to RDF/OWL, and back, the essential parts stay the same.

3. The RDF/OWL output of transformation must be related to RDF/OWL of
NS metamodel (as it is also an NS model).

4. There must not be any limitations with respect to the size or structure of an
NS model, i.e., the transformation must be usable with any valid NS model
and any valid RDF/OWL that encodes an NS model.

5. The transformation must be executable without further user intervention, i.e.
must be fully automated.

By RDF/OWL we denote that the transformation does not target to pro-
duce only OWL-ontologies. We do transform the core of the NS models as OWL
(OWL DL). However, when applied in practice, we have quickly discovered that
we would like to attach additional information to the models during the transfor-
mation itself. For example, attaching version control system information when
mining extracting the model files. For such additional information, RDF proven
to be sufficient for our current needs.

214 M. Suchánek et al.

3.2 Domain-Specific Parts

The first goal is to identify the domain-specific parts of the NS metamodel, i.e.
the entities, relations, and attributes that carry the semantics of the domain and
are not implementation-related details. We focus purely on the structural part
of an NS model as the behavioural part (tasks and flows) is currently tied to the
implementation and also does not have a direct counterpart in basic OWL. The
essential entities are:

– Application ties together Components for some particular purpose and also
metadata such as name, version, or description among implementation details.
An example would be the Flight Booking App with components Booking,
Application, Workflow, etc.

– Component is a reusable encapsulation of a model that can be bound to mul-
tiple Applications. Besides its metadata, it may specify Component Depen-
dencies and collection of its Data Elements. For example, Booking component
can have Finance component as its dependency.

– Data Element represents a structural entity or a concept, for instance, Flight,
Passenger, or Airline. In NS systems, a Data Element is never represented
directly – i.e. there is no Flight.java class. Instead, it is always represented
by Data Projections.

– Fields are properties of a Data Element and are the most complicated from
the selected entities. Each Field is either Link Field (relationship with a
Data Element) or Value Field (traditional attribute with a certain datatype).
Moreover, Value Field can be Calculated Field, which is similar to a derived
attribute in UML (e.g. age calculated using birthdate and current date).

– Data Projection defines a view on a Data Element to change (usually
limit) its Fields, i.e. it specifies a subset of original Fields using Reference
Field and can add new Calculated Fields. For example, a Data projection
(e.g. FlightData.java) is concerned with database persistence, and a Tree
projection (e.g. FlightTree. java) is concerned with external interchange
(import/export). We will be using this Tree projection as a basis for our trans-
formation. From the NS theory perspective, we can even view the resulting
ontology as a projection (an OWL projection).

– Options of Components, Data Elements, and Fields allow to encode name-
value pairs tied to the related entity. Although Options serve for implemen-
tation details (enumerated names of such options), they can be used to store
custom domain knowledge as well.

– Types of Data Elements, Fields, Link Fields, and Value Fields are used to cat-
egorize its instances, i.e. form taxonomies semantically. A Value Field Type
specifies a datatype, whereas a Link Field Type is used to distinguish types of
association between data elements (one-to-many, many-to-many, and direc-
tions).

As the transformation must handle the listed entities, it has to be ready for
extension and changes in the future. For example, when Tasks and Flows will
be adjusted, their incorporation into the transformation must not cause a ripple
effect.

Towards Evolvable Ontology-Driven Development with Normalized Systems 215

3.3 Mapping Between NS and RDF/OWL

The next step is to map the identified entities of the NS metamodel from the
previous subsection to constructs in RDF and OWL. The mapping must enable
bi-directional transformation without information loss. That is done directly
by encoding every domain-specific information from an NS model into an indi-
vidual of its type from NS metamodel ontology. For example, a data element
Aircraft is transformed to an individual of RDF type NS:DataElement and its
field callSign will be an individual of NS:Field and NS:ValueField. As every
domain-specific information is encoded in RDF, it is then always possible to
create back NS model with identical domain-specific part (the implementation-
specific information that is not transformed is deliberately lost).

Table 1. Mapping between NS metamodel and OWL constructs.

NS metamodel RDF/OWL (rdf:type)

Component OWL:Ontology

Component dependency OWL:imports

Data element OWL:Class

Value field OWL:DatatypeProperty

Link field OWL:ObjectProperty

Value field type RDF:datatype (mapping instances)

* (all) NS:* (individuals)

To form an OWL ontology, some entities of the NS metamodel are addi-
tionally mapped to OWL concepts [14]. The mapping is summarized in Table 1.
Each transformed NS Component forms a single ontology that can be linked
using OWL imports to its dependencies. The metadata of the component anno-
tate the ontology in a de-facto standard way using Dublin Core [9] (e.g. as
dcterms:title) A data element becomes an OWL:Class. alue Fields and Link
Fields of a Data Element then naturally form OWL:DataTypeProperty and
OWL:ObjectProperty respectively. The rdfs:range and rdfs:domain of those
properties are used to capture both sides of the relationship: two data elements,
or the data element with a datatype. A relationship requires also mapping on
the level of individual data types, for example, String from NS will be xsd:string.

With an NS model transformed into OWL ontology (together with its direct
RDF representation), it is possible to encode even application instance data as
RDF related to the OWL ontology. For example, if there is an instance of the
data element Aircraft named myAircraft with field callSign having BEL812, it
would result in RDF illustrated in Fig. 1.

216 M. Suchánek et al.

xsd:stringNS:ValueField

OWL:Class

callSign

"BEL812"

NS:DataElement

OWL:DatatypeProperty

myAircraft

Aircraft
range

domain

subject

predicate

object

typetype

typetype

Metamodel

Model (Booking)

Instances

type
type

Fig. 1. Example of relations between instance, model, and metamodel.

3.4 Overall Architecture

The defined mapping allows us to define the architecture for the transformation
execution. By using NS Expanders to generate the transformation based on
the prototype, the overall architecture is significantly enhanced when compared
to the previous work. Expanding an NS model to OWL, i.e. developing just
string templates for RDF output, would be straightforward and yet evolvable but
not bi-directional. Instead, the tool to perform the bi-directional transformation
based on an NS model (or metamodel) will be expanded.

NS Model XML
NS Metamodel
(or NS Model)

Expanders

Custom
mapping

Bi-directional transfomation tool

RDF/OWL

Import

To RDF
Individuals

Export

Custom Rules

Custom Rules

Export

Import

From RDF
Individuals

Custom Rules

Custom Rules

OWL/RDF

generate tool

Fig. 2. Architecture of generated transformation tool.

The expanded and therefore, evolvable transformation tool works practi-
cally the same as the previous prototype. For the NS → RDF/OWL direction,
model from XML is loaded together with relations to the metamodel, individu-
als are created (optionally together with additional OWL constructs) according
to the Table 1, and finally the ontology is exported. For the other direction, an

Towards Evolvable Ontology-Driven Development with Normalized Systems 217

RDF/OWL file is loaded, and an NS model is reconstructed based on the indi-
viduals related to NS metamodel ontology. It is exported again to XML format.

3.5 RDF/OWL Identifiers

A crucial element in building RDF/OWL are identifiers [13]. Although names in
OWL are International Resource Identifiers (IRIs), for the time-being we restrict
ourselves to Uniform Resource Identifier (URI) subset for compatibility reasons.
The identifiers are commonly shortened using defined prefixes, and we do so in
provided examples. There are two possibilities of how to create such identifiers
for entities. The first is to generate them randomly, e.g. a data element Aircraft
would have identifier booking:bdfe35fe-eeeb-47c9-837e-7bfcf275cb08. It
allows keeping the same identifier even when the entity name changes; however,
it is not readable, and more importantly, it would require storing the identifier
directly in the NS model to make it persistent. The second option is to com-
pose it from names that further specify it’s location and meaning, for example
https://example.com/booking/Aircraft/callSign. It plainly captures “what it is“
and “where it is” but may cause problems upon renaming.

For the current transformation, the second way of creating identifiers will
be used. Even though storing random and unique identifiers would be possible
using Options of entities in an NS model, it should be done directly when they
are created and not when the transformation is triggered as it may cause consis-
tency issues. Also, for our purposes, the readable and hierarchical identifiers are
more convenient. Nevertheless, it should be possible to change the identification
mechanism easily in the future.

For our current use, we have opted for the second variant combined with
DataRefs of NS models. DataRefs are name-based identifiers utilized by NS
models to uniquely identify a particular instance among all instances of an ele-
ment. For example a Field has a DataRef <componentName>::<dataElement
Name>:: <fieldName> (e.g. Field booking::Aircraft::callSign). Thus the
current naming scheme for the core URI identifiers is https://example.com/
projects/bookingApp/v2/field#booking::Aircraft::callSign or https://example.
com/projects/bookingApp/v2/application#bookingApp::v2.

Producing consistent URIs based on DataRefs allows us to generate addi-
tional RDF data in other tools independently of the transformation, as we are
able to attach the data without any extra work necessary, such as requiring
OWL:sameAs, or maintaining an ID database. Nevertheless, this approach is
more appropriate for the metamodel and models. For instance, data, which is
typically orders of magnitude larger in volume, using UUIDs or similar may be
more appropriate. For this reason, our URI generator is pluggable and can be
modified to produce different identifiers without requiring any changes to the
transformation code itself.

https://example.com/booking/Aircraft/callSign
https://example.com/projects/bookingApp/v2/field#booking::Aircraft::callSign
https://example.com/projects/bookingApp/v2/field#booking::Aircraft::callSign
https://example.com/projects/bookingApp/v2/application#bookingApp::v2
https://example.com/projects/bookingApp/v2/application#bookingApp::v2

218 M. Suchánek et al.

3.6 NS Metamodel Transformation

The described design of the transformation and the homoiconicity of NS meta-
model [19] result in some interesting consequences that deserve to be pointed
out. In the NS Elements metamodel, all of the domain-specific parts are mod-
elled as Data Elements. With the mapping in Table 1, the resulting RDF/OWL
should contain Data Element (from NS metamodel) both as an OWL Class
DataElement and an RDF Individual of type OWL Class DataElement, i.e.
itself. This meta-modelling technique of using a Class at the same time as an
Instance is named punning [14]. Using a metamodel as a model of itself causes
the “Chicken and Egg” problem – NS metamodel in OWL (as a vocabulary) is
needed to produce NS metamodel RDF/OWL. To solve the problem, a minimal
subset of the vocabulary used to be bootstrapped manually for the first itera-
tion. With NS Expanders we can easily the new solution can expand the full
vocabulary of NS metamodel directly.

Another important note must be made concerning the absence of inheritance
in NS models. NS models do not permit the use of classical inheritance as it
produces high coupling between the involved classes and causes unstable combi-
natorial effects [20]. Therefore models are “flat”, i.e. without any class hierarchy,
which is typical for OWL ontologies. However, there are Taxonomy Data Ele-
ments as specifications of certain entity types; for example, each instance of
Data Element Type defines a specific type of Data Elements. The metamodel
also specifies taxonomies, for instance, a Data Element can be of a certain type
(e.g. Primary, History, or Directory) and it needs to be a subject of transforma-
tion as well.

4 Evolvable Transformation Using NS Expanders

This section focuses the implementation of the transformation as NS Expanders.
The solution is put in contrast to the previous standalone traditional Java tool
that is described in [27] further denoted as prototype.

4.1 Structuring Project

Because the NS codebase is using Java, it is for maintainability reasons used in
this project as well just as was in the previous prototype. It allows us to easily
convert (although manually) the code fragments of the prototype into expanders.
The expanders (code templates and mappings) in our case are used to generating
Java classes based on data elements of given NS model. When we want to produce
a transformation tool for NS models, the input model for the generation is the
NS metamodel. However, it would allow creating a transformation tool for any
NS model (e.g. for the Flight Booking App model).

The newly developed tool is composed of two modules. The first module con-
tains only expanded transformation and vocabulary classes. The second module
contains hand-written code responsible for loading/writing NS models (from/to
XML) and RDF/OWL models, defining URI builder, and other configuration, and

Towards Evolvable Ontology-Driven Development with Normalized Systems 219

TreeToOwl Expander

TreeFromOwl Expander

Vocabulary Expander

ModelWriter

TreeToOwlContext
TreeFromOwlContext
TransformationExecutor

Expanders Transformation tool classes

N
S
 (

m
et

a)
m

od
el

all data elements

all data elements

all components

*TreeToOwl

*TreeFromOwl

*Vocabulary

manually
maintained

ModelReader

Fig. 3. Parts of transformation tool project.

invoking the transformation module. The entire solution can be used both as a
tool (i.e. feed it model and get an RDF/OWL output) or as a library. For exam-
ple, in one of our use cases, we utilize only a specific subset of transformation
classes and invoke them directly from a different codebase. The critical parts of
the projects and their relations are depicted in Fig. 3 and further explained below.

4.2 Vocabulary Expander

As explained, to build or read an RDF representation of an NS model, vocab-
ulary of concepts and relationships from the NS metamodel is required. The
prototype used the trivial solution: manually hard-coded vocabulary in the form
of a Java class. It was just a duplication of the information provided by the

Fig. 4. Example of expanded vocabulary for the core Elements component.

220 M. Suchánek et al.

Fig. 5. Part of the TreeToOwl expander.

metamodel. Therefore, it is an easy task to design an expander to generate this
Java class with vocabulary. The expander is usable for any component, and for
each component of given NS model, it results in a class similar to example in
Fig. 4. The vocabulary class is then used both by the expanded transformation
classes, as well as any additional custom code.

4.3 TreeToOwl Expander

The second expander generates *TreeToOwl classes that handle transforma-
tion of an entity from input NS model to its OWL/RDF representation (e.g.
DataElement TreeToOwl). It based on the *TreeToOwl classes from the proto-
type with several improvements as shown in Fig. 5. First, all objects that are nec-
essary for executing the transformation (output OntModel1 model, URI builder,

1 OntModel is an instance of OWL model in Apache Jena.

Towards Evolvable Ontology-Driven Development with Normalized Systems 221

Fig. 6. Example of ComponentTreeToOwl.java file.

or lookup table) are passed together as TreeToOwlContext. For every data ele-
ment of the input NS model, a *TreeToOwl class is created with a single project
NSElementTree → Individual method that implements transformation of the
Tree projection onto an OWL projection (as described in Sect. 3). During the
projection, the Individual is populated with data and object properties based on
the source value fields and link fields.

The additional constructs that need to be added to the OntModel based on
Table 1 are handled using harvested custom code. For example, to add Ontology
information for Components, as shown in Fig. 6, we utilize custom-project-
before anchor that is injected from a so-called harvest file during a code expan-
sion – here namely ComponentTreeToOwl.java.harvest (Fig. 7). This custom
code is also harvested (extracted) from the source code; thus developers can write
the code directly in the generated files. Using custom-* anchors is the primary
way we inject additional statements into expanded code. Necessary Java imports
(here for the Dublin Core (DC) vocabulary), are also injected from the harvest
file. It further enhances the evolvability and versatility of the transformation.

222 M. Suchánek et al.

Fig. 7. Example of ComponentTreeToOwl.java.harvest file.

4.4 TreeFromOwl Expander

The TreeFromOwl expander is in its logic and structure very similar to the
TreeToOwl expander, just for the other direction of transformation. It is used
to generate *TreeFromOwl classes based on its predecessor from the prototype.
Again, the context container is used to pass all required objects. The main
method accepts an individual of the corresponding RDF:type and returns an NS
model object. For example, DataElementTreeFromOwl is used for individuals
of type NS:DataElement for which it returns DataElementTree. The related
entities are recursively linked to the returned entity. For instance, to return
DataElementTree, all related fields are found in the RDF model and added as
FieldTree objects.

4.5 Non-expanded Code

As explained, the transformation tool also uses code that is not expanded. It
is everything that needs to be present for executing the transformation but is
not related to the model. This part of the project consists of the two classes for
the contexts (one per direction), reader and writer helper classes (working with
XML and RDF files), and a single class that executes the transformation based
on user’s command and options. Based on the selected transformation direction
together with provided input and output file/folder, it loads the model, executes
the transformation by expanded classes, and stores the result. Although the code
is manually written and maintained, it is only a small fraction of the entire code
base, thus significantly reducing the overall maintenance burden.

5 Demonstration Case

In this section, we show how the transformation tool (generated using the NS
metamodel) can be used in a simple use case. The example demonstrates usage

Towards Evolvable Ontology-Driven Development with Normalized Systems 223

of both directions of the transformation and use of existing tools for both NS
models and OWL ontologies. The results are further discussed in Sect. 6. With
respect to the prototype [27], the provided example did not significantly change
as the outputs of the transformation are the same.

5.1 Flight Booking NS Model

For this example, we use a simple model of Flight Booking domain that is used
across this paper. In the NS terminology, it is a single component with six data
elements where each has several fields (both link and value) as shown in Fig. 8.
The model includes both many-to-many and one-to-many relationships. Also,
various types of value fields are being used, including Date, String, Boolean, or
Double. As such and notwithstanding its size, the example model contains most
commonly used structural types.

Fig. 8. The example NS model for flight booking domain [27].

5.2 Flight Booking NS Ontology

Figure 9 is an example of transformation output in RDF Turtle format. Figure 10
shows the result of NS-to-OWL transformation in WebVOWL tool. All six
data elements became classes (light blue circles) with is-a relationship to exter-
nal DataElement from the metamodel ontology (dark blue circle). The link
fields (i.e. relationships) are also present in the ontology as object properties
with navigation between classes, e.g. headQuarters between Airline and Loca-
tion. Both bi-directional relationships (Person-Booking and Flight-Airline) are
present and connected as inverse object properties. Finally, matching datatypes
(yellow boxes) were used for generated datatype properties based on value fields.

224 M. Suchánek et al.

Fig. 9. Example of Turtle RDF file for the Booking App.

name

status

booking

persons

city

is a

is a

is a
is a

is a

bookingTime

headQuarters

location

arrivalTime

flightNumber

streetAndN...

status

departureTime

isAllowed

price

country

firstName

flight

arrivalAirportdepartureAir... is a airLine

flights

status

name

abbreviation

dateOfBirth

lastName

string

string

Flight

date

string

Person

string

string

string

string

date

boolean

string

string

string

string

date

string

Airport

Booking

date

Location

string

Airline

DataElement
(external)

Fig. 10. The generated OWL ontology for flight booking domain [27]. (Color figure
online)

5.3 Refining RDF/OWL

With an RDF representation of the Booking component, we can take advantage
of various existing tools for managing OWL ontologies and RDF data. To show
this in practice, we refine streetAndNumber property to two using well-known

Towards Evolvable Ontology-Driven Development with Normalized Systems 225

Protégé. First, we rename the existing property to street (alternatively we could
create a new and delete the old one). Then, we add a new datatype property
number with domain Location and range xsd:int. To enable transformation back
to an NS model, we need to do the same with the corresponding individuals of
type ValueField according to the metamodel ontology. The final step is to trans-
form it back to the NS model. Like this, we could change also object properties,
classes, or change any NS-related individuals.

5.4 Information System Generated from RDF

When the refinements are done, we can proceed to expand an enterprise infor-
mation system for flight booking management from the model or ontology (as
they are now interchangeable). The current NS tools allow to expand the appli-
cation, build the application, and then even manage the application instance
efficiently using a single user interface. The refinement within Location entity
where street and number replaced streetAndNumber is visible in Fig. 11. Thanks
to Normalized Systems, the model (or ontology) can be continually refined, and
the application can be re-generated.

After the regeneration of an existing application instance, data are automat-
ically migrated as long as the naming is preserved. For example, with the change
that we made, all records of Location would remain with its city and country,
streetAndNumber would disappear and both number and street would be empty.
To handle such change, data migration must be handled separately.

Fig. 11. Screenshot from generated NS application [27].

6 Evaluation

We summarize the key aspects of our work and evaluate fulfilment of the require-
ments in this section. The main focus is evolvability of the solution that was
demonstrated in Sect. 5. Further empirical evaluation requires long-term use
in various real-world scenarios. As a benefit of the design, potential refine-
ments can be easily adopted in the implementation and distributed through NS
applications.

226 M. Suchánek et al.

6.1 Transition from Traditional Utility to Expanders

It is evident that the transition from standalone Java tool (the prototype) to
partially-expanded tool significantly improved the solution. By using the NS
Expanders to generate the transformation tool, it automatically covers all enti-
ties captured as Data Elements in the (meta)model. For the Elements component
of the NS metamodel, the generated tool for bi-directional NS-OWL transfor-
mation consists of 175 generated classes (87 per direction and one vocabulary)
using three expanders and just five custom classes for execution and input/out-
put operations. As a result, we need to maintain only a small set of 10 classes,
and small sections of custom code harvests instead of incurring the full cost of
developing and maintaining hundreds of classes. A change in the NS metamodel
can be easily reflected in the transformation tool just by re-generating it.

All of the OWL concepts that are mapped in Table 1 are covered. No addi-
tional OWL constructs are mapped to as of yet, and are subject to further
exploration. Finally, the use of expanders enabled to create the transformation
tool not just for the NS metamodel, but for any NS model.

6.2 Evolvability of Transformed Ontology

The other level of evolvability aside from the tool is the evolvability of the
transformed ontology. It can be transformed again via XML representation when
there is a change in an NS model and vice versa. In case of a change in the
NS metamodel, first, the tool must be re-generated, and then ontology can be
transformed with the new NS metamodel relations. Despite the absence of a
mechanism for merging independent changes in both representations, correct
OWL handling can avoid some conflicts. First, the version number of an NS
component is used for versioning its OWL counterpart. Then, by using principles
of linked data, no changes should be made directly in the generated ontology,
unless they are intended. Instead, additional statements and annotations of the
NS model in OWL should be made externally, and attached using OWL imports.
For the future, it may be needed to implement consistency checking and even
merging the changes when loading both an NS model and related OWL ontology
using comparison and user interaction.

6.3 Consistency and Integrity

All information from an NS model that is modelled in the metamodel as a
Data Element is during the transformation encoded in RDF. That covers all the
domain-specific entities listed in Sect. 3 (e.g. a Component is a Data Element
in the metamodel). Moreover, it includes any other information, including Task
Elements, Flow Elements, etc. Everything that is transformed in RDF can be
then also transformed back to an NS model. For the other direction, one can
compose RDF according to the NS metamodel ontology, transform it into an NS
model and back. Any entity that is not related to the NS metamodel well be

Towards Evolvable Ontology-Driven Development with Normalized Systems 227

ignored. The transformation is bi-directional and consistent on the defined con-
structs by the NS metamodel ontology. With both directions possible, it is fea-
sible to maintain integrity between an NS model and corresponding RDF/OWL
side-by-side.

7 Future Work

This section outlines the possibilities of subsequent research and work based on
the results presented in the paper.

7.1 Extending NS Meta-ontology

The metamodel of NS models, i.e., NS Elements model, can change over time
when there is a need to incorporate new concepts or to refine existing (for
instance, adding a particular type of relationships for aggregation). Such changes
are, of course, made carefully to maintain compatibility with existing systems.
There are additional constructs and concepts in different conceptual or systems
modelling languages the we are interested in incorporating into Normalized Sys-
tems metamodel in a way compliant with the NS theory. One example of this is
the inheritance that is very common on the conceptual level but causes combi-
natorial effects on the implementation of level [20,28].

In RDF and OWL, it is an essential technique to refine concepts by adding
statements about and relate them together with others. In the future, we want to
extend the ontology of NS metamodel with additional concepts (such as inheri-
tance). Firstly, that will enhance possibilities of semantic integration with other
models where such concept exists with the same or at least similar semantics.
Secondly, it will provide a simple description of how the new (or changed) con-
cept is related to the existing metamodel that can be used as a description for
adoption. Finally, additional information can be added for documentation or
other purposes, e.g., that some construct is deprecated.

7.2 Integrations with Conceptual Models

The use of flexible and interoperable format elevates possibilities in terms of
semantic integration. There are various attempts and solutions for transform-
ing conceptual models in different modelling languages to and from RDF or
OWL (for example, we reviewed these possibilities for UML [29]). It is, there-
fore, possible to map or even translate multiple domain models on the level of
OWL ontologies together with Normalized System models. That can be used,
for example, to generate Normalized Systems from UML models.

Such integration would also be possible with the XML format with use of
XSLT rules, but that would lack flexibility and evolvability. Moreover, incorpo-
rating interoperability of new modelling language (or its standard) would cause
a combinatorial effect. The ontological layer serves as a generic interface for inte-
gration, and each modelling language can be “plugged in” independently. This

228 M. Suchánek et al.

topic surely requires further research with experiments on real-world scenarios to
achieve consistent integration between NS and conceptual model (e.g. in UML).
Nevertheless, the advantages are evident – the possibility to directly generate an
evolvable enterprise information system from a conceptual model. Directly from
analysis, one could get a prototype of the system where changes in the model
are propagated to the implementation just by clicking a button.

7.3 Analysis of Real-World Systems

With the use of RDF and OWL, there are also other advantages aside from
the semantic integration and linked data. Using the RDF representation of a
Normalized System, it can be easily analysed with SPARQL queries. It could
answer simple questions such as how many data elements are in the component
to more advanced, e.g., find all duplicate attributes in terms of name, type, and
options across the component. The queries are not limited only to one system,
and analysis can be done to compare two or more systems or even to find some
similarities in order to design some common components. Other queries can be
related to systems data and for example, count usage of the relationship between
data elements in the real use. Finally, SPARQL queries could also be used to
update the model of a system, e.g., when there is a need to change multiple
models in the same way.

Again, such queries or similarity analysis of multiple systems could be done
on an XML level but with significantly more effort. With NS models encoded in
RDF, existing tooling designed for big/linked data analysis and semantic infer-
ence can be used easily. We plan to use SPARQL and other related technologies
to analyse and improve real-world, large-scale systems in the future. Design of
queries for analysis purposes will be the subject of future research. We already
utilize a subset of the generated RDF data and use SPARQL to draw insights
across our projects.

8 Conclusion

In this extended paper, we followed on the previous work. The initial NS-OWL
transformation has been proposed together with the standalone prototype tool
in Java. The transformation no longer focuses mainly on OWL as an output,
but rather on the RDF description of an NS model that was previously used as
a necessary addition for assuring bi-directionality. The most significant step for-
ward is re-using the prototype and developing NS Expanders to generate it from
the NS metamodel (or any NS model). It makes the whole solution extensible for
the future development related to the metamodel enrichment as we explained in
the evaluation. The bi-directional transformation has been demonstrated on an
example that concludes by generating an NS application and produces the same
results as with the previous prototype. Refining the solution into the form of
NS Expanders helped to make it evolvable, versatile, and maintainable (e.g. by
avoiding code duplication), yet offering the same desired outputs. Other advances

Towards Evolvable Ontology-Driven Development with Normalized Systems 229

of the solution, as well as new open research paths for the future, were discussed.
The transformation and expanders are ready to be used with real-world, large-
scale NS applications for analysis, interoperability, or other purposes.

Acknowledgements. The research was performed in collaboration of Czech Techni-
cal University in Prague, University of Antwerp, and NSX bvba. The research was sup-
ported by Czech Technical University in Prague grant No. SGS20/209/OHK3/3T/18.

References

1. Anjorin, A., Diskin, Z., Jouault, F., Ko, H.S., Leblebici, E., Westfechtel, B.: Bench-
marX reloaded: a practical benchmark framework for bidirectional transformations.
In: Proceedings of the 6th International Workshop on Bidirectional Transforma-
tions co-located with The European Joint Conf. on Theory and Practice of Soft-
ware, BX@ETAPS 2017, Uppsala, Sweden, 29 April 2017. CEUR Workshop Pro-
ceedings, vol. 1827, pp. 15–30. CEUR-WS.org

2. Barcelos, P.P.F., dos Santos, V.A., Silva, F.B., Monteiro, M.E., Garcia, A.S.: An
Automated Transformation from OntoUML to OWL and SWRL. Ontobras 1041,
130–141 (2013)

3. Bhatia, M., Kumar, A., Beniwal, R.: Ontologies for software engineering: past,
present and future. Indian J. Sci. Technol. 9(9), 1–16 (2016). https://doi.org/10.
17485/ijst/2016/v9i9/71384

4. Braun, P., Marschall, F.: Transforming object oriented models with BOTL. Elec-
tron. Notes Theor. Comput. Sci. 72(3), 103–117 (2003). https://doi.org/10.1016/
S1571-0661(04)80615-7

5. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19440-5 11

6. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02408-5 19

7. Bruyn, P.: Towards designing enterprises for evolvability based on fundamental
engineering concepts. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2011.
LNCS, vol. 7046, pp. 11–20. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25126-9 3

8. De Bruyn, P., Mannaert, H., Verelst, J., Huysmans, P.: Enabling normalized sys-
tems in practice – exploring a modeling approach. Bus. Inf. Syst. Eng. 60(1), 55–67
(2017). https://doi.org/10.1007/s12599-017-0510-4

9. Dublin Core Metadata Initiative and others: Dublin Core Metadata Element Set,
version 1.1 (2012)

10. Eclipse Foundation: rdf4j (2019). https://rdf4j.org
11. Gasevic, D., Djuric, D., Devedzic, V., Damjanovi, V.: Converting UML to OWL

oOntologies. In: Proceedings of the 13th International Conference on World Wide
Web - Alternate Track Papers and Posters, WWW2004, New York, USA, 17–20
May 2004, pp. 488–489. ACM. https://doi.org/10.1145/1013367.1013539

12. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3 0

https://doi.org/10.17485/ijst/2016/v9i9/71384
https://doi.org/10.17485/ijst/2016/v9i9/71384
https://doi.org/10.1016/S1571-0661(04)80615-7
https://doi.org/10.1016/S1571-0661(04)80615-7
https://doi.org/10.1007/978-3-642-19440-5_11
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-25126-9_3
https://doi.org/10.1007/978-3-642-25126-9_3
https://doi.org/10.1007/s12599-017-0510-4
https://rdf4j.org
https://doi.org/10.1145/1013367.1013539
https://doi.org/10.1007/978-3-540-92673-3_0

230 M. Suchánek et al.

13. Hitzler, P., Gangemi, A., Janowicz, K.: Ontology Engineering with Ontology
Design Patterns: Foundations and Applications, Studies on the Semantic Web,
vol. 25. IOS Press (2016)

14. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S., et al.:
OWL 2 web ontology language primer. W3C Recomm. 27(11), 123 (2009)

15. Huysmans, P., Verelst, J.: Towards an engineering-based research approach for
enterprise architecture: lessons learned from normalized systems theory. In: Franch,
X., Soffer, P. (eds.) CAiSE 2013. LNBIP, vol. 148, pp. 58–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38490-5 5

16. Kawanaka, S., Hosoya, H.: biXid: A Bidirectional Transformation Language for
XML, pp. 201–214 (2006). https://doi.org/10.1145/1159803.1159830

17. Křemen, P., Kouba, Z.: Ontology-driven information system design. IEEE Trans.
Syst. Man Cybern. Part C (Appl. Rev.) 42(3), 334–344 (2011). https://doi.org/
10.1109/TSMCC.2011.2163934

18. Ledvinka, M., Kostov, B., Křemen, P.: JOPA: efficient ontology-based information
system design. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange,
C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 156–160. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47602-5 31

19. Mannaert, H., De Cock, K., Uhnak, P.: On the realization of meta-circular code
generation: the case of the normalized systems expanders. In: ICSEA 2019, The
Fourteenth International Conference on Software Engineering Advances. IARIA
(2019)

20. Mannaert, H., Verelst, J., De Bruyn, P.: Normalized Systems Theory: From Foun-
dations for Evolvable Software Toward a General Theory for Evolvable Design.
Koppa, Kermt, Belgium (2016)

21. NSX bvba NS Foundation (2019). https://primeradiant.stars-end.net/foundation/
22. Oorts, G., Huysmans, P., De Bruyn, P., Mannaert, H., Verelst, J., Oost, A.: Build-

ing evolvable software using normalized systems theory: a case study. In: 2014 47th
Hawaii International Conference on System Sciences, pp. 4760–4769. IEEE (2014).
https://doi.org/10.1109/HICSS.2014.585

23. Pacheco, H., Cunha, A.: Multifocal: a strategic bidirectional transformation lan-
guage for XML schemas. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol.
7307, pp. 89–104. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30476-7 6

24. RDFLib Team: RDFLib (2019). https://github.com/RDFLib/rdflib
25. Sadowska, M., Huzar, Z.: Representation of UML Class diagrams in OWL 2 on the

background of domain ontologies. e-Informatica 13(1), 63–103 (2019). https://doi.
org/10.5277/e-Inf190103

26. Salamon, J.S., Reginato, C.C., Barcellos, M.P.: Ontology integration approaches:
a systematic mapping. In: Proceedings of the XI Seminar on Ontology Research
in Brazil and II Doctoral and Masters Consortium on Ontologies, São Paulo,
Brazil, October 1st-3rd, 2018. CEUR Workshop Proceedings, vol. 2228, pp. 161–
172. CEUR-WS.org (2018)

27. Suchánek, M., Mannaert, H., Uhnák, P., Pergl, R.: Bi-directional transformation
between normalized systems elements and domain ontologies in OWL. In: Proceed-
ings of the 15th International Conference on Evaluation of Novel Approaches to
Software Engineering 2020, vol. 2020, pp. 74–85. INSTICC, SciTePress, Prague,
Czech Republic, May 2020. https://doi.org/10.5220/0009356800740085

https://doi.org/10.1007/978-3-642-38490-5_5
https://doi.org/10.1145/1159803.1159830
https://doi.org/10.1109/TSMCC.2011.2163934
https://doi.org/10.1109/TSMCC.2011.2163934
https://doi.org/10.1007/978-3-319-47602-5_31
https://primeradiant.stars-end.net/foundation/
https://doi.org/10.1109/HICSS.2014.585
https://doi.org/10.1007/978-3-642-30476-7_6
https://doi.org/10.1007/978-3-642-30476-7_6
https://github.com/RDFLib/rdflib
https://doi.org/10.5277/e-Inf190103
https://doi.org/10.5277/e-Inf190103
https://doi.org/10.5220/0009356800740085

Towards Evolvable Ontology-Driven Development with Normalized Systems 231

28. Suchánek, M., Pergl, R.: Evolvability evaluation of conceptual-level inheritance
implementation patterns. In: PATTERNS 2019, The Eleventh International Con-
ference on Pervasive Patterns and Applications, vol. 2019, pp. 1–6. IARIA, Venice,
Italy, May 2019

29. Suchánek, M., Pergl, R.: Case-study-based review of approaches for transforming
UML class diagrams to OWL and vice versa. In: 22nd IEEE Conference on Business
Informatics (CBI 2020), vol. 2020, pp. 270–279. IEEE Computer Society, Antwerp,
June 2020. https://doi.org/10.1109/CBI49978.2020.00036

30. Telnarova, Z.: Transformation of extended entity relationship model into ontology.
In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACI-
IDS 2018, Part II. LNCS (LNAI), vol. 10752, pp. 256–264. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75420-8 24

31. The Apache Software Foundation: Apache Jena: A free and open source Java frame-
work for building Semantic Web and Linked Data applications (2019). https://jena.
apache.org

32. Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Lukose, D.,
Ahmad, A.R., Suliman, A. (eds.) KTW 2011. CCIS, vol. 295, pp. 154–163. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32826-8 16

https://doi.org/10.1109/CBI49978.2020.00036
https://doi.org/10.1007/978-3-319-75420-8_24
https://jena.apache.org
https://jena.apache.org
https://doi.org/10.1007/978-3-642-32826-8_16

Improving Node-RED Flows
Comprehension with a Set
of Development Guidelines

Diego Clerissi1(B), Maurizio Leotta2, and Filippo Ricca2

1 Dipartimento di Informatica, Sistemistica e Comunicazione (DISCO),
Università di Milano-Bicocca, Milan, Italy

diego.clerissi@unimib.it
2 Dipartimento di Informatica, Bioingegneria,

Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Genoa, Italy
{maurizio.leotta,filippo.ricca}@unige.it

Abstract. The recent technological advancements has pointed the inter-
est of developers, researchers, and end-users towards the Internet of
Things (IoT) domain, whose plethora of services naturally arises to
improve the human life. As the IoT becomes more and more involved
in our everyday activities, we are personally encouraged to experiment
it in practice.

Node-RED tool has emerged as a practical solution to develop IoT
systems in a simple manner. The tool was inspired by the flow-based
programming paradigm and is built on top of Node.js framework. Its
simplicity relies on the visual interface providing built-in functionali-
ties and large customization. Moreover, the Node-RED community is
quite active and inclined to offer support and share solutions to inte-
grate within existing systems, therefore it is expected that the produced
Node-RED flows are easy to comprehend and re-use. However, to the best
of our knowledge, no consolidated approaches or guidelines to develop
comprehensible Node-RED flows currently exist.

For this reason, in this paper we, first, propose a set of guidelines
aimed at helping Node-RED developers in producing flows easy to com-
prehend and re-use. Then, we report on an experiment to evaluate the
effect of such guidelines on Node-RED flows comprehension. Results
show that the adoption of the guidelines has a significant positive effect
on both the number of errors and the time required to comprehend Node-
RED flows. Finally, we describe an analysis of the Top-100 most down-
loaded Node-RED flows to discuss about their compliance (or not) with
the proposed guidelines.

Keywords: Node-RED · Guidelines · Comprehension · IoT Web
based systems · Visual development

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 232–260, 2021.
https://doi.org/10.1007/978-3-030-70006-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_10

Improving Node-RED Flows Comprehension 233

1 Introduction

In the context of the Internet of Things (IoT), Node-RED has become a prac-
tical solution to the development of working solutions and artefacts sharing.
Node-RED is a visual Web-based tool inspired by the flow-based programming
paradigm [13] and built on top of the Node.js framework. The basic concept
of the tool is the node, representing part of a service logics and largely con-
figurable. Groups of nodes, called flows, collaborate and communicate together
when virtually or physically connected.

Nodes are black-box components that hide all the implementation details
(i.e., basically, JavaScript functions and graphical features), as suggested by
the flow-based programming paradigm [13]. Hence, the developer can select the
nodes she desires and wire them together in order to implement the desired
system, without having to know their implementation details. Every day, devel-
opers participating in the Node-RED community develop and upload new nodes
and flows on the Node-RED library (over 2000 nodes in 20201). They represent
solutions to general or specific problems, and anyone can download part of this
content to integrate it within existing systems. Nodes can execute a variety of
tasks, from storing daily weather forecasting data into a database to perform-
ing sentiment analysis on the feeds received from a Twitter account. Node-RED
gives the developer the freedom of choosing her own programming style for the
implementation of new nodes and flows, similarly to any other programming tool
and language. Given that Node-RED is a visual tool, along with the program-
ming style, the comprehensibility factor related to the adopted graphical style
must also be carefully considered. Such factor can be influenced by the way the
nodes are wired together and by the names they are provided with. In general,
this is a more frequent problem at design stage. The lack of a disciplined app-
roach for the development of Node-RED flows could result in messy “spaghetti”
artefacts that are generally very hard to comprehend and use. This could lead to
unexpected outcomes when they are integrated into further complicated systems,
without mentioning the problem of maintaining and testing them. Looking at
the literature and the practitioner’s web sites, no consolidated approaches sup-
porting Node-RED developers in producing reusable and comprehensible flows
has been yet proposed, and only few basic and unofficial attempts of defining
best practices and design patterns have been made so far2.

In this paper, we define a set of guidelines aimed at producing Node-RED
flows that are easier to comprehend (by construction), and also more suitable
to reuse, maintain and test. We have evaluated the benefits of adopting our
guidelines through of a controlled experiment involving ten master students,
where two selected Node-RED systems, each one developed with and without our
guidelines, are compared in a comprehension scenario. Moreover, to determine
the compliance with our guidelines of the most used Node-RED flows produced
by external sources, we collected and analysed the Top-100 Most Downloaded

1 https://flows.nodered.org/.
2 https://medium.com/node-red/node-red-design-patterns-893331422f42.

https://flows.nodered.org/
https://medium.com/node-red/node-red-design-patterns-893331422f42

234 D. Clerissi et al.

Table 1. Node-RED essential terms and definitions.

Term Definition

Node The basic Node RED component, representing (part of) the logics
of a service/functionality

Each node has a type describing its general behaviour and a set of
custom properties

Conditional
Node

A node specifically designed to check over data and activate
alternative scenarios

Flow The logical way the nodes are wired, expressing how they
collaborate by exchanging messages

Sub-Flow Each self-contained logical portion of a flow, contributing to its
completion

Wire The edge used to graphically connect two nodes in a flow

Pin The input/output port of a node where a wire enters/leaves

Message A data object exchanged by some nodes, characterized by a
sequence of configurable properties

Global/Flow
Variable

A variable defined in a node and visible by all the flows or by just
the one containing that node

Node-RED flows from the official repository. This paper is a substantially revised
version of our original proposal presented in a conference paper [5]. The main
extensions are: (1) a more detailed guidelines description, also with the help of
multiple examples (Sect. 2), and (2) an analysis of the Top-100 most downloaded
Node-RED flows, to understand their compliance with the guidelines (Sect. 4)
together with a discussion of the reasons why some guidelines are satisfied more
often than others in the considered flows.

In Sect. 2 the guidelines are described. The experiment investigating the ben-
efits of adopting our guidelines and the corresponding results are discussed in
Sect. 3, together with some Node-RED comprehensibility issues pertaining the
two selected Node-RED systems showing how the guidelines can be applied on
them. Section 4 reports an analysis of the Top-100 most downloaded Node-RED
flows from the official web site and their compliance with the guidelines is dis-
cussed. Finally, related work are presented in Sect. 5, and the conclusions are
discussed in Sect. 6.

2 Proposed Guidelines

The guidelines we propose in this paper address some common Node-RED com-
prehensibility issues, which may emerge while developing flows or trying to
understand and integrate flows provided by an external source (e.g., the Node-
RED community library). Issues may concern confusing nodes names, hidden
loops and loss of messages, lack of conditional statements, unexpected inactive

Improving Node-RED Flows Comprehension 235

nodes, and more. More details about issues are provided in Sect. 3.2. The guide-
lines aim at supporting Node-RED developers in producing flows that are easy
to comprehend by construction, and suitable for future reuse, maintenance and
testing activities.

The guidelines have been inspired by several design works addressing systems
quality using UML and BPMN [1,12,16,18,20], and by our experience in IoT
systems design and Node-RED flows development [4,8]. UML is one of the most
used notational languages [17], and differs to Node-RED in many aspects: while
UML works at design level and describes the static and dynamic details of a
system, Node-RED is an executable visual language used to implement, execute
and deploy a working system. The constructs they use are quite different, as well
as their syntax and semantics. Nevertheless, we have experimented in practice
that some design and technology-independent principles can be inherited from
UML even to solve specific Node-RED issues [4,8].

To better comprehend the Node-RED terminology and the issues that our
guidelines try to address, in Table 1 we recap a short list of terms and definitions,
extracted and elaborated from the Node-RED official documentation3.

The guidelines we propose can be classified into four types, based on the
comprehensibility issues they address: Naming, Missing Data, Content, and
Layout.

2.1 Naming

Node Name Behaviour (NNB). Each Node-RED node should have a unique
(unless a duplicate of another existing node) and meaningful name, suggesting its
high-level behaviour [7]. The name of a node should make explicit the action(s)
performed by the node and the object(s) receiving such action(s). An object may
refer to a message property or a global/flow variable, written in upper-case to
be more visible within the flow [18]. The name of a node should be concise,
otherwise it may indicate that the node is performing too many tasks and has
to be simplified. There should not exist two or more nodes having the same
name but different behaviours, otherwise this may bring to a comprehensibility
issue that has to be solved by renaming the nodes properly. The nodes following
a conditional node should make explicit the condition they satisfy, in order to
clarify the scenarios they start (e.g., if VALUE > 10, print VALUE). Nodes
names should avoid any jargonic terminology or overly technical detail. To reach
the larger set of Node-RED users, nodes names should be formulated in English.
An example of NNB applied on a node that receives weather forecasting data

Fig. 1. Node Name Behaviour (NNB) applied.

3 https://nodered.org/docs/.

https://nodered.org/docs/

236 D. Clerissi et al.

and parses just the date and the description is shown in Fig. 1; on the left, the
original node name is shown, while on the right it is properly renamed.

Flow Name Behaviour (FNB). Each Node-RED flow should have a unique
and meaningful name, summarizing in a very concise way its high level
behaviour [7]. The name of a flow should provide enough details that, even
at a first glance, is able to explain what the flow does. This may include the
device the flow communicates with (e.g., Sensor Monitor), the entity or data
it manages (e.g., Office Lights Switch), or the environment it lives within (e.g.,
Kitchen Room). As for nodes, the name of a flow should be formulated in English
and avoid any complicated terminology. An example of FNB applied is shown
in Fig. 2, where the flow name appears in a browser-like tab within the Node-
RED environment. Since the flow should elaborate weather forecasting data and
report them via SMS and MQTT, its name is changed from left to right.

Fig. 2. Flow Name Behaviour (FNB) applied.

2.2 Missing Data

Node Effective Contribution (NEC). By adapting to Node-RED the terms
used by Ambler [1], there should neither exist black hole nodes nor miracle
nodes. A black hole node is a node with no leaving wires but output pins > 0,
which means that the node output might be lost or unused by the flow, while
a miracle node is a node with no entering wires but input pins > 0, which
means that the node cannot be explicitly activated or is missing some data.
Besides actual problems in the flow, which may require to address the issue by
introducing sub-flows to handle the forgotten black hole or miracle node, the
presence of such kind of nodes may also indicate that a previous debugging
stage occurred, which isolated some undesired nodes during the process and left
them disconnected once completed. An example of NEC applied on a node is
shown in Fig. 3. The node transforms tweets into colours to later instrument
remote LEDs, but is missing the output wires, resulting in lost messages (top

Fig. 3. Node Effective Contribution (NEC) applied. (Color figure online)

Improving Node-RED Flows Comprehension 237

Fig. 4. Conditions Consistency and Completeness (CCC) applied.

red circles). By applying NEC, the black hole node is detected and its output
handled as desired, by adding the wires that will properly route the output
messages (bottom green circles).

Conditions Consistency and Completeness (CCC). The conditions of
every conditional node, like the switch node (i.e., a core Node-RED node basi-
cally implementing the switch/if constructs of every programming language, and
used to route the messages by evaluating a set of conditional statements over
global/flow variables or message properties4) should not overlap and be complete
(i.e., their disjunction returns true) [1,18], in order to handle separately all the
possible scenarios. The suggested way for guaranteeing the conditions completion
in a flow is to introduce the ‘otherwise’ statement as ultimate condition within
every conditional node, in order to cover any unexpected/wrong alternative sce-
nario. Clearly, this newly additional scenario will likely have to be developed as
well (e.g., by simply providing a sub-flow catching and notifying the error once
the ‘otherwise’ condition is matched). An example of CCC applied on a Node-
RED flow is shown in Fig. 4. The flow receives Twilio5 calls and manages them
either as SMS or WEMO commands6 (i.e., to control electronic home devices
remotely); in the original flow (top) a conditional node considers only the SMS
and WEMO alternatives, while the application of CCC (bottom) introduces a
‘otherwise’ alternative to handle unexpected scenarios with a simple debug node
printing an error message if, e.g., due to network issues the Twilio request is null
or wrongly formatted.

2.3 Content

Sub-Flows Relatedness (SFR). The sub-flows composing a flow should be
logically related among each others [7], following the design principle of high
cohesion and low coupling [11]. Two sub-flows F1 and F2 are logically related if,
e.g.: F1 and F2 describe (part of) the behaviour of the same device; F1 and F2

4 https://nodered.org/docs/user-guide/nodes#switch.
5 https://www.twilio.com/.
6 https://www.wemo.com/.

https://nodered.org/docs/user-guide/nodes#switch
https://www.twilio.com/
https://www.wemo.com/

238 D. Clerissi et al.

receive/send data from/to the same device; F1 and F2 act in the same environ-
ment; F1 and F2 contribute to the same service/functionality; F1 and F2 share
some variables or other data; F1 is activated by F2 or vice versa.

The presence of several input sources activating a flow or output destinations
receiving the outcome of a flow, or even large nodes or sub-flows performing
heterogeneous functionalities, are all hints of a SFR failure. SFR is just an
indicator of a possible issue in the flow, that should be considered the moment
the flow has to be restructured, by isolating the unrelated sub-flows and produce
equivalent independent flows. An example of a possible SFR failure is shown in
Fig. 5. The flow takes in input a very generic data structure that can be received
from a variety of input sources (red circles), like MQTT and TCP ports, and
parses it for a later storage. The presence of such heterogeneous input sources
suggests that the flow may have to be restructured as mentioned above.

Fig. 5. Sub-Flows Relatedness (SFR) applied to detect possible unrelated sub-flows.

Flow Content (FC). If a flow is overpopulated, its content should be sim-
plified [1,12,20], by identifying some of its sub-flows, and either: (a) physically
split and virtually connect them together through link nodes (i.e., a core Node-
RED node used to add a virtual wire between two sub-flows7), or, (b) collapse
them into corresponding sub-flow nodes (i.e., a core Node-RED node used to
collect sub-flows to favour reuse and reduce layout complexity8). Since Node-
RED flows design and development phases are strongly related due to the visual
nature of the tool, as in the case of more general design activities, there is a
positive correlation between flows size and complexity. A flow is then classified
as overpopulated if the number of nodes it contains is equal or above 50 [12]. An
example of FC applied on a flow is shown in Fig. 6. The original flow (on top) is
rather simple i.e., it retrieves the content of a file and alternatively defines a new
file template and sends it via MQTT (sub-flow 1) or modifies and saves it locally
(sub-flow 2). Even though the flow is not overpopulated and does not actually
need a simplification, the application of FC is provided just as an example.
As shown in Fig. 6, the simplification can occur via sub-flow nodes, collapsing
7 https://nodered.org/blog/2016/06/14/version-0-14-released.
8 https://nodered.org/docs/user-guide/editor/workspace/subflows.

https://nodered.org/blog/2016/06/14/version-0-14-released
https://nodered.org/docs/user-guide/editor/workspace/subflows

Improving Node-RED Flows Comprehension 239

Split via sub-flow nodes

sub-flow 1

sub-flow 2

sub-flow 1

sub-flow 2

sub-flow 2

sub-flow 1

Split via link nodes

Fig. 6. Flow Content (FC) applied via sub-flow or link nodes.

into them the sub-flows 1 and 2, or via link nodes, hence physically separating
sub-flows 1 and 2 from the main sub-flow to keep just virtual connections with
them.

2.4 Layout

Wiring Style Consistency (WSC). The wires connecting the nodes should
follow a consistent wiring style, to differentiate main/correct scenarios from
exceptional/wrong ones [1,16,18,20]. Since Node-RED flows may handle several
scenarios, as it happens for classic programming languages concerning condi-
tional statements, different wiring styles may be adopted within the same flow.
For example, a “straight, from left to right, top-down” style to wire all the nodes
participating in a correct scenario, and a “cascade” style to wire all the nodes
participating in a wrong scenario. An example of WSC applied on a flow is
shown in Fig. 7. The flow tracks local air traffic and, even if quite simple, it
adopts an inconsistent wiring style, moving from up to down with no actual
meaning. The original wiring style (top) can be reworked in order to produce a
more consistent straight flow (bottom).

Wiring Style Tidiness (WST). The wires connecting the nodes should be
long enough to clearly show the starting/ending nodes and avoid any overlap-
ping, whether possible [1]. Wires should be drawn in the order they enter/leave
a node. The node joining multiple wires should be placed at the level of the
node where such wires originated. An example of WST applied on a flow is
shown in Fig. 8. The large node named Route Messages of the original flow (top)
routes several measures and information pertaining the inside of a shed, like

240 D. Clerissi et al.

Fig. 7. Wiring Style Consistency (WSC) applied.

Fig. 8. Wiring Style Tidiness (WST) applied.

temperature, humidity, and light intensity, to a likewise number of devices con-
nected via the MQTT protocol. It is evident that there are several overlapping
nodes and entangled wires, all hindering the flow comprehensibility and making
hard to track which MQTT node receives what message. The flow is made tidier
(bottom) by rearranging the nodes placements and the wires connecting them.

3 Empirical Evaluation of the Comprehension
Improvement

Based on the Goal Question Metric (GQM) template [21], the main aim of
our experiment can be defined as follows: “Evaluate the effect of the guide-
lines in Node-RED flows comprehension”, with the purpose of understanding if

Improving Node-RED Flows Comprehension 241

the guidelines are able to improve the comprehension level of Node-RED flows
and the time required to complete tasks pertaining such flows; therefore, conse-
quently, the overall efficiency is computed as: comprehension level ÷ time. The
perspective is of: a) Node-RED developers, using it for their own purpose and/or
sharing artefacts with the community, who may be interested to consider a dis-
ciplined technique to develop Node-RED flows using our guidelines; b) teachers
and instructors interested to offer courses and tutorials on Node-RED and c),
researchers interested in focusing their research activities and study improve-
ments or constraints to the Node-RED language. Thus, our research questions
are:

Table 2. Overview of the Experiment.

Goal Evaluate the effect of the guidelines in Node-RED flows
comprehension

Quality focus Pertaining Node-RED tasks, we evaluate:

(i) Comprehension, (ii) Time, (iii) Efficiency

Context Objects: DiaMH and WikiDataQuerying Node-RED systems

Participants: 10 Computer Science master students

Null
Hypotheses

No effect on
(i) comprehension, (ii) time, (iii) efficiency

Treatments Non-compliant (–) and Compliant (+) Node-RED flows

Dependent
variables

(i) TotalComprehension to complete Node-RED tasks

(ii) TotalTime to complete Node-RED tasks

(iii) TotalEfficiency to complete Node-RED tasks

RQ1. Does the comprehension level of Node-RED flows vary when our guide-
lines are applied?
RQ2. Does the comprehension time of Node-RED flows vary when our guide-
lines are applied?
RQ3. Does the efficiency of completing tasks pertaining Node-RED flows vary
when our guidelines are applied?

To quantitatively investigate the research questions, we used ad-hoc ques-
tionnaires containing 16 comprehension questions for each experimental object.
We measured the comprehension level of Node-RED flows as the number of cor-
rect answers on the total, the time required to provide such answers, and the
efficiency as the ratio between the comprehension level and the time required to
provide such answers (i.e., the number of correct answers divided by the time is
a proxy for measuring the efficiency construct).

Table 2 summarizes the main elements of the experiment, following the guide-
lines by Wohlin et al. [22].

In the following, we describe in detail: treatments, objects, participants,
experiment design, hypotheses, variables, procedure, and other aspects of the
experiment.

242 D. Clerissi et al.

3.1 Treatments

Our experiment has one independent variable (main factor) and two treat-
ments: Non-compliant and Compliant Node-RED flows. Non-compliant Node-
RED flows (in the following, characterized by symbol –) are those produced
without following our guidelines, while compliant Node-RED flows (in the fol-
lowing, characterized by symbol +) are those produced following our guidelines.

3.2 Objects

To conduct the experiment we selected two existing Node-RED systems that
were developed by former students of the master course Data Science and Engi-
neering (Genova, Italy), as part of the last year project.

The systems, named DiaMH and WikiDataQuerying, present some com-
mon Node-RED comprehensibility issues derived from an undisciplined and basic
Node-RED usage (i.e., the teacher of that course was not involved in our research
and thus students developed the systems without following any guideline).

DiaMH System. DiaMH is a simulated Diabetes Mobile Health IoT system
which monitors a diabetic patient by collecting glucose values using a wearable
sensor, sends notifications to the patient’s smartphone about the monitored data,
and, based on some logical computations involving a cloud-based healthcare
system and realistic data patterns, determines the patient’s health state (i.e.,
Normal, More Insulin required, or Problematic) and, when needed, orders insulin
injections to a wearable insulin pump. It consists of 71 nodes and 63 wires.

WikiDataQuerying System. WikiDataQuerying is a web query service used
to select textual geospatial questions from a predefined list shown in an HTML
page, and query WikiData9 knowledge base, by first restructuring the selected
questions into SPARQL query language and formatting them using a Prolog
grammar. The results of the queries can be triples adhering to the Resource
Description Framework (RDF) language or boolean answers. It consists of 25
nodes and 27 wires.

Applying Guidelines to Node-RED Systems. For the selected Node-RED
systems, only some of the aforementioned guidelines have to be applied. However,
even such simple systems can hide several comprehensibility issues. Despite their
simplicity, involving mainly core Node-RED nodes, DiaMH works in the thorny
context of the healthcare and WikiDataQuerying must provide prompted feed-
back to the user’s requests. Therefore, producing Node-RED flows that adhere
to our proposed guidelines may improve the comprehensibility level during flows
inspection and development, and facilitate the subsequent engineering stages,
such as maintainability and testing.

9 https://www.wikidata.org.

https://www.wikidata.org

Improving Node-RED Flows Comprehension 243

(a)

(b)

(c)

Fig. 9. Issues in Node-RED Systems and Guidelines Application (see [5]).

Just few of the issues we found from a high-level flows analysis of the systems
are shown in Fig. 9 and discussed in the following. Most of the nodes names do not
clarify their behaviours, forcing the developer to inspect the nodes contents and
settings in order to comprehend them. Therefore, NNB can be applied to clarify
the nodes purposes, by making explicit in their names the performed actions and
the used variables in uppercase (see nodes names in Fig. 9, changed from left to
right). Sub-flow (a, left) of Fig. 9 presents the function node (i.e., a core Node-
RED node used to implement customized JavaScript functions10) named Yes =>
Count critical values, which performs several actions and then sends a message
to subsequent nodes (not shown in Fig. 9) only when a certain condition holds
(i.e., if count >= 20, see lines 15–17 in Fig. 9 left associated with the node);
from an unaware Node-RED developer perspective, this may unexpectedly block
the execution of the sub-flow until the condition is satisfied, even if the nodes are
graphically connected by means of wires. This comprehensibility issue emerged
in several topics posted on the main Node-RED forum11 and can be solved by
applying NNB, as previously mentioned, by renaming the function node as,
e.g., DISCARD == 0 => count CRITICAL values and returns only if COUNT
>= 20, in order to make explicit the condition it satisfies from the preceding
switch node (i.e., DISCARD == 0), the core behaviour (i.e., count CRITICAL
values), and the hidden condition for the message to return (i.e., returns only
if COUNT >= 20). Sub-flow (a, right) of Fig. 9 is the result. In sub-flow (b,
left) of Fig. 9, the switch node Switch Current State hides a severe issue: it
considers only three possible values for the msg.state variable, but the check
will fail and idle the sub-flow execution if any unexpected event sets the variable

10 https://nodered.org/docs/user-guide/nodes#function.
11 https://discourse.nodered.org/t/function-node-stopping/7017.

https://nodered.org/docs/user-guide/nodes#function
https://discourse.nodered.org/t/function-node-stopping/7017

244 D. Clerissi et al.

to a different value before the switch node. This problem was solved in the
dawn era of Node-RED12 by introducing an “otherwise” entry to handle all the
alternative conditions, but the average Node-RED developer may still miss to
use it in favour of a more explicit, but incomplete set of conditions13. By applying
CCC, the “otherwise” condition is added to the switch node (see the change
in the configuration panel from left to right in Fig. 9), while the application
of WSC displays in a cascaded wiring style the newly introduced exceptional
scenario. Sub-flow (b, right) of Fig. 9 is the result. Sub-flow (c, left) of Fig. 9
presents several issues. First, the wires do not follow any consistent wiring style
(e.g., build the flow by wiring nodes from top to bottom or from left to right,
avoiding crossing wires), which reduces the overall comprehensibility14. Second,
a loop is generated between Prolog and send Prolog newline nodes; although in
this scenario finding the loop is rather simple, it may be harder to detect and
produce a weird outcome or overheat the CPU, when more wires are involved15.
Third, the sub-flow shows three function nodes connected through output pins
to limit 1 msg/s node, but only Build SPARQL queries actually contributes to
the flow, since the other two nodes have no entering wires, making them inactive;
this case in particular is easy to detect, but could be hard to understand for a
novel Node-RED developer, in case she forgets to trace a wire between two nodes
to specify the input source or the output destination of a node, without receiving
any explicit warning from the Node-RED environment. This issue often arises
when there is a need for debugging a flow and some nodes have to be temporary
disconnected from it16. By applying WSC and WST, a more consistent and
tidier wiring style is generated, to highlight the loop and avoid further entangles,
while NEC is used to remove the miracle nodes originally named Build SQL
queries and Build SQLGIS queries (i.e., those having input pins but no entering
wires, in fact inactive). Sub-flow (c, right) of Fig. 9 is the result.

Preparation for the Experiment. We limited each object to just a com-
parable (in size and complexity) flow of the original behaviour, consisting of
20 nodes and 23 wires for DiaMH and 21 nodes and 21 wires for WikiData-
Querying, employing mostly Node-RED core nodes. We carefully inspected and
tested both the flows of the systems; these two flows correspond to the non-
compliant treatment (−), since our guidelines were not adopted during their
implementations. Then, an author of the paper applied the guidelines discussed
in Sect. 2 to the initial flows, producing two equivalent compliant versions (+),
while another author double checked the newly produced flows. In total, we
used four Node-RED flows for executing the experiment: DiaMH−, DiaMH+,
WikiDataQuerying−, WikiDataQuerying+.

12 https://github.com/node-red/node-red/issues/88.
13 https://discourse.nodered.org/t/switch-node-not-consistent/11908.
14 https://discourse.nodered.org/t/help-simplifying-flow/8765.
15 https://discourse.nodered.org/t/cpu-hogging-to-100/2944.
16 https://discourse.nodered.org/t/how-to-comment-out-a-node/1106.

https://github.com/node-red/node-red/issues/88
https://discourse.nodered.org/t/switch-node-not-consistent/11908
https://discourse.nodered.org/t/help-simplifying-flow/8765
https://discourse.nodered.org/t/cpu-hogging-to-100/2944
https://discourse.nodered.org/t/how-to-comment-out-a-node/1106

Improving Node-RED Flows Comprehension 245

3.3 Participants

We involved ten Computer Science master students of the University of Genova
(Italy), that were attending a course on advanced software engineering. The total
number of students enrolled in the course was 15, which is basically the average
number of students enrolled in any Computer Science Master Course in Genova.
They had average knowledge of Software Engineering, UML and JavaScript (the
Node-RED core programming language), and few experience in Node-RED and
flow-based programming, that was provided in another course related to Node-
RED development.

3.4 Experiment Design

Before the experiment, all the participants were involved in a 4-hours lecture split
in two days about Node-RED theory and practice using the tool. Participants
were provided with material to understand the main Node-RED core nodes,
samples of flows and sub-flows to reproduce/change, and questions to answers
about comprehensibility issues of the flows similar to those we asked for the later
experiment. Participants were not informed about the guidelines, and therefore,
about the treatments. Due to the limited number of participants (only ten),
we adopted a counterbalanced experiment design ensuring each participant to
work in two tasks on the two different objects, receiving each time a different
treatment. Since participants had the same experience in Node-RED, acquired by
attending another course, we randomly split them into four groups (see Table 3),
balancing the representatives for each group. Each participant had to work first
on Task 1 on an object with a treatment, then in Task 2 on the other object
with the other treatment.

Table 3. Experimental Design: + Compliant treatment, − Non-Compliant treatment
(see [5]).

Group A Group B Group C Group D

Task 1 DiaMH+ DiaMH− WikiDataQuerying+ WikiDataQuerying−

Task 2 WikiDataQuerying− WikiDataQuerying+ DiaMH− DiaMH+

3.5 Dependent Variables and Hypotheses Formulation

Our experiment had three dependent variables, on which the treatments were
compared measuring three different constructs to answer our three research
questions: (a) Comprehension of the Node-RED flows (measured by variable
TotalComprehension), (b) Time required to answer the questions pertaining the
Node-RED flows (measured by variable TotalTime), (c) Efficiency in completing
the tasks pertaining the Node-RED flows (measured by variable TotalEfficiency).
For each treatment:

246 D. Clerissi et al.

– TotalComprehension was computed by summing up the number of correct
answers of each participants;

– TotalTime was computed as the difference between the stop time of the last
question and the start time of the first question, where timing was tracked
down in the time sheet by each participant;

– TotalEfficiency was derived by the two previously computed variables, as:

TotalEfficiency = TotalComprehension/TotalTime

Since we could not find any previous empirical evidence pointing out a clear
advantage of one treatment versus the other, we formulated the following three
null hypotheses as non-directional, with the objective to reject them in favour
of alternative ones:

– H0a: TotalComprehension– = TotalComprehension+

– H0b: TotalTime– = TotalTime+

– H0c: TotalEfficiency– = TotalEfficiency+

3.6 Material, Procedure and Execution

To estimate the comprehensibility of the tasks to provide to the participants
and the time required to complete them, we conducted a pilot experiment with
three participants: two master students in Computer Science not involved in the
experiment and one of the authors of this paper. On average, the time required
to complete both tasks was about 105 min, with 5 errors. Given such results,
we tried to remove any ambiguity from the questions. Then, we uploaded the
material on the Moodle module of the course from which the participants were
selected, consisting, for each group of Table 3, of: two Node-RED flows (one per
system/treatment), two questionnaires containing 16 questions each, and a post-
questionnaire to fill after the completion of the two questionnaires containing
seven further questions. Each questionnaire presented exactly 7 open questions
and 9 multiple choices questions, in order to keep the perceived complexity of
both tasks as equivalent as possible. Questions ranged from comprehending the
general behaviour of the provided Node-RED flows, like identifying the names
and the number of nodes involved in certain activities, detecting the presence of
loops and missing conditions in switch nodes, counting the number of intersec-
tions among wires, to listing some simple maintenance tasks to do on the flows.
Concerning multiple choices questions, only one answer among the proposed
was correct and counted 1 point each, while for open questions we gave 1 point
to totally correct answers and 0 otherwise. For each object (i.e., DiaMH and
WikiDataQuerying), the questions asked to the participants were exactly the
same, independently from the treatment that had occurred (i.e., non-compliant
or compliant). The participants had to complete each task in the order defined
by the group they were assigned to, and to stop each task only when completed.
For each task, participants had to import the corresponding Node-RED flow
into Node-RED and, for each question, track start time, answer the question,

Improving Node-RED Flows Comprehension 247

Table 4. Descriptive statistics per treatment and results of paired Wilcoxon test (see
[5]).

Dependent variable Non-compliant treatment (–) Compliant treatment (+) p-value Cliff’s delta

Median Mean St. Dev. Median Mean St. Dev.

Total comprehension 9.500 9.600 2.319 13.500 12.800 2.044 0.00903 −0.69 (L)

Total time 58.500 71.100 38.484 57.000 59.100 25.291 0.04883 +0.17 (S)

Total efficiency 0.180 0.179 0.109 0.254 0.253 0.100 0.00586 −0.36 (M)

and track stop time. Finally, the participants were asked to complete the post-
experiment questionnaire, to collect insights about their skills and motivations
for the obtained results. Questions were about the perceived complexity of the
two tasks, the exercise usefulness, the feelings and the preferences between the
styles of the two flows, and the competencies required to complete the tasks.
Answers were provided on a Likert scale ranging from one (Strongly Agree) to
five (Strongly Disagree).

3.7 Analysis

Because of the sample size and mostly non-normality of the data (measured with
the Shapiro–Wilk test [19]), we adopted non-parametric test to check the three
null hypotheses.

Since participants answered to the questions on the two different objects
(DiaMH and WikiDataQuerying) with the two possible treatments (non-
compliant and compliant), we used a paired Wilcoxon test to compare the effects
of the two treatments on each participant. To measure the magnitude of the
effects of the two treatments, we used the non-parametric Cliff’s delta (d) effect
size [6], which is considered small (S) for 0.148 ≤ |d| < 0.33, medium (M) for
0.33 ≤ |d| < 0.474, and large (L) for |d| ≥ 0.474. We decided to accept the
customary probability of 5% of committing Type-I-error [22], i.e., rejecting the
null hypothesis when it is actually true.

3.8 Results

In this section, the effect of the main factor on the dependent variables (Total-
Comprehension, TotalTime, and TotalEfficiency), as resulted from the exper-
iment, and the post-experiment questionnaires are discussed. Table 4 summa-
rizes the essential Comprehension, Time, and Efficiency descriptive statistics
(i.e., median, mean, and standard deviation) per treatment, and the results of
the paired Wilcoxon analysis conducted on the data from the experiment with
respect to the three dependent variables.

H0a: Comprehension (RQ1). Figure 10 (left) summarizes the distribution of
TotalComprehension by means of boxplots. Observations are grouped by treat-
ment (non-compliant or compliant). The y-axis represents the average compre-
hension measured as number of correct answers on the 16 questions for each

248 D. Clerissi et al.

treatment, where score = 16 represents the maximum value of comprehension
and corresponds to provide correct answers to all the 16 questions. The boxplots
show that the participants achieved a better comprehension level when working
on the compliant Node-RED flows (median 13.5) with respect to those work-
ing on non-compliant flows (median 9.5). By applying a Wilcoxon test (paired
analysis), we found that the difference in terms of comprehension is statistically
significant, as testified by p-value = 0.00903. Therefore, we can reject the null
hypothesis H0a. The effect size is large (d = – 0.69). To answer RQ1 : The adop-
tion of the guidelines significantly improves the level of comprehension of the
Node-RED flows.

H0b: Time (RQ2). Figure 10 (center) summarizes the distribution of TotalTime
by means of boxplots, where the y-axis represents the total time to answer the
16 questions for each treatment. The boxplots show that the participants needed
slightly more time to answer the questions pertaining the objects with the non-
compliant treatment w.r.t. those answering the questions pertaining the objects
with the compliant treatment (58.5 versus 57.0 min respectively in the median
case). By applying a Wilcoxon test (paired analysis), we found that the overall
difference is marginally significant (p-value = 0.04883). Therefore, we can reject
the null hypothesis H0b. The effect size is small (d= 0.17). To answer RQ2 : The
adoption of the guidelines marginally reduces the time required to answers the
questions pertaining the Node-RED flows.

H0c: Efficiency (RQ3). Figure 10 (right) summarizes the distribution of Total-
Efficiency by means of boxplots. The boxplots show that participants working
on the objects with the compliant treatment outperformed in terms of efficiency
those working with the objects with the non-compliant treatment (medians 0.254
versus 0.180, respectively). By applying a Wilcoxon test (paired analysis), we
found that the overall difference is statistically significant, as shown by the p-
value (p-value = 0.00586). Therefore, we can reject the null hypothesis H0c. The
effect size is medium (d = –0.36). To answer RQ3 : The adoption of the guidelines
increases the overall efficiency in the comprehension of the Node-RED flows.

Non−Compliant Compliant

0
5

10
15

C
or
re
ct

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

Non−Compliant Compliant

0
20

60
10

0
14

0

m
in
ut
es

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

Non−Compliant Compliant

0.
0

0.
1

0.
2

0.
3

0.
4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 10. Boxplots of Comprehension, Time, and Efficiency.

Improving Node-RED Flows Comprehension 249

3.9 Post Experiment

When participants had to fill the post-experiment questionnaire, they were
unaware of the guidelines and, therefore, of the two treatments. For this rea-
son, the actual questions were formulated as a comparison between the flows
they had worked on in the two tasks, keeping track of which treatment occurred
on them, according to the group the participants were assigned to. Thus, for
instance, question PQ1 was originally formulated as Comprehending the Node-
RED flow in Task 1 was harder than the Node-RED flow in Task 2. In Table 5
the post-experiment questionnaire has been adjusted in order to clarify the pur-
pose of our experiment. Table 5 reports also the medians of the answers given by
the participants. The possible choices for each answer, on a 5-point Likert scale,
were: Strongly Agree, Agree, Unsure, Disagree, Strongly Disagree.

As the Table 5 shows, participants did not perceive any difference in the com-
plexity while trying to comprehend the Node-RED flows using each treatment
(PQ1), but believed that developing and maintaining such flows may result more
complex with the non-compliant treatment (PQ2-3). The names of the nodes and
of the used variables in the two treatments had no significant impact in the over-
all comprehension (PQ4), whereas the wiring style was better perceived in the
case of the compliant treatment (PQ5). In general, participants found the exer-
cise useful (PQ6) to the course of their studies, and fitting their knowledge in
Node-RED (PQ7), in part acquired by attending the 4-hours lecture preceding
the experiment.

Table 5. Adjusted post-experiment questionnaire (see [5]).

ID Question Median

PQ1 Comprehending the non-compliant Node-RED flow was harder than
the compliant one

Unsure

PQ2 In your opinion, developing the non-compliant Node-RED flow is
harder than the compliant one

Agree

PQ3 In your opinion, maintaining the non-compliant Node-RED flow is
harder than the compliant one

Agree

PQ4 The names of the nodes and the variables in the non-compliant
Node-RED flow were less useful for the comprehension than in the
compliant one

Unsure

PQ5 The wiring style to connect nodes in the non-compliant Node-RED
flow was less useful for the comprehension than in the compliant one

Agree

PQ6 I found the exercise useful Agree

PQ7 I had enough knowledge to answer the questions Agree

250 D. Clerissi et al.

3.10 Discussion on the Experiment

Given the results of the experiment, all null hypotheses can be rejected. The
guidelines are generally beneficial to the comprehension level and reduce the
time required to complete Node-RED tasks. Consequently, the overall efficiency
is also positively affected.

One of the main reasons of success of the guidelines was producing flows that
follow a consistent and tidy wiring style, by means of WSC and WST, which
improved the capability of detecting loops and reduced entangles among wires.
This is corroborated by PQ5 of Table 5. In fact, the questions pertaining com-
prehensibility issues about wires and loops presented generally better outcomes
for the flows compliant with our guidelines. For example, a question in both
questionnaires requires identifying the number of intersections between wires.
While we had only 1 error for the flows compliant with our guidelines, for the
non-compliant flows the errors amounted to 8.

On the other hand, by the feeling of the participants (PQ4), giving proper
names to nodes was not so relevant for the comprehension. This is contradicted
by the results of the experiment, since the importance of names, given by NNB
guideline, resulted to be helpful in indirectly answering several questions on both
systems. For instance, we had two open questions specifically asking the names of
the nodes responsible for a certain behaviour (e.g., Which node (provide name)
displays on a web page the WikiData answer to the user’s question?), which
resulted in a total of 4 errors for the flows compliant with our guidelines against
10 for the non-compliant ones . We had also two questions in both questionnaires
asking about which data was changed/returned after the completion of a certain
activity (e.g., Which data are saved just after the HTTP request to URL?):
while we had just 1 error in the flows compliant with our guidelines, 5 errors
were counted for the non-compliant cases. One question asked about the effective
contributions of the nodes in a selected portion of the flows (i.e., if they were
able to transform the message they had received); by using NEC guideline, the
inactive nodes (e.g., those added for debugging purposes) were removed from the
flows compliant with the guidelines, but not from the non-compliant flows. In this
case, while participants easily identified the contributions of the remaining nodes,
they failed (4 errors) in identifying the inactive ones in the non-compliant flows.
Finally, there was a question asking to list all the files in the file system used by
the flows, which resulted in 1 error for the flows compliant with our guidelines
against 4 for the non-compliant ones. Indeed, by following our guidelines, the
nodes names were formulated to make their behaviours more explicit, as well as
the main used variables, hence reducing the overall errors in the comprehension,
as summarized by the statistics data of Table 4.

From PQ1, participants did not have a clear opinion on which treatment was
easier to comprehend, while they agreed that flows produced without following
our guidelines would be harder to develop and maintain (PQ2-3). Concerning
comprehensibility complexity, we speculate that the uncertainty of the partici-
pants is due to the domain of the two systems: while DiaMH presents the MQTT
node (i.e., a core Node-RED node used to establish a communication from/to

Improving Node-RED Flows Comprehension 251

entities and flows using the MQTT protocol17) as the most complex node, Wiki-
DataQuerying refers to WikiData repository and to Prolog and SPARQL lan-
guages, which could deviate from their average academic background. Finally,
the participants recognized that the tasks they completed did not require exces-
sive knowledge of Node-RED and were helpful for their current/next academic
studies (PQ6-7).

To conclude, the proposed guidelines resulted useful in terms of comprehen-
sion level, time, and overall efficiency. This may suggest Node-RED developers
to apply them to reduce the comprehensibility issues of the flows they will pro-
duce, deploy and share. At the same time, the guidelines may turn useful to the
designers of the Node-RED language, who may want to fix some of the issues
exposed in the paper, by introducing additional features in future Node-RED
releases. Just to mention few possible additions: (i) nodes resizing in height
and width, to highlight the most important nodes and make long names more
readable, (ii) general warnings, to notify the presence of unused variables, incom-
plete conditions within switch nodes, and loops, and (iii) jumps between wires,
to graphically handle colliding wires.

3.11 Threats to Validity of the Experiment

The threats to validity that could affect our experimentation are: internal, con-
struct, conclusion and external [22].

Internal Validity Threats: these threats concern factors which may affect the
dependent variables. The participants had to complete two tasks; therefore, a
fatigue/learning effect may have intervened. However, since they had a break
between the two tasks and they previously completed some exercises about Node-
RED comprehensibility issues, we expect this effect to be limited. Another threat
is the subjectivity in the objects selection. The objects were flows chosen from
a list of systems developed by former master students of another course related
to Node-RED, and were comparable in size and complexity and composed of
mostly Node-RED core nodes.

Construct Validity Threats: these threats concern how comprehension and time
were measured. The correctness of the answers was checked by one of the authors,
who also measured the execution time, based on the time sheets filled by the
participants. The statistics data (i.e., median, mean, and standard deviation)
and the results of the paired Wilcoxon analysis were computed using Excel and
R18.

Conclusion Validity Threats: these threats concern the limited sample size of the
experiment (ten master students), which may have affected the statistical tests.
Unfortunately, this is the average number of students of any Computer Science
Master Course in Genova, so it is difficult for us to conduct experiments with
more participants.
17 https://cookbook.nodered.org/mqtt/.
18 https://www.r-project.org/.

https://cookbook.nodered.org/mqtt/
https://www.r-project.org/

252 D. Clerissi et al.

External Validity Threats: these threats can limit the generalization of the results
and, in our case, concern the use of students as experimental participants. Our
participants had few knowledge of Node-RED, therefore more expert Node-RED
developers may produce a different outcome. We intend to replicate our experi-
ment with more complex systems and more expert developers.

4 Analysis of the Top-100 Most Downloaded Flows

To determine the compliance with our guidelines of existing Node-RED flows
produced by external sources, we consulted the official Node-RED flows library19

and collected a sample consisting in the ‘Top-100 Most Downloaded Node-RED
Flows’. In Table 6 the collected flows are listed and briefly described. Each flow
was manually analysed to determine its behaviour, its size as number of nodes,
and its compliance (✓ for success, ✗ for failure) with the proposed guidelines.
The flows come from disparate domains and involve a large number of services,
including weather forecasting, coordinates management, social networking, phys-
ical/virtual devices communication, sentiment analysis, and custom nodes imple-
mentation to enhance Node-RED core behaviour. The analysis of the flows and
their compliance with the guidelines was firstly conducted by one author of the
paper, then reviewed by the other authors to avoid any mistake.

From Table 6, it emerges that, on average, the flows include about 9.54 nodes,
with a minimum of 1 unique node in 4 cases (flows #29 Rate Limiter, #64 Twit-
ter scrape and count triggers signal, #80 AmberTweets, and #94 Calculate ‘feels
like temperature’ for weather models) and a maximum of 63 nodes in a single
case (flow #27 Input and Output controls for Pibrella on Raspberry Pi). The
number of failed guidelines by Top-100 most downloaded flows is the following:
6 flows have no fails, the majority of flows fail one or two guidelines (32 flows
for both cases), then 20 flows fail exactly three guidelines, followed by 9 flows
failing four guidelines, finally 1 flow fails five guidelines.

The 6 flows with no fails are: #9 Forecast.io rain prediction , #31 Live Google
Maps Update - Websockets, #41 Alert if NO motion is detected, #81 Read Sun-
Sprite values, #87 Light switch off timer, #94 Calculate ‘feels like temperature’
for weather models. All these flows do not involve complicated scenarios and their
names clarify their intentions. Their nodes are assigned with semantically mean-
ingful names (e.g., flow #9 Forecast.io rain prediction presents a node named
Is weather unsafe to check if the weather forecasting data may suggest a poten-
tially dangerous situation) and the wires are connected avoiding any entangle
and following a generally consistent wiring style. Moreover, they do not include
conditional nodes or they include them by covering all possible alternative sce-
narios (e.g., the ‘otherwise’ condition). One of these flows, #94 Calculate ‘feels
like temperature’ for weather models, is actually a unique node, therefore cannot
fail guidelines addressing wires or nodes population of the flow. Instead, the flow
with the highest number of fails is #28 Flow GPS raw from your Raspberry
to websocket ; although this flow is rather simple, containing 13 nodes only, the
19 https://flows.nodered.org/search?type=flow, consulted in August 2020.

https://flows.nodered.org/search?type=flow

Improving Node-RED Flows Comprehension 253

Table 6. Top-100 Most Downloaded Node-RED Flows and Guidelines Compliancy.

Flow name Description

#
no
de
s

N
N
B

FN
B

N
E
C

C
C
C

SF
R

FC W
SC

W
ST

1 SunSprite Calendar View web service it displays a SunSprite calendar view for light exposure 18
2 Node-RED Current Cost XML Parser it parses XML temperatures data to JSON 7
3 Get UK Power Demand it fetches UK electricity power demand 5
4 Stock Price Alerts it notifies about stock price quotes 5
5 Twitter Sentiment Analysis it performs sentiment analysis on tweets 3
6 PiLite output it sends payloads to Ciseco PiLite serial output 2
7 JQuery Mobile Web Page it creates mobile web pages from HTTP requests 3
8 Tweet your location with MQTTitude it tweets user’s location based on MQTTitude service 4
9 Forecast.io rain prediction it calls Forecast.io service to predict next rainfall 14
10 Sensor hub for JeeNode / Open Energy Monitor it bridges MQTT topics to remote sensors 24
11 Parsing JeeNode Room Board it parses JeeNode room board messages and routes data 13
12 Aurora visibility it gets geomagnetic activity from NOAA agency 6
13 Earthquake monitor it creates earthquakes reports from USGS data 5
14 Flow that makes a new flow it generates output flows from input JSON objects 8
15 Siemens Logo8 - Example Node-RED it shows how to use Node-RED with Siemens Logo8 7
16 Parsing Open Energy Monitor emonTH sensor it parses raw data from an Open Energy Monitor sensor 10
17 Weather reports to SMS and MQTT topic it reports via SMS/MQTT weather forecast from BBC 10
18 CurrentCost to LEDborg energy monitor it activates LEDs based on an energy monitor 13
19 FRITZ!box router to PiLite Caller ID Display it routes incoming calls data to a PiLite display 7
20 Owntracks Geofence Notifications via Pushover it routes Owntracks location messages to Pushover 8
21 Process Twilio SMS request it routes received SMS to TwiML service 7
22 MQTT-SN buffer formatter it creates a MQTT-SN buffer formatter 4
23 Air/ground frost alerts via wunderground.com it provides warnings of overnight frosts 9
24 Plane spotting with RTL-SDR and Dump1090 it tracks local air traffic 5
25 Daily weather forecast based on OwnTracks location it returns weather forecast from OwnTracks locations 12
26 Flow to shut down a Raspberry Pi it enables a cleanly shut down of a Raspberry Pi 2
27 Input and Output controls for Pibrella on Raspberry Pi it controls Pibrella LEDs via gpio-in and gpio-out nodes 63
28 Flow GPS raw from your Raspberry to websocket it routes Raspberry GPS data to websocket 13
29 Rate Limiter it drops intermediate messages of a rated flow 1
30 Tweet to latitude / longitude coordinates it returns the coordinates of a tweet original location 15
31 Live Google Maps Update - Websockets it updates Google Maps coordinates via websockets 10
32 Send content to Little Printer Direct Print API it sends commands to a Little Printer using Direct Print API 6
33 Flash a Hue lamp with Twitter hashtags it flashes a Hue lamp when a given Twitter hashtag is de-

tected
4

34 Pinocchio Command Flow it sends commands for controlling dynamics of robotic mod-
els

10

35 Tweet IP address upon bootup it tweets IP address when a Raspberry Pi has powered up 7
36 Counter it counts the number of message passing in a flow 4
37 Simple Twilio based IVR it handles Twilio Voice calls 11
38 Routing with External Business Rules it performs switch routing using IBM Decision Manager 8
39 Dynamic Word Cloud it generates a Word Cloud from a Twitter feed 6
40 Turn off HDMI connected TV when leaving WIFI it turns off TV when a phone is disconnected from WIFI 8
41 Alert if NO motion is detected it alerts if no motion is detected at a certain place 8
42 Alert if Public IP address changes it sends an alert if home IP address changes 4
43 Calculate how far away from the ISS you are. it computes the distance to the International Space Station 5
44 Control a PiGlow using Node-RED it controls PiGlow LEDs of a Raspberry Pi 2
45 SONOS TTS it plays a sound on a SONOS speaker when batteries are

low
5

46 Update Dynamic DNS service when IP changes it notifies Dynamic DNS when IP address changes 12
47 Push data to Google Spreadsheet it pushes a data source to Google Spreadsheet 6
48 Convert timestamp to array it converts a timestamp into an array 5
49 no-ip.com update client it notifies No-IP Free Dynamic DNS when IP address

changes
7

50 AirPi with Node-RED it listens on a UDP port and publishes data to Xively service 4
51 DuckDNS dynamic DNS update client it notifies DuckDNS Dynamic DNS when IP address

changes
13

52 Notify on public IP change it saves IP address in a file and notifies when it changes 30
53 UDP Request response it handles UDP requests and responses 7
54 Data in -> MySql and Google Spreadsheet out it stores input in MySQL database and Google Spreadsheet 17
55 Gmaps experiment + earthquake experiment it provides Google Maps and EarthQuake monitor examples 11
56 Google Spreadsheet in it connects to a Google Spreadsheet and outputs its cells 5
57 AC CONTROL it controls and returns the temperature of a CPU 7
58 Filter which drops ’seenbefore’ items it filters out duplicate data in a flow 4
59 Loop with start, stop and toggle actions it handles loops in a flow 9
60 Parse weather data from NOAA Weather Centre it saves data from NOAA Weather Centre in a CSV file 6
61 Simple UK Sky+ satellite receiver control it allows to control a UK Sky+ satellite box 20
62 Run coffee-script it processes CoffeeScript commands 5
63 Thirteen cases: node-red-contrib-jsonpath it provides examples of JSONPath usage 29

(continued)

254 D. Clerissi et al.

Table 6. (continued)

Flow name Description

#
no
de
s

N
N
B

FN
B

N
E
C

C
C
C

SF
R

FC W
SC

W
ST

64 Twitter scrape and count triggers signal it counts the tweets having a given hashtag 1
65 IoT Example it monitors the temperature of a device 7
66 for-loop (simple iterating over an array) it handles array loops iterations 2
67 HTTP Monitor check it classifies web pages as available/down based on content 6
68 Integrating KNX+ZWave, v0.01 it integrates KNX installation with Z-Wave device 24
69 z-wave <-> mqtt bridge and examples of usage it provides examples of using Z-Wave 11
70 z-wave context.global.zwavenodes object builder it handles global variables of Z-Wave devices 29
71 Use sipgate.io to log and send phone calls it sends incoming calls notifications via sipgate service 5
72 Simple flow which controls a Tesla electric car it controls a Tesla Model S electric car 11
73 GetStatus - Denkovi it gets the status of a Denkovi board device 5
74 SetAction - Denkovi it sets the action to execute by a Denkovi board device 7
75 Yandex Weather20 it parses daily Yandex weather forecasting in Moscow 9
76 Using the collector node to generate XML it provides Collector node example to collects inputs data 7
77 1-wire to MQTT bridge it reads a sensor temperature and publishes it via MQTT 5
78 Wait for and combine multiple inputs to a node it combines input from multiple sources 9
79 7 Segment decoder it converts numbers from an Arduino 6 segment decoder 24
80 AmberTweets it forwards Twitter messages to a IRC channel 1
81 Read SunSprite values it reads data from SunSprite service 11
82 Boxcar Push Notification to iOS it shows how to push iOS notifications with Boxcar plat-

form
6

83 REST API using MongoDB + CoffeeScript it uses MongoDB and CoffeeScript via REST API 13
84 @Cheerlights to various RGB devices it routes a Twitter stream to various RGB devices 8
85 Google Map With BART Stations Using Websockets it points all public transport locations in San Francisco 7
86 Milight control via MQTT it controls wireless lights via MQTT 5
87 Light switch off timer it turns lights switch on and off 8
88 Database examples - insert and select using binding it provides examples of using a database 13
89 Freeboard load/save to file it loads/saves Freeboard configuration from/to a file 7
90 Metro it provides a sub-flow example to turn LEDs on and off 4
91 Blinking LEDS on Raspberry Pi it sends inputs to Raspberry Pi LEDs to make them blink 8
92 Control a projector via the PJLink protocol it controls projectors using PJLink protocol 21
93 Get your monthly bandwidth usage with TekSavvy ISP it provides bandwidth usage with TekSavvy service

provider
3

94 Calculate ’feels like temperature’ for weather models it elaborates weather data from a METAR weather report 1
95 HTTP-based chat server it implements a basic chat server 16
96 Simple way to pulse output n times it periodically returns up to N outputs from a flow 4
97 Function that dumps all context.global vars to debug it dumps all global variables to the debug panel 7
98 Bluemix-GameStopHackathon #16 it performs sentiment analysis on GameStop tweets 27
99 Node red flow for Fight Match it manages the state of GameStop stores 9
100 Bluemix-GameStopHackathon #17 it performs sentiment analysis on GameStop tweets 15

names of the nodes are very generic or include technical details and acronyms.
There is a conditional node missing to cover the ‘otherwise’ condition and with
an output pin with no leaving wires, resulting in a possible loss of the output
messages. Finally, the wiring style presents several entangles and is not consistent
to differentiate the occurring scenarios.

Table 7 shows the success rate statistics for the proposed guidelines in the
collected Node-RED flows. The guideline presenting the highest success rate is
FC; this can be easily explained by the fact that only one among the considered
flows slightly exceeded the upper bound limit of 50 nodes, as described in Sect. 2
concerning FC guideline. It is flow #27 Input and Output controls for Pibrella
on Raspberry Pi with 63 nodes, which may require a simplification even if it
satisfies both WSC and WST guidelines.

Three guidelines are above 80% of success rate: NEC, CCC, and SFR,
with 82%, 89%, and 87%, respectively. Very few flows presented black hole or
miracle nodes (i.e., nodes with input/output pins and no entering/leaving wires),
therefore NEC guideline rarely failed, but when it happened it was mostly
due to a function node that was missing an output wire. Even though this is

Improving Node-RED Flows Comprehension 255

Table 7. Guidelines Success Rate in Top-100 Most Downloaded Node-RED Flows.

Guideline Success rate %

Node Name Behaviour (NNB) 30%

Flow Name Behaviour (FNB) 72%

Node Effective Contribution (NEC) 82%

Conditions Consistency and Completeness (CCC) 89%

Sub-Flows Relatedness (SFR) 87%

Flow Content (FC) 99%

Wiring Style Consistency (WSC) 73%

Wiring Style Tidiness (WST) 71%

not necessarily an error, since not sending an output message might be the
expected behaviour, it is not the case of flow #51 DuckDNS dynamic DNS
update client, which includes a function node that checks over a variable with
two possible outcomes, but only one is actually covered by the flow and the other
output pin is missing the wire leaving from it. Concerning CCC, only a limited
number of flows included conditional nodes routing messages to different possible
scenarios; the majority of those who had included at least one conditional node
also considered the ‘otherwise’ condition to cover any unexpected alternative.
An example of CCC failure is given by flow #25 Daily weather forecast based
on OwnTracks location, which includes a conditional node that checks over a
string value but does not consider a ‘otherwise’ scenario if the value is, for
instance, null. Finally, SFR is more oriented to complex flows, hence not just
partial solutions or simplified examples as some of the selected flows, which rarely
included unrelated sub-flows; an example of a possible SFR failure is given by
flow #10 Sensor hub for JeeNode / Open Energy Monitor, which handles remote
sensors placed at different locations in the house, like loft, garage, or shed, that
could be treated separately. Another case is flow #11 Parsing JeeNode Room
Board, which contains a large node routing environmental heterogeneous sensors
data to a likewise number of MQTT nodes.

Another cluster of results includes FNB, WSC, and WST guidelines, all
ranging between 71% and 73% success rate. Even though this is not always true,
the bigger the flow is the harder it is to comprehend. The comprehension of
complicated/large flows can be supported by FNB, since the developer has to
name a flow properly to provide hints about its general behaviour. Fails can occur
when the given name is, for instance, too generic or too technical. Some examples
are flows #65 IoT example and #90 Metro, that have too generic names, flow
#75 Yandex Weather that was originally formulated in Russian alphabet, and
flow #19 FRITZ!box router to PiLite Caller ID Display that uses some technical
details. Other interesting instances are flows from #98 to #100 that describe the
context of their creation, that are software development events (i.e., Gamestop
hackathons), without providing details about their content. WST guideline is

256 D. Clerissi et al.

also important to produce comprehensible flows. In many cases there were over-
lapping nodes that required to move them to make the flow fully readable, e.g.,
in flows #17 Weather reports to SMS and MQTT topic and #23 Air/ground
frost alerts via wunderground.com, while in other cases the problem was in the
twisted wires, e.g., in flows #11 Parsing JeeNode Room Board and #24 Plane
spotting with RTL-SDR and Dump1090. The consistency of wiring styles, granted
by WSC, was neglected in several cases, producing alternative scenarios that
did not follow any rational, jumping between straight wires to cascaded wires
with no distinction, like flow #61 Simple UK Sky+ satellite receiver control.

Finally, NNB guideline was the one that failed the most, satisfied only by
30% of the considered flows. This is explained by the frequency of the compre-
hensibility issue (i.e., nodes naming) it addresses, that can be scattered along
the whole flow and inhibit its comprehension. Indeed, there could be nodes that
are assigned with default meaningless names (e.g., in flow #13 Earthquake mon-
itor a very generic ‘csv’ node is present to convert CSV earthquake data into
Javascript), empty names (e.g., in flow #20 Owntracks Geofence Notifications
via Pushover there is a function node with no name transforming the received
message content), or even jargonic, too technical or mysterious names (e.g.,
acronyms and names not in English are frequent but the flow #77 1-wire to
MQTT bridge wins the challenge by naming a node with the indecipherable
string ‘28.D8FE434D9855’).

In conclusion, this analysis reveals that on average NODE-RED develop-
ers, although unaware of our guidelines, adopt a disciplined approach to the
flows development. This is testified by the average of the computed guidelines
success rate in Top-100 most downloaded Node-RED flows which exceeds 75%.
The success rate of the guideline NNB is an exception, which stands at 30%.
As in traditional programming, we believe that it is very important to adopt
meaningful names of nodes and follow naming conventions also in NODE-RED
development to facilitate understanding.

5 Related Work

As anticipated in Sect. 2, several works on UML and BPMN concerning the qual-
ity of the produced models have inspired our guidelines. However, none specif-
ically treats guidelines for developing comprehensible Node-RED flows. To the
best of our knowledge, only a simple set of principles20 is provided as guidance to
Node-RED developers that have to implement nodes: they include suggestions
like nodes should be “simple to use” and “consistent” in their behaviour, and
few unofficial design patterns21 to make flows easier to understand and reuse.

Bröring et al. in a recent industrial work [2] propose an approach to auto-
matically collect metadata from Node-RED flows and nodes, and feed a knowl-
edge base for future analyses, such as nodes quality ratings, downloads data,
and nodes dependencies. That work does not provide to users any development
20 https://nodered.org/docs/creating-nodes.
21 https://medium.com/node-red/node-red-design-patterns-893331422f42.

https://nodered.org/docs/creating-nodes
https://medium.com/node-red/node-red-design-patterns-893331422f42

Improving Node-RED Flows Comprehension 257

guideline even if it considers several quality aspects of Node-RED, like selecting
the most suitable solutions to integrate within a system. Prehofer and Chiara-
bini [15] identify the differences between mash-up tools for IoT systems, like
Node-RED, and model-based approaches for the IoT, and propose an approach
to exploit both their benefits: the simplicity of mash-up tools in systems devel-
opment and the strengths of models to formalize a behaviour and have it checked
by a model checker. However, in that paper, the quality checks of IoT systems
are not oriented to the comprehensibility issues that may emerge during flows
development using mash-up tools.

Mendling et al. [12] defined 7 guidelines, built on empirical insights, as a
response to the lack of practical solutions to improve the quality of business
process models. In the current work, we adopted some of these guidelines. For
instance, “Use verb-object activity label” (G6), to reduce the ambiguity of the
constructs in a model, particularly useful for the large number of nodes collabo-
rating within Node-RED flows, as well as “Use as few elements in the model as
possible” (G1) and “Decompose a model with more than 50 elements” (G7), to
reduce flows complexity.

In the book [20], Unhelkar has a particular focus on syntax, semantics and
aesthetic checks of UML 2.0 diagrams. UML is quite different from Node-RED
in many aspects: indeed it operates at a design stage and involves constructs
that are not comparable to Node-RED nodes and wires, but in the book there
are some aesthetic checks concerning activity diagrams that we have included
in our guidelines. For example, it is important to adopt a consistent style to
differentiate regular from exceptional scenarios and to balance overpopulated
diagrams by redistributing the included constructs.

Reggio et al. [16,18] face the problem of quality in business process modelling.
They propose an empirical method aimed at helping the modeller in selecting
among five business process modelling styles, that differ in terms of abstraction
and precision. For instance, a more precise style requires each construct to declare
all the participants, the objects and the used data in capital letters, as in our
guidelines, to make explicit the data used by each node.

Ambler proposes [1] several guidelines addressing both general and UML-
specific modelling issues, with the goal of improving the effectiveness of the pro-
duced models. Some of them can be also adopted in Node-RED, since they use
very general terms and descriptions. In the context of UML, activity diagrams
represent sequences of actions similarly to Node-RED flows. The guidelines sug-
gest, for instance, to avoid black-hole and miracle nodes (i.e., nodes without a
leaving/entering line), that may indicate a missing interaction , and to check
that the guards within decision points are always complete.

Several works investigate software repositories for improving the quality of
newly produced or existent software and evaluating the compliance w.r.t. differ-
ent quality criteria (e.g., patterns application) [3,9,10,14].

Ozbas-Caglayan and Dogru [14] investigate on Design-Code compliance to
support development and maintenance activities. Livshits and Zimmermann pro-
pose DynaMine [10], a tool for history mining of source code to detect bugs and

258 D. Clerissi et al.

common error patterns. Li and Zhou propose the PR-Miner method [9] to auto-
matically extract programming rules from large software code, without employ-
ing constrained rule templates, and an algorithm to detect rules violation that
may bring to bugs in software. Rules violation is also addressed by Campos et
al. [3] to inspect Stack Overflow repository and detect issues in Javascript code
snippets provided as solutions to the users.

All these works rely on software repository mining and automated detection
and evaluation of rules violation. In our work, we manually employed software
repository mining to select and evaluate the Top-100 most downloaded Node-
RED flows, aimed at determining Node-RED flows compliance with our proposed
guidelines. Our evaluation required to carefully inspect the produced artefacts
both in terms of code and from a visual perspective.

6 Conclusion and Future Work

In this paper, we have proposed a set of guidelines to address some common
Node-RED comprehensibility issues and help Node-RED developers in producing
flows that are easy to comprehend and re-use, as well as being suitable for future
maintenance and testing activities.

The effectiveness of the guidelines has been evaluated by an experiment
involving ten master students. The results of the experiment mark that our
guidelines are able to improve Node-RED flows comprehension, with the double
benefit of reducing the number of errors and the time required to complete the
Node-RED tasks assigned to the experiment participants. We have also ana-
lyzed the Top-100 most downloaded Node-RED flows to discuss about their
compliance (or not) with the guidelines. This additional analysis reveals that
Node-RED developers are quite disciplined during development except in the
choice of node names.

The proposed guidelines also pinpoint some Node-RED comprehensibility
issues that might be fixed in future tool releases, by introducing functionalities,
such as, nodes resizing to highlight the most important nodes and make long
names more readable, graphical jumps to handle collisions between wires, and
notifications to inform the developer about, e.g., unused variables, missing wires,
incomplete conditions within switch nodes, and loops.

We are planning to address further Node-RED comprehensibility issues that
did not emerge from the Node-RED systems we chose; for instance, how to
avoid loops by transforming graph-based Node-RED flows into tree-based ones.
As future work, we intend to replicate the experiment on the evaluation of the
guidelines with more participants, including also Node-RED designers. Moreover,
we plan to implement a checker tool able to automatically detect the compre-
hensibility issues from the Node-RED flows failing our guidelines, and fix them
accordingly. Also, the tool will be used to replicate the manually conducted Top-
100 most downloaded Node-RED flows compliance evaluation, by automatically
mine the official Node-RED flows repository and determine the compliance of
the submitted flows with our guidelines.

Improving Node-RED Flows Comprehension 259

References

1. Ambler, S.W.: The elements of UML (TM) 2.0 style. Cambridge University Press,
Cambridge (2005)

2. Bröring, A., Charpenay, V., Anicic, D., Püech, S.: NOVA: a knowledge base for
the Node-RED IoT ecosystem. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS,
vol. 11762, pp. 257–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32327-1 45

3. Campos, U.F., Smethurst, G., Moraes, J.P., Bonifácio, R., Pinto, G.: Mining rule
violations in Javascript code snippets. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 195–199. IEEE (2019)

4. Clerissi, D., Leotta, M., Reggio, G., Ricca, F.: Towards an approach for
developing and testing Node-RED IoT systems. In: Proceedings of EnSEm-
ble@ESEC/SIGSOFT 2018, pp. 1–8 (2018). https://doi.org/10.1145/3281022.
3281023

5. Clerissi, D., Leotta, M., Ricca, F.: A set of empirically validated development guide-
lines for improving Node-RED flows comprehension. In: Proceedings of the 15th
International Conference on Evaluation of Novel Approaches to Software Engineer-
ing, ENASE, vol. 1, pp. 108–119. INSTICC, SciTePress (2020). https://doi.org/
10.5220/0009391101080119

6. Grissom, R.J., Kim, J.J.: Effect Sizes for Research: A Broad Practical Approach.
Lawrence Erlbaum Associates Publishers, Hillsdale (2005)

7. Lange, C.F.J., DuBois, B., Chaudron, M.R.V., Demeyer, S.: An experimental inves-
tigation of UML modeling conventions. In: Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 27–41. Springer, Heidelberg
(2006). https://doi.org/10.1007/11880240 3

8. Leotta, M., et al.: An acceptance testing approach for internet of things systems.
IET Softw. 12(5), 430–436 (2018). https://doi.org/10.1049/iet-sen.2017.0344

9. Li, Z., Zhou, Y.: PR-miner: automatically extracting implicit programming rules
and detecting violations in large software code. ACM SIGSOFT Softw. Eng. Notes
30(5), 306–315 (2005)

10. Livshits, B., Zimmermann, T.: Dynamine: finding common error patterns by min-
ing software revision histories. ACM SIGSOFT Softw. Eng. Notes 30(5), 296–305
(2005)

11. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River (2003)

12. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines
(7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

13. Morrison, J.P.: Flow-Based Programming: A New Approach to Application Devel-
opment. CreateSpace, Scotts Valley (2010)

14. Ozbas-Caglayan, K., Dogru, A.H.: Software repository analysis for investigating
design-code compliance. In: 2013 Joint Conference of the 23rd International Work-
shop on Software Measurement and the 8th International Conference on Software
Process and Product Measurement, pp. 231–234. IEEE (2013)

15. Prehofer, C., Chiarabini, L.: From Internet of Things mashups to model-based
development. In: Proceedings of COMPSAC 2015, vol. 3, pp. 499–504. IEEE (2015)

16. Reggio, G., Leotta, M., Ricca, F.: “Precise is better than light” A document anal-
ysis study about quality of business process models. In: Proceedings of EmpiRE
2011, pp. 61–68. IEEE (2011). https://doi.org/10.1109/EmpiRE.2011.6046257

https://doi.org/10.1007/978-3-030-32327-1_45
https://doi.org/10.1007/978-3-030-32327-1_45
https://doi.org/10.1145/3281022.3281023
https://doi.org/10.1145/3281022.3281023
https://doi.org/10.5220/0009391101080119
https://doi.org/10.5220/0009391101080119
https://doi.org/10.1007/11880240_3
https://doi.org/10.1049/iet-sen.2017.0344
https://doi.org/10.1109/EmpiRE.2011.6046257

260 D. Clerissi et al.

17. Reggio, G., Leotta, M., Ricca, F.: Who knows/uses what of the UML: a personal
opinion survey. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.)
MODELS 2014. LNCS, vol. 8767, pp. 149–165. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11653-2 10

18. Reggio, G., Leotta, M., Ricca, F., Astesiano, E.: Business process modelling: five
styles and a method to choose the most suitable one. In: Proceedings of EESS-
Mod@MoDELS 2012, pp. 8:1–8:6. ACM (2012). https://doi.org/10.1145/2424563.
2424574

19. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3/4), 591–611 (1965)

20. Unhelkar, B.: Verification and Validation for Quality of UML 2.0 Models, vol. 42.
Wiley, Hoboken (2005)

21. Van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal Question Metric
(GQM) approach. Encycl. Softw. Eng. (2002, online)

22. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-319-11653-2_10
https://doi.org/10.1007/978-3-319-11653-2_10
https://doi.org/10.1145/2424563.2424574
https://doi.org/10.1145/2424563.2424574
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

A Study of Maintainability in Evolving
Open-Source Software

Arthur-Jozsef Molnar(B) and Simona Motogna

Faculty of Mathematics and Computer Science, Babeş-Bolyai University,
Cluj-Napoca, Romania

{arthur,motogna}@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro

Abstract. Our study is focused on an evaluation of the maintainability
characteristic in the context of the long-term evolution of open-source
software. According to well established software quality models such as
the ISO 9126 and the more recent ISO 25010, maintainability remains
among key quality characteristics alongside performance, security and
reliability. To achieve our objective, we selected three complex, widely
used target applications for which access to their entire development
history and source code was available. To enable cross-application com-
parison, we restricted our selection to GUI-driven software developed
on the Java platform. We focused our examination on released versions,
resulting in 111 software releases included in our case study. These cov-
ered more than 10 years of development for each of the applications.
For each version, we determined its maintainability using three distinct
quantitative models of varying complexity. We examined the relation
between software size and maintainability and studied the main drivers
of important changes to software maintainability. We contextualized our
findings using manual source code examination. We also carried out a
finer grained evaluation at package level to determine the distribution
of maintainability issues within application source code. Finally, we pro-
vided a cross-application analysis in order to identify common as well as
application-specific patterns.

Keywords: Software quality · Software metrics · Software
maintainability · Software evolution · Maintainability index · SQALE
model · Technical debt · Open-source

1 Introduction

Maintenance includes all activities intended to correct faults, update the target
system in accordance to new requirements, upgrade system performance and
adapt it to new environment conditions. As a consequence, maintenance effort
becomes very costly, especially in the case of large-scale complex applications,
especially since in many cases they include third party components sensitive to
updates.
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 261–282, 2021.
https://doi.org/10.1007/978-3-030-70006-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_11&domain=pdf
http://orcid.org/0000-0002-4113-2953
http://orcid.org/0000-0002-8208-6949
https://doi.org/10.1007/978-3-030-70006-5_11

262 A.-J. Molnar and S. Motogna

The causes of high maintenance costs can be tracked to multiple reasons.
The first such reason regards the inherent complexity of code comprehension
tasks, due to the fact that maintenance teams are different from the development
team, causing further delays for understanding source code and locating software
defects. Another important issue is that maintenance is approached only during
the late stages of the development lifecycle, when issues have already built up in
the form of technical debt [11]. These reasons can be overcome by considering
maintainability issues earlier in the development process and employing existing
tool support that can help identify future maintenance “hotspots”, namely those
parts of code that can generate more problems. If we consider agile practices,
then integration of maintenance tasks with development processes becomes a
necessity. When these issues are not addressed at the right moment they tend
to accumulate in the form of technical debt that can later lead to crises during
which development is halted until the bulk of the issues are addressed [29].

The focus of this study regards the long term assessment of maintainability
in large software applications; software evolution plays an important part that
is observed through the release of a consistent number of software versions. In
many of these applications we find that complexity is increased by function-
alities end-users rely on. They are usually implemented as plugins, which can
create additional dependencies on the main code base. Our empirical investiga-
tion targets open source applications where full access to the source code was
available over the entire application life span. This not only allows the usage
of quantitative quality models based on software metrics, but also facilitates
the manual examination of source code, which can be used to understand the
rationale behind observed changes to application architecture and structure.

Previous studies have identified some of the existing relations between the
maintainability characteristic and software metric values [9,17,18,23,25,27]. Our
goal is to employ several quantitative models having well studied strengths and
weaknesses [34] in order to determine some of the patterns in the evolution of
open-source software, to understand the rationale behind important changes to
source code, as well as to improve our understanding of the quality models and
their applicability.

The present study continues our existing research regarding the maintainabil-
ity of open-source software [34] and brings the following novel contributions: (a) a
longitudinal study of software maintainability that covers the entire development
history of three complex, open-source applications; (b) a detailed examination
of the relation between maintainability, expressed through several quantitative
models and software size measured according to several levels of granularity;
(c) an examination of sudden changes to maintainability as well as “slopes” -
significant modifications that occur over the span of several releases; (d) a finer-
grained analysis at package and class level regarding software maintainability
and its evolution; (e) an analysis of the maintainability models themselves as
applied to real-life open-source software systems.

A Study of Maintainability in Evolving Open-Source Software 263

2 Software Quality Models

The importance of software quality continues to pose a key interest in both
the academic and industry communities after more than 50 years of research
and practice. Furthermore, as the number of complex networked systems and
critical infrastructures relying on them is increasing, it is expected to remain an
issue of continued interest in software research, development and maintenance.
Previous research into software quality resulted in a large number of quality
models. Most of them describe a set of essential attributes that attempt to
characterize the multiple facets of a software system from an internal (developer-
oriented), external (client-oriented) or both perspectives.

Fig. 1. ISO 25010 hierarchical quality model (from [35]).

The introduction of the first software quality model is attributed to McCall
in 1976, followed by the Dromey model which improved it [1]. Later on, these
initial contributions became a part of the ISO 9126 standard, which expressed
software quality using a hierarchical model of six characteristics that are com-
prised of 31 sub-characteristics. The ISO 25010 model [19] illustrated in Fig. 1
represents the current version, and it considers maintainability as the ensemble of
six sub-characteristics: Modularity, Reusability, Analysability, Modifiability and
Testability. Like its previous versions, ISO 25010 does not provide a method-
ology to evaluate quality characteristics or to improve them, which precludes
practitioners from using them directly. However, this shortcoming can be over-
come using software metrics, which measure different properties of source code
and related artefacts. Basic metrics such as lines of code, number of functions or
modules have been widely used and in turn, superseded by the introduction of
the object oriented paradigm and its related set of metrics. Nowadays we find a
multitude of object oriented metrics [9] defined and used to detect code smells,
design flaws or in order to improve maintainability. These metrics were also har-
nessed by researchers to evaluate software quality in general. However, these
tasks have remained difficult and tedious in the context of large-scale software
systems.

Authors of [42] study the relation between object-oriented metrics and soft-
ware defects. They report the response for a class (RFC) and weighted method
count (WMC) as most suited for identifying defect potential. A similar study

264 A.-J. Molnar and S. Motogna

using the Mozilla application suite [16] showed the coupling between objects
(CBO) and lines of code (LOC) as accurate fault predictors. These findings were
backed by [45], where a NASA data set was the target of defect estimation efforts,
and [7], where evaluation was carried out using eight C++ applications. This
also leads to the issue of the target application’s programming language, with
authors [23] claiming that metric value expectations have to be adapted to each
language in particular. The over-arching conclusion of metric-based evaluations
is that further work is required before definitive expectations can be formalized
regarding the relation between software quality characteristics and metric values.

3 Maintainability Models

3.1 Maintainability Index

There exists long-term interest regarding the correct estimation of the required
effort for maintaining software systems. Initially defined in the late ’70, the com-
putational formula for the Maintainability Index (MI) was introduced in 1992
[38]. The formula takes into consideration source code size, measured according
to variants of the lines of code metric and two views of complexity expressed in
terms of the modular paradigm; they are the number of operations and operators,
also known as the Halstead volume and the number of possible execution paths
generated by existing conditional and loop statements. The variant employed in
our research is [38]:

MI = 171 − 5.2 ∗ ln(aveV) − 0.23 ∗ aveG − 16.2 ∗ ln(aveSTAT)

where aveV denotes average Halstead volume, aveG is the number of possible
execution paths (cyclomatic complexity) and aveSTAT is the average number
of statements. Several versions of this formula exist, such as considering the
LOC metric instead of statement counts, or including the number of lines of
comments into the formula. The presented version returns values between 171
(best maintainability) and negative numbers, which are evaluated as very poor
maintainability. Several implementations [30] normalize the formula to return
values in the [0, 100] range by translating all negative values to 0. Different
development, metric or code inspection tools compute the MI [24,30,41,43], and
some provide good practices [30], stating that values below 20 correspond to
poor maintainability.

Several criticisms to this maintainability assessment formula have been
reported in the literature [12,17,44]. They are related to the fact that aver-
age values are used in the computation, ignoring the real distribution of values,
or that the defined threshold values are not very accurate. Also, the index was
defined for modular and procedural programming languages, thus not taking into
consideration object oriented features that defined new relations such as inheri-
tance, coupling and cohesion. These have been reported to have a considerable
effect on maintainability [9,23,27,31].

A Study of Maintainability in Evolving Open-Source Software 265

3.2 ARiSA Compendium Model

The Compendium of Software Quality Standards and Metrics1 was created by
ARiSA and researchers from the Linnaeus University. It aims to study the rela-
tion between software quality characteristics and software metric values. The
Compendium models software quality according to the ISO 9126, an older ver-
sion in the ISO family for software quality standards. Like the more recent ISO
25010 incarnation, it is a hierarchical model made up of six characteristics, which
in turn have 27 sub-characteristics. Similar with ISO 25010, Maintainability is
one of the characteristics, with sub-characteristics Analyzability, Changeability,
Compliance, Stability and Testability. For each characteristic, with the notable
exception of Compliance, the set of influencing metrics is provided. For each met-
ric influence, the Compendium details the direction and strength of the influence,
as detailed using Table 1. The direction of the influence can be direct, or inverse,
represented using upward, or downward chevrons, respectively. These illustrate
whether increased values for the given metric lead to an improvement or degra-
dation of maintainability. The number or chevrons represent the strength of this
correlation, with two chevrons representing a stronger relation. For example, the
weighted method count (WMC) metric relates strongly and inversely with ana-
lyzability, changeability and testability, and inversely (but not strongly) with
stability.

The VizzMaintenance [3] Eclipse plugin implements a quantitative model of
class-level maintainability. It is based on the relations from the Compendium and
uses a number of structural, complexity and design class-level object-oriented
metrics that are shown in Table 1. They are the coupling between objects
(CBO), data abstraction coupling (DAC), depth of inheritance tree (DIT), local-
ity of data (LD), lack of cohesion in methods (LCOM) and its improved variant
(ILCOM), message pass coupling (MPC), number of children (NOC), tight class
cohesion (TCC), lines of code (LOC), number of attributes and methods (NAM),
number of methods (NOM), response for class (RFC), weighted method count
(WMC), number of classes in cycle (CYC) length of names (LEN) and lack of
documentation (LOD). They are formally defined within the Compendium [3]
and were used in previous research [6,36].

The proposed quantitative model relies on the relations presented in Table
1 and the extracted metric values. The level of maintainability is calculated for
each class on a [0, 1] scale, with smaller values representing improved maintain-
ability. First, the percentage of metric values within the top or bottom 15% of
each metric’s value range across all classes is calculated. Then, they are aggre-
gated across the four criteria according to the direction and strength of the
relations shown in Table 1, resulting in the maintainability score of the class. As
such, a score of 0 means that none of the metrics has an extreme value for the
given class, while a value of 1 is obtained when all metric values belong in the top
(or bottom) 15%. As an example, let us consider a class having a single metric
value in the top 15%, that of the WMC. The analyzability score for WMC is 2

33 .

1 http://www.arisa.se/compendium/.

http://www.arisa.se/compendium/

266 A.-J. Molnar and S. Motogna

Table 1. Metric influences on maintainability according to the ARiSA Model [3].

C
B
O

D
A
C

D
IT

L
D

L
C
O
M

IL
C
O
M

M
P
C

N
O
C

T
C
C

L
O
C

N
A
M

N
O
M

R
F
C

W
M

C

C
Y
C

L
E
N

L
O
D

Analyzability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Changeability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Stability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Testability ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠

Structure Complexity Design

The numerator is the weight WMC has for analyzability, and the denominator is
the sum total of weights for that criteria (the number of chevrons). The influence
of WMC in Changeability is 2

34 , in Stability it is 1
26 and in testability it is 2

33 .

As such, the maintainability score will be calculated as
2
33+

2
34+

1
26+

2
33

4 ≈ 0.0546,
or 5.46%.

When compared with the MI, the ARiSA model employs a wider selection of
metrics. In addition to the commonly used LOC metric, it also employs the WMC
as a complexity metric, together with many well-known object-oriented ones,
covering object-oriented concerns such as cohesion, coupling and inheritance.
While the MI can be calculated at several granularity levels, by default the
ARiSA model is limited to class level. In order to scale it to system level, we
calculate its geometric mean value across all system classes.

3.3 SQALE Model

The SQALE (Software Quality Assessment Based on Lifecycle Expectations)
methodology was first introduced by J.L. Letouzey [22] as a method to evaluate
the quality of application source code, in an independent way from programming
language or analysis tools. SQALE is tightly linked with the measurement of
technical debt2, especially in the context of Agile development methodologies.
The first definition for technical debt was provided in 1992 [11] and predates
the SQALE model. Cunningham borrowed terminology from the financial sec-
tor and compared shipping immature code with “going into debt”, and opined
that doing so was fine “so long as it is paid back promptly with a rewrite” [11].
More recently, Fowler agreed that the presence of technical debt showed that
delivering functionality to customers was prioritized above software quality [15].
Given the focus from both researchers and practitioners on controlling software
quality resulted in several tools that implement SQALE in order to produce a
quantitative assessment of code quality.

Perhaps the most well-known such tool is the SonarQube platform for code
quality and security. Its entry-level Community Edition is free and open-source.
Analysis support is provided through language-specific plugins, with the free
version providing the required plugins for analyzing source code in 15 languages
including Java, XML and HTML. Support for additional languages or features
can be deployed in the form of plugins; for instance, C++ code can be analyzed
2 Found as design debt in some sources.

A Study of Maintainability in Evolving Open-Source Software 267

using a free, community developed plugin3. Plugins usually include a number of
rules4, against which the source code’s abstract syntax tree is checked during
analysis.

Each rule is characterized by the programming language it applies to, its
type, associated tags and severity. Rule type is one of maintainability (code
smell), reliability (bug) or security (vulnerability). Tags serve to provide a finer-
grained characterization, each rule being associated with one or more tags5 such
as unused, performance or brain-overload (e.g. when code complexity is too high).
Breaking a rule results in an issue, which inherits its characteristics from the
rule that was broken. For example, Java rule S1067 states that “Expressions
should not be too complex”. It generates critical severity issues that are tagged
with brain-overload for expressions that include more than 3 operators. The time
estimated to fix the issue is a 5 min constant time to which 1 min is added for
each additional operator above the threshold.

An application’s total technical debt is calculated as the sum of the estimated
times required to fix all detected issues. SonarQube normalizes the level of tech-
nical debt relevant to application size using the Technical Debt Ratio (TDR),
with TDR = TD

DevTime ; TD represents total technical debt quantified in min-
utes, while DevT ime represents the total time required to develop the system,
with 30 min of time required to develop 1 line of production level code. The
application is graded according to the SQALE rating between A (best value,
TDR < 5%) and E (worst value, TDR ≥ 50%). SQALE provides a high-level,
evidence-backed and easy to understand interpretation of the system’s internal
quality. In our case study we calculate SQALE ratings using SonarQube version
8.2, which integrates the Eclipse Java compiler and uses more than 550 rules to
detect potential issues in source code.

While SonarQube and similar tools provide quantitative models of software
quality, existing research also pointed out some existing pitfalls. Authors of a
large-scale case study [26] showed that many of the reported issues remained
unfixed, which could be the result of these tools reporting many false-positive,
or low-importance results. A study of SonarQube’s default rules [21] also showed
most of them having limited fault-proneness. These findings are also mirrored
in our work [33], where we’ve shown that issue lifetimes are not correlated with
severity or associated tags.

4 State of the Art

The role and impact of maintainability as a software quality factor was investi-
gated in existing literature [13,17,18,37]. The SIG Maintainability model [13,17]
is based on the idea of relating different source code properties such as volume,
complexity and unit testing with the sub-characteristics of maintainability as
described according to the ISO 9126 model [20]. The SIG Maintainability model
3 https://github.com/SonarOpenCommunity/sonar-cxx.
4 https://docs.sonarqube.org/latest/user-guide/rules/.
5 https://docs.sonarqube.org/latest/user-guide/built-in-rule-tags/.

https://github.com/SonarOpenCommunity/sonar-cxx
https://docs.sonarqube.org/latest/user-guide/rules/
https://docs.sonarqube.org/latest/user-guide/built-in-rule-tags/

268 A.-J. Molnar and S. Motogna

was evaluated on a large number of software applications. Authors of [18] pro-
posed a framework in which quality characteristics defined according to the ISO
25010 model [19] could be assessed directly or indirectly by associated measures
that can be easily computed using existing software tooling. The framework
remains a proof of concept with more measures required for consideration before
the measurement of quality characteristics such as maintainability becomes pos-
sible.

The ARiSA model [25,39] detailed in Sect. 3.2 remains one of the most
exhaustive studies that analyzes the relations between a significant number of
software metrics and quality factors and sub-factors as defined according to ISO
9126.

The influence object-oriented metrics have on maintainability received a con-
tinuous interest in the research community ever since their introduction [9], with
existing research showing the existence of a relation between maintainability,
coupling and cohesion [2,10,23,28,31]. The influence different metrics have on
maintainability has also received intense scrutiny. However, we find that in many
cases author conclusions are limited to the identified relation between a singu-
lar metric and target system maintainability [23,39]. While important in itself,
these do not provide a definitive quantitative model for maintainability, partly
due to their strong empirical nature. Thus, in order to develop more precise and
easily applicable methods for assessing software quality characteristics we find
that more investigations need to be carried out and reported.

As such, the distinctive feature of our study is that it describes and analyzes
three approaches of different complexity that enable an evaluation of maintain-
ability in the case of large applications. Furthermore, we analyze and compare
results across the application versions and maintainability models themselves
in order to improve our understanding of the evolution of open-source appli-
cations on one hand, as well as the applicability, strengths and weaknesses of
maintainability models on the other.

5 Case Study

The presented case study is the direct continuation of the work presented in
[34]. The work was organized and carried out according to currently defined best
practices [40,46]. We started by stating the main objective of our work, which we
distilled into four research questions. We structured the current section according
to Höst and Runeson’s methodology [40]. We first discuss the selection of target
applications, after which we present the data collection process. We used Sect.
5.4 to discuss the results of our analysis, after which we address the threats to
our study’s validity.

5.1 Research Questions

We defined our work’s main objective using the goal-question-metric approach [8]
to be “study the maintainability of evolving open-source software using quantita-
tive software quality models”. We refined our stated objective into four research

A Study of Maintainability in Evolving Open-Source Software 269

questions. They serve to guide the analysis phase of the study, as well as to
provide an in-depth view when compared with our previous work [34].

RQ1: What is the Correlation between Application size and Maintainability?
In our previous work [34] we have disproved the näıve expectation that lower
maintainability is reported for larger applications. However, we employ RQ1

to ensure that maintainability scores reported using the proposed quantitative
models are not excessively influenced by software size. While in our previous
work [34] we have examined this relation using the number of classes as a proxy
for system size, we extend our investigation to cover the number of packages,
methods and lines of code. We aim to employ system size measurements in order
to study their effect on reported maintainability, as both the MI and ARiSA
models include class and line counts in their assessment.

RQ2: What Drives Maintainability Changes between Application Versions? In
our previous study we identified important changes in the maintainability scores
reported for the target applications. We expect the answer to RQ2 will help us
identify the rationale behind the large changes in maintainability reported in
each of the target applications studied in our previous work. We aim to trian-
gulate collected data [40] by carrying out a cross-application examination. We
expect this will facilitate identifying common causes and help alleviate exter-
nal threats to our study. In order to properly contextualize observed changes to
maintainability, we carry out a detailed manual source code examination.

RQ3: How are Maintainability Changes Reflected at the Package Level? We
employ RQ1 in order to study the relation between reported maintainability and
software size, each measured according to several quantitative metrics. Then, the
answer to RQ2 helps determine the amplitude and rationale behind the reported
changes. We take the following step via RQ3, where we carry out a finer grained
analysis at package level, in order to improve our understanding of the impact
software evolution has on application component maintainability.

RQ4: What are the Strengths and Weaknesses of the Proposed Maintainability
Models? In our previous research we determined the TDR to be the most rele-
vant quantitative model from a software development perspective [34]. However,
we also discovered that both the ARiSA model and the MI can provide action-
able information in the right context. This is especially true since the ARiSA
model was created for class-level usage, while the MI works from system down
to method levels. As such, as part of our data analysis we examine our answers
to RQ2 and RQ3 and highlight the insight that each model can provide together
with its drawbacks.

5.2 Target Applications

Since the present paper builds upon and expands our previous research [34],
we maintained our selection of target applications. In this section we reiterate
our rationale and briefly discuss inclusion criteria. Our main goal was to select
a number of complex, widely-used and open-source applications that facilitate

270 A.-J. Molnar and S. Motogna

Table 2. Information about the earliest and latest target application versions in our
study.

Application Version Release date Statements Maintainability rating

MI ARiSA SQALE

FreeMind 0.0.3 July 9, 2000 1,359 81.30 0.22 3.10

1.1.0Beta2 Feb 5, 2016 20,133 73.92 0.19 3.2

jEdit 2.3pre2 Jan 29, 2000 12,150 73.38 0.16 3.00

5.5.0 April 9, 2018 43,875 66.90 0.17 3.50

TuxGuitar 0.1pre June 18, 2006 4,863 71.53 0.12 2.10

1.5.3 Dec 10, 2019 51,589 75.99 0.17 1.20

evaluating maintainability in the context of software evolution. Previous empir-
ical research in open-source software has shown that many of these systems
go through development hiatuses, or are abandoned by the original developers
[5]. In other cases, available source code is incomplete, with missing modules
or libraries, or contains compile errors [6]. Other applications include complex
dependencies which are required to compile or run them, such as Internet ser-
vices, database servers or the presence of additional equipment.

Taking these considerations into account, we set our inclusion criteria to
applications with a long development history and no external dependencies. In
order to allow comparing results across applications and in order to alleviate
external threats to our study, we limited ourselves to GUI-driven applications
developed using the Java platform.

Our selection process resulted in three Java applications. Each of them is avail-
able under permissive open-source licensing, has a fully documented development
history including an important number of version releases and a consistent user
base. They are the FreeMind6 mind mapper, the jEdit7 text editor and the Tux-
Guitar8 tablature editor. Table 2 provides relevant information for the first and
last target application version included in our case study. We refer to all releases
included in our study using the version numbers assigned to them by developers.
We believe this provides additional context on the magnitude of expected changes
between versions, and facilitates replicating our results, as it allows third parties
to unambiguously identify them within the code base. Furthermore, as we iden-
tified several hiatuses in the development of the studied applications, we found
version numbers were more representative than release dates.

FreeMind is a mind-mapping application with a consistent user base, rich
functionalities and support for plugin development and integration. The first
version in our study is 0.0.3. Released in July, 2000, it consisted of around 1,350
code statements and around 60 classes, which make it the smallest release in
our study. This is reflected on a functional level, with early versions of Free-

6 http://freemind.sourceforge.net/wiki/index.php/Main Page.
7 http://jedit.org.
8 http://www.tuxguitar.com.ar.

http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://jedit.org
http://www.tuxguitar.com.ar

A Study of Maintainability in Evolving Open-Source Software 271

Fig. 2. Size and release date information for FreeMind (top), jEdit (middle) and Tux-
Guitar (bottom) versions included in our study.

Mind having limited functionalities, in contrast with later versions. We take this
into account in our research when studying the difference between early and
mature application versions. Several of its versions were used in previous empir-
ical research [4]. Figure 2 illustrates the development across the versions in our
case study using system size and release dates. Versions 0.8.0 and 0.8.1 show an
important increase in system size, which is tempered in version 0.9.0Beta17, after
which system size remains stable. We also note the 2 1

2 years of hiatus between
versions 0.8.0 and 0.8.1. Major changes are recorded for version 0.9.0Beta17,
released only 3 months after the previous one. While the most recent version
released at the start of 2016, FreeMind maintained a consistent user base, with
681k application downloads during last year and over 21 million over its lifetime9.

jEdit is a plugin-able text-editor targeted towards programmers. As shown in
Fig. 2, its first public version, 2.3pre2 was released in January 2000. Having over
300 classes and 12,000 statements, it is the most polished entry version in our

9 Download data points from https://sourceforge.net/, only consider application
releases. Recorded August 25th, 2020.

https://sourceforge.net/

272 A.-J. Molnar and S. Motogna

study. In opposition to FreeMind, we did not record multi-year hiatuses during
the development of jEdit. Class and statement counts showed a gradual, but
steady increase version to version, which we found reflected at the user experience
and functional levels. jEdit was also the subject of software engineering research
that targeted GUI testing [4,47] and software quality [31,36]. The application has
managed to maintain a large user base, having over 92k application downloads
last year and over 5.8 million over its lifetime.

TuxGuitar is a tablature editor with multi-track support, which support
data import and export across multiple formats. This is implemented in the form
of plugins that are included in the default code distribution, which we included in
our case study. TuxGuitar was developed with support for several GUI toolkits,
and we selected to use its SWT implementation across all versions. As illustrated
in Fig. 2, TuxGuitar’s evolution is similar to that of jEdit, with a steady increase
in application size across most versions. While its development seemed to be
halted between versions 1.2 and 1.3.0, its latest version was released in 2020,
with the project being actively developed. TuxGuitar also has a consistent user
base, recording 266k application downloads during the last year and over 6.9
million over its lifetime.

5.3 Data Collection

We limited our selection to publicly released versions in order to address the risk
of compiler errors or missing libraries, as reported by previous research [6]. We
handled the case of many incremental version releases in the span of days by only
considering the last of them, which helps keep the number of versions manage-
able. This resulted in 38 releases of FreeMind, 45 releases of jEdit and 28 releases
of TuxGuitar included in our study. Each release was then imported into an IDE,
where a manual examination of its source code was carried out. A common recur-
ring issue concerned the presence of library code shipped together with applica-
tion source code. Several jEdit versions included code for the com.microstar.xml
parser or BeanShell interpreter. Our solution was to extract these into a separate
library that was added to the application classpath. FreeMind and jEdit source
code was analyzed without any plugin code, although both applications pro-
vide plugin support. In the case of TuxGuitar, we kept the data import/export
plugins included in the official distribution.

Metric data was extracted using the VizzMaintenance plugin for Eclipse,
which was also used to calculate the ARiSA maintainability score of each class.
We employed the Metrics Reloaded plugin for IntelliJ to calculate the compo-
nents of the MI, while the SQALE rating was obtained using the community
edition of SonarQube 8.2.

5.4 Analysis

In this section we present the most important results of our analysis, structured
according to the research questions defined in Sect. 5.1. In order to facilitate

A Study of Maintainability in Evolving Open-Source Software 273

Table 3. Spearman rank correlation between software size according to package, class,
method or statement count and system maintainability. FreeMind data on top row,
jEdit on middle row and TuxGuitar on bottom row.

Package Class Method Statement

MI −0.46 −0.67 −0.71 −0.77

−0.32 −0.29 −0.40 −0.45

0.76 0.71 0.69 0.57

ARiSA −0.29 −0.49 −0.53 −0.62

−0.51 −0.53 −0.54 −0.55

0.64 0.63 0.64 0.69

SQALE −0.23 0.10 0.19 0.38

0.12 0.14 0.21 0.24

−0.68 −0.73 −0.74 −0.79

replicating or extending our results, we made available the entire set of collected
and processed metric data [32].

RQ1: What is the Correlation between Application size and Main-
tainability? In our previous research [31,34] we showed that maintainability
measured according to quantitative metrics was not correlated with software
size, at least not when the latter was expressed using the number of the system’s
classes. We extended our investigation to also cover the number of a system’s
packages, methods and statements10. Since target applications were developed
using Java, there was a strong and expected correlation between class and source
file counts, so this evaluation was omitted.

We first carried out a Spearman rank correlation between the size measures
for each application. We found very high correlation between all measures for
application size (ρ ≥ 0.8), especially between the number of classes, methods
and statements (ρ ≥ 0.96) for each target application.

We repeated the correlation analysis between the size measurements and
reported values for maintainability, which we report using Table 3. Note that
higher scores correspond to a decrease in maintainability according to the ARiSA
and SQALE models, and an increase according to the MI. Results for FreeMind
and jEdit show similarity across all three models. We note that increased values
for the MI are accounted for by joint increases across its components (state-
ment count, Halstead volume and cyclomatic complexity). Values produced by
our generalization of the ARiSA model are skewed by small files added in later
software versions; these keep mean values low, leading to what we believe are
under-reported changes to maintainability. The SQALE model is driven by static
analysis of the abstract syntax tree, and is not directly influenced by size-related
metric values. This also explains the weak correlation with the number of state-
ments, which is the lowest-level size metric considered.
10 Collected using the Metrics Reloaded plugin for IntelliJ.

274 A.-J. Molnar and S. Motogna

As shown in Fig. 3, TuxGuitar was evaluated as having very good maintain-
ability [34]. All releases remained well below the 5% threshold required to receive
an A rating according to SQALE. We believe this to be the result of a conscien-
tious effort on the behalf of its developers. Important increases to system size,
such as those for versions 1.0rc1, 1.3 and 1.5 did not have an important effect
on measured maintainability. In version 1.0rc1, an increase in system size was
actually coupled with improved maintainability according to SQALE.

Our analysis showed the MI and ARiSA models to be influenced by software
size, which is known to have a confounding effect [14]. The SQALE model did not
appear to have been influenced by it, as it does not rely on size-related software
metrics.

RQ2: What Drives Maintainability Changes between Application Ver-
sions? We base our answer to RQ2 on the data from Fig. 3, which shows
system-level maintainability according to the three models. Data is normalized
to the [0, 100] range. Our previous research [34] showed that of the proposed
quantitative models, technical debt was the most suitable for evaluating system-

Fig. 3. Maintainability of FreeMind (top), jEdit (middle) and TuxGuitar (bottom)
versions in our study. SQALE model uses the scale on the right side.

A Study of Maintainability in Evolving Open-Source Software 275

level quality. As such, we focus on the SQALE rating to quantify system-level
maintainability [34]. According to it, most application versions have good main-
tainability, with most studied versions receiving an A rating; the only exceptions
were FreeMind versions 0.8.0 and 0.8.1, which earned a B SQALE rating. We
also note that most TuxGuitar versions have a TDR ≤ 2%, as during our pre-
vious evaluation we found evidence of concerted developer action to improve
software quality.

Examining the data in Fig. 3 revealed that system-level maintainability did
not suffer major changes across most versions. As such, we identified key ver-
sions [34] during which quantitative changes were detected. In the case of Free-
Mind, versions 0.8.* were the result of significant application development that
increased application size from 12.5k LOC to 65.5k LOC, with an additional
370 days worth of technical debt added [33,34]. Most of the added debt was
fixed in version 0.9.0Beta17 with no loss to functionality; our detailed analysis
of subsequent versions only revealed small-scale maintainability changes [33].

Our evaluation of jEdit version 4.0pre4 revealed that additional function-
alities such as improved management of the text area, buffer events and the
document model, implemented using 11k LOC added an extra month of tech-
nical debt. However, our detailed examination [33] revealed that versions after
4.0 gradually reduced the level of debt and the addition of significant additional
quality issues appears to have been avoided.

Most of the changes observed within TuxGuitar were of smaller significance,
as it already presented very good maintainability. The most significant version
shown in Fig. 3 is 1.0rc1; here, we observed that extensive refactoring efforts on
existing debt were coupled with the introduction of additional issues [33], most
likely as part of the additional support for the song collection browser and the
inclusion of new plugins. Overall, technical debt was improved to a level that
was maintained until the most recent released version.

RQ3: How are Maintainability Changes Reflected at the Package
Level? Our previous evaluation [34] revealed that among studied models,
SQALE was the one best suited for system and package-level quality assessment.
As such, we used SonarQube’s estimation of required maintainability effort at
package level for each of the application versions in our study. We identified
core packages that existed within all studied versions, as well as packages intro-
duced at some point and removed at a later time. We found this to be typical of
TuxGuitar, for which we counted a total of 354 packages across all versions.
On the other hand, jEdit’s entire code base consisted of 30 packages, while the
FreeMind code base covering all releases was comprised of 41 packages.

We represent the estimated time to address at least half the total maintain-
ability effort for each application in Fig. 4. We show that most maintainability
issues were concentrated on a small subset of application packages. For instance,
the six packages represented for jEdit account for almost 80% total maintenance
effort, while the 24 packages illustrated for TuxGuitar cover half the required
effort.

276 A.-J. Molnar and S. Motogna

Fig. 4. Estimated maintainability effort at package level according to the SQALE
model for FreeMind (top), jEdit (middle) and TuxGuitar (bottom, * stands for
org.herac.tuxguitar) versions. Represented packages account for at least half of total
effort per application.

Figure 4 shows FreeMind and jEdit versions to be very stable with regards
to the distribution of the required maintenance effort. In the case of FreeMind,
we discovered it was mainly generated code from the [...].generated.instance.impl
package that caused the severe decrease in maintainability, while in the remaining
application packages the maintenance effort did not change significantly. For
TuxGuitar, we noted the changes in versions 1.0rc1 and 1.3.0. While our previous
evaluation already showed system maintainability to be affected within these
versions [34], it was package-level examination that revealed changes to plugin
code from the org.herac.tuxguitar.io.gp package as the cause of changes in version
1.0rc1.

Figure 4 also reveals information about application architecture. Both Free-
Mind and jEdit were built around a relatively small, but constant set of packages
and suffered most changes during the development of their early versions [31].
In the case of TuxGuitar, we found each plugin to have a separate package, with
many input-output plugins maintaining separate packages for each implementa-
tion versions. This resulted in a more complex and change-prone hierarchy.

A Study of Maintainability in Evolving Open-Source Software 277

Fig. 5. Value of the Spearman correlation coefficient between maintainability mod-
els applied at class level for FreeMind (top), jEdit (middle) and TuxGuitar (bottom)
versions.

We found that the main advantage of drilling down to package level regarded
the precise identification of the locations and dimensions of the maintenance
effort. When combined with a longitudinal analysis [33], a package-level evalu-
ation can help with program comprehension and testing, as it can be used to
discard application areas that have not undergone changes.

RQ4: What are the Strengths and Weaknesses of the Proposed Main-
tainability Models? Our answer for RQ4 takes into account our existing
research in software maintainability [31,34] and the long-term evolution of tech-
nical debt [33], as well as the results of the detailed examination carried out for
RQ2 and RQ3. We found that the SQALE model, and its implementation in
the form of technical debt to be the most accurate quantitative quality measure
among those studied. Technical debt evaluation provides a general assessment
of a given system, but can also be employed at a finer level of granularity to
uncover the root causes of detected issues [33]. However, existing criticism out-
lined in Sect. 3.3 point against using it without prejudice to evaluate software
quality.

The ARiSA model is strictly based on the evaluation of extreme values for
class level object-oriented metrics. We found that aggregating class-level scores
did not produce useful results, as in many cases quality issues were masked,
or completely countered by large numbers of small, low complexity classes that

278 A.-J. Molnar and S. Motogna

influenced mean values. The same criticism can be brought against the MI, com-
puting which is limited to three metrics, none of which specific to the object-
oriented domain. The important advantage of the MI is that it remains language-
independent and has a straightforward implementation. As such, in order to
examine its potential for usage at a finer-grained level, we carried out a Spear-
man rank correlation between the result produced using the proposed models at
class level, as shown in Fig. 5. The only consistent correlation observed occurred
between the MI and technical debt with ρ ≈ −0.6. We believe this is an indi-
cation that the MI can be employed to quickly discover code complexity issues
at method and class levels. However, a more detailed examination is required in
order to fully describe and characterize this result.

We believe the ARiSA model remains well suited to discovering quality hot
spots within the context of a singular application [34]. While it employs an
important number of object-oriented measurements, the model derives value
thresholds from the evaluated system’s context, making it unsuitable for cross-
application and cross-version comparisons.

5.5 Threats to Validity

We structured the case study according to existing best practices [40]. First, the
main objective and research question were defined, after which target application
selection took place. This was followed by the data collection and analysis phases.
We carried out a manual examination of source code in order to complement the
results from the quantitative models, and open-sourced the data to facilitate
replicating or extending our study [32].

Internal threats were addressed by complementing automated evaluation
with a manual examination of the source code; this step was also assisted by
source code in order to prevent any observer bias. Data analysis was carried out
using previously used research tooling [31,33,34,36] to avoid the possibility of
software defects influencing evaluation result.

Quantitative models employed were selected according with their previous
use in research and practice, as well as varying implementation complexity.
MI values were calculated using both statement count and LOC, while for the
ARiSA model we studied the effect of calculating the final value using all three
Pythagorean means.

We addressed external threats by limiting target application selection to GUI-
driven Java applications. While this limited the applicability of our study’s con-
clusions, it also enabled data triangulation and directly comparing results across
applications. To the best of our knowledge, there were no overlaps between tar-
get application development teams. Furthermore, neither of the present study’s
authors were involved with their development.

The entire data set of extracted metric values together with versions pro-
cessed by our tooling are open-sourced and freely available. We believe this to
be the most important step required in order to solidify our results and encourage
further work to extend them.

A Study of Maintainability in Evolving Open-Source Software 279

6 Conclusion and Future Work

In the present paper we continued our empirical research targeting the relation
between metric values and software product quality [31,33,34,36]. We confirmed
our initial findings regarding the independence of maintainability effort from soft-
ware size [34]. We also confirmed initial expectations regarding the gradual, but
sustained increase in application size during development. However, we could
also identify key versions where extensive refactoring kept application size and
complexity in check. Another interesting observation was that mature applica-
tion versions no longer introduced significant quality issues. We first observed
this when studying software metric values [35,36] and confirmed it through eval-
uating the data summarized in Fig. 3. We believe this can be explained through
an already matured application architecture, together with the existence of a
core of experienced contributors.

Our evaluation also uncovered the existence of milestone versions, character-
ized by significant changes at source code level and the addition of many new
features. Versions such as FreeMind 0.8.0, jEdit 4.0pre4 or TuxGuitar 1.0rc1
are such examples, where changes to the application had an important effect on
software quality. The case of TuxGuitar 1.0rc1 is especially worth mention, as a
development milestone was coupled with refactoring efforts that lowered main-
tenance effort. With regards to the root causes of changes to maintainability,
we consistently found the main drivers to be significant changes to application
presentation, functionality and extensive refactoring.

Most of the existing research is limited to evaluating software quality at
system level. In our study, we carried out a finer grained analysis at applica-
tion package level in order to improve our understanding of the distribution
and evolution of the maintenance effort. Figure 4 illustrates this for the most
maintenance-heavy application packages. This allowed us to discover the root
cause of the maintenance spike in FreeMind 0.8.0, as well as the effects of the
plugin-centered architecture on the distribution and evolution of maintenance
effort for TuxGuitar. Especially in the case of TuxGuitar, Fig. 4 illustrates how
maintenance effort was redistributed across the packages in versions with signif-
icant changes to source code.

Finally, our study provided an opportunity to examine the maintainability
models themselves. We found the MI to remain useful at a very fine granularity
level, and can be used at method or class level to ensure code complexity remains
in check. We found the ARiSA model to be useful at application level, but its
particularities preclude it from being useful when comparing applications. This
can be achieved using the SQALE methodology and its implementations, which
provide a language agnostic measurement scale.

Further directions targeting this research topic include extending the evalu-
ation from two perspectives. First, to consider other types of software systems,
such as mobile or distributed applications. Second, to investigate the effect the
development platform and programming language have on maintenance effort.

280 A.-J. Molnar and S. Motogna

References

1. Al-Qutaish, R.E., Ain, A.: Quality models in software engineering literature:
an analytical and comparative study. Technical report 3 (2010). http://www.
americanscience.org. editor@americanscience.org166

2. Almugrin, S., Albattah, W., Melton, A.: Using indirect coupling
metrics to predict package maintainability and testability. J. Syst.
Softw. 121, 298–310 (2016). https://doi.org/10.1016/j.jss.2016.02.024.
http://www.sciencedirect.com/science/article/pii/S016412121600056X

3. ARISA Compendium, VizzMaintenance: Technical documentation of the
VizzMaintenance metric extraction tool (2019). http://www.arisa.se/products.
php?lang=en

4. Arlt, S., Banerjee, I., Bertolini, C., Memon, A.M., Schaf, M.: Grey-box GUI testing:
efficient generation of event sequences. CoRR abs/1205.4928 (2012)

5. Avelino, G., Constantinou, E., Valente, M.T., Serebrenik, A.: On the abandon-
ment and survival of open source projects: an empirical investigation. In: 2019
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–12 (2019)

6. Barkmann, H., Lincke, R., Löwe, W.: Quantitative evaluation of software quality
metrics in open-source projects. In: 2009 International Conference on Advanced
Information Networking and Applications Workshops, pp. 1067–1072, May 2009.
https://doi.org/10.1109/WAINA.2009.190

7. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Software Eng. 22(10), 751–761 (1996).
https://doi.org/10.1109/32.544352

8. Caldiera, V.R.B.G., Rombach, H.D.: The goal question metric approach. Encycl.
Softw. Eng. 528–532 (1994)

9. Chidamber, S., Kemerer, C.: A metric suite for object- oriented design. IEEE
Trans. Software Eng. 20(6), 476–493 (1994)

10. Counsell, S., et al.: Re-visiting the ‘Maintainability Index’ metric from an object-
oriented perspective. In: 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications, pp. 84–87 (2015)

11. Cunningham, W.: The WyCash portfolio management system. SIGPLAN
OOPS Mess. 4(2), 29–30 (1992). https://doi.org/10.1145/157710.157715.
http://doi.acm.org/10.1145/157710.157715

12. van Deursen, A.: Think twice before using the maintainability index
(2014). https://avandeursen.com/2014/08/29/think-twice-before-using-the-
maintainability-index/

13. Döhmen, T., Bruntink, M., Ceolin, D., Visser, J.: Towards a benchmark for the
maintainability evolution of industrial software systems. In: 2016 Joint Conference
of the International Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM-MENSURA),
pp. 11–21 (2016)

14. Emam, K.E., Benlarbi, S., Goel, N., Rai, S.N.: The confounding effect of class size
on the validity of object-oriented metrics. IEEE Trans. Softw. Eng. 27(7), 630–650
(2001). https://doi.org/10.1109/32.935855

15. Fowler, M.: Technical debt (2019). https://martinfowler.com/bliki/TechnicalDebt.
html

16. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Software Eng. 31(10),
897–910 (2005). https://doi.org/10.1109/TSE.2005.112

http://www.americanscience.org
http://www.americanscience.org
https://doi.org/10.1016/j.jss.2016.02.024
http://www.sciencedirect.com/science/article/pii/S016412121600056X
http://www.arisa.se/products.php?lang=en
http://www.arisa.se/products.php?lang=en
https://doi.org/10.1109/WAINA.2009.190
https://doi.org/10.1109/32.544352
https://doi.org/10.1145/157710.157715
http://doi.acm.org/10.1145/157710.157715
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://doi.org/10.1109/32.935855
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html
https://doi.org/10.1109/TSE.2005.112

A Study of Maintainability in Evolving Open-Source Software 281

17. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintain-
ability. In: Quality of Information and Communications Technology, 6th Interna-
tional Conference on the Quality of Information and Communications Technology,
QUATIC 2007, Lisbon, Portugal, 12–14 September 2007, Proceedings, pp. 30–39
(2007). https://doi.org/10.1109/QUATIC.2007.8

18. Hynninen, T., Kasurinen, J., Taipale, O.: Framework for observing the maintenance
needs, runtime metrics and the overall quality-in-use. J. Softw. Eng. Appl. 11, 139–
152 (2018). https://doi.org/10.4236/jsea.2018.114009

19. ISO/IEC 25010: Software quality standards (2011). http://www.iso.org
20. ISO/IEC 9126–1: Software quality characteristics (2001)
21. Lenarduzzi, V., Lomio, F., Huttunen, H., Taibi, D.: Are SonarQube rules inducing

bugs? In: 2020 IEEE 27th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER) (2020). https://doi.org/10.1109/saner48275.
2020.9054821. http://dx.doi.org/10.1109/SANER48275.2020.9054821

22. Letouzey, J.L.: The SQALE method for evaluating technical debt. In: Proceedings
of the Third International Workshop on Managing Technical Debt, MTD 2012, pp.
31–36. IEEE Press (2012). http://dl.acm.org/citation.cfm?id=2666036.2666042

23. Li, W., Henry, S.: Maintenance metrics for the object oriented paradigm. In: IEEE
Proceedings of the First International Software Metrics Symposium, pp. 52–60
(1993)

24. Metrics library, N.: (2019). https://github.com/etishor/Metrics.NET
25. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: Pro-

ceedings of the 2008 International Symposium on Software Testing and Analysis -
ISSTA 2008 (2008). https://doi.org/10.1145/1390630.1390648

26. Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz, W., Pinto, G.: Are
static analysis violations really fixed? A closer look at realistic usage of Sonar-
Qube. In: Proceedings of the 27th International Conference on Program Com-
prehension,ICPC 2019, pp. 209–219. IEEE Press (2019). https://doi.org/10.1109/
ICPC.2019.00040. https://doi.org/10.1109/ICPC.2019.00040

27. Marinescu, R.: Measurement and quality in object oriented design. Ph.D. thesis,
Faculty of Automatics and Computer Science, University of Timisoara (2002)

28. Marinescu, R.: Measurement and quality in object-oriented design, vol. 2005, pp.
701–704, October 2005. https://doi.org/10.1109/ICSM.2005.63

29. Martini, A., Bosch, J., Chaudron, M.: Investigating architectural technical debt
accumulation and refactoring over time. Inf. Softw. Technol. 67(C), 237–253
(2015). https://doi.org/10.1016/j.infsof.2015.07.005

30. Microsoft VS Docs (2020). https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values

31. Molnar, A., Motogna, S.: Discovering maintainability changes in large software
systems. In: Proceedings of the 27th International Workshop on Software Mea-
surement and 12th International Conference on Software Process and Product
Measurement, IWSM Mensura 2017, pp. 88–93. ACM, New York (2017). https://
doi.org/10.1145/3143434.3143447. http://doi.acm.org/10.1145/3143434.3143447

32. Molnar, A.J.: Quantitative maintainability data for FreeMind, jEdit and Tux-
Guitar versions, September 2020. https://doi.org/10.6084/m9.figshare.12901331.
v1. https://figshare.com/articles/dataset/Quantitative maintainability data for
FreeMind jEdit and TuxGuitar versions/12901331

33. Molnar, A.J., Motogna, S.: Long-term evaluation of technical debt in open-source
software (2020). https://dl.acm.org/doi/abs/10.1145/3382494.3410673

https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.4236/jsea.2018.114009
http://www.iso.org
https://doi.org/10.1109/saner48275.2020.9054821
https://doi.org/10.1109/saner48275.2020.9054821
http://dx.doi.org/10.1109/SANER48275.2020.9054821
http://dl.acm.org/citation.cfm?id=2666036.2666042
https://github.com/etishor/Metrics.NET
https://doi.org/10.1145/1390630.1390648
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICSM.2005.63
https://doi.org/10.1016/j.infsof.2015.07.005
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values
https://doi.org/10.1145/3143434.3143447
https://doi.org/10.1145/3143434.3143447
http://doi.acm.org/10.1145/3143434.3143447
https://doi.org/10.6084/m9.figshare.12901331.v1
https://doi.org/10.6084/m9.figshare.12901331.v1
https://figshare.com/articles/dataset/Quantitative_maintainability_data_for_FreeMind_jEdit_and_TuxGuitar_versions/12901331
https://figshare.com/articles/dataset/Quantitative_maintainability_data_for_FreeMind_jEdit_and_TuxGuitar_versions/12901331
https://dl.acm.org/doi/abs/10.1145/3382494.3410673

282 A.-J. Molnar and S. Motogna

34. Molnar., A., Motogna, S.: Longitudinal evaluation of open-source software main-
tainability. In: Proceedings of the 15th International Conference on Evaluation
of Novel Approaches to Software Engineering - Volume 1: ENASE, pp. 120–131.
INSTICC, SciTePress (2020). https://doi.org/10.5220/0009393501200131

35. Molnar, A.-J., Neamţu, A., Motogna, S.: Evaluation of software product quality
metrics. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2019.
CCIS, vol. 1172, pp. 163–187. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40223-5 8

36. Molnar, A., Neamçu, A., Motogna, S.: Longitudinal evaluation of software qual-
ity metrics in open-source applications. In: Proceedings of the 14th International
Conference on Evaluation of Novel Approaches to Software Engineering - Vol-
ume 1: ENASE, pp. 80–91. INSTICC, SciTePress (2019). https://doi.org/10.5220/
0007725600800091

37. Motogna, S., Vescan, A., Serban, C., Tirban, P.: An approach to assess maintain-
ability change. In: 2016 IEEE International Conference on Automation, Quality
and Testing, Robotics (AQTR), pp. 1–6 (2016). https://doi.org/10.1109/AQTR.
2016.7501279

38. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintainabil-
ity. In: Proceedings Conference on Software Maintenance 1992, pp. 337–344 (1992).
https://doi.org/10.1109/ICSM.1992.242525

39. Lincke, R., Lowe, W.: Compendium of Software Quality Standards and Metrics
(2019). http://www.arisa.se/compendium/quality-metrics-compendium.html

40. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. (2009). https://doi.org/10.1007/
s10664-008-9102-8

41. SonarSource: SonarQube (2019). https://www.sonarqube.org
42. Tang, M.H., Kao, M.H., Chen, M.H.: An empirical study on object-oriented met-

rics. In: Proceedings of the 6th International Symposium on Software Metrics,
METRICS 1999, pp. 242–249. IEEE Computer Society, Washington (1999). http://
dl.acm.org/citation.cfm?id=520792.823979

43. Virtual Machinery: Discussion on measuring the Maintanability Index (2019).
http://www.virtualmachinery.com/sidebar4.htm

44. Welker, K.: Software Maintainability Index revisited. J. Defense Softw. Eng. (2001).
https://www.osti.gov/biblio/912059

45. Xu, J., Ho, D., Capretz, L.F.: An empirical validation of object-oriented design
metrics for fault prediction. J. Comput. Sci. 4, 571–577 (2008)

46. Yin, R.K.: Case Study Research and Applications - Design and Methods. SAGE
Publishing, Thousand Oaks (2017)

47. Yuan, X., Memon, A.M.: Generating event sequence-based test cases using
GUI run-time state feedback. IEEE Trans. Softw. Eng. 36(1), 81–95 (2010).
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.68

https://doi.org/10.5220/0009393501200131
https://doi.org/10.1007/978-3-030-40223-5_8
https://doi.org/10.1007/978-3-030-40223-5_8
https://doi.org/10.5220/0007725600800091
https://doi.org/10.5220/0007725600800091
https://doi.org/10.1109/AQTR.2016.7501279
https://doi.org/10.1109/AQTR.2016.7501279
https://doi.org/10.1109/ICSM.1992.242525
http://www.arisa.se/compendium/quality-metrics-compendium.html
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://www.sonarqube.org
http://dl.acm.org/citation.cfm?id=520792.823979
http://dl.acm.org/citation.cfm?id=520792.823979
http://www.virtualmachinery.com/sidebar4.htm
https://www.osti.gov/biblio/912059
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.68

Risk Treatment: An Iterative Method
for Identifying Controls

Roman Wirtz(B) and Maritta Heisel

University of Duisburg-Essen, Duisburg, Germany
roman.wirtz@uni-due.de

Abstract. Due to the increasing number of security incidents in the last
years, the consideration of security during software development becomes
more and more important. A certain level of security can be achieved by
applying suitable countermeasures. The ISO 27001 standard demands
a risk-based selection of countermeasures, i.e. controls, for information
security. Risk serves as a prioritization criterion for selecting controls. To
reduce the development effort, security should be addressed as early as
possible in the software development lifecycle.

In this paper, we present an iterative and risk-based method to
select controls during requirements engineering, following the principle
of security-by-design. We select controls based on unacceptable risks and
the related functional requirements. Each risk and control is described by
attributes that allow an evaluation of the control’s effectiveness based on
the Common Vulnerability Scoring System. The evaluation is supported
by a web-based tool. A distinguishing feature of our method is that dur-
ing iteration, we consider new incidents that may occur when applying
a control. For documenting the results, we present a metamodel that
ensures consistency and traceability between requirements and security
aspects.

Keywords: Security risk · Risk management · Risk treatment ·
Controls · Requirements engineering · Model-based · Patterns

1 Introduction

Due to the increasing number of security incidents in the last years, the consid-
eration of security during software development becomes more and more impor-
tant [6]. A security incident describes an event or state that leads to harm for
a stakeholder, e.g. in terms of financial or reputation loss [17]. To achieve a
certain level of security, it is necessary to select appropriate controls address-
ing those incidents. By considering controls as early as possible during software
development, the development effort can be reduced significantly. Concerning
information security, the ISO 27001 standard [14] demands a risk-based selec-
tion of controls. Risk is defined by an incident’s likelihood and the corresponding
impact, and applying a control can reduce that risk to an acceptable level.

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 283–310, 2021.
https://doi.org/10.1007/978-3-030-70006-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_12

284 R. Wirtz and M. Heisel

We aim to support security engineers in all phases of a risk management
process as described in the ISO 27005 standard [15]. Following the principle of
security-by-design [12], we work in the context of requirements engineering as
one of the earliest phases of software development.

In previous work, we have developed methods to identify and evaluate secu-
rity risks during requirements engineering. Our model-based approach based on
Problem Frames [16] and CORAS [19] ensures consistency between the require-
ments model and the security model. To make knowledge reusable, we developed
a template to describe incidents [28]. Using CORAS, we document those inci-
dents in the context of functional requirements [29]. The attributes used in the
template are based on the Common Vulnerability Scoring System (CVSS) [9],
and they allow us to evaluate and prioritize the risks which arise in the context
of an incident [26].

We further provide a template-based method to select and evaluate suitable
controls for unacceptable risks [25,30]. It describes an aspect-oriented approach
to integrate controls into the requirements model. The extended model serves as
the input for the design phase, thus helping to create an architecture that takes
security into account right from the beginning.

The previously developed method does not consider that the application of
controls may lead to new incidents. For example, when applying an encryption
mechanism, an attacker may break it. In this paper, we extend the method in
such a way that it is carried out iteratively to identify and treat those incidents,
too. To capture knowledge about new possible incidents when applying a control,
we extend our control specification template with a new section.

To support the application of the method, we provide tool support for the
documentation and evaluation of controls. First, we extend our metamodel for
risk evaluation [26] with elements for risk treatment. The extension formalizes the
relation between the CVSS attributes, the elements of the CORAS language, and
the requirements model. By instantiating that model, the results of risk treat-
ment can be documented systematically, at the same time ensuring traceability
and consistency. Second, we provide a web-based tool for pre-filtering and evalu-
ating suitable controls. For filtering controls, the tool takes the CVSS attributes
into account. Furthermore, it systematically presents a control’s details required
for carrying out the manual steps of the method. It can be accessed from any
browser via a graphical user interface. We further provide a REST API to con-
nect our metamodel with the application.

The remainder of the paper is structured in the following way: In Sect. 2, we
present necessary background knowledge, namely problem frames and CORAS,
and we introduce our previous work in Sect. 3. Section 4 contains the metamodel
for documentation, which is followed by our iterative method in Sect. 5. To exem-
plify its application, we show a case study in Sect. 6, and we describe our tool in
Sect. 7. Finally, we discuss our findings in Sect. 8, present related work in Sect. 9,
and provide an outlook on future research directions in Sect. 10.

Risk Treatment: An Iterative Method for Identifying Controls 285

2 Background

In this section, we introduce necessary background knowledge, i.e. Jackson’s
problem frames approach and the CORAS language.

2.1 Problem Frames

For modeling requirements, we make use of problem diagrams which consist
of domains, phenomena, and interfaces [16]. We make use of Google’s Material
Design1 to illustrate the diagrams in a user-friendly way [27].

Machine domains represent the piece of software to be developed.
Problem domains represent entities of the real world. There are different

types: biddable domains with an unpredictable behavior, e.g. persons , causal
domains with a predictable behavior, e.g. technical equipment, and lexical
domains for data representation. A domain can take the role of a connection
domain , connecting two other domains, e.g. user interfaces or networks.

Interfaces between domains consist of phenomena. There are symbolic phe-
nomena, representing some kind of information or a state, and causal phenomena,
representing events, actions, and commands. Each phenomenon is controlled by
exactly one domain and can be observed by other domains. A phenomenon con-
trolled by one domain and observed by another is called a shared phenomenon
between these two domains. Interfaces (solid lines) contain sets of shared phe-
nomena. Such a set contains phenomena controlled by one domain indicated
by X!{...}, where X stands for an abbreviation of the name of the controlling
domain.

A problem diagram contains a statement in form of a functional requirement
(represented by the symbol) describing a specific functionality to be developed.
A requirement is an optative statement that describes how the environment
should behave when the software is installed.

Some phenomena are referred to by a requirement (dashed line to controlling
domain), and at least one phenomenon is constrained by a requirement (dashed
line with arrowhead and italics). The domains and their phenomena that are
referred to by a requirement are not influenced by the machine, whereas we
build the machine to influence the constrained domain’s phenomena in such a
way that the requirement is fulfilled.

In Fig. 1, we show a small example describing a functional requirement for
updating some information. A Person provides information to Software
to be updated. We make use of a lexical domain Information to illustrate
a database. The functional requirement Update refers to the phenomenon
updateInformation and constrains the phenomenon information.

1 Google Material - https://material.io (last access: February 20, 2020).

https://material.io

286 R. Wirtz and M. Heisel

Fig. 1. Example of a problem diagram [30].

2.2 CORAS

CORAS is a model-based method for risk management [19]. It consists of a
stepwise process and different kinds of diagrams to document the results. Each
step provides guidelines for the interaction with the customer on whose behalf
the risk management activities are carried out. The results are documented in
diagrams using the CORAS language. The method starts with the establishment
of the context and ends with the suggestion of treatments to address the risk.

Identified risks can be documented in a so-called threat diagram of which
we show an example in Fig. 2. A threat diagram consists of the following ele-
ments: An Asset is an item of value. There are Human-threats deliberate, e.g. a
network attacker, as well as Human-threats accidental, e.g. an employee pressing
a wrong button accidentally. To describe technical issues there are Non-human
threats, e.g. malfunction of software. A threat initiates a Threat scenario with
a certain likelihood, and a threat scenario describes a state, which may lead to
an unwanted incident with another likelihood. An Unwanted incident describes
the action that actually impacts an asset, i.e. has a negative consequence for it.

In the following, we will use the term incident scenario as given in the ISO
27005 standard [15]. In the context of CORAS, an incident scenario describes

Fig. 2. CORAS threat diagram [30].

Risk Treatment: An Iterative Method for Identifying Controls 287

the path between threat and asset and the related elements, i.e. threat scenario
and unwanted incident. It can be further specified using our template which we
describe in Sect. 3.1.

To describe controls, there are Treatment Scenarios. The solid arrow points
to the element which the control treats, e.g. the threat scenario. Additionally, we
introduce a dashed arrow that points to the likelihood or consequence which will
be reduced, e.g. the likelihood that a threat scenario leads to an unwanted inci-
dent. The template given in Sect. 3.2 allows describing controls in a systematic
way.

3 Our Previous Work

In previous work, we developed two templates to determine an incident’s risk
level and the applicability of controls.

3.1 Template for Incident Scenarios

In previous work, we proposed a pattern that describes an incident scenario
based on the base metrics of the CVSS [28]. Table 1 shows the relevant excerpt
of a pattern instance for the scenario Database Injection. In the following, we
explain the different metrics and corresponding values. For each attribute, we
state its relation to the different elements and relations of the CORAS language.

The first set of attributes can be used to specify the likelihood that a threat
scenario leads to an unwanted incident.

The Threat Vector (called attack vector in CVSS) describes possible ways
how to realize a threat scenario. There are four different values: (1) network,

Table 1. Description of Database Injection [30].

Incident Information

LeadsTo Likelihood

Threat Vector � Network �� Adjacent
� Local � Physical

Complexity �� Low � High

Privileges
Required

� None �� Low � High

User
Interaction

�� None � Required

Threat Scope � Unchanged �� Changed

Consequences

Confidentiality Impact � None � Low �� High

Integrity Impact �� None � Low � High

Availability Impact �� None � Low � High

288 R. Wirtz and M. Heisel

which means access from an external network; (2) adjacent, which means a local
network; (3) local, which means direct access to the computer; and (4) physical,
which describes access to the hardware.

The Complexity of a scenario is defined by two possible values: low and high.
A high effort is required when a threat needs some preparation to realize the
threat scenario and that the scenario cannot be repeated an arbitrary number
of times.

To state whether privileges are required to successfully realize the threat
scenario, we make use of the corresponding attribute. There are three possible
values: (1) None; (2) Low, e.g. a user account; and (3) High, administrative
rights.

A realization may require some User Interaction, for example by confirming
the installation of malicious software.

The Threat Scope denotes the range of a scenario. A changed scope means
that the part being attacked is used to reach other parts of software. For example,
an attacker uses the wireless connection to access the database.

The impact on confidentiality, integrity, and availability is measured using
qualitative scales. The used scale consists of three values: None, Low and High.
In the context of CORAS, the value states the consequences that unwanted
incidents have for an asset.

In previous work, we developed a method that allows evaluating risks using
the CVSS metrics [26]. We will use the calculated severities to determine the
effectiveness of controls. In Sect. 7, we also present a web-based tool for support-
ing the evaluation.

3.2 Template for Controls

We further provide a pattern that allows to describe controls in a similar way
as incident scenarios [25]. In Table 2, we provide an example of the control
Encrypted Storage. It allows encrypting data before storing them persistently.

First, we informally describe the context in which a control can be applied,
e.g. a special type of distributed system. Each control can be used to sup-
port the protection of security properties. Furthermore, we state the functional
requirement in the form of a problem diagram for which the control is suitable.
Figure 3(a) shows the corresponding diagram of the example. For applying the
control, it is necessary that a Storage Machine stores data persistently in a
Database . The corresponding requirement constrains the lexical domain.

Furthermore, we distinguish between the benefits and liabilities of a control,
and we provide an aspect-oriented integration into the requirements model.

Benefits. For specifying the benefits, we use a set of attributes according to the
CVSS specifications, e.g. Modified Complexity. Each attribute is a counterpart
of the one used in incident descriptions. For example, after applying a control,
the new complexity for an incident is high. The range of values for each attribute
is the same as for the attributes of the incident description. Additionally, there
is the value not defined which means that the control does not influence that

Risk Treatment: An Iterative Method for Identifying Controls 289

Table 2. Description of Encrypted Storage.

Context

Description The control can be applied for software where
data shall be stored persistently.

Supported Security Property �� Confidentiality � Integrity � Availability

Functional Requirement The problem diagram is given in Fig. 3(a).

Benefits

Reduction of leadsTo likelihood

Modified Complexity �� Not defined � Low � High

Modified Privileges Required �� Not defined � None � Low � High

Modified User Interaction �� Not defined � None � Required

Modified Threat Scope �� Not defined � Unchanged � Changed

Reduction of impact

Modified Confidentiality Impact � Not defined �� None � Low � High

Modified Integrity Impact �� Not defined � None � Low � High

Modified Availability Impact �� Not defined � None � Low � High

Reduction of initiates likelihood

Hints The likelihood for initiating the threat scenario
cannot be reduced.

Liabilities

Costs Since there are many open source libraries that
can be used to implement the control, the costs
do not increase significantly.

Usability There is no impact on the usability.

Performance Depending on the size of data, the performance
may decrease. The higher the size of data, the
lower the performance.

Integration

Aspect diagram The aspect diagram is given in Fig. 3(b).

specific attribute, i.e. the value specified by the incident description will stay the
same after applying the control.

The leadsTo likelihood can be reduced by increasing the complexity, by
requiring higher privileges, by requiring a user interaction, or by modifying the
threat scope. The impact can be reduced separately for confidentiality, integrity,
and availability. In Sect. 5.2, we use the values to evaluate the effectiveness of a
control concerning incidents to be treated.

The CVSS specification does not provide attributes to specify the likelihood
that a threat initiates a threat scenario. Therefore, we provide a textual descrip-
tion of how a control affects that likelihood. These are given as hints in the last
section of the specification of benefits.

290 R. Wirtz and M. Heisel

Fig. 3. Diagrams of Encrypted Storage [30].

Liabilities. We distinguish between costs, usability, and performance. In Sect. 5.2,
we use the hints together with the context description to validate the applica-
bility of a control for a concrete software development project.

Integration. To integrate controls into the requirements model, we make use of
an aspect-oriented approach that has been proposed by Faßbender et al. [8].
For each control, we provide an aspect diagram which has a similar notation as
problem diagrams. In addition to problem domains, there are placeholders called
join points (marked in light gray). Problem domains of an aspect diagram will be
added to the requirements model, whereas a placeholder will be instantiated with
an existing domain. For the Encrypted Storage, we provide an aspect diagram
in Fig. 3(b). Encryption Machine and Key Storage are problem domains,
Machine is a join point. The requirement for encryption refers to the key
and constrains the encrypted data. In Sect. 5.3, we describe the integration of
controls into the requirements model in more detail.

4 Metamodel

To document requirements and the results of the risk management process, we
make use of two models: (i) Security Model and (ii) Requirements Model. Based
on the Eclipse Modeling Framework [21], we provide metamodels that formalize
the semantics of these models. Furthermore, these models serve as the foundation
for creating a graphical editor for problem diagrams and CORAS diagrams, as
well as to document the results of risk treatment consistently.

Risk Treatment: An Iterative Method for Identifying Controls 291

Fig. 4. Security metamodel.

4.1 Security Model

To document incidents with CORAS and to store the information provided by
the templates, we described a metamodel in previous work [26]. We now extend
that model with necessary elements to document selected controls. Figure 4 pro-
vides an overview of those new elements and their relations to the existing ones
(marked in gray).

Treatment Scenario. In CORAS, we use a Treatment Scenario to illustrate
a control. A treatment scenario can have different types of associations with
other elements. For each of those references, we add a class to the metamodel
containing the related attributes.

Treats. A control can address risks in several ways. The corresponding treats
reference can point to an asset, a threat, a threat scenario, or an unwanted
incident.

Fig. 5. Datatypes of metamodel.

292 R. Wirtz and M. Heisel

ReducesInitiates. By applying a treatment scenario, the likelihood that a
threat initiates a threat scenario can be reduced. In that case, the treatment
scenario points to the initiates relation between threat and threat scenario.
The modified likelihood can be described with the corresponding attribute.

ReducesLeadsTo. Our template to specify controls (see Table 2) provides sev-
eral attributes to describe how a control can reduce the likelihood that a
threat scenario leads to an unwanted incident. We use those attributes for
the reference that points from the treatment scenario to the leadsTo relation.
In Fig. 5, we show the possible values in form of enumerations. Those val-
ues are defined by the CVSS specification. The default value is not defined
(X) which means that the control does not reduce the risk regarding this
attribute.

ReducesImpacts. We also provide a reference that describes the reduction of
the impact of an unwanted incident on an asset. Based on the template, we
provide modified values for confidentiality, integrity, and availability impact.
The treatment scenario then points to the impact relation.

4.2 Requirements Model

In previous work [31], we presented a metamodel to document functional require-
ments. Jackson’s problem frames approach (see Sect. 2.1) serves as the basis for
the metamodel. An instance of the metamodel contains the functional require-
ments of software, thus serving as the initial input for the control selection.

In Fig. 6, we show the relation between the requirements model and the
security model. Those relations are also part of the metamodel. The elements of
the requirements model are given in light gray.

A threat scenario occurs in the context of a Statement. For example, an
attacker can misuse a user input for injecting malicious queries. Therefore, the
threat scenario (part of the security model) holds a reference to the corresponding
class. A statement can either be a (functional) Requirement or Domain Knowl-
edge. As domain knowledge, we consider indicative statements about the envi-
ronment of software to be developed.

As mentioned in Sect. 3.2, we document controls in the requirements model.
For example, an encryption mechanism leads to a new functional requirement.
Therefore, a treatment scenario (part of the security model) holds a reference

ThreatScenarioTreatmentScenario Statement

DomainKnowledgeRequirement

Fig. 6. Requirements metamodel.

Risk Treatment: An Iterative Method for Identifying Controls 293

Risk Treatment

Treatment sa sfactory? [no]

[yes]

B1. Document
treatment scenario

B2. Extend
requirements model

Input: CORAS security model
Output: Extended CORAS
security model

Input: Requirements model;
Aspect diagram
Output: Extended
requirements model

B1. Document
treatment scenario

B2. Extend
requirements model

Input: CORAS security model
Output: Extended CORAS
security model

Input: Requirements model;
Aspect diagram
Output: Extended
requirements model

A1. Consider security
property

A2. Consider
func onal

requirement

A4. Evaluate
effec veness

A3. Valida on of
context and liabili es

Input: Unwanted incident
Output: Subset of possibly
suitable controls

Input: Incident descrip on;
Problem diagram
Output: Subset of possibly
suitable controls

Input: Incident descrip on;
Threat diagram; Risk matrix
Output: Control(s) to be
applied

Input: Domain knowledge
Output: Subset of possibly
suitable controls

A1. Consider security
property

A2. Consider
func onal

requirement

A4. Evaluate
effec veness

A3. Valida on of
context and liabili es

Input: Unwanted incident
Output: Subset of possibly
suitable controls

Input: Incident descrip on;
Problem diagram
Output: Subset of possibly
suitable controls

Input: Incident descrip on;
Threat diagram; Risk matrix
Output: Control(s) to be
applied

Input: Domain knowledge
Output: Subset of possibly
suitable controls

C1. Analyze new
incidents

C2. Adjust risk
treatment

Input: CORAS security model
Output: Extended CORAS
security model

Input: CORAS security model
Output: Extended CORAS
security model

C1. Analyze new
incidents

C2. Adjust risk
treatment

Input: CORAS security model
Output: Extended CORAS
security model

Input: CORAS security model
Output: Extended CORAS
security model

Fig. 7. Overview for risk treatment method.

to a statement. Controls concerning the environment can be documented using
domain knowledge, e.g. the training of employees.

The provided references ensure consistency and traceability between the
results of the risk management process and the requirements model. In Sect. 7,
we describe a web-based tool that can be connected with the metamodel.

5 Iterative Risk Treatment

In the following, we present our iterative method to treat risks during require-
ments engineering. It is an extension of the method, we presented in previous
work [30].

Figure 7 provides an overview of the structure of the method, which consists
of eight steps. These steps can be divided into three phases. For our method, we
assume that the risk assessment including risk identification, risk analysis, and
risk evaluation has already taken place. We described methods for those steps
in previous work [26,28,29].

Selection. The first four steps deal with the selection of an appropriate control
including its evaluation.

Documentation. The documentation part consists of two steps for extending
the security model and requirements model.

Security Review. In the last part of our method, we review the selected con-
trols with regard to security, i.e. we analyze new incidents that may arise due
to a control’s application.

294 R. Wirtz and M. Heisel

We carry out these steps for all unacceptable risks, i.e. identified incident scenar-
ios to be treated. In case that the treatment is not satisfactory for an incident,
e.g. new incidents still lead to an unacceptable risk, we require an iteration of
the risk treatment. In the following, we describe the different steps in detail. In
Sect. 6, we furthermore show the application of the method for a case study.

5.1 Initial Input

To carry out our method, we require the following initial input:

1. CORAS Security Model: In previous steps of the risk management pro-
cess, we identified incidents that might lead to harm for assets. Those inci-
dents have been documented in CORAS threat diagrams. Therefore, the secu-
rity model serves as an input, as well as, the corresponding template descrip-
tion for the incidents (see Sect. 3.1). We document the results of the treatment
process in the security model using the metamodel extension we presented in
Sect. 4.

2. Catalog of Controls: Controls that shall be considered for our selection
process have to be specified with the template we described in Sect. 3.2. We
describe a new extension of the template in this section. The catalog of con-
trols is an implicit input for all steps of the method.

3. Requirements Model: To decide about the applicability of controls, we take
a requirements model as an input. That model shall be based on Jackson’s
problem frames approach (see Sect. 2.1) for which we already described a
metamodel [31]. The selected controls will be integrated in that model, too.

5.2 Part A: Selection

In the following, we describe the four steps of the selection part.

Step A1: Consider Security Property. We consider the security property
as the first criterion to filter suitable controls. The unwanted incident denotes
the harmed security property. We search for controls that help to preserve that
property. The control specification template (see Table 2) states the properties
that a control supports.

For further consideration, we therefore take those controls from the catalog
into account that support the harmed security property. Our tool supports that
step and automatically suggests suitable controls.

Step A2: Consider Functional Requirement. A control is applicable in the
context of specific functional requirements, e.g. controls for data transmission vs.
controls for data storage. Therefore, the functional requirement in the context
of which the incident occurs is another criterion for filtering suitable controls.
As described in Sect. 4, a threat scenario holds a reference to its corresponding

Risk Treatment: An Iterative Method for Identifying Controls 295

functional requirement. We compare the problem diagram of that requirement
with the control description. A control is possibly relevant when the problem
diagram contains the domains, domain interfaces, and requirement references
(constrains and refers to) given in the description. Note, that a problem diagram
may contain additional elements in comparison to the control description, since
the description only contains the minimal set of necessary elements.

All controls that fulfill that condition are taken into consideration. The step
can be automated based on the metamodels we presented in this paper.

Step A3: Validation of Context and Liabilities. In the third step, we val-
idate the context and liabilities of controls to decide about their applicability.
This step requires the interaction with domain experts, for example, the soft-
ware provider. Such an expert provides further necessary domain knowledge. The
control description template states details about the context, as well as details
about liabilities, i.e. costs, usability, and performance. Those attributes have to
be compared with the environment in which the software under development
will be integrated later. For example, software running on small servers does not
provide much computational power for strong encryption mechanisms. Further-
more, it is necessary to consider the costs for implementing a control compared
to the asset value to be protected.

Only those controls that are suitable regarding the context and the liabilities
are further considered.

Step A4: Evaluate Effectiveness. In the fourth step, we evaluate the effec-
tiveness of the controls filtered so far. The effectiveness states the risk reduction
that can be achieved by applying a control. For the evaluation, we make use
of a control’s description and the risk matrix which has been defined during
risk evaluation. In previous work, we provide a method to evaluate risks using
the CVSS [26]. The first dimension of the risk matrix is the frequency per year
that a threat initiates a threat scenario (see y-axis of Table 4). For estimating
the reduction of that frequency, our template provides specific hints, e.g. that
security checks for employees are performed before hiring them.

The second dimension is the severity of an incident scenario (see x-axis of
Table 4). The severity is defined by the likelihood that a threat scenario leads
to an unwanted incident and the impact. The qualitative scale for the severity
is defined by the CVSS [9]. The incident description contains the metrics which
are required to calculate the initial severity based on formulas.

A control can also be used to reduce that severity. The reduction is specified
by the modified metrics given in a control’s description. Using those metrics
and the initial metrics of the incident, we calculate the new severity. The CVSS
provides formulas for that purpose. Note that a control does not necessarily
reduce both, the severity and the likelihood for initiating a threat scenario.

For evaluating the risk reduction, i.e. the effectiveness of a control, we use
the risk matrix. If the combination of the new frequency and the new severity
leads to an acceptable risk, indicated by a white cell, we consider the control as

296 R. Wirtz and M. Heisel

effective. Sometimes, a single control does not lead to a sufficient risk reduction,
thus making it necessary to consider combinations of controls. For example, the
first control reduces the severity, whereas the second one reduces the frequency.
In that case, we combine the risk reduction of both controls. The evaluation
yields one or more controls providing a sufficient risk reduction.

If there is more than one control or control combination to achieve a sufficient
risk reduction, it is necessary to finally select those controls that shall be applied.
Different criteria can be used for that task, e.g. the maximum reduction or the
costs for implementation.

In the case that no suitable control has been found, the following steps for
documentation and review can be skipped. However, it is still necessary to doc-
ument that a sufficient reduction is not possible.

Our tool allows to calculate an incident’s severity, as well as, the reduced
severity when applying a control.

5.3 Part B: Documentation

After selecting suitable controls, we document the results in the security model
and requirements model.

Step B1: Document Treatment Scenario. After a suitable control has been
selected, we document the corresponding treatment scenario in the security
model using the CORAS language. The treatment scenario points to the ele-
ment of the diagram that the control treats (treats relation). Furthermore, we
document the resulting likelihood or consequence reduction (reduces relation).
The arrows can have an initiates, leadsTo, or impacts relation as target. The
control description denotes which likelihoods or consequences can be reduced,
and the arrows have to be added accordingly.

The metamodel we presented in Sect. 4 provides formal rules to document
treatment scenarios and risk reductions. Those rules ensure traceability and
consistency. By providing a graphical editor, the instantiation of the metamodel
can be supported.

Step B2: Extend Requirements Model. The second step of the documen-
tation phase integrates the functional requirements of selected controls in the
requirements model. An integration is required for those controls that are real-
ized as an additional software functionality, e.g. encryption mechanisms. To inte-
grate controls into the requirements model, we follow an aspect-oriented app-
roach for problem frames [8]. As input for this step, we consider the problem
diagram related to the threat scenario and the aspect diagram given in the con-
trol description.

We add the control to the problem diagram in the following way: The aspect
diagram contains domains, join points, and the functional requirement for the
control. We add the domains to the problem diagram along with the correspond-
ing domain interfaces. Since a join point represents a placeholder for a domain

Risk Treatment: An Iterative Method for Identifying Controls 297

of the problem diagram, we instantiate it accordingly. Furthermore, we add the
functional requirement for the control and the requirement references.

The resulting requirements model can be used in the subsequent design phase.
An architecture that can be created based on that model considers security right
from the beginning.

Controls that only influence the environment, e.g. security training for
employees, will not be considered in this step. We document those controls only
in the CORAS security model since they do not need to be considered for soft-
ware design decisions.

5.4 Part C: Security Review

The application of controls may lead to new incidents with regard to security.
We, therefore, extend our method with a new part called Security Review that
allows us to identify those incidents.

Step C1: Analyze New Incidents

Template Extension. To document new incidents that may occur due to the
application of a control, we extend the control specification template (cf.
Sect. 3.2) in the following way: For each new incident, we add a new entry refer-
ring to its specification. The incident’s details can then be looked up in the
incident catalog. Furthermore, we propose three new keywords to express the
relation to the initial incident which has already been addressed by the control.
The keywords help to adjust the security model in the next step.

after. The new incident occurs after using the control, e.g. breaking the encryp-
tion will be initiated after the encryption itself.

before. The new incident is realized before using the control, e.g. an attacker
has to steal the credentials before using the authentication mechanism.

independent. There is no relation regarding the time between control and
incident.

Along with the keyword, we briefly describe the incident and its (negative) influ-
ence with regard to security in terms of CVSS attributes. Optionally, the tem-
plate contains a description of how the control may already address the new
incident.

Table 3. New incidents of Encrypted Storage (cf. Table 2).

New Incidents

Ref. Break Encryption

{after} The attacker may break the encryption to retrieve the plaintext [con-
fidentialityImpact=HIGH].

Refinement By choosing a strong encryption algorithm, the complexity to break
the encryption increases [modComplexity=HIGH].

298 R. Wirtz and M. Heisel

In Table 3 we show the extension for the control Encrypted Storage. When
encrypting data, an attacker may try do break the encryption. That happens
after the attacker gains access to the encrypted data. Since breaking the encryp-
tion will lead to disclosure of plaintext, the resulting impact on confidentiality
is high. This issue may be addressed by the control itself by using a strong
encryption algorithm, since breaking a strong algorithm has a high complexity.

The analyst has to decide whether the incident is relevant or not. To doc-
ument the related incident in our security model, we make use of the CORAS
language again. The defined keywords help to integrate the new threat scenario
in the right place in the threat diagram. It defines the order of threat scenar-
ios regarding the time. For example, stealing the data may lead to breaking the
encryption, thus the new threat scenario occurs after the initial one (see Fig. 12).
Furthermore, it is necessary to specify and document the threat that initiates
the scenario along with corresponding likelihood.

The documentation for this step is supported by our metamodel. Further-
more, our tool shows the references and associated values for new incidents.

Step C2: Adjust Risk Treatment. In the case that the control is able to
treat the new incident, we adjust the risk treatment accordingly. For the doc-
umentation, we add a treats relation between treatment scenario and threat
scenario. Furthermore, we document the resulting risk reduction by adding a
corresponding reduces relation along with the corresponding values.

The residual severity can be calculated in the following way: In a chain of
threat scenarios, there are multiple leads to relations, each of them having dif-
ferent annotated values, e.g. for complexity. We collect all relations, and for each
attribute, we choose the most critical value to calculate the overall severity. For
example, a low complexity leads to a higher risk than a high complexity, and
we choose value low for the calculation. The criticality of the different values
is defined by the CVSS [9]. Here, we also take into account when a value has
been reduced by applying a control for which we consider the modified value.
Afterwards, we follow the procedure as described in step A4 for evaluating the
residual risk. In the case that the risk is not acceptable due to new incidents, we
require an iteration of the risk treatment.

For this step, our tool supports the evaluation of new incidents.

5.5 Decision Point: Treatment Satisfactory?

Finally, we decide whether the risk treatment was successful or not. To do so,
we check if all identified risks have been reduced to an acceptable level. If this
is not the case, it is necessary to perform another iteration of the method until
a sufficient risk reduction has been achieved.

Risk Treatment: An Iterative Method for Identifying Controls 299

If a reduction is not possible, e.g. because no suitable control has been found,
the method terminates, too. In that case, it is necessary to adjust the risk eval-
uation criteria, e.g. by adjusting the risk matrix. Otherwise, the software cannot
be deployed with the desired security level.

6 Case Study

In the following, we show the application of our method on a small case study.

Description and Initial Input. We consider a smart grid scenario. A smart grid is
an intelligent power supply network, which also allows measuring a customer’s
power consumption remotely. Since such networks are critical infrastructures,
they are often subject to attacks, and due to their complexity, it is hard to
analyze their security [18,22].

1. Requirements Model: The software to be developed is the Communication
Hub, which serves as the gateway between a customer’s home and the energy
supplier. In this paper, we focus on the functional requirement for storing
personal data of a customer. We show the corresponding problem diagram
in Fig. 8. A customer can store his/her personal data in the communication
hub’s internal database.

2. CORAS Security Model: The personal data shall be protected against disclo-
sure to an attacker. We show the CORAS threat diagram in Fig. 9, which is
part of the security model. An attacker may inject malicious database queries
via the customer’s interface to disclose the data. In this scenario, the com-
mand to store the personal data (FR:Store PD) will be replaced with a query.
In Table 1, we presented the template-based description for the incident.

Fig. 8. Case study: problem diagram of Store personal data [30].

Fig. 9. Case study: injection to disclose personal data (adapted from [30]).

300 R. Wirtz and M. Heisel

3. Catalog of controls: For reasons of simplicity, we only use the control
Encrypted Storage in this example. In Table 2, we presented the corresponding
description.

In the following, we apply our method to the case study.

Step A1: Consider Security Property. The unwanted incident given in Fig. 9
defines an impact on the confidentiality of personal data. The control Encrypted
Storage supports the confidentiality. Therefore, we consider the control as rele-
vant.

Step A2: Consider Functional Requirement. The control description (cf.
Fig. 3(a)) states a functional requirement for storing data. The problem diagram
contains a Storage Machine and a Database. The requirement constrains
the lexical domain. The machine and the lexical domain are connected via a
domain interface, and the annotated phenomenon is controlled by the machine.
The problem diagram from our scenario given in Fig. 8 contains those elements.
Therefore, the control is applicable in the context of the requirement.

Step A3: Validation of Context and Liabilities. Considering the control descrip-
tion given in Table 2, there are no liabilities concerning costs and usability. Since
a customer’s personal data has a small data size, there is also no major impact
on performance. The control will be further considered for an application.

Step A4: Evaluate Effectiveness. In Table 4, we show the risk matrix we consider
to determine the risk reduction, i.e. a control’s effectiveness. We use Inject as an
abbreviation for the risk that an attacker injects malicious database queries.

A acker

Disclosure of
personal data
to a acker

Disclosure of
personal data
to a acker

personal
data

Inject malicious
query

Inject malicious
query

50/y

Encrypt personal
data

Encrypt personal
data

modConfiden ality
Impact=none

Fig. 10. Case study: treatment documentation (adapted from [30]).

During risk evaluation, a frequency of 50 times per year (frequently)
has been estimated that the attacker injects malicious database queries. The
attributes’ values given in Table 1 lead to a severity of 6.8 (medium) for the
incident. The combination of likelihood and severity denotes an unacceptable
risk marked with a gray cell in the matrix.

The control description is given in Table 2 and does not state any reduction of
the frequency. Next, we consider the modified values. The control’s application
results in a modified impact on confidentiality. Since an attacker cannot disclose

Risk Treatment: An Iterative Method for Identifying Controls 301

plaintext, there is no impact on confidentiality after applying the control. The
new severity is 0.0 (none) which we evaluate using the risk matrix. The risk
after applying the control is acceptable (Inject treat). Therefore, the effectiveness
of the control is sufficient, and we select the control to treat the risk of injection.

Step B1: Document Treatment Scenario. For the control we selected, we docu-
ment the treatment scenario Encrypt personal data in the initial threat diagram
(cf. Fig. 10). The control treats the threat scenario which is related to the func-
tional requirement for storing the personal data. The control description given
in Table 2 states a modified confidentiality impact. The reduce relation points to
the impacts relation which indicates the impact reduction. In Fig. 10, we show
the resulting diagram.

Step B2: Extend Requirements Model. Figure 8 shows the problem diagram in
which the control shall be integrated. The aspect diagram is given in Fig. 3(b).
It contains two additional domains and one joint-point. We instantiate the joint-
point with the Communication Hub , and we add all other domains and inter-
faces to the problem diagram. Last, we add the functional requirement and the
requirement references. The new Encryption Machine has to be developed to
provide an encryption mechanism for securely storing personal data.

Table 4. Case study: risk matrix.

None
0.0

Low
0.1–3.9

Medium
4.0–6.9

High
7.0–8.9

Critical
9.0–10.0

Never
0 times

Seldom
≤ 20 times

Frequently
≤ 50 times

Injecttreat Inject

Inject+Breaktreat

Often
> 50 times

Figure 11 shows the final problem diagram containing both functional require-
ments and related domains.

Step C1: Analyze New Incidents. In Table 3, we showed the template exten-
sion for the control Encryption. There is a new incident regarding breaking the
encryption that is relevant for our scenario. In Fig. 12, we show the threat dia-
gram in which we integrated the new threat scenario Break encryption which
occurs in the context of the functional requirement for encryption. After steal-
ing the encrypted data, an attacker may initiate the threat scenario of breaking
the encryption. By breaking the encryption, the attacker can disclose the plain
data, thus leading to a high impact on confidentiality. The resulting severity is

302 R. Wirtz and M. Heisel

6.8 (medium). Next, we estimate the percentage of attackers that try to break
the encryption after performing the injection. The value denotes the likelihood
of the new initiates relation. We estimate that 50% of them try to break the
encryption. In our scenario, the frequency that attackers initiate both threat
scenarios is then 25 times per year (frequently), thus indicating an unac-
ceptable risk. We try to adjust the risk treatment in the next step.

Step C2: Adjust Risk Treatment. Table 3 shows that the new incident can be
addressed by selecting a strong algorithm. Therefore, we adjust the treatment
as shown in Fig. 12. The control now treats both threat scenarios, and it reduces
the likelihood that the threat scenario leads to the unwanted incident. Due to
the strong algorithm, the modified complexity is high. The resulting severity
is 5.8 (medium), and the likelihood remains the same (25 times a year
(frequently)). The risk matrix in Table 4 still denotes an unacceptable risk
(Inject+Break treat) when only applying the encryption mechanism.

Decision Point: Treatment Satisfactory? For deciding if the treatment is satis-
factory, we consider two different cases:

1. When considering the injection of data in isolation (see Fig. 10), the risk
reduction was successful. An iteration is not necessary.

2. In the case that an attacker tries to break the encryption, the risk regard-
ing that incident is not acceptable. Furthermore, it cannot be reduced only
by applying an encryption mechanism. Therefore, our method requires an
iteration.

Fig. 11. Case study: problem diagram including encryption requirement [30].

A acker

Disclosure of
personal data
to a acker

Disclosure of
personal data
to a acker

personal
data

Inject malicious
query

Inject malicious
query

50/y

Encrypt personal
data (strong
algorithm)

Encrypt personal
data (strong
algorithm)

modComplexity=
HIGH

Break
encryp on

Break
encryp on

0.5

Fig. 12. Case study: threat diagram with adjusted treatment.

Risk Treatment: An Iterative Method for Identifying Controls 303

Since the iteration for the second case follows the schema of risk treatment
we already presented, we do not show it here.

7 Tool Support

We present a web-based tool to support the application of our method. The
focus lays on the steps A1, A4, C1, and C2. It pre-filters suitable controls based
on the CVSS attributes and helps to evaluate their effectiveness.

7.1 Functionalities

The main functionalities that our tool provides are the following:

Calculate an Incident’S Severity: Based on the formulas provided by the
CVSS, the tool allows to calculate the severity of an incident. Users have to
enter the required values to the tool. The calculation of an incident’s severity
is used in the steps A4, C1, and C2.

Set up a Catalog of: We provide a data structure to set up a catalog of
controls. It is derived from the template we presented in Sect. 3.2. The com-
mon structure allows us to share the catalog between software development
projects. By specifying new controls, the catalog can be extended continu-
ously. The catalog of controls is an implicit input for all steps of the method
and therefore supports all of them. For the tool, we use it for automatic cal-
culations, as well as, to present the required information for manual steps of
the control selection.

Calculate the New Severity: Based on an incident’s severity and the modified
values contained in a control specification, our tool allows us to calculate the
new severity when applying a control. The modified values are taken from
the control specifications defined by the catalog’s data structure. With the
calculation, we support the steps A4, C1, and C2.

Pre-filter Suitable Controls: To assist analysts as much as possible in select-
ing suitable controls, we provide a filtering mechanism in our tool. After enter-
ing an incident’s values, our tool suggests suitable controls from the catalog
regarding the supported security property (step A1) and their effectiveness
(step A4). For the effectiveness-based filtering, we consider the new severity
and the likelihood reduction of the initiates relation. A control is irrelevant
when it neither reduces the severity sufficiently (new severity ≥ old severity)
nor the likelihood. The control will not appear in the list of suitable controls.
For finally deciding about the effectiveness, one has to manually enter the
new severity and likelihood to the risk matrix.

In the following, we describe how we realized those functionalities in more
detail, as well as, how we connected our metamodels (see Sect. 4) with the tool.
We follow the model-view-controller pattern [10].

304 R. Wirtz and M. Heisel

Fig. 13. Tool: graphical user interface.

7.2 Frontend

We provide a user-friendly graphical interface for the tool. In Fig. 13, we show
a screenshot of the main window. We build it using web standards like HTML,
CSS, and JavaScript to ensure compatibility with modern web browsers.

We provide an input form to enter the incident’s values for calculating its
severity. After providing the values, the tool presents a list of pre-filtered controls.
For each of them, it states the new severity. Users can request more details about
the control by clicking on a control’s name. The detailed description contains
all information specified in the control description template. For the functional
requirement and integration, we provide an image of the corresponding problem
diagram and aspect diagram, respectively. For structuring the representation of
a control, we make use of tabs. Each tab contains the part of the information
that is required for a specific step of the method, e.g. integration. The control
descriptions are contained in a database that is part of the backend.

When selecting a control, it is also possible to adjust its attributes, for exam-
ple regarding new incidents. The severity is recalculated accordingly.

Finally, we provide a form to add new controls to the catalog.

7.3 Backend

Besides our frontend which is the view to the user, we provide a server applica-
tion that handles the requests to the database.

We decided to use Node.js2 for deploying the server. The Forum of Inci-
dent Response and Security Teams (FIRST) provides a JavaScript library that

2 https://nodejs.org/en/ (last access: August 8, 2020).

https://nodejs.org/en/

Risk Treatment: An Iterative Method for Identifying Controls 305

implements the formulas specified by the CVSS. We embedded this library in
our tool for calculating the different severities. Besides, we implemented the pre-
viously mentioned pre-filtering rules. To store the control catalog, we make use
of an SQL database. Based on the control description template, we developed a
database schema. The diagrams are stored separately in the server’s file system.

For combining our metamodel with our server application, we specified and
implemented a REST API. The Eclipse Modeling Framework, with which we
created our models, automatically translates the metamodel into Java classes.
We extended those classes with methods to connect to the API and to send
requests to it. When instantiating the models, it is possible to directly calculate a
severity based on the model information or to request information about suitable
controls. The API contains the following types of request:

incident-severity. It returns the severity for a specific incident.
show-controls. Based on the provided incident’s parameters, the server returns

a list of suitable controls. The list contains the name and id of the controls.
get-control-details. When providing the id of a control, the request returns

the details of a control which are selected from the database. The API does
not support returning diagrams.

evaluate-effectiveness. It returns the new severity when providing the required
attributes for an incident and a control.

We make use of vector strings as defined by the CVSS specification for for-
matting a request’s parameters. For example, the request for evaluating the con-
trol Encryption (see Fig. 10) is the following: https://localhost:3000/evaluate-
effectiveness?vector= CVSS:3.1 AV:A AC:L PR:L UI:N S:C C:H I:N A:N MC
:N. It returns a new severity of 0.0.

8 Discussion

Based on the description of our method in Sect. 5 and the application to the case
study, we discuss the benefits and limitations of our method. The metamodel
and tool we introduced in the present paper provide additional benefits. In the
following, we consider usability, scalability, and precision.

8.1 Usability

For selecting and evaluating controls, we make use of templates to describe
incident scenarios and controls. The templates describe incident scenarios and
controls consistently and systematically, based on well-known concepts such as
the CVSS. We extended the template for controls with a reference to new inci-
dents. The extension supports the iteration when applying our method. Security
engineers do not need to fill the templates on their own but can use existing cat-
alogs. Furthermore, the required input and provided output of our method are
documented in a user-friendly way, i.e. in problem diagrams and CORAS dia-
grams. We already provide tools for creating problem frame models and CORAS

306 R. Wirtz and M. Heisel

security models. By extending the existing metamodels we allow to document
selected controls in a precise manner. With our tool, we further support the
selection and evaluation of controls.

The control selection still needs some manual effort, e.g. for analyzing the
context. The descriptions we provide with our templates support security engi-
neers in this process.

8.2 Scalability

The complexity of our method mainly depends on the number of unacceptable
risks and the number of controls contained in the catalog. On the one hand, a
larger catalog improves the results because there are more possibly suitable con-
trols. On the other hand, the complexity increases with the number of controls.
Since we reduce the set of relevant controls with each step, the complexity of
the steps decreases. Therefore, the complete catalog only needs to be considered
for the first step.

We designed all steps in a way that they can be automated as much as possible
to limit the manual effort for engineers to carry out the method. For calculating
the severity of an incident and to evaluate the effectiveness of a control, we
presented a tool in this paper. The provided API allows us to directly send
requests from the model to the server application. Our metamodel defines clear
semantics between security aspects and requirements. Furthermore, the different
diagram types, namely problem diagrams and threat diagrams, help to structure
views on larger models and to focus on relevant aspects.

8.3 Precision

For evaluating the effectiveness of controls, we use the CVSS. The defined met-
rics are widely accepted by the community and the industry to estimate severi-
ties. The corresponding formulas to calculate the severity of incidents have been
defined by security experts based on real use cases. Although the metrics and
formulas have been defined on sound expertise, there are limitations in their
precision. The usage of qualitative scales helps to improve usability. In contrast
to quantitative scales, those values are less precise. The values do not consider a
concrete context in which an incident may be realized or where a control shall be
applied. To address this issue, we decided to perform a step that requires man-
ual interaction and validates the context and liabilities of controls (cf. Sect. 5.2).
By replacing the CVSS with other scales, the precision can be improved. As a
liability, a qualitative scale may impact the usability.

9 Related Work

In the following, we focus on related work dealing with control selection and
evaluation in the context of risk management. Furthermore, we consider related
work that may complement or support our method.

Risk Treatment: An Iterative Method for Identifying Controls 307

The CORAS method [19], which we use to model incident scenarios, suggests
so-called structured brainstorming sessions to identify appropriate controls. Our
method partially relies on brainstorming sessions, e.g. for validating the liabilities
and the context of controls. For the other steps, we provide systematic guidance
based on patterns.

There is an empirical study on the role of threat and control catalogs in the
context of risk assessment [11]. The study revealed that non-security experts
who made use of catalogs identified threats and controls of the same quality as
security experts who did not use any catalog. We further support non-security
experts by providing guidance with our method in using catalogs.

[3] proposed a quantitative model for risk management. The model covers
the identification and analysis of possible threats to security, and it supports the
identification and evaluation of controls. The authors do not propose a systematic
method, and the application of the model requires specific expertise. However,
the consideration of a quantitative evaluation of controls can improve precision
(see Sect. 8).

[2] proposed a formalized approach to select and evaluate information secu-
rity controls. To evaluate the effectiveness, the authors follow a model-based
approach. Besides the evaluation of effectiveness to sufficiently reduce risks, the
method also considers the assurance of operation during run-time. By embed-
ding selected controls into the requirements model, we ensure the consideration
of controls in the following steps of software development.

In the context of business process modeling, there is a standardized represen-
tation of controls [24]. The representation shall serve as an input for automated
risk treatment. The same authors proposed an automated approach to determine
and evaluate security configurations based on feature modeling and constraint
programming [23].

[1] described an extension of the Tropos language [4] for a goal-driven risk
assessment during requirements engineering. The method analyzes risks along
with stakeholders’ interests based on three layers: (i) assets, (ii) events, and (iii)
treatments. [13] proposed a risk management method based on business goals.
Selected controls are linked to specific business goals. Furthermore, the method
allows to prioritize controls and to justify security experts’ decisions. Since we
mainly focus on functional requirements for software, the consideration of goal-
oriented approaches can complement our work.

There are many official resources for controls. For example, the Bunde-
samt für Sicherheit in der Informationsbranche provides the IT-Grundschutz-
Kompendium which contains a list of countermeasures to treat security risks [5].
The National Institute of Standards and Technology published the special pub-
lication 800-53 which offers descriptions for security and privacy controls [20].
Independently of national regulations, standards like the Common Criteria [7]
provide control specifications, as well. Those resources can be used as input for
our method, thus providing a wide range of controls.

308 R. Wirtz and M. Heisel

10 Conclusion

Summary. In this paper, we extended our method for risk treatment. First,
we extended our control specification template with a new section. This section
contains incidents that may arise when applying the control to the software.
Based on the extended template, we added new steps to our method to analyze
those incidents. The method is then carried out iteratively to identify all relevant
incidents. To document the results, we provide a metamodel that bridges the
gap between security and functional requirements. It ensures consistency and
traceability through all steps of risk management process. Since it is realized as
an EMF metamodel, the model can easily be instantiated. Besides, we presented
a web-based tool to simplify the application of our method. It allows to set up
a catalog of controls and to evaluate their effectiveness. Based on the CVSS
attributes, it pre-filters suitable controls. The provided details of each control
support the manual selection. A REST API allows to directly connect instances
of the metamodel with the server application.

Outlook. As mentioned in Sect. 8, the CVSS may lead to unprecise evaluation
results. We therefore plan to perform a systematic comparison with other scales
for risk evaluation. The results of that comparison can be used to improve our
templates and also the precision of the method.

Furthermore, we only consider confidentiality, integrity, and availability in
our method. We plan to extend our templates with additional security attributes,
e.g. Authenticity and Non-Repudiation. Since the CVSS does not consider those
attributes, the extension requires to adjust the scales and formulas, as well.

Concerning our tool, we plan to bring more features to the web. For exam-
ple, we plan to add aspect diagrams that users can download from the server.
By using the structures of the metamodel, users can add the aspect to their
requirements model.

While we only consider security in our method, privacy is another important
aspect, too. We will investigate how the results obtained in our risk management
process can be used to analyze and preserve privacy. For example, confidentiality
is an overlapping concept in both areas.

References

1. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements
engineering. Requir. Eng. 16(2), 101–116 (2011). https://doi.org/10.1007/s00766-
010-0112-x

2. Barnard, L., von Solms, R.: A formalized approach to the effective selection and
evaluation of information security controls. Comput. Secur. 19(2), 185–194 (2000).
https://doi.org/10.1016/S0167-4048(00)87829-3. http://www.sciencedirect.com/
science/article/pii/S0167404800878293

3. Bojanc, R., Jerman-Blažič, B.: A quantitative model for information-security
risk management. Eng. Manage. J. 25(2), 25–37 (2013). https://doi.org/10.1080/
10429247.2013.11431972

https://doi.org/10.1007/s00766-010-0112-x
https://doi.org/10.1007/s00766-010-0112-x
https://doi.org/10.1016/S0167-4048(00)87829-3
http://www.sciencedirect.com/science/article/pii/S0167404800878293
http://www.sciencedirect.com/science/article/pii/S0167404800878293
https://doi.org/10.1080/10429247.2013.11431972
https://doi.org/10.1080/10429247.2013.11431972

Risk Treatment: An Iterative Method for Identifying Controls 309

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agents Multi-Agent
Syst. 8(3), 203–236 (2004). https://doi.org/10.1023/B:AGNT.0000018806.20944.
ef

5. BSI: IT-Grundschutz-Kompendium. Bundesamt für Sicherheit in der Information-
stechnik (2019)

6. BSI: State of IT Security in Germany 2019 (2019). https://www.bsi.bund.de/EN/
Publications/SecuritySituation/SecuritySituation node.html

7. Common Criteria: Common Criteria for Information Technology Security Evalu-
ation v3.1. Release 5. Standard (2017). http://www.iso.org/iso/catalogue detail?
csnumber=65694

8. Faßbender, S., Heisel, M., Meis, R.: Aspect-oriented requirements engineering with
problem frames. In: Proceedings of the 9th International Conference on Software
Paradigm Trends, ICSOFT-PT 2014. SciTePress (2014). https://doi.org/10.5220/
0005001801450156

9. FIRST.org: Common Vulnerability Scoring System v3.1: Specification Document
(2019). https://www.first.org/cvss/v3-1/cvss-v31-specification r1.pdf

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional, Boston
(1994)

11. de Gramatica, M., Labunets, K., Massacci, F., Paci, F., Tedeschi, A.: The role of
catalogues of threats and security controls in security risk assessment: an empirical
study with ATM professionals. In: Fricker, S.A., Schneider, K. (eds.) REFSQ 2015.
LNCS, vol. 9013, pp. 98–114. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16101-3 7

12. Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., Dabney, J.: Error cost
escalation through the project life cycle. INCOSE Int. Symp. 14, 1723–1737 (2004)

13. Herrmann, A., Morali, A., Etalle, S., Wieringa, R.: RiskREP: risk-based secu-
rity requirements elicitation and prioritization. In: 1st International Workshop on
Alignment of Business Process and Security Modelling, ABPSM 2011. Lecture
Notes in Business Information Processing. Springer, Verlag (2011)

14. ISO: ISO 27001:2018 Information technology - Security techniques - Information
security risk management. International Organization for Standardization (2018)

15. ISO: ISO/IEC 27005:2018 Information security management. International Orga-
nization for Standardization (2018)

16. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley, Boston (2001)

17. Kaspersky Lab: The Kaspersky Lab Global IT Risk Report (2019). https://media.
kaspersky.com/documents/business/brfwn/en/The-Kaspersky-Lab-Global-IT-
Risk-Report Kaspersky-Endpoint-Security-report.pdf

18. Kumar, P., Lin, Y., Bai, G., Paverd, A., Dong, J.S., Martin, A.P.: Smart grid
metering networks: a survey on security, privacy and open research issues. IEEE
Commun. Surv. Tutor. 21(3), 2886–2927 (2019). https://doi.org/10.1109/COMST.
2019.2899354

19. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis. The CORAS App-
roach. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12323-8

20. NIST: Special Publication 800–53 Rev. 4. National Institute of Standards and
Technology (2013)

21. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://www.bsi.bund.de/EN/Publications/SecuritySituation/SecuritySituation_node.html
https://www.bsi.bund.de/EN/Publications/SecuritySituation/SecuritySituation_node.html
http://www.iso.org/iso/catalogue_detail?csnumber=65694
http://www.iso.org/iso/catalogue_detail?csnumber=65694
https://doi.org/10.5220/0005001801450156
https://doi.org/10.5220/0005001801450156
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://doi.org/10.1007/978-3-319-16101-3_7
https://doi.org/10.1007/978-3-319-16101-3_7
https://media.kaspersky.com/documents/business/brfwn/en/The-Kaspersky-Lab-Global-IT-Risk-Report_Kaspersky-Endpoint-Security-report.pdf
https://media.kaspersky.com/documents/business/brfwn/en/The-Kaspersky-Lab-Global-IT-Risk-Report_Kaspersky-Endpoint-Security-report.pdf
https://media.kaspersky.com/documents/business/brfwn/en/The-Kaspersky-Lab-Global-IT-Risk-Report_Kaspersky-Endpoint-Security-report.pdf
https://doi.org/10.1109/COMST.2019.2899354
https://doi.org/10.1109/COMST.2019.2899354
https://doi.org/10.1007/978-3-642-12323-8

310 R. Wirtz and M. Heisel

22. Tellbach, D., Li, Y.F.: Cyber-attacks on smart meters in household nanogrid:
modeling, simulation and analysis. Energies 11(2), 316 (2018). https://doi.org/
10.3390/en11020316

23. Varela-Vaca, A.J., Gasca, R.M.: Towards the automatic and optimal selection
of risk treatments for business processes using a constraint programming app-
roach. Inf. Softw. Technol 55(11), 1948–1973 (2013). https://doi.org/10.1016/j.
infsof.2013.05.007

24. Varela-Vaca, A.J., Warschofsky, R., Gasca, R.M., Pozo, S., Meinel, C.: A secu-
rity pattern-driven approach toward the automation of risk treatment in business
processes. In: Herrero, Á., et al. (eds.) International Joint Conference CISIS’12-
ICEUTE’12-SOCO’12 Special Sessions. Advances in Intelligent Systems and Com-
puting, Ostrava, Czech Republic, 5–7 September 2012, vol. 189, pp. 13–23.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33018-6 2

25. Wirtz, R., Heisel, M.: Managing security risks: template-based specification of con-
trols. In: Sousa, T.B. (ed.) Proceedings of the 24th European Conference on Pat-
tern Languages of Programs, EuroPLoP 2019, Irsee, Germany, 3–7 July 2019, pp.
10:1–10:13. ACM (2019). https://doi.org/10.1145/3361149.3361159

26. Wirtz, R., Heisel, M.: Model-based risk analysis and evaluation using CORAS and
CVSS. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2019.
CCIS, vol. 1172, pp. 108–134. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40223-5 6

27. Wirtz, R., Heisel, M.: RE4DIST: model-based elicitation of functional requirements
for distributed systems. In: van Sinderen, M., Maciaszek, L.A. (eds.) Proceedings
of the 14th International Conference on Software Technologies, ICSOFT 2019,
Prague, Czech Republic, 26–28 July 2019, pp. 71–81. SciTePress (2019). https://
doi.org/10.5220/0007919200710081

28. Wirtz, R., Heisel, M.: A systematic method to describe and identify security
threats based on functional requirements. In: Zemmari, A., Mosbah, M., Cuppens-
Boulahia, N., Cuppens, F. (eds.) CRiSIS 2018. LNCS, vol. 11391, pp. 205–221.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12143-3 17

29. Wirtz, R., Heisel, M.: Risk identification: from requirements to threat models.
In: Furnell, S., Mori, P., Weippl, E.R., Camp, O. (eds.) Proceedings of the 6th
International Conference on Information Systems Security and Privacy, ICISSP
2020, Valletta, Malta, 25–27 February 2020, pp. 385–396. SCITEPRESS (2020).
https://doi.org/10.5220/0008935803850396

30. Wirtz, R., Heisel, M.: Systematic treatment of security risks during requirements
engineering. In: Ali, R., Kaindl, H., Maciaszek, L.A. (eds.) Proceedings of the
15th International Conference on Evaluation of Novel Approaches to Software
Engineering, ENASE 2020, Prague, Czech Republic, 5–6 May 2020, pp. 132–143.
SCITEPRESS (2020). https://doi.org/10.5220/0009397001320143

31. Wirtz, R., Heisel, M., Wagner, M.: Distributed frames: pattern-based character-
ization of functional requirements for distributed systems. In: van Sinderen, M.,
Maciaszek, L.A. (eds.) ICSOFT 2019. CCIS, vol. 1250, pp. 81–107. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-52991-8 5

https://doi.org/10.3390/en11020316
https://doi.org/10.3390/en11020316
https://doi.org/10.1016/j.infsof.2013.05.007
https://doi.org/10.1016/j.infsof.2013.05.007
https://doi.org/10.1007/978-3-642-33018-6_2
https://doi.org/10.1145/3361149.3361159
https://doi.org/10.1007/978-3-030-40223-5_6
https://doi.org/10.1007/978-3-030-40223-5_6
https://doi.org/10.5220/0007919200710081
https://doi.org/10.5220/0007919200710081
https://doi.org/10.1007/978-3-030-12143-3_17
https://doi.org/10.5220/0008935803850396
https://doi.org/10.5220/0009397001320143
https://doi.org/10.1007/978-3-030-52991-8_5

Combined Similarity Based Automated
Program Repair Approaches for

Expression Level Bugs

Moumita Asad(B), Kishan Kumar Ganguly, and Kazi Sakib

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh
{bsse0731,kkganguly,sakib}@iit.du.ac.bd

Abstract. Automated program repair aims at finding the correct patch
of a bug using a specification such as test cases. An existing study found
that almost 82.40% repair actions are associated with expressions such as
method invocation or assignment expression. However, handling expres-
sion level bugs enhances the search space and increases the probabil-
ity of finding incorrect plausible patches before the correct one. Con-
sequently, existing program repair approaches either avoid or limitedly
focus on expression level bugs. This study proposes two automated pro-
gram repair approaches that extensively deals with expression level bugs.
The devised techniques combine syntactic and semantic similarities to
handle the enlarged search space and rank the correct patch higher.
Genealogical and variable similarity are used to measure semantic simi-
larity since these are good at differentiating between correct and incor-
rect patches. Two popular metrics namely normalized longest common
subsequence and token similarity are considered individually for captur-
ing syntactic similarity. To evaluate the proposed techniques, these are
compared with baseline approaches that use either semantic or syntactic
similarity. Single line bugs from Defects4J and QuixBugs benchmark are
used for comparison. Result reveals that the proposed techniques can
correctly repair 22 and 21 expression level bugs which are higher than
approaches using only semantic or syntactic similarity. Furthermore, the
devised approaches obtain 64.71% and 61.76% precision and outperform
the baseline program repair techniques.

Keywords: Syntactic similarity · Semantic similarity · Patch
prioritization · Automated program repair · Expression level bugs

1 Introduction

A patch is the modifications applied to a program for fixing a bug [2]. Automated
program repair finds the correct patch based on a specification, e.g., test cases
[30]. It works in three steps namely fault localization, patch generation and
patch validation [21]. Fault localization identifies the faulty code where the bug
resides. Patch generation modifies the faulty code to fix the bug. Finally, by
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 311–335, 2021.
https://doi.org/10.1007/978-3-030-70006-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_13

312 M. Asad et al.

executing test cases, patch validation examines whether the bug has been fixed
or not. Since the search space is infinite, numerous patches can be generated
[13]. Besides, a plausible solution - patch that passes all the test cases - can be
incorrect, which is known as overfitting problem [42]. To limit the search space,
most of the program repair techniques rely on redundancy assumption, which
states that the patch of a bug can be found elsewhere in the application or other
projects [6]. The existing code element that is reused for generating the patch, is
called the fixing ingredient [42]. The redundancy assumption has already been
validated by existing studies [3,28]. Martinez et al. found that 3–17% of the
commits are redundant at the line level, whereas it is 29–52% at the token level
[28]. Another study on 15,723 commits reported that approximately 30% fixing
ingredients exist in the same buggy file [3].

Although the redundancy assumption limits the search space, in practice it is
too large for exploring exhaustively especially for working at a finer granularity
like expression level [6]. For example, there is only one buggy line in Listing 1.1,
however, existing fault localization techniques mark 187 statements from 7 source
files as buggy. If fixing ingredients are collected from the corresponding buggy
files, 1081 statements are retrieved. Hence, the number of patches generated will
be almost 187 * 1081 = 202147. On the other hand, if the expression level gran-
ularity is used, 591 expressions are labeled as buggy and 4451 expressions are
obtained as fixing ingredients. In this case, the number of patches generated will
be around 591 * 4451 = 2630541, which is 13 times larger compared to statement
level granularity. Each of these patches needs to be compiled and validated by
executing test cases, which is time consuming [6,35]. In addition, an existing
study found that enhancing the search space increases the probability of gener-
ating incorrect plausible patches rather than correct ones [25]. Consequently, it
becomes challenging for automated program repair techniques to handle expres-
sion type bugs such as assignment expression, method invocation, etc.

Listing 1.1. A Sample Bug Chart 9 from Defects4J Benchmark.

public TimeSeries createCopy(RegularTimePeriod start,
RegularTimePeriod end) {

- if (endIndex < 0)
+ if ((endIndex < 0) || (endIndex < startIndex))
}

Nevertheless, a study on 16,450 bug fix commits from 6 open-source projects
such as Apache Mahout, Solr, etc reported that around 82.40% repair actions are
related to expressions [20]. To understand the importance of handling expres-
sion type bugs, the current study also analyzes the CodRep dataset [6]. This
dataset contains 58,069 one-line replacement bugs and corresponding fixes from
29 projects such as Apache Log4j, Spring Framework, etc. For each sample from
this dataset, the differences between the buggy and the fixed version files are
identified at the expression level. Result demonstrates that 42,856 out of 58,069
bugs (73.80%) are fixed by replacing an expression with another. Due to the

Combined Similarity Based Automated Program Repair Approaches 313

importance of handling expression type bugs, an automated program repair
approach needs to be devised that rigorously deals with these types of bug.
The devised technique should incorporate a strategy to find the correct patch
from the expanded search space within the allocated time and rank it before
incorrect plausible ones.

Existing program repair approaches either avoid or limitedly work on expres-
sion level bugs. To keep the search space tractable, GenProg [19] and RSRepair
[31] only work at the statement level [42]. Similarly, fix pattern based program
repair approaches PAR [16], ELIXIR [35] and CapGen [42] define only a few tem-
plates related to expressions for preventing search space explosion [22]. Although
PAR [16] can modify conditional expressions, it cannot solve other frequently
occurring expression type bugs such as class instance creation expression or
variable name modification [20]. ELIXIR [35] extensively deals with method
invocation related bugs, however, it can not repair assignment or class instance
creation expression bugs, which are also prevalent [20]. Likewise, CapGen [42]
cannot handle bugs related to class instance creation or number literal expression
[22]. Other approaches SimFix [13] and LSRepair [23] operate at a coarse granu-
larity, which are a code snippet of 10 lines and method level respectively. Hence,
the searching strategy used by these techniques are suitable for identifying only
coarse-grained fixing ingredients [39,40].

In this context, the current study proposes two automated program repair
approaches that extensively deals with expression level bugs. Through an empir-
ical study on patch prioritization, the authors found that when the faulty loca-
tion is known, combining syntactic and semantic similarities helps to rank the
developer-written patch higher [2]. Hence, the proposed techniques integrate syn-
tactic and semantic similarity to constrain the expanded search space caused by
expression and prioritize the correct patch over incorrect plausible ones. The pro-
posed techniques use genealogical and variable similarity for measuring semantic
similarity since these are effective in distinguishing between correct and incor-
rect patches [2]. To calculate syntactic similarity, two widely-used metrics namely
normalized longest common subsequence and token similarity are considered sep-
arately [2]. Thus, two bug fixing approaches namely ComFix-L and ComFix-T
are proposed respectively. Genealogical similarity checks whether faulty code
and fixing ingredient are frequently used with the same type of code elements
(e.g., inside for statement) [2]. Variable similarity examines the name and type
of variables accessed by the faulty code and fixing ingredient. Normalized longest
common subsequence calculates maximum similarity at character level. Token
similarity measures to what extent same tokens (e.g., identifiers) exist in the
faulty code and fixing ingredient, regardless of its position.

The proposed approaches take a buggy program and a set of test cases with
at least one failing test as input and output a program passing all the test cases.
At first, the line-wise suspiciousness scores (0–1) of the buggy program are cal-
culated using the execution traces of the test cases [17]. Next, these scores are
mapped to Expression type abstract syntax tree nodes and those with a suspi-
ciousness score above 0, are considered as faulty. These faulty nodes are replaced

314 M. Asad et al.

with fixing ingredients to generate patches. The fixing ingredients are collected
from the corresponding buggy files, as followed in [16,22,42]. To validate poten-
tially correct patch earlier, patches are ordered using a ranking score (0–3).
To calculate the ranking score, the suspiciousness score is multiplied by the
similarity score (0–3), which is obtained by incorporating genealogical, variable
similarity with normalized longest common subsequence or token similarity. For
limiting the search space, only patches with a ranking score greater than 0 are
considered as candidate patches. Finally, the correctness of these patches are
validated by executing test cases. Patch validation continues until a plausible
patch is found or the predefined time-limit exceeds.

To evaluate the proposed approaches, these are compared with baseline tech-
niques that use either semantic or syntactic similarity for handling expression
level bugs. The is because the proposed approaches target a different defect class
(expression level bugs) from the existing program repair approaches [29]. For
comparison, single line bugs from Defects4J [14] and QuixBugs [47] benchmark
are chosen as a representative of large and small buggy projects respectively.
Next, the results are examined based on three metrics namely the number of bugs
correctly fixed, precision (the ratio of correct and incorrect plausible patches) and
repairing time [18,42,45]. To assess the correctness of the plausible patches, both
manual and automated analysis are performed, as suggested by [48]. The result
demonstrates that the proposed techniques correctly repair 22 and 21 bugs from
these benchmarks, which are higher compared to approaches using only semantic
or syntactic similarity. Furthermore, the proposed approaches obtain a precision
of 64.71% and 61.76% respectively and outperform the baseline approaches that
use only syntactic or semantic similarity. It indicates that the combination of
syntactic and semantic similarities contributes to detect the correct patch over
incorrect plausible patches. Through Wilcoxon Signed-Rank test, it is found
that combining similarities does not significantly increase the bug fixing time.
For the devised approaches, the average repairing time is 8.19 and 7.96 min for
the commonly fixed bugs.

2 Background

This section creates the knowledge base for understanding automated program
repair. At first, software bugs and associated terms, e.g., faulty code, patch, test
cases are presented. Next, terminologies related to source code such as statement,
expression, abstract syntax tree, are explained.

2.1 Concepts Related to Software Bug

Since automated program repair deals with software bug, a clear concept of bug
and associated terminologies (test case, faulty code, patch and fixing ingredient)
is necessary before understanding automated program repair. The definitions
and examples of those terms as well as their relevance with automated program
repair are presented in this subsection.

Combined Similarity Based Automated Program Repair Approaches 315

Software Bug. It is a deviation between the expected and the actual behavior
of a program execution [30]. Listing 1.2 shows a method that finds maximum
between two integers. It is expected that if a and b are set to 3 and 4 respec-
tively, the method will output 4. However, the method returns 3, which indicates
there is a bug. Bugs can cause financial loss as well as loss of human lives [51].
For example, in 2001, 28 patients received overdose of radiation due to incor-
rect calculation provided by a treatment-planning software [51]. Therefore, it is
necessary to fix bugs.
Listing 1.2. Buggy Version of max()
Method.

1: int max(int a, int b)
2: {
3: if(a>b)
4: return a;
5: else

// buggy statement
6: return a;
7: }

Listing 1.3. Fixed Version of max()
Method.

1: int max(int a, int b)
2: {
3: if(a>b)
4: return a;
5: else

// fixed statement
6: return b;
7: }

Although it is important to find and fix bugs, doing it manually is a difficult,
time-consuming and expensive task [19]. A study found that the median time to
solve a bug manually is around 200 days [51]. Most of the time human resources
are not enough to solve even known bugs. For example, Windows 2000 was
shipped with more than 63000 known bugs due to lack of human resources [16].
Furthermore, globally 312 billion dollars are spent in a year for general debugging
[42]. Hence, automated program repair is needed to reduce the time and cost.

Test Case: It is a specification that states a set of inputs, execution conditions
and expected outputs [5]. Test cases are developed for a particular objective
such as executing a specific program path or detecting bugs. Listing 1.4 presents
a sample test case for the method max() (shown in Listing 1.2). It will check
whether the output of max(6,5) is equal to the expected output 6. If these are
not equal, the test case will fail. Test cases can be divided into two categories
based on the outcome of a test execution. The categories are:

1. Passing Test Case: A test case for which a program’s actual output matches
with the expected one, is called a passing test case [15]. For the test case in
Listing 1.4, the output of max(6,5) is 6, which is the same as expected output.
Hence, it is a passing test case.

2. Failing Test Case: A test case for which a program’s actual output is differ-
ent from the expected output, is called a failing test case [15]. The test case
in Listing 1.5 is a failing test case since the expected and actual output do
not match. The actual output of max(3,4) (shown in Listing 1.2) is 3, whereas
the expected output is 4.

Apart from buggy source code, automated program repair takes test cases with
at least one failing test as input. These test cases are used for two purposes: (1)

316 M. Asad et al.

to identify the buggy source code location and (2) to check the correctness of a
generated solution.

Listing 1.4. A Passing Test Case for
Method max().

@Test

public void test() {

assertEquals(6,max(6,5));

}

Listing 1.5. A Failing Test Case for
Method max()

@Test

public void test2() {

assertEquals(4, max(3,4));

}

Faulty Code. It refers to the source code fragment where the bug resides. For
example, in Listing 1.2, line 6 represents the faulty code. The line should be
return b;, as depicted in Listing 1.3. In automated program repair, faulty code
is identified by the execution results of test cases [17]. If a program element
(statement or predicate) is frequently executed by the failing test cases and
rarely executed by the passing test cases, it is likely to be faulty. Based on this
assumption, a suspiciousness score is assigned to the program elements.

Patch. It refers to the modifications applied to a program for fixing a bug [2].
Patches can be generated in numerous ways such as inserting a new statement,
replacing or deleting the faulty code fragment. For Listing 1.2, the correct patch
is replacing variable a in line 6 with variable b, as illustrated in Listing 1.3.
Automated program repair aims at finding the correct patch of a bug. However,
it faces the following two challenges, as identified by prior literature [23,42,45].

1. Determining the Search Space: Since the search space is infinite, auto-
mated program repair approaches can produce numerous patches [13]. Nev-
ertheless, search space should be constrained for scaling automated program
repair to large projects. On the contrary, this may result into the unavail-
ability of the correct patches in the search space. In such case, it becomes
impossible to repair a bug successfully.

2. Identifying the Correct Patch over Incorrect Plausible Ones: A patch
that passes all the test cases is called a plausible patch [32,46]. In real world
projects, the test cases are unable to completely specify the program behaviors
[47]. Due to the weaknesses of the test suite, incorrect plausible patches occur
that pass all the given test cases but fail to be generalized, which is known
as overfitting problem [47]. Although correct patches are sparse in the search
space, incorrect plausible patches are densely distributed [25]. Thus, it is
challenging to identify the correct patch over incorrect plausible ones.

Fixing Ingredient. It refers to existing code elements that can be reused to
generate the patch of a bug [12,42]. In Listing 1.3, variable a at line 6 is replaced
with variable b for generating the correct patch. Here, variable b is the fixing
ingredient. Fixing ingredients can be collected from the buggy source file or the
whole project [27]. Considering the whole project increases the chance of includ-
ing the correct fixing ingredient in the search space. However, it enlarges the

Combined Similarity Based Automated Program Repair Approaches 317

search space and thereby makes it difficult to find the correct fixing ingredi-
ent earlier [25]. On the contrary, considering only the buggy source file helps
to reduce the bug fixing time by finding the correct fixing ingredient earlier.
Nevertheless, it may cause unavailability of the correct fixing ingredient in the
search space [23].

2.2 Concepts Related to Source Code

Almost 90% of the reported bugs reside in source code [51]. Hence, knowledge
of source code related terminologies (statement, expression and abstract syntax
tree) is needed before understanding automated program repair. In this subsec-
tion, the definitions and examples of those terms as well as their relevance with
automated program repair are described.

Statement and Expression. Statement is the fundamental unit of execution
that denotes some action to carry out [9]. Statements are of various types such as
if statement, while statement, break statement, etc. An expression is a construct
made up of variables, operators, or method invocations that evaluates to a single
value [9]. Expressions are used in a statement or as part of another expression.
In Listing 1.3, a>b, return a, a, return b and b all are expressions. Automated
program repair mostly collects fixing ingredient at statement or expression level
to generate patches [42].

Abstract Syntax Tree. An Abstract Syntax Tree (AST) is a tree that repre-
sents syntactic structure of a source code while hiding details such as parentheses
or semicolons [50]. The corresponding AST of the method max() is presented in

Fig. 1. Abstract Syntax Tree for max() Method.

318 M. Asad et al.

Fig. 1. In automated program repair, AST is a way of representing the source
code. This AST is traversed to collect fixing ingredients (statements or expres-
sions) [42]. Additionally, patches are generated by modifying the AST [16].

3 Related Work

Recently, automated program repair has drawn the attention of researchers due
to its potentiality of minimizing debugging effort [10]. Existing program repair
approaches can be broadly divided into two categories based on the patch selec-
tion strategy. The first category is stochastic patch selection based approaches
[16,19,31,41]. These techniques generate and select patches for validation using
a randomized algorithm. GenProg [19], PAR [16], RSRepair [31], HDRepair [18]
fall into this category. GenProg is the first generic automated program repair
approach [19]. It uses genetic programming to find the correct patch. It randomly
modifies (insert, replace, delete) a faulty statement by reusing statements from
the buggy project. It calculates the fitness of the generated program variants
using the weighted average of the positive and negative test cases. However, it
collects fixing ingredients at statement level, which is too coarse-grained to find
the correct ones in the search space [42]. Furthermore, GenProg randomly selects
the mutation operator and fixing ingredients. As a result, most of the patches
generated by GenProg are incorrect plausible patches [32].

Similar to GenProg, PAR also uses genetic programming. Unlike GenProg,
PAR uses ten pre-defined templates (e.g., null pointer checker) to generate
patches [16]. These templates are extracted from manually inspecting 62,656
human-written patches. For a faulty location, PAR checks which templates can
be applied to it by inspecting its context (code surrounding the faulty location).
If multiple templates can be applied, PAR randomly chooses one and generates
a patch using fixing ingredients from the corresponding buggy file. If multiple
fixing ingredients can be applied to the faulty location, PAR randomly selects
one. Since PAR randomly selects the template and corresponding fixing ingre-
dient, most of the patches generated by PAR are incorrect plausible ones. For
example, the precision of PAR is only 15.9% on Defects4J benchmark [24].

Another approach RSRepair randomly searches among the candidate patches
to find the correct one [31]. Similar to GenProg, it cannot solve bugs requiring fix
at a finer granularity (expression level) as it works at statement level. HDRepair
is the first repair technique to incorporate historical bug-fix patterns for patch
selection [18]. These patterns are obtained from 3000 bug-fixes across 700+ large,
popular GitHub projects. It uses twelve mutation operators taken from muta-
tion testing or existing program repair techniques GenProg [19] and PAR [16] to
generate patches such as replacing a statement and boolean negation. At each
iteration, HDRepair randomly selects the faulty locations and corresponding
mutation operators for generating an intermediate pool of candidate patches.
From this pool, patches that occur frequently in the bug-fix history are selected.
Similar to other stochastic patch selection based techniques, it obtains low pre-
cision namely 26.09% [22]. It indicates that considering only historical bug-fix

Combined Similarity Based Automated Program Repair Approaches 319

patterns is not enough to eliminate incorrect plausible patches. Furthermore,
HDRepair assumes that the faulty method is known, which may not always be
true [21].

The second category is patch prioritization based approaches [13,35,42].
These techniques rank and select patches for validation based on their like-
lihood of correctness [46]. These techniques can be further divided into two
groups based on the information used for prioritization. The first group [13,45]
uses patch related attributes, e.g., the number of modifications. One of such
approaches ssFix performs syntactic code search from a codebase containing the
faulty program and other projects [45]. At first, ssFix extracts the faulty code
along with its context, which is called target chunk (tchunk). A similar process
is followed to retrieve fixing ingredients and their contexts from the codebase,
which are called candidate chunks (cchunks). The tchunk and cchunks are tok-
enized after masking project-specific code (e.g., variable names). Next, cchunks
are prioritized based on its syntax-relatedness to the tchunk, calculated using
TF-IDF. Currently, ssFix uses maximum 100 top cchunks for generating patches.
These patches are next prioritized using the type and size of modifications. For
example, patches generated by replacement or insertion are ranked higher than
those generated by deletion. However, ssFix obtains only 33.33% precision.

Another approach SimFix considers three metrics - structure, variable name
and method name similarity to collect syntactically similar fixing ingredients,
called the donor snippets [13]. Structure similarity extracts a list of features
related to AST nodes (e.g., number of if statements). Variable name similar-
ity tokenizes variable names (e.g., splitting studentID into student and ID)
and calculates similarity using Dice coefficient [38]. Method name similarity fol-
lows the same process as variable name similarity. To generate patches, SimFix
selects top 100 donor snippets based on the similarity score. To further limit the
search space, only patches with frequently occurring modifications are consid-
ered. Lastly, these patches are sorted based on their attributes such as number
and type of modifications (insertion/replacement). However, SimFix sometimes
fails to find fine-grained fixing ingredients such as expressions since it identifies
donor snippets at a coarse-granularity (10 lines) [40]. After executing SimFix
on 192 additional bugs from 8 open-source projects, Ghanbari et al. found that
SimFix can not repair any of the bugs since it can not find donor snippets [11].
All these demonstrate that the granularity and similarity metrics for identifying
donor snippets need to be further improved.

The second group uses similarity between faulty code and fixing ingredient
to prioritize patches. ELIXIR [35], CapGen [42] and LSRepair [23] belong to this
group. ELIXIR is the first object-oriented program repair technique that makes
extensive use of method invocation [35]. ELIXIR uses eight templates including
modification and insertion of method invocation for generating patches. It con-
siders four features including contextual and bug report similarities to prioritize
patches. Contextual and bug report similarity compare fixing ingredients with
the faulty location’s context and bug report respectively to measure syntactic
similarity. For assigning different weights to these similarities, logistic regression

320 M. Asad et al.

model is used. The approach validates only the top 50 patches generated from
each template. Although ELIXIR can handle method invocation expression, it
can not repair assignment or class instance creation expression bugs due to the
design of the templates, which are also prevalent [20].

CapGen defines 30 mutation operators such as replacing conditional expres-
sion to generate patches [42]. It uses three models based on genealogical struc-
tures, accessed variables and semantic dependencies to capture context simi-
larities at AST node level. These models mainly focus on semantic similarities
between faulty code and fixing element to prioritize patches. The precision of
this approach is higher (84.00%), however, it relies on the program dependency
graph to calculate semantic dependency which does not scale to even moderate-
size programs [8]. Besides, Ghanbari et al. executed CapGen on 192 additional
bugs from 8 open-source projects and found that the mutation operators used
by CapGen are ineffective for these bugs [11]. It indicates that the mutation
operators used by CapGen lack generalizibility.

Another technique, LSRepair performs both syntactic and semantic code
search to collect fixing ingredients [23]. To limit the search space, LSRepair
works at the method level. At first, it searches for methods that are syntac-
tically similar to the faulty method. If this strategy fails, LSRepair looks for
semantically similar methods. LSRepair can correctly fix 19 out of 395 bugs
from Defects4J benchmark [14]. Among these bugs, 10 were not fixed by any
automated program repair technique before LSRepair. It indicates that LSRe-
pair is complementary to other approaches. However, due to working at method
level, it cannot fix bugs occurring outside method body such as field declaration
related bugs. In addition, it achieves a precision of 51.35%, which is lower than
ELIXIR [35], CapGen [42] and SimFix [13].

The above discussion indicates that existing program repair techniques either
avoid or limitedly work on expression level to prevent search space explosion and
incorrect plausible patch generation. However, a study on 16,450 bug fix commits
from 6 open-source projects found that almost 82.40% repair actions are related
to expressions [20]. Due to the importance of handling expression level bugs, an
automated program repair approach needs to be devised that extensively deals
with expression level bugs.

4 Methodology

This study proposes two combined similarity based automated program repair
approaches that work at the expression level. Through empirical study, it is
found that when the faulty location is known, combining syntactic and semantic
similarities helps to rank the developer-written patch higher [2]. Therefore, the
devised techniques integrate syntactic and semantic similarity to handle the
enlarged search space, which occurred due to working at the expression level
as well as identify the correct patch over incorrect plausible ones within the
allocated time budget. These techniques take a buggy program and test cases
with at least one failing test as input and output a program passing all the

Combined Similarity Based Automated Program Repair Approaches 321

test cases. These approaches work in four steps namely fault localization, patch
generation, patch prioritization and patch validation. The details of these steps
are given below:

1. Fault Localization. This step calculates suspiciousness scores of Expression
type AST nodes. This score indicates an expression’s probability of being
faulty (0–1). At first, the line-number wise suspiciousness scores of a program
are computed using spectrum-based fault localization technique [17]. For this
purpose, Ochiai metric is used, as followed in [13,42]. Given a line of code (l),
Ochiai metric uses Eq. (1) to calculate the suspiciousness score based on the
number of passing and failing tests that execute it.

suspiciousness score(l) =
failed(l)

√
total failed ∗ (failed(l) + passed(l))

(1)

Where, total failed indicates the total number of failing test cases. failed(l)
and passed(l) denote the number of failing and passing test cases that execute
the line l. Since the proposed approaches work at the expression level, these
line-number wise scores are mapped to Expression nodes. Listing 1.6 shows
a sample bug Math 70 from Defects4J benchmark. Here, the suspiciousness
score of line number 72 is 1, calculated using Ochiai metric. Consequently, all
the expressions at line 72 solve(min, max), solve, min, max are assigned the
suspiciousness score 1.

Listing 1.6. Buggy Statement, Fixed Statement and Fixing Ingredient of Bug
Math 70.

public double solve(double min, double max, double initial)

{

59: return solve(f, min, max); // fixing ingredient

}

public double solve(final UnivariateRealFunction f, double

min, double max, double initial)

{

72: - return solve(min, max); // buggy statement

72: + return solve(f, min, max); // fixed statement

}

2. Patch Generation. In this step, faulty nodes are modified to generate
patches. Expression nodes whose suspiciousness score are above 0, are con-
sidered as faulty [42]. These faulty nodes are replaced with fixing ingredients
for patch generation. Similar to [16,22,42], this study collects fixing ingre-
dients from the corresponding buggy source file. Expression nodes from the
buggy source file are considered as fixing ingredients. In Listing 1.6, since the
expression solve(min, max) at line 72 has a suspiciousness score of 1, it is
considered as faulty. A sample patch can be replacing this expression with
solve(f, min, max) at line 59.

322 M. Asad et al.

3. Patch Prioritization. After generating patches, those are prioritized to find
potentially correct patches earlier. For prioritization, the suspiciousness score
of a faulty node as well as similarity between faulty node and fixing ingredi-
ent are used. To measure similarity between faulty node and fixing ingredient,
both semantic and syntactic similarity are considered. To calculate semantic
similarity, genealogical and variable similarity are used since these are effec-
tive in differentiating between correct and incorrect patches [42]. For captur-
ing syntactic similarity, two widely-used metrics namely normalized longest
common subsequence and token similarity are considered individually [33].
Thus, two combined similarity based bug fixing approaches namely ComFix-
L and ComFix-T are proposed.
Genealogical Similarity. Genealogical structure indicates the types of code
elements, with which a node is often used collaboratively [42]. For example,
node solve(min, max) at line 72 resides inside return statement. To extract
the genealogy contexts of a node residing in a method body, its ancestor as
well as sibling nodes are inspected. The ancestors of a node are traversed
until a method declaration is found. For sibling nodes, nodes having a type
Expressions or Statements within the same block of the specified node are
extracted. Next, the type of each node is checked and the frequency of dif-
ferent types of nodes (e.g., number of for statements) are stored. Nodes of
type Block are not considered since these provide insignificant context infor-
mation [42]. On the other hand, for nodes outside method body such as field
declaration statement, only its respective type is stored. The same process is
repeated for the faulty node (fn) and the fixing ingredient (fi). Lastly, the
genealogical similarity (gs) is measured using Eq. (2).

gs(fn, fi) =
∑

t∈K min(φfn(t), φfi(t))∑
t∈K φfn(t)

(2)

where, φfn and φfi denote the frequencies of different node types for faulty
node and fixing ingredient respectively. K represents a set of all distinct AST
node types captured by φfn.
Variable Similarity. Variables (local variables, method parameters and
class attributes) accessed by a node provide useful information as these are
the primary components of a code element [42]. In Listing 1.6, both the faulty
node solve(f, min, max) and the fixing ingredient solve(f, min, max) access
the same variables min and max. To measure variable similarity, two lists
containing names and types of variables used by the faulty node (θfn) and
the fixing ingredient (θfi) are generated. Next, variable similarity (vs) is cal-
culated using Eq. (3).

vs(fn, fi) =
|θfn ∩ θfi|
|θfn ∪ θfi| (3)

Two variables are considered same if their names and types are exact match.
To measure variable similarity of nodes that do not contain any variable such
as boolean or number literal type nodes, only their respective data types are
matched [42].

Combined Similarity Based Automated Program Repair Approaches 323

Normalized Longest Common Subsequence. Longest Common Subse-
quence (LCS) finds the common subsequence of maximum length by working
at character-level [6]. This study computes normalized longest common sub-
sequence (nl) between faulty node (fn) and fixing ingredient (fi) at AST
node level using Eq. (4).

nl(fn, fi) =
LCS(fn, fi)

max(|fn|, |fi|) (4)

where, max(|fn|, |fi|) indicates the maximum length between fn and fi.
Token Similarity. Unlike normalized longest common subsequence, token
similarity ignores the order of text [6]. It only checks whether a token such as
identifiers or literals, exists regardless of its position. For example, both the
faulty node solve(f, min, max) and the fixing ingredient solve(f, min, max)
in Listing 1.6 have the solve token in common. To calculate token similarity,
at first, the faulty node and fixing ingredient are tokenized. Similar to [35],
camel case identifiers are further split and converted into lower-case format.
Next, token similarity (ts) is computed using Eq. (5).

ts(fn, fi) =
|θfn ∩ θfi|
|θfn ∪ θfi| (5)

where, θfn and θfi represent the token set of the faulty node and fixing
ingredient respectively.
Each of the above mentioned metrics outputs a value between 0 and 1. To
calculate the similarity score, ComFix-L and ComFix-T integrate genealogical
and variable similarity with normalized longest common subsequence and
token similarity respectively, as presented in Eq. (6) and (7).

For ComFix-L, similarity score(fn, fi) = gs + vs + nl (6)

For ComFix-T , similarity score(fn, fi) = gs + vs + ts (7)
where, similarity score(fn, fi) is the similarity score between faulty node
(fn) and fixing ingredient (fi). This similarity score is multiplied by the
faulty node’s suspiciousness value to compute the patch ranking score, as
shown in Eq. (8).

ranking score = suspiciousness score(fn) ∗ similarity score(fn, fi) (8)

where, suspiciousness score(fn) is the suspiciousness value of the faulty
node fn. To constrain the search space, only patches with a ranking score
above 0, are considered as candidate patches. To remove duplicate candidate
patches, only patch with the highest ranking score is kept. These candidate
patches are next sorted in descending order based on the ranking score.

4. Patch Validation. This step examines the correctness of the candidate
patches by executing test cases. To validate a patch, at first, the failing test
cases are executed, as followed in [13,42]. If it passes those test cases, the pass-
ing test cases are executed. Patch validation continues until a patch passing
all the test cases is found or the predefined time-limit exceeds. If a patch that
passes all the test cases is found, this step outputs that patch.

324 M. Asad et al.

5 Experiment

This section discusses the implementation and experimentation of the study. At
first, the language and tools used for implementing the proposed approaches
are presented. After that, the experimentation dataset as well as the evaluation
metrics are described.

5.1 Implementation

Similar to recent program repair techniques [13,35,42], the proposed approaches
are implemented in Java. The following tools are used for implementation:

– Eclipse JDT Parser. It is used for parsing and manipulating AST1.
– GZoltar. To localize fault, GZoltar tool (version 0.1.1) is used [4]. It is widely

used by existing automated program repair techniques [27,42,45]. It takes the
class files of the buggy source code and the test cases as input and outputs
line-number wise suspiciousness scores of the program.

– Javalang. It tokenizes code which is used for calculating token similarity2.
It takes Java source code as input and provides a list of tokens as output.

To understand the impact of combining similarities, the proposed approaches
are compared with baseline techniques that use either semantic or syntactic simi-
larity for repairing expression level bugs. Consequently, this study further imple-
ments the following semantic or syntactic similarity based bug fixing approaches:

1. Semantic Similarity Based Approach (SSBA). It uses genealogical sim-
ilarity (gs) and variable similarity (vs) along with faulty node’s suspiciousness
value to calculate patch ranking score, as shown in Eq. (9).

ranking score = suspiciousness score(fn) ∗ (gs + vs) (9)

2. LCS Based Approach (LBA). It multiplies the value of normalized longest
common subsequence (nl) with faulty node’s suspiciousness score to measure
patch ranking score, as presented in Eq. (10).

ranking score = suspiciousness score(fn) ∗ nl (10)

3. Token Based Approach (TBA). It considers token similarity (ts) and
faulty node’s suspiciousness value for computing patch ranking score, as dis-
played in Eq. (11).

ranking score = suspiciousness score(fn) ∗ ts (11)

Except ranking score calculation, all of these approaches follow the same repair-
ing process as the combined ones. The implementations of these techniques are
publicly available at GitHub3.
1 https://github.com/eclipse/eclipse.jdt.core/blob/master/org.eclipse.jdt.core/dom/

org/eclipse/jdt/core/dom/ASTParser.java.
2 https://github.com/c2nes/javalang.
3 https://github.com/mou23/Combined-Similarity-Based-Automated-Program-Repa

ir-Approaches-for-Expression-Level-Bugs.

https://github.com/eclipse/eclipse.jdt.core/blob/master/org.eclipse.jdt.core/dom/org/eclipse/jdt/core/dom/ASTParser.java
https://github.com/eclipse/eclipse.jdt.core/blob/master/org.eclipse.jdt.core/dom/org/eclipse/jdt/core/dom/ASTParser.java
https://github.com/c2nes/javalang
https://github.com/mou23/Combined-Similarity-Based-Automated-Program-Repair-Approaches-for-Expression-Level-Bugs
https://github.com/mou23/Combined-Similarity-Based-Automated-Program-Repair-Approaches-for-Expression-Level-Bugs

Combined Similarity Based Automated Program Repair Approaches 325

5.2 Dataset

To evaluate the proposed approaches, those are executed on Defects4J [14] and
QuixBugs [47] benchmarks. Defects4J is the most widely used benchmark in
automated program repair [7,24]. It contains 395 bugs from six large, open-
source Java projects, e.g., JFreeChart, Apache Commons Lang, etc. From this
benchmark, bugs that fulfill the following criteria are selected:

– Require Fixing at a Single Line. Similar to [35,42], this study focuses
on repairing single line bugs. Therefore, only the single line bugs are chosen
from the benchmark, as followed in [35]. The list of single line bugs is obtained
from the study of Sobreira et al. [37].

– Unique. To avoid bias, only unique bugs are chosen. If both the buggy and
fixed version files of two bugs are the same, those are called duplicates. In
Defects4J, Closure 63 and Closure 93 are duplicates of Closure 62 and Clo-
sure 92 respectively, which are removed.

– Localizable at Line Level. A bug is localizable at line level if the output list
of the fault localization technique contains the actual buggy line [21]. From
the dataset, unlocalizable bugs such as Chart 8 and Mockito 5 are eliminated
since those are impossible to fix correctly.

After filtering, it results in 64 bugs. To ensure generalizability, automated pro-
gram repair techniques should be effective for both large and small projects. How-
ever, existing studies [7,11] found that most of the program repair approaches are
evaluated using only Defects4J and biased towards this benchmark. These tech-
niques perform better for the projects of Defects4J compared to other projects.
To ensure generalizability, this study uses QuixBugs benchmark [47] apart from
Defects4J. This benchmark comprises single line bugs belonging to 40 small pro-
grams whose average lines of code is 190 [7]. These bugs are of diverse types
such as incorrect method call, missing arithmetic expression, etc [47]. Further-
more, space and time complexity of these bugs are significant. For example, 14
programs contain recursion. From this dataset, GZoltar fails to produce output
for 3 programs - bitcount, find first in sorted and sqrt since these bugs generate
infinite loop [1]. Hence, these 3 bugs are excluded from the experiment. The
experiment is run on an Ubuntu server with Intel Xeon E5-2690 v2 @3.0GHz
and 64GB physical memory. For each bug of these two benchmarks, the time
budget is set to 90 min, as followed in [18,35,42].

5.3 Evaluation Metrics

For evaluating the proposed techniques, the following metrics are inspected:

– Number of Bugs Correctly Fixed. If an approach fixes more bugs cor-
rectly, it is considered more effective [18].

– Precision. It indicates the percentage of correct patches out of the plausible
ones [24]. It is calculated using Eq. (12).

precision = (
total correct patches

total plausible patches
) ∗ 100 (12)

326 M. Asad et al.

where, total correct patches and total plausible patches denote the total
number of the correct and plausible patches generated respectively. If preci-
sion is high, developers do not have to manually analyze the solutions gener-
ated by the technique [42,46].

– Elapsed Time to Generate Correct Patches. The less time a technique
takes to generate correct patches, the better it is [18].

To assess the correctness of a plausible patch, both manual and automated
analysis are performed, as suggested by [48]. For automated analysis, EvoSuite
tool generated test cases are used since it is the most effective tool for identifying
overfitting patches [47]. The test cases for Defects4J and QuixBugs benchmark
are obtained from the study [48] and [47] respectively. These tests are generated
using 30 trials of EvoSuite with 30 different seeds (1,2,...,30). From these test
cases, flaky tests whose outcome (pass/fail) are depended on the environment,
are removed [36]. To detect flaky tests, all the tests are executed 3 times on the
fixed versions of the buggy projects, as followed in [48]. Next, tests that failed at
least one time on the fixed version projects, are marked as flaky. After removing
the flaky tests, the remaining tests are executed on the plausible patches gener-
ated by ComFix-L, ComFix-T, SSBA, LBA and TBA. Next, patches that passed
all the test cases are manually examined to check whether those are semantically
equivalent to the developer-written patches (provided with the benchmarks). For
example, a plausible patch, presented in Listing 1.7, passes all the Evosuite test
cases and thereby it is labeled as correct by automated analysis. Through manual
inspection, the patch is found to be incorrect. When x is set to any valid double
value and y is NAN, this patch produces a different result from the correct one.
However, such project specific input can not always be covered by EvoSuite [47].

Listing 1.7. An Incorrect Plausible Patch for Bug Math 63.

public static boolean equals(double x, double y) {
- return (Double.isNaN(x) && Double.isNaN(y)) || x == y;
+ return (!Double.isNaN(x) && Double.isNaN(y)) || x == y;
}

6 Result Analysis

Table 1 and Table 2 present the results of LBA, ComFix-L, SSBA, ComFix-T and
TBA on Defects4J and QuixBugs benchmarks respectively. Results demonstrate
that both ComFix-L and ComFix-T can correctly fix more bugs of Defects4J
than syntactic similarity based approaches LBA and TBA. For some bugs, there
exists no textual similarity between the faulty code and the correct fixing ingre-
dient. Hence, the correct fixing ingredient is not included in the search space
of LBA or TBA. For example, the bug Math 59 is fixed by replacing variable b
with variable a, as shown in Listing 1.8. Neither LBA or TBA can repair this bug
due to lack of syntactic similarity (both normalized LCS and token similarity
are 0).

Combined Similarity Based Automated Program Repair Approaches 327

Table 1. Results of Different Approaches on Defects4J Benchmark.

Approach Number of bugs correctly fixed Number of bugs incorrectly fixed Precision (%)

LBA 10 12 45.45

ComFix-L 11 7 61.11

SSBA 11 7 61.11

ComFix-T 11 7 61.11

TBA 8 10 44.44

Table 2. Results of Different Approaches on QuixBugs Benchmark.

Approach Number of bugs correctly fixed Number of bugs incorrectly fixed Precision (%)

LBA 10 4 71.43

ComFix-L 11 5 68.75

SSBA 9 7 56.25

ComFix-T 10 6 62.50

TBA 6 4 60.00

Listing 1.8. A Correct Sample Patch for Bug Math 59.

public static float max(final float a, final float b) {

- return (a <= b) ? b : (Float.isNaN(a + b) ? Float.NaN : b);

+ return (a <= b) ? b : (Float.isNaN(a + b) ? Float.NaN : a);

}

Listing 1.9. A Correct Sample Patch for Bug Lang 59.

878: public StrBuilder appendFixedWidthPadRight(Object obj,

int width, char padChar) {

884: - str.getChars(0, strLen, buffer, size);

884: + str.getChars(0, width, buffer, size);

895: }

Listing 1.10. An Incorrect Plausible Patch Generated by LBA and TBA for Bug
Lang 59.

878: public StrBuilder appendFixedWidthPadRight(Object obj,

int width, char padChar) {

880: - ensureCapacity(size + width);

880: + ensureCapacity(size + 4);

895: }

In Defects4J, ComFix-L and ComFix-T outperform LBA and TBA in terms
of precision as well. The values are 61.11%, 61.11%, 45.45% and 44.44% corre-
spondingly. For bug Lang 59, the actual faulty line is 884 and the correct patch
is replacing variable strLen at line 884 with variable width, as shown in List-
ing 1.9. However, fault localization technique assigns both line 880 and 884 a

328 M. Asad et al.

suspiciousness score of 0.58. Both LBA and TBA generate an incorrect plausible
patch before the correct one by replacing ensureCapacity(size + width) at line
880 with ensureCapacity(size + 4), as shown in Listing 1.10. This is because syn-
tactic similarity between the faulty code and the fixing ingredient is higher for
the incorrect plausible patch than the correct one. For the correct patch, normal-
ized LCS and token similarity are 0.17 and 0 respectively, whereas those are 0.82
and 0.75 for the incorrect plausible patch. On the other hand, both ComFix-L
and ComFix-T can rank the correct patch over the incorrect plausible one due
to incorporating genealogical and variable similarity. Genealogical and variable
similarity are 1 for the correct patch while those are respectively 0.53 and 0.50
for the incorrect plausible patch.

Listing 1.11. An Incorrect Plausible Patch Generated by ComFix-T for Bug flatten.

13: public static Object flatten(Object arr) {
21: - result.add(flatten(x));
21: + result.add(x);
29: }

Listing 1.12. A Correct Sample Patch for Bug flatten.

13: public static Object flatten(Object arr) {
26: - result.add(flatten(arr));
26: + return arr;
29: }

Listing 1.13. An Incorrect Plausible Patch Generated by ComFix-L and ComFix-T
for Bug quicksort.

public static ArrayListInteger quicksort(ArrayListInteger arr) {
- else if (x > pivot) {
+ else if (x > 0) {

greater.add(x);
}

}

In QuixBugs benchmark, ComFix-L outperforms LBA and TBA in terms of
correctly fixed bugs. ComFix-T performs better than TBA and as good as LBA.
For ComFix-T, there is a tie between incorrect plausible (shown in Listing 1.11)
and correct patch (shown in Listing 1.12) for the bug flatten. Although ComFix-
L and ComFix-T achieve higher precision than TBA, LBA performs better than
these two techniques. For the bug quicksort, both ComFix-L and ComFix-T
generate a plausible patch by replacing a variable pivot with a number literal
0, as illustrated in Listing 1.13. Nevertheless, this type of plausible patches can
be eliminated by using historical bug fix patterns while generating patches [42],
which is out of scope of this study.

Combined Similarity Based Automated Program Repair Approaches 329

Listing 1.14. A Correct Sample Patch for Bug next palindrome.

public static String next_palindrome(int[] digit_list) {
- otherwise.addAll(Collections.nCopies(digit list.length,0));
+ otherwise.addAll(Collections.nCopies(digit list.length-1,0));
}

Listing 1.15. A Correct Sample Patch for Bug mergesort.

public static ArrayListInteger mergesort(ArrayListInteger arr) {
- if (arr.size() == 0) {
+ if (arr.size()/2 == 0) {

return arr;
}

}

Table 1 further reveals that semantic similarity based technique SSBA per-
forms as good as ComFix-L and ComFix-T for Defects4j bugs. Similar to
ComFix-L and ComFix-T, SSBA correctly repairs 11 bugs and obtains a pre-
cision of 61.11%. However, both ComFix-L and ComFix-T outperform SSBA
in QuixBugs benchmark, as listed in Table 2. In case of SSBA, there exists
a tie between incorrect plausible and correct patch for the bugs flatten and
next palindrome. For the bug next palindrome, ComFix-L and ComFix-T can
rank the correct patch at first position through incorporating syntactic similar-
ity, as displayed in Listing 1.14. Similarly, for the bug mergesort, ComFix-L and
ComFix-T rank the correct solution (shown in Listing 1.15) higher than SSBA
due to considering syntactic similarity. SSBA ranks the correct patch at 463,
whereas ComFix-L and ComFix-T rank it at 17 and 14 respectively.

To compare the repairing time of correctly fixed bugs, Wilcoxon Signed-Rank
test is used since no assumption regarding the distribution of samples has been
made [43]. Table 3 reports the statistical significance of the result using signifi-
cance level = 0.05. For comparing two approaches, their commonly fixed bugs are
used. For example, ComFix-L and SSBA have 20 correct fixes in common. The
mean repairing time of these bugs are 8.59 and 7.71 min for ComFix-L and SSBA
respectively. Result shows that these mean times are not significantly different
since the p-value is 0.18. Similar result is obtained for all the other approaches.
It indicates that although ComFix-L and ComFix-T considers more similarity
metrics than other techniques, it does not significantly increase the bug fixing
time. ComFix-T calculates 3 similarity metrics (genealogical, variable and token
similarity) for each patch, whereas TBA computes only 1 similarity metric (token
similarity). However, result implies that calculation of those additional metrics
do not take significantly extra time.

In summary, ComFix-L and ComFix-T can correctly fix more bugs compared
to syntactic or semantic similarity based techniques and achieve higher precision,
as displayed in Table 4. In a previous study, the authors found that when the
faulty location is known, the developer-written patch can be ranked higher by
combining syntactic and semantic similarities [2]. Through the current study, it

330 M. Asad et al.

Table 3. Differences between Mean Repairing Time (In Minutes) of Different
Approaches.

Compared groups Mean P-value

ComFix-L and SSBA ComFix-L SSBA 0.18

8.59 7.71

ComFix-T and SSBA ComFix-T SSBA 0.55

8.35 7.71

ComFix-L and LBA ComFix-L LBA 0.27

2.74 3.87

ComFix-T and LBA ComFix-T LBA 0.98

3.56 4.11

ComFix-L and TBA ComFix-L TBA 0.92

2.68 2.79

ComFix-T and TBA ComFix-T TBA 0.77

2.76 2.79

ComFix-L and ComFix-T ComFix-L ComFix-T 0.24

8.19 7.96

SSBA and LBA SSBA LBA 0.39

4.92 4.39

SSBA and TBA SSBA TBA 0.16

5.25 3.09

LBA and TBA LBA TBA 0.15

9.99 8.52

1P-value < 0.05 denotes the mean difference in time is statis-
tically significant

Table 4. Overall Result of Different Approaches.

Approach Total number of bugs correctly fixed Total number of bugs incorrectly fixed Precision (%)

LBA 20 16 55.56

ComFix-L 22 12 64.71

SSBA 20 14 58.82

ComFix-T 21 13 61.76

TBA 14 14 50.00

is evident that the combination of similarities is effective even when the faulty
code is unknown. It can contribute to find the correct patch from the enhanced
search space caused by expressions and rank it over incorrect plausible patches.
Furthermore, the combined similarity based approaches calculate more similar-
ity metrics for each patch, however, it does not significantly increase the bug
repairing time.

Combined Similarity Based Automated Program Repair Approaches 331

7 Threats to Validity

This section discusses the threats which can affect the validity of the proposed
approaches. The threats are identified from two perspectives namely threats to
external and internal validity.

– Threats to External Validity. The external threat of this study is the
generalizability of the obtained result [18]. To minimize the threat of gen-
eralizability, bugs belonging to both large and small projects are used for
experimentation. As the representative of large projects, Defects4J is chosen
since it is the most widely used benchmark in automated program repair
[7,24]. On the other hand, QuixBugs is selected as the representative of small
projects because it contains diverse types of bugs such as incorrect method
call, missing condition, etc [47]. In addition, space and time complexity of
these bugs are significant [47].

– Threats to Internal Validity. The first threat to internal validity is error
in the implementation of the study. This study uses GZoltar tool (version
0.1.1) for fault localization [4]. The results of the GZoltar tool are directly
incorporated in this study without checking whether there is any defect in the
tool. However, GZoltar tool is widely used by existing automated program
repair approaches [27,42,45]. The second threat to internal validity lies in
setting the experimentation time budget. The time budget is set to 90 min,
as followed in [18,35,42]. Changing the time budget may impact the obtained
result. The third threat to internal validity comes from an error in assessing
the patch correctness. Assessing the patch correctness is itself a research,
which is explored by [44,46,49]. However, this study performs both manual
and automated analysis to evaluate the correctness of a patch, as suggested
by [48]. For automated analysis, test cases generated from 30 trials of the
EvoSuite tool are used. These test cases are used by existing studies as well,
for assessing patch correctness [47,48]. On the other hand, determining patch
correctness based on manual inspection is a common practice in automated
program repair [13,18,35,42].

8 Conclusion and Future Work

This study proposes two automated program repair approaches that work at
the expression level. However, considering expression level enlarges the search
space and thereby decreases the probability of finding the correct patch [25]. To
address this problem, the proposed approaches combine syntactic and semantic
similarity to limit the search space as well as prioritize the generated patches.
To calculate semantic similarity, genealogical and variable similarity are used.
For capturing syntactic similarity, normalized longest common subsequence and
token similarity are used individually. These techniques take a buggy program,
a set of test cases as input and generate a program passing all the test cases
as output. At first, the suspiciousness score of Expression type nodes are calcu-
lated using spectrum-based fault localization [17]. Next, patches are generated

332 M. Asad et al.

by replacing the faulty nodes with the fixing ingredients. To validate potentially
correct patch earlier, patches are prioritized based on suspiciousness score and
similarity score. The similarity score is measured by integrating genealogical,
variable similarity with normalized longest common subsequence or token simi-
larity. Finally, the correctness of a patch is validated by executing test cases.

To understand the impact of combining similarities, the proposed approaches
are compared with techniques that use either semantic or syntactic similar-
ity. For comparison, 64 and 37 out of 395 and 40 bugs from Defects4J and
QuixBugs benchmark are selected through preprocessing. Results show that
combined similarity based techniques correctly fix more bugs than approaches
using either semantic or syntactic similarity. In addition, combined similarity
based approaches obtain a precision of 64.71% and 61.76% on these bench-
marks, which is higher than syntactic or semantic similarity based bug fixing
approaches. The result further reveals that although combined similarity based
techniques consider more similarity metrics than other approaches, it does not
significantly increase the bug fixing time.

In future, these combined similarity based approaches can be further explored
using other benchmarks such as Bears [26], Bugs.jar [34], etc. Besides, common
fix patterns for expression type bugs such as replacing method or variable name,
can be identified and integrated with these techniques to check whether it can
further constrain the search space and eliminate incorrect plausible patches.

Acknowledgement. This research is supported by the fellowship from Information
and Communication Technology Division, Bangladesh. No-56.00.0000.028.33.093.19-
427; Dated 20.11.2019. The virtual machine facilities used in this research is provided
by the Bangladesh Research and Education Network (BdREN).

References

1. Asad, M., Ganguly, K.K., Sakib, K.: Impact of similarity on repairing small pro-
grams: a case study on quixbugs benchmark. In: Proceedings of the 42nd Interna-
tional Conference on Software Engineering Workshops (ICSEW), pp. 21–22. ACM
(2020)

2. Asad, M., Ganguly, K.K., Sakib, K.: Impact of combining syntactic and semantic
similarities on patch prioritization. In: Proceedings of the 15th International Con-
ference on Evaluation of Novel Approaches to Software Engineering (ENASE), pp.
170–180. SCITEPRESS (2020)

3. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery
hypothesis. In: Proceedings of the 22nd International Symposium on Foundations
of Software Engineering (FSE), pp. 306–317. ACM (2014)

4. Campos, J., Riboira, A., Perez, A., Abreu, R.: Gzoltar: an eclipse plug-in for testing
and debugging. In: Proceedings of the 27th International Conference on Automated
Software Engineering (ASE), pp. 378–381. ACM (2012)

5. Chauhan, N.: Software Testing: Principles and Practices. Oxford University Press,
Oxford (2010)

6. Chen, Z., Monperrus, M.: The remarkable role of similarity in redundancy-based
program repair. Computing Research Repository (CoRR) abs/1811.05703 (2018).
http://arxiv.org/abs/1811.05703

http://arxiv.org/abs/1811.05703

Combined Similarity Based Automated Program Repair Approaches 333

7. Durieux, T., Madeiral, F., Martinez, M., Abreu, R.: Empirical review of Java
program repair tools: a large-scale experiment on 2,141 bugs and 23,551 repair
attempts. In: Proceedings of the 27th Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 302–313. ACM (2019)

8. Gabel, M., Jiang, L., Su, Z.: Scalable detection of semantic clones. In: Proceedings
of the 30th International Conference on Software Engineering (ICSE), pp. 321–330.
ACM (2008)

9. Gallardo, R., Hommel, S., Kannan, S., Gordon, J., Zakhour, S.B.: The Java Tuto-
rial: A Short Course on the Basics. Addison-Wesley Professional (2014)

10. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. Softw. Eng. (TSE) 45, 34–67 (2017)

11. Ghanbari, A., Benton, S., Zhang, L.: Practical program repair via bytecode muta-
tion. In: Proceedings of the 28th International Symposium on Software Testing
and Analysis (ISSTA), pp. 19–30. ACM (2019)

12. Ji, T., Chen, L., Mao, X., Yi, X.: Automated program repair by using similar code
containing fix ingredients. In: Proceedings of the 40th Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, pp. 197–202. IEEE (2016)

13. Jiang, J., Xiong, Y., Zhang, H., Gao, Q., Chen, X.: Shaping program repair space
with existing patches and similar code. In: Proceedings of the 27th International
Symposium on Software Testing and Analysis (ISSTA), pp. 298–309. ACM (2018)

14. Just, R., Jalali, D., Ernst, M.D.: Defects4j: a database of existing faults to enable
controlled testing studies for java programs. In: Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pp. 437–440. ACM (2014)

15. Ke, Y., Stolee, K.T., Le Goues, C., Brun, Y.: Repairing programs with semantic
code search. In: Proceedings of the 30th International Conference on Automated
Software Engineering (ASE), pp. 295–306. IEEE (2015)

16. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: Proceedings of the 2013 International Conference on
Software Engineering (ICSE), pp. 802–811. IEEE (2013)

17. Le, T.D.B., Thung, F., Lo, D.: Theory and practice, do they match? A case with
spectrum-based fault localization. In: Proceedings of the International Conference
on Software Maintenance (ICSM), pp. 380–383. IEEE (2013)

18. Le, X.B.D., Lo, D., Le Goues, C.: History driven program repair. In: Proceed-
ings of the 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, pp. 213–224. IEEE (2016)

19. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for
automatic software repair. IEEE Trans. Softw. Eng. (TSE) 38(1), 54–72 (2011)

20. Liu, K., Kim, D., Koyuncu, A., Li, L., Bissyandé, T.F., Le Traon, Y.: A closer look
at real-world patches. In: Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), pp. 275–286. IEEE (2018)

21. Liu, K., Koyuncu, A., Bissyandé, T.F., Kim, D., Klein, J., Le Traon, Y.: You cannot
fix what you cannot find! an investigation of fault localization bias in benchmarking
automated program repair systems. In: Proceedings of the 12th IEEE Conference
on Software Testing, Validation and Verification (ICST), pp. 102–113. IEEE (2019)

22. Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: TBAR: revisiting template-based
automated program repair. In: Proceedings of the 28th International Symposium
on Software Testing and Analysis (ISSTA), pp. 31–42. ACM (2019)

23. Liu, K., Koyuncu, A., Kim, K., Kim, D., Bissyande, T.F.D.A.: LSRepair: live
search of fix ingredients for automated program repair. In: Proceedings of the 25th
Asia-Pacific Software Engineering Conference (APSEC), pp. 658–662 (2018)

334 M. Asad et al.

24. Liu, K., et al.: On the efficiency of test suite based program repair: a systematic
assessment of 16 automated repair systems for Java programs. In: Proceedings of
the 42nd International Conference on Software Engineering (ICSE) (2020)

25. Long, F., Rinard, M.: An analysis of the search spaces for generate and validate
patch generation systems. In: Proceedings of the 38th International Conference on
Software Engineering (ICSE), pp. 702–713. IEEE (2016)

26. Madeiral, F., Urli, S., Maia, M., Monperrus, M.: Bears: an extensible Java bug
benchmark for automatic program repair studies. In: Proceedings of the 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 468–478. IEEE (2019)

27. Martinez, M., Monperrus, M.: Astor: exploring the design space of generate-and-
validate program repair beyond GenProg. J. Syst. Softw. 151, 65–80 (2019)

28. Martinez, M., Weimer, W., Monperrus, M.: Do the fix ingredients already exist? An
empirical inquiry into the redundancy assumptions of program repair approaches.
In: Companion Proceedings of the 36th International Conference on Software Engi-
neering (ICSE), pp. 492–495. ACM (2014)

29. Monperrus, M.: A critical review of “automatic patch generation learned from
human-written patches”: essay on the problem statement and the evaluation of
automatic software repair. In: Proceedings of the 36th International Conference on
Software Engineering (ICSE), pp. 234–242 (2014)

30. Monperrus, M.: Automatic software repair: a bibliography. ACM Comput. Surv.
(CSUR) 51(1), 17 (2018)

31. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The strength of random search on
automated program repair. In: Proceedings of the 36th International Conference
on Software Engineering (ICSE), pp. 254–265. ACM (2014)

32. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA), pp.
24–36. ACM (2015)

33. Ragkhitwetsagul, C., Krinke, J., Clark, D.: A comparison of code similarity anal-
ysers. Empir. Softw. Eng. 23(4), 2464–2519 (2018)

34. Saha, R., Lyu, Y., Lam, W., Yoshida, H., Prasad, M.: Bugs.jar: a large-scale,
diverse dataset of real-world Java bugs. In: Proceedings of the 15th International
Conference on Mining Software Repositories (MSR), pp. 10–13. IEEE (2018)

35. Saha, R.K., Lyu, Y., Yoshida, H., Prasad, M.R.: Elixir: effective object-oriented
program repair. In: Proceedings of the 32nd International Conference on Auto-
mated Software Engineering (ASE), pp. 648–659. IEEE (2017)

36. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do auto-
matically generated unit tests find real faults? An empirical study of effectiveness
and challenges. In: Proceedings of the 30th International Conference on Automated
Software Engineering (ASE), pp. 201–211. IEEE (2015)

37. Sobreira, V., Durieux, T., Madeiral, F., Monperrus, M., de Almeida Maia, M.:
Dissection of a bug dataset: anatomy of 395 patches from defects4j. In: Proceed-
ings of the 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 130–140. IEEE (2018)

38. Thada, V., Jaglan, V.: Comparison of Jaccard, Dice, Cosine similarity coefficient
to find best fitness value for web retrieved documents using genetic algorithm. Int.
J. Innov. Eng. Technol. 2(4), 202–205 (2013)

Combined Similarity Based Automated Program Repair Approaches 335

39. Wang, S., Mao, X., Niu, N., Yi, X., Guo, A.: Multi-location program repair strate-
gies learned from successful experience (S). In: Perkusich, A. (ed.) Proceedings of
the 31st International Conference on Software Engineering and Knowledge Engi-
neering (SEKE), pp. 713–777. KSI Research Inc. and Knowledge Systems Institute
Graduate School (2019)

40. Wang, S., Wen, M., Mao, X., Yang, D.: Attention please: consider Mockito when
evaluating newly proposed automated program repair techniques. In: Proceedings
of the Evaluation and Assessment on Software Engineering (EASE), pp. 260–266.
ACM (2019)

41. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering (ICSE), pp. 364–374. IEEE (2009)

42. Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.C.: Context-aware patch generation
for better automated program repair. In: Proceedings of the 40th International
Conference on Software Engineering (ICSE), pp. 1–11. ACM (2018)

43. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson,
N.L. (eds.) Breakthroughs in Statistics. SSS, pp. 196–202. Springer, New York
(1992). https://doi.org/10.1007/978-1-4612-4380-9 16

44. Xin, Q., Reiss, S.P.: Identifying test-suite-overfitted patches through test case gen-
eration. In: Proceedings of the 26th International Symposium on Software Testing
and Analysis (ISSTA), pp. 226–236. ACM (2017)

45. Xin, Q., Reiss, S.P.: Leveraging syntax-related code for automated program repair.
In: Proceedings of the 32nd International Conference on Automated Software Engi-
neering (ASE), pp. 660–670. IEEE (2017)

46. Xiong, Y., Liu, X., Zeng, M., Zhang, L., Huang, G.: Identifying patch correctness
in test-based program repair. In: Proceedings of the 40th International Conference
on Software Engineering (ICSE), pp. 789–799. ACM (2018)

47. Ye, H., Martinez, M., Durieux, T., Monperrus, M.: A comprehensive study of
automatic program repair on the quixbugs benchmark. In: Proceedings of the 1st
International Workshop on Intelligent Bug Fixing (IBF), pp. 1–10. IEEE (2019)

48. Ye, H., Martinez, M., Monperrus, M.: Automated patch assessment for program
repair at scale. arXiv preprint arXiv:1909.13694 (2019)

49. Yu, Z., Martinez, M., Danglot, B., Durieux, T., Monperrus, M.: Alleviating patch
overfitting with automatic test generation: a study of feasibility and effectiveness
for the nopol repair system. Empir. Softw. Eng. 24(1), 33–67 (2019)

50. Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X.: A novel neural source
code representation based on abstract syntax tree. In: Proceedings of the 41st Inter-
national Conference on Software Engineering (ICSE), pp. 783–794. IEEE (2019)

51. Zhong, H., Su, Z.: An empirical study on real bug fixes. In: Proceedings of the
37th International Conference on Software Engineering (ICSE), vol. 1, pp. 913–
923. IEEE (2015)

https://doi.org/10.1007/978-1-4612-4380-9_16
http://arxiv.org/abs/1909.13694

A Multi-engine Aspect-Oriented Language
with Modeling Integration for Video Game

Design

Ben J. Geisler1(B) and Shane L. Kavage2

1 Saint Norbert College, De Pere, WI 54115, USA
benjamin.geisler@snc.edu

2 University of Wisconsin, La Crosse, WI 54601, USA

Abstract. Video game programming is a diverse, multi-faceted endeavor involv-
ing elements of graphics programming, systems programming, UI, HCI, and other
software engineering disciplines. Game programmers typically employ a new
“codebase” per software artifact which often means a unique choice of game
engines and scripting languages. Non-portable code is exacerbated by a lack of a
shared language and a lack of translation utilities between languages. Meanwhile,
many game programming tasks occur time and time again. Aspect-oriented pro-
gramming was largely developed to assist software engineers in decoupling tasks
while maintaining software reuse. GAMESPECT is a language that promotes
software reuse through aspects while also providing a platform for translation
of software artifacts which has enabled it to be used in multiple game engines
across multiple projects. Code reuse on these projects has been high and our
methodologies can be summarized by discussing three tenants of GAMESPECT:
1) composition specifications, which define source to source transition proper-
ties 2) pluggable aspect interpreters and 3) high level language constructs and
modeling language constructs (MDAML) which encourage designer friendly ter-
minology. By comparing accuracy, efficiency, pluggability, and modularity, these
three tenants are demonstrated to be effective in creating a newgame programming
language.

Keywords: Video game programming · Game engines · Game design ·
Metaprogramming · Domain specific languages · Aspect-oriented programming

1 Introduction

There are twomain bodies ofwork in this paper. The first, andmost documented, is aspect
insertion via source to source transformation languages using composition specifications
[1–5]. This topic relates to interpreter and compiler design and has contributed a new
language to the research/industrial community called GAMESPECT [13]. The second
body of work of this paper is that of game balance and game design as it relates to
common toolsets. Wherein we ask the fundamental question: how can we better allow

© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 336–359, 2021.
https://doi.org/10.1007/978-3-030-70006-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_14

A Multi-engine Aspect-Oriented Language 337

for developers tomake games “fun”. The second question, that of “fun”, has been studied
but lacks an end-to-end solution for a game design framework [6–9].

This paper is based upon a conference paper given at the ENASE 2020 conference,
entitled “Aspect Weaving for Multiple Video Game Engines using Composition Speci-
fications” [13]. However, since then research has continued: we continued refining our
experimental results and applying GAMESPECT to new balancing tasks. Also, the new
work since the conference focuses on game balance and GAMESPECT’s innate ability
to exploit aspect-oriented programming to create more robust and successful software
artifacts; this new version of GAMESPECT is called GAMESPECT 1.01 and includes
a game design modeling language which is introduced in Sect. 4.4.

1.1 Shortcomings of Game Design Tools

Muchwork has been done to categorize, demonstrate and catalog game design principles.
Researchers, journalists, and practitioners in video game development have tried many
times to quantify what constitutes a “fun” video game and specifically how to make
one [10]. We believe this is a tool problem: most designers intuitively know what a
“fun” game is when they see one, but they lack the proper tools to describe, tweak and
implement changes quickly to address any shortcomings [11]. This is not a paper about
how to automatically make a “fun” video game with no designer input. Creativity is
perhaps a uniquely human trait and the synthesis of fun is as elusive for researchers
as it has ever been, which means that game design should be left to professionals with
an artistic talent for such things. However, they need good tools to do their jobs and
the industry has struggled for some time to create these tools. Sometimes the tools are
non-existent, sometimes they are in massive spreadsheets that are illegible, and almost
always they are not integrated to development toolsets [12]. There is no real solution for
the problem of how to balance a game. Meanwhile, there has been very little academic
work on the subject. We believe that quality software starts with solid research, which
is the motivating factor of this paper.

To further demonstrate the lack of tooling, let us examine a typical process of design-
ing a video game. Developers begin creating the game, with programmers and level
designers laboriously programming each individual entity. At some point the designers
play the game and decide the proper values for all the entities in terms of balancing the
game for difficulty. At this stage, many designers will record all these values in a massive
spreadsheet [12]. But the spreadsheet is not incorporated into any software because the
entry points for each value are not recorded and are scattered. This is less than ideal
since it requires hunting and pecking for the right spot to get at the value, and some
may be missed. Also, the iteration time is greatly reduced with a game designer needing
to work with a game programmer to get proper results. Not to mention that there is no
permanent home to “game balance” in this system.

It might help to consider an actual example development cycle. Noise Paradox is an
independent game for iOS, Android and Nintendo Switch. Designed over the course of
2–3 years, the traditional approach of Noise Paradox development mirrors most other
game development initiatives. We started with a design document, which was very high
level and contained explanatory text (no code or modeling language). The developers
then began in Unreal Engine 4 and continued implementing systems, artwork, etc. Noise

338 B. J. Geisler and S. L. Kavage

Paradox used the original GAMESPECT 1.00 as setup by Geisler and Kavage [13]. For
GAMESPECT 1.00, at no time was there a distinct bridge between gameplay systems
we had envisioned and the design documentation. During the creation of GAMESPECT
1.01 (which incorporates a design modeling language, as discussed in Sect. 4), we
were able to get rid of the laborious “spreadsheet” method described above. The original
GAMESPECT1.00 had already added the ability to summarizemultiple target languages
[13], but GAMESPECT 1.01 added this ability to bridge the gap in game design tools
and balancemethodologies.Wewill summarize GAMESPECT 1.0′s contributionwithin
a general context as well as the context of Noise Paradox (as an example), and we will
also describe the contributions of GAMESPECT 1.01.

1.2 Introduction to GAMESPECT

As far as we know, at least the following programming and scripting languages are
being used to create modern video games: C++, C, C#, Java, Python, LUA, Blueprints
(UE4), Assembly, Switch, Objective-C, Boo (Unity), Javascript. Game engines typically
write the low-level graphics code in a highly efficient version of C/C++, and provide
a scripting language which sits on top the lower level language. This implements an
abstraction which allows for game designers to focus on more important tasks such as
high level game design concerns [14].

GAMESPECT is a metaprogramming language that builds on similar ideas from a
number of works, including the AWESOME language and composition specifications
[5]. It also uses ideas of source to source transformation languages from the influential
TXL language [16]. As it stands, GAMESPECT (both version 1.00 and 1.01) is the
only production domain specific aspect language (DSAL) we know of that translates
from one common source language to multiple target languages. While there are others
such as XAspects, LARA and Awesome, which accept multiple source languages, there
are none that support the other direction: from one source language to multiple targets
[15]. GAMESPECT is also the only known DSAL which accepts design framework
terminology such as shown in Robin Hunicke’s MDA (Mechanics, Design, Aesthetics)
framework [9], which is covered in later sections.

1.3 Organization of This Paper

This paper loosely follows a background, literature review, methodology, results struc-
ture. The motivation section is first, in which we discuss further the problems of game
balance and lack of a common language. Furthermore, we will discuss the lack of a
source-to-source, one-to-many metaprogramming language and the need for GAME-
SPECT. As this paper is also meant to be practical, we will review some of the literature
surrounding game balance as well as compiler implementation and composition spec-
ifications surrounding similar languages such as Awesome. In this way, curious read-
ers could implement their own many-to-many solutions across multiple target domains
(other than gaming). Our methodology section largely focuses on how to tie together
the moving parts of GAMESPECT, but we also propose a method for evaluating the
endeavor, patterned off work done byKojarski and Pinto [4, 15]. Theremany code exam-
ples given which show the relative benefits of GAMESPECT over “vanilla” approaches

A Multi-engine Aspect-Oriented Language 339

(e.g. straight blueprints/C++ in Unreal Engine 4). This largely gives way to a results
discussion driven by our previously states goals of efficiency, pluggability, accuracy
and modularity. We realize that if GAMESPECT lacks in any of these areas, it would
prevent wide-scale adoption of both the technology itself as well as the new applica-
tions of composition specifications, and the newmethodology of creating a one-to-many
solution.

2 Background

2.1 Design Tools

A game engine (also known as simply the “engine” in this text) is a codebase of existing
routines, algorithms and functionswhich allows for an expedited development of a game.
Decades ago, developers realized that many types of tasks were being done over and over
again. In the 1990′s, researchers and professionals alike began developing game engines
[14]. As of 2018, the engines Unity and Unreal Engine 4 composed approximately 80%
of all games made on the market. With 2,400 games a year being created, this is around
1,900 games alone created on these engines.

Fig. 1. Market share of game engines [19].

Engine Architecture. Gameengine architecture is built upon the idea of layers. Loosely
speaking, an engine is a framework that has a collection of utilities and components, some
built on each other, that provides for common rendering, physics and object interactions
in a game [17].

An engine consists of the compile time tools such as programming (script) language
parsers, generators and runtime components. The complete discussion of each compo-
nent of a game engine is an exhaustive text and best left for books on the subject, such
as Gregory’s penultimate “Game Engine Architecture” book [14]. Figure 2 is a compact
summary from his book.

In a typical engine architecture, the gameplay specific systems are usually thought
to be the highest level, followed by the front-end and the setup for any state machine
systems. Animations, visual effects, and audio make up a mid level- along with net-
working routines. At the bottom-most level is the renderer and physics calculations.
GAMESPECT savings take advantage of the fact that the Game Specific Subsystems
are the major changing factor from game to game. Depending on the engine- most or all
of the game specific systems are done in a scripting language (which is at the foundations
level). This leaves plenty of room for lines of code savings.

340 B. J. Geisler and S. L. Kavage

Fig. 2. A typical game engine architecture.

Room for Savings. If you factor in the average game codebase size of 2 million lines of
code, this means there are approximately 3.8 trillion lines of code written each year from
the gaming industry. Typically, 1/2 of a game codebase is the “engine” [14].Whichmeans
1.9 trillion unique lines of code are being written. Which 50% is a good savings, this is
still wasteful especially considering the common tasks that are done in each codebase.
For example, a first-person shooter will have spawning code for enemy players, as will
a third-person game or a strategy game [17].

2.2 Metaprogramming, Aspect-Oriented Programming and DSAL’s

The topics of metaprogramming, aspect-oriented programming, and domain specific
languages (DSL’s) all have impressive amounts of current and past research. We will
summarize each and then explain the relevance to GAMESPECTT.

Metaprogramming. The specific type of metaprogramming we are interested in is
“macro systems”, which allow high level languages to be interpreted and translated to
either other high level languages or low level languages. Metaprogramming languages
describe operations at an abstract level which are then compiled down to usable code, for
example CoffeeScript, Nim, and Scala Macros. In general, a source to source compiler
is needed for these languages: in the case of CoffeeScript it compiles to Javascript. Our
language GAMESPECT follows a similar paradigm in that its also source to source, but
it compiles to multiple distinct pieces of source code in different languages, instead of
just one [13].

For example, consider the CoffeeScript below and the resulting JavaScript. In this
example, we want to manually search for a value in an array. Once found, we return
the array position. If we get past the beginning of the list, we return a negative value.

A Multi-engine Aspect-Oriented Language 341

Doing this in Javascript involves a do-while loop with variables being updated inside the
loop. In CoffeeScript it is called “pattern-matching” to match the new parameters of the
function with the old values and rerun the loop; essentially this is a macro that expands
to the Javascript code provided (Figs. 3 and 4).

Fig. 3. CoffeeScript findNumber.

Fig. 4. Javascript findNumber: the above CoffeeScript code is transformed to Javascript.

Aspect-Oriented Programming. Aspect-oriented programming was created to solve
inherent problems that exist in object-oriented programming related to issues of decou-
pling, composition and cohesion [19]. One classic example is logging. For example, in
a game engine, every game system as indicated from Fig. 1 could possibly send out log
messages to the developer: perhaps we wish to print how much memory is available,
or we’d like to print when the boss monster attacks. Printing to the log device is very
useful but occasionally certain preparations must be made. For example, when printing
to an iOS device the device must either print to the remotely connected computer or to
a file since there is no command terminal available on iOS. The logic for this decision
could potentially be repeated over and over in each type of log message. Or we could
extract the processing of where the output goes to a function which determines it for us.
Aspect-oriented programming allows us to form a pattern for these log messages, match
them and perform what’s called “advice”. Advice can be pre-function call, synchronous
with the actual call, or post-function call (later in this paper we’ll refer to this advice as
BEFORE, DURING or AFTER advice).

In the case of our example, aspect-oriented programming would remove the need
for two function calls at each call-site (one for remote-printing, one for log file). This
is because aspect-oriented programming will allow for the programmer to specify an
“aspect” which scans for the name of the function call, in this case “LogMessage”
(see Fig. 5). Alternatively, aspect-oriented programming would allow for a new level of
abstraction which allows for the aspect to call both types of logs (see Fig. 6).

Domain Specific Languages (DSLs). Domain specific languages are a fairly straight
forward approach to programming that involves the creation of a new language for a
specific purpose, as opposed to using a general programming language such as C++.

342 B. J. Geisler and S. L. Kavage

Fig. 5. Logging without aspects.

Fig. 6. Logging with aspects.

Unix shell languages such as BASH are a good example of domain specific languages.
These languages provide logic functionality but also utilities for controlling processes,
jobs, etc. Game engines serve as a major source of DSLs, for example the following
engines all use some type of DSL: GameMaker, Unreal Engine 4, Unity, Torque, Ogre,
Lumberyard. In fact, almost every known engine uses some type of “scripting language”
to setup its gameplay components and other systems.

One particular Domain Specific Language we will focus on is SkookumScript, this
is because GAMESPECT uses SkookumScript as an intermediary runtime solution.
SkookumScript is a perfect example of a DSL because it was written just for Unreal
Engine 4 (UE4), as a plugin to the same. It contains the ability to influence almost every
system inside UE4, with deep integrations into the other scripting system in UE4, which
is known as blueprints. It has been used on shipped games and is suitable for production

A Multi-engine Aspect-Oriented Language 343

quality; an example snippet of code can be seen below (Fig. 7). This code snippet is
from the game Noise Paradox, a professional game being created for iOS and Android
devices as well as Nintendo Switch. Noise Paradox is a beatmatching game similar to
Patapon or Rockband. As such, hitting objects to the beat is important: the code in Fig. 7
shows part of this logic.

Fig. 7. SkookumScript example: setting up timing on a marker in a beat-matching game.

3 Similar Languages and Frameworks

3.1 Similar Metaprogramming Languages

Over the course of the last decade, a few initiatives for source-to-source compilers in the
aspect-oriented domain have come forth [1, 3, 4, 15]. That said, none of them provide
for a one-to-many solution and none of them have been applied on a large codebase such
as a game project (over one million lines of code). Nonetheless, they serve as inspiration
and groundwork for GAMESPECT. To understand the new GAMESPECT system it’s
helpful to consider the thesis of our designs. XAspect, Awesome and LARA are the
three most influential frameworks to our new game programming language.

XAspect. XAspect was an initiative to add a domain specific aspect language on top
of AspectJ, an existing aspect-oriented language. The XAspect system was created as a
plugin to the AspectJ system, made to be used in the Eclipse IDE [3]. Developers that
wished to use this system were required to override a class called AspectPlugin if they
wished to have a DSL that worked in AspectJ. Essentially this was a way to specify the
translation rules between their custom high level language(s) and AspectJ. XAspects is
a “many to one” solution, meaning developers could create more than one DSL, all of
which could be used in AspectJ.

344 B. J. Geisler and S. L. Kavage

Awesome/SPECTACKLE. Thework of Lorenz andKojarski seeks to incorporate mul-
tiple aspect languages into one common aspect-oriented target language, which is ulti-
mately responsible for runtime behaviors. With this work, a developer can create “com-
position specifications” which enable a novel aspect-oriented domain specific language
(AODSL) to be “plugged” into the Awesome framework [4, 14] (Fig. 8).

Fig. 8. Pluggable aspect languages ([14]).

Often, aspect-oriented programming requires the idea of a wrapper, which is respon-
sible for creating code in the underlying platform to “weave in” aspects. This work is
done in Awesome by “composition specifications”. The key idea is to extract common
language tasks to a tool, known as SPECKTACKLE, and allow for composition speci-
fications to dictate exact nuances in syntax, ordering and priority of the various aspects
which are advising. The main goal of Lorenz’s work in SPECTACKLE was to alle-
viate foreign advising collisions between aspect languages [14]. In SPECKTACKLE,
Cool, AJ, Spring, AspectWerks or AspectJ can be used as a source language, as long
as specifications are created to decide how they function to the weaver. Although the
goals of Awesome are different than the goals of GAMESPECT, an analogy can be
drawn between what GAMESPECT does and what SPECKTACKLE does. That said,
composition specifications and weavers are more complex for GAMESPECT since the
underlying language itself might be different. In other words, Awesome went from
many source languages to one target language. As stated before, our language is trans-
lating to multiple target languages. This means the weavers must be different for each,
and the composition specifications become more complex- needing an additional set of
technology and tools [13, 14].

A portion of our work can be seen as an extension of composition specifications with
more compiler directives. Future sections of this paper will discuss GAMESPECT’s
composition specifications. We will explore how crucial these specifications are to the
underlying weaver of the system.

LARA. LARA is a framework which allows developers to more easily create weavers
for source language and compile them to other target languages [15]. Themain languages
used by LARA for testing were MATLAB, C and Java. In addition, performance testing,
efficiency calculations and modularity have been performed- making this a great fit for
comparisons to GAMESPECT. In most the research papers on LARA, researchers take
an existing tool namedMANET and perform the actual weaving for C, Java or any other
target language. Of course, this implies that a lot of custom weaving code is needed
per language and it is unclear if any shared code exists between weavers. Despite this,
LARA is a great tool to draw inspiration from, as there aremany similarities. The notable

A Multi-engine Aspect-Oriented Language 345

exception is that GAMESPECT is being advised by the aforementioned composition
specifications. The following transformation is possible with LARA and is useful to
look at as we consider the transformation task for GAMESPECT (Fig. 9).

Fig. 9. An example LARA transformation [15].

3.2 Similar Game Balancing Frameworks

In 2004, Robin Hunicke introduced a new way of analyzing, creating and balancing
gameplay. Since then, mostly in academic circles but also in practice, this has become
the default system chosen when thinking about mechanics and balance. The method
is called MDA, standing for “mechanics, dynamics and aesthetics”. In her framework,
mechanics are the runtime low level components. Meanwhile dynamics are interactions
that occur due to mechanics and their results. Aesthetics are emotional responses from
the players of the game [4].

A game designer builds frommechanics towards the aesthetics, but in the case of the
player, she looks at everything froma different angle: fromaesthetics towardsmechanics.

Fig. 10. MDA framework categories for aesthetics.

346 B. J. Geisler and S. L. Kavage

All levels must be considered for careful game design, but the starting point is aesthetics,
which can be defined as eight broad categories: sensation, fantasy, narrative, challenge,
fellowship, discovery and expression. Any one particular game need not have all of these
aesthetics, but this is the toolbox from which design can be pulled (Fig. 10).

More recently, a group of researchers at University of Southern California proposed a
modeling language for game mechanic design called Game SystemModeling Language
(GSML). GSML is largely a flowcharting system that connects game entities to actions
(verbs) and produces events [20]. For example see the following chart which explains
the mechanics of Tetris (Fig. 11):

Fig. 11. Tetris in GSML.

However, GSML is distinct and separate fromMDA: it doesn’t use shared terminol-
ogy. The twomost well known frameworks of this type are Hunicke’s model and Bartles.
GSML doesn’t adopt either and leaves out crucial components such as aesthetics [8].
We feel that is a mistake: Hunicke’s work has been cited over 2,000 times and Bartle’s
Taxonomy has been sited over 2,800 times. That doesn’t alone doesn’t imply they are
perfect but it does imply relative perceived utility. The problem with Bartle’s Taxonomy
is that it was written for MUDs (Multi-user Dungeons). Bartle categorizes four types
of players and their reasons for playing MUDs: exploration, socialization, imposition
and achievement [8]. Notably left out of this list are elements revolving around quick
reflexes (other challenges), expression/fantasy and narrative. MUDs didn’t have a story,
the story was built by the players. MUDs were also text based only, so reflexes were out
of the question: modern gaming has moved well past text based gaming. Hunicke’s work

A Multi-engine Aspect-Oriented Language 347

was made with modern trappings of the video game industry in mind, many of which
were implemented at Electronic Arts during her collaborative work on The Sims [21].

Although we can see that the work of GSML is slightly lacking MDA fundamentals,
we also note that it’s the only approach that offers a programmatic, flow-chart based
approach to mechanics design. Therefore, as part of this paper we have implemented a
hybrid approach: Mechanics, Dynamics, Aesthetics Modeling Language (MDAML).

4 Development Methodology

Aspect-weaving refers to the process of taking “advice” and wrapping it into source
code, making sure that it is called either at run time or compiled-in (statically). Luckily,
there is precedence for aspect weaving in other research works [4].

The weaving process should output a new set of source code that can be executed at
runtime by the game engine. In the case of GAMESPECT this must be more than one
target language since we intend to support both Unreal Engine 4 and Unity, and each of
those engines also has multiple scripting languages.

Weaving is the process of inserting advice code at certain join points inside the
original code. The output of the weaving process is a new set of source code or binary
code which performs the original code as modified by the aspect code [23]. For example
if we consider Fig. 1, we can see that the advice code makes an additional call to take
damage. This call would increase the damage taken; by virtue of an additional call being
made it would increase the damage by a multiple of two (Fig. 12).

Fig. 12. Aspect code for increasing damage.

This code must be generated for Skookum Script (or C# in the case of Unity) as
shown in Fig. 1. Of course, the original call site also had to be modified to call this extra
bit of code. But this match is not straight forward because the calling site could occur in
C++, Blueprints, or SkookumScript. This is where composition specifications fit into the
overall architecture of GAMESPECT. We will cover composition specifications shortly
(Fig. 13).

Fig. 13. Generated Skookum Script code.

348 B. J. Geisler and S. L. Kavage

4.1 GAMESPECT Architecture

To demonstrate that the GAMESPECT methodology works we need to create an entire,
extensible system for weaving. The framework is therefore made as an API with all the
hooks needed for new language integration. The core idea is that GAMESPECT will sit
on top of all an engine’s languages, and the API will provide for hooks, composition
specifications and other utilities to make weaving possible (Fig. 14).

Fig. 14. GAMESPECT architecture.

4.2 External Tools

The work needing to be done for this research involved creation of a new high-level
domain specific aspect language. To expedite this process, we used the open source

Fig. 15. XText grammar for GAMESPECT.

A Multi-engine Aspect-Oriented Language 349

XText language creation system [22]. This allows us to create a grammar in XText, and
generate code generators- ultimately these generators are compiled down to Java. The
other main tool employed in GAMESPECTS pipeline is TXL. Developed by Dr. James
Cordy, TXL provides for source to source transformations provided that the grammar is
known for both the target and the source.GAMESPECT turns composition specifications
into TXL specifications which are then run offline to perform code injection for the
aspects (Fig. 15).

4.3 Weaving Process

To GAMESPECT, a composition specification is a set of rules which sit on top of TXL
to be used for generation of a TXL template, which ultimately allows for transformation
of the language. But this explanation simplifies the overall process: not only do we need
to find the calling sites for the aspects, we need to be able to call extra code. For this we
looked to the work of Lorenz [5]. In their research they identified four processes needed
for creating an aspect weaver: reification, matching, ordering and mixing. We must use
these four processes as well.

GAMESPECT is significantly different from the other metaprogramming initiatives
discussed in Sect. 3.1 in that a shared codebase: C++, exists on top of all the original
source languages.Also,we have the ability to use one of our target languages at execution
time. For this reason,wemodified the four step process and redefined the steps as follows:

• Reify: Build time directives using TXL to find the specific script calling locations and
flag all incoming calls as potential sites for advice

• Match: Finds the exact calling spots, modifies the code to provide table lookup for
calling advice, and continues the build process.

• Order: Runtime directives which find calling advice which is supposed to be executed
against the table lookup.

• Mix: Actually perform the advice at runtime calling the GAMESPECT script [24].

Reification. During reification we use GAMESPECT glue code— a C# API program
written to make calls to utility functions such as TXL. The main work is done by TXL
which goes through thousands of engine files looking for call sites as determined by the
composition specifications. Composition specifications are in the following format:

SPECIFIER MATCH FUNCTION_NAME (1)

For example, in Fig. 16, we see a number of calling specifications. Each of these is
a C++ callsite. For example, UTableUtil::call is the call which is made from C++ for all

Fig. 16. Example composition specifications.

350 B. J. Geisler and S. L. Kavage

Skookum Script functions, and ue_lua_pcall is for all LUA functions. The composition
specification is used during reification to search on any of these named functions.

Matching. Three important sub-steps are done during the matching phase. First, we
call the GAMESPECT glue code API to generate TXL directives from the composition
specification, this results in TXL replacement code as shown in Fig. 17. Notice on line 48
the presents of the UTableUtil::call method, this was populated from the compositions
specification by the GAMESPECT API. A complete description of TXL is beyond the
scope of this paper, but essentially TXL is a text replacement system which operates on
the rules of the grammar provided.

The second sub-step of matching is that of creating a mapping between named func-
tions in the composition specification and a customgenerated function in SkookumScript
that is to be executed at runtime. We call this the “hashmatcher” in GAMESPECT. The
hashmatcher is a simple function inside the codebase which matches to calls which
should be made at runtime, in the mixer. In Fig. 17, this is visible on lines 67–83,
where we add functions to call based on the aspect definitions which have actually been
presented. The key line which adds the functions is as follows:

’SkMind::add_to_funcs_to_call(std::string(get_name_cstr())); (2)

Fig. 17. Generated TXL code for Skookum Script.

Ordering and Mixing. Ordering is a runtime operation which orders the function to be
called at the calling site. In the current version of GAMESPECT, ordering only works
for BEFORE and DURING advice. BEFORE advice is what occurs in Fig. 17, and this

A Multi-engine Aspect-Oriented Language 351

happens automatically at runtime once matching phase has recompiled the codebase.
DURING advice simply spawns off a new process as part of the inserted code (this would
be inserted between likes 77 and 79 on Fig. 17, for example). AFTER advice waits until
the function has ended and then calls the matched aspect advice (Fig. 18).

Fig. 18. Compile time and run-time calls of GAMESPECT modules.

4.4 MDAML Extensions for GAMESPECT

As mentioned, it would be desirable if the game mechanic descriptions of the popular
MDA framework are incorporated into a usable framework. To date, all the MDA-like
frameworks and other attempts at game design, have been devoid of implementable
options [6, 7]. It is intended that MDAML (Mechanics, Design, Aesthetics Modeling
Language) be described in concrete terms inside GAMESPECT (.gs) files. This allows
for more descriptive power during implementation of the game as well as descriptive
power during planning.

Tomotivate this, we created theMDAML specification language (based ofHunicke’s
MDA) and implemented it alongside an existing game, Noise Paradox.

InMDAML there are three types of constructs:Mechanics, Dynamics andAesthetics
(MDA). Each of these categories has subtypes, which are important for the resulting
MDAML diagrams. The subtypes are as follows:

Mechanics, Entities: Items in the game which represent objects or things. For example
a player character is actually a “mechanic”.

Mechanics, Properties: Properties are held by entities, and refer to the low level details
of that object. Forr example a player might have a certain jump height. In MDA this is
important because tuning is a special consideration.

Mechanics, Verbs: This concept is borrowed from GSML and added to MDAML. It is
the idea that all entities can also perform certain actions.

352 B. J. Geisler and S. L. Kavage

Dynamics, State Actions: State actions are events that cause a change in state of some
sort. For example, maybe the player goes from running to walking.

Dynamics, Property Changes: Property changes are actions that change property in
the aforementioned mechanics of objects/players/entities.

Dynamics, Conditionals: Conditionals are basic logic statements that some decision
hinges upon.

Aesthetics, Transitions: These are the dynamic situations necessary to complete levels
or fail at levels.

Aesthetics, Informational: This represents tutorials and other information-only items
given to the player.

Aesthetics, Purpose: This is the original category defined by Hunicke which defines
the sense of purpose that is currently being elicited by the active dynamics. More than
one “purpose” can be active at a time. These correspond to: sensation, fantasy, narrative,
challenge, fellowship, discovery, expression and submission.

GAMESPECT 1.01: In the newest version of GAMESPECT we have begun to allow
forMDAML design terminologies to be used in our aspects.We feel this is an expressive
power that will be useful to game designers. For example, in our above “taking damage”
scenario, certain MDAML items would be flagged. Anything which is listed in the
dynamics category has the potential of being a pointcut with associated advice (Fig. 19).

Fig. 19. GAMESPECT 1.01 with MDAML.

The advantage of this encoding is that during game creation, designers should create
complete MDAML diagrams. In doing so they can then identify potential point cuts by
looking at the important actions in a game. Since there is no automatic process of finding
potential aspects, this is very important. For example, consider our take damage code
above. During game creation, there would have been a step that realizes that enemies
and players can be damaged. This would encourage developers to fill in the gaps in

A Multi-engine Aspect-Oriented Language 353

GAMESPECT by investigating the code and seeing where these pointcuts happen. In
this way the game becomes far more tunable, game balance has a place to “live” and we
reduce the complexity all the code base.

MDAML Partial Example. To help for future work, we are providing a partial descrip-
tion of the game Noise Paradox. The hope is that, in seeing how easy it is to diagram
these mechanics, more practitioners will take this approach. The first step is to plan out
all the game interactions in the form of MDAML, cataloging the various objects in the
game and what they can do to each other. With GAMESPECT 1.01 it’s also possible to
define aesthetics, although they probablywon’t appear in any aspects. A brief description
of Noise Paradox follows, to help contextualize the given MDAML diagrams.

Noise Paradox is about the experience of being a DJ. It’s about taking multiple songs
and combining them albeit briefly to sound like a completely new song. It’s a game about
influencing AI actions via this beatmatching. Friendly AI are known as "Beat Spirits".
There’s also enemy AI, known simply as Automaton; cold and unfeeling, they seek to
stop the player’s beatmixes and stop the beat spirits. Through correctly beatmatching,
the player is rewarded. Failure means the song doesn’t match up and more automaton
are attacking you, eventually defeating you. Success means you spawn beat spirits to
fend off the attacking automaton and protect you, eventually passing the level and going
on to beatmatch more. DJ battles will occur at the end of key areas, which are in-place
battles but with complementary mechanics (Fig. 20).

Fig. 20. MDAML for Noise Paradox (partial).

In practice, we have found that it’s very convenient to have new systems mapped out
in MDAML because it translates directly to code that can be written for GAMESPECT.
In this way, its an apriori step of denoting all the possible callsites that are going to be
questioned and potentially tuned during development. This is much easier than typical
methods which involve hunting and pecking or keeping track of massive spreadsheets,
as described in Sect. 1.1.

354 B. J. Geisler and S. L. Kavage

5 Results

5.1 Testing Process

The goal of testing GAMESPECT across multiple software projects and codebases was
to verify accuracy, efficiency, pluggability and modularity. A process was established
to enable comparisons. Namely, it was necessary to create two versions of every test:
one using the standard game design methodology (without GAMESPECT and without
MDAML) and the other with GAMESPECT and MDAML. In addition, to demonstrate
pluggability it was necessary to create a second version of the game which was running
on a separate game engine. Table 1 shows the test matrix employed for verification
during this phase of development.

With GAMESPECT 1.00 our process was to use Visual Studio Assist to find the
pointcuts and moments for game balance “advice”. But with GAMESPECT 1.01 we
used MDAML to find these point cuts.

Table 1. High level test matrix for GAMESPECT.

Engine Languages Versions

Unreal Engine 4 (OOP) LUA, SkookumScript, C++, Blueprints Vanilla

Unreal Engine 4 (AOP) LUA, SkookumScript, C++, Blueprints GAMESPECT 1.01

Unity (OOP) C#, LUA Vanilla

Unity (AOP) C#, LUA GAMESPECT 1.00

Unity (AOP) C#, LUA GAMESPECT 1.01

5.2 Accuracy Measurements

As seen in Table 1, there were five individual codebases tested for this version of GAME-
SPECT. This was a laborious process of keeping the code separate, in different reposi-
tories, etc. Also, if some logic was updated in one code base, it needed to be merged to
the others. We used Perforce for this due to its ability to handle non-text based binary
files such as various pieces of art assets.

All five “products” listed above were run through a quality assurance process using
the bug tracking tool “HackNPlan”. As the days went on in the production cycle, we
tracked number of bugs, with the goal being to reach zero bug regression (ZBR). If the
new GAMESPECT version of the product roughly matches the vanilla version, then we
can expect that accuracy is maintained. As Fig. 21 shows, the deviation in bug counts is
nearly nonexistent.

A Multi-engine Aspect-Oriented Language 355

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

UE4 GS1.01 vs Vanilla version Bug Count vs
Days

AOP OOP

Fig. 21. Comparing bug counts AOP versions vs OOP versions.

5.3 Efficiency Measurements

The benefit we are expecting of GAMESPECT is to reduce the total lines of code. For
example, the code at the join point, if it is used more than once is pulled out and therefore
a savings is possible because multiple call sites exist for each piece of advice- hence
duplicating code. It has been found by other research that smaller lines of code counts
leads to easier maintenance, so this is desirable [25].

Fig. 22. Runtime performance of GAMESPECT.

We present Table 2, Table 3, and Table 4 to show the summary of lines of code
testing. The range of savings varied from 9% to 40%. Other research in the field has
showed that the target LOC savings, to be considered impactful, is around 10% [25].
Also, according to studies done on the LARAmetaprogramming language, their savings
was in the 10–20% range [15]. We are well within that range on this project.

Given the extra calls made at runtime it was also necessary to gauge performance.
Therefore, we also ran a runtime analysis to ensure there was no performance impact
(Fig. 22). Similar to LARA, GAMESPECT has virtually no performance impact [13,
15].

356 B. J. Geisler and S. L. Kavage

Table 2. LOC Comparisons for C#, GAMESPECT Test Suite 1 [13].

Table 3. LOC Comparisons for C++, Sk, UE4, GAMESECT Test Suite 2.

Table 4. LOC for C++, Sk, UE4, GAMESPECT Test Suite 3: including MDAML.

5.4 Pluggability and Modularity Measurements

In addition to accuracy and efficiency, we wanted to demonstrate pluggability and mod-
ularity. These two are related: pluggability refers to the ability to plug into a new system
with a new language. Modularity refers to the API’s ability to compartmentalize and
quickly scale up to a new implementation of the language.

One way modularity/pluggability can be shown is by looking at the efficiency com-
parison across engines, in this way if the systemwas made modular enough to be applied
to a completely new codebase, we’d expect there to be relatively few issues. It turns out
this is the case, as shown in Fig. 23. Another way is just by looking at the huge num-
ber of transformations made possible by using GAMESPECT. In fact, we can compare
the number of source transformations created by our system to the number of trans-
formations made possible by Cool/Awesome, XAspects and LARA. This is shown in
Fig. 24.

A Multi-engine Aspect-Oriented Language 357

0.00%

20.00%

40.00%

60.00%

1 2 3 4 5 6

LOC Reduc ons Unreal Engine 4
vs. Unity

Unity (C#)

Unreal Engine 4 (C++ and Sk)

Fig. 23. LOC unity vs UE4. Fig. 24. Pluggability comparison.

6 Summary

6.1 Summary

This research is impactful for a number of areas including aspect-oriented program-
ming, DSLs and game design/balance. In terms of aspect-oriented programming we
have demonstrated that it is possible to perform aspect weaving in a “pluggable”, mod-
ular way and yet with great efficiency. Furthermore, it’s possible to support multiple
languages using the idea of composition specifications. GAMESPECT also shows that
there need not be a single target language with respect to the source-to-source transfor-
mation languages. Indeed, by using tools such as TXL and some GAMESPECT API
code (i.e. the hashmatcher) it’s possible to support one-to-many scenarios. Previous to
this work, LARA demonstrated that a one-to-one translation was possible [3]. Likewise,
Awesome and SPECTACKLE provided a many-to-one solution [2]. As far as we know
this is the only contribution with a one-to-many solution which uses an intermediate
composition specification scheme.

The other segment of work which is impactful is that of game balance and game
design. There are many frameworks which provide for game balancing concepts and
terminology, but nothing is standardized. MDA seems to be the most prolific, but it
lacks the low level of details needed to express it as a modeling language. Meanwhile,
projects such as GSML provide for detailed connections and descriptors but ignore the
hierarchy setup byMDA.Ourwork inGAMESPECT has combined these intoMDAML.
We have used MDAML in our “test suite 3” and the results are summarized in Table 4.
By looking at this table, it’s clear to see that test suite 3 is no different from the other
test suites, in all cases the lines of code savings were significant. That said, the extra
descriptive power of MDAML comes at a cost: once we add it into the GAMESPECT
language (1.01), we return to baseline in terms of lines of code used. However, this is
to be expected- and may be mitigated once constructs are shared between aspects in
MDAML (see future work section).

358 B. J. Geisler and S. L. Kavage

6.2 Future Work

When an appropriate TXL template must be selected, the user has to set a language
enumeration in the composition specification. This is actually needless, since we could
automatically detect the language. This should work 90% of the time, and in cases
we get ambiguity of languages, we could report back to the user. Also, the Unity and
Unreal Engine 4 implementations of GAMESPECT do not share interpreters. However,
they have languages in common: LUA, Javascript. In the future a language should be
chosen for the shared interpreter that eliminates the need to maintain two GAMESPECT
codebases, and two binaries.

The final area of improvements and future work is that of game balance. Firstly, an
initiative should be taken to investigate the time savings in enumerating gamemechanics
in MDAML. Intuitively, it should save developers time during implementation phase
once the mechanics are ironed out. But this has yet to be verified.

Now that the project incorporates MDAML we feel that much work is possible in
terms of enumerating types of constructs which need game balance, and studying the
best ways to go about designing, iterating and tuning. In addition, topics such as auto-
balancing of difficulty level could be attempted since it’s possible that GAMESPECT
code (.gs files) themselves could be generated, or at least tuned quickly by play testers.
We believe the biggest promise of GAMESPECT lies in it’s ability to quickly iterate
on design solutions. By exposing gameplay constructs via GAMESPECT and MDAML
we allow designers a chance to make their games better. This hasn’t been capitalized on
yet, and could be the subject of future work.

References

1. Bispo, J., Cardoso, J.M.:Clava:C/C++ source-to-source compilation usingLARA.SoftwareX
12, 100565 (2020)

2. Kojarski, S., Lorenz, D.H.: Pluggable AOP: designing aspect mechanisms for third-party
composition. ACM SIGPLAN Not. 40, 247–263 (2005)

3. Shonle, M., Lieberherr, K., Shah, A.: XAspects: an extensible system for domain-specific
aspect languages. In: Companion of the 18th Annual ACM SIGPLANConference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 28–37 (2003)

4. Kojarski, S., Lorenz, D.H.: Awesome: an aspect co-weaving system for composing multiple
aspect-oriented extensions. ACM SIGPLAN Not. 42, 515–534 (2007)

5. Lorenz, D.H., Mishali, O.: SPECTACKLE: toward a specification-based DSAL composition
process. In: Proceedings of the 7thWorkshoponDomain-SpecificAspectLanguages, pp. 9–14
(2012)

6. Walk, W., Görlich, D., Barrett, M.: Design, dynamics, experience (DDE): an advancement of
theMDA framework for game design. In: Korn, O., Lee, N. (eds.) GameDynamics, pp. 27–45.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53088-8_3

7. Zohaib, M.: Dynamic difficulty adjustment (DDA) in computer games: a review. Adv. Hum.
Comput. Interact. 2018, 12 (2018)

8. Bartle, R.: Hearts, clubs, diamonds, spades: players who suit MUDs. J. MUD Res. 1, 19
(1996)

9. Hunicke, R., LeBlanc, M., Zubek, R.: MDA: a formal approach to game design and game
research. In: Proceedings of the AAAI Workshop on Challenges in Game AI, p. 1722 (2004)

https://doi.org/10.1007/978-3-319-53088-8_3

A Multi-engine Aspect-Oriented Language 359

10. Koster, R.: Theory of Fun for Game Design. O’Reilly Media Inc., Newton (2013)
11. Blow, J.: Game development: harder than you think. Queue 1, 28–37 (2004)
12. Adams,E.,Dormans, J.:GameMechanics:AdvancedGameDesign.NewRiders, Indianapolis

(2012)
13. Geisler, B.J., Kavage, S.L.: Aspect weaving for multiple video game engines using

composition specifications. In: ENASE, pp. 454–462 (2020)
14. Gregory, J.: Game Engine Architecture. CRC Press, Boca Raton (2018)
15. Pinto, P., Carvalho, T., Bispo, J., Cardoso, J.M.: LARA as a language-independent aspect-

oriented programming approach. In: Proceedings of the Symposium on Applied Computing,
pp. 1623–1630 (2017)

16. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61, 190–210
(2006)

17. Sherrod, A.: Ultimate 3D Game Engine Design & Architecture. Charles River Media Inc.,
Newton (2006)

18. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0053381

19. Moby Games Stats (n.d.). https://www.mobygames.com/
20. Emms, R., Wixon, D., Wiscombe, S., Malaika, Y.: Spatializing play structures and interaction

flow using GSML (Game System Modelling Language). Comput. Games J. 3(2), 40–53
(2014). https://doi.org/10.1007/BF03395951

21. Gee, J.P., Hayes, E.: No quitting without saving after bad events: gaming paradigms and
learning in The Sims. Int. J. Learn. Media 1, 49–65 (2009)

22. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick and dirty
way. In: Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, pp. 307–309 (2010)

23. Courbis, C., Finkelsteiin, A.: Towards aspect weaving applications. In: Proceedings of the
27th International Conference on Software Engineering, pp. 69–77 (2005)

24. Geisler, B.J.: GAMESPECT: a composition framework andmeta-level domain specific aspect
language for unreal engine 4 (2019)

25. Polo,M., Piattini,M., Ruiz, F.: Using codemetrics to predictmaintenance of legacy programs:
a case study. In: Proceedings IEEE International Conference on SoftwareMaintenance, ICSM
2001, pp. 202–208. IEEE (2001)

https://doi.org/10.1007/BFb0053381
https://www.mobygames.com/
https://doi.org/10.1007/BF03395951

Model-Based Timing Analysis of Automotive
Use Case Developed in UML

Padma Iyenghar(B) , Lars Huning, and Elke Pulvermueller

Software Engineering Research Group, University of Osnabrueck, Osnabrück, Germany
{piyengha,lhuning,elke.pulvermueler}@uos.de

Abstract. Development of AUTOSAR-based systems using UML tools is gain-
ing significant attention in the automotive industry. In this context, incorporating
an early and automated model-based timing analysis of such systems in state-of-
the-practice timing analysis tools is a significant step towards automated tooling
for Verification & Validation (V&V) in the AUTOSAR-based development pro-
cess; nevertheless is missing. Addressing this aspect, a workflow for early model-
based timing analysis of AUTOSAR models is outlined. A detailed discussion of
the model transformations for extracting a timing analysis model from a timing
annotated AUTOSAR-based design model is presented in this book chapter. Fur-
ther, a detailed case study of an automotive use case is presented and evaluated
step-by-step by employing the outlined workflow. An early model-based timing
analysis of the use case developed in UML is discussed in detail.

Keywords: Model-based tool support · Automation · Timing analysis ·
Automotive software · AUTOSAR · UML · V&V

1 Introduction

Software quality is now fundamental to the automotive industry. All stakeholders, from
top-level automotive manufacturers through multiple tiers of component suppliers, need
to give quality assurance to their customers along with delivery of high-quality and
compliant systems and components. In the automotive domain, the Electronic Control
Units (ECUs)1 are used for various tasks such as controlling the vehicle dynamics and
providing advanced driver assistance systems.With autonomous cars on the horizon, the
functionality provided by the ECUs is deemed to increase ever more. This implies that
there are risks towards (1) exhausting the processing resources of the existing ECUs
(2) delayed execution of potentially safety-critical and timing-relevant functions and
(3) increase in manufacturing costs (e.g. because of adding more ECUs). Reflecting
the increasing complexity of the embedded software domain, automated tooling for
checking and monitoring software quality (e.g. timing) is growing more sophisticated
and serving a wider community of stakeholders.

1 An embedded system that controls one or more of the electrical systems or subsystems in a
vehicle.

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 360–385, 2021.
https://doi.org/10.1007/978-3-030-70006-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_15&domain=pdf
http://orcid.org/0000-0002-1765-3695
https://doi.org/10.1007/978-3-030-70006-5_15

Model-Based Timing Analysis of Automotive Use Case Developed in UML 361

1.1 Model-Based Development of Automotive Software

Model-based techniques are gaining rapid attention in the field of Embedded Software
Engineering (ESE). They provide systematic, cost-effective development processes
which help reduce the time-to-market and development costs, while also enhancing
the embedded software quality [25]. Models of the software and hardware architecture
can be reused in multiple development phases to automate the process, e.g. by generat-
ing code from a design model. Therefore, for automotive embedded software systems
which are rich in timing critical functions, it is imperative to integrate quality (e.g. tim-
ing) analysis into the model-based ESE development process, as early as possible. In
this context, AUtomotive Open System ARchitecture (AUTOSAR) is already a de facto
industry standard for the design and implementation of software for automotive appli-
cations. Further, development of AUTOSAR-based embedded systems using Unified
Modeling Language (UML) such as Rhapsody [14], Enterprise Architect [9] tools and
Matlab/Simulink [23] is gaining significant attention in the automotive industry.

1.2 Model-Based Timing Analysis

In automotive embedded architectures, many functions are time critical due to safety
requirements. Some other functions could have timing constraints for certain perfor-
mance guarantee. In order to perform a timing analysis of such a system, its timing
analysis model with timing properties, should be available. Based on this information,
timing analysis in state-of-the-practice tools such as Timing Architect [31], T1. Timing
[11] and Inchron [15], can predict the execution behavior of the system with respect to
overall timing analysis and specific parameters such as end-to-end delay. Incorporating
an early and automated model-based timing analysis of such systems in state-of-the-
practice timing analysis tools, is a significant step towards, automated tooling for Veri-
fication and Validation in the AUTOSAR-based ESE development process; nevertheless
is missing.

1.3 Relation to Author’s Previous Work and Novel Contributions

In the above context, a systematic series of steps towards incorporating an early, auto-
mated extraction and synthesis of timing analysis models in AUTOSAR-based embed-
ded system design models which are developed in UML tools has been presented in
[18]. Similarly, an automated end-to-end timing analysis of AUTOSAR-based causal
event chains of automotive software developed using UML is described in [17]. In this
book chapter, the work in [17] is extended and the following novel contributions are
presented.

– An elaboration of various transformation rules for synthesis of AUTOSAR-based
timing analysis model with examples.

– Detailed evaluation of the proposed series of steps, for automated model-based tim-
ing analysis of AUTOSAR-based use case, employing an elaborate automotive case
study.

362 P. Iyenghar et al.

In the remainder of this paper, background and related work is presented in Sect. 2.
A systematic series of steps for early timing analysis introduced in [18] is outlined in
Sect. 3. A detailed automotive case study is presented in Sect. 4. In Sect. 5, an elabo-
rate discussion on the application of the proposed workflow in Sect. 3 on the use case
described in Sect. 4 is presented. Model transformations are detailed with examples
in Sect. 6. Results of timing analysis are discussed in Sect. 7. Section 8 concludes the
paper.

2 Background and Related Work

Model Driven Development (MDD) [26] methodology employing UML has been
increasingly used for design and development in ESE, especially for modeling automo-
tive embedded software systems. It has also been applied for Non-Functional Properties
(NFR) analysis, such as timing, energy and reliability analysis [16]. Further, develop-
ment of AUTOSAR-based systems using UML tools is gaining significant attention in
the automotive industry. In this context, a brief background and related work on the
AUTOSAR framework, timing modeling and analysis in AUTOSAR models is pro-
vided in this section.

2.1 AUTOSAR Framework

A comprehensive and well- established solution used in the automotive sector is the
AUTOSAR standard [6]. The various components of the AUTOSAR framework are
illustrated together with the mapping of software components to ECUs, in the system
configuration step, in Fig. 1. AUTOSAR uses a component-based software architec-
ture, with central modeling elements called Software Components (SWCs or SW-Cs).

Fig. 1. Components of AUTOSAR framework [6,17].

Model-Based Timing Analysis of Automotive Use Case Developed in UML 363

The SWCs (e.g., SW-C1 seen at the top of Fig. 1) are used to structure the AUTOSAR
model and group functionality into individual components. These components can be
connected together, oblivious of the hardware they are running on. This is handled by
the Virtual Function Bus (VFB), which provides an abstraction layer for the SWC to
SWC communication.

Components distributed over different ECUs however, may use the network bus
for communication (e.g., ECUs 1, 2..n communicating over FlexRay and CAN buses in
lower part of the Fig. 1). This is determined automatically by the Run-Time Environment
(RTE), which is a communication interface for the software components. In each ECU,
the RTE provides interfaces between SW-Cs (e.g. AUTOSAR SWC 1 and AUTOSAR
SWC 2 in ECU 1 in lower part of Fig. 1) and between SW-C and Basic Software (BSW).
In this paper, the design model is created using the AUTOSAR framework and the
timing properties are annotated using AUTOSAR-TE.

2.2 Timing Modeling

Modeling and Analysis of RealTime and Embedded Systems (MARTE) [22] is a stan-
dardized UML profile, which extends UML and provides support for modeling the plat-
form, software and hardware aspects of an application [1]. Non-UML time modeling
alternatives include SystemC [8] and Event-B2 to name a few.

AUTOSAR-Timing Extensions. The AUTOSAR-Timing Extensions (TE) metamodel
feature an event-based model for the description of the software’s temporal behavior
and can be defined on top of a system architecture. The AUTOSAR release with timing
extensions and its own timing model find extensive usage in the automotive industry
[27] and [10]. The TE metamodel provides five different views for timing specifica-
tion, depending on the kind of timing behavior described in the AUTOSAR model
[5]. The five views are VfbTiming, SwcTiming (describes internal behavior timing of
SWC), SystemTiming, BswModuleTiming and EcuTiming. In the experimental evalua-
tion, the SwcTiming view is employed, because the system configuration and timing
specification steps use the SWCs. For further explanation of AUTOSAR methodology
and AUTOSAR-TE, interested readers are referred to [6].

AUTOSAR-Based Causal Event Chain. In component-based ESE, individual sub-
systems are modeled with chains of components that are translated to chains of tasks
for scheduling analysis. The timing requirements of such chains, which we coarsely
refer to as the end-to-end delay can be specified in the component model and also esti-
mated/analyzed during a timing analysis.

Figure 2 shows an event chain end-to-end timing describing the causal dependency
between “Sensor” and “Actuator”. The sequence of event chain segments shows the
details of end-to-end timing according to the AUTOSAR timing views. A timing event
chain describes a causal order for a set of functionally dependent timing events. Each
event chain defines at least the relationship between two differing events, its stimulus

2 http://www.event-b.org/index.html.

http://www.event-b.org/index.html

364 P. Iyenghar et al.

Fig. 2. End-to-End timing of a AUTOSAR-based causal event chain [5,17].

and response which describe its start and end point respectively. This means that if the
stimulus event occurs then the response event occurs after. One way to guarantee that
the system meets its timing requirements is to perform pre-run-time analysis of it (e.g.
already during design level), using end-to-end timing analysis. Such analysis can vali-
date the timing requirements without performing exhaustive testing. In [7], methods to
compute end-to-end delays based on different levels of system information is presented
and evaluated in an industrial case study. An evaluation of this work is carried out in
an automotive industrial case study, using a commercial tool chain, Rubus-ICE. Simi-
larly, [24] targets the challenges that are concerned with the unambiguous refinement of
timing requirements, constraints and other timing information among various abstrac-
tion levels. However, the aforementioned works concentrates on usage of EAST-ADL
and Rubus Component Model and does not concentrate on AUTOSAR, AUTOSAR-TE
modeling in UML tool or automated tooling for (end-to-end) timing analysis.

2.3 Model-Based Timing Analysis

The timing behavior specified in the design model can be analyzed using dedicated
timing analysis tools. There are several open source tools such as Cheddar [29] and
MAST [12]. Some popular proprietary timing analysis tools include chronSIM [15],
Gliwa T1. timing suite [11] and Timing Architect [31]. These tools are independent of
the modeling languages used. Therefore, they require the timing specifications to be
in a particular format, although some provide import functions for common modeling
languages. However, the timing analysis carried out in such tools are very late it in the
development process. It is imperative to note that the design errors realised from such
late timing analysis would be costly to fix at a later development stage. Hence, an early
model-based timing analysis is necessary to overcome this drawback.

On the other hand, there is no tool support for automated synthesis and export of
AUTOSAR-based timing analysis model (from AUTOSAR-based application design
model in UML tools) to these timing analysis tools. In the literature, AUTOSAR-TE

Model-Based Timing Analysis of Automotive Use Case Developed in UML 365

were used for a model-based timing analysis in works such as [19] and [28]. Further,
a review of the literature shows that there is no systematic model-based approach for
timing or energy analysis of AUTOSAR-based systems. Except for [18], there exists no
related work on early synthesis of timing models for model-based timing analysis of
AUTOSAR-based systems.

2.4 Research Gap and Challenge

Thus, on examining the related literature and state-of-the-practice tools, it can be stated
that several related work deal with examination of the required timing properties for
end-to-end timing analysis. Many industrial tools implement the end-to-end delay/tim-
ing analysis for event chains. These exist as island solutions without an automated inte-
grated workflow from timing specification in design model to timing analysis. They
further require manual creation and/or export of timing-analysis-model artifacts in the
analysis tool, for timing analysis. Thus, automated timing analysis of AUTOSAR-based
systems described in UML tool [14] in state-of-the-practice timing analysis tool [11,21]
is missing.

3 Early Timing Analysis of Automotive Use Cases Developed
in UML

The proposed workflow for integrating timing requirements in the AUTOSAR-design
model and the automated synthesis of an AUTOSAR-based timing analysis model,
introduced in [18], is shown in Fig. 3 and elabored in brief in this section. It comprises
of the following steps:

Fig. 3. Systematic series of steps for early timing analysis in AUTOSAR-based ESE [17].

1. In the first step (step (a) in Fig. 3), it is considered that an initial AUTOSAR-based
design model of the automotive embedded software application under consideration
is already modeled in an UML/SysML tool [9,14]. Note that step-(a) in Fig. 3 is
applied in an early stage of development process. It involves the specification of the
timing requirements in the AUTOSAR-based design model using AUTOSAR-TE.
The output of this step is a timing annotated AUTOSAR-based design model.

366 P. Iyenghar et al.

2. Based on the input from step-(a) in Fig. 3, given the timing annotated design model
as input, Model-to-Model (M2M) transformations are implemented for extracting
the timing properties. This results in the synthesis of the AUTOSAR-based timing
analysis model (conforming to a generic timing metamodel [18]). Thus, the output
model from step (b) may be exported as shown in step (c) in Fig. 3, for instance in
XML format, to industry standard timing analysis tools [11,31].

3.1 Generic Timing Metamodel

As seen in Fig. 3, a generic timing metamodel comprising a set of timing properties is
required for model transformations in step (b). A generic custom-defined metamodel for
timing analysis of AUTOSAR-models is introduced already in [18]. This is employed
in this paper to synthesize the timing analysis model for AUTOSAR-based embedded
software systems developed using UML/SysML tools. This metamodel bears similarity
to the AUTOSAR metamodel with respect to the software and hardware architecture
elements. It can be termed as a generic metamodel as it closely adheres with the timing
models used in several timing validation tools [11,31]. Please note that in place of the
custom-defined but generic metamodel used in this paper, an open source metamodel
namely, AMALTHEA3, may be employed for M2M related to timing properties.

3.2 Mapping Among Metamodels for Timing Properties

The relevant metamodel elements from the custom-defined intermediate timing-energy
metamodel are mapped to their counterparts in the AUTOSAR-TE metamodel [4] in
step-(c) in Fig. 3. The AUTOSAR Tool Platform4 provides an EMF model, which con-
tains the element names as per specification. An evaluation version of this AUTOSAR
EMF model is used in this paper for mapping the timing metamodel elements to the
AUTOSAR metamodel elements. It is also used as an input metamodel for the auto-
mated model transformations implemented using the Atlas Transformation Language
(ATL) [3].

3.3 Model-to-Model (M2M) Transformations

As seen in Fig. 3, after step (a), a timing annotated AUTOSAR-based design model is
now available in the UML/SysML tool under consideration. It can be exported from the
tool as an ARXML file [4] as input for step (b) in Fig. 3. Note that while employingM2M
transformations, both source and target models must conform with their respective
metamodels. Here the source model is the timing annotated AUTOSAR design model
obtained from the system description specification in the UML/SysML tool in ARXML
format. This conforms with the AUTOSAR metamodel [4]. The target metamodel is
the custom-defined generic timing metamodel. In this work, the ATLAS transformation
language (ATL) [3] is used for implementing the M2M transformations.

3 https://www.eclipse.org/app4mc/.
4 https://www.artop.org/.

https://www.eclipse.org/app4mc/
https://www.artop.org/

Model-Based Timing Analysis of Automotive Use Case Developed in UML 367

The next step after synthesis of timing analysis model in the proposed workflow in
Fig. 3 is the automated export of this model to a state-of-the-art timing analysis tool such
as [15,31] for timing analysis. Note that an importer/exporter framework for this step
(i.e., step (c) in Fig. 3) has already been introduced in [17], therefore it is not discussed
in detail in this book chapter.

4 Autonomous Emergency Braking System (AEBS)

According to German federal statistics5, in 2019 approximately 30% of all road traffic
accidents with personal injury happened in parallel traffic. These accidents comprise of
head-on and rear-end collisions. At high speeds, these collisions get more dangerous,
because of high impact forces. Therefore an early braking in case of an imminent crash
is critical for avoiding casualties. An advanced driver assistance system may help the
driver to reduce the reaction time or to amplify the brakeforce, in order to lower the
speed and thus the kinetic force of the car.

An Autonomous Emergency Braking Systems (AEBSs) that additionally warns the
driver and automatically applies the brakes in emergency situations are available since
2003 [30]. Also, in order to be effective in preventing casualties, these systems need to
react as fast as possible. For instance, a hard deadline on the timing behavior would be
the average reaction time of a human driver. Hence there are strict timing requirements
(e.g. between a stimulus event and a response event, thus representing a causal event
chain) that must be taken into account when developing such systems.

The main purpose of an AEBS is to warn the driver in case of an imminent frontal
collision. This commonly happens through visual and acoustic warning signals as a
first step. The next level of warning is often a tactile warning. The AEBS in cars use
the Time-To-Collision (TTC) value [13,20] to estimate the danger of the situation. It
is defined as the time left until a collision happens, if every object (e.g. both cars)
continues to move at the same speed. To calculate TTC, AEBS needs data such as the
distance to frontal objects (e.g. from radar sensors) and wheel speed sensor input at
certain speed ranges. In this paper, based on the systems used in current automobiles,
a simplified version of an AEBS is modeled as an use case and used for experimental
evaluation.

4.1 Requirements Specification

To have an exact description of the functionality provided by AEBS, several Functional
(FR) and Non-Functional Requirements (NFR) were implemented for this use case.
They are elaborated below:

5 https://www.destatis.de/.

https://www.destatis.de/

368 P. Iyenghar et al.

Functional Requirements (FR)

FR 1 The Assistant Shall Support the Driver in Avoiding Frontal Collision. By
reducing the driver’s reaction time and supporting the driver in emergency brake
situations, the chance of a frontal collision while driving shall be mitigated.

FR 2 The System needs Constant Information about the Car’s Speed. In order to
deactivate the system at low speed conditions, information about the car’s speed is
needed constantly.

FR 3 The Distance to the Next Car in the Same Lane Shall be Measured Con-
stantly. The distance to the next car is needed to determine an imminent collision.
If it is measured constantly, the relative speed of a preceding object and thus the
TTC can be calculated from consecutive measurements.

FR 4 The Assistant Shall Prepare the Brake System when TTC falls below 6s. To
reduce the response time of a possible brake application, the brake system can be
pre-filled by increasing the hydraulic pressure and bringing the brake pads closer to
the brake discs. Additionally, the brake force is increased according to the danger
of the situation, if the driver applies the brakes too hesitantly.

FR 5 The Assistant Shall Warn the Driver when the TTC falls below 5 Seconds:
Before intervening with an autonomous braking, the assistant needs to warn the
driver in multiple stages of the imminent danger, so that the driver can react appro-
priately. These stages are entered consecutively with decreasing TTC.
FR 5.1 Visual: Warning Light (TTC = 5s) A warning lamp or warning icon in

the instrument cluster or head-up display shall provide a first visual warning.
FR 5.2 Accoustic: Warning Sound (TTC = 4s): An audible signal shall provide

a second warning.
FR 5.3 Tactile: Warning Jolt (TTC = 3s): A warning jolt shall precede initiation

of a full brake.
FR 6 The Assistant Shall Engage an Emergency Braking when the TTC falls

below 1.5 Seconds: If the system determines that it is too late to avoid a colli-
sion, an emergency braking is engaged autonomously to reduce the car’s remaining
speed and thus weaken the impact force.

Non-functional Timing Requirements. The following presents a list of non-
functional timing requirements of the AEBS, which are later validated using the pro-
posed approach in Sect. 7.

NFR 1 The System must Estimate the TTC every 50 ms. The AEBS needs to esti-
mate the danger of the situation with a period of 50ms. This is to make sure that
the need to brake is recognized sufficiently fast.

NFR 2 The Relative Speed of the Next Car must be Calculated every 50 ms. After
the distance values have been filtered, the relative speed of the next car must be
calculated from consecutive measurements every 50ms.

NFR 3 The Speed of the Car must be Sampled every 10 ms. In order to average
multiple speed sensor values, the speed of the car must be read every 10ms and
provided to the system every 50ms after sensor noise has been filtered out.

Model-Based Timing Analysis of Automotive Use Case Developed in UML 369

NFR 4 The Distance to the Next Car must be Sampled every 10 ms. In order to
average multiple distance sensor values, the distance to the next car must be read
every 10ms and provided to the system every 50ms after sensor noise has been
filtered out.

NFR 5 The Load on the ECU Processing Cores must Not Exceed 80%. In order
to reserve some processing resources as a buffer (e.g., for future software updates
or a performance decrease over time), the AEBS must not occupy its processing
resources more than 80% of the time.

NFR 6 New Sensor Data must Influence the TTC Computation after a Maximum
Delay of 200 ms. The system needs to react fast to sudden speed changes, so the
end-to-end response time from sensor measurements to a reaction needs to be below
200ms.

4.2 Control Flow

The AEBS use case is connected to sensors such as speed and radar sensors and actua-
tors such as the warning LED, speaker and brakes via a software interface. Thus infor-
mation such as the speed of the car in ms−1 (from wheel speed sensor), distance in m
and relative speed in ms−1 (from radar sensor) are provided as inputs to the AEBS
system. The system is connected to the output actuators such as, Warning LED (with
on/off state), speaker (with the ability to create an acoustic warning signal) and brakes
(need to have a preparation, warning brake and an emergency brake functionality) for
respective output action.

Fig. 4. Control flow and modules of the AEBS [17].

The AEBS basic control flow shown in Fig. 4 illustrates the aforementioned sensors
and actuators as system input and output, as well as the AEBS modules. The sensor val-
ues are both processed by filter modules (Speed filter andDistance filter), which retrieve
them periodically, filter outliers and smooth the sensor noise. The distance information
from the radar sensor is then further processed by the Obstacle location module. It

370 P. Iyenghar et al.

stores the filtered distance values of consecutive measurements and calculates the rela-
tive speed of a proceeding car from the change of distance over time. These values are
used in the Collision detection module, to estimate the TTC. If the filtered speed sensor
value is above a certain threshold, indicating a normal driving state, the TTC is sent to
the Driver warning module. This triggers different stages of warnings, depending on
the criticality of the TTC value, or sets off an emergency braking as last resort respec-
tively. If the warning measures are successful and the TTC rises above the thresholds
again, the corresponding warnings are cancelled.

4.3 Timing Behavior

In order to perform a timing analysis of the AEBS and verify the results against the
timing requirements from Sect. 4.1, the timing behavior of the AEBS has to be captured.
Anssi et. al. [2] identify a basic set of features necessary for a scheduling analysis of
system models:

– Execution/transmission time for functions/messages
– Activation patterns for functions
– Function/end-to-end deadlines
– Processor scheduler
– Task type/priority
– Allocation of functions to tasks
– Allocation of tasks to processors

Thus, for a scheduling analysis of the AEBS, a more detailed division of the modules
in functions and a specification of their Core Execution Time (CET) is needed. The
functions also need to be allocated to fixed priority tasks, which in turn are allocated to
processing cores.

Fig. 5. AEBS architecture and end-to-end execution path [17].

This detailed architecture of the AEBS can be seen in Fig. 5. The system is dis-
tributed over two processing cores on one ECU. The ECU Core 2 is responsible for

Model-Based Timing Analysis of Automotive Use Case Developed in UML 371

handling the sensor tasks, which consist of a function for retrieving the data (getSpeed,
getDistance) and filtering/sending the data (sendSpeed, sendDistance). The ECU Core
1 handles the ObstacleTask and SystemTask, which handle the tracking of obstacles and
calculating/checking the TTC value. The complete end-to-end flow of the system, from
sensor input to possible actuator output, is depicted by the arrow function path.

Table 1 lists the detailed timing properties of the functions and tasks. It shows the
guaranteed minimum and maximum CET of the functions, which can be obtained using
experience values or independent run-time measurements of already implemented func-
tions. The periodic activation of the functions is taken from the timing requirements and
they are grouped into fixed priority tasks, responsible for the function execution. The
priority values are assigned depending on the importance of the task, where higher val-
ues correspond to more important tasks. For example, the RadarTask has a higher pri-
ority than the SpeedTask, because the distance values are used for the decision whether
an emergency brake is needed.

5 AUTOSAR Model of AEBS Use Case

Based on the control flow in Fig. 4 and the architecture in Fig. 5, the AUTOSAR-based
system description of the AEBS is elaborated in detail in this section. The AUTOSAR-
based design of the AEBS use case is modeled using a state-of-the-practice MDD tool
in automotive industry, namely IBM Rational Rhapsody Developer [14]. As the tool
is originally UML-based, the AUTOSAR model is also stored as a stereotyped UML
model in the background. There is, however, a dedicated perspective that abstracts from
the UML concepts and provides graphical AUTOSAR modeling elements, correspond-
ing to the representation in the AUTOSAR specification [6]. The first step is to define
the software components the system is composed of, which is described in Sect. 5.1.
Next, the internal behavior of the components is defined and described in Sect. 5.2.
Section 5.3 gives an overview of the software composition and Sect. 5.4 shows a map-
ping of the software components to ECUs. Section 5.5 describes the system mapping
and root software composition. Finally, the timing annotation of the design model and
task configuration are described in Sects. 5.6 and 5.7.

Table 1. Timing behavior of system functions [17].

Module Function min–max CET (ms) Period (ms) Task Task priority

Speed filter getSpeed 1–2 10 SpeedTask 0

sendSpeed 4–6 50

Distance filter getDistance 1–2 10 RadarTask 1

sendDistance 4–6 50

Obstacle location trackObstacles 6–10 50 ObstacleTask 2

Collision detection timeToCollision 5–7 50 SystemTask 5

Driver warning checkTTC 3–5 50

372 P. Iyenghar et al.

5.1 Software Components

This subsection describes the software components of the AEBS model. For every mod-
ule of the AEBS group in the control flow diagram (see Fig. 4) there is a software com-
ponent created in the AUTOSAR model. Figure 6 shows the software component dia-
gram in Rhapsody. The sensor filter modules on the left-hand side are modeled as Sen-
sorActuatorSwComponentTypes. They have client ports (speedSensorPort, radarSen-
sorPort) to be able to connect to the corresponding sensors. These ports are typed by
ClientServerInterfaces that provide an operation for retrieving the sensor value. This is
illustrated by the association between the ports and the interfaces, which is stereotyped
as a portType. The rest of the modules are modeled as ApplicationSwComponentTypes,
as they do not directly represent a sensor or an actuator.

CollisionDetection
«ApplicationSwComponentType»

obsPort:IfObstacles

speedPort:IfSpeed
TTCPort:IfTTC

obsPort:IfObstacles

speedPort:IfSpeed
TTCPort:IfTTC

ObstacleLocation
«ApplicationSwComponentType»

distPort:IfDistance

obsPort:IfObstacles

distPort:IfDistance

obsPort:IfObstacles

DriverWarning
«ApplicationSwComponentType»

brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC
brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC

SpeedFilter
«SensorActuatorSwComponentType»

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

DistanceFilter
«SensorActuatorSwComponentType»

radarSensorPort:IfRadarSensor

distPort:IfDistance

radarSensorPort:IfRadarSensor

distPort:IfDistance

IfTTC
«SenderReceiverInterface»

«dataElement» ttc:int

IfLED
«ClientServerInterface»

«ClientServerOperation» setLight(on:Boolean):void

IfSpeaker
«ClientServerInterface»

«ClientServerOperation» playWarningSound():void

IfBrake
«ClientServerInterface»

«ClientServerOperation» emergencyBrake():void
«ClientServerOperation» prepareBrake():void
«ClientServerOperation» releaseBrake():void
«ClientServerOperation» warningBrake():void

IfSpeedSensor
«ClientServerInterface»

«ClientServerOperation» getSensorValue():int

IfRadarSensor
«ClientServerInterface»

«ClientServerOperation» getSensorValue():int

IfSpeed
«SenderReceiverInterface»

«dataElement» speed:int

IfDistance
«SenderReceiverInterface»

«dataElement» distance:int

IfObstacles
«SenderReceiverInterface»

«dataElement» obstacles:list

Fig. 6. AEBS software components [17].

The communication between the sensor filters and the CollisionDetection and
ObstacleLocation components happens through sender/receiver ports. The filtered
dataElements get sent to the processing components. Equally, the ObstacleLocation
sends a list of obstacles (comprising of distance and relative speed) to the CollisionDe-
tection. Note that in this simplified AEBS use case, only one obstacle will be tracked.
But in case multiple radar sensors in different angles are attached to the car and used
as input, the system would be able to track multiple obstacles, e.g. in different driv-
ing lanes. The communication between CollisionDetection and DriverWarning is also
typed as sender/receiver and the corresponding dataElement is the TTC value.

In the end, the DriverWarning component is connected by client ports (ledPort,
speakerPort and brakePort) to the three actuators. The corresponding interfaces pro-
vide the necessary operations for the different levels of driver warning, e.g., setting the
warning LED light status (setLight), playing a warning sound (playWarningSound) or
performing an emergency brake (emergencyBrake).

Model-Based Timing Analysis of Automotive Use Case Developed in UML 373

5.2 Internal Behavior

To further specify the functionality and behavior of the software components described
in Sect. 5.1, AUTOSAR uses SwcInternalBehavior elements contained in the compo-
nents. These are modeled as internal behavior diagrams in [14] for the AEBS use case.

Application::SoftwareComponents::SpeedFilter
«SensorActuatorSwComponentType»

IBSpeedFilter
1 «SwcInternalBehavior»

getSpeed
1 «RunnableEntity»

getSensorValue

«SynchronousServerCallPoint»

sendSpeed
1 «RunnableEntity»

writeSpeed

«dataWriteAccess»

timingEventSendSpeed

«TimingEvent»

«l_startOnEvent»

timingEventGetSpeed

«TimingEvent»

«l_startOnEvent»

speedSensorPort:IfSpeedSensor speedPort:IfSpeed

«SynchronousServerCallPoint»

getSensorValue

writeSpeed

«dataWriteAccess»

«TimingEvent»

timingEventSendSpeed

timingEventGetSpeed

«TimingEvent»

speedSensorPort:IfSpeedSensor speedPort:IfSpeed

Application::SoftwareComponents::DistanceFilter
«SensorActuatorSwComponentType»

IBDistanceFilter
1 «SwcInternalBehavior»

getDistance
1 «RunnableEntity»

getSensorValue

«SynchronousServerCallPoint»

sendDistance
1 «RunnableEntity»

writeDistance

«dataWriteAccess»

timingEventSendDistance

«TimingEvent»

«l_startOnEvent»

timingEventGetDistance

«TimingEvent»

«l_startOnEvent»

radarSensorPort:IfRadarSensor distPort:IfDistance

«SynchronousServerCallPoint»

getSensorValue

writeDistance

«dataWriteAccess»

timingEventSendDistance

«TimingEvent»

«TimingEvent»

timingEventGetDistance

radarSensorPort:IfRadarSensor distPort:IfDistance

Fig. 7. Internal behavior of sensor filters (speed and distance) software components.

Sensor Filters: The SpeedFilter and DistanceFilter software components have a simi-
lar internal behavior as can be seen in Fig. 7(a) and (b). Both feature two RunnableEn-
tities: getSpeed and sendSpeed, or getDistance and sendDistance respectively.

The respective get-operation is supposed to call the ClientServerOperation getSen-
sorValue of the corresponding sensor client port (radarSensorPort or speedSensorPort),
which is to be implemented by the sensor, to retrieve the sensor value and store it
in a fixed-size FIFO queue. Hence a SynchronousServerCallPoint assigned to these
runnables that link to the corresponding operation of the client/server interface (IfSpeed-
Sensor or IfRadarSensor).

The respective send-operation is supposed to apply a filter to the queue of sensor-
values and send the filtered value to the corresponding sender port (speedPort or dist-
Port). Therefore, these runnables are assigned a dataWriteAccess linking to the dataEle-
ments of the corresponding sender/receiver interface (IfSpeed or IfDistance) for implicit
sending of the sensor value.

All runnable entities are triggered by periodic TimingEvents, linked to the runnables
by the l startOnEvent association. The getSpeed and getDistance runnables are trig-
gered every 10ms. On the other hand, the sendSpeed and sendDistance runnables are
triggered every 50ms, so as to provide enough distinct measurements for the filter
algorithm.

Obstacle Location: The internal behavior of the ObstacleLocation software compo-
nent is shown in the first figure in Fig. 8. It contains the RunnableEntity trackObstacles
that reads the latest distance value from the distPort and stores it in an obstacle object.

374 P. Iyenghar et al.

The read access is made possible by adding a dataReadAccess to the runnable and link-
ing it to the dataElement distance of the distPort. By comparing the new distance value
to the previously stored value, the runnable entity also calculates the relative speed of
the obstacle and stores it in the same object. Finally, by specifying a dataWriteAccess
linking to the obstacles list of obsPort, the obstacle object is sent implicitly through this
port. This behavior is triggered every 50ms by a periodic TimingEvent.

Application::SoftwareComponents::ObstacleLocation
«ApplicationSwComponentType»

IBObstacleLocation
1 «SwcInternalBehavior»

trackObstacles
1 «RunnableEntity»

readDistance

«dataReadAccess»

writeObstacles

«dataWriteAccess»

timingEventTrackObstacles

«TimingEvent»

«l_startOnEvent»

distPort:IfDistance obsPort:IfObstacles

«dataReadAccess»

readDistance writeObstacles

«dataWriteAccess»

«TimingEvent»

timingEventTrackObstacles

distPort:IfDistance obsPort:IfObstacles

Application::SoftwareComponents::CollisionDetection
«ApplicationSwComponentType»

IBCollisionDetection
1 «SwcInternalBehavior»

timeToCollision
1 «RunnableEntity»

readSpeed

«dataReadAccess»

readObstacles

«dataReadAccess»

writeTTC

«dataWriteAccess»

timingEventDetection

«TimingEvent»

«l_startOnEvent»

obsPort:IfObstacles speedPort:IfSpeed TTCPort:IfTTC

readSpeed

«dataReadAccess»

readObstacles

«dataReadAccess»

writeTTC

«dataWriteAccess»

timingEventDetection

«TimingEvent»

obsPort:IfObstacles speedPort:IfSpeed TTCPort:IfTTC

Fig. 8. Internal behavior of ObstacleLocation & CollisionDetection software component.

Collision Detection: The internal behavior of the CollisionDetection software com-
ponent is shown in Fig. 8. It contains one RunnableEntity timeToCollision that calcu-
lates the TTC value and is invoked by a periodic TimingEvent every 50ms. It has two
dataReadAccess elements linked to the speed value of the speedPort and the obstacle
list of the obsPort. If the speed value is too low, the operation stops at this point. Oth-
erwise, the TTC is computed using the values of the obstacle object. This TTC value
is afterwards implicitly sent through the TTCPort, which is linked by the dataWriteAc-
cess element of the runnable entity. Please note that due to space limitations, the internal
behavior of the driver warning software component is not described in detail here.

5.3 Software Composition

After the software component types and their internal behavior are defined, they are
instantiated by SwComponentPrototypes and aggregated in a top-level Composition-
SwComponentType shown in Fig. 9.

The corresponding prototype ports of the same interface are linked by
AssemblySwConnectors (e.g. speedPort of speedFilter to speedPort of collisionDetec-
tion) to express the data flow between those prototypes. The sensor and actuator client
ports (radarSensorPort, ledPort, etc.) are connected by DelegationSwConnectors to
corresponding client ports on the top-level software composition. This highlights the
external communication of the prototypes with the sensors and actuators. As the AEB-
SComposition is the top-most composition, it represents the system boundary of the
AEBS. The outgoing ports are thus also the system interface to the AEBS.

Model-Based Timing Analysis of Automotive Use Case Developed in UML 375

AEBSComposition
«CompositionSwComponentType»

collisionDetection:CollisionDetection
1 «SwComponentPrototype,Application

SwComponentType»

obsPort:IfObstacles

speedPort:IfSpeed TTCPort:IfTTC

driverWarning:DriverWarning
1 «SwComponentPrototype,Application

SwComponentType»

brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC

obstacleLocation:ObstacleLocation

1 «SwComponentPrototype,Application
SwComponentType»

distPort:IfDistance

obsPort:IfObstacles

speedFilter:SpeedFilter

1 «SwComponentPrototype,Sensor
ActuatorSwComponentType»

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

distanceFilter:DistanceFilter

1 «SwComponentPrototype,Sensor
ActuatorSwComponentType»

radarSensorPort:IfRadarSensor

distPort:IfDistance

radarSensorPort:IfRadarSensor

speedSensorPort:IfSpeedSensor

brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

obsPort:IfObstacles

speedPort:IfSpeed TTCPort:IfTTC

brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC

distPort:IfDistance

obsPort:IfObstacles

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

radarSensorPort:IfRadarSensor

distPort:IfDistance

radarSensorPort:IfRadarSensor

speedSensorPort:IfSpeedSensor

brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

Fig. 9. Top-level software composition of the AEBS.

5.4 ECU Description

So far in this example, the AUTOSAR model is independent of the underlying hard-
ware. But in order to conduct a timing analysis, information about the number of avail-
able ECUs and their processing units is needed. Every software component prototype
can only be mapped to one ECU processing core and executes on this core only. Thus,
it can make a difference in the system timing behavior, if the number of cores or the
distribution of prototypes to cores changes.

Fig. 10. ECU diagram of hardware elements.

The hardware architecture can be specified in Rhapsody using ECU diagrams.
Figure 10 shows the hardware architecture of the AEBS use case. ECUs and their pro-
cessing cores are modeled using HwElements of specific HwCategories. For example,
the ECU1 is linked to the categoryMicroController with the l hwCategory association.
The processing cores, Core1 and Core2, are contained in the ECU and linked to the
category ProcessingUnit. The mapping of software component prototypes is part of the
system mapping described in the following subsection.

5.5 System Description

The top level software composition of the AEBS from Sect. 5.3 is associated to a System
element as the rootSoftwareComposition. Normally, the root composition would com-
prise of every subordinate composition and software components of the whole vehicle.

376 P. Iyenghar et al.

Fig. 11. System diagram containing system mapping & root software composition [17].

This means that every software subsystem (e.g. the AEBS) would be connected to the
other subsystems in a nested software composition. But as this use case concentrates on
the timing behavior of the AEBS, it can be viewed independent of the other subsystems.
Thus, the root composition of the system is the top-level composition of the AEBS.

The corresponding system diagram is shown in Fig. 11. It also contains a Sys-
temMapping element, which maps the software components to ECUs or to ECU cores
respectively. The mapping is necessary for conducting a timing analysis, because it also
maps the runnables of the software component’s internal behavior to an ECU or an ECU
core respectively and indicates, which function will be executed on which processing
unit later on.

In the system mapping, for every processing core, a swMapping element linking to
the corresponding hwElement from the ECU diagram with l processingUnit is created.
Then, for every software component prototype, a swMapping that links to the core map-
pings with l mappingElement is created. These prototype mapping elements reference
the component prototypes with their tagged value component.

5.6 Timing Attributes

The timing descriptions and constraints of the AEBS, specified as the timing behavior
in Sect. 4.3, are added to the model with the help of AUTOSAR-TE.

Figure 12 shows one such diagram with a latency constraint for the checkTTC
runnable entity of the DriverWarning software component. An SwcTiming is cre-
ated for each software component in the AEBS, which link to the component’s
internal behavior with the l behavior association. Inside these elements, two TD-
EventSwcInternalBehaviors are defined for each runnable entity (in this case, checkTTC
of IBDriverWarning).

The first event highlights the activation of the runnable, while the second highlights
the termination. This is defined by setting the tag tdEventSwcInternalBehaviorType of

Model-Based Timing Analysis of Automotive Use Case Developed in UML 377

DriverWarningTiming
«SwcTiming»

checkTTCActivated
«TDEventSwcInternalBehavior»

checkTTCTerminated
«TDEventSwcInternalBehavior»checkTTCLatencyConstraint

«LatencyTimingConstraint,role_timingGuarantee»

minLatency
«minimum»

cseCode:CseCodeType=3
cseCodeFactor:RhpInteger=3

maxLatency
«maximum»

cseCode:CseCodeType=3
cseCodeFactor:RhpInteger=5

checkTTCEventChain
«TimingDescriptionEventChain»

«l_response»«l_stimulus»

«l_scope»

Application::SoftwareComponents::DriverWarning::IBDriverWarning
1 «SwcInternalBehavior»

checkTTC
1 «RunnableEntity»

«l_runnable» «l_runnable»

«l_behavior»

Fig. 12. Timing attributes for the checkTTC runnable entity [17].

the timing event to either runnableEntityActivated or runnableEntityTerminated. Both
these events are used to form a TimingDescriptionEventChain, in which the event chain
stimulus is the runnable activation and the event chain response is the runnable termi-
nation.

Finally, the core execution time of the runnable checkTTC is specified by the
checkTTCLatencyConstraint that links to its event chain with l scope. The role timing
Guarantee stereotype declares that this constraint is the expected execution time instead
of a requirement (role timingRequirement). The related timing information can be given
as maximum and minimum execution time and is specified by ASAM-CSE6 codes. The
cseCode specifies the time base (e.g., 2 = 100µs, 3 = 1ms and 4 = 10ms) and
the cseCodeFactor determines an integer scaling factor. Thus, in this case, the exe-
cution time of the checkTTC runnable entity lies between 3ms and 5ms. Note that
every runnable entity in the model is similarly specified with their respective timing
requirements.

Causal Event Chain Example: Given the timing annotated AUTOSAR-design model,
the time critical path of AEBS system is identified. Let us consider NRF 6 which states
that, new sensor data must influence the TTC computation after a maximum delay of
200ms. Thereby, the system needs to react fast to sudden speed changes, so the end-to-
end response time (delay) from sensor measurements to a reaction needs to be below
200 ms. The end-to-end flow of the AEBS system Fig. 4, from sensor input to possi-
ble actuator output, in which the NRF 6 needs to be satisfied, is an example of a causal
event chain. This is referred hereafter as systemEventChain:. It is depicted by the func-
tion path in Fig. 5, namely getSpeed → sendSpeed → getDistance → sendDistance
→ trackObstacles → timeToCollision → checkTTC. This describes the time critical
path between the event requesting the speed of the vehicle (stimulus) and the event mak-
ing available the determined TTC value (response).

During timing modeling, this event chain is modeled as an end-to-end execution
path through the system. As this path spans over runnables from different software

6 https://www.asam.net/.

https://www.asam.net/

378 P. Iyenghar et al.

components, it does not belong to a specific SwcTiming. Thus, a VfbTiming element is
created to contain the execution path event chain. It comprises of a sequence of runnable
event chains (e.g. the checkTTCEventChain in Fig. 12) to highlight the execution path
of runnable entities.

5.7 Task Configuration for Timing Analysis

Tasks are added to the model as part of the ECU configuration. There are four tasks
specified in the AEBS. Two sensor tasks, SpeedTask and RadarTask, ObstacleTask
for the ObstacleLocation component and SystemTask for the CollisionDetection and
DriverWarning components. Every task is provided with a fixed OsTaskPriority, where
higher values indicate a more important task, and an OsTaskSchedule parameter, which
indicates if the task is preemptible or not.

Table 2. Task properties and mapped runnable entities [17].

Task Priority Period Preemptible Runnable entities

SpeedTask 0 10ms Yes getSpeed

sendSpeed

RadarTask 1 10ms Yes getDistance

sendDistance

ObstacleTask 2 50ms Yes trackObstacles

SystemTask 5 50ms Yes timeToCollision

checkTTC

To annotate the period of the tasks, an OsCounter is first added to the model, which
provides an OsSecondsPerTick value of 0.001s/tick or 1ms/tick. This counter is refer-
enced in OsAlarms that are added for each task and specify at which counter value the
task will be executed, which corresponds to the period of the task. For example, the
obstacle task has an OsAlarmCycleTime of 50ticks. This means, after a counter cycle
time of 50ticks∗ 1ms/tick = 50ms the task will be triggered. Finally, the runnables of
the software components need to be mapped to the tasks. This happens by linking the
RTEEvent activating the runnable entity (see Sect. 5.2) to the OsTask with an RteEvent-
ToTaskMapping in the RteSwComponentInstance parameter container, belonging to the
Rte configuration module. In this mapping, the position of the runnable in the task can
also be specified. The respective task properties and the mapping of runnables to tasks
in their specified order are shown in Table 2. At this point, there is sufficient information
contained in the model, to analyze the timing behavior of the AEBS. The model is now
exported from the UML representation in the UML tool to an interchangeable ARXML
file [6].

Model-Based Timing Analysis of Automotive Use Case Developed in UML 379

6 Model-to-Model (M2M) Transformations

A general outline of the transformations were provided in [17]. In this book chapter, an
elaborate description of the transformations (in line with novelties listed in Sect. 1.3)
and their performance attributes are discussed. The generic M2M transformations are
implemented in an ATL module, autosar2Timing.atl. It can be applied to any use case
(e.g. AEBS) which satisfies the source and target model criteria as in the workflow in
Fig. 3. In this autosar2Timing.atl module, there are 9 matched rules for all conditional
mappings and 8 lazy rules for all unconditional mappings. In addition, 15 helpers are
implemented which may be invoked by the transformation rules. An example for each
type of rule (matched and lazy) and helper, from the prototype implementation of the
M2M transformations in autosar2Timing.atl is described below.

6.1 Matched Rule

A simple example of an ATL matched rule is shown in Listing 1.1. The rules consist of
a source pattern in the from section and a target pattern in the to section. The source
pattern specifies the type of the source model element to be matched and the target
pattern contains the output model element that will be created by the transformation
for each source element. In the ATL module autosar2Timing.atl, for synthesis of timing
analysis models, the matched rules are used for source elements such as model, package,
classes and for the elements with applied stereotypes from AUTOSAR profile [17].

Listing 1.1. An example of an ATL matched rule.

1 -- @atlcompiler emftvm
2 -- @path Timing=/de.uos.te.model/model/timing.ecore
3 -- @nsURI UML=http://www.eclipse.org/uml2/5.0.0/UML
4 -- @nsURI AR=http://autosar.org/schema/r4.0/autosar40
5 module autosar2Timing;
6 create OUT: Timing, from IN : AR
7 rule AtomicSWC2SWComponent extends
8 Identifiable2ICATObject{
9 from
10 input : AR!AtomicSwComponentType
11 to
12 output : Timing!SoftwareComponent(
13 runnables <- input.internalBehaviors
14 ->collect(ib | ib.runnables)
15 -> flatten())}

In Listing 1.1, the various paths of the metamodels invoked in the ATL mod-
ule are specified in lines 2–4. The AtomicSWC2SWComponent rule extends the
parent rule Identifiable2ICATObject and thus, its target pattern is inherited.
This means that, the target element SoftwareComponent automatically receives
the name and description attributes from parent rule (i.e., Identifiable2ICAT-
Object-not listed here). In this matched rule (lines 7–12), a software component in the
source AUTOSAR (meta) model (AR!AtomicSwComponentType) is matched to a
target software component element (Timing!SoftwareComponent) in the timing
(meta) model. Thereby, an instance of the target element (i.e., a software component
corresponding to the timing analysis metamodel) is created. As the above output is a

380 P. Iyenghar et al.

two-dimensional list, the flatten operation (lines 13–15) ensures that a list directly
containing the runnables is returned and assigned to the runnables attribute.

6.2 Lazy Rule

Lazy rules are used for source elements that satisfy specific conditions and must be
called explicitly for creating target elements. Listing 1.2 shows an example of an ATL
lazy rule which is used to create a timeValue from a Real number. It may be recalled
that the time values are specified in the tag values of the respective AUTOSAR stereo-
type (cf. Sect. 5.6). The ATL rule in Listing 1.2 converts this specified time value from
a real number to a corresponding model element timeValue in the generic meta-
model.

Listing 1.2. An example of an ATL Lazy rule.

1 lazy rule createTimeValue {
2 from
3 input : Real
4 to
5 output : Timing!TimeValue (
6 unit <- #ms, value <- input) }

6.3 Helpers

Helpers can be used to define (global) variables and functions. Some examples of
include setter(), getter()methods and functions to resolve attributes involving repetitive
pieces of code in one place (e.g. resolving metric units). Helper functions are Object
Constraint Language (OCL) [26] expressions. They can call each other by recursion or
they can be called from within rules.

Listing 1.3. An example of an ATL Helper.

1 helper context AR!TimingDescriptionEventChain def:
2 getNestedRunnables() : Sequence(AR!RunnableEntity) =
3 if not self.hasPathElements() then
4 if self.isRunnableEventChain() then
5 if self.isActivatedToTerminated() then
6 self.getRunnable()
7 else Sequence{}
8 endif
9 else Sequence{}
10 endif
11 else
12 self.segments->collect(s | s.getNestedRunnables()).flatten()
13 endif;

Listing 1.3 provides an example of a helper to obtain the sequence runnables in
an event chain. It may be recalled that an example of an AUTOSAR-based causal event
chain for our AEBS use case, namely systemEventChain is described in Sect. 5.6. Invok-
ing helper in Listing 1.3 for the above examples provides the output with the set of
runnables in the event chain, i.e., a sequence with runnables getSpeed, sendSpeed, get-
Distance, sendDistance, trackObstacles, timeToCollision and checkTTC.

Model-Based Timing Analysis of Automotive Use Case Developed in UML 381

6.4 Synthesis of Timing Analysis Model

The synthesized AUTOSAR-timing analysis model of the AEBS use case is shown in
Fig. 13.

Fig. 13. Synthesized timing model of AEBS use case [17].

The necessary elements for a timing analysis were extracted from the AUTOSAR
design model annotated with timing properties (cf. Fig. 6, 12). As seen in Fig. 13, the
AEBS model is structured by different Packages and the System element contains the
complete software and hardware elements in a hierarchy. For example, the runnable
timeToCollision with its corresponding execution time can be seen, allocated to the
SystemTask, which is in turn allocated to Core1 of the ECU. The execution path sys-
temEventChain in Fig. 13 is the causal event chain systemEventChain described in
Sect. 5.6.

Note that the resulting timing analysis model is automatically exported to the tim-
ing analysis tool SymTA/S [21] for a detailed timing analysis, including end-to-end
timing analysis. This is carried out using an importer/exporter tool framework which is
described in [17], thus not detailed in this book chapter. If the import was successful,
a new project is created with the corresponding elements from the timing model in the
SymTA/S representation. The same elements from the timing model, annotated with
timing properties, are now available inside the timing analysis tool.

7 Results of the Timing Analysis

Once the timing model (from Sect. 3.3) is exported to SymTA/S, timing analysis can
be carried out and results can be visualized graphically in the tool. For the AEBS use

382 P. Iyenghar et al.

Fig. 14. (a) Worst case load of processing cores 1 & 2 (b) Exemplary task scheduling for sys-
tem distribution analysis and (c) Worst case response time for the causal event chain syste-
mEventChain modeled in use case (ref. Sect. 5.6) [17].

case, the results from processor utilization analysis, worst-case scheduling analysis and
end-to-end latency analysis are described below.

Figure 14(a) shows the worst case processor workload as pie charts for processing
cores 1 and 2. It is seen that, even in the worst case, the system is schedulable and
both cores still have resources left (56% idle time for core1 and 36% idle time for core
2). Thus, the timing requirement NRF 5 in Sect. 4.1 is satisfied for this set of function
execution times.

Model-Based Timing Analysis of Automotive Use Case Developed in UML 383

The detailed scheduling of the AEBS tasks for the cores is seen in a Gantt chart by
Fig. 14-(b). It provides an exemplary iteration of the system distribution analysis. The
upper half shows the scheduling of Core2 and the lower one shows the scheduling of
Core1, which are independent of each other. Each task has different activation periods
and priorities and executes a set of runnables, which are depicted as blocks on the
timeline. If a task is preempted, e.g., because of a higher priority task, this is expressed
by a yellow backdrop in the timeline.

As seen in Fig. 14(b), the SpeedTask tries to execute the getSpeed runnable every
10ms. But as the RadarTask also executes its getDistance function every 10ms and has
a higher priority this is delayed until the end of the RadarTask execution. The same
applies for the sendSpeed operation, which is to be executed every 50ms, but has to
wait for the sendDistance operation. Thus, this provides an extensive overview of the
possible scheduling behavior of the software system. It also confirms that the ECU will
be able to schedule the system and obstacle tasks every 50ms, and the sensor tasks every
10ms. Hence, the timing requirements NRF 1 to NRF 4 from Sect. 4.1 are satisfied.

The worst case response times for end-to-end execution paths as evaluated during
timing analysis is shown in Fig. 14(c). It shows the systemEventChain as specified in the
AUTOSAR model in a Gantt chart. The runnables of the AEBS contained in the event
chain are executed consecutively. This leads to a worst case response time of 122ms,
which satisfies the system end-to-end path timing requirement NRF 6 from Sect. 4.1.

8 Conclusions

The work presented in this book chapter brings us one step closer to the goal of devel-
oping a seamless tool chain for AUTOSAR-based development of embedded systems
in industry standard UML modeling tools and support for early timing analysis in state-
of-the-practice timing analysis tools.

Some future directions include (a) investigating how the results from timing analy-
sis tool could be back-annotated to the AUTOSAR model and modeling tools, thereby
presenting it to the user/developer for an automatic verification of timing requirements,
(b) AUTOSAR-based design and timing modeling of distributed ECU (software) and
their timing analysis employing the proposed approach and (c) integrated timing and
safety (ISO26262) analysis of AUTOSAR-based systems developed in UML.

Acknowledgements. This work is supported by grants ZF4447201BZ7 and KF2312004KM4
from BMWi-ZIM co-operation, Germany.

References

1. Anssi, S., Gérard, S., Kuntz, S., Terrier, F.: AUTOSAR vs. MARTE for enabling timing
analysis of automotive applications. In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083,
pp. 262–275. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25264-8 20

2. Anssi, S., Tucci-Piergiovanni, S., Kuntz, S., Gérard, S., Terrier, F.: Enabling scheduling anal-
ysis for AUTOSAR systems. In: ISORC 2011, pp. 152–159. IEEE (2011)

3. Atlas Transformation Language (ATL) Technology. https://www.eclipse.org/atl/. Accessed
20 June 2020

https://doi.org/10.1007/978-3-642-25264-8_20
https://www.eclipse.org/atl/

384 P. Iyenghar et al.

4. Automotive Open System Architecture. http://www.autosar.org/. Accessed 16 June 2020
5. AUTOSAR: Specification of timing extensions (2017). https://www.autosar.org/fileadmin/

user upload/standards/classic/4-3/AUTOSAR TPS TimingExtensions.pdf. Accessed Jan
2020

6. AUTOSAR: Release 4.4.0: Methodology and templates (2018). https://www.autosar.org/
standards/classic-platform/classic-platform-440/. Accessed Nov 2019

7. Becker, M., Dasari, D., Mubeen, S., Behnam, M., Nolte, T.: End-to-end timing analysis of
cause-effect chains in automotive embedded systems. J. Syst. Archit. 80, 104–113 (2017)

8. Bhasker, J.: A SystemC Primer. Star Galaxy (2010)
9. Enterprise Architect tool. http://www.sparxsystems.com/. Accessed 25 June 2020
10. Ficek, C., Feiertag, N., Richter, K., Jersak, M.: Applying the AUTOSAR timing protection

to build safe and efficient ISO 26262 mixed-criticality systems. In: Proceedings of ERTS
(2012)

11. GLIWA Embedded Systems-Timing suite T1. https://www.gliwa.com/. Accessed 20 June
2020

12. Harbour, M.G., Garcı́a, J.G., Gutiérrez, J.P., Moyano, J.D.: Mast: modeling and analysis
suite for real time applications. In: 13th Euromicro Conference on Real-Time Systems, pp.
125–134. IEEE (2001)

13. van der Horst, R., Hogema, J.: Time-to-collision and collision avoidance systems. In: Pro-
ceedings of the 6th ICTCT Workshop (1993)

14. IBM Software: IBM rational rhapsody developer. https://www.ibm.com/products/systems-
design-rhapsody. Accessed 25 June 2020

15. INCHRON: chronSIM (2019). https://www.inchron.com/tool-suite/chronsim.html.
Accessed Nov 2019

16. Iyenghar, P., Pulvermueller, E.: A model-driven workflow for energy-aware scheduling anal-
ysis of IoT-enabled use cases. IEEE Internet Things J. 5(6), 4914–4925 (2018). https://doi.
org/10.1109/JIOT.2018.2879746

17. Iyenghar, P., Huning, L., Pulvermüller, E.: Automated end-to-end timing analysis of autosar-
based causal event chains. In: Proceedings of the 15th International Conference on Evalua-
tion of Novel Approaches to Software Engineering, ENASE, Czech Republic, pp. 477–489
(2020)

18. Iyenghar, P., Huning, L., Pulvermüller, E.: Early synthesis of timing models in autosar-based
automotive embedded software systems. In: Proceedings of the 8th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD 2020, pp. 26–
38. SCITEPRESS (2020)

19. Kim, J.H., Kang, I., Kang, S., Boudjadar, A.: A process algebraic approach to resource-
parameterized timing analysis of automotive software architectures. IEEE Trans. Ind. Inform.
12(2), 655–671 (2016)

20. Kusano, K.D., Gabler, H.: Method for estimating time to collision at braking in real-world,
lead vehicle stopped rear-end crashes for use in pre-crash system design. SAE Int. J. 4(1),
435–443 (2011)

21. Luxoft - Symtavision: Timing analysis solutions (2019). https://auto.luxoft.com/uth/timing-
analysis-tools/. Accessed Nov 2019

22. MARTE profile. https://www.omg.org/spec/MARTE/About-MARTE/. Accessed 25 June
2020

23. Mathworks Products. https://www.mathworks.com/. Accessed 20 June 2020
24. Mubeen, S., Nolte, T., Sjödin, M., Lundbäck, J., Lundbäck, K.L.: Supporting timing analysis

of vehicular embedded systems through the refinement of timing constraints. J. Softw. Syst.
Model. 18, 36–69 (2019). https://doi.org/10.1007/s10270-017-0579-8

25. Navet, N., Simonot-Lion, F. (eds.): Automotive Embedded Systems Handbook. CRC Press,
Boco Raton (2009)

http://www.autosar.org/
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/standards/classic-platform/classic-platform-440/
https://www.autosar.org/standards/classic-platform/classic-platform-440/
http://www.sparxsystems.com/
https://www.gliwa.com/
https://www.ibm.com/products/systems-design-rhapsody
https://www.ibm.com/products/systems-design-rhapsody
https://www.inchron.com/tool-suite/chronsim.html
https://doi.org/10.1109/JIOT.2018.2879746
https://doi.org/10.1109/JIOT.2018.2879746
https://auto.luxoft.com/uth/timing-analysis-tools/
https://auto.luxoft.com/uth/timing-analysis-tools/
https://www.omg.org/spec/MARTE/About-MARTE/
https://www.mathworks.com/
https://doi.org/10.1007/s10270-017-0579-8

Model-Based Timing Analysis of Automotive Use Case Developed in UML 385

26. Object Management Group. http://www.omg.org. Accessed 25 June 2020
27. Peraldi-Frati, M.A., Blom, H., Karlsson, D., Kuntz, S.: Timing modeling with AUTOSAR -

current state and future directions. In: DATE (2012)
28. Scheickl, O., Ainhauser, C., Gliwa, P.: Tool support for seamless system development

based on AUTOSAR timing extensions. In: Proceedings of Embedded Real-Time Software
Congress (ERTS) (2012)

29. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling frame-
work. In: ACM SIGAda Ada Letters, vol. 24–4. ACM (2004)

30. Sugimoto, Y., Sauer, C.: Effectiveness estimation method for advanced driver assistance sys-
tem and its application to collision mitigation brake system. In: 19th International Technical
Conference Enhanced Safety Vehicles (2005)

31. Timing Architects Tool. https://www.timing-architects.com/. Accessed 20 June 2020

http://www.omg.org
https://www.timing-architects.com/

Internal Software Quality Evaluation
of Self-adaptive Systems Using Metrics,

Patterns, and Smells

Claudia Raibulet(B) , Francesca Arcelli Fontana , and Simone Carettoni

DISCo-Dipartimento di Informatica, Sistemistica e Comunicazione,
Universitá degli Studi di Milano-Bicocca, Viale Sarca 336, Milan, Italy

raibulet@disco.unimib.it, francesca.arcelli@unimib.it,

s.carettoni@campus.unimib.it

Abstract. Quality has a key role in the functioning, maintenance, and
longevity of software. To evaluate the software quality, different points of
view and mechanisms may be adopted, e.g., quality attributes, runtime
performances. In this paper, we are interested in the internal quality
of self-adaptive systems (SAS). SAS are more complex than non-self-
adaptive systems (NSAS) because they implement also the mechanisms
to monitor the execution environment, to analyze the gathered data
about the environment, to plan adaptation strategies and to execute
necessary adaptations required by the current state of the system. The
available evaluation approaches for SAS focus mainly on the runtime
performances achieved through the self-adaptive mechanisms. We con-
sider that also the internal quality of SAS is equally important for their
evaluation as for any other software. Therefore, we analyze 20 SAS using
4 different quality evaluation mechanisms: software metrics, design pat-
terns, code and architectural smells. To discuss the quality of SAS, in
our analysis we have considered 20 NSAS as a quality reference. Hence,
we compare the quality of SAS with the quality of NSAS, and discuss
the possible reasons behind the identified quality issues.

Keywords: Self-adaptive systems · Quality evaluation · Software
metrics · Design patterns · Code smells · Architectural smells

1 Introduction

Software quality is one of the fields of software engineering which focuses on the
attributes of software products. These attributes may concern the degree of soft-
ware to meet its specifications and requirements, and the degree of software to
meet the users needs and expectations. As established by the ISO/IEC25010:2011
[17], there are various aspects concerning the software quality.

A software characterized by a good quality is easier to be comprehended,
extended, evolved, and maintained during its whole life-cycle. In addition, a good
software is more likely to be used and reused. This is particularly important
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 386–419, 2021.
https://doi.org/10.1007/978-3-030-70006-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_16&domain=pdf
http://orcid.org/0000-0002-7194-3159
http://orcid.org/0000-0002-1195-530X
https://doi.org/10.1007/978-3-030-70006-5_16

Internal Software Quality Evaluation of Self-adaptive Systems 387

for software which has to address and manage internal and external changes
during its execution due to the variabilities in its execution environment. Self-
adaptive systems (SAS) represent an example of such software [12]. There are
various definitions of SAS as summarized by Danny Weyns in [33]. The main
idea behind these definitions is that SAS are able to do modifications in their
behaviour or structure at runtime autonomously to address variations in their
execution environment or inside themselves [22,23].

In this paper, we analyze SAS with the objective to provide an overview of
their internal quality. This analysis is useful for the developers of SAS because
it helps them to improve their software, and for the potential software engi-
neers interested in using available SAS to understand their quality and possible
design issues. To achieve our objective we analyzed 20 systems dealing with self-
adaptivity: 10 artifacts made available by the SEAMS community1, 6 frameworks
identified based on our previous knowledge in the self-adaptive domain, and 4
student projects developed during their academic studies at the University of
Würzburg in Germany. We also analyzed 20 NSAS available in the QualitasCor-
pus2 and MavenRepository3. The analyzed NSAS have been often considered in
software quality studies [7,21,30]. In this paper, they represent a quality refer-
ence for the discussion of the SAS internal software quality.

We have analyzed SAS and NSAS from various points of view. We have com-
puted Chidamber and Kemerer (CK) [6] and Robert Martin (RM) [15] software
metrics, which provide quantitative indicators about the software quality. We have
detected several design patterns defined by Gamma et al. [9] because their pres-
ence indicate often good solutions and help understanding the rationale behind
the applied solutions due to their semantic [1,2]. We have detected smells at the
code [32] and architectural levels [16]. Smells are indicators of possible issues in
the implementation and design of software, issues which may lead to increasing
problems in the software evolution and maintenance if not properly addressed.

In our previous work [25] we have done a preliminary analysis of 11 SAS by
detecting code and architectural smells, as well as design patterns. In addition,
we have started an analysis and comparison of 6 SAS and 6 NSAS based on code
and architectural smells, and design patterns in [26]. In this paper, we extend
the number of analyzed systems, i.e., 20 SAS and 20 NSAS, and we consider also
software metrics for the analysis and comparison of the two types of systems.

The contribution of this paper may be summarized as follows. First, it
extends the number of analyzed SAS and NSAS considered in our previous work
to confirm our previous results. Second, it extends the analysis by using also
software metrics often used for NSAS evaluation.

The rest of the paper is organized as follows. Section 2 addresses some related
work. Section 3 describes our study design. The results are summarized in Sect. 4.
The paper ends with a discussion and concluding remarks in Sect. 6.

1 SEAMS Artifacts - https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemp
lars/.

2 QualitasCorpus - http://qualitascorpus.com/.
3 MavenRepository - https://mvnrepository.com/.

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
http://qualitascorpus.com/
https://mvnrepository.com/

388 C. Raibulet et al.

2 Related Work

Software quality assessment can be done by taking into account several issues,
such as metrics, code violations, code and design/architectural smells of different
kinds, bugs, defects, and change evolution.

Many works have been done in the literature on the well-known Chidamber
and Kemerer (CK) metrics [6] or other software quality metrics [15], by studying
their evolution, thresholds, correlations with further issues as bugs or code smells.

Some studies considered code smells or anti-patterns. For example, Romano
et al. [28] use anti-patterns to predict code changes and they found that classes
affected by anti-patterns change more frequently along the evolution of a system.
Olbrich et al. [18] investigated historical data on some code smells detection and
they show that code smell-infected components have a higher change frequency.
Chatzigeorgiou et al. [5], and Peters et al. [19] considered selected properties of
code smells, e.g., their evolution and longevity. They observed that the number of
code smells in software systems increases over time and developers almost never
invest significant effort in removing them. This result was further confirmed
by [4], who observed that code smells frequently persist in source code for a long
time and developers withheld from refactoring them to avoid API modifications.

Various works have also considered the impact of design patterns on software
quality, by considering metrics and code smells [32]. Only few works analyzed,
evolved, or correlated architectural smells for software quality aims. Generally,
the works have been mainly focused on the detection of these smells, even if few
tools are currently freely available [3,13]. The above studies have analyzed soft-
ware projects of different categories or domains without focusing on the analysis
of SAS.

The available evaluation approaches for the quality assessment in SAS use
quality attributes, software metrics, and design patterns [23]. Some of these
approaches exploit the mechanisms applied for the evaluation of NSAS concern-
ing performance, dependability, robustness, security, safety, complexity of self-
adaptive systems. Most of the approaches introduce novel mechanisms, which
aim to capture the specificity of self-adaptivity, i.e., degree of autonomy, time
for adaptivity, quality of response, adaptivity metric, adaptability of services,
support for detecting anomalous system behavior.

Furthermore, one of the first catalogs identifying 12 adaptation-oriented
design patterns which capture the adaptation expertise is presented in [27]. This
catalog proposes patterns concerning the monitoring (e.g., reflective monitoring,
sensor factory, content-based routing), decision making (e.g., adaptation detec-
tor, case-based reasoning), and reconfiguring (e.g., component insertion/removal,
server reconfiguration, decentralized reconfiguration) steps of self-adaptivity.

In this paper we provide an evaluation of various issues, e.g., software metrics,
code smells, architectural smells, and design patterns in SAS and NSAS and a
comparison of the quality of SAS in front of NSAS. As far as concerns our
knowledge, this is the first study to address the internal software quality of SAS
from such a wide internal quality point of view.

Internal Software Quality Evaluation of Self-adaptive Systems 389

3 Main Elements of Our Analysis

Self-adaptive mechanisms increase the dimension and the complexity of SAS.
In this analysis, we evaluate 20 SAS and 20 NSAS (all written in the Java pro-
gramming language and freely available or open source) to observe the difference
in terms of internal quality of SAS in front of NSAS. Hence, our analysis was
guided by the following research questions (RQ):

RQ1: How can SAS be evaluated in terms of software metrics? Which is the
difference between SAS and NSAS based on software metrics evaluation?

RQ2: How can SAS be evaluated in terms of design patterns? Which is the
difference in terms of design patterns presence in SAS and NSAS?

RQ3: How can SAS be evaluated in terms of code smells? Which is the difference
in terms of code smells presence in SAS and NSAS?

RQ4: How can SAS be evaluated in terms of architectural smells? Which is the
difference in terms of architectural smells presence in SAS and NSAS?

3.1 SAS Analyzed Examples

In our analysis we have considered 20 SAS: 10 artifacts presented during the
SEAMS editions, 6 frameworks for the development of SAS, and 4 student
projects implementing self-adaptive solutions. The analyzed projects are het-
erogeneous and cover a wide range of SAS examples.

The 10 artifacts are (in alphabetical order):

Adasim: is a simulator for the Automated Traffic Routing Problem (ATRP),
built as an agent-based system. Self-adaptivity deals with the scalability issues
and the unexpected changes (e.g., an accident, a closed street).

DeltaIoT: enables the evaluation and comparison of self-adaptivity for Internet
of Things (IoT). It monitors the network (e.g., transmission power, spreading
factor) to reduce energy consumption and maintain performances.

Hogna: is an artifact for cloud management that can automatically deploy a
topology, add/remove instances, configure each instance and provide tools for
monitoring them.

Intelligent Ensembles (IE): is an artifact for dynamic cooperation groups,
such as those specific to the smart cyber-physical systems. It is built to describe
dynamic cooperation in applications specific to smart cities and smart mobility.

JDEECo: is a component system (model and runtime platform) that provides
the architecture abstractions of autonomous components and dynamic compo-
nent groups (called ensembles) on top of which different adaptation techniques
can be deployed.

K8-Scalar: is a workbench, which implements and evaluates various self-
adaptive approaches to autoscaling container-orchestrated services. It extends
Scalar, a generic test bed for evaluating the scalability of large-scale systems.

390 C. Raibulet et al.

Lotus (Lotus@Runtime): uses models@runtime to verify self-adaptive systems
at runtime. It monitors the execution traces and annotates the probabilities
of occurrence of each action. It checks if a set of reachability properties are
performed against a probabilistic model.

mRUBiS: is an exemplar for model-based architectural self-healing and
self-optimization. It simulates the adaptable software and maintains an architec-
tural runtime model of the software, which can be directly used by adaptation
engines to implement and perform self-adaptation.

Tele Assistance System (TAS): is a health-care service-based application for
distance assistance to elderly and chronically ill people. The self-adaptive mech-
anisms address the issues concerning the uncertainties generated by third-party
services (e.g., service failure, variable response time).

UNDERSEA: helps researchers to develop, evaluate and compare new self-
adaptation solutions in unmanned underwater vehicles. It has predefined oceanic
surveillance UUV missions, adaptation scenarios, and a reference controller
implementation, all of which can easily be extended or replaced.

The 6 frameworks for SAS development are:

ATLAS4 (Personalized-Travel-Assistant): acts as a navigator and assists the
user in all phases of the journey. It allows the definition of value-added mobility
services by enhancing interoperability among the existing services, supporting
their execution via run-time adaptation, through the definition of multi-channel
front-end applications.

EUREMA5 (Executable Runtime Megamodels): provides a modeling language
for feedback loops, the coordination of feedback loops, and the adaptation engine,
as well as an interpreter for EUREMA models to execute the loops.

FESAS6 (Framework for Engineering Self-Adaptive Systems): is a model-driven
framework offering reusable components and design patterns. It is equipped with
a tool set and includes a middleware that controls system deployment.

iCASA7: is a set of integrated tools for the development and autonomic admin-
istration of pervasive applications. It provides a simulated environment (e.g., for
a smart home) enabling complete control of the environment and time.

Rainbow8: is a framework for the development of self-adaptive systems. It offers
support to add self-adaptive mechanisms at the architectural level, i.e., feedback
control loops which implement the MAPE-K (monitoring, analyzing, planning,
executing using appropriate knowledge) steps.

4 https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant.
5 https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/software-

engineering-for-self-adaptive-systems/eurema/.
6 https://fesas.bwl.uni-mannheim.de/.
7 http://adele.imag.fr/icasa-a-dynamic-pervasive-environment-simulator/.
8 https://github.com/cmu-able/rainbow.

https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/software-engineering-for-self-adaptive-systems/eurema/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/software-engineering-for-self-adaptive-systems/eurema/
https://fesas.bwl.uni-mannheim.de/
http://adele.imag.fr/icasa-a-dynamic-pervasive-environment-simulator/
https://github.com/cmu-able/rainbow

Internal Software Quality Evaluation of Self-adaptive Systems 391

StarMX9: is an architecture-based framework for dynamic adaptation behavior
in Java EE enterprise systems and for the development of self-managing appli-
cations. It uses JMX features and can be integrated with different policy/rule
engines to enable self-management capabilities.

Table 1. Number of classes in SAS artifacts.

ARTIFACTS Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

NO. of Classes 64 82 865 825 1105 32 51 82 765 77

The 4 students projects are:

Code Offloading: is a software that proposes a version of the standard work
that usually is performed by a scheduler with priority queues using a self-
adaptive architecture.

Fall Detection: is a tool whose purpose is to understand and identify possible
falls of animated or inanimate objects within an environment. It implements
self-adaptive techniques for learning and mapping the surrounding environment.

Platooning Coordination: simulates an environment for coordination of mul-
tiple autonomous vehicles into convoys or platoons through a multi-agent system
in which each agent captures the “autonomous decisions” carried out by each
vehicle. The platoon formation is characterized by the string of vehicles travel-
ing with small separation distances that need to be kept through communication
among vehicles.

Vacuum Cleaner and Simulation: is a simulation software for coverage prob-
lems in planar environments. The simulation allows to choose different scenarios
and algorithms to learn and map the environment.

The number of classes of all the SAS systems is shown in Table 1, 2, and 3.

Table 2. Number of classes in SAS frameworks.

FRAMEWORKS ATLAS EUREMA FESAS iCASA Rainbow StarMX

NO. of Classes 85 240 75 143 1707 88

Table 3. Number of classes in SAS student projects.

STUDENT PROJECTS Code Offload Fall Detection Platoon Coord Vacuum Simulator

NO. of Classes 169 284 257 134

9 https://sourceforge.net/projects/starmx/.

https://sourceforge.net/projects/starmx/

392 C. Raibulet et al.

3.2 NSAS Analyzed Examples

The NSAS systems considered in this analysis are available in the QualitasCor-
pus and in the MavenRepository websites. They are split into three categories:
4 parsers, 8 tools, and 8 software utilities as introduced in the following.

The 4 parsers generators are:

Apache Ant: is a Java library and command-line tool which drives processes
described in built files as targets and extension points dependent on each other.

ANTLR (ANother Tool for Language Recognition): is a parser generator for
reading, processing, executing, or translating structured text or binary files.

NekoHTML: is a HTML scanner and tag balancer that enables application
programmers to parse HTML documents and access the information using stan-
dard XML interfaces.

SableCC: generates fully featured object-oriented frameworks for building com-
pilers, interpreters and other text parsers.

The 8 tools are:

Cobertura: calculates the percentage of Java code that can be covered by test
implementation. It is based on JScoverage.

DrawSWF: is a drawing application written in Java. It generates animated
SWF Files, which redraw everything drawn with the mouse in the editor.

JGraph: is a Java Swing diagramming (graph visualisation) library for the
development of workflow, BPM, org charts, UML, ER, and network diagrams.

JHotDraw: is a two-dimensional graphics framework for structured drawing
editors written in Java.

Marauroa: is an open source multiplayer online framework which provides sup-
port to create games.

ProGuard: is a class file shrinker, optimizer, obfuscator, and preverifier.

Sunflow: is a rendering system for the synthesis of photorealistic images through
the implementation of global illumination algorithms.

Velocity: is a Java-based template engine. It permits anyone to use a simple
yet powerful template language to reference objects defined in Java code.

The 8 software utilities are:

Apache PDFBOX: is an open source library that can be used to create, render,
print, split, merge, edit, and extract text and metadata from PDF files.

Checkstyle: is a development tool to help programmers write Java code that
adheres to a coding standard. It automates the process of checking Java code to
spare humans of this task.

Internal Software Quality Evaluation of Self-adaptive Systems 393

Emma: is an open-source toolkit for measuring and reporting Java code cov-
erage. It has a unique feature combination: support for large-scale enterprise
software development while keeping individual developer work fast and itera-
tive.

Hibernate (ORM): is an object-relational mapping tool for Java. It is a frame-
work for mapping an object-oriented domain model to a relational database.

JUnit: is a unit testing framework for Java used in test-driven development.

PicoContainer: is a tiny embeddable container for Constructor Dependency
Injection (CDI) Inversion of Control (IoC) Java components.

Quartz: is an application framework for rich and highly-integrated Java appli-
cations for any operating system that supports Java.

Quilt: is a Java software development tool which measures coverage, the extent
to which testing exercises the software under test.

The number of classes of all the NSAS systems is shown in Table 4, 5 and 6.

Table 4. Number of classes in NSAS parsers.

PARSER ANT ANTLR NekoHTML SableCC

NO. of Classes 962 280 47 246

Table 5. Number of classes in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

NO. of Classes 172 321 179 346 209 707 209 262

Table 6. Number of classes in NSAS software utilities.

SW Utilities PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

NO. of Classes 388 410 17 588 276 250 284 115

3.3 Evaluation Mechanisms

We have analyzed SAS and NSAS by considering four different evaluation mech-
anisms: software metrics, design patterns, code smells, and architectural smells.
Software metrics and design patterns represent indicators of good design, while
code and architectural smells indicate possible issues in the code and design.

394 C. Raibulet et al.

Software Metrics. Software metrics [6,15] represent indicators of the quality
of a system helping to estimate the progress and health of a software. They
can be computed at package or class level. A brief description of the metrics
considered in this analysis is following.

– Chidamber and Kemerer Metrics (CK) [6]:
• Weighted Methods for Class (WMC): is the sum of complexities of meth-

ods defined in a class. It represents the complexity of a class and it is
used to indicate the development and maintenance effort for the class.

• Depth of Inheritance Tree (DIT): is the maximum length of a path from a
class to a root class in the inheritance structure of a system. DIT measures
how many super-classes can affect a class.

• Number of Children (NOC): is the number of immediate subclasses sub-
ordinated to a class in the class hierarchy.

• Coupling Between Objects (CBO): counts the number of classes coupled
to a particular class i.e., where the methods of one class call the methods
or access the variables of the other classes. These calls need to be counted
in both directions so the CBO of class A is the size of the set of classes
that class A references and those classes that reference class A. Since this
is a set, each class is counted only once even if the reference operates in
both directions.

• Response For Class (RFC): represents the size of the response set of a
class, i.e., a set of methods that can potentially be executed in response
to a message received by an object of that class, i.e., all the methods in
the class and all the methods that are called by methods in that class.
As it is a set, each called method is counted once no matter how many
times it is called.

• Lack of Cohesion of Methods (LCOM): measures the dissimilarity of
methods in a class via instanced variables.

– Robert Martin Metrics (RM) [15]:
• Afferent couplings (CA): represents the number of classes in other pack-

ages that depend upon classes within the package; it is an indicator of
the package responsibility. Afferent couplings signal inward.

• Efferent couplings (CE): represents the number of classes in other pack-
ages that the classes in a package depend upon; it is an indicator of the
package dependence on externalities. Efferent couplings signal outward.

• Abstractness (A): represents the ratio of the number of abstract classes
(and interfaces) in the analyzed package to the total number of classes
in the analyzed package. Its range is 0 to 1, with A = 0 indicating a
completely concrete package and A= 1 indicating an abstract package.

• Instability (I): represents the ratio of efferent coupling (CE) to total cou-
pling (CE + CA), i.e., I = CE/(CE + CA). It is an indicator of the
package resilience to change. Its range is 0 to 1, with I = 0 indicating a
completely stable package and I = 1 indicating an unstable package.

• Distance from the main sequence (D): represents the perpendicular dis-
tance of a package from the idealized line A + I = 1. D is calculated as

Internal Software Quality Evaluation of Self-adaptive Systems 395

D = |A+I−1|. It is an indicator of the package balance between abstract-
ness and stability. A package squarely on the main sequence is optimally
balanced with respect to its abstractness and stability. Ideal packages are
either completely abstract and stable (I = 0, A = 1) or completely concrete
and unstable (I = 1, A = 0). Its range is 0 to 1, with D = 0 indicating a
package that is coincident with the main sequence and D = 1 indicating
a package that is as far as possible from the main sequence.

Design Patterns. Design patterns may provide significant hints on the develop-
ment and quality of a system by capturing indications about the design decisions
due to the semantic behind them. Design patterns provide enhanced and already
verified solutions to a common design problem [9]. Hence, their detection may
be very useful for the understanding, maintaining, and evolving a system [1,2].

In our analysis, we have considered the GoF’s design patterns [9]. In particu-
lar, we have considered the following 13 design patterns in the three categories:

– Creational : Factory Method, Prototype, Singleton.
– Structural : Bridge, Composite, Decorator, Object Adapter, Command, Proxy.
– Behavioral : Chain of Responsibility, Observer, State-Strategy, Template Me-

thod, Visitor.

Observation: State and Strategy have identical structures, with different behav-
iors, thus in this analysis they are considered together, as a single pattern.

Code Smells. Code smells are indicators of possible problems at the code or
design level (e.g., large classes or methods) [8]. They provide hints on parts of
code which may be characterized by a poor quality, and may lead to negative
effects on the maintenance and evolution of the software. We introduce below all
the code smells that we have considered in our analysis. These definitions and
further details are available on the plug-in10 web site for their detection.

– AntiSingleton (AS): a class that provides mutable class variables, which con-
sequently could be used as global variables.

– BaseClassKnowsDerivedClass (BCKDC): a class that invokes or has at least
binary-class relationship pointing to one of its subclasses.

– BaseClassShouldBeAbstract (BCSBA): a class with many subclasses without
being abstract.

– Blob (B): a large controller class depending on data stored in surrounding
classes. A large class declares many fields and methods with a low cohesion.

– ClassDataSouldBePrivate (CDSBP): a class that exposes its fields, thus vio-
lating the principle of encapsulation.

– ComplexClass (CC): a class that has (at least) one large and complex method,
in terms of cyclomatic complexity and lines of code.

10 https://github.com/davidetaibi/sonarqube-anti-patterns-code-smells.

https://github.com/davidetaibi/sonarqube-anti-patterns-code-smells

396 C. Raibulet et al.

– FunctionalDecomposition (FD): a main class, i.e., a class with a procedural
name, such as Compute or Display, in which inheritance and polymorphism
are scarcely used, that is associated with small classes, which declare many
private fields and implement only few methods.

– LargeClass (LC): a class that has grown too large in term of lines of code.
– LazyClass (LzzC): a class that has few fields and methods.
– LongMethod (LM): a class that has (at least) a very long method in terms of

lines of code.
– LongParameterList (LPL): a class that has (at least) one method with a too

long list of parameters in comparison to the average number of parameters
per methods in the system.

– ManyFieldAttributesButNotComplex (MFABNC): a class that declares many
attributes but which is not complex and, hence, more likely to be a kind of
data class holding values without providing behaviour.

– MessageChains (MC): a class that uses a long chain of method invocations
to implement (at least) one of its functionality.

– RefusedPatternBequest (RPB): a class that redefines inherited methods using
empty bodies, thus breaking polymorphism.

– SpaghettiCode (SC): a class with no structure, declaring long methods with
no parameters, and using global variables.

– SpeculativeGenerality (SG): a class that is defined as abstract having few
children, which do not make use of its methods.

– SwissArmyKnife (SAK): a complex class that offers a high number of services,
e.g., a complex class implementing a high number of interfaces.

– TraditionBreaker (TB): a class that inherits from a large parent class but
that provides little behaviour and without subclasses.

Architectural Smells. An architectural smell results from a common architec-
tural decision, intentional or not, that negatively impacts on the internal soft-
ware quality [10] with significant effects on software maintainability [14]. The
architectural smells considered in our analysis are:

– Unstable Dependency (UD): describes a subsystem (component) that depends
on other subsystems less stable than itself. This may cause a ripple effect of
changes in the system. UD is detected on packages.

– Hub-Like Dependency (HL): arises when an abstraction has (outgoing and
ingoing) dependencies with a large number of other abstractions [29]. HL is
detected on classes.

– Cyclic Dependency (CD): refers to a subsystem (component) involved in a
chain of relations that break the desirable acyclic nature of a subsystem
dependency structure. The subsystems involved in a dependency cycle can
be hardly released, maintained, or reused in isolation. CD has been detected
on classes. The cycles are detected based on their shapes (tiny, star, clique,
circle, chain) as described in [3].

Internal Software Quality Evaluation of Self-adaptive Systems 397

We have considered these architectural smells since they represent critical
problems related to dependency issues. Components highly coupled and with a
high number of dependencies cost more to maintain and hence can be considered
more critical. For example, the Cyclic Dependency smell is one of the most
common and considered more critical by the developers [16].

3.4 Tool Support

To collect automatically the data related to the evaluation mechanisms described
above we exploited the following tools:

– Understand11: used for the computation of the Chidamber and Kemerer
metrics. It is a very well known tool able to detect a very large number of
metrics and to analyze the code. Most of the metrics in Understand can be
categorized as complexity, volume, and object-oriented metrics.

– DPDT (Design Pattern Detection Tool) [31]: used for the detection of
design patterns. It exploits the similarity scoring between graph vertices for
patterns detection. This enables the detection of most of the pattern variants.
DPDT is freely available and detects most of the GoF’s patterns (see Sect. 3).
It is one of the most used tools for patterns detection ([20]).

– SonarQube12: used to detect the code smells. It is one of the most diffused
tools for quality assessment. It is used in more than 85000 organizations as
indicated on the tool web site. It becomes more and more popular also in the
academic world [11,24]. For the code smell analysis presented in this work
we have used an external plug-in13, not present in the default version of the
tool, but integrable and compatible stating from SonarQube version 6.3.

– Arcan [3]: used to detect architectural smells in Java projects. It relies on
graph database technology. Once a project has been analyzed by Arcan, a
new graph-database is created containing the structural dependencies of the
projects. It is then possible to run detection algorithms on this graph to
extract information about the analyzed project. It is also used to calculate
the Robert Martin’s metrics.

4 Results of SAS and NSAS Analysis

The results concerning the evaluation mechanisms about the various categories
of SAS and NSAS are presented in this section. The values shown in the tables
of this section have been normalized with respect to the size, i.e., the number of
classes, of each system so that the observations and comparisons can be made
easily. For the Unstable Dependency architectural smell the normalization has
been done based on the number of packages because this smell is computed at
the package level. The normalization has been done to enable the comparison

11 https://scitools.com/.
12 https://www.sonarqube.org.
13 https://github.com/davidetaibi/sonarqube-antipatterns-code-smells.

https://scitools.com/
https://www.sonarqube.org
https://github.com/davidetaibi/sonarqube-antipatterns-code-smells

398 C. Raibulet et al.

between SAS and NSAS because, for example, the presence of one smell in a
system with 20 classes may be significantly different than the presence of one
smell in a system with 200 classes. The size of SAS and NSAS can be found
respectively in Table 1, 2, 3 for SAS and 4, 5, 6 for NSAS.

4.1 Software Metrics Computation Results

The results obtained from the computation of the software metrics proposed by
Chidamber and Kemerer (C&K) and by Robert Martin (RM) for SAS and NSAS
are shown in Table 7, 8, 9, 10, 11, 12 for C&K, and in Table 13, 14, 15, 16, 17,
18 for RM. Figure 1 and 2 show the Box Plots associated to the results in these
tables.

Chidamber and Kemerer Software Metrics. Chidamber and Keremer offer
different software metrics to analyze the state of a system based on its classes and
the interaction among these classes [6]. WMC, CBO and LCOM metrics provide
quantitative information about the quality of a system. High values associated
to these three metrics usually correspond to lower overall quality of a system.
We note that the analyzed SAS are characterized by higher values for WMC
and also for CBO with respect to NSAS. High values for CBO are not desired
because high coupling means high inter-class dependencies. Dependecies have
a negative impact on the modularity and also on the reuse of a system. High
coupling makes code difficult to maintain, i.e., an alteration of code in one area
leads to a high risk of affecting code in another liked area. High values for WMC
indicate that a class is complex and therefore harder to reuse and maintain. This
results also from the RFC related values. So, in terms of complexity, the category
of SAS seems to be characterized by higher values than NSAS.

The values of DIT and NOC are similar in SAS and NSAS (see Fig. 1). These
metrics are indicators of code reusability, i.e., greater is the number of children,
greater is the level of reuse, inheritance being a form of reuse.

Finally, the LCOM values (indicating the cohesion) in NSAS are a bit higher
than in SAS, being however overall low. Low values of LCOM indicate a high
cohesion, a positive result.

Table 7. Chidamber and Kemerer metrics computed in SAS frameworks.

FRAMEWORK ATLAS EUREMA FESAS iCASA Rainbow StarMX

WMC 0.067 0.014 0.086 0.04 0.014 0.049

DIT 0.988 0.45 0.453 0.184 0.28 0.274

NOC 0.012 0.0036 0.0016 0.02 0.006 0.0056

CBO 0.104 0.158 0.183 0.17 0.08 0.143

RFC 0.145 0.163 0.086 0.241 0.03 0.365

LCOM 0.359 0.252 0.312 0.252 0.22 0.358

Internal Software Quality Evaluation of Self-adaptive Systems 399

Table 8. Chidamber and kemerer metrics computed in SAS artifacts.

ARTIFACT Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

WMC 0.058 0.039 0.122 0.014 0.011 0.089 0.053 0.035 0.003 0.02

DIT 0.4 0.50 0.549 0.72 0.298 0.5 0.79 0.463 0.032 0.669

NOC 0.06 0.02 0.044 0.02 0.01 0 0.07 0.041 0.019 0.053

CBO 0.22 0.12 0.262 0.06 0.063 0.271 0.29 0.228 0.04 0.24

RFC 0.34 0.30 0.239 0.15 0.143 0.152 0.22 0.474 0.21 0.376

LCOM 0.20 0.31 0.404 0.25 0.25 0.21 0.27 0.523 0.18 0.401

Table 9. Chidamber and Kemerer metrics computed in SAS student projects.

STUDENT
PROJECTS

Code Offload Fall Detection Platoon Coord Vacuum
Simulator

WMC 0.052 0.076 0.06 0.063

DIT 0.592 0.409 0.462 0.413

NOC 0.028 0.014 0.013 0.031

CBO 0.15 0.218 0.18 0.229

RFC 0.334 0.038 0.052 0.057

LCOM 0.297 0.348 0.314 0.195

Table 10. Chidamber and Kemerer metrics computed in NSAS parsers.

PARSER GENERATOR ANT ANTLR NekoHTML SableCC

WMC 0.007 0.002 0.012 0.004

DIT 0.29 0.057 0.574 0.075

NOC 0.007 0.015 0.06 0.015

CBO 0.15 0.067 0.195 0.077

RFC 0.05 0.147 0.362 0.273

LCOM 0.41 0.442 0.411 0.273

Table 11. Chidamber and Kemerer metrics computed in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

WMC 0.033 0.006 0.004 0.009 0.007 0.02 0.04 0.003

DIT 0.038 0.654 0.384 0.25 0.329 0.22 0.51 0.285

NOC 0.07 0.032 0.055 0.046 0.014 0.007 0.02 0.021

CBO 0.18 0.154 0.111 0.11 0.171 0.06 0.1 0.104

RFC 0.05 0.136 0.096 0.07 0.2 0.10 0.04 0.129

LCOM 0.49 0.356 0.435 0.32 0.461 0.30 0.25 0.331

400 C. Raibulet et al.

Table 12. Chidamber and Kemerer metrics computed in NSAS software utilities.

SW UTILITIES PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

WMC 0.053 0.002 0.024 0.003 0.016 0.008 0.005 0.009

DIT 0.39 0.399 0.5 0.239 0.326 0.259 0.489 0.435

NOC 0.01 0.005 0.071 0.039 0.028 0.035 0.025 0.003

CBO 0.20 0.079 0.202 0.065 0.139 0.077 0.092 0.239

RFC 0.04 0.051 0.497 0.168 0.196 0.139 0.167 0.174

LCOM 0.32 0.511 0.345 0.332 0.224 0.133 0.398 0.443

Robert Martin Software Metrics. RM metrics focus on the relation between
the packages in a project. The results obtained in SAS and NSAS are summarized
in Table 13, 14, 15 for SAS and in Table 16, 17, 18 for NSAS. Figure 2 shows also
the box-plots associated to the values in these tables.

We can observe from the results that the value of CE and CA are similar,
although the CA values are a little bit higher in SAS than in NSAS. Overall the
value of the CE is a bit high with respect to the optimal value, i.e., < 20. This
may lead to some issues because making changes on a class that has a high CE

Fig. 1. Box-Plot results for Chidamber and Kemerer metrics for SAS and NSAS.

Internal Software Quality Evaluation of Self-adaptive Systems 401

Table 13. Robert Martin metrics computed in SAS frameworks.

FRAMEWORK ATLAS EUREMA FESAS iCASA Rainbow StarMX

CA 0.273 0.081 0.228 0.023 0.04 0.262

CE 0.267 0.44 0.113 0.078 0.14 0.269

A 0.1 0.234 0.094 0.38 0.15 0.244

I 0.528 0.743 0.241 0.543 0.43 0.543

D 0.252 0.278 0.381 0.243 0.16 0.428

can be difficult and risky because of its complexity. The I (Instability) index has
values higher than the average especially in NSAS.

The A (Abstractness) index is under the average, especially in SAS. This
denotes the presence of packages that are mostly concrete, with a high degree
of instability especially in NSAS. The values of the D (Distance from the main
sequence) index may be a direct consequence of the relationship between A
(Abstractness) and I (Instability). Hypothetically, the value of this metric should
be as low as possible so that the components are located close to the main
sequence. The values for both the categories are comparable and still low.

4.2 Design Patterns Detection Results

The detected creational design patterns are summarized in Table 19, 20, 21 for
SAS and in Table 22, 23, 24 for NSAS. Three SAS implement no creational
patterns: Adasim, DeltaIoT, and Lotus. Rainbow implements all the considered

Table 14. Robert Martin metrics computed in SAS artifacts.

ARTIFACT Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

CA 0.18 0.49 0.164 0.04 0.034 0.24 0.27 0.078 0.42 0.112

CE 0.2 0.36 0.264 0.06 0.02 0.25 0.42 0.40 0.37 0.19

A 0.13 0.35 0.127 0.27 0.229 0.122 0.34 0.177 0.18 0.175

I 0.48 0.37 0.374 0.26 0.077 0.499 0.48 0.630 0.58 0.542

D 0.34 0.4 0.292 0.22 0.238 0.267 0.21 0.252 0.43 0.275

Table 15. Robert Martin metrics computed in SAS student projects.

STUDENT
PROJECTS

Code Offload Fall Detection Platoon Coord Vacuum
Simulator

CA 0.326 0.103 0.032 0.219

CE 0.305 0.128 0.066 0.294

A 0.167 0.126 0.105 0.131

I 0.45 0.457 0.496 0.538

D 0.242 0.219 0.136 0.211

402 C. Raibulet et al.

Fig. 2. Box-Plot results for Robert martin metrics for SAS and NSAS.

creational patterns. The most detected pattern is Singleton that, except for the
three systems mentioned before, is present in all the other projects. This result
may be mostly due to the implementation of the managers of the various steps of
the MAPE-K loop. The less used pattern is Prototype: it occurs only in Rainbow.

Looking at NSAS, NekoHTML and Emma implement no creational patterns.
They are small systems, as shown in Table 4 and 6. With respect to SAS there
are two systems that implement all the creational patterns i.e., Quartz and
JHotDraw. Also in NSAS, the most detected pattern is Singleton, while the less
detected one is Prototype.

The detected structural design patterns are summarized in Table 25, 26, 27 for
SAS and in Table 28, 29, 30 for NSAS. Three systems implement no instances of
any structural pattern: ATLAS, FESAS and JDEECo. In EUREMA, DeltaIoT,
Hogna, mRUBiS, UNDERSEA, and Code Offloading only the Object Adapter
has been detected.

Table 16. Robert Martin metrics computed in NSAS parsers.

PARSER GENERATOR ANT ANTLR NekoHTML SableCC

CA 0.09 0.419 0.375 0.281

CE 0.12 0.425 0.333 0.577

A 0.30 0.364 0.333 0.529

I 0.55 0.663 0.625 0.661

D 0.33 0.346 0.405 0.378

Internal Software Quality Evaluation of Self-adaptive Systems 403

Table 17. Robert Martin metrics computed in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

CA 0.17 0.21 0.195 0.20 0.153 0.21 0.13 0.28

CE 0.37 0.197 0.247 0.24 0.234 0.31 0.23 0.271

A 0.20 0.163 0.144 0.15 0.152 0.16 0.15 0.299

I 0.54 0.433 0.655 0.37 0.56 0.49 0.57 0.485

D 0.14 0.192 0.233 0.29 0.261 0.40 0.24 0.221

Table 18. Robert Martin metrics detected in NSAS software utilities.

SW Utilities PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

CA 0.06 0.058 0.5 0.159 0.123 0.099 0.078 0.239

CE 0.24 0.243 0.5 0.227 0.163 0.301 0.202 0.233

A 0.07 0.159 0.5 0.215 0.289 0.215 0.178 0.188

I 0.63 0.778 0.5 0.542 0.603 0.526 0.731 0.303

D 0.25 0.146 0.5 0.273 0.296 0.245 0.138 0.202

Table 19. Creational Design patterns detected in SAS frameworks.

FRAMEWORK ATLAS EUREMA FESAS iCASA Rainbow StarMX

Factory Method 0 0.0041 0 0.1888 0.0052 0

Prototype 0 0 0 0 0.0050 0

Singleton 0.0235 0.0333 0.0933 0.6363 0.0193 0.0227

Table 20. Creational design patterns detected in SAS artifacts.

ARTIFACT Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

Factory Method 0 0 0.0232 0.0878 0 0.03125 0 0 0.0013 0

Prototype 0 0 0 0 0 0 0 0 0 0

Singleton 0 0 0.0465 0.0218 0.0090 0.1250 0 0.0731 0.0039 0.0129

Table 21. Creational design patterns detected in SAS projects.

STUDENT PROJECTS Code Offload Fall Detection Platoon Coord Vacuum Simulator

Factory Method 0 0 0.0389 0

Prototype 0 0 0 0

Singleton 0.0355 0.950 0.0622 0.0149

404 C. Raibulet et al.

Table 22. Creational design patterns detected in NSAS parsers.

PARSER
GENERATOR

ANT ANTLR NekoHTML SableCC

Factory Method 0 0.0071 0 0

Prototype 0 0 0 0

Singleton 0.0062 0.0142 0 0.0528

Table 23. Creational design patterns detected in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

Factory Method 0 0.0031 0.0055 0.084 0.0047 0.070 0.1913 0.0114

Prototype 0 0 0 0.2528 0 0 0 0

Singleton 0.0116 0.0404 0.0223 0.0056 0.1674 0.1145 0.0478 0

Table 24. Creational design patterns detected in NSAS software utilities.

SW UTILITY PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

Factory Method 0.051 0 0 0.0204 0.0217 0.012 0.0176 0

Prototype 0 0 0 0 0 0 0.0070 0

Singleton 0.0180 0.0048 0 0.0170 0.0217 0.024 0.0176 0.0173

We have Object Adapter and Decorator in StarMX for Framework, Object
Adapter with Bridge and Composite respectively for Adasim and Lotus for the
Artifacts, and finally, Object Adapter and Proxy in Fall Detection and Vacuum
Simulator for the Student Projects. In IE and TAS, instances of three structural
patterns have been detected: Object Adapter, Bridge, and Decorator. Platoon
Coordination has four instances of design patterns: Object Adapter, Bridge,
Composite, and Decorator. iCASA and Rainbow implement all the structural
patterns considered. The most detected structural pattern is Adapter, while the
less detected ones are Composite and Proxy.

Looking at the NSAS, there are, as for SAS, three systems in which there are
no instances of structural patterns: NekoHTML, SableCC, and Emma. Cober-
tura and Quilt implement Adapter. JHotDraw, ProGuard. Hibernate, and JUnit
implement all the structural patterns considered. The most detected structural
design pattern is Adapter, while, the less detected ones are Composite and Proxy
followed by the Decorator and Bridge.

The detected behavioral design patterns are summarized in Table 31, 32,
33 for SAS and in Table 34, 35, and 36 for NSAS. Several systems implement
instances of one behavioral pattern: State-Strategy (Adasim, DeltaIoT, Lotus,
mRUBiS, UNDERSEA), Observer (ATLAS, Platoon Coordination), Template
Method (FESAS) or Chain of Responsibility (JDEECo). Two instances of State-
Strategy and Template Method patterns have been detected in: EUREMA and
StarMX for the Framework, K8-Scalar for Artifacts, Fall Detection for Student

Internal Software Quality Evaluation of Self-adaptive Systems 405

Projects. There are systems with two instances of patterns: IE with Observer and
State-Strategy, Vacuum Simulator with State-Strategy and Chain of Respon-
sibility. Rainbow, for the Framework category, and Code Offloading, for the
Student Projects, are the projects implementing all the behavioral patterns con-
sidered. The remaining systems implement three instances of patterns between
Chain of Responsibility, Observer, State-Strategy, Template Method. The most
detected pattern is State-Strategy followed by the Template method, while the
less detected are Chain of Responsibility and Visitor followed by the Observer.

Table 25. Structural design patterns detected in SAS frameworks.

FRAMEWORK ATLAS EUREMA FESAS iCASA Rainbow StarMX

Object Adapter 0 0.0541 0 0.8041 0.0527 0.1931

Bridge 0 0 0 0.1608 0.0046 0

Composite 0 0 0 0.0279 0.0005 0

Decorator 0 0 0 0.2797 0.0076 0.01136

Proxy 0 0 0 0.0769 0.0011 0

Table 26. Structural design patterns detected in SAS artifacts.

ARTIFACT Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

Object Adapter 0.0156 0.0121 0.0116 0.0484 0 0.0.625 0.0052 0.1219 0.0052 0.0129

Bridge 0.0156 0 0 0.0012 0 0 0 0 0.0013 0

Composite 0 0 0 0 0 0 0.0196 0 0 0

Decorator 0 0 0 0.0036 0 0 0 0 0.0006 0

Proxy 0 0 0 0 0 0 0 0 0 0

Table 27. Structural design patterns detected in SAS student projects.

STUDENT
PROJECTS

Code Offload Fall Detection Platoon Coord Vacuum
Simulator

Object
Adapter

0.0236 0.0176 0.1789 0.0223

Bridge 0 0 0.0622 0

Composite 0 0 0.0038 0

Decorator 0 0 0.0194 0

Proxy 0 0.0035 0 0.0311

406 C. Raibulet et al.

Table 28. Structural design patterns detected in NSAS parsers.

PARSER GENERATOR ANT ANTLR NekoHTML SableCC

Object Adapter 0.0166 0.0071 0 0

Bridge 0.0010 0 0 0

Composite 0 0 0 0

Decorator 0.0010 0.0035 0 0

Proxy 0 0 0 0

Table 29. Structural design patterns detected in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

Object Adapter 0.0290 0.9034 0.1508 0.0730 0.1674 0.1145 0.2344 0.0763

Bridge 0 0.0031 0 0.0365 0.0047 0.0014 0.0047 0.0190

Composite 0 0 0 0.0056 0 0.0099 0 0.0038

Decorator 0 0.0093 0.0167 0.0117 0.0047 0.1131 0.0239 0.0114

Proxy 0 0 0.0034 0.0055 0 0.0248 0.0143 0

Looking at NSAS, two systems, NekoHTML and Quilt, implement one behav-
ioral pattern: State-Strategy. State-Strategy and Template Method patterns
have been detected in: ANTLR for the Parsers, Cobertura, DrawSWF, JGraph,
Marauroa for the Tools, and Emma for software utilities. Three systems imple-
ment four behavioral patterns: Sunflow, Velocity, and Quartz. ProGuard is the
only system implementing instances of all the behavioral patterns considered in
this analysis. The remaining systems implement three patterns among Observer,
State-Strategy, Template Method, and Visitor. The most detected behavioral
patterns are State-Strategy and Template Method, while the less detected ones
are Chain of Responsibility and Visitor. We observe that SAS implement more
instances of the creational design patterns with respect to NSAS; while NSAS
use more structural and behavioral design patterns with respect to SAS.

Figure 3 shows the box-plots associated to all the categories of design patterns
for SAS and NSAS.

Internal Software Quality Evaluation of Self-adaptive Systems 407

Fig. 3. Box-plot results for design patterns for SAS and NSAS.

4.3 Code Smells Detection Results

The code smells detected in the SAS and NSAS are summarized in Table 37,
38, and 39 for SAS and in Table 40, 41, and 42 for NSAS. From the 18 code
smells considered in this analysis, and detectable by the SonarQube (with
the external plug-in), the following 6 code smells have not been detected in
any of the projects: BaseClassKnowsDerivedClass, Blob, FunctionalDecompo-
sition, ManyFilesAttributesButNoComplex, SpeculativeGenerality, and Tradi-
tionBreaker. The most detected code smells present in all SAS are: Complex-
Class, LongMethod, and LongParameterList. The less detected code smells are:
BaseClassShouldBeAbstract and RefusedParentBequest revealed only in the IE
artifact.

Looking at NSAS, there are 3 code smells present, i.e., LargeClass, Mes-
sageChains, and SwissArmyKnife in addition to the ones detected in SAS. As
in SAS, also in NSAS the most present code smells are: ComplexClass, Long-
Method, and LongParameterList. The first two are present in all NSAS ana-
lyzed, while the third i.e., LongParameterList is not present in NekoHTML and
PicoContainer. The less present code smells are: LargeClass, MessageChains,
RefusedParentBequest, SpachettiCode and SwissArmyKnife. Figure 4 shows the
box-plots for the six code smell values most detected in Table 37, 38, 39, 40, 41,
and 42 associated to all SAS and all NSAS. We observe that the numbers of the
detected code smells in the two category of systems are comparable. We also
observe that the number of LongMethod smells in SAS is higher than in NSAS,
while the number of LongParameterList smells in NSAS is higher than in SAS.

408 C. Raibulet et al.

Table 30. Structural design patterns detected in NSAS software utilities.

SW UTILITY PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

Object Adapter 0.0154 0.0292 0 0.0782 0.0217 0.016 0.0915 0.0782

Bridge 0 0.0024 0 0.0306 0.0036 0.008 0.0140 0

Composite 0 0 0 0.0017 0.0072 0 0.0105 0

Decorator 0 0.0024 0 0.0085 0.0326 0.0064 0.0176 0

Proxy 0.0051 0.0024 0 0.0034 0.0036 0.012 0 0

Table 31. Behavioral design patterns detected in SAS frameworks.

FRAMEWORK ATLAS EUREMA FESAS iCASA Rainbow StarMX

Chain of Responsibility 0 0 0 0 0 0.0489

Observer 0.0117 0 0 0.0419 0.0082 0

State-Strategy 0 0.0166 0 1.2937 0.050 0.0795

Template Method 0 0.0041 0.0266 0.9510 0.0222 0.01136

Visitor 0 0 0 0 0.0005 0

Table 32. Behavioral design patterns detected in SAS artifacts.

ARTIFACT Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

Chain of Responsibility 0 0 0 0 0.03125 0 0 0 0.0039 0

Observer 0 0 0.0581 0.7636 0 0 0 0 0 0

State-Strategy 0.0312 0.0609 0.0116 0.0084 0 0.0625 0.1372 0.0243 0.0013 0.519

Template Method 0 0 0.0116 0 0 0.2187 0 0 0.0156 0

Visitor 0 0 0 0 0 0 0 0 0 0

Table 33. Behavioral design patterns detected in SAS student projects.

STUDENT
PROJECTS

Code Offload Fall Detection Platoon Coord Vacuum
Simulator

Chain of
Responsibility

0.0059 0 0 0.0038

Observer 0 0 0.0233 0

State-Strategy 0.0059 0.0105 0.5136 0.0223

Template
Method

0.0118 0.0035 0.0972 0

Visitor 0.0177 0 0 0

Internal Software Quality Evaluation of Self-adaptive Systems 409

Table 34. Behavioral design patterns detected in NSAS parsers.

PARSER GENERATOR ANT ANTLR NekoHTML SableCC

Chain of Responsibility 0 0 0 0.0040

Observer 0.0031 0 0 0

State-Strategy 0.0155 0.035 0.0638 0.0203

Template Method 0.0051 0.0035 0 0.0040

Visitor 0 0 0 0

Table 35. Behavioral design patterns detected in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

Chain of Responsibility 0 0 0 0 0 0.0028 0.0095 0

Observer 0 0 0 0.0056 0 0.1032 0 0.0038

State-Strategy 0.0232 0.0342 0.0949 0.1432 0.0526 0.1060 0.1722 0.1030

Template Method 0.0058 0.0155 0.0167 0.0337 0.0095 0.0198 0.0813 0.0267

Visitor 0 0 0 0 0 0.0919 0.3301 0.1297

Table 36. Behavioral design patterns detected in NSAS software utilities.

SW UTILITIES PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

Chain of Responsibility 0 0 0 0 0 0 0.0040 0

Observer 0 0.0024 0 0.0102 0.0036 0 0.0105 0

State-Strategy 0.0128 0.0170 0.0588 0.0850 0.0036 0.0056 0.0704 0.0347

Template Method 0.0154 0.0170 0.1776 0.0357 0.0398 0.012 0.0281 0

Visitor 0.0257 0 0 0 0 0.028 0 0

Table 37. Code smells detected in SAS frameworks.

FRAMEWORK ATLAS EUREMA FESAS iCASA Rainbow StarMX

AntiSingleton 0 0.0208 0.0533 0 0.0058 0

BaseClassShouldBeAbstract 0 0 0 0 0 0

ClassDataShouldBePrivate 0.358 0.0083 0.0533 0 0.0117 0.0113

ComplexClass 0.2352 0.15 0.0933 0.0559 0.0386 0.7954

LazyClass 0.352 0.0083 0 0 0.0110 0

LongMethod 0.058 0.1958 0.1466 0.0419 0.0287 0.2272

LongParameterList 0.0941 0.0333 0.0266 0.0139 0.0093 0.5681

RefusedParentBequest 0 0 0 0 0 0

SpaghettiCode 0 0.0041 0 0 0 0

410 C. Raibulet et al.

Table 38. Code smells detected in SAS artifacts.

ARTIFACTS Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

AntiSingleton 0.03100 0.0121 0 0.0157 0.0153 0 0 0 0.0078 0.077

BaseClassShouldBeAbstract 0 0 0 0.0012 0 0 0 0 0 0

ClassDataShouldBePrivate 0 0.0243 0.0348 0.7878 0.0877 0 0 0 0.0156 0.090

ComplexClass 0.1718 0.1341 0.0697 0.1393 0.1194 0.1562 0.0980 0.0731 0.2610 0.1948

LazyClass 0.0625 0.0609 0.0232 0.0157 0.0217 0 0 0.0121 0.0052 0

LongMethod 0.2187 0.0975 0.2674 0.0921 0.1203 0.2812 0.1372 0.2073 0.0209 0.116

LongParameterList 0.0156 0.0853 0.1976 0.0387 0.0361 0.0625 0.0392 0.0731 0.0156 0.0259

RefusedParentBequest 0 0 0 0.0012 0.0009 0 0 0 0 0

SpaghettiCode 0 0 0 0 0 0 0 0 0 0.0129

4.4 Architectural Smell Detection Results

The architectural smells detected in SAS and NSAS are summarized in Table 43,
44, 45 for SAS and in Table 46, 47, 48 for NSAS. Observing the results obtained

Table 39. Code smells detected in SAS student projects.

STUDENT PROJECTS Code
Offload

Fall
Detection

Platoon
Coord

Vacuum
Simulator

AntiSingleton 0.01775 0.0352 0.0820 0

BaseClassShouldBeAbstract 0 0 0 0

ClassDataShouldBePrivate 0.0236 0.0201 0.0350 0.0074

ComplexClass 0.2130 0.1478 0.1712 0.0820

LazyClass 0.0295 0.0774 0.0194 0.0223

LongMethod 0.1656 0.1302 0.1361 0.1044

LongParameterList 0.0710 0.0950 0.1789 0.0074

RefusedParentBequest 0 0 0 0

SpaghettiCode 0.0118 0 0.0077 0

Table 40. Code smells detected in NSAS parsers.

PARSER GENERATOR ANT ANTLR NekoHTML SableCC

AntiSingleton 0.0031 0.0607 0.0425 0.0162

BaseClassShouldBeAbstract 0.0176 0 0 0

ClassDataShouldBePrivate 0.0093 0.1714 0 0.0447

ComplexClass 0.1434 0.1428 0.1063 0.1463

LargeClass 0 0 0.0212 0

LazyClass 0.0363 0.075 0.0425 0.1219

LongMethod 0.1663 0.0571 0.1063 0.1585

LongParameterList 0.0301 0.0107 0 0.1504

MessageChains 0 0 0 0

RefusedParentBequest 0.1850 0 0 0

SpaghettiCode 0 0.0071 0 0.0121

SwissArmyKnife 0.0010 0 0 0

Internal Software Quality Evaluation of Self-adaptive Systems 411

Table 41. Code smells detected in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

AntiSingleton 0.0174 0.0373 0.1284 0 0.0047 0.014 0 0.0114

BaseClassShouldBeAbstract 0 0.0031 0 0.0028 0.0023 0.0169 0 0

ClassDataShouldBePrivate 0.1511 0.0218 0.1340 0.0056 0.0287 0.1244 0.0191 0.0419

ComplexClass 0.2325 0.1651 0.1229 0.1797 0.1961 0.2531 0.1961 0.1374

LargeClass 0 0 0 0 0 0 0 0

LazyClass 0.0523 0.0062 0.0502 0 0 0 0 0

LongMethod 0.1744 0.1651 0.1675 0.1882 0.1913 0.1753 0.1776 0.1641

LongParameterList 0.0406 0.0280 0.0446 0.0702 0.0669 0.0664 0.1052 0.1374

MessageChains 0 0 0 0 0.0047 0 0 0

RefusedParentBequest 0 0.0031 0 0 0.2631 0.1244 0 0

SpaghettiCode 0 0 0 0 0 0 0 0

SwissArmyKnife 0 0 0 0 0 0.0990 0 0

and summarized in Fig. 5 with the box-plots, we note that there is a higher
number of UD and HL smells in all analyzed SAS than in all analyzed NSAS.
The results concerning the CD smells are comparable in the two category of
systems. However, we outline that, for example, the number of CD smells in
the iCASA framework (the highest value among the SAS analyzed examples) is
more than double with respect to ANTLR (the highest value among the NSAS
analyzed examples), even if the number of classes in ANTLR is almost double
the number of classes in iCASA. This result may ask for a particular attention

Fig. 4. Box-plot results for code smells in SAS and NSAS.

412 C. Raibulet et al.

due to that fact that a single change or bug in a package/class may have a
significant effect on other classes in a system, with increased maintenance and
refactoring costs.

The presence of UD and HL smells in SAS more than in NSAS may be also
due to the nature of SAS. The UD smell indicates a subsystem that depends
on other subsystems less stable than itself. This instability may raise from the
adaptation of SAS based on the variability of the internal or external parameters,
meaning that the various classes and packages should be characterized by a high
degree of flexibility. In addition, SAS operate in dynamic environments and need
to analyze and adapt to changes in the environment to ensure the quality of the
provided services. This is a possible explanation for the number of HD smells
detected in SAS.

5 Threats to Validity

This analysis extended our work initially introduced in [26], where we have ana-
lyzed 6 SAS and 6 NSAS. Hence, we extended the number of analyzed systems
by considering 20 from each category, all written in the Java programming lan-
guage. However, one of the threats to validity may be related to the limited
number of analyzed systems usually considered in other research areas. This is
due to the limited number of SAS available.

Considering the results validity of the tools, we have used widely-adopted
ones, such as Understand and SonarQube, or tools for which papers on the
validity of their results have been published, e.g., DPDT [31] and Arcan [3,16].
From the results point of view on the detection of the design patterns, we have
used DPDT, which detects 13 out of the 24 GoF’s patterns. To detect all the
GoF’s patterns we should use various tools, because a single tool recognizes only
a subset of the GoF’s patterns, as far as concerns our knowledge.

Table 42. Code smells detected in NSAS software utilities.

SW UTILITIES PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

AntiSingleton 0 0.0024 0.0588 0.0051 0.0036 0 0 0.0052

BaseClassShouldBeAbstract 0.0154 0 0 0.0017 0.0072 0 0 0

ClassDataShouldBePrivate 0 0.0024 0.0588 0.0068 0.0036 0 0.0070 0.060

ComplexClass 0.2164 0.1658 0.1776 0.2125 0.0797 0.096 0.1443 0.0782

LargeClass 0 0 0 0 0 0 0 0

LazyClass 0.0128 0.0243 0.2352 0.0153 0.0108 0.016 0.0211 0

LongMethod 0.2164 0.2268 0.2352 0.1989 0.1666 0.128 0.1478 0.2

LongParameterList 0.1932 0.0268 0.1764 0.1190 0.0036 0 0.1373 0.1478

MessageChains 0 0 0 0 0 0 0 0

RefusedParentBequest 0.0128 0 0 0 0.0036 0 0 0

SpaghettiCode 0 0.0024 0 0.0034 0.0036 0 0 0

SwissArmyKnife 0 0 0 0 0 0 0 0

Internal Software Quality Evaluation of Self-adaptive Systems 413

Table 43. Architectural smells detected in SAS frameworks.

FRAMEWORK ATLAS EUREMA FESAS iCASA Rainbow StarMX

UD 0 0.0083 0.0266 0.0559 0.0005 0.0113

HL 0.0588 0.0083 0.0133 0.2727 0.0193 0.4545

CD 1.1058 0.3625 0.1333 52.804 0.5530 0.7045

Table 44. Architectural smells detected in SAS artifacts.

ARTIFACT Adasim DeltaIoT Hogna IE JDEECo K8-Scalar Lotus mRUBiS TAS UNDERSEA

UD 0.0156 0.0126 0.0232 0.0036 0 0.0937 0.0196 0.0243 0.0013 0.0779

HL 0.0781 0.0361 0.0116 0.0278 0 0.1875 0.0784 0.0243 0.0130 0.2337

CD 0.5384 0.4024 0.1395 0.4048 0.0036 8.2812 0.5490 0.7317 0.1241 37.428

Table 45. Architectural smells detected in SAS student projects.

STUDENT
PROJECT

Code Offload Fall Detection Platoon Coord Vacuum
Simulator

UD 0 0.0070 0.0194 0.0074

HL 0.0650 0.0492 0.0739 0.0223

CD 1.207 0.3732 5.684 0.1716

Table 46. Architectural smells detected in NSAS parsers.

PARSER GENERATOR ANT ANTLR NekoHTML SableCC

UD 0.0062 0.0142 0 0.0040

HL 0.0062 0.0142 0.0212 0.0040

CD 0.8492 27.560 0.2340 0.1707

Table 47. Architectural smells detected in NSAS tools.

TOOL Cobertura DrawSWF JGraph JHotDraw Marauroa ProGuard Sunflow Velocity

UD 0.0058 0.0062 0.0223 0.0084 0.0143 0.0028 0.0143 0.0114

HL 0.0406 0.0373 0.0223 0.0196 0.0478 0.0198 0.0430 0.3053

CD 0.2965 1.1152 3.6592 0.7556 0.7272 0.4031 5.148 2.8167

Table 48. Architectural smells detected in NSAS software utilities.

SW UTILITY PdfBOX Checkstyle Emma Hibernate JUnit Pico Quartz Quilt

UD 0.0257 0.0073 0 0.0068 0.0108 0.004 0 0

HL 0.0412 0.0097 0 0.0238 0.0434 0.016 0.0316 0.0173

CD 2.0644 2.502 0.9411 1.3248 0.8478 0.5 0.8239 0.6086

414 C. Raibulet et al.

Fig. 5. Box-plot results for architectural smells.

The results may be influenced also by the NSAS analyzed projects. To limit
this type of influence we have chosen systems from well-known public reposito-
ries. In addition, these NSAS projects are usually considered in studies focused
on software quality assessment.

Furthermore, advanced statistical techniques may be exploited for results
comparison. Here, the comparison is straightforward because of the limited num-
ber of analyzed systems.

6 Discussion and Concluding Remarks

In this section, we provide the answers to the RQ which guided our analysis and
comparison and which have been mentioned in Sect. 3. Furthermore, we present
our concluding remarks and future developments.

RQ1: How can SAS be evaluated in terms of software metrics? Which is the
difference between SAS and NSAS based on software metrics evaluation?

Answer RQ1: We have considered two sets of software metrics, i.e., CK and
RM, for the evaluation of SAS in front of NSAS. These two sets of metrics
provide a complementary view on the analyzed systems.

Two of the CK metrics results, i.e., WMC and RFC are greater in SAS than
in NSAS. They indicate a higher complexity in SAS than in NSAS. This results
also from the values of CBO and DIT in a less significant manner than from
WMC and RFC. While, NOC and LCOM have associated slightly lower values
in SAS than in NSAS.

Internal Software Quality Evaluation of Self-adaptive Systems 415

Three of the MR metrics results, i.e., CA, CE, and D (Distance from the main
sequence) are very similar in SAS and NSAS. This indicates that SAS package
design has minimum or non influence from the point of view of self-adaptivity.
The A (Abstractness) index is lower in SAS than in NSAS and it has also low
values. This indicates the use of concrete packages in SAS. The I (Instability)
index is lower in SAS than in NSAS being at a half way between completely
stable and completely unstable packages.

To summarize, the CK metrics capture differences between SAS and NSAS
design by focusing on class level aspects, while RM metrics indicate similar
results for SAS and NSAS by focusing on package level aspects. These are some-
how expected results due to the nature of SAS concerning their ability to address
changes at runtime.

RQ2: How can SAS be evaluated in terms of design patterns? Which is the
difference in terms of design patterns presence in SAS and NSAS?

Answer RQ2: In our analysis we detected several GoF design patterns. The
detection results in SAS are comparable to the results in NSAS, which in our
opinion is a positive result. All the considered patterns are present both in
SAS and NSAS. The most detected patterns are Singleton, Adapter, and State-
Strategy both in SAS and NSAS; the less detected patterns are Prototype, Com-
posite, Proxy, Chain of Responsibility, and Visitor both in SAS and NSAS. In
SAS, more instances of creational patterns have been detected, while in NSAS
more instances of structural and behavioral patterns. This result may be due
also to the fact that SAS use self-adaptive specific structural and behavioral
patterns, not considered in this analysis.

To summarize, the results on design patterns detection is similar in the two
types of systems, with a prevalence of creational patterns in SAS.

RQ3: How can SAS be evaluated in terms of code smells? Which is the dif-
ference in terms of code smells presence in SAS and NSAS?

Answer RQ3: The results of code smell detection indicate that only 9 out
of 18 considered smells have been identified in SAS, while 3 more code smells
have been identified in NSAS. This is a positive result because (1) only half
of the considered smells are present in SAS, and (2) in SAS were identified
less different smells than in NSAS. The most present code smells in SAS are:
AntiSingleton, ComplexClass, LongMethod, and LongParameterList. This may
be due to the classes implementing the steps of a MAPE-K loop and being more
complex with long methods and parameter lists. The less present code smells
are BaseClassShouldBeAbstract, RefusedParentBequest, and SpaghettiCode.

To summarize, the results on code smells detection are comparable in SAS
and NSAS and sometimes even better in SAS than in NSAS (in terms of number
of different smells detected and of number of instances detected).

RQ4: How can SAS be evaluated in terms of architectural smells? Which is
the difference in terms of architectural smells presence in SAS and NSAS?

416 C. Raibulet et al.

Answer RQ4: We have detected all the three kinds of architectural smells
both in SAS and in NSAS. There have been identified more UD and HL in SAS
with respect to NSAS. Attention should be given to the possible false positives
instances, that may represent not real problems to be removed in SAS.

To summarize, the SAS developers should consider the presence of the archi-
tectural smells and try to minimize their effect on the maintenance and evolution
effort.

The analysis described in this paper may be useful in particular to the SAS
developers who may rely on the feedback resulted from the software metrics
computation to improve their solutions. In addition, they may apply the most
used and appropriate GoF design patterns to implement SAS. The patterns
represent also a documentation of the reasons concerning the design choices. This
analysis can be also very important for the identification of the most common
anomalies in the software through code smells and architectural smells. The SAS
developers nay try to detect and remove them in order to avoid a progressive
internal quality erosion [7], as this is usually done for NSAS. This analysis of SAS
and the comparison of results with NSAS suggest that evaluation mechanisms
currently used for NSAS can be successfully adopted and applied for SAS too.
Further work may concern various tasks. From the software metrics points of
view, the analysis may be extended to consider also software metrics defined for
the evaluation of self-adaptivity (e.g., [24]).

In this analysis we have considered the design patterns defined by GoF
because there is an available tool support for automating this task. There are
also design patterns specifically defined for self-adaptivity. However, currently
their automatic detection is not supported by tools, as far as concerns our knowl-
edge. A possible future work may concern the detection of self-adaptive specific
design patterns as well as other GoF’s patterns not detectable through DPDT.

Moreover, we plan to analyze how the refactoring of the different kinds of
smells, at code and architectural level, can impact on a set of software quality
metrics. In addition, a future work will concern the identification of smells or
anti-patterns specific to SAS.

References

1. Arcelli Fontana, F., Maggioni, S., Raibulet, C.: Understanding the relevance of
micro-structures for design patterns detection. J. Syst. Softw. 84(12), 2334–2347
(2011). https://doi.org/10.1016/j.jss.2011.07.006

2. Arcelli Fontana, F., Maggioni, S., Raibulet, C.: Design patterns: a survey on their
micro-structures. J. Softw.: Evol. Process 25(1), 27–52 (2013). https://doi.org/10.
1002/smr.547

3. Arcelli Fontana, F., Pigazzini, I., Roveda, R., Tamburri, D.A., Zanoni, M., Nitto,
E.D.: Arcan: a tool for architectural smells detection. In: International Conference
on Software Architecture Workshops, Sweden, 5–7 April 2017, pp. 282–285 (2017).
https://doi.org/10.1109/ICSAW.2017.16

https://doi.org/10.1016/j.jss.2011.07.006
https://doi.org/10.1002/smr.547
https://doi.org/10.1002/smr.547
https://doi.org/10.1109/ICSAW.2017.16

Internal Software Quality Evaluation of Self-adaptive Systems 417

4. Arcoverde, R., Garcia, A., Figueiredo, E.: Understanding the longevity of code
smells: preliminary results of an explanatory survey. In: Fourth Workshop on Refac-
toring Tools 2011, WRT 2011, Honolulu, USA, pp. 33–36 (2011). https://doi.org/
10.1145/1984732.1984740

5. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of bad smells in
object-oriented code. In: 2010 Seventh International Conference on the Quality of
Information and Communications Technology, pp. 106–115. IEEE (2010). https://
doi.org/10.1109/QUATIC.2010.16

6. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design.
In: Paepcke, A. (ed.) Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA 1991), Sixth Annual Conference, Phoenix, Ari-
zona, USA, 6–11 October 1991, Proceedings, pp. 197–211. ACM (1991). https://
doi.org/10.1145/117954.117970

7. Fontana, F.A., Roveda, R., Zanoni, M., Raibulet, C., Capilla, R.: An experience
report on detecting and repairing software architecture erosion. In: 13th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2016, Venice, Italy, 5–8
April 2016, pp. 21–30. IEEE Computer Society (2016). https://doi.org/10.1109/
WICSA.2016.37

8. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

9. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)

10. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural
bad smells. In: CSMR 2009. pp. 255–258. IEEE, Germany (2009). https://doi.org/
10.1109/CSMR.2009.59

11. Kozik, R., Choraś, M., Puchalski, D., Renk, R.: Platform for software quality
and dependability data analysis. In: Zamojski, W., Mazurkiewicz, J., Sugier, J.,
Walkowiak, T., Kacprzyk, J. (eds.) DepCoS-RELCOMEX 2018. AISC, vol. 761, pp.
306–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91446-6 29

12. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on
engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–
206 (2015). https://doi.org/10.1016/j.pmcj.2014.09.009

13. Le, D.M., Behnamghader, P., Garcia, J., Link, D., Shahbazian, A., Medvidovic,
N.: An empirical study of architectural change in open-source software systems.
In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pp. 235–245 (2015). https://doi.org/10.1109/MSR.2015.29

14. Macia, I., Arcoverde, R., Cirilo, E., Garcia, A., von Staa, A.: Supporting the iden-
tification of architecturally-relevant code anomalies. In: Proceedings of 28th IEEE
International Conference on Software Maintenance (ICSM 2012). IEEE, Trento
(2012). https://doi.org/10.1109/ICSM.2012.6405348

15. Martin, R.: OO design quality metrics: an analysis of dependencies (1994). http://
gerritbeine.de/assets/downloads/OODesignQualityMetrics-Martin,RobertC .pdf.
Accessed Sept 2020

16. Martini, A., Fontana, F.A., Biaggi, A., Roveda, R.: Identifying and prioritizing
architectural debt through architectural smells: a case study in a large software
company. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol.
11048, pp. 320–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00761-4 21

17. de Normalisation O.I.: ISO/IEC 25010:2011, systems and software engineering -
systems and software quality requirements and evaluation (square) - system and
software quality models (2017)

https://doi.org/10.1145/1984732.1984740
https://doi.org/10.1145/1984732.1984740
https://doi.org/10.1109/QUATIC.2010.16
https://doi.org/10.1109/QUATIC.2010.16
https://doi.org/10.1145/117954.117970
https://doi.org/10.1145/117954.117970
https://doi.org/10.1109/WICSA.2016.37
https://doi.org/10.1109/WICSA.2016.37
https://doi.org/10.1109/CSMR.2009.59
https://doi.org/10.1109/CSMR.2009.59
https://doi.org/10.1007/978-3-319-91446-6_29
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1109/MSR.2015.29
https://doi.org/10.1109/ICSM.2012.6405348
http://gerritbeine.de/assets/downloads/OODesignQualityMetrics-Martin,RobertC_.pdf
http://gerritbeine.de/assets/downloads/OODesignQualityMetrics-Martin,RobertC_.pdf
https://doi.org/10.1007/978-3-030-00761-4_21
https://doi.org/10.1007/978-3-030-00761-4_21

418 C. Raibulet et al.

18. Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N.: The evolution and impact of
code smells: a case study of two open source systems. In: 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pp. 390–400
(2009). https://doi.org/10.1109/ESEM.2009.5314231

19. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software
repository mining. In: 16th European Conference on Software Maintenance and
Reengineering, pp. 411–416. IEEE (2012). https://doi.org/10.1109/CSMR.2012.
79

20. Pettersson, N., Löwe, W., Nivre, J.: Evaluation of accuracy in design pattern occur-
rence detection. IEEE Trans. Softw. Eng. 36(4), 575–590 (2010). https://doi.org/
10.1109/TSE.2009.92

21. Raemaekers, S., van Deursen, A., Visser, J.: The maven repository dataset of met-
rics, changes, and dependencies. In: Zimmermann, T., Penta, M.D., Kim, S. (eds.)
Proceedings of the 10th Working Conference on Mining Software Repositories,
MSR 2013, San Francisco, CA, USA, 18–19 May 2013, pp. 221–224. IEEE Com-
puter Society (2013). https://doi.org/10.1109/MSR.2013.6624031

22. Raibulet, C.: Facets of adaptivity. In: Morrison, R., Balasubramaniam, D., Falkner,
K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 342–345. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88030-1 33

23. Raibulet, C., Arcelli Fontana, F.: Evaluation of self-adaptive systems: a women
perspective. In: 11th European Conference on Software Architecture, UK, 11–15
September 2017, pp. 23–30 (2017). https://doi.org/10.1145/3129790.3129825

24. Raibulet, C., Arcelli Fontana, F.: Collaborative and teamwork software develop-
ment in an undergraduate software engineering course. J. Syst. Softw. 144, 409–422
(2018). https://doi.org/10.1016/j.jss.2018.07.010

25. Raibulet, C., Arcelli Fontana, F., Carettoni, S.: A preliminary analysis and com-
parison of self-adaptive systems according to different issues. Softw. Qual. J. 28,
1213–1243 (2020). https://doi.org/10.1007/s11219-020-09502-5

26. Raibulet, C., Fontana, F.A., Carettoni, S.: SAS vs. NSAS: analysis and comparison
of self-adaptive systems and non-self-adaptive systems based on smells and pat-
terns. In: Ali, R., Kaindl, H., Maciaszek, L.A. (eds.) Proceedings of the 15th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE 2020, Prague, Czech Republic, 5–6 May 2020, pp. 490–497. SCITEPRESS
(2020). https://doi.org/10.5220/0009513504900497

27. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adap-
tive systems. In: ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, South Africa, pp. 49–58 (2010). https://doi.org/10.1145/
1808984.1808990

28. Romano, D., Raila, P., Pinzger, M., Khomh, F.: Analyzing the impact of antipat-
terns on change-proneness using fine-grained source code changes. In: Proc. 19th
Working Conference on Reverse Engineering (WCRE 2012), pp. 437–446. IEEE,
Canada (2012). https://doi.org/10.1109/WCRE.2012.53

29. Suryanarayana, G., Samarthyam, G., Sharma, T.: Refactoring for Software Design
Smells, 1 edn. Morgan Kaufmann, Burlington (2015)

30. Tempero, E.D., et al.: The qualitas corpus: a curated collection of java code for
empirical studies. In: Han, J., Thu, T.D. (eds.) 17th Asia Pacific Software Engineer-
ing Conference, APSEC 2010, Sydney, Australia, 30 November–3 December 2010,
pp. 336–345. IEEE Computer Society (2010). https://doi.org/10.1109/APSEC.
2010.46

https://doi.org/10.1109/ESEM.2009.5314231
https://doi.org/10.1109/CSMR.2012.79
https://doi.org/10.1109/CSMR.2012.79
https://doi.org/10.1109/TSE.2009.92
https://doi.org/10.1109/TSE.2009.92
https://doi.org/10.1109/MSR.2013.6624031
https://doi.org/10.1007/978-3-540-88030-1_33
https://doi.org/10.1145/3129790.3129825
https://doi.org/10.1016/j.jss.2018.07.010
https://doi.org/10.1007/s11219-020-09502-5
https://doi.org/10.5220/0009513504900497
https://doi.org/10.1145/1808984.1808990
https://doi.org/10.1145/1808984.1808990
https://doi.org/10.1109/WCRE.2012.53
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/APSEC.2010.46

Internal Software Quality Evaluation of Self-adaptive Systems 419

31. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern
detection using similarity scoring. IEEE Trans. Softw. Eng. 32(11), 896–909 (2006).
https://doi.org/10.1109/TSE.2006.112

32. Walter, B., Alkhaeir, T.: The relationship between design patterns and code smells:
an exploratory study. Inf. Softw. Technol. 74, 127–142 (2016). https://doi.org/10.
1016/j.infsof.2016.02.003

33. Weyns, D.: Software engineering of self-adaptive systems. In: Cha, S., Taylor, R.,
Kang, K. (eds.) Handbook of Software Engineering, pp. 399–443. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-00262-6 11

https://doi.org/10.1109/TSE.2006.112
https://doi.org/10.1016/j.infsof.2016.02.003
https://doi.org/10.1016/j.infsof.2016.02.003
https://doi.org/10.1007/978-3-030-00262-6_11

A Workflow for Automatic Code
Generation of Safety Mechanisms
via Model-Driven Development

Lars Huning(B), Padma Iyenghar, and Elke Pulvermüller

Institute of Computer Science, University of Osnabrück, Wachsbleiche 27,
49090 Osnabrück, Germany

{lhuning,piyengha,epulverm}@uni-osnabrueck.de

Abstract. Due to the increasing size and complexity of embedded sys-
tems, software quality is gaining importance in such systems. This is
especially true in safety-critical systems, where failure may lead to seri-
ous harm for humans or the environment. Model-Driven Development
(MDD) techniques, such as model representation with semi-formal design
languages and automatic code generation from such models may increase
software quality and developer productivity. This paper introduces a
workflow for automatically generating safety mechanisms from model
representations. In summary, safety mechanisms are specified in class dia-
grams of the Unified Modeling Language (UML) via stereotypes along-
side the remainder of the application. In a subsequent step, these model
representations are used to perform model-to-model transformations.
The resulting model contains all the information required to automat-
ically generate source code for the application, including the specified
safety mechanisms. Then, common MDD tools may be used to generate
this productive source code. We demonstrate the application of our work-
flow by applying it to the automatic code generation of timing constraint
monitoring at runtime.

Keywords: Code generation · Embedded software engineering ·
Embedded systems · Functional safety · Model-driven development

1 Introduction

The size and complexity of embedded software systems is increasing steadily [39].
This trend affects the software quality of the developed systems, e.g., because
the complexity makes the system harder to understand or because the increased
size leads to more programming errors. A potential solution for dealing with
the increasing complexity of systems is the use of semi-formal design languages,
such as Unified Modeling Language (UML) [14,15]. The number of program-
ming errors may be reduced by automatic code generation features. This also
has the advantage of increasing developer productivity, thus reducing the total
costs of the developed systems. Both techniques, semi-formal design languages
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 420–443, 2021.
https://doi.org/10.1007/978-3-030-70006-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-70006-5_17

A Workflow for Automatic Code Generation of Safety Mechanisms 421

and automatic code generation, are part of Model-Driven Development (MDD).
This development paradigm promotes the use of models as central artifacts in
the development process. Such models may be specified with the aforementioned
semi-formal design languages. Furthermore, if the level of detail in the mod-
els is sufficient, productive source code may be generated automatically from
these models. This paper introduces a workflow to model software safety mecha-
nisms in a semi-formal design language and to automatically generate productive
source code from these model representations in a subsequent step.

As described above, the usage of semi-formal design languages and auto-
matic code generation may increase software quality. Furthermore, software
safety mechanisms may also contribute to software quality. In the context of
safety-critical systems, which are a category of systems whose failure may harm
humans or the environment [35], the use of specific safety mechanisms to mit-
igate potential hazards is even required [19]. These requirements are described
in safety standards, such as IEC 61508 [19] or ISO 26262 [20]. In many safety-
critical domains, certification for the domain-relevant safety standard is required
for admission to market. Modeling and automatic code generation of safety mech-
anisms, as proposed by our approach, may contribute to meet the requirements
of these safety standards. Furthermore, the two key concepts of our approach,
the use of semi-formal design languages and automatic code generation, are also
encouraged by the safety standard IEC 61508 [19], which is a generic safety stan-
dard for electrical/electronic/programmable electronic safety-related systems.

In summary, our approach consists of the following steps: Developers create
an application model of their system with UML. Afterwards, they apply a set
of stereotypes to their application. These stereotypes model safety mechanisms
from IEC 61508 or another relevant safety standard. These model representa-
tions are parsed in a subsequent step. The obtained information serves as the
input to model-to-model transformations. The resulting model, which we call
intermediate model in this paper, contains UML model elements for the safety
mechanisms that were specified via the respective stereotypes. We use state-
charts and opaque behavior for the generated safety mechanisms to capture the
required amount of detail, so that common MDD tools, such as IBM Rational
Rhapsody [32] or Enterprise Architect [9], may be used to generate productive
source code from the intermediate model. This paper does not only describe the
above process in detail, but also provides guidelines on how to represent safety
mechanisms via UML stereotypes and how to generate code for these mecha-
nisms efficiently. Last but not least, we also provide a generic workflow for the
model transformation process for the safety mechanisms.

This paper is an extended version of a previously published paper [18]. It
provides a more in-depth discussion of the workflow initially conceived in [18].
Furthermore, it presents a novel, non-trivial application of this workflow by
presenting an approach to the automatic code generation of timing constraint
monitoring via MDD.

The remainder of this paper is organized as follows: Sect. 2 presents some
background regarding the development lifecycle of safety-critical systems and

422 L. Huning et al.

code generation via MDD. Afterwards, we present an extended discussion of the
workflow initially described in [18] in Sect. 3. In Sect. 4 we present a novel appli-
cation of this workflow for the automatic code generation of timing constraint
monitoring mechanisms via MDD. Sections 5 presents an updated version of
related work compared to the initially published paper [18]. Section 6 concludes
this paper and presents future work.

2 Background

This section provides some background knowledge regarding the development of
safety-critical systems relevant to our approach. In these systems, safety is a non-
functional quality requirement. First, we discuss the IEC 61508 lifecycle in order
to show in which development context our approach is located (cf. Sect. 2.1).
Afterwards, we discuss code generation within MDD and on which technologies
our approach depends (cf. Sect. 2.2).

2.1 IEC 61508 Lifecycle

IEC 61508 is a safety standard for “Functional safety of electrical/electronic/
programmable electronic safety-related systems” [19]. The terms electrical/
electronic/programmable electronic are often abbreviated as E/E/PE. IEC 61508
is the basis for many domain specific safety standards, such as ISO26262 in the
automotive domain. As our approach is not limited to any specific domain, we
choose the safety recommendations of IEC 61508 as the basis for our work.

IEC 61508 defines a safety lifecycle for safety-related systems, which is illus-
trated in Fig. 1. The steps 1–5 are concerned with the overall safety of the sys-
tems, not yet limited to E/E/PE aspects. For example, they may also consider
mechanical safety aspects. At the end of step 5, a safety requirements alloca-
tion exists that describes which safety aspects are covered by which parts of the
developed system. This is used in step 9, which explicitly formulates the safety
requirements for the E/E/PE system. Based on these requirements, the E/E/PE
system is realized in step 10. Steps 6–8 are executed in parallel to steps 9 and 10.
They are concerned with planning further aspects of the lifecycle, e.g., validation
and maintenance of the system. The results of this planning are used in steps
12–14, in which the system is installed, validated and subsequently maintained.
Step 15 foresees the potential modification of the system after it is in use. The
safety lifecycle ends with step 16, in which the system is decommissioned.

The contributions of this paper are conceptually located in step 10 of the
safety lifecycle, i.e., during the realization of the E/E/PE system. We assume
that a (correct) safety requirements specification related to the E/E/PE system
exists (step 9 of the lifecylce). This safety requirements specification contains a
set of safety mechanisms that are to be included within the final application.
Our approach enables developers to model the safety mechanisms via UML and
automatically generate the source code for these safety mechanisms afterwards.
This may decrease the number of manual implementation errors and provide
productivity gains.

A Workflow for Automatic Code Generation of Safety Mechanisms 423

Fig. 1. Safety lifecycle of IEC-61508 [19]. The dotted box around step 10 was added
and indicates in which step of the safety-lifecycle this paper is conceptually located.

2.2 Model-Driven Development

There exist integrated development environments that allow for the creation
of UML models and subsequent code generation from these models, e.g., [9,
28,32]. Most of these tools are capable of generating code for UML elements
that have a 1:1 mapping in object-oriented programming languages, e.g., classes.
Some of them also provide the ability to generate code for UML diagrams and
elements where such a 1:1 mapping does not exist. For example, [32] allows the
code generation from statecharts by introducing a suitable framework for that
purpose. Our approach builds upon these tools and assumes that they are used

424 L. Huning et al.

by the developers. We distinguish two types of usages of these MDD tools, both
of which are supported by our approach.

The first type of usage is a “pure” type of usage of the MDD tools. The
entire application is modeled within the tool and all source code is generated
directly from the tool. This includes structural and behavioral diagrams. The
opaque behavior feature of UML operations allows developers to write any man-
ual code they require. This opaque behavior is then automatically copy-pasted
into the source code of the specific operations that are generated by the tool. Our
approach (cf. Sect. 3.1) uses model-to-model transformations in order to gener-
ate safety mechanisms. For this first type of usage, these model transformations
may be applied in two ways. The first alternative is to execute the model-to-
model transformations once on the developer model A and obtain a modified
application model B with which the developers work from then on. The sec-
ond alternative is that the model-to-model transformations are executed before
each code generation. This way, developers work on an application model A,
which contains the model representation of the safety mechanisms. The model-
to-model transformations create a modified application model B, which is the
input for subsequent code generation. However, as the transformation from A
to B is entirely automatic, developers continue to work with the model A. Both
approaches have their merits and depend on whether the additional abstraction
provided by model A over model B is seen as benefit by the developers.

The second type of usage is a more restricted use of the MDD tools. In this
scenario, only a structural model of the application, i.e., a class diagram, is cre-
ated. The MDD tools are used to generate code skeletons from this UML model,
i.e., classes, variables and operations without implementation. The implemen-
tation is written manually by developers in a subsequent step and may involve
other development technologies, e.g., the use of text-based integrated develop-
ment environments like Eclipse IDE [37]. For this second type of usage, there is
only one way how developers may use our approach. The model-to-model trans-
formations described in this paper are used to create a modified UML model
B that includes the safety mechanisms. Afterwards, code is generated from this
modified model. This generated code includes the safety mechanisms that have
previously been added to the model B via the model-to-model transformations.
Thus, the developers may start their manual implementation not only with a
code skeleton of the classes, attributes and operations, but also with the safety
mechanisms already implemented for them.

3 Workflow

This section first describes a high-level overview of the approach presented in
this paper (cf. Sect. 3.1). Afterwards, the approach itself is described in Sect. 3.2.

3.1 High-Level Overview of the Approach

This section presents the high-level concept of our approach to preserve the
non-functional requirement “safety”. We also show, how this approach may be

A Workflow for Automatic Code Generation of Safety Mechanisms 425

applied to the development of a fire detection system. Figure 2(a) shows the
generalized concept of our approach, while Fig. 2(b) shows how this concept is
applied to the fire detection system.

Step (A1) of Fig. 2(a) marks the start of our approach, in which a UML model
of the system is realized on the basis of the functional requirements specifica-
tion. In step (B1) of Fig. 2(b) we show a simplified version of this model for a fire
detection system. For the purpose of illustration, the fire detection example is
extremely simplified. It consists of a single class with a smokeThreshold variable
that represents the maximum carbon monoxide concentration in the air before
the system sounds an alarm. The checkFire() method is used to periodically
measure the carbon monoxide concentration and raise an alarm if the mea-
sured value is greater than smokeThreshold. This model contains the functional
features of the fire detection system, i.e., measuring the carbon monoxide con-
centration and raising an alarm when appropriate. However, it does not contain
any specific safety mechanisms yet. The specification of such safety mechanisms
is added in step (A2) of Fig. 2(a), in which appropriate stereotypes are added
to the UML model based on the safety requirements specification. Step (B2) of
Fig. 2(b) shows an example for one such stereotype. A mechanism for timing
constraint monitoring is added to the checkFire() operation by applying the
<<TimingMonitoring>> stereotype to the operation. This stereotype models
that the checkFire() operation has to execute within a certain time frame,
e.g., one second. If the operation executes for longer than this time frame, an
error in the system is likely and thus the system should give an appropriate
warning, e.g., a maintenance tone. For example, such errors may be program-
ming errors leading to infinite loops or malfunctioning sensors that temporarily
block the execution thread, as no data can be read.

After the safety mechanisms have been specified in the UML model, these fea-
tures may be automatically realized via model-to-model transformations, result-
ing in an intermediate model that contains these features (step (A3) of Fig. 2(a)).
The specific structure of the intermediate model depends on the safety mech-
anism that is realized. Step (B3) of Fig. 2(b) shows an example for the timing
check safety mechanism. The fire detection class contains a composition to a
TimingMonitoringWatchdog class, which is responsible for checking the exe-
cution duration of the checkFire() method. The details of this approach are
explained in Sect. 4. As the intermediate model already contains all required
safety mechanisms, automatic code generation mechanisms from existing MDD
tools, such as [9,28,32] may be employed to generate corresponding source code
(cf. steps (A4) and (B4) of Fig. 2). Finally, this generated source code may be
translated into binary code by employing a suitable compiler. Depending on the
realized safety mechanism, additional source code for the safety mechanism may
need to be linked (cf. steps (A5) and (B5) of Fig. 2).

3.2 Enabling the Automatic Code Generation of Safety Mechanisms

While Sect. 3.1 gives an overview of how our approach is intended to be used,
this section describes how to model safety mechanisms and generate code from

426 L. Huning et al.

Fig. 2. High-level concept of the proposed approach for the generation of safety mech-
anisms via MDD. Vertical arrows show transitions from one code generation step to
another. Horizontal arrows indicate the use of additional, external elements that are
not part of the application model.

A Workflow for Automatic Code Generation of Safety Mechanisms 427

these model representations. For this, we present a workflow in Fig. 3 that has
previously been presented in the original conference paper [18]. In the beginning
(cf. action 1 in Fig. 3), a safety mechanism has to be identified for modeling
and automatic code generation. Once such a safety mechanism has been found,
existing model representations and software architectures for the mechanism may
be researched (cf. action 2 in Fig. 3). Based on the acquired information model
representations and software architectures may be adapted for the purpose of
automatic code generation (cf. action 3 and 4 in Fig. 3). These two actions may
be carried out concurrently, as the software architecture may influence the model
representation and vice versa. Finally, a set of model-to-model transformations
is required that receive the model representation of the safety mechanism as the
input and produce the intermediate model with all the required safety elements
as the output (cf. action 5 in Fig. 3). In the following, we discuss each of these
steps in detail.

Action 1: Identify a Safety Mechanism. In action 1 of Fig. 3, a safety mech-
anism suitable for automatic code generation has to be identified. Such safety
mechanisms may be identified during industry collaboration, i.e., safety mecha-
nisms designed to prevent a specific hazard inside an application. Some classes
of hazards and their corresponding safety mechanisms are well known. These
mechanisms are actively encouraged or even mandated by safety standards, e.g.,
IEC 61508. Therefore, safety standards may be another source of information
for finding potential safety mechanisms.

Last but not least, the literature on safety is steadily evolving. Some
approaches, such as [34], already describe safety mechanisms and their possi-
ble software architectures, but do not present an approach to modeling and/or
automatic code generation. Therefore, these approaches are another source for
enabling modeling and automatic code generation of safety mechanisms.

Action 2: Gather Relevant Information. In the second action of Fig. 3,
knowledge about the safety mechanism identified in action 1 has to be gathered.
At a high-level, this includes existing model representations and software archi-
tectures of the mechanism. Even if these existing representations are unsuited
for automatic code generation, they may serve as a basis for actions 3 and 4 of
Fig. 3.

At a more fine-grained level, this includes detecting the configuration param-
eters of the safety mechanism. As these may change between different applica-
tions, it is important that these values are known and considered during the
design of the model representation (cf. action 3 of Fig. 3).

Besides configuration parameters, there may also be several safety mech-
anisms that are similar to the one selected. For example, there exist different
types of voting approaches that differ only in their specific method of voting [18].
The general process, however, i.e., multiple input sources being voted on and
producing one output, is the same. Thus such related approaches may also be

428 L. Huning et al.

Fig. 3. UML 2.5 activity diagram showing a workflow for providing automatic code
generation of safety mechanisms based on UML stereotypes. This figure is taken from
the initial publication [18].

considered during the design of the model representation and software architec-
ture (cf. actions 3 and 4 of Fig. 3).

Action 3: Design a Suitable Model Representation. In the third action
of Fig. 3, a suitable model representation for the safety mechanism has to be
found. This model representation has to enable a level of detail that enables
the automatic code generation. In this paper, we focus on model representations
based on UML stereotypes.

For a model representation of a safety mechanism based on UML stereotypes,
a suitable UML model element needs to be identified to which the stereotype
may be applied. As a rule of thumb, the UML model element that should be
protected by the safety mechanism is a good candidate for this. For example,
[16] applies stereotypes to attributes for a safety mechanism that protects these
attributes from spontaneous bit-flips. Another example is shown in Sect. 4, where
operations should be protected. There, the stereotype is applied to the operation
that should be protected.

Configuration parameters for the safety mechanism may usually be repre-
sented as key-value pairs via the tagged values of the stereotype. However, for
some safety mechanisms, this is not sufficient. This is the case when the safety
mechanism depends on multiple input sources and where each input source may
have its own configuration values. In this case, a second stereotype that is applied

A Workflow for Automatic Code Generation of Safety Mechanisms 429

to each input source may be necessary. An example for this is the voting mech-
anism described in [18], where a second stereotype is applied to the associations
between a voter class and the input classes for the voting process.

In case a safety mechanism exists in a group of related approaches that differ
not only in their configuration values, but also in the number of parameters,
stereotype inheritance may be used to represent these variants. An example for
this is shown in Sect. 4.

All stereotypes that are part of the model representation may be grouped in
an appropriate UML profile.

Action 4: Design a Suitable Software Architecture. In the fourth action
of Fig. 3, a suitable software architecture for the safety mechanism has to be
found. In the context of this paper, this means that the software architecture
has to be suitable for automatic code generation. This includes several key points
that have to be taken into consideration:

No Manual Developer Actions Required: In order to keep the code generation
truly automatic, no manual developer actions should be required besides apply-
ing the stereotype that represents the safety mechanism. If this is not possi-
ble, e.g., due to inherent application-specific characteristics of the safety mech-
anism, the number of manual developer actions for code generation should be
minimized.

Localized Changes: The model transformations in action 5 of Fig. 3 change the
application model. In general, a single change may result in a large number of
subsequent additional changes that need to be performed. For example, if the
number of constructor parameters of a class x is changed, the entire application
model has to be scanned for invocations of this constructor and the additional
parameters need to be added to the constructor invocation. This might entail
even more changes, as the constructor parameters for x might have to be initial-
ized by the instantiating class y. Such chains of changes quickly become difficult
to manage. Therefore, it is important that the software architecture for the safety
mechanism is as localized as possible, i.e., avoids such chains of changes.

Low Overhead: Safety-critical systems often operate in the context of embed-
ded systems. In these systems runtime and memory constraints are a common
requirement. Therefore, the software architecture should minimize the overhead
the safety mechanism imposes on runtime and memory.

Programming Standards in Safety Domains: Due to the nature of the safety
mechanisms, the software architecture should respect programming standards
intended for safety-critical domains. For example, the MISRA1-C++ stan-
dard [24], prohibits the use of dynamic heap memory allocation, which has
consequences for the software architecture.
1 Motor Industry Software Reliability Association.

430 L. Huning et al.

Action 5: Design Model Transformations. In the fifth and final action
of Fig. 3, model-to-model transformations have to be designed. The input of
these transformations is the model representation designed in action 3 of Fig. 3
and the output is the software architecture designed in action 4 of Fig. 3. These
model transformations may be implemented in an extensible manner, so that new
variants of the safety mechanism may easily be integrated into the approach. This
may be achieved by dividing the transformation process into two steps. In the
first step, the information from the stereotype in the models is parsed and stored
temporarily. In the second step, an interface is used to actually transform the
model with the parsed information. New variants may be added as realizations
of this interface.

Another aspect of the model transformations is their scalability. For exam-
ple, the configuration parameters of the safety mechanism are modeled by the
UML stereotype, i.e., they are known at compile time. As the constructor of
the transformed class should not be changed (cf. description of action 4), this
leaves two alternatives for the realization of the parameters in source code. The
first is the use of constant member variables within a class that represent the
configuration values. The second alternative is the use of template classes and
specifying the configuration values as template parameters. The first alternative
requires the creation of a new class in the model for each set of unique con-
figuration parameters for the safety mechanism. The second alternative, on the
other hand, only requires the creation of a single template class during model
transformation. The different template instantiations are later inserted by the
compiler. Thus, the template alternative performs fewer steps in code generation
and therefore results in a lower execution time for the model transformations.

From a theoretical perspective, the model transformations should require a
linear runtime, depending on the number of elements within the UML application
model. This runtime occurs, because in the beginning of the model transforma-
tions, each model element has to be checked for whether it contains a relevant
safety stereotype. Then, a usually fixed number of modifications are performed
on the identified model elements. These theoretical observations have been sup-
ported by experimental measurements in the original paper [18], which we omit
to reproduce due to space constraints.

4 Application Example: Generation of Timing Constraint
Monitoring Mechanisms

This section applies the workflow presented in Sect. 3.2 to enable the model-
driven code generation for timing constraint monitoring during runtime. The
structure of this section resembles the workflow steps described in Sect. 3.2.

4.1 Need for Timing Constraint Monitoring at Runtime

Some safety-critical applications have to react to external events within a certain
time frame to ensure safety, e.g., the brakes within a car [22,23]. Because timing

A Workflow for Automatic Code Generation of Safety Mechanisms 431

is such an issue within safety-critical embedded systems, the timing behavior
of the system is often modeled and analyzed in early design phases [21,22].
These analyses aim to ensure that the finished application satisfies the tim-
ing constraints. However, due to the uncertainty of the operating environment,
some authors argue that runtime monitoring of these timing constraints is also
required [1,26]. While these authors represent their own approach to monitoring
timing constraints, they either provide no integration in a MDD process [1,26]
or only consider animation and not the generation of productive source code [7].
Thus, an automated approach for the generation of timing constraint monitoring
that is integrated within a MDD process is a research gap.

4.2 Information on Timing Constraint Monitoring

As timing is an important issue in many safety-critical embedded systems, many
approaches to timing analysis during the system design phase exist. There are
multiple modeling languages for timing analysis, e.g., [2,27] and (semi-) auto-
mated approaches for creating timing analysis models, e.g., [18,21]. While these
approaches have their relevance in the whole development process, they are not
intended for modeling additional timing checks during runtime. This is also
reflected by the modeling overhead of approaches such as [2,27], which require
extensive modeling of certain timing characteristics. For their intended purpose,
i.e., timing analysis before the system is actually fully developed, this is a good
approach. However, for the purpose of only modeling timing constraints that
should be observed during runtime, these modeling languages contain unnec-
essary complexity. Therefore, a reduced model representation for timing con-
straints, without this unnecessary complexity, is beneficial (cf. Sect. 4.3).

On the software architecture level, several approaches for the monitoring
of timing constraints during runtime have been proposed. A survey of these
approaches has been published in [1]. These approaches may serve as inspiration
for the software architecture designed in Sect. 4.4.

Another relevant issue for monitoring timing constraints during runtime is
during which points in time the timing should be monitored. In timing analysis,
an end-to-end execution path of the software refers to the chain of system activ-
ities in between obtaining a sensor input and executing an according response
with an actuator. Such an execution path may consist of several tasks, which
in turn may consist of several runnables. Runnables may be mapped directly
to executable elements of the software source code, i.e., methods (operations)
of classes [21]. This direct mapping facilitates automatic code generation, thus,
we choose to provide runtime monitors for the timing constraints of individ-
ual runnables. While this does not consider latencies between the execution of
runnables and other timing effects, our approach still detects when an individual
runnable violates its timing constraints. Future work could extend our approach
to include monitoring of task elements and execution paths.

432 L. Huning et al.

4.3 A Model Representation for Timing Constraint Monitoring

This section presents a UML profile for modeling the runtime monitoring of tim-
ing constraints. The profile is shown in Fig. 4. A top-level stereotype (<<Tim-
ingMonitoring>>) contains relevant information that is focused on the timing
constraint itself. These include the maximum time limit before the operation
has failed its timing constraint, as well as the unit in which this time is speci-
fied. Additionally, developers may also specify the name of an operation that is
invoked for error handling in case a timing constraint has been violated.

Fig. 4. UML 2.5 profile for modeling runtime monitoring mechanisms of timing con-
straints.

The stereotypes that represent the different monitoring mechanisms extend
the <<TimingMonitoring>> stereotype. This differentiates the monitoring
mechanisms at the model-level, while allowing mechanism-specific tagged val-
ues to be included. We identify four different monitoring mechanisms to observe
timing constraints of operations during runtime. These include classic dead-
line supervision that checks whether the timing constraint has been met only
after the operation has ended (<<DeadlineSupervision>>), as well as watchdog-
inspired mechanisms that may generate an alarm as soon as a timing con-
straint has been violated, even if the monitored operation is not yet fin-
ished. These watchdog-inspired mechanisms inherit from the <<Watchdog-
Monitoring>> stereotype. They differ in their preconditions and probe over-
head. They are based on threads (<<TM Concurrent>>), hardware timers
and interrupts (<<TM HWTimer>>), as well as dedicated watchdog hardware
(<<TM HWWatchdog>>). The <<WatchdogMonitoring>> stereotype has an
additional tagged value, which is a second error handling mechanism. The need
for this additional error handling mechanism is further explained in Sect. 4.4.

A Workflow for Automatic Code Generation of Safety Mechanisms 433

4.4 A Model-Driven Software Architecture for Monitoring Timing
Constraints at Runtime

This section describes a software architecture that is suited for the automatic
code generation of the timing monitoring mechanisms modeled in Sect. 4.3. Here,
we differentiate between the relatively simple deadline supervision and the more
complex watchdog variants. The basis for the software architecture in both
cases is a UML class with an operation that has been stereotyped with one
of the stereotypes from the profile presented in Fig. 4. Additionally, the class
may contain a method for error handling. Naturally, the class may contain other
attributes and operations that are independent of our approach but relevant
for the application logic. Figure 5 shows a UML class diagram of this basis.
Representative for the timing monitoring stereotypes from the profile shown in
Fig. 4, the <<DeadlineSupervision>> stereotype is applied to the checkFire()
method. An annotation shows the tagged values for the stereotypes, e.g., that
the checkFire() method has to finish its execution within 1000 ms. The oper-
ation errorHandlingOp is to be invoked in case this timing constraint is not
met.

Fig. 5. UML 2.5 class diagram showing the model of the protected operation, before
code generation is applied.

Software Architecture for Deadline Supervision. Adding deadline super-
vision to an operation is relatively straightforward. This is shown in Fig. 6, where
Fig. 6 (a) shows the original operation body and Fig. 6 (b) shows the modified
operation body after code generation. At the beginning of the operation body,
the current time is measured and stored temporarily. At the end of the opera-
tion, just before the return statement, the current time is measured again. Now,
the execution time of the operation may be calculated and the error handling
operation may be executed in case the timing constraint has been violated.

This approach assumes a single return statement within the operation. This is
in line with programming standards such as MISRA C++ [24]. However, multiple
return statements may also be accommodated by our approach, by inserting the
relevant code lines before every return statement within the operation.

434 L. Huning et al.

Fig. 6. Pseudocode for the body of the protected operation before code generation (a)
and after code generation (b). The highlighted code in (b) has been added automatically
during code generation.

Software Architecture for Watchdog Mechanisms. Generating code for
the watchdog variants of our approach is more complex than the deadline super-
vision described above, as the method of starting and stopping the watchdog
may be dependent on system hardware. For example, the concurrent watchdog
shown in Fig. 4 requires the use of different thread classes, depending on the oper-
ating system. For the <<TM HWTimer>> variant, the application program-
ming interface (API) for invoking interrupts and working with timers may differ
between different microcontrollers. Furthermore, the <<TM HWWatchdog>>
stereotype requires different method calls for individual controllers, as the hard-
ware watchdog requires a method of address unique to the controller.

In order to deal with this type of variability, we introduce the
TimingMonitoringWatchdog interface. A realization of this interface is automat-
ically added to the class with the protected operation during code generation.
This status after code generation is shown in Fig. 7. The concurrent version of
the watchdog is used as a representative. The interface contains a method for
starting and stopping the watchdog. The specific implementation of how to start
and stop the watchdog, is left to the realizations of this interface.

While the interface realizations of TimingMonoitoringWatchdog may be
implemented anew for each application, they may also make use of abstrac-
tion mechanisms to be usable on several systems. For example, in our imple-
mentation of the concurrent watchdog (<<TM Concurrent>> in Fig. 4), we
use the thread abstraction provided by the MDD tool IBM Rational Rhap-
sody [32] to keep the implementation operating system independent (provided
Rhapsody contains a thread abstraction for this operating system). A similar
abstraction may be found for the watchdog that makes use of timers and inter-
rupts (<<TM HWTimer>> in Fig. 4). For this variant, hardware abstraction
layers may be used to implement this watchdog for a broad range of different
microcontrollers. In theory, this approach is also applicable to the hardware

A Workflow for Automatic Code Generation of Safety Mechanisms 435

Fig. 7. UML 2.5 class diagram of the watchdog code generation. The attributes and
operations are discussed in Sect. 4.5.

watchdog variant (<<TM HWWatchdog>> in Fig. 4). However, the variabil-
ity between the hardware watchdogs between different microcontrollers is larger
than for timers and interrupts. Therefore, such a hardware abstraction layer may
be harder to create (and to the best of the authors’ knowledge, does not exist
at the time this paper is written).

Runtime Behavior of the Software Architecture for Watchdog Mecha-
nisms. The runtime behavior of the generated watchdog classes is shown in Fig. 8
for the case of a single protected operation. Initially, the program runs in its main
thread (action 1 in Fig. 8). At the same time, the watchdog waits for its activa-
tion (signal reception 7 in Fig. 8). Depending on the type of watchdog (cf. Fig. 4),
this waiting occurs concurrently (<<TM Concurrent>>), interrupt-based
(<<TM HWTimer>>) or in parallel on extra hardware (<<TM HWWatch
dog>>). For legibility purposes, we only refer to the concurrent variant in the
remainder of this section. The other variants work analogously. Once the main
thread of the application calls an operation op to which one of the stereotypes
inheriting from <<WatchdogMonitoring>> (cf. Fig. 4) is applied, the watchdog
is activated (cf. action 2 and signal 3 in Fig. 8). Now, the watchdog and the main
thread execute concurrently. We will first describe the behavior of the watchdog,
before we describe the behavior of the main thread.

Once the watchdog starts, it activates a timer that corresponds to the maxi-
mum execution time specified in the stereotype that is applied to the operation.

436 L. Huning et al.

Fig. 8. UML 2.5 activity diagram showing the runtime behavior of the generated watch-
dogs.

Either this time elapses (time event 9 in Fig. 8) or the operation op finishes prior
to the elapsed time (signal reception 8 in Fig. 8). If the operation finishes before
the time has elapsed, then the watchdog returns to its waiting mode until oper-
ation op is called again. If the time elapses before operation op is finished, then

A Workflow for Automatic Code Generation of Safety Mechanisms 437

the watchdog has detected a violation of a timing constraint. In this case, this
violation is reported to the main thread by changing a boolean variable within
the class in which operation op is located (signal 10 in Fig. 8). Afterwards, the
watchdog thread may execute an error handling method that is concurrent to
the main thread (action 12 in Fig. 8). This is further explained in Sect. 4.4.

Concurrently to the watchdog behavior, the main thread executes the pro-
tected operation op. Once this operation is finished (including all sub-operations
that are called by op), a boolean variable b within the class in which op is located
is checked. This variable b represents whether the watchdog for the operation
op has detected a timing violation. In case a timing violation has been detected,
a sequential error handling method is executed. We assume, that this method
restores the system to a safe state (cf. Sect. 4.4). Afterwards, as the system is
in a safe state again, the main thread continues its normal execution. In case b
indicates that no timing violation has occurred, the corresponding watchdog is
informed that the operation has finished. Afterwards, the main thread continues
its normal execution.

Error Handling. Error handling for the deadline supervision described above is
straightforward: in case a timing violation is detected at the end of the operation,
a previously specified error handling operation is called within the same thread.
For the watchdog variant, this behavior is more complex, as the timing violation
is detected in a concurrent thread. This offers the chance to react to the timing
violation as soon as it has occurred, instead of waiting for the operation op
that violated the timing constraint to finish. This may offer a crucial timing
advantage, especially when the operation op requires a lot of additional time to
finish, or even contains an endless loop.

At the same time, concurrent error handling may only influence the execution
of the main thread in a limited fashion. This is especially important in case
the operation opv that violated the timing constraint quickly finishes after the
violation of the timing constraint. In this case, the concurrent error handling
method may not yet be finished before the main thread resumes its operation.
For these reasons, we also include a sequential error handling operation in the
main thread, after the operation opv has finished. This also allows for greater
changes in the control flow of the main thread, e.g., by modifying the return
value or throwing an exception.

For this reason, the stereotypes inheriting from <<TimingMonitoringWatch-
dog>> (cf. Fig. 4 in Sect. 4.3) allow to specify two error handling operations.
One that is executed concurrently (tagged value “watchdogErrorHandling”),
while the other is executed sequentially (tagged value “errorHandling”), as
described above. The tagged values only refer to the names of these opera-
tions. As error handling is heavily application dependent, developers are required
to implement these methods manually (errorHandlingOpSequential() and
errorHandlingOpConcurrent() in Fig. 7).

438 L. Huning et al.

Regardless of the type of error handling, our approach assumes that this error
handling brings the system to a safe state. In the worst case, this may mean
stopping the application in systems where fail-stop is an acceptable behavior.

4.5 Model Transformations for the Automatic Code Generation
of Timing Constraint Monitoring at Runtime

This section describes the model transformations that transform the stereotypes
introduced in Fig. 4 to the software architecture described in Sect. 4.4.

Model Transformations for Deadline Supervision. Similar to the software
architecture for deadline supervision, the model transformations are relatively
straightforward for this type of timing monitoring. Initially, each operation in
each class of the application model is checked for whether the <<DeadlineSu-
pervision>> stereotype (cf. Fig. 4) is applied to it. Each operation, for which
this is the case, is modified as shown in Fig. 6. At the beginning of the operation
code is added that measures the current time, which is evaluated at the end of
the operation. If the timing constraint is violated, the previously specified error
handling operation is executed.

Model Transformations for Watchdog Variants. This section describes the
model transformations that realize the watchdog variants of the timing monitor-
ing mechanisms. Similar to the model transformations for deadline supervision,
all operations in the application model are checked for whether a stereotype
inheriting from <<WatchdogMonitoring>> (cf. Fig. 4 in Sect. 4.3) is applied to
them. For each operation op where this is the case, the class C in which op
resides is modified to contain an instance of the TimingMonitoringWatchdog
interface (cf. Fig. 7 in Sect. 4.4). The specific instance this interface is realized
with depends on the specific stereotype that is applied to op. For example,
in Fig. 7, the interface is realized with the class ConcurrentWatchdog, as the
<<TM Concurrent>> is applied to the checkFire() operation. The template
parameters of the ConcurrentWatchdog class correspond mostly to the tagged
values specified in the <<TM Concurrent>> stereotype. An exception is the
setTimingViolation function pointer, as the operation this pointer refers to is
added automatically and thus is not specified by the developer.

Besides adding the TimingMonitoringWatchdog to the class C, an additional
boolean variable b is added to C, alongside a setter method for this variable
(timingViolationCheckFire and setTimingViolationCheckFire()in Fig. 7).
Furthermore, the operation op is also modified. At the beginning of the operation,
the start() method of the TimingMonitoringWatchdog interface is called. At
the end of the method, just before the return statement, the stop() method
of the same interface is called. Moreover, the variable b is checked for whether
a timing violation has been detected. If this is the case, the sequential error
handling operation inside C is called (method errorHandlingSequential() in
Fig. 7.

A Workflow for Automatic Code Generation of Safety Mechanisms 439

5 Related Work

This section discusses research approaches that are related to our work. This
includes related work on improving the development of safety-critical systems
(cf. Sect. 5.1) and general code generation via model-driven development (cf.
Sect. 5.2). Furthermore, the workflow presented in this paper has already been
applied for the generation of some safety mechanisms, i.e., memory protec-
tion [16], graceful degradation [17] and voting [18].

5.1 Related Work on Improving the Development of Safety-Critical
Systems

In Sect. 2.1 we describe the safety development lifecycle as defined by IEC 61508.
While our approach targets the actual realization, i.e., implementation, of the
system, many other approaches focus on earlier stages of the safety lifecycle, e.g.,
hazard and risk analysis or defining safety requirements. For example, [36,40]
focus on specifying safety hazards and safety analysis, while [3] focus on specify-
ing safety requirements. These approaches are complimentary to ours and may
help to decide which safety mechanisms the application should contain. Once
a set of safety mechanisms for the application has been decided, our approach
may be used to model and automatically generate these safety mechanisms.

Besides related research that focuses on other phases of the safety lifecy-
cle, there is also some research aiming to improve the realization of the sys-
tem, similar to ours. These usually focus on automatically generating a single
selected safety mechanism, e.g., [5,6,29] for the issue of memory protection.
These approaches often do not consider modeling or code generation from mod-
els and are therefore separate from our approach, which uses models at its core.
However, depending on the specific approach, they might be adapted to fit within
the workflow presented in Sect. 3.2.

Some approaches, such as [39] or [30], consider the generation of safety mech-
anisms at a general application level, similar to the idea presented in this paper.
The approach presented in [39] presents its own, text-based domain-specific mod-
eling language for the generation of safety mechanisms in the automotive indus-
try. Our approach, in contrast, uses UML as its modeling language, whose nota-
tion and syntax are more familiar to developers. Furthermore, UML allows for
a graphic representation of the application model, which we believe to be an
advantage. The approach presented in [30] introduces a pattern-based approach
for the generation of safety mechanisms in fail-operational systems. However, as
stated by the authors, their approach only allows for partial code generation,
while our approach enables full code generation.

There also exists research that provides improvements for the development
of safety-critical systems at more of a system level, while our approach focuses
on the application level. Thus, the approaches may be used in a complemen-
tary fashion. Some examples include approaches for the operating system level,
e.g., [8,31], the network level, e.g., [25,38] or timing issues in multicore environ-
ments, e.g., [10–12].

440 L. Huning et al.

5.2 Related Work on Code Generation via Model-Driven
Development

Code generation from UML models is commonplace, e.g., in commercial tools,
such as [9,32], or in open source tools, e.g., [28]. These tools usually provide map-
pings between UML and source code, e.g., a mapping between a UML class and
a class in C++. This works well for object-oriented programming languages, as
UML is an object-oriented modeling language and therefore many 1:1 mappings
exist. Some tools, such as [32], go a step further and provide code generation
for UML concepts where no 1:1 mapping exists, e.g., code generation for state-
charts. However, they focus on providing code generation for basic UML, which
does not contain any safety mechanisms a priori. Therefore, these tools are not
capable of generating safety mechanisms a priori. Our approach provides model
representations in UML to model safety mechanisms and describes the model
transformations required to generate code from them. Therefore, our approach
enables the aforementioned tools to automatically generate safety mechanisms.
Conversely, our approach assumes that developers make use of some type of
MDD tool that is capable of generating code from UML.

UML itself has been extended with the MARTE profile for the development
of embedded systems [27]. However, it does not consider safety mechanisms or
code generation. Some dependability and rudimentary safety aspects have been
provided by the profile presented in [4]. However, its level of detail is too low
to be usable for code generation. The same applies to the approach presented
in [33], which provides modeling for safety and security in combination.

Aside from UML, model-driven code generation is also discussed for other
modeling languages, e.g., [13]. We chose to build our approach atop UML, as it is
far more widespread than these other modeling languages and thus our approach
is potentially more useful to a wider range of developers.

6 Conclusion

Safety standards, such as IEC 61508, define a number of safety mechanisms that
mitigate the risk in safety-critical systems. Many of these safety mechanisms are
at least partially application independent and may therefore be automatically
generated. Such an automatic code generation may decrease the number of bugs
in system and increase developer productivity. This is especially important, as
the size and complexity of safety-critical embedded systems is steadily increasing.

We propose a model-driven approach for the automatic code generation of
safety mechanisms. UML stereotypes are used to model the safety mechanisms
with a UML application model. Model-to-model transformations take the infor-
mation from these stereotypes and generate the safety mechanisms within the
application model. In a subsequent step, with the help of common MDD tools,
source code that contains these safety mechanisms is generated automatically.

We demonstrate our approach by applying it to the automatic generation of
runtime timing monitoring. This enables the observation of timing constraints for
individual operations within the application. In case such a timing constraint is

A Workflow for Automatic Code Generation of Safety Mechanisms 441

violated, this violation is detected automatically and a predefined error handling
operation is executed.

Future work may combine our approach with requirements engineering in
order to automatically apply safety stereotypes to the UML application model
based on the requirements specification. This may further be leveraged to
improve safety certification. Furthermore, more safety mechanisms may be pro-
vided for automatic generation with our approach.

Acknowledgments. This work was partially funded by the German Federal Ministry
of Economics and Technology (Bundesministeriums fuer Wirtschaft und Technologie-
BMWi) within the project “Holistic model-driven development for embedded systems
in consideration of diverse hardware architectures” (HolMES). The authors would also
like to thank Nikolas Wintering for software development assistance.

References

1. Asadi, N., Saadatmand, M., Sjödin, M.: Run-time monitoring of timing constraints:
a survey of methods and tools. In: The Eighth International Conference on Software
Engineering Advances (ICSEA) (2013)

2. AUTOSAR: Specification of timing extensions (2017). https://www.autosar.
org/fileadmin/user upload/standards/classic/4-3/AUTOSAR TPS TimingExtens
ions.pdf. Accessed 20 Aug 2020

3. Beckers, K., Côté, I., Frese, T., Hatebur, D., Heisel, M.: Systematic derivation
of functional safety requirements for automotive systems. In: Bondavalli, A., Di
Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 65–80. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 5

4. Bernardi, S., Merseguer, J., Petriu, D.: A dependability profile within
MARTE. Softw. Syst. Model. 10, 313–336 (2011). https://doi.org/10.1007/s10270-
009-0128-1

5. Borchert, C., Schirmeier, H., Spinczyk, O.: Generative software-based memory
error detection and correction for operating system data structures. In: Proceed-
ings of the 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 1–12. IEEE Computer Society, Washington, DC
(2013). https://doi.org/10.1109/DSN.2013.6575308

6. Chen, D., et al.: JVM susceptibility to memory errors. In: Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and Technology Symposium,
vol. 1. USENIX Association, Berkeley (2001)

7. Das, N., Ganesan, S., Jweda, L., Bagherzadeh, M., Hili, N., Dingel, J.: Supporting
the model-driven development of real-time embedded systems with run-time mon-
itoring and animation via highly customizable code generation. In: Proceedings
of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2016, pp. 36–43. Association for Computing
Machinery, New York (2016). https://doi.org/10.1145/2976767.2976781

8. Elektrobit. EB tresos Safety (2020). https://www.elektrobit.com/products/ecu/
eb-tresos/functional-safety. Accessed 20 Aug 2020

9. Enterprise Architect (2020). https://sparxsystems.com/products/ea/index.html.
Accessed 20 Aug 2020

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf
https://doi.org/10.1007/978-3-319-10506-2_5
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1109/DSN.2013.6575308
https://doi.org/10.1145/2976767.2976781
https://www.elektrobit.com/products/ecu/eb-tresos/functional-safety
https://www.elektrobit.com/products/ecu/eb-tresos/functional-safety
https://sparxsystems.com/products/ea/index.html

442 L. Huning et al.

10. Fernandez, G., et al.: Seeking time-composable partitions of tasks for COTS mul-
ticore processors. In: 2015 IEEE 18th International Symposium on Real-Time Dis-
tributed Computing, pp. 208–217 (2015). https://doi.org/10.1109/ISORC.2015.43

11. Fernandez, G., Jalle, J., Abella, J., Quinones, E., Vardanega, T., Cazorla, F.J.:
Computing safe contention bounds for multicore resources with round-robin and
FIFO arbitration. IEEE Trans. Comput. (2016). https://doi.org/10.5281/zenodo.
165812

12. Girbal, S., Jean, X., Le Rhun, J., Pérez, D.G., Gatti, M.: Deterministic platform
software for hard real-time systems using multi-core COTS. In: 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC) (2015). https://doi.org/10.
1109/DASC.2015.7311481

13. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code
generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems, MODELS 2016, pp. 125–135. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2976767.2976812

14. Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., Jones, P.: Certifiably safe software-
dependent systems: Challenges and directions. In: Proceedings of the Conference
on The Future of Software Engineering, FOSE 2014, pp. 182–200. ACM, New York
(2014). https://doi.org/10.1145/2593882.2593895

15. Heimdahl, M.P.E.: Safety and software intensive systems: challenges old and new.
In: 2007 Future of Software Engineering, FOSE 2007, pp. 137–152. IEEE Computer
Society, Washington (2007). https://doi.org/10.1109/FOSE.2007.18

16. Huning, L., Iyenghar, P., Pulvermueller, E.: UML specification and transformation
of safety features for memory protection. In: Proceedings of the 14th International
Conference on Evaluation of Novel Approaches to Software Engineering, pp. 281–
288. INSTICC, SciTePress, Heraklion (2019)

17. Huning, L., Iyenghar, P., Pulvermueller, E.: A UML profile for automatic code
generation of optimistic graceful degradation features at the application level.
In: Proceedings of the 8th International Conference on Model-Driven Engineer-
ing and Software Development, MODELSWARD, vol. 1, pp. 336–343. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0008949803360343

18. Huning, L., Iyenghar, P., Pulvermueller, E.: A workflow for automatically gen-
erating application-level safety mechanisms from UML stereotype model repre-
sentations. In: Proceedings of the 15th International Conference on Evaluation of
Novel Approaches to Software Engineering, ENASE, vol. 1, pp. 216–228. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0009517302160228

19. IEC 61508 Edition 2.0. Functional safety for electrical/electronic/programmable
electronic safety-related systems (2010)

20. ISO 26262 Road vehicles - Functional safety. Second Edition (2018)
21. Iyenghar, P., Pulvermueller, E.: A model-driven workflow for energy-aware schedul-

ing analysis of IoT-enabled use cases. IEEE Internet Things J. 5(6), 4914–4925
(2018)

22. Iyenghar, P., Huning, L., Pulvermueller, E.: Automated end-to-end timing anal-
ysis of autosar-based causal event chains. In: Proceedings of the 15th Interna-
tional Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE, vol. 1, pp. 477–489. INSTICC, SciTePress (2020). https://doi.org/10.
5220/0009512904770489

23. Iyenghar., P., Huning., L., Pulvermueller., E.: Early synthesis of timing models in
autosar-based automotive embedded software systems. In: Proceedings of the 8th

https://doi.org/10.1109/ISORC.2015.43
https://doi.org/10.5281/zenodo.165812
https://doi.org/10.5281/zenodo.165812
https://doi.org/10.1109/DASC.2015.7311481
https://doi.org/10.1109/DASC.2015.7311481
https://doi.org/10.1145/2976767.2976812
https://doi.org/10.1145/2593882.2593895
https://doi.org/10.1109/FOSE.2007.18
https://doi.org/10.5220/0008949803360343
https://doi.org/10.5220/0009517302160228
https://doi.org/10.5220/0009512904770489
https://doi.org/10.5220/0009512904770489

A Workflow for Automatic Code Generation of Safety Mechanisms 443

International Conference on Model-Driven Engineering and Software Development,
MODELSWARD, vol. 1, pp. 26–38. INSTICC, SciTePress (2020). https://doi.org/
10.5220/0009095000260038

24. MISRA C++2008 Guidelines for the use of the C++ language in critical systems
(2008)

25. Moestl, M., Thiele, D., Ernst, R.: Invited: towards fail-operational ethernet based
in-vehicle networks. In: 2016 53nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pp. 1–6 (2016). https://doi.org/10.1145/2897937.2905021

26. Mok, A.K., Liu, G.: Efficient run-time monitoring of timing constraints. In: Pro-
ceedings Third IEEE Real-Time Technology and Applications Symposium, pp.
252–262 (1997)

27. A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Sys-
tems. Technical report, Object Management Group (2008)

28. The Eclipse Foundation. Eclipse Papyrus Modeling Environment (2020). https://
www.eclipse.org/papyrus. Accessed 20 Aug 2020

29. Pattabiraman, K., Grover, V., Zorn, B.G.: Samurai: protecting critical data in
unsafe languages. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pp. 219–232. ACM, New York (2008).
https://doi.org/10.1145/1352592.1352616

30. Penha, D., Weiss, G., Stante, A.: Pattern-based approach for designing fail-
operational safety-critical embedded systems. In: 2015 IEEE 13th International
Conference on Embedded and Ubiquitous Computing, pp. 52–59 (2015). https://
doi.org/10.1109/EUC.2015.14

31. Vector. PrEEVision (2020). https://www.vector.com/int/en/products/products-
a-z/software/preevision/. Accessed 20 Aug 2020

32. IBM. Rational Rhapsody Developer. https://www.ibm.com/us-en/marketplace/
uml-tools. Accessed 20 Aug 2020

33. Architecture models and patterns for safety and security. Deliverable D2.2 from
EU-research project SAFURE (2017). https://safure.eu/publications-deliverables.
Accessed 3 Feb 2020

34. Saridakis, T.: Design patterns for graceful degradation. In: Noble, J., Johnson, R.
(eds.) Transactions on Pattern Languages of Programming I. LNCS, vol. 5770, pp.
67–93. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10832-7 3

35. Storey, N.: Safety-Critical Computer System. Addison-Wesley, Harlow (1996)
36. Tanzi, T.J., Textoris, R., Apvrille, L.: Safety properties modelling. In: 2014 7th

International Conference on Human System Interactions (HSI), pp. 198–202. IEEE
Computer Society (2014). https://doi.org/10.1109/HSI.2014.6860474

37. The Eclipse Foundation: Eclipse IDE. https://www.eclipse.org/eclipseide/. Acces-
sed 20 Aug 2020

38. Thiele, D., Ernst, R., Diemer, J.: Formal worst-case timing analysis of Ethernet
TSN’s time-aware and peristaltic shapers. In: 2015 IEEE Vehicular Networking
Conference (VNC), pp. 251–258. IEEE (2016). https://doi.org/10.5281/zenodo.
55528

39. Trindade, R.F.B., Bulwahn, L., Ainhauser, C.: Automatically generated safety
mechanisms from semi-formal software safety requirements. In: Bondavalli, A.,
Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 278–293.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 19

40. Yakymets, N., Perin, M., Lanusse, A.: Model-driven multi-level safety analysis
of critical systems. In: 9th Annual IEEE International Systems Conference, pp.
570–577. IEEE Computer Society (2015). https://doi.org/10.1109/SYSCON.2015.
7116812

https://doi.org/10.5220/0009095000260038
https://doi.org/10.5220/0009095000260038
https://doi.org/10.1145/2897937.2905021
https://www.eclipse.org/papyrus
https://www.eclipse.org/papyrus
https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1109/EUC.2015.14
https://doi.org/10.1109/EUC.2015.14
https://www.vector.com/int/en/products/products-a-z/software/preevision/
https://www.vector.com/int/en/products/products-a-z/software/preevision/
https://www.ibm.com/us-en/marketplace/uml-tools
https://www.ibm.com/us-en/marketplace/uml-tools
https://safure.eu/publications-deliverables
https://doi.org/10.1007/978-3-642-10832-7_3
https://doi.org/10.1109/HSI.2014.6860474
https://www.eclipse.org/eclipseide/
https://doi.org/10.5281/zenodo.55528
https://doi.org/10.5281/zenodo.55528
https://doi.org/10.1007/978-3-319-10506-2_19
https://doi.org/10.1109/SYSCON.2015.7116812
https://doi.org/10.1109/SYSCON.2015.7116812

HumaniSE: Approaches to Achieve More
Human-Centric Software Engineering

John Grundy , Hourieh Khalajzadeh(B) , Jennifer McIntosh ,
Tanjila Kanij , and Ingo Mueller

HumaniSE Lab, Faculty of IT, Monash University, Clayton, VIC 3800, Australia
{John.Grundy,Hourieh.Khalajzadeh,Jenny.McIntosh,Tanjila.Kanij,

Ingo.Mueller}@monash.edu
https://www.monash.edu/it/humanise-lab

Abstract. A common problem with many existing software systems and
the approaches to engineering them is their lack of the human aspects of
their target end users. People are different - with diverse characteristics
including age, gender, ethnicity, physical and mental challenges, per-
sonality, technical proficiency, emotional reactions to software systems,
socio-economic status, educational attainment, language, and so on. In
this paper we describe our work at looking to better consider these char-
acteristics by incorporation of human aspects throughout the software
engineering lifecycle. We are developing a co-creational living lab app-
roach to better collect human aspects in the software requirements. We
are using domain-specific visual languages, themselves a more human-
centric modelling approach, to capture these diverse human aspects of
target software systems. We are working on incorporating these human
aspects into design models to support improved model-driven engineer-
ing, and thereby to better support both code generation and run-time
adaptation to different end user human characteristics. Finally we are
working on better ways to support continuous evaluation of human
aspects in the produced software, and to provide improved feedback of
user reported defects to developers.

Keywords: Model-driven engineering · Human-centric software
engineering · Human factors

1 Introduction

Modern software systems are extremely complex, currently hand-crafted arte-
facts, which leads them to be extremely brittle and error prone in practice. We
continually hear about issues with security and data breaches (due to poorly cap-
tured and implemented policies and enforcement); massive cost over-runs and
project slippage (due to poor estimation and badly captured software require-
ments); hard-to-deploy, hard-to-maintain, slow, clunky and even dangerous solu-
tions (due to incorrect technology choice, usage or deployment); and hard-to-use

c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 444–468, 2021.
https://doi.org/10.1007/978-3-030-70006-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_18&domain=pdf
http://orcid.org/0000-0003-4928-7076
http://orcid.org/0000-0001-9958-0102
http://orcid.org/0000-0002-6655-0940
http://orcid.org/0000-0002-5293-1718
http://orcid.org/0000-0003-2240-712X
https://doi.org/10.1007/978-3-030-70006-5_18

HumaniSE 445

software that does not meet the users’ needs and causing frustration (due to
poor understanding of user needs and poor design) [7,47,61]. This leads to huge
economic cost, inefficiencies, not fit-for-purpose solutions, and dangerous and
potentially even life-threatening situations. Software is designed and built pri-
marily to solve human needs. Many of these problems can be traced to a lack
of understanding and incorporation of these human aspects during the software
engineering process [23,41,57,59]. This includes aspects such as age, gender, lan-
guage, culture, emotions, personality, education, physical and mental challenges,
and so on.

Current software engineering approaches ignore many of these human
aspects, or address them in piece-meal, ad-hoc ways [4,7,23,47,59]. For example,
in Model-driven Software Engineering (MDSE), user requirements for the soft-
ware are captured and represented by a variety of abstract requirements models.
These are then refined to detailed design models to describe the software solution.
These design models are then transformed by a set of generators into software
code to implement the target system [52]. However, currently almost no human
aspects are captured, reasoned about, designed in or used when generating or
testing the software produced in this way [41,61]. We need to more fully integrate
these human aspects into model-driven software development.

This paper is an extended version of an earlier one that appeared at ENASE
2020 [19]. In this paper we describe in more detail, by using a number of exam-
ple projects, how we are addressing these issues using several complementary
approaches, as outlined below:

Use a Co-creational, Agile Living Lab-Based Approach: Our idea here
is to better enable software teams to provide better ways for software engi-
neers to work with stakeholders to capture and reason about under-represented,
under-used, under-supported yet critical human-centric requirements of target
software. Our Living Lab is designed to provide a co-creational space for inves-
tigating socio-technological aspects of software engineering activities. Our focus
is on enabling software development teams to capture and reason about critical
human-centric aspects of software.

Develop a New Set of Human-Centric Requirements Modelling Lan-
guages: Understanding software stakeholder needs is essential for a successful
software development project. However, software developers tend to focus much
more on technological aspects and therefore often do not sufficiently capture the
complete human context concerning, for example, software user age, accessibility
challenges, ethnicity, language or gender. We want to enable software engineers
to more effectively elicit and model diverse human aspects. Along with this we
need new approaches for obtaining and extracting such human-centric software
requirements from a wide variety of sources e.g. Word, PDF, natural language,
videos, sketches, and so on.

Augment Conventional Model-Driven Engineering Design Models
with Human-Centric Requirements: We want to be able to use human-
centric aspects during MDSE, along with techniques to verify the completeness,

446 J. Grundy et al.

correctness and consistency of these models, and proactively check them against
best practice models and principles. We believe that incorporating more human-
centric aspects into software design will lead to more useful, usable and desirable
software. We work towards this goal by creating new notations, techniques and
tools to augment software design models with human-centric aspects. We also
need to develop new techniques to incorporate these human aspects in design
models into MDSE-based software code generators, enabling target software to
dynamically adapt to differing user needs at run-time.

Use of these Human-Centric Requirements During Software Testing:
Software testing and evaluation is an essential software development activity
which is aimed at ensuring that requirements have been implemented correctly
and completely and that user needs are met. We focus on the testing of human-
centric aspects and techniques for receiving better user feedback on human-
centric defects in their software solutions. We need to better support human-
centric requirements-based testing of software systems, along with techniques
that give developers better feedback from users on the human aspects-related
defects in their software solutions.

The rest of this paper is organised as follows. Section 2 presents a motivat-
ing example for this work, along with a review of key related work. Section 3
provides an overview of our approach. Section 4 discusses our development of a
co-creational living lab approach, and Section 5 the use of human aspects during
requirements engineering. Section 6 presents some projects we are undertaking
enhancing design and model-driven software engineering to incorporate human
aspects of end users. Section 7 discusses approaches to evaluating software as to
how well (or poorly) it supports human asepcts, and some key exemplar appli-
cation domains for our work. Finally, Section 8 concludes this paper.

2 Motivation and Related Work

2.1 Motivating Example: A Smart Home for Ageing

Consider a “smart home” aimed at providing ageing people with technology-
based support for physical and mental challenges so they are able to stay in
their own home longer and feel safe and secure [7,17,20]. To develop such a
solution, the software team must deeply understand technologies like sensors,
data capture and analysis, communication with hospital systems, and software
development methods and tools. However, they must also deeply understand and
appreciate the human aspects of their stakeholders: ageing people, their families
and friends, and clinicians/community workers. These include the Technology
Proficiency and Acceptance of ageing people – likely to be much older than
the software designers. The development of “Smart homes” technology should
factor in the Emotional – both positive and negative – reactions to the smart
home e.g. daily interaction is potentially positive but being monitored potentially
negative. The Accessibility of the solutions for people with e.g. physical tremors,
poor eyesight, wheel-chair bound, and cognitive decline. Within this, personality

HumaniSE 447

Fig. 1. Simple example of a smart home to support ageing people.

differences may be very important e.g. those wanting flexible dialogue compared
to those needing directive dialogue with the system. The Usability of the software
for a group of people with varied needs e.g. incorporating the use of voice or
gestures or modified smart phone interface. Figure 1 shows an example of such
a smart home.

The ageing population is diverse and therefore smart home technology must
accommodate for the different Ages, Genders, Cultures and Languages of users
including appropriate use of text, colours, symbols. This is particularly impor-
tant as one quarter of the elderly in Australia are non-native English speakers
and the majority women, but by far the majority of software developers are 20-
something years old English-speaking men [32]. Failure to incorporate human
aspects into the development of Smart Home software has the potential to result
in a home that is unsuitable for who it is designed to help, by introducing confus-
ing, possibly unsettling and invasive, and even potentially dangerous technology.

2.2 Model-Driven Software Engineering

Key aspects of Model-Driven Software Engineering (MDSE) are outlined in
Fig. 2. MDSE captures high-level models about software requirements i.e. what
users need their software to do (a). MDSE then refines these models to detailed
designs about how the software solution is organised, composed and its appear-
ance (b). Model transformation then turns these models into software code (c).
This is in contrast with most current software development methods which use
informal and imprecise models, hand-translation into code via error-prone, and
time-consuming low-level hand-coding. Advantages of MDSE-based approaches
include capture of formal models of a software system at high levels of abstrac-
tion, being able to formally reason about these high-level models and more
quickly locate errors, and being able to generate lower-level software arte-
facts, such as code, without overheads and errors of traditional hand-translating

448 J. Grundy et al.

Fig. 2. Incorporating “Human-centric” software issues into Model-Driven Software
Engineering (from [19]).

Fig. 3. A clinician-oriented Domain-specific Visual Language for care plan modelling
and using Model-driven Engineering to generate an eHealth app ((c) IEEE, from [36]).

informal models. However, most MDSE approaches use generic requirements
and design languages e.g. the Unified Modelling Language (UML) and exten-
sions [11,33]. These have the disadvantages of being overly complex and are
very difficult to use by non-software engineering domain experts [25]. Further
MDSE limitations include the often very high level of abstraction of incorporated
DSVLs. Necessary customisations or configurations to suit concrete requirements
result in the need to implement code-level extensions of the underlying model
transformation approach and the code generator.

HumaniSE 449

2.3 Domain-Specific Visual Languages

Domain-specific Visual Languages (DSVLs) provide a more accessible approach
to presenting complex models for domain experts [55]. DSVLs use one or more
visual metaphors, typically derived from the domain experts, to represent the
model(s). They enable domain experts to understand and even create and use the
models directly, rather than rely on software engineers. These DSVLs are then
used to generate software code and configuration artefacts to realise a software
solution via MDSE approaches. This approach provides higher abstractions and
productivity, improves target software quality, provides for repeatability, and
supports systematic reuse of best practices [25,33,52,55].

There are many DSVLs for MDSE tools [2,39,55]. A representative example
is shown in Fig. 3: (a) a custom DSVL designed for clinicians is being used
to model a new patient care plan for diabetes and obesity management. Then
(b) a model transformer takes the care plan and generates a mobile app to
assist the patient to implement their plan [36]. This is a major improvement
on developing software using conventional techniques. However, the approach
fails to model or incorporate into the mobile app a range of critical human
aspects, resulting in its failure in practice. Patient-specific, human-centric needs
are not captured e.g. technology acceptance and emotional reactions e.g. some
patients react negatively to the remote monitoring approach used. Some users
are not proficient in English and hence need labels and inputs in their preferred
language. Our evaluation found that some of the colours and care plan model
language used in the app are confusing for many older users. Users with eye-
sight limitations find the app too hard to see and too fiddly to interact with.
The app can not adapt to different contexts of use or preferences of the users e.g.
it can not use their smart home sensors or each patient’s particular mobile app
dialogue preferences. The app displays a euro-centric terminology about well-
being, which may put off some users who prefer e.g. a Buddhist, Confucius or
Pacifika view of health concepts from following their care plan [29]. We need to
incorporate these human aspects into MDE [4].

2.4 Human Aspects of Software

There has been increasing interest in the human aspects of complex software
and how to better incorporate and support these during software development.
Agile methods, design thinking and living lab approaches [12,18,24,26] all try
and incorporate a human element both in eliciting software requirements and in
involving end users of software in the development process [9,26,45]. However,
none capture human aspects in any systematic way and therefore the software
fails to address several critical aspects of the human users. Some new approaches
have tried to capture limited human-centric software issues. Emotional aspects
of software usage include identifying the emotional reactions of users e.g. when
engaging with health and fitness apps or for gaming. Work has been done mod-
elling these Emotional Requirements and applying them to challenging eHealth
domains [7,41].

450 J. Grundy et al.

Fig. 4. A Human-centric, Emotion-oriented Domain-specific Visual Language (from
[19]).

Figure 4 shows a representative example using an emotion-oriented require-
ments DSVL to design better smart homes [20]. Here a conventional goal-based
DSVL (1) has been augmented with a set of “emotional goal” elements (2) spe-
cific to different users (3). Human characteristics like age, gender, culture and
language can dramatically impact aspects of software, especially in the user inter-
face presented by the software and the dialogue had with the user [23,57,59].
Limited support for the capture of some of these has been developed. Another
example is a multi-lingual requirements tool providing requirements modelling in
English and Bahasa Malaysia, including supporting linguistic and some cultural
differences between users [31].

Usability testing has long been studied in Human Computer Interaction
(HCI) research and practice. However, usability defect reporting is very under-
researched in the context of software engineering [61]. Similarly, a lot of work
has been done on accessibility in HCI e.g. sight, hearing or cognitively impaired
[57,59], and health IT e.g. mental health challenges when using mobile apps
[8]. However, little has been done to evaluate the extent to which physical and
mental challenges are properly addressed in engineering software development,
and is also poorly supported in practice. Personality, team climate and organi-
sational issues relating to people have been heavily researched in Management,
Information Systems, and the personality of programmers and testers in soft-
ware development [46,54]. However, little attention has been paid to how to
go about supporting differing personality, team climate or organisational or user
culture in software, nor to capture requirements relating to these human aspects.
Traditional software requirements and design models have very limited (or no)
ability to capture these sorts of human-centric software issues, and approaches
are ad-hoc, inconsistent, and incomplete.

HumaniSE 451

Software is fundamentally produced by people, for people. People - and the
organisations they work for or that provide them with services - inherently have a
set of “values”, which differ from person to person and organisation to organisa-
tion. Values represent the guiding principles that influence our decision-making
processes as individuals, groups and organisations; and they describe what an
individual or a group thinks is valuable or important [13]. Such values include
but are not limited to openness, transparency, competitiveness, privacy, accessi-
bility, inclusivity, independence, politeness, ambition, respect for authority, and
so on. Some approaches have been developed to specify some human values and
their relationship to software engineering methods and teams [10].

Current software engineering processes lack consistent, coherent ways to
address this range of increasingly important human-centric software issues and
thus they are often very incompletely supported or in fact are usually ignored
[19,58]. To date only isolated human aspects have been addressed and often con-
fined to one phase of software development. There are no modelling principles,
DSVL-based model design principles, nor widely applicable, practical modelling
tools to capture human-centric software issues at requirements or design levels.
While a DSVL provides a more human-centric engineering approach, it fails to
capture and support the key human aspects in the target software itself. Cur-
rent MDSE tools, while providing significant software engineering benefits do
not support modelling and using these critical human aspects.

Fig. 5. Our overall HumaniSE approach.

452 J. Grundy et al.

3 Our Approach

Figure 5 illustrates the new human-centric, model-driven software engineering
approach we are working to produce. We have identified a set of key approaches
that are needed to achieve this vision. We aim to employ several innovative
approaches to (i) systematically capture and model a wide range of human-
centric software requirements and develop a novel integrated taxonomy and for-
mal model for these; (ii) promote a wide range of human-centric requirements for
first-class consideration during software engineering by applying principles for
modelling and reasoning about these human-centric requirements using DSVLs;
(iii) support a wide range of human-centric requirements in model-driven engi-
neering during software generation and run-time reconfiguration via MDSE tech-
niques; and (iv) systematically use human-centric requirements for requirements-
based software testing and reporting human-centric software defects. This app-
roach improves model-driven software engineering by placing crucially impor-
tant, but to date often forgotten, human-centric aspects of software as first-class
considerations in model-driven software engineering. The critical importance of
this is really only just becoming recognised, due to the increasing breadth of uses
of IT in society and the increasing recognition that understanding and incorpo-
rating the very diverse needs of our very diverse software end users is essential.
Key features of this approach include:

(1) An Agile, Living Lab Approach is being used to co-locate the software
team and target end users [20]. This provides a co-creational environment
to elicit human-centric requirements, model and capture with human-centric
DSVLs, and receive continuous feedback from users. The Living Lab concept’s
design thinking, agile, co-creation and continuous feedback mechanisms are
critical. These are then used to provide an MDSE approach in which human-
centric requirements can be effectively and efficiently captured, treated as
priorities by the software team, users can quickly report defective software
violating these human-centric requirements, and the software team can work
effectively with these end users to co-design changes.
(2) A New Set of DSVL Tools are being developed to capture and model
the human-centric requirements, validate them against design principles and
best practice modelling patterns, and translate them to extended design-level
models. A set of principles for domain-specific visual modelling languages
is being developed that enables software engineers to better capture a wide
range of human-centric aspects of software: including user’s age, gender, cul-
tural preferences, language needs, emotional needs, personality and cognitive
characteristics, and accessibility constraints, both physical and mental. These
and other human end user characteristics are essential to prioritise during
both software development and software deployment to ensure a useful and
usable end product results for a broad range of end users. These principles
are used to design a range of novel DSVLs that fully support the capture of
many of the important human-centric aspects and model them as the critical
requirements issues that they are.

HumaniSE 453

(3) A Set of MDSE-based Code Generators are used to generate soft-
ware applications – code, configurations, etc. Augmented design models are
used to ensure modelled human-centric requirements are preserved for use
at design-time to ensure that MDSE-based solutions take them into account
appropriately when generating software applications. Unlike existing genera-
tors, our extended MDSE generators take into account variations of end-users
as specified in the human-centric requirements, producing either multiple ver-
sions of the target software applications and/or reconfigurable applications
that adapt to each end user’s differing human-centric needs.
(4) A Combination of Human-centric Requirements Testing and
Continuous Defect Feedback are fed to the development team. We are
developing a new framework for human-centric, requirements-based testing
of software that can verify whether the constructed software systems meet
these critical human-centric requirements. By leveraging the Living Lab con-
cept, this enables both faster feedback and defect correction, but also better
evolution and modelling of the human-centric requirements over time. Lessons
are fed into the improvement of the DSVL tools, best practice patterns and
MDSE generators.

Ultimately we want to translate our learning into industry practices and
Software Engineering education. To do this we are working with several industry
partners, our students, and colleagues teaching Software Engineering courses.

In the following sections, we are explaining these four key features in the
format of different projects we are working on across human-centric agile Liv-
ing Lab, human aspects in requirements engineering, using human aspects in
design and implementing software, and evaluating and applying human aspects
in software engineering.

4 A Human-Centric Agile Living Lab

Human-centric requirements have to be elicited from target end users (or stake-
holders), captured (or modelled) using our DSVL-based tools, used by extended
MDSE solutions to generate software, and then the software tested and user feed-
back accepted and actioned to correct requirements and design model problems.
A new approach is needed to effectively support the software team in achieving
this. We are investigating the Living Lab co-creation concept that has become
popular in digital health software development [20,26].

We are establishing this lab with a domain-specific focus with partner compa-
nies and target end users and the software team co-located as in Agile customer-
in-team approaches [9,46]. Target end users and developers closely collaborate to
elicit, capture, test, use and refine the human-centric software requirements. The
DSVL modelling tools, MDSE generators and testing tools all need to support
collaborative capture, discussion and refinement of the human-centric require-
ments for this to be most effective. We plan to do this by extending our current

454 J. Grundy et al.

work on developing digital health technologies [20], human-centric software engi-
neering processes in software teams, including personality and team climate [49],
and collaborative DSVL-based modelling tools [16].

In the following subsections we describe some of our projects that aim to
make this living lab for Human-centric Software Engineering a reality.

4.1 Review of Human Aspects in Other Disciplines

We are conducting reviews of the notion of “human aspects” and how they are
studied in other disciplines outside software engineering. This includes HCI/UX,
information systems, business, design, engineering, psychology, sociology, anthro-
pology, etc. Our objective is to learn from existing bodies of knowledge and to
apply relevant theories, notions and findings to build a more complete under-
standing of human aspects and their implications on software engineering prac-
tices. The expected outcome of this project is a more complete, useful and prac-
tical taxonomy and ontology of human aspects for use in software engineering.

4.2 Review of How Human Aspects Impact Developers

We are conducting reviews of software engineering research literature to better
understand - (i) what human aspects have been studied in software engineering to
date (ii) how these issues inter-relate and impact software engineer performance;
and (iii) where there are key gaps, limitations and need for further studies of
human aspects impact on software engineers. From this we aim to determine the
range of ways explored to date of how human aspects impact software engineering
teams. We then plan to conduct our own studies of under-researched human
aspects on software engineers.

4.3 Survey of How Developers Currently Handle End User Human
Aspects

To complement the review of works done to understand human aspects impact-
ing software engineers, we are conducting a survey of developers and follow-up
interviews to better understand: (i) what are the key human aspects that they
encounter when developing software, especially for “challenged” end users (ii)
what are the more common, challenging to elicit, challenging to address human
aspects for their end-users (iii) how do they currently meet these challenges (iv)
are their current best practices we can learn from and disseminate to the wider
software engineering community; and (v) what are key practice gaps and chal-
lenges that need further R&D to address. From the outcome of this survey and
interview study we plan to focus the work described in the following sections on
the particularly important and difficult under-supported end user human aspects
for software development.

HumaniSE 455

4.4 Analysis of How Human Aspects of Software Are Currently
Discussed by Software Engineers

Software development and issue tracking systems such as GitHub, Stack-
overflow, Atlassian Jira, Bugzilla, etc. provide tools for developers to dis-
cuss bugs and development related issues with each other. However, whether
human aspects are getting discussed among hundreds of issues developers dis-
cuss together, is questionable. On the other hand, software users leave reviews
for the apps to share their issues and experiences in using the apps with the
other users and developers. Issue tracking and reporting software has many uses
for customer service teams, one of which is bug reporting and fix tracking. This
software is meant for internal bug tracking, so when team members find bugs
and issues while testing products, they can report it to product development.

We are working on mining software repositories and app reviews to better
understand whether human aspects are discussed in these platforms. We are
also interested to explore what issues developers currently discuss or do not
discuss about human aspects in software engineering and how they are currently
talked about. At the same time, we are interested in what human aspects do
users discuss in app reviews, and how they discuss them. These would enable
us to analyse the differences in the discussions across human aspects in software
engineering, how the discussions vary between different platforms, e.g. Stack
Overflow, GitHub, how discussions vary based on human factor, project, person,
etc., and how discussions vary in different fields and applications.

Analysis from this data collection will give us better insights into how dis-
cussions vary between developers and users, whether developers address human
aspects discussed by the users, and finally, whether developers address what they
discuss about the human aspects in software development.

4.5 A Taxonomy of Human-Centric Software Requirements

To the best of our knowledge, no taxonomy of human-centric software require-
ments or even informal definition exists at this time. We are working on devel-
oping a new, rich taxonomy of human-centric requirements for software systems.
The taxonomy includes different human-centric concepts relating to computer
software, and draws on other disciplines including HCI, usability, psychology,
sociology, and others to build the conceptual model, and provide detailed rela-
tionships and trade-offs between different human-centric requirements.

We are applying this to a number of representative requirements examples
to test and refine it, and use the outcomes to inform the development of DSVLs,
DSVL tools and MDSE solutions in other activities. This is critical research as
it provides software engineers with a lexicon, a set of principles and conceptual
model to model and reason about these kinds of requirements. We are conducting
a detailed analysis of several representative real-world software applications from
eHealth apps [18], smart homes [20], community service apps [21], educational
apps [1], and other heavily human-centric requirements critical domains.

456 J. Grundy et al.

From these we are developing a framework and model for prioritising human-
centric software issues. This characterises complex trade-offs and other relation-
ships between different human aspects that make supporting one issue prob-
lematic for other issues, similar to the Cognitive Dimensions framework [15].
We plan to use a set of focus groups comprising end users and developers to
refine and validate our taxonomy. The taxonomy is being tested on real-world
example requirements to gain feedback from both developers and end users to
demonstrate its effectiveness. We are drawing on our extensive previous work
developing taxonomies for design critics [2], emotion-oriented requirements [7],
usability defects [61], and team climate [54].

5 Human Aspects in Requirements Engineering

5.1 Extracting Human Aspects from Requirements

Software requirements need to be elicited from end users and these are typically
held in a variety of documents and can be obtained in a variety of ways. In the
context of the Living Lab we are developing new tools to enable extraction of
diverse human-centric requirements from diverse sources, including Powerpoint,
Word, Excel, PDF, audio transcripts, images and video. A number of works
have addressed different parts of this problem, including extracting requirements
using light weight and heavy weight natural language processing [3,38]. However,
none have specifically addressed the extraction of a wide range of human-centric
requirements. We are developing, trialing and will then refine a set of extraction
tools leveraging existing approaches but focused on human-centric requirements
capture and representation using our DSVLs, within our living lab approach, and
leveraging our human-centric requirements taxonomy. These tools will also be
refined as these other related activities are refined and extended, and applying
these tools to representative real-world requirements artefacts will help us to
test and extend the outputs of these other tasks. We are focusing on developing
leading-edge tools for extracting requirements for goal-directed and multi-lingual
models [31,38], and requirements checking and improvement [3].

5.2 Human Aspects Impacting Requirements Engineers in Agile
Teams

We are interested in a range of human aspects in the requirements engineer-
ing (RE) domain, particularly those impacting agile requirements engineering
teams. These include but are not limited to: (i) how do requirements engineers
handle requirements changes during agile software development, from both tech-
nical and behavioural/emotional reaction perspectives; (ii) how are agile require-
ments defined, talked about, is there a taxonomy of “agile” requirements changes;
(iii) how do human aspects impact requirements engineering team members and
stakeholders; and (iv) how can we improve RE practices and outcomes by better
understanding and taking into account human aspects of team members and

HumaniSE 457

stakeholders. To this end we are carrying our studies with RE teams to better
understand these issues, design techniques and tools to better evaluate human
aspects impacting on RE processes and outcomes, and trial these with partner
organisations.

5.3 How Are Human Aspects Discussed in Requirements
Engineering Documents

Requirements elicitation and specification play an important role in the software
development life cycle. Human aspects are often neglected in the early stages of
development, i.e., requirements engineering. If human aspects are not taken into
account from the early stages of the software development, these issues can
impact the final product and make it not tailored toward the diverse range of
end-users. Not taking human-centric requirements of users into account can lead
to serious impacts to the software under development.

We are working on initially analysing existing requirement engineering doc-
uments to explore whether human aspects are discussed/noted, including epics,
user stories, use cases, discussion transcripts, feature outlines, and so on. Using
the taxonomy of human aspects discussed earlier, we aim to develop guidelines
and tools using Natural-Language Processing and Machine Learning techniques
to identify relevant human aspects in requirements specifications. This will lead
to an improved human aspects-driven requirement engineering process, and an
automated tool for identifying human aspects in system artefacts and guiding
analysts in deliberately considering these issues during the requirements engi-
neering phase.

5.4 New DSVLs to Model Human-Centric Requirements

While DSVLs have been an active research area for at least 20 years, remark-
ably few principles exist for design and evaluation of effective DSVLs [43]. We
are developing a set of new design principles and associated DSVL evaluation
approaches to provide more rigorous principles and design steps for specifically
human-centric DSVL development. This will require us to identify a range of
human-centric software requirements and design issues identified in the taxon-
omy built. We need to determine how we can best model these, use appropriate
visual metaphors to represent the models, how we can support interaction with
the visual models, and how we can reason about the suitability of these visual
models in terms of usability and effectiveness. We are drawing upon the work
on DSVL design tools to achieve this [2,16,39], as well as work on ‘Physics’
of Notations [43] and Cognitive Dimensions [15] to develop these DSVL design
principles for modelling human-centric software issues.

We are developing a range of new and augmented DSVLs to model a wide
variety of human aspects at the requirements level for software systems. Some of
these DSVLs extend existing requirements modelling languages – in successively
more principled ways than currently – e.g. goal-directed requirements languages
such as i*, use cases and essential use cases, target user personas, user stories, etc.

458 J. Grundy et al.

However, others may provide wholly novel requirements modelling techniques
and diagrams that are then linked to other requirements models. We envisage
novel requirements capture for things like identifying cultural, age, accessibility
and personality aspects of target end users. Where multiple target end users
for the same software application have differing human-centric requirements,
multiple or composite models may be necessary. Even partial progress here will
be very useful for both researchers and practitioners well beyond the scope of
our research.

We are building on a wide range of DSVLs, including for design tools, require-
ments, reporting, business processes, surveys, performance testing, and many
others [2,16,31] as well as digital health software [20] and work on modelling
usability defects and emotional and multi-lingual requirements [7].

5.5 Capturing Human Aspects with Personas

We are investigating the use of personas in requirements engineering with a view
to working out ways to better use these during software engineering. To this end
we are looking into (i) how personas are currently used in RE and SE; (ii)
how to build personas that represent effectively a wide range of human aspects;
(iii) how to validate these personas; and (iv) how to use these personas during
design and evaluation of software systems. This may include improved ways of
defining personas, incorporating specific human aspects into personas, generating
personas, and using persona models to support RE, design and evaluation.

6 Using Human Aspects in Design and Implementing
Software

6.1 Software Design Decision Support

The objective of this project is to develop a decision-support system that sys-
tematically guides software developers through capturing selected human aspect
needs and requirements. It aims to give developers better support for incor-
porating these aspects into the design of a software system. Design decisions,
contextual information and other tacit information such as design rationales
are planned to be formalised using techniques such as decision trees, Markov
chains and Bayesian networks. The expected outcome is a demonstrable pro-
totype implementation that can be used and evaluated by software developers.
Software developers are humans, and they, therefore, might be subject to cog-
nitive biases and other human challenges. We are studying and evaluating how
such a decision-support system may assist developers to use more of System 2
or rational thinking in design [56].

6.2 Collaborative Human-Centric Domain-Specific Visual
Languages

We aim to develop a collaborative browser-based domain specific visual lan-
guages platform for designing a variety of software tools and systems including

HumaniSE 459

data analytics applications, eHealth apps, etc. Multidisciplinary teams of users
can design their applications based on their specific characteristics, such as age,
gender, culture, personality, etc. Different users can work collaboratively at the
same time through a browser-based drag-and-drop based tool in a visualised and
programming-free way. Users will be able to store data in, for example, graph
databases to enable them to get more specialised views based on their needs and
preferences. Domain specific visual languages can be built on top of the existing
model-driven approaches such as BiDaML [34], big data analytics modelling lan-
guages, and can be further extended by incorporating human-centric issue into
the development of the notations. We are adding to our tool code and report
generators to automatically generate source code, reports and documents from
the visualised models.

6.3 Extending Design Models to Include Human Aspects

Model-driven software engineering tools typically use the Unified Modelling Lan-
guage (UML) or similar design models. Even those using their own design models
need to refine higher-level abstract requirements models into lower-level archi-
tectural, software design, interface, database and other models. We are working
on different ways to effectively extend design-level models to capture necessary
design-level human-centric properties, derived from higher level human-centric
requirements-level properties [4]. For example, we want to capture design alterna-
tives to achieve an application user interface for a target end user who has sight-
impairment, prefers a gesture-based sensor interface to using a Smart phone, has
limited mobility, and is quite “neurotic” about device feedback.

We are going to evaluate these different modelling solutions via our living
lab with both software engineers and end users, in terms of needed design infor-
mation and preserving critical human-centred end user needs respectively. Even
partial successful outcomes here will be immediately of interest and applicable
for software teams. We are extending design models with aspects [44], goal-use
case model integration [38], and goal-models extended with emotions [7,20].

6.4 Human-Centric Design Critics and Modelling Patterns

Just because we add human aspects to our requirements and design models
does not mean they may be correct or even appropriate. We are developing a
set of proactive tool support systems to advise software engineers of errors or
potentially incorrect/unintended issues with their models [2,48]. This will enable
the DSVL toolsets for human-centric requirements and design models to provide
proactive feedback to modellers. To enable these design critics are identifying a
range of “human-centric requirements and design patterns”. These will provide
best-practice approaches to modelling complex requirements and design models
mixed with human aspects. These features will be added to successive iterations
of our prototype tools from above. This work is building on our approaches
to develop DSVL design critics [2] and DSVL-based requirements and design
pattern modelling tools [30].

460 J. Grundy et al.

6.5 Using Human Aspects in Model Driven Engineering

Once we have some quality design-level human aspects in models – incremental
outcomes from the above activities – we can use these in model-driven engineer-
ing code and configuration generators. This research involves adding generators
that consume design level models augmented with human-centric properties and
synthesizing software applications that use these appropriately. For example,
we might generate a gesture-based, passive-voice feedback solution for the tar-
get user from the smart home example described in Sect. 2. However, we might
instead generate several interfaces for the same software feature, and at run-time
configure the software either with pre-deployment knowledge, end user input, or
even modify it while in use based on end user feedback. Thus for example a part
of the software for our smart home example could adapt to different end users’
current and changing needs (e.g. age, culture, emerging physical and mental
challenges, personality etc.).

This work is being done incrementally, focusing on single issues first then
looking at successively more complex combinations, adding support to the pro-
totype tools and repeatedly trialling the tools. We are adding human aspects
to MDSE code generators [4], generating adaptive user interfaces [37], adaptive
run-time software [42], and DSVL-based MDSE solutions [55].

7 Evaluating and Applying Human Aspects in Software
Engineering

We are addressing critically important issues of (i) testing whether the resul-
tant software generated from our augmented MDSE approach actually meets
the requirements specified; (ii) providing a feedback mechanism for end users
to report defects in the software specifically relating to human aspects; and
(iii) providing a feedback mechanism from software developers to users about
changes made relating to their personal human aspects. We are developing
human-centric requirements-based testing framework, techniques and tools.
These enable human aspects to be used in acceptance tests to improve valida-
tion of software against these requirements. We are also developing new human-
centric defect reporting mechanisms and developer review and notification mech-
anisms. These support continuous defect reporting, correction, and feedback via
the living lab and remotely. Even partial outcomes would be of immediate ben-
efit to the software engineering research and practice communities. This work
is extending research on software tester practices and usability defect reporting
[14,61] and requirements-based testing [31].

7.1 How Can We Provide Better Fixes for Human Aspect-Related
Defects

We are working on characterising a mobile app model with the desired human
values for its target end-users. We are then using these values to assist us in

HumaniSE 461

detecting what we term “values-violating defects” [58] in the target mobile apps.
We then provide app developers with a set of recommendations for suggested
fixes for these values-violating app defects.

This involves studying a large number of apps, their reviews, and how users
feel various “human values” – such as transparency, integrity, privacy, trust,
and other human values – may be violated by the apps. We are then identifying
ways to (i) detect these “values violations”, or values defects, in apps; (ii) identify
possible fixes for these defects so that the human values are supported; and (iii)
providing tools to developers to help them find and fix these values-related app
defects. We hope to generalise this approach to other end user human aspects
that need to be supported in apps, including accessibility, age and gender bias,
and different end user language and culture.

7.2 Gender Bias in IT Job Ads

We are investigating whether gender is a crucial factor to be an IT professional.
As a starting point, we are reviewing if IT job advertisements are more appealing
to male candidates. We are using an automated word based gender bias checker
to examine if there is any bias in IT job advertisements. We are also conducting
a survey of IT hiring managers and IT professionals and/or IT candidates to
collect their perception about gender bias in IT job advertisements. Finally,
we are applying a cognitive walkthrough approach with gender based persona,
proposed by GenderMag [6] tool, to find if male and female candidates react
differently to IT job advertisements. The overall finding from this study will
help us to identify if IT job advertisements are gender biased, and if yes, what
areas need improvement to make those gender inclusive. This will address a
critical human aspect where the software engineering profession lacks diversity.

7.3 How Age Affects Users’ Interaction with Software

We are looking to generalise the GenderMag [6] approach to supporting other
human aspects during evaluation. In this project we are designing new persona
templates that include “facets” for different ages that have been shown to influ-
ence differently-aged users’ interaction with technology. These templates will be
customisable using different descriptions of the facets and will generate different
persona representing users of different age groups. These enhanced age-related
personas can then be used by software engineers to enhance requirements engi-
neering, design and evaluation of software for ageing people [51], in a similar way
to GenderMag. Again, we aim to generalise this work to other human aspects of
end users.

7.4 eHealth Applications

We are trialing our approaches with real industry practitioners and organisa-
tions for whom human aspects are critical. Our approach is particularly suitable

462 J. Grundy et al.

for eHealth applications with end users with challenging human aspects, such
as physical or mental disability, English as second language, cognitive decline,
very young or old, and needing software to adapt to their changing personal
or contextual usage needs. Planned target application domains include digital
health apps for community members, community educational apps, government
service and transport apps and websites, and smart home and smart building
management software.

7.5 How Developers Address Accessibility Issues in Mobile Apps

We are studying how developers address one common class of human aspects
– accessibility – in mobile apps, by large-scale analysis of app reviews, change
histories, and other associated app development and release information. We
hope to identify areas where accessibility issues are well-supported and can be
more widely adopted. We also hope to identify problematic accessibility issues
for developers and use this to carry out targeted studies to improve its support.
With mobile apps becoming increasingly widely used for an increasing number of
tasks, those not supporting diverse end user accessibility challenges run a great
risk of reducing access of many in our communities to critical services [21].

7.6 Developing Better Apps with Personas

We are exploring human-centric smart city development approaches. One of our
case studies is the development of better “smart parking” apps. We are using
personas to identify a range of parking app users, informed by review mining
and other techniques. We are then using these personas to help evaluate existing
apps and to then develop and refine requirements and to evaluate designs and
prototypes from a range of human-centric perspectives. The idea is to generalise
this approach to other smart living systems that by definition have a wide range
of diverse end users. We aim to employ the results of adding human aspects to
design models and MDE, as discussed above, to improve development of these
apps in the future.

We are also exploring the how personas might be used in eHealth. We will
use personas to inform the development of a website and eHealth resources for
people who have experienced miscarriage. The personas will be developed from
inductive qualitative analyses from extensive interviews with women who have
had a miscarriage, partners of women who have had a miscarriage, and health
practitioners who support women who have had a miscarriage [5,28,40] and will
include relevant human aspects including users’ personalities, age, background,
culture, language, physical and mental challenges, comfort with technology and
so on. The personas will inform the look and feel of the website and resources,
and will be used to test the website during the development and design phases.
The website and resources will be evaluated through surveys and where possible,
interviews with people who access the website, and this will be used to validate
the personas.

HumaniSE 463

7.7 COVID-19 Apps

In response to the COVID-19 pandemic, there has been an exponential growth in
contact tracing apps worldwide [50]. The apps were created very quickly and are
designed to be used across often disparate groups within a population. We are
interviewing COVID-19 app developers and conducting focus groups to explore
if human-centric aspects suitably taken into account and if so how, or if not how
might they be included in the development. This is particularly important for
contact tracing apps given their effectiveness is dependent on a critical mass of
people engaged with the app.

7.8 Environmental and Sustainability Software Applications

Coastal communities around the world feel the impact of climate change in the
form of rising sea levels. Current observations and future projections indicate
that sea levels will be significantly higher in the second half of this century [60]
causing more frequent and prolonged flooding that pose “unique challenges to
risk management decision processes” [22].

We are planning to create a DSVL and decision-support system in collabora-
tion with bay-side communities of Melbourne, Australia, to enable the modelling
and simulation of the impact of flooding events and to support automated risk
assessments. The DSVL will support the modelling of the needs of the various
affected stakeholder groups, e.g. people who live and work in affected areas while
also providing means to model localised contextual information about infras-
tructure, topology as well as local knowledge. We will be following an iterative
human-centred design (HCD) approach to devise and evaluate our human-centric
decision support system.

7.9 Human Aspects in SE Education and Practice

As argued throughout this paper, we propose to put humans into the focus of
SE. Software should adapt to user needs - not the other way round. To build
software to do so, a culture change in the SE industry and the way SE is taught
is required. Besides improving concepts and methods, we aim to change some
terminology in order to explicitly support a new way of thinking, e.g. through
redefining or replacing terms such as ‘user’, ‘stakeholder’ and ‘requirement’.

The term ‘user’ does not fully convey the human nature and individual dif-
ferences between people. The term ‘stakeholder’ is often too narrowly applied.
Indirect stakeholders - those who are affected by software systems used by others
- are too often overlooked, e.g. self-driving cars may put the safety of other road
users at risk [53], facial recognition systems may misidentify innocent people
as criminals [35]. We believe the term ‘people’ is better suited to express such
socio-technical aspects and to break up traditional technology-centred thinking.

464 J. Grundy et al.

Similarly, the term ‘need’ may be used to overcome the strict separation
between functional and non-functional requirements. This differentiation is not
only detrimental as the latter are often treated as less important afterthoughts;
it is also incomplete. For example, human aspects beyond usability are typically
not covered [27].

Moreover, we aim to change the way SE is taught to better prepare future
generations of software engineers for the development of successful human-centric
software systems. Social sciences need to play a more prominent role in SE
curricula. Students and practitioners need the soft skills required for the work
in diverse teams and to more effectively elicit and model diverse requirements
and perspectives. Various of the above mentioned research activities will inform
our revision of SE education.

8 Conclusion

Human aspects that are necessary to incorporate into the development of com-
plex software systems include different end user age, language, gender, ethnicity,
physical and mental challenges, personality, socio-economic status, educational
attainment, emotional reactions, technology proficiency and so on. We described
a motivating example - a smart home to support ageing in place - showing how
many of these human aspects of software systems need to be fully understood and
incorporated by software engineers. To realise this, we described our current work
to advance HumaniSE - Human-Centric Software Engineering. This includes
the use of a co-creational living lab to better identify diverse end user require-
ments. The use of domain-specific visual models to improve capture and rea-
soning about these characteristics. The use of design thinking, extended design
models and augmented model-driven engineering. Improving defect reporting to
help developers better understand and fix these human aspect-related issues in
their software. We are applying these approaches to a range of domains requir-
ing full support of the diverse human aspects of end users. This includes a
range of eHealth applications, smart city applications, education-related soft-
ware, support for vulnerable community members to access and use government
and employment services, and sustainability solutions. We very much welcome
approaches to discuss collaboration on some of these directions and projects.

Acknowledgements. Support for this work from ARC Discovery Projects
DP170101932 and DP200100020 and from ARC Laureate Program FL190100035 is
gratefully acknowledged.

References

1. Abdelrazek, M., Ibrahim, A., Cain, A., Grundy, J.: Vision: mobile ehealth learning
and intervention platform. In: Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems, pp. 252–256 (2018)

HumaniSE 465

2. Ali, N.M., Hosking, J., Grundy, J.: A taxonomy and mapping of computer-based
critiquing tools. IEEE Trans. Softw. Eng. 39(11), 1494–1520 (2013). https://doi.
org/10.1109/TSE.2013.32

3. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requirements Eng. 15(4), 439–458 (2010)

4. Ameller, D., Franch, X., Cabot, J.: Dealing with non-functional requirements in
model-driven development. In: 2010 18th IEEE International Requirements Engi-
neering Conference, pp. 189–198. IEEE (2010)

5. Bellhouse, C., Temple-Smith, M., Watson, S., Bilardi, J.: The loss was traumatic
. . . some healthcare providers added to that: women’s experiences of miscarriage.
Women Birth 32(2), 137–146 (2019)

6. Burnett, M., et al.: Gendermag: a method for evaluating software’s gender inclu-
siveness. Interact. Comput. 28(6), 760–787 (2016)

7. Curumsing, M.K., Fernando, N., Abdelrazek, M., Vasa, R., Mouzakis, K., Grundy,
J.: Emotion-oriented requirements engineering: a case study in developing a smart
home system for the elderly. J. Syst. Softw. 147, 215–229 (2019). https://doi.org/
10.1016/j.jss.2018.06.077

8. Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M.R., Christensen, H.:
Smartphones for smarter delivery of mental health programs: a systematic review.
J. Med. Internet Res. 15(11), e247 (2013). https://doi.org/10.2196/jmir.2791

9. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile soft-
ware development: asystematic review. Inf. Softw. Technol.
50(9), 833–859 (2008). https://doi.org/10.1016/j.infsof.2008.01.006.
http://www.sciencedirect.com/science/article/pii/S0950584908000256

10. Ferrario, M.A., Simm, W., Forshaw, S., Gradinar, A., Smith, M.T., Smith, I.:
Values-first SE: research principles in practice. In: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering Companion (ICSE-C), pp. 553–562.
IEEE (2016)

11. Fontoura, M., Pree, W., Rumpe, B.: The Uml Profile for Framework Architectures.
Addison-Wesley Longman Publishing Co., Inc., USA (2000)

12. Friedland, B., Yamauchi, Y.: Reflexive design thinking: putting more human in
human-centered practices. Interactions 18(2), 66–71 (2011)

13. Friedman, B., Kahn, P.H., Borning, A.: Value sensitive design and information
systems. In: The Handbook of Information and Computer Ethics, pp. 69–101 (2008)

14. Garousi, V., Zhi, J.: A survey of software testing practices in Canada. J. Syst.
Softw. 86(5), 1354–1376 (2013)

15. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)

16. Grundy, J.C., Hosking, J., Li, K.N., Ali, N.M., Huh, J., Li, R.L.: Generating
domain-specific visual language tools from abstract visual specifications. IEEE
Trans. Softw. Eng. 39(4), 487–515 (2013). https://doi.org/10.1109/TSE.2012.33

17. Grundy, J.: Human-centric software engineering for next generation cloud-and
edge-based smart living applications. In: 2020 20th IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGRID), pp. 1–10. IEEE
(2020)

18. Grundy, J., Abdelrazek, M., Curumsing, M.K.: Vision: improved development of
mobile ehealth applications. In: 2018 IEEE/ACM 5th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pp. 219–223. IEEE
(2018)

19. Grundy, J., Khalajzadeh, H., Mcintosh, J.: Towards human-centric model-driven
software engineering. In: ENASE, pp. 229–238 (2020)

https://doi.org/10.1109/TSE.2013.32
https://doi.org/10.1109/TSE.2013.32
https://doi.org/10.1016/j.jss.2018.06.077
https://doi.org/10.1016/j.jss.2018.06.077
https://doi.org/10.2196/jmir.2791
https://doi.org/10.1016/j.infsof.2008.01.006
http://www.sciencedirect.com/science/article/pii/S0950584908000256
https://doi.org/10.1109/TSE.2012.33

466 J. Grundy et al.

20. Grundy, J., et al.: Supporting diverse challenges of ageing with digital enhanced
living solutions. In: Global Telehealth Conference 2017, pp. 75–90. IOS Press (2018)

21. Grundy, J., Grundy, J.: A survey of Australian human services agency software
usage. J. Technol. Hum. Serv. 31(1), 84–94 (2013)

22. Hall, J., et al.: Rising sea levels: helping decision-makers confront the inevitable.
Coast. Manage. 47(2), 127–150 (2019)

23. Hartzel, K.: How self-efficacy and gender issues affect software adoption and use.
Commun. ACM 46(9), 167–171 (2003)

24. Hoda, R., Salleh, N., Grundy, J.: The rise and evolution of agile software develop-
ment. IEEE Softw. 35(5), 58–63 (2018)

25. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 471–480 (2011)

26. Hyysalo, S., Hakkarainen, L.: What difference does a living lab make? Comparing
two health technology innovation projects. CoDesign 10(3–4), 191–208 (2014)

27. ISO/IEC: Iso/iec 25010 system and software quality models. Technical report
(2010)

28. Jensen, K.L., Temple-Smith, M.J., Bilardi, J.E.: Health professionals’ roles and
practices in supporting women experiencing miscarriage: a qualitative study. Aust.
N. Z. J. Obstet. Gynaecol. 59(4), 508–513 (2019)

29. Joseph, A.J.: The necessity of an attention to eurocentrism and colonial technolo-
gies: an addition to critical mental health literature. Disabil. Soc. 30(7), 1021–1041
(2015)

30. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using
essential use case interaction patterns. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 531–540. IEEE (2011)

31. Kamalrudin, M., Hosking, J., Grundy, J.: MaramaAIC: tool support for consis-
tency management and validation of requirements. Autom. Softw. Eng. 24(1),
1–45 (2017)

32. Kenny, E.J., Donnelly, R.: Navigating the gender structure in information technol-
ogy: how does this affect the experiences and behaviours of women? Hum. Relat.
73(3), 326–350 (2020)

33. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-47884-1 16

34. Khalajzadeh, H., Simmons, A., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.:
An end-to-end model-based approach to support big data analytics development.
J. Comput. Lang. 58, 100964 (2020)

35. Khalil, A., Ahmed, S.G., Khattak, A.M., Al-Qirim, N.: Investigating bias in facial
analysis systems: a systematic review. IEEE Access 8, 130751–130761 (2020)

36. Khambati, A., Grundy, J., Warren, J., Hosking, J.: Model-driven development of
mobile personal health care applications. In: 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, pp. 467–470. IEEE (2008)

37. Lavie, T., Meyer, J.: Benefits and costs of adaptive user interfaces. Int. J. Hum.
Comput. Stud. 68(8), 508–524 (2010)

38. Lee, J., Xue, N.L.: Analyzing user requirements by use cases: a goal-driven app-
roach. IEEE Softw. 16(4), 92–101 (1999)

39. Li, L., Grundy, J., Hosking, J.: A visual language and environment for enterprise
system modelling and automation. J. Vis. Lang. Comput. 25(4), 253–277 (2014)

https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16

HumaniSE 467

40. Miller, E.J., Temple-Smith, M.J., Bilardi, J.E.: There was just no-one there to
acknowledge that it happened to me as well: a qualitative study of male partner’s
experience of miscarriage. PLOS ONE 14(5), e0217395 (2019)

41. Miller, T., Pedell, S., Lopez-Lorca, A.A., Mendoza, A., Sterling, L., Keirnan, A.:
Emotion-led modelling for people-oriented requirements engineering: the case study
of emergency systems. J. Syst. Softw. 105, 54–71 (2015)

42. Almorsy, M., Grundy, J., Ibrahim, A.S.: Adaptable, model-driven security engi-
neering for SaaS cloud-based applications. Autom. Softw. Eng. 21(2), 187–224
(2014). https://doi.org/10.1007/s10515-013-0133-z

43. Moody, D.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

44. Mouheb, D., Talhi, C., Lima, V., Debbabi, M., Wang, L., Pourzandi, M.: Weaving
security aspects into UML 2.0 design models. In: Proceedings of the 13th Workshop
on Aspect-Oriented Modeling, pp. 7–12 (2009)

45. Mummah, S.A., Robinson, T.N., King, A.C., Gardner, C.D., Sutton, S.: Ideas
(integrate, design, assess, and share): a framework and toolkit of strategies for the
development of more effective digital interventions to change health behavior. J.
Med. Internet Res. 18(12), e317 (2016)

46. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of
agile practices on communication in software development. Empirical Softw. Eng.
13(3), 303–337 (2008)

47. Prikladnicki, R., Dittrich, Y., Sharp, H., De Souza, C., Cataldo, M., Hoda, R.:
Cooperative and human aspects of software engineering: CHASE 2013. SIGSOFT-
Softw. Eng. Notes 38(5), 34–37 (2013). https://doi.org/10.1145/2507288.2507321

48. Robbins, J.E., Redmiles, D.F.: Software architecture critics in the argo design
environment. Knowl. Based Syst. 11(1), 47–60 (1998)

49. Salleh, N., Hoda, R., Su, M.T., Kanij, T., Grundy, J.: Recruitment, engagement
and feedback in empirical software engineering studies in industrial contexts. Inf.
Softw. Technol. 98, 161–172 (2018)

50. Samhi, J., Allix, K., Bissyandé, T.F., Klein, J.: A first look at Android applications
in Google Play related to Covid-19. arXiv preprint arXiv:2006.11002 (2020)

51. Sarcar, S., et al.: Designing mobile interactions for the ageing populations. In:
Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, pp. 506–509 (2017)

52. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25 (2006)
53. Combs, T.S., Sandt, L.S., Clamann, M.P., McDonald, N.C.: Automated vehicles

and pedestrian safety: exploring the promise and limits of pedestrian detection.
Am. J. Prev. Med. 56(1), 1–7 (2019)

54. Soomro, A.B., Salleh, N., Mendes, E., Grundy, J., Burch, G., Nordin, A.: The
effect of software engineers’ personality traits on team climate and performance: a
systematic literature review. Inf. Softw. Technol. 73, 52–65 (2016)

55. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. J. Vis. Lang. Comput. 15(3–4), 291–307 (2004)

56. Stanovich, K., West, R.: Individual differences in reasoning: implications for the
rationality debate. Behav. Brain Sci. 23, 645–655(discussion 665) (2000). https://
doi.org/10.1017/S0140525X00003435

57. Stock, S.E., Davies, D.K., Wehmeyer, M.L., Palmer, S.B.: Evaluation of cogni-
tively accessible software to increase independent access to cellphone technology
for people with intellectual disability. J. Intellect. Disabil. Res. 52(12), 1155–1164
(2008)

https://doi.org/10.1007/s10515-013-0133-z
https://doi.org/10.1145/2507288.2507321
http://arxiv.org/abs/2006.11002
https://doi.org/10.1017/S0140525X00003435
https://doi.org/10.1017/S0140525X00003435

468 J. Grundy et al.

58. Whittle, J.: Is your software valueless? IEEE Softw. 36(3), 112–115 (2019)
59. Wirtz, S., Jakobs, E.M., Ziefle, M.: Age-specific usability issues of software inter-

faces. In: Proceedings of the IEA, vol. 17 (2009)
60. Wright, L., Syvitski, J., Nichols, C.: Sea level rise: recent trends and future pro-

jections. Coast. Res. Libr. 27, 47–57 (2019)
61. Yusop, N.S.M., Grundy, J., Vasa, R.: Reporting usability defects: a systematic

literature review. IEEE Trans. Softw. Eng. 43(9), 848–867 (2016)

Finding and Use of Source Code Changes
for Aspect-Oriented Software

Marija Katic(B)

London, UK

Abstract. In aspect-oriented software, code contained in special con-
structs called pieces of advice is used to define cross-cutting functionali-
ties. This code is separated from more purpose-specific code (base code)
and applies to it at specified program execution points called join-points.
Such mechanism of composing a program imposes new requirements for
finding changes between two versions of aspect-oriented software. This
particularly refers to finding changes in advice applications at join-points
as these applications are rather implict due to the absence of syntacti-
cal dependence of the base code to pieces of advice. In our previous
work, we proposed and evaluated a novel approach for finding changes
in advice applications. In this paper, we overview that approach, pro-
vide more details about how it works and additional results of manual
verification analysis. We also compare the state-of-the-art approaches for
finding and use of changes between two aspect-oriented software versions,
including our previous work. Finally, we introduce the implementation of
the graphical user interface for presenenting the changes found with our
approach. We discuss its perspective usage and other potential applica-
tions of our approach.

Keywords: Program differencing · Aspect-oriented programming ·
Software evolution

1 Introduction

The aspect-oriented programming (AOP) [18] has gained its popularity because
of its simplicity to isolate cross-cutting concerns into separate modules. Thus,
the program code becomes separated into two parts: the base code (BC) and the
aspect code (AC). The base code is used for the core program functionalities,
while the cross-cutting concerns are part of the aspect code.

As such, the AOP is used on the top of another programming paradigm [4,17].
The well-established AOP language, AspectJ [17], is built on top of the object-
oriented programming paradigm (OOP). We base this paper on AspectJ. In an
AspectJ program, and in general in AOP approaches, the main unit in the AC is
aspect. Aspect contains advice, this is code executed at a point in the execution of
a program such as method invocation or field access. Such a program execution
point is called join-point (JP). There are three types of advice: before advice
c© Springer Nature Switzerland AG 2021
R. Ali et al. (Eds.): ENASE 2020, CCIS 1375, pp. 469–493, 2021.
https://doi.org/10.1007/978-3-030-70006-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70006-5_19&domain=pdf
http://orcid.org/0000-0001-8813-5281
https://doi.org/10.1007/978-3-030-70006-5_19

470 M. Katic

that executes prior to the execution of a JP, after advice that executes following
the execution of the JP, and around advice that can affect the execution of the
JP. The BC and AC are merged via the process that is referred to as the aspect
weaving. The rules for weaving or so called pointcuts specify JPs where pieces
of advice apply.

In general, software is changed for reasons such as fixing bugs, adding new
functionalities or changing running environments. The research area devoted to
the exploration of activities that support software changes is known as software
evolution [22]. Nowadays, it is well-known that in aspect-oriented (AO) program,
modularity has improved for the price of hampered software evolution [23,29].
This can be attributed to the absence of the syntactical dependence of the BC
to the AC, making the interactions between the two parts rather implicit [6,29].

In such a program, introducing changes in one part of the program can change
the semantics of the other part of the program, which can result in a program
failure. For example, when a method in the BC is renamed, pointcuts may incor-
rectly capture or miss capturing JPs that are related to the renamed method.
This problem is known as the fragile pointcut problem [19]. Changes in the AC
can also change program behavior in an undesired way. Consider an example
of moving advice from one aspect to another; this can introduce an unwanted
change in the order of advice execution at places where multiple pieces of advice
apply to the same JP.

To alleviate software evolution tasks such as change impact analysis [36],
regression testing [33] or dynamic software updating [12], researchers proposed
approaches for finding changes between two versions of an AO program. Most
of these approaches [13,15,16,26,33] focus on finding changes in interactions
between the BC and the AC. Others [10,36] also study changes in these interac-
tions, but give them less attention as they focus on finding changes in general for
AO programs [10] or finding all program parts that are affected by changes and
linking failed regression tests with responsible changes [36]. What is common to
all of these approaches is that they work as an extension or complement to tech-
niques for finding changes between object-oriented programs. This is because
existing techniques for object-oriented programs still work for finding changes
between the BC of two versions of AO programs.

For two versions of a program, original and modified, finding changes between
them means the identification of differences and correspondences between their
source code files [2]. This activity assumes classifying program entities from two
program versions as deleted, added, and matched (modified or unchanged). This
is also the lowest level of describing changes between two program versions. Using
these results, the found changes can be described in different ways such as small
or compound changes [7].

Describing or presenting found changes is important because of their use
in software evolution tasks. For example, if changes found between two AO
program versions are used for selecting regression tests to rerun such as in [33],
then it is enough to present found changes in terms of added or deleted control-

Finding and Use of Source Code Changes for Aspect-Oriented Software 471

flow graph1 (CFG) edges. On the other hand, if the found changes are used to
facilitate program understanding so that a developer can fix a bug, then the
graphical user interface (GUI) would be more convenient. An example of such
GUI is a feature of EGit2 for previewing the result of the comparison of files
within the Eclipse IDE.

This paper is an extension of our previous work [13] for finding changes in
advice applications between AO programs. In this paper, we overview that work.
Additionally, we introduce illustrations of our technique for finding changes in
advice applications thus providing more details of how the technique works. We
also review the state-of-the-art approaches for finding and use of changes between
two AO software versions and compare our technique to these approaches. We
discuss the potential uses of our approach. For that reason, we extended the tool
AjDiff, which we presented in our previous work [13], with a GUI component
for presenting the found changes between AO programs at the source code level.
The contribution of this paper are as follows:

– Comparison of the state-of-the-art approaches, including the work from [13],
for finding changes between AO programs accross several criteria.

– Comparison of the actual usage and the perspective usage of state-of-the-art
approaches, including the work from [13], for finding changes between AO
programs. We also review the way in which these approaches present found
changes.

– For our technique from [13], descriptive illustrations of how it works on an
example. We also provide more details about the tool AjDiff proposed in [13]
where the most important part refers to the graph model for storing methods
and pieces of advice in an AO program.

– The GUI design, for the presentation of found changes between AO programs,
that we implemented as an extension of AjDiff. This includes the discussion
of the perspective usage of our approach.

– The qualitative analysis of the results of AjDiff on pairs of versions of Telecom
and Tracing AO program examples from AspectJ example suite.

The rest of this paper is structured as follows. Section 2 describes a motivat-
ing example and short background knowledge. Section 3 brings out a compari-
son of the state-of-the-art approaches from the perspective of finding and use of
changes. Section 4 gives an overview of our previous work, provide more details
and illustrations of our approach and the AjDiff tool. In Sect. 5, we discuss the
results of the evaluation of AjDiff including the details of the qualitative anal-
ysis. We present the design of the GUI component of AjDiff and its potential
applications in Sect. 6. Section 7 gives conclusions and outlines the directions
for future work.

1 The CFG of a method m CFG = (N, E, s, e) is a directed graph that represents all
possible paths traversed though the method [1]. Nodes (set N) represent statements,
and edges (set E) represent flow of control between statements. There are single entry
node s and a single exit node e.

2 https://www.eclipse.org/egit/.

https://www.eclipse.org/egit/

472 M. Katic

2 Background and Motivating Example

In our previouse research [13], we presented an example that demonstrates how
a change in AO program can negatively affect the application of pieces of advice
at JPs. Here, we present that same example, but slightly modified in order to
make the change more close to the real-world scenario. In particular, in our
previous work we only assumed that the undesired change can happen during
the refactoring pocess, but in this work we demonstrate the process of refactoring
that includes moving advice from one aspect to another. We show how this can
introduce an unwanted change in the order of advice execution at places where
multiple pieces of advice apply to the same JP. Also, we introduce a picture that
improves the clarity of our presentation.

Since the model of applying multiple pieces of advice at the same JP is crutial
for understanding of the presented example, we shortly overview that model as
in our previous research. The order of advice execution with respect to the JP is
derived based on the advice type and precedence rules. Just as its name states,
the type of advice suggests its execution order with respect to a JP: before, after,
or around (surrounding) JP.

For pieces of advice from the same aspect, precedence rules are automati-
cally derived from their position within the aspect. The general rule is that for
two pieces of advice, advice that comes prior to another advice applies prior
to another advice unless at least one is after advice in which case the advice
that comes first has the lower precedence [33]. For pieces of advice from dif-
ferent aspects, the precedence rules must be explicitly defined (using declare
precedence statement). The explicit definition is particularly important because
for different versions of a compiler used, different precedence order among the
different aspects may be derived if the order is not explicitly defined [20].

If the around advice has pecedence over some other advice, then the around
advice affects its application at JPs where these two pieces of advice apply. This
control is achieved with the use of the call to proceed within the body of the
around advice. In particular, if it is desired behaviour to skip the execution
of the advised JP and any lower-precedence advice (with respect to the around
advice in question), proceed is omitted from the body of the around advice, and
vice versa. If desired behaviour is that the advised JP is executed, then proceed
must be invoked [20]. For the JP and for advice whose execution depends on the
around advice, we say that they are nested within the around advice.

Our Telecom example, which represents a simple demonstration of a tele-
phone system, includes an instance of a JP, with few pieces of advice whose
order of execution is important for correct program behaviour. Originally, it was
taken from the AspectJ example suite. We extended it with additional features
and pieces of advice in order to account for the importance of inter-advice prece-
dence. To simplify the presentation, we present only the most relevant excerpt
of the AC (Fig. 1).

We did not introduce any changes between two versions on the BC. For the
two main entities that interact with the program, a caller and a receiver, the
features of our interest that we added to the Telecom’s BC are: the caller can

Finding and Use of Source Code Changes for Aspect-Oriented Software 473

Fig. 1. AC for the original version (a) [13], and the modified version.

make a request for a call such that the call is established only if the receiver
accepts to pay for it - this is named conditional call; for the conditional call,
the receiver can accept or reject the call. The caller and receiver can communi-
cate only if a connection between them is established. This is achieved via the
invocation of the method establish from the class Connection in the BC. For
conditional calls, the connection is also called conditional because it must not
be established unless the receiver accepts to pay for the call.

Part (a) of Fig. 1 shows the original version of the AC with two pieces of
advice that apply to the call JPs establish. The around advice checks whether
a conditional connection can be established. Depending on the evaluation of the
conditional call and connection, via proceed, it controls whether call JPs of
establish will execute. It also controls the execution of the lower-precedence
after advice. This after advice needs to be executed only if the connection
has been established. The execution order for two pieces of advice is inferred
from their position within the aspect Aspect. Part (a) of Fig. 2 illustrates the
resulting execution order for two pieces of advice and the corresponding JP.

modified version

join-point

around
(checking conn)

end around

a er
(ming)

a er
(recording)

original version

join-point

around
(checking conn)

end around

a er
(ming)

If the join-point
is not executed,
two a er pieces
of advice will be
executed.If the join-point

is not
executed, a er
will not be
executed.

Fig. 2. The execution order for pieces of advice at the JP establish.

We refactored [9] the original AC as the aspect Aspect contains two pieces
of advice with different purposes. This is the main difference with respect to our

474 M. Katic

original example presented in our previous work [13]. We created two aspects
with the aim that each contains pieces of advice of similar purpose. In addition,
we added a new aspect and new advice for recording of calls. Part (b) of Fig.
1 shows the resulting three aspects in the modified version: ControllingConn,
Timing, and Recording. Pieces of advice from those three aspects all apply to
call JPs establish.

For the correct behaviour of the modified program, the precedence order of
the around advice and the timing after advice should be the same as in the
original version. Additionally, the after advice for the recording of calls needs
to be executed only if the connection has been established. This means that the
around advice should also have precedence over the after advice for recording.

As the three pieces of advice are placed in different aspects in the modified
AC, we need to explicitly define the precedence among the aspects. This is
only needed when the execution order for these pieces of advice at the call JP
establish is important for program behaviour, which is the case in our example.

To demonstrate a faulty change, we assume that a developer has forgotten to
define inter-aspect precedence. Part (b) of Fig. 2 presents the undesired execution
order, which might be determined by a compiler, for the three pieces of advice
with respect to the JP establish. We can see that the two pieces of after
advice are not nested within the around advice, which is unexpected. Issues
related to precedence between multiple pieces of advice referring to the same JP
have been already recognized in the literature [27].

Because of this faulty change, when a caller makes a call that needs to be
paid by a receiver and the receiver rejects such a call, the connection will not
be established but the pieces of advice for timing and recording will be exe-
cuted. This failure affects all the places in the source code where the method
establish is called. In this paper we discuss how our approach detects such
changes in advice applications. We also discuss the state-of-the-art approaches
for the detection of such changes.

3 Changes of Aspect-Oriented Software

Change of an AO program can include source code addition, deletion or modifica-
tion in AC, BC or both AC and BC. In general, these changes can be classified as
the addition, deletion or modification of a method, class, interface, field, aspect,
pointcut or advice. Pointcut and advice changes affect the BC via changes in
advice applications at JPs. As already mentioned a change in the BC can silently
change the pointcut semantics and thus affect the application of pieces of advice
in an undesired way.

The existing proposals for finding changes between object-oriented programs
such as [2,8,11] do not account for interactions between the BC and the AC.
Therefore, equivalent approaches for AO programs focus on those interactions
by extending or complementing proposals for object-oriented programs. In this
section, we review these approaches from the two perspectives: (1) the finding
or identifying changes and (2) the use or application of found changes.

Finding and Use of Source Code Changes for Aspect-Oriented Software 475

Table 1. Approaches to finding changes for AO programs.

Problem,

citation, year

Granularity Program

representation

Approach What it finds

Pointcut

fragility [19,26],

2004/5

Coarse-grained

changes:

method-level

Directed acyclic

graph for

syntactic

analysis and

pointcut

matching info

from AspectJ

compiler

Pointcut delta

calculation for

matched JPs

heuristic for JP

mapping based on

the relevant

program elements

Added and

deleted pieces of

advice for

matched JPs and

the reason (AC

or BC change)

for that change

Unsuitability of

regression-test-

selection

technique from

[11] for AspectJ

programs; [33],

2007

Fine-grained

changes:

statement level

CFG

representation

that accounts for

BC-AC

interactions,

extends the

representation

from [11]

Comparison of two

CFGs that accounts

for BC-AC

interactions;

extends the

comparison from

[11]

Changes in

terms of

different CFG

edges for

changes in BC,

AC and/or

advice

applications

Manual effort in

estimating the

side-effects of

changes; [36,37],

2008

Coarse-grained

changes: method

level

AST static

AspectJ call

graph

Dynamic

programming

algorithm for

comparing two

ASTs; [35]

dependence rules

[38] to relate

changes

Atomic changes

[25] for BC and

AC; advice

application

changes at JPs

as Advice

Invocation

Change

Manual effort for

general program

differencing for

AspectJ

programs; [10],

2009

Fine-grained

changes:

statement level

CFG

representation

Algorithm for

comparing two

CFGs from [2]; a

new technique for

comparing

signatures at

method-level

Added, deleted

and matched

CFG nodes; BC

and AC atomic

changes as

defined by [25]

and [36]

Pointcut

fragility;

detecting JPs

where pieces of

advice need to

apply [15], 2012

Fine-grained

changes:

statement level

AST; concern

graph for

structural

program

representation

Heuristic for finding

similarities among

program elements

common to JPs per

pointcut

Recommends

JPs (among

added or

modified BC) for

inclusion within

a scope of a

pointcut

Pointcut

fragility;

detecting silently

broken pointcuts

after BC change

[16], 2017

Fine-grained

changes:

statement level

AST

representation

Probabilistic

approach; finding

patterns of

similarities for JPs

per pointcuts; uses

diff algoritm [8]

Recommends

pointcuts that

potentially need

to be changed

because of added

JPs in BC

Manual effort for

general AO

program

differencing [13],

2019

Fine-grained

changes:

statement level

A new CFG

representation

that accounts for

BC-AC

interactions

Artificial hammocks

matching; extends

matching in [2]

BC, AC changes;

added, deleted,

modified pieces

of advice for

matched JPs

3.1 Finding Changes for Aspect-Oriented Programs

Table 1 presents the seven state-of-the-art approaches for finding changes
between AO programs. For each approach, we briefly describe the problem that
it tackles, the granularity of the approach, the program representation that it is
based on, the details of the approach that works on the program representation,
and what it finds.

476 M. Katic

Table 2. Use of identified changes for AO programs.

Citation

year

Change preview Actual usage Potential usage

[19,26],

2004/5

PCDiff, an Eclipse IDE

plug-in, shows changes in

code using Eclipse marker

mechanism; in GUI view,

lists changes per advice and

gives overview of changes

Providing insights in

changes between versions

Understanding changes

[28]; help with fixing bugs

or detecting silently broken

pointcuts between two

versions; alleviate program

evolution

[33], 2007 No GUI provided For defining a set of test

cases to rerun in a

regression-test-selection

technique

Static analyses such as

change impact analysis [36],

program slicing [32];

program understanding [28]

[36,37],

2008

Celadon, an Eclipse IDE

plug-in, shows atomic

changes, change impacted

program parts, affected

tests with responsible

changes; GUI preview not

found publicly

Automation of the change

impact analysis for AspectJ

programs

Help in detecting faulty

code as it detects changes

responsible for faulty tests;

help in understanding of

the impact of changes

[10], 2009 AJDiffer, Java app; GUI

displays matched CFGs;

preview not available

publicly; API for other

program analysis

Providing insights in

changes between versions

Understanding changes

[28]; help with fixing bugs;

in analysis like CIA [36],

regression testing [33]

[15], 2012 Rejuvenate Pointcut,

Eclipse IDE plug-in; view,

for single advice, lists

suggested JPs for inclusion

in a pointcut (manually)

For two versions, after BC

changes, fix to AC by

changing pointcut that

need to include

recommended JPs

Help to avoid mistakes

while writing code (does

not run in background)

help with fixing bugs

[16], 2017 Fraglight, extension of the

Mylyn Eclipse IDE plug-in,

adds or removes pieces of

advice for likely broken

pointcuts to the Mylyn

context and shows them in

the Package Explorer

Simulation of adding JPs

between two program

versions and investigation

of the accuracy of the

pointcut breakage

For BC developers while

writing fine-grained BC

changes, shows broken

pointcuts, hides unbroken

pointcuts from the view;

runs in backgorund

[13], 2019 No GUI provided; API for

other program analyses

Providing insights in

changes between versions

Understanding changes

between two versions [28];

help with fixing bugs; in

analysis like CIA [36],

regression testing [33]

From Table 1, we can see that finding changes for AO software has been
explored in several contexts: fragile pointcuts [15,16,19,26], regression testing
[33], change impact analysis [36,37], and general program differencing [10,13].

Our approach [13], which we describe in this paper, is most similar to Gorg
and Zhao’s approach [10] as they both work at the statement level and extend
the same object-oriented differencing algorithm. However, Gorg and Zhao do
not relate changes in advice applications to their corresponding JPs, which is
covered with our approach. Furthermore, our approach is similar to Koppen
and Storzer’s approach [19] as they both look for the differences between advice
applications for matched JPs. But, Koppen and Storzer do not match program
statements, and only match JPs based on the program elements (e.g. methods)
that contain or reference JPs. The two approaches proposed in [15,16] can poten-
tially complement ours as they can detect the semantic changes of pointcuts that

Finding and Use of Source Code Changes for Aspect-Oriented Software 477

are not reflected in the differences between advice applications at JPs and thus
cannot be detected with our approach. For example, advice was expected to be
deleted, but still applies or for added JPs advice does not apply, but should
apply. Other two approaches work in the context of the another software engi-
neering task, change impact analysis and regression testing and do not focus on
the classification of differences in pieces of advice per JPs.

3.2 Use of Changes for Aspect-Oriented Programs

Table 2 presents the same seven state-of-the-art approaches as Table 1, but it
presents them from the point of view of using these approaches in software engi-
neering tasks. For each approach, we briefly describe the way it previews the
change, the actual usage of the approach, and the potential usage. The actual
usage refers to the approach evaluation that the authors described in the corre-
sponding paper(s). The potential usage refers to the potential approach appli-
cation as the authors described. In this case, the authors did not do research on
that application.

Unlike most of the approaches given in Table 2, our approach from [13] does
not provide the GUI for presenting identified changes. Similarly, the approach
from [33] does not provide the GUI as its main purpose is to develop a new
regression test selection technique rather then present identified changes.

It is worth mentioning that all these proposals work with AspectJ. The
AspectJ Development Tools3 support for the development of AO programs pro-
vides a feature that can mark the places in the code where pieces of advice apply.
However, it only works on a single program version. Also, it is interesting to note
that there are many potential usages for each approach, which opens possibilities
for research on the application of the proposed techniques.

4 Approach to Finding Changes Between AO Programs

In our previous works [12–14], we proposed a differencing algorithm for AO
programs (CalcDiffAO) as an extension of the differencing algorithm for OO
programs (CalcDiff). In that work, we also proposed a CFG representation of
a method in an AO program. That is aspect-oriented control-flow graph (AO-
CFG). CalcDiffAO bases the comparison of methods on their AO-CFGs. In
addition, we introduced a notion of an artificial hammock as a special type of a
subgraph of an AO-CFG, which is used to mark the aspect part of the AO-CFG.
In this way, artificial hammocks facilitate the comparison of advice applications
at JPs that is done by CalcDiffAO. In this section, we briefly overview our pre-
vious work, provide more details and illustrations of our approach, and overview
the high level architecture and process flow of our tool AjDiff for finding changes
between two AO programs.

3 https://www.eclipse.org/ajdt/.

https://www.eclipse.org/ajdt/

478 M. Katic

The algorithm CalcDiffAO extends CalcDiff such that it compares two AO
programs (original and modified). In further text, we refer to the original AO
program version as P, and to the modified AO program version as P’. The Algo-
rithm 1 highlights our extensions of CalcDiff. Program entities are classified
in the following way: equal or modified entities are considered as matches, those
entities that exist only in P are considered as deletions, and those entities that
exist only in P’ are considered as additions.

LEVEL 1 Aspect level Class, interface
levelsA C, I

LEVEL 2 Advice level Method level
ADV M

Node level
- adviceLEVEL 3 NA

Node level
- method N

Fig. 3. Levels of comparison with CalcDiffAO.

In both algorithms the comparison is done in a top-down manner that is at
the three levels (Fig. 3): level 1 - comparison of classes, interfaces, and, only in
CalcDiffAO, comparison of aspects (Algorithm 1, lines 2, 3, 4); level 2 - compar-
ison of methods, and, only in CalcDiffAO, comparison of pieces of advice (Algo-
rithm 1, lines 5, 6, 12, 13); level 3 - comparison of statements for matched pairs of
methods, and, only in CalcDiffAO, comparison of statements for matched pairs
of pieces of advice and comparison of advice applications for matched pairs of
JPs from matched methods (Algorithm 1, lines 7–11, 14–18).

At the level 1, the comparison is done for fully-qualified names of classes,
interfaces and aspects. This name consists of package name followed by a class,
interface or aspect name. At the level 2, fully-qualified method names are com-
pared. This name consists of a fully-qualified class, interface or aspect name
followed by a method signature. Pieces of advice are compared by using advice
identifiers (aspect name followed by the advice declaration and pointcut speci-
fication) at the level 2.

The sets C, I, A, M , and ADV are given in the output of CalcDiffAO.
The output also contains the set N that is populated based on the result of
the comparison at the level 3 (Algorithm 1, line 18). Just like in CalcDiff, N
consists of the matched pairs of CFG nodes that correspond to statements. Each
node pair is accompanied with the change status (modified or unchanged). In
addition, CalcDiffAO extends each element of N with a set of classified pieces
of advice that are relevant to the element. Since we do not consider that advice
applies to another advice, the set NA consists of pairs of nodes along with the
variable that describes its change status (modified or unchanged);

When CalcDiffAO matches pieces of advice at matched JPs, we associate
the information about a possible change in bodies of matched pieces of advice

Finding and Use of Source Code Changes for Aspect-Oriented Software 479

Algorithm 1. Differencing algorithm for AO programs - extension from [2].
1: procedure CalcDiffAO(P, P ′)
2: Compare classes in P and P ′; Add matched class pairs to C

3: Compare interfaces in P and P ′; Add matched interface pairs to I

4: Compare aspects in P and P ′; Add matched aspect pairs to A
5: for each matched pair (a, a′) in A do

6: Compare pieces of advice; Add matched advice pairs to ADV
7: for each matched pair (adv, adv′) in ADV do

8: create CFGs G and G′ for advice adv and advice adv′
9: identify, collapse hammmocks in G until max hammock node na left

10: identify, collapse hammocks in G′ until max hammock node na′ left
11: NA ← NA ∪ HmMatch(na, na′, LH, S)

12: for each matched pair (c, c′) in C, I, or A do
13: Compare methods; Add matched methods pairs to M

14: for each matched pair (m,m′) in M do
15: create AO-CFGs AOCFG and AOCFG′ for methods m and m′
16: identify, collapse hammocks in AOCFG until max hammock node n left

17: identify, collapse hammocks in AOCFG′ until max hammock node n′ left
18: N ← N ∪ ExtendedHmMatch(n, n′, LH, S,NA)

with a JP location where they apply. This provides additional view of AC change
from the relevant BC location. For the information about the result of the com-
parison between advice bodies to be available during the comparison of JPs, the
comparison of matched pieces of advice at the level 3 must be done before the
comparison of JPs. For that reason, we compare all matched pieces of advice
at the level 3 before starting the comparison of matched methods at that level
(Algorithm 1, lines 7–11, 14–18). This is convenient because we assume that
advice does not apply to another advice. Another approach is to apply the com-
parison call − by − need for the matched pieces of advice, which is especially
relevant when advice applies to another advice. With this comparison advice
pairs would be compared as they appear in the application of method (advice)
bodies during the comparison of method (advice) bodies.

In the following text, we overview how we create AO-CFGs, the notion of
hammock, and how the procedures HmMatch and ExtendedHmMatch work.

4.1 Aspect-Oriented Control-Flow Graph

CalcDiff already works on a CFG representation of a method in an OO program.
The main difference between the represenation of the method in the OO program
and its representation in an AO program is in the representation of interactions
between the BC and the AC as these interactions exist only in the AO program.
These interactions are implicit at the source code level, and they are established
via the compiler viewing mechanism. In their work, Xu et al. [33] experimentaly
showed that when the compiler generates bytecode, it generates additional code
that is used to establish BC-AC interactions, but that negatively affects the
program analysis. For that reason, the authors suggested that the control-flow

480 M. Katic

analysis of AO programs might be better performed on the source-code-based
CFGs rather than the bytecode-based CFGs. Such CFGs are then compiler-
independent.

In our previous work [13], we followed their approach and constructed our
representation of an AO program by proposing AO-CFG as an extension of the
traditional CFG representation in which we accounted for dynamic binding from
[2]. In order to improve the understanding of that work, in this work, we bring
the illustrations that represent the construction of the AO-CFG (parts (a) and
(b) of Fig. 4). AO-CFG is the intra-procedural representation of a method.

In Fig. 4 (a), we can see the CFG representation of a method with a call
JP establish within its body. The call JP refers to the invocation of a method
establish from the abstract class Connection in the BC of the original version
of Telecom from Sect. 2. Because of the dynamic binding, which is modelled as in
[2], there are four nodes for the call JP (yellow nodes). This is because there are
two classes Local and LongDistance that inherit from the class Connection.

For a JP, which is represented with one or more nodes in a CFG, and pieces
of advice that apply to it (but are not represented with CFG), an AO-CFG is
formed by creating nodes for these pieces of advice (advice nodes) and inserting
them into the CFG at appropriate places around nodes for the JP. How the
nodes of the CFG correspond to the JPs depends on a type of the JP. The AO-
CFG accounts for the execution and call JPs. The execution JP encompasses the
entire body of a method. Thus, all nodes of the CFG for the method correspond
to the execution JP. The call JP refers to the invocation of a method as discussed
above.

Figure 4 (b) illustrates the AO-CFG for a method from the original version
of the BC of our motivating example. The method contains a call JP establish
where two pieces of advice apply. As we discussed in Sect. 2, around and after
pieces of advice apply to this JP. We can see the two aspect-related sub-graphs
that AO-CFG defines: the aspect graph (AG) and the around graph (ARNG).
The AG, with its entry node 2 and its exit node 10, marks the aspect-part of the
CFG for the JP. The nodes 3 and 9 also denote the start and the exit node of
the ARNG respectively, and thus mark the scope of the execution of the around
advice. In this way, we can determine from the graph whether the around advice
controls the execution of another advice. The after advice is represented with
a single node 8 and its execution is controled by the around advice, as discussed
in Sect. 2, which we can detect from the AO-CFG.

We can notice that the order of the execution for multiple pieces of advice
that apply to the same JP is reflected in the control-flow of the AG. This order is
derived from the advice nesting tree proposed in [33]. In the evaluation section we
discuss some cases where our approach identifies changes in the advice execution
order.

AO-CFG Limitations. The limitation of the AO-CFG is that it does not
account for the exception handling constructs in a program. However, if the
control-flow within a method is represented as if no exceptions are thrown or

Finding and Use of Source Code Changes for Aspect-Oriented Software 481

Fig. 4. AO-CFG and artificial hammocks.

catched, then the AO-CFG can be used for programs with exception handling
constructs as well. The representation for exception handling proposed in [2]
could be extended. However, this needs to be investigated additionally. For exam-
ple, it needs to be investigated how to represent exception handler execution JPs
(that represent the handler block of the exception type).

4.2 Comparison of Method Bodies

Since we assume that advice does not apply to another advice, bodies of pieces
of advice are compared by using HmMatch procedure which was proposed as
a part of CalcDiff. HmMatch is the algorithm which is the extension and the
modification of the Laski and Szermer’s algorithm [21] for finding isomorphism
between CFGs of procedural programs.

For the comparison of method bodies, we extended HmMatch so that it com-
pares pieces of advice for matched JPs. Here, we discuss the main details of the
extended algorithm HmMatchAO from the perspective of the comparison of pieces
of advice for a pair of matched call JPs establish from our motivating example
in Sect. 2.

The main idea for the matching of nodes with HmMatch between two CFGs is
the use of hammocks. A hammock H = (N,E, n, e) for a CFG G is its sub-graph
with the start node n in H and the exit node e not in H, such that all edges from
(G/H) to H go to n and all edges from H to (G/H) got to e [5]. HmMatch bases
the comparison on the identification of minimal hammocks. Minimal hammock
is a sub-graph of CFG with the minimum number of nodes for its start and exit
nodes.

To facilitate the comparison of advice applications for matched JPs with
HmMatchAO, in [13], we defined the three types of artificial hammocks that satisfy

482 M. Katic

the definition of a hammock, but are not necessarily minimal hammocks. These
are the aspect hammock (AH), the join-point hammock (JPH), and the around
hammock (ARNH). In part (b) of Fig. 4, the three hammocks are marked as
follows: (1) AH with the start node 2 and the exit node 10; (2) ARNH with the
start node 3 and the exit node 9; (3) JPH with the start node 4 and the exit
node 7.

Parts (c), (d), (e) and (f) of Fig. 4 illustrate the process of creating these ham-
mocks. Like with CalcDiff, the main idea is to identify all minimal and artificial
hammocks within the AO-CFG and replace them with their corresponding ham-
mock node that is then appropriately connected with the rest of the AO-CFG.
In our approach, we start from the outside of the AO-CFG and first identify the
entire AO-CFG as a hammock node (part (c)). Recursively, we identify all the
innner minimal and artificial hammocks and appropriately connect their corre-
sponding nodes. We can see the results as follows: in part (c), we can see the
AH node (node 2’); in part (d), we can see the ARNH node (node 3’); in part
(f), we can see the JPH node within the ARNH.

The comparison of two AO-CFGs is done with ExtendedHmMatch in a sim-
ilar way as the comparison of CFGs with HmMatch. Two hammock nodes are
recursively expanded and labels of the corresponding nodes of two graphs are
compared. A pairwise graph traversal is done in a depth-first-search manner.
The algorithm also accepts the values of the two parameters LH and S that
can be used to improve the accuracy of the matching. LH is used to specify the
depth in the graph until which a particular node is searched for. S is used to
specify the desired similarity between two hammocks. For the comparison of two
nodes out of which at least one is AH, the algorithm HmMatchAO is used. With
two AHs, HmMatchAO does a pairwise comparison of advice nodes with respect to
their order of application to the corresponding JP. It also removes nodes that are
irrelevant for the comparison (entry and exit nodes of the AH and the exit node
of the ARNH) but were useful for the construction of the artificial hammocks.
Finally, HmMatchAO returns a pair of JPs and the sets with classified advice nodes
(added, deleted, modified or unnchanged).

aentry

aexit

aentry

a er...

aexit

a er...

ARNH
ARNH

around

JPH

arn exit..

a er...

around...

arn..exit..

a er...

a er...

JPH

AH AH

P P’
P P’

Fig. 5. Comparison of advice applications for a pair of call JPs establish, [13].

Figure 5 illustrates how HmMatchAO compares and classifies advice nodes for
a pair of call JPs establish. In the first step, two AHs are expanded and in the

Finding and Use of Source Code Changes for Aspect-Oriented Software 483

second steps two ARNHs are expanded. When the irrelevant nodes are removed
from the graph, the remaining nodes are appropriately connected so that the
CFG structure is preserved. We illustrate the excerts from two graphs. In Sect.
2, we discussed that all the these pieces of advice are placed in different aspects
in P and P ′. For that reason, the comparison classifies the around and after
pieces of advice from P as deleted, and the around and the two after pieces
of advice as added. If we did not refactored the version P , and just placed two
after pieces of advice into the same aspect in P ′ as in P , then the algorithm
would classify two around pieces of advice as unchanged, after advice from P
as deleted, and two after pieces of advice from P as added. In the final step,
the algorithm would compare added and deleted pieces of advice and classify the
matched pair as modified. In this way, it is detected a change in the control of the
execution of the around advice over the after advice for timing (as discussed
in Sect. 2).

4.3 Implementation Details

We implemented our approach in a tool called AjDiff. In previous work, we
introduced the main components of AjDiff: compilation, graph storage and data
access layer, and change identification. Here, we illustrate the high level archi-
tecture and the process flow of AjDiff. In addition, we introduce the graphical
user interface component and give details of how we persisted graphs [12].

Compila on (abc & AJANA)

version
source

Level 3 Comparison
Minimal/Ar ficial

Hammock Iden fica on

Execu ng HmMatch and
ExtendedHmMatch

algorithms

Genera on of
AO-CFGs

Preparing interface GlobalAspectInfo
(info about Jimple code and related

aspects)

Jimple
representa on
with aspect info

Level 1
comparison

Level 2
comparison

AO-CFGs
in Neo4J

Graph Construc on
and Persistence

version 1
source

version 2
source

Reading
graphs
from

database

GUI
 diff

results

Preparing interface AspectInfo – info
about rela onships between advice

and statements

Inser on of AO-CFGs to
database

Change Iden fica on

Fig. 6. High level overview and process flow of AjDiff.

AjDiff is run separately for graph construction and persistence and for the
change identification as illustrated in Fig. 6. The compilation is done with
AspectBench (abc) extensible compiler framework [3], which generates Jimple
intermediate code representation [30] along with details for aspect weaving. To

484 M. Katic

determine the advice order of application we used the implementation of the
advice nesting tree [33] from AJANA framework [34]. In order to eliminate the
overhead with the compilation, we stored AO-CFGs in the graph database cre-
ated with Neo4J4 (Fig. 7). Graph nodes are Jimple statements, and they are
connected as follows.

– There is a root node for each AO program and a directed edge between the
root and each program version.

– There is a directed edge between a node for each program version and a node
for each class, aspect or interface that version contains.

– There is a directed edge between a node for a class, aspect or interface and a
node for each method that it contains.

– There is a directed edge between a node for an aspect and a node for each
advice that it contains.

– There is a directed edge between a node for a method and an entry node of
its AO-CFG.

– There is a directed edge between a node for advice and an entry node of its
CFG.

– Nodes for methods from interfaces are without outgoing edges.

The GUI was implemented using JFC/Swing API. The mapping between
Jimple and source code statements is approximate. We used the information
about source code line numbers from the object SourceLnNamePosTag from the
Soot framework [31]. When the information about a line number is not available
for a particular Jimple statement, we search for the closest Jimple statement
with the available line number.

root
p1

. . .v1 vn

cl1 . . .cln. . . asp1 aspn in 1 in n. . .

. . .

. . .

m1 mn. . .

.

. . .

. . .

m1 mn. . .

. . .

adv1 advn. . .

. . .
. . .
.

AO-CFG
m1

entry

m1
exit

. . .

AO-CFG
mn

entry

mn
exit

.

AO-CFG CFG

advn
entry

advn
exit

. . .

CFG
adv1
entry

adv1
exit

AO-CFG

. . .

. . .

. . .

root
pn
. . .
. . .

. . .

. . .

. . .

.

.

. . .

Fig. 7. Structure of the graph database with AO-CFGs.

4 https://neo4j.com.

https://neo4j.com

Finding and Use of Source Code Changes for Aspect-Oriented Software 485

5 Evaluation of AjDiff

In our previous work [13], we run ajdiff on three pairs of versions of Telecom and
three pairs of versions of Tracing programs from Aspectj example suite. More
details about the setting of the run are available in that work. Here, we summa-
rize those results and also introduce the results of additional experimentation
with a change in a package name for a pair of versions of the Tracing program.
Also, in this work, we present the most important details of our findings of the
manual evaluation. These give better insights into the details of how our tool
works on real examples of AO programs.

5.1 Quantitative Analysis

Table 3 presents a summary of program entities as they are classified in the
four categories: added, deleted, modified and unchanged. For each of these
categories, there are four columns that denote a compared version pair: first,
second, third and fourth columns, respectively, refer to (v1, v2), (v1, v3), (v2,
v3) and a pair with a changed package name (v2, v3). The pair with the changed
package name is applicable only for the Tracing program.

The results of the comparison are shown in terms of the number of classified
program entities for each of the three levels of the comparison. The numbers
of added, deleted, and matched classes and aspects come from the result of the
level 1 comparison. Similarly, the numbers of classified methods and pieces of
advice come from the level 2 comparison, the numbers of classified call and
execution JPs come from the level 3 comparison. It is worth mentionting that
AjDiff uses the result of the comparison at the level 3 to inform the comparison
at the level 2. Then comparison at the level 2 is combined with the result of
the comparison at the level 3 to inform the comparison at the level 2. For that
reason, a pair of classes or aspects with only one change within bodies of a pair of
matched methods is considered as matched-modified pair. In this case, because
of a change within method bodies (level 3), two pieces of methods are classified as
matched-modified (level 2). Finally, two classes or aspects with those matched-
modified methods are also classified as matched-modified (level 1) regardless of
other possible changes between them.

In Tracing subject versions, only execution JPs exists, and in Telecom subject
versions, only call JPs exist. As described in [13], we defined four categories for
enumerating matched JP pairs depending on the outcome of the classification of
the advice applications at those pairs: (1) pairs with only added advice, (2) pairs
with only deleted advice, (3) pairs with at least one of deleted advice, or one
of added advice, or a pair of matched-modified pieces of advice, and (4) pairs
with only matched-unchanged pieces of advice. For (3) and (4) we count only
matched JP types that is two call JPs or two execution JPs. We do not count
JPs from deleted or added methods as these methods are not submitted to the
comparisons at the node level.

For compared versions of Tracing, we can see that AjDiff identified 19 or
16 matched execution JPs with at least one pair of matched-modified pieces of

486 M. Katic

advice. The total number of pieces of advice for all versions of Tracing is 4, which
suggests the usefulness of AjDiff as for large programs it would not be trivial to
identify such changes manually.

Table 3. Results of AjDiff for Tracing and Telecom [13] and for (v2,v3) of Telecom.

Added Deleted Modified Unchanged

TRACING Call – – – – – – – – – – – – – – – –

Execution – – – – – 3 3 3 19 16 16 16 – – – –

Class – – – – 1 1 – – 3 3 3 3 1 1 1 1

Aspect 2 2 2 – 1 1 2 – – – – 2 – – – –

Advice 4 4 4 4 4 4 4 4 – – – – – – – –

Method 11 11 11 2 11 11 11 2 19 19 19 19 2 2 2 11

TELECOM Call 2 2 – NA – – – NA – – 1 NA – – 1 NA

Execution – – – NA – – – NA – – – NA – – – NA

Class 2 2 1 NA 1 1 1 NA 5 2 5 NA 1 4 2 NA

Aspect 2 2 1 NA – – 1 NA – – 1 NA – – – NA

Advice 3 4 2 NA – – 1 NA – – – NA – – 2 NA

Method 26 17 8 NA 3 3 17 NA 5 5 6 NA 24 24 32 NA

5.2 Qualitative Analysis

In this section, we discuss several examples of where AjDiff detected changes as
expected and vice versa. We draw examples from Tracing and Telecom subject
programs as well as from our motivating Telecom example.

The main change between versions v1 and v2 of the Tracing program refers
to the refactoring of the class Trace such that it becomes an abstract aspect
in v2. Furthermore, four pieces of advice, which are placed in the aspect
TraceMyClasses in v1, are moved to Trace in v2. Also, TraceMyClasses is
changed in v2 so that it inherits from Trace. When we run AjDiff on (v1, v2), it
classifies the aspect TraceMyClasses from v1 as deleted, and aspects from v2,
TraceMyClasses and Trace, as added. This is expected behaviour because AjD-
iff compares entire strings of fully-qualified names of aspects at the level 1. This
can be improved by using approaches for finding string similarity as suggested
in [2]. As a consequence of this classification, but interestingly, AjDiff classifies
all pieces of advice from TraceMyClasses as deleted, and from Trace as added
even though these pieces of advice are the same in both aspects. It is worth not-
ing that in this case an efficient approach could be using the Gorg and Zhao’s
proposal [10] which omits class or aspect level comparisons. That approach is
suitable when there are lots of structural changes as it reduces the numbers of
added and deleted program entities.

With the original setting in the AspectJ example suite, the v2 and v3 of
Tracing are prepared such that classes are placed in the package named tracing,
while two aspects Trace and TraceMyClasses are in the tracing.version2
package in v2, and in the package tracing.verison3 in v3. Table 3 shows the
results of AjDiff when it is run on the original locations of aspects. Because

Finding and Use of Source Code Changes for Aspect-Oriented Software 487

of the difference in package names, and because AjDiff compares full strings
of fully-qualified names at the level 1, the two aspects TraceMyClasses and
Trace are classified as deleted in v1 and added in v2. In order to determine
how AjDiff would work if these package names were the same, we renamed
tracing.version3 into tracing.version2. Table 3 also shows the result of
the run of AjDiff for these two versions. As expected, AjDiff matched the two
pairs of aspects TraceMyClasses and Trace and classified them as modified
pairs. However, the pieces of advice from these two aspects are still classified as
deleted in v1 and added in v3 (that is the reason why these pairs of aspects are
classified as modified). This is because of the change in pointcut declarations
in v3 for all 4 pieces of advice. It is interesting to notice that no changes in
the applications of advice were identified, which was expected as we have not
changed any pointcut declaration compared to the run with different package
names. However, even if it was the case that after renaming packages we found
matched pieces of advice, we might not necessarily expect changes in applications
of pieces of advice as advice matching at the level 1 does not implicitly mean
matching for advice applications at the level 3 of the comparison.

The impact of inter-advice precedence among pieces of advice at a matched
pair of call JPs appears for the pair (v2, v3) of Telecom. In v2, for aspects
Billing and Timing, there is declared precedence in Billing such that all pieces
of advice from Billing apply prior to pieces of advice from Timing. When we
run AjDiff on v2 and v3, we found a matched pair of call JPs within the bod-
ies of matched methods hangup from a matched pair of classes Call. In v2,
there are two pieces of advice, Billing.after and Timing.after that apply
to the invocation of a method drop, while in v3, there is only Timing.after
advice that applies the counterpart call JP drop. As expected, AjDiff classifies
Billing.after as deleted. Expected result is also that Timing.after is classi-
fied as matched-modified. However, from the user perspective, this might be bet-
ter classified as matched-unchanged pair as there is no undesired change caused
by deleting the advice Billing.after. Moreover, the deletion of Billing.after
has already been reported. These changes in the order of the execution for pieces
of advice are reported because AjDiff considers their order of the execution with
respect to the JP to which they apply. Our tool can detect changes, but cannot
detect whether these changes are desired or not.

In addition, the run of AjDiff on the original and modified (refactored) version
of our motivating example shows that pieces of advice from v1 are classified as
deleted (Aspects.around and Aspects.after), and pieces of advice from v2,
Recording.after, Timing.after and ControllingConn.around, are classified
as added. The main limitation for not classifying the same pieces of advice from
different aspects comes again from the fact that AjDiff compares full strings of
fully-qualified names. However, our tool is able to detect that the change exists.
Improving its precision will be part of our future work.

Some of the limitations of AjDiff refer to the way it manipulates with the
underlying technologies. For statement comparisons, AjDiff uses Jimple code
generated by the Soot framework [31]. Numbering for local variables, which is

488 M. Katic

Jimple-specific might differ between two versions of the same program. Thus,
for some statements that should be identified as the same, AjDiff would identify
as different, again, because it compares the full strings of Jimple statements.
Additionaly, there are some methods generated by the compiler that do not
map directly to source code. For default constructor that does not exist within
the class or aspect, compiler generates the init method. Also, for aspect, it
generates hasAspect and aspectOf methods. These are not relevant from the
source code view, but still they are present in the current version of AjDiff.

5.3 Threats to Validity

A threat to the external validity are small examples that we used for the evalua-
tion. These examples have been also used by other researchers to evaluate their
proposals [33,36]. A threat to the internal validity refers to errors in our imple-
mentation and possible oversights in the manual verification. To minimize them,
we analyzed AjDiff textual and GUI outputs and performed code debugging.

6 Usage Example

One potential application of our approach is assisting a programmer during the
process of understanding fine-grained changes between two versions of a program.
Programmers need to understand code changes in order to fix bugs or to avoid
them during development and maintenance tasks [28]. Program versions could
be two different releases of a program or could be formed from different commits
of a single program.

We argue that understanding changes for an AO program implies under-
standing differences in BC-AC interactions. This is because existing research [24]
states that for understanding functionalities in the AO program programmers
must understand the BC-AC interactions which implement these functionalities.
An automated support, such as our tool AjDiff, for the classification of program
entities (as deleted, added, or matched) including pieces of advice at JPs between
two versions could facilitate the process of understanding program changes. In
this section, we describe how AjDiff presents its results.

As already discussed, for two program versions, AjDiff detects their dif-
ferences and correspondences at the three levels. Here, we discuss how AjDiff
presents these results also at the three levels. The first differencing view that
AjDiff shows is the result of differencing at the level 1. This view consists of sev-
eral parts that list deleted classes and aspects, added classes and aspects, and
matched classes and aspects. From this view, a user can access the results of the
level 2 differencing for matched classes and aspects. For succinctness, we only
show the screens of AjDiff for the results of the level 2 differencing for matched
aspects (Fig. 8) and for the results of the level 3 differencing for matched methods
(Fig. 9).

Finding and Use of Source Code Changes for Aspect-Oriented Software 489

Fig. 8. Level 2 differencing result for two versions of Telecom from Sect. 2.

Figure 8 presents deleted, added and matched methods as well as deleted,
added and matched pieces of advice for the aspect Billing which is matched
between two Telecom versions from Sect. 2.

Figure 9 presents a screen that is accessed from a screen for matched pair of
Call classes for the two Telecom versions from Sect. 2. We can see four parts
that list classified pieces of advice for a matched pair of methods. Although
AjDiff identifies changes at the statement level, it only approximately relates the
classified pieces of advice to statements by highlighting the relevant statements.
However, all the classified pieces of advice are available at the method level
which is still expected to be very useful for the investigation of changes in advice
applications between two matched methods.

In addition to applying our tool for differencing of versions, our tool could
be used as a part of other software engineering activities such as code review. In
code review, developers study code changes in order to detect mistakes. A tool
presented in [39] demonstrates a comparison view of two files as a part of the
tool developed for code review. When doing code review of AO programs, our
tool can be used for the comparison view of two files. Furthermore, we applied
our tool to derive changes for composing and applying dynamic updates for AO
software [12].

490 M. Katic

Fig. 9. Level 3 differencing result for two versions of Telecom from Sect. 2.

7 Conclusion

Finding and use of source code changes between two versions of AO software
has already been in the focus of the existing research. The most attention has
been devoted to finding changes in advice applications because BC changes can
silently affect these applications in a negative way. In this paper we have dis-
cussed the technique for finding changes in advice applications from our previous
work. Additionally, we introduced illustrations that provide more insights into
the details of how the technique works, and the GUI extensions of our tool AjDiff.
We discussed the potential usages of our approach by refering to the GUI design
of AjDiff. Furthermore, we reviewed the state-of-the-art proposals for the com-
parison of AO programs from the two points of views: the finding changes and
the use of changes. Compared to other proposals, our work is the first proposal
that gives the most precise information about changes in advice applications at
matched JPs that are matched using one of the state-of-the-art techniques for
object-oriented programs. For all of the changes in advice applications that we
detect, we cannot detect if the change has been desired or not. A developer needs
to investigate the results of our technique. Still, the result of our technique can
serve as guidance for the developer and thus reduce the amount of the man-
ual work that is needed to check changes in advice applications. Although our
analysis showed that our tool needs improvements, our results are promising.

In future, we are interested in comparing our technique with the approach
used by Gorg an Zhao [10]. It would be interesting to investigate how artificial
hammocks affect the accuracy of the comparison with respect to relating changes
in advice applications to their respective JPs. Also, we plan to improve our tool
and evaluate it on large AO programs to confirm our current findings.

Finding and Use of Source Code Changes for Aspect-Oriented Software 491

Acknowledgements. I am grateful to Professor Kresimir Fertalj who provided me
with the environment to work on this research under the project grant 036-0361983-
2022 funded by the Ministry of Science, Education, and Sport, Republic of Croatia, as
well as for valuable pieces of advice from Professor Fertalj.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., USA (2006)

2. Apiwattanapong, T., Orso, A., Harrold, M.J.: JDiff: a differencing technique and
tool for object-oriented programs. Autom. Softw. Eng. 14(1), 3–36 (2007)

3. Avgustinov, P., et al.: ABC: an extensible AspectJ compiler. In: Proceedings of the
4th International Conference on Aspect-Oriented Software Development, AOSD
2005, pp. 87–98. Association for Computing Machinery, New York (2005)

4. Coady, Y., Kiczales, G., Feeley, M., Smolyn, G.: Using AspectC to improve the
modularity of path-specific customization in operating system code. In: Proceed-
ings of the 8th European Software Engineering Conference Held Jointly with 9th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-9, pp. 88–98. Association for Computing Machinery, New York
(2001)

5. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

6. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and
obliviousness. Technical report, RIACS (2000)

7. Fluri, B., Gall, H.C.: Classifying change types for qualifying change couplings. In:
14th IEEE International Conference on Program Comprehension (ICPC 2006), pp.
35–45 (2006)

8. Fluri, B., Wursch, M., PInzger, M., Gall, H.: Change distilling: tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33(11),
725–743 (2007)

9. Fowler, M.: Refactoring: improving the design of existing code. In: Wells, D.,
Williams, L. (eds.) XP/Agile Universe 2002. LNCS, vol. 2418, p. 256. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45672-4 31

10. Görg, M.T., Zhao, J.: Identifying semantic differences in AspectJ programs. In:
Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis, ISSTA 2009, pp. 25–36. Association for Computing Machinery, New York
(2009)

11. Harrold, M.J., et al.: Regression test selection for java software. In: Proceedings
of the 16th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2001, pp. 312–326. Association for
Computing Machinery, New York (2001)

12. Katic, M.: Dynamic evolution of aspect oriented software. PhD thesis, University
of Zagreb, Croatia (2013)

13. Katic, M.: Hammock-based identification of changes in advice applications between
aspect-oriented programs. In: Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering, ENASE 2019, pp. 442–
451. SCITEPRESS - Science and Technology Publications, Lda (2019)

14. Katic, M., Fertalj, K.: Identification of differences between aspect-oriented pro-
grams. Bern, Switzerland (2013)

https://doi.org/10.1007/3-540-45672-4_31

492 M. Katic

15. Khatchadourian, R., Greenwood, P., Rashid, A., Xu, G.: Pointcut rejuvenation:
recovering pointcut expressions in evolving aspect-oriented software. IEEE Trans.
Softw. Eng. 38(3), 642–657 (2012)

16. Khatchadourian, R., Rashid, A., Masuhara, H., Watanabe, T.: Detecting broken
pointcuts using structural commonality and degree of interest. Sci. Comput. Pro-
gram. 150, 56–74 (2017)

17. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

18. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

19. Koppen, C., Storzer, M.: PCDiff : attacking the fragile pointcut problem (2004)
20. Laddad, R.: Aspectj in Action: Enterprise AOP with Spring Applications. 2 edn.

Manning Publications (2009)
21. Laski, J., Szermer, W.: Identification of program modifications and its applications

in software maintenance. In: Proceedings Conference on Software Maintenance
1992, pp. 282–290 (1992)

22. Mens, T., Demeyer, S.: Software Evolution, 1st edn. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-76440-3

23. Przyby�lek, A.: An empirical study on the impact of AspectJ on software evolvabil-
ity. Empir. Softw. Eng. 23(4), 2018–2050 (2018)

24. Rinard, M., Salcianu, A., Bugrara, S.: A classification system and analysis for
aspect-oriented programs. In: Proceedings of the 12th ACM SIGSOFT Twelfth
International Symposium on Foundations of Software Engineering, SIGSOFT
2004/FSE-12, pp. 147–158. Association for Computing Machinery, New York
(2004)

25. Ryder, B.G., Tip, F.: Change impact analysis for object-oriented programs. In:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools and Engineering, pp. 46–53. PASTE 2001. Association for
Computing Machinery, New York (2001)

26. Stoerzer, M., Graf, J.: Using pointcut delta analysis to support evolution of aspect-
oriented software. In: 21st IEEE International Conference on Software Maintenance
(ICSM2005), pp. 653–656 (2005)

27. Storzer, M., Forster, F.: Detecting precedence-related advice interference. In: Pro-
ceedings. 21st IEEE International Conference on Automated Software Engineering,
pp. 317–322. IEEE Computer Society, Los Alamitos, September 2006

28. Tao, Y., Dang, Y., Xie, T., Zhang, D., Kim, S.: How do software engineers under-
stand code changes? An exploratory study in industry. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE 2012. Association for Computing Machinery, New York (2012)

29. Tourwe, T., Brichau, J., Gybels, K.: On the existence of the AOSD-evolution para-
dox (2003)

30. Vallee-Rai, R., Hendren, L.J.: Jimple: simplifying java bytecode for analyses and
transformations (1998)

31. Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research, CASCON 1999, p.
13. IBM Press, Mississauga (1999)

32. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-540-76440-3

Finding and Use of Source Code Changes for Aspect-Oriented Software 493

33. Xu, G., Rountev, A.: Regression test selection for AspectJ software. In: 29th Inter-
national Conference on Software Engineering (ICSE 2007), pp. 65–74 (2007)

34. Xu, G., Rountev, A.: AJANA: a general framework for source-code-level interpro-
cedural dataflow analysis of AspectJ software. In: Proceedings of the 7th Inter-
national Conference on Aspect-Oriented Software Development, AOSD 2008, pp.
36–47. Association for Computing Machinery, New York (2008)

35. Yang, W.: Identifying syntactic differences between two programs. Softw.: Pract.
Exp. 21(7), 739–755 (1991)

36. Zhang, S., Gu, Z., Lin, Y., Zhao, J.: Change impact analysis for AspectJ programs.
In: 2008 IEEE International Conference on Software Maintenance, pp. 87–96 (2008)

37. Zhang, S., Gu, Z., Lin, Y., Zhao, J.: Celadon: a change impact analysis tool for
aspect-oriented programs. In: Companion of the 30th International Conference on
Software Engineering, pp. 913–914. Association for Computing Machinery, New
York (2008)

38. Zhang, S., Zhao, J.: Locating faults in AspectJ programs (2007)
39. Zhang, T., Song, M., Kim, M.: Critics: an interactive code review tool for searching

and inspecting systematic changes. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pp.
755–758. Association for Computing Machinery, New York (2014)

Author Index

Abdelrazek, Mohamed 106
Asad, Moumita 311

Carettoni, Simone 386
Clerissi, Diego 232

Drira, Rim 51

Filep, Levente 130
Fontana, Francesca Arcelli 386
Franch, Xavier 83

Gabsi, Hamdi 51
Ganguly, Kishan Kumar 311
Gargouri, Faiez 24
Geisler, Ben J. 336
Ghezala, Henda Hajjami Ben 51
Grundy, John 106, 444

He, Qiang 106
Heisel, Maritta 283
Hosking, John 106
Huning, Lars 360, 420

Iyenghar, Padma 360, 420

Kanij, Tanjila 444
Katic, Marija 469
Kavage, Shane L. 336
Kchaou, Mariem 24
Khalajzadeh, Hourieh 106, 444
Khlif, Wiem 24

Law, Meng 106
Leotta, Maurizio 232
Loulergue, Frédéric 154

Mannaert, Herwig 208
McIntosh, Jennifer 444
Molnar, Arthur-Jozsef 261
Motogna, Simona 261
Mueller, Ingo 444

Niculescu, Virginia 154
Nordemann, Frank 3

Pergl, Robert 208
Pulvermüller, Elke 3, 182, 360, 420

Raibulet, Claudia 386
Ratnakanthan, Prasanna 106
Ricca, Filippo 232

Sakib, Kazi 311
Schaarschmidt, Marco 182
Simmons, Andrew J. 106
Sterca, Adrian 154
Suchánek, Marek 208

Tapken, Heiko 3
Tönjes, Ralf 3

Uelschen, Michael 182
Uhnák, Peter 208

Verma, Tarun 106

Westerkamp, Clemens 182
Wirtz, Roman 283

Zia, Adil 106

	Preface
	Organization
	Contents
	Service Science and Business Information Systems
	Resilient Process Modeling and Execution Using Process Graphs
	1 Introduction
	2 Challenges of Resilient Process Operation
	2.1 Business Model and Notation 2.0
	2.2 Resilient BPMN

	3 From Process Models to Directed Acyclic Graphs
	3.1 Resilience Metrics
	3.2 Transition Rules
	3.3 Graph Analysis

	4 Evaluation
	4.1 Evaluation Scenario
	4.2 Generation of Process Graphs
	4.3 Performance Analysis
	4.4 Resilience Analysis
	4.5 Scalability Analysis

	5 Discussion and Recommendations
	6 Related Work
	7 Conclusion
	References

	Application of Fuzzy Logic to Evaluate the Performance of Business Process Models
	1 Introduction
	2 Related Work
	2.1 Measures Related to the Actor Characteristics
	2.2 Measures Related to BPMN Elements Characteristics

	3 Design Methodology for Thresholds Determination
	3.1 Analyze Data
	3.2 Validate Data
	3.3 Discussion

	4 Fuzzy Logic for BP Performance Assessment
	4.1 Fuzzification
	4.2 Inference
	4.3 Defuzzification

	5 FuzzyPer: Fuzzy Performance Tool
	6 Experiments
	7 Threats to Validity
	8 Conclusion
	References

	Cloud Services Discovery Assistant for Business Process Development
	1 Introduction
	2 Problem Statement
	3 Cloud Services Discovery Assistant
	3.1 BP4Cloud Language
	3.2 ULID: Unified cLoud ServIces Data-Set
	3.3 Activity-Services Matching Algorithm

	4 Application and Performance Analysis
	4.1 BP4Cloud Evaluation
	4.2 ULID Construction Component Evaluation
	4.3 Activity-Service Matching Algorithm Evaluation

	5 Related Work
	6 Conclusion
	References

	Software Engineering
	Data-Driven Requirements Engineering: A Guided Tour
	1 Introduction
	2 An Overall View of Data-Driven Requirements Engineering
	3 Explicit Feedback Management
	3.1 Explicit Feedback Gathering
	3.2 Explicit Feedback Analysis

	4 Implicit Feedback Management
	4.1 Types of Implicit Feedback
	4.2 Gathering Implicit Feedback
	4.3 Importance of Context
	4.4 Combining Explicit and Implicit Feedback

	5 Decision-Making
	5.1 Software Analytic Tools
	5.2 Release Planning

	6 Challenges
	7 Discussion
	7.1 Related Areas
	7.2 Lessons Learned

	8 Conclusions
	References

	BiDaML in Practice: Collaborative Modeling of Big Data Analytics Application Requirements
	1 Introduction
	2 Our Motivating Industrial Case Studies
	2.1 ANZ REALas
	2.2 VicRoads
	2.3 Alfred Hospital and Monash Clinical Data Science

	3 Data Analytics Software Development Challenges and Related Works
	3.1 Key Challenges
	3.2 Related Work

	4 Our Approach
	4.1 BiDaML Visual Language
	4.2 BiDaML Support Tool
	4.3 BiDaML-Web

	5 BiDaML in Industry Practice
	6 Evaluation
	6.1 Physics of Notations Evaluation
	6.2 Cognitive Walk-Through of BiDaML Support Tool
	6.3 Group User Study of Handwritten BiDaML Diagrams
	6.4 BiDaML-Web User Study

	7 Discussions
	8 Conclusions
	References

	Challenges and Decisions in WOBCompute Design, a P2P Computing System Architecture
	1 Introduction
	2 Related Work
	2.1 P2P Computing Systems
	2.2 P2P Topologies
	2.3 Clustering and Super-Peers

	3 System Architecture
	3.1 Topology Considerations
	3.2 Clustering
	3.3 Overall Topology
	3.4 Communication and Messages
	3.5 Middleware
	3.6 Application Design

	4 Simulation Results
	4.1 Topology Simulations
	4.2 Election Impact Simulation

	5 Conclusions
	References

	Reflections on the Design of Parallel Programming Frameworks
	1 Introduction
	2 Requirements for a Multiparadigm Parallel Programming Framework
	2.1 Requirements for a Model of Parallel Computation
	2.2 The Importance on Relying on Software Engineering Methodologies and Patterns

	3 The JPLF Framework
	3.1 PowerList Theory as a Model of Parallel Computation
	3.2 JPLF Design and Implementation
	3.3 Executors
	3.4 Granularity Balancer
	3.5 User Interactor
	3.6 Metrics Analyser
	3.7 Extensions

	4 Related Work
	5 Conclusions and Further Work
	References

	Energy-Aware Pattern Framework: The Energy-Efficiency Challenge for Embedded Systems from a Software Design Perspective
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Power Consumption of Embedded Systems
	3.2 Impact of Software on Power Characteristics
	3.3 Energy-Aware Design Pattern Framework

	4 Introduction of the Pattern Catalog
	4.1 Pattern: Energy-Aware Sampling (EAS)
	4.2 Pattern: Event-Based Computing (EBC)
	4.3 Pattern: PowerMonitor
	4.4 Pattern: Direct Memory Access Delegation (DMAD)
	4.5 Pattern: Mirroring
	4.6 Pattern: Race-To-Sleep

	5 Discussion
	6 Conclusion
	References

	Towards Evolvable Ontology-Driven Development with Normalized Systems
	1 Introduction
	2 Related Work
	2.1 RDF and OWL Technologies
	2.2 Normalized Systems
	2.3 Ontology-Based Information Systems
	2.4 Bi-directional Transformations
	2.5 Transformation Between OWL and NS

	3 Transformation Between RDF/OWL and NS
	3.1 Transformation Requirements and Resources
	3.2 Domain-Specific Parts
	3.3 Mapping Between NS and RDF/OWL
	3.4 Overall Architecture
	3.5 RDF/OWL Identifiers
	3.6 NS Metamodel Transformation

	4 Evolvable Transformation Using NS Expanders
	4.1 Structuring Project
	4.2 Vocabulary Expander
	4.3 TreeToOwl Expander
	4.4 TreeFromOwl Expander
	4.5 Non-expanded Code

	5 Demonstration Case
	5.1 Flight Booking NS Model
	5.2 Flight Booking NS Ontology
	5.3 Refining RDF/OWL
	5.4 Information System Generated from RDF

	6 Evaluation
	6.1 Transition from Traditional Utility to Expanders
	6.2 Evolvability of Transformed Ontology
	6.3 Consistency and Integrity

	7 Future Work
	7.1 Extending NS Meta-ontology
	7.2 Integrations with Conceptual Models
	7.3 Analysis of Real-World Systems

	8 Conclusion
	References

	Improving Node-RED Flows Comprehension with a Set of Development Guidelines
	1 Introduction
	2 Proposed Guidelines
	2.1 Naming
	2.2 Missing Data
	2.3 Content
	2.4 Layout

	3 Empirical Evaluation of the Comprehension Improvement
	3.1 Treatments
	3.2 Objects
	3.3 Participants
	3.4 Experiment Design
	3.5 Dependent Variables and Hypotheses Formulation
	3.6 Material, Procedure and Execution
	3.7 Analysis
	3.8 Results
	3.9 Post Experiment
	3.10 Discussion on the Experiment
	3.11 Threats to Validity of the Experiment

	4 Analysis of the Top-100 Most Downloaded Flows
	5 Related Work
	6 Conclusion and Future Work
	References

	A Study of Maintainability in Evolving Open-Source Software
	1 Introduction
	2 Software Quality Models
	3 Maintainability Models
	3.1 Maintainability Index
	3.2 ARiSA Compendium Model
	3.3 SQALE Model

	4 State of the Art
	5 Case Study
	5.1 Research Questions
	5.2 Target Applications
	5.3 Data Collection
	5.4 Analysis
	5.5 Threats to Validity

	6 Conclusion and Future Work
	References

	Risk Treatment: An Iterative Method for Identifying Controls
	1 Introduction
	2 Background
	2.1 Problem Frames
	2.2 CORAS

	3 Our Previous Work
	3.1 Template for Incident Scenarios
	3.2 Template for Controls

	4 Metamodel
	4.1 Security Model
	4.2 Requirements Model

	5 Iterative Risk Treatment
	5.1 Initial Input
	5.2 Part A: Selection
	5.3 Part B: Documentation
	5.4 Part C: Security Review
	5.5 Decision Point: Treatment Satisfactory?

	6 Case Study
	7 Tool Support
	7.1 Functionalities
	7.2 Frontend
	7.3 Backend

	8 Discussion
	8.1 Usability
	8.2 Scalability
	8.3 Precision

	9 Related Work
	10 Conclusion
	References

	Combined Similarity Based Automated Program Repair Approaches for Expression Level Bugs
	1 Introduction
	2 Background
	2.1 Concepts Related to Software Bug
	2.2 Concepts Related to Source Code

	3 Related Work
	4 Methodology
	5 Experiment
	5.1 Implementation
	5.2 Dataset
	5.3 Evaluation Metrics

	6 Result Analysis
	7 Threats to Validity
	8 Conclusion and Future Work
	References

	A Multi-engine Aspect-Oriented Language with Modeling Integration for Video Game Design
	1 Introduction
	1.1 Shortcomings of Game Design Tools
	1.2 Introduction to GAMESPECT
	1.3 Organization of This Paper

	2 Background
	2.1 Design Tools
	2.2 Metaprogramming, Aspect-Oriented Programming and DSAL’s

	3 Similar Languages and Frameworks
	3.1 Similar Metaprogramming Languages
	3.2 Similar Game Balancing Frameworks

	4 Development Methodology
	4.1 GAMESPECT Architecture
	4.2 External Tools
	4.3 Weaving Process
	4.4 MDAML Extensions for GAMESPECT

	5 Results
	5.1 Testing Process
	5.2 Accuracy Measurements
	5.3 Efficiency Measurements
	5.4 Pluggability and Modularity Measurements

	6 Summary
	6.1 Summary
	6.2 Future Work

	References

	Model-Based Timing Analysis of Automotive Use Case Developed in UML
	1 Introduction
	1.1 Model-Based Development of Automotive Software
	1.2 Model-Based Timing Analysis
	1.3 Relation to Author's Previous Work and Novel Contributions

	2 Background and Related Work
	2.1 AUTOSAR Framework
	2.2 Timing Modeling
	2.3 Model-Based Timing Analysis
	2.4 Research Gap and Challenge

	3 Early Timing Analysis of Automotive Use Cases Developed in UML
	3.1 Generic Timing Metamodel
	3.2 Mapping Among Metamodels for Timing Properties
	3.3 Model-to-Model (M2M) Transformations

	4 Autonomous Emergency Braking System (AEBS)
	4.1 Requirements Specification
	4.2 Control Flow
	4.3 Timing Behavior

	5 AUTOSAR Model of AEBS Use Case
	5.1 Software Components
	5.2 Internal Behavior
	5.3 Software Composition
	5.4 ECU Description
	5.5 System Description
	5.6 Timing Attributes
	5.7 Task Configuration for Timing Analysis

	6 Model-to-Model (M2M) Transformations
	6.1 Matched Rule
	6.2 Lazy Rule
	6.3 Helpers
	6.4 Synthesis of Timing Analysis Model

	7 Results of the Timing Analysis
	8 Conclusions
	References

	Internal Software Quality Evaluation of Self-adaptive Systems Using Metrics, Patterns, and Smells
	1 Introduction
	2 Related Work
	3 Main Elements of Our Analysis
	3.1 SAS Analyzed Examples
	3.2 NSAS Analyzed Examples
	3.3 Evaluation Mechanisms
	3.4 Tool Support

	4 Results of SAS and NSAS Analysis
	4.1 Software Metrics Computation Results
	4.2 Design Patterns Detection Results
	4.3 Code Smells Detection Results
	4.4 Architectural Smell Detection Results

	5 Threats to Validity
	6 Discussion and Concluding Remarks
	References

	A Workflow for Automatic Code Generation of Safety Mechanisms via Model-Driven Development
	1 Introduction
	2 Background
	2.1 IEC 61508 Lifecycle
	2.2 Model-Driven Development

	3 Workflow
	3.1 High-Level Overview of the Approach
	3.2 Enabling the Automatic Code Generation of Safety Mechanisms

	4 Application Example: Generation of Timing Constraint Monitoring Mechanisms
	4.1 Need for Timing Constraint Monitoring at Runtime
	4.2 Information on Timing Constraint Monitoring
	4.3 A Model Representation for Timing Constraint Monitoring
	4.4 A Model-Driven Software Architecture for Monitoring Timing Constraints at Runtime
	4.5 Model Transformations for the Automatic Code Generation of Timing Constraint Monitoring at Runtime

	5 Related Work
	5.1 Related Work on Improving the Development of Safety-Critical Systems
	5.2 Related Work on Code Generation via Model-Driven Development

	6 Conclusion
	References

	HumaniSE: Approaches to Achieve More Human-Centric Software Engineering
	1 Introduction
	2 Motivation and Related Work
	2.1 Motivating Example: A Smart Home for Ageing
	2.2 Model-Driven Software Engineering
	2.3 Domain-Specific Visual Languages
	2.4 Human Aspects of Software

	3 Our Approach
	4 A Human-Centric Agile Living Lab
	4.1 Review of Human Aspects in Other Disciplines
	4.2 Review of How Human Aspects Impact Developers
	4.3 Survey of How Developers Currently Handle End User Human Aspects
	4.4 Analysis of How Human Aspects of Software Are Currently Discussed by Software Engineers
	4.5 A Taxonomy of Human-Centric Software Requirements

	5 Human Aspects in Requirements Engineering
	5.1 Extracting Human Aspects from Requirements
	5.2 Human Aspects Impacting Requirements Engineers in Agile Teams
	5.3 How Are Human Aspects Discussed in Requirements Engineering Documents
	5.4 New DSVLs to Model Human-Centric Requirements
	5.5 Capturing Human Aspects with Personas

	6 Using Human Aspects in Design and Implementing Software
	6.1 Software Design Decision Support
	6.2 Collaborative Human-Centric Domain-Specific Visual Languages
	6.3 Extending Design Models to Include Human Aspects
	6.4 Human-Centric Design Critics and Modelling Patterns
	6.5 Using Human Aspects in Model Driven Engineering

	7 Evaluating and Applying Human Aspects in Software Engineering
	7.1 How Can We Provide Better Fixes for Human Aspect-Related Defects
	7.2 Gender Bias in IT Job Ads
	7.3 How Age Affects Users' Interaction with Software
	7.4 eHealth Applications
	7.5 How Developers Address Accessibility Issues in Mobile Apps
	7.6 Developing Better Apps with Personas
	7.7 COVID-19 Apps
	7.8 Environmental and Sustainability Software Applications
	7.9 Human Aspects in SE Education and Practice

	8 Conclusion
	References

	Finding and Use of Source Code Changes for Aspect-Oriented Software
	1 Introduction
	2 Background and Motivating Example
	3 Changes of Aspect-Oriented Software
	3.1 Finding Changes for Aspect-Oriented Programs
	3.2 Use of Changes for Aspect-Oriented Programs

	4 Approach to Finding Changes Between AO Programs
	4.1 Aspect-Oriented Control-Flow Graph
	4.2 Comparison of Method Bodies
	4.3 Implementation Details

	5 Evaluation of AjDiff
	5.1 Quantitative Analysis
	5.2 Qualitative Analysis
	5.3 Threats to Validity

	6 Usage Example
	7 Conclusion
	References

	Author Index

