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Abstract. The electrocardiogram (ECG) records the process of depo-
larization and repolarization of the heart and contains many important
details related to the condition of the human heart. In this paper, we
designed four deep learning network structures and three electrocardio-
gram signal preprocessing methods, under the same dataset, explored the
impact and performance of different preprocessing methods and models
on the ECG arrhythmia classification work. For a fairer comparison, we
used intra-patient and inter-patient evaluation for the final classification
evaluation. In the evaluation of the intra-patient, the proposed network
structures can achieve an accuracy of more than 95%. In the evaluation
of inter-patient, all classification models can achieve an accuracy rate
of more than 81.7%. During our research, we found convolutional neural
network (CNN) is good at capturing spatial features of ECG. Long short-
term memory networks (LSTM) is suitable for processing time-series sig-
nals. The combination of the two has a better classification performance
than the sole network. Besides, the Attention mechanism can help the
model do better on focusing on abnormal heartbeats also improve the
interpretability of the model. Residual neural Network (ResNet) has good
behavior in intra-patient, but not suitable for the inter-patient classifi-
cation due to the vanishing gradient problem. Compared to the different
preprocessing methods, we recommended using the raw signal in future
work.

Keywords: ECG heartbeat classification · CNN · LSTM · Attention
mechanism · ResNet

1 Introduction

Arrhythmia is a representative type of cardiovascular diseases (CVDs) that refers
to any irregular change from normal heart rhythms. Although a single arrhyth-
mia heartbeat may not have a serious impact on life, continuous arrhythmia
beats can result in fatal circumstances [1]. The most widely applied solution
for arrhythmia detection is electrocardiography (ECG). ECG shows the mor-
bid status of the cardiovascular system by changes in its waveforms or rhythms
[2]. The screening of arrhythmias requires careful study of the ECG records by
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experienced cardiologists and this process is tedious and time-consuming. More-
over, there may be minute changes in the ECG that are overlooked by the naked
eye [3]. Automatic arrhythmia detection based on ECG provides important assis-
tance for doctors, and also helps common people to self-monitor their heart con-
ditions using wearable devices. Accurate automatic arrhythmia detection plays
as the foundation of machine-aided diagnosis and treatment of cardiovascular
diseases [4].

With the improvement of computing power, deep learning has been success-
fully applied to many areas such as numbers, characters and face recognition,
image classification. Deep learning methods are also used effectively in the anal-
ysis of bioinformatics signals. Kiranyaz et al. proposed an adaptive CNN model
for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic
beats (SVEB). This model required small common patient-specific training data
and achieved a superior classification performance. Acharya et al. developed a
9-layer deep CNN model to automatically identify five different categories of
heartbeats in ECG signals. Their experiment obtained an accuracy of 94.03% in
the diagnostic classification of the original ECG heartbeats [14]. Rajpurkar et
al. proposed a 34-layer CNN model for arrhythmia detection [5]. It is reported
that accuracy exceeds the level of cardiologists.

Fig. 1. An ECG heartbeat with P,Q,R,S and T waves.

In the last decades, there have been some works on ECG for different tasks
promoting the application of ECG in clinical practice. Generally speaking, there
are four main tasks: (1) ECG data preprocessing, (2) heartbeat segmentation, (3)
feature extraction, (4) ECG classification. Among the four tasks, ECG feature
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extraction and classification are the keys to successfully detect cardiac diseases
[7]. Although many researchers achieved almost optimal results for ECG classi-
fication and various filtering methods were proposed, owing to the diversities of
the ECG dataset and preprocessing methods, as well as the differences in evalu-
ation indicators, there is a lack of horizontal comparison of such research works.
Thus, in this paper, we will focus on the comparison of commonly used ECG
preprocessing methods and mainstream deep learning networks to promote the
clinical practice of diagnosis by ECG (Fig. 2).

Fig. 2. Overall view of the proposed systems.

Major contributions of this research are as follows: 1) Referred to the pre-
vious application of deep learning networks structures in the detection of ECG
arrhythmia, we developed four mainstream networks such as an 11-layer pure
CNN model, a combination of CNN and LSTM model, Attention mechanism
model and ResNet model, separately trained to compare the final classification
performance. the same ECG dataset and preprocessing methods were used for
all reference models 2) Considering the comparison of preprocessing methods, we
chose three ECG presentations as the inputs of the classifier, there was a raw sig-
nal (without any preprocessing), denoised signal, and hand-crafted ECG features
which widely used in machine learning. 3) In this paper, we discussed two major
evaluations of heartbeat classification methods, intra-patient, and inter-patient
evaluation, presented the classification performance of existing approaches under
each evaluation.

2 Dataset

The ECG dataset used in our experiments is from the MIT-BIH arrhythmia
database [8] publicly available on PhysioNet. The MIT-BIH dataset contains 48
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30-minutes long records from 47 patients. Each ECG record was digitized at
360 samples and annotated by cardiologists. The database is regarded as the
benchmark database in arrhythmia detection and classification and has been
extensively utilized for algorithm validation [9]. Hence, we used the MIT-BIH
arrhythmia database to do contrast with different classification methods.

Table 1. Summary of training and testing datasets in intra-patient

Heartbeat type Training Test

Normal Beat (NOR) 9753 65265

Left Bundle Branch Block (LBBB) 3229 4843

Right Bundle Branch Block (RBBB) 2902 4353

Atrial Premature Contraction (APC) 1019 1526

Premature Ventricular Contraction (PVC) 2852 4277

Paced Beat (PACE) 2810 4215

Aberrated Atrial Premature Beat (AP) 75 75

Ventricular Flutter Wave (VF) 236 236

Fusion of Ventricular and Normal Beat (VFN) 401 401

Blocked Atrial Premature Beat (BAP) 97 96

Nodal (Junctional) Escape Beat (NE) 115 114

Fusion of Paced and Normal Beat (FPN) 491 491

Ventricular Escape Beat (VE) 53 53

Nodal (Junctional) Premature Beat (NP) 42 41

Atrial Escape Beat (AE) 8 8

Unclassifiable Beat (UN) 17 16

Total 24100 86009

For the sake of fairness, two types of evaluation approaches were investigated
in this paper, namely, “inter-patient” and “intra-patient”. In the “intra-patient”
evaluation, all 48 records were used and heartbeat segments were provided by
the annotated QRS position. The resulting heartbeat dataset was divided into 16
classes [9]. Specifically, 13% of the beats from the normal class, 40% of the beats
from each of five bigger arrhythmia classes (i.e., “L,” “R,” “A,” “V,” “P”), and
50% of the beats from each of ten smaller arrhythmias classes were randomly
selected to constitute the training dataset, for a total of 21.89% beats of the whole
dataset. The remaining heartbeats were used as the test dataset. The details of
the 16 heartbeat classes were summarized in Table 1. To be mentioned, in the
“intra-patient” evaluation, the training and test dataset will contain heartbeats
from the same people.

In consideration of it, the “intra-patient” evaluation is not a realistic measure.
Therefore, the “inter-patient” evaluation is conducted in addition to a more
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realistic estimate of the generalization ability of the algorithm. According to
ANSI/AAMI EC57:1998 standard [10], among the 48 records available in the
MIT-BIH dataset the training and testing dataset contained 22 records each,
the other four paced records (i.e., the records 102, 104, 107, 217) were excluded
for experiments. The original 16 heartbeat classes were divided into the five
bigger classes, namely “N”, “S”, “V”, “F”, and “Q”. The mapping from the
MIT-BIH arrhythmia database heartbeat classes to the AAMI heartbeat classes
was shown in Table 2.

The purpose of ECG signal preprocessing is to reduce various types of noise
that may be present in the ECG signal. Typical sources of noise in the ECG signal
include baseline wander, artifacts caused by muscle contraction, and electrode
movement [11]. In our research, the preprocessing of the ECG signal included
baseline wander correction and band-pass filtering. The raw ECG signal was
first processed to correct the baseline wander using a wavelet-based approach
[12]. Following [13], the signal was band-pass filtered at 5–12 Hz to maximize
the energy of the QRS complex, removing high-frequency and low-frequency
artifacts. The denoised signals were used as one of the classifier inputs.

Table 2. Summary of training and testing datasets in inter-patient and the mapping
from MIT-BIH classes to AAMI classes

Heartbeat type MIT-BIH classes Training Test

N NOR, LBBB, RBBB, AE, NE 45845 44238

S APC, AP, BAP, NP 999 1973

V PVC, VE, VF 4260 3220

F VFN 414 388

Q FPN, UN 8 7

ECG signals usually show changes over time or position. The classic Fourier
transform (FT) can provide us with frequency-domain features, but a lack of
analysis of time-domain features. Wavelet transform (WT) can satisfy these two
characteristics. Until now, WT has been widely used in ECG signals [18–21],
including denoising, heartbeat detection, and feature extraction. In traditional
machine learning classification tasks, WT functions are often used for hand-
crafted features as the classifier input. The performance of WT features is often
better than using the raw ECG signal as the classifier input. In our paper, WT
was used as one of the feature extraction methods. Daubechies wavelets of order 8
were selected due to their similarity with the most characteristic QRS waveform
[9]. After applying four-level wavelet decomposition, we kept 114 coefficients (32
from A4, 32 from D4, and 50 from D3) as the wavelet features for one of the
classifier inputs. In the heartbeat segmentation of ECG signals, we used the
annotations of R-peak locations provided by the database. Each heartbeat seg-
ment consisted of 100 samples before the R peak location, R peak location, and
200 samples after the R peak, a total of 300 samples corresponding to 0.83 s.
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3 Intra-Patient Model Architecture

3.1 PCNN Model

The PCNN (Pure-CNN) model used an 11-layer network structure [6], contained
4 convolutional layers, and the size of convolutional kernels was respectively 27,
14, 3, and 4. Structurally, each convolutional layer was followed by a max-pooling
layer of stride 2. The last part of the model has consisted of 3 full-connected
layers, the number of neurons of the first two layers were 30 and 10, the last
layer neurons were determined by the number of output classes. We used a leaky
rectifier linear unit as the activation function of the convolutional layers and
the first two fully connected layers, also applied Xavier to initialize the weight
of each layer. Softmax function was used for the last layer. During the training
of the CNN model, we used Adam optimizer, the initial learning rate was set
to 0.001, and the batch size was 20. The architecture for the PCNN model was
illustrated in Fig. 3.

Fig. 3. The architecture of the proposed PCNN model.

3.2 CNN-LSTM Model

The model was composed of CNN and LSTM layers. The structure of CNN lay-
ers were designed with the reference to VGGNet developed by Visual Geometry
Group [15]. VGGNet was chosen as it features smooth information flow and
simple implementation. As shown in Fig. 4, the number of convolutional ker-
nels continued to grow with increasing depth of network layers with the kernel
size of 3. The stride size as well as kernel size of max-pooling layer is 3. Each
convolutional layer were stepped by a batch normalization layer (BN) and a rec-
tified linear unit activation function. The addition of the BN layer can make the
distribution of the input data from each layer in the network relatively stable,
which is conducive to improving the learning speed of the entire neural network
[23]. The RELU function is a widely used activation function [16], which has
the ability to prevent the gradient vanishing problem in deep neural networks.
Following the convolutional layers were two LSTM layers, the input of the first
LSTM layer was determined by the number of features which generated by the
convolutional layer, and the output size of both LSTM layers were 32.
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Fig. 4. The architecture of the proposed CNN-LSTM model.

The CNN-LSTM model was trained by Adam optimizer with an initial learn-
ing rate of 0.0001. Adam has the ability to balance gradient updates between
different classes, so it can mitigate the adverse effects caused by data imbalance
[24]. In a total of 90 periods of training, the learning rate was multiplied by 0.1
times every 30 periods. We used Kaiming to initialize the weight of each convo-
lutional layer, and orthogonal to initialize the weight of the LSTM layer, which
can greatly improve the convergence speed of the model parameters. To prevent
overfitting [21], we multiplied the L2 loss of all parameters in the network by
0.004 to the training loss and used a 20% dropout rate in the LSTM layers.

3.3 Attention-Based Model

The Attention-Based model was constructed with CNN, LSTM, and Attention
mechanism. The part of CNN and LSTM referred to the CNN-LSTM model.
The size and number of kernel functions were consistent with the CNN-LSTM
model. To give a fair comparison, the same hyperparameters including learning
rate and batch size were used for the proposed model and kept in line with
regularization strategies. The Attention-Based Model added the Attention layer
after the LSTM layer as shown in Fig. 5 and the attention mechanism would
generate a set of independent weights for each possible class in the N classes.
Then for each class, the unique weighted average of the inputs was calculated,
and finally, the probability of the ECG signal class was outputted.

The introduction of the attention mechanism in the network structure had
two advantages. First, it can help the model to focus on the important part of the
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Fig. 5. The architecture of the proposed Attention-Based model.

heartbeat, thereby improving the classification performance. Second, it can help
highlight the location of the abnormal heartbeat, and further research on the
location of the heartbeat can increase the interpretability of the deep learning
model.

3.4 ResNet Model

For this model, we refer to the ECG diagnosis algorithm proposed by Andrew
Ng in Nature Medicine [27], and design a 34-layer network structure, using a
connection method similar to the residual network structure. The network con-
sists of 16 residual blocks, each with two convolutional layers, the number of
filters in the convolutional layer is 32 * 2k, and the size is 3, where k starts
from 1, and every 4 residual blocks Increase by 1. In the case of reaching the
same receptive field, the smaller the convolution kernel, the less calculation of
the parameter kernel required, so in the experiment, we prefer to use multiple
small convolution kernels instead of using one alone. Large convolution kernel.
Each spare residual block will subsample the input with a step size of 2. Before
each convolutional layer, a batch normalization layer and activation function
RELU layer is designed as a pre-activated block. In order to prevent over-fitting,
the model adds a Dropout layer between the RELU layer and the convolutional
layer, with a loss rate of 20.

In the training process, Adam optimizer is used, the initial learning rate is
0.0001, and the default parameters β1 = 0.9 and β2 = 0.999. The batch size is
128. We use the Xaiver to initialize the weight of each convolutional layer. In
a total of 30 epochs of training, the learning rate is multiplied by 0.1 every 10
epochs.

4 Inter-Patient Model Architecture

Initially, we were consistent in choosing models for the inter-patient and intra-
patient model, however, during the training process, we found the gradient van-
ishing problem by used intra-patient models to do the inter-patient classification.
Hence, we referred to the PCNN model to simplify the network structure and
parameters, and retraining. The CNN model selection was consistent with the
above-mentioned A model. The difference is the construction of the CNN-LSTM
framework, we add the two LSTM layers after the PCNN model, no longer
applied modified VGGNet as the convolutional structure, and the output size
were all 128, and 20% of the dropout rates were used.
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5 Experimental Setup

Proposed models were deployed in Python 3.7.6 language with TensorFlow [25]
which is an open-source software library for deep learning launched by Google.
Since deep learning networks require a lot of free parameters to train, GPU
support is strongly recommended to reduce the learning time of the model. Thus,
our experimental setup was RTX2060-super GPU on the window10 system. With
GPU, TensorFlow is accelerated by using CUDA and CUDNN [26]. Versions of
each software are TensorFlowr2.1.0, CUDA 10.1, and CUDNN 7.6.4.

6 Experimental Results

6.1 Performance Metrics

In this research, typical classification metrics, including accuracy, precision,
recall, and F1 score were used for each model. They were defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 × (Precision × Recall)

Precision + Recall
(4)

where TP refers to the number of correctly classified samples in a certain class,
FN refers to the number of samples belonging to a certain class which was mis-
classified as in other classes, and FP refers to the number of samples misclassified
as in a certain class when they belong to other classes.

6.2 Intra-Patient Performance

In the intra-patient experimental performance, from the view of various inputs,
the performances of raw signal and manual WT feature were generally better
than the denoised signal in Table 3, whether it is from the perspective of accu-
racy, or from the analysis of F1-score. But there was a special result here that
the F1-score of the denoised signal which training on the PCNN and ResNet
networks showed the highest performance in all groups.

We deliberately compared and analyzed the confusion matrix of the PCNN
Denoised model and the lowest F1-score Attention Denoised model, and we found
the recognition rate of the heartbeats of class6, class9, class13, class14, class15
in the Attention Denoised model was 0%. Considering that the sample numbers
of these classes occupied a very low proportion of the total sample numbers of
heartbeats (as shown in Table 1). On the other side, the recognition rate of the
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Table 3. The intra-patient classification performance of three inputs and models

Model and inputs Accuracy F1-score Recall Precision

PCNN, Raw 0.971 0.698 0.755 0.660

PCNN, Denoised 0.947 0.856 0.875 0.845

PCNN, WT 0.974 0.707 0.736 0.683

CNN-LSTM, Raw 0.984 0.796 0.805 0.792

CNN-LSTM, Denoised 0.956 0.570 0.599 0.553

CNN-LSTM, WT 0.976 0.539 0.586 0.509

Attention, Raw 0.985 0.794 0.813 0.794

Attention, Denoised 0.950 0.535 0.585 0.501

Attention, WT 0.979 0.688 0.708 0.681

ResNet, Raw 0.974 0.801 0.805 0.792

ResNet, Denoised 0.979 0.912 0.932 0.908

ResNet, WT 0.977 0.757 0.762 0.751

PCNN Denoised model included the above-mentioned classes and exceeded 90%
(excepted for classes 13).

From the framework point of view, the four mainstream deep learning frame-
works can achieve an accuracy rate of more than 95%. Apart from denoising
signals, almost all the frameworks can reach an accuracy rate of more than 97%.
And in terms of overall performance, the Resnet model performs better than
other frameworks but we need to point out that the intra-patient classification
is not a real method for the actual evaluation of the performance of the classi-
fier. The time-varying dynamics and the morphological characteristics of ECG
signals show significant variations for different patients. Even for the ECG of a
healthy subject, which appears to be deterministic, the shapes of QRS complex,
P waves, and R-R intervals will not be the same from one beat to the other
under different circumstances [17]. However, in real-world scenarios, the trained
model must deal with heartbeats from patients that are unseen during training
[22].

6.3 Inter-Patient Performance

In the inter-patient evaluation, according to the AAMI standard, 22 records were
used for training and 22 records were used for testing. For the training set, we
counted the heartbeats contained in each record according to the classes, and
21 records were used in the training process, one record for the validation. The
validation data was derived from training data that had never been used before.

Table 4 compared the three reference models (PCNN, CNN-LSTM,
Attention-Based Model) in the classification of arrhythmia. The results showed
that the Attention-based model was superior to the PCNN and CNN-LSTM
models in the F1-score of all classes. Besides, due to the sample imbalance of the
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Table 4. The inter-patient classification performance of three inputs and models

Model and inputs Accuracy F1-score Recall Precision

PCNN, Raw 0.832 0.845 0.831 0.860

PCNN, Denoised 0.852 0.847 0.849 0.841

PCNN, WT 0.845 0.857 0.842 0.869

CNN-LSTM, Raw 0.843 0.836 0.841 0.828

CNN-LSTM, Denoised 0.870 0.846 0.872 0.831

CNN-LSTM, WT 0.853 0.841 0.850 0.832

Attention, Raw 0.821 0.821 0.819 0.820

Attention, Denoised 0.836 0.843 0.842 0.851

Attention, WT 0.817 0.839 0.824 0.870

Fig. 6. The confusion matrix of CNN model.

MIT-BIH database, we used the weighted F1-score indicator. In terms of accu-
racy, the CNN-LSTM model was generally highest, up to 87.0%. On account
the Attention-Based model was modified based on the CNN-LSTM model, the
two were more comparable, it can be seen that as the introduction of attention
mechanism, the model can help us improve the recognition rate of abnormal
heartbeats. Observed Figs. 6, 7 and 8, in the recognition rate of “S” heartbeats,
Attention-based model exhibited better performance than the CNN and CNN-
LSTM networks. Compared to the classification performance of different signal
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Fig. 7. The confusion matrix of CNN-LSTM model.

Fig. 8. The confusion matrix of Attention-Based model.
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inputs, we are more inclined to recommend using the raw signal as the input of
the inter-patient in the future arrhythmia classification research, because of its
stable performance upon different deep learning network frameworks.

7 Discussion and Conclusion

As a result of the long history of ECG classification researches, these works
used different datasets and detected different types of arrhythmia. It is unfair to
compare it with them directly. In this paper, we proposed three different ECG
signal inputs and used four different deep learning networks CNN, CNN-LSTM,
Attention-Based model to do the intra-patient and inter-patient evaluation on
the MIT-BIH dataset. The results showed that deep learning networks can gen-
erally achieve good classification performance on the MIT-BIH database. The
CNN network is good at capturing spatial features, the LSTM network is suit-
able for processing time-series signals. Compared with the classification perfor-
mance of CNN and CNN-LSTM, the combined performance of the two will be
superior to the single CNN network. In addition, the introduction of the atten-
tion mechanism helps the model locate the important information part of the
ECG signal and improve the interpretability of the model. The results of the
Attention-Based model also showed that in future ECG classification research,
it is important to focus on the subtle information part of the ECG signal. ResNet
model has good behavior in intra-patient classification, but due to its compli-
cated network structure and expensive training cost, we tend to recommend the
simplified network (layers number did not exceed 15) in the heartbeats classifica-
tion based on the MIT-BIH database. Due to the particularity of the MIT-BIH
dataset, the numbers of normal heartbeats were far more than the abnormal.
Therefore, experimental results with high accuracy were more inclined to the
normal class. The phenomenon was obvious in the inter-patient experiments. It
can be considered that keep a balance of the sample numbers between classes or
using weighted evaluation indicators to compare performance more fairly. In this
research, we used three different inputs, the raw signal, the denoised signal, and
the handcrafted features, discussed the impact and significance of each input on
the performance and applicability of our heartbeat classification method. It can
be seen that the raw signal performance was more stable than the others. So we
recommend using the raw signal in future works.
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