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1 Introduction

The problem of steady incompressible flow of gases and liquids in a channel with a
step has been the subject of many studies in computational fluid dynamics. Panovko
[5] used the method of separation of physical factors to model three-dimensional
flow of a viscous fluid in a channel with a step at the Reynolds number R = 100.
He reported circulatory flow near the step, which decreased in intensity toward
the channel outlet. Two benchmark problems that are documented in international
workshop proceedings [7, 8] are steady expansion flows and contraction flows in
channels with a step. Boger [2] provided a comprehensive review for contraction
flows for channels with steps. For the flow into a symmetrical contraction in the form
of a step, his experimental data suggest the formation of a “trailing edge” vortex
downstream of the step, and detecting this vortex posed a major test for a numerical
scheme. Dennis and Smith [9] used a method based on central differences, but were
unable to detect the trailing edge vortex visually downstream of the step. However,
through grid refinement, they were able to infer qualitatively the presence of this
vortex. Their results have been supported experimentally by Durst and Loy [10].
Hawken et al. [6] used a Taylor–Galerkin algorithm and were able to visually detect
the trailing edge vortex at the Reynolds number R = 450. They went up to Reynolds
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number R = 100 for the expansion case and R = 800 for the contraction case. We
obtained converged results up to Reynolds number R = 1000.

This chapter uses a stable fourth-order central difference method [4] by writing
Taylor’s series expansions of the error terms in a form that produces strong central
coefficients.

Our work supports experimental evidence, suggested by Boger [2], that a trailing
edge vortex is formed downstream of the step, which can be seen in our plotted
stream functions at R = 200 to R = 400, and later at R = 1000. Onur and Baydar
[1] carried out experimental work on this problem, and showed photographs for
R = 200, which are in agreement with our results. Our results are also in good
agreement with the tabulated results of Greenspan [3], requiring a relatively coarse
grid for the same accuracy.

2 Mathematical Problem

Consider the flow of a viscous incompressible fluid in a channel with a step. The
flow is governed by the steady-state Navier–Stokes equations defined by

�ψ = −ω (1)

�ω + R
(
ψxωy − ψyωx

) = 0 (2)

These equations are valid in the interior of the domain in Fig. 1, where ψ and
ω are the stream and the vorticity functions respectively, and R is a flow parameter
called the Reynolds number. The boundary conditions to be satisfied are

ψ = 1, ψy = 0, on HG (3)

ψ = 0, ψy = 0, on AB,CD,EF (4)

ψ = 0, ψx = 0, on BC,DE (5)

ψ = 3y2 − 2y3, ω = 12y − 6, on AH (6)

ψx = 0, ωx + Rψy

(
ω + ψyy

) = 0 on FG (7)

Conditions (6) are those of Poiseulle flow, while conditions (7) make the flow
horizontal and the pressure constant on FG.
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3 The Difference Schemes

We present the difference methods for the given differential equations (1)–(2) as a
special case of the second-order elliptic equation.

Lu ≡ uxx + uyy + p (x, y) ψx + q (x, y) uy + r (x, y) u = s (x, y) (8)

Note that since r(x, y) = 0 for both (1) and (2), we may write (8) as

Lu ≡ uxx + uyy + pux + quy = s (9)

where p = p(x, y), q = q(x, y), and s = s(x, y).
Also, note that
p(x, y) = q(x, y) = 0, s(x, y) = − ω for (1),
p(x, y) = − Rψy, q(x, y) = Rψx , s(x, y) = 0 for (2).
Using the grid shown in Fig. 2, which shows the placement of nine points, we

obtain the following approximations at the point (xi, yj), numbered 0 in Fig. 2.
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uxx = u3 − 2u0 + u1

h2
− h2

12
uxxxx + O

(
h4

)
(10)

uyy = u4 − 2u0 + u21

h2
− h2

12
uyyyy + O

(
h4

)
(11)

ux = u1 − u3

2h
− h2

6
uxxx + O

(
h4

)
(12)

uy = u4 − u2

2h
− h2

6
uxxx + O

(
h4

)
(13)

Substituting (10)–(13) into the differential Eq. (9), we obtain the difference
operator Lh, defined by

Lhu0 ≡
4∑

i=0

αiui = s0 + E0(u) (14)

where E0(u) is the truncation error given by

E0(u) = h2

12

(
uxxxx + 2puxxx + uyyyy + 2puyyy

) + O
(
h4

)
(15)

and

α0 = − 4

h2

α1 = 1

h2
+ p0

2h

α2 = 1

h2
+ q0

2h

α3 = 1

h2
− p0

2h

α4 = 1

h2
− q0

2h

(16)

Note that when p(x, y) = − Rψy or q(x, y) = Rψx is large, that is, when R is
large, the central difference coefficient α0 is small relative to the other coefficients,
which is the main cause of instability of the central difference method.

To obtain a stable fourth-order operator, we rewrite the central difference
approximation (13) in a form that includes the error terms. Therefore,
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Lhu0 − E0(u) = s0 (17)

We next denote the error term E0(u) in terms of the lower order derivatives given
by (10)–(13), and mixed partial derivatives uxy, etc., which can be denoted by the
nine points grid in Fig. 2, with a stabilizing effect. From (9), we have

uxx = − (
pux + quy − uyy

) + s (18)

Differentiating both sides of this equation with respect to x to obtain uxxx and
uxxxx, we have

uxxxx + 2puxxx = −
[ (

p2 + 2px

)
uxx + (

ppx + pxx

)
ux

+ (
pqx + qxx

)
uy + (pq + 2qx) uyx + puyyx + quyxx

+ uyyxx

]
+ psx + sxx

(19)

Similarly, we have

uyyyy + 2quyyy = −
[ (

q2 + 2qy

)
uyy + (

qqy + qyy

)
uy

+ (
qpy + pyy

)
ux + (

pq + 2py

)
uxy + quxxyy + puxyy

+ uxxyy

]
+ qsy + syy

(20)

Substituting (19) and (20) into (15), we have

E0(u) = −h2

12

[ (
p2 + 2px

)
uxx + (

ppx + qpy + pxx + pyy

)
ux

+ (
q2 + 2qy

)
uyy + (

pqx + qqy + qxx + qyy

)
uy

+ 2
(
pq + py + qx

)
uxy + 2

(
puxyy + quxxy + uxxyy

)

+ h2

12

(
psx + qsy + sxx + syy

)
uy + O

(
h4

)

(21)

Note that the terms (p2 + 2px)uxx and (q2 + 2qy)uyy can produce strong central
coefficients when approximated by (10) and (11).

Substituting (21) into (17), we obtain

Lhu0 − E0(u) = s∗
0 (22)

where

E0(u) = E0(u) − h2

12

(
psx + qsy + sxx + syy

)
(23)

and
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s∗
0 = s0 + h2

12

(
psx + qsy + sxx + syy

)
(24)

We approximate E0(u) using (10)–(13), whereas the mixed partial derivatives
uxy, uxxy, uyyx, uxxyy can be readily approximated using Taylor series expansion at
the nine point grid, which leads to

E0(u) =
8∑

i=0

βiui + O
(
h4

)
(25)

where

β0 = − 4

6h2
+ 1

6

(
p2 + q2 + 2px + 2qy

)

β1 = 2

6h2
+ p0

6h
− 1

12

(
p2 + 2px

)
− h

24

(
ppx + qpy + pxx + pyy

)

β2 = 2

6h2
+ q0

6h
− 1

12

(
q2 + 2qy

)
− h

24

(
pqx + qqy + qxx + qyy

)

β3 = 2

6h2
− p0

6h
− 1

12

(
p2 + 2px

)
+ h

24

(
ppx + qpy + pxx + pyy

)

β4 = 2

6h2
− q0

6h
− 1

12

(
q2 + 2qy

)
+ h

24

(
pqx + qqy + qxx + qyy

)

β5 = −1

6h2
− p0 + q0

12h
− pq + py + qx

24

β6 = −1

6h2
+ q0 − p0

12h
+ pq + py + qx

24

β7 = −1

6h2
− p0 − q0

12h
− pq + py + qx

24

β8 = −1

6h2
+ q0 − p0

12h
+ pq + py + qx

24

(26)

Substituting (25) into (22), we obtain a stable fourth-order operator L∗
h for (9),

defined by

L∗
hu0 ≡

4∑

i=0

u∗
i = s∗

0 + E∗
0 (u) (27)

where

E∗
0 (u) = h4

[
p2uxxxx(ζ1,η1)+q2uyyyy(ζ2,η2)

144

+ 2pqh4
(
uxxxy (ζ3, η3) + uxyyy (ζ4, η4)

] (28)

and s∗
0 is given by (24), and α∗

i = αi − βi.
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We also see that the local truncation error E∗
0 (u) is O(h4).

We now set up the difference equations for (1) and (2). For (1), p = q = 0 and
s = − ω, which leads to the following difference equation

L∗
hψ0 ≡

4∑

i=0

α∗
i ψi = s∗

0 + E∗
0 (u) (29)

where

α∗
0 = − 20

6h2

α∗
1 = α∗

2 = α∗
3 = α∗

4 = 4
6h2

α∗
5 = α∗

6 = α∗
7 = α∗

8 = 1
6h2

(30)

and

s∗
0 = −ω0 − h2

12

(
ωxx + ωyy

)
(31)

Next, for (2), p = − Rψy, q = Rψx, and s = 0, which results in the following
difference equation

L∗
hω0 ≡

4∑

i=0

α∗
i ωi = s∗

0 + E∗
0 (u) (32)

where

α0 = − 20

6h2
− 1

6

(
p2 + q2 + 2px + 2qy

)

α1 = 4

6h2
+ p0

3h
+ 1

12

(
p2 + 2px

)
+ h

24

(
ppx + qpy + pxx + pyy

)

α2 = 4

6h2
+ q0

3h
+ 1

12

(
q2 + 2qy

)
+ h

24

(
pqx + qqy + qxx + qyy

)

α3 = 4

6h2
− p0

3h
+ 1

12

(
p2 + 2px

)
− h

24

(
ppx + qpy + pxx + pyy

)

α4 = 4

6h2
− q0

3h
+ 1

12

(
q2 + 2qy

)
− h

24

(
pqx + qqy + qxx + qyy

)

α5 = 1

6h2
+ p0 + q0

12h
+ pq + py + qx

24

α6 = 1

6h2
+ q0 − p0

12h
− pq + py + qx

24

α7 = 1

6h2
− p0 + q0

12h
+ pq + py + qx

24

α8 = 1

6h2
− q0 − p0

12h
− pq + py + qx

24

(33)
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4 Comparison of Results

We ran the present scheme and the scheme of Greenspan [3] at each of the indicated
points (x, y) = (0.1, 0.1), and (x, y) = (1.9, 0.8) for ψ and ω, α1 = α2 = 4, γ = 0.5,
δ = 1, various values of the step size h and Reynolds number R. To check the
efficiency, we compared the results at the same points for both methods, as given by
Tables 1A, 1B, 2A, 2B, 3A, and 3B.

Table 1A Stream values at R = 50

Present (0.1,0.1) Greenspan (0.1,0.1) Present (1.9,0.8) Greenspan (1.9,0.8)
R � � � �

h = 0.1 2.780 E-02 2.841 E-02 0.8812 0.8775
h = 0.05 2.797 E-02 2.813 E-02 0.8825 0.8815
h = 0.025 2.797 E-02 2.802 E-02 0.8829 0.8824
h = 0.0125 2.797 E-02 2.798 E-02 0.8831 0.8829
h = 0.00625 2.797 E-02 2.798 E-02 0.8831 0.8830

Table 1B Vorticity values at R = 50

Present (0.1,0.1) Greenspan (0.1,0.1) Present(1.9,0.8) Greenspan (1.9,0.8)
R ω ω ω ω

h = 0.1 −48E-01 −4732 E-01 3567 E-01 3529 E-01
h = 0.05 −4798 E-01 −4776 E-01 3609 E-01 3593 E-01
h = 0.025 −4798 E-01 −4792 E-01 3610 E-01 3608 E-01
h = 0.0125 −4799 E-01 −4797 E-01 3611 E-01 3612 E-01
h = 0.00625 −4799 E-01 −4799 E-01 3612 E-01 3611 E-01

Table 2A Stream values at R = 100

Present (0.1,0.1) Greenspan (0.1,0.1) Present(1.9,0.8) Greenspan (1.9,0.8)
R � � � �

h = 0.1 2.8 E-02 2.822 E-02 0.8765 0.8801
h = 0.05 2.794 E-02 2.805 E-02 0.8772 0.8757
h = 0.025 2.794 E-02 2.797 E-02 0.8777 0.8772
h = 0.0125 2.794 E-02 2.795 E-02 0.8779 0.8776
h = 0.00625 2.794 E-02 2.794 E-02 0.8780 0.8778

Table 2B Vorticity values at R = 100

Present (0.1,0.1) Greenspan (0.1,0.1) Present(1.9,0.8) Greenspan (1.9,0.8)
R ω ω ω ω

h = 0.1 -48E-01 −4749 E-01 3495 E-01 3417 E-01
h = 0.05 −4797 E-01 −4782 E-01 3510 E-01 3494 E-01
h = 0.025 −4799 E-01 −4794 E-01 3516 E-01 3512 E-01
h = 0.0125 −4799 E-01 −4798 E-01 3517 E-01 3517 E-01
h = 0.00625 −4799 E-01 −4799 E-01 3519 E-01 3518 E-01
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Table 3A Stream values at R = 1000

Present (0.1,0.1) Greenspan (0.1,0.1) Present(1.9,0.8) Greenspan (1.9,0.8)
R � � � �

h = 0.1 2.730 E-02 2.727 E-02 0.8594 0.8412
h = 0.05 2.768 E-02 2.750 E-02 0.8477 0.8403
h = 0.025 2.762 E-02 2.758 E-02 0.8539 0.8539
h = 0.0125 2.760 E-02 2.760 E-02 0.8542 0.8549
h = 0.00625 2.760 E-02 2.760 E-02 0.8545 0.8549

Table 3B Vorticity values at R = 1000

Present (0.1,0.1) Greenspan (0.1,0.1) Present(1.9,0.8) Greenspan (1.9,0.8)
R ω ω ω ω

h = 0.1 −4716 E-01 −4799 E-01 5733 E-01 2956 E-01
h = 0.05 −4793 E-01 −4808 E-01 3105E-01 3064 E-01
h = 0.025 −4806 E-01 −4809 E-01 3114 E-01 3109 E-01
h = 0.0125 −4808 E-01 −4809E-01 3116E-01 3122E-01
h = 0.00625 −4808 E-01 −4809 E-01 3120 E-01 3124 E-01

Fig. 3 Plot of ψ for h = 0.1,
R = 10

Results of both methods converged, but for the stream function at R = 50 and
R = 1000, we obtained four digit accuracy for h = 0.05, whereas Greenspan scheme
required h = 0.00625 for the same accuracy.

At R = 1000, we obtained four digit accuracy at step size h = 0.05, whereas the
Greenspan’s scheme required h = 0.00125 for the same accuracy.

Using the data obtained from the present scheme, the stream curves are plotted
in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14, whereas vorticity curves are plotted
in Figs. 15, 16, 17, and 18.

From the graphs, we can see that the role of the step size is limited for lower
values of R, like R = 10 and R = 50 in Figs. 3 and 4, but when the value of R
becomes 100 or 1000, the step size plays an important role, which is obvious from
Figs. 9 and 10, where there is a counterflow on the left-hand side of the channel
when step size h = 0.025. However, for larger values of h, there is no counterflow
on the left-hand side of the channel for the same value of R = 100 (see Figs. 7 and
8).
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Fig. 4 Plot of ψ for h = 0.1,
R = 50

Fig. 5 Plot of ψ for h =
0.05, R = 50

Fig. 6 Plot of ψ for h =
0.025, R = 50

In the present scheme, counterflow to the left-hand side of the channel appears
for the first time when R = 100 and the step size is as small as h = 0.025, as shown
in Fig. 9. Onur and Baydar [1] did experimental work on this problem and showed
photographs for R = 200. Our results are in agreement with those photographs.
Experimental evidence presented by Boger [2] suggests that a trailing edge vortex
is formed downstream of the step, which can be seen in our plotted stream functions
for R = 200, 300, 400, and h = 0.0125 in Figs. 13, 14, and 15. It can also be seen in
the R = 1000 case, see Fig. 10.
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Fig. 7 Plot of ψ for h = 0.1,
R = 100

Fig. 8 Plot of ψ for h =
0.05, R = 100

Fig. 9 Plot of ψ for h =
0.025, R = 100

4.1 Effect of Step Height on the Flow

We checked the effect of varying the step height on the flow, where D denotes the
height of the channel at the step (D < 1, maximum height).

When D = 0.25, it can be seen from the graph in Fig. 11 that flow is everywhere
in the channel. There is a large counterflow on the right-hand side and a small
counter flow on the left-hand side of the step as compared to the standard case when
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Fig. 10 Plot of ψ for h =
0.025, R = 1000

Fig. 11 Plot of ψ for h =
0.05, D = 0.25, R = 100

Fig. 12 Plot of ψ for h =
0.05, D = 0.75, R = 100

D = 0.5, where there is a small counter flow on the right-hand side and no counter
flow on the left-hand side of the step, as seen from Fig. 8.

On increasing the value of D to 0.75, as in Fig. 12, flow can be seen everywhere
in the channel. There is a small counterflow on the right-hand side of the step
as compared to the standard case when D = 0.5. Also, refer to Fig. 19 for other
interesting results.
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Fig. 13 Plot of ψ for h =
0.0125, R = 200

Fig. 14 Plot of ψfor h =
0.0125, R = 300

Fig. 15 Plot of ψ for h =
0.0125, R = 400

5 Conclusion

In this chapter, we used a high-order numerical scheme based on Choo and Schultz’s
work [4] to study the flow of a viscous incompressible fluid in a channel with a step.
The numerical scheme expressed the error terms of the central difference method in
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Fig. 16 Plot of ω for h =
0.05, R = 50

Fig. 17 Plot of ω for h =
0.05, R = 100

Fig. 18 Plot of ω for h =
0.05, D = 0.25, R = 1000

such a form that led to a stable fourth-order operator. The results obtained were in
good agreement with the experimental, graphical, and tabulated results obtained in
other studies.
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Fig. 19 Plot of ω for h =
0.05, D = 0.75, R = 100
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