
Chapter 7
Tool Support for Green Android
Development

Hina Anwar, Iffat Fatima, Dietmar Pfahl, and Usman Qamar

Abstract Mobile applications are developed with limited battery resources in mind.
To build energy-efficient mobile apps, many support tools have been developed
which aid developers during the development and maintenance phases. To under-
stand what is already available and what is still needed to support green Android
development, we conducted a systematic mapping study to overview the state of the
art and to identify further research opportunities. After applying inclusion/exclusion
and quality criteria, we identified tools for detecting/refactoring code smells/energy
bugs, and for detecting/migrating third-party libraries in Android applications. The
main contributions of this study are: (1) classification of identified tools based on the
support they offer to aid green Android development, (2) classification of the
identified tools based on techniques used to offer support to developers, and (3)
characterization of the identified tools based on the user interface, IDE integration,
and availability. The most important finding is that the tools for detecting/migrating
third-party libraries in Android development do not provide support to developers to
optimize code w.r.t. energy consumption, which merits further research.

7.1 Introduction

Global warming due to CO2 emissions has been one of the most prominent envi-
ronmental issues in the past decade. A part of these CO2 emissions is contributed by
the information and communication technology (ICT) industry [1]. Therefore, pro-
ducing green or sustainable products and practices has been the focus of many
researchers in the ICT community. Recently, however, the focus of research in the

H. Anwar (*) · D. Pfahl
Institute of Computer Science, University of Tartu, Tartu, Estonia
e-mail: hina.anwar@ut.ee; dietmar.pfahl@ut.ee

I. Fatima · U. Qamar
College of Electrical and Mechanical Engineering, National University of Sciences and
Technology, Islamabad, Pakistan
e-mail: iffat.fatima@ce.ceme.edu.pk; usmanq@ceme.nust.edu.pk

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_7

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_7&domain=pdf
mailto:hina.anwar@ut.ee
mailto:dietmar.pfahl@ut.ee
mailto:iffat.fatima@ce.ceme.edu.pk
mailto:usmanq@ceme.nust.edu.pk
https://doi.org/10.1007/978-3-030-69970-3_7#DOI


ICT community has shifted from optimizing the energy consumption of hardware to
optimizing the energy consumption of software [2–8], as software indirectly con-
sumes energy by controlling the equipment. An efficiently designed software might
use resources optimally, thus reducing energy consumption [9–11]. Among portable
devices, mobile phones are the most commonly used. Statistics show that the usage
of mobile devices will grow in the coming years [12], indicating an increase in the
carbon footprint.

Green software development encompasses green by software and green in soft-
ware. Green by software means using software products to make other domains of
life more sustainable. Green in software refers to the study and practice of designing,
developing, maintaining, and disposing of software products in such a way that they
have a minimal negative impact on the environment, community, economy, indi-
viduals, and technology [13, 14].

This chapter mostly focuses on green in software and summarizes the tool support
available to improve the green-ability of Android apps in the development and
maintenance phases. The term “Android development” refers to the development
of applications that are developed to operate on devices running the Android
operating system. These applications can be developed in various languages; how-
ever, in this chapter, we focus on Android development in Java. Android develop-
ment differs from traditional software development in terms of context, user
experience, and a touch-based interface. Android applications are designed for
portable devices, which have limited resources such as memory or battery. A
common struggle during Android application development is how to make the
applications efficient in terms of resource usage. Banarjee et al. summarize the
problem nicely as follows: “High computational power coupled with small battery
capacity and the application development in an energy-oblivious fashion can only
lead to one situation: short battery life and an unsatisfied user base” [15].

Previous studies have explored applications in app stores in order to define
procedures to optimize their energy consumption [16–23]. Some studies have
focused on profiling energy [24–28] consumed by applications, while others have
developed support tools [29, 30]. As compared to desktop or web applications,
Android applications contain multiple components that have user-driven workflows.
A typical Android application consists of activities, fragments, services, content
providers, and broadcast receivers. Due to the difference in architecture, the support
tools used in the development of traditional Java-based applications are not so useful
in Android application development and maintenance. Android application code can
be roughly divided into two part: custom code and reusable code. While custom code
is unique to each app, reusable code includes third-party libraries that are included in
apps to speed up the development process.

In the domain of Android application development, research has been focused on
development activities related to energy efficiency, memory usage, performance,
etc., and maintenance activities related to code smell detection and correction,
energy bug detection and correction, detection/migration of third-party libraries, etc.

Code smells are an indication of possible problems in source code or design of the
applications. Such problems can be avoided by refactoring the code [31]. However,

154 H. Anwar et al.



object-oriented code smells are different from Android-specific code smells. In
Android development, code smell can appear due to frequent development and
update cycles of applications. Some studies [32–34] have focused on identifying,
cataloguing, and profiling the energy consumption of Android-specific code smells.
Energy bugs are scenarios which cause unexpected energy drains such as preventing
the mobile device from going into the idle state even after the application execution
has completed. Such malfunctioning can cause battery drain and should be avoided
[15]. To build an energy-efficient Android application developers need to identify
and refactor code smells/energy bugs.

Third-party libraries are reusable components available to implement various
functionalities in the app, such as billing, advertisement, and networking. Up until
June 2020, the online Maven repository1 contained 344,869 unique libraries. Such a
huge supply of third-party libraries is linked to the demands and needs of developers
[35]. Almost 60% of code in Android applications is related to third-party libraries
[36]. However, these libraries could introduce various security-, privacy-,
permission-, and resource usage-related issues in applications [37]. The research
on the detection/migration of third-party libraries has many uses. Some studies have
used third-party library detection techniques for finding security vulnerabilities [38–
41] in Android apps, while others have focused on privacy leaks [42–46]. Third-
party libraries have been detected and removed as noise in clone, app repackage, and
malicious app detection studies [47–51]. Third-party libraries are detected and
removed from these studies in order to improve the accuracy of the analysis. Studies
related to the energy impact of third-party Android libraries are limited [52].

In order to build effective Android-specific support tools to aid green Android
development, we first need to understand what is already available, what is still
needed, and how the problems in existing tools can be overcome. Based on
published literature we outlined an explorative analysis of support tools available
to (1) optimize code in Android applications through code smell detection/
refactoring, and (2) optimize reusable code in Android applications through detec-
tion/migration of third-party libraries. This study extends our previous work [53]
comparing 21 tools in the following ways: we have improved search string and
extended our analysis for one more year, which gave us 30 more tools and also
additional results. We provide further information about the interface, availability,
and integrated development environment (IDE) integration of all 51 tools.

The remainder of this chapter is organized as follows. Section 7.2 presents related
work. Section 7.3 describes the methodology used to analyze the literature.
Section 7.4 presents the result of screening the publications and classification and
analysis. Section 7.5 provides a discussion to identify future research directions.
Section 7.6 provides possible threats to the validity of this study. Section 7.7
concludes the chapter by summarizing the main findings.

1https://search.maven.org/stats, statistics for central repository

7 Tool Support for Green Android Development 155

https://search.maven.org/stats


7.2 Related Work

Secondary studies related to energy efficiency in Android development are scarce.
Some [54–56] have reviewed tools and techniques for improving the quality of Java
projects in the object-oriented paradigm (with regard to performance or
maintainability).

Most Android projects use Java as the programing language; however, the
support tools and techniques used for Java projects reviewed by previous secondary
studies [54–56] cannot be effectively applied to Android projects. Therefore, many
specialized support tools have been developed to improve the quality of Android
apps with regard to maintainability, performance, security, or energy. Li et al. [57]
performed a systematic literature review to analyze static source code analysis
techniques and tools proposed for Android to assess issues related to security,
performance, or energy. The authors have reviewed work published between 2011
and 2015, consisting of 124 studies. The review concluded that the majority of static
analysis techniques only uncover security flaws in Android apps. Degu A
[58]. performed a systematic literature review to classify primary studies with a
focus on resource usage, energy consumption, and performance in Android apps.
The classification is high level based on the main research focus, type of contribu-
tion, and type of evaluation method adopted in selected studies. Their results did not
provide an in-depth review of support tools in green Android development.

Another group of studies has compared the state-of-the-art tools through exper-
iments in order to benchmark their performance, accuracy, and reporting capabili-
ties. Qiu et al. [59] provide a comparison between three static analysis tools:
FlowDroid/IccTA, Amandroid, and Droidsafe. They evaluated these tools using a
common configuration setup and the same set of benchmark applications. Results
were compared to those of previous studies in order to identify reasons for inaccu-
racy in existing tools. Corrodi et al. [60] review the state-of-the-art in Android data
leak detection tools. Out of 87 state-of-the-art tools, they executed five based on
availability. They compared these five tools against a set of known vulnerabilities
and discussed the overall performance of the tools. Ndagi and Alhassan [61] provide
a comparison of machine classifiers for detecting phishing attacks in Adware in
Android applications. This study concluded that many existing machine classifiers,
if adequately explored, could yield more accurate results for phishing detection.

Another group of studies has focused on reviewing the technique related to
security, malware, similarity, and repackaging in Android apps. Cooper et al. [62]
provide an overview of security threats posed by Android malware. They also survey
some common defense techniques to mitigate the impact of malware applications
and characteristics that are commonly found in malware applications that could
enable detection techniques. Li et al. [63] provide a literature review that summarizes
the challenges and current solutions for detecting repackaged apps. They concluded
that many existing solutions merit further research as they are tested on closed
datasets and might not be as efficient or accurate as they claim to be. Roy et al.

156 H. Anwar et al.



[64] provide a qualitative comparison of clone detection techniques and tools. They
classify, compare, and evaluate these tools.

We found some studies that have conducted controlled experiments to measure
the energy consumption of third-party libraries. For example, Wang et al. [65]
presented an algorithmic solution to model the energy minimization problem for
ad prefetching in Android apps. Rasmussen et al. [66] conducted a study to compare
the power efficiency of various methods of blocking advertisements on an Android
platform. They found many cases where ad-blocking software or methods resulted in
increased power usage. In Android applications, there could be many reasons for
long-running operations in the background that continuously consume resources.
Such operations could cause battery drain and performance degradation. Shao et al.
[67] demonstrated through an experiment that sometimes such behavior is not
intentional and is caused by third-party libraries.

However, we could not find any secondary study that provides an overview of the
state of the art w.r.t. to support tools available for detecting/migrating third-party
libraries in Android apps. To the best of our knowledge, none of the previous
secondary studies has reviewed the literature from the point of view of support
tools developed to aid green Android development. Most of the secondary studies
discussed above have covered published work until 2015 or 2017 in the object-
oriented paradigm, and many of the reviewed tools in these studies are now outdated/
obsolete. Therefore, in this study we provide a different view of the literature by
analyzing recently developed support tools for energy profiling, code optimization,
refactoring, and third-party library detection or migration in Android development to
improve energy efficiency in apps. We explore whether these support tools aid green
Android development. We also provide an overview of the techniques used in these
support tools.

7.3 Methodology

We conducted a systematic mapping study following the method described in
[68]. First, we formulated research questions, and then based on those research
questions we formulated two general search queries and conducted the search in
the following online repositories for primary publications: IEEE Xplore, ACM
digital library, Science Direct, and Springer. In this study, we cover publications
from 2014 to June 2020, as from 2014 onwards the focus of many publications has
been Android and energy-efficient app development, indicating a shift in research
focus.

7 Tool Support for Green Android Development 157



7.3.1 Research Questions

As the objective of this study is to analyze the current support tools available to
improve custom code through detection/refactoring of code smell/energy bugs and
to improve reusable code through detection/migration of third-party libraries in
Android applications, we formulated the following research questions.

RQ1: What state-of-the-art support tools have been developed to aid software
practitioners in detecting/refactoring code smells/energy bugs in Android apps?

RQ2: What state-of-the-art support tools have been developed to aid software
practitioners in detecting/migrating third-party libraries in Android apps?

RQ3: How do existing support tools compare to one another in terms of techniques
they use for offering the support?

RQ4: How do existing support tools compare to one another in terms of the support
they offer to practitioners for improving energy efficiency in Android apps?

RQ1and RQ2 aim to classify publications based on the tools they offer. RQ3 aims
to classify and analyze publications based on techniques used in the tool to offer
support to developers. RQ4 deals with the characterization of all the identified tools
in terms of the support (such as output or interface or availability) they offer to
developers to aid green Android development.

7.3.2 Search Query

We derived search terms to use in our search query from the research questions of
this study. We looked for alternatives to the search terms in publications we already
knew and refined our search terms to return the most relevant publications. We used
the “*” operator to cover possible variations on the selected search terms in the
search query. The keyword “OR” was used to improve search coverage.

Based on our previous work [53], we improved our search query and extended
our search in terms of publication years to include one more year. The first search
query is designed to retrieve publications that provide a support tool to detect/
refactor code smells/energy bugs in Android apps. The second search query is
designed to retrieve publications that provide a support tool to detect/migrate
third-party libraries in Android apps.

We did not use the search terms “mobile development,” “apps,” “optimization,”
“green,” “sustainability,” and “recommendation” in isolation as they were too high
level and produced quite a large corpus consisting of a high number of irrelevant
publications, while the search terms “resource leaks,” “API,” “tool,” “framework,”
and “technique”were eliminated to avoid being too specific. The search queries were
applied to popular online repositories (IEEE Xplore, ACM digital library, Science
Direct, and Springer) to find a dataset of relevant primary publications. In each
repository, based on available advanced search options, filters were applied to refine

158 H. Anwar et al.



the query results. Applied filters are shown in Table 7.1. The search queries were
applied to the titles, abstracts, and keywords of the publications.

Search Query 1
Android AND (energy OR code smell OR bug OR refactor* OR correct* OR detect*
OR optimiz* OR efficien*) AND NOT (environ* OR iot OR edu* OR hardware OR
home)

Search Query 2
(Android) AND (“third-party libr*” OR “third-party Android lib*” OR “libr*”)
AND NOT (environ* OR iot OR indus* OR edu* OR hardware OR home)

7.3.3 Screening of Publications

We first removed duplicate results and then defined inclusion, exclusion, and quality
criteria for further screening of search results.

7.3.3.1 Duplicate Removal

The search results from online repositories were first loaded in Zotero2 (an open-
source reference management system) to create a dataset of relevant publications.
Using the feature in Zotero, duplicate publications were removed from the dataset.
Next, we manually applied inclusion, exclusion, and quality criteria to the remaining
publications.

7.3.3.2 Inclusion Criteria

For inclusion, the selected publication should be a primary study generally related to
the software engineering domain with a focus on third-party libraries or code smells
or energy bugs in Android apps. A tool/automated technique for third-party library/
code smell/energy bug detection, modification, or replacement was presented in the
publication to support Android development. We considered only conference and
journal articles published in English.

Table 7.1 Search query filter Filter Value

Publication year 2014–2020 (up until June)

Content-type Journal Article, Conference Paper

2https://www.zotero.org/

7 Tool Support for Green Android Development 159

https://www.zotero.org/


7.3.3.3 Exclusion Criteria

Publications that were unrelated to Android development or third-party library/code
smell/energy bugs in Android apps were excluded. The publications that focused
only on hardware, environmental, security, privacy, networks, malware, clones,
repackaging of apps, obfuscation issues, iOS, or present secondary data were also
excluded. Work presented in a thesis or a book chapter is usually published in
relevant journals or conferences as well. Therefore, doctoral symposium papers,
magazine articles, book chapters, work-in-progress papers, and papers that were not
in English were excluded as well.

7.3.3.4 Quality Criteria

The quality criteria applied to selected publications are shown in Table 7.2. Abstracts
of the publications and structure of the publication were inspected for further quality
assessment. If a quality rule was true for a publication, it was awarded full points;
otherwise, no points were awarded. In case a rule partially applied to a publication,
half points were awarded. After applying all five quality rules, the points were added
to get a final quality score for a publication. A maximum quality score of 3 could be
assigned to a publication. If a publication was below a total quality score of 2, it was
removed from the results.

7.3.4 Classification and Analysis

To answer RQ1–RQ3, we identified the main keywords of the selected publications
along with the commonly used terms in the abstracts to define categories of support
tools. Research methodology and results of selected publications were additionally
studied when needed. We kept extracted data in Excel spreadsheets for further
processing. During data extraction, if there was a conflict of opinion, it was
discussed among the authors until a consensus was reached. To answer RQ1 and

Table 7.2 Quality assessment criteria

ID Description Rating

1 Does the publication clearly state contributions that are directly related to third-
party libraries/code smells/energy bugs in Android apps?

0.5

2 Is the contributions related to green in Android development? 0.5

3 Is the contributions a tool/automated technique that could be used in Android
development/maintenance?

1

4 Is the research method adequately explained? 0.5

5 Are threats to validity and future research directions discussed separately? 0.5

Total 3

160 H. Anwar et al.



RQ2, a bottom-up merging technique was adopted to build our own classification
schemes (see Tables 7.3 and 7.4). Once classification schemes were established, we
extracted data from each selected publication to identify its main contribution and
assigned the tool mentioned in the publication to a category based on the classifica-
tion scheme. To answer RQ3, a classification scheme was needed to classify
techniques used in support tools for offering support to aid Android development.
We used the bottom-up approach to build this classification scheme by combining
the specialized analysis methods/techniques into more generic higher-level tech-
niques. The identified generic techniques along with their definitions are described in
Tables 7.5 and 7.6. Once we had established the classification schemes, we extracted
data from the abstract and research methodology of each selected publication and
assigned it to a category defined in the classification schemes.

To answer RQ4, we extracted data form each selected publication to gather
information about the kind of support the identified tool offers. We compare these
tools based on the inputs of the tool, outputs of the tool, code smells/energy bugs/
third-party libraries coverage, interface type, integrated development environment
(IDE) support, and availability. In general, a code smell is defined as “a surface
indication that usually corresponds to a deeper problem in the system” [69] and an
energy bug is defined as an “error in the system (application, OS, hardware,
firmware, external conditions or combination) that causes an unexpected amount
of high energy consumption by the system as a whole” [70]. A third-party library is a
reusable component related to specific functionality that can be integrated into the
application to speed up the development process. A third-party library could be for
advertising, analytics, Image, Network, Social Media, Utility, etc. [71]. In the light

Table 7.3 Categories of support tools (RQ1)

ID Category Description

CP Profiler A software program that measures the energy consumption of an Android app
or parts of apps

CD Detector A software program that only identifies and detects energy bugs/code smells in
an Android app

CO Optimizer A software program that identifies energy bugs/code smells as well as refactor
source code of an Android app to improve energy consumption

Table 7.4 Categories of support tools (RQ2)

ID Category Description

CI Identifier A software program that only identifies and detects third-party libraries in an
Android app

CM Migrator A software program that identifies third-party libraries as well as helping in
updating or migrating the third-party libraries (to an alternative library or
version) in the source code of an Android app

CC Controller A software program that identifies third-party libraries to control, isolate, or
de-escalate privileges and permissions granted to third-party libraries in an
Android app

7 Tool Support for Green Android Development 161



of these definitions, we looked for Android-specific code smells, energy bugs, and
third-party libraries in the studies.

7.4 Results

In this section, we present the result of the mapping study. The list of selected
publications and additional details about code smells/energy bugs covered by sup-
port tools are shown in a separate file (additional materials).3

Table 7.5 Categories of techniques used in support tools for code smell/energy bugs (RQ3)

ID Technique Definition

T1 Byte Code
Manipulation

A technique that injects code in the Smali files of the app under test.
The injected code is either a log statement or an energy evaluation
function. These statements help determine the part of the source code
that consumes a specific amount of energy at runtime.

T2 Code
Instrumentation

A technique that instruments the app, using instrumented test cases
that are capable of running specific parts of the app, in such a way
that it is run in a specific environment while calling known methods/
classes of the app under test. It uses finite state machines and device-
specific power consumption details to measure energy.

T3 Logcat Analysis A technique that uses system-level log files to obtain energy con-
sumption information provided by the OS for the app under test.
These logs are compared with application-level logs to give graphical
information about the energy consumption of the app.

T4 Static Source Code
Analysis

A technique that uses the source code of the app and analyzes it using
one or a combination of the following methods: control flow graphs
analysis, point-to-analysis, inter-procedural, intra-procedural, com-
ponent call analysis, abstract syntax tree traversal, or taint analysis.

T5 Search-Based
Algorithms

A technique that uses a multi-objective search algorithm to find
multiple refactoring solutions and the most optimal solution is
selected as final refactoring output by iteratively comparing the
quality of design and energy usage.

T6 Dynamic Analysis A technique based on the identification of information flow between
objects at runtime for the detection of vulnerabilities in the app under
test. It monitors the spread of sensory data during different app states.

3Additional material: https://figshare.com/s/da429977adc4e928fd64

162 H. Anwar et al.

https://figshare.com/s/da429977adc4e928fd64


7.4.1 Results of Screening

Search Query 1 (Support Tools for Code Smell/Energy Bugs)
As a result of running search query 1 and applying filters (see Table 7.1) to search
results, 2334 publications were found from the selected online repositories. These
publications were loaded into the Zotero software for the screening and removal of
duplicates, and the total number of publications was reduced to 2241 after duplicate
removal. Inclusion and exclusion criteria were applied to the remaining publications,
and the number was reduced to 575. We read abstracts of these publications and
looked at the structure to assign them a quality score based on quality criteria. After
applying the quality criteria, the number of selected publications was reduced to
24 (see Tables 7.7, 7.8, and 7.9).

Search Query 2 (Support Tools for Third-Party Libraries)
As a result of running search query 2 and applying filters (see Table 7.1) to search
results, 545 publications were found from the selected online repositories. These
publications were loaded into the Zotero software for the screening and removal of
duplicates, and the total number of publications was reduced to 521 after duplicate

Table 7.6 Categories of techniques used in support tools for third-party libraries (RQ3)

ID Technique Description

T7 Feature Similarity A technique that uses machine learning to extract code clusters or
train classifiers by using feature hashing or similarity metrics or
pattern digest or similarity digest on apps and third-party libraries
code in order to identify and classify third-party libraries.

T8 Whitelist
Comparison

A technique that compares third-party library names/versions/
package information to whitelist in order to detect third-party
libraries.

T9 API Hooking A technique that intercepts or redirects API calls at various levels in
order to regulate permission or policy-related operations.

T10 Module Decoupling A technique to divide code into modules and extract code features
such as package name, package structure, and inheritance relation-
ships for clustering/classification to detect library.

T11 Process Isolation A technique to isolate untrusted components in the operating sys-
tem. This technique requires system-level modification.

T12 Class Profile
Similarity

A technique to extract (strict or relaxed) profiles from libraries and
apps code based on structural hierarchies. Based on similarity
(exact or fuzzy) between these profiles library is detected.

T13 Collaborative
Filtering

A technique to predict or recommend third-party libraries based on
feature vectors and their similarity against a set of similar apps or
neighborhood apps. It includes model-based approaches (such as
matrix factorization), memory, and item-based approaches.

T14 Natural Language
Processing

A technique used to identify or recommend third-party libraries
based on textual descriptions. It includes techniques such as word
embedding, skip-gram model, continuous bag-of-words model,
domain-specific relational and categorical tag embedding, and topic
modeling.

7 Tool Support for Green Android Development 163



removal. Inclusion and exclusion criteria were applied to the remaining publications
and the number was reduced to 131. We read abstracts of these publications and
looked at the structure to assign them a quality score based on quality criteria. After
applying the quality criteria, the number of selected publications was reduced to
27 (see Tables 7.10, 7.11, and 7.12).

Table 7.7 Number of studies extracted per online repository (search query 1)

Sr. Repo. # of papers Conference papers Journal articles

1 IEEE Xplore 1170 910 260

2 ACM Digital library 483 459 24

3 Springer 595 362 231

4 Science Direct 86 4 82

Table 7.8 Number of articles per screening step (search query 1)

Sr. Step in the screening of publications # of publications

1 Search string results after applying filters 2334

2 Remove duplicates 2241

3 Apply inclusion and exclusion criteria 575

4 Apply quality criteria 24

Table 7.9 Quality score assigned to each selected publication (search query 1)

Publication ID Quality score

P2, P11, P12, P14, P16, P17, P19, P20 2

P5, P6, P7, P13, P21, P24 2.25

P1, P4, P8, P9, P10, P15, P22, P23 2.5

P3, P18 2.75

Table 7.10 Number of studies extracted per online repository (search query 2)

Sr. Repo. # of papers Conference papers Journal articles

1 IEEE Xplore 312 296 12

2 ACM Digital library 177 157 20

3 Springer 28 22 6

4 Science Direct 28 0 28

Table 7.11 Number of articles after applying filters and screening steps (search query 2)

Sr. Step in the screening of publications # of publications

1 Search string results after applying filters 545

2 Remove duplicates 521

3 Apply inclusion and exclusion criteria 131

4 Apply quality criteria 27

164 H. Anwar et al.



7.4.2 Classification and Analysis

RQ1: What State-of-the-Art Support Tools Have Been Developed to Aid Soft-
ware Practitioners in Detecting/Refactoring Code Smells/Energy Bugs
in Android Apps?
To answer RQ1, the classification scheme defined in Table 7.3 (cf. Sect. 7.3.4) was
used and the selected publications were divided into three categories, i.e., (1) “Pro-
filer,” (2) “Detector,” and (3) “Optimizer,” based on the support tool they offer to aid
green Android development. Table 7.13 gives an overview of the distribution of
selected publications in each category, along with the total number of tools in each
category. Figure 7.1 shows the number of publications each year. The colors in the
bars indicate the number of tools in each category each year from 2014 to 2020. We
can see a decrease in the number of “Profiler” tools while there is an increase in the
number of “Optimizer” tools. In 2019 and 2020 (until June), no new “Detector” tool
was published.

Table 7.12 Quality score assigned to each selected publication (search query 2)

Publication ID Quality score

P31, P43 2

P26, P29, P33, P34, P35, P36, P39, P40, P48, P49 2.25

P25, P27, P28, P30, P32, P37, P38, P41, P42, P44, P45, P46, P47, P50, P51 2.5

Table 7.13 Distribution of studies in each category (search query 1)

ID Selected publications # Tools

CP P6, P14, P16, P12, P13, P20, P19 7

CD P1, P3, P4, P5, P8, P9, P7, P17 8

CO P10, P11, P15, P18, P2, P21, P22, P23, P24 9

Fig. 7.1 Publications per year per category (search query 1)

7 Tool Support for Green Android Development 165



RQ2: What State-of-the-Art Support Tools Have Been Developed to Aid Soft-
ware Practitioners in Detecting/Migrating Third-Party Libraries
in Android Apps?
To answer RQ2, the classification scheme defined in Table 7.4 (cf. Sect. 7.3.4) was
used and the selected publications were divided into the categories (1) “Identifier,”
(2) “Migrator,” and (3) “Controller,” based on the support tool they offer to aid
Android development. Table 7.14 gives an overview of the distribution of selected
publications in each category, along with the total number of tools in each category.
Figure 7.2 shows the number of publications each year. The colors in the bars
indicate the number of tools in each category each year from 2014 to 2020 (until
June). We can see at least one “Identifier” and “Controller” tool each year. In
addition, we can see an increase in the number of “Migrator” tools in 2019 and 2020.

RQ3: How Do Existing Support Tools Compare to One Another in Terms
of Techniques They Use for Offering the Support?
To answer RQ3, we identify techniques used in each tool for improving the energy
efficiency of apps. Tables 7.15 and 7.16 give an overview of tools and techniques

Table 7.14 Distribution of publications in each category (search query 2)

ID Selected publications # Tools

CI P26, P27, P29, P30, P31, P32, P33, P37, P40, P41, P42, P44, P47, P48, P49 16

CM P35, P45, P50, P51 4

CC P25, P28, P34, P36, P38, P39, P43, P46 7

8
7

6
5

4

3
2

1

0

N
O

. O
F

 P
U

B
LI

C
A

T
IO

N
S

2014 2015 2016 2017 2018 2019 2020
YEAR OF PUBLICATION

Identifier Migrator Controller

Fig. 7.2 Publications per year per category (search query 2)

Table 7.15 Overview of support tools (for code smell/energy bug detection and refactoring)
showing the technique used for offering support to developers

Techniques

Ct. T1 T2 T3 T4 T5 T6

CP P6, P16 P12, ‘P13, P19 P14, P20 – – P17

CD – – P1, P3, P7, P8, P9, P4, P5 – –

CO – – – P11, P21, P2, P10, P22, P23, P24 P15 P18

166 H. Anwar et al.



along with reference to selected publications. Based on Table 7.15, we observed that
no tool in any category used a combination of techniques. Each tool could be easily
classified into exactly one category of techniques (defined in Sect. 7.3.4). However,
in Table 7.16, many tools used a combination of techniques such as module
decoupling and feature similarity, or collaborative filtering and natural language
processing.

As a result of fine-tuning search query 1, we were able to identify three new
“Optimizer” tools [P22, P23, and P24] which used static source code analysis to
refactor and optimize the application code. See additional materials3 for more details
on techniques used in the “Profiler,” “Detector,” and “Optimizer” categories.

Identifier “Identifier” tools mostly used feature similarity or module decoupling or
both techniques to detect third-party libraries. The authors of [P26] used similarity
digests (which are similar to standard hashes) and compared them against a database
consisting of original compiled code of third-party libraries. The authors of [P42]
also used similarity digests to measure the similarity between data objects. The
authors of [P49] used design pattern digests, fuzzy signatures, and fuzzy hash to
match design patterns from app and library code. The authors of [P27 and P29]
identified third-party libraries by decoupling an app into modules using package
hierarchy clustering and clustering based on locality sensitive hashing, respectively.
The authors of [P32 and P44] decoupled apps into modules to extract package
dependencies for identifying third-party libraries. The authors of [P33, P37 and
P40] used a combination of module decoupling and feature hashing/digests to
provide a list of detected third-party libraries. The authors of [P47] used whitelist-
based detection for non-obfuscated4 apps and used motifs subgraph-based detection
for obfuscated apps. The authors of [P31] used whitelist-based detection by com-
paring library name and package information against a list of commonly used third-
party libraries. The authors of [P31, P41, and P48] extracted method signatures and

Table 7.16 Overview of support tools (for third-party library detection and migration) showing the
technique used for offering support to developers

Techniques

Ct. T7 T8 T9 T10 T11 T12 T13 T14

CI P26, P42,
P49, P33,
P37, P40

P31,
P47

P27, P29, P32,
P44, P33, P37,
P40, P47

P30,
P41,
P48

CM P45 P35,
P51

P35,
P50

CC P34, P36,
P38, P39,
P43, P46

P28 P25

4Code obfuscation is used to conceal or obscure the code in order to avoid tempering.

7 Tool Support for Green Android Development 167



package hierarchy structures from libraries to build profiles per library and used
these profiles for third-party library identification.

Migrator “Migrator” tools mostly used a combination of collaborative filtering and
natural language processing techniques. The authors of [P35] used collaborative
filtering in combination with topic modeling (applied to the textual description in
readme files). Based on results of topic modeling, similar apps were identified, and
the set of third-party libraries extracted from these similar apps were then used to
recommend libraries to developers. The authors of [P50] applied word embedding
and domain-specific relational and categorical knowledge on stack overflow ques-
tions to recommend alternative libraries. The authors of [P51] used collaborative
filtering and applied the matrix factorization approach to neutralize bias while
recommending libraries. The authors of [P45] used the “LibScout” tool to extract
library profiles. These profiles were then used to determine if a library version should
be updated or not.

Controller “Controller” tools mostly used API hooking techniques to provide
control over library privileges based on policy. The authors of [P34] intercepted
and controlled framework APIs. The authors of [P36] intercepted system APIs to
extract runtime library sequence information. The authors of [P38] tracked the
execution entry of the module and all related asynchronous executions at thread
level. The authors of [P39] used the tool “Soot Spark” to get call graphs in order to
identify Android APIs that leak data (based on a given policy). The authors of [P43]
used binder hooking, in-VM API hooking, and GOT (global offset table) hooking to
regulate permission and file-related operation of third-party libraries. The authors of
[P46] intercepted permissions protected calls and checked them against a compiled
list of third-party libraries in order to regulate privileges. The authors of [P28]
extracted code features and package information to train a classifier to detect libraries
and grant them privileges. The authors of [P25] used system-level process isolation
in order to separate third-party library privileges.

Techniques used to provide support by the various categories of support tools for
detecting and refactoring code smells/energy bugs are as follows:

“Profiler” tools typically use a variety of techniques to measure energy consumption but
none of the tools in this category uses static source code analysis.

Almost all “Detector” and “Optimizer” tools use static source code analysis of APK/SC
based on a predefined set of rules.

Techniques used to provide support by the various categories of support tools for
detecting and migrating third-party libraries are as follows:

“Identifier” tools use a variety of techniques for detecting third-party libraries. However,
feature similarity and/or module decoupling techniques are more frequent.

Almost all “Migrator” tools used collaborative filtering and/or natural language
processing techniques to recommend library migration.

Almost all “Controller” tools used API hooking techniques to control privileges/permis-
sions related to third-party libraries.

168 H. Anwar et al.



RQ4: How Do Existing Support Tools Compare to One Another in Terms
of the Support They Offer to Practitioners for Improving Energy Efficiency
in Android Apps?
To answer RQ4, we first list all the support tools for code smell/energy bug
detection/correction (see Table 7.17) and compare them in terms of input, output,
user interface, integrated development environment (IDE) integration, availability,
and code smell/energy bug coverage. Second, we list all the support tools for
detecting/migrating third-party libraries (see Table 7.18) and compare them in
terms of input, output, library coverage, user interface, availability, and IDE inte-
gration support.

In Tables 7.17 and 7.18, the “input” column provides information about the input
for each tool. The “output” column provides information about the support the tool
offers based on the input. The “UI” column provides information about the user
interface of the tool. The “open source” column provides information about tool
availability for usage/extension. The “IDE” column (in Table 7.17) provides infor-
mation about the IDE integration capability of tools. The “TPL Type” column
(in Table 7.18) provides information about the third-party library (TPL) coverage
of the tool.

Support Tools for Code Smell/Energy Bug Detection and Refactoring
In Table 7.17, we provide a list of all the tools identified in the “Profiler,” “Detector,”
and “Optimizer” categories. As a result of fine-tuning search query 1, we were able
to identify three new “Optimizer” tools [P22, P23, P24] that were not included in our
previous work [53]. For all the 24 tools listed in Table 7.17 we provide additional
information related to interface, availability, and IDE integration that was not
included in previous work [53].

Studies in the category “Profiler” offer support to the practitioners by providing
tools that can measure the energy consumed by the whole/parts of an app or device
sensors used in the apps. The measured information is usually presented to practi-
tioners as graphs for energy consumption over time. Studies in the “Profiler”
category do not recommend when, where, and how practitioners can use the
information from these graphs during development to improve the energy consump-
tion of their apps. Studies in the category “Detector” offer support to practitioners by
developing tools that present as output lists of energy bugs/code smells causing a
change in energy consumption of apps. Studies in the category “Optimizer” offer
support to practitioners by developing tools that present as output refactored source
code of apps optimized for energy. The studies in this category do not explicitly give
the recommendation to the developers about how to optimize the source code for
energy efficiency as the tools automatically refactor the code.

Out of the 24 tools listed in Table 7.17, only seven are open source. Out of the
seven open-source tools, three are “Detector” tools, and four are “Optimizer” tools.
Most of the tools do not offer IDE integration. Four tools in “Optimizer” category
support integration with Eclipse IDE [P11, P18, P21, P24] while one tool [P22]
supports integration with Android Studio IDE. Out of 24 tools, 12 offer command-
line interface (CMD) [P1, P3, P5, P9, P7, P10, P13, P15, P17, P20, P22, P23], eight

7 Tool Support for Green Android Development 169



Table 7.17 List of support tools in “Profiler,” “Detector,” and “Optimizer” categories along with
information about their inputs and outputs, user interface, IDE support, and availability

Ct. Tool Input Output UI IDE
Open
source ID

CP Orka APK ECG GUI No No P6

SEPIA AE ECG GUI No No P12

Mantis PBC Program CRC
predictors

CMD No No P13

AEP* SL,
PID
via
ADB

ECG GUI No No P14

E-Spector SL,
AL
via
ADB

ECG GUI No No P16

SEMA PID,
MVC

Log of EC CMD No No P20

Keong et. al SC ECG GUI + CMD No No P19

CD Wu et al. SC List of energy bugs CMD No No P1

Kim et al. PBC List of energy bugs CMD No No P3

Statedroid APK List of energy bugs CMD No No P5

PatBugs SC List of detected
warnings

NS No No P8

SAAD APK List of energy bugs CMD No No P9

aDoctor SC List of code smells GUI + CMD No Yes P4

GreenDroid PBC,
CF

List of energy bugs +
severity level

CMD No Yes P17

Paprika APK,
PM

List of code smells CMD No Yes P7

CO DelayDroid APK Refactored APK NS No No P2

HOT-
PEPPER

APK Most energy efficient
APK, Refactored SC,
and List of refactoring

CMD No Yes P10

Asyncdroid SC Refactored SC GUI Eclipse No P11

EARMO APK Refactored APK CMD No Yes P15

EnergyPatch APK Refactored APK GUI Eclipse No P18

Nguyen
et al.

SC Refactored SC GUI Eclipse No P21

Chimera SC Refactored APK CMD Android
Studio

No P22

ServDroid APK Refactored APK CMD No Yes P23

Leafactor SC Refactored APK file GUI Eclipse Yes P24

Ct. category, SC source code, APK android package kit, PBC program byte code, SL system log
files, AL application log files, PID process ID, ADB android debug bridge, CRC computational
resource consumption, AE application events, CF configuration files, MVC measurements of
voltage and current, ECG energy consumption graph, SM software metrics values, PM playstore
metadata, GUI graphical user interface, CMD command line, EC energy consumption

170 H. Anwar et al.



Table 7.18 List of support tools in “Identifier,” “Migrator,” and “Controller” categories along with
information about their inputs and outputs, library coverage, UI, and availability

Ct. Tool Input Output
TPL
Type UI

Open
source Ref

CI Duet APK Library integrity
pass/fail ratio

Java NS No P26

AdDetect APK List of detected TPLs Java-
Ad

NS No P27

AnDarwin APK Detect and exclude
TPLs + Set clone or
rebranded apps

Java NS No P29

LibScout TPL .jar/.
aar + APK

Presence of given
TPL based on simi-
larity score

Java CMD Yes P30

DeGuard APK De-obfuscated APK
(containing detected
TPLs)

Java GUIa Yes P31

LibSift APK List of detected TPLs Java NS No P32

LibRadar APK List of detected TPLs
sorted by popularity
+ info about TPLs

Java GUIa Yes P33

LibD APK List of detected TPLs Java CMD Yes P37

Ordol APK List of detected TPL
versions + similarity
score.

Java NS No P40

LibPecker TPL name +
APK

Presence of given
TPL based on the
similarity score

Java NS No P41

Orlis APK List of detected TPLs Java NS Yes P42

PanGuard APK List of detected TPLs Java GUIa No P44

He et al. APK List of detected TPLs
+ risk assessment

Java NS No P47

Feichtner
et al.

APK/TPL List of detected TPLs
and versions + simi-
larity score

Java CMDb Yes P48

DPAK APK/
Android jar

List of detected TPLs Java CMDb No P49

CM AppLibRec SC List of recommended
TPLs

Java NS No P35

Appcommune APK Tailored app without
TPLs and updated/
customized TPLs

Java GUIc No P45

SimilarTech TPL name List of recommended
TPLs + information
about usage

Java GUIa No P50

LibSeek APK List of recommended
TPLs

Java NS No P51

(continued)

7 Tool Support for Green Android Development 171



tools offer graphical user interface (GUI) [P6, P11, P12, P14, P16, P18, P21, P24],
and two tools offer both [P4, P19], while for the rest of them information about
interface is not specified in the publications.

See additional material3 for details about definitions of code smells/energy bugs
covered by tools in the “Detector” and “Optimizer” categories. Figure 7.3 shows the
Android energy bug coverage of tools in the “Detector” and “Optimizer” categories.
The Android energy bugs are shown on the horizontal axis. The percentage of tools
in the “Detector” and “Optimizer” categories covering Android energy bugs is
shown on the vertical axis. We can see that Android energy bugs “TMV,” “TDL,”
“UL,” “UP,” and “VBS” are detected by 13% of the tools, whereas “RL,” “WB,” and
“NCD” are detected by 75%, 50%, and 38% of the tools in the “Detector” category
respectively. None of the tools in the “Optimizer” category covers. “TMV,” “TDL,”

Table 7.18 (continued)

Ct. Tool Input Output
TPL
Type UI

Open
source Ref

CC NativeGuard APK Split original APK
into Service APK and
Client APK

Native CMD No P25

Pedal APK Repackaged APK
with privilege
de-escalated for
detected TPLs

Java-
Ad

GUIc No P28

LibCage SC + list of
permissions
required by
TPLs

Deny unnecessary
TPL permission on
runtime

Java+
Native

NS No P34

Zhan et al. SC + Policy Grant or deny per-
missions to TPLs
based on policy

Java NS No P36

Perman APK Grant or deny per-
missions to TPLs
based on policy

Java GUIc No P38

SurgeScan TPL bytecode
+ Android.jar
+ policy

Dex and jar files of
TPL with the policy
implemented

Java NS No P39

AdCapsule SC + policy Grant or deny per-
missions to TPLs
based on policy

Java-
Ad

NS No P43

Reaper APK Grant or deny per-
missions to TPLs
based on user
preference

Java +
Native

GUIc Yes P46

Ct. category, UI user interface, SC source code, APK android package kit, TPL third-party libraries,
GUI graphical user interface, CMD command-line interface, NS not specified in publication
aWeb service
bExecutable jar
cApp on Android device

172 H. Anwar et al.



“UL,” and “UP” energy bugs. On the other hand, energy bugs “IB,” “OLP,” “VHB,”
and “EMC” are covered by tools in the “Optimizer” category, whereas none of the
tools in the “Detector” category covers them. “RL” and “VBS” energy bugs are
detected by 44% of the tools in the “Optimizer” category.

Figure 7.4 shows the Android code smell coverage of tools in the “Detector” and
“Optimizer” categories. The Android code smells are shown on the vertical axis. The
percentage of tools in the “Detector” and “Optimizer” categories covering Android
code smells is shown on the horizontal axis. We can see that Android code smells
“ERB” and “VHP” are not detected by any tool in the “Detector” category, whereas
“LWS,” “LC,” “RAM,” “PD,” “ISQLQ,” “IDFP,” “DW,” “DR,” and “DTWC” are
not detected by any of the tools in the “Optimizer” category. Android code smells
such as “IOD,” “HBR,” “HSS,” “HAT,” “IWR,” “UIO,” “BFU,” “UHA,” “LWS,”
“LC,” “SL,” “RAM,” “PD,” “NLMR,” “MIM,” “LT,” “IDS,” “IDFP,” “DW,”
“DR,” and “DTWC” are detected by 13–25% of the tools in the “Detectors”
category.

Typical support given by the various categories of support tools for detecting and
refactoring code smells/energy bugs are as follows:

“Profiler” tools support developers by visualizing the energy consumption of the whole app
or parts of it.

“Detector” tools support developers with lists of energy bugs and code smells to be
manually fixed by the developer for energy improvement.

“Optimizer” tools support developers by automatically refactoring APK/SC versions
based on predefined rules.

Fig. 7.3 Percentage of the tools in “Detector” and “Optimizer” categories that can detect Android
energy bugs (RL resource leak, WB wake-lock bug, VBS vacuous background services, IB immor-
tality bug, TMV too many views, TDL too deep layout, NCD not using compound drawables, UL
useless leaf, UP useless parent, OLP obsolete layout parameter, VHB view holder bug, EMC
excessive method calls)

7 Tool Support for Green Android Development 173



Support Tools for Third-Party Library Detection and Migration
In Table 7.18, we provide a list of all the tools identified in the “Identifier,”
“Migrator,” and “Controller” categories. Publications in the category “Identifier”
offer support to practitioners by providing tools that detect third-party libraries
present in the apps. The information is usually presented to practitioners as a list
of detected libraries along with their version/similarity scores. Publications in the
category “Migrator” offer support to practitioners by developing tools that present as
output lists of recommended third-party libraries. Publications in the category
“Controller” offer support to practitioners by developing tools that present as output
policy-based privilege/permission control over third-party libraries. Most tools in the
“Identifier,” “Migrator,” and “Controller” categories provide coverage for all types
(advertisement, social, network, billing, analytics, etc.) of Java-based third-party
libraries. Some tools such as AdDetect (CI) or Pedal (CC) cover only the
advertisement-related third-party libraries. NativeGuard (CC) provides coverage
for only native third-party libraries. Reaper (CC) and LibCage (CC) provide cover-
age for native and Java-based third-party libraries. For many tools listed in

Fig. 7.4 Percentage of code smells detected by each tool in “Detector” and “Optimizer” categories.
DTWC data transmission without compression, DR debuggable release, DW durable wake-lock,
IDFP inefficient data format and parser, IDS inefficient data structure, ISQLQ inefficient SQL
query, IGS internal getter and setter, LIC leaking inner class, LT leaking thread, MIM member
ignoring method, NLMR no low memory resolver, PD public data, RAM rigid alarm manager, SL
slow loop,UC unclosed closeable, LC lifetime containment, LWS long wait state,UHA unsupported
hardware acceleration, BFU bitmap format usage, UIO UI overdraw, IWR invalidate without rect,
HAT heavy AsyncTask, HSS heavy service start, HBR heavy broadcast receiver, IOD init ONDraw,
ERB early resource binding, VHP view holder pattern

174 H. Anwar et al.



Table 7.18, interface type was not specified in publications, while others provide
either a command-line interface (CMD) or a graphical user interface (GUI). Out of
the 27 tools listed in Table 7.18, only seven tools are open source. Out of the seven
open-source tools, six tools [P30, P31, P33, P37, P42, P48] are “Identifier” tools and
one tool [P46] is a “Controller” tool. None of the tools listed in Table 7.18 provides
IDE integration support.

The tools in the “Identifier,” “Migrator,” and “Controller” categories do not detect/update/
control/migrate third-party libraries to optimize the source code of Android applications for
energy efficiency.

Typical support given by the various categories of support tools for detecting and
migrating third-party libraries are as follows:

“Identifier” tools support developers by detecting third-party libraries present in apps.
“Migrator” tools support developers with lists of recommended third-party libraries

along with the mapping information of these libraries for updating/migrating them.
“Controller” tools support developers by separating third-party library privileges from

the app privileges based on policy defined by developers.

7.5 Discussion

In this section, we discuss the results of the mapping study to identify future research
opportunities.

7.5.1 Support Tools for Code Smell/Energy Bug Detection
and Refactoring

We observed that most of the support tools in the “Profiler,” “Detector,” and
“Optimizer” categories are not open source, making them inaccessible to many
developers. On top of that, most of these support tools do not support IDE integra-
tion. Due to the rapid development process of Android applications, developers are
more likely to use tools that are integrated with the IDEs and share the same interface
design. The current state-of-the-art tools could be extended to integrate with other
industrially famous code analyzers like Android Lint, Check Style, Find Bugs and
PMD. Each tool in “Detector” and “Optimizer” category provided a limited coverage
over Android-specific code smells/energy bugs. The industry relevance of the
current state-of-the-art support tools might not be obvious because they are not
evaluated in industrial settings. In principle, if developers spent time and effort to
learn one such tool they still might not be able to identify many code smells/energy
bugs in their code, unless they use a combination of these tools to get complete
coverage. Most tools in the “Detector” and “Optimizer” categories used static source
code analysis, which indicates that dynamic issues such as those related to

7 Tool Support for Green Android Development 175



asynchronous tasks are not covered by these tools. For the development of better
support tools, hybrid techniques encompassing both dynamic and static analysis
could be used. In addition, non-intrusive techniques could be used to collect software
metrics for identifying code smells/energy bugs. The results from the selected
publications could be expanded to include cross-project predictions and corrections
for energy bugs. Analysis and inclusion of multi-threaded programming approaches
in the experiments could be another direction for future researchers.

7.5.2 Support Tools for Third-Party Library Detection
and Migration

We observed that none of the support tools in the “Identifier,” “Migrator,” and
“Controller” categories provides support for IDE integration and many of these tools
are also not open source, making them inaccessible to developers. We also observed
the none of the support tools in these categories offers any support to developers to
aid green Android development. One possible reason could be that so far research
related to third-party library identification is mostly used in clone detection, detec-
tion of rebranded/similar/malicious apps, and detection of issues related to security,
privacy, or data leaks (see related work). However, there is a gap in the literature
regarding support tools that identify/update/recommend third-party libraries to aid
green Android development. Anwar et al. [52] have investigated the energy con-
sumption of third-party libraries in Android applications, indicating that the energy
consumption of alternative third-party libraries varies significantly in various use
cases. Rasmussen et al. [66] showed that blocking advertisements in Android apps
reduces energy consumption. However, these studies have only focused on a small
subset of network- and advertisement-related libraries. Energy consumption of other
types of libraries such as social, analytical, or utility has not yet been explored, and
merits further research. Data from such studies could be used by tool developers to
recommend energy-efficient libraries to developers during development. Support
tools in the “Migrator” category are good candidates for this type of research as the
collaborative filtering and natural language processing techniques could supplement
the data gathered from energy reading of third-party libraries. Such information
could be useful in mapping the function of one library to another alternative library
for a smooth migration. Support tools in the “Identifier” category generally use two
techniques: (a) whitelist-based and (b) similarity-based. Tools that used whitelist-
based approaches are fast due to a smaller feature set, and thus could perform better
in large-scale analysis. However, this technique cannot identify third-party libraries
without prior knowledge. On the other hand, tools that use similarity-based
approaches such as feature hashing use a larger feature set and can identify third-
party libraries without prior knowledge. Due to the extended feature set, these tools
might be more accurate but time-consuming. Many tools in the “Identifier” category
(such as “LibD,” “LibScout,” “LibRadar,” or “AdDetect”) consider code

176 H. Anwar et al.



obfuscation during library detections in order to give accurate results. However, not
many tools are resilient against code shrinking as they rely on package hierarchies.
Support tools in the “Controller” category rely on API hooking techniques which
separate libraries from app code. Such tools could also benefit from using an access
control list to split privileges. Because current techniques require system-level
changes, this makes the deployment of “Controller” tools difficult.

7.6 Threats to Validity

The search queries and classification of selected publications could be biased by the
researcher’s knowledge. We mitigated this threat by defining the inclusion, exclu-
sion, and quality criteria for the selection of the publications. Conflicting opinions
were discussed among authors of this study until a consensus was reached. In order
to avoid false-positives and false-negatives in the search results, we used the
wildcard character (*) to maximize coverage and the keyword “AND NOT” to
remove irrelevant studies. We did not use the terms “energy” or “efficiency” in
combination with “Android” in the second search query, as we had already executed
this combination in search query 1. The results of the search strings were manually
checked and further refined by the authors. Online repositories continuously update
their databases to include new publications, and therefore executing the same queries
might yield some additional results that were not included in this study. We already
knew about many relevant studies and we recaptured almost 90% of them when we
executed the search queries. On each online repository the search mechanism is
slightly different and we tried to keep the queries as consistent as possible, but there
might be a slight difference due to the difference in search mechanism provided by
different online repositories. Some selected publications use the terms code smells
and energy bugs interchangeably, which could affect the classification. To mitigate
this threat, we used the selected definitions (cf. Sect. 7.3.4) for code smells and
energy bugs to correctly classify the studies in the right category.

We have excluded publications that did not focus on Android development yet
still contributed a tool for detecting/recommending third-party libraries. Maven
central repository contains a huge quantity of Java-based third-party libraries that
can be used in any Java-based application. However, in this study, we focused
particularly on the support tools for energy profiling, code optimization and
refactoring of code smells/energy bugs, and detection/migration of third-party
libraries to help aid green Android development. Other types of support tools,
such as tools for style checking, interface optimization, test generation, requirement
engineering, and code obfuscation, were not in the scope of this study. Therefore,
while applying inclusion/exclusion criteria, we filtered support tools such as
“LibFinder,” LibCPU, CrossRec, and RAPIM [72–75]. These tools could identify/
recommend third-party libraries but they were not designed to be used specifically
with Android applications. We plan to cover such tools in future work.

7 Tool Support for Green Android Development 177



7.7 Conclusions

We conducted a mapping study to give an overview of the state of the art and to find
research opportunities with respect to support tools available for green Android
development. Based on our analysis we identified tools for detecting/refactoring
code smells/energy bugs, which were classified into three categories: (1) “Profiler,”
(2) “Detector,” and (3) “Optimizer.” Additionally, we identified tools for detecting/
migrating third-party libraries in Android applications, which were classified into
(1) Identifier, (2) Migrator, and (3) Controller categories. The main findings of this
study are that most “Profiler” tools provide a graphical representation of energy
consumption over time. Most “Detector” tools provide a list of energy bugs/code
smells to be manually corrected by a developer for the improvement of energy. Most
“Optimizer” tools automatically convert original APK/SC into a refactored version
of APK/SC. Tools in the “Identifier,” “Migrator,” and “Controller” categories do not
provide support to developers to optimize code w.r.t. energy consumption. The most
typical technique in the “Detector” and “Optimizer” categories was static source
code analysis using a predefined set of code smells and rules. The most typical
techniques in the “Identifier” category were module decoupling and feature similar-
ity, while in the “Migrator” and “Controller” categories, API hooking and collabo-
rative filtering in combination with natural language processing were used,
respectively.

Acknowledgments This work was supported by the Estonian Center of Excellence in ICT
research (EXCITE), the group grant PRG887 funded by the Estonian Research Council, and the
Estonian state stipend for doctoral studies.

References

1. GeSI (2015) #SMARTer2030 ICT solutions for 21st century challenges. Accessed 06 Jun 2020.
http://smarter2030.gesi.org/downloads/Full_report.pdf

2. Acar H (2017) Software development methodology in a Green IT environment. Université de
Lyon

3. Calero C, Piattini M (2015) Introduction to green in software engineering. In: Calero C, Piattini
M (eds) Green in software engineering. Springer International Publishing, Cham, pp 3–27

4. Chauhan NS, Saxena A (2013) A green software development life cycle for cloud computing.
IT Prof 15(1):28–34. https://doi.org/10.1109/MITP.2013.6

5. Federal Ministry for Economic Affairs and Energy (2014) Energy-efficient ICT in practice:
planning and implementation of GreenIT measures in data centres and the office

6. Jagroep E, van der Werf JM, Brinkkemper S, Blom L, van Vliet R (2017) Extending software
architecture views with an energy consumption perspective. Computing 99(6):553–573. https://
doi.org/10.1007/s00607-016-0502-0

7. Kumar S, Buyya R (2012) Green cloud computing and environmental sustainability.
Harnessing Green It Princ Pract:315–339. https://doi.org/10.1002/9781118305393.ch16

8. Oyedeji S, Seffah A, Penzenstadler B (2018) A catalogue supporting software sustainability
design. Sustainability 10(7):2296. https://doi.org/10.3390/su10072296

178 H. Anwar et al.

http://smarter2030.gesi.org/downloads/Full_report.pdf
https://doi.org/10.1109/MITP.2013.6
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1002/9781118305393.ch16
https://doi.org/10.3390/su10072296


9. Gupta PK, Singh G (2012) Minimizing power consumption by personal computers: a technical
survey. Int J Inf Technol Comput Sci 4(10):57–66. https://doi.org/10.5815/ijitcs.2012.10.07

10. Kern E et al (2018) Sustainable software products—towards assessment criteria for resource
and energy efficiency. Futur Gener Comput Syst 86(3715):199–210. https://doi.org/10.1016/j.
future.2018.02.044

11. Murugesan S, Gangadharan GR (2012) Green IT: an overview. In: Murugesan S, Gangadharan
GR (eds) Harnessing green IT: principles and practices. Wiley, pp 1–21

12. Egham (2018) Gartner says worldwide end-user device spending set to increase 7 percent in
2018; global device shipments are forecast to return to growth. Gartner, Press Releases.
Accessed 11 Feb 2019. https://www.gartner.com/en/newsroom/press-releases/2018-04-05-
gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-
device-shipments-are-forecast-to-return-to-growth

13. Penzenstadler B, Femmer H (2013) A generic model for sustainability with process- and
product-specific instances. In: Proceedings of the 2013 Workshop on Green by Software
Engineering, pp 3–7. doi:https://doi.org/10.1145/2451605.2451609

14. Raturi A, Tomlinson B, Richardson D (2015) Green software engineering environments. In:
Green in software engineering. Springer International Publishing, pp 31–59

15. Banerjee A, Chong LK, Chattopadhyay S, Roychoudhury A (2014) Detecting energy bugs and
hotspots in mobile apps. In: Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering - FSE, vol 16–21-Nov, pp 588–598, doi: https://doi.org/
10.1145/2635868.2635871

16. Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) AndroZoo: collecting millions of Android
apps for the research community. In: Proceedings of the 13th international workshop on mining
software repositories - MSR, May 2016, pp 468–471, doi: https://doi.org/10.1145/2901739.
2903508

17. Anwar H, Pfahl D (2017) Towards greener software engineering using software analytics: a
systematic mapping. In: Proceedings of the 43rd Euromicro conference on software engineering
and advanced applications -SEAA, Aug 2017, pp 157–166, doi: https://doi.org/10.1109/SEAA.
2017.56

18. Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2017) A survey of app store analysis for
software engineering. IEEE Trans Softw Eng 43(9):817–847. https://doi.org/10.1109/TSE.
2016.2630689

19. Oliveira W, Oliveira R, Castor F (2017) A study on the energy consumption of android app
development approaches. In: Proceedings of the IEEE/ACM 14th international conference on
mining software repositories - MSR, May 2017, pp 42–52, doi: https://doi.org/10.1109/MSR.
2017.66

20. Rawassizadeh R (2010) Mobile application benchmarking based on the resource usage moni-
toring. Int J Mob Comput Multimed Commun 1(4):64–75. https://doi.org/10.4018/jmcmc.
2009072805

21. Viennot N, Garcia E, Nieh J (2014) A measurement study of google play. ACM SIGMETRICS
Perform Eval Rev 42(1):221–233. https://doi.org/10.1145/2637364.2592003

22. Wang H et al (2017) An explorative study of the mobile app ecosystem from app developers’
perspective. In: Proceedings of the 26th international conference on World Wide Web, pp
163–172, doi:https://doi.org/10.1145/3038912.3052712

23. Wang H et al (2018) Beyond Google play: a large-scale comparative study of Chinese Android
App Markets. ArXiv, vol 1810.07780, Sep 2018. http://arxiv.org/abs/1810.07780

24. Ardito L, Procaccianti G, Torchiano M, Migliore G (2013) Profiling power consumption on
mobile devices. In: Proceedings of the third international conference on smart grids, green
communications and IT Energy-aware Technologies, pp 101–106

25. Azevedo L, Dantas A, Camilo-Junior CG. DroidBugs: an android benchmark for automated
program repair. ArXiv, vol abs/1809.0, 2018 [Online]. http://arxiv.org/abs/1809.07353

7 Tool Support for Green Android Development 179

https://doi.org/10.5815/ijitcs.2012.10.07
https://doi.org/10.1016/j.future.2018.02.044
https://doi.org/10.1016/j.future.2018.02.044
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://doi.org/10.1145/2451605.2451609
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.4018/jmcmc.2009072805
https://doi.org/10.4018/jmcmc.2009072805
https://doi.org/10.1145/2637364.2592003
https://doi.org/10.1145/3038912.3052712
http://arxiv.org/abs/1810.07780
http://arxiv.org/abs/1809.07353


26. Chung YF, Lin CY, King CT (2011) ANEPROF: energy profiling for android java virtual
machine and applications. In: Proceedings of the international conferences on parallel and
distributed systems - ICPADS, pp 372–379, doi: https://doi.org/10.1109/ICPADS.2011.28

27. Kansal A, Zhao F (2008) Fine-grained energy profiling for power-aware application design.
ACM SIGMETRICS Perform Eval Rev 36(2):26. https://doi.org/10.1145/1453175.1453180

28. Pathak A, Hu YC, Zhang M (2012) Where is the energy spent inside my app? Fine Grained
Energy Accounting on Smartphones with Eprof. EuroSys, pp 29–42, Accessed 04 Apr 2018.
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.
pdf

29. Banerjee A, Roychoudhury A (2016) Automated re-factoring of Android apps to enhance
energy-efficiency. In: Proceedings of the international workshop on mobile software engineer-
ing and system - MOBILESoft, pp 139–150, doi: https://doi.org/10.1145/2897073.2897086

30. Fernandes TS, Cota E, Moreira AF (2014) Performance evaluation of android applications: a
case study. In: Proceedings of the Brazilian symposium on computing system engineering, Nov
2014, vol 1998-Jan, pp 79–84, doi: https://doi.org/10.1109/SBESC.2014.17

31. Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley
32. Hecht G, Rouvoy R, Moha N, Duchien L (2015) Detecting antipatterns in android apps. In:

Proceedings of the 2nd ACM international conference on mobile software engineering and
systems, MOBILESoft, Sep 2015, pp 148–149, doi: https://doi.org/10.1109/MobileSoft.
2015.38

33. Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2017) Lightweight detection of
Android-specific code smells: the aDoctor project. In: Proceedings of the 24th IEEE interna-
tional conference software analysis evolution and reengineering - SANER, pp 487–491. doi:
https://doi.org/10.1109/SANER.2017.7884659

34. Rasool G, Ali A (2020) Recovering android bad smells from android applications. Arab J Sci
Eng 45(4):3289–3315. https://doi.org/10.1007/s13369-020-04365-1

35. Xu B, An L, Thung F, Khomh F, Lo D (2020) Why reinventing the wheels? An empirical study
on library reuse and re-implementation. Empir Softw Eng 25(1):755–789. https://doi.org/10.
1007/s10664-019-09771-0

36. Wang H, Guo Y (2017) Understanding third-party libraries in mobile app analysis. In: Pro-
ceedings of the IEEE/ACM 39th international conference on software engineering companion,
pp 515–516, doi: https://doi.org/10.1109/ICSE-C.2017.161

37. Zhan J, Zhou Q, Gu X, Wang Y, Niu Y (2017) Splitting third-party libraries’ privileges from
android apps. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol 10343 LNCS, Springer, pp
80–94

38. Gkortzis A, Feitosa D, Spinellis D (2019) A double-edged sword? Software reuse and potential
security vulnerabilities. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 11602 LNCS, pp
187–203, doi: https://doi.org/10.1007/978-3-030-22888-0_13

39. Ikram M, Vallina-Rodriguez N, Seneviratne S, Kaafar MA, Paxson V (2016) An analysis of the
privacy and security risks of android VPN permission-enabled apps. In: Proceedings of the
ACM SIGCOMM internet measurement conference - IMC, vol 14–16-Nov, pp 349–364, doi:
https://doi.org/10.1145/2987443.2987471

40. Mazuera-Rozo A, Bautista-Mora J, Linares-Vásquez M, Rueda S, Bavota G (2019) The
Android OS stack and its vulnerabilities: an empirical study. Empir Softw Eng 24
(4):2056–2101. https://doi.org/10.1007/s10664-019-09689-7

41. Ogawa H, Takimoto E, Mouri K, Saito S (2018) User-side updating of third-party libraries for
android applications. In: Proceedings of the sixth international symposium on computing and
networking workshops - CANDARW, Nov 2018, pp 452–458, doi: https://doi.org/10.1109/
CANDARW.2018.00088

42. Binns R, Zhao J, Van Kleek M, Shadbolt N (2018) Measuring third-party tracker power across
web and mobile. ACM Trans Internet Technol 18(4). doi: https://doi.org/10.1145/3176246

180 H. Anwar et al.

https://doi.org/10.1109/ICPADS.2011.28
https://doi.org/10.1145/1453175.1453180
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.pdf
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.pdf
https://doi.org/10.1145/2897073.2897086
https://doi.org/10.1109/SBESC.2014.17
https://doi.org/10.1109/MobileSoft.2015.38
https://doi.org/10.1109/MobileSoft.2015.38
https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1007/s13369-020-04365-1
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1109/ICSE-C.2017.161
https://doi.org/10.1007/978-3-030-22888-0_13
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1007/s10664-019-09689-7
https://doi.org/10.1109/CANDARW.2018.00088
https://doi.org/10.1109/CANDARW.2018.00088
https://doi.org/10.1145/3176246


43. Fu J, Zhou Y, Liu H, Kang Y,Wang X (2017) Perman: fine-grained permission management for
android applications. In: Proceedings of the IEEE 28th international symposium on software
reliability engineering - ISSRE, Oct 2017, vol 2017-Oct, pp 250–259, doi: https://doi.org/10.
1109/ISSRE.2017.38

44. Gao X, Liu D, Wang H, Sun K (2016) PmDroid: permission supervision for android advertis-
ing. In: Proceedings of the IEEE symposium on reliable distributed systems, vol 2016-Jan, pp
120–129, doi: https://doi.org/10.1109/SRDS.2015.41

45. Jin H et al. (2018)Why are they collecting my data?. In: Proceedings of the ACM on interactive,
mobile, wearable and ubiquitous Techniques, Dec 2018, vol 2(4), pp 1–27, doi:https://doi.org/
10.1145/3287051

46. Wang H, Li Y, Guo Y, Agarwal Y, Hong JI (2017) Understanding the purpose of permission
use in mobile apps. ACM Trans Inf Syst 35(4). https://doi.org/10.1145/3086677

47. Chen K, Liu P, Zhang Y (2014) Achieving accuracy and scalability simultaneously in detecting
application clones on Android markets. In: Proceedings of the international conference on
software engineering, no 1, pp 175–186, doi: https://doi.org/10.1145/2568225.2568286

48. Li L, Bissyandé TF, Wang HY, Klein J (2019) On identifying and explaining similarities in
android apps. J Comput Sci Technol 34(2):437–455. https://doi.org/10.1007/s11390-019-1918-
8

49. Soh C, Tan HBK, Arnatovich YL, Wang L (2015) Detecting clones in android applications
through analyzing user interfaces. In: Proceedings of the IEEE 23rd international conference on
program comprehension, May 2015, pp 163–173, doi:https://doi.org/10.1109/ICPC.2015.25

50. Yuan L (2016) Detecting similar components between android applications with obfuscation.
In: Proceedings of the 5th international conference on computer science and networking
technologies - ICCSNT, Dec 2016, pp 186–190, doi:https://doi.org/10.1109/ICCSNT.2016.
8070145

51. Zhang Y, Ren W, Zhu T, Ren Y (2019) SaaS: a situational awareness and analysis system for
massive android malware detection. Futur Gener Comput Syst 95:548–559. https://doi.org/10.
1016/j.future.2018.12.028

52. Anwar H, Demirer B, Pfahl D, Srirama SN (2020) Should energy consumption influence the
choice of Android third-party HTTP libraries?. In: Proceedings of the IEEE/ACM 7th Interna-
tional conference on mobile software engineering and systems, MOBILESoft, pp 87–97. doi:
https://doi.org/10.1145/3387905.3392095

53. Fatima I, Anwar H, Pfahl D, Qamar U (2020) Tool support for green android development: a
systematic mapping study. In: Proceedings of the 15th international conference on software
technologies - ICSOFT, pp 409–417

54. Fontana FA, Mariani E, Mornioli A, Sormani R, Tonello A (2011) An Experience report on
using code smells detection tools. In: Proceedings of the IEEE fourth international conference
on software testing, verification and validation workshops, Mar 2011, pp 450–457, doi:https://
doi.org/10.1109/ICSTW.2011.12

55. Kaur A, Dhiman G (2019) A review on search-based tools and techniques to identify bad code
smells in object-oriented systems. Adv Intell Syst Comput 741:909–921. https://doi.org/10.
1007/978-981-13-0761-4_86

56. Singh S, Kaur S (2017) A systematic literature review: refactoring for disclosing code smells in
object oriented software. Ain Shams Eng J 9(4):2129–2151. https://doi.org/10.1016/J.ASEJ.
2017.03.002

57. Li L et al (2017) Static analysis of android apps: a systematic literature review. Inform Softw
Technol 88:67–95. https://doi.org/10.1016/j.infsof.2017.04.001

58. Degu A (2019) Android application memory and energy performance: systematic literature
review. IOSR J Comp Eng 21(3):20–32

59. Qiu L, Wang Y, Rubin J (2018) Analyzing the analyzers: FlowDroid/IccTA, AmanDroid, and
DroidSafe. In: Proceedings of the 27th ACM SIGSOFT international symposium on software
testing and analysis - ISSTA, pp 176–186, doi:https://doi.org/10.1145/3213846.3213873

7 Tool Support for Green Android Development 181

https://doi.org/10.1109/ISSRE.2017.38
https://doi.org/10.1109/ISSRE.2017.38
https://doi.org/10.1109/SRDS.2015.41
https://doi.org/10.1145/3287051
https://doi.org/10.1145/3287051
https://doi.org/10.1145/3086677
https://doi.org/10.1145/2568225.2568286
https://doi.org/10.1007/s11390-019-1918-8
https://doi.org/10.1007/s11390-019-1918-8
https://doi.org/10.1109/ICPC.2015.25
https://doi.org/10.1109/ICCSNT.2016.8070145
https://doi.org/10.1109/ICCSNT.2016.8070145
https://doi.org/10.1016/j.future.2018.12.028
https://doi.org/10.1016/j.future.2018.12.028
https://doi.org/10.1145/3387905.3392095
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1007/978-981-13-0761-4_86
https://doi.org/10.1007/978-981-13-0761-4_86
https://doi.org/10.1016/J.ASEJ.2017.03.002
https://doi.org/10.1016/J.ASEJ.2017.03.002
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1145/3213846.3213873


60. Corrodi C, Spring T, Ghafari M, Nierstrasz O (2018) Idea: benchmarking android data leak
detection tools. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Jun 2018, vol 10953 LNCS, pp
116–123, doi: https://doi.org/10.1007/978-3-319-94496-8_9

61. Ndagi JY, Alhassan JK (2019) Machine learning classification algorithms for adware in android
devices: a comparative evaluation and analysis. In: Proceedings of the 15th international
conference on electronics, computing, and computation - ICECCO, Dec 2019, pp 1–6, doi:
https://doi.org/10.1109/ICECCO48375.2019.9043288

62. Cooper VN, Shahriar H, Haddad HM (2014) A survey of android malware and mitigation
techniques. In: Proceedings of the 11th international conference on information technology:
new generations, Apr 2014, pp 327–332, doi: https://doi.org/10.1109/ITNG.2014.71

63. Li L, Bissyande TF, Klein J (2019) Rebooting research on detecting repackaged android apps:
literature review and benchmark. IEEE Trans Softw Eng:1–1. https://doi.org/10.1109/tse.2019.
2901679

64. Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection
techniques and tools: a qualitative approach. Sci Comput Program 74(7):470–495. https://doi.
org/10.1016/j.scico.2009.02.007

65. Wang Y, Li Y, Lan T (2017) Capitalizing on the promise of Ad prefetching in real-world mobile
systems. In: Proceedings of the IEEE 14th international conference on mobile Ad Hoc and
sensor systems - MASS, Oct 2017, pp 162–170, doi:https://doi.org/10.1109/MASS.2017.46

66. Rasmussen K, Wilson A, Hindle A (2014) Green mining: energy consumption of advertisement
blocking methods. In: Proceedings of the 3rd international workshop on green and sustainable
software - GREENS, pp 38–45, doi:https://doi.org/10.1145/2593743.2593749

67. Shao Y, Wang R, Chen X, Azab AM, Mao ZM (2019) A lightweight framework for fine-
grained lifecycle control of android applications. In: Proceedings of the 14th EuroSys confer-
ence - EuroSys, pp 1–14, doi:https://doi.org/10.1145/3302424.3303956

68. Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software
engineering. In: Proceedings of the 12th international conference on evaluation and assessment
in software engineering - EASE, pp 68–77

69. Fowler M (2002) Refactoring: improving the design of existing code. In: Extreme programming
and agile methods — XP/Agile universe. Springer, Berlin, pp 256–256

70. Pathak A, Charlie Hu Y, Zhang M (2011) Bootstrapping energy debugging on smartphones: a
first look at energy bugs in mobile devices. In: Proceedings of the 10th ACM workshop on hot
topics in networks (HotNets-X). Association for Computing Machinery, New York, NY,
Article 5, 1–6. doi:https://doi.org/10.1145/2070562.2070567

71. Yasumatsu T, Watanabe T, Kanei F, Shioji E, Akiyama M, Mori T (2019) Understanding the
responsiveness of mobile app developers to software library updates. In: Proceedings of the 9th
ACM conference on data and application security and privacy - CODASPY, pp 13–24, doi:
https://doi.org/10.1145/3292006.3300020

72. Alrubaye H, Mkaouer MW, Khokhlov I, Reznik L, Ouni A, Mcgoff J (2020) Learning to
recommend third-party library migration opportunities at the API level. Appl Soft Comput
90:106140. https://doi.org/10.1016/j.asoc.2020.106140

73. Nguyen PT, Di Rocco J, Di Ruscio D, Di Penta M (2020) CrossRec: supporting software
developers by recommending third-party libraries. J Syst Softw 161:110460. https://doi.org/10.
1016/j.jss.2019.110460

74. Ouni A, Kula RG, Kessentini M, Ishio T, German DM, Inoue K (2017) Search-based software
library recommendation using multi-objective optimization. Inf Softw Technol 83:55–75.
https://doi.org/10.1016/j.infsof.2016.11.007

75. Saied MA, Ouni A, Sahraoui H, Kula RG, Inoue K, Lo D (2018) Improving reusability of
software libraries through usage pattern mining. J Syst Softw 145:164–179. https://doi.org/10.
1016/j.jss.2018.08.032

182 H. Anwar et al.

https://doi.org/10.1007/978-3-319-94496-8_9
https://doi.org/10.1109/ICECCO48375.2019.9043288
https://doi.org/10.1109/ITNG.2014.71
https://doi.org/10.1109/tse.2019.2901679
https://doi.org/10.1109/tse.2019.2901679
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1109/MASS.2017.46
https://doi.org/10.1145/2593743.2593749
https://doi.org/10.1145/3302424.3303956
https://doi.org/10.1145/2070562.2070567
https://doi.org/10.1145/3292006.3300020
https://doi.org/10.1016/j.asoc.2020.106140
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1016/j.jss.2018.08.032

	Chapter 7: Tool Support for Green Android Development
	7.1 Introduction
	7.2 Related Work
	7.3 Methodology
	7.3.1 Research Questions
	7.3.2 Search Query
	7.3.3 Screening of Publications
	7.3.3.1 Duplicate Removal
	7.3.3.2 Inclusion Criteria
	7.3.3.3 Exclusion Criteria
	7.3.3.4 Quality Criteria

	7.3.4 Classification and Analysis

	7.4 Results
	7.4.1 Results of Screening
	7.4.2 Classification and Analysis

	7.5 Discussion
	7.5.1 Support Tools for Code Smell/Energy Bug Detection and Refactoring
	7.5.2 Support Tools for Third-Party Library Detection and Migration

	7.6 Threats to Validity
	7.7 Conclusions
	References


