
Chapter 13
Social Sustainability in the e-Health Domain
via Personalized and Self-Adaptive
Mobile Apps

Eoin Martino Grua, Martina De Sanctis, Ivano Malavolta,
Mark Hoogendoorn, and Patricia Lago

Abstract Within software engineering, social sustainability is the dimension of
sustainability that focuses on the “support of current and future generations to
have the same or greater access to social resources by pursuing social equity.” An
important domain that strives to achieve social sustainability is e-Health, and more
recently e-Health mobile apps.A wealth of e-Health mobile apps is available for
many purposes, such as lifestyle improvement and mental coaching. The interven-
tions, prompts, and encouragements of e-Health apps sometimes take context into
account (e.g., previous interactions or geographical location of the user), but they
still tend to be rigid, e.g., apps use fixed sets of rules or they are not sufficiently
tailored toward individuals’ needs. Personalization to the different users’ character-
istics and run-time adaptation to their changing needs and context provide a great
opportunity for getting users continuously engaged and active, eventually leading to
better physical and mental conditions. This chapter presents a reference architecture
for enabling AI-based personalization and self-adaptation of mobile apps for e-
Health. The reference architecture makes use of a dedicated goal model and multiple
MAPE loops operating at different levels of granularity and for different purposes.
The proposed reference architecture is instantiated in the context of a fitness-based
mobile application and exemplified through a series of typical usage scenarios
extracted from our industrial collaborations.

E. M. Grua (*) · I. Malavolta · M. Hoogendoorn · P. Lago
Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
e-mail: e.m.grua@vu.nl; i.malavolta@vu.nl; m.hoogendoorn@vu.nl; p.lago@vu.nl

M. De Sanctis
Gran Sasso Science Institute (GSSI), L’Aquila, Italy
e-mail: martina.desanctis@gssi.it

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_13

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_13&domain=pdf
mailto:e.m.grua@vu.nl
mailto:i.malavolta@vu.nl
mailto:m.hoogendoorn@vu.nl
mailto:p.lago@vu.nl
mailto:martina.desanctis@gssi.it
https://doi.org/10.1007/978-3-030-69970-3_13#DOI

13.1 Introduction

e-Health mobile apps are designed for assisting end users in tracking and improving
their own health-related activities [1]. With a projected market growth of US$102.3
billion by 2023, e-Health apps represent a significant market [2] providing a wide
spectrum of services, i.e., life style improvement, mental coaching, sport tracking,
and recording of medical data [3]. The unique characteristics of e-Health apps wrt
other health-related software systems are that e-Health apps (1) can take advantage
of smartphone sensors, (2) can reach an extremely wide audience with low infra-
structural investments, and (3) can leverage the intrinsic characteristics of the mobile
medium (i.e., being always on, personal, and always carried by the user) for
providing timely and in-context services [4].

However, even if the interventions, prompts, and encouragements of current
e-Health apps take context into account (e.g., previous interactions or geographical
location of the user), they still tend to be rigid and not fully tailored to individual
users, e.g., by using fixed rule sets or by not considering the unique traits and
behavioral characteristics of the user. In this context, we see personalization [5]
and self-adaptation [6–8] as effective instruments for getting users continuously
engaged and active, eventually leading to better physical and mental conditions. The
addition of intervention tailoring (via personalization and self-adaptation) is a crucial
step in addressing the main sustainability concern that e-Health mobile apps want to
achieve: social sustainability. By providing better interventions, we are not only
more likely to have the user interested in maintaining engagement with the app but
also help the user achieve better physical and mental conditions by allowing the app
to better address the personal needs and by extension the social ones too.

In this work, we combine personalization and software self-adaptation to provide
users of mobile e-Health apps with a better, more engaging and effective experience.
To this aim, we propose a reference architecture (RA) that combines data-driven
personalization with self-adaptation. The main design drivers that make the pro-
posed reference architecture unique are:

• The combination of multiple Monitor–Analyze–Plan–Execute (MAPE) loops [9]
operating at different levels of granularity and for different purposes, e.g., to
suggest users the most suitable and timely activities according to their (evolving)
health-related characteristics (e.g., active vs. less active), but also to cope with
technical aspects (e.g., connectivity hiccups, availability of IoT devices and third-
party apps on the user’s device) and the characteristics of the physical environ-
ment (e.g., indoor vs. outdoor, weather).

• A dedicated goal model for representing health-related goals via a descriptive
concise language accessible by healthcare professionals (e.g., fitness coaches,
psychologists).

• The exploitation of our online clustering algorithm for efficiently managing the
evolution of the behavior of users as multiple time series evolving over time. This
online clustering algorithm has been already extensively tested in a previously

302 E. M. Grua et al.

published article [10], showing promising results by doing better than the current
state of the art.

The main characteristics of the proposed reference architecture are the following:
(1) it caters the personalization of services to specific user preferences (e.g., preferred
sport activities); (2) it guarantees the correct functioning of the features via the use of
connected IoT devices (e.g., a smart-bracelet) and runtime adaptation strategies;
(3) it adapts the services depending on contextual factors such as environmental
conditions and weather; (4) it supports a smooth participation of domain experts
(e.g., psychologists) in the personalization and self-adaptation processes; and (5) it
can be applied in the context of a single e-Health app and by integrating the services
of third-party e-Health apps (e.g., already installed sport trackers). All of these
characteristics are shown in this work by evaluating the reference architecture and
the goal model with fitness coaching scenarios. We want to emphasize how most
characteristics have been engineered with the main goal of achieving social sustain-
ability. Possible exceptions are characteristics (2) and (5), which more specifically
addresses technical sustainability of the reference architecture. Our emphasis on
social sustainability will be further explained and explored throughout the chapter.

Lastly, in a previous study [11] we reported a preliminary version of our Refer-
ence Architecture (RA). Here we extend the work by: (1) framing the work in the
overall context of social sustainability, (2) document the methodology used to design
our RA, (3) report a scenario-based evaluation of our RA, (4) provide a goal model
to be used with the RA, (5) a viewpoint definition used to create the view of our RA.

13.2 Background

The notion of reference architecture (RA) is borrowed from Volpato et al. [12], who
define it as “a special type of software architectures that provide a characterization of
software systems functionalities in specific application domains,” e.g., SOA for
service orientation and AUTOSAR for automotive. In the context of this study, a
self-adaptive software system is defined as a system that can autonomously handle
changes and uncertainties in its environment, the system itself, and its goals [7].

For the definition of personalization, we build on that by Fan and Poole [5] and
define it as “a process that changes a system to increase its personal relevance to an
individual or a category of individuals.” Furthermore, to enhance personalization,
we use CluStream-GT (CluStream for Growing Time-series) [10]. CluStream-GT
was chosen for this RA as it is the state-of-the-art clustering algorithm for time-series
data (especially within the health domain). CluStream-GT works in two phases:
offline and online. First, the offline phase initializes the algorithm with a small initial
dataset; this is done either at design time or at the start of runtime. Afterward, during
the online phase the algorithm clusters the data that is being collected at runtime.
Clustering allows the RA to group similar users together, where similarity is
determined by the data gathered from the apps. This gives the RA a more sustainable

13 Social Sustainability in the e-Health Domain via Personalized and. . . 303

and scalable method of personalization, without requiring to create individual
personalization strategies but maintaining a suitable degree of personalization
[10, 13]. An example case where clustering can be used to aid personalization is
with the use of cluster-based Reinforcement Learning [14].

The methodology used for the design of our RA is the one presented by Angelov
et al. [15] (see Fig. 13.1), where the authors present their RA Framework to facilitate
software architects in the design of congruent RAs, i.e., RAs where the design,
context, and goals are explicit and coherent (adapted from [15]).

The RA Framework (or framework for short) consists of two elements: a
multidimensional classification space, and a set of predefined RA types (and variants
of these types). The former, through the use of strict questions and answers, supports
software architects in classifying RAs according to their context (Where?, Who?,
and When? questions in Fig. 13.1), goals (Why? in Fig. 13.1), and design (How?
and What? in Fig. 13.1) dimensions. The latter consists of specific combinations of
values from the multidimensional space. These types, and variants, are used to
evaluate the congruence of the RA being designed. If a RA is congruent
(i.e. matches a type or variant) it has a greater chance of becoming a success,
where, by success the authors mean “. . . the acceptance of the architecture by its
stakeholders and its usage in multiple projects” [15]. For each dimension, the authors
have defined subdimensions with respective questions and answers. During the
design of our RA we have worked with each dimension and, with the use of the
framework, classified our RA according to the possible values available for each
subdimension. As knowledge of our RA and its components is necessary to under-
stand the design process, we further explain the use of the framework in Sect. 13.7.

In recent years a larger body of work on software engineering and software
architecture address sustainability. Sustainability can be divided into four dimen-
sions: technical, economical, environmental, and social [16]. Within this work we
present an RA for the e-Health domain with the main goal of better addressing the
social dimension of sustainability, whilst the technical contributions of this work
include the combination of AI and self-adaptation. In this work we build on the
following definition of social sustainability: “focusing on supporting current and
future generations to have the same or greater access to social resources by pursuing
generational equity. For software-intensive systems, this dimension encompasses the
direct support of social communities, as well as the support of activities or processes
that indirectly create benefits for such communities” [16].

13.3 Related Work

Several RAs for IoT can be found in the literature [17–20]. In particular, Bauer et al.
[19] present several abstract architectural views and perspectives, which can be
differently instantiated. The adaptation of the system’s configuration is also
envisioned, at an abstract level. IoT-A [18] aims to be easily customized to different
needs, and it makes use of axioms and relationships to define connections among

304 E. M. Grua et al.

D
ef

in
e
W
hy

,
W
he

re
 a

nd
 W

he
n

In
vo

lv
e

St
ak

eh
ol

de
rs

(W
ho

)
M

at
ch

 w
ith

 a

Ty
pe

 /
Va

ria
nt

?
D

ef
in

e
W
ha

t
an

d
H
ow

St
op

C
la

ss
ify

 th
e

R
A

R
A

Fr
am

ew
or

k

C
on

te
xt

 a
nd

 G
oa

l d
im

en
si

on
s

de
fin

iti
on

D
es

ig
n

di
m

en
si

on
 d

ef
in

iti
on

M
at

ch
 w

ith
 a

Ty

pe
 /
Va

ria
nt

?

St
op

N
o

N
o

Ye
s

Ye
s

N
o

- r
ed

ef
in

e
go

al
s/

co
nt

ex
t

N
o

- r
ed

ef
in

e
go

al
s/

co
nt

ex
t

F
ig
.1

3.
1

M
et
ho

do
lo
gy

fo
r
th
e
de
si
gn

of
ou

r
R
A
[1
5]

13 Social Sustainability in the e-Health Domain via Personalized and. . . 305

IoT entities. Industrial Internet Reference Architecture (IIRA) [17] is particularly
tailored for industrial IoT systems. Web Services Oxigenated (WSO2) [20] presents
a layered structure and targets scalability and security aspects too. All of the above
RAs are abstract and domain independent. As such, they do not address required
features specific to the IoT-based e-Health domain. Moreover, they lack the needed
integration with AI for personalization used to tailor interventions to the user’s
health-related characteristics, an important technique used by the RA to address
social sustainability.

Other works providing service-oriented architectures (SOAs) focused on adapta-
tion but neglected user-based personalization. For example, Feljan et al. [21] defined
an SOA for planning and execution (SOA-PE) in Cyber Physical Systems (CPS) and
Mohalik et al. [22] proposed a MAPE-K autonomic computing framework to
manage adaptivity in service-based CPS. Morais et al. [23] present RAH, a RA for
IoT-based e-Health apps. RAH has a layered structure, and it provides components
for the prevention, monitoring and detection of faults. Different from RAH, our RA
explicitly manages the self-adaptation of e-Health mobile apps, both at the user and
architectural levels. Mizouni et al. [24] propose a framework for designing and
developing context-aware adaptive mobile apps. Their framework lacks other types
of adaptation, i.e., adaptation for user personalization and adaptation with other IoT
devices—which is possible with our RA.

Lopez and Condori-Fernandez [25] propose an architectural design for an adap-
tive persuasive mobile app with the goal of improving medication adherence.
Accordingly, the adaptation is here focused only on the messages given to the user
and lacks the other levels of adaptation (environment adaptation, etc.) that our RA
covers. Kim [26] proposes a general RA that can be used when developing adaptive
apps and implements a e-Health app as an example. However, being general, the RA
lacks the level of detail present in our work, the integration of AI for personalization,
and a way for involving domain experts in app design and operation, which is
essential in adaptive e-Health.

In summary, to the best of our knowledge, ours is the first RA for e-Health mobile
apps that simultaneously supports (1) personalization for the different users, Users
by exploiting users’ smart objects and preferences to dynamically get data about,
e.g., their mood and daily activities, and (2) runtime adaptation to user needs and
context in order to keep them engaged and active, so that we can better address social
sustainability.

13.4 Reference Architecture

Figure 13.2 shows our RA with the following stakeholders and components.
Section 13.8 defines the corresponding viewpoint.

Users provide and generate the data gathered by the e-Health app. At first
installation, the users are asked to input information to better understand their

306 E. M. Grua et al.

 S
m

ar
tp

h
o

n
e e-

H
ea

lt
h

 a
p

p

 S
m

ar
tp

h
o

n
e e-

H
ea

lt
h

 a
p

p

U
se

r
P

ro
ce

ss

S
m

ar
t

O
b

je
ct

s

In
te

rn
et

E
n

vi
ro

n
m

en
t

S
o

u
rc

es

A
p

p
 S

to
re

B
ac

k-
en

d

D
o

m
ai

n

E
xp

er
t

D
ev

el
o

p
m

en
t

Te
am

D
at

a

Users

D
is

tr
ib

ut
e

C
ol

le
ct

ed

D
at

a

R
el

ea
se

D
at

a

Data

A
I P

er
so

na
liz

at
io

n
A

da
pt

at
io

n

E
di

to
r

of

A
bs

tr
ac

t A
ct

iv
iti

es

&
 G

oa
ls

C
lu

st
er

in
g

H
is

to
ry

Q
ue

ry

C
re

at
e

&
 M

od
ify

C
ol

le
ct

ed
 D

at
a

U
se

r
P

ro
ce

ss

N
ot

ify

N
ot

ify

B
ac

k-
en

d

Update

Verify

L
eg

en
d

in
fo

rm
at

io
n-

flo
w

op
er

at
io

n

M
A

P
E

 lo
op

U
pd

at
e

C
at

al
og

 o
f

A
bs

tr
ac

t A
ct

iv
iti

es

&
 G

oa
ls

C
at

al
og

 o
f

S
up

po
rt

ed
 M

ob
ile

A
pp

lic
at

io
ns

Q
ue

ry

Datastore

Q
ue

ry

Q
ue

ry

U
pd

at
e

U
pd

at
e

Update

M
an

ag
e

U
se

r
P

ro
ce

ss
H

an
dl

er

 A
I P

er
so

na
liz

at
io

n

 In
te

rn
et

 C

on
ne

ct
iv

ity

 M
an

ag
er

 S
m

ar
t O

bj
ec

ts
 M

an
ag

er

 E
nv

iro
nm

en
t

 D
riv

en
 A

da
pt

at
io

n
 M

an
ag

er

 U
se

r
D

riv
en

 A

da
pt

at
io

n
 M

an
ag

er

 T
hi

rd
-p

ar
ty

 A

pp
lic

at
io

ns
 M

an
ag

er

D
at

a

F
ig
.1

3.
2

R
ef
er
en
ce

ar
ch
ite
ct
ur
e
fo
r
pe
rs
on

al
iz
ed

an
d
se
lf
-a
da
pt
iv
e
e-
H
ea
lth

ap
ps

13 Social Sustainability in the e-Health Domain via Personalized and. . . 307

aptitudes. After an initial usage phase and data collection, the system has enough
information to assign them to a cluster.

The smartphone is the host where the self-adaptive e-Health app is installed. In
the mobile app, four components, namely, User Driven Adaptation Manager,
Environment Driven Adaptation Manager, Smart Objects Manager, and Internet
Connectivity Manager, implement a MAPE loop to dynamically perform adaptation.
The Third-party Applications Manager, in turn, is responsible for communication
with third-party apps supported by the RA that can be exploited by the e-Health app
both during its nominal execution and when adaptation is performed. It is also
responsible for storing user preferences. Further details on these components are
given in Sect. 13.5.

Smart Objects are devices, other than the smartphone, that the app can commu-
nicate with. They are used to gather additional data about the users as well as
augmenting the data collected by the smartphone sensors. For instance, a smartwatch
would be used by the app to track the user’s heartrate, therefore adding extra
information on the real-time performance of the user.

Environment is the physical location of the user, and its measurable properties. It
is used by the e-Health app to make runtime adaptations according to its current
operational context and to the user’s scheduled activities, as described in Sect.
13.5.5.

The back-end of our RA (right-hand side in Fig. 13.2) is Managed by a Devel-
opment team. It additionally exposes an interface to the Domain Expert that is also
involved in the e-Health app design and operation. The back-end contains the
components needed to store the collected user data and to manage the user clusters.
It also hosts components supporting the general functioning of the app.

User Process Handler is in charge of sending User Processes to the users; it takes
care of sending the same User Process to all users of the same cluster. A User
Process is composed of one or more Abstract Activities. These activities are inspired
by the ones introduced in [27], although they differ both in the structure and in the
way they are refined, as explained later. An Abstract Activity is defined by a vector of
one or more Activity categories and an associated goal, with each vector entry
representing a day of the week. Examples of Abstract Activities are discussed later
in Sect. 13.9.

Each Abstract Activity is defined by the Domain Expert via the Editor of Abstract
Activities & Goals and later stored in the Catalog of Abstract Activities & Goals.
Each Activity category identifies the kind of activity the user should perform. As an
example, the user can receive either a Cardio or Strength Activity category and so
should perform an activity of that kind. More precisely, for each user, the Activity
categories are converted to Concrete Activities at runtime via the use of the User
Driven Adaptation Manager and based on the user’s preferences. For instance, a
cardio Activity category can be instantiated into different Concrete Activities such as
running, swimming, and walking. Moreover, if an Abstract Activity is composed of
multiple Activity categories, all or some of type Cardio, they can be converted into
different Concrete Activities. This implies that users who receive the same User

308 E. M. Grua et al.

Process will still be likely to have different Concrete Activities, therefore personal-
izing the experience to the individual user (this is further discussed in Sect. 13.5.2).

The goals associated with an Abstract Activity are also important for
distinguishing between Abstract Activities, besides converting them into Concrete
Activities. Two Abstract Activities containing the same vector of Activity categories
can be different solely based on their associated goal. More details on the goal model
are given in Sect. 13.6.

The User Process Handler receives Updates from (1) the AI Personalization and
the Editor of Abstract Activities & Goals in order to send User Processes to their
associated users. The AI Personalization Updates the User Process Handler every
time a user moves from one cluster to another, while the Editor of Abstract Activities
& Goals Updates it every time new clusters are analyzed by the Domain Expert
(along with the new associated User Process). These updates guarantee that the User
Process Handler remains up to date about the User Processes and their associated
users.

AI Personalization sends an Update to the Clustering History component when-
ever a change occurs in the clusters. The AI Personalization component uses the
CluStream-GT algorithm to cluster users into clusters in a real-time and online
fashion [10]. It receives the input data from the e-Health app (see Collected Data
in Fig. 13.2). More than one instance of CluStream-GT can be running at the same
time. In fact, there is one instance per category of data. For example, if the e-Health
app is recording both ecological momentary assessment [28] and biometric data, one
for the purpose of monitoring mood and the other for fitness, there will be two
running instances of the algorithm.

AI Personalization Adaptation is in charge of monitoring the evolution of
clusters and detecting if any change occurs. Examples include the merging of two
clusters or the generation of a new one. To do so, it periodically Queries the
Clustering History database. If one or more new clusters are detected, this compo-
nent will Notify both the Development Team and the Domain Expert. The Domain
Expert will examine the new information and add the appropriate User Process to the
Catalog of Abstract Activities & Goals via the dedicated editor. In turn, the Devel-
opment Team is notified just as a precaution so that it can verify if the new cluster is
not an anomaly. The specifics of the corresponding MAPE loop are described in
Sect. 13.5.1.

The role played by AI via the CluStream-GT algorithm is relevant in our RA as it
strongly supports both personalization and self-adaptation, thus guaranteeing a
continuous user engagement that is crucial in e-Health apps. Specifically, personal-
ization is achieved by clustering the users based on their preferences and their
physical and mental condition. This supports the RA in assigning appropriate User
Processes to each user, and further adapt them to continuously cope with the current
status of the user and by doing so better addressing social sustainability concerns.

Clustering History is a database of all the clusters created by the AI Personal-
ization component. For each cluster it keeps all of the composing micro-clusters with
all of their contained information.

13 Social Sustainability in the e-Health Domain via Personalized and. . . 309

Editor of Abstract Activities & Goals allows the Domain Expert to create and
modify Abstract Activities (and their associated goals) and to combine them as User
Processes. This is achieved via a web-based interactive UI and the editor’s ability to
Query the Catalog of Abstract Activities & Goals. It is also the editor’s responsibility
to update the User Process Handler if any new User Process has been created and is
currently in use.

Catalog of Abstract Activities & Goals is a database of all User Processes that
the Domain Expert has created for each unique current and past cluster. When a new
cluster is defined, the Domain Expert can assign to it an existing User Process from
this catalog, or create a new one and store it.

Catalog of Supported Mobile Applications is a database containing the meta-
data needed for interacting with supported third-party mobile apps installed on users’
devices. This database stores information such as the specific types of Android
intents (and their related extra data) needed for launching each third-party app, the
data it produces after a tracking session, etc. Indeed, our e-Health app does not
provide any specific functionality for executing the activities suggested to the user
(e.g., running, swimming); rather, it brings up third-party apps (e.g., Strava1 for
running and cycling, Swim.com2 for swimming) and collects the data produced by
the apps after the user performs the physical activities. The main reasons for this
design decision are: (1) we do not want to disrupt the users’ habits and preferences in
terms of apps used for tracking their activities and, (2) we want to build on existing
large user bases; we do not want to reinvent the wheel by reimplementing function-
alities already supported by development teams with years-long experience.

Whenever the e-Health app evolves by supporting new applications (or no longer
supporting certain applications), the Catalog of Supported Mobile Applications
Updates, through the Datastore, the Third-party Applications Manager. The
Third-party Applications Manager’s responsibility is to keep the list of supported
mobile apps up to date and provide the corresponding metadata to the User Driven
Adaptation Manager and the Environment Driven Adaptation Manager, when
needed.

The e-Health app and back-end communicate via the Internet. Specifically, the
communication from the e-Health app to the back-end is REST based and it is
performed by the Internet Connectivity Manager, which is responsible for sending
the Collected Data to the AI Personalization component in the back-end. Commu-
nication from the back-end to the e-Health app is performed by the User Process
Handler, which is in charge of sending the User Process to the e-Health app via push
notifications.

1https://www.strava.com/
2https://www.swim.com/

310 E. M. Grua et al.

http://swim.com
https://www.strava.com/
https://www.swim.com/

13.5 Components Supporting Self-Adaptation

The RA has five components used for self-adaptation. To accomplish its responsi-
bilities, each of these components implements a MAPE loop.

13.5.1 AI Personalization Adaptation

The main goal of the AI Personalization Adaptation is to keep track of the clusters
evolution and to enable the creation of new User Processes. It does it through its
MAPE loop depicted in Fig. 13.3.

During its Monitor phase, the AI Personalization Adaptation monitors the macro-
clusters. In its Analyze phase it determines if there are changes in the monitored
macro-clusters. To do so, the AI Personalization Adaptation periodically queries the
Clustering History database. It compares the current clusters with the previously
saved ones. If any of the current ones are significantly different, then the AI
Personalization Adaptation enters its Plan phase. The Plan phase gathers the IDs
of the users and macro-clusters involved in these significant changes. Since this
change involves the need for the creation of new User Processes for all of the users
belonging to the new clusters, the Domain Expert must be involved in this adapta-
tion. To achieve this we have exploited the type of adaptation described in [29],
which considers the involvement of humans in MAPE loops. In particular, in [29]
the authors describe various cases in which a human can be part of a MAPE loop. AI
Personalization Adaptation falls under what the authors refer to as: ‘System Feed-
back (Proactive/foreground)’. This type of adaptation is initiated by the system
which may send information to the human. The human (i.e., Domain Expert) uses
this information to execute the adaptation (by creating the new User Processes
necessary). To send the needed information to the Domain Expert, AI Personaliza-
tion Adaptation takes the gathered knowledge from the Plan phase and gives it to
Execute. Execute notifies (Fig. 13.2) both the Development Team and the Domain
Expert about the detected cluster change(s) and relays the gathered information.

To determine if a cluster is significantly different from another, we use a param-
eter delta. This parameter is set by the Development Team at design time and
determines how different the stored information of one cluster has to be from another

Fig. 13.3 AI Personalization Adaptation MAPE loop

13 Social Sustainability in the e-Health Domain via Personalized and. . . 311

one to identify them as unique. The Development Team is notified as a precaution, to
double check the change and verify that no errors occurred.

13.5.2 User Driven Adaptation Manager

The main responsibility of the User Driven Adaptation Manager is to receive the
User Process from the back-end and convert the contained Abstract Activities into
Concrete Activities. A Concrete Activity represents a specific activity that the user
can perform, also with the support of smart objects and/or corresponding mobile
apps. As an example, running is a concrete activity during which the user can exploit
a smart bracelet to monitor their cardio rate as well as a dedicated mobile app to
measure the run distance and the estimated burned calories. A Concrete Activity is
designed as a class containing multiple attributes that is stored on the smartphone.
The attributes are:

• Selectable: This is True if the User Driven Adaptation Manager or the Environ-
ment Driven Adaptation Manager can choose this Concrete Activity, when
dynamically refining Abstract Activities; False otherwise. It is set by the user
via the user preferences.

• Location: This specifies if the activity is performed indoors or outdoors. This
attribute is used by the Environment Driven Adaptation Manager to choose the
appropriate Concrete Activity according to weather conditions (see Sect. 13.5.5).

• Activity category: This defines what type of category the Concrete Activity falls
under; e.g., for a fitness activity, it specifies a cardio or strength training.

• Recurrence: This tracks how many times the user has performed the Concrete
Activity in the past. It allows the User Driven Adaptation Manager to have a
preference ranking system within all the selectable Concrete Activities.

For each user, the Concrete Activities are derived from their preferences stored in
the Third-party Applications Manager. During its nominal execution, the User
Driven Adaptation Manager is in charge of refining the Abstract Activities in the
User Process into Concrete ones. To do this, it queries the Third-party Applications
Manager and exploits its knowledge of the Concrete Activities and their attributes.
After completing the task, the User Driven Adaptation Manager presents the per-
sonalized User Process to the user as a schedule, where each slot in the vector of
Activity categories corresponds to a day. Therefore creating a personalized user
schedule of Concrete Activities.

Refining a User Process is required every time that the user is assigned with a new
process, to keep up with its improvements and/or cluster change. To this aim, a
dynamic User Process adaptation is needed to adapt at runtime the personalized user
schedule in a transparent way and without a direct user involvement. Figure 13.4
depicts the MAPE loop of the User Driven Adaptation Manager.

Once it accomplishes its main task of refining the User Process, the User Driven
Adaptation Manager enters the Monitor phase of its MAPE loop by monitoring the

312 E. M. Grua et al.

User Process. The Analyze phase receives the monitored User Process from Mon-
itor. Analyze is now responsible to determine if the user has been assigned a new
User Process. If so, the User Driven Adaptation Manager converts the Abstract
Activities in this new User Process into Concrete ones, taking into account the user
preferences. It makes this conversion by finding suitable Concrete activities during
the Plan phase. As all of the Abstract Activities have been matched with a
corresponding Concrete activity, the Execute phase makes the conversion, storing
this newly created personalized User Process and notifying the user about the new
activity schedule.

13.5.3 Smart Objects Manager

This component aims to maintain the connection with the user’s smart objects and, if
not possible, find alternative sensors to make the e-Health app able to continuously
collect user’s data and, thus, to perform optimally. To this aim, it implements a
MAPE loop, shown in Fig. 13.5, supporting the dynamic adaptation at the architec-
tural level of the smart objects.

The Monitor phase is devoted to the run-time monitoring of the connection status
with the smart objects. Connection problems can be due to either the smart objects
themselves, which can be out of battery, or to missing Internet, Bluetooth or
Bluetooth low energy connectivity. The Analyze phase is in charge of verifying
the current connection status (received by Monitor) and see if the connection status

Monitor Plan

User process Is the user process
new?

(Re)specify the user
activities based on
current preferences

and relevant installed
apps

Store the personalised
user process and notify

the user of the new
activities

Analyse Execute

Fig. 13.4 User Driven Adaptation Manager MAPE loop

Fig. 13.5 Smart Objects Manager MAPE loop

13 Social Sustainability in the e-Health Domain via Personalized and. . . 313

with any of the smart objects has changed. During the Plan phase, the MAPE will
create a sequential plan of actions that the Execute will have to perform. All of the
actions are aimed at reestablishing the lost connection or at finding a new source of
data (e.g. reconnect, notify the user, find a new source of data). For instance, if the
smart-watch connected to the smartphone runs out of battery and attempts to
reconnect to it fail, the Smart Objects Manager will switch to sensors inbuilt in the
smartphone (such as the accelerometer).

13.5.4 Internet Connectivity Manager

The main purposes of the Internet Connectivity Manager are to (1) to send the
Collected Data to the back-end and store them locally when the connection is
missing, and (2) to provide resilience to the e-Health app’s Internet connectivity.

As shown in the MAPE loop in Fig. 13.6, during the Monitor phase the Internet
Connectivity Manager runtime monitors the quality of the smartphone’s Internet
connection.

Analyze is then in charge of detecting whether a significant connection quality
alteration is taking place. If so, the Internet Connectivity Manager enters the Plan
phase and it plans for an alternative. The alternative can include switching the
connection type or storing the currently collected data locally on the smartphone.
As a new connection can be established, the component sends the data to the back-
end to be used by the AI Personalization.

13.5.5 Environment Driven Adaptation Manager

One of the objectives of the e-Health app is keeping users constantly engaged, to
ensure that they execute their planned schedule of activities. To this aim, the
Environment Driven Adaptation Manager plays an important role, which is essen-
tially supported by its MAPE loop, depicted in Fig. 13.7.

The purpose of this component is to constantly check whether the currently
scheduled Concrete Activity best matches the runtime environment (i.e., weather

Fig. 13.6 Internet Connectivity Manager MAPE loop

314 E. M. Grua et al.

conditions) the user is located in. To do so, the Environment Driven Adaptation
Manager monitors in runtime the user’s environment. The Monitor phase periodi-
cally updates the Analyze phase by sending the environment data. This phase
establishes if the environment significantly changed. If so, it triggers the Plan
phase that verifies whether the currently planned Concrete Activity is appropriate
for the user’s environment. If it is not, it finds an appropriate alternative and sends
the information to Execute. Execute swaps the planned Concrete Activity with the
newly found one and notifies the user of this change.

13.6 Goal Model

Goals have been used in many areas of computer science for a long time. For
instance, in AI planning they are used to describe desirable states of the world
(e.g., [30]) whereas in goal-oriented requirements engineering (GORE [31]) they are
used to model nonfunctional requirements (e.g., [32]). Goals have also been used in
self-adaptive systems to express the desired runtime behavior of systems execution
[27, 33]. More recently, goals are used to model personal objectives at the user level
[34], as done in our work.

As stated before, a User Process is composed of one or more Abstract Activities,
each defined as a vector of Activity categories with an associated goal. For each
cluster, the Domain Expert defines its User Process and corresponding goals,
through the Editor of Abstract Activities & Goals.

The syntax of our goal model is presented in Table 13.1. A goal of an Abstract
Activity, namely, G a, refers to the type of feature that the Abstract Activity
represents (e.g., mood, fitness). At the current stage of our work, we have mood-
based goals, mg, and fitness-based goals, fg.

A mood-based goal defines as objective a desirable mood that the user should
reach, considering their specific pathology. A mood-based goal can be specified in
two different ways: as a numerical value belonging to a given discrete range, such as
1, . . . , n, or as a string value belonging to a specific string set, such as [very sad, sad,
neutral, happy, very happy]. This goal type establishes the target mood that users are
expected to reach when performing mood-related activities. Specifically, we use the

Fig. 13.7 Environment Driven Adaptation Manager MAPE loop

13 Social Sustainability in the e-Health Domain via Personalized and. . . 315

one_of S T R I N G_SET construct to allow the Domain Expert to define as goal one
mood among the ones listed in the set S T R I N G_SET, for instance in (Eq. 13.1):

Ga≔mg one of neutral, happy, very happy½ � ð13:1Þ

When a numerical range is used to describe the user mood, we use relational
operators to specify a goal as a value in a subset of the given discrete range.
Moreover, for both mood-based goals, the expert can optionally specify the fre-
quency with which the user is asked to register their mood, through the ? F R E Q
construct. The frequency can be expressed in terms of T I M E S per day, per
week, or per month, where T I M E S belongs to a discrete range of values, as
given in (Eq. 13.2):

Ga≔mg � 7 in 1, . . ., 10½ � 3 per day ð13:2Þ

A mood-based goal mg succeeds if it satisfies the relation expressed by the goal.
In the presence of a frequency, instead, the user enters more than one mood. In this
case, the mood-based goal succeeds if the average computed among the registered
mood satisfies the relation expressed by the goal mg; it fails otherwise.

A fitness-based goal specifies the required intensity and frequency with which
users should perform fitness-related activities. In particular, the goal model pro-
vides two constructs to indicate the intensity, namely, I N T E N S I T Y time and
I N T E N S I T Y value. The former is used to express the intensity in terms of
duration of the activity (e.g., seconds, minutes, and hours). The latter is used to
express the intensity in non-time-based terms. Our goal model foresees the use of
values such as kcal, km, and step_count. As for mood-based goals, the Domain
Expert can optionally specify the frequency with which the user is asked to
perform the suggested activities, via the ? F R E Q construct. Relational operators
can be used to specify threshold values over intensity-based goals. Moreover,
control-flow constructs, namely, and, or, and one_of, can also be specified to
combine fitness-based goals. These constructs allow us to recursively combine
elementary goals, of I N T E N S I T Ytime, I N T E N S I T Yvalue, and threshold

Table 13.1 Goal model syntax

Ga: ::¼ mg | fg
mg ::¼ one_of S T R I N G_S E T ?(F R E Q) |<or � or >or � or

¼ value in [1, . . . ; n] ?(F R E Q)

fg ::¼ I N T E N S I T Y time ?(F R E Q) |I N T E N S I T Y value ?(F R E Q)
|<or � or >or � or ¼ fg |
fg and fg | fg or fg |one_of seq fg |T |⊥

I N T E N S I T Y time ::¼ Seconds |minutes | hours

I N T E N S I T Y value ::¼ kcal | km | step_count

F R E Q ::¼ T I M E S per day | T I M E S per week | T I M E S per month
T I M E S ::¼ [1, . . . ; n] 8n 2 N

316 E. M. Grua et al.

types, thus to create goals of different complexity. An example is given in
(Eq. 13.3):

Ga≔ f g � 1000 kcal 1 per day or f g > 5 km ð13:3Þ

A fitness-based goal fg of type intensity or threshold succeeds if the user performs
the suggested activities with the required time-based or value-based intensity; it fails
otherwise. Goals of type and and or represent combination of goals and they
succeed, respectively fail, as per the rule defined by the involved logical operators.
A goal one_of seq fg specifies the need for achieving one of the goals in the given
sequence. The choice of the goal to target among the available ones can depend on a
utility function or a user’s choice.

The presented goal model is open and easy to extend. If a new feature different
from mood and fitness is envisaged, it is sufficient to extend the rule related to Ga

with a further nonterminal term on the right-hand side of the rule, referring to the
new feature, along with one or more associated rules. The ease of use of the goal
model, as well as the Editor of Abstract Activities & Goals are designed as tools that
allow Domain Experts to make changes in the tailoring of the app to better meet the
interests and needs of the users. This is an important feature of the RA that allows it
to better address social sustainability.

13.7 Methodology

As introduced in Sect. 13.2, to design our RA we used the framework and the
methodology of Angelov et al. [15]. In Table 13.2 we list all questions for each
dimension (i.e., context, goals, and design), with the answers we gave whilst
designing our RA and the rationale for each answer.

In the goal dimension, the aim of our RA is providing guidelines for the design of
personalized and self-adaptive e-Health apps. To the best of our knowledge no RA of
this type exists in this domain (G1).

In the context dimension, our RA is devoted to any organization in the e-Health
domain who can benefit from it (C1). Particularly, during the design of our RA we
have used our collected experience from multiple collaborations with psychologists
and e-Health app providers to formulate the requirements needed to be addressed.
We were the sole designers of the RA (C2). The main objective was to design RA in
a way that it can utilize, in the same architecture, relevant techniques needed to
achieve both personalization and self-adaptation within this domain (C3).

In the domain dimension, the main ingredients of our RA are: software compo-
nents and their connectors, the CluStream-GT algorithm, the MAPE-loops, and the
goal model (D1). Specifically, the software components and goal model are semi-
detailed as they demonstrate implementation feasibility and a clear objective but are
not yet implemented. CluStream-GT is detailed as it is previously published and

13 Social Sustainability in the e-Health Domain via Personalized and. . . 317

tested work. The MAPE-loops only demonstrate the general communication and are
specified at an aggregated level (D2). As our RA is described, we mainly abstract
from concrete technologies (D3); in fact, the majority of the RA is currently
presented in a semi-formal manner with the exception of CluStream-GT (D4).

In Table 13.3 we present our final match of the RA with respect to the types/
variants (T/V) presented by Angelov et al. [15]. In particular, X denotes a match of
the architecture values with those in the T/V. As shown, our RA fits one of the
architecture variants identified and described by Angelov et al. (specifically variant
5.1); this demonstrates its congruence wrt its context, goals, and design. As stated in
[15], if a RA can be classified into one of their identified types it has a better chance
of being successful (i.e., “accepted by its stakeholders and used in multiple projects”
[15]).

Table 13.2 RA according to the three dimensions: context, goals, design

Dimension Values Rationale

G1: Why is it
defined?

Facilitation Our aim with this RA is to provide guide-
lines for the design of personalized and
self-adaptive e-Health apps.

#
C1: Where will
it be used?

Multiple organizations Multiple organizations within the e-Health
domain.

C2: Who
defines it?

Research centers (D), The RA was designed by the authors who
are all researchers.

User organizations (R), software
organizations (R)

Requirements for this RA were derived by
collaborations with domain experts and
e-Health app providers.

C3: When is it
defined?

Preliminary The algorithms, goal model, and MAPE-
loops do not exist in practice yet.

#
D1: What is
described?

Components, algorithms, proto-
cols, etc.

Components, CluStream-GT, MAPE-
loops, domain model.

D2: How
detailed is it
described?

Semi-detailed architecture,
detailed algorithms, and aggre-
gated protocols

The goal model and the software compo-
nents are semi-detailed, CluStream-GT is
detailed, and the MAPE-loops are
aggregated.

D3: How con-
crete is it
described?

Abstract elements At the time of design, our RA mainly
abstracts from concrete technologies.

D4: How is it
represented?

Semi-formal architecture repre-
sentation and a formal algorithm

The RA is described according to 42010,
CluStream-GT is implemented.

Table 13.3 Final match of our RA to one of the five types identified in [15]

T/V G1 C1 C2 C3 D1 D2 D3 D4

RA 5.1 X X X X X X X X

318 E. M. Grua et al.

13.8 Viewpoint Definition

This section describes the essential elements of the viewpoint defined to represent
Mobile-enabled Self-adaptive Personalized Systems (or MSaPS Viewpoint for
short).

We have used it to create the view of our RA for personalized and self-adaptive
e-Health Apps as described in Fig. 13.2. It must be noted, however, that the MSaPS
Viewpoint is not limited to reference architecture use: one could use it to design
specific e-Health mobile-enabled systems, as well as to describe mobile-enabled
systems not targeted at e-Health but involving personalization and self-adaptation.

The MSaPS Viewpoint relies on the guidelines provided in the ISO/IEC/IEEE
42010 Standard [35]. Accordingly, after a short description it frames (cf. Table 13.4)
the typical stakeholders, their concerns, the meta-model, and the related conforming
visual notation. The indication of which stakeholders may have which concerns is
further shown in Table 13.5.

13.9 Scenario-Based Evaluation

To evaluate how our RA would cover typical usage scenarios, we used the domain
expertise learnt from our industrial collaborations and have defined the example case
and associated scenarios described in this section (see Figs. 13.8 and 13.9). For each
scenario, we challenged how the RA can be used. Throughout the example we use a
hypothetical user named Connor and focus on fitness-based goals.

Scenario 1 (Fig. 13.8a). Connor downloads a fitness app that uses our proposed
RA. As a first step, he has to input some preferences about the kind of activities he
likes the most, complete a questionnaire used to understand his fitness level and give
consent for his data to be tracked and used by the app. The fitness app decides on his
first weekly schedule of activities.

This is a default schedule created by the Domain Expert, in accordance with the
information provided by Connor. The default schedule, represented as an Abstract
Activity, is adapted by the User Driven Adaptation Manager in accordance with
Connor’s preferences and supported third-party applications. This scenario high-
lights how our RA supports both user level adaptation (where the Abstract Activities
assigned to Connor are adapted by the User Driven Adaptation Manager) and
architecture level adaptation (where the Third-party Applications Manager realizes
the Concrete Activities by dynamically integrating the specific apps Connor uses on
his mobile device).

Scenario 2 (Fig. 13.8b). During the first week Connor performs the Concrete
Activities assigned to him. This first week is needed by the app to gather enough data
from Connor so that the AI Personalization can determine to which macro-cluster
Connor belongs. After successfully clustering Connor, the AI Personalization sends
an update to the User Process Handler, which is now able to send the appropriate

13 Social Sustainability in the e-Health Domain via Personalized and. . . 319

Table 13.4 Elements of the MSaPS viewpoint

Element Description

Viewpoint
description

This viewpoint captures the essential architectural and contextual elements
supporting the design of mobile-enabled self-adaptive and personalized systems

Typical
stakeholders

Domain experts, software architects, members development teams, user

Concerns C1: How to extend a mobile app with personalization and self-adaptation?
C2: How to integrate external smart objects and environmental information
flows?
C3: How to integrate Domain Expert knowledge into the mobile app’s
personalization?
C4: How to integrate third-party apps as part of the mobile app’s personalization?
C5: What are the components of MAPE loops and how do they
interact?
C6: Where is the user data stored?

Meta-model

Conforming
notation

320 E. M. Grua et al.

User Process to Connor. By querying the Third-party Applications Manager, the
Abstract Activity is adapted by the User Driven Adaptation Manager into appropri-
ate Concrete Activities. Like with the default schedule, the two Cardio entries are
converted into running, whilst the newly given Strength one is converted into weight
lifting. Furthermore, the new goal he receives is more challenging. This scenario
illustrates the same levels of adaptation as scenario 1, completed by the same
components. Additionally, the user level adaptation is further personalized by
clustering Connor and the User Process Handler sending him his cluster-related
User Process.

Scenario 3 (Fig. 13.8c). On Monday Connor goes running as suggested by the
app. Whilst he is running outdoors, both the Wi-Fi and 4G have no connection. The
Internet Connectivity Manager detects this and so decides to store the data locally.
When Connor gets back home after completing his run, the Wi-Fi connection is
reestablished. Aware of this, the Internet Connectivity Manager sends the locally
stored Collected Data to the back-end. This scenario illustrates an architectural
level adaptation—performed by the Internet Connectivity Manager by storing the
data locally and sending it to the back-end when the Internet connection is
reestablished.

Scenario 4 (Fig. 13.9a). On Wednesday as Connor is in the gym doing the
assigned weight training, the connection with the smartwatch is interrupted. The
disconnection is detected by the Smart Objects Manager that at runtime reconnects to
the smartwatch allowing the app to resume collecting the data about Connor via the
smart object. This scenario describes an example of architectural level adaptation—
performed by the Smart Objects Manager when Connor’s smartwatch is no longer
detected by the app.

Scenario 5 (Fig. 13.9b). On Friday, the Environment Driven Adaptation Manager
detects that the weather forecast predicts rain for the day. As Connor’s scheduled
Concrete Activity is running, an outdoor activity, the Environment Driven Adapta-
tion Manager needs to make a runtime adaptation. It queries the Third-party Appli-
cations Manager for Cardio activities suitable for indoors. As swimming is the best
alternative, it switches running with swimming and notifies Connor of the change,
saying that the activity will be carried out via the swim.com app. This scenario
focuses on both user level adaptation (when the Concrete Activity is adapted by the
Environment Driven Adaptation Manager), and architectural level adaptation
(when the Third-party Applications Manager accesses the third-party app).

Table 13.5 Stakeholders and related concerns

Concerns/stakeholders User Domain expert Developer Software architect

C1: Extend App w/Pers/Adapt ✓ ✓

C2: Integrate External Elements ✓ ✓

C3: Integrate ✓ ✓ ✓

C4: Integrate Apps ✓ ✓

C5: MAPE Interactions ✓

C6: User Data ✓

13 Social Sustainability in the e-Health Domain via Personalized and. . . 321

http://swim.com

Fig. 13.8 Scenarios 1–3

322 E. M. Grua et al.

Fig. 13.9 Scenarios 4–6

13 Social Sustainability in the e-Health Domain via Personalized and. . . 323

Scenario 6 (Fig. 13.9c). Connor has now finished his second week and has
successfully reached his assigned goal. In order to maintain the goal engaging and
challenging, Connor’s success, along with the success of other users, causes the AI
Personalization to create a new macro-cluster for them. As the new macro-cluster is
one that has never occurred in the system’s history, the AI Personalization Adapta-
tion deems this change significant and so notifies the Domain Expert to analyze
the new macro-cluster and associate with it a new User Process. The notified Domain
Expert makes the new User Process via the web-based Editor of Abstract Activities
& Goals. Given the users of the new macro-cluster’s success (including Connor), the
Domain Expert makes the User Process goal more challenging, increasing the
amount of kcal to 2000 and the km to 15 (as shown in the figure). This new User
Process is sent to the members of the new macro-cluster via the User Process
Handler. This scenario illustrates all three levels of adaptation: the cluster level
adaptation to the new macro-cluster performed by the AI Personalization Adapta-
tion, the user level adaptation performed by the User Driven Adaptation Manager
when adapting a new User Process, and the architectural level adaptation by
associating third-party apps to Concrete Activities performed by the Third-party
Applications Manager.

13.10 Discussion

It is important to note that our RA is extensible enough to support other domains
beyond fitness and mood. Specifically, the goal model has been designed such that
supporting an additional domain can be achieved by adding (1) a new nonterminal

Fig. 13.9 (continued)

324 E. M. Grua et al.

term in the root rule Ga and (2) one or more rules describing the goal within the new
domain. Also, many of the existing rules (e.g., F R E Q) are generic enough to be
reused by newly added rules. On the client side no changes are required, whereas the
only components which may need to be customized to a new application domain are:
(1) the Editor of Abstract Activities & Goals, so that it is tailored to the different
domain experts and the extended goal model, and (2) the Catalog of Supported
Mobile Applications, so that it now describes the interaction points with different
third-party apps.

Abstract Activities allow Domain Experts to define incremental goals spanning
over the duration of the whole User Process. In addition, User Processes are defined
at the cluster level (potentially including thousands of users) and can cover large
time spans (e.g., weeks or months). Those features make the operation of the RA
sustainable from the perspective of Domain Experts, who are not required to
frequently intervene for defining new goals or User Processes. Furthermore, these
features make the apps adopting our RA socially sustainable on multiple levels. The
cluster-level-defined User Processes allow for tailoring to a “community” of similar
users, empowering them to achieve a better life. On an individual level, the app fine-
tunes the User Processes to better suit the user’s needs and interests; this allows the
individual user to better achieve their goals both in the immediate and in the systemic
(as defined in [36]). Lastly, these features allow for the larger group of users utilizing
this RA to reach the same level of health benefits, as the interventions have been
specifically tailored for them for this goal.

Through the conversion from Activity Categories to Concrete Activities, which
takes place during the dynamic Abstract Activities refinement, we accommodate
both Type-to-Type adaptation (e.g., from the Cardio Activity Category to the
Running Concrete Activity) and the most common Type-to-Instance adaptation
(e.g., by using the Strava mobile app as an instance of the Running Concrete
Activity). Similarly, a Type-to-Type adaptation is reported by Calinescu et al. [37]
presenting an approach where elements are replaced with other elements providing
the same functionality but showing a superior quality to deal with changing condi-
tions (e.g., dynamic replacement of service instances in service-based systems). In
our approach, however, we go beyond, by replacing activities with others providing
different functionality to deal with changing conditions. To the best of our knowl-
edge, this adaptation type is uncommon in self-adaptive architectures, despite quite
helpful.

The components of the RA running on the smartphone can be deployed in two
different ways, each leading to a different business case. Firstly, those components
can be integrated into an existing e-Health app (e.g., Endomondo3 for sports
tracking) so as to provide personalization and self-adaptation capabilities to its
services. In this case the development team of the app just needs to deploy the
client-side components of the RA as a third-party library, suitably integrate the
original app with the added library, and launch the server-side components. The

3https://www.endomondo.com/

13 Social Sustainability in the e-Health Domain via Personalized and. . . 325

https://www.endomondo.com/

second business case regards the creation of a new meta-app integrating the services
of third-party apps, similarly to what apps like IFTTT4 do. In this case, the meta-app
makes an extensive usage of the Third-party Applications Manager component and
orchestrates the execution of the other apps already installed on the user device.

Finally, we are aware that our RA is responsible for managing highly sensitive
user data, which may raise severe privacy concerns. In order to mitigate potential
privacy threats, the communication between the mobile app and the back-end is
TLS-encrypted and the payload of push notifications is encrypted as well, e.g., by
using the Capillary Project [38] for Android apps, which supports state-of-the-art
encryption algorithms, such as RSA and Web Push encryption. Eventually, we
highlight that, according to the privacy level required by the Development Team,
the components running in the back-end can be deployed either on premises or on
the Cloud, e.g., by building on public Cloud services like Amazon AWS and
executing them behind additional authentication and authorization layers.

13.11 Conclusions and Future Work

In this paper we presented a RA for e-Health mobile apps. Its goal is to combine
AI-based personalization and self-adaptation. The RA achieves self-adaptation on
three levels: (1) adaptation to the users and their environment, (2) adaptation to smart
objects and third-party applications, and (3) adaptation according to the data of the
AI-based personalization, ensuring that users receive personalized activities that
evolve with the users’ runtime changes in behavior. This work emphasizes how
personalization and self-adaptation within the e-Health domain can be beneficial in
addressing social sustainability. By tailoring user interventions we empower mobile
app developers to better help their users in achieving better physical and mental
health; this leads to increased support for the community of people who suffer from
mental and physical illness and are working on increasing their health. The RA
therefore achieves what is defined as the core principal of social sustainability in the
realm of software-intensive systems. As future work we are realizing a prototype
implementing the RA and designing a controlled experiment to evaluate its effects
on user behavior and performance at runtime.

References

1. Williams PAH, McCauley V (2013) A rapidly moving target: conformance with e-health
standards for mobile computing. In: 2nd Australian eHealth Informatics and Security
Conference

4https://ifttt.com/

326 E. M. Grua et al.

https://ifttt.com/

2. Global Industry Analysts, I (2019) mhealth (mobile health) services – market analysis, trends,
and forecasts. https://tinyurl.com/rbvdtc3

3. PaschouM, Sakkopoulos E, Sourla E, Tsakalidis A (2013) Health internet of things: metrics and
methods for efficient data transfer. Simul Model Pract Theory 34:186–199

4. Fling B (2009) Mobile design and development: Practical concepts and techniques for creating
mobile sites and Web apps. O’Reilly Media, Inc.

5. Fan H, Poole MS (2006) What is personalization? Perspectives on the design and implemen-
tation of personalization in information systems. J Organ Comput Electron Comm 16
(3–4):179–202

6. Grua EM, Malavolta I, Lago P (2019) Self-adaptation in mobile apps: a systematic literature
study. In: IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). pp 51–62

7. Weyns D (2017) Software engineering of self-adaptive systems: an organised tour and future
challenges. In: Handbook of Software Engineering

8. Yang Z, Li Z, Jin Z, Chen Y (2014) A systematic literature review of requirements modeling
and analysis for self-adaptive systems. In: International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, pp 55–71

9. IBM (2006) An architectural blueprint for autonomic computing. Technical report. IBM
10. Grua EM, Hoogendoorn M, Malavolta I, Lago P, Eiben A (2019) Clustream-GT: Online

clustering for personalization in the health domain. In: IEEE/WIC/ACM International Confer-
ence on Web Intelligence. ACM, pp 270–275

11. Grua EM, De Sanctis M, Lago P (2020) A reference architecture for personalized and self-
adaptive e-health apps. In: Software Architecture: 14th European Conference, ECSA 2020
Tracks and Workshops, L’Aquila, Italy, 14–18 September 2020, Proceedings. Springer, pp
195–209

12. Volpato T, Oliveira BRN, Garcés L, Capilla R, Nakagawa EY (2017) Two perspectives on
reference architecture sustainability. In: Proceedings of the 11th European Conference on
Software Architecture: Companion. ACM, pp 188–194

13. Kim KJ, Ahn H (2004) Using a clustering genetic algorithm to support customer segmentation
for personalized recommender systems. In: International Conference on AI, Simulation, and
Planning in High Autonomy Systems. Springer, pp 409–415

14. Grua EM, Hoogendoorn M (2018) Exploring clustering techniques for effective reinforcement
learning based personalization for health and wellbeing. In: 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, pp 813–820

15. Angelov S, Grefen P, Greefhorst D (2012) A framework for analysis and design of software
reference architectures. Inf Softw Technol 54(4)

16. Lago P, Verdecchia R, Fernandez NC, Rahmadian E, Sturm J, van Nijnanten T, Bosma R,
Debuysscher C, Ricardo P (2020) Designing for sustainability: lessons learned from four
industrial projects. In: Environmental Informatics – Sustainability aware digital twins for
urban smart environments (EnviroInfo). Springer

17. (2019) The industrial internet of things volume G1: reference architecture. Industrial Internet
Consortium. https://bit.ly/2talimM

18. Bassi A, Bauer M, Fiedler M, Kramp T, van Kranenburg R, Lange S, Meissner S (2016)
Enabling things to talk: designing IoT solutions with the IoT architectural reference model, 1st
edn. Springer

19. Bauer M et al (2013) IoT reference architecture. In: enabling things to talk: designing IoT
solutions with the IoT architectural reference model

20. Fremantle P (2015) A reference architecture for the internet of things. WSO2 White paper.
https://bit.ly/2RMzCft

21. Feljan AV, Mohalik SK, Jayaraman MB, Badrinath R (2015) SOA-PE: a service-oriented
architecture for planning and execution in cyber-physical systems. In: 2015 International
Conference on Smart Sensors and Systems (IC-SSS). pp 1–6

13 Social Sustainability in the e-Health Domain via Personalized and. . . 327

https://tinyurl.com/rbvdtc3
https://bit.ly/2talimM
https://bit.ly/2RMzCft

22. Mohalik SK, Narendra NC, Badrinath R, Le D (2017) Adaptive service-oriented architectures
for cyber physical systems. In: IEEE Symposium on Service-Oriented System Engineering,
SOSE. pp 57–62

23. de Morais Barroca Filho I, Junior GSA, Batista TV (2019) Extending and instantiating a
software reference architecture for iot-based healthcare applications. In: Int. Conf. on Compu-
tational Science and Its Applications. pp 203–218

24. Mizouni R, Matar MA, Al Mahmoud Z, Alzahmi S, Salah A (2014) A framework for context-
aware self-adaptive mobile applications SPL. Expert Syst Applic 41(16):7549–7564

25. Lopez FS, Condori-Fernández N (2016) Design of an adaptive persuasive mobile application
for stimulating the medication adherence. In: International Conference on Intelligent Technol-
ogies for Interactive Entertainment. Springer, pp 99–105

26. Kim HK (2013) Architecture for adaptive mobile applications. Int J Bio-Sci Bio-Technol 5
(5):197–210

27. Bucchiarone A, Lluch-Lafuente A, Marconi A, Pistore M (2009) A formalisation of adaptable
pervasive flows. In: WS-FM. pp 61–75

28. Shiffman S, Stone AA, Hufford MR (2008) Ecological momentary assessment. Annu Rev Clin
Psychol 4:1–32

29. Gil M, Pelechano V, Fons J, Albert M (2016) Designing the human in the loop of self-adaptive
systems. In: International Conference on Ubiquitous Computing and Ambient Intelligence.
Springer, pp 437–449

30. Dal Lago U, Pistore M, Traverso P (2002) Planning with a language for extended goals. In:
Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artificial Intelligence. pp 447–454

31. Mylopoulos J, Chung L, Nixon BA (1992) Representing and using nonfunctional requirements:
a process-oriented approach. IEEE Trans Softw Eng 18(6):483–497

32. Santos M, Gralha C, Goulão M, Araújo J (2018) Increasing the semantic transparency of the
KAOS goal model concrete syntax. In: Conceptual Modeling – 37th International Conference,
ER. pp 424–439

33. Morandini M, Penserini L, Perini A (2008) Towards goal-oriented development of self-adaptive
systems. In: 2008 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS. pp 9–16

34. Qian W, Peng X, Wang H, Mylopoulos J, Zheng J, Zhao W (2018) MobiGoal: flexible
achievement of personal goals for mobile users. IEEE Trans Serv Comput 11(2):384–398

35. International Organization for Standardization (2011) ISO/IEC/IEEE 42010:2011 – Systems
and Software Engineering – Architecture Description. Technical report. International Organi-
zation for Standardization (ISO)

36. Lago P (2019) Architecture design decision maps for software sustainability. In: 2019 IEEE/
ACM 41st International Conference on Software Engineering: Software Engineering in Society
(ICSE-SEIS). IEEE, pp 61–64

37. Calinescu R, Weyns D, Gerasimou S, Iftikhar MU, Habli I, Kelly T (2018) Engineering
trustworthy self-adaptive software with dynamic assurance cases. IEEE Trans Softw Eng 44
(11):1039–1069

38. Hogben G, Perera M (2018) Project capillary: end-to-end encryption for push messaging,
simplified. https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-
encryption.html?m¼1

328 E. M. Grua et al.

https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html?m=1
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html?m=1
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html?m=1

	Chapter 13: Social Sustainability in the e-Health Domain via Personalized and Self-Adaptive Mobile Apps
	13.1 Introduction
	13.2 Background
	13.3 Related Work
	13.4 Reference Architecture
	13.5 Components Supporting Self-Adaptation
	13.5.1 AI Personalization Adaptation
	13.5.2 User Driven Adaptation Manager
	13.5.3 Smart Objects Manager
	13.5.4 Internet Connectivity Manager
	13.5.5 Environment Driven Adaptation Manager

	13.6 Goal Model
	13.7 Methodology
	13.8 Viewpoint Definition
	13.9 Scenario-Based Evaluation
	13.10 Discussion
	13.11 Conclusions and Future Work
	References

