
Software
Sustainability

Coral Calero
Ma Ángeles Moraga
Mario Piattini Editors

Software Sustainability

Coral Calero • Mª Ángeles Moraga • Mario Piattini
Editors

Software Sustainability

Editors
Coral Calero
Alarcos Research Group, Institute of
Technologies and Information Systems
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

Mª Ángeles Moraga
Alarcos Research Group, Institute of
Technologies and Information Systems
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

Mario Piattini
Alarcos Research Group, Institute of
Technologies and Information Systems
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

ISBN 978-3-030-69969-7 ISBN 978-3-030-69970-3 (eBook)
https://doi.org/10.1007/978-3-030-69970-3

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0728-4176
https://orcid.org/0000-0001-9165-7144
https://orcid.org/0000-0002-7212-8279
https://doi.org/10.1007/978-3-030-69970-3

The editors want to dedicate this book to the
Green Team from the Alarcos research group
for their great work. We also want to dedicate
it to all the readers who are interested in the
sustainability of software.

To Olivia and Moisés. Because you deserve
the best world to live!!

Coral Calero

To my sons, Carlos and Javier, and my niece,
Elsa, who make my life more sustainable.

Mª Ángeles Moraga

To Beatriz, Catherine, and Sienna
Mario Piattini

Preface

Overview

The preservation of the environment has become one of the most urgent concerns of
today’s society. People have become aware of the need to cut down on energy
consumption and to reduce our carbon footprint. This means that sustainability has
arisen as a key aspect in several domains, guiding the development of the world’s
future. At an international level, there are many initiatives aiming to address these
issues, and the main research and development programs include sizeable amounts
of funding for projects seeking to achieve environmentally sound technologies.
Also, at a governmental level there are efforts to align societal development with
the goals of sustainability. The Paris Agreement is a good example of how countries
(as representatives of their citizens) are involved in an effort to combat global
climate change so as to ensure the best quality of life. According to the UN Climate
Change website,1 “. . . the Paris Agreement’s central aim is to strengthen the global
response to the threat of climate change.” “It also aims to strengthen countries’
ability to deal with the impacts of climate change,” and “support them in their
efforts. . .to make finance flows consistent with a pathway towards low greenhouse
gas emissions and climate-resilient development.” “To reach these ambitious goals,
appropriate mobilisation and provision of financial resources, a new technology
framework and enhanced capacity-building is to be put in place, thus supporting
action by developing countries and the most vulnerable countries, in line with their
own national objectives” (UN Climate Change Secretariat 2015).

But sustainability is not just a matter of CO2 emissions, it also depends on other
aspects. For example, it is necessary to develop software that takes into account not
only its own energy efficiency but also aspects related to the amount of resources
needed or the longevity of the software. It is important to integrate sustainability into

1https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement/key-aspects-of-
the-paris-agreement

vii

the core business processes devoted to producing software or services, ensuring the
continuity of the software industry and implementing appropriate risk-management
programs and policies. And last, but not least, software workers must be taken into
consideration as part of software sustainability: ethics, rights, protection, and train-
ing are among the necessary initiatives to support them.

There are therefore three key aspects of sustainability: the environment, society,
and the actions necessary to ensure economic sustainability.

In fact, the United Nations’ Brundtland Report defines sustainable development
as the ability to “meet the needs of the present without compromising the ability of
future generations to satisfy their own needs.”2

Given the great relevance that software has today and the fact that it seems it will
be even greater in the future, it is of utmost importance to consider sustainability as a
key feature. The focus of this book is therefore on software sustainability, examined
in terms of how software can be developed while taking into consideration environ-
mental, social, and economic dimensions so as to meet the needs of the present
without compromising the future.

Software sustainability has three dimensions (Fig. 1):

• Environmental sustainability: how software product development, maintenance,
and use affect energy consumption and the consumption of other natural
resources. Environmental sustainability is directly related to a software product
characteristic. This dimension is also known as Green Software.

• Human sustainability: how software creation and use affect the sociological and
psychological aspects of the software development community and its members.
This encompasses topics such as labour rights, psychological health, social
support, social equity, and liveability.

• Economic sustainability: how software development and use protect stake-
holders’ investments, ensure benefits, reduce risks, and maintain assets.

A topic that has attracted a lot of attention in the last year is Green IT and Green
Software. As seen in Fig. 1, Green Software can be divided into Green IN Software
(when the environmental issues are related to software itself) and Green BY Soft-
ware (when software is used as a tool to support sustainability goals in any domain).
As our focus is specifically on how software must be produced so as to be sustain-
able, the book will be focused on the Green IN Software part.

The aim of this book is therefore to present the latest advances related to software
sustainability, the scope being those pieces of work developed within the environ-
mental (Green Software), human, or economic dimensions of software sustainabil-
ity, by way of a contribution on our part to raising the profile of software
sustainability. To that end, we have brought together the findings on this matter of
the main researchers in the field.

2United Nations World Commission on Environment and Development, “Report of the World
Commission on Environment and Development: Our Common Future.” At United Nations Con-
ference on Environment and Development. 1987.

viii Preface

Organization

The book is composed of 16 chapters structured as follows.
Chapter 1, written by the editors, introduces the main general concepts related to

software sustainability and defines its dimensions.
Then a set of chapters deal with the environmental (green) software dimension.
In Chap. 2, Achim Guldner, Eva Kern, Sandro Kreten, and Stefan Naumann

describe a set of criteria and a label for sustainable software products, the German
“Blue Angel,” energy-efficient programming techniques which seek to reduce the
consumption and provide a measurement method for the energy consumption of
software.

In Chap. 3, Javier Mancebo, Ignacio Rodríguez, Mª Ángeles Moraga, Félix
García, and Coral Calero present GSMP, a Green Software Measurement Process
that integrates all the activities that must be carried out to measure and analyze the
energy consumption of any given software.

In Chap. 4, Javier Mancebo, Coral Calero, and Félix García present FEETINGS
(Framework for Energy Efficiency Testing to Improve eNvironmental Goals of the
Software), a complete framework which aims to provide: (1) a solution to the lack of
a unique and agreed terminology; (2) a process to evaluate the energy efficiency of
the software; and (3) a technological environment that supports the process.

Chapter 5, by Daniel Feitosa, Luís Cruz, Rui Abreu, João Paulo Fernandes,
Marco Couto, and João Saraiva, aims to demonstrate how patterns can help to
build energy-efficient software.

In Chap. 6, written by Wellington Oliveira, Hugo Matalonga, Gustavo Pinto,
Fernando Castor, and João Paulo Fernandes, the authors advocate that developers
should leverage software diversity to make software systems more energy efficient.

Human
Software

Sustainability

Economic
Software

Sustainability

Software
Sustainability

Green BY
Software

Environmental
Sustainability

(Green Software)

m
b
w

Green IN
Software

Fig. 1 Software sustainability dimensions

Preface ix

Their main insight is that non-specialists can build software that consumes less
energy in the development stage by alternating, at development time, between
readily available, diversely designed pieces of software implemented by third
parties.

Chapter 7, by Hina Anwar, Iffat Fatima, Dietmar Pfahl, and Usman Qamar,
presents the results of a systematic mapping study to overview the state-of-the-art
tools for detecting and refactoring code smells/energy bugs, and tools for detecting
and migrating third-party libraries in Android applications.

Chapter 8, written by Samuel Chinenyeze and Xiaodong Liu, presents the
knowledge base and reasoning around the Mobile Cloud Applications domain, and
some identified challenges in the domain, and offers some directions and key
considerations for an improved implementation and evaluation process in real-life
scenarios—mainly based on renowned software engineering techniques.

In Chap. 9, Jutta Eckstein and Claudia Melo provide a new lens through which to
understand the Agile Manifesto under the premise that the agile approach aims to
fulfill its promise for sustainability, and they provide various case studies of com-
panies attempting to use agile development to contribute to sustainability.

In Chap. 10, J. David Patón-Romero, Teresa Baldasarre, Moisés Rodríguez, and
Mario Piattini present GMGIT (“Governance and Management Framework for
Green IT”) which establishes the characteristics and elements of governance and
management that organizations should consider when implementing, assessing, and
improving Green IT.

Turning to the human dimension, Chap. 11, by Alok Mishra and Deepti Mishra,
looks at how sustainability can be included in various courses of the Software
Engineering (SE) curriculum by considering ACM/IEEE guidelines, carrying out a
review of the literature in this field, and also examining various viewpoints so that
SE students can acquire knowledge of sustainable software engineering. It also
includes an assessment of key competences in sustainability for proposed units in
the SE curriculum.

Chapter 12, by Asif Imran and Tevfik Kosar, presents a detailed and inclusive
study covering human factors (leadership, communication, etc.), related challenges,
and approaches to software sustainability. This chapter groups the existing research
efforts based on the above aspects. How these aspects affect software sustainability
is studied via a survey of software practitioners.

Chapter 13, by Vijanti Ramautar, Sietse Overbeek, and Sergio España, aims to
outline outsourcing approaches for facilitating human progress by conducting a
semi-systematic literature review. The authors identify three outsourcing approaches
that consider corporate social responsibility: impact sourcing, ethical outsourcing,
and FairTrade Software. The ultimate aim is to understand the effect of these
approaches on marginalized people, and the benefits and challenges for client
organizations.

In Chap. 14, Eoin Martino Grua, Martina De Sanctis, Ivano Malavolta, Mark
Hoogendoorn, and Patricia Lago present a reference architecture for enabling
AI-based personalization and self-adaptation of mobile apps for e-Health. The
proposed reference architecture is instantiated in the context of a mobile fitness

x Preface

application and is exemplified through a series of typical usage scenarios extracted
from industrial collaborations.

In Chap. 15, Mª Ángeles Moraga, por Ignacio García-Rodriguez de Guzmán,
Félix García, and Coral Calero present “The importance of software sustainability in
the CSRs of software companies.” The authors analyze the Corporate Social
Responsibility information of ten software companies and elaborate a list of specific
actions related to software sustainability that the software company should include.
They also suggest an initial set of actions which could be taken into account to
improve the CSR of a company.

And finally, in Chap. 16, Bendra Ojameruaye and Rami Bahsoon propose an
economics-driven architectural evaluation method which expands upon CBAM
(Cost Benefits Analysis Method) and integrates principles of modern portfolio
theory into the task of controlling risks when linking sustainability requirements to
architectural design decisions.

We have created a keyword cloud (see Fig. 2) where the terms used most
frequently in this book are written in a larger font to highlight the areas of special
focus in the book.

Target Readership

The target readership for this book is assumed to have previous knowledge of
information systems and software engineering, but we envisage CIOs (Chief Infor-
mation Officers), CEOs (Chief Executive Officers), CSOs (Chief Sustainability
Officers), CSRs (Chief Responsibility Officers), software developers, software man-
agers, auditors, business owners, and quality professionals. It is also intended for
masters’ and bachelors’ students studying Software Systems and Information

Fig. 2 Keyword cloud
(created with
https://worditout.com)

Preface xi

https://worditout.com

Systems, Computer Science, and Computer Engineering, and software researchers
who want to inform themselves about the state of the art regarding software
sustainability.

Ciudad Real, Spain Coral Calero
Mª Ángeles Moraga

Mario Piattini
December 2020

xii Preface

Acknowledgments

We would like to express our gratitude to all those individuals and parties who
helped us to produce this volume. In the first place, we would like to thank all the
contributing authors and reviewers who helped to improve the final version. Special
thanks to Springer-Verlag and Ralf Gerstner for believing in us once again and for
giving us the opportunity to publish this work. We would also like to say how
grateful we are to Natalia Pinilla of Universidad de Castilla-La Mancha for her
support during the production of this book.

Finally, we wish to acknowledge the support of the SOS project (No. SBPLY/17/
180501/000364), funded by the Department of Education, Culture and Sport of the
Directorate General of Universities, Research and Innovation of the Regional
Government of the Autonomous Region of Castilla-La Mancha—Junta de
Communidades de Castilla-La Mancha (JCCM) and of the BIZDEVOPS-Global
project (RTI2018-098309-B-C31), financed by the Spanish Ministry of Economy,
Industry and Competitiveness and European FEDER funds.

xiii

Contents

1 Introduction to Software Sustainability . 1
Coral Calero, Mª Ángeles Moraga, and Mario Piattini

2 Criteria for Sustainable Software Products: Analyzing Software,
Informing Users, and Politics . 17
Achim Guldner, Eva Kern, Sandro Kreten, and Stefan Naumann

3 GSMP: Green Software Measurement Process 43
Javier Mancebo, Coral Calero, and Félix García

4 FEETINGS: Framework for Energy Efficiency Testing to Improve
eNvironmental Goals of the Software . 69
Javier Mancebo, Coral Calero, Félix García, Mª Ángeles Moraga,
and Ignacio García-Rodríguez de Guzmán

5 Patterns and Energy Consumption: Design, Implementation,
Studies, and Stories . 89
Daniel Feitosa, Luís Cruz, Rui Abreu, João Paulo Fernandes,
Marco Couto, and João Saraiva

6 Small Changes, Big Impacts: Leveraging Diversity to Improve
Energy Efficiency . 123
Wellington Oliveira, Hugo Matalonga, Gustavo Pinto,
Fernando Castor, and João Paulo Fernandes

7 Tool Support for Green Android Development 153
Hina Anwar, Iffat Fatima, Dietmar Pfahl, and Usman Qamar

8 Architecting Green Mobile Cloud Apps . 183
Samuel Jaachimma Chinenyeze and Xiaodong Liu

9 Sustainability: Delivering Agility’s Promise 215
Jutta Eckstein and Claudia de O. Melo

xv

10 Governance and Management of Green IT 243
J. David Patón-Romero, Maria Teresa Baldassarre, Moisés Rodríguez,
and Mario Piattini

11 Sustainable Software Engineering: Curriculum Development
Based on ACM/IEEE Guidelines . 269
Alok Mishra and Deepti Mishra

12 The Impact of Human Factors on Software Sustainability 287
Asif Imran and Tevfik Kosar

13 Social Sustainability in the e-Health Domain via Personalized
and Self-Adaptive Mobile Apps . 301
Eoin Martino Grua, Martina De Sanctis, Ivano Malavolta,
Mark Hoogendoorn, and Patricia Lago

14 Human Sustainability in Software Development 329
Vijanti Ramautar, Sietse Overbeek, and Sergio España

15 The Importance of Software Sustainability in the CSR
of Software Companies . 349
Mª Ángeles Moraga, Ignacio García-Rodríguez de Guzmán,
Félix García, and Coral Calero

16 Sustainability ArchDebts: An Economics-Driven Approach
for Evaluating Sustainable Requirements . 369
Bendra Ojameruaye and Rami Bahsoon

xvi Contents

Contributors

Rui Abreu Faculty of Engineering, University of Porto & INESC-ID, Porto,
Portugal

Hina Anwar Institute of Computer Science, University of Tartu, Tartu, Estonia

Maria Teresa Baldassarre Department of Informatics, University of Bari “Aldo
Moro”, Bari, Italy

Rami Bashoon University of Birmingham, Birmingham, UK

Coral Calero Alarcos Research Group, Institute of Technologies and Information
Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Fernando Castor Federal University of Pernambuco, Pernambuco, Brasil

Samuel Jaachimma Chinenyeze Edinburgh Napier University, Edinburgh,
Scotland, UK

Marco Couto HASLab/INESC TEC and University of Minho, Braga, Portugal

Luís Cruz Delft University of Technology, Delft, The Netherlands

Jutta Eckstein Independent, Braunschweig, Germany

Sergio España Department of Information and Computing Sciences, Utrecht Uni-
versity, Utrecht, The Netherlands

Iffat Fatima College of Electrical and Mechanical Engineering, National Univer-
sity of Sciences and Technology, Islamabad, Pakistan

Daniel Feitosa University of Groningen, Groningen, The Netherlands

João Paulo Fernandes CISUC and University of Coimbra, Coimbra, Portugal

xvii

Félix García Alarcos Research Group, Institute of Technologies and Information
Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Eoin Martino Grua Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Achim Guldner University of Applied Sciences Trier, Trier, Germany

Ignacio García-Rodríguez de Guzmán Alarcos Research Group, Institute of
Technologies and Information Systems, University of Castilla-La Mancha
(UCLM), Ciudad Real, Spain

Mark Hoogendoorn Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Asif Imran University at Buffalo, Buffalo, NY, USA

Eva Kern Leuphana University Lueneburg, Lueneburg, Germany
University of Applied Sciences Trier, Trier, Germany

Tevfik Kosar University at Buffalo, Buffalo, NY, USA

Sandro Kreten University of Applied Sciences Trier, Trier, Germany

Patricia Lago Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Chalmers University of Technology, Gothenburg, Sweden

Xiaodong Liu Driven Software Engineering Research Group, Edinburgh Napier
University, Edinburgh, Scotland, UK

Ivano Malavolta Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Javier Mancebo Alarcos Research Group, Institute of Technologies and Informa-
tion Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Hugo Matalonga Minho University, Minho, Portugal

Claudia de O. Melo International Agency (United Nations), Vienna, Austria

Alok Mishra Molde University College, Molde, Norway
Department of Software Engineering, Atilim University, Ankara, Turkey

Deepti Mishra Department of Computer Science, Norwegian University of
Science and Technology, Gjøvik, Norway

Mª Ángeles Moraga Alarcos Research Group, Institute of Technologies and Infor-
mation Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Stefan Naumann University of Applied Sciences Trier, Trier, Germany

Bendra Ojameruaye University of Birmingham, Birmingham, UK

Wellington Oliveira Federal University of Pernambuco, Pernambuco, Brasil

Sietse Overbeek Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands

xviii Contributors

J. David Patón-Romero University of Castilla-La Mancha, Ciudad Real, Spain
University of Bari “Aldo Moro”, Bari, Italy
AQCLab, Ciudad Real, Spain

Dietmar Pfahl Institute of Computer Science, University of Tartu, Tartu, Estonia

Mario Piattini Alarcos Research Group, Institute of Technologies and Information
Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Gustavo Pinto Federal University of Pará, Pará, Brasil

Usman Qamar College of Electrical and Mechanical Engineering, National Uni-
versity of Sciences and Technology, Islamabad, Pakistan

Vijanti Ramautar Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands

Moisés Rodríguez AQCLab, Ciudad Real, Spain

Martina De Sanctis Gran Sasso Science Institute, L’Aquila, Italy

João Saraiva HASLab/INESC TEC and University of Minho, Braga, Portugal

Contributors xix

List of Abbreviations

ACL Access Control List
ADB Android Debug Bridge
AP Additionally Performs
AS Architectural Strategies
ASRs Architecturally Significant Requirements
ATAM Trade-off Analysis Method
BDD Behavior-Driven Development
CBAM Cost Benefits Analysis Method
CD Continuous Delivery
CEO Chief Executive Officer
CFO Chief Financial Officer
CI Continuous Integration
CIO Chief Information Officer
CMD Command-line Interface
CPS Cyber Physical Systems
CSO Chief Sustainability Officer
CSR Corporate Social Responsibility
CTO Chief Technology Officer
DAE Data Aggregator and Evaluator
DBMSs Database Management Systems
DCT Dynamic Concurrency Throttling
DUT Device Under Test
DVFS Dynamic Voltage and Frequency Scaling
EC Energy Consumption
ECG Economy for the Common Good
EDS Emergency Deployment System
EET Energy Efficiency Tester
ETDC End-Tagged Dense Code
FAAS Function as a Service

xxi

FEETINGS Framework for Energy Efficiency Testing to Improve eNvironmental
Goals of the Software

FTSF Fair Trade Software Foundation
GB Green-BY Software
GH Green Hardware
GHG Greenhouse Gases
GI Green-IN Software
GMGIT Governance and Management Framework for Green IT
GoF Gang of Four
GORE Goal Oriented Requirement Engineering
GQM Goal/Question/Metric
GS3M Generic Sustainable Software Star Model
GSMO Green Software Measurement Ontology
GSMP Green Software Measurement Process
GSSE Green and Sustainable Software Engineering
GUI Graphical User Interface
HCI Human Computer Interaction
HDF Hierarchy Data Format
HID Human Interface Device
IAAS Infrastructure as a Service
ICE Immigration and Customs Enforcement
ICT Information and Communication Technologies
IDE Integrated Development Environment
IoT Internet of Things
IQR Interquartile Range Method
IS Information Systems
ISSP Impact Sourcing Service Providers
IT Information Technology
JCF Java Collections Framework
JIT Just-in-Time
LCA Life Cycle Analysis
LoC Lines of Code
LP Laboratory Package
MADN Median Absolute Deviations from the Median
MAPE Monitor–Analyze–Plan–Execute
MCA Mobile Cloud Applications
MCC Mobile Cloud Computing
MDE Model-Driven Engineering
MDGs Millennium Development Goals
MSaPS Mobile-enabled Self-adaptive Personalized Systems
MSRs Machine-Specific Registers
OATH Open Authentication
OCR Optical Character Recognition
OECD Organisation for Economic Co-operation and Development

xxii List of Abbreviations

OO Object-Oriented
OTP One-Time Password
P Power
PHR Personal Health Record
PM Power Meter
PP Primarily Performs
PSM Practical Software Measurement
QA Quality Attribute
RA Reference Architecture
RAPL Running Average Power Limit
SAAM Software Architecture Analysis Method
SAAS Software as a Service
SBMs Sustainable Business Models
SDGs Sustainable Development Goals
SDLC Software Development Life Cycle
SE Software Engineering
SE4S Software Engineering for Sustainability
SMO Software Measurement Ontology
SOA-PE SOA for planning and execution
SOAs Service-Oriented Architectures
SoS Systems of Systems
SPLE Software Product Line Engineering
SS Software Sustainability
SSC Sustainability Steering Committee
SSE Sustainable Software Engineering
SSM Soft Systems Methodology
STM Software Transactional Memory
SUT System Under Test
SUV Sport Utility Vehicles
SVG Scalable Vector Graphics
SWOT Strengths, Weaknesses, Opportunities, and Threats
TLOC Total Lines of Code
TPL Third-party Library
UML Unified Modeling Language
UN United Nations
URSSI US Research Software Sustainability Institute
VMs Virtual Machines
WCED’s World Commission on Environment and Development
WG Workload Generator
WWF World Wide Fund for Nature

List of Abbreviations xxiii

Chapter 1
Introduction to Software Sustainability

Coral Calero, Mª Ángeles Moraga, and Mario Piattini

Abstract Sustainability is gaining importance worldwide, reinforced by several
initiatives that have highlighted the importance of reducing energy consumption
and carbon footprint. Although these initiatives highlight ICTs as a key technology
in achieving these goals, we must be aware that ICTs can also have a negative impact
on the environment.

The main objective of this chapter is to provide an overview of the software
sustainability concept and its dimensions (human, environmental, and economic), as
well as the research efforts related to this area.

On the one hand, a review of the literature to define all the concepts related to
software sustainability has been carried out. On the other, a bibliometric analysis is
used to identify the main forum employed in the area for publishing the works and
the percentage of papers related to each of the software sustainability dimensions.

Several definitions for the different sustainability levels are presented. As a result
of the bibliometric analysis, it can be highlighted that the majority of the papers are
published in conferences and are focused on the environmental dimension, whereas
the number of books as well as the number of book chapters focused on software
sustainability remains low.

Regarding the software sustainability dimensions, most of the works are on the
environmental dimensions, highlighting the need for more research focused on the
human and economic dimensions.

C. Calero · M. Á. Moraga (*) · M. Piattini
Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: Coral.Calero@uclm.es; MariaAngeles.Moraga@uclm.es; Mario.Piattini@uclm.es

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_1&domain=pdf
mailto:Coral.Calero@uclm.es
mailto:MariaAngeles.Moraga@uclm.es
mailto:Mario.Piattini@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_1#DOI

1.1 Introduction

Sustainability is gaining importance worldwide, reinforced by several initiatives that
have received widespread media coverage such as Earth Hour,1 a worldwide grass-
roots movement uniting people to protect the planet, organized by the WWF (World
Wide Fund for Nature). Other organizations such as the United Nations (UN) also
highlight the importance of reducing energy consumption and our carbon footprint,
including this issue among their Millennium Development Goals (MDGs2).

Although these initiatives highlight ICTs (Information and Communication Tech-
nologies) as a key technology in achieving these goals, we must be aware that ICTs
can also have a negative impact on the environment. In fact, as noted by [1], when
pursuing strategic sustainability, the impact of technology is simultaneously impor-
tant from two different points of view. While technology helps organizations to
tackle environmental issues (using videoconferences, reducing or eliminating mate-
rials, introducing more efficient processes, etc.), it is often responsible for major
environmental degradation (e.g., in the amounts of energy consumed by the engi-
neering processes used to manufacture products). The former concept is called
“sustainability by IT,” and the second “sustainability in IT.”

The main difference between sustainability in IT and sustainability by IT is
related to the role played by the specific IT. As indicated by [2], the difference lies
in whether one considers IT as a producer, handling the emissions produced by the
IT gadgets themselves, or as an enabler, facilitating the reduction of emissions across
all areas of an enterprise.

This dual aspect of technology means that organizations also face two challenges:
they need to have more sustainable processes, and they must also produce products
that contribute to a more sustainable society.

It is therefore essential to control the use of ICTs, in order to reduce as far as
possible their negative impact on sustainability. In this book we will focus specif-
ically on software technology, because software is more complex to sell, service, and
support than hardware; also, dollar for dollar, software generates more downstream
economic activity than does hardware.

In order to gain an overview of the research efforts related to this area, a
bibliometric study was carried out, at the beginning of November 2018. The dataset
used in the study was obtained from the computer science category of Scopus
between 2000 and 2018, was written in English, and resulted in the attainment of
a total of 542 papers [3]. Of these, just 2 were books and 21 were book chapters. To
update the analysis, and check if this low number of books and book chapters had
changed, a new bibliometric study covering up to the end of 2019 was carried out,
obtaining 151 new contributions. The results obtained from a total of 693 papers,
listing the forum of publication, are shown in Table 1.1. As can be seen, the majority
of the papers were published at conferences. Nonetheless, the number of books as

1http://www.earthhour.org/
2http://www.un.org/millenniumgoals/

2 C. Calero et al.

http://www.earthhour.org/
http://www.un.org/millenniumgoals/

well as the number of book chapters remains low. Consequently, we believe in the
importance to researchers and software developers alike of works such as the present
book, which collate the results of studies on software sustainability.

From the point of view of business, sustainability has also become an increasingly
important consideration. A business that fails to make sustainable development one
of its top priorities could receive considerable public criticism and subsequently lose
market legitimacy [4]. All of this can be summarized under the concept of “strategic
sustainability,” as introduced by [5]. Most consumers claim that they will pay more
for a green product [6]. In 2010, the ISO 26000 standard [7] for Corporate Social
Responsibility (CSR) was published, providing executives with the necessary direc-
tions and measures for demonstrating social responsibility. In this standard, busi-
nesses are required to take a precautionary approach to protecting the environment;
the aim is to promote greater environmental responsibility through business practices
and to encourage the adoption of environmentally friendly information technologies.
CSR involves companies in the voluntary integration of social and environmental
concerns in their business operations, as well as in relationships with their partners
[8]. Expectations of corporations are now higher than ever before. Investors and
other stakeholders nowadays consider companies in terms of the “triple bottom
line,” reflecting financial performance, environmental practices, and corporate social
responsibility (CSR). The present-day dominant conception of CSR implies that
firms voluntarily integrate social and environmental concerns into their operations
and their interactions with stakeholders [9]. In Chap. 15, the authors analyze whether
software companies take account of software sustainability in their CSR.

In general, the initiatives that foster respect for the environment by means of ICT,
IT, software, etc. are called “sustainability in IT,” “Green ICT/IT/Software,” etc. A
problem that arises is that, as in any new discipline, there is as yet no clear map of
concepts and definitions [1].

In the next section we will try to clarify the differences, similarities, and relation-
ships between all these concepts.

Table 1.1 Update of the
main forums used in the area

No. Forum of publication Publication Percentage

1 Conference paper 417 62.9

2 Article 148 22.3

3 Conference review 48 7.2

4 Book chapter 28 4.2

5 Review 14 2.1

6 Editorial 3 0.5

7 Book 2 0.3

8 Note 1 0.2

9 Short survey 1 0.2

10 Undefined 1 0.2

Total 663 100

1 Introduction to Software Sustainability 3

1.2 Sustainability

The aim of this section is to give a general definition of the word “sustainability,”
without linking it to any particular context. To do so, we will first summarize the
main existing definitions of sustainability.

Sustainability is a widely used term and refers to the capacity of something to last
a long time. Some more precise definitions are as follows:

• Collins Dictionary [10] defines sustainability as “the ability to be maintained at a
steady level without exhausting natural resources or causing severe ecological
damage.”

• A similar definition of “sustainable” can be found in the Merriam-Webster
Dictionary: “of, relating to, or being a method of harvesting or using a resource
so that the resource is not depleted or permanently damaged” [11].

• According to [12], a sustainable world is broadly defined as “one in which
humans can survive without jeopardizing the continued survival of future gener-
ations of humans in a healthy environment.”

• In [13], the authors affirm that “sustainability can be discussed with reference to a
concrete system (ecological system, a specific software system, etc.), therefore,
global sustainability implies the capacity for endurance given the functioning of
all these systems in concert.”

• “Sustainability is the capacity to endure and, for humans, the potential for long-
term maintenance” [14].

• From another perspective, sustainability can be viewed as “one more central
quality attribute in a row with the standard quality attributes of correctness,
efficiency, and so forth” [14]. These same authors also define the term sustainable
development as that which “includes the aspect to develop a sustainable product,
as well as the aspect to develop a product using a sustainable development
process.”

• The Brundtland Report from the United Nations (UN) defines sustainable devel-
opment as the ability to “meet the needs of the present without compromising the
ability of future generations to satisfy their own needs” [15]. According to the
UN, sustainable development needs to satisfy the requirements of three dimen-
sions, which are society, the economy, and the environment.

• In [16], the author identifies the same dimensions of sustainable development as
listed in the aforementioned UN report: economic development, social develop-
ment, and environmental protection:

– “Environmental sustainability ensures that the environment is able to replenish
itself at a faster rate than it is destroyed by human actions. For instance, the use
of recycled material for IT Hardware production helps to conserve natural
resources.

– Social development is concerned with creating a sustainable society which
includes social justice or reducing poverty and, in general, with all actions that
promote social equity and ethical consumerism.

4 C. Calero et al.

– The economic pillar ensures that our economic growth maintains a healthy
balance with our ecosystem; it integrates environmental and social concerns
into business.”

Of all the above definitions, the one most widely used is that established by the
Brundtland Report of the United Nations (UN) [15].

If we take a close look at the variety of definitions offered, we can observe that
there are two fundamental pillars underpinning the idea of sustainability: “The
capacity of something to last a long time” and “the resources used.”

Another aspect related to sustainability and found in the literature is the topic to
which it is applied: Information Systems, ICT, Software, etc. (Figure 1.1 summarizes
the different levels of sustainability according to the topic.)

In the following sections we will present definitions for each of the levels shown
in Fig. 1.1. We have worked mainly with papers published in the area of software,
software engineering and information systems, in line with the focus of this book.

1.2.1 IS Sustainability

It should be noted that, in general, authors do not differentiate between “IS Sustain-
ability” and “Sustainable IS” (the same applies to the other levels), so in this book we
take these concepts as being equivalent.

As articulated in the SIGGreen Statement, “the Information Systems discipline
can have a central role in creating an ecologically sustainable society because of the
field’s five decades of experience in designing, building, deploying, evaluating,
managing and studying information systems to resolve complex problems” [17].

Information Systems (IS) SustainablityInformation Systems (IS) Sustainablity

Information and Communications Technology
(ICT) Sustainability

Information and Communications Technology
(ICT) Sustainability

Information Technology (IT)
Sustainability

Information Technology (IT)
Sustainability

oftware ((Sw))
Sustainability
Software (Sw)
Sustainability

Software Engineering
(SE) Sustainability

Software Engineering
(SE) Sustainability

Fig. 1.1 Sustainability levels

1 Introduction to Software Sustainability 5

In [18] the authors recommend placing greater emphasis on IS sustainability over
IT sustainability, as they consider that the exclusive focus on information technol-
ogies is too narrow.

As remarked upon by [19], it is only through process change, and the application
of process-centered techniques, such as process analysis, process performance
measurement, and process improvement, that the transformative power of IS can
be fully leveraged to create environmentally sustainable organizations and, in turn,
an environmentally sustainable society.

Taking this one step further, we contend that IS researchers must consider
process-related concepts when theorizing about the role of IT in the transformation
towards sustainable organizations. This would allow us not only to better understand
the transformative power of IS in the context of sustainable development, but also to
proceed to more prescriptive, normative research that can have a direct impact on the
implementation of sustainable, IT-enabled business processes [19].

Although there are some groups working on information systems and environ-
mental friendliness, it is difficult to encounter the IS Sustainability concept. Most of
the work being done is instead about Green IS. In [6] the authors consider that
sustainability in IS must take account of such aspects as efficiency systems, fore-
casting, reporting and awareness, energy-efficient home computing, and behavior
modification. Finally, the book [20] focuses on “Green Business Process Manage-
ment,” consolidating the global state-of-the-art knowledge about how business
processes can be managed and improved in the light of sustainability objectives.

1.2.2 ICT/IT Sustainability

In [21] the authors remark that sustainable ICT can develop solutions that offer
benefits both internally and across the enterprise

• By aligning all ICT processes and practices with the core principles of sustain-
ability, which are to reduce, to reuse, and to recycle and

• By finding innovative ways to use ICT in business processes to deliver sustain-
ability benefits across the enterprise and beyond.

The Ericsson Report [22] points to the reduction or elimination of materials and
increased efficiency as the two main ways of aligning ICT with sustainability.
Following the definition provided by [2], IT sustainability is seen as a shorthand
for “global environmental sustainability,” a characteristic of the Earth’s future, in
which certain essential processes persist for a period comparable to human lives.

6 C. Calero et al.

1.2.3 Software Sustainability

There are several areas in which software sustainability should be applied: software
systems, software products, web applications, data centers, etc. Various projects are
currently being developed regarding the first of these areas, but most of this work
concerns data centers—since the energy consumption of data centers is significantly
higher than that of commercial office spaces [23].

As noted in [24], the main way to achieve sustainable software is by improving its
power consumption. Whereas hardware has been constantly improved to be energy
efficient, software has not. The software development lifecycle and related develop-
ment tools and methodologies rarely, if ever, consider energy efficiency as an
objective [25]. Energy efficiency has never been a key requirement in the develop-
ment of software-intensive technologies, and so as a result there is a very large
potential for efficiency improvements [26].

As remarked upon by [27], software plays a major role in sustainability, both as
part of the problem and as part of the solution. The behavior of the software has a
significant influence on whether the energy-saving features built into the platform
are effective or not [28].

In [13] it is stated that “The term Sustainable Software can be interpreted in two
ways: (1) the software code being sustainable, agnostic of purpose, or (2) the
software purpose being to support sustainability goals. Therefore, in our context,
sustainable software is energy-efficient, minimizes the environmental impact of the
processes it supports, and has a positive impact on social and/or economic sustain-
ability. These impacts can occur direct (energy), indirect (mitigated by service) or as
rebound effect” [29].

According to [30], sustainable software is “software, whose impacts on economy,
society, human beings, and environment that result from development, deployment,
and usage of the software are minimal and/or which have a positive effect on
sustainable development.”

These authors subsequently use the same ideas for the concept of green and
sustainable software, defining it as “software, whose direct and indirect negative
impacts on economy, society, human beings, and environment that result from
development, deployment, and usage of the software are minimal and/or which
has a positive effect on sustainable development” [31]. They consider that direct
impacts are related to resources and energy consumption during the production and
use of the software, while indirect impacts are effects from the software product
usage, together with other processes and long-term systemic effects.

One of the most complete definitions is the one proposed by [32], which con-
siders that green and sustainable software is software whose

• “direct and indirect consumption of natural resources, which arise out of deploy-
ment and utilization, are monitored, continuously measured, evaluated and opti-
mized already in the development process;

• appropriation and utilization aftermath can be continuously evaluated and
optimized;

1 Introduction to Software Sustainability 7

• development and production processes cyclically evaluate and minimize their
direct and indirect consumption of natural resources and energy.”

According to [3], software sustainability is about the capacity of software to last a
long time by using only the resources that are strictly needed.

Another related term is “sustainable computing.” It is used to convey the political
concept of sustainability in the field of computer systems, including material com-
ponents (hardware) as well as informational ones (software); it includes develop-
ment as well as consumption processes [33].

Some of the literature contains some definitions of “sustainable”
(or “sustainability”), while other scholarship refers to the term “green”
(or “greenability”).

This phenomenon is especially noteworthy in the case of software, because
various authors such as [32] and [31] use both terms synonymously. We believe
that this approach is faulty and that it ought to be avoided, since we are talking about
two different concepts, as will be seen in due course.

What does seem true, however, is that software sustainability is a very important
research topic whose significance has been growing in the last few years.

1.2.4 Software Engineering Sustainability

Within the context of software engineering, not many proposals have so far tackled
the concept of sustainability [34], although in a recent updating of this work the
authors observed that the number of proposals has increased considerably over the
last few years [13]. This serves to demonstrate that there is an ever-growing concern
to address sustainability in the context of software engineering.

Sustainability should generally be considered from the very first stages of soft-
ware development. That is not always feasible, however, since it is not easy to
change the way in which developers work.

There are many definitions of “sustainable software engineering.” We will now
go on to present some of these (see Table 1.2).

1.3 Dimensions of Software Sustainability

As detected in several definitions, sustainability is generally considered from three
dimensions (the social, the economic, and the environmental) as provided by the UN
[15]. There are some proposals, as discussed in [1], that add to these three charac-
teristics which are, for instance, individual or technical. However, we consider that
software sustainability is the same as sustainability software. For that reason, from
our point of view, software sustainability has three dimensions that correspond to
those of sustainability as proposed in the Brundtland Report. Therefore, taking into

8 C. Calero et al.

account the three types of resources required by software processes—human
resources (people involved in carrying out the software processes), economic
resources (needed to finance the software processes), and energy resources (all the
resources that the software consumes during its life)—we can identify the three
dimensions of software sustainability [1] (Fig. 1.2) as follows:

Table 1.2 Sustainable software engineering

Reference Term Definition

[35] Sustainable software
engineering

Sustainable software engineering aims to create reliable,
long-lasting software that meets the needs of users while
reducing environmental impacts, their goal is to create
better software so we will not have to compromise future
generations’ opportunities.

[36] Sustainable software
engineering

Sustainable software engineering aims to create reliable,
long-lasting software that meets the needs of users,
while reducing negative impact on the economy, soci-
ety, and the environment.

[7] Sustainable software
engineering

Sustainable software engineering is the art of defining
and developing software products in a way so that the
negative and positive impacts on sustainability that
result and/or are expected to result from the software
product over its whole lifecycle are continuously
assessed, documented, and optimized.

[37] Sustainable software
engineering

Sustainable software engineering is the development
that balances rapid releases and long-term sustainability,
whereas sustainability is meant as the ability to react
rapidly to any change in the business or technical
environment.

[38] Green and sustainable
software engineering

Green and sustainable software engineering is the art of
developing green and sustainable software with a green
and sustainable software engineering process. There-
fore, it is the art of defining and developing software
products in a way so that the negative and positive
impacts on sustainable development that result and/or
are expected to result from the software product over its
whole life cycle are continuously assessed, documented,
and used for a further optimization of the software
product.

[39] Green and sustainable
software engineering

The objective of green and sustainable software engi-
neering is the enhancement of software engineering,
which targets:
1. the direct and indirect consumption of natural
resources and energy as well as
2. the aftermath that are caused by software systems
during their entire life cycle, the goal being to monitor,
continuously measure, evaluate and optimize these facts.

[40] Software engineering for
sustainability

The aim of software engineering for sustainability
(SE4S) is to make use of methods and tools in order to
achieve this notion of sustainable software.

1 Introduction to Software Sustainability 9

• Human sustainability: how software development and maintenance affect the
sociological and psychological aspects of the software development community
and its members. This encompasses topics such as labour rights, psychological
health, social support, social equity, and liveability.

• Economic sustainability: how the software lifecycle processes protect stake-
holders’ investments, ensure benefits, reduce risks, and maintain assets.

• Environmental sustainability: how software product development, maintenance,
and use affect energy consumption and the usage of other resources. Environ-
mental sustainability is directly related to a software product characteristic that we
call “Green Software.”

As mentioned in the first section, we have extended a previous bibliometric study
done on green and sustainable software [3] covering the period from 2000 to 2019
and obtaining a dataset of 663 papers. Analysing the dataset, we can see (Fig. 1.3)
that the environmental dimension is the one most analyzed, followed by the social
and the economic dimensions. However, we should be aware that only computer

SOFTWARE SUSTAINABILITY

Economic
Sustainability

Environmental
Sustainability

(Green Software)

Human
Sustainability

SOFTWARE
LIFECYCLE

PROCESSES
NeedsNeeds

N
ee

ds
Human resources Economic resourcesEnergy resources

Fig. 1.2 Software sustainability dimensions

10 C. Calero et al.

science papers were reviewed and that if we were to analyze economic or business
sources the proportion would probably be different.

In this book 60% of the chapters are focused on the green software dimension
whereas the social and economic dimensions each represent 20% respectively.

Comparing the percentages of contributions on each sustainability dimension of
the bibliometric study and the number of chapters on each dimension in this book,
we can observe that they are quite similar, although we have made a special effort to
increase the number of chapters related to the human and economic dimensions. This
is because we consider that in the future the research lines should be focused on
filling the gap that currently exists in these dimensions.

1.3.1 Sustainability Dimensions and the UN’s SDGs

The 2030 Agenda for Sustainable Development, adopted in 2015 by all United
Nations Member States, provides a shared blueprint for peace and prosperity for
people and the planet, now and into the future. At its heart are the 17 Sustainable
Development Goals (SDGs) (see Fig. 1.4), which are an urgent call for action by all
countries—developed and developing—in a global partnership.3

Fig. 1.3 Distributions of software sustainability dimensions in computer science literature

3https://sdgs.un.org/goals

1 Introduction to Software Sustainability 11

https://sdgs.un.org/goals

We believe it is interesting to relate these SDGs to software sustainability
dimensions. In particular, the most relevant of these goals are as follows:

• Goal 7: AFFORDABLE AND CLEAN ENERGY. Among the objectives of this
goal one can find the improvement of efficiency, which can be achieved through
sustainable software, as pursued by the environmental dimension.

• Goal 8: DECENT WORK AND ECONOMIC GROWTH. The creation of
quality jobs and job opportunities, and decent working conditions, are among
the sub-objectives of this goal, which is related to both the human and the
economic dimensions of software sustainability.

• Goal 9: INDUSTRY, INNOVATION, AND INFRASTRUCTURE. In this goal
the need for inclusive and sustainable industrial development is mentioned, as is
the need for technological solutions to ensure environmentally sound industrial-
ization, plus the technological progress required to achieve environmental objec-
tives, such as energy efficiency. All these objectives are related to the
environmental dimension of software sustainability.

• Goal 12: RESPONSIBLE CONSUMPTION AND PRODUCTION. This goal
promotes, among other things, resource and energy efficiency, green and decent
jobs, and a better quality of life for all, increasing net welfare gains from
economic activities by reducing resource use, degradation, and pollution through-
out the whole lifecycle, while improving the quality of life. It is thus related to all
three dimensions.

• Goal 13: CLIMATE ACTION. This is related to greenhouse gas emissions from
human activities—in our case, the emissions produced during the software
lifecycle. This has to do with the environmental dimension.

• Goal 17: PARTNERSHIPS. These inclusive partnerships are built upon princi-
ples and values, a shared vision, and common goals that place people and the
planet at the center. They also have to do with long-term investments in the
information and communications technologies sector. This goal is thus related to
the economic and the environmental dimensions.

Fig. 1.4 UN Sustainable Development Goals

12 C. Calero et al.

Table 1.3 shows the relationships between software sustainability dimensions and
the UN sustainable development goals.

1.4 Conclusions

To date, the topic of sustainability has been of importance in several fields. However,
this aspect has only been addressed more recently in the field of software, with
software sustainability gaining increasing importance in the last decade. This is
reflected in the growing number of papers on software sustainability that can be
found in the literature and in the calls for it in both European and international
initiatives.

We highlight the fact that the three dimensions that make up software sustain-
ability are not being equally studied. As previously mentioned, the environmental
dimension is the most studied of them all. In fact, according to our bibliometric
analysis, there were no publications relating to the economic and social dimensions
at all until 2011. Now that the three sustainability dimensions are related to some of
the 17 Sustainable Development Goals proposed in the 2030 Agenda for Sustainable
Development, they should henceforth be taken into consideration in any attempt to
improve the global environment.

This book is a compilation of chapters related to the three dimensions, which we
hope will serve as a reference for researchers and developers who are concerned with
software sustainability. Moreover, we aim to raise awareness not only among
software developers (software industries, development departments, etc.) but also
among end-users, who hold in their hands the responsibility of choosing and
demanding software that is more respectful of the environment.

References

1. Calero C, Piattini M (2017) Puzzling out Software Sustainability. Sustain Comput Informatics
Syst 16:117–124. https://doi.org/10.1016/j.suscom.2017.10.011

2. Unhelkar B (2011) Green IT strategies and applications. Using environmental intelligence.
CRC, Boca Raton, FL

Table 1.3 Relationship between Software Sustainability dimensions and the UN Sustainable
Development Goals

SDG
7

SDG
8

SDG
9

SDG
12

SDG
13

SGD
17

Human Software Sustainability X X

Economic Software Sustainability X X X

Environmental Software
Sustainability

X X X X X

1 Introduction to Software Sustainability 13

https://doi.org/10.1016/j.suscom.2017.10.011

3. Calero C, Mancebo J, García F, Moraga MÁ, Berná JAG, Fernández-Alemán JL, Toval A
(2020) 5Ws of green and sustainable software. Tsinghua Sci Technol 25(3):401–414. https://
doi.org/10.26599/TST.2019.9010006

4. Du W, Pan SL, Zuo M (2013) How to balance sustainability and profitability in technology
organizations: an ambidextrous perspective. IEEE Trans Eng Manag 60(2):366–385. https://
doi.org/10.1109/TEM.2012.2206113

5. Sroufe R, Sarkis J (2007) Strategic sustainability: the state of the art in corporate environmental
management systems. Greenleaf, Sheffield

6. Cazier J, Hopkins B (2011) Doing the right thing for the environment just got easier with a little
help from information

7. ISO/IEC (2010) ISO26000 Guidance on social responsibility
8. European Commission (2000) Green Book
9. Branco MC, Rodrigues LL (2006) Corporate social responsibility and resource-based perspec-

tives. J Bus Ethics 69(2):111–132. https://doi.org/10.1007/s10551-006-9071-z
10. Collins (2020) Collins dictionary
11. Merriam-Webster (2020) Dictionary by Merriam-Webster
12. Brown BJ, Hanson ME, Liverman DM, Merideth RW (1987) Global sustainability: toward

definition. Environ Manag 11(6):713–719. https://doi.org/10.1007/BF01867238
13. Penzenstadler B, Raturi A, Richardson D, Calero C, Femmer H, Franch X (2014) Systematic

mapping study on software engineering for sustainability (SE4S). In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering, New York,
NY

14. Penzenstadler B, Fleischmann A (2011) Teach sustainability in software engineering? In:
Proceedings of the 2011 24th IEEE-CS Conference on Software Engineering Education and
Training, USA, pp 454–458

15. United Nations World Commission on Environment and Development (1987) Report of the
World Commission on Environment and Development: our common future. In: United Nations
conference on environment and development

16. Adams W (2006) The future of sustainability. Re-thinking environment and development in the
twenty-first century: technical report. IUCN

17. Hasan H, Molla A, Cooper V (2012) Towards a green IS taxonomy, p 25
18. Watson R, Boudreau M-C, Chen A (2010) Information systems and environmentally sustain-

able development: energy informatics and new directions for the IS community. MIS Q 34
(1):23–38

19. Seidel S, vom Brocke J (2010) Call for action: investigating the role of business process
management in green IS. p 132–133

20. vom Brocke J, Seidel S, Recker J (2012) Green business process management: towards the
sustainable enterprise. Springer, Berlin, p XII, 263 p

21. Donnellan B, Sheridan C, Curry E (2011) A capability maturity framework for sustainable
information and communication technology. IT Prof 13(1):33–40. https://doi.org/10.1109/
MITP.2011.2

22. Ericsson (2013) Ericsson energy, carbon report. On the impact of the networked society.
EAB-13:036469 Uen. Ericsson AB

23. Koomey J (2011) Growth in data center electricity use 2005 to 2010. Analytics, Oakland, CA
24. Calero C, Bertoa MF, Moraga MÁ (2013) A systematic literature review for software sustain-

ability measures. In: Proceedings of the 2nd International Workshop on Green and Sustainable
Software, pp 46–53

25. Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development
environments and energy efficiency in open source applications. Inf Softw Technol 54
(1):60–71. https://doi.org/10.1016/j.infsof.2011.07.005

26. The Climate Group (2008) SMART 2020: enabling the low carbon economy in the information
age. The Global eSustainability Initiative, Brussels

14 C. Calero et al.

https://doi.org/10.26599/TST.2019.9010006
https://doi.org/10.26599/TST.2019.9010006
https://doi.org/10.1109/TEM.2012.2206113
https://doi.org/10.1109/TEM.2012.2206113
https://doi.org/10.1007/s10551-006-9071-z
https://doi.org/10.1007/BF01867238
https://doi.org/10.1109/MITP.2011.2
https://doi.org/10.1109/MITP.2011.2
https://doi.org/10.1016/j.infsof.2011.07.005

27. Easterbrook S (2010) Climate change: a grand software challenge. In: FoSER 2010, Santa Fe,
New Mexico, USA, November 7–8. ACM 978-1-4503-0427-6/10/11, p 99–103

28. Steigerwald, B. and Agrawal, A. 2011. Developing green software.
29. Hilty L, Arnfalk P, Erdmann L, Goodman J, Lehmann M, Wäger P (2006) The relevance of

information and communication technologies for environmental sustainability – a prospective
simulation study. Environ Model Softw

30. Dick M, Drangmeister J, Kern E, Naumann S (2013) Green software engineering with agile
methods. In: Proceedings of the 2nd International Workshop on Green and Sustainable Soft-
ware, pp 78–85

31. Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFTModel: a reference model for
green and sustainable software and its engineering. Sustain Comput Informatics Syst 1
(4):294–304. https://doi.org/10.1016/j.suscom.2011.06.004

32. Johann T, Dick M, Kern E, Naumann S (2011) Sustainable development, sustainable software,
and sustainable software engineering: an integrated approach, pp 34–39

33. Mocigemba D (2006) Sustainable computing. Poiesis Prax 4(3):163–184. https://doi.org/10.
1007/s10202-005-0018-8

34. Penzenstadler, B., Raturi, A., Richardson, D., Calero, C., Femmer, H. and Franch, X. 2014.
Sustainability in software engineering: a systematic literature review for building up a knowl-
edge base.

35. Amsel N, Ibrahim Z, Malik A, Tomlinson B (2011) Toward sustainable software engineering
(NIER Track). In: Proceedings of the 33rd International Conference on Software Engineering,
New York, NY, pp 976–979

36. Manteuffeal C, Loakeimidis S (2012) A systematic mapping study on sustainable software
engineering: a research preview, pp 35–40

37. Tate K (2006) Sustainable software development: an agile perspective. Addison-Wesley, Upper
Saddle River, NJ

38. Dick N, Naumann S (2010) Enhancing software engineering processes towards sustainable
software product design. In: Greve K, Cremers AB (eds) EnviroInfo 2010: Integration of
environmental information in Europe. Shaker, Aachen, pp 706–715

39. Kern E, Dick M, Naumann S, Guldner A, Johann T (2013) Green software and green software
engineering – definitions, measurements, and quality aspects

40. IDC (2009) Aid to recovery: the economic impact of IT, software, and the Microsoft ecosystem
on the global economy

1 Introduction to Software Sustainability 15

https://doi.org/10.1016/j.suscom.2011.06.004
https://doi.org/10.1007/s10202-005-0018-8
https://doi.org/10.1007/s10202-005-0018-8

Chapter 2
Criteria for Sustainable Software Products:
Analyzing Software, Informing Users,
and Politics

Achim Guldner, Eva Kern, Sandro Kreten, and Stefan Naumann

Abstract The energy consumption of information and communication technology
is still increasing and comprises components such as data centers, the network, end
devices, and also the software running on these components. Following the motto
“What you can’t measure you can’t manage,” it is helpful and reasonable to develop
and validate criteria for software products. In our chapter we describe some of these
criteria, and also introduce a label for sustainable software products, the German
“Blue Angel.” We also introduce some energy-efficient programming techniques in
order to reduce consumption even during the development phase, and a measure-
ment method for the energy consumption of software. We conclude with some
implications of our results and an outlook.

2.1 Introduction

The environmental impacts of information and communication technology (ICT)
regarding energy consumption and therefore greenhouse gas effects are still grow-
ing. Despite impacts from miniaturization (smartphones instead of desktop com-
puters) or economic causes such as the 2008 financial crisis, the energy consumption
is increasing with the growing number of devices, network traffic, computation
power, and usage time. It is expected that by 2030 the overall energy consumption
of ICT will exceed 20% of the worldwide total [1]. Therefore, it is necessary to find
and define criteria that allow for structuring, measuring, organizing, and also fore-
casting this energy consumption. These criteria can help users, administrators,
developers, and the whole ICT sector as well as decision makers in politics and
society.

The hardware aspects of ICT have been the subject of research regarding energy
for several years. Several labels, such as Energy Star and “TCO Certified,”

A. Guldner (*) · E. Kern · S. Kreten · S. Naumann
University of Applied Sciences Trier, Environmental Campus Birkenfeld, Germany
e-mail: a.guldner@umwelt-campus.de; e.kern@umwelt-campus.de;
s.kreten@umwelt-campus.de; s.naumann@umwelt-campus.de

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_2&domain=pdf
mailto:a.guldner@umwelt-campus.de
mailto:e.kern@umwelt-campus.de
mailto:s.kreten@umwelt-campus.de
mailto:s.naumann@umwelt-campus.de
https://doi.org/10.1007/978-3-030-69970-3_2#DOI

communicate the resource and energy efficiency of the hardware products. For
software, however, the situation is more complicated. Since there is a large variety
of software products regarding usage options, software architecture, and of course
purpose, it is necessary to take a deeper look at how especially software can be
analyzed and structured regarding energy consumption. Other publications show
that it is worth also taking software into account, since, for example, different
software with similar functionality can differ in several ways in their energy con-
sumption [2, 3]. In this chapter, we describe general criteria for measurements and
tips for programmers, especially regarding distributed container software such as
Docker,1 which is in widespread use in data centers to support virtualization.

The chapter is organized as follows: In an overview of related work we give some
definitions, discuss the meaning of sustainable software, and take a thorough look at
the challenges of measuring software energy consumption and energy-efficient
programming. Then, we present criteria for sustainable software products and
describe a measurement method in detail. We then present aspects of energy-
efficient development and deployment. The chapter closes with an in-depth discus-
sion of the results and a conclusion with outlook.

2.2 Related Work

In general, the research field on “sustainable software” and its engineering is
relatively new. Here, we focus on criteria for sustainable software, measure-
ments of software sustainability, and programming guidelines for sustainable
software. The following section provides an overview on the current state of
research.

2.2.1 Sustainable Software

The environmental impacts and sustainability of software are discussed using
different terms, depending on the context. This chapter is based on the definition
by Dick et al. [4]: “Sustainable Software is software, whose impacts on economy,
society, human beings, and environment that result from development, deployment,
and usage of the software are minimal and/or which have a positive effect on
sustainable development” [4, 5]. We use the terms “sustainable software,” “green
software,” and “energy- and resource-efficient software” interchangeably. The latter
terms point out the focus on consuming fewer natural resources, i.e., environmental
and resource protection.

1https://www.docker.com/ (March 16, 2020).

18 A. Guldner et al.

https://www.docker.com/

Penzenstadler [6] places a similar emphasis on this consideration, focusing on
energy efficiency while talking about “sustainable software.” According to Calero
et al. [7], sustainability of software can be understood as a non-functional require-
ment, i.e., the aspects need to be addressed at the latest in the design phase of a
software development process. Ahmad et al. [8] point out that developers should aim
at long-living systems. Further definitions of green and sustainable software are
presented and discussed in [9–15].

Overall, it can be stated that, depending on the literature and research focus,
different categorizations of criteria for sustainable software products are conceiv-
able. Table 2.1 provides an overview of these categorizations which can be found in
the literature.

In order to develop sustainable software, Penzenstadler [23] proposes a software
development that considers the different dimensions of sustainability in
corresponding application domains: development process, maintenance process,
system production, and system usage going into aspects of system, function, and
time. Along with the three dimensions according to the Brundtland Report [18]—
environment, economy, and society—the following technical dimension is men-
tioned: “From a point of view of (software) systems engineering, there is another
dimension that has to be considered. Technical sustainability has the central objec-
tive of long-time usage of systems and their adequate evolution with changing
surrounding conditions and respective requirements” [24–26]. Penzenstadler et al.
[25] summarize the definition in the question “How can software be created so that it
can easily adapt to future change?” Additionally, a “human” [27] or an ”individual”
[25] dimension is defined in some literature.

In order to reach a sustainable software product, “software engineering for
sustainability” is required [6]. With the Karlskrona Manifesto for Sustainability
Design, Becker et al. [28] present principles for doing so. Additionally, Betz et al.
[29] point out that it is important to also include the underlying business processes
when integrating sustainability in the context of software systems. Table 2.2 presents
an overview of literature presenting criteria and characteristics of sustainable soft-
ware products.

2.2.2 Measurement of Software Sustainability

Once we understand what sustainable software is, the task of measuring seems rather
difficult, because of the complexity of the topic. Assessing the sustainability or rather
the environmental impact of a software product, several criteria were introduced, as
described above. We will now take a look at the two criteria commonly used for
measuring sustainability, hardware usage and energy consumption, to subsume
proposed criteria such as efficiency, energy efficiency, power awareness, carbon
footprint, pollution, and energy savings.

When commencing the task of measuring the hardware consumption and energy
efficiency of a software product, one can find several different approaches. All of

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 19

Table 2.1 Categories of characteristics of sustainable software

Categories Designation Description

In or by [5, 6,
16]

Green in software Activities on environmentally friendly ICT itself.

Green by software The question how ICT can contribute to sustainable
development.

Relationship
[11, 17]

Common criteria Result from the known and standardized quality charac-
teristics for software.

Direct criteria Criteria relating to first-order effects.

Indirect criteria Criteria concerning effects indirectly caused by ICTs
(e.g., energy savings through process optimization) and
on effects that have an indirect effect in the long term.

Effects [5, 17] First order “First-order effects” are environmental influences caused
by production and usage of ICT, e.g., energy consumption
during ICT use.

Second order “Second-order effects” are caused, for example, by
dematerialization and produced substitution

Third order Longer-term environmental and social impacts are
described as “third-order effects.” So-called rebound
effects are taken into account, which may reverse the
savings of other energy efficiency measures to the
opposite.

Sustainability
aspects [18]

Social Social aspects refer to society, but also to individuals and
their participation in the community or enabling it.

Ecological Ecological aspects consider effects on the environment.

Economic Economic aspects aim at protecting economic resources.

Life cycle
[5, 19]

Development In the development phase, effects on a sustainable devel-
opment, directly and indirectly through activities during
the course of the software development.

Distribution With regard to a sustainable software product, the form of
dissemination is relevant. Examples: resource consump-
tion by printing a user manual, choice of media, and file
size when downloading the product.

Usage The use of software is primarily concerned with the eco-
logical aspects. Effects that occur are monitored, for
example, through product selection, update cycles, and
product and system configuration.

Deactivation &
disposal

At the end of the software life cycle, deactivation and
disposal may influence the sustainability of the product.
When introducing a new product, existing data must be
backed up and converted. Especially the backup size plays
a role from an ecological point of view.

Quality model
[11]

Product
sustainability

Considers in particular the effect of a software on other
products and services and thus includes usage effects as
well as systematic effects.

Process
sustainability

Evaluates the impact of product development or software
development process to sustainable development.

Social aspects Comprise factors that affect society as well as individual
users or developers.

(continued)

20 A. Guldner et al.

them make use of some kind of system under test (SUT), on which the software
product is executed. During the execution, measurements are taken to assess the
additional energy consumption of the SUT when the software is run. Meanwhile, the
hardware usage is usually monitored with a software tool that aggregates the usage
of the main components (CPU, RAM, etc.) of the SUT.

There are two main categories regarding measuring the energy consumption:
hardware-based measurements and software-based estimations. Table 2.3 lists and
categorizes current approaches.

As can be seen, the approaches can be categorized into their corresponding SUT
hardware (be it servers, PCs, mobile devices, or embedded systems) and the mea-
surement approach. The hardware-based measurement methods all consist of at least
one SUT and a power meter. For example, in the measurement framework described

Table 2.1 (continued)

Categories Designation Description

Portability Summarizes product features that can be used under
changed conditions (e.g., hardware, requirements).

Efficiency Refers to the economy of resources, computing time, and
storage space used to solve a specified problem.

25010+S [20] Energy efficiency Degree to which a software product consumes energy
while it is active.

Resource
optimization

Degree to which the resources used by a software product
are used optimally.

Capacity
optimization

Degree to which the maximum of a product optimally
meets the needs while only using the parameters that are
necessary.

Perdurability Degree to which a software product can be used and
modified over a long period of time.

Labeling cate-
gories [21]

Efficiency Refers to the economy of resources, computing time, and
storage space used to solve a specified problem.

Resources-ori-
ented feasibility

Includes aspects that affect resource consumption caused
by software (focus: environmental impacts).

Well-being-ori-
ented feasibility

Includes aspects that affect society caused by software
(focus: social impacts).

Longevity
(permanence)

Describes how software is modified, adapted, and reused
to be able to execute specific functions under specific
conditions for as long as possible.

Green factors
[22]

Feasibility Describes how projects and processes of software devel-
opment, maintenance, and use follow the principles of
sustainable development.

Efficiency Refers to the economy of resources, computing time, and
storage space used to solve a specified problem.

Sustainability Describes how software supports sustainable
development.

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 21

in [41], they use a EVM430-F67362 electricity meter and a database server. The load
is generated using an open-source benchmark suite for databases. They measure and
compare the execution time and energy consumption of three DBMSs and perform
an analysis of variance. They found differences (in some instances large ones) in
energy consumption and execution time among the three systems and even within
one system, depending on the data model. Similarly, our approach, described in [3],
uses one or more SUTs (server and PCs), a power meter, and a workload generator to
collect the data. The approach is described in detail in Sect. 2.4. Mancebo et al. [44]
take the measurement of energy consumption of PCs one step further and propose a
measurement setup for recording the energy consumption of individual hardware
components (CPU, processor, HDD, and graphics card). We have already compared
this method with our own in [48].

Jagroep et al. [43] use a Watts Up Pro power meter (discontinued) and measure
the energy consumption of two SUTs (application server and database server). They
also use a logging server to record the hardware usage. They compared one software
product (called “Document Generator”) over two consecutive releases and find that
the new functionality did have a negative impact on the energy consumption of all
SUTs. Furthermore, they compare the hardware-based measurements with

Table 2.2 Criteria for sustainable software products

Reference Paper Criteria (examples)

Albertao et al.
[19]

Proposal for
criteria

Modifiability, usability, accessibility, supportability, effi-
ciency, portability

Bouwers et al.
[30]

Literature
review

—

Bozzelli et al. [2] Literature
review

—

Capra et al. [31] Proposal for
criteria

Framework entropy, functional types, number of methods,
energy efficiency, energy, age

Calero et al.
[7, 32]

Proposal for
criteria

Adaptability, maintainability, availability, recoverability,
fault tolerance, maturity

Condori-
Fernandez et al.
[33]

Proposal for
criteria

Functional completeness, coexistence, capacity, time
behavior, learnability, user error protection, confidentiality,
integrity, installability

Hilty [34] Proposal for
criteria

Demand adaptivity, user-oriented configuration, power
awareness, flexibility

Kern et al. [11] Proposal for
criteria

Fit for purpose, memory usage, idleness, organization sus-
tainability, carbon footprint, hardware obsolescence

Lago et al. Proposal for
criteria

Employment, pollution, energy savings, performance, edu-
cation, configurability

Radu [35] Literature
review

—

Taina et al. [22] Proposal for
criteria

Beauty, reduction, feasibility, energy consumption, waste,
memory usage, efficiency

2http://www.ti.com/tool/EVM430-F6736 (March 17, 2020).

22 A. Guldner et al.

http://www.ti.com/tool/EVM430-F6736

Table 2.3 Measurement approaches

Reference Method Categories

Becker et al.
[36] (2017)

Comparison of hardware-based measurement
and software-based estimation of the energy
consumption of software

Hardware-based, software-
based, PC, energy consumption

Bunse [37]
(2018)

Measurement and evaluation of code obfus-
cation techniques on mobile devices

Software-based, mobile devices,
energy consumption

Cherupalli
et al. [38]
(2017)

Application-specific peak power and energy
requirements for ultralow power processors

Hardware-based, embedded sys-
tems, energy consumption

Georgiou
et al. [39]
(2018)

Energy consumption estimation approaches
for IoT devices

Software-based, embedded sys-
tems, energy consumption

Godboley
et al. [40]
(2017)

Analysis of the branch coverage and energy
consumption using concolic testing

Software-based, PC, energy
consumption

Gomes et al.
[41] (2020)

Measurements and comparison of energy
consumption and execution time of NoSQL
database management systems (DBMSs)

Hardware-based, server, energy
consumption

Henderson
et al. [42]
(2020)

Framework (impact tracker) for reporting
energy consumption, hardware usage, and
carbon footprint of machine learning
algorithms

Software-based, machine learn-
ing, SUT not described, energy
consumption, hardware usage

Jagroep et al.
[43] (2016)

Measurement and comparison of energy con-
sumption and hardware usage of commercial,
distributed document generator across con-
secutive releases

Hardware-based, software-
based, server, energy consump-
tion, hardware usage

Kern et al.
[3] (2018)

Measurement and comparison of software
products within different groups (word pro-
cessors, web browsers, content management
systems, and database systems) with the goal
of assessing a criteria catalog for sustainable
software

Hardware-based, PC, server,
energy consumption, hardware
usage

Mancebo
et al. [44]
(2018)

Measurement setup for assessing the energy
consumption of software, based upon sensors
that measure the consumption of individual
hardware components

Hardware-based, PC, energy
consumption

Palomba
et al. [45]
(2019)

Measurement and estimation of the impact of
code smells on mobile applications

Software-based, mobile devices,
energy consumption

Sahin et al.
[46] (2016)

Impact of code obfuscation on energy usage Hardware-based, mobile
devices, energy consumption

Strubell
et al. [47]
(2019)

Estimation of the energy consumed in training
artificial neural networks

Software-based, machine learn-
ing, SUT not described in detail;
they only speak of up to three
GPUs that were used to train the
networks, energy consumption

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 23

simultaneously obtained estimations, using Microsoft Joulemeter (deprecated) and
state that “on process level [...] we are still unable to explain a relatively large
amount [over 60% in this case] of the energy overhead of software execution.”
Similar conclusions can be drawn from [36], where the software-based estimation
was also below the hardware-based measurements.

However, in addition to the hardware-based methods, software-based approaches
exist that use mathematical models to estimate the energy consumption of compo-
nents from an SUT. Godboley et al. [40] also use Joulemeter to estimate the energy
consumption of a wide variety of Java programs, increasing the branch coverage.
Similarly, Acar et al. [49] propose a tool to estimate the power consumption of a
given software at runtime by taking into account CPU, memory, and hard disk power
consumption.

In regard to mobile devices, attempts to assess the energy consumption of the
software (or apps) seem to be even more appropriate, because of the limited battery
life. Because of the compact hardware architecture of the devices, hardware-based
measurements are difficult. Additionally, the much lower energy consumption of the
specialized hardware requires accurate measuring methods. Measuring the hardware
usage in case of mobile devices is also very complicated, because the overhead of a
logging software is often quite high and can, in some cases, outweigh the app being
measured.

Nevertheless, some approaches with software-based (e.g., [45]) estimations and
hardware-based (e.g., [46]) measurements show the viability of assessing and
improving mobile applications. Palomba et al. [45] used PETrA3 to estimate the
energy consumption based upon the execution time of methods from the app under
consideration. Sahin et al. [46] used Google Nexus and Samsung Galaxy
smartphones, which they modified to power them with an external supply instead
of the battery. Using the Android Debug Bridge (ADB), they triggered the execution
of the scenario on the devices.

Embedded or IoT-devices face similar issues in regard to powering them using
batteries or energy harvesting. Of course, the usage of low-energy hardware plays a
key role in these cases; however, there are methods, e.g., busy-waiting vs. deep-
sleep, that are triggered by the software, which can have a large influence on the
energy consumption. Georgiou et al. [39, 50] present several approaches to estimate
energy consumption and promote energy transparency as “a concept that makes a
program’s energy consumption visible from hardware up to software.” Cherupalli
et al. [38] measured application-specific loads and power profiles of TI MSP430
microcontrollers, used for IoT devices. They measured the peak and average power
consumption for several benchmarks.

In terms of the field of machine learning, Strubell et al. [47] quantify the cost and
environmental impact of training off-the-shelf neural network models. They estimate
the energy consumption of the CPU and GPU of their SUT using Intel’s RAPL tool4

3Available at https://doi.org/10.6084/m9.figshare.4233767.v1 (March 15, 2020).
4https://01.org/rapl-power-meter (March 17, 2020).

24 A. Guldner et al.

https://doi.org/10.6084/m9.figshare.4233767.v1
https://01.org/rapl-power-meter

and nvidia-smi5 while training the networks and then approximate the CO2 emis-
sions. Similarly, Henderson et al. [42] also use RAPL and nvidia-smi and propose an
experiment-impact-tracker framework which encapsulates the assessment of the
energy consumption to make it easier to use. They also include hardware usage
measurements in their framework.

Considering these approaches, we find that the components necessary for the
assessment of software sustainability are a SUT and measurement devices or esti-
mation models. In order to produce repeatable experiments, a mode of automating
the workload (workload generator or automated scenario playback) is also
recommended. With this setup, the energy consumption and hardware usage of a
software product can be recorded. This, in turn, can be used for comparisons
between software products that perform similar tasks, across releases of one software
product, or for different features of one software product.

2.2.3 Energy-Efficient Programming

Software development is a broad and diverse branch of computer science. Accord-
ingly, energy measurements in this field are mostly specifically bound to application
cases. For example, there are approaches in app development for smartphones as
well as in software development for embedded systems and web development. In the
following, examples of such work will be given, which treat the topic both in general
and in application-specific terms. As shown in [51], the choice of programming
language already shows visible differences in the energy consumption of software
and its development. Pereira et al. [52] also show significant differences in the
translation time of code depending on the language. Furthermore, program code
can contain several critical sections that can lead to increased power consumption.
To identify these sections, Pereira et al. have presented an approach in [53]. Another
model is suggested in Baek et al. [54], which allows programmers to approximate
expensive functions and loops. Looking further at different program constructs and
models of different programming languages, differences in energy consumption can
also be identified, as shown in [55]. Here, we examined different concurrency
models of the programming languages C#, GO, and Clojure.

Table 2.4 gives an overview of different approaches in the literature. Li et al. [56]
take a more in-depth approach when considering hybrid programming models that
use both messaging and shared memory, as large systems with multi-core and multi-
socket nodes are increasingly being used. In order to improve power consumption,
Li et al. [56] propose new software-driven execution schemes that consider the
effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency
scaling (DVFS) in the context of hybrid programming models.

5https://developer.nvidia.com/nvidia-system-management-interface (March 17, 2020).

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 25

https://developer.nvidia.com/nvidia-system-management-interface

Just by looking at the programming language, programming models, and code
components alone, the energy consumption of software development is not fully
investigated. Software development involves an entire software life cycle, which
Chauhan et al. [57] are concerned with. They include not only the code but also the
integration of new features and the delivery of the software. An important part of the
software life cycle are tests and code pipelines, which nowadays are often executed
in containers. Therefore, in [58] we considered the question of whether software that
is delivered in a container is less efficient overall than without it, whereas only web
apps were considered here.

Furthermore, there are different approaches in the different sub-areas of program-
ming. While Bunse [37] and Li et al. [59] are specifically concerned with the energy
consumption of code for smartphones and mobile devices, Memeti et al. [60] focus
on the programming of machine learning algorithms using different frameworks.

Table 2.4 Energy-efficient programming

Reference Title Categories

Cuoto et al.
[51] (2017)

Towards a Green Ranking for Programming
Languages

Energy consumption, pro-
gramming languages

Pereira et al.
[52] (2017)

Energy efficiency across programming lan-
guages: how do energy, time, and memory
relate?

Energy consumption, pro-
gramming languages

Pereira et al.
[53] (2017)

Helping Programmers Improve the Energy
Efficiency of Source Code

Energy consumption, pro-
gramming languages

Baek et al.
[54] (2010)

Green: a framework for supporting energy-
conscious programming using controlled
approximation

Energy-conscious program-
ming, controlled
approximation

Kreten et al.
[55] (2017)

Resource Consumption Behavior in Modern
Concurrency Models

Concurrency control, energy
consumption

Li et al. [56]
(2013)

Strategies for Energy-Efficient Resource Man-
agement of Hybrid Programming Models

Energy-efficient resource
management, concurrency
control

Chauhan
et al. [57]
(2013)

A Green Software Development Life Cycle for
Cloud Computing

Energy consumption, software
development, cloud
computing

Kreten et al.
[58] (2018)

An Analysis of the Energy Consumption
Behavior of Scaled, Containerized Web Apps

Energy consumption, cloud
computing

Bunse [37]
(2018)

Measurement and evaluation of code obfusca-
tion techniques on mobile devices

Software-based, mobile
devices, energy consumption

Li et al. [59]
(2014)

An investigation into energy-saving program-
ming practices for Android smartphone app
development

Programming patterns, energy
consumption

Memeti et al.
[60] (2017)

Benchmarking OpenCL, OpenACC, OpenMP,
and CUDA: Programming Productivity, Per-
formance, and Energy Consumption

Performance, energy
consumption

Balladini
et al. [61]
(2011)

Impact of parallel programming models and
CPUs clock frequency on energy consumption
of HPC systems

Parallel programming, energy
consumption

26 A. Guldner et al.

Overall, only a brief overview of the approaches to improving energy efficiency
in software development can be given here, as this field is extensive, as the selection
of the presented works shows. However, the approaches shown above also depict
how useful it is to consider energy consumption in software development, although
current developers are generally not forced to pay attention to the resource efficiency
of the programs.

2.3 Criteria for Sustainable Software Products

Even if there are different approaches to defining and characterizing sustainable
software products, a standardized environmental label for sustainable software
product was missing. This has changed—in Germany—with the publication of the
Blue Angel for resource and energy efficient software products in early 2020
[62]. As the world’s oldest environmental label, the Blue Angel is a trustworthy
label that distinguishes particularly environmentally friendly products and services
and is published by the German Federal Ministry for the Environment [63].

In contrast to other products awarded the Blue Angel, software products are
immaterial products which trigger the consumption of energy and resources and
thus, in general, the environmental impacts of the hardware they drive. Due to this
special characteristic of software products, the development of the criteria differed
from the criteria development of other Blue Angels. The process of establishing
criteria for sustainable software products is described in detail in [3]. In general, the
criteria for sustainable software products are divided into three categories.6 For the
Blue Angel, several criteria were omitted, because they were either of little impor-
tance for the target group or too complex to assess. In the following, we give an
overview of the categories. We then discuss sensitivities, which criteria were
omitted, the process of putting the criteria into practice, and possible further aspects
to be taken into account, in addition to the development and usage phase.

2.3.1 Criteria Categories

The aim of the Blue Angel for software products is to reduce the overall energy
consumption of ICT and to increase resource efficiency. The eco-label especially
highlights products whose manufacturers disclose information about their products
for this transparency. In addition, a product whose manufacturer is actively com-
mitted to improving the resource and energy efficiency of its software products is
also labeled. Therefore, the criteria were grouped into three categories: resource and

6The whole catalog is available at https://www.umwelt-campus.de/en/research/projekte/green-
software-engineering/set-of-criteria/introduction

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 27

https://www.umwelt-campus.de/en/research/projekte/green-software-engineering/set-of-criteria/introduction
https://www.umwelt-campus.de/en/research/projekte/green-software-engineering/set-of-criteria/introduction

energy efficiency, potential hardware operating life, and user autonomy. Consider-
ing resource and energy efficiency, software products have to provide their func-
tionality with a minimum of resource effort and energy requirements. Thus, for the
Blue Angel, the following criteria were selected:

• Required minimum system requirements
• Hardware utilization and electrical power consumption when idle
• Hardware usage and energy requirements when running a standard usage

scenario
• Support of the energy management

For the hardware usage and power consumption measurements, the setup is
detailed in Sect. 2.4 and based upon the research described in Sect. 2.2.2. The
assessment of all other criteria is performed by the developers in accordance with
the description in the Basic Award Criteria in [62].

Potential hardware operating life describes how software must not contribute to
renewing existing hardware due to higher performance requirements. In particular,
software updates should not lead to hardware updates. Users should have the option
to decide about software and hardware renewal. Thus, the criterion here is “down-
ward compatibility,” which states that software products must be able to run on a
reference system that is at least 5 years old. Regarding user autonomy, a software
product should not limit the autonomy of users in handling the product or create
dependencies. This resulted in the following criteria:

• Data formats
• Transparency of the software product
• Continuity of the software product
• Uninstallability
• Offline capability
• Modularity
• Free of ads
• Documentation of the software product, the license, and usage conditions

To reduce the dependance of the users, developers have to publish the used data
formats and APIs with an adequate documentation to enable the interoperability
of the software product. Publishing the source code is optional, but a long-term use
of the product must be ensured. This is also true for continuity, especially in terms of
security updates. Making possible a modular installation of the software product can
lead to lower consumption, because the users can choose only the functionality they
need. The users must also be enabled to completely remove the software product
from their system without leaving unnecessary data. Offline capability not only
saves resources for the data transfer and remote processing, but also does not
encourage users to deactivate standby modes in their system, for fear of losing
data when standby is activated. Advertising increases the resource and energy
demand, especially for data transfer of the ads [64]. Thus, external ads are not
allowed in a labeled software product.

28 A. Guldner et al.

Eventually, to be awarded the Blue Angel, the developer must present a document
containing all the results from the resource and energy measurements, as well as the
proof of compliance with the other criteria. The compliance verification is checked
for plausibility by an unassociated auditor.

2.3.2 Discussion of the Criteria

From the perspective of research on sustainable software products, the label is an
example of how scientific concepts can be put into practice. It also shows the
relevance of research for the development of practice-relevant methods and pro-
cedures, which are needed, for example, to prove the presented criteria. During the
development of the methods for assessing the resource and energy efficiency, the
following sensitivities were identified:

• Selection of the software: considering the amount of available software types
(ranging, e.g., from hardware drivers through system and application software, to
distributed AI-systems), the available software products within a category (e.g.,
“word processors”) and the way users interact with a software product

• Configuration of the software: considering the possible ways in which users can
configure the product, e.g., different modes of displaying data, available func-
tionality, etc., and if and how users make use of those possibilities

• Usage scenarios: considering the way users interact with a software product, e.g.,
duration of activities, workflows, menu layouts, etc.

• Reference system and software stack: considering underlying hardware and
system software, e.g., the SUT, operating system, libraries, databases, etc.

In order to deal with these factors influencing the measurement results,
corresponding requirements are placed on the verification process. The Basic
Award Criteria currently only refer to application software that can be run on one
of the specified reference systems. Furthermore, the exact software product, includ-
ing the version number, for which the Blue Angel is applied and for which the
compliance verification is provided, must be specified. The exact details of the
product and the results of the verifications must be provided both when the applica-
tion is submitted and during the term of the contract, e.g., in the case of further
development and updates.

The standard usage scenario used for the verification must include the function-
alities typically used for the software product to be evaluated. It is developed by the
applicant in compliance with the measurement instructions provided in the Basic
Award Criteria. All energy and resource measurements must be carried out on one of
the reference systems.

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 29

Considering the criteria from the original set, as described in [3], some criteria
were omitted. They include:

• “Platform independence and portability”: Can the software product be executed
on different currently prevalent productive system environments (hardware and
software), and can users switch between them without disadvantages?

• “Hardware sufficiency”: Does the amount of hardware capacity used remain
constant over time as the software product is developed further and additional
functions are added?

• “Transparency of task management”: Does the software product inform users that
it is automatically launching or running tasks in the background that are possibly
not being used?

• “Capability to erase data”: Does the user receive sufficient support when erasing
data generated during operation of the software product as desired?

• “Maintenance functions”: Does the software product provide easy-to-use func-
tions permitting users to repair damage to data and programs?

These have not been included in the Blue Angel Award Criteria, either because
when the reference systems were defined, they were subsumed in other criteria (e.g.,
through requesting the software product to be able to run on five-year-old reference
systems), or due to the complexity of the assessment methods and feedback during
field tests. The aspects “modularity” and “freedom of advertising” were added.

Furthermore, because the Blue Angel is usually awarded for a time period of
several years, the energy requirement over this time was also taken into account:
Updates, new functionalities, etc. may not increase the energy consumption of the
product by more than 10% compared to the values at the time of application. This
was done because the energy consumption is an aggregating criterion that effectively
subsumes the hardware usage.

In addition to the criteria developed in the criteria catalogue for sustainable
software and those transferred to the Blue Angel for software, further environmental
and sustainability aspects for the evaluation of products are conceivable—especially
if the focus is not solely on ecological aspects during the product use phase. With
reference to a study from 2016 [65], questions concerning the manufacturer of the
product are often of interest to users:

• To whom does the profit of the manufacturing company go?
• Does the manufacturing company have an environmental management system?
• How are the environmental impacts of (a) the manufacturing company including

its infrastructure and (b) the development process to be assessed, e.g., energy
consumption, ecological footprint, use of green electricity?

A holistic sustainability assessment of software products can also raise questions
about prevailing working conditions. This refers to the entire value chain: extraction
of resources, conditions at the manufacturer and involved subcontractors (keyword
“corporate social responsibility”), interaction with people and nature during product
manufacture, or place where the product was significantly developed. A further
aspect is consideration of the ecological or social commitment of the software
company (e.g., Is the software product made available to social projects at a lower

30 A. Guldner et al.

price?). Other possible social criteria include usability and user-friendliness. The
following questions can be taken up in this respect: Does the software have options
to facilitate usability? How much effort is required to learn how to use the software?
Is the software intuitive and easy to use?

If the entire life cycle of a software product is considered [5], it is also interesting to
look at software delivery: Can the software be obtained via download or via data
carriers (physical product)? What is the raw material consumption for the production
of the data carrier on which the software is delivered (environmental friendliness of
packaging, medium, transport)? Or what are the environmental impacts (e.g., resource
consumption, data center infrastructure, energy consumption, type of energy used) of
making the software available for download? How is the download made available
(design/structure of the website, keyword “Green Web Engineering” [66, 67])?

2.4 Measurement Method

In 2011, we started the development of our measurement method in Dick et al.
[68]. The setup is based upon ISO/IEC 14756, as introduced in [69]. It is depicted in
Fig. 2.1. As it provides hardware-based measurements, it consists of the following
components:

• System under test (SUT)
• Power meter (PM)

Fig. 2.1 Setup for measuring the energy consumption of software (cf. [68])

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 31

• Workload generator (WG)
• Data aggregator and evaluator (DAE)

The SUT is the hardware (PC, server, mobile device, IoT device, etc.) on which
the software product will be executed. To assess the hardware usage during the
execution, the SUT itself records its own performance data (CPU and RAM usage,
network traffic, and hard disk activity). The PM (in our case a Janitza UMG 6047)
records the energy consumption of the SUT during the execution of the software
product. An optional WG generates the workload on the SUT, e.g., by executing a
script, repeatedly calling an API, website, database, etc. The WG can also only be a
tool, running on the SUT itself that performs user inputs on the software product.
This functions much like a benchmark test. In the setup, we call it a “scenario.” All
generated data (performance from the SUT, power from the PM, and the log-file
from the WG) is aggregated with the DAE to produce a report.

Before any measurements can be conducted, several conditions have to be met.
To be able to assess the excess energy consumption and hardware usage that is
triggered by the software product, a baseline has to be measured. Therefore, the SUT
is run without the software product and the measurements are taken. The average
consumption of the baseline is then subtracted from the scenario measurement
averages. This also allows for the inclusion of the WG in the SUT, as its consump-
tion is included in the baseline and later subtracted. To ensure that the measurements
do not influence each other, the SUT is reset after each software product to a state
before the software was installed. For this, we advise the usage of disk imaging
software such as Clonezilla.8

Finally, the scenarios must be recorded or scripted, in order to generate repro-
ducible measurements that are statistically sound. The sample size should not be
below 30 measurements [3, p. 206]. The implementation of the automation depends
on the scenario itself. Scripts on an external WG can be used to call websites or
databases; there are tools such as Monkey runner9 or appium10 for automating
mobile apps, and tools such as WinAutomation,11 Pulover’s Macro Creator,12 or
Actiona13 for automating PCs. We are also currently implementing a mouse and
keyboard emulator that runs on an arduino, functioning as a human interface device
(HID) that can then replay recorded keyboard and mouse inputs, thus externalizing
the WG for PCs.

Once the scenario can be recorded, it is also necessary to develop the actions to be
executed on the software product. Therefore, it is installed on the SUT with a

7https://www.janitza.de/umg-604-pro.html (April 20, 2020).
8https://clonezilla.org/ (April 20, 2020).
9https://developer.android.com/studio/test/monkeyrunner (April 20, 2020).
10http://appium.io/ (April 20, 2020).
11https://www.winautomation.com/ (April 20, 2020).
12https://www.macrocreator.com/ (April 20, 2020).
13https://wiki.actiona.tools/ (April 20, 2020).

32 A. Guldner et al.

https://www.janitza.de/umg-604-pro.html%20
https://clonezilla.org/%20
https://developer.android.com/studio/test/monkeyrunner%20
http://appium.io/%20
https://www.winautomation.com/%20
https://www.macrocreator.com/%20
https://wiki.actiona.tools/%20

standard configuration, i.e., the user does not change any settings during the instal-
lation process. We decided to create two separate scenarios: idle and standard. In the
idle scenario, the software is only started and then left to run for 10 min. This
measurement reveals how much hardware and energy the software is using when it is
not being used and if and when it switches, e.g., to a sleep mode. The usage scenario
then should execute all functions of the software like a user would typically do, when
working with the software product.

Once the scenarios are created, the measurements can be conducted, and the data
gathered and analyzed. Figure 2.2 shows the measurement result from two media
players. As can be seen, the two media players require different amounts of power
for the execution of the same task. The figure also shows an overview of the actions
executed during the usage scenario.

This measurement method provides an accessible way to assess software products
in accordance with the Basic Award Criteria for the Blue Angel. The compliance
verification requires the calculation of the sum of the additional load on the hardware
due to loading the software product and a percentage share of the baseline load (the
calculation guidelines can be found in the Basic Award Criteria, Appendix B in
[62]).

2.5 Energy-Efficient Software Development
and Deployment

In recent years, the range of software requirements of consumers has changed
significantly. Software must be highly flexible, which often results in a connection
of the software to the internet. Traditional desktop applications that used to rely on
licensing models, such as word processors, are moving to the cloud and becoming
widely available from different types of applications. As a result, software devel-
opers must adapt to the new requirements. Programming takes place in faster cycles
and software is developed modularly. Furthermore, elements such as continuous
integration (CI) and continuous delivery (CD) have become an integral part of
software development [70]. In addition, software is deployed faster, supported by
models such as Infrastructure as a Service (IAAS) and Function as a Service
(FAAS), which are also based in the cloud. This is evident in the increasing data
traffic from cloud data centers. By 2016, cloud traffic already accounted for 88% of
all data traffic. The number of hyperscale data centers grew from 338 to 448 between
2016 and 2018 [71].

For these reasons, the requirements for energy-efficient software development are
increasing rapidly and include more than just energy-efficient programming, from
the choice of programming language, testing, and CI and CD pipelines, to the actual
deployment of the application and the choice of the platform, as well as monitoring.
All these points are directly related to the energy consumption of the software
development. In the following section, we will therefore discuss the difficulties

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 33

M
ea

n
 m

ea
su

re
m

en
t

va
lu

es
 o

f
m

ed
ia

 p
la

ye
r

1

M
ea

n
 m

ea
su

re
m

en
t

va
lu

es
 o

f
m

ed
ia

 p
la

ye
r

2

S
ta

rt
 v

id
eo

S
ta

rt
 v

id
eo

V
id

eo
 p

la
yb

ac
k

(1
x

sp
ee

d
)

V
id

eo
 p

la
yb

ac
k

(1
x

sp
ee

d
)

P
au

se
vi

d
eo

P
au

se
vi

d
eo

V
id

eo
 p

la
yb

ac
k

(2
x

sp
ee

d
)

V
id

eo
 p

la
yb

ac
k

(2
x

sp
ee

d
)

V
id

eo
 p

la
yb

ac
k

(1
x

sp
ee

d
)

V
id

eo
 p

la
yb

ac
k

(1
x

sp
ee

d
)

Ju
m

p
 t

o
ti

m
ec

o
d

e

Ju
m

p
 t

o
ti

m
ec

o
d

e

Ju
m

p
 t

o
ti

m
ec

o
d

e

Ju
m

p
 t

o
ti

m
ec

o
d

e

80 70 60 50

0
10

0
20

0

0
10

0
20

0

40
0

50
0

40
0

50
0

T
im

e
[s

]

T
im

e
[s

]

av
g.

 p
ow

er
:

58
.2

5
W

av
g.

 p
ow

er
:

55
.4

7
W

Power [W]

80 70 60 50

Power [W]

F
ig
.2

.2
C
om

pa
ri
so
n
of

tw
o
m
ed
ia
pl
ay
er

so
ft
w
ar
e
pr
od

uc
ts

34 A. Guldner et al.

that arise in these areas in terms of energy efficiency, starting with the choice of
programming language. To support the information presented, practical examples
are given.

At the beginning of a software project, the first decision regarding energy
efficiency should be made by choosing a suitable programming language depending
on the requirements. As [55] shows, for example, programming languages can have
different energy efficiency levels depending on the application. Since there are often
different programming languages which are particularly suitable for a purpose, this
should be considered here as a precaution. Even if programming languages such as C
are resource-saving due to their proximity to the hardware, the application purpose
should still be in the foreground here. As [55] also shows, the language Go, which is
specially designed for development for the cloud, can almost keep up with the
energy efficiency of C, if we consider concurrency models. Furthermore, attention
must also be paid to resource efficiency during the programming itself. The choice of
data and control structures can have an influence on energy consumption, as can the
use of different network protocols, as these may alter the software’s runtime [72].

The next important area to be considered where energy can be saved during
software development is testing. Classical unit tests can be extended by the integra-
tion of containers, as in the example of test containers [73]. On the one hand, this
leads to greater possibilities in testing (e.g., direct testing of a web application in the
server), but on the other hand, additional costs arise here due to runtime, as well as
starting, stopping, and deleting the containers used in the tests. Such tests are often
executed in automated CI/CD pipelines that are triggered after committing the
software to versioning platforms such as Github14 or Gitlab.15 Within such pipelines,
a variety of tests can be executed, starting from containers to test the build of the
software and individual functions. For this reason, not only the energy consumption
of the software must be considered during software development, but also the test
itself and the container in which the test is performed. Strictly speaking, the energy
consumption of the CI/CD platform is also included in the energy consumption of
the software development as well as the infrastructure on which the platform is
running (see also [74]).

After committing a new software version, the software is delivered. Since the new
requirements often mean that this software must be highly available, the finished
software is also delivered in a container. This is another reason why it often makes
sense to use containers in the CI/CD pipeline test in order to carry out integration
tests directly. Containers have the advantage that software can be easily scaled and
exchanged in case of errors, and can be moved to other systems. For example, [58]
and [75] show that the use of containers alone generates an overhead.

When considering energy efficiency, further factors must be taken into account in
software development, for example when software is delivered in containers. The
first thing to consider here is the cloud platform. Although it reduces administrative

14https://github.com/
15https://about.gitlab.com/

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 35

https://github.com/
https://about.gitlab.com/

tasks, which is why software delivery is increasingly becoming part of software
development, the use of the platform also generates energy consumption, which
should not be neglected. Furthermore, there are aspects that often cannot be
influenced by the developer and still have to be included in the energy consider-
ations. If users use Hosted Container Instances, Virtual Machines (VMs), or even
Hosted Container Cluster, only limited configurations can be made. Especially for
containers, the choice of different container runtimes or logging drivers can have an
influence on the energy consumption. Users of cloud services also have little
influence on networking. Although this overhead is small per container, it adds up
due to the sheer mass of these containers and therefore offers a possible way to save
energy within software development and delivery that should not be neglected.
Netflix alone launched over 3 million containers per week in 2018 [71].

However, it should also be mentioned that the cloud in itself increases the energy
efficiency of data centers. According to Amazon, a switch to the cloud can reduce
electricity consumption by 84%. This has to do with the better utilization of the
servers and the extended possibilities in horizontal and vertical scaling [76]. Hori-
zontal scaling describes the consolidation of unused VMs or containers or the
addition of new calculation units. Vertical scaling describes the addition or removal
of resources such as CPU or RAM.

Overall, it should be noted here that modern software development goes beyond
the actual programming and that a large number of factors must be taken into
account, particularly with regard to energy consumption in software. In particular,
the introduction of automatic testing and CI/CD increases the number of factors to be
considered. It must also be taken into account that the problems that developers face
when programming AI systems have not yet been addressed. Of course, this also
includes big data analysis, machine learning, and high-performance computing in
general. Programming for embedded systems or IoT as well as programming apps
for mobile devices are also not fully considered here. What they all have in common,
however, is that most of them are also developed with the help of a software
versioning platform and a code pipeline consisting of CI and CD.

2.6 Conclusion and Outlook

In summary, criteria for sustainable software products and corresponding methods
help in informing about environmental issues regarding software. Thus, it is impor-
tant to bring this information to all actors who are part of the software life cycle,
mainly developers, purchasers, and users. While an environmental label primarily
addresses the latter, software developers need guidelines for sustainable program-
ming, as presented in Sect. 2.5. Apart from these actors, stakeholder groups who can
push the proposed strategies to reach software developers and users need to be
addressed in order to close the gap between an intention to do something and the
actual behavior [77]. Stakeholders within the context of green and sustainable IT are
summarized by Penzenstadler et al. [78] and Herzog et al. [79]. Penzenstadtler et al.

36 A. Guldner et al.

structure their list of stakeholders, relevant in implementing sustainability issues in
the software context, along the five dimensions of sustainability: individual, techni-
cal, social, environmental, and economic [78]. Focusing on environmental issues
related to software, the stakeholders are the legislation (state authority), CSR
managers, and nature conservation activists and lobbyists. All of these stakeholders
are called to promote the reduction of resource consumption caused by ICT,
especially software. Herzog et al. set “Actors Developing Innovation in Green IT”
apart from “Actors Supporting Innovation for Green IT.” Here, the first group seems
to be more important, including standardization bodies, influential groups, univer-
sities and academic institutes, and company members [79].

Thus, education is of high relevance in the context of informing about the major
influence of software on the environmental impact of information and communica-
tion technologies. It is therefore necessary for future software developers to know
the requirements and methods of environmentally sound software. The knowledge
should be integrated in curricula, especially for students of computer science.
Students should be enabled to design environmentally friendly and resource-efficient
software and to understand the environmental and sustainability effects of software
and its interactions. Finishing their studies, they can bring their knowledge to the
software companies. First proposals for this were developed by Issa et al. [80],
Penzenstadtler et al. [81], and Gil [82].

From the point of view of communication, environmental associations play a
major role. To support the transfer from science to practice, appropriate information
and learning material should be created. Environmental associations are experienced
in bringing information into society, and could take up the topic of “software and its
environmental effects” here.

Procurement in companies as well as in agencies is a best practice that can
positively influence the consideration of environmental aspects in the software
sector. Here it can be shown how it is possible to integrate these aspects into
procurement guidelines. In addition, this will generate a corresponding demand for
resource- and energy-efficient software.

Additionally, certification bodies play a significant role in this context. The Blue
Angel for resource- and energy-efficient software is a first step to create awareness of
the topics in software companies. However, the profile of the environmental label
needs to be heightened. In addition, the scope of the label needs to be extended.

Apart from information and education, clear statements are needed from politi-
cians: procurement guidelines for software products that include ecological criteria
and oblige software companies to enter into license agreements that promote long-
term product use; requirements for software development that, similar to the hard-
ware sector, enable long-term use, so that changes to the software product do not
mean that the hardware has to be replaced in order to continue using the software and
functional extensions become possible, taking into account resource efficiency; and
pricing models that promote energy-saving products. Another important target group
for implications in this context are researchers.

In our chapter, we described an overview of how ICT, and especially software
products, can be attached to criteria regarding energy consumption and

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 37

environmental impact. Since the energy consumption of ICT is still increasing, and
software has a big influence on this consumption, we developed criteria to measure
and analyze software products. These include aspects of energy-efficient program-
ming as well as questions on how container solutions in data centers such as Docker
can be optimized. These solutions and criteria help stakeholders such as developers,
users, admins, and also decision makers from politics and society regarding
“greener” ICT solution. Looking at increasing network traffic, devices, and usage,
it is necessary to find and test concepts regarding how the energy and greenhouse
impact of ICT can be reduced or even flattened in its growth. The next step will be to
test several other products and especially the sensitivity of the influence factors.
Furthermore, the criteria and programming concepts have to be extended to other
architectures (client server, Software as a Service, etc.), programming languages,
and concepts. Possible next steps would be to enlarge the view of observed products
and also to refine and test the criteria with several software products. A vision for the
future is that labeling software products and publishing their energy consumption is
as common as stating system requirements or used libraries.

References

1. Jones N (2018) The information factories. Springer Nature 561(7722):163–166. https://media.
nature.com/original/magazine-assets/d41586-018-06610-y/d41586-018-06610-y.pdf.
Accessed 19 Apr 2020

2. Bozzelli P, Gu Q, Lago P (2013) A systematic literature review on green software metrics. VU
University, Amsterdam

3. Kern E, Hilty LM, Guldner A, Maksimov YV, Filler A, Gröger J, Naumann S (2018)
Sustainable software products—towards assessment criteria for resource and energy efficiency.
Future Gen Comput Syst 86:199–210. https://www.sciencedirect.com/science/article/pii/
S0167739X17314188. Accessed 19 Apr 2020

4. Dick M, Naumann S (2010) Enhancing software engineering processes towards sustainable
software product design. In: EnviroInfo. pp 706–715

5. Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFT model: a reference model for
green and sustainable software and its engineering. Sustain Comput Inf Syst 1(4):294–304

6. Penzenstadler B (2013) Towards a definition of sustainability in and for software engineering.
In: Proceedings of the 28th Annual ACM Symposium on Applied Computing. pp 1183–1185

7. Calero C, Moraga M, Bertoa MF (2013) Towards a software product sustainability model.
arXiv preprint arXiv:1309.1640

8. Ahmad R, Baharom F, Hussain A (2014) A systematic literature review on sustainability studies
in software engineering. In: Knowledge Management International Conference (KMICe),
Langkawi, Malaysia

9. Calero C, Piattini M (2015) Introduction to green in software engineering. In: Green in software
engineering. Springer, pp 3–27

10. Hilty LM, Aebischer B (2015) ICT for sustainability: an emerging research field. In: ICT
innovations for sustainability. Springer, pp 3–36

11. Kern E, Dick M, Naumann S, Guldner A, Johann T (2013) Green software and green software
engineering–definitions, measurements, and quality aspects. Hilty et al 2013:87–94

38 A. Guldner et al.

https://media.nature.com/original/magazine-assets/d41586-018-06610-y/d41586-018-06610-y.pdf
https://media.nature.com/original/magazine-assets/d41586-018-06610-y/d41586-018-06610-y.pdf
https://www.sciencedirect.com/science/article/pii/S0167739X17314188
https://www.sciencedirect.com/science/article/pii/S0167739X17314188

12. Kern E, Guldner A, Naumann S (2019) Including software aspects in green it: how to create
awareness for green software issues. In: Green IT engineering: social, business and industrial
applications. Springer, pp 3–20

13. Kharchenko V, Illiashenko O (2016) Concepts of green it engineering: taxonomy. Principles
and implementation

14. Mahaux M, Heymans P, Saval G (2011) Discovering sustainability requirements: an experience
report. In: International Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, pp 19–33

15. Venters CC, Capilla R, Betz S, Penzenstadler B, Crick T, Crouch S, Nakagawa EY, Becker C,
Carrillo C (2018) Software sustainability: research and practice from a software architecture
viewpoint. J Syst Softw 138:174–188

16. Kern E, Naumann S, Dick M (2015) Processes for green and sustainable software engineering.
In: Green in software engineering. Springer, pp 61–81

17. Berkhout F, Hertin J (2001) Impacts of information and communication technologies on
environmental sustainability: speculations and evidence. Report to the OECD, Brighton, 21

18. Brundtland G, Khalid M et al (1987) Our common future: Report of the World Commission on
Environment and Development (United Nations General Assembly, the Brundtland
Commission).

19. Albertao F, Xiao J, Tian C, Lu Y, Zhang KQ, Liu C (2010) Measuring the sustainability
performance of software projects. In: 2010 IEEE 7th International Conference on E-Business
Engineering. IEEE, pp 369–373

20. Calero C, Moraga MÁ, Bertoa MF, Duboc L (2015) Green software and software quality. In:
Green in software engineering. Springer, pp 231–260

21. Kern E, Dick M, Naumann S, Filler A (2015) Labelling sustainable software products and
websites: ideas, approaches, and challenges. In: EnviroInfo and ICT for sustainability 2015.
Atlantis Press

22. Taina J (2011) Good, bad, and beautiful software-in search of green software quality factors.
Cepis Upgrade 12(4):22–27

23. Penzenstadler B (2013) What does sustainability mean in and for software engineering? In:
Proceedings of the 1st International Conference on ICT for Sustainability (ICT4S), vol 94

24. Lago P, Koçak SA, Crnkovic I, Penzenstadler B (2015) Framing sustainability as a property of
software quality. Commun ACM 58(10):70–78

25. Penzenstadler B, Femmer H (2013) A generic model for sustainability with process- and
product-specific instances. In: Proceedings of the 2013 workshop on Green in/by software
engineering. pp 3–8

26. Razavian M, Procaccianti G, Tamburri DA et al (2014) Four-dimensional sustainable
e-services. In: EnviroInfopages. pp 221–228

27. Goodland R et al (2002) Sustainability: human, social, economic and environmental. Encyclo-
pedia Glob Environ Change 5:481–491

28. Becker C, Chitchyan R, Duboc L, Easterbrook S, Penzenstadler B, Seyff N, Venters CC (2015)
Sustainability design and software: the karlskrona manifesto. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol 2. IEEE, pp 467–476

29. Betz S, Caporale T (2014) Sustainable software system engineering. In: 2014 IEEE Fourth
International Conference on Big Data and Cloud Computing. IEEE, pp 612–619

30. Bouwers E, van Deursen A, Visser J. Evaluating usefulness of software metrics: an industrial
experience report. In: 2013 35th International Conference on Software Engineering (ICSE).
IEEE, pp 921–930

31. Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development
environments and energy efficiency in open source applications. Inf Softw Technol 54(1):60–71

32. Calero C, Bertoa MF, Moraga MÁ (2013) Sustainability and quality: icing on the cake. In:
RE4SuSy@ RE

33. Condori-Fernandez N, Lago P (2018) Characterizing the contribution of quality requirements to
software sustainability. J Syst Softw 137:289–305

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 39

34. Hilty LM, Lohmann W, Behrendt S, Evers-Wölk M, Fichter K, Hintemann R (2015) Final
report of the project: Establishing and exploiting potentials for environmental protection in
information and communication technology (green it). Technical report, Federal Environment
Agency, Berlin. Förderkennzeichen 3710 95 302/3

35. Radu L-D (2018) An ecological view on software reuse. Informatica Economica 22(3):75–85
36. Becker Y, Naumann S (2017) Software based estimation of software induced energy dissipation

with powerstat. In: From science to society: the bridge provided by environmental informatics.
Shaker Verlag, pp 69–73

37. Bunse C (2018) On the impact of code obfuscation to software energy consumption. In: From
science to society. Progress in IS. Springer International Publishing

38. Cherupalli H, Duwe H, Ye W, Kumar R, Sartori J (2017) Determining application-specific peak
power and energy requirements for ultra-low-power processors. ACM Trans Comput Syst 35(3)

39. Georgiou K, Xavier-de Souza S, Eder K (2018) The IOT energy challenge: a software
perspective. IEEE Embed Syst Lett 10:53–56

40. Godboley S, Panda S, Dutta A, Mohapatra DP (2017) An automated analysis of the branch
coverage and energy consumption using concolic testing. Arab J Sci Eng 42(2):619–637

41. Gomes C, Tavares E, Junior MO (2020) Energy consumption evaluation of NOSQL DBMSs.
In: Anais do XV Workshop em Desempenho de Sistemas Computacionais e de Comunicaçäo,
Porto Alegre, RS, Brasil. SBC, pp 71–81

42. Henderson P, Hu J, Romoff J, Brunskill E, Jurafsky D, Pineau J (2020) Towards the systematic
reporting of the energy and carbon footprints of machine learning

43. Jagroep EA, van der Werf JM, Brinkkemper S, Procaccianti G, Lago P, Blom L, Van Vliet R
(2016) Software energy profiling: comparing releases of a software product. In: Proceedings of
the 38th International Conference on Software Engineering Companion – ICSE 16. pp 523–532

44. Mancebo J, Arriaga HO, García F, Moraga M, de Guzmán IG-R, Calero C (2018) EET: a device
to support the measurement of software consumption. In: Proceedings of the 6th International
Workshop on Green and Sustainable Software. ACM, pp 16–22

45. Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2019) On the impact of code
smells on the energy consumption of mobile applications. Inf Softw Technol 105:43–55

46. Sahin C, Wan M, Tornquist P, McKenna R, Pearson Z, Halfond WGJ, Clause J (2016) How
does code obfuscation impact energy usage? J Softw Evol Process 28(7):565–588

47. Strubell E, Ganesh A, McCallum A (2019) Energy and policy considerations for deep learning
in NLP

48. Mancebo J, Guldner A, Kern E, Kesseler P, Kreten S, Garcia F, Calero C, Naumann S (2020)
Assessing the sustainability of software products — a method comparison. In: Schaldach R,
Simon K-H, Weismüller J, Wohlgemuth V (eds) Advances and new trends in environmental
informatics ICT for sustainable solutions. Springer International Publishing, 1–16

49. Acar H, Alptekin G, Gelas J-P, Ghodous P (2016) Teec: Improving power consumption
estimation of software. In: EnviroInfo 2016

50. Georgiou K, Kerrison S, Chamski Z, Eder K (2017) Energy transparency for deeply embedded
programs. ACM Trans Architect Code Optimization 14:03

51. M Marco Couto, Pereira R, Riberio F, Rua R, Saraiva J (2017) Towards a green ranking for
programming languages. In: Proceedings of the 21st Brazilian Symposium on Programming
Languages. ACM Proceedings

52. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JaP, Saraiva Ja (2017) Energy
efficiency across programming languages: How do energy, time, and memory relate? In:
Proceedings of the 10th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2017, New York, NY. Association for Computing Machinery, pp 256–267

53. Pereira R (2017) Locating energy hotspots in source code. In: Proceedings of the 39th
International Conference on Software Engineering Companion. IEEE Press, pp 88–90

54. Baek W, Chilimbi TM (2010) Green: a framework for supporting energy-conscious program-
ming using controlled approximation. In: Proceedings of the 31st ACM SIGPLAN Conference

40 A. Guldner et al.

on Programming Language Design and Implementation, PLDI ’10, New York, NY. Association
for Computing Machinery, pp 198–209

55. Kreten S, Guldner A (2017) Resource consumption behavior in modern concurrency models.
In: EnviroInfo 2017 – From science to society: the bridge provided by environmental infor-
matics. Shaker

56. Li D, de Supinski BR, Schulz M, Nikolopoulos DS, Cameron KW (2013) Strategies for energy-
efficient resource management of hybrid programming models. IEEE Trans Parallel Distrib Syst
24(1):144–157

57. Chauhan NS, Saxena A (2013) A green software development life cycle for cloud computing.
IT Prof 15(1):28–34

58. Kreten S, Guldner A, Naumann S (2018) An analysis of the energy consumption behavior of
scaled, containerized web apps. Sustainability 10(8)

59. Li D, Halfond WGJ (2014) An investigation into energy-saving programming practices for
android smartphone app development. In: Proceedings of the 3rd International Workshop on
Green and Sustainable Software, GREENS 2014, New York, NY. Association for Computing
Machinery, pp 46–53

60. Memeti S, Li L, Pllana S, Ko-lodziej J, Kessler C (2017) Benchmarking OpenCL, OpenACC,
OpenMP, and CUDA: programming productivity, performance, and energy consumption. In:
Proceedings of the 2017 Workshop on Adaptive Resource Management and Scheduling for
Cloud Computing, ARMS-CC ’17, New York, NY. Association for Computing Machinery, pp
1–6

61. Balladini J, Suppi R, Rexachs D, Luque E (2011) Impact of parallel programming models and
cpus clock frequency on energy consumption of hpc systems. In: 2011 9th IEEE/ACS Interna-
tional Conference on Computer Systems and Applications (AICCSA). pp 16–21

62. RAL gGmbH (2020) Blue angel – resource and energy-efficient software products. Website.
https://www.blauer-engel.de/en/get/productcategory/171. Accessed 16 Mar 2020

63. Horne RE (2009) Limits to labels: the role of eco-labels in the assessment of product sustain-
ability and routes to sustainable consumption. Int J Consum Stud 33(2):175–182

64. Pärssinen M, Kotila M, Cuevas R, Phansalkar A, Manner J (2018) Environmental impact
assessment of online advertising. Environ Impact Assess Rev 73:177–200

65. Kern E (2018) Green computing, green software, and its characteristics: awareness, rating,
challenges. In: Otjacques B, Hitzelberger P, Naumann S, Wohlgemuth V (eds) From science to
society. Springer International Publishing, Cham, pp 263–273

66. Dick M, Kern E, Johann T, Naumann S, Gülden C (2012) Green web engineering-
measurements and findings. In: EnviroInfo. pp 599–606

67. Dick M, Naumann S, Held A (2010) Green web engineering. A set of principles to support the
development and operation of “Green” websites and their utilization during a website’s life
cycle. Filipe, Joaquim, pp 7–10

68. Dick M, Kern E, Drangmeister J, Naumann S, Johann T (2011) Measurement and rating of
software induced energy consumption of desktop pcs and servers. In: Pillmann W, Schade S,
Smits P (eds) Innovations in sharing environmental observations and information: Proceedings
of the 25th International Conference on Environmental Informatics October 5–7, 2011, Ispra,
Italy. Shaker Verlag, pp 290–299

69. Dirlewanger W (2006) Measurement and rating of computer systems performance and of
software efficiency. Kassel University Press, Kassel

70. Krishna R, Jayakrishnan R (2013) Impact of cloud services on software development life cycle.
In: Mahmood Z, Saeed S (eds) Software engineering frameworks for the cloud computing
paradigm. Springer London, London, pp 79–99

71. Cisco (2018) Cisco Global Cloud Index: Forecast and Methodology, 2016-2021. https://www.
cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-
c11-738085.html. Accessed 15 July 2019

72. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The
MIT Press

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 41

https://www.blauer-engel.de/en/get/productcategory/171
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

73. Wittek K (2019) Auf dem Prüfstand - Testen mit Docker und Testcontainers. In: iX - Magazin
für professionelle Informationstechnik, 7

74. Drangmeister J, Kern E, Dick M, Naumann S, Sparmann G, Guldner A (2013) Greening
software with continuous energy efficiency measurement. In: Horbach M
(ed) INFORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt.
Gesellschaft für Informatik e.V., Bonn, pp 940–951

75. Tadesse SS, Malandrino F, Chiasserini C (2017) Energy consumption measurements in docker.
In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol
2. pp 272–273

76. AWS and Sustainability. https://aws.amazon.com/about-aws/sustainability/. Accessed 15 July
2019

77. Carrington MJ, Neville BA, Whitwell GJ (2010) Why ethical consumers don’t walk their talk:
towards a framework for understanding the gap between the ethical purchase intentions and
actual buying behaviour of ethically minded consumers. J Bus Ethics 97(1):139–158

78. Penzenstadler B, Femmer H, Richardson D (2013) Who is the advocate? Stakeholders for
sustainability. In: 2013 2nd International workshop on green and sustainable software
(GREENS). IEEE, pp 70–77

79. Herzog C, Lefêvre L, Pierson J-M (2015) Actors for innovation in green it. In: ICT innovations
for sustainability. Springer, pp 49–67

80. Issa T, Issa T, Chang V (2014) Sustainability and green it education: practice for incorporating
in the Australian higher education curriculum. Int J Sustain Educ 9(2):19–30

81. Penzenstadler B, Fleischmann A (2011) Teach sustainability in software engineering? In: 2011
24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T). IEEE,
pp 454–458

82. Gil D, Fernández-Alemán JL, Trujillo J, García-Mateos G, Luján-Mora S, Toval A (2018) The
effect of green software: a study of impact factors on the correctness of software. Sustainability
10(10):3471

42 A. Guldner et al.

https://aws.amazon.com/about-aws/sustainability/

Chapter 3
GSMP: Green Software Measurement
Process

Javier Mancebo, Coral Calero, and Félix García

Abstract To improve the sustainability of software it is necessary to be able to
measure the energy efficiency of the software. For this purpose, there are several
measuring instruments, but for these measurements to be as correct and reliable as
possible there must be a process to guide researchers in this effort.

The objective of this chapter is to define the activities to be carried out during the
software energy efficiency analysis process, so as to obtain greater control over the
measurements performed, ensuring the reliability and consistency of the information
obtained regarding energy efficiency. To this end, we have collected a set of good
practices in the measurement of energy consumption found in the literature and,
together with our own experience, we have defined the Green Software Measure-
ment Process (GSMP) that details all the activities and roles necessary to carry out
the measurement and analysis of the energy consumption of the software executed.
The GSMP ensures the reliability and consistency of the measurements, and also
allows the repetition and comparison of the studies carried out. Furthermore, to
validate the process, it was applied to a case study in which energy consumption was
analyzed using two measuring instruments.

3.1 Introduction

Improving software sustainability is not a trivial project. To do so, it is essential to be
aware of how efficient software is from an energy point of view when it is running.

To measure the energy efficiency of the software, several measuring instruments
allow us to know, with greater or lesser accuracy, the energy that is consumed by the
software. However, having these measuring instruments that allow us to fully
analyze consumption may not be enough. In order to conduct a successful evaluation
of the energy efficiency of software, it is necessary to define a process to guide

J. Mancebo · C. Calero (*) · F. García
Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: Javier.Mancebo@uclm.es; Coral.Calero@uclm.es; Felix.Garcia@uclm.es

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_3&domain=pdf
mailto:Javier.Mancebo@uclm.es
mailto:Coral.Calero@uclm.es
mailto:Felix.Garcia@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_3#DOI

researchers and practitioners as they seek to carry out measurements of the soft-
ware’s energy consumption. A well-defined and established process allows greater
control over the measurements performed, ensuring their reliability and consistency.
It also allows the studies performed to be easily replicated and the results obtained to
be comparable with those of other studies [1, 2].

Despite the importance of the existence of a process to evaluate the energy
efficiency of software, if we analyze the available empirical studies that perform
software energy consumption analysis, it is possible to identify a lack of a generally-
agreed-on methodology that would guide software energy consumption
measurements.

Different approaches that could be useful for this purpose can be found in the
existing literature. On the one hand, there are software measurement frameworks and
standards, which, although they are not related to energy measurement, have the aim
to provide guidelines for carrying out the software measurement process effectively
and systematically, based on the defined objectives. Some of the best-known
standards and methods are the Goal/Question/Metric (GQM) method [3], the Prac-
tical Software Measurement (PSM) method [4], and the ISO/IEC/IEEE 15939
standard [5]. On the other hand, to the best of our knowledge, there is also a unique
proposal that specifically measures the energy consumed by the software. This is the
research carried out by Hindle, which proposes an abstract methodology to measure
and correlate the energy consumption of a software application. This methodology is
known as the “Green Mining Methodology” [6]. The Green Mining methodology
describes the process of measuring, extracting, and analyzing energy consumption
information from the software that is running. The main defect in this methodology
is that it does not provide any protocol or good practices regarding how to carry out
the measurement in a way that is valid and reliable. For this reason, Jagroep et al. [7]
present a measurement protocol, in which an extension of “Green Mining” is
performed, detailing the specific measurement tasks to be carried out.

Bearing in mind the lack of a specific method to help researchers to analyze the
energy efficiency of software, and in the endeavor to ensure that the study can be
replicated and the results obtained compared with other studies, we have defined a
process, known as the Green Software Measurement Process (GSMP), that inte-
grates all of the activities that must be carried out to measure and analyze the energy
consumption of the software being evaluated. The GSMP is composed of seven
different phases, covering the main steps to be performed, from the measurement of
energy consumption right through to the analysis of the results, including actions
such as defining the scope of the study, details on how to conduct valid and reliable
measurements, and how the results obtained should be reported.

The following section of this chapter details each of the phases and activities of
the GSMP. In addition, Sect. 3.3 presents the application of the process described in
the case study in which energy consumption is analyzed using two measuring
instruments. Finally, Sect. 3.4 provides some conclusions.

44 J. Mancebo et al.

3.2 Green Software Measurement Process

The aim of the Green Software Measurement Process (GSMP) is to guide
researchers and practitioners as they seek to carry out measurements of software
energy consumption.

To define the GSMP, we have followed the method engineering approach [8],
using the SPEM 2.0 specification [9], and the EPF Composer tool to model the
defined process. In addition, to define some aspects or artifacts of the process, we
have taken as our basis well-known approaches to software measurement and good
practices related to green software that have been proposed by other authors.

The GSMP consists of seven phases (Fig. 3.1), which are divided into different
activities (Fig. 3.2). The GSMP is described in detail below, including roles, phases,
and activities (with inputs, outputs, and guidelines). A more detailed and compre-
hensive version of the process, along with its elements, can be consulted at https://
alarcos.esi.uclm.es/FEETINGS.

3.2.1 Roles

In this subsection, the different roles involved in the different phases and activities of
the process are described below:

• Client. The person interested in the results obtained from the measurement of the
energy consumption of the selected software. The client is also responsible for
providing information about the software to be evaluated and the requirements
needed to carry out the energy consumption measurement (Fig. 3.3).

• Measurement Analyst. The person responsible for defining in detail the scope of
measurements and the configuration of the measurement environment. This role
is also responsible for reporting and documenting the results obtained (Fig. 3.4).

Fig. 3.1 GSMP phases

3 GSMP: Green Software Measurement Process 45

https://alarcos.esi.uclm.es/FEETINGS
https://alarcos.esi.uclm.es/FEETINGS

Fig. 3.2 GSMP work breakdown structure

performs

responsible for

A1.1 Elicitation of
requirements

Requirements
Specification

Client

Fig. 3.3 GSMP: Client

46 J. Mancebo et al.

F
ig
.3

.4
G
S
M
P
:
M
ea
su
re
m
en
t
an
al
ys
t

3 GSMP: Green Software Measurement Process 47

• Measurement Performer. Prepares the measurement environment and sets up the
testbed. Furthermore, this role is responsible for carrying out the energy con-
sumption measurements in the selected environment (Fig. 3.5).

• Data Analyst. The person responsible for processing and analyzing the data
extracted from the measuring device and converting it into software energy
consumption information (Fig. 3.6).

3.2.2 Phases

The GSMP is intended to be performed iteratively, so the phases are closely related
to each other. The initial phase focuses primarily on the definition of the require-
ments and the software system to be evaluated. The next two phases focus on the
configuration and preparation of the measurement environment. In the fourth phase,
energy consumption measurement activities are carried out. Finally, the last phases
are the analysis of the data obtained and reporting.

Phase I. Scope Definition
The main goal of this phase is to obtain a complete specification of the requirements
for the evaluation of energy efficiency. Moreover, the software to be analyzed must
be defined. To achieve this purpose, this phase is composed of four different
activities, with inputs and outputs as shown in Fig. 3.7.

The first activity of this phase is the elicitation of requirements (Activity A1.1) for
the analysis of software energy consumption. To do this, the Client provides the
Measurement Analyst with information about the software to be evaluated. In
addition, all the requirements for carrying out the energy consumption measurement
must be detailed. This information needs to be documented in the Requirements
Specification.

Once the Client has provided all the necessary information, the Measurement
Analyst performs the definition of the objective (Activity A1.2) and chooses the
collection of all the entities that satisfy the determined purpose, known as Software
Entity Class. We suggest using the recommendations of Wohlin et al. [2], based on
the application of the Goal/Question/Metric (GQM) method, so as to correctly define
the Goal and the Software Entity Class.

After choosing the Software Entity Class, the software entity must be chosen; this
is the software that is to be characterized by measuring its attributes. This corre-
sponds to the third activity in this phase (Activity A1.3). It is essential to check that
the entire selected software entity is available and can be installed, and/or to run the
Device Under Test (DUT). In the effort to facilitate the selection of the Entity’s
software, a template is included and can be consulted on the process website.

Finally, the fourth activity is dedicated to the development of test cases to execute
and measure energy consumption (Activity A1.4). Based on the software entities
defined in the previous activity, a representative test case must be built that will

48 J. Mancebo et al.

F
ig
.3

.5
G
S
M
P
:
M
ea
su
re
m
en
t
pe
rf
or
m
er

3 GSMP: Green Software Measurement Process 49

F
ig
.3

.6
G
S
M
P
:
D
at
a
an
al
ys
t

50 J. Mancebo et al.

exercise the necessary functionality of the software product whose energy consump-
tion is to be measured. The test case is expected to be independent and should not
affect the following test case [6]. A test case could simulate user input, or focus on
specific software tasks or on the execution of an algorithm. Moreover, if several
software entities have been chosen, the defined test cases should be able to be tested
in all software entities. This activity is very important, because if the test cases are
not well defined, this can cause problems in the analysis of the energy consumption
of the software product.

Phase II. Measurement Environment Setting
The purpose of the second phase is the definition of the measurement environment
that will be used to satisfy the goal established in the first phase.

As can be observed in Fig. 3.8, the first activity carried out in this phase is the
selection of the measuring instrument (Activity 2.1). The measuring instrument is
used to perform the power consumption measurements of the software being ana-
lyzed. This measuring instrument may be a hardware device or a software tool;
depending on whether or not we want to obtain very precise measurements, and
depending on the availability of the measuring instrument, we will follow one of two
approaches.

The second activity consists of defining the specifications that the Device Under
Test (DUT) must have (Activity A2.2). The test cases defined in Activity A1.4 will
be executed in the selected DUT in order to carry out the energy consumption
measurements. To choose the right DUT, we have to consider the features of the
software entity, as it has to be able to be installed and run on the DUT. Moreover,

Fig. 3.7 Phase I. Scope definition

3 GSMP: Green Software Measurement Process 51

depending on the results we want to obtain, the DUT will have different specifica-
tions. For example, if we want the results obtained to be more generalizable, we must
choose a DUT without special processing or storage capabilities and with a conven-
tional configuration. However, if we want to know the energy consumption in a
specific environment where the software will usually be executed, we must simulate
this environment by configuring the DUT to be as similar as possible to it.

The next step is to decide on the set of measures to be used for the analysis
(Activity A2.3). The main measure of interest is obviously the energy consumption
(EC), which is obtained by the measuring instrument. Sometimes it is necessary to
recover other measures, however, such as the performance of some hardware
components or different kinds of measures that are required for further analysis,
e.g., information about the executed source code (Total Lines of Code or
Complexity).

Activity 2.4 consists of checking that no other software is running in the back-
ground, while also interrupting all services and processes that may affect the baseline
measurement of consumption.

Finally, the fifth activity is to obtain baseline energy consumption (Activity 2.5).
The baseline measurement determines the idle energy consumption for the DUT that
is used. As the idle energy consumption depends mainly on the hardware used, this
value must be determined separately for each DUT used, by carrying out measure-
ments while the DUT is running without any active software [10]. The baseline
energy consumption allows us to calculate the energy consumption induced by the

Fig. 3.8 Phase II. Measurement environment setting

52 J. Mancebo et al.

execution of the selected test cases, under the assumption that the increase in the
energy consumed by the DUT depends exclusively on running the software entity
under test.

Phase III. Measurement Environment Preparation
This phase focuses on the preparation of the energy consumption measurements to
be performed, and on the configuration of the measurement environment that was
defined in the second phase (Fig. 3.9).

The first activity to carry out before starting the energy consumption measure-
ments is to check that no other software is running in the background (Activity
A3.1). Then, we must interrupt any services or processes that are not required by the
software under test, seeking to minimize the effect they may have on the power
consumption of the DUT (e.g., the automatic update service or virus scans).

The next activity (Activity A3.2) to perform is that of determining the number of
times each measurement should be repeated. We consider a measurement to be a set
of energy consumption samples from a single test case run. There is no exact and
correct number of repetitions to be measured. The choice of this value depends on
the objective we have defined, as well as on the resources available. Some authors
[11] recommend that, for measurements of software energy consumption in a
controlled environment, 30 measurements are usually a sufficient sample size for
an analysis of each of the test cases devised, as the sampling distribution will tend to
be normal.

Fig. 3.9 Phase III. Measurement environment preparation

3 GSMP: Green Software Measurement Process 53

The last activity (Activity A3.3) in the preparation of the measurement environ-
ment is the configuration of the testbed. The software entity and the services required
in the DUT need to be installed. Once the measurements for one of the software
entities are completed, the DUT is restored, such that it returns to its initial state. This
procedure is repeated for the different software entities that are going to be assessed.
In this activity, the chosen software entity must also be prepared, so that it can
execute the test cases defined.

Phase IV. Measurement Performance
During this phase, energy consumption measurements will be carried out, as shown
in Fig. 3.10. The set of both activities of this phase are iteratively performed, as many
times as test cases were defined in the first phase, and the measurements will also be
repeated this number of times, as defined in Phase III. Measuring the energy
consumed (Activity 4.1) for the selected software entities is the first activity of this
phase. Once the measurement is completed, the testbed should be cleaned, so as to
avoid affecting the power consumption when another test case is run.

It is then time to collect the raw energy consumption data taken from the
measuring instrument (Activity A4.2). Later, the data obtained will be processed
to make its analysis easier. When storing the results of each test, the relevant
information, such as the details of the DUT, should be recorded, as should the

Fig. 3.10 Phase
IV. Measurement
performance

54 J. Mancebo et al.

definition of the test cases, the current configuration, the start and end times, and the
power monitor trace itself.

Phase V. Test Case Data Analysis
From this phase onwards, the analysis of the energy consumption data obtained by
the measuring instrument begins. The main goal of Phase V is the processing and
analysis of the energy consumption data of each of the test cases that were defined in
the first phase. This phase is composed of two different activities, which are
summarized in Fig. 3.11.

The first activity focuses on the preparation of the raw data obtained by the
measuring instrument (Activity A5.1). The steps to be performed in this activity
depend on the source of the data, but it is crucial to achieve a transformation of the
raw data into useful information for performing an analysis. This process of data
transformation is known as Data Wrangling. The most outstanding tasks to be
performed in Data Wrangling, according to Kandel, S. et al. [12] are:

• Data formatting: reformatting and integrating data from different sources so that
they can be analyzed correctly.

• Correcting erroneous values: Once the data has been formatted, data preparation
begins. Data preparation includes the detection of outliers, the imputation of

Fig. 3.11 Phase V. Test
case data analysis

3 GSMP: Green Software Measurement Process 55

missing values, and the resolution of duplicate records. For the identification of
possible outliers that may be present in the samples of the measurements, we
recommend the use of robust parametric methods, such as the median of the
absolute deviations from the median [13, 14].

• Validating the measurements: Check that each of the measurements performed is
correct. To find unusual measurements, you can use the interquartile range
method (IQR) [14]. With this method, all values that fall below Q1 � 1.5 *
IQR or above Q3 + 1.5 * IQR, where Qi is the quartile, are considered extraneous
or incorrect. Another method of identifying incorrect measurements is to use a
confidence interval. However, the problem is that to define a confidence interval,
it is necessary to have made a large number of measurements beforehand.

The next step to be performed, once the data has been processed, is the statistical
analysis of the values obtained from the measurements of the defined test cases
(Activity A5.2). To carry out the analysis, the descriptive statistics for each test case
analyzed need to be calculated. To obtain the most complete information available
on energy consumption, we suggest the calculation of the following descriptive
statistics: on the one hand, standard descriptive statistics (maximum and minimum
value, range, mean, standard deviation, variance, or interquartile range), and on the
other hand, the robust descriptive statistics such as median, trimmed mean,
winsorized mean, or median absolute deviation. It is not compulsory to calculate
all the descriptive statistics mentioned. We must choose those that adapt to the
statistical analysis that we are going to carry out.

Phase VI. Software Entity Data Analysis
Once we have analyzed the energy consumption data of the test cases, we will be
able to determine how much energy was consumed when the software entity was
executed in the DUT. As a result of this phase, we will carry out an analysis of the
information on energy consumption, based on the goal defined at the beginning of
the process of measuring the energy efficiency of a software (Fig. 3.12).

The first activity in this phase consists of calculating the energy consumed by the
execution of the software entity (Activity A6.1). As mentioned above, the software
energy consumption depends mainly on the DUT used. Hence, to calculate the
energy required for the running of the software, the baseline energy consumption
of the DUT (Activity A2.4) needs to be subtracted from the average energy of the
software entity measurements. Before we can subtract the baseline energy consump-
tion from the DUT, we must adjust it to the software measurement performed. The
adjusted baseline energy consumption is calculated by dividing the average energy
of the baseline by the average duration of the baseline and multiplying it by the
average duration of the measurement:

Adjusted Baseline Energy Consumption ¼ �EC Baseline
�T Baseline

� �T Measurement ð3:1Þ

The task of subtracting the baseline energy consumption of the DUT from the
average energy of the software entity’s measurements may not be performed if we

56 J. Mancebo et al.

provide relative information on energy consumption. That is, if we classify or sort
according to the energy consumptions of each scenario that has been measured in the
same DUT, all the results will have been equally affected by the baseline energy, and
the classification will not vary.

The last activity of this phase deals with interpreting the data of the energy
consumed by the software entity analyzed and establishes some conclusions (Activ-
ity A6.7). As a result of this activity, information is obtained on energy efficiency in
response to the objective defined. It is essential to have fulfilled all the requirements
proposed by the Client at the beginning of the process if the objective is to be
completely satisfied.

Phase VII. Reporting the Results
Finally, the last phase involves documenting the study performed, describing the
entire process followed, along with the results on the energy consumption of the
software that has been extracted. Figure 3.13 contains all the activities, inputs, and
outputs of this phase.

Fig. 3.12 Phase
VI. Software entity data
analysis

3 GSMP: Green Software Measurement Process 57

The first activity in this phase focuses on the development of a laboratory package
(LP) intending to achieve repeatability of the experiment performed (Activity A7.1).
The main objective of an LP is to be an instrument for supporting knowledge
transfer, as well as for conducting replications; it should support all activities in
the experimental process and not only the implementation. Laboratory packages
should contain all the information and materials required to replicate an experiment
or case study [15, 16]. The content of an LP should not be static; it needs to be
adapted to the needs of the researcher and the limitations of the experiment. Indeed,
proposals for the development of correct LPs, such as the one put forward by [17],
can be followed, in which the content and structure of the laboratory packages for
software engineering experiments are indicated. Considering the indications of these
authors, the LP should include the following information:

Fig. 3.13 Phase VII.
Reporting the results

58 J. Mancebo et al.

• Planning: a description of each of the activities to be carried out and the order in
which they are to be performed. It is also recommended that the estimated
workload for the replicant experimenter be indicated.

• Study conception: a description of the high-level attributes that are studied by the
experiment, together with its goals. In addition, the variables used in the exper-
iment should be shown.

• Experimental design: information about the design of the experiment. It should
include details on what the subject of the evaluation will be, and in what cases.

• Operation: information for the creation of the laboratory environment to be used.
This includes specific software engineering objects (such as programs, specifica-
tions, or test cases) and instruments used for measurement and analysis of
the data.

• Analysis: a specification of the data wrangling process followed, as well as the
analysis methods applied. A report of the experiment should be included, and the
analysis should conclude with a high-level interpretation of the results. In addi-
tion, the raw data should be included in the standard format, so as to allow other
researchers to repeat all the analysis activities of the results.

The last activity of the process for the measurement of the energy efficiency of the
software is the production of detailed documentation, in which the whole process is
explained, along with the results obtained in the study (Activity A7.2). The main
difference with the laboratory package is that while it is oriented to other researchers
who want to replicate the experiment, the documentation is directed at the Client and
other stakeholders, with the information that has been obtained. The LP can be
considered to be a piece of this documentation. To report a study where we evaluate
the energy consumption of the software, we can use the guidelines proposed by
Jedlitschka and Pfahl [18].

3.2.3 Summary of Roles Involvement in GSMP

In line with SPEM2, roles can operate in the process in two different ways: Primarily
Performs (PP), which refers to the roles that participate in the realization of the
activity (see Sect. 3.2.1); and Additionally Performs (AP), which are the roles that
must be informed or which are in some way interested in the realization of the
activity. Table 3.1 presents a summary of the type of involvement of the four defined
roles in the GSMP.

3.2.4 Considerations for the Validity of Energy Consumption
Measurements of Software

Although the process described above provides a solid basis for carrying out energy
consumption measurements, the assumptions that may occur, and which jeopardize

3 GSMP: Green Software Measurement Process 59

the validity of the measurements, must be identified. The assumptions that may
threaten the validity of software energy consumption measurements are shown
below:

• Sampling interval: The frequency with which samples of the power consumed are
provided must be taken into consideration. If the frequency is too low, this might
lead to an underestimation of the energy consumed, due to the high frequency of
the hardware components [10].

• OS effects and interaction with other software: The energy used by the operating
system is usually included in the energy consumption measurements. In addition,
other applications or services of the operating system may be activated during the
measurement. We mitigate this threat by performing a large number of measure-
ments, and by obtaining the baseline of DUT consumption.

• Laboratory temperature: Not having direct control over the temperature in the
laboratory where measurements are performed can be harmful when measuring
accurate energy consumption. This risk can be mitigated by repeating the mea-
surements several times.

• Experiment settings: The choice of the software entity to be analyzed, together
with the creation of the test cases to be run to measure energy consumption, can
be considered a limitation of the experiment. Hence, we cannot generalize the

Table 3.1 Roles and their responsibilities in GSMP

Phase Activity Client

Roles

Measurement analyst Measurement performer Data analyst

Phase I A1.1 PP AP

A1.2 PP

A1.3 PP

A1.4 PP

Phase II A2.1 PP

A2.2 PP

A2.3 PP

A2.4 PA PP

A2.5 PA PP

Phase III A3.1 PP

A3.2 PA PP

A3.3 PP

Phase IV A4.1 PP

A4.2 PP

Phase V A5.1 PP

A5.2 PP

Phase VI A6.1 PP

A6.2 AP PP

Phase VII A7.1 PP AP AP

A7.2 PP

60 J. Mancebo et al.

results obtained for other software entities, although they may be useful for future
experiments.

• Measuring instrument: There is an inevitable dependence on the measuring
instrument in terms of accuracy and detail of measurements, as these may vary
when a different measuring instrument is used. However, when possible it is
always useful to provide comparisons about different instruments by clearly
stating their settings.

• DUT specificity: One of the main factors that can influence energy consumption
measurements is the configuration of the DUT in which the software being
evaluated is running, since the energy consumption obtained is specific to the
DUT used. It is therefore possible to use the results as absolute values, if the DUT
used is similar to the one on which the software will normally be run. Otherwise,
the values obtained must be considered relative, and serve to determine in which
situations there is a greater or lesser consumption of energy.

3.3 Application of the GSMP

This section presents the application of the process for evaluating the energy
efficiency of the software, which was defined in the previous section. To demon-
strate that the GSMP can be adapted to any study in which energy consumption is
evaluated, a case study is presented, following the protocol template defined by
Brereton et al. [19] and the guidelines proposed by Runeson and Höst [20].

3.3.1 Design

The aim of this case study is to find out if the GSMP is useful for measuring and
analyzing software energy consumption. To this end, the following research ques-
tion is addressed: Is the GSMP comprehensive and detailed enough to guide
researchers and practitioners in performing software energy measurements?

3.3.2 Subject and Analysis Units

In this case study, the application of the GSMP for the measurement of energy
consumed when running different sorting algorithms is evaluated.

To demonstrate that this process can be adapted to any study of energy consump-
tion analysis, the measurements have been carried out with two different measuring
instruments. On the one hand, we have used the Energy Efficiency Tester (EET)
measuring instrument [21], which will be described in detail in the next chapter of

3 GSMP: Green Software Measurement Process 61

this book. On the other hand, the same energy measurements were replicated by the
measuring instrument proposed by the Institute for Software Systems (ISS) [11].

Therefore, the units of analysis in this case study are the GSMP and the energy
consumption of the sorting algorithms.

3.3.3 Field Procedure and Data Collection

The field procedure and data collection for this case study are closely related to the
activities, roles, and templates of the GSMP described in the previous section.

Furthermore, other data collected are the energy consumption that have been
obtained by the EET and the ISS proposal.

3.3.4 Intervention in Case Study

This section presents the application of the GSMP for the measurement and analysis
of the energy efficiency of different sorting algorithms. Each of the phases and
activities performed is detailed below.

Phase I. Scope Definition
The main goal of this case study is to determine which sorting algorithm consumes
the least amount of energy (Activity 1.1 and A1.2). In addition, it aims to demon-
strate that the GSMP is validated to carry out energy consumption measurements
with any measuring instrument.

For this purpose, we used five sorting algorithms (bubble sort, cocktail sort,
insertion sort, quicksort, and mergesort), which were chosen as the software entities
to be measured (Activity 1.3).

The last activity that has to be carried out in this phase is the creation of test cases
to be executed (Activity A1.4). In this case study, the sorting algorithms were
executed multiple times, and in each execution an item array with 50,000 random
numbers from 1 to 1000 was sorted, so the execution of each classification algorithm
takes approximately 2 min. Therefore:

• Bubble sort was executed 18 times (900,000 items sorted)
• Cocktail sort was executed 30 times (1.5 million items sorted)
• Insertion sort was executed 280 times (14 million items sorted)
• Quicksort was executed 20,000 times (1 billion items sorted)
• Mergesort was executed 10,000 times (500 million items sorted)

Phase II. Measurement Environment Setting
As stated above, the test cases defined will be measured using two measuring
instruments (Activity 2.1). The first measuring instrument used was EET [21].
Afterwards, the energy measurements were replicated using the measuring instru-
ment proposed by the ISS [11].

62 J. Mancebo et al.

The execution of the sorting algorithms was carried out on two different com-
puters, but with similar specifications (Activity 2.2). Table 3.2 shows the specifica-
tions of the DUT and system under test (SUT).

Concerning the set of measures to be used in this case study, we can identify the
energy consumption obtained by each of the measuring instruments (Activity 2.3).

Finally, it is determined whether any other software is running in the background,
while also interrupting all services and processes that may affect energy consump-
tion (Activity 2.4), and the baseline energy consumption of each of the computers
where the test cases measurements are to be carried out is measured (Activity 2.5).
Table 3.3 shows the results of the baseline measurement with EET and with the ISS
proposal.

Phase III. Measurement Environment Preparation
Before starting the measurement, it is determined whether any other software is
running in the background. If any process or software not related to the software
entity to be analyzed is running, it must be closed (Activity A3.1).

Another aspect to be defined in this phase is the number of repetitions to be
performed for each measurement of a test case (Activity A3.2). We consider that
each test case should be measured 30 times, since being in a controlled environment
is enough to mitigate the effect of other processes that may be executed at the
same time.

Table 3.2 Specifications of the measurement environments used

Component DUT specifications used with EET
SUT specifications used with the
proposal by ISS

Processor AMD Athlon 64 X2 Dual Core 5600+
2.81 GHz

Intel Core 2 Duo E6750 2.66 GHz

Memory 4�1GBDDR2 4�1GBDDR2

Hard disk Seagate barracuda 7200 500 Gb 320 GB WD 3200YS-01PBG0

Mainboard Asus M2N-SLI Deluxe Intel Desktop Board DG33BU

Graphics card Nvidia XfX 8600 GTS Nvidia GeForce 8600 GT

Power Supply 350 W AopenZ350-08Fc 430 W Antec EarthWatts EA-430D

Operating
System

Windows 10 Enterprise Windows 10 Pro

Java version Oracle Java 8u201 Oracle Java 8u201

Table 3.3 Measurement results of baseline energy consumption

Measuring instrument Mean SD Median Min Max Range IQR

Baseline power [W] ISS 78.78 0.58 78.82 78.63 78.91 0.28 0.16

EET 73.40 3.71 72.86 66.04 78.80 12.76 2.53

Baseline energy [Wh] ISS 13.13 0.02 13.13 13.10 13.17 0.07 0.03

EET 6.18 0.31 6.10 5.57 6.66 1.09 0.19

3 GSMP: Green Software Measurement Process 63

Once it has been established, the DUT (or SUT) is configured, and the preparation
of the chosen software entity is carried out (Activity A3.3).

Phase IV. Measurement Performance
In this phase, power consumption measurements will be made for each of the chosen
sorting algorithms (Activity A4.1). Between every sorting algorithm there was a
break of 10 s and after every loop run there was a break of 60 s. The pauses between
the execution of the algorithms was added to allow the computer to return to its idle
state, before starting the next task, in order to capture irregular patterns in the
consumption. While the loop was running, two log files were generated for further
analysis with the power consumption data (Activity A4.2). In these log files, the
starting and ending timestamps of every test run and every sorting algorithm loop
were recorded.

Phase V. Test Case Data Analysis
During this phase, the analysis of the energy consumption data for each of the test
cases is carried out. The first activity is the preparation of the raw data, which has
been obtained from the measuring instruments in the previous phase. In this activity,
the average values of each of the measurements of the test cases are calculated. The
outliers are also identified and eliminated, and the values obtained are checked to
ensure they are valid (Activity A5.1).

Once the data have been processed and prepared, the descriptive statistics of the
values obtained are calculated, as shown in Table 3.4 (Activity A5.2).

Phase VI. Software Entity Data Analysis
In this phase, the results obtained for each of the software entities (sorting algo-
rithms) are analyzed (Activity A6.1). To do so, the energy consumed induced by the
software run is calculated by subtracting the average adjusted baseline energy from
the average energy of the test run measurements, as shown in Table 3.5.

In addition, the energy consumption and the induced energy for each classifica-
tion algorithm have been obtained independently. Table 3.6 shows the consumed
energy values obtained by each of the measurement instruments, and the energy
consumption induced by each of the algorithms taking into account the reference
consumption.

Based on this information, we can draw some conclusions (Activity 6.2). As
shown in Fig. 3.14, the most energy-consuming sorting algorithm is Insertion Sort.
The quicksort algorithm is the most energy efficient.

Table 3.4 Measurement results of the test run

Measuring instrument Mean SD Median Min Max Range IQR

Test run power [W] ISS 109.61 2.41 109.44 109.24 113.54 4.30 0.120

EET 104.57 6.26 103.41 91.58 130.68 39.10 8.46

Test run energy [Wh] ISS 18.38 0.21 18.32 18.23 19.33 1.10 0.05

EET 22.63 1.99 22.37 20.04 27.97 7.93 1.95

64 J. Mancebo et al.

Phase VII. Reporting the Results
Finally, all the results obtained, along with the process followed to achieve them, are
documented (Activity A7.1). In addition, the laboratory package1 of the study is
created, so that it can be analyzed and replicated by other researchers (Activity
A7.2). The LP includes all the raw energy consumption data obtained from EET and
by the ISS proposal.

3.3.5 Case Study Analysis and Lessons Learned

After applying the GSMP to carry out software energy consumption measurements
with two different measuring instruments, we can conclude that the GSMP serves as

Table 3.5 Energy consump-
tion induced

EET ISS proposal

Energy consumption induced 6.74 Wh 5.17 Wh

Table 3.6 Energy consumption by each software entity (sorting algorithm)

Sorting algorithm

Energy consumed Energy consumption induced

ISS EET ISS EET

Bubble Sort 3.35 Wh 3.45 Wh 0.90 Wh 0.83 Wh

Cocktail Sort 3.47 Wh 3.42 Wh 0.92 Wh 0.85 Wh

Insertion Sort 5.55 Wh 5.90 Wh 1.48 Wh 1.51 Wh

Quicksort 2.42 Wh 2.37 Wh 0.66 Wh 0.61 Wh

Mergesort 3.40 Wh 3.30 Wh 1.05 Wh 1.18 Wh

1.
5

1.
0

0.
5

0.
0

A B

S
of

tw
ar

e
In

du
ce

d
en

er
gy

 c
on

su
m

pt
io

n
[W

h]

Algorithm
Bubble Sort
Cocktall Sort
Insertion Sort
Quicksort
Mergesort

Fig. 3.14 Energy consumption induced by each software entity (sorting algorithm)

1https://doi.org/10.5281/zenodo.3257517

3 GSMP: Green Software Measurement Process 65

https://doi.org/10.5281/zenodo.3257517

a guide in the activities that must be followed to carry out the measurement and
analysis of the software’s energy consumption, regardless of the measuring
instrument used.

Moreover, the use of this process helps to have greater control over the measure-
ments performed, since it enables us to identify when a measurement is incorrect, or
whether it is necessary to repeat the measurements, ensuring their reliability and
consistency.

3.4 Conclusions

The development of environmentally friendly software is not a trivial project. In fact,
to determine the energy efficiency of the software, it is necessary to be able to
evaluate the energy consumed when it is running. For this, it is necessary to follow
some suitable steps to ensure that the results obtained are correct and appropriate.
That has led us, in this chapter, to present our proposal for a process to evaluate the
energy efficiency of software, known as the Green Software Measurement Process.
Using the GSMP, we can improve reliability and consistency when measuring
energy consumption. To support the systematic development, management, and
growth of the proposed process by using a standardized representation, we have
used SPEM 2.0; this has also allowed us to generate documentation in a standard
format. The GSMP covers all the necessary phases in carrying out this type of study,
such as the definition of the scope and configuration of the environment, the
performance of the measurements, the subsequent analysis of the data obtained,
and the reporting of the results. Furthermore, this process was designed to be valid
with any measuring instrument that is used, regardless of the approach adopted. To
define some aspects or artifacts of the GSMP, we have used well-known approaches
to software measurement and good practices related to green software proposed by
other authors.

The GSMP defined allows us to analyze the energy efficiency of software. This
process enables researchers to obtain greater control over the measurements made,
guaranteeing their reliability and consistency. It also means that the studies carried
out can be easily replicated, and the results obtained are comparable to those of other
studies.

From the point of view of software professionals, this contribution helps them to
be aware that there are processes and tools to evaluate the energy efficiency of the
software applications they develop. They can thus develop software that is environ-
mentally friendly.

66 J. Mancebo et al.

References

1. Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC press
2. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in

software engineering. Springer Science & Business Media
3. Basili VR, Weiss DM (1984) A methodology for collecting valid software engineering data.

IEEE Trans Softw Eng 6:728–738
4. Defens USDo (2000) PSM: Practical software and systems measurement – a foundation for

objective project management vol version 4.0c
5. Standard IIII (2017) ISO/IEC/IEEE 15939:2017 – Systems and software engineering-

Measurement process
6. Hindle A (2015) Green mining: a methodology of relating software change and configuration to

power consumption. Empir Softw Eng 20(2):374–409
7. Jagroep EA, van der Werf JM, Brinkkemper S, Procaccianti G, Lago P, Blom L, van Vliet R

(2016) Software energy profiling: comparing releases of a software product. In: Proceedings of
the 38th International Conference on Software Engineering Companion, pp 523–532

8. Henderson-Sellers B (2003) Method engineering for OO systems development. Commun ACM
46(10):73–78

9. OMG Software & Systems Process Engineering Metamodel specification (SPEM) Version 2.0
10. Jagroep E, Procaccianti G, van der Werf JM, Brinkkemper S, Blom L, van Vliet R (2017)

Energy efficiency on the product roadmap: an empirical study across releases of a software
product. J Softw Evol Process 29(2):e1852

11. Kern E, Hilty LM, Guldner A, Maksimov YV, Filler A, Gröger J, Naumann S (2018)
Sustainable software products—towards assessment criteria for resource and energy efficiency.
Futur Gener Comput Syst 86:199–210

12. Kandel S, Heer J, Plaisant C, Kennedy J, Van Ham F, Riche NH, Weaver C, Lee B,
Brodbeck D, Buono P (2011) Research directions in data wrangling: visualizations and trans-
formations for usable and credible data. Inf Vis 10(4):271–288

13. Kitchenham B, Madeyski L, Budgen D, Keung J, Brereton P, Charters S, Gibbs S, Pohthong A
(2017) Robust statistical methods for empirical software engineering. Empir Softw Eng 22
(2):579–630

14. Wilcox RR (2011) Introduction to robust estimation and hypothesis testing. Academic Press
15. Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineering. IEEE

Trans Softw Eng 7:733–743
16. Brooks A, Daly J, Miller J, Roper M, Wood M (1996) Replication of experimental results in

software engineering. International Software Engineering Research Network (ISERN) Techni-
cal Report ISERN-96-10, University of Strathclyde 2

17. Solari M, Vegas S, Juristo N (2018) Content and structure of laboratory packages for software
engineering experiments. Inf Softw Technol 97:64–79

18. Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled experiments in software
engineering. In: 2005 International Symposium on Empirical Software Engineering. IEEE, p 10

19. Brereton P, Kitchenham B, Budgen D, Li Z (2008) Using a protocol template for case study
planning. In: 12th International Conference on Evaluation and Assessment in Software Engi-
neering (EASE) 12, pp 1–8

20. Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in
software engineering. Empir Softw Eng 14(2):131

21. Mancebo J, Arriaga HO, García F, Moraga MÁ, de Guzmán IG-R, Calero C (2018) EET: a
device to support the measurement of software consumption. In: Proceedings of the 6th
International Workshop on Green and Sustainable Software, pp 16–22

3 GSMP: Green Software Measurement Process 67

Chapter 4
FEETINGS: Framework for Energy
Efficiency Testing to Improve
eNvironmental Goals of the Software

Javier Mancebo, Coral Calero, Félix García, Mª Ángeles Moraga, and
Ignacio García-Rodríguez de Guzmán

Abstract Energy consumption and carbon emissions caused by the use of software
have been increasing in recent years, and it is necessary to increase the energy
awareness of both software developers and end users.

The objective of this chapter is to establish a framework that provides a solution
to the lack of a single and agreed terminology, a process that helps researchers
evaluate the energy efficiency of the software, and a technology environment that
allows for accurate measurements of energy consumed. The result is FEETINGS
(Framework for Energy Efficiency Testing to Improve eNvironmental Goals of the
Software), which promotes the reliability of capture, analysis, and interpretation of
software energy consumption data.

FEETINGS is composed of three main components: an ontology to provide
precise definitions and harmonize the terminology related to software energy mea-
surement; a process to guide researchers in carrying out the energy consumption
measurements of the software, and a technological environment which allows the
capture, analysis, and interpretation of software energy consumption data.

In addition, an example of the application of FEETINGS is presented, as well as a
guide to good practice for energy efficiency of software, based on different exper-
iments carried out with this framework.

The results obtained demonstrate that FEETINGS is a consistent, valid, and
useful framework to analyze the energy efficiency of software, promoting the
accuracy of its energy consumption measurements. Therefore, FEETINGS serves
as a tool to make developers and users aware of the impact that software has on the
environment.

J. Mancebo · C. Calero (*) · F. García · M. Á. Moraga · I. G.-R. de Guzmán
Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: Javier.Mancebo@uclm.es; Coral.Calero@uclm.es; Felix.Garcia@uclm.es;
MariaAngeles.Moraga@uclm.es; Ignacio.GRodriguez@uclm.es

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_4&domain=pdf
mailto:Javier.Mancebo@uclm.es
mailto:Coral.Calero@uclm.es
mailto:Felix.Garcia@uclm.es
mailto:MariaAngeles.Moraga@uclm.es
mailto:Ignacio.GRodriguez@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_4#DOI

4.1 Introduction

Tablets, computers, smartphones, smartwatches, and a multitude of technological
devices have invaded our daily lives. All of these devices require energy to operate,
which has led to a huge annual growth in energy consumption. According to recent
studies, energy used for global information and communications technology (ICT)
could exceed 20% of total energy, and emit up to 5.5% of the world’s carbon
emissions by 2025 [1, 2]. These data on the growth of energy consumption and
global emissions have raised issues of great concern for both software professionals
and users.

Although hardware is generally seen as the main culprit for ICT energy usage,
software also has a tremendous impact on the energy consumed [3]. Unfortunately,
to date, little attention has been given to this topic by the information and commu-
nications technology (ICT) community [4]. However, in recent years, trends such as
“Green Software” have gained importance [5]. The purpose of green software is to
promote improvements in the energy efficiency of software, minimizing the impact it
may have on the environment [6, 7].

To improve the energy efficiency of software, it is first necessary to raise energy
awareness among all stakeholders [4]. On the one hand, developers must be aware of
the energy that the software consumes when used, so that they can develop more
energy-efficient and environmentally friendly software. And software professionals
in general must treat energy efficiency as a quality attribute of the software, in the
same way that usability or security is treated [8–10].

On the other hand, awareness also needs to be raised among end users as to how
much energy is required by the software they use on a daily basis, so that they are
aware of the impact that software can have on the environment [4]. Ideally, end users
could compare the software applications that meet their needs, and choose the option
that consumes the least energy, and should also know how a given software
application can be used in a more efficient manner from the point of view of energy
consumption.

In order to raise awareness among stakeholders or to develop a sustainable and
environmentally friendly software product, it is first necessary to know the energy
consumption induced by the software when it is running, since if the energy
consumption is not measured, it cannot be managed [11, 12]. As the European
Union report indicates [13], “the existence of a methodology for measuring the
energy or CO2 of the ICT infrastructure is extremely important for this sector, as it
will allow the development of much more robust estimates of the impact of ICT.”

However, there is currently a lack of both knowledge and tools to reliably and
accurately analyze software energy consumption [5]. We consider that in this regard
one can identify three main problems:

• Several inconsistencies and terminological conflicts appear [14] due to the fact
that researchers have defined their methods of work using their own terms or
concepts, provoking numerous examples of both synonymy (same concepts with
different term associated) and homonymy (different concepts with the same

70 J. Mancebo et al.

term). This lack of formal consensus makes it difficult to understand the main
concepts involved when performing a software energy consumption assessment.

• There is a lack of a generally-agreed-on methodology that would guide software
energy consumption assessments. This implies that the rigor of the studies carried
out cannot be guaranteed, meaning that it is more complicated to replicate or
compare the results obtained [15].

• Several measuring instruments are available for the analysis of software energy
consumption. It is important to note that each measurement instrument has its
own particular characteristics, and that it is necessary to choose the one that best
adapts to the particular evaluation requirements concerned [16].

To contribute to the mitigation of these problems, and to be able to raise energy
awareness among all stakeholders, we have developed a framework to promote the
reliability of capture, analysis, and interpretation of software energy consumption
data, known as “FEETINGS” (Framework for Energy Efficiency Testing to Improve
eNvironmental Goals of the Software). FEETINGS aims to provide: (1) a solution to
the lack of a unique and agreed terminology; (2) a process that helps researchers to
evaluate the energy efficiency of the software, allowing greater control over the
measurements made, thereby ensuring their reliability and consistency; and (3) a
technological environment that supports the process and allows for realistic mea-
surements of the energy consumed by the software and its subsequent analysis.

In this chapter, we present FEETINGS and an example of how to use it, so as to
guide end users. The contents of the chapter are structured as follows. First, we
present the different studies and proposals that have served as a basis for our
framework. Then, in Sect. 4.2, we present the FEETINGS framework, detailing
each of its components. In Sect. 4.3, an example of the application of FEETINGS is
presented. In Sect. 4.4, a best practice guideline for software energy efficiency is
proposed, based on different experiments carried out using FEETINGS. Finally,
Sect. 4.5 sets out some conclusions of this work.

4.2 FEETINGS

In this section, we will describe FEETINGS, a framework to promote more reliable
capture and analysis of software energy consumption data. This framework is made
up of three main components, classified according to their nature as conceptual,
methodological, and technological components (see Fig. 4.1), as described in the
following subsections.

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 71

4.2.1 Conceptual Component

As commented upon in the introduction, one of the common problems is confusion
and inconsistencies in the main concepts used in software energy assessment. This
lack of formal consensus makes it difficult to understand the main concepts involved
when performing a software energy consumption measurement.

The conceptual part of FEETINGS seeks to solve the lack of a unique and agreed
terminology. For this purpose, an ontology has been elaborated which contains the
concepts related to the software energy measurement. According to Chandrasekaran
et al. [17], the unification of terms and concepts in an ontology allows knowledge to
be shared, while ontological analysis clarifies the structure of knowledge.

The ontology proposed is known as “Green Software Measurement Ontology”
(GSMO), and its purpose is to provide precise definitions of all terms related to
software energy measurement and to clarify the relationships between them, remov-
ing terminological conflicts and fostering the consistent application of the frame-
work by other researchers and practitioners with reference to a common vocabulary.
The Green Software Measurement Ontology (GSMO) is an extension of the SMO
ontology proposed by Garcia et al. [18] for green software measurement.

Figure 4.2 shows the graphical representation of the terms and relationships of the
GSMO, using UML (Unified Modeling Language). The highlighted concepts are the
new concepts which extend/adapt the SMO [18].

The conceptual component (GSMO ontology) aims to solve the problem of
terminology consistency in software energy measurement, since it proposes a com-
mon vocabulary extracted from several international standards and research pro-
posals. More details about the GSMO ontology can be found at [19].

Fig. 4.1 Overview of
FEETINGS

72 J. Mancebo et al.

1.
.*

is
 a

ss
oc

ia
te

d
w

ith

1

In
fo

rm
at

io
n

N
ee

d

re
la

te
s

1.
.*

M
ea

su
ra

bl
e

C
on

ce
pt

A
tt

ri
bu

te1.
.*

ha
s

1

So
ft

w
ar

e
E

nt
ity

 C
la

ss

be
lo

ng
s

to

ha
s

1

So
ft

w
ar

e
E

nt
ity

1.
.*

1.
.*

is
 ru

n
on

1.
.*

1

Te
st

 C
as

e
1.

.*

Is
 p

er
fo

rm
ed

 fr
om 1

1

1

1ha
s

1.
.*

Te
st

 C
as

e
M

ea
su

re
m

en
t

ha
s

1

1.
.*

 M
ea

su
re

m
en

t is
 p

er
fo

rm
ed

 o
n

*

1.
.* *

us
es

*
1

 S
am

pl
es

de
fin

ed
 fo

r

1.
.*

0.
.*

ex
pr

es
se

d
 in

1.
.*

0.
.1

ha
s

1
1.

.*

M
ea

su
re

U
ni

t o
f M

ea
su

re
m

en
t

is
 o

bt
ai

ne
d

fro
m

1.
.*

1

B
as

e
M

ea
su

re
D

er
iv

ed
 M

ea
su

re

is
 c

on
ne

ct
ed

 to

1

1

M
ea

su
ri

ng
 In

st
ru

m
en

t

us
es

0.
.*

0.
.*

ca
lc

ul
at

ed
 w

ith

0.
.*

0.
.*

0.
.*

us
es

0.
.*

M
ea

su
re

m
en

t F
un

ct
io

n

M
ea

su
re

m
en

t A
pp

ro
ac

h
D

U
T

be
lo

ng
 to

1
1.

.*
1

Sc
al

e
Ty

pe
 o

f S
ca

le

us
es

1.
.*

1.
.*

1.
.*

us
es

0.
.*

A
na

ly
si

s M
od

el

A
na

ly
si

s M
od

el

ca
lc

ul
at

ed
 w

ith

1.
.*

1

sa
tis

fie
s

0.
.*

1.
.*

In
di

ca
to

r

F
ig
.4

.2
U
M
L
di
ag
ra
m

of
th
e
G
S
M
O

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 73

This ontology has, moreover, served as a basis for the development of the
methodological component of FEETINGS, which is presented in the following
subsection.

4.2.2 Methodological Component

The methodological component consists in a process for measuring and analyzing
the energy efficiency of the software. This process is known as the “Green Software
Measurement Process” (GSMP). Its purpose is to guide researchers and practitioners
as they seek to carry out measurements of software energy consumption. The GSMP
ensures greater control over the measurements made, improving their reliability,
consistency, and coherence. It also ensures that the results obtained are comparable
with other studies and facilitates the replicability of the analyses performed.

To define the GSMP, we have followed the method engineering approach [20],
and we have also taken as our basis well-known approaches to software measure-
ment and good practices related to green software that have been proposed by other
authors.

The process consists of seven phases, which are summarized below:

• Phase I. Scope Definition: In this phase, a complete specification of requirements
for the evaluation of energy efficiency is obtained. In addition, the software which
is to be the subject of the study and the test cases to be analyzed must be defined.

• Phase II. Measurement Environment Settings: The purpose of this phase is the
definition of the measurement environment that is to be used in the software
energy consumption assessment. As a result of this phase, the measuring instru-
ment, its measurements, and the specifications of the Device Under Test (DUT)
are defined and the baseline energy consumption of the DUT is obtained.

• Phase III. Measurement Environment Preparation: This phase focuses on the
preparation of the energy consumption measurements to be performed and on the
configuration of the measurement environment.

• Phase IV. Measurements Performance: During this phase, energy consumption
measurements are carried out and raw energy consumption data taken from the
measuring instrument is collected.

• Phase V. Test Case Data Analysis: The raw data of energy consumption obtained
by the measuring instrument is processed, and the statistical analysis of the values
obtained from the measurements of the defined test cases is carried out.

• Phase VI. Software Entity Data Analysis: In this phase, with the results obtained
from the previous phases, the amount of energy consumed when the software
entity was executed in the DUT is determined and interpreted, and some conclu-
sions about the software energy consumption are stated.

• Phase VII. Reporting the Results: Finally, the study carried out is documented,
describing the entire process followed, and setting out the results obtained on the
energy consumption of the software.

74 J. Mancebo et al.

In the previous chapter (Chap. 3) of this book, a more detailed and complete
version of the GSMP is presented, including a description of the roles, phases, and
activities (input, output, and guidelines).

4.2.3 Technological Component

In this section, the technological environment is presented. The main objective of the
technological component of the FEETINGS framework is to perform more realistic
measurements of the energy consumed by the software, and to use these results to

• Analyze the consumption of the software
• Learn about the behavior of the software and its different versions, to find out if

these versions worsen the software energy consumption or not
• Identify the consumption patterns that can guide the improvement of the energy

efficiency of software applications
• Recommend changes to software to improve energy efficiency

The technological component, as can be seen in Fig. 4.3, is composed of two
artifacts: EET (Energy Efficiency Tester) and ELLIOT.

4.2.3.1 EET (Energy Efficiency Tester)

EET [21, 22] is a measuring instrument that enables the accurate capture of the
energy consumption of the computer (DUT) on which the software is running. In
addition to the total energy consumption of the DUT, this measuring instrument
supports the measurement of four different hardware components: processor, hard
disk, graphic card, and monitor. Figure 4.4 shows the EET measuring instrument in
working use.

As can be seen in Fig. 4.4, the EET is connected to the DUT where the software is
executed, and is composed of three main components:

• A system microcontroller, whose task is to gather the information extracted from
the different sensors and store it in a MicroSD memory. It also allows the
frequency with which the device performs the measurements to be adjusted.

• A set of sensors, which are responsible for taking energy consumption measure-
ments of the hardware components (processor, hard disk, graphics card, and
monitor) of the DUT connected to the EET.

• A power supply, which must be connected to the device under test where the
software is executed, replacing the power supply of the DUT; the sensors are
connected to the energy distribution lines from the power supply to the different
hardware components.

In a nutshell, EET is a measuring instrument, which is considered a core compo-
nent of FEETINGS. It allows us to capture and record the energy efficiency of

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 75

Software
to measure

Fig. 4.3 Artifacts of the technological component of FEETINGS

Fig. 4.4 EET measuring instrument

76 J. Mancebo et al.

software when it is running. EET provides a realistic measurement of energy
consumption and, moreover, is capable of obtaining detailed energy measurements
from different components of the DUT (processor, graphic card, hard disk, and
monitor). Another advantage of this measuring instrument is its sampling frequency,
around 100 Hz, which provides very reliable consumption information.

As the EET produces a huge amount of data on energy consumption, it is
necessary to support the processing and analysis of these data with a suitable
software tool. For this reason, the ELLIOT tool was developed, which is described
in the following section.

4.2.3.2 ELLIOT

ELLIOT [19] is a software tool tasked with processing the data collected by the EET,
analyzing these data, and providing a visual environment that allows researchers to
process the software energy consumption data. Furthermore, the ELLIOT tool is
aligned with the GSMP described in the previous section.

The main functionalities supported by ELLIOT are outlined below:

• Processes all measurements carried out with the EET measuring instrument.
• Calculates different statistical variables of the energy consumption measurements

according to the user’s needs.
• Identifies possible outliers that may be present in the measurement samples, using

robust parametric methods such as median absolute deviations from the median
(MADN).

• Visualizes the results through graphs and data tables which contain information
on the measurements of the energy consumption of the software.

• Compares the results obtained from the different energy consumption
measurements.

• Generates reports that include all the information on the energy efficiency of the
software analyzed.

The ELLIOT tool is composed of four modules (see Fig. 4.5) that support these
functionalities. The modules are: (1) user management, which allows one to manage
the permissions and roles of ELLIOT users; (2) system management, to add and
modify information about the instruments and the DUT in which the measurements
are carried out; (3) measurement management, which is the central module of
ELLIOT since it supports all the tasks of processing, data wrangling, measurements
analysis, and visualization of the energy consumption information; and (4) report
management, which generates reports and allows comparisons between the
measurements.

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 77

4.3 Application of FEETINGS: A Case Study of the Energy
Consumed by Translators

This section presents an application of the FEETINGS framework to measure and
analyze software energy consumption, as defined in the previous section. One of the
most widely used software applications today is online translation, which includes,
additionally, several options for automatic text translation, such as Google translate
and DeepL.

In this study, our aim is to analyze the energy consumption of the main online
translation tools in order to raise users’ awareness of the environmental impact of
their use, and also to try to provide them with a set of guidelines so that, when they
use these tools, such use is as efficient as possible.

Following the GSMP, Phase I defines the scope of the study. As mentioned
above, this study aims to determine the energy consumption of the main online
translators (Software Entity Class). The chosen translators (Software Entity) were
Google Translate, DeepL, Bing Translator, Tradukka, Systran Translate, and
Yandex. To evaluate the selected software entities, five test cases were defined:

• Translate a text with 10 characters.
• Translate a text with 100 characters.
• Translate a text with 1000 characters.
• Translate a text with 3000 characters.
• Translate a text with 5000 characters.

All defined test cases were executed in two different browsers (Google Chrome
and Firefox). Thus, we can also study the efficiency of the browser in which each of
the translators is used.

In the second phase of the process, we selected the FEETINGS technological
environment to analyze the energy consumption, choosing the EET as the measuring
instrument and ELLIOT to analyze and process the energy consumption data. The

Fig. 4.5 ELLIOT tool modules

78 J. Mancebo et al.

specification of the DUT in which the test cases were executed was also defined. For
this study, we decided that from the measurements provided by the EET, we would
take into account only the energy measurements of the monitor and the total
consumption of the DUT. We have not recovered and analyzed data from the hard
disk, graphics card, or processor because, as all the translators were executed in a
web browser, the use of these components was minimal.

In accordance with the third phase of the process, we determined that each of the
test cases was to be run and measured (with EET) 35 times. Being a controlled test
environment, 35 measurements is usually a sufficient sample size to mitigate the
impact of outliers (such as energy consumption devoted to operating system tasks).

Figure 4.6 shows the instantiation of the concepts of this study, defined in the
GSMO ontology for this study, which also serves as a summary of the outputs
obtained in the first phases of the GSMP.

Tables 4.1 and 4.2 show the energy consumed once the measurement and analysis
tasks have been performed, by the DUT and the monitor respectively, in the
execution of each of the defined test cases.

Fig. 4.6 GSMO instantiation

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 79

To analyze the data in the above tables, we will study the test cases executed in
each of the browsers independently, and then compare the results obtained in both
browsers.

First, focusing on the test cases executed in Firefox, in Fig. 4.7, we can observe
that for translating texts of intermediate size (between 100 and 3000 characters) the
option that requires the least energy consumption in the DUT is the Bing translator.
However, Bing is the worst option for very small texts (around 10 characters), with
Tradukka being the most efficient option in this case. For large texts (5000 charac-
ters) Google Translate is the best option. The consumption data results obtained from
the monitor are very similar to those obtained from the DUT. The Yandex and
Systran translators are the worst choice in almost every test case.

Analyzing the consumption data of the tests executed in Google Chrome, we can
see in Fig. 4.8 that the energy consumption of the translators behaves in a similar
way as in Firefox. In this case, Bing is also the best choice for intermediate-length
text. But unlike the results obtained in Firefox, the Tradukka translator is the least
efficient option for small texts (fewer than 100 characters).

Table 4.1 DUT energy consumption for each test case

Test cases

DUT energy consumption (Watts per second)

DeepL Bing Google Tradukka Systran Yandex

10 char. Firefox 46.12 64.65 46.21 41.56 61.09 45.11

Chrome 50.77 53.07 45.09 61.07 40.27 43.26

100 char. Firefox 53.43 40.20 76.23 44.47 64.03 53.61

Chrome 46.23 25.69 38.66 50.22 47.61 43.96

1000 char. Firefox 57.34 39.83 52.25 54.12 59.72 66.52

Chrome 48.91 28.99 45.42 32.57 40.67 51.37

3000 char. Firefox 56.38 45.46 47.36 70.64 95.20 62.72

Chrome 41.91 37.75 44.19 39.47 50.18 58.04

5000 char. Firefox 67.31 57.62 49.45 62.98 77.29 66.56

Chrome 51.77 52.53 45.30 41.53 56.05 69.93

Table 4.2 Monitor energy consumption for each test case

Test cases

Monitor energy consumption (Watts per second)

DeepL Bing Google Tradukka Systran Yandex

10 char. Firefox 63.06 70.40 65.54 53.27 65.50 60.14

Chrome 66.88 56.41 63.92 68.34 57.62 59.96

100 char. Firefox 75.83 58.51 62.28 61.07 64.77 70.15

Chrome 61.23 50.64 59.34 57.48 57.09 61.17

1000 char. Firefox 56.93 59.02 63.59 66.67 58.30 87.79

Chrome 57.82 49.66 69.96 58.42 56.31 63.01

3000 char. Firefox 56.61 54.90 67.10 52.87 73.70 72.07

Chrome 53.35 52.97 66.95 56.43 60.38 64.14

5000 char. Firefox 65.83 60.19 64.97 68.88 69.92 70.62

Chrome 61.98 63.34 66.58 57.24 63.31 77.27

80 J. Mancebo et al.

F
ig
.4

.7
D
U
T
en
er
gy

co
ns
um

pt
io
n
fo
r
ea
ch

te
st
ca
se

in
F
ir
ef
ox

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 81

F
ig
.4

.8
D
U
T
en
er
gy

co
ns
um

pt
io
n
fo
r
ea
ch

te
st
ca
se

in
C
hr
om

e

82 J. Mancebo et al.

To determine in which browser (Firefox or Chrome) it is better to use the trans-
lators, we have calculated the average power consumption of the executed test cases.
As shown in Fig. 4.9, all the translators analyzed have a lower DUT power
consumption in the Chrome browser than in Firefox. Regarding the monitor’s
energy consumption, the results are similar to those of the DUT, although here the
variation between browsers is less.

Considering the results obtained, the main conclusions that we can draw from this
study are as follows:

• The most energy-efficient scenario is to use the Tradukka translator with the
Google Chrome browser for texts of an intermediate length (1000 characters),
resulting in a consumption of 32.56 Ws.

• The most inefficient option (95.19 Ws) is to use the Systran translator in the
Firefox browser for large texts (3000 characters).

• All translators show a direct relationship when translating texts of more than 1000
characters, in which case an increase in the number of characters also increases
energy consumption.

• It is more efficient to use the Google Chrome browser to translate than Firefox.

4.4 Best Practices Guideline on Software Sustainability

As explained in the introduction, FEETINGS can be used for several purposes. One
of the main objectives of FEETINGS is to measure software energy efficiency so that
researchers and software professionals can develop software that is environmentally
friendly. Another purpose is focused on the other key perspective in software: the

Fig. 4.9 Comparison of the mean energy consumption by the DUT

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 83

end user. This framework can help to make society aware of the responsible use of
software applications, so as to take care of the environment.

Keeping both perspectives in mind, this section presents some guidelines, based
on several studies we have conducted, to make software more sustainable, in both its
development and use.

First, we present the main findings that can be useful for researchers and practi-
tioners wishing to develop software that is more energy-efficient:

• In the study presented in [23], it was concluded that the most efficient classifica-
tion algorithm, in terms of energy, is the Quicksort, followed by the Bubble sort.
In contrast, the most energy-demanding is the Insertion sorting algorithm.

• For the Redmine software [24], after analyzing different versions and the rela-
tionship between its energy consumption and maintenance measures, we can
conclude that the Total Lines of Code (TLOC) maintainability measurement
affects the energy consumption of the processor and the DUT.

• The study presented in [25] shows that text compression, using End-Tagged
Dense Code (ETDC) or Tagged Huffman algorithms, not only reduces search
space and time, but also leads to lower energy consumption. In addition, the use
of search algorithms in compressed text, such as the Horspool algorithm, when
run on compressed data, also requires less CPU power than when run over
uncompressed data.

• In [26], recommendations were made to improve the energy efficiency of appli-
cations. The best practices in energy-efficient computing drawn from this study
are summarized below:

– A balance should be struck between the energy efficiency of the graphical user
interface and a good experience from the user’s perspective.

– Efficient UIs should be designed to allow a task to be completed quickly and
easily.

– Data redundancy should be reduced.
– Devices when not in use should be powered down by batch I/O.

• We have worked on the comparison of the time and energy consumption required
by three releases of the same application, developed with and without Spring. In
conclusion, it seems that products developed without using Spring are better in all
the conditions and for all the measures. This could indicate that, although Spring
has some advantages for programmers, once the product starts to run, this
advantage disappears to the benefit of the non-Spring development.

Second, we present the following set of guidelines to help end users make use of
the software in a more environmentally friendly way:

• To publish a tweet or a post on Facebook, you should consider that the most
energy-efficient option is to publish a single emoji or a picture. Furthermore, if
you want to be respectful of the environment, you should avoid publishing a GIF,
since it is the option that consumes the most energy [19].

84 J. Mancebo et al.

• The most energy-efficient personal health record (PHR) is the
NoMoreClipboard [26].

• As regards navigating the internet: if you are looking for browsers which are
environmentally friendly, choose Edge or Firefox; if you are looking for maxi-
mum privacy and energy efficiency use the DuckDuckGo search engine, espe-
cially when used with Edge and Firefox; if you are looking for lower emissions in
your searches use the Ecosia search engine; and if in any event you do wish to use
Chrome as your browser, then do so with DuckDuckGo.

4.5 Conclusions

Software plays an important role in the global energy consumption of a PC. For this
reason, it is very important that both professionals and users be aware that the use of
software has a great impact on the energy consumed by the devices on which it is
executed.

In order to raise awareness of energy consumption among stakeholders, it is
necessary to quantify its impact. Bearing this in mind, this chapter has presented the
FEETINGS framework, which aims to promote reliable measurement, analysis and
interpretation of software energy consumption data. FEETINGS is composed of
three main components: (1) a GSMO ontology, to provide precise definitions of all
concepts and their relationships related to software energy measurement; (2) a
GSMP, to guide researchers in carrying out the energy consumption measurements
of the software; and (3) a technological component, which is composed of two
artifacts: EET, a measuring instrument, and the software tool ELLIOT to process and
analyze data collected by the EET.

Thus, the use of FEETINGS serves two purposes. The first is to enable
researchers and professionals to measure and make them aware of the energy that
the software they develop consumes when in use, and thus be able to develop more
energy-efficient software. The second is to show end users just how much energy is
required by the software we use every day, and to make them aware of the impact
that software can have on the environment.

In this work, we have also demonstrated an application of the FEETINGS
framework to analyze the energy consumption involved in the use of different online
translators. In addition, we have presented a set of best practice guides on sustainable
software design based on our experience using the FEETINGS framework.

References

1. Andrae A (2019) Prediction studies of electricity use of global computing in 2030. Int J Sci Eng
Invest 8:27–33

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 85

2. Vidal J (2017) Tsunami of data’could consume one fifth of global electricity by 2025. Climate
Home News 11

3. Pereira R, Carção T, Couto M, Cunha J, Fernandes JP, Saraiva J (2020) Spelling out energy
leaks: aiding developers locate energy inefficient code. J Syst Softw 161:110463

4. Fonseca A, Kazman R, Lago P (2019) A manifesto for energy-aware software. IEEE Softw 36
(6):79–82

5. Pinto G, Castor F (2017) Energy efficiency: a new concern for application software developers.
Commun ACM 60(12):68–75

6. Calero C, Piattini M (2015) Introduction to green in software engineering. In: Green in software
engineering. Springer, pp 3–27

7. Calero C, Piattini M (2017) Puzzling out software sustainability. Sustain Comput Informatics
Syst 16:117–124

8. Calero C, Moraga MÁ, Bertoa MF, Duboc L (2014) Quality in use and software greenability.
In: RE4SuSy@ RE. pp 28–36

9. Condori-Fernandez N, Lago P (2018) Characterizing the contribution of quality requirements to
software sustainability. J Syst Softw 137:289–305

10. Penzenstadler B, Raturi A, Richardson D, Tomlinson B (2014) Safety, security, now sustain-
ability: the nonfunctional requirement for the 21st century. IEEE Softw 31(3):40–47

11. Briand LC, Morasca S, Basili VR (1996) Property-based software engineering measurement.
IEEE Trans Softw Eng 22(1):68–86

12. Moraga MÁ, Bertoa MF (2015) Green software measurement. In: Green in software engineer-
ing. Springer, pp 261–282

13. European Union (2011) The contribution of ICT to Energy Efficiency: local and regional
initiatives

14. Pinto G, Castor F, Liu YD (2014) Understanding energy behaviors of thread management
constructs. In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, pp 345–360

15. Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC Press
16. Moura I, Pinto G, Ebert F, Castor F (2015) Mining energy-aware commits. In: IEEE/ACM 12th

Working Conference on Mining Software Repositories. IEEE, pp 56–67
17. Chandrasekaran B, Josephson JR, Benjamins VR (1999) What are ontologies, and why do we

need them? IEEE Intell Syst Their Applications 14(1):20–26
18. García F, Bertoa MF, Calero C, Vallecillo A, Ruiz F, Piattini M, Genero M (2006) Towards a

consistent terminology for software measurement. Inf Softw Technol 48(8):631–644
19. Mancebo J, Calero C, García F, Moraga MÁ, García-Rodríguez De Guzmán I (2020)

FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental Goal of
the Software. Paper presented at the The Eleventh International GREEN and Sustainable
Computing (under review)

20. Henderson-Sellers B (2003) Method engineering for OO systems development. Commun ACM
46(10):73–78

21. Mancebo J, Arriaga HO, García F, Moraga MÁ, de Guzmán IG-R, Calero C (2018) EET: a
device to support the measurement of software consumption. In: Proceedings of the 6th
International Workshop on Green and Sustainable Software, pp 16–22

22. Piattini M, Calero C, García F, Moraga MÁ, de Guzmán IGR, Mancebo J, Arriaga HO, Tabaco
R (2018) Aparato para medición del consumo eléctrico de equipos informáticos (PC). ES
1199234 Y

86 J. Mancebo et al.

23. Mancebo J, Guldner A, Kern E, Kesseler P, Kreten S, Garcia F, Calero C, Naumann S (2020)
Assessing the sustainability of software products—a method comparison. In: Advances and
new trends in environmental informatics. Springer, pp 1–15

24. Mancebo J, Calero C, García F (2021) Does maintainability relate to the energy consumption of
software? A case study. Softw Qual J 29(1):101–127

25. Mancebo J, Calero C, Garcia F, Brisaboa N, Fariña A, Pedreira O (2019) Saving energy in text
search using compression. Paper presented at the GREEN 2019: The Fourth International
Conference on Green Communications, Computing and Technologies, Nice, France

26. García-Berná JA, Fernández-Alemán JL, Carrillo-de-Gea JM, Toval A, Mancebo J, Calero C,
García F (2020) Energy efficiency in software: a case study on sustainability in Personal Health
Records. J Clean Prod

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 87

Chapter 5
Patterns and Energy Consumption: Design,
Implementation, Studies, and Stories

Daniel Feitosa, Luís Cruz, Rui Abreu, João Paulo Fernandes, Marco Couto,
and João Saraiva

Abstract Software patterns are well known to both researchers and practitioners.
They emerge from the need to tackle problems that become ever more common in
development activities. Thus, it is not surprising that patterns have also been
explored as a means to address issues related to energy consumption. In this chapter,
we discuss patterns at code and design level and address energy efficiency not only
as the main concern of patterns but also as a side effect of patterns that were not
originally intended to deal with this problem. We first elaborate on state-of-the-art
energy-oriented and general-purpose patterns. Next, we present cases of how pat-
terns appear naturally as part of decisions made in industrial projects. By looking at
the two levels of abstraction, we identify recurrent issues and solutions. In addition,
we illustrate how patterns take part in a network of interconnected components and
address energetic concerns. The reporting and cases discussed in this chapter
emphasize the importance of being aware of energy-efficient strategies to make
informed decisions, especially when developing sustainable software systems.

D. Feitosa (*)
University of Groningen, Groningen, The Netherlands
e-mail: d.feitosa@rug.nl

L. Cruz
Delft University of Technology, Delft, The Netherlands
e-mail: l.cruz@tudelft.nl

R. Abreu
Faculty of Engineering, University of Porto & INESC-ID, Porto, Portugal
e-mail: rui@computer.org

J. P. Fernandes
CISUC and University of Coimbra, Coimbra, Portugal
e-mail: jpf@dei.uc.pt

M. Couto · J. Saraiva
HASLab/INESC TEC and University of Minho, Braga, Portugal
e-mail: marco.l.couto@inesctec.pt; jas@di.uminho.pt

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_5&domain=pdf
mailto:d.feitosa@rug.nl
mailto:l.cruz@tudelft.nl
mailto:rui@computer.org
mailto:jpf@dei.uc.pt
mailto:marco.l.couto@inesctec.pt
mailto:jas@di.uminho.pt
https://doi.org/10.1007/978-3-030-69970-3_5#DOI

5.1 Introduction

The existence of patterns cannot be dissociated from our daily life. We may reason
about patterns as concrete observations that are grouped into coherent categories.
Patterns help us understand and describe our world. As an example, the evolutionary
theory proposed by Charles Darwin was synthesized based on his understanding of
patterns emerging from the observations he conducted during his voyage. Patterns
can also be found in music, and in this context it has been shown that only a few
musical notes sustain the essential melody of landmark music pieces.

Patterns are also well known to both researchers and practitioners in the software
development world. In between the various definitions and types of patterns, there is
a common understanding that they encapsulate solutions to recurrent problems
[1]. A collection of recurrent problems that have become ever more apparent
involves energy efficiency, as the growing energy demand associated with ICT
usage is already a concern [2]. Notably, energy consumption is an issue with data/
computation centers and their massive energy footprint [3], and, nowadays, the
ubiquitous use of battery-powered devices such as smartphones [4].

Within ICT, energy consumption is an issue that needs to be addressed not only at
hardware and firmware level, but also at the software, or application, level. Indeed,
energy efficiency is a multifaceted problem, which encompasses networks, hard-
ware, drivers, operating systems, and applications. In this chapter, we focus on
applications and address the problems as systems of forces that can be fully or
partially addressed by patterns [1]. In this context, software optimizations have been
discussed at source code, design, and architecture level, from which we focus on the
first two.

At the code level, we find solutions that are platform-specific and also commonly
language-specific, which benefit from being more straightforward to apply. As the
scopes open up, design patterns can be language-agnostic and generalizable to a
broader range of software domains.

In this chapter, we aim to demonstrate how patterns with various scopes can help
build energy-efficient software. Moreover, we discuss patterns that address energy
consumption as the main concern (i.e., energy patterns), and patterns that were not
initially intended to serve that purpose but have an energy-related side effect. To that
end, the subject matter is organized as depicted in Fig. 5.1. In particular, we present
energy-oriented code patterns in Sect. 5.2, move on to energy-oriented design
patterns in Sect. 5.3, and elaborate the impact of general purpose design patterns
on energy efficiency in Sect. 5.4.

Finally, we also illustrate how patterns appear naturally as part of decisions made
in industrial projects. Thus, in Sect. 5.5 we present cases from open source projects
where energy efficiency issues were factored in and a pattern was applied as part of
the solution.

90 D. Feitosa et al.

5.2 Code-Level Patterns

In this section, we focus on code-level patterns that have been shown to exhibit
greedy energy consumption behaviors. Identifying patterns at the code level facili-
tates their transformation into more efficient alternatives, an approach that is widely
known as refactoring. The potential of code refactorings is maximized when it is
possible to automatically realize them, namely using tools that locate code fragments
that can be improved and replacing them with the documented alternatives.

The patterns we consider in this section are specific to mobile application
development. Mobile devices are these days an essential component of our daily
lives, to support both our personal and professional activities. In this context, battery
life is one of the principal factors that influence the satisfaction of mobile device
users [5], and a recent survey in the US ranked battery life as the most important
factor influencing purchasing decisions [6]. Battery life is such a concern that it has
been suggested that nine out of ten users suffer from anxiety when their devices are
low on battery [7], and this anxiety is under discussion within the Diagnostic and
Statistical Manual of Mental Disorders as a potential clinical condition named
nomophobia, which reflects the fear of not being able to use one’s mobile phone [8].

The perception that an application causes excessive battery consumption is
actually one of the most common causes for bad app reviews in app stores
[9, 10]. This has raised the awareness of mobile application developers regarding
the impact their applications have on battery life. In fact, while it has been shown that
developers often seek information on how to improve the energy profile of their
applications, they rarely receive proper advice [11–13].

Our focus is on code patterns reported as energy greedy within Android. We will
refer to these patterns as EGAPs—Energy-Greedy Android Patterns. We synthesize
contributions from several works that have documented and validated energy-
oriented code refactorings. Specifically, we focus on energy-greedy patterns that

Fig. 5.1 Types of pattern
solution addressed in the
chapter

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 91

have been automatically refactored in a large-scale empirical study involving 600+
applications [14]. We describe each pattern using the template shown next.1

Field Description

Problem A recurrent energy efficiency problem where the pattern can be used.

Solution Generic and reusable solution to the problem.

Example An illustration of a practical usage of the energy pattern.

The problem and solution for each pattern are tentatively provided by high-level
descriptions that we believe can be understood by a broad audience of users and
developers. Complementarily, we provide concrete instances of each pattern as snip-
pets whose interpretation is specially oriented toward Android application developers.

5.2.1 Patterns

Below we describe each type of pattern that we considered in [14].

Pattern: Draw Allocation

This pattern is detected by Android lint,2 and is the first of five EGAPs whose
energy impact analysis was included in [15, 16].

Problem Draw Allocation occurs when new objects are allocated along with draw
operations, which are very sensitive to performance. In other words, it is a bad design
practice to create objects inside the onDrawmethod of a class which extends a View
Android component.

Solution The recommended alternative for this EGAP is to move the allocation of
independent objects outside the method, turning it into a static variable.

Example The code snippet to the left should be transformed to the one on the right.

1When the practical usage is obvious, we will exclude the illustrative example.
2Lint is a code analysis tool, provided by the Android SDK, which reports upon finding issues
related to the code structural quality.

92 D. Feitosa et al.

Pattern: Wakelock

Wakelock is the second Android lint performance issue [15–18].

Problem Wakelock occurs whenever a wakelock, a mechanism to control the
power state of the device and prevent the screen from turning off, is not properly
released, or is used when it is not necessary.

Solution The alternative here would be to simply add a release instruction.

Example The code snippet to the left should be transformed to the one on the right.

There exist other types of wakelocks for resources such as Sensor, Camera, and
Media. They differ from the Screen only in the mechanism used to release the lock.

Pattern: Recycle

Recycle is another Android lint performance issue [15, 16].

Problem Recycle is detected when some collections or database-related objects,
such as TypedArrays orCursors, are not recycled or closed after being used. When
this happens, other objects of the same type cannot efficiently use the same
resources.

Solution The alternative in this case would be to include a close method call before
the method’s return.

Example The code snippet to the left should be refactored to the one on the right.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 93

Pattern: Obsolete Layout Parameter

The fourth Android lint performance issue, Obsolete Layout Parameter, is the
only one that is not Java-related [15, 16].

Problem The view layouts in Android are specified using XML, and they tend to
suffer several updates. As a consequence, some parameters that have no effect in the
view may still remain in the code, which causes excessive processing at runtime.

Solution The alternative is to parse the XML syntax tree and remove these useless
parameters.

Example The next snippet shows an example of a view component with parameters
that can be removed.

<TextView android:id="@+id/centertext"
android:layout_width="wrap_content" android:

layout_height="wrap_content"
android:text="remote files"

✕layout_centerVertical="true" ✕layout_alignParentRight="true" >
</TextView >

Pattern: View Holder

View Holder is the last Android lint performance issue [15, 16], whose alterna-
tive intends to make a smoother scroll in List Views.

Problem The process of drawing all items in a List View is costly, since they need
to be drawn separately.

Solution To reuse data from already drawn items, therefore reducing the number of
calls to findViewById(), known to be energy greedy [19].

Example Every time getView() is called, the system searches on all the view
components for both the TextView with the id “label” (➊) and the ImageView with
the id “logo” (➋), using the energy-greedy method findViewById(). The alternative
version is to cache the desired view components, with the following approach:

public View getView(int p, View v, ViewGroup par) {
LayoutInflater inflater = ...

v = inflater.inflate(R.layout.apps , par, false);
TextView txt=(TextView) v.findViewById(R.id.label); ➊
ImageView img=(ImageView) v.findViewById(R.id.logo); ➋
return row;
}

94 D. Feitosa et al.

static class HolderItem {
TextView txtView; ImageView imgView;

}
public View getView(int p, View v, ViewGroup par) {
HolderItem hld; LayoutInflater inflater = ...

if (v == null) { ➌
v = inflater.inflate(...); hld = new HolderItem();
hld.txtView = (TextView) v.findViewById (...); ➍
hld.imgView = (ImageView) v.findViewById (...); ➎
v.setTag(hld);
} else { hld = (HolderItem) v.getTag(); } » ➏
TextView txt = hld.txtView; ImageView img = hld.imgView;
...
}

Condition ➌ evaluates to true only once, which means instructions ➍ and ➎
execute once, i.e., findViewById() executes twice, and its results are stored in the
ViewHolderItem instance. The following calls to getView() will use cached values
for the view components txt and img (➏).

Pattern: HashMap Usage

This EGAP is related to the usage of the HashMap collection [17, 20–22].

Problem The usage of HashMap is discouraged, since the alternative ArrayMap
is allegedly more energy efficient, without decreasing performance.3

Solution To simply replace the type HashMap, whenever used, by ArrayMap.

Pattern: Excessive Method Calls

Unnecessarily calling a method can penalize performance, since a call usually
involves pushing arguments to the call stack, storing the return value in the appro-
priate processor’s register, and cleaning the stack afterwards.

Problem Excessive Method Calls was explored by [20, 23], showing that the
energy consumption in Android applications can be decreased by removing method
calls inside loops that can be extracted from them.

Solution The alternative is to replace the method call by a variable that is declared
outside the loop, and is initialized with the return value of the method call extracted.

3As stated in the Android ArrayMap documentation: http://bit.ly/32hK0y9.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 95

http://bit.ly/32hK0y9

Example An example of an extractable method call would be one which receives
no arguments, and is accessed by an object that is not transformed in any way inside
the loop.

Pattern: Member Ignoring Method

This EGAP addresses the issue of having a non-static method inside a class, and
which could be static instead [17, 20].

Problem Having a method not declared as static, but which does not access any
class fields, does not directly invoke non-static methods, and is not an overriding
method. This causes multiple instances of the method to be created and used at
runtime, which can be avoided.

Solution Use static methods as these are stored in a memory block separated from
where objects are stored, and no matter how many class instances are created
throughout the program’s execution, only an instance of such a method will be
created and used. This mechanism helps in reducing energy consumption.

5.3 Energy Design Patterns

In the previous section, we learned about code patterns that are specific to a given
platform (i.e., Android) or paradigm (i.e., object oriented) and how they affect
energy consumption. In this section, we bring these patterns to a higher level of
abstraction: we delve into design patterns that provide reusable solutions that
generalize to any software of a given domain and that are not coupled with any
particular development framework or paradigm.

The energy patterns in this section do not give any particular advice on coding
practices. Rather, they help software engineers create energy-efficient software by
design. Nevertheless, these patterns may have a direct impact on the feature set of the
application and ultimately on the user experience.

In this particular case, we focus on energy patterns in the mobile domain. We
present a catalog of 22 energy patterns that are commonly used for mobile applica-
tions. This catalog is the result of an empirical study with more than 1700 mobile
applications [24] to document energy patterns that are commonly adopted by iOS and
Android software engineers and are expected to generalize to any mobile platform.

We describe each energy pattern with the template used in the previous section,
explaining the problem and the solution while providing an illustrative example.

96 D. Feitosa et al.

5.3.1 Patterns

Below we pinpoint different design patterns to develop energy-efficient mobile
applications.

Pattern: Dark UI Colors

Provide a dark UI color theme to save battery on devices with AMOLED4 screens
[25–28].

Problem One of the major sources of energy consumption in mobile devices comes
from the screen. Thus, mobile applications that rely on the screen for all use cases,
such as video apps or reading apps, can significantly drain the battery.

Solution Opt for dark colors when designing the UI. Smartphones typically feature
screens that are more energy efficient with dark colors. Depending on the applica-
tion, users can be given the option to choose between a light and a dark UI theme.
Alternatively, a special trigger (e.g., when battery is running low) can activate the
dark UI theme.

Example In a reading app, provide a theme with a dark background using a light
foreground color to display text. When compared to themes using light background
colors, a dark background will have a higher number of dark pixels.

Pattern: Dynamic Retry Delay

When trying to access a resource that is failing or not responding, increase the
waiting time before attempting a new access.

Problem Mobile apps often need to exchange data with different resources (e.g.,
connect to a server in the cloud). It may happen that the communication with these
resources fails and a new attempt needs to be made. However, if the resource is
temporary, the app will repeatedly try to connect to the resource with no success,
leading to unwanted energy consumption.

Solution After each failed connection, increase the waiting time before the next
attempt. A linear or exponential growth can be used for the waiting interval. Upon a
successful connection or a given change in the context (e.g., network status), the
waiting time can be set back to the original value.

4AMOLED is a display technology used in mobile devices and stands for Active Matrix Organic
Light Emitting Diodes.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 97

Example Consider the scenario in which an app with a news feed is not able to
communicate with the server to retrieve updates. The naive approach is to continu-
ously poll the server until the connection is successful—i.e., the server is available.
Instead, a dynamic retry delay can be used by, for example, adopting the Fibonacci
series5 to increase the time between sequential attempts.

Pattern: Avoid Extraneous Work

Avoid tasks in the mobile application that do not add enough value to the user
experience or whose results quickly become obsolete.

Problem Typically, mobile applications execute multiple tasks at the same time.
However, there are cases in which the results of these tasks are not immediately
presented to the user. For example, when the application is synchronizing real-time
data that does not immediately meet the information needs of the user, it may
become obsolete before the user actually accesses it.

This is even more evident when apps are running in the background. The phone
will be using resources unnecessarily to update data that will never be used.

Solution Define the minimal set of data that is presented to the users. In addition,
disable all the tasks that are not affecting the data being displayed to the user.

Example Consider a plot with a time series of real-time data that is being continuously
updated. When the user scrolls up/down, the plot might move out of the visible area of
the UI. In this case, updating the plot is a waste of energy. Drawing operations related to
updating the plot should be ceased and restarted when the plot is visible again.

Pattern: Race-to-idle

Resources or services ought to be closed as soon as possible (e.g., location
sensors, wakelocks, screen) [15, 29–31].

Problem Mobile apps resort to different resources and components that need to be
stopped after being used. After activating a given resource, it starts operating and is
ready to respond to the app’s requests. Even if the app is not making any request, the
resource will waste energy until it is properly closed.

Solution Make sure resources are inactive when they are not necessary by manually
closing them. Static analysis tools may help identify cases of resources that are not
being properly closed—e.g., Facebook Infer, Leafactor [16].

5Fibonacci series is a sequence of numbers in which each number is the sum of the two preceding
numbers (i.e., 1, 1, 2, 3, 5, 8, etc.).

98 D. Feitosa et al.

Example Wakelocks are commonly used by mobile applications to prevent phones
from entering sleep mode. Different types of wakelocks can be used; for example,
there are wakelocks specific for the screen, CPU, and so on. Always implement
event handlers that listen to the application events of the entering or leaving
background. Implement handlers for the events that are fired when the app goes to
background, and release wakelocks accordingly.

Pattern: Open Only When Necessary

Open/start resources/services immediately before they are required. This is sim-
ilar to the pattern Race-to-idle.

Problem Resources, such as location sensors or database connections, must be
activated before they are ready to use. Once a given resources is opened, it actively
consumes more energy. Thus, it should only be opened immediately before its usage.
In particular, resources should not be activated upon the creation of the view or
activity where it operates.

Solution Activate resources and services immediately before they are needed. This
will also prevent the activation of resources that are never used [29].

Example In a video call app, the camera is used to share the faces or images of the
different participants in the call. The camera should only start capturing video when
it is actually being displayed in the view to the user.6

Pattern: Push over Poll

Using push notifications is more energy efficient than actively polling for
notifications.

Problem Mobile apps typically resort to notifications to get updates from resources
(e.g., from a server). The naive approach to getting updates is by reaching the
resource and asking it for updates. The downside is that, by continuously asking a
server for updates, it might be making several requests without any update. This
leads to unnecessary energy consumption.

Solution Use push notifications to get updates. Note—for Free and Open Source
applications this is a big challenge because it requires having a cloud messaging

6A real example where the camera was being initiated too early can be found here: https://github.
com/signalapp/Signal-Android/commit/cb9f225f5962d399f48b65d5f855e11f146c bbcb (visited
on June 15, 2020).

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 99

https://github.com/signalapp/Signal-Android/commit/cb9f225f5962d399f48b65d5f855e11f146c%20bbcb
https://github.com/signalapp/Signal-Android/commit/cb9f225f5962d399f48b65d5f855e11f146c%20bbcb

server set-up. For example, in the case of Android there is no good open source
alternative to Google’s Firebase Cloud Messaging.

Example In a social network app, instead of actively reaching the server to provide
relevant notifications to the user, the app should prescribe push notifications.

Pattern: Power Save Mode

Implement an alternative execution mode in which some features are dropped to
ensure energy efficiency. In some cases, user experience is hindered.

Problem When the battery level is low, users may want to make sure they will not
lose connectivity before reaching a power station and charging their phone.

Solution Implement a power save mode that only provides the minimum function-
ality that is essential to the user. This mode can be manually activated by the user or
through power events (e.g., when battery reaches a given level) raised by the operative
system. In some cases, the mobile platform already features this out of the box—e.g.,
this is enforced in iOS for use cases using the BackgroundSync APIs.

Example Reduce update intervals, disable less important features, or disable UI
animations.

Pattern: Power Awareness

Features operate in a different way regarding the battery level or depending on
whether the device is connected to a power station.

Problem There are some features that, despite improving user experience, are not
strictly necessary for users—e.g., UI animations. Moreover, there are low-priority
operations that do not need to be executed immediately (e.g., backup data in the cloud).

Solution Adjust the feature set according to its power status. Even when the device
is being charged, the battery level may be low and it is better to wait for a higher
battery level before executing any intensive task.

Example Postpone intensive tasks, such as cloud syncing or image processing,
until the device reaches a satisfactory power level, typically above 20%.

100 D. Feitosa et al.

Pattern: Reduce Size

Minimize the size of data being transferred to the server.

Problem Mobile apps typically transfer data with servers over an internet connection.
Such operations are battery intensive and should be reduced to a minimum. There are
cases in which the size of the data can be reduced without affecting user experience.

Solution Exclusively transmit data that is strictly necessary and compression tech-
niques whenever possible.

Example Enable gzip content encoding when sending data over HTTP requests.

Pattern: WiFi over Cellular

Postpone features that require a heavy data connection until a WiFi network is
available.

Problem Mobile apps typically need to synchronize data with a server. However,
cellular data connections (e.g., 4G) tend to be energy greedy.

Solution WiFi connections are usually a more energy-efficient alternative to cellu-
lar connections [32]. These are use cases that do not require real-time sync and
should be postponed until a WiFi connection is available.

Example Consider a music stream application that allows users to play their favorite
songs and to organize them in playlists. In addition, the app allows users to play the
playlists offline—i.e., when there is no internet connection. When a new song is added to
a given offline playlist, the app waits for aWiFi connection before downloading the song.

Pattern: Suppress Logs

Avoid intensive logging as much as possible. Overusing logging leads to signif-
icant energy consumption, as found in previous work [33].

Problem Logging is commonly used to simplify debugging. However, there is a
trade-off between having the necessary information and energy efficiency that needs
to be considered.

Solution Manage logging rates to a maximum of one message per second.

Example In a mobile app that is processing real-time data, avoid logging this
behavior. If necessary, enable logging only for debugging executions.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 101

Pattern: Batch Operations

Bundle multiple operations instead of running them separately. This will avoid
putting the device into an active state many times in the same time window.

Problem Executing operations separately leads to extraneous energy consumption
related to turning a particular resource on and off—this is typically called tail energy
consumption [23, 34, 35]. Executing a task often induces tail energy consumption
related to starting and stopping resources (e.g., starting a cellular connection).

Solution Combine multiple operations in a single one to optimize tail energy
consumption. Although background tasks can be expensive, very often they have
flexible time constraints. For example, a given background task that needs to be
executed eventually does not need to be executed at a specific time. Thus, it can wait
for other operations to be scheduled before it is executed.

Example Use Operative System-wide APIs tailored for job scheduling (e.g.,
‘android.app.job.JobScheduler,’ ‘Firebase JobDispatcher’). These APIs manage mul-
tiple background tasks occurring in a device to guarantee that the device will exit sleep
mode (or doze mode) only when the tasks in the waiting list really need to be executed.

Pattern: Cache

This pattern proposes the use of cachemechanisms to avoid unnecessary operations.

Problem A common functionality in mobile apps is to display data fetched from a
remote server. A potential issue with that need is that an app may fetch the same data
from the server multiple times during the lifetime of the mobile app.

Solution Mobile apps should put in place caching mechanisms to avoid fetching
data from the server [36]. Moreover, lightweight strategies to decide whether to
refresh the data in the cache need to be implemented to guarantee that the mobile app
is displaying the up-to-date data.

Example Consider a social network app that displays profiles of other users.
Instead of downloading basic information and profile pictures every time a given
profile is opened, the app can use data that was locally stored from earlier visits.

102 D. Feitosa et al.

Pattern: Decrease Rate

This pattern proposes to increase the time between syncs/sensor reads as needed.

Problem It is common for mobile apps to perform certain operations periodically.
A potential issue is that, if the time between two executions is small, the app will be
executing operations more often.

Solution Increase the time-between-operations to find the minimal time interval
that would compromise user experience, while having a positive impact on the
energy consumption. This time-between-operations can be manually tuned by
developers, defined by users, or even found in an empirical way. One could also
envisage more sophisticated and dynamic solutions that can also use context (e.g.,
time of day, history data) to infer the optimal update rate.

Example Consider a news app that gathers news from different sources, doing so by
fetching the news of a given source in its own thread. Instead of triggering updates for
all threads at the same rate, use data from previous updates to infer the optimal update
rate of these threads. Connect to the news source only if updates are expected.

Pattern: User Knows Best

This pattern proposes to offer capabilities to allow users to enable/disable certain
features to save energy.

Problem The number of features offered by a mobile app and power consumption is
a trade-off generally considered when devising energy-efficient solutions. However,
there is no one–size-fits-all user as far as this trade-off is concerned. There are users
who might be satisfied with fewer features but better energy efficiency, and vice versa.

Solution The possibility for users to customize their preferences regarding energy-
critical features is therefore important. This customization should be intuitive and an
optimal default set of preferences.

Example Consider a mail client for POP3 accounts as an example. One can imagine
that a user may want their mail client to check/poll for new messages every other
minute, and others—depending on the time of day—much less often. As there is no
automatic mechanism to infer the optimal update interval, the best option is to allow
users to define it.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 103

Pattern: Inform Users

This pattern proposes to inform the user when the app is performing any battery-
intensive operation.

Problem It is known that there are use cases in mobile apps that require a substan-
tial amount of energy. In turn, one can activate features to be energy efficient at the
cost of user experience. We argue that if users do not know the expected behavior
from the mobile app, they may flag its operation as failing.

Solution Inform users about battery-intensive operations or energy management
features. This could be done by flagging (e.g., via alerts) this information in the user
interface.

Example Alert users when (1) a power-saving mode is active or (2) a battery-
intensive operation is being executed.

Pattern: Enough Resolution

This pattern proposes that data should be pulled or provided with high accuracy
only when strictly necessary.

Problem Users tend to use precise data points when fetching and/or displaying
data. An issue with such a strategy is that the collection and manipulation requires
more resources, entailing, naturally, high-energy consumption. There are, however,
use cases where dealing with low-resolution data suffices.

Solution Developers should find the trade-off between data resolution and app/user
needs as well as user experience.

Example Take as an example a running app that is able to record running sessions.
The app shows the user the current overall distance to a given location. Instead of
using precise real-time processing of GPS or accelerometer sensors, which can be
energy greedy, a lightweight method could be used to estimate this information with
lower but reasonable accuracy. Evidently, at the end of the session, the accurate
results would still be processed, but without real-time constraints.

104 D. Feitosa et al.

Pattern: Sensor Fusion

This pattern proposes using data from low-power sensors to decide whether to
fetch data from high-power sensors.

Problem Operations to interact with distinct sensors or components may be energy
greedy, causing the app to consume a substantial amount of energy. Therefore, such
operations should be executed only in case of absolute necessity.

Solution Making use of data sources that entail low power consumption (such as
alternative low-power sensors) may prevent the need to execute an energy-greedy
operation.

Example As an example, one can imagine using the accelerometer to infer whether
the user has changed location, and only interacting with the energyintensive GPS to
obtain a more precise location in case of a location change.

Pattern: Kill Abnormal Tasks

This pattern proposes to offer capabilities to interrupt energy-greedy operations
(e.g., using timeouts, or users input).

Problem Mobile apps may trigger an operation that unexpectedly consumes more
energy than anticipated (e.g., taking a long time to execute).

Solution Offering an intuitive way for end users to interrupt an energy-greedy
operation would help to fix this issue. Alternatively, a fair timeout could be included
for energy-greedy tasks or wakelocks.

Example As an example, consider a mobile app that features an alarm clock.
Implementing a fair timeout for the duration of the alarm, in case the user is not
able to turn it off, will prevent the battery from being drained.

Pattern: No Screen Interaction

This pattern proposes to allow interaction without using the display whenever
possible.

Problem There are mobile apps that involve constant use of the screen. However,
there may be cases in which the screen can be replaced by less power-intensive
alternatives.

Solution Enable users to use alternate interfaces (e.g. audio) to communicate with
the app.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 105

Example As an example, consider a navigation app. There are use cases in which
users may be using audio instructions only, having no need the see updates on the
screen. This strategy is commonly adopted by audio players that use the earphone
buttons to play/pause or skip songs.

Pattern: Avoid Extraneous Graphics and Animations

Graphics and animations are at the forefront as far as improving the user expe-
rience is concerned, but can also be battery intensive. Therefore, this pattern pro-
poses to use them with care [37]. This is well aligned with what is recommended in
the official documentation for iOS developers.7

Problem Mobile apps often feature impressive visual effects. However, they need
to be properly tuned to prevent the battery from being drained quickly. This has been
shown to be particularly critical in e-paper devices.

Solution Study the importance and impact of visual effects (such as graphics and
animations) to the user experience. The improvement in user experience may not be
sufficient to overcome the overhead imposed on the energy consumption. Therefore,
developers should consider avoiding using visual effects or high-quality graphics,
and should instead resort to low frame rates for animations when viable and/or
feasible.

Example For instance, high frame rates may make sense while playing a game, but
a lower frame rate may suffice while in the menu screens. In other words, use a high
frame rate only when the user experience requires it.

Pattern: Manual Sync, On Demand

This pattern proposes to execute tasks if, and only if, requested by the user.

Problem Some tasks may be energy intensive, but not really needed to give the best
user experience of the app. Hence, they could be avoided.

Solution Providing a mechanism in the UI (e.g., button) which allows users to
trigger energy-intensive tasks would be helpful in letting the user decide which tasks
he wants to trade off for energy consumption.

7Energy Efficiency Guide for iOS Apps—Avoid Extraneous Graphics and Animations available
here: https://developer.apple.com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html (visited on June 15, 2020).

106 D. Feitosa et al.

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html

Example Take as an example a beacon monitoring app. There may be situations in
which the user does not need to keep track of her/his beacons. This app could
implement a mechanism to let the user (manually) start and stop monitoring.

5.4 Object-Oriented Patterns

In this section, we focus on patterns that are tailored to a certain programming
paradigm. In particular, we discuss the Gang of Four (GoF) patterns, a popular
catalog of object-oriented (OO) design patterns proposed by Gamma, Helm, John-
son, and Vlissides [38] that describe recurring solutions to common OO problems.
Although these patterns do not primarily target energy efficiency, they do have an
impact that ought to be considered when designing sustainable systems. To refresh
the reader’s mind, we present two such patterns.

Pattern: Template Method

An algorithm must accommodate custom steps while maintaining the same
overall structure [38].

Problem Software systems oftentimes implement behaviors that are similar,
containing only a couple of steps that differ. Maintaining the code for each behavior
independently incurs greater effort. Moreover, there is a risk that patches will not be
applied uniformly among similar instances, which may unnecessarily (and poten-
tially erroneously) diverge the designs.

Solution The overarching steps among all behaviors should be implemented in a
single component. The steps that are implemented differently between the behaviors
are accessed via an interface. The individual behaviors must now inherit the general
component and only implement the interfaced steps.

Example A library implements several supervised learning classification algo-
rithms. The steps to create and use such an algorithm are similar, e.g., configure
model, define features and response variables, train model, and predict new values.
In this scenario, template methods can be used on steps such as train and predict,
while centralizing the implementation of the overall classification task.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 107

Pattern: State

A single component may alter its states with different behaviors as if the com-
ponent had been replaced [38].

Problem One or more behaviors of a component depend on a state that is only
identifiable at runtime. Although the state is mutable, the set of possible states and
the different ways behavior is implemented are well defined.

Solution The component consists of an interface accessible to other components
(i.e., clients). Each state implements the interface. The state of the component is
reassessed internally upon the execution of an implemented behavior.

Example A sensor component offers the behaviors read_data, turn_on, turn_off,
and get_state, which are implemented for the states enabled, disabled, and defec-
tive. Upon an unsuccessful read in the enabled state, the component changes its state
to defective. Otherwise, the state is defined via turn_on and turn_off.

The GoF patterns can be grouped according to the purpose they serve, i.e., to
create objects, to organize structure, or to orchestrate behavior. A pattern instance
comprises the association of one or more classes and interfaces fulfilling the various
roles described by the pattern. For example, the instance of a State pattern comprises
an interface that is implemented on a set of state classes that can provide a different
behavior for the predefined actions, which are in turn accessed by a context (client)
class.

As the reader may already know or have noticed by now, the GoF patterns do not
address energy problems by intent. However, design pattern instances (like any
design) have effects on quality attributes. Moreover, the instantiations of a design
pattern are not uniform, nor are their effects on quality attributes [39]. In particular,
several studies suggest that the effect of a pattern on a quality attribute depends on
factors such as the number of classes, invoked methods, and polymorphic methods
[39–41].

Considering the systematic use of OO features (e.g., polymorphism) in pattern
instances, one may expect a potential impact (positive or negative) on energy
consumption. Furthermore, researchers consistently find that, at least on Java sys-
tems, approximately 30% of the classes participate in one or more instances of GoF
patterns [42–44]. This picture adds up to a growing concern and interest in the
research community. In this context, if a pattern instance is not the optimal design
solution, an alternative (non-pattern) design solution can be applied. Several authors
(including GoF design pattern advocates) have proposed such alternatives [38, 45–
49].

108 D. Feitosa et al.

In efforts to investigate the aforementioned effect, Litke et al. [50] studied the
energy consumption of five design patterns8 through six toy examples and were able
to detect a negligible consumption overhead for the Factory Method and Adapter
pattern. Sahin et al. [51] investigated 15 design patterns9; however, there were some
inconclusive results, as they could observe both an increase and a decrease in energy
consumption. To shed further light on the matter, Noureddine and Rajan [52]
examined in detail two design patterns for which they identified a significant
overhead, namely Observer and Decorator patterns. The comparison involved not
only pattern and alternative non-pattern solutions but also a transformed pattern
solution that optimizes the number of object creations and method calls. Although
the pattern solution showed overheads between 15% and 30%, the optimized
solution reduced these observations by up to 25%.

The preceding work shows that there is indeed a potential systematic effect of
GoF patterns in energy consumption and that negative effects may be countered on
certain cases. Such knowledge is relevant for both greenfield projects (i.e., fresh
development), where it can support an energy-smart application of patterns, and
brownfield projects (e.g., refactoring of a system to a new purpose), where it can
inform decisions on what parts of the system to refactor. However, to fulfill these
goals, more insights and guidelines are necessary to fully understand what influences
the energy consumption of GoF patterns.

To that end, one of the authors was the lead researcher in a study to investigate the
effect of Template Method and State/Strategy patterns on energy consumption [53].
In particular, an experiment was set up to compare the energy consumption of
pattern and alternative (non-pattern) solutions and, more importantly, to examine
factors that influenced the observed results. To improve accuracy, the energy
measurements were collected at both system and method level. The energy effi-
ciency of pattern instances was analyzed at the method level, from which both the
size (measured in source lines of code—SLOC) and the number of foreign calls
(measured via the message passing coupling metric—MPC10) were assessed.

The results of the study showed that the non-pattern solutions consume less
energy than their pattern counterpart. However, as in other studies, there were
cases in which the pattern solution had a similar or marginally lower energy
consumption. One of the main contributions of this work is the investigation of the
related factors. Upon examining the SLOC and MPC metrics, it was possible to
establish that instances of GoF patterns tend to provide an equitable or more energy-
efficient solution when used to implement logic with longer methods and multiple
calls to external classes, i.e., complex behaviors. These findings are illustrated in
Fig. 5.2, which compares the energy consumption of pattern (y-axis, left chart) and
non-pattern (x-axis, left chart) solutions for all assessed methods. These data points

8Factory Method, Adapter, Observer, Bridge, and Composite.
9Abstract Factory, Bridge, Builder, Command, Composite, Decorator, Factory Method, Flyweight,
Mediator Observer, Prototype, Proxy, Singleton, Strategy, and Visitor.
10Number of invocations to methods that are not owned or inherited by the class being measured.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 109

are clustered by energy efficiency (distinguished by shape and color) and the average
SLOC and MPC of each cluster are depicted in the right-hand chart.

These findings serve to reiterate and discuss a set of recurring concerns around the
use of GoF patterns. First, they should only be applied if the extra (design) com-
plexity that they introduce is lower than the one that they resolve. In other words, if
the context or logical complexity is trivial, the design solution should also be trivial.
Otherwise, quality attributes, including energy efficiency, are likely to deteriorate
[40, 41]. For example, longer methods reduce the ratio between localization time of
the overall computation (i.e., logic) and thus also the overall overhead caused by the
polymorphic mechanism.

Finally, note that as patterns promote improved structuring of the source code,
energy efficiency may also be achieved through more efficient bytecode. For
example, we observed that the Java Virtual Machine applies internal optimizations
when pattern-related methods comprise a set of external invocations (i.e., to methods
that are not owned or inherited by the pattern class). Such optimizations might not be
triggered in a non-pattern alternative, as the structure is altered.

5.5 Patterns in Context

In this section, we present a series of cases describing situations in which patterns
can help improve the energy consumption of software-intensive systems. These
cases were extracted from real projects or created based on scenarios that practi-
tioners may regularly encounter. As the cases comprise the application of patterns,
we resort to a well-known template for capturing design decisions related to patterns
described by Harrison et al. [54]. Each case is described according to the fields
presented in Table 5.1. We clarify that there are additional fields available in the
template by Harrison et al., e.g., related patterns and related requirements. However,
we restricted our analyses to the parts of the systems on which we report, and thus we
do not establish links between decisions within a project.

Fig. 5.2 Comparison of energy consumption and associated factors

110 D. Feitosa et al.

Android Token is an application suited for generating and managing One-Time
Password (OTP) tokens, to be used in software requiring Open Authentication (OATH).
It is completely free and open source, and is available in the F-Droid application catalog.

Context The main purpose of this application is to provide information regarding
the properties of the generated tokens, such as their value, where are they being used,
and how much time is left until the token expires. As such, the application’s main
view (which is managed by the main Activity, depicted in Fig. 5.3) shows a list of all
tokens, with all of the aforementioned properties displayed. Since the information
per token is the same, it is expected that there will be several identical view
components displayed (such as labels or progress bars).

Problem Drawing the same type of view components for each token means repeat-
ing almost the exact same task, but with different values. Once an application is
created, the Android system puts all the metadata of all view components within the
application inside the same wrapper class. Each Activity is then responsible for
fetching the required components to be drawn in their associated layouts. The
fetching process is available in Android only through an API call already known
to be energy greedy [19]. Moreover, due to how Android internally handles the

Table 5.1 Template for documenting pattern-related decisions

Field Description

Context Scenario (incl. constraints) in which the pattern is (or would be) applied.

Problem Stakeholders’ concern that must be addressed.

Alternatives Alternatives (according to forces) that have been considered to tackle the issue.

Solution Generic solution (provided by the pattern) to the design problem.

Rationale Rationale of applying the pattern’s solution in relation to the forces.

Pattern Pattern name.

Consequences Context and implications of applying the pattern.

Notes Relevant points that do not fit in another field.

Source Origin of the case, or description of the fictional context.

Case: Android Token

Fig. 5.3 The main activity of Android Token

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 111

process of swapping between activities, moving to a new activity or going back to a
previously visited one means redrawing all the components. As expected, this has a
huge impact on the amount of work performed by both the CPU and the GPU.

Essentially, this problem creates two optimization challenges. The first one is the
excessive number of component fetching and redrawing tasks, which should be
reduced. Second, since the actual component’s draw operation itself is repeated
several times, it should be focused only on the component-drawing process, and not
on tasks such as setting up of any kind, or creating objects.

Solution For the first problem, the solution requires a caching strategy, to avoid
unnecessary fetching, and to optimize the redrawing process. Therefore, the Activity
responsible for fetching and drawing the view components should internally keep a
copied reference of each one, collected the first time they are drawn.

The second problem can be tackled by reducing to a minimum the number of
instructions not related to the drawing process. As such, creating new objects should
be avoided in the onDrawmethod of a view component, as described in the Android
documentation.11

Rationale Caching view components means reducing the effort required by the
CPU to traverse through (potentially) all existing components, and avoiding unnec-
essary calls to an energy-greedy Android API. It also means reducing the effort
required by the GPU to redraw the same components. Avoiding object allocation
inside the onDraw method is also a CPU effort reduction optimization, since many
objects require an expensive initialization procedure.

Ultimately, reducing the effort on these tasks translates to reducing the energy
consumed by the application, and consequently increasing the device’s battery
uptime.

Pattern The patterns that provide the solution to the aforementioned problems are
commonly known as ViewHolder and DrawAllocation, respectively.

Consequences Implementing both the patterns has a significant impact on code
readability and maintainability, especially for ViewHolder. It requires including an
inner class inside the Activity to hold the view components, and to increase the
complexity of the fetching/drawing method. As for DrawAllocation, developers
should preallocate objects (by using class variables), which, depending on the type
of object, may require additional effort and reduce the code readability. When
applying both patterns on an existing application, it also means restructuring code,
critical to the application, with a new concept, which can be a delicate and costly task.

11Android View documentation: https://developer.android.com/training/custom-views/custom-
drawing#createobject

112 D. Feitosa et al.

https://developer.android.com/training/custom-views/custom-drawing#createobject
https://developer.android.com/training/custom-views/custom-drawing#createobject

Case: Nextcloud Android app

Nextcloud is a file hosting service client-server solution for file hosting services.
Anyone can install it on their own private server. It is distributed under the General
Public License v2.0 open-source license, which also means that anyone can con-
tribute to the project. It provides a software suite with a cloud server and client apps
for different desktop and mobile platforms. In this particular case, we are looking at
their Android app.

Context As in most mobile apps for cloud services, data exchanging is a recurrent
task in their feature set. In the case of Nextcloud, all the files need to be synchronized
with the different user devices. Thus, whenever a new file is added or updated, it
needs to be uploaded to the cloud server.

Problem Uploading files is a resource-intensive task that may take a few minutes to
execute. This may considerably reduce battery level. However, there are cases in
which the user is not so interested in having all the files immediately uploaded to the
server. Depending on the user context, the trade-off between file consistency and
battery level may be different.

Solution Allow the user to define when the app should prioritize energy efficiency
above other features. Typically, mobile operating systems already provide a power
save mode that can be activated manually or when the battery reaches a critical level
(e.g., 20% of full capacity). All the apps have access to this setting and can change
their behavior accordingly. In the example of Nextcloud, developers decided to
deactivate any file upload during this mode.

Rationale The power save mode is a deliberate user action that expresses that the
user is prioritizing battery life above other features. Thus, it is important that energy-
intensive features, such as file transfers, are avoided.

Pattern Power Save Mode.

Alternatives The patterns Inform Users (i.e., warn users of energy-intensive
actions) and Power Awareness (e.g., change behavior according to the battery
level) can also be used in this context.

Consequences This strategy can have a big impact on the user experience. It is
important that users understand that during this mode their files are not going to be
uploaded to the server. Thus, this behavior should be properly flagged in the user
interface, so that users are well informed of it. In this particular case, the Nextcloud
app allows users to override the Power Save Mode behavior by clicking on a button
that manually triggers a synchronization with the server. Finally, some studies have
found evidence that, when not coded properly, this pattern may hinder the main-
tainability of the project.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 113

Notes This pattern is usually supported by any modern mobile operating system. It
is always a good practice to implement this pattern in a mobile app.

Source This case is reported in the Nextcloud app’s GitHub project: https://github.
com/nextcloud/android/commit/8bc432027e0d33e8043cf401922

Case: K-9 Mail

K9-Mail is a free and open-source e-mail client for Android. It was first written in
2008 and it is still under active development, being one of the oldest Android apps.
Like any mobile application, K-9 Mail runs under limited energy resources. Battery
life needs to be optimized to prevent hindering user experience. Thus, along the
history of its project, we encounter a number of code changes that were made to
improve energy efficiency.

Context An important activity done by an e-mail client app is synchronizing data
and communicating with e-mail providers. For example, when new emails appear in
the user’s inbox, the app needs to communicate with the server and download this
new data.

Problem Servers do not always work as intended. There are many reasons for
servers being unreachable: slow or no internet connection, too many users accessing
the server, server is down for maintenance, and so on. This means that the features
requiring server communication will fail until the required server can be reached
again. Typically, the communication can be established after a few unsuccessful
attempts. Thus, it is common that for asynchronous tasks the app will try the
communication again after some delay. However, in some cases the server may be
unreachable for hours or days. This means that the app will silently be draining the
battery while continuously attempting to establish a connection with the server.
Debugging this behavior is not trivial since the app will not necessarily fail but the
task keeps running in the background. In this particular case, K9-Mail is trying to
communicate with the server to set up the synchronization mechanism IMAP IDLE
protocol.12

Solution The typical fix for this situation is creating a threshold for the maximum
number of times a communication can fail. After this defined threshold, the app
should permanently stop trying to reach the server. In addition, it is a good practice
to increase the delay between attempts. For example, while the initial attempts can be
made within a few seconds, the following delays should be subsequently increased.

Rationale Often when a server is not reachable within seconds, it is due to a more
severe communication problem. Thus, it is unwise to continuously attempt new

12IMAP IDLE is a feature defined by the standard RFC 2177 that allows a client to indicate to the
server that it is ready to accept real-time notifications.

114 D. Feitosa et al.

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf401922
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf401922

connections. It is better to kill the task and wait for the user to trigger a new attempt
later. This approach gives more control to the user to define whether (1) the task is
indeed critical and battery life is not so important or (2) the other way around.

Pattern This pattern is commonly known as Dynamic Retry Delay.

Alternatives Alternatives (according to forces) that have been considered to tackle
the issue.

Consequences The main consequence of this approach is that new code needs to be
added to accomplish this behavior. It is always a good practice to use existing APIs
to schedule this kind of task in the background.

Notes The same problem can be found in other features of a mobile app, for
example syncing with a wearable device, getting location data, and accessing.

Source This issue was found by K-9 Mail developers and their solution can be
found on GitHub: https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d

Case: WebAssembly design

WebAssembly is an assembly-like language that can be executed in modern web
browsers.13 With this context in focus, the language was designed to produce a
compact binary that can be executed with near-native performance, i.e., comparable
to binaries compiled for native platforms (e.g., x86, ARM).14

The WebAssembly project has a repository dedicated to its design15 and the bug
tracking system is used to discuss issues related to it. Among the discussed issues are
matters related to energy efficiency.

Context The WebAssembly group aims at providing a Just-in-Time (JIT) interface
part of its specification.16 However, the level of detail provided in the specification
dictates the level of flexibility that library implementations would have. For exam-
ple, depending on the level of detail in the specification, a library could allow for
more undefined behaviors, e.g., at what moment a function definition is evaluated
and how deep the checking goes.

Problem The specification of the moment in which a function is evaluated also
requires the specification of when errors are reported. This concern was brought up
and discussed in an issue opened on the aforementioned GitHub repository.17 In

13https://developer.mozilla.org/en-US/docs/WebAssembly
14https://webassembly.org/
15https://github.com/WebAssembly/design
16https://webassembly.org/docs/jit-library/
17https://github.com/WebAssembly/design/pull/719

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 115

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d
https://developer.mozilla.org/en-US/docs/WebAssembly
https://webassembly.org/
https://github.com/WebAssembly/design
https://webassembly.org/docs/jit-library/
https://github.com/WebAssembly/design/pull/719

short, developers argued about the proper moment for a JIT compiler to flag a
malformed or not fully implemented feature (e.g., function or module) as an error.

Alternatives The main alternatives discussed by the developers were threefold:

• Ahead of time. Maintain the current situation and enforce the validation of
features as early as possible. This option provides a more deterministic solution
but also may result in waste of resources.

• Lazy loading. Modify the expected behavior to validate features at call time. This
option allows potential savings w.r.t. resources as modules and functions will
only be validated and loaded if used, which may oftentimes not be the case.

• Mixed approach. Use lazy loading by default, but provide a compiler setting
(WebAssembly.validate) that allows compilation ahead of time. This option will
require library developers to maintain the two behaviors.

Solution Although the aforementioned issue is still open at the time of writing this
chapter, the current solution is to partially abandon WebAssembly.

Rationale A specification that allows for a greater degree of lazy loading gives
library developers the freedom to define the level of aggressiveness of the JIT
compiler and balance responsiveness with other aspects, notably startup perfor-
mance, battery, and memory. Furthermore, some stakeholders expected that
WebAssembly code would be mainly generated by tools, which provides less
room for true positives (i.e., actually malformed or defective features).

Pattern Lazy loading.

Consequences There are three main side effects raised by those involved in the
discussion. First, the JIT compilation is abstracted from developers, who lose some
control over optimization (e.g., for parallelizing loading tasks). However, it is
expected that the benefits outweigh the optimizations that could be manually
implemented. Second, although validation is performed at call time, the time at
which errors are thrown is non-deterministic. This behavior may change entirely if a
variable is set to enforce validation ahead of time. Finally, it is possible that
non-deterministic aspects of the compiler may make testing more complicated.
However, foreseeable problems can be averted by enforcing feature validation
ahead of time (manually or by setting).

Source This issue was found byWebAssembly developers and their solution can be
found at the aforementioned link.

5.6 Conclusions

In this chapter, we addressed energy efficiency as a pattern-related problem, where
issues are not unique and reoccur systematically in a variety of software systems. In
particular, we looked at two levels of abstraction, namely code and design, to

116 D. Feitosa et al.

identify recurrent issues and solutions. Furthermore, we acknowledge that parts of a
system are rarely islands, isolated from each other, and rather comprise a network of
interconnected components, in which other patterns may be in play. Thus, we also
considered and discussed energy efficiency from two perspectives: as a main
concern of patterns and as a side effect of applying patterns.

To consolidate the concepts in this chapter, we showed how the different patterns
were used in four real scenarios. These use cases emphasize the importance of being
aware of energy-efficiency strategies to make informed decisions when developing
sustainable software systems. In Fig. 5.4, we depict the most recurrent words in this
chapter and, in light of the presented knowledge, we provide the following takeaway
messages and advice.

There exists a consolidated list of refactorings for code-level patterns that can
consistently be explored to improve the energy efficiency of Android mobile appli-
cations. Along these lines, we should, however, note that we have previously shown
that combining as many individual refactorings as possible most often, but not
always, increases energy savings. The interested reader may consult all the details
on the magnitude and realization of the expected savings in [14].

On a different level of abstraction, design patterns have been used to improve
energy efficiency. These patterns ought to be considered when designing software
with critical energy requirements, such as mobile applications. By gaining knowl-
edge about these patterns, developers can learn from the vast experiences of different
developers across different platforms.

Finally, even if a pattern is not intended to address energy-related issues, it may
still have a substantial effect on energy consumption. Thus, it is paramount to not

Fig. 5.4 Word cloud of
chapter content

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 117

only be aware of the patterns applied in the system but also how to harvest their
benefits while avoiding detriments to the overall energy consumption of the system.
As a rule of thumb for OO systems, we suggest avoiding the application of patterns
to encapsulate trivial functionality, e.g., small in size or that do not communicate
with other classes.

References

1. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented software
architecture: a system of patterns, vol 1. Wiley

2. Andrae A, Edler T (2015) On global electricity usage of communication technology: trends to
2030. Challenges 6(1):117–157. https://doi.org/10.3390/challe6010117

3. Power consumption in data centers is a global problem. https://www.datacenterdynamics.com/
en/opinions/power-consumption-data-centers-global-problem/. Accessed 10 Jun 2020

4. Pinto G, Castor F (2017) Energy efficiency: a new concern for application software developers.
Commun ACM 60(12):68–75. https://doi.org/10.1145/3154384

5. Thorwart A, O’Neill D (2017) Camera and battery features continue to drive consumer
satisfaction of smartphones in US. https://www.prnewswire.com/news-releases/camera-and-
battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.
html. Accessed 06 Feb 2019

6. The most wanted smartphone features. https://www.statista.com/chart/5995/the-most-wanted-
smartphone-features. Accessed 24 Jan 2018

7. Mickle T (2018) Your phone is almost out of battery. Remain calm. Call a doctor. https://www.
wsj.com/articles/your-phone-is-almost-out-of-battery-remain-calm-call-a-doctor-1525449283.
Accessed 05 Feb 2019

8. Bragazzi NL, Del Puente G (2014) A proposal for including nomophobia in the new dsm-v.
Psychol Res Behav Manag 7:155. https://doi.org/10.2147/PRBM.S41386

9. Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N (2013) Why people hate your app: making
sense of user feedback in a mobile app store. In: Proc. ACM SIGKDD 19th Int. Conf.
Knowledge Discovery and Data Mining (KDD ’13). ACM, Chicago, IL, pp 1276–1284.
https://doi.org/10.1145/2487575.2488202

10. Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain
about? IEEE Softw 32(3):70–77. https://doi.org/10.1109/MS.2014.50

11. Manotas I, Bird C, Zhang R, Shepherd D, Jaspan C, Sadowski C, Pollock L, Clause J (2016) An
empirical study of practitioners’ perspectives on green software engineering. In: Proc. IEEE/
ACM 38th Int. Conf. Software Engineering (ICSE ’16), pp. 237–248. IEEE, Austin, TX. https://
doi.org/10.1145/2884781.2884810

12. Pang C, Hindle A, Adams B, Hassan AE (2016) What do programmers know about software
energy consumption? IEEE Softw 33(3):83–89. https://doi.org/10.1109/MS.2015.83

13. Pinto G, Castor F, Liu YD (2014) Mining questions about software energy consumption. In:
Proc. 11th Working Conf. Mining Software Repositories (MSR ’14). ACM, Hyderabad, pp
22–31. https://doi.org/10.1145/2597073.2597110

14. Couto M, Saraiva J, Fernandes JP (2020) Energy refactorings for android in the large and in the
wild. In: Proc. IEEE 27th Int. Conf. Software Analysis, Evolution and Reengineering (SANER
’20). London, ON, pp 217–228. https://doi.org/10.1109/SANER48275.2020.9054858

15. Cruz L, Abreu R (2017) Performance-based guidelines for energy efficient mobile applications.
In: Proc. IEEE/ACM 4th Int. Conf. Mobile Software Engineering and Systems (MobileSoft
’17). IEEE, Buenos Aires, pp 46–57. https://doi.org/10.1109/MOBILESoft.2017.19

118 D. Feitosa et al.

https://doi.org/10.3390/challe6010117
https://www.datacenterdynamics.com/en/opinions/power-consumption-data-centers-global-problem/
https://www.datacenterdynamics.com/en/opinions/power-consumption-data-centers-global-problem/
https://doi.org/10.1145/3154384
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.wsj.com/articles/your-phone-is-almost-out-of-battery-remain-calm-call-a-doctor-1525449283
https://www.wsj.com/articles/your-phone-is-almost-out-of-battery-remain-calm-call-a-doctor-1525449283
https://doi.org/10.2147/PRBM.S41386
https://doi.org/10.1145/2487575.2488202
https://doi.org/10.1109/MS.2014.50
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1109/SANER48275.2020.9054858
https://doi.org/10.1109/MOBILESoft.2017.19

16. Cruz L, Abreu R (2018) Using automatic refactoring to improve energy efficiency of android
apps. In: Proc. XXI Ibero-American Conf. Software Engineering (CIbSE ’18). Bogota, Colom-
bia, pp 1–14

17. Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2019) On the impact of code
smells on the energy consumption of mobile applications. Inf Softw Technol 105:43–55. https://
doi.org/10.1016/j.infsof.2018.08.004

18. Vekris P, Jhala R, Lerner S, Agarwal Y (2012) Towards verifying Android apps for the absence
of no-sleep energy bugs. In: Proc. USENIX 5th Conf. Power-Aware Computing and Systems
(HotPower ’12). USENIX Association, Hollywood, CA

19. Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Oliveto R, Di Penta M, Poshyvanyk D
(2014) Mining energy-greedy API usage patterns in android apps: an empirical study. In: Proc.
11th Working Conf. Mining Software Repositories (MSR ’14). ACM, Hyderabad, pp 2–11.
https://doi.org/10.1145/2597073.2597085

20. Carette A, Younes MAA, Hecht G, Moha N, Rouvoy R (2017) Investigating the energy impact
of Android smells. In: Proc. IEEE 24th Int. Conf. Software Analysis, Evolution and
Reengineering (SANER ’17). Klagenfurt, Austria, pp 115–126. https://doi.org/10.1109/
SANER.2017.7884614

21. Morales R, Saborido R, Khomh F, Chicano F, Antoniol G (2018) EARMO: an energy-aware
refactoring approach for mobile apps. IEEE Trans Softw Eng 44(12):1176–1206. https://doi.
org/10.1109/TSE.2017.2757486

22. Saborido R, Morales R, Khomh F, Guéhéneuc YG, Antoniol G (2018) Getting the most from
map data structures in Android. Empir Softw Eng 23(5):2829–2864. https://doi.org/10.1007/
s10664-018-9607-8

23. Li D, Halfond WG (2014) An investigation into energy-saving programming practices for
android smartphone app development. In: Proc. 3rd Int. Workshop on Green and Sustainable
Software (GREENS ’14). ACM, Hyderabad, pp 46–53. https://doi.org/10.1145/2593743.
2593750

24. Cruz L, Abreu R (2019) Catalog of energy patterns for mobile applications. Empir Softw Eng
24(4):2209–2235. https://doi.org/10.1007/s10664-019-09682-0

25. Agolli T, Pollock L, Clause J (2017) Investigating decreasing energy usage in mobile apps via
indistinguishable color changes. In: Proc. IEEE/ACM 4th Int. Conf. Mobile Software Engi-
neering and Systems (MOBILESoft ’17). IEEE, Buenos Aires, pp 30–34. https://doi.org/10.
1109/MOBILESoft.2017.17

26. Li D, Tran AH, Halfond WG (2014) Making web applications more energy efficient for old
smartphones. In: Proc. 36th Int. Conf. Software Engineering (ICSE ’14). ACM, Hyderabad, pp
527–538. https://doi.org/10.1145/2568225.2568321

27. Li D, Tran AH, Halfond WG (2015) Nyx: a display energy optimizer for mobile web apps. In:
Proc. 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE ’15). ACM,
Bergamo, Italy, pp 958–961. https://doi.org/10.1145/2786805.2803190

28. Linares-Vásquez M, Bernal-Cárdenas C, Bavota G, Oliveto R, Di Penta M, Poshyvanyk D
(2017) Gemma: multi-objective optimization of energy consumption of guis in android apps. In:
Proc. 39th Int. Conf. Software Engineering Companion (ICSE-C ’17). IEEE, Buenos Aires, pp
11–14. https://doi.org/10.1109/ICSE-C.2017.10

29. Banerjee A, Roychoudhury A (2016) Automated re-factoring of android apps to enhance
energy-efficiency. In: Proc. IEEE/ACM 3rd Int. Conf. Mobile Software Engineering and
Systems (MOBILESoft ’16). ACM, Austin, TX, pp 139–150

30. Liu Y, Xu C, Cheung SC, Terragni V (2016) Understanding and detecting wake lock misuses
for android applications. In: Proc. ACM SIGSOFT 24th Int. Symposium on Foundations of
Software Engineering (FSE ’16). ACM, Seattle, WA, pp 396–409. https://doi.org/10.1145/
2950290.2950297

31. Pathak A, Jindal A, Hu YC, Midkiff SP (2012) What is keeping my phone awake?: Character-
izing and detecting no-sleep energy bugs in smartphone apps. In: Proc. 10th Int. Conf. Mobile
Systems, Applications, and Services (MobiSys ’12). ACM, Windermere, pp 267–280. https://
doi.org/10.1145/2307636.2307661

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 119

https://doi.org/10.1016/j.infsof.2018.08.004
https://doi.org/10.1016/j.infsof.2018.08.004
https://doi.org/10.1145/2597073.2597085
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1145/2593743.2593750
https://doi.org/10.1145/2593743.2593750
https://doi.org/10.1007/s10664-019-09682-0
https://doi.org/10.1109/MOBILESoft.2017.17
https://doi.org/10.1109/MOBILESoft.2017.17
https://doi.org/10.1145/2568225.2568321
https://doi.org/10.1145/2786805.2803190
https://doi.org/10.1109/ICSE-C.2017.10
https://doi.org/10.1145/2950290.2950297
https://doi.org/10.1145/2950290.2950297
https://doi.org/10.1145/2307636.2307661
https://doi.org/10.1145/2307636.2307661

32. Metri G, Agrawal A, Peri R, Shi W (2012) What is eating up battery life on my smartphone: a
case study. In: Proc. 2nd Int. Conf. Energy Aware Computing (ICEAC ’12). IEEE, Morphou,
Cyprus, pp 1–6. https://doi.org/10.1109/ICEAC.2012.6471003

33. Chowdhury S, Di Nardo S, Hindle A, Jiang ZMJ (2018) An exploratory study on assessing the
energy impact of logging on android applications. Empir Softw Eng 23(3):1422–1456. https://
doi.org/10.1007/s10664-017-9545-x

34. Corral L, Georgiev AB, Janes A, Kofler S (2015) Energy-aware performance evaluation of
android custom kernels. In: Proc. IEEE/ACM 4th Int. Workshop on Green and Sustainable
Software (GREENS ’15). IEEE, Florence, pp 1–7. https://doi.org/10.5555/2820158.2820160

35. Huang G, Cai H, Swiech M, Zhang Y, Liu X, Dinda P (2017) DelayDroid: an instrumented
approach to reducing tail-time energy of Android apps. SCIENCE CHINA Inf Sci 60
(1):012106. https://doi.org/10.1007/s11432-015-1026-y

36. Gottschalk M, Jelschen J, Winter A (2014) Saving energy on mobile devices by refactoring. In:
Proc. 28th Conf. Environmental Informatics (EnviroInfo ’14). BIS-Verlag, Oldenburg, Ger-
many, pp 437–444

37. Kim D, Jung N, Chon Y, Cha H (2016) Content-centric energy management of mobile displays.
IEEE Trans Mob Comput 15(8):1925–1938. https://doi.org/10.1109/TMC.2015.2467393

38. Gamma E, Helm R, Johnson R, Vlissides JM (1994) Design patterns: elements of reusable
object-oriented software, 1st edn. Addison-Wesley Professional

39. Ampatzoglou A, Charalampidou S, Stamelos I (2013) Research state of the art on GoF design
patterns: a mapping study. J Syst Softw 86(7):1945–1964. https://doi.org/10.1016/j.jss.2013.
03.063

40. Hsueh NL, Chu PH, Chu W (2008) A quantitative approach for evaluating the quality of design
patterns. J Syst Softw 81(8):1430–1439. https://doi.org/10.1016/j.jss.2007.11.724

41. Huston B (2001) The effects of design pattern application on metric scores. J Syst Softw 58
(3):261–269. https://doi.org/10.1016/s0164-1212(01)00043-7

42. Ampatzoglou A, Chatzigeorgiou A, Charalampidou S, Avgeriou P (2015) The effect of GoF
design patterns on stability: a case study. IEEE Trans Softw Eng 41(8):781–802. https://doi.org/
10.1109/tse.2015.2414917

43. Feitosa D, Ampatzoglou A, Avgeriou P, Chatzigeorgiou A, Nakagawa E (2019) What can
violations of good practices tell about the relationship between GoF patterns and run-time
quality attributes? Inf Softw Technol 105:1–16. https://doi.org/10.1016/j.infsof.2018.07.014

44. Khomh F, Gueheneuc YG, Antoniol G (2009) Playing roles in design patterns: An empirical
descriptive and analytic study. In: Proc. IEEE 25th Int. Conf. Software Maintenance (ICSM
’09). IEEE, Timişoara, Romania. https://doi.org/10.1109/icsm.2009.5306327

45. Adamczyk P (2004) Selected patterns for implementing finite state machines. In: Proc. 11th
Conf. Pattern Languages of Programs (PLoP ’04). Monticello, IL, pp 1–41

46. Ampatzoglou A, Charalampidou S, Stamelos I (2013) Design pattern alternatives. In: Proc. 17th
Panhellenic Conf. Informatics (PCI ’13). ACM, Thessaloniki. https://doi.org/10.1145/2491845.
2491857

47. Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of
existing code. Object technology series. Addison-Wesley

48. Lyardet FD (1997) The dynamic template pattern. In: Proc. 4th Conf. Pattern Languages of
Programs (PLoP ’97). Monticello, IL, pp 1–8. https://hillside.net/plop/plop/plop97/Pro
ceedings/chai.pdf

49. Saúde AV, Victório RASS, Coutinho GCA (2010) Persistent state pattern. In: Proc. 17th Conf.
Pattern Languages of Programs (PLoP ’10). ACM, Reno, NV. https://doi.org/10.1145/2493288.
2493293

50. Litke A, Zotos K, Chatzigeorgiou A, Stephanides G (2005) Energy consumption analysis of
design patterns. Proc World Acad Sci Eng Technol 6:86–90

120 D. Feitosa et al.

https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1007/s10664-017-9545-x
https://doi.org/10.1007/s10664-017-9545-x
https://doi.org/10.5555/2820158.2820160
https://doi.org/10.1007/s11432-015-1026-y
https://doi.org/10.1109/TMC.2015.2467393
https://doi.org/10.1016/j.jss.2013.03.063
https://doi.org/10.1016/j.jss.2013.03.063
https://doi.org/10.1016/j.jss.2007.11.724
https://doi.org/10.1016/s0164-1212(01)00043-7
https://doi.org/10.1109/tse.2015.2414917
https://doi.org/10.1109/tse.2015.2414917
https://doi.org/10.1016/j.infsof.2018.07.014
https://doi.org/10.1109/icsm.2009.5306327
https://doi.org/10.1145/2491845.2491857
https://doi.org/10.1145/2491845.2491857
https://hillside.net/plop/plop/plop97/Proceedings/chai.pdf
https://hillside.net/plop/plop/plop97/Proceedings/chai.pdf
https://doi.org/10.1145/2493288.2493293
https://doi.org/10.1145/2493288.2493293

51. Sahin C, Cayci F, Gutiérrez ILM, Clause J, Kiamilev F, Pollock L, Winbladh K (2012) Initial
explorations on design pattern energy usage. In: Proc. 1st Int. Workshop on Green and
Sustainable Software (GREENS ’12). IEEE, Zurich, pp 55–61. https://doi.org/10.1109/
GREENS.2012.6224257

52. Noureddine A, Rajan A (2015) Optimising energy consumption of design patterns. In: Proc.
37th Int. Conf. Software Engineering (ICSE ’15). IEEE, pp 623–626

53. Feitosa D, Alders R, Ampatzoglou A, Avgeriou P, Nakagawa EY (2017) Investigating the
effect of design patterns on energy consumption. J Softw Evol Process 29(2):e1851. https://doi.
org/10.1002/smr.1851

54. Harrison NB, Avgeriou P, Zdun U (2007) Using patterns to capture architectural decisions.
IEEE Softw 24(4):38–45. https://doi.org/10.1109/MS.2007.124

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 121

https://doi.org/10.1109/GREENS.2012.6224257
https://doi.org/10.1109/GREENS.2012.6224257
https://doi.org/10.1002/smr.1851
https://doi.org/10.1002/smr.1851
https://doi.org/10.1109/MS.2007.124

Chapter 6
Small Changes, Big Impacts: Leveraging
Diversity to Improve Energy Efficiency

Wellington Oliveira, Hugo Matalonga, Gustavo Pinto, Fernando Castor,
and João Paulo Fernandes

Abstract In this chapter, we advocate that developers should leverage software
diversity to make software systems more energy efficient. Our main goal is to show
that non-specialists can build software that consumes less energy by alternating at
development time between readily available, diversely designed pieces of software
implemented by third parties. By revisiting the main findings of research work we
conducted in the past few years, we noticed that they share a common observation:
small changes can make a big difference in terms of energy consumption. These
changes can usually be implemented by very simple modifications, sometimes
amounting to a single line of code. Based on experimental results, one small change
that could make a big difference is to replace most of the uses of a Hashtable class
with uses of the ConcurrentHashMap class. In most of the cases, it was only
necessary to modify the line where the Hashtable object was created. This simple
reengineering effort promoted a reduction of up to 17.8% in the energy consumption
of Xalan and up to 9.32% for Tomcat, when using the workloads of the DaCapo
benchmark suite.

Conclusions: The main insight we draw is that small changes can make a big
contribution to reducing energy consumption, especially in mobile devices. We have
also witnessed in practice that the huge variability of devices in the market and the
vast number of factors influencing energy consumption is a real problem when
experimenting with energy consumption. To try to minimize this problem, we finally

W. Oliveira · F. Castor
Federal University of Pernambuco, Recife, Brazil
e-mail: fjclf@cin.ufpe.br

H. Matalonga
Minho University, Braga, Portugal
e-mail: hugo@hmatalonga.com

G. Pinto (*)
Federal University of Pará, Belém, Brazil
e-mail: gpinto@ufpa.br

J. P. Fernandes
CISUC and University of Coimbra, Coimbra, Portugal
e-mail: jpf@dei.uc.pt

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_6&domain=pdf
mailto:fjclf@cin.ufpe.br
mailto:hugo@hmatalonga.com
mailto:gpinto@ufpa.br
mailto:jpf@dei.uc.pt
https://doi.org/10.1007/978-3-030-69970-3_6#DOI

present an initiative that aims to collect real-world usage information about thou-
sands of mobile devices and make it publicly available to researchers and companies
interested in energy efficiency.

6.1 Introduction

In 2012, information and communication technology was estimated to be responsi-
ble for 4.7% of the world’s electrical energy consumption [1]. Although that energy
is to a large extent used to reduce energy consumption in other productive sectors
[1, 2], it is still a considerable percentage. Moreover, that figure is estimated to grow
to between 8 and 21% of the global demand for energy by 2030 [3]. In addition,
energy has a high cost for many organizations [4]. Reducing that cost, even by a
small percentage, can mean savings in the order of millions of dollars.

High energy consumption also has a direct impact on our daily lives, especially
when we consider mobile devices. Long battery life is considered one of the most
important smartphone features by users [5, 6]. In addition, from a sustainability
standpoint, batteries that last longer need to be recharged less often, which also
increases the lifespan of mobile devices. Making the battery last longer with a single
charge involves a combination of energy-efficient hardware, infrastructure software,
and applications.

In the last few years, a growing body of research has proposed methods, tech-
niques, and tools to support developers in the construction of software that consumes
less energy. These solutions leverage diverse approaches such as version history
mining [7], analytical models [8], identifying energy-efficient color schemes [9], and
optimizing the packaging of HTTP requests [10].

In this chapter, we present a complementary approach. We advocate that devel-
opers should leverage software diversity to make software systems more energy
efficient. Our main insight is that non-specialists can build software that consumes
less energy by alternating at development time between readily available, diversely
designed pieces of software implemented by third parties. These pieces of software
can vary in nature, granularity, and quality attributes. Examples include data struc-
tures and constructs for thread management and synchronization.

Diversity can be leveraged in a number of different situations to improve the
quality of both software systems and the processes through which they are built.
According to the Merriam-Webster dictionary, diversity is “the quality or state of
having many different forms, types, ideas, etc.” In the context of fault-tolerant
software, design diversity has been employed since the 1970s [11, 12]. The idea is
that different implementations built from the same specification are likely to fail
independently and thus can be combined to build more reliable software. Another
flavor of design diversity aiming to improve reliability can be observed when
developers write detailed behavioral contracts for functions [13]. A contract can be
seen as a diverse implementation written in a declarative language that is close to
mathematics. Design diversity is also important for the construction of software

124 W. Oliveira et al.

systems that have dependencies on external libraries, components, or frameworks. In
2016, the unpublication of a small npm Javascript package1 broke thousands of
client projects. Availability of diverse packages with similar functionality can help
reduce the impact of this kind of problem. Diversity is applicable beyond software
design, in other software-related situations. Not long ago, Google discussed [14] one
of its approaches to reducing latency: to have multiple servers serve the same
request. In this scenario, we have latency (or timing) diversity, since a multitude of
factors can affect the response time of each server at any given moment.

In this chapter we discuss the use of software diversity as a tool in the developers’
toolbox to build more energy-efficient software. Diversity, in this case, expands the
design and implementation options [15] available for developers. To assess the
impact of these options, throughout this chapter we revisit the main findings of
research work we conducted in the past few years (e.g., [16–21]). Although these
works target different programming languages, execution environments, and pro-
gramming constructs, they share a common observation: small changes can make a
big difference in terms of energy consumption. These changes can usually be
implemented by very simple modifications, sometimes amounting to a single line
of code. Nonetheless, the results can be significant.

In our work we have, for example, refactored two Java systems, the TOMCATweb
server and the XALAN library for XML processing. Based on experimental results
[20], we replaced most of the uses of the Hashtable class, which implements the
Map interface, with uses of the ConcurrentHashMap class, which implements
the same interface. In most of the cases, it was only necessary to modify the line
where the Hashtable object was created. This simple reengineering effort pro-
moted a reduction of up to 17.8% in the energy consumption of XALAN and up to
9.32% for TOMCAT, when using the workloads of the DaCapo [22] benchmark suite.

This chapter first introduces some of the aforementioned studies (Sect. 6.3). It
then proceeds to present an automated approach to help developers to select poten-
tially more energy-efficient options in situations where diversity is available (Sect.
6.4). On the one hand, this approach works statically, and experiments conducted
show that it is able to improve the energy efficiency of real-world systems. On the
other hand, for mobile devices, results vary widely (particularly due to the fragmen-
tation of Android devices and their versions), which requires additional information
and experimentation on their usage profiles. Based on this, we present a more recent
initiative that aims to collect real-world usage information about thousands of
mobile devices and make it publicly available to researchers and companies inter-
ested in energy efficiency (Sect. 6.5).

1https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 125

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

6.2 Software Energy Consumption

Although software systems do not consume energy themselves, they affect hardware
utilization, leading to indirect energy consumption. Energy consumption E is an
accumulation of power dissipation P over time t, that is, E ¼ P t. Power P is
measured in watts, whereas energy E is measured in joules. As an example, if one
operation takes 10 seconds to complete and dissipates 5 watts, it consumes 50 joules
of energy E ¼ 5 10. In particular, when talking about software energy consumption,
one should pay attention to:

• The hardware platform.
• The context of the computation.
• The time spent.

To understand the importance of a hardware platform, consider an application
that communicates through the network. Any commodity smartphone supports, at
least, WiFi, 3G, and 4G. Some researchers observed that 3G can consume about 70%
more energy than WiFi, whereas 4G can consume about 30% more energy than 3G,
while performing the same task, on the same hardware platform [23].

Context is relevant because the way in which software is built and used has a
critical influence on energy consumption. A program may impact the energy con-
sumption of different parts of a device, for instance, the CPU, when performing
CPU-intensive computations [24], the DRAM, when performing intensive accesses
to data structures [25], the network, when sending and receiving HTTP requests
[26], or on OLED displays, when using lighter-colored backgrounds [9].

Finally, time plays a key role in this equation. A common misconception among
developers is that reducing execution time also reduces energy consumption
[27, 28], the t of the energy equation. However, chances are that this reduction in
execution time might increase energy consumption by imposing a heavier burden on
the device, e.g., by using multiple CPUs [16]. This in turn can increase the number of
context switches and, as a consequence, might also increase the P of the equation,
impacting the overall energy consumption.

6.2.1 Gauging Energy Consumption

Power Measurement and Energy Estimation are high-level approaches
encompassing multiple techniques to gauge energy consumption at different levels
of granularity. The first group of techniques makes use of power measurement
hardware to obtain power samples. The main advantage of this technique is its
ability to capture actual power use, possibly with high precision. Its main disadvan-
tage, however, is that it is only possible to attribute the measured power to specific
hardware or software elements indirectly. This usually requires software-based
techniques and energy estimation (see below). Many different power meters are

126 W. Oliveira et al.

currently available in the market. Different power meters have different character-
istics. Among these characteristics, one of the most important is the sampling rate,
that is, the number of samples obtained per second. The sample is often measured in
watts, P (power). Depending on the power meter used, the sampling rate can vary
from 1 sample per second to more than 10,000 samples per second. The higher the
sampling rate, the more accurate the power curve will be.

The second area, energy estimation, assumes that developers do not have access
to power measurement hardware and uses software-based techniques to predict how
much energy an application will consume at run time. These predictions are based on
mathematical models of how the different aspects of the hardware under examina-
tion consume energy, while accounting for their workloads. One example of this
approach is the powertop2 utility. This tool takes one sample per second and
generates a log with these measurements. It analyzes the programs, device drivers,
and kernel options running on a computer based on the Linux and Solaris operating
systems, and estimates the power consumption resulting from their use. Powertop
can also instrument laptop battery features in order to estimate power usage
(in watts) and battery life.

The Running Average Power Limit (RAPL) interface [29], originally designed by
Intel to enable chip-level power management, is widely supported in today’s Intel
architectures, including Xeon server-level CPUs and the popular i5 and i7. RAPL-
enabled architectures monitor performance counters in a machine and estimate the
energy consumption, storing the estimates in Machine-Specific Registers (MSRs).
Such MSRs can be accessed by the OS, e.g., by means of the msr kernel module in
Linux. RAPL is an appealing design, particularly because it allows energy/power
consumption to be reported at a fine-grained level, e.g., monitoring CPU core, CPU
uncore (caches, on-chip GPUs, and interconnects), and DRAM separately. Previous
work has shown that RAPL estimates are precise when compared to measurements
obtained by power measurement equipment [8]. One drawback of this approach is
the fact that programmers need a deep knowledge on how to use these low-level
registers, which is not straightforward.

Liu and colleagues [25] introduced jRAPL, a library for profiling Java programs
running on CPUs with RAPL support. This library can be viewed as a software
wrapper to access the MSRs. Since the user interface for jRAPL is simple, the
programmer can focus her efforts on the high-level application design. For any block
of code in the application whose energy/performance information is of interest to the
user, she just needs to enclose the code block with a pair of statCheck invoca-
tions. For example, the following code snippet attempts to measure the energy
consumption of the doWork() method, whose value is the difference between
the beginning and end variables:

2https://01.org/powertop

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 127

https://01.org/powertop

double beginning = EnergyCheck.statCheck();
doWork();
double end = EnergyCheck.statCheck();

A shortcoming of the jRAPL library is that it can only be used on desktop
computers that leverage Intel CPUs. Thus, it provides little help for measuring
energy consumption of mobile apps in tablets, smartphones, or smartwatches.

In November, 2014, as part of Android 5.0, Google released the Android Power
Profiler, which queries battery information from Android devices. It is currently
available on every Android device since version 5.0 (which corresponds to over 85%
of all Android devices3). The Android Power Profiler has many advantages over
similar libraries. First, it requires no extra instrumentation. As the profiler is natively
executed, no external applications are needed either. Second, it provides a straight-
forward interface to gather battery information and it does not require any setup.
Third, the profiler distinguishes battery usage in terms of the different components
used on the device (e.g., WiFi, CPU, GPS). The Android Power Profiler, similarly to
RAPL, is based on energy estimation.

To use the Android Power Profiler tools it is necessary to use the Android Debug
Bridge (ADB).4 ADB is a command-line tool that works like a communication
interface, using the client-server model, where the device being used is the client and
the development machine is the server. ADB allows one to install and debug apps,
collect data about the device, execute automated tests, etc. For instance, the adb
shell dumpsys batterystats command collects battery information and
may save it onto an output file. The exported file could be an input to other programs
to manipulate and analyze data. A growing number of research works are taking
advantage of the Android Power Profiler (e.g., [8, 18, 30, 31]).

6.3 Design Decisions

In this section we explore three different approaches that share the same observation
that small design decisions can greatly impact energy consumption. More specifi-
cally, we discuss how it is possible to reduce the energy footprint of software
systems by leveraging diversity in IO primitives (Sect. 6.3.1), collection
implementations (Sect. 6.3.2), and concurrent programming constructs (Sect. 6.3.3).

3https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-
android-os/
4https://developer.android.com/studio/command-line/adb

128 W. Oliveira et al.

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://developer.android.com/studio/command-line/adb

6.3.1 I/O Constructs

I/O programming constructs are not only the building blocks of several low-level
communication channels such as sockets or database drivers, but also the bedrock of
high-level software applications that have anything to do with data storage or
transmission. Despite their widespread use, the energy consumption of I/O program-
ming constructs is not well understood. This is particularly unfortunate since related
work suggests that I/O APIs could severely impact energy consumption. For
instance, Lyu and colleagues [32] indicated that about 10% of the energy consump-
tion of mobile applications is spent in I/O operations. Similarly, Liu and colleagues
[25] pointed out that it was possible to save 4.29% of energy consumption by
changing I/O programming constructs. A comprehensive energy characterization
of I/O programming constructs could help practitioners to further improve the
energy behaviors of their software applications.

In the study by Rocha and colleagues [21], we presented a comprehensive
characterization of Java I/O APIs. In this work we conducted a broad experimental
exploration of 22 Java I/O APIs, aiming to answer two research questions: (RQ1)
What is the energy consumption behavior of the Java I/O APIs? and (RQ2) Can we
improve the energy consumption of non-trivial benchmarks by refactoring their use
of Java I/O APIs?

To answer these research questions, we employ what we consider to be three
types of benchmarks. For the first research question, we created and instrumented
22 micro-benchmarks. The micro-benchmarks are small programs (around 200 lines
of code) that perform a single task (e.g., reading a file from the disk), each one using
a different Java I/O API. These Java I/O APIs have been introduced in the Java
programming language in its very early versions and are in widespread use. For
instance, the FileInputStream Java I/O API is used in 2823 open-source
projects in BOA [33] (we ran this query in April 2019). Each one of the studied
Java I/O APIs implements at least one method for input operations or at least one
method for output operations.

For the second research question, we performed refactorings in the code base of
optimized benchmarks and macro-benchmarks. On the one hand, optimized bench-
marks are similar to micro-benchmarks in size, but are optimized for performance,
while macro-benchmarks are full-fledged working software systems comprising
thousands of lines of code. The macro-benchmarks used are as follows: XALAN
(an XSLT processor that translates XML documents into HTML files, or other types
of documents), FOP (an XSLT processor that translates XML documents into
HTML files, or other types of documents), BATIK (a toolkit for applications that
want to use images in the Scalable Vector Graphics (SVG) format), COMMONS-IO
(a utility library used to provide high-level I/O abstractions to third-party software
applications), and PGJDBC (the official PostgreSQL driver for the Java program-
ming language).

To avoid non-working solutions, we focused on refactorings that do not require
extensive code changes (e.g., changes between Java I/O APIs that extend the same

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 129

interface). These refactorings could also be easily automated by a general purpose
tool. To conduct the experimentation process, we executed each benchmark
10 times. Since it requires some time for the Just-In-Time (JIT) compiler to identify
the hot code and perform optimizations, we discarded the first three executions of the
benchmarks. We report the average of the seven remaining executions. We also fixed
the garbage collector and the heap size accordingly: we used the parallel garbage
collector (-XX:+UseParallelGC), and the heap size was fixed at 261 MB,
minimum (�Xms), and 4183 MB, maximum (�Xmx). No other JVM options were
employed.

After conducting this process, we observed many interesting findings. Figure 6.1
shows an overview of the energy behavior of Java I/O APIs for the micro-
benchmarks. First, we found that input operations consume more energy than output
operations (on average: 96 joules vs 0.80 joules, respectively). The
PushbackInputStream Java I/O API is the most energy-consuming one
(492 joules consumed), followed by FileInputStream (474 joules). Analyzing
the PushbackInputStream implementation, we perceived that this Java I/O
API adds a flag in the InputStream that marks bytes as “not read.” Such bytes are
included back in the buffer to be read again. However, before reading the bytes, this
Java I/O API also checks whether the stream is still open using the ensureOpen()
method. This repetitive operation could be the source of this high energy

103 101

10ο

0

Input Output

R
A

F
S

C
N

P
B

R
F

R
LN

R
B

R
C

A
R

B
IS

B
A

IS S
R

R
F

A
L

R
F

L
B

R
F

L

F
W

P
S

T

B
W

P
W

F
O

S

B
O

S

S
W

C
A

W

CPUUNCOREDRAM

B
A

O
S

0

F
IS

P
B

IS

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

DRAM

0

10ο

101

12

10

8

6

4

2

10

8

6

4

CPU
UNCORE
DRAM

P
ow

er
 (

W
at

ts
)

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

2

0

102

UNCORE CPU

a b

Fig. 6.1 Energy consumption behavior of Java I/O APIs. Energy data is presented in a logarithmic
scale. For the figure on the left, PBIS stands for PushbackInputStream, FIS stands for
FileInputStream, RAF stands for RadomAccessFile, SCN stands for Scanner, PBR
stands for PushbackReader, FR stands for FileReader, LNR stands for
LineNumberReader, BR stands for BufferedReader, CAR stands for
CharArrayReader, BIS stands for BufferedInputStream, BAIS stands for
ByteArrayInputStream, SR stands for StringReader, RFAL stands for Files.
readAllLines, BRFL stands for Files.newBufferedReader, and RFL stands for
Files.lines. For the figure on the right, FW stands for FileWriter, PST stands for
PrintStream, BW stands for BufferedWriter, PW stands for PrintWriter, FOS stands
for FileOutputStream, BOS stands for BufferedOutputStream, SW stands for
StringWriter, CAW stands for CharArrayWriter, and BAOS stands for
ByteArrayOutputStream

130 W. Oliveira et al.

consumption. The Files Java I/O API, however, which could act as a potential
replacement for FileInputStream, is the one with the least energy consump-
tion, when executing its lines method (1.86 joules).

When considering the macro- and optimized benchmarks, it was not possible to
use all the Java I/O APIs mentioned in Fig. 6.1. This happened because there is a
semantic gap between the Java I/O APIs that do not inherit from the same parent, and
we opted not to bridge this gap. We then only refactored instances of Java I/O APIs
that share the same parent class. This problem did not occur for the micro-
benchmarks because of the more straightforward way in which they use the APIs.
In the end, we had 21 refactored versions of these benchmarks.

Overall, when refactoring the macro- and optimized benchmarks, we observed
energy improvements in 8 out of the 21 refactored versions of the benchmarks. In
particular, we observed that one optimized benchmark and one macro-benchmark
improved their overall energy consumption when changing their use of Java I/O
APIs to the Files class. With very minor modifications, we were able to improve
up to 17% of the energy consumption of these benchmarks. These initial results
provide evidence that small changes in Java I/O APIs might have the potential for
improving the energy consumption of benchmarks already optimized for
performance.

6.3.2 Collections Constructs

Collections provide easy access to reliable implementations that can reduce the
complexity of developing applications. In Java, each collection’s API has multiple
implementations. Collection implementations that can be safely used by several
concurrent threads are considered “thread-safe.” This safety usually comes with
extra complexity or inferior performance, which might favor the use of “thread-
unsafe” collections. This is expected, since there are a number of different algo-
rithms and data structures that can implement the abstract concept of lists, sets, and
maps. There are a number of different ways in which a collection can be
implemented, and these diverse implementations can have a non-negligible impact
on energy consumption.

In the last few years, a number of researchers have attempted to address the
problem of helping developers to understand collections energy usage [16, 19, 20,
34–36]. These works conducted extensive exploration of collection usage. While
some papers focused on the energy usage of collection implementations that are part
of the Java Development Kit [20], others were broader in scope and covered not only
the official implementations but also third-party libraries [19]. Similarly, while some
works performed the experiments on commodity devices [36], others conducted
experiments on servers [20], while others also experimented with mobile devices
[19, 34]. Generally speaking, these works followed a similar approach for collecting
data: they created small and large benchmarks, and executed these benchmarks 10 or
more times, reporting the averages as the results.

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 131

The work of Oliveira and colleagues [19] followed a slightly different approach
because they created the so-called energy profiles, inspired by previous work [34],
and attempted to make recommendations by leveraging these profiles. We devote
Sect. 6.4 to providing a more comprehensive overview of this work. An energy
profile is a number that can be used to compare similar constructs under the same
circumstances. Energy profiles for collections can be produced by executing several
micro-benchmarks on different collection operations, aiming to gather information
about the energy behavior of these programming constructs in an application-
independent way. For instance, an energy profile for the operation ArrayList.
add(Object o) could be 10. After we create the profiles, we perform static
analysis to estimate in which ways and how intensively a system employs these
collections. If we know that the program under investigation uses exclusively
ArrayList.add(Object o) 100 times, its energy consumption could be
(roughly) inferred as 100 10 (their energy profile). Since the work of Oliveira and
colleagues [19] focuses on code recommendation, a collection is more likely to be
recommended if its energy profiles are low.

Since these works performed computations in very different environments, the
results cannot be easily merged together. However, some interesting findings seem
to emerge. For instance, these papers explored the energy consumption of the most
commonly used methods. In the case of ArrayList, they investigated the add
(Object o) method. For example, in the work of Pinto and colleagues [20], the
authors observed that the method ArrayList.add(Object o) consumes the
least energy, when compared to the thread-safe implementations. On the other hand,
both Pinto et al. [20] and Pereira et al. [36] observed that the most energy-consuming
implementation among the thread-safe collections is CopyOnWriteArrayList.
In particular, Pinto et al. [20] noted that insertion operations over
CopyOnWriteArrayList consumed about 152� more energy than Vector
(which consumes 14� more than ArrayList). In terms of Map implementations,
it was found that the concurrent implementation ConcurrentHashMap had a
similar performance when compared to the non-thread safe implementation,
LinkedHashMap, on both insertion and removal operations. Indeed,
ConcurrentHashMap performed around three times better than Hashtable,
one of the most common Map implementations.

It is important to note that these findings were observed in small benchmarks, that
is, �100 lines of code programs that perform one collection operation a number of
times. Given these observations in a controlled setting, Pinto et al. [20] also
manually refactored two large-scale open-source programs: XALAN (a program
that transforms XML documents into HTML, which had 170 k lines of code in the
version we studied) and TOMCAT (an open-source web server, which had 188 k lines
of code in the version we studied). In both programs, the authors changed 100+ uses
of Hashtable to ConcurrentHashMap. After applying these modifications, it
was observed that there was an energy saving of 12% for XALAN and 17% TOMCAT,
considering the workloads of the DaCapo benchmark suite [22]. Oliveira and
colleagues [19] also employed a similar approach for alternating between collection
implementations. In their work, they found that by refactoring from ArrayList to

132 W. Oliveira et al.

FastList (a third-party List implementation) it was possible to save 17% in
energy consumption of one mobile app, PASSWORDGEN. These findings share a
common trend: with no prior knowledge of the application domains or the system
implementations, it was possible to reduce the energy consumption of a software
system by means of simple changes in collection usage.

6.3.3 Concurrent Programming Constructs

Concurrency control and thread management are additional software features where
it is possible to reap the benefits of software diversity. Early work by Trefethen and
Thiyagalingam [37] observed that, for parallel applications in the area of scientific
computing, performance is often not a proxy for energy consumption. A subsequent
study [24] investigated the impact of different approaches to manage concurrent and
parallel execution in Java programs. This study found that different thread manage-
ment approaches, e.g., percore threads, thread pools, and work-stealing, have
diverse, significant, and hard to predict impacts on energy consumption. It also
observed that performance is not a good proxy for energy efficiency in the studied
benchmarks, which comprised both small programs and real-world, high-perfor-
mance Java applications.

These studies inspired us to investigate how thread management constructs affect
energy consumption in a different setting, namely, programs written in Haskell, a
lazy, purely functional programming language. Haskell programs can create light-
weight threads that may be associated with a specific physical core or operating
system thread, or managed entirely by the Haskell scheduler. Furthermore, the
language has multiple primitives for data sharing between threads which act as
concurrency control primitives, including a lock-based approach, a fully featured
implementation of software transactional memory [38] (STM), and an STM-based
solution that simulates locks.

We conducted a study with nine Haskell benchmarks. The benchmarks were
selected from multiple sources, such as the Computer Language Benchmarks Game5

and Rosetta Code.6 We selected the benchmarks based on their diversity. For
instance, two of them are synchronization-intensive programs, two are
CPU-intensive and scale up well on a multicore machine, two are CPU- and
memory-intensive, one is I/O-intensive, one is CPU- and I/O-intensive, and one is
peculiar in that it is CPU-, memory-, synchronization-, and I/O-intensive. We
implemented and ran different variants of these benchmarks considering the nine
possible combinations of thread management constructs and data sharing/concur-
rency control primitives. Not every possible variant could be used, e.g., because

5https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
6http://www.rosettacode.org

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 133

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
http://www.rosettacode.org

some benchmarks do not leverage concurrency control. The details of the method-
ology of this study are presented elsewhere [16].

We ran all the experiments on a server machine with 2x10-core Intel Xeon
E5-2660 v2 processors (Ivy Bridge microarchitecture, 2-node NUMA) and 256GB
of DDR3 1600 MHz memory. This machine runs the Ubuntu Server 14.04.3 LTS
(kernel 3.19.0-25) OS. The compiler was GHC 7.10.2. The benchmarks were
exercised by Criterion [39], a benchmarking library to measure the performance of
Haskell code. To collect information about energy usage, we had to modify the
implementations of Criterion and the Haskell profiler to make them energy-aware.
We executed the benchmarks with 1, 2, 4, 8, 16, 20, 32, 40, and 64 capabilities. The
number of capabilities of the Haskell run time determines how many Haskell threads
can run truly simultaneously at any given time.

Once again, we found that small changes can make a big difference in terms of
energy consumption. For example, in one of our benchmarks, under a specific
configuration, choosing one data sharing primitive (MVar) over another (TMVar)
can yield 60% energy savings. However, there is no universal winner. The results
vary depending on the characteristics of each program. In another benchmark,
TMVars can yield up to 30% energy savings over MVars.

Figure 6.2 illustrates an extreme case. When considering 20 capabilities, the
forkOS-TMVar variant of the dining philosophers benchmark consumed 268%
more energy than the forkIO-MVar variant. These results indicate that it is also
possible to exploit software diversity in Haskell in order to improve energy
efficiency.

Similar to previous studies [24, 37], we found that the relationship between
energy consumption and performance is not always clear. High performance is
usually a proxy for low energy consumption. Nonetheless, we found scenarios
where the configuration with the best performance (30% faster than the one with
the worst performance) also exhibited the second worst energy consumption (used
133% more energy than the one with the lowest usage). The scatterplots in Fig. 6.3
illustrate how energy and time are imperfectly aligned. This is different from what

Fig. 6.2 Energy
measurements for the dining
philosophers benchmark,
considering six
combinations of thread
management constructs
(forkIO, forkOn, and
forkOS) and concurrency
control primitives (MVar
and TMVar) [16]

134 W. Oliveira et al.

we would observe, for example, in sequential Haskell collections [16], where the
points would be almost perfectly aligned along the diagonal.

In addition to these results, we propose some guidelines that Haskell developers
can follow to make applications more energy efficient, based on our empirical
results. First, CPU-bound applications should avoid setting more capabilities than
physical cores, since these applications will not benefit from the enhanced thread
switching afforded by hyperthreading7 and similar approaches. Second, they should
use the forkOn function, which attempts to pin threads to specific physical cores, to
create threads in embarrassingly parallel applications. This reduces thread migration
overhead in applications where workloads are evenly distributed among threads and
threads do not have data dependencies. Third, they should avoid using the forkOS
function to spawn new threads. Since this function binds a Haskell thread to an OS
thread, it results in thread switching involving OS threads whenever new Haskell
threads must be executed. Fourth, if energy matters, only use STM if transaction
conflicts are rare. Although transactional memory may improve performance due to
optimistic concurrency, the large number of conflicts can have a strong impact on
energy consumption, even if they do not hinder performance. As mentioned earlier,
for one of the analyzed benchmarks, the variant with the best performance exhibited
more than twice the energy consumption of the most energy-efficient variant.

dining-philosophers

400

200

0

E
n
er
g
y(
J)

E
n
er
g
y(
J)

0.0 2.5 5.0 7.5 10.0 12.5
Time(s) Time(s)

fasta

40000

30000

20000

10000

0
100 200 300

Fig. 6.3 Scatterplots for the relationship between time (x-axis) and energy (y-axis) for two of the
analyzed Haskell benchmarks [16]

7https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-
threading-technology.html

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 135

https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html

6.4 Recommending Java Collections

Developing applications, complex systems that have functional and non-functional
requirements combined to solve a non-trivial problem, can be a difficult task.
Leveraging previously implemented software solutions to solve pieces of these
challenging problems can help to reduce that complexity. Examples of these solu-
tions are libraries, APIs, frameworks, gists,8 and answers from Q&A sites such as
StackOverflow.

In this context, designing and implementing software has become a task of
selecting appropriate solutions among multiple options [15] and combining them
to build working systems. We call energy variation hotspots the programming
constructs, idioms, libraries, components, and tools in a system for which there are
multiple, interchangeable, readily available solutions that have potentially different
energy footprints. A number of previous papers have measured and analyzed
different types of energy variation hotspots, such as programming languages
[18, 40, 41], API usage [9, 21, 42], thread management constructs [16, 24], data
structures [16, 20, 34, 36], color schemes [43, 44], and machine learning approaches
[45], among many others. Having to choose the most energy-efficient solution for an
energy variation hotspot can be difficult for developers, as the energy consumption
of these constructs is usually not easily measurable. Furthermore, information on
how to execute tests to measure the energy impact of different solutions can be hard
to find.

In this section, we present our solution to reduce the energy consumption of
software applications, making it easier for non-specialist developers to exploit
energy variation hotspots. This solution can be separated into three different steps.
In the first step, we exercise the available alternative solutions, aiming to build
energy consumption profiles [34]. In the second step, we analyze the application,
collecting and organizing the usage of the selected energy variation hotspots, in
particular, to estimate how intensively the system uses them. Finally, in the third
step, we combine the energy profile and the results of analyzing the system to make
potentially energy-saving recommendations specific to the application-device pair.
This approach is instantiated in an energy-saving tool called CT+. Using this tool,
non-specialist developers can optimize the energy efficiency of Java collections.

While experimenting with CT+, we selected collections from three different
sources: Java Collections Framework (JCF),9 Apache Commons Collections,10

and Eclipse Collections.11 These sources are widely used on Java projects, with a
query on GitHub projects12 showing 1,276,939 occurrences for Apache Commons,
537,956 occurrences for Eclipse Collections, and 85,865,270 occurrences for the

8https://gist.github.com
9https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
10https://commons.apache.org/proper/commons-collections/
11https://www.eclipse.org/collections/
12These queries were executed in April 2020.

136 W. Oliveira et al.

https://gist.github.com
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://commons.apache.org/proper/commons-collections/
https://www.eclipse.org/collections/

most widely used collection implementations from the JCF. All sources have thread-
safe and thread-unsafe collections.

We implemented CT+ following our approach step by step. In the first step, it
automatically runs multiple micro-benchmarks (i.e., executing specific collection
operations such as List.add(Object o)) for 39 distinct Java collection
implementations in an application-independent manner and builds their energy pro-
files. List, Map, and Set are the three collection APIs targeted by our tool. A
varying number of operations was exercised for each API, with List having
12 operations, Map 4, and Set 3. Our collection pool comprises implementations
from the Java Collections Framework (25 implementations), Apache Commons
Collections (5 implementations), and Eclipse Collections (9 implementations). The
energy consumption profile is built with the data from these micro-benchmarks.

For the second step, an inter-procedural static analysis using WALA13 is
performed on the application source code. This analysis collects and organizes
data on how the application uses collection implementations on its source code,
such as frequency and location of use, which operations were used, method and
variable names, and calling context, among others.

The third and final step consists of combining these two pieces of information,
that is, the energy profile and the analysis of the application. CT+ identifies the most
energy-efficient collection implementations across the whole program and automat-
ically applies these recommendations to the source code. We evaluated CT+ in two
distinct studies, analyzing the impact of different devices and different energy pro-
files, aiming to answer the following four research questions: (RQ1) To what extent
can we improve the energy efficiency of an application by statically replacing Java
collections implementations? (RQ2) Are the recommendations device-independent?
(RQ3) To what extent does workload size impact the energy efficiency of a Java
collection implementation? and (RQ4) Are the recommendations profile-
independent?

6.4.1 Evaluation

The main objective of our evaluation was to compare the energy consumption of the
original versions of software systems with the versions where the recommendations
made by CT+ were applied. This was made across two different studies. Overall, our
evaluation comprises two different execution environments, desktop and mobile,
and six distinct devices.

In the first part of our experiment, our main goal was to evaluate the collection
implementation recommendations made by CT+ (RQ1 and RQ2). On the desktop
environment we executed CT+ across two machines, a notebook and a high-end
server. We labeled the notebook as dell (Dell Inspiron 7000) and the server as server

13http://wala.sourceforge.net/wiki/index.php/Main_Page

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 137

http://wala.sourceforge.net/wiki/index.php/Main_Page

(the same machine described in Sect. 6.3.3). On the mobile environment, we
executed our tool on three smartphones and a tablet: Samsung Galaxy J7 (J7),
Samsung Galaxy S8 (S8), Motorola G2 (G2), and Samsung Galaxy Table 4
(Tab4). In this experiment, we analyzed seven desktop-based software systems,
BARBECUE, BATTLECRY, JODATIME, version 6.0.20 of TOMCAT,
TWFBPLAYER, XALAN, and XISEMELE; two mobile-based software systems,
FASTSEARCH and PASSWORDGEN; and three that work on both environments:
APACHE COMMONS MATH 3.4 (COMMONS MATH for short), GOOGLE GSON, and
XSTREAM.

In the second part of the experiment, we have analyzed the energy impact of three
different strategies to build energy profiles (RQ3 and RQ4) For this study, a single
device was used: a notebook asus (ASUS X555UB). To explore the impact of
different energy profiles on the energy-efficiency behavior of Java collection
implementations, we created three different profiles for asus: small, medium,
and big. These profiles were created to simulate three different scenarios of usage
intensity of the collection implementations: small, to be used for applications that
have a light usage of collections; medium, an intermediate profile, for general
purpose usage; and big to be used on applications that have a very intense usage
of collections. We used as targets systems six applications from the latest version of
Dacapo: BIOJAVA, CASSANDRA, GRAPHCHI, KAFKA, ZXING, and version 9.0.2
of TOMCAT, the latter with two different types of workload: LARGE and HUGE.

To measure the energy consumption of the devices in both studies, we employ
jRAPL to collect the energy data in the desktop environment and the Android
Energy Profiler in the mobile environment. While running our experiments, for
some systems the difference between original and modified versions was not statis-
tically significant. That was the case for TWFBPLAYER, XISEMELE, CASSANDRA,
and KAFKA and for the device Tab4. To better focus on more relevant data, these
results are not presented here. However, all data from every system used in our
experiments can be found at the companion website, https://energycollections.
github.io/.

Across both studies, CT+ performed 1454 changes that impacted the energy
consumption across 17 software systems, 12 targeting a desktop environment,
2 targeting a mobile environment, and 3 that work in both scenarios, for a total of
46 modified versions. The analyzed applications were, for the most part, mature
systems comprising thousands of lines of code (LoC), such as BIOJAVA with
914kLoC, CASSANDRA with 466kLoC, and TOMCAT with 433kLoC. Even without
any prior knowledge of the application domains, CT+ reduced the energy consump-
tion of 13 out of the 17 systems.

Analyzing Different Devices Figure 6.4 summarizes the results of our modifica-
tions on the desktop and mobile devices. For the desktop environment, CT+ made
477 recommendations, with all the modified systems consuming less energy than the
original versions. Among the software systems that only ran on the dell machine,
JODATIME exhibited the greatest improvement, with the modified version consum-
ing 7.13% less than the original one. The modified version of TOMCAT v6 was

138 W. Oliveira et al.

https://energycollections.github.io
https://energycollections.github.io

energy efficient on dell and server, consuming 4.12% and 4.3% less energy,
respectively. We found that, for the same workload, systems running on server
consumed more than twice the energy they consumed on dell.

For both devices we can observe a trend of recommendations to replace well-
known collections from the JCF (Vector, ArrayList, and HashMap) with
alternative sources. For the specific case of XALAN, among the 119 recommendations
across the two desktop machines, just three suggested the use of implementations
from the Java Collections Framework.

On the mobile environment, CT+ made 107 recommendations among the ana-
lyzed devices, with an expressive variation in their effectiveness. Modified versions
of PASSWORDGEN on S8 and J7 devices exhibited significant improvements over
the original versions, consuming 4.7% and 17.34% less energy, but on G2 the
modifications did not have a significant impact. The modified version of GOOGLE
GSON exhibited an improvement of 5.03% on J7; however, the modifications
yielded a small 0.95% improvement on S8. COMMONS MATH had more inconsistent
results. Although the modified version consumed 11.31% less energy than the
original version on S8, this was not the case on G2 and J7, where the modified
versions consumed 1.2% and 0.33% more energy, respectively. Finally,
FASTSEARCH showed statistically significant results only on S8, with the modified
version having a very slight reduction of 0.09% in energy consumption.

Analyzing Different Profiles Figure 6.5 summarizes the results of our modifica-
tions on the three different profiles. Among the modified systems, GRAPHCHI was
the one which presented the best results, with a reduction of 12.73% on small,
11.09% on medium, and 5.30% on big. While executing TOMCAT v9 using the
LARGE workload, CT+ recommendations resulted in a reduction of energy con-
sumed across all profiles. On the other hand, while using the HUGE workload, CT+
modifications did not provide a statistically significant result, with the exception of
the profile small, where the modified version consumed more energy than the
original version, making it less energy efficient.

Among the profiles, there was no overall winner. Each profile had at least one
application with the best energy efficiency. TOMCAT-LARGE consumes less energy

20
15

10
5

0
E

ne
rg

y
R

ed
uc

tio
n

(%
)

dell
server
S8
J7
G2

JodaTime Xalan Barbecue Tomcat Battlecry Xstream CommonsMath Google Gson PassGen FastSearch

Fig. 6.4 Percentage of energy reduction in the study on different devices. Greater is better

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 139

using the recommendations made using the small profile; GRAPHCHI and ZXING
the medium profile; and BIOJAVA the big profile.

There was an expressive variation in the number of implementation changes
across the profiles, with medium having the most with 456 changes, followed by
small with 352, and finally big with 62, for a total of 870 recommendations that
wielded reduced energy consumption.

These changes were not evenly distributed, with some cases having a noticeable
change in the number of recommendations made for an application based on the
profile (e.g., BIOJAVA had 13 times more changes on the profile medium than on
the profile big). The changed collections were also different. As an example, the
number of list implementations changed on big are 5% of the number of list
implementations changed on the other profiles. In addition, the changed collections
were different. As an example, the number of list implementations changed on big
are 5% of the number of list implementations changed on the other profiles. Most of
the time, these recommendations changed an implementation from JCF to an
implementation from one of our alternative sources, i.e., Eclipse Collections or
Apache Commons Collections. More specifically, this was the case for 95% of the
recommendations when using the small profile, 98% for medium, and 60%
for big.

6.4.2 Findings

Analyzing more in depth the results from both studies produced some interesting
lessons.

Java Collections Framework is not the most energy efficient. The majority of
the CT+ recommendations were for collection implementations not in the JCF. In the
desktop environment, only 5.8% of the changes recommended by CT+ used JCF
implementations, while in the mobile environment CT+ recommended JCF collec-
tion implementations in one third of the cases. Across the two different environ-
ments, 91.9% of the recommendations originated from the Apache Common
Collections and Eclipse Collections.

Fig. 6.5 Percentage of energy reduction in the study on different profiles. Greater is better

140 W. Oliveira et al.

Collection popularity does not reflect energy efficiency. Looking at the most
widely used collections in Java projects, i.e., Hashtable, HashMap, HashSet,
Vector, and ArrayList, CT+ changes to them comprise the best part of all
changes made (94.2% on the desktop environment and 94.39% on the mobile
environment). In the specific case of ArrayList, the overall most popular Java
collection by far [19], this happened for two reasons. First, two common operations
(namely, insert(value) and iteration(random)) usually have a worse
performance in ArrayList when compared to other implementations. Second, in
the cases where it was the best implementation, due to its widespread use, it is
already being employed and thus no benefits could be achieved.

The energy behavior varied heavily across devices, even when executing the
same application. Using XALAN as an example, while being analyzed on dell, CT+
recommended ten ArrayList instances to be changed to FastList and one to
NodeCachingLinkedList. This was not the case on server, where CT+
recommended only two instances of ArrayList and suggested the use of
TreeList. Nevertheless, there was an improvement in energy efficiency in both
machines. Another example is XSTREAM. None of the mobile modified versions,
even while consuming less energy, differed statistically from their original version.
This was not the case on dell, where the modified version consumed less energy and
exhibited a statistically significant difference.

The profiles heavily influenced the energy savings.Using the wrong profile can
result in the energy consumption of the application rising instead of dropping, as in
the case of the modified version of TOMCAT, on the profile small and using the
workload with size HUGE. This happened because small was created to use small-
sized collections, and thus it is optimized to that case while HUGE represents exactly
the opposite. This illustrates that even though profile creation is an application-
independent step of the proposed approach, knowledge about actual usage profiles
can be leveraged to produce more useful energy profiles. A better use of the profiles
can be seen in the recommendations applied to TOMCAT using the workload LARGE,
resulting in a positive impact on energy efficiency, with statistical significance in the
three different profiles.

The best implementation is workload-dependent. Among our recommenda-
tions on asus, 95% of list modifications on small and medium were changes from
ArrayList to a different implementation. In BIOJAVA, the system representing
60% of all ArrayList modifications, two operations were the most intensively
used: insert(value) and iteration(iterator). This is reflected in the
collection implementations that most often replace ArrayList in the profiles
small and medium, NodeCachingLinkedList and FastList, respec-
tively, consuming less energy than ArrayList for these two operations. On the
other hand, the profile big did not have a single implementation that had lower
consumption for these operations, with ArrayList outperforming all the other
implementations. Nevertheless, the changes made by CT+ on BIOJAVA resulted in
an improvement in energy efficiency across all profiles.

There is dominance between collections implementations Out of the 39 possi-
ble implementations available to CT+ only 20 were recommended. When trying to

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 141

understand this behavior, we observed that some collection implementations con-
sistently dominate [46] others. An implementation C1 dominates implementation C2

when every operation in the former consumes less energy, on average, than the same
operation in the latter. In this case, the dominated collection is never recommended
by CT+. Among all implementations, ConcurrentHashMap shows a particular
behavior that is worth mentioning. That implementation was changed 26 times on
the desktop environment, 25 out of 26 cases for ConcurrentHashMap(EC).
Nevertheless, ConcurrentHashMap was also recommended 47 times, always
replacing Hashtable. This illustrates that if an implementation is not dominated
by another, there will be cases where it may still perform better.

Energy profile creation is not trivial During our experiments, we noticed that
some factors could make it infeasible to create profiles at a larger scale. Due to the
enormous variance in the execution times of operations, the original process [19] of
creating the energy profiles can take a long time, i.e., hours for desktop devices and
days for mobile devices. To reduce this time we used two approaches. First, we
executed each operation three times, and measured and collected the energy con-
sumption of those operations. In the cases where a relation of dominance was found,
the dominated collection was not included as an option for recommendation. Sec-
ond, we delimited a threshold based on how long each operation could run. This
threshold was based on the fastest operation among all implementations in a specific
group (e.g., insert(start) for thread-safe Lists). Very expensive operations
were discarded if they spent more time than our threshold. In our experiments, this
threshold was set at two orders of magnitude, i.e., 100 times the average time of the
fastest alternative.

6.5 Energy Profiling in the Wild

Addressing energy efficiency within mobile devices is particularly relevant as these
devices have become one of our most used gadgets, and most often run powered by
batteries. As a consequence, battery life is a high-priority concern for users and one
of the major factors influencing consumer satisfaction [5, 6]. On the other hand,
battery life is also important for app developers, as excessive battery consumption is
one of the most common causes for bad app reviews in app stores [47, 48].

As we have already witnessed in the previous section regarding the choice of data
structures, developer decisions can directly impact the energy consumption of a
mobile application (or simply “app”). In general, when considering other factors
such as location services [49], programming languages [18], color Schemes [9, 50],
or code refactorings [51], the use of one available solution over another can have a
non-negligible effect on energy consumption.

Keeping energy usage to a minimum is so important for app developers that IDEs
for the most popular smartphone platforms include energy profilers. However,
profiling for energy within mobile environments is a particularly difficult problem,
and especially within Android, the mobile platform with the largest market share,

142 W. Oliveira et al.

and by a big margin.14 Indeed, Android is a highly heterogeneous platform: in 2015
there were already more than 24,000 Android device models available,15 and a
recent study found that there are more than 2.5 million apps in the Google Play
Store.16 In addition, the Android operating system is currently in its tenth major
release, with multiple minor releases throughout the years. These numbers combined
with the different ways in which apps and devices are used produce a virtually
infinite number of potential usage scenarios.

In this context, profiling for energy consumption has only limited applicability.
Alternatively, one needs to obtain large-scale information about energy use in real
usage scenarios to make informed, effective decisions about energy optimization. In
this section, we describe how we leverage crowdsourcing to collect information
about energy in real-world usage scenarios. We introduce the GreenHub initiative,
https://greenhubproject.org/, which aims to promote collaboration as a path to
produce the best energy-saving solutions. The most visible outcome of the initiative
is a large dataset, called Farmer, that reflects in the wild, real-world usage of Android
devices [17].

The entries in Farmer include multiple pieces of information such as active
sensors, memory usage, battery voltage and temperature, running applications,
model and manufacturer, and network details. This raw data was obtained by
continuous crowdsourcing through a mobile application called BatteryHub. The
collected data is strictly, and by construction, anonymous so as to ensure the privacy
of all the app users. Indeed, it is impossible to associate any data with the user who
originated it. The data collected by BatteryHub is then uploaded to a remote server,
where it is made publicly available to be used by third parties in research on
improving the energy efficiency of apps, infrastructure software, and devices.

In order to foster the involvement of the community, Farmer is available for
download in raw format and can be accessed by means of a backend web app that
provides an overview of the data and makes it available through a REST API. The
dataset can also be queried by means of Lumberjack, a command-line tool for
interacting with the REST API.

Within the GreenHub initiative, we have so far been able to collect a dataset
which is sizable. Thus far it comprises 48+ million unique samples. The dataset is
also diverse. It includes data stemming from 2.5 k + different brands,
15 k + smartphone models, from over 73 Android versions, across 211 countries.

In the remainder of this section, we describe in detail the alternatives that we have
implemented to allow the community to access the data within our dataset. The main
motivation for the section is to foster the engagement of the community in exploring
the data we are providing, in this way contributing to increasing the knowledge on
how energy-saving strategies can be realized within Android devices. We therefore

14https://gs.statcounter.com/os-market-share/mobile/worldwide
15https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-
brands/
16https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 143

https://greenhubproject.org/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

expect that this section will be particularly interesting for researchers and/or practi-
tioners focusing on mobile development, and who have a data mining mindset.

6.5.1 A Collaborative Approach to Android Energy
Consumption Optimization

The success of GreenHub is dependent on its data, and to keep such data coming in
we plan to give back to the community in concrete and valuable ways. In this section,
we focus on the ways that the community can access the data we are collecting.

The initiative relies on an open-source technological platform,17 whose architec-
ture overview is shown in Fig. 6.6. This platform includes our data collection
Android app called BatteryHub, a command-line application interface called Lum-
berjack, and the Farmer REST API for prototyping queries, dashboard interface, and
database for storing data. These components are further defined in the following
sub-sections.

Data Collection is provided by BatteryHub, an Android app whose development
was inspired by Carat [52]. Initially, we forked Carat’s open-source code to take
advantage of the data collection and storage mechanisms. On top of that, we updated
its data model to consider more details on modern devices, such as NFC and
Flashlight usage. In the same spirit as Carat, BatteryHub is entirely open-source.

Fig. 6.6 GreenHub platform architecture

17https://github.com/greenhub-project

144 W. Oliveira et al.

https://github.com/greenhub-project

In contrast with Carat, however, all our collected data is permanently and publicly
available, so as to strongly encourage and help others in collaborating, inspecting,
and/or reusing any artifact that we have developed or collected.

BatteryHub is available at Google’s Play Store,18 and tracks the broadcast of
system events, such as changes to the battery’s state, and, when such an event
occurs, obtains a sample of the device’s current state. BatteryHub either uses the
official Android SDK or custom implementations for universal device compatibility
support, and periodically communicates with the server application (over HTTP) to
upload, and afterwards remove, the locally stored samples. Each sample character-
izes a wide range of aspects that may affect battery usage, such as sensor usage,
temperature, and the list of running applications.

It is important to mention that the data collected from each user is made anony-
mous by design. Each installation of BatteryHub is associated with a random unique
identifier and no personal information, such as phone number, location, or IMEI, is
collected. This means that it is (strictly) not possible to identify any BatteryHub user,
nor is it possible to associate any data with the user from whom it originates.

In regard to sample collection frequency, a new data measurement is collected
(to be sent to our server) when the battery’s state changes. In most cases, this
translates to a sample being sent at each 1% battery change (which accounts for
95% of the time according to our data). The app allows for configurable alerts, e.g.,
when the battery reaches a certain temperature. Our overarching goal is to use
BatteryHub to give suggestions to users, based on their usage profiles, on how to
reduce the energy consumption of their device.

Besides BatteryHub, our infrastructure includes four additional components, as
depicted in Fig. 6.6. We envision that they can be used in different stages of mining
our dataset, which are described in the remainder of this section. Finally, our
infrastructure also includes a web dashboard interface19 that provides access to up-
to-date statistics about the collected samples.

Fast prototyping of queries can be made by using Farmer’s REST API, which
was designed as a means to quickly interface with and explore the dataset. As every
request made to the API must be authenticated, users must first obtain an API key in
order to access the data in this fashion.20 The API provides real-time, selective
access to the dataset and one may query, e.g., all samples for a given brand or OS
version. Since the API is designed according to the REST methodology, this allows
us to incrementally add new data models to be reflected within the API itself as the
data protocol evolves over time. After an API key has been successfully generated,
one may request his/her own user profile from the API:

farmer.greenhubproject.org/api/v1/me?api_token=yourTokenHere

18https://play.google.com/store/apps/details?id¼com.hmatalonga.greenhub
19https://farmer.greenhubproject.org/
20https://docs.greenhubproject.org/api/getting-started.html

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 145

https://play.google.com/store/apps/details?id=com.hmatalonga.greenhub
https://play.google.com/store/apps/details?id=com.hmatalonga.greenhub
https://farmer.greenhubproject.org/
https://docs.greenhubproject.org/api/getting-started.html

Every successful API response is a JSON formatted document, and in this case
the server will reply with the user details, as shown next.

{ "data": {
"id": XX,
"name": "Your Name",
"email": "your@email.com",
"email_verified_at": "YYYY-MM-DD HH:MM:SS",
"created_at": "Mon. DD, YYYY",
"updated_at": "YYYY-MM-DD HH:MM:SS",
"roles": [...] } }

It is now possible to use the API, for example, to list devices:

farmer.greenhubproject.org/api/v1/devices?api_token=yourToken

This request can take additional parameters for page and devices per page. A full
description of all the available parameters for each request can be found in the API
Reference.21

The expected response from the request above is as follows:

{ "data": [
{ "brand": "asus",
"created_at": "2017-10-28 02:51:09",
"id": 2518,
"is_root": false,
"kernel_version": "3.1835+",
"manufacturer": "asus",
"model": "ASUS_X008D",
"product": "WW_Phone",
"os_version": "7.0",
"updated_at": "2017-10-28 02:51:09"

}, ...],
"links": { ... },

"meta": { ... } }

To obtain more detailed information, e.g., about a particular device whose
identifier is 123, it is possible to request its samples:

farmer.greenhubproject.org/api/v1/devices/123/samples?
api_token=yourToken

A complementary approach to interface with the API is to use its command-line
application interface, Lumberjack. Using this tool, users can perform flexible,
on-demand queries to the data repository, to support quick prototyping of data
queries applying different filters and parameters. Furthermore, users can quickly

21https://docs.greenhubproject.org/api-reference/

146 W. Oliveira et al.

https://docs.greenhubproject.org/api-reference/

fetch subsets of the data without the need to download a snapshot of the entire
dataset. The following is an example of a Lumberjack query to obtain the list of
Google brand devices:

$ greenhub lumberjack devices brand:google -o googleDevices.json

The following example queries the dataset for samples whose model is nexus and
that were uploaded before May 31, 2018:

$ greenhub lumberjack samples model:nexus -R ..2018-05-31

Extensive Mining can be conducted from the samples we collected, which are
accessible through Farmer. The dataset is available as a zip archive file, in CSV
format,22 and also in Parquet23 binary format,24 which can be analyzed more
efficiently than a plain text dump. The dataset is also available as a MariaDB
relational database. The samples sent by BatteryHub are queued to be processed
by a PHP server application built using the Laravel framework.25 Each sample is
received as a JSON formatted string that is deconstructed and correctly mapped
within the database.

The (simplified) data model that we employ is shown in Fig. 6.7, where each box
represents a table (or a CSV file) in the dataset. Samples is the most important of
them, including multiple features of varied nature, e.g., the unique sample id, the
timestamp for each sample, the state of the battery (charging or discharging), the
level of charge of the battery, whether the screen was on or not, and the free memory
on the device.

App_Processes is the largest among the tables of the dataset, containing infor-
mation about each running process in the device at the time the sample was collected,
e.g., whether it was a service or an app running in the foreground, its name, and
version. Battery Details provides battery-related information such as whether the

Fig. 6.7 Entity relationship diagram of the dataset

22https://farmer.greenhubproject.org/storage/dataset.7z
23http://parquet.apache.org/
24https://farmer.greenhubproject.org/storage/dataset.parquet.7z
25https://laravel.com/

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 147

https://farmer.greenhubproject.org/storage/dataset.7z
http://parquet.apache.org/
https://farmer.greenhubproject.org/storage/dataset.parquet.7z
https://laravel.com/

device was plugged into a charger or not and the temperature of the battery. Cpu
Statuses indicates the percentage of the CPU under use, the accumulated up time,
and sleep time. Devices provides device-specific information, such as the model and
manufacturer of the device and the version of the operating system running on
it. Network Details groups network-related information, e.g., network operator and
type, whether the device is connected to a wifi network, and the strength of the wifi
signal. The Settings table records multiple yes/no settings for services such as
Bluetooth, location, power saver mode, and NFC, among others. Finally, Storage
Details provides multiple features related to the secondary storage of the device.

6.6 Conclusion

Although developers have recently become more aware of the importance of creat-
ing energy-efficient software systems, they are still missing important knowledge
and tools to help them achieve their goals. In summary, with this chapter we hope to
show the following relevant aspects of green development.

Small changes can make a big difference in terms of energy consumption,
especially in mobile devices. Throughout this chapter we discussed the importance
of diversity and the energy consumption of different pieces of software, such as I/O
APIs, concurrent mechanisms, and Java collections. For every one of these con-
structs, performing modifications to employ diversely designed, more energy-
efficient versions resulted in a reduction in energy consumption, with some cases
only requiring changing a single line of code. Focusing on these energy variation
hotspots can greatly reduce the complexity of improving the energy efficiency of an
application, making it viable for non-specialists to enhance their systems. Knowing
this, developers and researchers can focus on easily exchangeable, power-hungry
aspects of the software to reduce the energy consumption of an application with
minimum effort.

Device variability is a real problem when experimenting on energy consump-
tion. Similar to performance, energy efficiency can be impacted by a number of
factors, at different abstraction levels, including factors that are not obvious for
non-specialists. Factors such as a device’s battery’s age or the room temperature can
have a significant influence on the energy consumption. Even worse, when dealing
with different devices, every decision made by the manufacturer can change the
energy efficiency of the device and turn a seemingly sound experiment into conclu-
sions that only work in specific cases. Knowing this, developers and researchers can
try to mitigate this factor by executing their experiments on a bigger pool of devices,
greatly reducing this bias factor in their results. In case only a single device is
available, its characteristics should be fully presented so other researchers/devel-
opers can have a clear understanding of the results and in which devices they would
be relevant.

Crowdsourcing can be used to see the big picture of energy consumption.
Although very important for several factors, such as studying particular cases and

148 W. Oliveira et al.

learning about energy consumption behavior, controlled experiments on mobile
devices hardly extrapolate to the whole environment. Even when dealing with just
the Android OS, there is so much variability (e.g., OS versions, manufacturers,
device versions) that no controlled experiment will be truly general enough to cover
a significant number of devices and thus have widespread applicably.
Crowdsourcing can be a way to mitigate this by using the data provided by the
users, leveraging thousands of different devices to achieve a truly panoramic view of
the ecosystem as a whole. The biggest problem with the crowdsourcing solution is
that it depends on end-users for the energy samples. Convincing them to provide
their data and, even more importantly, getting enough of it to be statistically relevant
can be arduous. We propose that developers and researchers who want to investigate
the energy behavior of the mobile devices in the Android environment should use the
GreenHub initiative, an already well-established database with millions of data-
points.

References

1. Gelenbe E, Caseau Y (2015) The impact of information technology on energy consumption and
carbon emissions. Ubiquity, 2015 (June)

2. Coroama V, Hilty LM (2009) Energy consumed vs. energy saved by ICT – a closer look. In:
Wohlgemuth V, Page B, Voigt K (eds) Environmental informatics and industrial environmental
protection: concepts, methods and tools. Shaker Verlag, Aachen

3. Andrae A, Edler T (2015) On global electricity usage of communication technology: trends to
2030. Challenges 6(1):117–157

4. Andrews RNL, Johnson E (2016) Energy use, behavioral change, and business organizations:
Reviewing recent findings and proposing a future research agenda. Energy Res Soc Sci
11:195–208

5. Richter F. The most wanted smartphone features. https://www.statista.com/chart/5995/the-
most-wanted-smartphone-features. Accessed 24 Jan 2018

6. Thorwart A, O’Neill D (2017) Camera and battery features continue to drive consumer
satisfaction of smartphones in US. https://www.prnewswire.com/news-releases/camera-and-
battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.
html Last visit: 2019-02-06

7. Hindle A (2012) Green mining: a methodology of relating software change to power consump-
tion. In: 9th IEEE working conference on Mining Software Repositories (MSR), June 2012, pp
78–87

8. Di Nucci D, Palomba F, Prota A, Panichella A, Zaidman A, De Lucia A (2017) Software-based
energy profiling of Android apps: simple, efficient and reliable? In 2017 IEEE 24th international
conference on software analysis, evolution and reengineering (SANER), pp 103–114

9. Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto R, Poshyvanyk D
(2018) Multi-objective optimization of energy consumption of GUIs in android apps. ACM
Trans Softw Eng Methodol 27(3):14:1–14:47

10. Li D, Lyu Y, Gui J, Halfond WGJ (2016) Automated energy optimization of HTTP requests for
mobile applications. In Dillon LK, Visser W, Williams L (eds) Proceedings of the 38th
international conference on software engineering, ICSE 2016, ACM, Austin, TX, May
14–22, 2016, pp 249–260

11. Avizienis A, Kelly JPJ (1984) Fault tolerance by design diversity: concepts and experiments.
IEEE Comp 17(8):67–80

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 149

https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html

12. Randell B (1975) System structure for software fault tolerance. IEEE Trans Softw Eng 1
(2):221–232

13. Rustan Leino K (2017) Accessible software verification with Dafny. IEEE Softw 34(6):94–97
14. Dean J, Barroso LA (2013) The tail at scale. Commun ACM 56(2):74–80
15. Baldwin CY, Clark KB (2000) Design rules, vol 1: the power of modularity. MIT Press
16. Lima LG, Soares-Neto F, Lieuthier P, Castor F, Melfe G, Fernandes JP (2019) On haskell and

energy efficiency. J Syst Softw 149:554–580
17. Matalonga H, Cabral B, Castor F, Couto M, Pereira R, de Sousa SM, Fernandes JP (2019)

GreenHub farmer: real-world data for android energy mining. In 2019 IEEE/ACM 16th
international conference on mining software repositories (MSR), pp 171–175. IEEE

18. Oliveira W, Oliveira R, Castor F (2017) A study on the energy consumption of android app
development approaches. In 2017 IEEE/ACM 14th international conference on mining soft-
ware repositories (MSR)

19. Oliveira W, Oliveira R, Castor F, Fernandes B, Pinto G (2019) Recommending energy-efficient
java collections. In 2019 16th international conference on mining software repositories (MSR),
pp 160–170

20. Pinto G, Liu K, Castor F, Liu YD (2016) A comprehensive study on the energy efficiency of
java thread-safe collections. In ICSME, 2016

21. Rocha G, Castor F, Pinto G (2019) Comprehending energy behaviors of Java I/O APIs. In 2019
ACM/IEEE international symposium on empirical software engineering and measurement
(ESEM), pp 1–12. IEEE

22. Blackburn SM, Garner R, Hoffmann C, Khang AM, McKinley KS, Bentzur R, Diwan A,
Feinberg D, Frampton D, Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Moss JEB,
Phansalkar A, Stefanovic D, VanDrunen T, von Dincklage D, Wiedermann B (2006) The
dacapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on object-oriented programming systems, languages, and
applications, OOPSLA ’06, ACM, New York, NY, pp 169–190

23. Kwon Y-W, Tilevich E (2013) Reducing the energy consumption of mobile applications behind
the scenes. In 2013 IEEE international conference on software maintenance, IEEE Computer
Society, Eindhoven, September 22–28, pp 170–179

24. Pinto G, Castor F, Liu YD (2014) Understanding energy behaviors of thread management
constructs. In Proceedings of the 2014 ACM international conference on object oriented
programming systems languages and applications, OOPSLA ’14, pp 345–360

25. Liu K, Pinto G, Liu D (2015) Data-oriented characterization of application-level energy
optimization. In Proceedings of the 18th international conference on fundamental approaches
to software engineering, FASE’15

26. Chowdhury SA, Sapra V, Hindle A (2016) Client-side energy efficiency of HTTP/2 for web and
mobile app developers. In IEEE 23rd international conference on software analysis, evolution,
and reengineering, SANER 2016, Suita, Osaka, March 14–18, 2016, vol 1. IEEE Computer
Society, pp 529–540

27. Manotas I, Bird C, Zhang R, Shepherd DC, Jaspan C, Sadowski C, Pollock LL, Clause J (2016)
An empirical study of practitioners’ perspectives on green software engineering. In Proceedings
of the 38th international conference on software engineering, ICSE 2016, Austin, TX, May
14–22, 2016, pp 237–248. ACM

28. Pinto G, Castor F, Liu YD (2014) Mining questions about software energy consumption. In
Proceedings of the 11th working conference on mining software repositories, MSR 2014, pp
22–31

29. David H, Gorbatov E, Hanebutte UR, Khanna R, Le C (2010) Rapl: memory power estimation
and capping. In 2010 ACM/IEEE international symposium on low-power electronics and
design (ISLPED), pp 189–194

30. Di Nucci D, Palomba F, Prota A, Panichella A, Zaidman A, De Lucia A (2017) Petra: a
software-based tool for estimating the energy profile of android applications. In 2017 IEEE/
ACM 39th international conference on software engineering companion (ICSE-C), pp 3–6

150 W. Oliveira et al.

31. Gao X, Liu D, Liu D, Wang H, Stavrou A (2017) E-Android: a new energy profiling tool for
smartphones. In 2017 IEEE 37th international conference on distributed computing systems
(ICDCS), pp 492–502

32. Lyu Y, Gui J, Wan M, Halfond WGJ (2017) An empirical study of local database usage in
android applications. In Proceedings of the international conference on software maintenance
and evolution (ICSME), Sept 2017

33. Dyer R, Nguyen HA, Rajan H, Nguyen TN (2015) Boa: Ultralarge-scale software repository
and source-code mining. ACM Trans Softw Eng Methodol 25(1):7:1–7:34

34. Hasan S, King Z, Hafiz M, Sayagh M, Adams B, Hindle A (2016) Energy profiles of java
collections classes. In Proceedings of the 38th international conference on software engineering,
New York, NY, pp 225–236

35. Manotas I, Pollock L, Clause J (2014) Seeds: a software engineer’s energy-optimization
decision support framework. In Proceedings of the 36th international conference on software
engineering, ICSE 2014, pp 503–514

36. Pereira R, Couto M, Saraiva J, Cunha J, Fernandes JP (2016) The influence of the java
collection framework on overall energy consumption. In Proceedings of the 5th international
workshop on green and sustainable software, GREENS ’16, pp 15–21, ACM, New York, NY

37. Trefethen AE, Thiyagalingam J (2013) Energy-aware software: challenges, opportunities and
strategies. J Comput Sci 4(6):444–449

38. Shavit N, Touitou D (1997) Software transactional memory. Distributed Comput 10(2):99–116
39. O’Sullivan B (2009) Criterion: robust, reliable performance measurement and analysis. http://

www.serpentine.com/criterion/. Last access 22 Jan 2019
40. Georgiou S, Spinellis D (2020) Energy-delay investigation of remote inter-process communi-

cation technologies. J Syst Softw 162:110506
41. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JP, Saraiva J (2017) Energy

efficiency across programming languages: How do energy, time, and memory relate? In Pro-
ceedings of the 10th ACM SIGPLAN international conference on software language engineer-
ing, SLE 2017, pp 256–267, ACM, New York, NY

42. Aggarwal K, Zhang C, Campbell JC, Hindle A, Stroulia E (2014) The power of system call
traces: predicting the software energy consumption impact of changes. In Proceedings of 24th
annual international conference on computer science and software engineering, CASCON
2014, pp 219–233. IBM/ACM

43. Li D, Tran AH, Halfond WGJ (2014) Making web applications more energy efficient for OLED
smartphones. In 36th international conference on software engineering (ICSE ’2014), ACM, pp
527–538

44. Linares-Vásquez M, Bavota G, Bernal Cárdenas CE, Oliveto R, Di Penta M, Poshyvanyk D
(2015) Optimizing energy consumption of GUIs in android apps: a multi-objective approach. In
Proceedings of the 2015 10th joint meeting on foundations of software engineering, ESEC/FSE
2015, pp 143–154, ACM, New York, NY

45. Mcintosh A, Hassan S, Hindle A (2019) What can android mobile app developers do about the
energy consumption of machine learning? Empirical Softw Eng 24(2):562–601

46. Peterson M (2009) Decisions under ignorance, pp 40–63. Cambridge introductions to philos-
ophy. Cambridge University Press

47. Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N (2013) Why people hate your app: Making
sense of user feedback in a mobile app store. In Proceedings of the 19th ACM SIGKDD
international conference on knowledge discovery and data mining. ACM, pp 1276–1284

48. Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain
about? IEEE Softw 32(3):70–77

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 151

http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/

49. Lin K, Kansal A, Lymberopoulos D, Zhao F (2010) Energy-accuracy trade-off for continuous
mobile device location. In Proceedings of the 8th international conference on Mobile systems,
applications, and services. ACM, pp 285–298

50. Wan M, Jin Y, Li D, Gui J, Mahajan S, Halfond WGJ (2017) Detecting display energy hotspots
in android apps. Softw Test Verification Reliab 27(6):16–35

51. Couto M, Saraiva J, Fernandes JP (2020) Energy refactorings for android in the large and in the
wild. In Proceedings of the IEEE 27th international conference on software analysis, evolution
and reengineering (SANER ’20), pp 217–228

52. Oliner AJ, Iyer AP, Stoica I, Lagerspetz E, Tarkoma S (2013) Carat: collaborative energy
diagnosis for mobile devices. In Proceedings of the 11th ACM conference on embedded
networked sensor systems, SenSys ’13, Roma, November 11–15, 2013, pp 10:1–10:14. ACM

152 W. Oliveira et al.

Chapter 7
Tool Support for Green Android
Development

Hina Anwar, Iffat Fatima, Dietmar Pfahl, and Usman Qamar

Abstract Mobile applications are developed with limited battery resources in mind.
To build energy-efficient mobile apps, many support tools have been developed
which aid developers during the development and maintenance phases. To under-
stand what is already available and what is still needed to support green Android
development, we conducted a systematic mapping study to overview the state of the
art and to identify further research opportunities. After applying inclusion/exclusion
and quality criteria, we identified tools for detecting/refactoring code smells/energy
bugs, and for detecting/migrating third-party libraries in Android applications. The
main contributions of this study are: (1) classification of identified tools based on the
support they offer to aid green Android development, (2) classification of the
identified tools based on techniques used to offer support to developers, and (3)
characterization of the identified tools based on the user interface, IDE integration,
and availability. The most important finding is that the tools for detecting/migrating
third-party libraries in Android development do not provide support to developers to
optimize code w.r.t. energy consumption, which merits further research.

7.1 Introduction

Global warming due to CO2 emissions has been one of the most prominent envi-
ronmental issues in the past decade. A part of these CO2 emissions is contributed by
the information and communication technology (ICT) industry [1]. Therefore, pro-
ducing green or sustainable products and practices has been the focus of many
researchers in the ICT community. Recently, however, the focus of research in the

H. Anwar (*) · D. Pfahl
Institute of Computer Science, University of Tartu, Tartu, Estonia
e-mail: hina.anwar@ut.ee; dietmar.pfahl@ut.ee

I. Fatima · U. Qamar
College of Electrical and Mechanical Engineering, National University of Sciences and
Technology, Islamabad, Pakistan
e-mail: iffat.fatima@ce.ceme.edu.pk; usmanq@ceme.nust.edu.pk

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_7

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_7&domain=pdf
mailto:hina.anwar@ut.ee
mailto:dietmar.pfahl@ut.ee
mailto:iffat.fatima@ce.ceme.edu.pk
mailto:usmanq@ceme.nust.edu.pk
https://doi.org/10.1007/978-3-030-69970-3_7#DOI

ICT community has shifted from optimizing the energy consumption of hardware to
optimizing the energy consumption of software [2–8], as software indirectly con-
sumes energy by controlling the equipment. An efficiently designed software might
use resources optimally, thus reducing energy consumption [9–11]. Among portable
devices, mobile phones are the most commonly used. Statistics show that the usage
of mobile devices will grow in the coming years [12], indicating an increase in the
carbon footprint.

Green software development encompasses green by software and green in soft-
ware. Green by software means using software products to make other domains of
life more sustainable. Green in software refers to the study and practice of designing,
developing, maintaining, and disposing of software products in such a way that they
have a minimal negative impact on the environment, community, economy, indi-
viduals, and technology [13, 14].

This chapter mostly focuses on green in software and summarizes the tool support
available to improve the green-ability of Android apps in the development and
maintenance phases. The term “Android development” refers to the development
of applications that are developed to operate on devices running the Android
operating system. These applications can be developed in various languages; how-
ever, in this chapter, we focus on Android development in Java. Android develop-
ment differs from traditional software development in terms of context, user
experience, and a touch-based interface. Android applications are designed for
portable devices, which have limited resources such as memory or battery. A
common struggle during Android application development is how to make the
applications efficient in terms of resource usage. Banarjee et al. summarize the
problem nicely as follows: “High computational power coupled with small battery
capacity and the application development in an energy-oblivious fashion can only
lead to one situation: short battery life and an unsatisfied user base” [15].

Previous studies have explored applications in app stores in order to define
procedures to optimize their energy consumption [16–23]. Some studies have
focused on profiling energy [24–28] consumed by applications, while others have
developed support tools [29, 30]. As compared to desktop or web applications,
Android applications contain multiple components that have user-driven workflows.
A typical Android application consists of activities, fragments, services, content
providers, and broadcast receivers. Due to the difference in architecture, the support
tools used in the development of traditional Java-based applications are not so useful
in Android application development and maintenance. Android application code can
be roughly divided into two part: custom code and reusable code. While custom code
is unique to each app, reusable code includes third-party libraries that are included in
apps to speed up the development process.

In the domain of Android application development, research has been focused on
development activities related to energy efficiency, memory usage, performance,
etc., and maintenance activities related to code smell detection and correction,
energy bug detection and correction, detection/migration of third-party libraries, etc.

Code smells are an indication of possible problems in source code or design of the
applications. Such problems can be avoided by refactoring the code [31]. However,

154 H. Anwar et al.

object-oriented code smells are different from Android-specific code smells. In
Android development, code smell can appear due to frequent development and
update cycles of applications. Some studies [32–34] have focused on identifying,
cataloguing, and profiling the energy consumption of Android-specific code smells.
Energy bugs are scenarios which cause unexpected energy drains such as preventing
the mobile device from going into the idle state even after the application execution
has completed. Such malfunctioning can cause battery drain and should be avoided
[15]. To build an energy-efficient Android application developers need to identify
and refactor code smells/energy bugs.

Third-party libraries are reusable components available to implement various
functionalities in the app, such as billing, advertisement, and networking. Up until
June 2020, the online Maven repository1 contained 344,869 unique libraries. Such a
huge supply of third-party libraries is linked to the demands and needs of developers
[35]. Almost 60% of code in Android applications is related to third-party libraries
[36]. However, these libraries could introduce various security-, privacy-,
permission-, and resource usage-related issues in applications [37]. The research
on the detection/migration of third-party libraries has many uses. Some studies have
used third-party library detection techniques for finding security vulnerabilities [38–
41] in Android apps, while others have focused on privacy leaks [42–46]. Third-
party libraries have been detected and removed as noise in clone, app repackage, and
malicious app detection studies [47–51]. Third-party libraries are detected and
removed from these studies in order to improve the accuracy of the analysis. Studies
related to the energy impact of third-party Android libraries are limited [52].

In order to build effective Android-specific support tools to aid green Android
development, we first need to understand what is already available, what is still
needed, and how the problems in existing tools can be overcome. Based on
published literature we outlined an explorative analysis of support tools available
to (1) optimize code in Android applications through code smell detection/
refactoring, and (2) optimize reusable code in Android applications through detec-
tion/migration of third-party libraries. This study extends our previous work [53]
comparing 21 tools in the following ways: we have improved search string and
extended our analysis for one more year, which gave us 30 more tools and also
additional results. We provide further information about the interface, availability,
and integrated development environment (IDE) integration of all 51 tools.

The remainder of this chapter is organized as follows. Section 7.2 presents related
work. Section 7.3 describes the methodology used to analyze the literature.
Section 7.4 presents the result of screening the publications and classification and
analysis. Section 7.5 provides a discussion to identify future research directions.
Section 7.6 provides possible threats to the validity of this study. Section 7.7
concludes the chapter by summarizing the main findings.

1https://search.maven.org/stats, statistics for central repository

7 Tool Support for Green Android Development 155

https://search.maven.org/stats

7.2 Related Work

Secondary studies related to energy efficiency in Android development are scarce.
Some [54–56] have reviewed tools and techniques for improving the quality of Java
projects in the object-oriented paradigm (with regard to performance or
maintainability).

Most Android projects use Java as the programing language; however, the
support tools and techniques used for Java projects reviewed by previous secondary
studies [54–56] cannot be effectively applied to Android projects. Therefore, many
specialized support tools have been developed to improve the quality of Android
apps with regard to maintainability, performance, security, or energy. Li et al. [57]
performed a systematic literature review to analyze static source code analysis
techniques and tools proposed for Android to assess issues related to security,
performance, or energy. The authors have reviewed work published between 2011
and 2015, consisting of 124 studies. The review concluded that the majority of static
analysis techniques only uncover security flaws in Android apps. Degu A
[58]. performed a systematic literature review to classify primary studies with a
focus on resource usage, energy consumption, and performance in Android apps.
The classification is high level based on the main research focus, type of contribu-
tion, and type of evaluation method adopted in selected studies. Their results did not
provide an in-depth review of support tools in green Android development.

Another group of studies has compared the state-of-the-art tools through exper-
iments in order to benchmark their performance, accuracy, and reporting capabili-
ties. Qiu et al. [59] provide a comparison between three static analysis tools:
FlowDroid/IccTA, Amandroid, and Droidsafe. They evaluated these tools using a
common configuration setup and the same set of benchmark applications. Results
were compared to those of previous studies in order to identify reasons for inaccu-
racy in existing tools. Corrodi et al. [60] review the state-of-the-art in Android data
leak detection tools. Out of 87 state-of-the-art tools, they executed five based on
availability. They compared these five tools against a set of known vulnerabilities
and discussed the overall performance of the tools. Ndagi and Alhassan [61] provide
a comparison of machine classifiers for detecting phishing attacks in Adware in
Android applications. This study concluded that many existing machine classifiers,
if adequately explored, could yield more accurate results for phishing detection.

Another group of studies has focused on reviewing the technique related to
security, malware, similarity, and repackaging in Android apps. Cooper et al. [62]
provide an overview of security threats posed by Android malware. They also survey
some common defense techniques to mitigate the impact of malware applications
and characteristics that are commonly found in malware applications that could
enable detection techniques. Li et al. [63] provide a literature review that summarizes
the challenges and current solutions for detecting repackaged apps. They concluded
that many existing solutions merit further research as they are tested on closed
datasets and might not be as efficient or accurate as they claim to be. Roy et al.

156 H. Anwar et al.

[64] provide a qualitative comparison of clone detection techniques and tools. They
classify, compare, and evaluate these tools.

We found some studies that have conducted controlled experiments to measure
the energy consumption of third-party libraries. For example, Wang et al. [65]
presented an algorithmic solution to model the energy minimization problem for
ad prefetching in Android apps. Rasmussen et al. [66] conducted a study to compare
the power efficiency of various methods of blocking advertisements on an Android
platform. They found many cases where ad-blocking software or methods resulted in
increased power usage. In Android applications, there could be many reasons for
long-running operations in the background that continuously consume resources.
Such operations could cause battery drain and performance degradation. Shao et al.
[67] demonstrated through an experiment that sometimes such behavior is not
intentional and is caused by third-party libraries.

However, we could not find any secondary study that provides an overview of the
state of the art w.r.t. to support tools available for detecting/migrating third-party
libraries in Android apps. To the best of our knowledge, none of the previous
secondary studies has reviewed the literature from the point of view of support
tools developed to aid green Android development. Most of the secondary studies
discussed above have covered published work until 2015 or 2017 in the object-
oriented paradigm, and many of the reviewed tools in these studies are now outdated/
obsolete. Therefore, in this study we provide a different view of the literature by
analyzing recently developed support tools for energy profiling, code optimization,
refactoring, and third-party library detection or migration in Android development to
improve energy efficiency in apps. We explore whether these support tools aid green
Android development. We also provide an overview of the techniques used in these
support tools.

7.3 Methodology

We conducted a systematic mapping study following the method described in
[68]. First, we formulated research questions, and then based on those research
questions we formulated two general search queries and conducted the search in
the following online repositories for primary publications: IEEE Xplore, ACM
digital library, Science Direct, and Springer. In this study, we cover publications
from 2014 to June 2020, as from 2014 onwards the focus of many publications has
been Android and energy-efficient app development, indicating a shift in research
focus.

7 Tool Support for Green Android Development 157

7.3.1 Research Questions

As the objective of this study is to analyze the current support tools available to
improve custom code through detection/refactoring of code smell/energy bugs and
to improve reusable code through detection/migration of third-party libraries in
Android applications, we formulated the following research questions.

RQ1: What state-of-the-art support tools have been developed to aid software
practitioners in detecting/refactoring code smells/energy bugs in Android apps?

RQ2: What state-of-the-art support tools have been developed to aid software
practitioners in detecting/migrating third-party libraries in Android apps?

RQ3: How do existing support tools compare to one another in terms of techniques
they use for offering the support?

RQ4: How do existing support tools compare to one another in terms of the support
they offer to practitioners for improving energy efficiency in Android apps?

RQ1and RQ2 aim to classify publications based on the tools they offer. RQ3 aims
to classify and analyze publications based on techniques used in the tool to offer
support to developers. RQ4 deals with the characterization of all the identified tools
in terms of the support (such as output or interface or availability) they offer to
developers to aid green Android development.

7.3.2 Search Query

We derived search terms to use in our search query from the research questions of
this study. We looked for alternatives to the search terms in publications we already
knew and refined our search terms to return the most relevant publications. We used
the “*” operator to cover possible variations on the selected search terms in the
search query. The keyword “OR” was used to improve search coverage.

Based on our previous work [53], we improved our search query and extended
our search in terms of publication years to include one more year. The first search
query is designed to retrieve publications that provide a support tool to detect/
refactor code smells/energy bugs in Android apps. The second search query is
designed to retrieve publications that provide a support tool to detect/migrate
third-party libraries in Android apps.

We did not use the search terms “mobile development,” “apps,” “optimization,”
“green,” “sustainability,” and “recommendation” in isolation as they were too high
level and produced quite a large corpus consisting of a high number of irrelevant
publications, while the search terms “resource leaks,” “API,” “tool,” “framework,”
and “technique”were eliminated to avoid being too specific. The search queries were
applied to popular online repositories (IEEE Xplore, ACM digital library, Science
Direct, and Springer) to find a dataset of relevant primary publications. In each
repository, based on available advanced search options, filters were applied to refine

158 H. Anwar et al.

the query results. Applied filters are shown in Table 7.1. The search queries were
applied to the titles, abstracts, and keywords of the publications.

Search Query 1
Android AND (energy OR code smell OR bug OR refactor* OR correct* OR detect*
OR optimiz* OR efficien*) AND NOT (environ* OR iot OR edu* OR hardware OR
home)

Search Query 2
(Android) AND (“third-party libr*” OR “third-party Android lib*” OR “libr*”)
AND NOT (environ* OR iot OR indus* OR edu* OR hardware OR home)

7.3.3 Screening of Publications

We first removed duplicate results and then defined inclusion, exclusion, and quality
criteria for further screening of search results.

7.3.3.1 Duplicate Removal

The search results from online repositories were first loaded in Zotero2 (an open-
source reference management system) to create a dataset of relevant publications.
Using the feature in Zotero, duplicate publications were removed from the dataset.
Next, we manually applied inclusion, exclusion, and quality criteria to the remaining
publications.

7.3.3.2 Inclusion Criteria

For inclusion, the selected publication should be a primary study generally related to
the software engineering domain with a focus on third-party libraries or code smells
or energy bugs in Android apps. A tool/automated technique for third-party library/
code smell/energy bug detection, modification, or replacement was presented in the
publication to support Android development. We considered only conference and
journal articles published in English.

Table 7.1 Search query filter Filter Value

Publication year 2014–2020 (up until June)

Content-type Journal Article, Conference Paper

2https://www.zotero.org/

7 Tool Support for Green Android Development 159

https://www.zotero.org/

7.3.3.3 Exclusion Criteria

Publications that were unrelated to Android development or third-party library/code
smell/energy bugs in Android apps were excluded. The publications that focused
only on hardware, environmental, security, privacy, networks, malware, clones,
repackaging of apps, obfuscation issues, iOS, or present secondary data were also
excluded. Work presented in a thesis or a book chapter is usually published in
relevant journals or conferences as well. Therefore, doctoral symposium papers,
magazine articles, book chapters, work-in-progress papers, and papers that were not
in English were excluded as well.

7.3.3.4 Quality Criteria

The quality criteria applied to selected publications are shown in Table 7.2. Abstracts
of the publications and structure of the publication were inspected for further quality
assessment. If a quality rule was true for a publication, it was awarded full points;
otherwise, no points were awarded. In case a rule partially applied to a publication,
half points were awarded. After applying all five quality rules, the points were added
to get a final quality score for a publication. A maximum quality score of 3 could be
assigned to a publication. If a publication was below a total quality score of 2, it was
removed from the results.

7.3.4 Classification and Analysis

To answer RQ1–RQ3, we identified the main keywords of the selected publications
along with the commonly used terms in the abstracts to define categories of support
tools. Research methodology and results of selected publications were additionally
studied when needed. We kept extracted data in Excel spreadsheets for further
processing. During data extraction, if there was a conflict of opinion, it was
discussed among the authors until a consensus was reached. To answer RQ1 and

Table 7.2 Quality assessment criteria

ID Description Rating

1 Does the publication clearly state contributions that are directly related to third-
party libraries/code smells/energy bugs in Android apps?

0.5

2 Is the contributions related to green in Android development? 0.5

3 Is the contributions a tool/automated technique that could be used in Android
development/maintenance?

1

4 Is the research method adequately explained? 0.5

5 Are threats to validity and future research directions discussed separately? 0.5

Total 3

160 H. Anwar et al.

RQ2, a bottom-up merging technique was adopted to build our own classification
schemes (see Tables 7.3 and 7.4). Once classification schemes were established, we
extracted data from each selected publication to identify its main contribution and
assigned the tool mentioned in the publication to a category based on the classifica-
tion scheme. To answer RQ3, a classification scheme was needed to classify
techniques used in support tools for offering support to aid Android development.
We used the bottom-up approach to build this classification scheme by combining
the specialized analysis methods/techniques into more generic higher-level tech-
niques. The identified generic techniques along with their definitions are described in
Tables 7.5 and 7.6. Once we had established the classification schemes, we extracted
data from the abstract and research methodology of each selected publication and
assigned it to a category defined in the classification schemes.

To answer RQ4, we extracted data form each selected publication to gather
information about the kind of support the identified tool offers. We compare these
tools based on the inputs of the tool, outputs of the tool, code smells/energy bugs/
third-party libraries coverage, interface type, integrated development environment
(IDE) support, and availability. In general, a code smell is defined as “a surface
indication that usually corresponds to a deeper problem in the system” [69] and an
energy bug is defined as an “error in the system (application, OS, hardware,
firmware, external conditions or combination) that causes an unexpected amount
of high energy consumption by the system as a whole” [70]. A third-party library is a
reusable component related to specific functionality that can be integrated into the
application to speed up the development process. A third-party library could be for
advertising, analytics, Image, Network, Social Media, Utility, etc. [71]. In the light

Table 7.3 Categories of support tools (RQ1)

ID Category Description

CP Profiler A software program that measures the energy consumption of an Android app
or parts of apps

CD Detector A software program that only identifies and detects energy bugs/code smells in
an Android app

CO Optimizer A software program that identifies energy bugs/code smells as well as refactor
source code of an Android app to improve energy consumption

Table 7.4 Categories of support tools (RQ2)

ID Category Description

CI Identifier A software program that only identifies and detects third-party libraries in an
Android app

CM Migrator A software program that identifies third-party libraries as well as helping in
updating or migrating the third-party libraries (to an alternative library or
version) in the source code of an Android app

CC Controller A software program that identifies third-party libraries to control, isolate, or
de-escalate privileges and permissions granted to third-party libraries in an
Android app

7 Tool Support for Green Android Development 161

of these definitions, we looked for Android-specific code smells, energy bugs, and
third-party libraries in the studies.

7.4 Results

In this section, we present the result of the mapping study. The list of selected
publications and additional details about code smells/energy bugs covered by sup-
port tools are shown in a separate file (additional materials).3

Table 7.5 Categories of techniques used in support tools for code smell/energy bugs (RQ3)

ID Technique Definition

T1 Byte Code
Manipulation

A technique that injects code in the Smali files of the app under test.
The injected code is either a log statement or an energy evaluation
function. These statements help determine the part of the source code
that consumes a specific amount of energy at runtime.

T2 Code
Instrumentation

A technique that instruments the app, using instrumented test cases
that are capable of running specific parts of the app, in such a way
that it is run in a specific environment while calling known methods/
classes of the app under test. It uses finite state machines and device-
specific power consumption details to measure energy.

T3 Logcat Analysis A technique that uses system-level log files to obtain energy con-
sumption information provided by the OS for the app under test.
These logs are compared with application-level logs to give graphical
information about the energy consumption of the app.

T4 Static Source Code
Analysis

A technique that uses the source code of the app and analyzes it using
one or a combination of the following methods: control flow graphs
analysis, point-to-analysis, inter-procedural, intra-procedural, com-
ponent call analysis, abstract syntax tree traversal, or taint analysis.

T5 Search-Based
Algorithms

A technique that uses a multi-objective search algorithm to find
multiple refactoring solutions and the most optimal solution is
selected as final refactoring output by iteratively comparing the
quality of design and energy usage.

T6 Dynamic Analysis A technique based on the identification of information flow between
objects at runtime for the detection of vulnerabilities in the app under
test. It monitors the spread of sensory data during different app states.

3Additional material: https://figshare.com/s/da429977adc4e928fd64

162 H. Anwar et al.

https://figshare.com/s/da429977adc4e928fd64

7.4.1 Results of Screening

Search Query 1 (Support Tools for Code Smell/Energy Bugs)
As a result of running search query 1 and applying filters (see Table 7.1) to search
results, 2334 publications were found from the selected online repositories. These
publications were loaded into the Zotero software for the screening and removal of
duplicates, and the total number of publications was reduced to 2241 after duplicate
removal. Inclusion and exclusion criteria were applied to the remaining publications,
and the number was reduced to 575. We read abstracts of these publications and
looked at the structure to assign them a quality score based on quality criteria. After
applying the quality criteria, the number of selected publications was reduced to
24 (see Tables 7.7, 7.8, and 7.9).

Search Query 2 (Support Tools for Third-Party Libraries)
As a result of running search query 2 and applying filters (see Table 7.1) to search
results, 545 publications were found from the selected online repositories. These
publications were loaded into the Zotero software for the screening and removal of
duplicates, and the total number of publications was reduced to 521 after duplicate

Table 7.6 Categories of techniques used in support tools for third-party libraries (RQ3)

ID Technique Description

T7 Feature Similarity A technique that uses machine learning to extract code clusters or
train classifiers by using feature hashing or similarity metrics or
pattern digest or similarity digest on apps and third-party libraries
code in order to identify and classify third-party libraries.

T8 Whitelist
Comparison

A technique that compares third-party library names/versions/
package information to whitelist in order to detect third-party
libraries.

T9 API Hooking A technique that intercepts or redirects API calls at various levels in
order to regulate permission or policy-related operations.

T10 Module Decoupling A technique to divide code into modules and extract code features
such as package name, package structure, and inheritance relation-
ships for clustering/classification to detect library.

T11 Process Isolation A technique to isolate untrusted components in the operating sys-
tem. This technique requires system-level modification.

T12 Class Profile
Similarity

A technique to extract (strict or relaxed) profiles from libraries and
apps code based on structural hierarchies. Based on similarity
(exact or fuzzy) between these profiles library is detected.

T13 Collaborative
Filtering

A technique to predict or recommend third-party libraries based on
feature vectors and their similarity against a set of similar apps or
neighborhood apps. It includes model-based approaches (such as
matrix factorization), memory, and item-based approaches.

T14 Natural Language
Processing

A technique used to identify or recommend third-party libraries
based on textual descriptions. It includes techniques such as word
embedding, skip-gram model, continuous bag-of-words model,
domain-specific relational and categorical tag embedding, and topic
modeling.

7 Tool Support for Green Android Development 163

removal. Inclusion and exclusion criteria were applied to the remaining publications
and the number was reduced to 131. We read abstracts of these publications and
looked at the structure to assign them a quality score based on quality criteria. After
applying the quality criteria, the number of selected publications was reduced to
27 (see Tables 7.10, 7.11, and 7.12).

Table 7.7 Number of studies extracted per online repository (search query 1)

Sr. Repo. # of papers Conference papers Journal articles

1 IEEE Xplore 1170 910 260

2 ACM Digital library 483 459 24

3 Springer 595 362 231

4 Science Direct 86 4 82

Table 7.8 Number of articles per screening step (search query 1)

Sr. Step in the screening of publications # of publications

1 Search string results after applying filters 2334

2 Remove duplicates 2241

3 Apply inclusion and exclusion criteria 575

4 Apply quality criteria 24

Table 7.9 Quality score assigned to each selected publication (search query 1)

Publication ID Quality score

P2, P11, P12, P14, P16, P17, P19, P20 2

P5, P6, P7, P13, P21, P24 2.25

P1, P4, P8, P9, P10, P15, P22, P23 2.5

P3, P18 2.75

Table 7.10 Number of studies extracted per online repository (search query 2)

Sr. Repo. # of papers Conference papers Journal articles

1 IEEE Xplore 312 296 12

2 ACM Digital library 177 157 20

3 Springer 28 22 6

4 Science Direct 28 0 28

Table 7.11 Number of articles after applying filters and screening steps (search query 2)

Sr. Step in the screening of publications # of publications

1 Search string results after applying filters 545

2 Remove duplicates 521

3 Apply inclusion and exclusion criteria 131

4 Apply quality criteria 27

164 H. Anwar et al.

7.4.2 Classification and Analysis

RQ1: What State-of-the-Art Support Tools Have Been Developed to Aid Soft-
ware Practitioners in Detecting/Refactoring Code Smells/Energy Bugs
in Android Apps?
To answer RQ1, the classification scheme defined in Table 7.3 (cf. Sect. 7.3.4) was
used and the selected publications were divided into three categories, i.e., (1) “Pro-
filer,” (2) “Detector,” and (3) “Optimizer,” based on the support tool they offer to aid
green Android development. Table 7.13 gives an overview of the distribution of
selected publications in each category, along with the total number of tools in each
category. Figure 7.1 shows the number of publications each year. The colors in the
bars indicate the number of tools in each category each year from 2014 to 2020. We
can see a decrease in the number of “Profiler” tools while there is an increase in the
number of “Optimizer” tools. In 2019 and 2020 (until June), no new “Detector” tool
was published.

Table 7.12 Quality score assigned to each selected publication (search query 2)

Publication ID Quality score

P31, P43 2

P26, P29, P33, P34, P35, P36, P39, P40, P48, P49 2.25

P25, P27, P28, P30, P32, P37, P38, P41, P42, P44, P45, P46, P47, P50, P51 2.5

Table 7.13 Distribution of studies in each category (search query 1)

ID Selected publications # Tools

CP P6, P14, P16, P12, P13, P20, P19 7

CD P1, P3, P4, P5, P8, P9, P7, P17 8

CO P10, P11, P15, P18, P2, P21, P22, P23, P24 9

Fig. 7.1 Publications per year per category (search query 1)

7 Tool Support for Green Android Development 165

RQ2: What State-of-the-Art Support Tools Have Been Developed to Aid Soft-
ware Practitioners in Detecting/Migrating Third-Party Libraries
in Android Apps?
To answer RQ2, the classification scheme defined in Table 7.4 (cf. Sect. 7.3.4) was
used and the selected publications were divided into the categories (1) “Identifier,”
(2) “Migrator,” and (3) “Controller,” based on the support tool they offer to aid
Android development. Table 7.14 gives an overview of the distribution of selected
publications in each category, along with the total number of tools in each category.
Figure 7.2 shows the number of publications each year. The colors in the bars
indicate the number of tools in each category each year from 2014 to 2020 (until
June). We can see at least one “Identifier” and “Controller” tool each year. In
addition, we can see an increase in the number of “Migrator” tools in 2019 and 2020.

RQ3: How Do Existing Support Tools Compare to One Another in Terms
of Techniques They Use for Offering the Support?
To answer RQ3, we identify techniques used in each tool for improving the energy
efficiency of apps. Tables 7.15 and 7.16 give an overview of tools and techniques

Table 7.14 Distribution of publications in each category (search query 2)

ID Selected publications # Tools

CI P26, P27, P29, P30, P31, P32, P33, P37, P40, P41, P42, P44, P47, P48, P49 16

CM P35, P45, P50, P51 4

CC P25, P28, P34, P36, P38, P39, P43, P46 7

8
7

6
5

4

3
2

1

0

N
O

. O
F

 P
U

B
LI

C
A

T
IO

N
S

2014 2015 2016 2017 2018 2019 2020
YEAR OF PUBLICATION

Identifier Migrator Controller

Fig. 7.2 Publications per year per category (search query 2)

Table 7.15 Overview of support tools (for code smell/energy bug detection and refactoring)
showing the technique used for offering support to developers

Techniques

Ct. T1 T2 T3 T4 T5 T6

CP P6, P16 P12, ‘P13, P19 P14, P20 – – P17

CD – – P1, P3, P7, P8, P9, P4, P5 – –

CO – – – P11, P21, P2, P10, P22, P23, P24 P15 P18

166 H. Anwar et al.

along with reference to selected publications. Based on Table 7.15, we observed that
no tool in any category used a combination of techniques. Each tool could be easily
classified into exactly one category of techniques (defined in Sect. 7.3.4). However,
in Table 7.16, many tools used a combination of techniques such as module
decoupling and feature similarity, or collaborative filtering and natural language
processing.

As a result of fine-tuning search query 1, we were able to identify three new
“Optimizer” tools [P22, P23, and P24] which used static source code analysis to
refactor and optimize the application code. See additional materials3 for more details
on techniques used in the “Profiler,” “Detector,” and “Optimizer” categories.

Identifier “Identifier” tools mostly used feature similarity or module decoupling or
both techniques to detect third-party libraries. The authors of [P26] used similarity
digests (which are similar to standard hashes) and compared them against a database
consisting of original compiled code of third-party libraries. The authors of [P42]
also used similarity digests to measure the similarity between data objects. The
authors of [P49] used design pattern digests, fuzzy signatures, and fuzzy hash to
match design patterns from app and library code. The authors of [P27 and P29]
identified third-party libraries by decoupling an app into modules using package
hierarchy clustering and clustering based on locality sensitive hashing, respectively.
The authors of [P32 and P44] decoupled apps into modules to extract package
dependencies for identifying third-party libraries. The authors of [P33, P37 and
P40] used a combination of module decoupling and feature hashing/digests to
provide a list of detected third-party libraries. The authors of [P47] used whitelist-
based detection for non-obfuscated4 apps and used motifs subgraph-based detection
for obfuscated apps. The authors of [P31] used whitelist-based detection by com-
paring library name and package information against a list of commonly used third-
party libraries. The authors of [P31, P41, and P48] extracted method signatures and

Table 7.16 Overview of support tools (for third-party library detection and migration) showing the
technique used for offering support to developers

Techniques

Ct. T7 T8 T9 T10 T11 T12 T13 T14

CI P26, P42,
P49, P33,
P37, P40

P31,
P47

P27, P29, P32,
P44, P33, P37,
P40, P47

P30,
P41,
P48

CM P45 P35,
P51

P35,
P50

CC P34, P36,
P38, P39,
P43, P46

P28 P25

4Code obfuscation is used to conceal or obscure the code in order to avoid tempering.

7 Tool Support for Green Android Development 167

package hierarchy structures from libraries to build profiles per library and used
these profiles for third-party library identification.

Migrator “Migrator” tools mostly used a combination of collaborative filtering and
natural language processing techniques. The authors of [P35] used collaborative
filtering in combination with topic modeling (applied to the textual description in
readme files). Based on results of topic modeling, similar apps were identified, and
the set of third-party libraries extracted from these similar apps were then used to
recommend libraries to developers. The authors of [P50] applied word embedding
and domain-specific relational and categorical knowledge on stack overflow ques-
tions to recommend alternative libraries. The authors of [P51] used collaborative
filtering and applied the matrix factorization approach to neutralize bias while
recommending libraries. The authors of [P45] used the “LibScout” tool to extract
library profiles. These profiles were then used to determine if a library version should
be updated or not.

Controller “Controller” tools mostly used API hooking techniques to provide
control over library privileges based on policy. The authors of [P34] intercepted
and controlled framework APIs. The authors of [P36] intercepted system APIs to
extract runtime library sequence information. The authors of [P38] tracked the
execution entry of the module and all related asynchronous executions at thread
level. The authors of [P39] used the tool “Soot Spark” to get call graphs in order to
identify Android APIs that leak data (based on a given policy). The authors of [P43]
used binder hooking, in-VM API hooking, and GOT (global offset table) hooking to
regulate permission and file-related operation of third-party libraries. The authors of
[P46] intercepted permissions protected calls and checked them against a compiled
list of third-party libraries in order to regulate privileges. The authors of [P28]
extracted code features and package information to train a classifier to detect libraries
and grant them privileges. The authors of [P25] used system-level process isolation
in order to separate third-party library privileges.

Techniques used to provide support by the various categories of support tools for
detecting and refactoring code smells/energy bugs are as follows:

“Profiler” tools typically use a variety of techniques to measure energy consumption but
none of the tools in this category uses static source code analysis.

Almost all “Detector” and “Optimizer” tools use static source code analysis of APK/SC
based on a predefined set of rules.

Techniques used to provide support by the various categories of support tools for
detecting and migrating third-party libraries are as follows:

“Identifier” tools use a variety of techniques for detecting third-party libraries. However,
feature similarity and/or module decoupling techniques are more frequent.

Almost all “Migrator” tools used collaborative filtering and/or natural language
processing techniques to recommend library migration.

Almost all “Controller” tools used API hooking techniques to control privileges/permis-
sions related to third-party libraries.

168 H. Anwar et al.

RQ4: How Do Existing Support Tools Compare to One Another in Terms
of the Support They Offer to Practitioners for Improving Energy Efficiency
in Android Apps?
To answer RQ4, we first list all the support tools for code smell/energy bug
detection/correction (see Table 7.17) and compare them in terms of input, output,
user interface, integrated development environment (IDE) integration, availability,
and code smell/energy bug coverage. Second, we list all the support tools for
detecting/migrating third-party libraries (see Table 7.18) and compare them in
terms of input, output, library coverage, user interface, availability, and IDE inte-
gration support.

In Tables 7.17 and 7.18, the “input” column provides information about the input
for each tool. The “output” column provides information about the support the tool
offers based on the input. The “UI” column provides information about the user
interface of the tool. The “open source” column provides information about tool
availability for usage/extension. The “IDE” column (in Table 7.17) provides infor-
mation about the IDE integration capability of tools. The “TPL Type” column
(in Table 7.18) provides information about the third-party library (TPL) coverage
of the tool.

Support Tools for Code Smell/Energy Bug Detection and Refactoring
In Table 7.17, we provide a list of all the tools identified in the “Profiler,” “Detector,”
and “Optimizer” categories. As a result of fine-tuning search query 1, we were able
to identify three new “Optimizer” tools [P22, P23, P24] that were not included in our
previous work [53]. For all the 24 tools listed in Table 7.17 we provide additional
information related to interface, availability, and IDE integration that was not
included in previous work [53].

Studies in the category “Profiler” offer support to the practitioners by providing
tools that can measure the energy consumed by the whole/parts of an app or device
sensors used in the apps. The measured information is usually presented to practi-
tioners as graphs for energy consumption over time. Studies in the “Profiler”
category do not recommend when, where, and how practitioners can use the
information from these graphs during development to improve the energy consump-
tion of their apps. Studies in the category “Detector” offer support to practitioners by
developing tools that present as output lists of energy bugs/code smells causing a
change in energy consumption of apps. Studies in the category “Optimizer” offer
support to practitioners by developing tools that present as output refactored source
code of apps optimized for energy. The studies in this category do not explicitly give
the recommendation to the developers about how to optimize the source code for
energy efficiency as the tools automatically refactor the code.

Out of the 24 tools listed in Table 7.17, only seven are open source. Out of the
seven open-source tools, three are “Detector” tools, and four are “Optimizer” tools.
Most of the tools do not offer IDE integration. Four tools in “Optimizer” category
support integration with Eclipse IDE [P11, P18, P21, P24] while one tool [P22]
supports integration with Android Studio IDE. Out of 24 tools, 12 offer command-
line interface (CMD) [P1, P3, P5, P9, P7, P10, P13, P15, P17, P20, P22, P23], eight

7 Tool Support for Green Android Development 169

Table 7.17 List of support tools in “Profiler,” “Detector,” and “Optimizer” categories along with
information about their inputs and outputs, user interface, IDE support, and availability

Ct. Tool Input Output UI IDE
Open
source ID

CP Orka APK ECG GUI No No P6

SEPIA AE ECG GUI No No P12

Mantis PBC Program CRC
predictors

CMD No No P13

AEP* SL,
PID
via
ADB

ECG GUI No No P14

E-Spector SL,
AL
via
ADB

ECG GUI No No P16

SEMA PID,
MVC

Log of EC CMD No No P20

Keong et. al SC ECG GUI + CMD No No P19

CD Wu et al. SC List of energy bugs CMD No No P1

Kim et al. PBC List of energy bugs CMD No No P3

Statedroid APK List of energy bugs CMD No No P5

PatBugs SC List of detected
warnings

NS No No P8

SAAD APK List of energy bugs CMD No No P9

aDoctor SC List of code smells GUI + CMD No Yes P4

GreenDroid PBC,
CF

List of energy bugs +
severity level

CMD No Yes P17

Paprika APK,
PM

List of code smells CMD No Yes P7

CO DelayDroid APK Refactored APK NS No No P2

HOT-
PEPPER

APK Most energy efficient
APK, Refactored SC,
and List of refactoring

CMD No Yes P10

Asyncdroid SC Refactored SC GUI Eclipse No P11

EARMO APK Refactored APK CMD No Yes P15

EnergyPatch APK Refactored APK GUI Eclipse No P18

Nguyen
et al.

SC Refactored SC GUI Eclipse No P21

Chimera SC Refactored APK CMD Android
Studio

No P22

ServDroid APK Refactored APK CMD No Yes P23

Leafactor SC Refactored APK file GUI Eclipse Yes P24

Ct. category, SC source code, APK android package kit, PBC program byte code, SL system log
files, AL application log files, PID process ID, ADB android debug bridge, CRC computational
resource consumption, AE application events, CF configuration files, MVC measurements of
voltage and current, ECG energy consumption graph, SM software metrics values, PM playstore
metadata, GUI graphical user interface, CMD command line, EC energy consumption

170 H. Anwar et al.

Table 7.18 List of support tools in “Identifier,” “Migrator,” and “Controller” categories along with
information about their inputs and outputs, library coverage, UI, and availability

Ct. Tool Input Output
TPL
Type UI

Open
source Ref

CI Duet APK Library integrity
pass/fail ratio

Java NS No P26

AdDetect APK List of detected TPLs Java-
Ad

NS No P27

AnDarwin APK Detect and exclude
TPLs + Set clone or
rebranded apps

Java NS No P29

LibScout TPL .jar/.
aar + APK

Presence of given
TPL based on simi-
larity score

Java CMD Yes P30

DeGuard APK De-obfuscated APK
(containing detected
TPLs)

Java GUIa Yes P31

LibSift APK List of detected TPLs Java NS No P32

LibRadar APK List of detected TPLs
sorted by popularity
+ info about TPLs

Java GUIa Yes P33

LibD APK List of detected TPLs Java CMD Yes P37

Ordol APK List of detected TPL
versions + similarity
score.

Java NS No P40

LibPecker TPL name +
APK

Presence of given
TPL based on the
similarity score

Java NS No P41

Orlis APK List of detected TPLs Java NS Yes P42

PanGuard APK List of detected TPLs Java GUIa No P44

He et al. APK List of detected TPLs
+ risk assessment

Java NS No P47

Feichtner
et al.

APK/TPL List of detected TPLs
and versions + simi-
larity score

Java CMDb Yes P48

DPAK APK/
Android jar

List of detected TPLs Java CMDb No P49

CM AppLibRec SC List of recommended
TPLs

Java NS No P35

Appcommune APK Tailored app without
TPLs and updated/
customized TPLs

Java GUIc No P45

SimilarTech TPL name List of recommended
TPLs + information
about usage

Java GUIa No P50

LibSeek APK List of recommended
TPLs

Java NS No P51

(continued)

7 Tool Support for Green Android Development 171

tools offer graphical user interface (GUI) [P6, P11, P12, P14, P16, P18, P21, P24],
and two tools offer both [P4, P19], while for the rest of them information about
interface is not specified in the publications.

See additional material3 for details about definitions of code smells/energy bugs
covered by tools in the “Detector” and “Optimizer” categories. Figure 7.3 shows the
Android energy bug coverage of tools in the “Detector” and “Optimizer” categories.
The Android energy bugs are shown on the horizontal axis. The percentage of tools
in the “Detector” and “Optimizer” categories covering Android energy bugs is
shown on the vertical axis. We can see that Android energy bugs “TMV,” “TDL,”
“UL,” “UP,” and “VBS” are detected by 13% of the tools, whereas “RL,” “WB,” and
“NCD” are detected by 75%, 50%, and 38% of the tools in the “Detector” category
respectively. None of the tools in the “Optimizer” category covers. “TMV,” “TDL,”

Table 7.18 (continued)

Ct. Tool Input Output
TPL
Type UI

Open
source Ref

CC NativeGuard APK Split original APK
into Service APK and
Client APK

Native CMD No P25

Pedal APK Repackaged APK
with privilege
de-escalated for
detected TPLs

Java-
Ad

GUIc No P28

LibCage SC + list of
permissions
required by
TPLs

Deny unnecessary
TPL permission on
runtime

Java+
Native

NS No P34

Zhan et al. SC + Policy Grant or deny per-
missions to TPLs
based on policy

Java NS No P36

Perman APK Grant or deny per-
missions to TPLs
based on policy

Java GUIc No P38

SurgeScan TPL bytecode
+ Android.jar
+ policy

Dex and jar files of
TPL with the policy
implemented

Java NS No P39

AdCapsule SC + policy Grant or deny per-
missions to TPLs
based on policy

Java-
Ad

NS No P43

Reaper APK Grant or deny per-
missions to TPLs
based on user
preference

Java +
Native

GUIc Yes P46

Ct. category, UI user interface, SC source code, APK android package kit, TPL third-party libraries,
GUI graphical user interface, CMD command-line interface, NS not specified in publication
aWeb service
bExecutable jar
cApp on Android device

172 H. Anwar et al.

“UL,” and “UP” energy bugs. On the other hand, energy bugs “IB,” “OLP,” “VHB,”
and “EMC” are covered by tools in the “Optimizer” category, whereas none of the
tools in the “Detector” category covers them. “RL” and “VBS” energy bugs are
detected by 44% of the tools in the “Optimizer” category.

Figure 7.4 shows the Android code smell coverage of tools in the “Detector” and
“Optimizer” categories. The Android code smells are shown on the vertical axis. The
percentage of tools in the “Detector” and “Optimizer” categories covering Android
code smells is shown on the horizontal axis. We can see that Android code smells
“ERB” and “VHP” are not detected by any tool in the “Detector” category, whereas
“LWS,” “LC,” “RAM,” “PD,” “ISQLQ,” “IDFP,” “DW,” “DR,” and “DTWC” are
not detected by any of the tools in the “Optimizer” category. Android code smells
such as “IOD,” “HBR,” “HSS,” “HAT,” “IWR,” “UIO,” “BFU,” “UHA,” “LWS,”
“LC,” “SL,” “RAM,” “PD,” “NLMR,” “MIM,” “LT,” “IDS,” “IDFP,” “DW,”
“DR,” and “DTWC” are detected by 13–25% of the tools in the “Detectors”
category.

Typical support given by the various categories of support tools for detecting and
refactoring code smells/energy bugs are as follows:

“Profiler” tools support developers by visualizing the energy consumption of the whole app
or parts of it.

“Detector” tools support developers with lists of energy bugs and code smells to be
manually fixed by the developer for energy improvement.

“Optimizer” tools support developers by automatically refactoring APK/SC versions
based on predefined rules.

Fig. 7.3 Percentage of the tools in “Detector” and “Optimizer” categories that can detect Android
energy bugs (RL resource leak, WB wake-lock bug, VBS vacuous background services, IB immor-
tality bug, TMV too many views, TDL too deep layout, NCD not using compound drawables, UL
useless leaf, UP useless parent, OLP obsolete layout parameter, VHB view holder bug, EMC
excessive method calls)

7 Tool Support for Green Android Development 173

Support Tools for Third-Party Library Detection and Migration
In Table 7.18, we provide a list of all the tools identified in the “Identifier,”
“Migrator,” and “Controller” categories. Publications in the category “Identifier”
offer support to practitioners by providing tools that detect third-party libraries
present in the apps. The information is usually presented to practitioners as a list
of detected libraries along with their version/similarity scores. Publications in the
category “Migrator” offer support to practitioners by developing tools that present as
output lists of recommended third-party libraries. Publications in the category
“Controller” offer support to practitioners by developing tools that present as output
policy-based privilege/permission control over third-party libraries. Most tools in the
“Identifier,” “Migrator,” and “Controller” categories provide coverage for all types
(advertisement, social, network, billing, analytics, etc.) of Java-based third-party
libraries. Some tools such as AdDetect (CI) or Pedal (CC) cover only the
advertisement-related third-party libraries. NativeGuard (CC) provides coverage
for only native third-party libraries. Reaper (CC) and LibCage (CC) provide cover-
age for native and Java-based third-party libraries. For many tools listed in

Fig. 7.4 Percentage of code smells detected by each tool in “Detector” and “Optimizer” categories.
DTWC data transmission without compression, DR debuggable release, DW durable wake-lock,
IDFP inefficient data format and parser, IDS inefficient data structure, ISQLQ inefficient SQL
query, IGS internal getter and setter, LIC leaking inner class, LT leaking thread, MIM member
ignoring method, NLMR no low memory resolver, PD public data, RAM rigid alarm manager, SL
slow loop,UC unclosed closeable, LC lifetime containment, LWS long wait state,UHA unsupported
hardware acceleration, BFU bitmap format usage, UIO UI overdraw, IWR invalidate without rect,
HAT heavy AsyncTask, HSS heavy service start, HBR heavy broadcast receiver, IOD init ONDraw,
ERB early resource binding, VHP view holder pattern

174 H. Anwar et al.

Table 7.18, interface type was not specified in publications, while others provide
either a command-line interface (CMD) or a graphical user interface (GUI). Out of
the 27 tools listed in Table 7.18, only seven tools are open source. Out of the seven
open-source tools, six tools [P30, P31, P33, P37, P42, P48] are “Identifier” tools and
one tool [P46] is a “Controller” tool. None of the tools listed in Table 7.18 provides
IDE integration support.

The tools in the “Identifier,” “Migrator,” and “Controller” categories do not detect/update/
control/migrate third-party libraries to optimize the source code of Android applications for
energy efficiency.

Typical support given by the various categories of support tools for detecting and
migrating third-party libraries are as follows:

“Identifier” tools support developers by detecting third-party libraries present in apps.
“Migrator” tools support developers with lists of recommended third-party libraries

along with the mapping information of these libraries for updating/migrating them.
“Controller” tools support developers by separating third-party library privileges from

the app privileges based on policy defined by developers.

7.5 Discussion

In this section, we discuss the results of the mapping study to identify future research
opportunities.

7.5.1 Support Tools for Code Smell/Energy Bug Detection
and Refactoring

We observed that most of the support tools in the “Profiler,” “Detector,” and
“Optimizer” categories are not open source, making them inaccessible to many
developers. On top of that, most of these support tools do not support IDE integra-
tion. Due to the rapid development process of Android applications, developers are
more likely to use tools that are integrated with the IDEs and share the same interface
design. The current state-of-the-art tools could be extended to integrate with other
industrially famous code analyzers like Android Lint, Check Style, Find Bugs and
PMD. Each tool in “Detector” and “Optimizer” category provided a limited coverage
over Android-specific code smells/energy bugs. The industry relevance of the
current state-of-the-art support tools might not be obvious because they are not
evaluated in industrial settings. In principle, if developers spent time and effort to
learn one such tool they still might not be able to identify many code smells/energy
bugs in their code, unless they use a combination of these tools to get complete
coverage. Most tools in the “Detector” and “Optimizer” categories used static source
code analysis, which indicates that dynamic issues such as those related to

7 Tool Support for Green Android Development 175

asynchronous tasks are not covered by these tools. For the development of better
support tools, hybrid techniques encompassing both dynamic and static analysis
could be used. In addition, non-intrusive techniques could be used to collect software
metrics for identifying code smells/energy bugs. The results from the selected
publications could be expanded to include cross-project predictions and corrections
for energy bugs. Analysis and inclusion of multi-threaded programming approaches
in the experiments could be another direction for future researchers.

7.5.2 Support Tools for Third-Party Library Detection
and Migration

We observed that none of the support tools in the “Identifier,” “Migrator,” and
“Controller” categories provides support for IDE integration and many of these tools
are also not open source, making them inaccessible to developers. We also observed
the none of the support tools in these categories offers any support to developers to
aid green Android development. One possible reason could be that so far research
related to third-party library identification is mostly used in clone detection, detec-
tion of rebranded/similar/malicious apps, and detection of issues related to security,
privacy, or data leaks (see related work). However, there is a gap in the literature
regarding support tools that identify/update/recommend third-party libraries to aid
green Android development. Anwar et al. [52] have investigated the energy con-
sumption of third-party libraries in Android applications, indicating that the energy
consumption of alternative third-party libraries varies significantly in various use
cases. Rasmussen et al. [66] showed that blocking advertisements in Android apps
reduces energy consumption. However, these studies have only focused on a small
subset of network- and advertisement-related libraries. Energy consumption of other
types of libraries such as social, analytical, or utility has not yet been explored, and
merits further research. Data from such studies could be used by tool developers to
recommend energy-efficient libraries to developers during development. Support
tools in the “Migrator” category are good candidates for this type of research as the
collaborative filtering and natural language processing techniques could supplement
the data gathered from energy reading of third-party libraries. Such information
could be useful in mapping the function of one library to another alternative library
for a smooth migration. Support tools in the “Identifier” category generally use two
techniques: (a) whitelist-based and (b) similarity-based. Tools that used whitelist-
based approaches are fast due to a smaller feature set, and thus could perform better
in large-scale analysis. However, this technique cannot identify third-party libraries
without prior knowledge. On the other hand, tools that use similarity-based
approaches such as feature hashing use a larger feature set and can identify third-
party libraries without prior knowledge. Due to the extended feature set, these tools
might be more accurate but time-consuming. Many tools in the “Identifier” category
(such as “LibD,” “LibScout,” “LibRadar,” or “AdDetect”) consider code

176 H. Anwar et al.

obfuscation during library detections in order to give accurate results. However, not
many tools are resilient against code shrinking as they rely on package hierarchies.
Support tools in the “Controller” category rely on API hooking techniques which
separate libraries from app code. Such tools could also benefit from using an access
control list to split privileges. Because current techniques require system-level
changes, this makes the deployment of “Controller” tools difficult.

7.6 Threats to Validity

The search queries and classification of selected publications could be biased by the
researcher’s knowledge. We mitigated this threat by defining the inclusion, exclu-
sion, and quality criteria for the selection of the publications. Conflicting opinions
were discussed among authors of this study until a consensus was reached. In order
to avoid false-positives and false-negatives in the search results, we used the
wildcard character (*) to maximize coverage and the keyword “AND NOT” to
remove irrelevant studies. We did not use the terms “energy” or “efficiency” in
combination with “Android” in the second search query, as we had already executed
this combination in search query 1. The results of the search strings were manually
checked and further refined by the authors. Online repositories continuously update
their databases to include new publications, and therefore executing the same queries
might yield some additional results that were not included in this study. We already
knew about many relevant studies and we recaptured almost 90% of them when we
executed the search queries. On each online repository the search mechanism is
slightly different and we tried to keep the queries as consistent as possible, but there
might be a slight difference due to the difference in search mechanism provided by
different online repositories. Some selected publications use the terms code smells
and energy bugs interchangeably, which could affect the classification. To mitigate
this threat, we used the selected definitions (cf. Sect. 7.3.4) for code smells and
energy bugs to correctly classify the studies in the right category.

We have excluded publications that did not focus on Android development yet
still contributed a tool for detecting/recommending third-party libraries. Maven
central repository contains a huge quantity of Java-based third-party libraries that
can be used in any Java-based application. However, in this study, we focused
particularly on the support tools for energy profiling, code optimization and
refactoring of code smells/energy bugs, and detection/migration of third-party
libraries to help aid green Android development. Other types of support tools,
such as tools for style checking, interface optimization, test generation, requirement
engineering, and code obfuscation, were not in the scope of this study. Therefore,
while applying inclusion/exclusion criteria, we filtered support tools such as
“LibFinder,” LibCPU, CrossRec, and RAPIM [72–75]. These tools could identify/
recommend third-party libraries but they were not designed to be used specifically
with Android applications. We plan to cover such tools in future work.

7 Tool Support for Green Android Development 177

7.7 Conclusions

We conducted a mapping study to give an overview of the state of the art and to find
research opportunities with respect to support tools available for green Android
development. Based on our analysis we identified tools for detecting/refactoring
code smells/energy bugs, which were classified into three categories: (1) “Profiler,”
(2) “Detector,” and (3) “Optimizer.” Additionally, we identified tools for detecting/
migrating third-party libraries in Android applications, which were classified into
(1) Identifier, (2) Migrator, and (3) Controller categories. The main findings of this
study are that most “Profiler” tools provide a graphical representation of energy
consumption over time. Most “Detector” tools provide a list of energy bugs/code
smells to be manually corrected by a developer for the improvement of energy. Most
“Optimizer” tools automatically convert original APK/SC into a refactored version
of APK/SC. Tools in the “Identifier,” “Migrator,” and “Controller” categories do not
provide support to developers to optimize code w.r.t. energy consumption. The most
typical technique in the “Detector” and “Optimizer” categories was static source
code analysis using a predefined set of code smells and rules. The most typical
techniques in the “Identifier” category were module decoupling and feature similar-
ity, while in the “Migrator” and “Controller” categories, API hooking and collabo-
rative filtering in combination with natural language processing were used,
respectively.

Acknowledgments This work was supported by the Estonian Center of Excellence in ICT
research (EXCITE), the group grant PRG887 funded by the Estonian Research Council, and the
Estonian state stipend for doctoral studies.

References

1. GeSI (2015) #SMARTer2030 ICT solutions for 21st century challenges. Accessed 06 Jun 2020.
http://smarter2030.gesi.org/downloads/Full_report.pdf

2. Acar H (2017) Software development methodology in a Green IT environment. Université de
Lyon

3. Calero C, Piattini M (2015) Introduction to green in software engineering. In: Calero C, Piattini
M (eds) Green in software engineering. Springer International Publishing, Cham, pp 3–27

4. Chauhan NS, Saxena A (2013) A green software development life cycle for cloud computing.
IT Prof 15(1):28–34. https://doi.org/10.1109/MITP.2013.6

5. Federal Ministry for Economic Affairs and Energy (2014) Energy-efficient ICT in practice:
planning and implementation of GreenIT measures in data centres and the office

6. Jagroep E, van der Werf JM, Brinkkemper S, Blom L, van Vliet R (2017) Extending software
architecture views with an energy consumption perspective. Computing 99(6):553–573. https://
doi.org/10.1007/s00607-016-0502-0

7. Kumar S, Buyya R (2012) Green cloud computing and environmental sustainability.
Harnessing Green It Princ Pract:315–339. https://doi.org/10.1002/9781118305393.ch16

8. Oyedeji S, Seffah A, Penzenstadler B (2018) A catalogue supporting software sustainability
design. Sustainability 10(7):2296. https://doi.org/10.3390/su10072296

178 H. Anwar et al.

http://smarter2030.gesi.org/downloads/Full_report.pdf
https://doi.org/10.1109/MITP.2013.6
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1002/9781118305393.ch16
https://doi.org/10.3390/su10072296

9. Gupta PK, Singh G (2012) Minimizing power consumption by personal computers: a technical
survey. Int J Inf Technol Comput Sci 4(10):57–66. https://doi.org/10.5815/ijitcs.2012.10.07

10. Kern E et al (2018) Sustainable software products—towards assessment criteria for resource
and energy efficiency. Futur Gener Comput Syst 86(3715):199–210. https://doi.org/10.1016/j.
future.2018.02.044

11. Murugesan S, Gangadharan GR (2012) Green IT: an overview. In: Murugesan S, Gangadharan
GR (eds) Harnessing green IT: principles and practices. Wiley, pp 1–21

12. Egham (2018) Gartner says worldwide end-user device spending set to increase 7 percent in
2018; global device shipments are forecast to return to growth. Gartner, Press Releases.
Accessed 11 Feb 2019. https://www.gartner.com/en/newsroom/press-releases/2018-04-05-
gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-
device-shipments-are-forecast-to-return-to-growth

13. Penzenstadler B, Femmer H (2013) A generic model for sustainability with process- and
product-specific instances. In: Proceedings of the 2013 Workshop on Green by Software
Engineering, pp 3–7. doi:https://doi.org/10.1145/2451605.2451609

14. Raturi A, Tomlinson B, Richardson D (2015) Green software engineering environments. In:
Green in software engineering. Springer International Publishing, pp 31–59

15. Banerjee A, Chong LK, Chattopadhyay S, Roychoudhury A (2014) Detecting energy bugs and
hotspots in mobile apps. In: Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering - FSE, vol 16–21-Nov, pp 588–598, doi: https://doi.org/
10.1145/2635868.2635871

16. Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) AndroZoo: collecting millions of Android
apps for the research community. In: Proceedings of the 13th international workshop on mining
software repositories - MSR, May 2016, pp 468–471, doi: https://doi.org/10.1145/2901739.
2903508

17. Anwar H, Pfahl D (2017) Towards greener software engineering using software analytics: a
systematic mapping. In: Proceedings of the 43rd Euromicro conference on software engineering
and advanced applications -SEAA, Aug 2017, pp 157–166, doi: https://doi.org/10.1109/SEAA.
2017.56

18. Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2017) A survey of app store analysis for
software engineering. IEEE Trans Softw Eng 43(9):817–847. https://doi.org/10.1109/TSE.
2016.2630689

19. Oliveira W, Oliveira R, Castor F (2017) A study on the energy consumption of android app
development approaches. In: Proceedings of the IEEE/ACM 14th international conference on
mining software repositories - MSR, May 2017, pp 42–52, doi: https://doi.org/10.1109/MSR.
2017.66

20. Rawassizadeh R (2010) Mobile application benchmarking based on the resource usage moni-
toring. Int J Mob Comput Multimed Commun 1(4):64–75. https://doi.org/10.4018/jmcmc.
2009072805

21. Viennot N, Garcia E, Nieh J (2014) A measurement study of google play. ACM SIGMETRICS
Perform Eval Rev 42(1):221–233. https://doi.org/10.1145/2637364.2592003

22. Wang H et al (2017) An explorative study of the mobile app ecosystem from app developers’
perspective. In: Proceedings of the 26th international conference on World Wide Web, pp
163–172, doi:https://doi.org/10.1145/3038912.3052712

23. Wang H et al (2018) Beyond Google play: a large-scale comparative study of Chinese Android
App Markets. ArXiv, vol 1810.07780, Sep 2018. http://arxiv.org/abs/1810.07780

24. Ardito L, Procaccianti G, Torchiano M, Migliore G (2013) Profiling power consumption on
mobile devices. In: Proceedings of the third international conference on smart grids, green
communications and IT Energy-aware Technologies, pp 101–106

25. Azevedo L, Dantas A, Camilo-Junior CG. DroidBugs: an android benchmark for automated
program repair. ArXiv, vol abs/1809.0, 2018 [Online]. http://arxiv.org/abs/1809.07353

7 Tool Support for Green Android Development 179

https://doi.org/10.5815/ijitcs.2012.10.07
https://doi.org/10.1016/j.future.2018.02.044
https://doi.org/10.1016/j.future.2018.02.044
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://doi.org/10.1145/2451605.2451609
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.4018/jmcmc.2009072805
https://doi.org/10.4018/jmcmc.2009072805
https://doi.org/10.1145/2637364.2592003
https://doi.org/10.1145/3038912.3052712
http://arxiv.org/abs/1810.07780
http://arxiv.org/abs/1809.07353

26. Chung YF, Lin CY, King CT (2011) ANEPROF: energy profiling for android java virtual
machine and applications. In: Proceedings of the international conferences on parallel and
distributed systems - ICPADS, pp 372–379, doi: https://doi.org/10.1109/ICPADS.2011.28

27. Kansal A, Zhao F (2008) Fine-grained energy profiling for power-aware application design.
ACM SIGMETRICS Perform Eval Rev 36(2):26. https://doi.org/10.1145/1453175.1453180

28. Pathak A, Hu YC, Zhang M (2012) Where is the energy spent inside my app? Fine Grained
Energy Accounting on Smartphones with Eprof. EuroSys, pp 29–42, Accessed 04 Apr 2018.
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.
pdf

29. Banerjee A, Roychoudhury A (2016) Automated re-factoring of Android apps to enhance
energy-efficiency. In: Proceedings of the international workshop on mobile software engineer-
ing and system - MOBILESoft, pp 139–150, doi: https://doi.org/10.1145/2897073.2897086

30. Fernandes TS, Cota E, Moreira AF (2014) Performance evaluation of android applications: a
case study. In: Proceedings of the Brazilian symposium on computing system engineering, Nov
2014, vol 1998-Jan, pp 79–84, doi: https://doi.org/10.1109/SBESC.2014.17

31. Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley
32. Hecht G, Rouvoy R, Moha N, Duchien L (2015) Detecting antipatterns in android apps. In:

Proceedings of the 2nd ACM international conference on mobile software engineering and
systems, MOBILESoft, Sep 2015, pp 148–149, doi: https://doi.org/10.1109/MobileSoft.
2015.38

33. Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2017) Lightweight detection of
Android-specific code smells: the aDoctor project. In: Proceedings of the 24th IEEE interna-
tional conference software analysis evolution and reengineering - SANER, pp 487–491. doi:
https://doi.org/10.1109/SANER.2017.7884659

34. Rasool G, Ali A (2020) Recovering android bad smells from android applications. Arab J Sci
Eng 45(4):3289–3315. https://doi.org/10.1007/s13369-020-04365-1

35. Xu B, An L, Thung F, Khomh F, Lo D (2020) Why reinventing the wheels? An empirical study
on library reuse and re-implementation. Empir Softw Eng 25(1):755–789. https://doi.org/10.
1007/s10664-019-09771-0

36. Wang H, Guo Y (2017) Understanding third-party libraries in mobile app analysis. In: Pro-
ceedings of the IEEE/ACM 39th international conference on software engineering companion,
pp 515–516, doi: https://doi.org/10.1109/ICSE-C.2017.161

37. Zhan J, Zhou Q, Gu X, Wang Y, Niu Y (2017) Splitting third-party libraries’ privileges from
android apps. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol 10343 LNCS, Springer, pp
80–94

38. Gkortzis A, Feitosa D, Spinellis D (2019) A double-edged sword? Software reuse and potential
security vulnerabilities. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 11602 LNCS, pp
187–203, doi: https://doi.org/10.1007/978-3-030-22888-0_13

39. Ikram M, Vallina-Rodriguez N, Seneviratne S, Kaafar MA, Paxson V (2016) An analysis of the
privacy and security risks of android VPN permission-enabled apps. In: Proceedings of the
ACM SIGCOMM internet measurement conference - IMC, vol 14–16-Nov, pp 349–364, doi:
https://doi.org/10.1145/2987443.2987471

40. Mazuera-Rozo A, Bautista-Mora J, Linares-Vásquez M, Rueda S, Bavota G (2019) The
Android OS stack and its vulnerabilities: an empirical study. Empir Softw Eng 24
(4):2056–2101. https://doi.org/10.1007/s10664-019-09689-7

41. Ogawa H, Takimoto E, Mouri K, Saito S (2018) User-side updating of third-party libraries for
android applications. In: Proceedings of the sixth international symposium on computing and
networking workshops - CANDARW, Nov 2018, pp 452–458, doi: https://doi.org/10.1109/
CANDARW.2018.00088

42. Binns R, Zhao J, Van Kleek M, Shadbolt N (2018) Measuring third-party tracker power across
web and mobile. ACM Trans Internet Technol 18(4). doi: https://doi.org/10.1145/3176246

180 H. Anwar et al.

https://doi.org/10.1109/ICPADS.2011.28
https://doi.org/10.1145/1453175.1453180
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.pdf
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.pdf
https://doi.org/10.1145/2897073.2897086
https://doi.org/10.1109/SBESC.2014.17
https://doi.org/10.1109/MobileSoft.2015.38
https://doi.org/10.1109/MobileSoft.2015.38
https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1007/s13369-020-04365-1
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1109/ICSE-C.2017.161
https://doi.org/10.1007/978-3-030-22888-0_13
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1007/s10664-019-09689-7
https://doi.org/10.1109/CANDARW.2018.00088
https://doi.org/10.1109/CANDARW.2018.00088
https://doi.org/10.1145/3176246

43. Fu J, Zhou Y, Liu H, Kang Y,Wang X (2017) Perman: fine-grained permission management for
android applications. In: Proceedings of the IEEE 28th international symposium on software
reliability engineering - ISSRE, Oct 2017, vol 2017-Oct, pp 250–259, doi: https://doi.org/10.
1109/ISSRE.2017.38

44. Gao X, Liu D, Wang H, Sun K (2016) PmDroid: permission supervision for android advertis-
ing. In: Proceedings of the IEEE symposium on reliable distributed systems, vol 2016-Jan, pp
120–129, doi: https://doi.org/10.1109/SRDS.2015.41

45. Jin H et al. (2018)Why are they collecting my data?. In: Proceedings of the ACM on interactive,
mobile, wearable and ubiquitous Techniques, Dec 2018, vol 2(4), pp 1–27, doi:https://doi.org/
10.1145/3287051

46. Wang H, Li Y, Guo Y, Agarwal Y, Hong JI (2017) Understanding the purpose of permission
use in mobile apps. ACM Trans Inf Syst 35(4). https://doi.org/10.1145/3086677

47. Chen K, Liu P, Zhang Y (2014) Achieving accuracy and scalability simultaneously in detecting
application clones on Android markets. In: Proceedings of the international conference on
software engineering, no 1, pp 175–186, doi: https://doi.org/10.1145/2568225.2568286

48. Li L, Bissyandé TF, Wang HY, Klein J (2019) On identifying and explaining similarities in
android apps. J Comput Sci Technol 34(2):437–455. https://doi.org/10.1007/s11390-019-1918-
8

49. Soh C, Tan HBK, Arnatovich YL, Wang L (2015) Detecting clones in android applications
through analyzing user interfaces. In: Proceedings of the IEEE 23rd international conference on
program comprehension, May 2015, pp 163–173, doi:https://doi.org/10.1109/ICPC.2015.25

50. Yuan L (2016) Detecting similar components between android applications with obfuscation.
In: Proceedings of the 5th international conference on computer science and networking
technologies - ICCSNT, Dec 2016, pp 186–190, doi:https://doi.org/10.1109/ICCSNT.2016.
8070145

51. Zhang Y, Ren W, Zhu T, Ren Y (2019) SaaS: a situational awareness and analysis system for
massive android malware detection. Futur Gener Comput Syst 95:548–559. https://doi.org/10.
1016/j.future.2018.12.028

52. Anwar H, Demirer B, Pfahl D, Srirama SN (2020) Should energy consumption influence the
choice of Android third-party HTTP libraries?. In: Proceedings of the IEEE/ACM 7th Interna-
tional conference on mobile software engineering and systems, MOBILESoft, pp 87–97. doi:
https://doi.org/10.1145/3387905.3392095

53. Fatima I, Anwar H, Pfahl D, Qamar U (2020) Tool support for green android development: a
systematic mapping study. In: Proceedings of the 15th international conference on software
technologies - ICSOFT, pp 409–417

54. Fontana FA, Mariani E, Mornioli A, Sormani R, Tonello A (2011) An Experience report on
using code smells detection tools. In: Proceedings of the IEEE fourth international conference
on software testing, verification and validation workshops, Mar 2011, pp 450–457, doi:https://
doi.org/10.1109/ICSTW.2011.12

55. Kaur A, Dhiman G (2019) A review on search-based tools and techniques to identify bad code
smells in object-oriented systems. Adv Intell Syst Comput 741:909–921. https://doi.org/10.
1007/978-981-13-0761-4_86

56. Singh S, Kaur S (2017) A systematic literature review: refactoring for disclosing code smells in
object oriented software. Ain Shams Eng J 9(4):2129–2151. https://doi.org/10.1016/J.ASEJ.
2017.03.002

57. Li L et al (2017) Static analysis of android apps: a systematic literature review. Inform Softw
Technol 88:67–95. https://doi.org/10.1016/j.infsof.2017.04.001

58. Degu A (2019) Android application memory and energy performance: systematic literature
review. IOSR J Comp Eng 21(3):20–32

59. Qiu L, Wang Y, Rubin J (2018) Analyzing the analyzers: FlowDroid/IccTA, AmanDroid, and
DroidSafe. In: Proceedings of the 27th ACM SIGSOFT international symposium on software
testing and analysis - ISSTA, pp 176–186, doi:https://doi.org/10.1145/3213846.3213873

7 Tool Support for Green Android Development 181

https://doi.org/10.1109/ISSRE.2017.38
https://doi.org/10.1109/ISSRE.2017.38
https://doi.org/10.1109/SRDS.2015.41
https://doi.org/10.1145/3287051
https://doi.org/10.1145/3287051
https://doi.org/10.1145/3086677
https://doi.org/10.1145/2568225.2568286
https://doi.org/10.1007/s11390-019-1918-8
https://doi.org/10.1007/s11390-019-1918-8
https://doi.org/10.1109/ICPC.2015.25
https://doi.org/10.1109/ICCSNT.2016.8070145
https://doi.org/10.1109/ICCSNT.2016.8070145
https://doi.org/10.1016/j.future.2018.12.028
https://doi.org/10.1016/j.future.2018.12.028
https://doi.org/10.1145/3387905.3392095
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1007/978-981-13-0761-4_86
https://doi.org/10.1007/978-981-13-0761-4_86
https://doi.org/10.1016/J.ASEJ.2017.03.002
https://doi.org/10.1016/J.ASEJ.2017.03.002
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1145/3213846.3213873

60. Corrodi C, Spring T, Ghafari M, Nierstrasz O (2018) Idea: benchmarking android data leak
detection tools. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Jun 2018, vol 10953 LNCS, pp
116–123, doi: https://doi.org/10.1007/978-3-319-94496-8_9

61. Ndagi JY, Alhassan JK (2019) Machine learning classification algorithms for adware in android
devices: a comparative evaluation and analysis. In: Proceedings of the 15th international
conference on electronics, computing, and computation - ICECCO, Dec 2019, pp 1–6, doi:
https://doi.org/10.1109/ICECCO48375.2019.9043288

62. Cooper VN, Shahriar H, Haddad HM (2014) A survey of android malware and mitigation
techniques. In: Proceedings of the 11th international conference on information technology:
new generations, Apr 2014, pp 327–332, doi: https://doi.org/10.1109/ITNG.2014.71

63. Li L, Bissyande TF, Klein J (2019) Rebooting research on detecting repackaged android apps:
literature review and benchmark. IEEE Trans Softw Eng:1–1. https://doi.org/10.1109/tse.2019.
2901679

64. Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection
techniques and tools: a qualitative approach. Sci Comput Program 74(7):470–495. https://doi.
org/10.1016/j.scico.2009.02.007

65. Wang Y, Li Y, Lan T (2017) Capitalizing on the promise of Ad prefetching in real-world mobile
systems. In: Proceedings of the IEEE 14th international conference on mobile Ad Hoc and
sensor systems - MASS, Oct 2017, pp 162–170, doi:https://doi.org/10.1109/MASS.2017.46

66. Rasmussen K, Wilson A, Hindle A (2014) Green mining: energy consumption of advertisement
blocking methods. In: Proceedings of the 3rd international workshop on green and sustainable
software - GREENS, pp 38–45, doi:https://doi.org/10.1145/2593743.2593749

67. Shao Y, Wang R, Chen X, Azab AM, Mao ZM (2019) A lightweight framework for fine-
grained lifecycle control of android applications. In: Proceedings of the 14th EuroSys confer-
ence - EuroSys, pp 1–14, doi:https://doi.org/10.1145/3302424.3303956

68. Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software
engineering. In: Proceedings of the 12th international conference on evaluation and assessment
in software engineering - EASE, pp 68–77

69. Fowler M (2002) Refactoring: improving the design of existing code. In: Extreme programming
and agile methods — XP/Agile universe. Springer, Berlin, pp 256–256

70. Pathak A, Charlie Hu Y, Zhang M (2011) Bootstrapping energy debugging on smartphones: a
first look at energy bugs in mobile devices. In: Proceedings of the 10th ACM workshop on hot
topics in networks (HotNets-X). Association for Computing Machinery, New York, NY,
Article 5, 1–6. doi:https://doi.org/10.1145/2070562.2070567

71. Yasumatsu T, Watanabe T, Kanei F, Shioji E, Akiyama M, Mori T (2019) Understanding the
responsiveness of mobile app developers to software library updates. In: Proceedings of the 9th
ACM conference on data and application security and privacy - CODASPY, pp 13–24, doi:
https://doi.org/10.1145/3292006.3300020

72. Alrubaye H, Mkaouer MW, Khokhlov I, Reznik L, Ouni A, Mcgoff J (2020) Learning to
recommend third-party library migration opportunities at the API level. Appl Soft Comput
90:106140. https://doi.org/10.1016/j.asoc.2020.106140

73. Nguyen PT, Di Rocco J, Di Ruscio D, Di Penta M (2020) CrossRec: supporting software
developers by recommending third-party libraries. J Syst Softw 161:110460. https://doi.org/10.
1016/j.jss.2019.110460

74. Ouni A, Kula RG, Kessentini M, Ishio T, German DM, Inoue K (2017) Search-based software
library recommendation using multi-objective optimization. Inf Softw Technol 83:55–75.
https://doi.org/10.1016/j.infsof.2016.11.007

75. Saied MA, Ouni A, Sahraoui H, Kula RG, Inoue K, Lo D (2018) Improving reusability of
software libraries through usage pattern mining. J Syst Softw 145:164–179. https://doi.org/10.
1016/j.jss.2018.08.032

182 H. Anwar et al.

https://doi.org/10.1007/978-3-319-94496-8_9
https://doi.org/10.1109/ICECCO48375.2019.9043288
https://doi.org/10.1109/ITNG.2014.71
https://doi.org/10.1109/tse.2019.2901679
https://doi.org/10.1109/tse.2019.2901679
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1109/MASS.2017.46
https://doi.org/10.1145/2593743.2593749
https://doi.org/10.1145/3302424.3303956
https://doi.org/10.1145/2070562.2070567
https://doi.org/10.1145/3292006.3300020
https://doi.org/10.1016/j.asoc.2020.106140
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1016/j.jss.2018.08.032

Chapter 8
Architecting Green Mobile Cloud Apps

Key Considerations for Implementation and Evaluation
of Mobile Cloud Apps

Samuel Jaachimma Chinenyeze and Xiaodong Liu

Abstract With the resource-constrained nature of mobile devices, and the resource-
abundant offerings of the cloud, several promising optimization techniques have
been proposed by the green computing research community. Prominent techniques
and unique methods have been developed to offload resource-/computation-inten-
sive tasks from mobile devices to the cloud. Most of the existing offloading
techniques can only be applied to legacy mobile applications as they are motivated
by existing systems. Consequently, they are realized with custom runtimes, which
incurs overhead on the application. Moreover, existing approaches which can be
applied to the software development phase are difficult to implement (based on
manual process) and also fall short of overall (mobile to cloud) efficiency in software
quality attributes or awareness of full-tier (mobile to cloud) implications.

To address the above issues, this chapter first examines existing approaches to
highlight key sources of overhead in the current methods of MCA implementation
and evaluation. It then proposes key architectural considerations for implementing
and evaluating MCA applications which easily integrate software quality attributes
with the green optimization objective of Mobile Cloud Computing—in other words,
minimizing overhead. The solution proposed in the chapter builds on the benefits of
already existing software engineering concepts, such as Model-Driven Engineering
and Aspect-oriented Programming for MCA implementation, and Behavior-Driven
Development and full-tier test coverage concepts for MCA evaluation.

S. J. Chinenyeze (*)
Edinburgh Napier University, Edinburgh, Scotland, UK
e-mail: sjchinenyeze@gmail.com

X. Liu
Driven Software Engineering Research Group, Edinburgh Napier University, Edinburgh,
Scotland, UK
e-mail: x.liu@napier.ac.uk

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_8

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_8&domain=pdf
mailto:sjchinenyeze@gmail.com
mailto:x.liu@napier.ac.uk
https://doi.org/10.1007/978-3-030-69970-3_8#DOI

8.1 Introduction

Mobile cloud computing (MCC) is a well-known technique used to address the
challenges—such as limited performance and constrained power capacity—com-
monly faced by mobile devices by use of cloud computing as a surrogate. Mobile
Cloud Applications (MCA) are applications that leverage the MCC technique. What
makes MCC particularly popular is the rich resource offering and high availability of
the cloud computing infrastructure. And due to the kind of metrics which MCC uses
for mobile devices, such as energy efficiency, it is generally known as a “green
software” approach. Research studies propose various MCC techniques for
addressing the aforementioned mobile challenges. The aim of this chapter is to
present the knowledge base and reasoning around the MCA domain, and some
identified challenges in the domain, and consequently offer some directions/key
considerations for an improved implementation and evaluation process in real-life
scenarios—mainly based on renowned software engineering techniques.

The documentation starts by presenting a background to green software, and
further develops the thesis on how MCC is a green software technique. MCA is then
introduced, from its architectural composition (what it’s made of and how it works)
to the green metrics used for MCAs to the taxonomy of apps best suited for MCAs.
The work then dives into the details of the MCA architecture, exploring the
challenges and proposing solutions. This is similar for the MCA evaluation
approach. Finally, the chapter concludes with a summary of the outlined solutions.

8.2 Green Software

8.2.1 Definition

Green software [1–3] is a subset of the green computing initiative, which involves
reducing the overall impact of IT on the environment. The initial green computing
initiative, however, focused more on the computing hardware—investigating opti-
mal processes for the manufacture, usage, and disposal of computing hardware
products with minimal impact on the environment.

As the research on green hardware thrived, the outcome presented the need to
apply similar optimal processes to software—i.e., the need for green software—since
software is the driver of hardware utilization. For example, research shows that IT
hardware has a direct impact on the environment, which is inherent in software, as
application inefficiencies such as inefficient algorithms and high resource (e.g.,
CPU) usage, are sources of high energy consumption [3, 4]. Furthermore, as the
total electrical energy consumption by computer equipment increases, there is a
consequent increase in greenhouse gas emissions. Moreover, each personal com-
puter in use generates approximately a ton of CO2 every year [5], and personal

184 S. J. Chinenyeze and X. Liu

computers are only useful in terms of the number and kind of software applications
they run. In sum, software has indirect environmental implications.

The term “green software” is therefore used to refer to software applications that
efficiently monitor, manage, and utilize underlying resources with minimal or
controlled impact on the environment [1–3, 6]. Green Software Engineering is a
newly coined term and a branch of software engineering that is increasingly gaining
interest, aiming toward improving existing software design and implementation
approaches to achieve energy-efficient or resource-efficient software. Green com-
puting presents two key roles played by software in sustainability, which are as
follows:

• Software as a “green” enabler: where software contributes as a tool to monitor and
help reduce the resource and environmental footprint of hardware systems and
other industrial processes. This is also referred to as Greening by Software.

• Software as a “greening” target: where software itself is improved or optimized so
that its execution and lifecycle meet green initiatives—such as energy efficiency.
This is also referred to as Greening in Software [3, 7, 8].

Green software engineering focuses on optimizing software in such a way that its
process or execution is energy efficient—i.e., greening in software. In the rest of the
chapter green software will be used to mainly refer to greening in software, except
where otherwise stated.

8.2.2 Green Software Objectives

Although software may not have direct environmental impact, it contributes indi-
rectly through resources [6, 9]. For example, several works show direct correlation
between efficient resource usage (such as CPU and memory) and improved energy
usage by software [9]. More specifically, improvement in application energy usage
has often been achieved by better monitoring and utilization of system resources.
Therefore, as presented in Sect. 8.2.1:

• A key objective of green software is efficient resource usage and efficient energy
usage [10, 11]. Energy efficiency and resource efficiency are often considered as
congruent in the research.

The focus of green software on energy and resource efficiency was motivated by
the success of green computing research for the datacenters domain [12–14], which
largely targeted optimization of data centers for low energy and optimum hardware
resource requirements.

Furthermore, software systems are often presented in terms of functional and
non-functional requirements [15]. While functional requirements deal with the
functionalities, capabilities, services, or behaviors of the system, non-functional
requirements (or quality attributes) deal with requirements that support the delivery

8 Architecting Green Mobile Cloud Apps 185

of system functionalities. Examples of quality attributes are performance, accessi-
bility, security, and development efficiency, to mention but a few [15].

Thus far energy efficiency and resource efficiency (popular target of green
optimization) are often considered in context and conjunction with other software
quality attributes. Hence the varying themes of green software research: perfor-
mance (response or execution time) and energy efficiency [16–18], optimal acces-
sibility and resource efficiency [16], energy-efficient secure systems [19],
development efficiency and energy efficiency [8], etc. The practice of implementing
green metrics as a quality attribute in the context of other quality attributes—such as
performance, accessibility, and security—is often imbibed by current research as a
means to explore trade-offs of green optimization, while keeping in sight software
quality assurance. This trade-off capability of the software product to meet the
current needs of a set (required) functionality—say resource usage—without
compromising the ability to meet future needs—say changing workload/perfor-
mance—is often referred to as Sustainability of Software [2]. This is a core green
software objective. Thus:

• Another key objective of green software is to achieve greenness as a quality
attribute while considering other software qualities such as performance and
availability. This means, for example; achieving energy efficiency (green metrics)
with little or no performance compromise (software quality).

8.2.3 Green Software Approaches

Green software optimization targets two main artifacts: the process and code
[2, 6]. Artifacts or assets is the term used to describe what is being optimized. We
have classified green approaches into conceptual, algorithmic, and augmentation.

Green optimization approaches which target the software process are often
abstract and systemic, and sometimes holistic—these are the conceptual
approaches. On the other hand, there are approaches which are more specific
regarding monitoring and improving code execution—these are examples of algo-
rithmic approaches. There is also a third kind, which employs strengths of success-
ful computing paradigms (and can be a hybrid of conceptual and algorithmic
approaches) to solve a domain problem. For the purpose of this chapter, we have
called these augmentation approaches.

8.2.3.1 Conceptual Approaches

Conceptual techniques such as architectures or models present a comprehensive plan
required for achieving green computing [20], and can span multiple phases of the
Software Development Life Cycle (SDLC). An example is the GREENSOFT model
which adopts a layered approach to software sustainability, to structure concepts,

186 S. J. Chinenyeze and X. Liu

strategies or guidelines, activities, and processes for (1) green software and (2) its
engineering [6]. The aspect of GREENSOFT model which focuses on the engineer-
ing of green software (i.e., (2), as given in statement above) adopts a lifecycle
approach to investigate optimization concepts for various phases of the SDLC. In
practice, however, existing green software conceptual models do not integrate well
with the SDLC, and this means that they may be more effective for business
planning but less effective in a software implementation context. The conceptual
approach is an area that could be better explored for greening in software in various
domains of applications, since software models are effective at solving domain
problems. In this chapter we will apply a conceptual model approach to software
engineering (i.e., Model-Driven Engineering) to solve MCA domain problems.

8.2.3.2 Algorithmic Approaches

Algorithmic approaches are techniques that directly apply to or make changes to the
software code. These include (a) refactoring for efficient resource usage, (b) use of
energy-aware custom runtimes which manipulate the program’s execution or
codebase, and (c) green compilers or IDEs.

(a) Refactoring techniques
Refactoring techniques aim to make changes to the structural composition of

the system in such a way that the new code base or optimized component uses
fewer resources to accomplish the same or even more tasks (e.g., Hsu et al. [21]).
In green software, optimizing the code base can warrant structural change which
leads to a more optimized architecture. For example, the research in Zhong et al.
[22], through comparison of two commonly used distributed architectural pat-
terns, shows that the choice of architecture adopted in a software program affects
its energy consumption.

(b) Custom runtimes
Custom runtimes are additional codebase—often independent of the func-

tional features of the system—implemented in a software application to aid its
efficient use of resources or energy (e.g., Morgan and MacEachern [23] and
Tayeb et al. [24]). Custom runtimes are often used for executing custom opti-
mization logic which is otherwise foreign to the base runtime of a program. The
runtimes may comprise monitors (power monitor, for energy awareness; or
resource monitor, for resource awareness) which monitor different environmen-
tal states in order to make an optimization decision at runtime.

(c) Green compilers
Green compilers are used for generation of optimized codebase for efficient

use of resources or energy [21, 25, 26]. Green compilers are targeted toward
specific resources such as CPU optimization or GPU optimization, and are
therefore often vendor specific as well as resource-type specific.

8 Architecting Green Mobile Cloud Apps 187

8.2.3.3 Augmentation Approaches

Augmentation approaches are techniques which employ the strengths of successful
computing paradigms—and can be a hybrid of conceptual and algorithmic
approaches—to solve a problem in a domain. Below we present two domains, and
their example augmentation approaches found in the research.

(a) Cloud domain. Example augmentation approaches: Virtualization, Load-
balancing, Aspect-orientation, Context-awareness

The domain problem which green IT aims to solve within the cloud is
overutilization (runtime bloat) or underutilization (runtime waste) of resources.
This directly translates to increasing energy demands in data centers.

Several approaches have been explored to address this domain problem (e.g.,
Yanggratoke et al. [27], Hsu et al. [21], Yamini [28], Chen and Kazman [29]). A
popular software-based approach is load-balancing, which deals with even
distribution of workload across interconnected servers to mitigate overutilization
or underutilization of resources [21, 30–32].

Some examples are based on external monitoring and load-balancing, in other
words power-aware or resource-aware load-balancing, such as shown in Hsu
et al. [21]—an example of greening by software. However, there are also works
that explore the application of greening in software for the cloud. Examples of
these are, to name but two: (1) a context-aware Virtualization technique—a
technique which optimizes resource provisioning by employing benefits from
the Virtualization paradigm and based on the awareness of user-defined rules
[31]; and (2) a context-aware Aspect-Oriented model—a technique for resource
optimization which employs benefits of the Aspect-oriented paradigm and per-
forms load-balancing based on awareness of application real-time resource
context [32].

(b) Mobile domain. Example augmentation approach: Mobile Cloud Computing
The domain challenge with the mobile device is its limited resources and

limited power supply—battery based.
To address the mobile domain problem, quick and easy solutions have been

proposed in the form of mobile app tools which provide monitor-and-tweak
functionalities to extend battery life. An example is the App power monitor
which comes with the Android OS and other power modeling tools [33] to
monitor and shut down services which are not being used—these are examples
of greening by software.

However, with the ever-increasing demand for mobile devices, advances
have been made in green software for mobile domains to address the domain
challenges and improve user experience, at a more efficient and intuitive scale. A
popular technique known as computation offloading has been massively adopted
in current works. This is a technique that adopts the augmentation approach by
the leveraging cloud computing paradigm to solve the mobile domain problem.
In other words, this is achieved by using the cloud as a surrogate for the
execution of computation- or data-intensive tasks [34, 35]. This computation

188 S. J. Chinenyeze and X. Liu

augmentation approach is known as Mobile Cloud Computing (MCC).
Although many works have shown MCC to be efficient and intuitive, it is not
an easy solution to implement, due to difficulty in replicating research proposi-
tions in real-world scenarios. Furthermore, some MCC solutions are automated
with runtimes, which makes it promising to replicate the solution; however, in
many cases, at best the automation becomes the main added value to the real-
world application, as the key objective (the gains) of green metrics becomes
difficult to replicate in a real-world scenario. In this chapter we propose a
solution that makes it easy to apply the natural software engineering paradigm
in MCC for implementation and evaluation to ensure ease of adoption and
replication. Furthermore, given that Android is the most popularly investigated
platform for MCA, as shown in the literature (e.g., Cuervo et al. [36], Chun et al.
[37], Kwon and Tilevich [38], Zhang et al. [39], Hassan et al. [40], Justino and
Buyya [41]), consequently, MCA applications in this chapter are based on the
Android platform.

8.3 Mobile Cloud Applications

Mobile Cloud Applications (MCA) are mobile applications that employ the MCC
paradigm, i.e., they are optimized by using the cloud as a surrogate for execution of
resource-intensive tasks. Thus, MCC transforms mobile applications into two tiers—
the mobile and cloud tier—MCA.

The mobile tier of MCA is composed of the mobile device, whereas the cloud tier
is popularly implemented as clouds or fogs (cloudlets). Fogs or cloudlets are
installations of small data centers at designated locations and connected to the larger
cloud server via the Internet. Fogs are much closer to the end-user device than the
cloud, with the aim of providing mobility at the cloud tier [35].

A number of MCC studies also propose the use of mobile services at the cloud
tier, similar to cloud services but provisioned by a collection of mobile devices. In
other words, mobile devices are considered as providers of the cloud, making up a
peer-to-peer network as in Zachariadis et al. [42], Marinelli [43], and Wichtlhuber
et al. [44]. This is also a form of fog computing; however, the focus is on the use of
mobile devices for cloud provisioning, rather than cloudlets.

From a greening in software perspective, MCAs are realized through a key MCC
technique known as Offloading [34, 35], as mentioned earlier. Thus, the research
explores solutions for MCA through the lens of offloading schemes [36–40].

8.3.1 MCA Offloading Schemes

Computation/task offloading is an algorithmic mobile optimization technique that
involves the transfer of computation- or resource-intensive tasks of a mobile

8 Architecting Green Mobile Cloud Apps 189

application to a remote system (cloud or fog) with higher processing capability for
execution [39, 45]. Existing offloading schemes employ both code refactoring
techniques and the use of custom runtimes; thus, an algorithmic approach
(as presented in Sect. 8.2.3) is used and, more so, an augmentation approach, as
offloading is done from a mobile to a cloud computing environment. MCA
offloading schemes involve three main activities/features hinged on the offloading
task. The activities, in simple terms, are identification, execution, and decision.
Figure 8.1 depicts different features of these activities, as will be explained below.

8.3.1.1 Identification of Offloadable Task (Manual vs Automated
Transformation)

To transform a mobile application into MCA, identification of offloadable tasks is a
sine qua non activity. This can be achieved either manually or automatically.
Schemes classified by manual transformation require source code modification for
identification of the offloadable task. In this scenario, annotations are used by the
developer to identify methods of the code that are resource intensive [36, 38]. The
challenge with manual identification of offloadable components is that it is difficult
to ascertain which components are actually resource intensive prior to execution/
runtime. Moreover, a manually identified task may be tightly coupled to a resource-
dependent code, making it a difficult and coarse-grained approach to optimization
(even if the identified task may actually be resource intensive). A resource-
dependent code is a code fragment or method which requires a mobile resource to

App

Custom
runtime

intercept

OT OT OT

App

Custom
runtime

intercept

OT OT OT OT OT OT

Custom
runtime

@ @ @

App
OT OT OT

Before: Mobile After: MCA Mobile tier

Automated transformation

Manual transformation

Key:

Offloadable task/componentOT

After: MCA Cloud tier

Cloning

Partitioning

App
OT OT OT

Custom
runtime

Fig. 8.1 MCA architecture characteristics

190 S. J. Chinenyeze and X. Liu

execute and is thus tightly coupled to the resource, e.g., a piece of code that
continuously reads GPS.

Schemes classified by automated transformation do not require source code
modification in the identification of offloadable tasks. The automated transformation
approach makes use of static and dynamic analysis of an application to identify the
offloadable tasks [40, 46]. The purpose of the static analysis is to identify resource-
dependent code and filter it out, leaving potentially offloadable units. Static analysis
is achieved by performing a call-graph analysis on the bytecode of the application
(whether packaged or not). The purpose of dynamic analysis is to estimate that a
statically identified offloadable task yields benefit when executed remotely in the
cloud. This estimation is achieved by comparing the local execution time of the
offloadable task against its remote execution time. While static analysis does not
require execution of the program, dynamic analysis does, and also requires that the
offloadable task be set up in the cloud prior to the analysis.

Since automated transformation does not require source code modification (i.e.,
no need for annotations), the custom runtime stores the method signatures of
offloadable tasks and intercepts any methods at runtime which have their signature
stored in the repository of the custom runtime [37, 40]. Automated transformation is
explored for legacy systems—where source code may not be available for
refactoring—but it can also be used for new applications where source code is
accessible. However, the manual approach is not only ineffective but also limited
to scenarios where the source code is accessible.

8.3.1.2 Remote Execution of Offloadable Task (Partitioning vs Cloning)

The feature that achieves the remote execution of offloadable tasks is referred to as
the offloading mechanism in the literature [38, 40]. This feature describes the
structural composition of the cloud tier after the MCA refactoring process. To
execute the offloadable tasks remotely, the cloud tier can be set up either as a
clone of the mobile device (i.e., cloning) or as independent components executed
remotely (i.e., partitioning).

Cloning [36–38] involves the setup of a virtual mobile device in the cloud. The
full mobile application is also installed on the virtual device and executes remotely at
the same time as the local application. The cloning approach works by state
synchronization/checkpointing. In other words, when a check-pointed state (i.e.,
thread) is reached, a snapshot is created for fault-tolerance and the state of execution
is offloaded to the cloud, which continues execution on the virtual device (in the
cloud), after which the final state (of remote execution) is synchronized with the
local state.

Partitioning [39, 40] involves the setup of identified offloadable tasks as inde-
pendent components in the cloud. In partitioning, a virtual device is not required.
Partitioning works by use of sockets to transmit execution parameters to the cloud.
The component in the cloud then listens for socket connections and processes the

8 Architecting Green Mobile Cloud Apps 191

mobile request using the parameters sent. The response is in turn sent to the mobile
tier after execution using socket API.

8.3.1.3 Decision Making (Static vs Dynamic Thresholds)

The decision-making feature—decision maker—is a feature in offloading schemes
which is used to decide when to offload or when not to offload. Decision making can
be based on static thresholds, which use fixed values for decisions [38], or dynamic
thresholds, which use machine learning algorithms such as multi-layer perceptrons
[40]. In either case, these algorithms employ varying environmental factors in
offload decision making. Hassan et al. [40] state that the more environmental factors
considered in the decision-making process, the greater the depth of accuracy of the
decision maker. However, accuracy is traded off for an element of overhead due to
much monitoring, as shown in Hassan et al. [40].

8.3.2 MCA Environmental Factors

Offloading schemes makes decisions by monitoring and learning from the environ-
mental factors of MCA. Any number of factors can be used in decision making,
ranging from one, e.g., data size [38], to a few, e.g., network bandwidth and latency
[36], to all factors [40] depending on the kind of application, as will be explained
below. The awareness or monitoring of environmental factors is also referred to as
context awareness [47–49]. The generally investigated factors impacting MCAs are
as follows.

8.3.2.1 Mobile CPU Availability

Mobile CPU availability is measured in percent and is of particular importance for
computation-intensive tasks. In other words, the lower the percentage of CPU
availability, the greater the chance of mobile energy consumption or performance
compromise for a computation-intensive task. Thus, the objective is to only execute
a (computation-intensive) task on the mobile device when the percentage of CPU
availability is higher or at least above a set threshold. Mobile CPU availability is
obtained programmatically by examining the /proc/stat files in Android to compute
the percentage of CPU availability.

8.3.2.2 Mobile Memory Availability

Mobile memory availability is measured in percent and is of particular importance
for data-intensive tasks. In other words, the lower the percentage of memory

192 S. J. Chinenyeze and X. Liu

availability, the greater the chance of mobile energy consumption or performance
compromise for a data-intensive task. Thus, the objective is to execute a (data-
intensive) task on the mobile device only when the percentage of memory availabil-
ity is higher or at least above a set threshold. A higher-bound mobile CPU and
memory availability is useful for determining when to execute a task on a mobile
device. Mobile memory availability is obtained programmatically by examining the /
proc/meminfo files in Android to compute the percentage of memory availability.

8.3.2.3 Cloud CPU Availability

Cloud CPU availability is measured in percent and is of particular importance for
computation-intensive tasks. In other words, the lower the percentage of CPU
availability, the greater the chance of mobile energy consumption or performance
compromise for a computation-intensive task. Thus, the objective is to execute a
(computation-intensive) task on the cloud when its percentage of CPU availability is
higher or at least above a set threshold. The concept is that avoiding offloading to the
cloud when the cloud CPU is overworked can curtail mobile performance compro-
mise. Cloud CPU availability is obtained programmatically by examining the /proc/
stat files in a Linux-based server to compute the percentage of CPU availability.

8.3.2.4 Cloud Memory Availability

Cloud memory availability is measured in percent and is of particular importance for
data-intensive tasks. In other words, the lower the percentage of memory availabil-
ity, the greater the chance of mobile energy consumption or performance compro-
mise for a data-intensive task. Thus, the objective is to execute a (data-intensive) task
on the cloud when its percentage of memory availability is higher or at least above a
set threshold. The idea is that avoiding offloading to the cloud when the cloud
memory is overworked can curtail mobile performance compromise. A higher-
bound cloud CPU and memory availability is useful for determining when to offload
a task to the cloud. Cloud memory availability is obtained programmatically by
examining the /proc/meminfo files in a Linux-based server to compute the percent-
age of memory availability.

8.3.2.5 Network Bandwidth

Network bandwidth is the average rate of a successful data transfer through a
network communication path. It is measured in bits per second and is achieved
programmatically by sending packets to and from the server to measure the band-
width. The objective of monitoring the bandwidth is to offload a task when the
bandwidth is higher than a set threshold. The idea is that the higher the bandwidth,
the greater the tendency for mobile energy or performance savings.

8 Architecting Green Mobile Cloud Apps 193

8.3.2.6 Network Latency

Network latency is the time interval or delay between request and response over a
network communication path. It is measured in milliseconds and is similar to
bandwidth. It is achieved programmatically by sending packets to and from the
server to measure the latency. The objective of monitoring latency is to offload a task
when the latency is lower than a set threshold. The concept is that the lower the
latency, the greater the tendency for mobile energy or performance savings.

8.3.2.7 Data Size

Data size is the size of the data transmitted over the communication network. It is
measured in series of bytes (i.e., B, KB, and MB) and can be achieved program-
matically by checking the byte size of the request packet prior to client socket
transmission. The objective of monitoring the data size is to offload a task when
the data size is lower than a set threshold. The idea is that transmitting larger data
packets over the network could result in increased mobile energy usage or perfor-
mance compromise.

The popularly investigated metrics in the literature for MCA offloading schemes
are performance and energy efficiency, and the aforementioned environmental
factors are used to optimally attain these green metrics. The following section
presents the most frequently explored MCA green metrics, including additional
metrics we view as relevant to MCA.

8.3.3 MCA-Associated Green Metrics

Following the green software objective (Sect. 8.2.2), the green metrics are energy
and resource efficiency [10]. In the context of MCAs, the core investigated green
metric is mobile energy efficiency, given that the focus of MCA offloading schemes
is the optimization of mobile application. However, MCA is two tiered, i.e., also
involving the cloud tier, and thus this research presents cloud resource efficiency as
another relevant green metric for MCA.

Furthermore, the green software objective also investigates trade-offs based on
other software qualities, and the popularly investigated software quality in the
literature for MCA offloading schemes is mobile performance. In this chapter,
software availability is also presented (at both mobile and cloud tier) as a relevant
software quality for MCAs.

194 S. J. Chinenyeze and X. Liu

8.3.3.1 Mobile Performance

According to Bass et al. [15], performance is how long it takes an application to
respond to an event. The key driver of the advancement in mobile computing is the
portability of mobile devices, which is defined by fluidity and ease of operation
[45, 50, 51]. From the user perspective, the ease of operation or usability of a mobile
application is critically dependent on its performance. Thus performance is a crucial
MCA metric, as shown in the literature (e.g., Cuervo et al. [36], Chun et al. [37],
Kwon and Tilevich [38], Zhang et al. [39], and Hassan et al. [40]), and is popularly
explored in the context of MCAs as a trade-off software quality for mobile energy
efficiency.

In MCA, mobile performance is often measured by computing the difference
between the time of call (or request) to an offloadable task and the time of result
(or response) after execution of the offloadable task. While call and result refers to a
scenario where the offloadable task is executed on a mobile device, request and
response refers to when it is offloaded to the cloud. The time is representative of
timestamp, measured in ms, and often computed programmatically using the Java
timestamp utility as in Zhong et al. [22].

8.3.3.2 Mobile Energy

According to Johann et al. [26], energy efficiency is the ratio of useful work done to
used energy. In other words, it is the amount of energy incurred for executing a task.

Energy efficiency is derived from three quantities: power, time, and work done
[8, 26]—in this way, energy efficiency is used in the comparison of two or more
entities where their useful work done is likely to vary, as in the case of Zhong et al.
[22] and Johann et al. [26]. However, in a situation of comparison between entities of
similar work done or singular evaluation, energy efficiency is congruent with energy
usage, which is based on two quantities: power and time. Consequently, the terms
energy efficiency and energy usage are used interchangeably in the MCA research.
Power Tutor [52] is a popularly adopted tool in the literature [36–40] for mobile
power monitoring.

8.3.3.3 Cloud Resource

Achieving cloud resource efficiency in a mobile cloud environment requires care so
as not to compromise mobile performance (see the cloud environmental factors in
section 8.3.2). Resource efficiency in servers (the cloud) is often achieved through
load-balancing [21, 30–32].

Although cloud resource efficiency is not often explored in the research on
MCAs, investigating resource efficiency/usage for the cloud can be achieved using
the core impacted resource of the cloud, i.e., the CPU and memory resources. Thus,

8 Architecting Green Mobile Cloud Apps 195

for cloud resource usage of MCAs, percentage of CPU utilization and memory
utilization are the key metrics. Percentage of CPU utilization and memory utilization
can be measured by examining the /proc/stat and /proc/meminfo files in a Linux-
based server.

8.3.3.4 Software Availability

According to Bass et al. [15], availability is the probability that a system will be
operational when it is needed. In other words, availability is concerned with the
consequences of a system failure. Most research does not take software availability
into consideration in the implementation of MCA schemes. This category of
schemes uses only network exception catch (e.g., Cuervo et al. [36], Chun et al.
[37], Zhang et al. [39]). Moreover, several studies which consider availability
investigate only at the mobile tier (e.g., Kwon and Tilevich [38]). Availability is
achieved at the mobile tier by implementing a time limit for how long the mobile
device can wait for the cloud to complete the execution of a request. When the time
limit has elapsed, the execution is made on the mobile tier. Availability can also be
implemented in a similar manner for the cloud tier.

The mobile tier availability time limit can be obtained by measuring the accept-
able network communication time (to and from the cloud) plus the acceptable cloud
execution time. The time limit for the cloud tier can be obtained by measuring only
the acceptable cloud execution time.

Availability is a software quality relating to performance and therefore realized in
ms. At the mobile tier, availability and performance are congruent; however, at the
cloud tier availability is distinctly specified while performance is not.

8.3.4 Application Taxonomy

The application taxonomy presents the classification for applications in which
MCAs have been explored. The MCA taxonomy has been derived by exploring
the case studies used in the evaluation of offloading schemes, as shown in Table 8.1.
Furthermore, the offloading schemes used to generate the taxonomy span across the
characteristic features of MCA architectures (presented in Sect. 8.3.1) and are based
on Android apps. The offloading schemes reviewed are: (1) POMAC1

—categorized
under automated transformation schemes, (2) EFDM2

—categorized under manual
transformation schemes and cloning schemes, and (3) DPartner—categorized under
partitioning.

As shown in Table 8.1, three taxonomies are identified from the MCA literature:

1POMAC: Properly Offloading Mobile Applications to Clouds.
2EFDM: Energy-Efficient and Fault-Tolerant Distributed Mobile Execution.

196 S. J. Chinenyeze and X. Liu

• Computation-intensive applications.
• Data-intensive applications.
• Hybrid applications.

8.3.4.1 Computation-Intensive Applications

Computation-intensive applications are a class of mobile applications that are highly
or significantly dependent on the computing power, i.e., the CPU resource, of the
mobile device. The core benefits of offloading schemes are realized with
computation-intensive applications, as this class of applications consume the most
battery power from the mobile device. Most computation-intensive applications fall
within the category of gaming applications and media processing applications—such
as face recognition apps and optical character recognition apps—as shown in the
literature [36, 40, 46, 64].

8.3.4.2 Data-Intensive Applications

Data-intensive applications are a class of mobile applications that devote most of
their processing time to I/O and data manipulation. Due to the focus on manipulation
of data, these applications make more use of memory than the processing power. In
most scenarios data-intensive applications do not consume significant mobile
energy, unless in situations where the data-intensive components also require exten-
sive computation. The literature [38, 46] has emphatically shown that offloading
applications that do not consume significant mobile energy (such as data-intensive
applications) can result in mobile performance compromise or even slight throttle in
energy usage.

Table 8.1 Application taxonomy

S/N Case study apps Taxonomy Sample offloading schemes

1 Picaso [53] Data intensive POMAC [40, 46]

2 MatCalc [54] Data intensive POMAC [40, 46]

3 MathDroid [55] Data intensive POMAC [40, 46]

4 NQueen [56] Computation intensive POMAC [40, 46]

5 Droidslator [57] Hybrid POMAC [40, 46], EFDM [38]

6 Mezzofanti [58] Computation intensive POMAC [40, 46], EFDM [38]

7 ZXing [59] Data intensive POMAC [40, 46], EFDM [38]

8 JJIL [60] Computation intensive EFDM [38]

9 OsmAnd [61] Computation intensive EFDM [38]

10 Andgoid (Zhang et al. [39]) Hybrid Dpartner [39]

11 Linpack (Čokulov [62]) Computation intensive Dpartner [39]

12 XRace [63] Hybrid Dpartner [39]

Note that the references are appended to the Apps links to the source code or Google Play app

8 Architecting Green Mobile Cloud Apps 197

8.3.4.3 Hybrid Applications

Hybrid applications are applications that are composed of different offloadable tasks
with at least one computation-intensive task and at least one data-intensive task. As
mentioned earlier, offloading such tasks will likely save energy only if they consume
significant mobile energy.

8.4 MCA Optimization Approach

This section identifies the challenges associated with the approaches used for
designing MCAs, i.e., the optimization or offloading schemes. Furthermore, key
considerations toward an improved solution are presented and also justified.

8.4.1 Gaps in Existing Approaches

This section reviews the main studies that have addressed MCAs, particularly
offloading techniques for mobile performance and energy improvement. The chal-
lenges in related work are presented in terms of overheads in the components that
make up the generic MCA architecture (illustrated in Fig. 8.2). Consequently, the
gaps motivating this research are highlighted from the review.

8.4.1.1 Challenges of Offloadable Tasks

The key challenge with offloadable tasks is the identification phase. A task is
identified for offload if it possesses chances of performance or energy improvement
when executed remotely, i.e., its remote execution time is shorter than local time.

Decision
Maker

Offloading
Mechanism

g
M hhhhhhhhhhhhhhh i

Offloadable
Task

Offloadable
Task

Mobile App Cloud

Custom Runtime Custom Runtime

Fig. 8.2 MCA architecture (based on custom runtime)

198 S. J. Chinenyeze and X. Liu

A key constraint impacting the performance gain of an offloadable task is its
dependence on mobile-only resources, such as a sensor or camera.

Zhang et al. [66] adopt a shortest path algorithm to identify an optimal cut which
minimizes offloading overhead. However, this does not take into account the
aforementioned constraint when identifying an offloadable task. Elicit [46] uses
the shortest path approach for identifying offloadable tasks, and taking the constraint
into account provides better performance gain. In the literature offloadable tasks can
either be identified manually using annotations or automatically through static/
dynamic analysis, as shown in Table 8.2. The automatic identification technique is
more development efficient—as per automated, and accurate—as per code analysis
[46, 65].

Furthermore, not all offloaded tasks prove to be performance or energy efficient,
particularly the data-intensive applications, as shown in the literature [39, 40, 46],
thus, raising thus question of the effectiveness of the approach used in identification
of offloadable tasks. Two concepts can be deduced: either the task in question was
wrongly identified as offloadable or there was an overhead during runtime which
was unaccounted for during the identification process. The second concept is likely a
more valid point, because if decision-making and offloading components add an
overhead during runtime which was not considered during identification, then a
particular offloading task may never yield performance or energy-efficiency benefits,
i.e., in a scenario where the runtime overhead overshadows the offloading gain.
Existing work [38–40, 46, 64] to the best of our knowledge does not consider this
challenge, as their offloading task identification does not include all MCA compo-
nents during evaluation. It can be argued that the decision maker would effectively
allow such scenarios to execute locally. However, the decision-making process is a
required precondition, and thus overhead would have already been made. In other
words, the identification process offered by existing offload models is not fine

Table 8.2 Comparison of offload models

System

Identification of
offloadable task Decision maker Offloading mechanism

Fully
automatic

Fine
granularity Thresholds Parameters Type

Custom
runtime

Kwon
et al. [38]

No
(annotation)

No Static Resource Cloning Yes

MAUI
[36]

No
(annotation)

No Dynamic Resource Cloning Yes

Hassan
et al.
[40, 46]

Yes No Dynamic Resource
(full)

Partitioning Partial
(machine
learning)

Native
Offloader
[65]

Yes No Dynamic Resource Partitioning Yes

N.B. This table is not an exhaustive list of the models explained in the related work, but a list of
distinct representative models

8 Architecting Green Mobile Cloud Apps 199

grained (as shown in Table 8.2). Thus, an effective identification process must take
into account all the MCA components of Fig. 8.2 for fine granularity.

Moreover, with automated transformations, dynamic and static analyses are used
independently in the research. Hassan et al. [46] adopted dynamic analysis—i.e.,
transformation at bytecode level or runtime—for existing applications as there was
no access to the source codes of the apps. Thus, the case for exploring the use of both
static and dynamic analysis throughout the MCA development cycle has not been
well explored.

8.4.1.2 Challenges of the Decision Maker

A good way to understand the decision-making component is as a kind of monitor
and comparator, rather than just a set of if else conditions.

As a monitor: Conditions are executed by checking (i.e., monitoring) the actual
environmental state. In MCA a given environmental state is defined by different
factors/parameters: mobile device CPU and memory availability, network band-
width and latency, cloud CPU and memory availability, and transmitted data size,
as used in the literature [39, 40, 46]. Note that the parameters employed by existing
current work are resource based (i.e., CPU, memory, and network)—also see
Table 8.2. For accuracy in the decision-making process, it is critical that these
factors be captured by the decision maker.

Some research such as Hassan et al. [40] takes into account all of the aforemen-
tioned factors for decision making, thus providing a more accurate picture of the
environmental state. Most works, however, only consider one or a few factors during
decision making, for example data size alone [38], or a combination of bandwidth
and latency [36]. Whichever combination of factors is used, an overhead is added to
the application performance. For example, monitoring network bandwidth and
latency requires sending packets to and from the communicating endpoints (e.g.,
Hassan et al. [40, 46]), which contributes its own overhead. Thus, the more factors
considered, the greater the overhead introduced and the greater the accuracy in
decision making. This is a trade-off to take into account.

As a comparator (or thresholding mechanism): The actual environmental state,
obtained by measuring the aforementioned factors, is compared against a (set of)
predetermined value(s). Hassan et al. [40] use a machine learning algorithm, specif-
ically multi-layer perceptron, as a comparator due to the use of multiple environ-
mental factors in the monitoring. Expected environmental factors are obtained as
training data, collected for offload condition, i.e., when remote execution time is
shorter than local time, and non-offload condition. Kwon and Tilevich [38] use a
single thresholding approach on data size for offload condition. However, this is
ineffective, given the varying factors affecting MCA, and the unpredictable nature of
the environment. Cuervo et al. [36] use a linear regression model on bandwidth and
latency, which also fails to compare other factors.

As noted, the decision maker decides when or when not to offload, based on a
satisfied scenario, obtained from monitored environmental factors. The satisfied

200 S. J. Chinenyeze and X. Liu

scenario is the scenario where the remote execution time of an offloadable compo-
nent is shorter than its local or mobile execution time. Thus, the core factor is the
elapsed execution time. However, as this factor cannot be determined explicitly
before runtime, the aforementioned factors, with support from dynamic thresholds,
e.g., learning models [36, 40], or static thresholds [38], are used to determine the
time factor, as shown in the literature. Thus, an effective decision-making process
must effectively predict elapsed time for an environmental state with minimal
overheads.

8.4.1.3 Challenges of Offloading Mechanism

There are two key categories of the offloading mechanisms used in the literature:
cloning and partitioning (see Table 8.2). Many offloading models implement their
offloading mechanisms as runtime engines.

As the term implies, cloning involves execution of a virtual device on the cloud. It
is based on checkpointing, i.e., adding fault-tolerance by saving snapshots, thus
creating more overhead in offloading due to state synchronization. Chun et al. [37]
state that cloning can require a data transfer as high as 100 MB.

Partitioning makes use of remote procedure calls. Unlike the cloning approach,
which requires the virtual device to run on the cloud, the partitioning approach only
requires the offloadable component to execute on the cloud. Thus, it is more
efficient—saving energy and time—compared to cloning.

Whether cloning or partitioning, the key challenge is the dependence on custom
runtime engine (e.g., Kwon and Tilevich [38] and Justino and Buyya [41]). As such
deeply layered frameworks contribute runtime bloat [8, 67, 68], an appropriate
mechanism would need to be simplified—and without dependencies on custom
runtimes for minimal overheads.

8.4.2 Considerations for Improved Solutions

Following the challenge of offloadable tasks, it is critical that the process for
identifying offloadable tasks take into account the cost of decision making and
offloading. In other words:

• Solution 1: A task should be qualified for offload if and only if the combined
overhead of the decision-making component, offloading mechanism, and remote
execution is less than local.

Offloading any task which compromises the aforementioned condition will
always compromise performance, even if the remote execution time is shorter than
that of local.

As mentioned earlier, the core of the decision maker is the ability to predict the
elapsed time prior to offload, so as to know if there will be gain or loss given the

8 Architecting Green Mobile Cloud Apps 201

current environmental state. This prediction is currently obtained from different
factors and using learning models (contributing overheads) or inaccurate thresholds.
For better decision making:

• Solution 2: Adopt the use of an adaptive full-tier time-based decision making
(at the mobile and cloud tier).

Adaptive means that the decision maker needs to adapt to various environmental
states, and this is achieved by monitoring for environmental factors. Full-tier means
that the monitoring is not only on the mobile, but also on the cloud tier. The objective
of full-tier is to achieve software qualities at both mobile and cloud tier.

Full-tier time-based decision making means that the comparator or thresholding
mechanism is based on a set of predetermined optimal execution times at both the
mobile and cloud tier. The aim of using a set of predetermined optimal execution
times is to achieve overall target green objectives while eliminating existing chal-
lenges of existing counterparts, e.g., the complexity and overhead introduced by
machine learning models like MLP [40], and the inaccuracies of static thresholding.

Current works use custom runtimes to handle offloading; this is to dynamically
intercept code and perform cloning or partitioning. However, these custom runtimes
introduce runtime overhead. Moreover, they increase the size of the application
itself. Although these techniques may be useful for existing systems, where there is
no access to source code, they are impractical for building MCAs. To address the
challenge of overhead caused by custom runtime:

• Solution 3: Adopt the use of sockets as offloading mechanism (this is a
partitioning technique). Cloning techniques are more expensive and consume a
lot of cloud resource as they require virtual mobile devices in the cloud.
Partitioning would involve having only a copy of the offloadable code in the
cloud.

• Solution 4: Adopt Aspects from Aspect-oriented Programming to dynamically
intercept the application when it reaches the offloadable task. Aspects are light-
weight constructs used to implement cross-cutting concerns [69]. They can be
used to implement offloading logic in such a way that the MCA application code
is not altered, thus maintaining a clean separation of concerns while eliminating
the overhead of custom runtime.

As noted earlier in the chapter, the problem being solved by MCA is a domain
problem—a mobile domain problem, an environment of constrained resources.
Furthermore, the issues identified with the MCA solutions are also domain prob-
lems—involving the mobile and cloud domain, however juxtaposed, but targeting
the mobile domain problem. In software engineering, Model-Driven Engineering
focuses on exploiting domain models to effectively solve recurring domain problems
by providing abstraction through high-level models. Thus, for an effective domain
solution for MCA:

• Solution 5: Adopt the use of model-driven tools to encapsulate the aforemen-
tioned solutions alongside design patterns of the MCA app being built. This will

202 S. J. Chinenyeze and X. Liu

simplify the development process, increase productivity, and enhance repeatabil-
ity of good solutions [70–73].

8.5 MCA Evaluation Approach

This section presents the gaps and methodology associated with the evaluation
techniques applied to MCAs. Consequently, steps and methodologies toward an
improved solution are presented and justified.

8.5.1 Gaps in the Existing Approach

In this section, we use examples from the research to highlight the challenges and
difficulties of the currently used MCA evaluation approach (i.e., the architecture
scenario approach) in the evaluation and comparison of offloading schemes.

A Motivating Example Let us consider a situation in the development of mobile
cloud applications. The choice of offloading scheme would be a critical decision, as
it is the core functionality which transforms a mobile app to MCA [36, 38–
40]. Assuming the development team chooses to use an existing scheme, they will
need to evaluate and compare between other offloading schemes or other variations
of a scheme. Two offloading schemes have been selected, one based on single
thresholding [38]—ST for brevity—and another based on the multi-layer perceptron
learning algorithm [40]—known as POMAC. Also selected is an Optical Character
Recognition (OCR) Android app called Mezzofanti, which is used in the source
literature to validate the schemes [38, 40]. From the source literature the
computation-intensive offloadable component is the OCR functionality
[38, 40]. The data presented in Table 8.2 is obtained from the source literature
using WebPlotDigitizer [74].

To achieve the evaluation of individual schemes and comparison between the
schemes—ST and POMAC—the mobile-centric architecture scenarios provided by
the source literature are used. The term “mobile-centric” indicates that the approach
provides green metrics results for only the mobile tier, i.e., mobile performance and
energy usage. Using mobile-centric architecture scenarios which are prevalent in the
research [36, 38–40], however, comes with challenges which make it difficult to
come to a satisfactory conclusion for both schemes, in terms of evaluation and
comparison.

The research challenges identified for mobile-centric architecture scenarios are
presented below.

8 Architecting Green Mobile Cloud Apps 203

8.5.1.1 Inconsistency in Evaluation Results of Scenarios for an
Offloading Scheme

To evaluate POMAC, Hassan et al. [40] define four3 scenarios (illustrated in
Fig. 8.3). The efficiency of POMAC is evaluated by comparing the POMAC scheme
against other defined architecture scenarios, using % difference. Deducing from
Table 8.3, for energy usage we can conclude that POMAC is approximately 5%
inefficient compared to both local and optimal scenarios and 118% efficient com-
pared to the server scenario. Although the local and optimal % differences seem to

Fig. 8.3 MCA architecture showing mobile-centric architecture scenarios

Table 8.3 MCA evaluation and comparison by architecture scenarios

Arch.scenarios

ST [38] POMAC [40]

Elapsed time (ms) Used energy (J) Elapsed time (ms) Used energy (mJ)

Local 49,331.55 86.59 3930.33 4854.24

Server 27,673.79 63.86 34,873.15 19,839.42

Optimal 17,486.63 44.73 3986.21 4845.10

The scheme 10,347.59 41.33 4242.32 5085.80

Local % diff. 130.65 70.76 �7.64 �4.66

Server % diff. 91.14 42.84 156.62 118.38

Optimal % diff. 51.30 7.90 �6.23 �4.85

Note: Local % diff., Server % diff., and Optimal % diff. are the % difference of the scheme in
comparison to local, server, and optimal scenarios respectively. A negative value is used to signify
loss in energy or performance. Note that the metrics presented, i.e., elapsed time and used energy,
are for the mobile tier

3Four scenarios are defined by Hassan et al. [40] for evaluating POMAC: OnDevice, OnServer,
Optimal, and POMAC.

204 S. J. Chinenyeze and X. Liu

arrive at the same conclusions, there is no clear relationship between the scenarios.
This is shown by ST, which has approximately 71%, 43%, and 8% energy improve-
ment based on local, server, and optimal respectively. This challenge makes it
difficult to weigh a scheme based on easily verifiable values or conclusions.

8.5.1.2 Variability of Architecture Scenarios (Making It Difficult
to Compare Between Offloading Schemes)

Different literature uses varying scenarios to evaluate proposed schemes. For exam-
ple, Hassan et al. [40] define four3 scenarios to evaluate POMAC, while Kwon and
Tilevich [38] define five4 scenarios to evaluate ST. Therefore, to establish a basis for
comparison, scenarios will have to be matched (as shown in Table 8.4). This process
introduces complexity in comparing schemes, especially since scenarios which may
be congruent by inference may have slightly different definitions from each other
based on the actual literature implementation. This introduces difficulty in commu-
nicating varying scenarios between the development teams and also a challenge to
comparison.

The summary column of Table 8.4 is used to match the scenarios from the
literature [38, 40]. Local is the execution of the application without any offloading.
Server is a scenario where all offloadable objects are always executed on the server.
Optimal is a scenario where only assessed objects are offloaded. Assessed objects are
the objects identified as computation or data intensive. The Scheme is based on
extending the previous optimal scenario with decision-making5 mechanisms for
offload. It refers to the proposed offloading schemes in the literature.

Table 8.4 Variability of architecture scenarios

Summary of architecture
scenarios Scenarios adopted in ST [38]

Scenarios adopted in
POMAC [40]

Local Smartphone only OnDevice

Server Offloading w/all objects OnServer

Optimal Offloading w/necessary objects
(delta)

Optimal

The scheme Offloading w/threshold check POMAC

4Five scenarios are defined by Kwon and Tilevich [38] for evaluating ST: Smartphone only,
Offloading w/All objects, Offloading w/Necessary objects, Offloading w/Necessary objects
(delta), and Offloading w/Threshold check.
5Decision making is the check on the environmental conditions of the communications which
influence the offloading. Decision-making mechanisms can be based on single (static) thresholds
[38] or predictive learning [40].

8 Architecting Green Mobile Cloud Apps 205

8.5.1.3 Coarse Granularity of Evaluation

Different literature uses different levels of experimental rigor. For example, Hassan
et al. [40] performed a more rigorous experiment for POMAC evaluation (as the
scheme is based on MLP), compared to Kwon and Tilevich [38]’s experiment for ST
which is not as rigorous. Comparing ST energy with POMAC (using the optimal
scenario as reference) gives an approximately 8% gain in ST and 5% loss in
POMAC. The case may be that in adverse environmental conditions the ST scheme
fails to save mobile energy. Also, since the analysis is mobile-centric, it fails to
provide the overall implications of a scheme’s decision regarding whether to offload.
This challenge makes it difficult to establish the overall efficiency of a scheme, i.e.,
the extent to which the scheme is mobile as well as cloud aware.

8.5.2 Methodology for a Solution

To propose a solution for the identified gaps in the existing MCA evaluation
approach (i.e., mobile-specific architecture scenarios) we adopt concepts from
Behavior-Driven Development and Software Test Coverage (Fine-Grained Testing).

8.5.2.1 Behavior-Driven Development (BDD)

A gap in MCA evaluation identified earlier is the variability of architecture scenar-
ios, which makes it difficult to compare between offloading techniques. Since there
is no standard for determining what scenarios to use for justifying the efficiency of
an offloading technique, different literature or techniques use different scenarios. To
curtail the aforementioned difficulty, an approach can be investigated to capture all
the necessary environmental factors surrounding typical MCA scenarios, and per-
form an evaluation or comparison on the basis of these factors rather than varying
scenarios.

For example, for a typical scenario (Table 8.4), whether server, optimal, or
scheme, the environmental factors surrounding the efficiency of the application are
mobile CPU and memory availability, server CPU and memory availability, and
network bandwidth and latency [40, 46]. Rather than evaluate schemes by compar-
ing against different scenarios which are all affected by the aforementioned factors,

• Solution 1: Evaluate and compare schemes on the basis of the environmental
factors themselves which affect MCA schemes.

Evaluation: The implication of the proposed technique above is that to evaluate
an offloading scheme S1, a result can be presented thus:

206 S. J. Chinenyeze and X. Liu

• The performance and energy usage of S1 are x and y respectively, given the
aforementioned factors. This is a simplified (straightforward to interpret) and
efficient approach.

Rather than:

• The performance and energy usage of S1 is x and y respectively, compared to a
scenario A, which is affected by its own uncontrolled factors, and another
scenario B, which is also affected by its own uncontrolled factors, and yet another
scenario C, which is also affected by its own unique factors. This is the case when
varying scenarios are used to evaluate a scheme. Apart from introduced com-
plexities, this approach is inefficient.

Comparison: To compare a second offloading scheme of interest, say S2 to the
previous one, S1, the process would be performed as follows:

• Given that the factors of S1 and S2 are closely related compare S1 to S2.

Assuming that S1 is more efficient, then the result can be presented as follows:

• S1 is x% and y% more performance and energy efficient than S2 given the
factors.

Rather than:

• Compare S1 to A and S2 to A; then S1 to B and S2 to B; then S1 to C and S2 to C.

Assuming that S1 is more efficient, then the result can be presented as follows:

• S1 is x% and y% more performance and energy efficient than S2 in A, and/or.

S1 is x% and y% more performance and energy efficient than S2 in B, and/or
S1 is x% and y% more performance and energy efficient than S2 in C.
“And/or” means that in most cases S1 might not be more efficient in all the

compared scenarios, and thus it is difficult to establish a concrete result for compar-
ison using varying scenarios.

Note that for the proposed approach, the syntax is “given environmental factors
then assert results.” The above syntax is the core of Behavior-Driven Development
(BDD). Thus, to curtail the aforementioned difficulty:

• Solution 2: Adopt the use of the BDD technique, which is based on simple clause
semantics such as given, when, and then. This will also help to simplify software
design decisions and can be automated by tooling.

BDD is a design approach to aid collaboration between non-technical contribu-
tors (such as business analysts or users) and software engineers. Consequently, BDD
is geared toward a more verifiable and collaborative test process by being able to
compare expected behaviors with actual results, following standard simplified sce-
narios constructed by simple language clauses, such as GIVEN, WHEN, and
THEN [75].

8 Architecting Green Mobile Cloud Apps 207

8.5.2.2 Full-Tier as the New Fine-Grained Test Coverage for MCA

Also presented as a key challenge to the current multi-scenario approach adopted in
the MCA evaluation process is the mobile-centric nature of the evaluation process.
Thus, only the impact of an offloading scheme on the mobile device is estimated.
However, MCA is composed of mobile and cloud tiers. Therefore, to address the
coarse granularity of the current approach, an effective solution must take into
consideration the mobile as well as the cloud resource impact of an offloading
scheme.

Johann et al. [26] show that a fine-grained approach to energy measurement
(using counters) aid reveals specific energy usage in relation to specific points of
execution. Furthermore, in software testing, test coverage is a metric used to measure
the extent of testing in respect to the code being executed. In MCA the actual
execution involves the mobile and the cloud tiers; therefore, to achieve fine-grained
testing with acceptable optimum coverage (i.e., a test coverage that reflects both tiers
of MCA):

• Solution 3: Adopt a full-tier testing to measure across the mobile tier (for mobile
metrics, e.g., mobile performance and energy usage) and cloud tier (for cloud
metrics, e.g., CPU and memory usage).

With full-tier evaluation one can better understand if a scheme just keeps
offloading to server, or if it checks server availability (i.e., robustness), thus ensuring
that a scheme is aware of both mobile and cloud resource consumption.

8.6 Summary

This chapter presented the current state of the art in mobile cloud applications
development. Consequently, it highlighted the key issues with the domain, in
terms of the optimization approach and evaluation approach.

The chapter presented the gaps in the existing optimization approaches (repli-
cated in Table 8.5, which includes proposed solution) as follows:

• Coarse granularity in identification of offloadable task which leads to unnecessary
MCA transformation of mobile applications, which in turn results in performance
overhead.

• Multiple parameter-based decision making (with intension of accuracy in envi-
ronmental prediction), which leads to performance overhead.

• Runtime-dependent and development-inefficient offloading mechanism which
incurs performance overhead and implementation complexities.

To address the identified gaps in existing optimization approaches the research
proposed the use of a Model-Driven Approach with the following solutions:

208 S. J. Chinenyeze and X. Liu

• Ensure that identified offloadable tasks will most certainly yield benefits, during
optimization, prior to final deployment.

• Monitoring and decision making is based on execution times in full-tier as
opposed to multiple environmental factors as parameters. Thus, the approach
does not seek (or monitor) best path of execution (requiring extensive resource
monitoring, thus causing overhead), but adopts a good-fit path with respect to
execution time. That is to say that the decision to offload is made based on time,
and control of remote execution is achieved based on time (as threshold).

• The scheme is based on Model-Driven Engineering, and thus mitigates the
overhead caused by custom runtimes. Furthermore, the proposed scheme is
based on partitioning (not cloning), which further eliminates runtime overheads
of cloning solutions.

Furthermore, the chapter furthered the case for improving the existing MCA
evaluation approach by presenting the inefficiencies in the existing state-of-the-art
evaluation approach to MCA, i.e., the scenario-based approach. The current gaps
were presented as follows:

• Inconsistency in evaluation results of scenarios for an offloading scheme.
• Variability of architecture scenarios (making it difficult to compare between

offloading schemes).
• Coarse granularity of evaluation—focused on mobile implications of an MCA or

its offloading scheme.

To address the identified gaps in the scenario-based evaluation approach the
research proposed the use of a Behavior-Driven (BDD) approach with the following
solutions:

Table 8.5 Summary of offload models including proposed solution

System

Identification of offloadable
task Decision maker Offloading mechanism

Fully
automated

Fine
granularity Thresholds Parameters Type

Custom
runtime

Kwon
et al. [38]

No
(annotation)

No Static Resource Cloning Yes

MAUI
[36]

No
(annotation)

No Dynamic Resource Cloning Yes

Hassan
et al.
[40, 46]

Yes No Dynamic Resource
(full)

Partitioning Partial
(machine
learning)

Native
Offloader
[65]

Yes No Dynamic Resource Partitioning Yes

Proposed
solution

Yes (static
and dynamic
analysis)

Yes Dynamic Time Partitioning
(aspect-
oriented)

No
(model-
driven)

8 Architecting Green Mobile Cloud Apps 209

• Use environmental factors as parameters for evaluation rather than varying
scenarios. Applying environmental factors in the evaluation process would pro-
vide information on the environmental state (i.e., measurements) at a finer
granularity, and since this is not within the optimization code, there is no cause
for concern about performance overhead. Thus, the evaluation process is best
suited for real-time environmental factors, rather than the optimization process,
which can cause performance overhead every time offload decisions are made.

• Simplify the evaluation process using simple clauses, as offered by BDD—as
exemplified in the BEFTIGRE solution [76].

• Adopt the concept of fine-grained software coverage testing, which takes into
account all components of software for higher coverage. Specifically, this means
taking into account the mobile tier as well as the cloud tier during MCA
evaluation—a full-tier evaluation—as exemplified in the BEFTIGRE
solution [76].

References

1. Dick M, Naumann S, Kuhn N (2010) A model and selected instances of green and sustainable
software. In: Berleur J, Hercheui MD, Hilty LM (eds) What kind of information society?
Governance, virtuality, surveillance, sustainability, resilience. Springer, Berlin, pp 248–259

2. Lami G, Buglione L, Fabbrini F (2013) Derivation of green metrics for software. In:
Woronowicz T, Rout T, O’Connor RV, Dorling A (eds) Software process improvement and
capability determination. Springer, Berlin, pp 13–24

3. Calero C, Piattini M (2015) Introduction to Green in Software Engineering. In: Green in
software engineering. Springer International Publishing, Cham, pp 3–27

4. Rogers D, Homann U (2009) Application patterns for green IT. Archit J Green Comput. https://
msdn.microsoft.com/en-us/library/dd393307.aspx. Accessed 18 Jan 2016

5. Murugesan S (2008) Harnessing green IT: principles and practices. IT Prof 10:24–33. https://
doi.org/10.1109/MITP.2008.10

6. Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFT model: a reference model for
green and sustainable software and its engineering. Sust Comput Inform Syst 1:294–304.
https://doi.org/10.1016/j.suscom.2011.06.004

7. Reimsbach-Kounatze C (2009) Towards green ICT Strategies - assessing policies and
programmes on ICT and the environment

8. Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development
environments and energy efficiency in open source applications. Inf Softw Technol 54:60–71.
https://doi.org/10.1016/j.infsof.2011.07.005

9. Steigerwald B, Agrawal A (2011) Developing Green Software | Intel® Developer Zone. http://
software.intel.com/en-us/articles/developing-green-software. Accessed 18 Jan 2016

10. Bozzelli P, Gu Q, Lago P (2013) A systematic literature review on green software metrics. VU
University, Amsterdam

11. Taina J, Mäkinen S (2015) Green software quality factors. In: Green in software engineering.
Springer International Publishing, Cham, pp 129–154

12. Benini L, De Micheli G (2000) System-level power optimization: techniques and tools. ACM
Trans Des Autom Electron Syst 5:115–192. https://doi.org/10.1145/335043.335044

13. Goiri I, Beauchea R, Le K, Nguyen TD, Haque ME, Guitart J, Torres J, Bianchini R (2011)
GreenSlot: scheduling energy consumption in green datacenters. In: Proceedings of 2011

210 S. J. Chinenyeze and X. Liu

https://msdn.microsoft.com/en-us/library/dd393307.aspx
https://msdn.microsoft.com/en-us/library/dd393307.aspx
https://doi.org/10.1109/MITP.2008.10
https://doi.org/10.1109/MITP.2008.10
https://doi.org/10.1016/j.suscom.2011.06.004
https://doi.org/10.1016/j.infsof.2011.07.005
http://software.intel.com/en-us/articles/developing-green-software
http://software.intel.com/en-us/articles/developing-green-software
https://doi.org/10.1145/335043.335044

International Conference for High Performance Computing, Networking, Storage and Analysis
on - SC ’11. ACM Press, New York, NY, pp 1–11

14. Vasić N, Bhurat P, Novaković D, Canini M, Shekhar S, Kostić D (2011) Identifying and using
energy-critical paths. In: Proceedings of the Seventh COnference on emerging Networking
EXperiments and Technologies on - CoNEXT ’11. ACM Press, New York, NY, pp 1–12

15. Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd edn. Addison-
Wesley Professional, Boston

16. You C-W, Chu H (2004) Replicated client-server execution to overcome unpredictability in
mobile environment. In: 2004 4th Workshop on applications and services in wireless networks,
2004. ASWN 2004. IEEE, pp 21–29

17. Khan MA, Hankendi C, Coskun AK, Herbordt MC (2011) Software optimization for perfor-
mance, energy, and thermal distribution: initial case studies. In: 2011 International green
computing conference and workshops. IEEE, Orlando, FL, pp 1–6

18. Denti M, Nurminen JK (2013) Performance and energy-efficiency of scala on mobile devices.
In: 2013 Seventh International conference on next generation mobile apps, services and
technologies. IEEE, pp 50–55

19. Cano M-D, Domenech-Asensi G (2011) A secure energy-efficient m-banking application for
mobile devices. J Syst Softw 84:1899–1909. https://doi.org/10.1016/j.jss.2011.06.024

20. Williams J, Curtis L (2008) Green: the new computing coat of arms? IT Prof 10:12–16. https://
doi.org/10.1109/MITP.2008.9

21. Hsu C-H, Chen S-C, Lee C-C, Chang H-Y, Lai K-C, Li K-C, Rong C (2011) Energy-aware task
consolidation technique for cloud computing. In: 2011 IEEE third international conference on
cloud computing technology and science (CloudCom). IEEE, Athens, pp 115–121

22. Zhong B, Feng M, Lung C-H (2010) A green computing based architecture comparison and
analysis. In: 2010 IEEE/ACM International conference on green computing and communica-
tions & international conference on cyber, physical and social computing. IEEE, pp 386–391

23. Morgan R, MacEachern D (2010) SIGAR - system information gatherer and reporter. https://
support.hyperic.com/display/SIGAR/Home. Accessed 18 Jan 2016

24. Tayeb J, Bross K, Bae CS, Li C, Rogers S (2010) Intel energy checker software development kit
user guide. https://goo.gl/Yrtbn9. Accessed 1 Jul 2016

25. Naik K, Wei DSL (2001) Software implementation strategies for power-conscious systems.
Mob Netw Appl 6:291–305. https://doi.org/10.1023/A:1011487018981

26. Johann T, Dick M, Naumann S, Kern E (2012) How to measure energy-efficiency of software:
metrics and measurement results. In: 2012 First international workshop on green and sustain-
able software (GREENS). IEEE, pp 51–54

27. Yanggratoke R, Wuhib F, Stadler R (2011) Gossip-based resource allocation for green com-
puting in large clouds. In: 2011 7th International conference on network and service manage-
ment. IEEE, Paris, pp 171–179

28. Yamini R (2012) Power management in cloud computing using green algorithm. In: 2012
International conference on advances in engineering, science and management (ICAESM).
IEEE, Nagapattinam, Tamil Nadu, pp 128–133

29. Chen H-M, Kazman R (2012) Architecting ultra-large-scale green information systems. In:
2012 First international workshop on green and sustainable software (GREENS). IEEE, Zurich,
pp 69–75

30. Baliga J, Ayre RW, Hinton K, Tucker RS (2011) Green cloud computing: balancing energy in
processing, storage, and transport. Proc IEEE 99:149–167. https://doi.org/10.1109/JPROC.
2010.2060451

31. Fang D, Liu X, Liu L, Yang H (2013) TARGO: transition and reallocation based green
optimization for cloud VMs.In: Proceedings of the 2013 IEEE international conference on
green computing and communications and IEEE internet of things and IEEE cyber, physical and
social computing, GreenCom-iThings-CPSCom 2013, pp 215–223. doi:https://doi.org/10.
1109/GreenCom-iThings-CPSCom.2013.56

8 Architecting Green Mobile Cloud Apps 211

https://doi.org/10.1016/j.jss.2011.06.024
https://doi.org/10.1109/MITP.2008.9
https://doi.org/10.1109/MITP.2008.9
https://support.hyperic.com/display/SIGAR/Home
https://support.hyperic.com/display/SIGAR/Home
https://goo.gl/Yrtbn9
https://doi.org/10.1023/A:1011487018981
https://doi.org/10.1109/JPROC.2010.2060451
https://doi.org/10.1109/JPROC.2010.2060451
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.56
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.56

32. Chinenyeze SJ, Liu X, Al-dubai A (2014) An aspect oriented model for software energy
efficiency in decentralised servers. In: 2nd international conference on ICT for sustainability.
Atlantis Press, Stockholm, pp 112–119

33. Zhang L, Tiwana B, Qian Z, Wang Z, Dick RP, Mao ZM, Yang L (2010) Accurate Online
Power Estimation and Automatic Battery Behavior Based Power Model Generation for
Smartphones. In: Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis - CODES/ISSS ’10. ACM Press,
New York, NY, pp 105–114

34. Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture,
applications, and approaches. Wirel Commun Mob Comput 13:1587–1611. https://doi.org/10.
1002/wcm.1203

35. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing: a survey. Futur Gener
Comput Syst 29:84–106. https://doi.org/10.1016/j.future.2012.05.023

36. Cuervo E, Balasubramanian A, Cho D, Wolman A, Saroiu S, Chandra R, Bahl P (2010) MAUI:
making smartphones last longer with code offload. In: Proceedings of the 8th international
conference on mobile systems, applications, and services - MobiSys ’10. ACM Press,
New York, Y, pp 49–62

37. Chun B-G, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: elastic execution between
mobile device and cloud. In: Proceedings of the sixth conference on computer systems -
EuroSys’11. ACM Press, New York, NY, pp 301–314

38. Kwon Y-W, Tilevich E (2012) Energy-efficient and fault-tolerant distributed mobile execution.
In: 2012 IEEE 32nd international conference on distributed computing systems. IEEE, pp
586–595

39. Zhang Y, Huang G, Liu X, Zhang W, Mei H, Yang S (2012) Refactoring android Java code for
on-demand computation offloading. In: Proceedings of the ACM international conference on
Object oriented programming systems languages and applications - OOPSLA ’12. ACM Press,
New York, NY, p 233

40. Hassan MA, Bhattarai K, Wei Q, Chen S (2014) POMAC: properly offloading mobile appli-
cations to clouds. In: Proceedings of the 6th USENIX conference on hot topics in cloud
computing. USENIX Association, pp 1–6

41. Justino T, Buyya R (2014) Outsourcing resource-intensive tasks from mobile apps to clouds:
android and aneka integration. In: 2014 IEEE international conference on cloud computing in
emerging markets (CCEM). IEEE, pp 1–8

42. Zachariadis S, Mascolo C, Emmerich W (2004) SATIN: a component model for mobile self
organisation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, pp 1303–1321

43. Marinelli EE (2009) Hyrax: cloud computing on mobile devices using MapReduce. Carnegie
Mellon University, Pittsburgh, PA, p 15213

44. Wichtlhuber M, Rückert J, Stingl D, Schulz M, Hausheer D (2012) Energy-efficient mobile P2P
video streaming. In: 2012 IEEE 12th international conference on peer-to-peer computing, P2P
2012. IEEE, pp 63–64

45. Yu P, Ma X, Cao J, Lu J (2013) Application mobility in pervasive computing: A survey.
Pervasive Mob Comput 9:2–17. https://doi.org/10.1016/j.pmcj.2012.07.009

46. Hassan MA, Wei Q, Chen S (2015) Elicit: efficiently identify computation-intensive tasks in
mobile applications for offloading. In: 2015 IEEE international conference on networking,
architecture and storage (NAS). IEEE, pp 12–22

47. Lemlouma T, Layaida N (2004) Context-aware adaptation for mobile devices. In: IEEE
International conference on mobile data management, 2004. Proceedings. 2004. IEEE, pp
106–111

48. Huang S, Mangs J (2008) Pervasive computing: migrating applications to mobile devices: a
case study. In: 2008 2nd annual IEEE systems conference. IEEE, pp 1–8

212 S. J. Chinenyeze and X. Liu

https://doi.org/10.1002/wcm.1203
https://doi.org/10.1002/wcm.1203
https://doi.org/10.1016/j.future.2012.05.023
https://doi.org/10.1016/j.pmcj.2012.07.009

49. Miyake S, Bandai M (2013) Energy-efficient mobile P2P communications based on context
awareness. In: 2013 IEEE 27th international conference on advanced information networking
and applications (AINA). IEEE, pp 918–923

50. Satyanarayanan M (2001) Pervasive computing: vision and challenges. IEEE Pers Commun
8:10–17. https://doi.org/10.1109/98.943998

51. Saha D (2003) Pervasive computing: a paradigm for the 21st century. Computer (Long Beach
Calif) 36:25–31. https://doi.org/10.1109/MC.2003.1185214

52. (2013a) PowerTutor. https://github.com/msg555/PowerTutor. Accessed 18 Jan 2016
53. (2013b) Picaso. https://code.google.com/p/picaso-eigenfaces/. Accessed 18 Jan 2016
54. (2012) MatCalc. https://github.com/kc1212/matcalc. Accessed 18 Jan 2016
55. (2013c) MathDroid. https://f-droid.org/repository/browse/?fdid¼org.jessies.mathdroid.

Accessed 18 Jan 2016
56. (2015) NQueen. https://play.google.com/store/apps/details?id¼com.memmiolab.queens.

Accessed 18 Jan 2016
57. Droidslator (2010) Droidslator. https://code.google.com/p/droidslator/. Accessed 18 Jan 2016
58. (2009a) Mezzofanti. https://code.google.com/p/mezzofanti/. Accessed 18 Jan 2016
59. (2016a) ZXing. https://github.com/zxing/zxing. Accessed 18 Jan 2016
60. (2009b) JJIL. https://code.google.com/p/jjil/. Accessed 18 Jan 2016
61. (2016b) OSMAnd. https://github.com/osmandapp/Osmand. Accessed 18 Jan 2016
62. Čokulov P (2014) Linpack. https://github.com/pedja1/Linpack. Accessed 18 Jan 2016
63. (2008) XRace. https://code.google.com/p/xrace-sa/. Accessed 18 Jan 2016
64. Gu Y, March V, Lee BS (2012) GMoCA: green mobile cloud applications. In: 2012 First

international workshop on green and sustainable software (GREENS). IEEE, Zurich, pp 15–20
65. Lee G, Park H, Heo S, Chang K-A, Lee H, Kim H (2015) Architecture-aware automatic

computation offload for native applications. In: Proceedings of the 48th international sympo-
sium on microarchitecture - MICRO-48. ACM Press, New York, NY, pp 521–532

66. Zhang W, Wen Y, Wu DO (2013) Energy-efficient scheduling policy for collaborative execu-
tion in mobile cloud computing. In: 2013 Proceedings IEEE INFOCOM. IEEE, Turin, pp
190–194

67. Bhattacharya S, Gopinath K, Rajamani K, Gupta M (2011) Software bloat and wasted joules: is
modularity a hurdle to green software? Computer (Long Beach Calif) 44:97–101. https://doi.
org/10.1109/MC.2011.293

68. Saarinen A, Siekkinen M, Xiao Y, Nurminen JK, Kemppainen M, Labs DT (2012) Can
offloading save energy for popular apps? In: Proceedings of the seventh ACM international
workshop on mobility in the evolving internet architecture - MobiArch ’12. ACM Press,
New York, NY, pp 3–10

69. Laddad R (2010) AspectJ in action: enterprise AOP with spring applications, 2nd edn. Manning
Publications Co

70. Laguna MA, Gonzalez-Baixauli B (2005) Requirements variability models: meta-model based
transformations. In: Proceedings of the 2005 symposia on metainformatics - MIS ’05. ACM
Press, pp 1–9

71. Cortellessa V, Di Marco A, Inverardi P (2006) Software performance model-driven architec-
ture. In: Proceedings of the 2006 ACM symposium on Applied computing - SAC ’06. ACM
Press, New York, NY, pp 1218–1223

72. Schmidt DC (2006) Model-driven engineering. Computer (Long Beach Calif) 39:25–31.
https://doi.org/10.1109/MC.2006.58

8 Architecting Green Mobile Cloud Apps 213

https://doi.org/10.1109/98.943998
https://doi.org/10.1109/MC.2003.1185214
https://github.com/msg555/PowerTutor
https://code.google.com/p/picaso-eigenfaces/
https://github.com/kc1212/matcalc
https://f-droid.org/repository/browse/?fdid=org.jessies.mathdroid
https://f-droid.org/repository/browse/?fdid=org.jessies.mathdroid
https://play.google.com/store/apps/details?id=com.memmiolab.queens
https://play.google.com/store/apps/details?id=com.memmiolab.queens
https://code.google.com/p/droidslator/
https://code.google.com/p/mezzofanti/
https://github.com/zxing/zxing
https://code.google.com/p/jjil/
https://github.com/osmandapp/Osmand
https://github.com/pedja1/Linpack
https://code.google.com/p/xrace-sa/
https://doi.org/10.1109/MC.2011.293
https://doi.org/10.1109/MC.2011.293
https://doi.org/10.1109/MC.2006.58

73. Trask B, Paniscotti D, Roman A, Bhanot V (2006) Using model-driven engineering to com-
plement software product line engineering in developing software defined radio components
and applications. In: Companion to the 21st ACM SIGPLAN conference on object-oriented
programming systems, languages, and applications - OOPSLA ’06. ACM Press, New York,
NY, pp 846–853

74. Rohatgi A (2016) WebPlotDigitizer - extract data from plots, images, and maps. http://arohatgi.
info/WebPlotDigitizer/. Accessed 18 Jan 2016

75. Solís C, Wang X (2011) A study of the characteristics of behaviour driven development. In:
Proceedings - 37th EUROMICRO conference on software engineering and advanced applica-
tions, SEAA 2011. IEEE, pp 383–387

76. Chinenyeze SJ, Liu X, Al-Dubai A (2017) BEFTIGRE: behaviour-driven full-tier green
evaluation of mobile cloud applications. J Softw Evol Process 29:e1848. https://doi.org/10.
1002/smr.1848

214 S. J. Chinenyeze and X. Liu

http://arohatgi.info/WebPlotDigitizer/
http://arohatgi.info/WebPlotDigitizer/
https://doi.org/10.1002/smr.1848
https://doi.org/10.1002/smr.1848

Chapter 9
Sustainability: Delivering Agility’s Promise

Jutta Eckstein and Claudia de O. Melo

Abstract Sustainability is a promise by agile development, as it is part of both the
Agile Alliance’s and the Scrum Alliance’s vision. Thus far, however, not much has
been delivered on this promise. This chapter explores the Agile Manifesto and points
out how agility could contribute to sustainability in its three dimensions – social,
economic, and environmental. Additionally, it provides some sample cases of
companies focusing on both sustainability (partially or holistically) and agile
development.

9.1 Introduction

The two major agile organizations, the Agile Alliance and the Scrum Alliance, both
promise in their vision statements that sustainability is one of their core goals:

• Agile Alliance is a nonprofit organization committed to supporting people who
explore and apply Agile values, principles, and practices to make building
software solutions more effective, humane, and sustainable [1].

• Scrum Alliance® is a nonprofit organization that is guiding and inspiring indi-
viduals, leaders, and organizations with agile practices, principles, and values to
help create workplaces that are joyful, prosperous, and sustainable [2].

If we want to support building software solutions to be more effective, humane,
and sustainable or to help create workplaces that are joyful, prosperous, and sus-
tainable we have to aim (among other things) for sustainability. However, thus far
not much has been done for approaching this aim.

J. Eckstein (*)
Independent, Braunschweig, Germany
e-mail: jutta@jeckstein.com

C. de O. Melo
International Agency (United Nations), Vienna, Austria
e-mail: research@claudiamelo.org

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_9

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_9&domain=pdf
mailto:jutta@jeckstein.com
mailto:research@claudiamelo.org
https://doi.org/10.1007/978-3-030-69970-3_9#DOI

In this chapter, we are going to provide a new lens in order to understand the
Agile Manifesto under the premise the agile approach wants to fulfill its promise for
sustainability, and we will provide various case studies of companies attempting to
use agile development to contribute to sustainability.

The chapter is structured as follows: we will at first examine the various defini-
tions of sustainability and explore both how the business and Information and
Communication Technologies (ICT) approach and classify sustainability. We will
then take a close look at the principles defined by the Agile Manifesto in order to find
out how they can support sustainable development [3]. Next, we present various case
studies of companies either addressing sustainability partially or holistically by
leveraging it with an agile approach. In the conclusion, we will take a critical look
at sustainability initiatives before we will provide an outlook on the (hopefully) not
so far future.

9.2 Sustainability

There are several definitions for sustainability and nuances across the spectrum of
sustainable use, sustainable development, and sustainability [4]. The most famous
and frequently adopted definition to frame discussions around sustainability is
provided by the Brundtland report [5]:

Sustainable development is development that meets the needs of the present without
compromising the ability of future generations to meet their own needs. It contains within
it two key concepts: the concept of “needs,” in particular the essential needs of the world’s
poor, to which overriding priority should be given; and the idea of limitations imposed by the
state of technology and social organisation on the environment’s ability to meet present and
future needs.

The Brundtland report suggests how economic and social development should be
defined and calls all countries to action:

Thus the goals of economic and social development must be defined in terms of sustain-
ability in all countries—developed or developing, market-oriented or centrally planned.
Interpretations will vary, but must share certain general features and must flow from a
consensus on the basic concept of sustainable development and on a broad strategic
framework for achieving it.

Finally, the report describes how a path toward sustainability should look like,
bringing the concept of physical sustainability (related to living under the laws of
nature and minimizing the impact on the physical environment) and its connection to
intra- and intergenerational social equity:

Development involves a progressive transformation of economy and society. A development
path that is sustainable in a physical sense could theoretically be pursued even in a rigid
social and political setting. But physical sustainability cannot be secured unless development
policies pay attention to such considerations as changes in access to resources and in the
distribution of costs and benefits. Even the narrow notion of physical sustainability implies a
concern for social equity between generations, a concern that must logically be extended to
equity within each generation.

216 J. Eckstein and C. de O. Melo

According to these definitions, sustainability is about taking long-term responsibility
for your action and reaches further than energy consumption and pollution as it is
often casually understood.

Other important concepts that seek to explain sustainability are the three-pillar
model and the triple bottom line. The three-pillar model depicts sustainability by
synthesizing social, economic, and environmental concerns. It is the model most
widely used, for example, it is the definition given byWikipedia and also used on the
2005 World Summit on Social Development [6, 7]. However, as explained in [8],
“the conceptual foundations of this model are far from clear and there appears to be
no singular source from which it derives.”

The triple bottom line is an accounting framework that seeks to broaden the
notion of a company bottom line by introducing a full cost accounting. A single
bottom line is the company’s profit (if negative, loss) in an accounting period. A
triple bottom line adds social and environmental (ecological) concerns to the
accounting. If a corporation has a monetary profit, but it causes thousands of deaths
or pollutes a river, and the government ends up spending taxpayer money on health
care and river clean-up, the triple bottom line needs to account for these cost-benefit
analyses too.

The triple bottom line is also known by the phrase “people, planet, and profit” and
was coined by John Elkington in 1994 while at SustainAbility (a British consul-
tancy). A triple bottom line company seeks to gauge a corporation’s level of
commitment to corporate social responsibility and its impact on the environment
over time [9].

Another important framework that also articulates sustainability is the United
Nations 2030 Agenda and the 17 Sustainable Development Goals: “The Sustainable
Development Goals are a universal call to action to end poverty, protect the planet
and improve the lives and prospects of everyone, everywhere” [10].

Also, these sustainable development goals are founded in the three pillar model:
social (the aim of ending poverty), environmental (protecting the planet), and
economic (improving the lives and prospects of everyone, everywhere). Therefore,
throughout this chapter, we will use the three-pillar model as the definition for
sustainability, as illustrated in Fig. 9.1.

Even with the definition of the three pillars, it has always to be understood that
sustainability is highly interconnected that any elaboration on sustainability requires
a holistic perspective because all actions are interdependent [11]:

All definitions of sustainable development require that we see the world as a system—a
system that connects space; and a system that connects time. When you think of the world as
a system over space, you grow to understand that air pollution from North America affects
air quality in Asia, and that pesticides sprayed in Argentina could harm fish stocks off the
coast of Australia. And when you think of the world as a system over time, you start to
realise that the decisions our grandparents made about how to farm the land continue to
affect agricultural practice today; and the economic policies we endorse today will have an
impact on urban poverty when our children are adults.

9 Sustainability: Delivering Agility’s Promise 217

9.2.1 Business and Sustainability

According to the dictionary [12], “Business pertains broadly to commercial, finan-
cial, and industrial activity, and more narrowly to specific fields or firms engaging in
this activity.”

However, also the business and its self-conception are changing. In particular,
this became visible, by the Business Roundtable, an association of chief executive
officers of leading companies in the USA, refining its statement on the purpose of a
corporation in 2019. This refined statement made a shift from the focus on satisfying
shareholders by making money to a more holistic understanding and aiming for
satisfying customers, employees, communities, suppliers, and shareholders equally.
This shift comprehends an understanding that financial success is not the sole
purpose of business.

For example, the statement says [13]:

[W]hen it comes to addressing difficult economic, environmental and societal challenges,
these companies are starting in their own backyards—partnering with communities to
provide the investment and innovative solutions needed to revitalize local economies and
improve lives.

These investments and initiatives aren’t just about doing good; they’re about doing good
business and creating a thriving economy with greater opportunity for all.

Although, when talking about sustainability, the Business Roundtable refers only
to energy and environment, they show an understanding of sustainability as it is
defined by the Brundtland report [5, 14] by pointing out the importance and
interdependence of the economic, environmental, and societal challenges.

At the organizational level, there are concrete movements aiming to answer the
question of how an organization can be more balanced across the three sustainability
pillars. They recognize that capitalism, as it’s currently practiced, is starting to run
into fundamental structural problems.

Fig. 9.1 The three
dimensions of sustainability
[8]

218 J. Eckstein and C. de O. Melo

In the USA, B Lab [15] has worked to create a certification of “social and
environmental performance” to evaluate for-profit companies. B Lab certification
requires companies to meet social sustainability and environmental performance,
and accountability standards, as well as being transparent to the public according to
the score they receive on the assessment. Later on, they also developed the concept
of “benefit corporations,” companies that legally commit themselves to honor moral
values, while pursuing the standard capitalist goal of maximizing profits. A few
examples of well-known benefit corporations include Method, Kickstarter, Plum
Organics, King Arthur Flour, Patagonia, Solberg Manufacturing, Laureate Educa-
tion, and Altschool.

In Europe, Economy for the Common Good (ECG) [16] has similar goals. ECG
is an economic model, which makes the Common Good, a good life for everyone on
a healthy planet, its primary goal and purpose. The Economy for the Common Good
(ECG) was initiated in 2010 by economic reformist and author Christian Felber,
together with a group of Austrian pioneer enterprises. ECG is an ethical model for
society and the economy with the goal of reorienting the free market economy
through a democratic process toward common good values. According to Felber,
it seeks to address a capitalist system that “creates a number of serious problems:
unemployment, inequality, poverty, exclusion, hunger, environmental degradation
and climate change.” The solution is an economic system that “places human beings
and all living entities at the centre of economic activity.”

At the heart of ECG lies the idea that values-driven businesses are mindful of and
committed to (1) human dignity, (2) solidarity and social justice, (3) environmental
sustainability, and (4) transparency and codetermination. ECG is currently supported
by more than 1800 enterprises in 40 countries such as Sparda-Bank Munich,
VAUDE, Sonnentor, and taz (German newspaper), about 250 have created a Com-
mon Good Balance Sheet. This balance sheet is a scorecard that measures companies
based on their preservation of those four fundamental values, considering five key
stakeholders: suppliers; owners/equity/financial service providers; employees/
coworker employers; customers/other companies; and social environment.

9.2.2 ICT/Technology and Sustainability

The idea of using Information and Communication Technologies (ICT) to address
sustainability issues has been investigated in a number of interdisciplinary fields that
combine ICT with environmental and/or social sciences. Among these are environ-
mental informatics, computational sustainability, sustainable human-computer inter-
action, green IT/ICT, or ICT for sustainability [4].

The contributions of these fields are manifold: monitoring the environment;
understanding complex systems; data sharing and consensus building; decision
support for the management of natural resources; reducing the environmental impact
of ICT hardware and software; enabling sustainable patterns of production and
consumption; and understanding and using ICT as a transformational technology.

9 Sustainability: Delivering Agility’s Promise 219

For these different areas, there is a common understanding that ICT can be used to
reduce its own footprint and to support sustainable patterns [4]:

• Sustainability in ICT: Making ICT goods and services more sustainable over
their whole life cycle, mainly by reducing the energy and material flows they
invoke.

• Sustainability by ICT: Creating, enabling, and encouraging sustainable patterns
of production and consumption.

The problem with this differentiation is that often sustainability in and by ICT is
intertwined. When analyzing the impact of certain technology, looking for a final
positive or negative conclusion, it is not possible to assess it in isolated contexts to
make a decision. A positive impact occurs when the effect of a sustainable activity
on the social fabric of the community causes well-being of the individuals and
families considering the three pillars [17]. Thus, assessing the ICT impact needs to
consider that [4]:

Sustainable development [. . .] is defined on a global level, which implies that any analysis or
assessment must ultimately take a macro-level perspective. Isolated actions cannot be
considered part of the problem, nor part of the potential solution, unless there is a procedure
in place for systematically assessing the macrolevel impacts.

Therefore, the assessment of specific technology impact on sustainable development
must consider its nuances and interdependencies on multiple levels that might be on
both spaces of “in” and “by.” A good example is provided in [18 , p. 284]:

[H]istory of technology has shown that increased energy efficiency does not automatically
contribute to sustainable development. Only with targeted efforts on the part of politics,
industry and consumers will it be possible to unleash the true potential of ICT to create a
more sustainable society.

9.3 Agile and Sustainability

If agile is really aiming for sustainability, as it is suggested by the vision of both the
Agile Alliance and the Scrum Alliance, then we should take a look at the principles
of the Agile Manifesto to understand how these principles can contribute to or guide
sustainability [3]. Sustainability requires a much broader view to integrate the
environmental, economic, and social perspectives.

9.3.1 Our Highest Priority Is to Satisfy the Customer Through
Early and Continuous Delivery of Valuable Software

At the core of this very first principle is continuous learning by focusing constantly
on the customer. Only through continuous delivery, you will be able to keep

220 J. Eckstein and C. de O. Melo

adjusting the system to the customer’s satisfaction. Broadening the perspective, and
looking at this principle through a sustainability lens, that is taking also the envi-
ronmental and social aspect into account, shifts also the meaning of “valuable”
software. The value is not only defined by the economic benefit for the customer
but also by the social and environmental improvements.

Moreover, by broadening the perspective, we’ll find that it will become even
harder to come up with a perfect solution right away. For example, measuring the
carbon footprint of the system you’re building will teach you what aspects you need
to adapt, rethink, and redo. Thus, adding two more dimensions (environmental and
social) increases the complexity of development, and thus, continuous learning is
even more important to uncover emergent practices [19].

9.3.2 Welcome Changing Requirements, Even Late
in Development: Agile Processes Harness Change
for the Customer’s Competitive Advantage

This second principle addresses sustainability by ICT, by focusing on the customer
(like the principle before). At first sight, the “customer’s competitive advantage”
sounds like it can only aim for economical success. Yet, the advantage can also be
built by a reputation of the product as being environmental and social friendly. As a
counterexample, the authors have seen websites that require the specification of the
first and last name of the user (Fig. 9.21). However, both need to be at least three
characters long. If the developers would have been socially aware they would have
understood that there are many people (especially in Asia) whose names are only two
characters long. This is only a minor example but still shows how broadening the
view can make a difference for the customer—by gaining a good or bad reputation.

To provide the customer this kind of competitive advantage, we have to answer:

• How is the product that we’re creating helping the world?
• How is it part of a wider sustainable solution?
• How can we ensure the product is inclusive?
• How can the product even improve the environment?
• How can we ensure the product itself is environment friendly?

1https://twitter.com/shirleyywu/status/1300628412466298881?s¼20

9 Sustainability: Delivering Agility’s Promise 221

https://twitter.com/shirleyywu/status/1300628412466298881?s=20
https://twitter.com/shirleyywu/status/1300628412466298881?s=20

9.3.3 Deliver Working Software Frequently, from a Couple of
Weeks to a Couple of Months, with a Preference to the
Shorter Timescale

Similar to the first principle, also this one focuses on continuous learning. The
difference is that this third principle asks to establish a regular cadence for feedback.
The shorter the feedback cycle, the better, because then we can keep the focus on the
learning about the changes in the system by the last delivery. This principle is
important for tackling sustainability because the knowledge, wisdom, and experi-
ence is steadily increasing in all three dimensions (economical, social, and environ-
mental) and this learning has to be reflected in the system.

For example, although we might have designed the system to be highly accessi-
ble, only by getting feedback from people who are in need of accessibility will we
know how well the system performs. Similarly, we can learn from the real carbon
footprint of the system only when we know how it performs in reality.

To continuously learn from the delivery you should regularly ask yourself the
following questions [20]:

• Does the system work for people with disabilities?
• Does the system work for people using older devices?
• Does the system provide the best possible performance with the least amount of

resources across devices and platforms?

9.3.4 Business People and Developers Must Work Together
Daily Throughout the Project

This is the fourth principle of the Agile Manifesto and points out the importance of
collaboration between the ones creating the product or service (developers) and the

Fig. 9.2 Application requiring two characters for the last name

222 J. Eckstein and C. de O. Melo

ones who want to offer that product or service to the market. Continuous collabo-
ration enables self-organization around the system created and allows to discover
and actually meet the market needs.

The collaboration between business people and developers is not market focused
only (anymore), but keeps the wider perspective of addressing all three dimensions
of sustainability. This includes a reflection on the market we serve, disrupt, and/or
create. For example, in the last decades, car manufacturers did create a market for
heavy and environmental unfriendly cars (the sport utility vehicles, SUVs) and
hesitated on the other hand to create a market for electric cars with the argument
that this market does not exist [21].

Thus, this principle is a continuous reminder to consider all aspects of sustain-
ability in our daily work.

9.3.5 Build Projects Around Motivated Individuals. Give
Them the Environment and Support They Need, and
Trust Them to Get the Job Done

This is the principle number five and directly mentions the environment. First of all,
this principle is a call to action for sustainability in ICT. At first sight, the social pillar
is emphasizing the importance of supporting the individuals for example, by paying
them fair (also despite any difference in race, gender, religion, location, etc.).
Providing an environment that helps the individuals to self-organize for getting
their job done includes the technical tools yet, also the safety of the environment:
the individuals are not put at risk by, e.g., a polluted or toxic workspace (think of
asbestos, colors, or carpets that evaporate toxic emissions).

Moreover, the environment can also contribute, neutralize, or reduce the carbon
footprint. For example, by the energy that is used in the work environment, the
availability of natural light, the existence of natural plants, or the commute that is
required. Finally, from an economic point of view, this principle also requests that
the environment allows every individual in the same way to prosper and grow by
offering life-long learning.

9.3.6 The Most Efficient and Effective Method of Conveying
Information to and Within a Development Team Is
Face-to-Face Conversation

This sixth principle puts direct conversation at the core. Face-to-face conversation
provides transparency particularly from the social and economic point of view. If the
system you are building should support, for example, (individual) growth and
development or/and inclusiveness, then you will get qualitatively better feedback

9 Sustainability: Delivering Agility’s Promise 223

from the users if talking to them directly. Direct observation, eye contact, mimic, and
gesture provide additional information how well the system is serving the users.

This principle invites as well to build a community with everyone involved in
making the product sustainable. The community reflects both on the process and the
product. This reflection is an interdependent relationship.

9.3.7 Working Software Is the Primary Measure of Progress

This principle aims for transparency. Certainly, it is important to think ideas through
however, you will only know if the ideas keep their promises when hitting reality.
This includes to regularly examine the system for unintended consequences (also
known as the precautionary principle [22]). Therefore, it is also the responsibility of
an agile team to prevent and monitor for any unintended consequences in order to
address them [23].

Therefore, never underestimate the importance of feedback; for example, on
energy consumption on the running system, theory and reality do not always show
the same results. From the social perspective, regularly examine the working system
guided by the following questions:

• Does the system work in the same way for everyone independent if the gender
differs or it is used by people from different races or ethnicity?

• Would a domestic abuser find possibilities to do harm to the system but more so
to other people?

• Can the system be used by a government to oppress?

We suggest to take a look at other questions, for example, the ones offered by the
Ethical Explorer toolkit [24].

9.3.8 Agile Processes Promote Sustainable Development. The
Sponsors, Developers, and Users Should Be Able
to Maintain a Constant Pace Indefinitely

This is the eighth of twelve principles and the only one that calls for sustainable
development explicitly. It focuses foremost on sustainability in ICT. Thus far, this
principle has mainly been understood from the social aspect for example, calls for
the ‘40 hour week’ have been argued with the reference to this principle [25].

Using the lens of sustainability, it asks that developers learn continuously about
all three pillars and take the learning into account: environment, social, and eco-
nomic. Therefore, having a constant pace in mind, developing the product or service
should not lead to burnout of the developers (social), to reduction of resources
(environment), or to overspending financially (economic). For example, the features

224 J. Eckstein and C. de O. Melo

developed should take the diversity and the abilities of the users into account, the
energy used for creating the product should be renewable, and the so-called feature-
creep should be avoided.

Feature-creep, the inclusion of unnecessary features, and the development of
features that do not adhere to the intended design and architecture lead to ineffi-
ciency of the overall system. Moreover, the utilized capacity of the CPU in idle mode
or the demand for storage are reasons for software getting slower.

Therefore, sustainable development has to be taken into account by the devel-
opers and the sponsors to ensure that, for example, the user is not required to invest
in a new hardware regularly. Modularity and allowing the user to determine which
modules to buy, install, and use take into account that not every user will need every
possible innovation (at least not on every device).

9.3.9 Continuous Attention to Technical Excellence
and Good Design Enhances Agility

Developments in sustainability are progressing fast—from new understandings of
algorithm bias (social aspect), or of where most energy is used and how it could be
reduced, i.e., by storing data locally and reducing network traffic (environmental
aspect) to better ways for finding out which features are actually used and so—to
ensure that money is not wasted by feature-creep.

Thus, this ninth principle is a call for continuous learning and for keeping
technologically up-to-date and taking into account new learning and development
that enable good design: now good in the sense of sustainability. This ensures the
principle supports sustainability in ICT.

9.3.10 Simplicity—the Art of Maximizing the Amount
of Work Not Done—Is Essential

The tenth principle often requires a second read before it is understood. In general, it
addresses the feature-creep mentioned above. So, when developing software, we
need to pay attention to what is really needed in the product. Looking through a
sustainability lens at this principle, we need to examine, for example, how does this
new feature fit in the system without increasing the energy consumption? Using
Scrum as an example, sustainability or rather energy consumption needs to be
considered during backlog refinement, sprint planning, by the definition of done,
as well as monitored through tests.

The German Federal Environment Office created and published in 2020 a label
(or certificate) “Blauer Engel” for resources and energy-efficient software stand-
alone products, based on a criteria catalogue jointly developed by the universities of

9 Sustainability: Delivering Agility’s Promise 225

Trier and Zurich [26, 27]. The label focuses on energy-efficiency, conservative
resource consumption, and transparent interfaces. The plan is to develop a similar
label for cloud-based software. However, already today, the criteria catalogue can
guide a team to develop a sustainable system. For example, the following questions
should be regularly discussed [27]:

• How much electricity does the hardware consume when the software product is
used to execute a standard usage scenario?

• Does the software product use only those hardware capacities required for
running the functions demanded by the individual user? Does the software
product provide sufficient support when users adapt it to their needs?

• Can the software product (including all programs, data, and documentation
including manuals) be purchased, installed, and operated without transporting
physical storage media (including paper) or other materials goods (including
packaging)?

• To what extent does the software product contribute to the efficient management
of the resources it uses during operation?

Thus, this principle requires transparency for features that are needed (and used)
and those that are not.

9.3.11 The Best Architectures, Requirements, and Designs
Emerge from Self-Organizing Teams

The eleventh principle points out the benefits of self-organizing teams. This includes
that every team member is invited to speak up and make their contribution to the
architecture, requirements, and design—independent of other characteristics of that
team member (social perspective). Similarly, all team members will get the same fair
chance to progress on their career by getting equal support through training,
mentoring, or coaching (economic perspective).

9.3.12 At Regular Intervals, the Team Reflects on How
to Become More Effective, Then Tunes and Adjusts Its
Behavior Accordingly

The twelfth and final principle asks teams to run regular retrospectives. Both the
reflection and behavioral adjustments should take (also) sustainability aspects into
account: How can the team tune and adjust its behavior to become more effective
regarding the three pillars—environmental, social, and economical? Dedicating time
regularly for reflecting on sustainability will lead to continuous improvements. This
last principle combines the quest for teams to self-organize in order to learn

226 J. Eckstein and C. de O. Melo

continuously by making their effectiveness with the focus on the customer
transparent.

9.3.13 Summary of the Agile Manifesto’s Perspective
on Sustainability

Implementing sustainable development goals requires approaching wicked prob-
lems, i.e., complex, nonlinear, dynamic challenges in situations of insufficient
resources, incomplete information, emerging risks and threats, and fast-changing
environments [28]. Examining the principles of the Agile Manifesto shows how an
agile approach indeed promotes (or can promote) sustainable development. It might
be surprising how much guidance the principles can provide although they have
been defined originally with the focus on software development only.

Concentrating continuously on inspect and adapt allows sustainable systems to
emerge. An agile, cross-functional team integrates different perspectives on the
emerging system and has this way the possibility to design solutions for sustainabil-
ity. The disciplined approach provided by agile development enables the team to
permanently learn from their delivery; to measure the outcome according to its
environmental, social, and economic impact; and to take necessary actions for
adjustments.

However, taking all three dimensions of sustainability into account leads to
higher complexity, so an agile approach also comes in handy for addressing this
complexity by breaking down the problems and using an inspect and adapt approach
for making them simpler.

The role of agility is not to save the world, but to provide a value system based on
transparency, constant customer focus, self-organization, and continuous learning
that leads to sustainable thinking and offers an approach that supports putting this
sustainable thinking into action.

9.4 Case Studies: Leveraging Agility for Sustainability

Although the Agile Manifesto [3] originates in 2001 and the Brundtland report [5] in
1987, the combination of agility and sustainability is just in its beginnings. There are
some sample companies being conscious of one of the three pillars and even fewer
sample companies taking a holistic approach on combining sustainability and agility.
In this section, we will provide some sample case studies for both attempts—agility
and one of the three pillars as well as company-wide agility and sustainability using a
holistic approach.

We want to point out that for the following case studies, as for other examples,
there is no such thing as a “perfect” company, neither in terms of sustainability nor in

9 Sustainability: Delivering Agility’s Promise 227

terms of agility. However, these case studies still can serve as examples of possible
steps to take in order to leverage agility for sustainability.

9.4.1 Agility and Partial Sustainability

In this section, we explore different examples from companies applying agility on
one of the three pillars—social, environmental, and economical—individually. The
examples show that being conscious about sustainability can be guided by an agile
approach.

9.4.1.1 The Social Pillar

Often, we act as if our responsibility would end by delivering the value to the
customer. An agile team typically aims to deliver regularly high value for the
customer’s advantage. After the (or rather after each) delivery, the team’s job is
completed (except for maintenance and further development). However, if the team
takes full responsibility for their products, then they are also interested in the usage
of the product and consider its impact on the world.

For example, some developers working for CHEF (a company providing a
configuration management tool with the same name) were also interested in how
their customers are using the product and how this is supporting the social good. In
this case, these developers learned that one of their customers, the Customs and
Border Protection or Immigration and Customs Enforcement (ICE), uses the product
at the border between Mexico and the United States of America for running
detention centers, ensuring deportation, and implementing the family separation
policy. In this case, the developers took the Brundtland definition (sustainability is
about taking long-term responsibility for your action) and the social aim of ending
poverty by heart and decided that the usage of their product does not confirm with
their ethical values and has an unintended social impact.

In the beginning, the developers brought their ethical interest to the attention of
CHEF’s management. However, the management at first referred to the long-
standing contract and to the fact that the product has been used by ICE for many
years (and nobody complained). The developers kept trying to convince the man-
agement that due to the change in politics also the usage of the product has shifted to
the worse. However, the developers could only make a difference once one of the
developers decided to delete all the code he contributed to the (Open Source)
software. As a consequence, the product was not usable anymore for 2 weeks
which created enough pressure for the management to decide on not renewing the
contract [29].

It is important to understand that delivering value and satisfying the customer
with your product is not an agile team’s sole responsibility. An agile team is also
responsible for the social impact of the product it is creating. This means for a truly

228 J. Eckstein and C. de O. Melo

agile team, to stay in touch with the customer for recognizing any differences in the
usage of the product. This ongoing connection can be supported by automation such
as monitoring, logging, and having tests that observe the usage of the product.

9.4.1.2 The Environmental Pillar

The environmental pillar is mostly connected with the resources consumed. The
global e-waste monitor reports that in 2016, 44.7 million metric tons of e-waste were
generated—most often because the hardware gets (seemingly) too soon outdated
[30]. Additionally, as Nicola Jones reports, by 2030 information technology might
exceed 21% of the global energy consumption [31].

Thus, it gets more and more important to consider the energy consumption of the
products we are creating. Often it is assumed that hardware is cheap and thus there is
no need to pay much attention to performance, because if the software is not
performing well enough we request that the hardware is getting faster. This proves
Wirth’s law from 1995 [32]: “Software is getting slower more rapidly than hardware
becomes faster.” As elaborated by Gröger and Herterich, one of the reasons for this
effect is the feature-creep where features are developed for a product that are
unnecessary (not used) and don’t fit the intended software architecture [33].

The Mozilla foundation argues for the importance of examining cloud-based
software in particular. In their 2018 Internet Health Report, they concluded that
data centers have a similar carbon footprint as global air traffic with the latter being
2% of all greenhouse gas emissions [34].

However, while some companies ignore the problem despite the protests of their
employees (see Amazon [35]), others address it by shifting toward renewable energy
for their data centers (see Google [36]). This means for an agile organization when
deciding on a cloud infrastructure that it is essential to also consider the carbon
footprint of that data center. Therefore, it is the responsibility of an agile team to
bring not only any technical information but also information about energy con-
sumption and the carbon footprint of the infrastructure under question to the
attention when the decision is up.

Another example is Mightybytes, a company focusing on developing digital
strategies to create the design and user experience for their clients [20]. By doing
so, they pay particular attention to how much energy is consumed by the designs
they are creating and decide, for example, against including videos with high energy
consumption. Additionally, they also take care of the environment the developers are
in by ensuring the carpets are not toxic, there is enough space for everyone, natural
light, and plants, plus the offices are powered with renewable energy. Finally, other
examples of initiatives that explore energy aspects in ICT can be found in [37,
Part II].

9 Sustainability: Delivering Agility’s Promise 229

9.4.1.3 The Economical Pillar

The economic dimension is often understood as the economic balance, e.g., that no
nation (or company) grows economically at the cost of another one. Thus, topics like
fair trade or paying fairly are often discussed along these lines. While this can be a
topic also in (agile) software development, according to our experience this is
seldom the case because agile developers are still benefiting from good payments
globally (however, this statement is not based on any research). Yet, there is another
economic impact for organizations, because as the Cone Communications Corporate
Social Responsibility (CSR) study revealed, a company’s reputation regarding their
sustainability efforts will have an effect on both their market share and their search
for talent [38]. For example, as reported in this study:

Nearly nine-in-10 Americans (89%) would switch brands to one that is associated with a
good cause, given similar price and quality, compared with 66 percent in 1993. And
whenever possible, a majority (79%) continue to seek out products that are socially or
environmentally responsible.

An economic impact can also be made by organizations and teams through sharing
learning. One example is Munich Re, one of the world’s leading reinsurers, which
got concerned about climate change already in the 1970s. At that time, they began
collecting and publishing research data about climate change. Protecting the research
data for a competitive advantage was never considered by Munich Re because they
realized that transparency allows them to learn from others and to improve the data.
Transparency, they decided will increase both the general societal awareness of
climate change and their own resilience [39]. This insight provided a great founda-
tion for Munich Re’s further effort in combining also the other two pillars (environ-
mental and social) with a general agile approach [40, 41].

Transparency is also key for all the lessons learned in the near future on how to
make the software we are creating more sustainable—only if we make those learning
transparent right away, we can make a huge difference for everyone, everywhere.

9.4.2 Company-Wide Agility and Holistic Sustainability

Implementing agility company-wide comes with a responsibility. Professionals as
well as companies who claim to be agile are expected to also “take actions based on
the best interests of society, public safety, and the environment” [2]. In the same
way, are corporate Agile Alliance members expected “to help make the software
industry humane, productive, and sustainable” [1]. This means agile companies are
expected to have a systemic view and understand the impact of the own actions and
products created. This means an organization implementing company-wide agility
has to have a wider perspective than one that is aiming at business agility only, as
defined by the Business Agility Institute [42]:

230 J. Eckstein and C. de O. Melo

Business agility is the capacity and willingness of an organisation to adapt to, create, and
leverage change for their customer’s benefit!

Thus, business agility focuses on the customer only whereas agile organizations
aim for humanity and sustainability while having the society and the environment in
mind. In this section, we will explore companies that made quite some progress in
implementing company-wide agility in that sense by having a holistic perspective on
all three pillars, thus acting with social, environmental, and economical outcomes
in mind.

9.4.2.1 Patagonia

Patagonia, Inc. is an American clothing company that markets and sells outdoor
clothing since 1973. The company has become recognized as a leading industry
innovator through its environmental and social initiatives, and the brand is now
considered synonymous with conscious business and high-quality outdoor wear. In
2019, Patagonia received the 2019 Champions of the Earth award from the United
Nations [43], being recognized as an organization that has sustainability at the very
core of its successful business model.

Patagonia’s mission statement is “We’re in business to save our home planet.”
They implement it by accomplishing a number of initiatives that inspires all levels of
the organization, as donating profits from their Black Friday sales (millions of
dollars) to the environment through grassroots movements [44], or creating their
new office space by restoring condemned building using recycled materials. The
company states its benefits as: 1% for the Planet; Build the Best Product with No
Unnecessary Harm; Conduct Operations Causing No Unnecessary Harm; Sharing
Best Practices with Other Companies; Transparency; and Providing a Supportive
Work Environment.

Patagonia has been cited as an example for Agile organizations, not only because
it has agile teams, but because they embody a north star across the organization that
recognizes the abundance of opportunities and resources available, reducing the
mindset of competition and scarcity and moving toward cocreating value with and
for all of our stakeholders [45].

Other examples of their practices that demonstrate their concern about the three
pillars are: encouraging consumers to think twice before making premature replace-
ments, or overconsuming; designing durable textile yarns from recycled fabric;
upholding a commitment to 100% organic cotton sourced from over 100 regenerative
small farms; sharing its best practices through the Sustainable Apparel Coalition’s
Higg Index; paying back an “environmental tax” to the earth by founding and
supporting One Percent For The Planet; and donating its ten million federal tax
cut to fund environmental organizations addressing the root causes of climate
change.

As an example of social impact, Patagonia invests in improving the supply chain
to alleviate poverty. They screen their partners, as factories and more recently farms,

9 Sustainability: Delivering Agility’s Promise 231

using Patagonia staff, selected third-party auditors, and NGO certifiers. They recog-
nize a number of challenges, especially in the farm level [46, p. 30]:

There can be land management and animal issues, as well as child labour, forced labour, pay
irregularities, discrimination, and unsound health and safety conditions. These are often
more difficult to resolve because of the complexities that extreme poverty, illiteracy and
exploitation bring to this level of the supply chain.

When it comes to land management, we’re most concerned with a farm’s use of
chemicals and the impact its operations have on water, soil, biodiversity and carbon
sequestration. For animal welfare, we look at humane treatment and slaughter. And when
it comes to labour, we want to see safe and healthy working conditions, personal freedom,
fair wages and honest payrolls.

More recently, the company has started to support regenerative agriculture,
establishing a goal of sourcing 100% of their cotton and hemp from regenerative
farming by 2030. It is important to stress how relevant this initiative is by introduc-
ing the meaning of regenerative. While the concept of sustainable refers to a neutral
point of not harming or damaging, the regenerative concept goes beyond, stating
that humans are not only doing the right things to nature, but actually are an integral
part of it, learning how to design as nature does [47]. This means we can reverse the
damage we’ve already done. Figure 9.3 illustrates the continuum between (1) the

Fig. 9.3 Continuum between conventional, sustainable, and regenerative practices [47]. © D.C.
Wahl, 2018; reprinted with permission

232 J. Eckstein and C. de O. Melo

conventional practices our society adopts in many areas, (2) sustainable practices,
and (3) regenerative practices.

Patagonia is a founding member of the Regenerative Organic Alliance,2 along-
side Dr. Bronner’s Compassion in World Farming, Demeter, the Fair World Project,
and others. They created a certification that showcases whether a product has been
made using processes to regenerate the land or not.

Thus, supporting regenerative agriculture is a bold step Patagonia is taking that
helps to reverse damage and create abundance. The reason is that agricultural
practices are a huge contributor to climate change, accountable for around 25% of
global carbon emissions. Regenerative agriculture has the intention to restore highly
degraded soil, enhancing the quality of water, vegetation, and land-productivity
altogether. It makes it possible not only to increase the amount of soil organic carbon
in existing soils, but to build new soil [48]. If more companies follow this example,
we will see more ecosystems being restored and communities being benefited.

9.4.2.2 DSM-Niaga

DSM-Niaga is a joint venture of the startup Niaga and the multinational firm Royal
DSM. DSM-Niaga’s vision is to design for the circularity of everyday products.
They started off with carpets and mattresses with the idea to stop these—most often
toxic products to go into landfills but instead to decouple the material and use the
very same material to go into the next production cycle. To guide this idea, they
defined three design principles [49]:

1. Keep it simple: Use the lowest possible diversity of materials.
2. Clean materials only: Only use materials that have been tested for their impact on

our health and the environment.
3. Use reversible connections: Connect different materials only in ways that allow

them to be disconnected after use.

For ensuring clean materials only and also proving it, they developed, for
example, a digital passport for every carpet based on blockchain technology. With
the focus on the customer, this passport makes the complete value chain transparent.
DSM-Niaga is also sharing their learning and pushing the industry to design for
circularity:

Moving forward, we will continue to focus our efforts and push boundaries to drive
transparency and accountability across value chains. Indeed, with designers, producers and
recyclers all needing to know what’s in a product in order to recycle it, it’s only a matter of
time before digital product passports are in demand everywhere.

DSM-Niaga is focusing on both sustainability and company-wide agility. The firm is
actually a teal organization, that is a company defined by self-organization where, for
example, employees are guided by the organization’s purpose and not by orders

2https://regenorganic.org/

9 Sustainability: Delivering Agility’s Promise 233

https://regenorganic.org/

[50]. According to Rhea Ong Yiu, an Agile Coach at DSM-Niaga, the mother
company (Royal DSM) is constantly learning from DSM-Niaga. Under the leader-
ship of Feike Sijbesma, CEO and Chairman of the Managing Board, Royal DSM
sold its entire petrochemical business. This has also been recognized. As a conse-
quence, Feike Sijbesma has been appointed as Global Climate Leader for the World
Bank Group, Co-Chair of the Carbon Pricing Leadership Coalition, and Co-Chair of
the Impact Committee of the World Economic Forum where he is one of the
originators of the “Stakeholder Principles in the COVID Era.” The latter states
among other things [51]:

We must continue our sustainability efforts unabated, to bring our world closer to achieving
shared goals, including the Paris climate agreement and the United Nations Sustainable
Development Agenda.

Worth mentioning that the business strategy of Royal DSM (and as such as well
of DSM-Niaga) is based on the United Nations Sustainable Development Goals.
Following are the sustainable development goals that are in particular focus for
DSM-Niaga [52]:

• Good health and well-being (Goal 3): Ensuring healthy lives and promoting well-
being for all at all ages.

• Responsible consumption and production (Goal 12): Ensuring sustainable con-
sumption and production patterns.

• Climate action (Goal 13): Taking urgent action to combat climate change and its
impact.

9.4.2.3 Sparda-Bank Munich

Sparda-Bank is the largest cooperative bank in Bavaria, with more than 300,000
members. The bank maintains on its website a comprehensive description of how
they implement all Economy for the Common Good (ECG) values, as well as their
Common Good Balance Sheets and the certificate. Sparda was part of the first
companies that agreed on ECG goals, back in 2010, being the first—and so far
only—bank that operates according to the principles of the common good economy.

At the same time, the company keeps looking for innovation and agility [53]. So
the organization needs and it is open to technological solutions. Due to its own
values, it would have to carefully examine the need for and impact of the tools that it
adopts. In fact, Sparda does have agile coaches and digitized solutions for their
clients. They have also regularly had formats such as “World-Café” or smaller
events with a “marketplace character” that are carried out in order to obtain the
opinion of as many participants as possible and to initiate a dialogue. The design
thinking method is adopted to support their product and projects.

The company claims on its website [54] that they are climate neutral and provides
an annual CO2 balance. They reduce greenhouse gas emissions to the extent to what
is technically and economically possible, or otherwise by purchasing climate certif-
icates (or permits) in accordance with the Kyoto Protocol, which [55]:

234 J. Eckstein and C. de O. Melo

[O]perationalizes the United Nations Framework Convention on Climate Change by com-
mitting industrialized countries and economies in transition to limit and reduce greenhouse
gases (GHG) emissions in accordance with agreed individual targets [. . .]

One important element of the Kyoto Protocol was the establishment of flexible market
mechanisms, which are based on the trade of emissions permits.

Sparda-Bank has other initiatives that cover different aspects of the common
good matrix. For instance, planting a tree for every new member or agreements to
provide green electricity with special tariffs for their clients. When financing an
electric or hybrid car or an e-bike, Sparda-Bank Munich customers receive a reduced
interest rate. They also state having no customer relationships with or investments in
companies whose core business is in the armaments sector, as well as many other
restrictions published on their website [56].

There are other examples related to suppliers and employees: they buy dishes and
towels from works for the blind and disabled; they work to reduce the difference
between the lowest salary and the highest salary (CEO) (which is currently published
as 1:13.7 ratio); and finally, they don’t pay commissions or establish individual goals
related to salary, only goals at a team level.

9.5 Conclusion

This chapter examined that agility can contribute to sustainability. As we have seen,
the Agile Manifesto in general and the principles in particular can provide guidance
to sustainability [3]. We have presented some achievements of the companies
combining agility and sustainability. We explored examples of companies focusing
on one of the dimensions only, as well as companies taking all three pillars into
account. Certainly, if an agile company takes sustainability seriously, then it has to
take a holistic view and look at all three dimensions at once—at people (social),
planet (environmental), and profit (economic).

We have seen that most of these sample companies in the case studies are
concentrating on using agile development and sustainability, but without a focus
on leveraging the one with the other. Especially companies following a holistic
approach implement sustainability by ICT. Using an agile approach for
implementing sustainability in ICT seems to be a relatively new field.

9.5.1 Criticism

Sustainability became a trend and a symbol for progressive individuals, movements,
and organizations, which sometimes leads to the so-called green-washing. It hap-
pens when it seems to be important to have a reputation of being sustainable, but not
everyone who claims to live up to it really does it. Often this is supported by
advertising for ones own sustainable reputation as [20] exemplifies:

9 Sustainability: Delivering Agility’s Promise 235

One hosting provider even claims in its marketing materials that it plants a tree for every new
account, which is wonderful, but doesn’t move us closer to an Internet powered by
renewable energy.

Sustainability and its deeper implications are still not well-understood by society,
despite more diffused, in particular because of the UN 2030 Agenda for Sustainable
Development. Initiatives in many sectors, from business to NGOs and universities,
can easily distort or simplify it, intentionally or not. Taking the example of compa-
nies, we illustrated agile organizations that aim at balancing the three pillars in Sect.
9.4.2, considering BCorps and ECG certified companies. It is important to be aware
of the criticism (or limitations) around these models.

The main critique to BCorps and similar movements is that these models still rely
on capitalism as the core mechanism—and worldview—for our economy, “ignoring
the possibility that capitalism itself, as it is largely practised today, might be at least
one cause of the problems we are seeking to solve” [57]. This analysis is also
supported by the Nobel Prize-winning economist Joseph Stiglitz [58]:

Like the dieter who would rather do anything to lose weight than actually eat less, this
business elite would save the world through social-impact investing, entrepreneurship,
sustainable capitalism, philanthro-capitalism, artificial intelligence, market-driven solutions.
They would fund a million of these buzzwordy programs rather than fundamentally question
the rules of the game—or even alter their own behavior to reduce the harm of the existing
distorted, inefficient and unfair rules.

High expectations are on digitalization for sustainability by ICT. One example is that
it is the replacement for paper, but all digital products (thus, also the paper replace-
ments) consume energy. Moreover, as Lorenz M. Hilty points out in [33]:

So far, neither in the case of air travel nor in the case of lifespan of household goods has the
hope been fulfilled that due to digitalization the material and energy intensity of our activities
would be reduced. It rather became evident in the digital age that providers turned the
principle of intangible value creation through software into its opposite by stimulating or
even forcing material consumption through software.

One reason is Wirth’s law (software is getting slower more rapidly than hardware
becomes faster) that an update in software often requires the exchange of hardware
[32]. Another reason is the rebound effect: the effect that environmental friendliness
is a selling point that leads to overall higher consumption than before. And a third
reason (related to the rebound effect) is that the environmental friendly product is
often used in addition—and not instead—to the environmental unfriendly product.
An example for the latter are many car-sharing offerings that are not used for
substituting private cars but, instead, for substituting traveling by (local) public
transport [33]. Thus, the rebound effect is the main controversy for all achievements
of digitalization regarding sustainability.

236 J. Eckstein and C. de O. Melo

9.5.2 Outlook

Although agile development promises sustainability for a long time, it has not been
addressed sincerely thus far. However, there are some promising developments and
also concrete ideas for delivering on agility’s promise. Most importantly, we have to
increase the awareness of the impact of agility so that at least agile teams can make
conscious decisions on effecting the social, environmental, or economical dimen-
sions of sustainability.

An agile team can, for example, consider the energy consumption in their
definition of done as well as via respective tests and monitoring. Individual teams
and companies might discover ways to improve their own and their ecosystem’s
sustainability. Yet, only if this learning is shared and the effort improving sustain-
ability is a collaborative one, we can really make a difference. As pointed out by
Eckstein & Buck, a company claiming to be agile also has to aim for sustainability
and as such needs to live up to the following values [59, p. 196], as illustrated in
Fig. 9.4:

• Self-organization: An agile company should understand itself as a part of an
ecosystem, belonging to itself, other companies, and the whole society.

• Transparency: An agile company makes its learning and doing transparent for the
greater benefit of all.

• Constant customer focus: An agile company understands all aspects of its eco-
system—be it social, environmental, or economic—as its customer.

• Continuous learning: An agile company learns continuously from and with its
ecosystem to make the whole world a better place.

Fundamental for agile companies that are sustainability-aware is the need for a
connected perspective [59], p. 198: “This connected perspective incorporates the
surrounding environment (economic, ecologic, societal, and social) in which com-
panies operate.” Thus, companies have to fulfill their role as active members of the
society. One way for doing so is by joining networks that focus on improving the

Fig. 9.4 Four values
guiding agile companies
[59].© Jutta Eckstein, 2020;
reprinted with permission

9 Sustainability: Delivering Agility’s Promise 237

economic, social, and environmental aspects of the society. Sample networks are
transparency international, global compact, fair labor association, or the climate
group [60–63].

Sustainability is not only important for (agile) companies because it’s part of the
agile’s vision [1, 2]. It is also important because it will be the key factor that decides
on the survival of companies both in terms of finding talent and clients. This is the
reason why some companies have already a sustainability officer in place who
ensures sustainability in its many domains—environmental, economic, and social.
It is the agile community’s task to support the people in this role in making
sustainability real.

With digitalization gaining more momentum and with the fact that the core
competency of agile is in software development, more needs to be investigated in
how agile development can make an important—positive—contribution for achiev-
ing higher sustainability. Because, as stated by the Karlskrona Manifesto [64]:

Software in particular plays a central role in sustainability. It can push us towards growing
consumption of resources, growing inequality in society, and lack of individual self- worth.
But it can also create communities and enable thriving of individual freedom, democratic
processes, and resource conservation.

Acknowledgments We want to thank the members of the Supporting Agile Adoption initiative of
the Agile Alliance for their contributions and inspirations to our work.

References

1. Agile Alliance (2020) Agile alliance vision. https://www.agilealliance.org/the-alliance/
2. Scrum Alliance (2020) Scrum Alliance Vision. https://www.scrumalliance.org/
3. Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J,

Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K,
Sutherland J, Thomas D (2001) Manifesto for agile software development. http://www.
agilemanifesto.org/

4. Hilty LM, Aebischer B (2015) ICT for sustainability: an emerging research field. In: Hilty LM,
Aebischer B (eds) ICT innovations for sustainability. Springer International Publishing, pp
3–36

5. WCED (1987) Our common future. Oxford University Press
6. Wikipedia (2004) Wikipedia sustainability. https://en.wikipedia.org/wiki/Sustainability
7. World Summit (2005) World summit on social development. https://en.wikipedia.org/wiki/

2005_World_Summit
8. Purvis B, Mao Y, Robinson D (2019) Three pillars of sustainability: in search of conceptual

origins. Sustain Sci 14(3):681–695
9. Investopedia (2020) Triple bottom line. https://www.investopedia.com/terms/t/triple-bottom-

line.asp
10. United Nations General Assembly (2015) Transforming our world: the 2030 agenda for

sustainable development. Technical report, United Nations
11. Borowski P, Patuk I (2018) Selected aspects of sustainable development in agriculture. In:

Proceedings: 2nd international conference on food and agricultural economics, pp 154–160.
ICFAEC

238 J. Eckstein and C. de O. Melo

https://www.agilealliance.org/the-alliance/
https://www.scrumalliance.org/
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://en.wikipedia.org/wiki/Sustainability
https://en.wikipedia.org/wiki/2005_World_Summit
https://en.wikipedia.org/wiki/2005_World_Summit
https://www.investopedia.com/terms/t/triple-bottom-line.asp
https://www.investopedia.com/terms/t/triple-bottom-line.asp

12. The American Heritage Dictionary (2020) Definition of business. https://ahdictionary.com/
word/search.html?q¼business

13. Business Roundtable (2020) Our commitment to our employees and communities. https://
opportunity.businessroundtable.org/

14. Business Roundtable (2020) Embracing sustainability challenge. https://www.
businessroundtable.org/policy-perspectives/energy-environment/sustainability

15. Benefit Corporation: General questions. https://benefitcorp.net/faq (2020)
16. Economy for the Common Good (2020) What is ECG. https://www.ecogood.org/what-is-ecg/
17. Sousa TC, Melo CO (2019) Encyclopedia of the UN sustainable development goals: industry,

innovation and infrastructure (SDG9), Chapter Sustainable infrastructure, industrial ecology
and eco-innovation: positive impact on society, pp 1–10. Springer International Publishing

18. Hilty LM, Aebischer B, Andersson G, Lohmann W (eds) (2013) Proceedings of the first
international conference on information and communication technologies for sustainability.
ETH Zurich, University of Zurich and Empa, Swiss Federal Laboratories for Materials Science
and Technology

19. Kurtz CF, Snowden DJ (2003) The new dynamics of strategy: Sense-making in a complex and
complicated world. IBM Syst J 42(3):462–483

20. Frick T (2016) Designing for sustainability: a guide to building greener digital products and
services. O’Reilly Media

21. Mortsiefer H (2017) The market doesn’t want electric cars. https://www.tagesspiegel.de/
wirtschaft/auto-der-zukunft-der-markt-will-elektroautos-nicht/19634320.html

22. O’Riordan T, Cameron J (2013) Interpreting the precautionary principle. Taylor & Francis
23. Tenner E (1997) Why things bite back: technology and the revenge effect. Fourth Estate
24. Omidyar Network (2020) Ethical explorer. https://ethicalexplorer.org
25. Beck K (2000) Extreme programming explained. Embrace change. Addison Wesley, Reading,

MA
26. Blauer Engel (2020) Ressourcen- und energieeffiziente softwareprodukte. https://www.blauer-

engel.de/de/get/productcategory/171/ressourcen-und-energieeffiziente-softwareprodukte
27. Kern E, Hilty LM, Guldner A, Maksimov YV, Filler A, Gröger J, Naumann S (2018)

Sustainable software products - towards assessment criteria for resource and energy efficiency.
Future Gener Comput Syst 86:199–210. https://doi.org/10.1016/j.future.2018.02.044

28. Melo C d O (2019) Another purpose for agility: sustainability. In: Meirelles P, Nelson MA,
Rocha C (eds) Agile methods: 10th Brazilian workshop, WBMA 2019. Springer International
Publishing, pp 3–7

29. Chappellet-Lanier T (2019) After protest, open source software company Chef will let ICE
contract expire. https://www.fedscoop.com/protest-open-source-software-company-chef-will-
let-ice-contract-expire

30. ITU (2017) E-waste monitor. https://www.itu.int/en/ITU-D/Climate-Change/Pages/Global-E-
waste-Monitor-2017.aspx

31. Jones N (2018) How to stop data centres from gobbling up the world’s electricity. Nature
561:163–166. https://doi.org/10.1038/d41586-018-06610-y

32. Wirth N (1995) A plea for lean software. Computer 28(2):64–68. https://doi.org/10.1109/2.
348001

33. Gröger J, Herterich M (2019) Obsolete by software. how to keep digital hardware longer alive.
In: Höfner VF (ed) What connects bits and trees: making digitization sustainable. oekom,
Munich, pp 58–60

34. Internet Health Report (2018): The Internet uses more electricity than . . . https://
internethealthreport.org/2018/the-internet-uses-more-electricity-than

35. Matsakis L (2019) Amazon employees will walk out over the company’s climate change
inaction. https://www.wired.com/story/amazon-walkout-climate-change

36. Google (2018) Moving toward 24x7 carbon-free energy at google data centers: progress and
insights. Technical report, Google

9 Sustainability: Delivering Agility’s Promise 239

https://ahdictionary.com/word/search.html?q=business
https://ahdictionary.com/word/search.html?q=business
https://ahdictionary.com/word/search.html?q=business
https://opportunity.businessroundtable.org/
https://opportunity.businessroundtable.org/
https://www.businessroundtable.org/policy-perspectives/energy-environment/sustainability
https://www.businessroundtable.org/policy-perspectives/energy-environment/sustainability
https://benefitcorp.net/faq
https://www.ecogood.org/what-is-ecg/
https://www.tagesspiegel.de/wirtschaft/auto-der-zukunft-der-markt-will-elektroautos-nicht/19634320.html
https://www.tagesspiegel.de/wirtschaft/auto-der-zukunft-der-markt-will-elektroautos-nicht/19634320.html
https://ethicalexplorer.org
https://www.blauer-engel.de/de/get/productcategory/171/ressourcen-und-energieeffiziente-softwareprodukte
https://www.blauer-engel.de/de/get/productcategory/171/ressourcen-und-energieeffiziente-softwareprodukte
https://doi.org/10.1016/j.future.2018.02.044
https://www.fedscoop.com/protest-open-source-software-company-chef-will-let-ice-contract-expire
https://www.fedscoop.com/protest-open-source-software-company-chef-will-let-ice-contract-expire
https://www.itu.int/en/ITU-D/Climate-Change/Pages/Global-E-waste-Monitor-2017.aspx
https://www.itu.int/en/ITU-D/Climate-Change/Pages/Global-E-waste-Monitor-2017.aspx
https://doi.org/10.1038/d41586-018-06610-y
https://doi.org/10.1109/2.348001
https://doi.org/10.1109/2.348001
https://internethealthreport.org/2018/the-internet-uses-more-electricity-than
https://internethealthreport.org/2018/the-internet-uses-more-electricity-than
https://www.wired.com/story/amazon-walkout-climate-change

37. Hilty L, Aebischer B (2015) ICT innovations for sustainability. Adv Intell Syst Comput 310.
doi:https://doi.org/10.1007/978-3-319-09228-7

38. Cone Communications (2017) Cone communications CSR study. https://www.conecomm.com/
news-blog/2017/5/15/americans-willing-to-buy-or-boycott-companies-based-on-corporate-
values-according

39. Wikipedia (2020) Munich re. https://en.wikipedia.org/wiki/Munich_Re
40. Munich RE (2019) Corporate responsibility report. https://www.munichre.com/content/

dam/munichre/global/content-pieces/documents/cr-report-2019.pdf/_jcr_content/renditions/
original./cr-report-2019.pdf

41. Jacobson I. Munich re transforms application development with lean and agile practices. https://
www.ivarjacobson.com/sites/default/files/field_iji_file/article/munich_re_case_study.pdf

42. Business Agility Institute (2020). https://businessagility.institute/
43. UN Environment (2019) Champions of the earth 2019. https://www.unenvironment.org/

championsofearth/laureates?title¼&field_award_year_value¼2019&field_award_category_tar
get_id¼All

44. CNN Money (2016) Patagonia’s black Friday sales hit $10 million – and will donate it all.
https://money.cnn.com/2016/11/29/technology/patagonia-black-friday-donation-10-million/
index.html

45. McKinsey (2019) The five trademarks of agile organisations. https://www.mckinsey.com/
business-functions/organization/our-insights/the-five-trademarks-of-agile-organizations

46. Patagonia (2016) Environmental + social initiatives. https://issuu.com/thecleanestline/docs/
patagonia-enviro-2016-europe-eng?e¼1043061/44692562

47. Wahl DC (2018) Why sustainability is no longer enough, yet still very important on the road to
regeneration. https://medium.com/age-of-awareness/sustainability-is-no-longer-enough-yet-
still-very-important-on-the-road-to-regeneration-57f5a37e05a

48. Rhodes CJ (2017) The imperative for regenerative agriculture. Sci Prog 100(1):80–129
49. DSM-Niaga (2020) Design out waste. Design for circularity. https://www.dsm-niaga.com/

design.html
50. Laloux F (2014) Reinventing organizations: a guide to creating organizations inspired by the

next stage in human consciousness. Nelson Parker
51. World Economic Forum (2020) Stakeholder principles in the COVID Era. http://www3.

weforum.org/docs/WEF_Stakeholder_Principles_COVID_Era.pdf
52. DSM-Niaga (2020) Design for circularity with Niaga. https://www.dsm.com/corporate/

solutions/resources-circularity/design-for-circularity-with-niaga.html
53. Marquard S (2018) What the Sparda Bank learns from Silicon Valley. https://www.stuttgarter-

nachrichten.de/inhalt.digitalisierung-in-der-bankenwelt-wie-die-sparda-bank-selbst-kunden-in-
malaysia-hilft.0a532acf-fc61-40a0-9c70-34db83e0f7b8.html

54. Sparda-Bank (2020) We are pioneers in climate protection. https://www.sparda-m.de/
genossenschaftsbank-umwelt-und-klimaschutz

55. UNFCC (2020) What is the Kyoto protocol? https://unfccc.int/kyoto_protocol
56. Sparda-Bank (2020) Transparency in own investments. https://www.sparda-m.de/gemeinwohl-

oekonomie-eigenanlagen/#innernav
57. Gilbert JC (2018) Are B corps an elite charade for changing the world? https://www.forbes.

com/sites/jaycoengilbert/2018/08/30/are-b-corps-an-elite-charade-for-changing-the-world-
part-1/#67395ea97151

58. Stiglitz JE (2018) Review of the book “winners take all: The elite charade of changing the
world”. https://www.nytimes.com/2018/08/20/books/review/ winners-take-all-anand-
giridharadas.html

59. Eckstein J, Buck J (2020) Company-wide agility with beyond budgeting, open space &
sociocracy: survive & thrive on disruption. Jutta Eckstein, Braunschweig

60. Transparency International. https://www.transparency.org

240 J. Eckstein and C. de O. Melo

https://doi.org/10.1007/978-3-319-09228-7
https://www.conecomm.com/news-blog/2017/5/15/americans-willing-to-buy-or-boycott-companies-based-on-corporate-values-according
https://www.conecomm.com/news-blog/2017/5/15/americans-willing-to-buy-or-boycott-companies-based-on-corporate-values-according
https://www.conecomm.com/news-blog/2017/5/15/americans-willing-to-buy-or-boycott-companies-based-on-corporate-values-according
https://en.wikipedia.org/wiki/Munich_Re
https://www.munichre.com/content/%20dam/munichre/global/content-pieces/documents/cr-report-2019.pdf/_jcr_content/renditions/original/cr-report-2019.pdf
https://www.munichre.com/content/%20dam/munichre/global/content-pieces/documents/cr-report-2019.pdf/_jcr_content/renditions/original/cr-report-2019.pdf
https://www.munichre.com/content/%20dam/munichre/global/content-pieces/documents/cr-report-2019.pdf/_jcr_content/renditions/original/cr-report-2019.pdf
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/munich_re_case_study.pdf
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/munich_re_case_study.pdf
https://businessagility.institute/
https://www.unenvironment.org/championsofearth/laureates?title=&field_award_year_value=2019&field_award_category_target_id=All
https://www.unenvironment.org/championsofearth/laureates?title=&field_award_year_value=2019&field_award_category_target_id=All
https://www.unenvironment.org/championsofearth/laureates?title=&field_award_year_value=2019&field_award_category_target_id=All
https://www.unenvironment.org/championsofearth/laureates?title=&field_award_year_value=2019&field_award_category_target_id=All
https://www.unenvironment.org/championsofearth/laureates?title=&field_award_year_value=2019&field_award_category_target_id=All
https://www.unenvironment.org/championsofearth/laureates?title=&field_award_year_value=2019&field_award_category_target_id=All
https://money.cnn.com/2016/11/29/technology/patagonia-black-friday-donation-10-million/index.html
https://money.cnn.com/2016/11/29/technology/patagonia-black-friday-donation-10-million/index.html
https://www.mckinsey.com/business-functions/organization/our-insights/the-five-trademarks-of-agile-organizations
https://www.mckinsey.com/business-functions/organization/our-insights/the-five-trademarks-of-agile-organizations
https://issuu.com/thecleanestline/docs/patagonia-enviro-2016-europe-eng?e=1043061/44692562
https://issuu.com/thecleanestline/docs/patagonia-enviro-2016-europe-eng?e=1043061/44692562
https://issuu.com/thecleanestline/docs/patagonia-enviro-2016-europe-eng?e=1043061/44692562
https://medium.com/age-of-awareness/sustainability-is-no-longer-enough-yet-still-very-important-on-the-road-to-regeneration-57f5a37e05a
https://medium.com/age-of-awareness/sustainability-is-no-longer-enough-yet-still-very-important-on-the-road-to-regeneration-57f5a37e05a
https://www.dsm-niaga.com/design.html
https://www.dsm-niaga.com/design.html
http://www3.weforum.org/docs/WEF_Stakeholder_Principles_COVID_Era.pdf
http://www3.weforum.org/docs/WEF_Stakeholder_Principles_COVID_Era.pdf
https://www.dsm.com/corporate/solutions/resources-circularity/design-for-circularity-with-niaga.html
https://www.dsm.com/corporate/solutions/resources-circularity/design-for-circularity-with-niaga.html
https://www.stuttgarter-nachrichten.de/inhalt.digitalisierung-in-der-bankenwelt-wie-die-sparda-bank-selbst-kunden-in-malaysia-hilft.0a532acf-fc61-40a0-9c70-34db83e0f7b8.html
https://www.stuttgarter-nachrichten.de/inhalt.digitalisierung-in-der-bankenwelt-wie-die-sparda-bank-selbst-kunden-in-malaysia-hilft.0a532acf-fc61-40a0-9c70-34db83e0f7b8.html
https://www.stuttgarter-nachrichten.de/inhalt.digitalisierung-in-der-bankenwelt-wie-die-sparda-bank-selbst-kunden-in-malaysia-hilft.0a532acf-fc61-40a0-9c70-34db83e0f7b8.html
https://www.sparda-m.de/genossenschaftsbank-umwelt-und-klimaschutz
https://www.sparda-m.de/genossenschaftsbank-umwelt-und-klimaschutz
https://unfccc.int/kyoto_protocol
https://www.sparda-m.de/gemeinwohl-oekonomie-eigenanlagen/%23innernav
https://www.sparda-m.de/gemeinwohl-oekonomie-eigenanlagen/%23innernav
https://www.forbes.com/sites/jaycoengilbert/2018/08/30/are-b-corps-an-elite-charade-for-changing-the-world-part-1/#67395ea97151
https://www.forbes.com/sites/jaycoengilbert/2018/08/30/are-b-corps-an-elite-charade-for-changing-the-world-part-1/#67395ea97151
https://www.forbes.com/sites/jaycoengilbert/2018/08/30/are-b-corps-an-elite-charade-for-changing-the-world-part-1/#67395ea97151
https://www.nytimes.com/2018/08/20/books/review/%20winners-take-all-anand-giridharadas.html
https://www.nytimes.com/2018/08/20/books/review/%20winners-take-all-anand-giridharadas.html
http://www.transparency.org/

61. United Nations Global Compact. https://www.unglobalcompact.org
62. Fair Labor Association. https://www.fairlabor.org
63. The Climate Group. https://www.theclimategroup.org
64. Becker C, Chitchyan R, Duboc L, Easterbrook S, Mahaux M, Penzenstadler B, Rodríguez-

Navas G, Salinesi C, Seyff N, Venters CC, Calero C, Koçak SA, Betz S (2014) The karlskrona
manifesto for sustainability design. CoRR

9 Sustainability: Delivering Agility’s Promise 241

http://www.unglobalcompact.org/
https://www.fairlabor.org
http://www.theclimategroup.org/

Chapter 10
Governance and Management of Green IT

J. David Patón-Romero, Maria Teresa Baldassarre, Moisés Rodríguez, and
Mario Piattini

Abstract Sustainability has become a main pillar for the development of our civili-
zation. It is increasingly evident that achieving sustainable development is not only
necessary to have a future, but also helps us create greater value by beingmore effective
and efficient. This has led to more and more organizations implementing sustainable
practices across different fields. One of these fields with the greatest impact and which
is evolving the most is Information Technology (IT). Through what is known as Green
IT, organizations are implementing measures to reduce the environmental impact of
their IT, as well as using their IT to be more sustainable in other areas. However,
organizations are conducting these Green IT implementations at their own discretion,
due to the lack of guidelines, standards, or frameworks in this regard. With the
objective of helping organizations, this chapter presents a framework that guides the
way in which organizations should properly govern and manage Green IT. To this end,
we have developed the Governance and Management Framework for Green IT
(GMGIT), validating and refining it through different case studies at an international
level, obtaining several versions through an iterative and incremental cycle. The results

J. D. Patón-Romero (*)
University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

University of Bari “Aldo Moro” (UniBa), Bari, Italy

AQCLab, Ciudad Real, Spain
e-mail: JoseDavid.Paton@gmail.com

M. T. Baldassarre
Department of Informatics, University of Bari “Aldo Moro” (UniBa), Bari, Italy
e-mail: mariateresa.baldassarre@uniba.it

M. Rodríguez
AQCLab, Ciudad Real, Spain
e-mail: mrodriguez@aqclab.es

M. Piattini
Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: Mario.Piattini@uclm.es

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_10

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_10&domain=pdf
mailto:JoseDavid.Paton@gmail.com
mailto:mariateresa.baldassarre@uniba.it
mailto:mrodriguez@aqclab.es
mailto:Mario.Piattini@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_10#DOI

of this development show that the GMGIT is a very useful framework for organizations
to implement, evaluate, and improve the governance and management of Green IT.

10.1 Introduction

Sustainability [1] has become the biggest challenge and main duty of our time. From
all fields of knowledge, experts and professionals join forces to find the best sustain-
able solutions and practices. Information technology (IT) is an area that is exponen-
tially expanding [2], and, therefore, with the increasing pollution it entails, can be
considered an enemy of the environment. Thus, the so-called Green IT practices are
researched and developed. This field of Green IT has received multiple definitions
since its inception [3, 4], but the one that best fits is the following (adapted from [5]):

Green IT is the study and practice of design, build and use of hardware, software and
information technologies with a positive impact on the environment.

From this definition we can see that Green IT is a much broader field than is
normally imagined. On the one hand, we find different areas of application and
development, such as hardware, software, and IT as a whole. And, on the other
hand, we have the idea that sustainable practices should not only be applied to these
elements but also used as sustainability mechanisms. The latter responds to the idea
proposed by Erdélyi [6] to differentiate between two great perspectives of Green IT:

• Green by IT: through which it is intended to provide the necessary tools to
perform diverse kind of tasks in different areas in a sustainable manner for the
environment (i.e., IT understood as a capacitator or enabler [7]).

• Green in IT: through which it is intended to reduce the negative impact that IT
has on the environment, due to its energy consumption and the emissions it
produces (i.e., IT understood as a producer).

This idea of Green IT increasingly attracts organizations of all kinds (not only
dedicated exclusively to IT) because of the great benefits and advantages that it
entails [8–11]. The number of organizations that implement some type of sustainable
practice in and/or by IT is increasing [4, 12]. However, they put the cart before the
horse. They begin to implement Green IT practices in a disorganized manner,
without clear objectives and without any control. Unlike other business areas,
organizations do not establish adequate governance and management bases to
implement, maintain, and improve these practices.

For this reason, we have developed the “Governance and Management Frame-
work for Green IT” [13, 14], which establishes the characteristics and elements of
governance and management that organizations should consider when
implementing, assessing, and improving Green IT.

In the next sections, the “Governance and Management Framework for Green IT”
is presented, as well as the necessary characteristics (based on the experience
obtained) to assess/audit and implement improvement plans in organizations using
this framework.

244 J. D. Patón-Romero et al.

10.2 “Governance and Management Framework for Green
IT” (GMGIT)

The “Governance and Management Framework for Green IT” (GMGIT, from now
on) [13, 14] is a framework based on COBIT 2019 [15, 16], one of the most
widespread and used frameworks for the governance and management of IT. From
COBIT 2019 we have only taken as a basis the structure of components that it
defines, and, for each of these components, we have defined and established the
characteristics and elements applicable to Green IT. The following subsections show
the most relevant characteristics of the GMGIT, such as the structure of the frame-
work and the components of Green IT defined.

10.2.1 Framework Structure

The GMGIT is divided into four main sections that address all the characteristics for
the implementation, assessment, and improvement of Green IT in organizations:

• Section I. This first section includes the conceptual basis needed to understand
the context of the framework. Thus, it offers an overview of what Green IT is, as
well as what COBIT 2019 is and how the architecture of this framework can be
adapted to the specific needs of Green IT.

• Section II. This section is the main part of the framework, through which the
elements to implement a correct governance and management of Green IT are
defined and established. To this end, for each of the seven generic components
established by COBIT 2019 (cf. Sect. 10.2.2), the applicable Green IT character-
istics and elements have been detailed. It is also important to highlight that in this
section the ISO 14000 family of standards [17] is also applied to IT, through the
specific characteristics of Green IT defined in the “processes” component.

• Section III. This third section proposes a Green IT audit framework, which
includes the steps that an auditor must follow, as well as the aspects that must
be considered to audit Green IT. In the same way, a total of 648 Green IT audit
questions (based on the activities defined in each of the practices of the “pro-
cesses” component) are also included to help auditors conduct their work.

• Section IV. The fourth and final section includes a maturity model for Green IT
based on the ISO/IEC 33000 family of standards [18]. Through this model, each
of the processes defined in Sect. II is organized by maturity levels, so that an
organization can conduct the implementation, assessment, and/or improvement of
Green IT in a progressive and systematic manner. In Sect. 10.3, we can see how
the application of this maturity model for Green IT has been performed through
different audits conducted using the GMGIT. Likewise, Section 10.4 also shows
the application of the said model through improvement plans.

10 Governance and Management of Green IT 245

10.2.2 Governance and Management Components
of Green IT

The following subsections show an overview of the components of Green IT defined
in the GMGIT, highlighting the characteristics that organizations should consider to
implement a proper governance and management of this area.

10.2.2.1 Principles, Policies, and Procedures

The principles, policies, and procedures represent the guidelines established by an
organization to govern and manage all its members and stakeholders toward a
desired direction and behavior in a specific area.

On the one hand, the principles of Green IT serve to communicate the rules
established by the board of directors and the executive management, giving support
to governance objectives and organizational values. In this regard, in the GMGIT we
have identified nine principles organized into three groups:

• Give support to the business.

– Give quality and value to the stakeholders.
– Comply with relevant legal requirements and regulations.
– Provide convenient and precise information on the functioning of Green IT.
– Evaluate current and future IT capabilities.
– Promote ongoing improvement in Green IT.

• Reduce the environmental impact.

– Adopt a strategy that is based on the efficient use of IT resources.
– Develop the systems in a sustainable way.

• Foster responsible behavior toward and in favor of the environment.

– Act professionally and ethically.
– Foster a positive culture of Green IT. Table 10.1 shows an example of how
the characteristics of each of these groups and principles have been defined in the
GMGIT.
On the other hand, the policies of Green IT provide a more detailed guide as to

how to put the principles of Green IT into practice, as well as indicating how these
will influence decision-making. In this regard, we have identified the following six
policies that should be considered, adapted, and implemented in Green IT.

• Policy of Green IT.
• Policy of acquisition, development, and maintenance of IT systems.
• Policy of resource management.
• Policy of compliance.
• Policy of conduct.
• Policy of asset management.

246 J. D. Patón-Romero et al.

Of course, not all relevant policies are written, nor must all of them necessarily be
applied in any one particular organization. Each organization should consider its
own specific context, alongside other external factors, and make appropriate mod-
ifications in its specific policies of Green IT.

Table 10.2 shows as an example the definition and description of the “Policy of
Green IT” that has been performed in the GMGIT.

10.2.2.2 Organizational Structures

The organizational structures are the key elements in the decision-making of an
organization when it comes to decisive aspects and areas. Regarding Green IT, in the

Table 10.1 Description of the principles related to “Reduce the environmental impact”

Principle Objective Description

Reduce the environmental impact

Adopt a strategy that is
based on the efficient
use of IT resources

Ensure that resources are man-
aged in a way that is consistent
and effective

There needs to be a strategy
established that assures the effec-
tive and efficient use of IT
resources in terms of sustainabil-
ity; it will design, implement, and
manage the mechanisms needed
for this strategy and the goals
associated with it to be put into
action

Develop the systems in
a sustainable way

Build systems of high quality
which are economically viable
and that are committed to the
environment, providing value to
stakeholders

Systems that meet quality and
sustainability standards need to be
designed, built, and put in place.
These should make it possible for
the goals set by the organization to
be fulfilled

Table 10.2 Definition of the main characteristics of the “Policy of Green IT”

Scope/goals Stakeholders/people with responsibility

Policy of Green IT

• Definition and vision of Green IT for the
organization, including the goals and appro-
priate metrics.
• Strategic plans for Green IT.
• Explanation of the alignment of the policy of
Green IT with the other high-level policies.
• Identification and development of specific
aspects of Green IT (management of con-
sumption, compliance with legal obligations,
etc.)
• Management of the budget and costs of the
life cycle of Green IT.
• Responsibilities associated with Green IT.

The policy of Green IT is addressed to all the
employees and stakeholders in the organization
Those responsible for the development, main-
tenance, and updating of the policy of Green IT
are the members of the Sustainability Steering
Committee (SSC) and the Chief Sustainability
Officer (CSO)

10 Governance and Management of Green IT 247

GMGIT we have identified two main roles that must be established to be in charge of
the Green IT functions:

• Chief Sustainability Officer (CSO). Its role is being the main representative of
Green IT in the organization. The CSO has the responsibility of controlling and
supervising the management of Green IT.

• Sustainability Steering Committee (SSC). This committee should be responsi-
ble for verifying that Green IT performs correctly, as well as that the policies,
plan, strategy, and other governance aspects in this regard are applied and
followed effectively and efficiently. It can be formed by different roles in the
organization, such as the CSO, CIO, CTO, business owners, other representatives
of Green IT, etc.

Table 10.3 shows the example of the role of the CSO, in which the different
characteristics to be established are detailed, as identified in the GMGIT.

Table 10.3 CSO role details

CSO: mandate, operation principles, and scope

Area Description

Mandate The CSO is entirely responsible for the program of Green IT in the
organization

Operation
principles

The obligations and principles of the CSO are:
• Possesses an exact knowledge of the strategic vision of the organization.
• Has the ability to translate the objectives and goals of the organization into
the requirements of Green IT.
• Is an effective communicator and receiver.
• Acts as a link between the executive management and the program of Green
IT.
• Depending on different factors in the organization (such as its organizational
structure), reports on matters connected with Green IT to the CEO, to the
members of the SSC, or to other executives in the management of the orga-
nization.
• Builds effective relationships with the board of directors, executive man-
agement, and stakeholders.
• Communicates and coordinates with the stakeholders, so that their needs in
Green IT are met.

Span of control The CSO is responsible for:
• Designing, implementing, and managing a plan and strategy of Green IT.
• Developing, maintaining, and updating the principles, policies, and proce-
dures related to Green IT.
• Monitoring and managing the correct performance of Green IT.

Authority level The CSO has responsibility for the approval of decisions that have to do with
the correct development, implementation, and management of Green IT in the
organization, and has the capacity to do so

Delegation
rights

The CSO should delegate specific tasks to the personnel in the organization
who are in charge of aspects such as the deployment of a system of energy
control, monitoring at all times that this task is carried out correctly

Escalation path The CSO should report the key problems associated with Green IT to the SSC

248 J. D. Patón-Romero et al.

10.2.2.3 People, Skills, and Competencies

This component identifies the skills and competencies that the people who are in
charge of/responsible for Green IT should have. To implement Green IT effectively
and efficiently, the following levels or areas of skills and competencies must be
considered and covered:

• Governance of Green IT.
• Strategy of Green IT.
• Architecture of Green IT.
• Operations of Green IT.
• Evaluation, tests, and compliance of Green IT.

Table 10.4 shows by way of example the skills and competencies that should be
considered and covered in the area of “Strategy of Green IT,” as included in the
GMGIT.

10.2.2.4 Culture, Ethics, and Behavior

The culture, ethics, and behavior are the patterns of conducts, beliefs, suppositions,
attitudes, and ways of conducting activities/practices correctly in the quest of
achieving the success of, in this case, Green IT.

Table 10.4 Description of the skills and competencies to be covered in the area of “Strategy of
Green IT”

Strategy of Green IT: description, experience, knowledge, and skills

Area Description

Description The roles in this area should define and implement the vision, mission, and
objectives of Green IT, always maintaining the alignment with the strategy and
organizational culture

Experience • Experience in Green IT and management in areas of the organization.
• Definition, implementation, and management of the strategy and governance of
Green IT.
• Alignment of the strategy, principles, and best practices of Green IT with the rest
of the organization.

Knowledge • Standards, regulations, frameworks, guidelines, and best practices of Green IT.
• Legal and regulatory requirements of Green IT.
• State of the art, services, and emerging disciplines of Green IT.

Skills • Capacity of defining management aspects (management of resources, manage-
ment of processes, management of performance, etc.) of Green IT that are appli-
cable in the organization.
• Leadership (conflict resolution, excellent communication skills, etc.)
• Business orientation.
• High-level strategic thinking.

10 Governance and Management of Green IT 249

Behavior is the key pillar, because it determines the culture of the organization
itself and the approach to Green IT. For this area of Green IT, in the GMGIT we have
defined eight behaviors that organizations should include in their culture:

• Behavior 1. Green IT is put into practice in day-to-day operations.
• Behavior 2. The importance of the policies and principles of Green IT is respected.
• Behavior 3. The members and stakeholders are provided with enough detailed

guidelines on Green IT, and compliance with these is encouraged.
• Behavior 4. The members and stakeholders of the organization are responsible

for the proper use of Green IT.
• Behavior 5. The members and stakeholders of the organization identify and

communicate new Green IT needs.
• Behavior 6. The members and stakeholders of the organization are receptive

when identifying and managing new Green IT challenges.
• Behavior 7. The organization is committed to, and aligned with, Green IT.
• Behavior 8. The organization acknowledges the value brought to it by Green IT.

Table 10.5 shows as an example the definition that has been conducted in the
GMGIT about “Behavior 1” and “Behavior 2.”

10.2.2.5 Information

This component identifies how the information coming from the different systems
and processes of the organization may be used to govern and manage Green IT. In
this regard, the GMGIT identifies the following groups or types of information that
an organization must have in relation to Green IT, in order to conduct an appropriate
decision-making in the implementation, operation, and maintenance of this area:

• Policies and principles of Green IT.
• Plan and strategy of Green IT.
• Requirements of Green IT.

Table 10.5 Definition of “Behavior 1” and “Behavior 2”

Organizational ethics Individual ethics

Behavior 1. Green IT is put into practice in day-to-day operations

Green IT is included as a key area in the estab-
lishment and achievement of the organizational
objectives

The best practices of Green IT are followed,
since the individuals are committed both to
Green IT and to the success of the organization

Behavior 2. The importance of the policies and principles of Green IT is respected

The board of directors and the executive man-
agement support the policies and principles of
Green IT, approving them, checking them, and
communicating them to the rest of the organi-
zation at regular intervals

The policies and principles of Green IT are
known and understood, and the guidelines that
they establish are followed

250 J. D. Patón-Romero et al.

• Budget of Green IT.
• Awareness material of Green IT.
• Review reports of Green IT.
• Scorecard of Green IT.

Table 10.6 shows as an example the main characteristics of the information that
should be considered in the “Scorecard of Green IT,” as established in the GMGIT.

10.2.2.6 Services, Infrastructure, and Applications

The services, infrastructure, and applications are translated into a set of service
capacities in order to provide a proper functioning of Green IT in the organization.
Regarding Green IT, the following activities or services that should be provided for
Green IT to perform correctly have been identified in the GMGIT:

• Provide an architecture of Green IT that is appropriate to the needs and capabil-
ities of the organization.

• Provide awareness of, and training in, Green IT.
• Provide evaluations and tests of Green IT.

Table 10.7 shows by way of example the service capacities included in the
GMGIT that should be considered in “Awareness of, and training in, Green IT.”

Table 10.6 Main characteristics of the “Scorecard of Green IT”

Scorecard of Green IT: goals, life cycle, and best practices

Area Description

Goals The scorecard of Green IT has the task of providing the information needed for
appropriate decisions to be taken and for correct management of Green IT in the
organization to be carried out. To that end, it should contain all the events and
relevant information (at a level that is appropriate for decisions to be taken) about
the function of Green IT

Life cycle The scorecard of Green IT should be updated regularly, since this information is
needed if those responsible for Green IT are to manage this area and direct it so that
it works correctly

Best
practices

The CSO is responsible for gathering the relevant information on Green IT,
expressing it in the scorecard of Green IT. For that to happen, the information that
should be considered is the following:
• Effectiveness and efficiency in the function of Green IT.
• Progress in the scope of the objectives of Green IT and their relationship with the
organizational objectives.
• Costs of Green IT.
• Action needed to improve Green IT.

10 Governance and Management of Green IT 251

10.2.2.7 Processes

The processes are the main component or the core of the GMGIT, since through
them the necessary aspects to conduct the implementation and assessment of the rest
of the components, among other characteristics and key elements, are established.

In order to perform the definition of the Green IT processes, in the GMGIT we
have not invented any new process, but of the 40 processes defined by COBIT 2019
[16], we have chosen and taken as a basis a total of 38 processes that we consider
affect or are affected by Green IT. We have excluded two processes, “APO13.
Manage security” and “DSS05. Manage security services,” since they are processes
that are very focused in the field of security, and among their practices and activities,
they have no direct relationship with sustainability.

Likewise, it is important to highlight that COBIT 2019 identifies objectives, but
they represent and describe the corresponding processes, so we decide in the
GMGIT to maintain processes as the main focus.

Thus, in the GMGIT we have adapted each of the 38 selected processes to Green
IT, defining and developing the following characteristics:

• Goals and metrics. The Green IT goals that the organization should achieve in
the context of the process in question and the metrics that can be used to verify
whether these goals are achieved. Table 10.8 shows an example of this charac-
teristic in the “EDM03. Ensure risk optimization” process.

• RACI matrix. Regarding the position of each of the specific roles of Green IT
(defined in the “Organizational structures” component) and other relevant roles in
relation to the specific practices of the process in question. Table 10.9 includes as
an example the RACI matrix of the “DSS03. Manage problems” process.

• Practices, inputs and outputs, and activities. The Green IT practices specific to
the process, identifying the inputs and outputs of each practice, as well as the

Table 10.7 Description of the service capacities for “Awareness of, and training in, Green IT”

Awareness of, and training in, Green IT: service capabilities

Service capability Description

Establish a system of communication and
distribution of relevant information on Green
IT

Provide a system of communication and distri-
bution of relevant information on Green IT for
the different members of the organization and
the stakeholders, one that will allow them to
fulfill their responsibilities correctly while also
raising awareness of the importance of Green IT
both within the organization and outside it

Manage the program of awareness and train-
ing and keep it up to date

Establish a program to raise awareness and to
train in Green IT; this should be one that will
help the members of the organization and the
stakeholders to understand and become familiar
with the importance of Green IT and its relevant
features; that will mean that these parties carry
out their responsibilities properly, leading to a
correct function of Green IT in the organization

252 J. D. Patón-Romero et al.

specific Green IT activities (differentiated between activities specific to Green by
IT and activities specific to Green in IT), which will come to define the actions to
be assessed to verify if a Green IT implementation complies with the process in
question or not. Table 10.10 shows through an example the “APO02.02” practice
of the “APO02. Manage strategy” process with all these elements.

• Related guidance. Identifying which specific standard and which reference
within the standard are directly related to the practices and activities defined in
the process in question. In this regard, only the ISO 14000 family of standards
[17], related to environmental management, has been applied [19]. Thus, com-
plying with the practices and activities of a process, the practices of these
references of the standard would also be fulfilled and vice versa. Table 10.11
illustrates as an example the related guidance regarding “BAI01. Manage
programs.”

10.2.3 Evolution of the GMGIT

The GMGIT is a framework that has emerged following a long and thorough study.
Indeed, a process of several years and different versions has been necessary to refine
and achieve a solid, coherent, and adapted framework to the current context of
organizations and Green IT.

In Fig. 10.1 we can see, as a summary, an overview of the evolution of the
GMGIT through its three versions.

From the first version, we started making a proof of concept with only 15 pro-
cesses, which resulted in a total of 122 audit questions. After the two validations we
conducted for this version, we also made a proof of concept developing a maturity
model for the framework based on the ISO/IEC 15504 standard [20].

From the lessons learned obtained at the validations of the first version, the
second version of the framework emerged. In this second version, we included
20 new processes and established the difference between Green by IT and Green
in IT, giving rise to a total of 600 audit questions. We also updated the maturity

Table 10.8 Goals and metrics that are specific to Green IT of the “EDM03. Ensure risk optimi-
zation” process

EDM03: Goals and metrics of the process that are specific to Green IT

Goals of the process that are specific to Green IT Related metrics

1. The risks derived from Green IT are identified,
communicated, and managed effectively and
efficiently.

• Number of risks of Green IT identified
and managed.
• Percentage of risks of Green IT that are
mitigated effectively.

2. The strategy and management of risks of Green
IT are aligned with the strategy and overall risk man-
agement of the organization.

• Level of alignment between the risks of
Green IT and the business risks.
• Percentage of risks of Green IT related
to the business risks.

10 Governance and Management of Green IT 253

T
ab

le
10

.9
R
A
C
I
m
at
ri
x
th
at
is
sp
ec
ifi
c
to

G
re
en

IT
of

th
e
“
D
S
S
03

.M
an
ag
e
pr
ob

le
m
s”

pr
oc
es
s

D
S
S
03

:
R
A
C
I
m
at
ri
x
of

th
e
pr
oc
es
s
th
at
is
sp
ec
ifi
c
to

G
re
en

IT

K
ey

m
an
ag
em

en
t

pr
ac
tic
e

B
oa
rd

of
D
ir
ec
to
rs

C
hi
ef

E
xe
cu
tiv

e
O
ffi
ce
r

(C
E
O
)

C
hi
ef

F
in
an
ci
al

O
ffi
ce
r

(C
F
O
)

C
hi
ef

In
fo
rm

at
io
n

O
ffi
ce
r

(C
IO

)

C
hi
ef

T
ec
hn

ol
og

y
O
ffi
ce
r

(C
T
O
)

B
us
in
es
s

ow
ne
rs

S
us
ta
in
ab
ili
ty

S
te
er
in
g

C
om

m
itt
ee

(S
S
C
)

C
hi
ef

S
us
ta
in
ab
ili
ty

O
ffi
ce
r
(C
S
O
)

A
ud

iti
ng

C
om

pl
ia
nc
e

w
ith

la
w
s

an
d

re
gu

la
tio

ns

D
S
S
03

.0
1

Id
en
tif
y
an
d

cl
as
si
fy

pr
ob

le
m
s

C
C

C
A

R
I

I

D
S
S
03

.0
2

In
ve
st
ig
at
e

an
d
di
ag
no

se
pr
ob

le
m
s

R
R

A
R

D
S
S
03

.0
3

R
ai
se

kn
ow

n
er
ro
rs

C
C

A
R

D
S
S
03

.0
4

R
es
ol
ve

an
d

cl
os
e

pr
ob

le
m
s

C
C

C
A

R
C

C

D
S
S
03

.0
5

P
er
fo
rm

pr
o-

ac
tiv

e
pr
ob

-
le
m

m
an
ag
em

en
t

C
C

C
A

R

R
:
R
es
po

ns
ib
le
;
A
:A

cc
ou

nt
ab
le
;
C
:
C
on

su
lte
d;

I:
In
fo
rm

ed

254 J. D. Patón-Romero et al.

model to the new ISO/IEC 33000 standard [18] and conducted four validations in
organizations at the international level.

And finally, in the third version we included 3 new processes (making a total of
38 processes and 648 audit questions), and we applied the ISO 14000 family of

Table 10.10 “APO02.02” practice, with its inputs, outputs, and activities that are specific to Green
IT of the “APO02. Manage strategy” process

APO02: Practices, inputs/outputs, and activities of the process that are specific to Green IT

Management practice Inputs specific to Green IT
Outputs specific to Green
IT

APO02.02 Assess current
capabilities, performance,
and maturity of Green IT
of the organization
Assess the performance of
the business, and the
capabilities and
outsourced services of
Green IT, so as to develop
an understanding of the
enterprise architecture
with respect to Green
IT. Identify the problems
that are being experienced
and produce recommen-
dations in the areas that
can benefit from these
improvements Consider
the distinguishing features
and options as regards
service providers, as well
as financial impact,
potential costs, and bene-
fits of using outsourced
services

APO01.09 Evaluation of compliance
of the policies and proce-
dures of Green IT

Capabilities
of Green IT

APO02.03
APO04.04
APO08.05
APO09.05
APO11.01
BAI01.01
BAI02.01
BAI04.01
BAI11.01

APO02.01 Alignment of Green IT
with the strategies,
objectives, challenges,
stakeholders, and orga-
nizational context

Activities specific to Green by IT

1. Define and establish some basic capabilities of Green by IT, aligned with the organization’s
own capabilities.

2. Carry out a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis of the
context, capabilities, and current performance of Green by IT, in an effort to understand its current
performance and identify inconsistencies and/or possibilities of alignment with the context and
capabilities of the organization.

Activities specific to Green in IT

1. Define and establish some basic capabilities of Green in IT, aligned with the organization’s
own capabilities.

2. Carry out a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis of the
context, capabilities, and current performance of IT with respect to Green IT, in an effort to
understand its current performance and identify inconsistencies and/or possibilities of alignment
with the context and capabilities of the organization.

10 Governance and Management of Green IT 255

standards [17], as well as other changes derived from the adaptation to the new
COBIT 2019 [15, 16].

On the other hand, we are currently working on conducting more validations
through new case studies [21], as well as applying the framework through improve-
ment plans in the organizations that we have already audited.

10.3 Auditing the Green IT with the GMGIT

When conducting the implementation of the governance and management of Green
IT, it is important to know not only the best practices on which to base but also how
to assess/audit this area. Auditing the governance and management of Green IT is
crucial to identify the problems in this regard, propose solutions, and perform
progressive improvements, among others. Therefore, the GMGIT also includes an
audit framework of Green IT (which corresponds to Section III of the GMGIT), as
well as a maturity model developed specifically for Green IT (Section IV of the
GMGIT), whose main characteristics are shown in the following subsections.

10.3.1 Audit Framework of Green IT

The audit framework of Green IT included in the GMGIT is divided into two main
parts, through which it is intended to support the work of the auditors.

Table 10.11 Related guidance that is specific to Green IT of the “BAI01. Manage programs”
process

BAI01: related guidance that is specific to Green IT

Related standard Detailed reference

ISO 14001, ISO
14004

• 6.1. Actions to address risks and opportunities
• 7.5. Documented information
• 9.1. Monitoring, measurement, analysis, and evaluation

ISO 14005 • 4. Undertaking an environmental-related project to secure management
support and commitment to begin the phased implementation of an Envi-
ronmental Management System (EMS)
• 5.5. Documentation
• 6.8. Environmental performance evaluation, including monitoring and
measurement

ISO 14006 • 5.4. Implementation and operation
• 5.5. Checking

ISO 14031 • 4. Environmental performance evaluation

ISO/TS 14033 • 4. Use of quantitative environmental information
• 5. Principles for generating and providing quantitative environmental
information
• 6. Guidelines

256 J. D. Patón-Romero et al.

First, the different stages to be followed during a Green IT audit are identified and
explained in detail (taking as a reference the stages defined by COBIT) [22].

Then, the second part of the audit framework of Green IT includes a total of
648 audit questions that cover each of the processes defined in Section II of the
GMGIT. These audit questions are directly related to the activities to be performed in
each of the practices identified in the different processes. That is why they are
divided into two large groups (324 questions in each), depending on whether they
are activities specific to Green by IT or to Green in IT.

Fig. 10.1 Evolution of the GMGIT through its three versions

10 Governance and Management of Green IT 257

As an example, Table 10.12 contains the Green by IT audit questions defined for
the “APO05. Manage portfolio” process, while Table 10.13 includes the Green in IT
audit questions defined for the “MEA03. Manage compliance with external require-
ments” process.

10.3.2 ISO/IEC 33000-Based Maturity Model for Green IT

All of the above, the governance and management components and the audit
framework of Green IT, are very important characteristics that organizations should
consider and implement in this context. However, based on our experience, it is
totally unfeasible to try to implement or assess/audit all these characteristics at once;

Table 10.12 Green by IT audit questions for the “APO05. Manage portfolio” process

Process Questions

APO05. Manage
portfolio

Are the investment options, internal and external, necessary to carry out
investments in Green by IT identified and analyzed?

Do the programs of Green by IT have adequate financing to cover the
investment needs in this regard?

Is the performance of investments in Green by IT periodically monitored,
evaluated, and optimized?

Are the funding and adequate resources maintained and updated with
respect to the investments in Green by IT and to the services and assets of
Green by IT?

Is the achievement of benefits of the investments conducted in Green by IT
evaluated?

Table 10.13 Green in IT audit questions for the “MEA03. Manage compliance with external
requirements” process

Process Questions

MEA03. Manage compliance with
external requirements

Are the new legal, regulatory, and contractual requirements
of sustainability that may affect the IT continually identi-
fied, implemented, and monitored?

Are the policies, principles, requirements, objectives, and
solutions of IT aligned with the legal, regulatory, and con-
tractual requirements of sustainability that are applicable?

Is there assured conformance and compliance of the poli-
cies, principles, requirements, objectives, and solutions of
IT with the legal, regulatory, and contractual requirements
of sustainability that are applicable?

As regards the data related to the fulfillment of the external
compliance requirements of sustainability that are applica-
ble to IT: are these obtained and verified?

Are corrective measures taken to align the IT with the
external compliance requirements of sustainability?

258 J. D. Patón-Romero et al.

it is necessary to perform a systematic and progressive process in this regard. That is
why we have also developed and included a maturity model adapted to the charac-
teristics defined in the GMGIT, and for which we have followed the ISO/IEC 33000
family of standards [18].

Thus, to develop this maturity model, we have taken as a basis the five maturity
levels (plus level 0) established by the ISO/IEC 33000, and we have adapted them to
the specific context of Green IT:

• Level 0 (Incomplete). The organization does not consider sustainability and no
Green IT practice is defined.

• Level 1 (Initial). The organization considers sustainability and carries out Green
IT practices in the most critical aspects related to sustainability.

• Level 2 (Managed). The Green IT practices are clearly defined, established, and
managed throughout the different business areas, contributing to sustainability in
and/or by IT.

• Level 3 (Established). The organization follows recognized standards and best
practices of Green IT (Green IT is correctly managed and governed), as well as
identifies and ensures in a continuous manner the compliance with the external
requirements.

• Level 4 (Predictable). The organization performs the monitoring, evaluation,
and measurement of the implemented Green IT practices, through a set of
sustainability metrics established for that purpose.

• Level 5 (Innovating). The organization is fully committed to sustainability and is
oriented toward the continuous improvement of the implemented Green IT
practices, by means of, for example, detailed performance reports, exhaustive
use of sustainability metrics, and management of the innovation process in
sustainability.

On the other hand, we have also organized the 38 processes defined in Sect. II of
the GMGIT at each of these maturity levels, depending on which processes are more
basic and should be implemented and evaluated first and which processes are more
complex and belong to more advanced levels of implementation.

Likewise, we have established the necessary mechanisms to evaluate the capa-
bility of each of the processes. To do this, we have adopted the five capability levels
established by the ISO/IEC 33000, as well as the process attributes and process
attribute results of each of these levels, since they are fully compatible and adaptable
to the GMGIT. Furthermore, we have identified and established the relationship
between the capability levels and the maturity levels, i.e., the capability levels that
each of the processes must meet to reach a certain maturity level.

All this can be seen in Fig. 10.2, where the organization of the different processes
at the maturity levels is shown, as well as their correspondence with the capability
levels. This organization has been performed following the example of application
of the software development life cycle processes at the maturity and capability levels
of the ISO/IEC 33000 standard, conducted by the “Software Engineering Maturity
Model MMIS 2.0.”

10 Governance and Management of Green IT 259

And, finally, we have defined each of the 38 processes as the ISO/IEC 33000 is
established, determining its id, name, description, purpose, results, base practices,
and work products. Table 10.14 includes the example of how this definition was
performed in the “DSS01. Manage operations” process.

Fig. 10.2 Organization of the processes at the different maturity and capability levels of Green IT,
defined in the ISO/IEC 33000-based maturity model developed for the GMGIT

260 J. D. Patón-Romero et al.

Table 10.14 Description of the “DSS01. Manage operations” process in the ISO/IEC 33000-based
maturity model developed for the GMGIT

DSS01: process attributes

Attribute Description

ID DSS01

Name Manage operations

Description Coordinate and execute the activities and operational procedures needed for the
delivery of IT services, both internal and outsourced, including the execution of
predefined standard operating procedures and the required monitoring activities

Purpose Deliver the results of the operational IT service as planned

Results As a result of the successful implementation of “Manage operations”:
The operations of Green IT are carried out following the policies, principles,
strategy, and goals of Green IT.
The standards, regulations, and best practices of Green IT have been identified and
implemented and are being complied with

Base
practices

DSS01.BP1: Perform operational procedures. Maintain and execute operational
procedures and tasks of Green IT reliably and consistently [Result: 1]
DSS01.BP2: Manage outsourced services. Manage the operation of outsourced
services so as to maintain their reliability and their consistency with Green IT
[Result: 1]
DSS01.BP3: Monitor IT infrastructure. Monitor the IT infrastructure and events
related to it, in an effort to ensure the alignment of all of them with Green IT. Store
enough chronological information in the operations logs of the organization to
allow the reconstruction, review, and examination of the time sequences of the
operations, as well as of the activities associated with the support to those opera-
tions [Result: 2]
DSS01.BP4: Manage the environment. Maintain measures for protection against
environmental factors. Install specialized equipment and devices to monitor and
control the environment from a Green IT perspective [Result: 2]
DSS01.BP5: Manage facilities. Manage the facilities according to the laws, regu-
lations, guidelines, and other requirements related to Green IT [Result: 2]

Work
products

Inputs Outputs

Services of the architecture of
Green IT [Result: 1]

Operational procedures of Green IT [Result: 1]

Policies of Green IT [Result:
1]

Reports on the compliance of Green IT by third
parties [Result: 1]

Policies of the management of
the environment [Result: 2]

Reports on the performance of the infrastructure
of the IT, from the point of view of Green IT
[Result: 2]

Policies of the management of
the facilities [Result: 2]

Alignment of Green IT with the management of
the environment [Result: 2]

Alignment of Green IT with the management of
the facilities [Result: 2]

10 Governance and Management of Green IT 261

10.3.3 Audits Performed During the Development
of the GMGIT

The development of a framework such as the GMGIT must be accompanied by an
empirical validation to corroborate its coherence, adequacy, and applicability in the
real context. For this reason, we have followed the case study methodology [21, 23],
through which we have performed different validations based on audits in six
different organizations.

The audits performed have been conducted through the different versions of the
GMGIT, in order to gradually refine, expand, and validate the characteristics of the
framework. Thus, the first version of the GMGIT was validated auditing two
organizations in Spain [13, 24], while the second version of the GMGIT was
validated auditing four organizations at the international level (Spain, Italy, Mexico,
and Colombia) [14, 25]. Likewise, we are currently validating the third version of the
GMGIT through improvement plans in the organizations previously audited. Among
these organizations, it is worth mentioning the Colombian organization, through
which we have already conducted the first phases of the plan in which we have
obtained promising results [26].

Regarding the results and main findings we have obtained through all these
validations, three points of view are worth highlighting: the GMGIT, organizations,
and Green IT.

First, regarding the GMGIT, we have succeeded in strengthening its validity and
applicability by confirming that the developed versions have evolved satisfactorily,
maintaining the consistency and coherence, and expanding and improving the
characteristics of the framework, such as the scope, components, processes, prac-
tices, etc. All the validations and results obtained demonstrate that the GMGIT is an
applicable framework for organizations, becoming the first guide to define, imple-
ment, assess/audit, and improve the governance and management of Green IT in
organizations.

On the other hand, from the point of view of the organizations, we realized that
they are disoriented in Green IT. This is mainly due to the fact that they do not have
guidelines to help them implement sustainable practices in this area, and therefore,
they demand standards or frameworks such as the GMGIT to conduct such
implementations.

And, finally, regarding sustainability and Green IT, we continue to corroborate
and highlight the growing importance they have in our society and in organizations,
and their indispensability. It is not something optional, it is a duty we have for our
planet and ourselves.

262 J. D. Patón-Romero et al.

10.4 Using the GMGIT for Green IT Improvement

When applying the components of a framework such as the GMGIT, it is very
important to follow a methodology that allows for a progressive and systematic
implementation, based on continuous improvement. For this, the ISO/IEC TR 33014
standard [27] provides the characteristics and phases to perform the improvement of
the processes following a continuous improvement plan.

All these characteristics defined by the ISO/IEC TR 33014 standard are fully
applicable to the GMGIT. It should not be forgotten that the GMGIT is a framework
that not only establishes the necessary components to properly govern and manage
the Green IT in organizations, but also includes an audit framework, as well as a
maturity model that organizes the Green IT processes at different levels depending
on their need and complexity of implementation. That is why applying the ISO/IEC
TR 33014 standard to the GMGIT is very simple following, mainly, the maturity
model established for the progressive assessment and implementation of the Green
IT processes.

Thus, taking the GMGIT and the ISO/IEC TR 33014 standard, we have
conducted different improvement plans in the organizations that we have audited
during the development of the GMGIT. Of these organizations it is important to
highlight the Colombian organization in which we have already applied the first
phases of the improvement plan, and we obtained very good results in the progress of
the implementation of the different Green IT processes [26].

To establish and conduct the improvement plan in the Colombian organization,
the first thing we did was to analyze the results obtained from the Green in IT audit
that we performed [28] (covering in this way the strategic and tactical levels of the
ISO/IEC TR 33014 standard [27]). Based on these results, we identified that the said
organization was partially at maturity level 1 of Green in IT, since, although it fully
complied with the practices of the “BAI09. Manage assets” process, it partially
complied with the practices of the other process at maturity level 1, the “DSS01.
Manage operations” process (cf. Sect. 10.3.2). During the audit we also performed
the assessment of the processes of maturity level 2, and we verified that the
organization did not comply with any of the established practices in all of these
processes.

Once these results have been obtained and analyzed, we continue with
the operational level of the ISO/IEC TR 33014 standard [27], establishing with the
organization the objective of conducting a first improvement plan to comply with the
defined practices in the processes of the first two maturity levels of Green in IT.

Going into detail in the improvement plan, we decided to divide it into two cycles,
in order to perform the improvement in a more staggered and affordable way. In each
of these two cycles, the processes of maturity levels 1 and 2 of Green in IT were
addressed, as shown below:

10 Governance and Management of Green IT 263

• First cycle:

– DSS01. Manage operations.
– APO01. Manage IT management framework.
– APO02. Manage strategy.
– APO06. Manage budget and costs.

• Second cycle:

– APO08. Manage relationships.
– APO10. Manage vendors.
– BAI01. Manage programs.
– BAI02. Manage requirements definition.
– BAI03. Manage solutions identification and build. Likewise, as a calendar
to conduct the implementation of the improvements of each cycle, a flexible
implementation period of several months was agreed upon, after which we
performed an assessment to verify the implementation of the practices at the
target processes.

Finally, within this improvement plan, we included the improvement actions to be
conducted by the organization in question, based on the problems identified in the
audit performed. An example of these improvement actions that were identified to
comply with the practices in which there was a problem in the process “DSS01.
Manage operations” is shown in Table 10.15.

Table 10.15 Improvement actions to be performed in the “DSS01. Manage operations” process for
the Colombian organization

DSS01. Manage operations—improvement actions

Problem Solution Work products

It is not monitored whether the
IT infrastructure and all those
sustainable elements/aspects of
it are properly adapted to
Green IT

• Ensure that the sustainable
aspects of the IT infrastructure,
such as the operations and the
use of sustainable solutions in
IT, the optimal use of IT
resources, etc., are monitored,
making sure that they are
properly suited to Green IT.

Outputs:
• Reports on the performance
of the infrastructure of IT,
from the point of view of
Green IT.

It does not consider meeting
the requirements of Green in IT
in the management of the
environment and in the man-
agement of the facilities

• Ensure that the management
of the environment considers
the requirements of Green in IT
and that it meets those require-
ments.
• Ensure that the management
of the facilities considers the
requirements of Green in IT
and that it meets those
requirements.

Inputs:
• Policies of the management
of the environment.
• Policies of the management
of the facilities.
• Outputs:
•Alignment of Green IT with
the management of the envi-
ronment.
•Alignment of Green IT with
the management of the
facilities.

264 J. D. Patón-Romero et al.

10.5 Conclusions

We are in a period full of vertiginous changes—necessary and natural changes in
search of an increasingly evolved and advanced civilization. But changes, in most
cases, have involved an involution regarding life and the preservation of our
environment, without which absolutely nothing would be possible.

This has led society, organizations, and governments around the world to wake
up and come together to defend a sustainable development [29, 30]. However, these
efforts are insufficient and are not giving the expected results. We continue to see
how countries and organizations keep on polluting the environment above the agreed
limits, how the global temperature continues to rise, and how the number of
ecosystems in which life is no longer compatible because of the damage caused by
humans increases. The initiatives and agreements reached by the governments will
remain inefficient, while organizations, the main sources of these problems, do not
know how to conduct the practices and actions in this regard.

Thus, we must contribute from all areas of knowledge to guide organizations to
achieve the agreed sustainable goals and, if possible, go further. It is for this reason
that we have developed the “Governance and Management Framework for Green
IT” (GMGIT) [13, 14].

The GMGIT advocates to help organizations to establish the governance and
management bases that will support the implementation, assessment, and improve-
ment of sustainable practices in and by IT (well-known as Green IT). To this end, the
GMGIT establishes and provides a set of components and best practices that
organizations should consider in this regard, as well as the necessary mechanisms
to assess and improve in a progressive and systematic manner the implementation of
these components and best practices of Green IT.

Through the application of the GMGIT to validate and refine it in real environ-
ments, we have been able to verify that organizations are disoriented in relation to
Green IT. They are starting to work in this area, but, like all things at the beginning,
they are sometimes confused and do not know precisely what to do. They begin by
implementing isolated best practices of Green IT, but without a control and man-
agement that allows them to advance properly. Now, thanks to the GMGIT, the
organizations in which it is being applied have a much clearer and more organized
vision, properly governing and managing the Green IT practices implemented and
obtaining satisfactory results in this regard.

However, we are at the beginning of a long road. The GMGIT is just a small grain
of sand within Green IT and sustainability, and it must continue to evolve and
contribute to the advancement of these areas. And, like the GMGIT, other frame-
works that guide organizations to establish, develop, and improve the bases of
different business areas must emerge.

We must all stay together doing the right thing for our planet, for the environ-
ment, and for the future of these and of the humankind.

10 Governance and Management of Green IT 265

Acknowledgments This work is the result of a PhD cotutelle agreement between the University of
Castilla-La Mancha and the University of Bari “Aldo Moro.” It is also part of the Industrial PhD
DI-17-09612, funded by the Spanish Ministry of Science, Innovation and Universities; of the ECD
project (PTQ-16-08504), funded by the “Torres Quevedo” Program of the Spanish Ministry of
Economy, Industry and Competitiveness; of the SOS project (SBPLY/17/180501/000364), funded
by the Ministry of Education, Culture and Sports of the JCCM (Regional Government of Castilla-La
Mancha) and the ERDF (European Regional Development Fund); of the “Digital Service Ecosys-
tem” project (PON03PE_00136_1), funded by the Italian Ministry of University and Research; and
of the “Auriga2020” project (T5LXK18), funded by the Apulia Region.

References

1. Brundtland G, Khalid M, Agnelli S, Al-Athel S, Chidzero B, Fadika L et al (1987) Our common
future (“Brundtland report”). Oxford University Press, Oxford

2. Schwab K (2017) The fourth industrial revolution. The Crown Publishing Group, Danvers
3. Calero C, Piattini M (2017) Puzzling out software sustainability. Sustain Comput Inform Syst

16:117–124. https://doi.org/10.1016/j.suscom.2017.10.011
4. Deng Q, Ji S (2015) Organizational green IT adoption: concept and evidence. Sustainability 7

(12):16737–16755. https://doi.org/10.3390/su71215843
5. Calero C, Piattini M (eds) (2015) Green in software engineering. Springer International

Publishing AG, Cham
6. Erdélyi K (2013) Special factors of development of green software supporting eco sustainabil-

ity. In: Proceeding of the IEEE 11th international symposium on intelligent systems and
informatics (SISY 2013), pp 337–340

7. Unhelkar B (2011) Green IT strategies and applications: using environmental intelligence. CRC
Press, Boca Raton, FL

8. Brodkin J (2008) Economy driving green IT initiatives. Network World 25(49):16
9. Epstein MJ, Buhovac AR (2014) Making sustainability work: best practices in managing and

measuring corporate social, environmental, and economic impacts, 2nd edn. Berrett-Koehler
Publishers, San Francisco

10. Hertel M, Wiesent J (2013) Investments in information systems: a contribution towards
sustainability. Inform Syst Front 15(5):815–829. https://doi.org/10.1007/s10796-013-9417-x

11. Wimmer W, Lee KM, Quella F, Polak J (2010) ECODESIGN. The competitive advantage.
Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9127-7

12. Simmonds DM, Bhattacherjee A (2014) Green IT adoption and sustainable value creation. In:
Proceeding of the 20th Americas conference on information systems (AMCIS 2014), pp
2550–2565

13. Patón-Romero JD, Baldassarre MT, Piattini M, García Rodríguez de Guzmán I (2017) A
governance and management framework for green IT. Sustainability 9(10):1761. https://doi.
org/10.3390/su9101761

14. Patón-Romero JD, Baldassarre MT, Rodríguez M, Piattini M (2019) A revised framework for
the governance and management of green IT. J Univ Comp Sci 25(13):1736–1760. https://doi.
org/10.3217/jucs-025-13-1736

15. ISACA (2018) COBIT 2019 framework: introduction and methodology. ISACA, Rolling
Meadows

16. ISACA (2018) COBIT 2019 framework: governance and management objectives. ISACA,
Rolling Meadows

17. ISO (2015) ISO 14000 (Environmental management systems). International Organization for
Standardization, Geneva

266 J. D. Patón-Romero et al.

https://doi.org/10.1016/j.suscom.2017.10.011
https://doi.org/10.3390/su71215843
https://doi.org/10.1007/s10796-013-9417-x
https://doi.org/10.1007/978-90-481-9127-7
https://doi.org/10.3390/su9101761
https://doi.org/10.3390/su9101761
https://doi.org/10.3217/jucs-025-13-1736
https://doi.org/10.3217/jucs-025-13-1736

18. ISO (2015) ISO/IEC 33000 (Information technology — process assessment). International
Organization for Standardization, Geneva

19. Patón-Romero JD, Baldassarre MT, Rodríguez M, Piattini M (2019) Application of ISO 14000
to information technology governance and management. Comp Stand Inter 65:180–202. https://
doi.org/10.1016/j.csi.2019.03.007

20. ISO (2003) ISO/IEC 15504 (Information technology — process assessment). International
Organization for Standardization, Geneva

21. Yin RK (2017) Case study research and applications: design and methods. Sage, Los Angeles
22. ISACA (2013) COBIT 5 for assurance. ISACA, Rolling Meadows
23. Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering:

guidelines and examples. Wiley, Hoboken
24. Patón-Romero JD, Baldassarre MT, Rodríguez M, Piattini M (2018) Green IT governance and

management based on ISO/IEC 15504. Comput Stand Interfaces 60:26–36. https://doi.org/10.
1016/j.csi.2018.04.005

25. Patón-Romero JD, Baldassarre MT, Rodríguez M, Runeson P, Höst M, Piattini M (2020)
Governance and management of green IT: a multi-case study. Inform Softw Technol. https://
doi.org/10.1016/j.infsof.2020.106414

26. Patón-Romero JD, Baldassarre MT, Rodríguez M, Pérez-Canencio JG, Ojeda-Solarte ML,
Rey-Piedrahita A, Piattini M (2020) Application of ISO-IEC TR 33014 to the improvement
of green IT processes. Comp Stand Inter (Under Peer Review)

27. ISO (2013) ISO/IEC TR 33014 (Information technology — process assessment — guide for
process improvement). International Organization for Standardization, Geneva

28. Patón-Romero JD, Baldassarre MT, Rodríguez M, Pérez-Canencio JG, Ojeda-Solarte ML,
Rey-Piedrahita A, Piattini M (2019) Application of ISO/IEC 33000 to green IT: A case
study. IEEE Access 7:116380–116389. https://doi.org/10.1109/access.2019.2936451

29. European Commission (2017) Report from the commission to the European parliament, the
council, the European economic and social committee and the committee of the regions on the
implementation of the circular economy action plan. European Commission, Brussels

30. United Nations (2015) Transforming our world: the 2030 agenda for sustainable development.
In: Seventieth session of the United Nations general assembly, resolution A/RES/70/1

10 Governance and Management of Green IT 267

https://doi.org/10.1016/j.csi.2019.03.007
https://doi.org/10.1016/j.csi.2019.03.007
https://doi.org/10.1016/j.csi.2018.04.005
https://doi.org/10.1016/j.csi.2018.04.005
https://doi.org/10.1016/j.infsof.2020.106414
https://doi.org/10.1016/j.infsof.2020.106414
https://doi.org/10.1109/access.2019.2936451

Chapter 11
Sustainable Software Engineering:
Curriculum Development Based
on ACM/IEEE Guidelines

Alok Mishra and Deepti Mishra

Abstract Climate change risk and environmental degradation are the most critical
issues of our society. Our technology-influenced daily lifestyle involves many types
of software and apps which are used by society at large, and their use is increasing
more than ever before. Sustainability is a significant topic for future professionals
and more so for software engineers due to its impact on society. It is crucial to
motivate and raise concern among students and faculty members regarding sustain-
ability by including it in the Software Engineering (SE) curriculum. This chapter
discusses how sustainability can be included in various courses of the SE curriculum
by considering ACM/IEEE curriculum guidelines for the SE curriculum, literature
review, and various viewpoints so that SE students can attain knowledge on sus-
tainable software engineering. It also includes an assessment of key competences in
sustainability for proposed units in the SE curriculum.

11.1 Introduction

Software has become an integral part of our everyday life, gradually impacting
human beings and society. The current industrial growth and the increasing adoption
of ICT threaten the future of sustainability and cause environmental issues [1, 2]. Sus-
tainability is becoming a crucial concern in information technology and software for
our future. Sustainability management is one of the upcoming movements of the
twenty-first century, but, until now, it is not getting as much attention from software
engineering as it should. Furthermore, ICT has a major role in sustainable

A. Mishra
Molde University College, Molde, Norway

Department of Software Engineering, Atilim University, Ankara, Turkey
e-mail: alok.mishra@himolde.no; alok.mishra@atilim.edu.tr

D. Mishra (*)
Department of Computer Science, Norwegian University of Science and Technology, Gjøvik,
Norway
e-mail: deepti.mishra@ntnu.no

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_11

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_11&domain=pdf
mailto:alok.mishra@himolde.no
mailto:alok.mishra@atilim.edu.tr
mailto:deepti.mishra@ntnu.no
https://doi.org/10.1007/978-3-030-69970-3_11#DOI

development, specifically in software and green computing [3]. It is important that
environmental concerns are addressed in the development, implementation, and
operation of software. In this respect, the contribution of ICTs for energy and
environmental sustainability has attracted attention of both researchers and pro-
fessionals [1] as software contributes significantly to every aspect of our lives.

Dick et al. [4] proposed the first definitions for sustainable software and sustain-
able software engineering (SSE) in 2010, which have become the foundation for
later explanations. According to Ray et al. [5], the term “sustainable” applies to both
the longer life and greener aspects of software. Brooks et al. [6] suggest three
dimensions to sustainability: environmental, economic, and social. These are inter-
related and these should be selected in a way to attain optimum arrangement and
alliance. Sustainable software is defined as the software whose direct and indirect
negative influence on economy, society, human beings, and environment that result
from development, implementation, and usage of the software are minimum
[7]. Green software generates the minimum amount of e-waste during its operation
and development [8].

Sustainable software engineering is developing software through a sustainable
software engineering process which satisfies the purpose of sustainability by reduc-
ing the environmental impact of software implementation and operations to human
beings and society at large. Sustainable software engineering (SSE) is based on the
foundation of designing and developing software by taking into consideration
various dimensions of sustainability which are economic, environmental, individual,
social, and technical [9, 10]. A number of recent studies were performed to find out
how sustainability is identified and included in software engineering process towards
sustainable software development [11], which can reduce its environmental impact
on society.

In many research studies, sustainability and energy efficiency are observed as
crucial expertise for future software engineers [12–15]. However, a recent survey by
Manotas et al. [16] of 3860 software professionals from Google, ABB, IBM, and
Microsoft revealed that present higher educational programs do not prepare pro-
fessionals to undertake sustainability, although they are inclined to learn about it
[16]. Further, they noticed extensive significance of greenability and sustainability.
Another study on teaching sustainability in software engineering also supports that
sustainability is not included in the software engineering (SE) courses and that the
present focal point is on energy efficiency issues [12, 14, 15]. Scientists have
recently recognized that issues related to sustainable software engineering should
be part of the discipline that has a significant role in the future of human beings.

Software engineers presently perform many tasks that may ensure sustainability,
for instance, Agarwal et al. [3] consider the capabilities and benefits of green
software and suggest more efficient algorithms will take less time to execute and
that this will lead to sustainability. However, sustainability is considered as an
additional feature in many software projects as software engineers are tied by
time-to-market pressure and are often less inclined to administer sustainable methods
and techniques [17]. For now, apart from cost, factors such as environment, social,
and human sustainability are required to be considered in any planning,

270 A. Mishra and D. Mishra

implementation, and running initiative related to software systems [18]. Organiza-
tions are now beginning to understand that not only cost efficiency, but also long-
term and continued prosperity can be gained from sustainability. Therefore, apart
from factors like cost, time, and quality, sustainability has become one of the
significant objectives in developing, configuring, operating, and working software
systems. Therefore, there is a need to support the transition to sustainability and
incorporate it into software systems and other underlying business processes [19].

Green and Sustainable Software Engineering (GSSE) is the art of developing
green and sustainable processes [20]. The objective of sustainable software process
is to reduce the environmental impact of software solutions and their deployment on
human beings, society, economy, and environment [21]. Presently, the effect of IT
on sustainable advancement—in particular, of software—is an emerging issue due to
the global concern on climate change. The education sector has to play a significant
role in ensuring future software engineers understand sustainability dimensions and
integrate them into the SE curriculum. Gibson et al. [22] supported that the educa-
tional sector has an important part to play in ensuring software professionals
understand sustainability issues in software development. Therefore, there is a
need to integrate sustainability in the software engineering discipline curricula.
Gibson et al. [22] further observed that it is mentioned just once even in ACM/IEEE
guidelines and twice in SWEBOK with respect to the software economics area. They
argued in the current scenario there is need for sustainable software engineering
education guidelines and components in such curricula for future software engineers.
Therefore, this chapter advances effort in this direction. It extends our previous work
[23] by following ACM/IEEE guidelines for SE curriculum along with authors’ long
academic experience to first list and categorize relevant SE courses offered in SE
programs. Later sustainability-related units are introduced in existing SE courses
followed by an assessment of these units with respect to key competences in
sustainability.

The rest of the chapter is organized as follows: In Sect. 11.2 related work to
describe the relationship between software quality and sustainability along with
initiatives to include sustainability in SE higher education programs are presented.
Section 11.3 introduces curricula development on sustainable software engineering.
Section 11.4 includes points of discussion, concluding with a brief viewpoint for
future direction.

11.2 Related Work

11.2.1 Software Quality and Sustainability

Sustainability is usually referred to as a nonfunctional requirement in software
systems [19]. Nonfunctional requirements are also known as quality requirements.
Although organizations have recognized that sustainability can be incorporated in

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 271

quality issues, for instance, maintainability, usability, and agility, they could not do
so due to time and budget constraints in software management [24].

Amri and Bellamine Ben Saoud [25] proposed Generic Sustainable Software Star
Model (GS3M) to examine sustainable software and noticed some studies consider
sustainability as a part of quality, while others observe quality and sustainability as
different concepts and use quality attributes to support sustainability. Calero et al.
[26] and Calero [27] applied the hypothesis that sustainability is a factor of the
software quality, thus, unified it as a quality characteristic with three other
subcharacteristics: energy consumption, resource optimization, and perdurability.
Calero [26] also noticed that operationalization in this way includes introducing
some modifications in the ISO quality standard ISO/IEC 25010 to support sustain-
ability as a quality component. Albertao et al. [28] and Kern et al. [29] also identified
quality attributes to define sustainability. Interestingly, Albertao et al. [28] formu-
lated software project sustainability characteristics into development-related features
(modifiability, reusability, portability, and supportability), usage-related attributes
(performance, dependability, usability, and accessibility), and process-related attri-
butes (predictability, efficiency, and project’s footprint). Kern et al. [29] endorsed a
quality model for sustainable software which constructs sustainability criteria into
three categories: common quality criteria which are well-known and standardized
issues (such as efficiency, reusability, modifiability, and usability); directly related
benchmark (such as energy efficiency, framework entropy, functional types, hard-
ware obsolescence, adaptability, feasibility, accessibility, usability, and organiza-
tion’s sustainability); and indirectly related yardstick that demonstrate the effects of
software on other products and services and cover the effects of use as well as
systemic effects, such as the fit for aim, elegance, and reflectivity.

11.2.2 Sustainability in SE Curricula

Sustainable software engineering is getting limelight among professionals and
researchers [13, 30]. However, researchers have noted that sustainability is under-
represented in the curricula [11], hence the need to include the concept of sustain-
ability in the university curriculum of computer science, software engineering, and
information systems. Mann et al. [31] presented a framework for educators to design
sustainability-centered education while Sammalisto and Lindhqvist [32] observed on
the integration of sustainability in higher education based on different sustainability
dimensions like environmental, economic, social, and technical. Gibson et al. [22]
studied the significance of requirements engineering in ensuring sustainability in
software development in the UK. Groher and Weinreich [33] studied how sustain-
ability is perceived by software professionals in projects and found that professionals
mainly linked it to maintainability and extensibility of software. Renzel et al. [34]
contributed a detailed strategy for projects in sustainable software engineering.

Chitchyan et al. [35] reviewed sustainability related with Software Product Line
Engineering (SPLE) and suggested the focus be on technical and social sustainability

272 A. Mishra and D. Mishra

issues along with social sustainability related to organizations. Lutz et al. [36] also
specified characteristics of sustainability in SPLE. Mohankumar and Anand Kumar
[37] proposed a green-based model for sustainable software engineering. Recently
Penzenstadler et al. [38] proposed a blueprint for a course on software engineering
for sustainability.

11.2.3 Key Competencies in Sustainability

The major challenges in the incorporation of sustainability in the university educa-
tion are in the field of teaching [39–42]. Therefore identifying key competences in
sustainability may be the first step towards sustainability inclusion in higher educa-
tion [43]. Wiek et al. [44] defines competence as a functionally linked complex of
knowledge, skill, and attitude that enables successful task performance and problem
solving. Competence is a quality developed through practice and not an end
state [45].

In 2002, the Organisation for Economic Co-operation and Development (OECD)
identified key competencies needed for an individual to lead an overall successful
and responsible life and for contemporary society to face present and future chal-
lenges [46]. The OECD key competencies are divided into three categories: subject
and methodological, social, and personal. The OECD study on key competencies
and comprehensive educational objectives reveals sustainability’s significance for
the future [47]. Subsequently, multiple studies have introduced key competencies for
education for sustainable development in the formal education sector to help assess
the learning outcomes of pupils, and an overview is provided in the Table 11.1.

This study will assess proposed units integrated in SE courses based on the
approach by Giangrande et al. [52] and Wiek et al. [44]. Wiek et al. [44] proposed
a framework of key competencies in sustainability by categorizing competencies
into clusters, which was found to be useful by Giangrande et al. [52] who further
extended the framework.

11.3 Sustainable Software Engineering Curricula Outline

Sustainability knowledge should be integrated in a curriculum by linking the concept
of sustainability to a particular field of study [32] rather than offering separate
courses on sustainability. Considering the suggestion, Fig. 11.1 presents an approach
to integrate sustainability education in SE curriculum. First, the ACM/IEEE guide-
lines for SE curriculum development has been followed to include an initial set of
courses SE students should take in order to later practice their profession success-
fully. ACM/IEEE guidelines 2014 for SE curriculum development consists of a set
of SE competencies that every SE graduate must possess and provides guidance to
academic institutions and accreditation agencies about the knowledge and skills

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 273

fundamental to software engineering education [53]. Subsequently, additional
courses have been included to reflect current advancements in SE education. Fur-
thermore, the final set of courses are organized in different categories based on the
structure of academic programs in major universities: fundamental courses of sus-
tainability, core SE courses, technical electives, nontechnical electives, project-
based courses, and industrial practice. Finally, the information gained from literature

Table 11.1 Key competencies for education for sustainable development

Key competencies

De Haan [48] Foresighted thinking
Interdisciplinary work
Cosmopolitan perception, transcultural understanding and cooperation
Participatory skills
Planning and implementation skills
Empathy, compassion and solidarity
Self-motivation and motivating others
Distanced reflection on individual and cultural models

Barth [49] Self-motivation
Capacity for empathy, compassion and solidarity
Reflection on individual
Motivating others
Participatory skills
Foresighted thinking
Interdisciplinary work
Cosmopolitan perception, transcultural understanding and cooperation
Reflection on cultural models
Planning and implementation

Sleurs [50] Values and ethics
Emotions
Systems thinking
Knowledge
Action

Roorda [51] Responsibility
Emotional intelligence
Systems orientation
Future orientation
Personal involvement
Action skills

Wiek [44] Interpersonal
Anticipatory
Systemic working
Normative
Strategic

Giangrande [52] Intrapersonal
Interpersonal
Future thinking
Systems thinking
Disciplinary and interdisciplinary
Normative and cultural
Strategic

274 A. Mishra and D. Mishra

review along with the authors’ long academic experience in SE discipline facilitated
the inclusion of sustainability competence in the form of flexible units within
existing courses in the SE curricula.

The program should include the following units in the existing courses of the SE
curricula so that students can get sufficient exposure to different components of
sustainability issues in the software development life cycle.

Fig. 11.1 An approach to sustainability inclusion in the Software Engineering Curricula

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 275

11.3.1 Fundamental Concepts of Sustainability

Sustainability Theory Understanding the concept of sustainability in software and
its various parts so as to be able to apply it in different stages of software develop-
ment and deployment and operations stages in the organization.

Sustainability Analysis Understanding of rigorous analyses of sustainability issues
in software development, from cost estimation to project management, software
maintenance, and evolution. It should include, in general, software systems to be
developed from a comprehensive perspective to sustainability and long-term conse-
quences on the environment and society.

11.3.2 Core SE Courses

Software Requirements Engineering Sustainability inclusion in requirements elic-
itation and analysis process is crucial. Therefore, it is important to understand how to
include sustainability during requirements elicitation process. Stakeholder model-
ling, goal modelling, and system modelling can assist in this part.

Software Architecture and Design How to apply sustainability in different kinds of
software architecture and design issues, for instance database, human computer
interaction, and modules interconnection, and in software architecture development.

Human-Computer Interaction Design Human-Computer Interaction (HCI) is part
of many information technology and software applications. Therefore, sustainability
issues should be included as a component in this course. Nyström and Mustaquim
[54] suggested that persuasive system design can influence users to behave and live
more sustainably and should be related to the sustainability of the environment.
Sustainable HCI should address WCED’s (World Commission on Environment and
Development) sustainability view “. . . that it meets the needs of the present without
compromising the ability of future generations to meet their own needs” [55]. Sus-
tainable system design principles can be included in HCI, software system design,
and industrial software development project curriculum.

Software Modelling and Analysis It is important that system modelling for com-
plex software systems should be done from a sustainability perspective by using
available tools. Software modelling and analysis (using UML diagrams) can assist in
understanding how to incorporate sustainability into stakeholders' requirement sce-
narios. It should also include trade-offs and conflict resolution in the requirements of
different stakeholders from a sustainability view.

Software Process Software process improvement should include sustainable soft-
ware engineering processes along with Agile and DevOps approaches. It should
also, knowledge of applicable tools, methods, and technologies to facilitate the
sustainable software engineering processes. Energy and resource utilization are the

276 A. Mishra and D. Mishra

main components that impact sustainability. Therefore, these should be determined
from the initiation of the process. Eco-design of digital services to ensure reducing
environmental impacts to develop digital services that are more sustainable, con-
sume less resources and energy, and produce less waste. Further knowledge of
relevant tools, methods, and technologies should be introduced to facilitate the
sustainable software development process.

Software Verification and Validation An optimized approach in ensuring sustain-
ability in software engineering is the software verification and validation process,
including different types of testing and operation of the software product. Specifi-
cation systems and automated verification tools can be helpful in this regard.

Software Quality Assurance Sustainability issue should be part of software process
improvement and quality assurance process. Configuration management tools and
software inspection tools can be complementary in this regard. Knowledge of
standards of eco-design (ISO 14006, ISO 14062) should be imparted.

Software Project Management It includes the planning and controlling phases of
sustainability activities along with sustainability policies to ensure an efficient
process. Appropriate project management tools and agile methods management
tools can facilitate in ensuring sustainability practices in software project manage-
ment. Eco-design of digital services towards ensuring reduced environmental
impacts to develop digital services that are more sustainable, consume less resources
and energy, and produce less waste.

Software Construction and Evolution Software evolution is a continuous process.
Refactoring tools, automated testing tools, and configuration management tools
along with project management tools aid in ensuring sustainability in software
construction and evolution.

Software Security Security and safety during the development of complex software
systems is crucial. So security and safety are now an integral part of the set of
nonfunctional requirements which lead to software quality. ISO/IEC 25010:2011
included safety as an explicit characteristic in software while ISO/IEC 9126-1:2001
ensures security in software. Safety and security are called out and treated specifi-
cally because they are significant characteristics. Penzenstadler et al. [56] supported
that the same is true for sustainability, specifically the dimension of environmental
sustainability, and there is a need to find suitable means to analyze, support, verify,
and validate sustainability requirements in software engineering.

11.3.3 Technical Elective Courses

Internet of Things (IoT) IoT has the ability to combat climate change towards
green environment. It could impact sustainability in different areas, such as water use
and energy efficiency. According to the World Economic Forum, IoT could be a

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 277

game changer for sustainability [57]. IoT helps in applying waste management
strategies and in circular economy. IoT deployments can help in addressing many
of the Sustainable Development Goals (SDGs) of the UN. IoT technology can
provide tangible benefits to sustainability [57]. Many IoT initiatives may help
accomplish sustainability in the future [58]. Therefore students should be made
aware of such IoT applications that can be applied to achieve sustainability by
including relevant case studies, white paper, discussion, seminar, etc. in the
curriculum.

Cloud Computing Cloud computing provides more efficient use of computing
power and is advantageous for environmental sustainability. Application of cloud
computing ensures social, business, and environmental sustainability. It can include
discussions, case studies, seminars, projects, company visits, etc.

Web and Mobile Systems Sustainability and page speed are correlated. When your
website runs more efficiently it consumes less processing power thus less energy and
leaves a lower carbon footprint [59]. Also, a sustainable design is more efficient and
accessible. Sustainable mobile apps and their users may contribute to achieving
environmental goals, and mobile devices are enablers of sustainable actions due to
their huge potential for scalability [60]. Mobile applications that have even a little
effect on resource efficiency or the reduction of greenhouse gas emissions could
result in a greater impact as these are used every day [60]. This can include concepts
on social software interface with sustainability issues, green software development
and usage practices, and promotion of technologies, development frameworks, and
tools which facilitate sustainability in web and mobile systems development. These
could be included as real-life projects, cases studies, and seminars and lectures from
industry practitioners.

Sustainable Data Center Green data centers or sustainable data centers help in
reducing carbon footprint, design and deployment of data store, and applications to
operate in energy-efficient ways. Therefore, the course should include real-life case
studies, seminars, and discussions on how sustainability can be incorporated in this
regard.

Tools for Software Sustainability Tools must be introduced to assist different
stages of software development (requirements, design, testing, configuration man-
agement, etc.) towards ensuring sustainability. This can be a part of a sustainable or
green software engineering laboratory program.

11.3.4 Nontechnical Elective Courses

Global Professional Practice/Social Responsibility Students should be aware how
carbon footprint, CO2 emissions, global warming is a matter of concern. Therefore
global professional practice should include environmental issues arising from soft-
ware engineering products and their use. These can be included as case studies,

278 A. Mishra and D. Mishra

seminars, and group discussions to analyze environmental degradation cases and to
explore mitigation plans, global environmental challenges, sustainable software,
energy management, and green computing standards in the context of software
applications.

11.3.5 Project-Based Courses and Industrial Practice/
Internships

Project-based courses Most universities have final-year projects or thesis for stu-
dents to explore real-world challenges. Universities sometimes also require their
students to do industrial internships of 1–2 months so that students can gain
experience in professional projects in real-world settings. Sustainability can be
included as a learning outcome for such courses. Projects involving sustainability
in software engineering during summer internships or such mini projects should be
part of the course.

Table 11.2 presents how the integration of these units into current curriculum will
help SE professionals to acquire key competencies in sustainability.

11.4 Discussion

Sustainable software engineering is an emerging paradigm and significant for society
in terms of the environment. Sammalisto and Lindhqvist [32] argued that a proper
feedback system is required between educators and university administrators to
show the value and significance of the integration of sustainability. Torre et al.
[11] observed a top 10 universities curriculum analysis that none of the engineering
courses explicitly addresses sustainable software engineering or the status of green
sustainable software engineering. The vast majority of the survey respondents (97%)
expressed there is need for more courses related to sustainability.

The present industrial production and increasing use of ICT may endanger
prospective sustainability and lead to environmental problems [1, 2]. In a recent
study, Salam and Khan [61] classified 20 success elements towards the evolution of
green and sustainable software. Out of these, green software design and efficient
coding was found to be the most significant factor (71%) followed by power-saving
software methods (70%). Mahmoud and Ahmad [20] proposed green model for
sustainable software engineering. Naumann et al. [7] proposed sustainable software
engineering process and quality models and suggested nine successive stages:
Requirements, Design, Unit Testing, Implementation, System Testing, Green Anal-
ysis, Usage, Maintenance, and Disposal. Lami et al. [62] found that sustainability-
related processes are missing in ISO/IEC 12207 and proposed three processes:

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 279

T
ab

le
11

.2
A
ss
es
sm

en
t
of

ke
y
co
m
pe
te
nc
ie
s
in

su
st
ai
na
bi
lit
y
w
ith

re
sp
ec
t
to

pr
op

os
ed

un
its

in
S
E
cu
rr
ic
ul
um

U
ni
ts

K
ey

co
m
pe
te
nc
ie
s
in

su
st
ai
na
bi
lit
y
[4
4,

52
]

In
tr
ap
er
so
na
l

In
te
rp
er
so
na
l

F
ut
ur
e

th
in
ki
ng

S
ys
te
m
s

th
in
ki
ng

D
is
ci
pl
in
ar
y
an
d

in
te
rd
is
ci
pl
in
ar
y

N
or
m
at
iv
e
an
d

cu
ltu

ra
l

S
tr
at
eg
ic

S
us
ta
in
ab
ili
ty

T
he
or
y

X
X

X
X

X

S
us
ta
in
ab
ili
ty

A
na
ly
si
s

X
X

X
X

X
X

S
of
tw
ar
e
R
eq
ui
re
m
en
ts
E
ng

in
ee
ri
ng

X
X

X
X

X
X

S
of
tw
ar
e
A
rc
hi
te
ct
ur
e
an
d
D
es
ig
n

X
X

X
X

X

H
um

an
-c
om

pu
te
r
in
te
ra
ct
io
n
de
si
gn

X
X

X
X

X
X

S
of
tw
ar
e
M
od

el
lin

g
an
d
A
na
ly
si
s

X
X

X
X

X

S
of
tw
ar
e
P
ro
ce
ss

X
X

X
X

X

S
of
tw
ar
e
V
er
ifi
ca
tio

n
an
d
V
al
id
at
io
n

X
X

X
X

S
of
tw
ar
e
Q
ua
lit
y
A
ss
ur
an
ce

X
X

X
X

S
of
tw
ar
e
P
ro
je
ct
M
an
ag
em

en
t

X
X

X
X

S
of
tw
ar
e
C
on

st
ru
ct
io
n
an
d
E
vo

lu
tio

n
X

X
X

X
X

S
of
tw
ar
e
S
ec
ur
ity

X
X

X
X

In
te
rn
et
of

T
hi
ng

s
(I
oT

)
X

X
X

X

C
lo
ud

C
om

pu
tin

g
X

X
X

X

W
eb

an
d
M
ob

ile
S
ys
te
m
s

X
X

X
X

X

S
us
ta
in
ab
le
D
at
a
C
en
te
r

X
X

X

T
oo

ls
fo
r
S
of
tw
ar
e
S
us
ta
in
ab
ili
ty

X
X

X
X

X
X

G
lo
ba
l
P
ro
fe
ss
io
na
l
P
ra
ct
ic
e/
S
oc
ia
l

R
es
po

ns
ib
ili
ty

X
X

X
X

X
X

X

P
ro
je
ct
-B
as
ed

C
ou

rs
es

X
X

X
X

X
X

280 A. Mishra and D. Mishra

Sustainability Management Processes, Sustainability Engineering Process, and Sus-
tainability Qualification Process.

The purpose of SSE is to curtail the energy footprint of computers as well as
minimize other environmental impacts related to software systems. Software is now
a pervasive part of the society as even mobile phone and social media users are in
billions. It is the responsibility of software engineering educators to prepare SE
professionals by equipping them with skills to meet the expectations of the software
industry [63]. Therefore, it is significant to include sustainability in courses for future
software engineers so that it can be achieved while developing, deploying, and
maintaining all kinds of software in the future. Professional practices should be
part of the SE curriculum [64], which can include a sustainability component.
Moreover, sustainability has the potential to attract more students to the SE disci-
pline due to its indispensable significance for the future [65]. Programs that address
environmental sustainability in information technology are sometimes also referred
to as green information technology. Green IT refers to information technology and
system initiatives and programs that address environmental sustainability [66] and
manage energy consumption as well as waste associated with the use of hardware
and software, which tend to have a direct and positive impact on sustainability [67].

The proposed curriculum development can be easily customized and introduced
as part of an undergraduate- or graduate-level software engineering curriculum.
Since only a limited number of undergraduate and graduate programs on sustain-
ability have been introduced in the last decade in certain institutions, the curricula
proposed here can be a useful contribution to the body of knowledge for software
engineering educators. As requirement specifications are the base input for software
architecture and design, they have an impact on sustainability. With increasing
global concern regarding climate change, the time has come to include “Sustainabil-
ity” as a nonfunctional requirement towards quality software for future generations.

11.5 Conclusion and Outlook

Due to climate changes in the last decade and proliferation of information technol-
ogy, software, and apps in daily life, there is a crucial need to develop and deploy
green software. Therefore, there is a need to train future software engineers in such a
manner that they will be able to include sustainability in each stage of the software
development life cycle. Here, important units of sustainability inclusion in software
engineering curricula have been described according to the recent ACM/IEEE
curriculum guidelines for SE curriculum along with literature review on sustainable
software engineering approaches, concepts, and tools. Software engineering under-
graduate and graduate programs should include at least one foundation course on
sustainability in their curriculum. This chapter also included appraisal of key
competencies in sustainability for proposed units in SE curriculum.

This work can be extended by a survey and interviewing software engineering
professionals to know in a more detailed manner how the SSE course can be

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 281

developed and improved in the future into a more practice-oriented approach so that
future software engineers will be able to produce eco-friendly and sustainable
software.

References

1. Cai S, Chen X, Bose I (2013) Exploring the role of IT for environmental sustainability in China:
an empirical analysis. Int J Prod Econ s146(2):491–500

2. Sissa G (2010) Green software. UPGRADE: Eur J Inf Prof 11:53–63
3. Agarwal S, Nath A, Chowdhury D (2012) Sustainable approaches and good practices in green

software engineering. Int J Res Rev Comput Sci 3(1):1425
4. Dick M, Naumann S (2010) Enhancing software engineering processes towards sustainable

software product design. In: EnviroInfo. pp 706–715
5. Ray S (2013) Green software engineering process: moving towards sustainable software

product design. J Glob Res Comput Sci 4(1):25–29
6. Brooks S, Wang X, Sarker S (2012) Unpacking green IS: a review of the existing literature and

directions for the future. In: Green business process management. Springer, pp 15–37
7. Naumann S, Dick M, Kern E, Johann T (2011) The greensoft model: a reference model for

green and sustainable software and its engineering. Sustain Comput Inf Syst 1(4):294–304
8. Erdelyi K (2013) Special factors of development of green software supporting eco sustainabil-

ity. In: 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics
(SISY). IEEE, pp 337–340

9. Becker C et al (2015) Requirements: The key to sustainability. IEEE Softw 33(1):56–65
10. Penzenstadler B (2013) Towards a definition of sustainability in and for software engineering.

In: Proceedings of the 28th Annual ACM Symposium on Applied Computing. pp 1183–1185
11. Torre D, Procaccianti G, Fucci D, Lutovac S, Scanniello G (2017) On the presence of green and

sustainable software engineering in higher education curricula. In: 2017 IEEE/ACM 1st Inter-
national Workshop on Software Engineering Curricula for Millennials (SECM). IEEE, pp
54–60

12. Lago P, Damian D (2015) Software engineering in society at ICSE. STC Sustain Computing
Newsl 4(1)

13. Lago P, Kazman R, Meyer N, Morisio M, Müller HA, Paulisch F (2013) Exploring initial
challenges for green software engineering: summary of the first GREENS workshop, at ICSE
2012. ACM SIGSOFT Softw Eng Notes 38(1):31–33

14. Pang C, Hindle A, Adams B, Hassan AE (2015) What do programmers know about software
energy consumption? IEEE Softw 33(3):83–89

15. Penzenstadler B, Fleischmann A (2011) Teach sustainability in software engineering? In: 2011
24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T). IEEE,
pp 454–458

16. Manotas I et al (2016) An empirical study of practitioners’ perspectives on green software
engineering. In: 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, pp 237–248

17. Durdik Z, Klatt B, Koziolek H, Krogmann K, Stammel J, Weiss R (2012) Sustainability
guidelines for long-living software systems. In: 2012 28th IEEE International Conference on
Software Maintenance (ICSM). IEEE, pp 517–526

18. Raisian K, Yahaya J, Deraman A (2016) Current challenges and conceptual model of green and
sustainable software engineering. J Theor Appl Inf Technol 94:428–443

19. Betz S, Caporale T (2014) Sustainable software system engineering. In: 2014 IEEE Fourth
International Conference on Big Data and Cloud Computing. IEEE, pp 612–619

282 A. Mishra and D. Mishra

20. Mahmoud SS, Ahmad I (2013) A green model for sustainable software engineering. Int J Softw
Eng Applic 7(4):55–74

21. Amsel N, Ibrahim Z, Malik A, Tomlinson B (2011) Toward sustainable software engineering:
NIER track. In: 2011 33rd international conference on software engineering (ICSE). IEEE, pp
976–979

22. Gibson ML et al (2017) Mind the chasm: a UK fisheye lens view of sustainable software
engineering

23. Mishra A, Mishra D (2020) Sustainable software engineering education curricula development.
Int J Inf Technol Secur 12(2):47–56

24. Chitchyan R et al (2016) Sustainability design in requirements engineering: state of practice. In:
Proceedings of the 38th International Conference on Software Engineering Companion. pp
533–542

25. Amri R, Saoud NBB (2014) Towards a generic sustainable software model. In: 2014 Fourth
International Conference on Advances in Computing and Communications. IEEE, pp 231–234

26. Calero C, Bertoa MF, Moraga MÁ (2013) Sustainability and quality: icing on the cake. In:
RE4SuSy@ RE. Citeseer

27. Calero C (2013) Sustainability as a software quality factor. In: Proceedings of the IBM
Conference Day

28. Albertao F, Xiao J, Tian C, Lu Y, Zhang KQ, Liu C (2010) Measuring the sustainability
performance of software projects. In: 2010 IEEE 7th International Conference on E-Business
Engineering. IEEE, pp 369–373

29. Kern E, Dick M, Naumann S, Guldner A, Johann T (2013) Green software and green software
engineering–definitions, measurements, and quality aspects. In: First International Conference
on Information and Communication Technologies for Sustainability (ICT4S2013), 2013b ETH
Zurich. pp 87–91

30. Naumann S, Kern E, Dick M, Johann T (2015) Sustainable software engineering: process and
quality models, life cycle, and social aspects. In: ICT innovations for sustainability. Springer, pp
191–205

31. Mann S, Muller L, Davis J, Roda C, Young A (2010) Computing and sustainability: evaluating
resources for educators. ACM SIGCSE Bull 41(4):144–155

32. Sammalisto K, Lindhqvist T (2008) Integration of sustainability in higher education: a study
with international perspectives. Innov High Educ 32(4):221–233

33. Groher I, Weinreich R (2017) An interview study on sustainability concerns in software
development projects. In: 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, pp 350–358

34. Renzel D, Koren I, Klamma R, Jarke M (2017) Preparing research projects for sustainable
software engineering in society. In: 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering: Software Engineering in Society Track (ICSE-SEIS). IEEE, pp 23–32

35. Chitchyan R, Groher I, Noppen J (2017) Uncovering sustainability concerns in software
product lines. J Softw Evol Process 29(2):e1853

36. Lutz R, Weiss D, Krishnan S, Yang J (2010) Software product line engineering for long-lived,
sustainable systems. In: International Conference on Software Product Lines. Springer, pp
430–434

37. Mohankumar M, Kumar MA (2016) Green based software development life cycle model for
software engineering. Indian J Sci Technol 9(32):1–8

38. Penzenstadler B et al (2018) Blueprint and evaluation instruments for a course on software
engineering for sustainability. arXiv preprint arXiv:1802.02517

39. Buckler C, Creech H (2014) Shaping the future we want: UN Decade of Education for
Sustainable Development; final report. UNESCO

40. Lazzarini B, Perez-Foguet A, Boni A (2018) Key characteristics of academics promoting
Sustainable Human Development within engineering studies. J Clean Prod 188:237–252

41. Mulder KF, Segalàs J, Ferrer-Balas D (2012) How to educate engineers for/in sustainable
development. Int J Sustain Higher Educ

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 283

42. Wals AE (2014) Sustainability in higher education in the context of the UN DESD: a review of
learning and institutionalization processes. J Clean Prod 62:8–15

43. Mishra D, Mishra A (2020) Sustainability inclusion in informatics curriculum development.
Sustainability 12(4):5769

44. Wiek A, Withycombe L, Redman CL (2011) Key competencies in sustainability: a reference
framework for academic program development. Sustain Sci 6(2):203–218

45. Vare P et al (2019) Devising a competence-based training program for educators of sustainable
development: lessons learned. Sustainability 11(7):1890

46. Rychen DS, Salganik LH (2002) Definition and Selection of Competencies (DESECO):
theoretical and conceptual foundations. Strategy paper. Swiss Federal Statistical Office,
Neuchatel, Switzerland

47. De Haan G (2010) The development of ESD-related competencies in supportive institutional
frameworks. Int Rev Educ 56(2–3):315–328

48. De Haan G (2006) The BLK ‘21’programme in Germany: a ‘Gestaltungskompetenz’-based
model for Education for Sustainable Development. Environ Educ Res 12(1):19–32

49. Barth M, Godemann J, Rieckmann M, Stoltenberg U (2007) Developing key competencies for
sustainable development in higher education. Int J Sustain Higher Educ

50. Sleurs W (2008) Competencies for ESD (Education for Sustainable Development) teachers. A
framework to integrate ESD in the curriculum of teacher training institutes. CSCT Project
(Comenius 2.1 project 118277-CP-1-2004-BE-Comenius-C2.1), Brussels, Belgium

51. Roorda N (2010) Sailing on the winds of change: the Odyssey to sustainability of the
universities of applied sciences in the Netherlands. Doctoral dissertation, Maastricht University

52. Giangrande N et al (2019) A competency framework to assess and activate education for
sustainable development: addressing the UN sustainable development goals 4.7 challenge.
Sustainability 11(10):2832

53. Ardis M, Budgen D, Hislop GW, Offutt J, Sebern M, Visser W (2015) SE 2014: Curriculum
guidelines for undergraduate degree programs in software engineering. Computer 11:106–109

54. Nyström T, Mustaquim MM (2014) Sustainable information system design and the role of
sustainable HCI. In: Proceedings of the 18th International Academic MindTrek Conference:
Media Business, Management, Content & Services. pp 66–73

55. B Commission (1987) Report of the World Commission on Environment and Development: our
common future, vol 10. [Online]. https://sustainabledevelopment.un.org/content/documents/
5987our-common-future.pdf

56. Penzenstadler B, Raturi A, Richardson D, Tomlinson B (2014) Safety, security, now sustain-
ability: the nonfunctional requirement for the 21st century. IEEE Softw 31(3):40–47

57. Arias R, Lueth K, Rastogi A (2018) The effect of the Internet of Things on sustainability. In:
World Economic Forum. https://www.weforum.org/agenda/2018/01/effect-technology-sustain
ability-sdgs-internet-thingsiot/. Accessed 14 Mar 2019

58. Lazarevich K (2018) 10 IoT initiatives for a more sustainable future. [Online]. https://www.
iotforall.com/10-iot-environment-initiatives-sustainable-future/

59. The building blocks of sustainable web design. https://sustainablewebdesign.org/. Accessed
3 Mar 2020

60. Brauer B, Ebermann C, Hildebrandt B, Remané G, Kolbe LM (2016) Green by app: the
contribution of mobile applications to environmental sustainability. In: Pacific Asia Conference
On Information Systems (PACIS). Association for Information System

61. Salam M, Khan SU (2016) Developing green and sustainable software: success factors for
vendors. In: 2016 7th IEEE International Conference on Software Engineering and Service
Science (ICSESS). IEEE, pp 1059–1062

62. Lami G, Fabbrini F, Fusani M (2012) Software sustainability from a process-centric perspec-
tive. In: European Conference on Software Process Improvement. Springer, pp 97–108

63. Mishra A, Ercil Cagiltay N, Kilic O (2007) Software engineering education: some important
dimensions. Eur J Eng Educ 32(3):349–361

284 A. Mishra and D. Mishra

https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
https://www.weforum.org/agenda/2018/01/effect-technology-sustainability-sdgs-internet-thingsiot/
https://www.weforum.org/agenda/2018/01/effect-technology-sustainability-sdgs-internet-thingsiot/
https://www.iotforall.com/10-iot-environment-initiatives-sustainable-future/
https://www.iotforall.com/10-iot-environment-initiatives-sustainable-future/
https://sustainablewebdesign.org/

64. Mishra A, Mishra D (2012) Industry oriented advanced software engineering education curric-
ulum. Croat J Educ 14(3):595–624

65. Özkan B, Mishra A (2015) A curriculum on sustainable information communication technol-
ogy. Problemy Ekorozwoju–Prob Sustain Dev 10(2):95–101

66. Mishra A, Akman I (2014) Green information technology (GIT) and gender diversity. Environ
Eng Manag J 13(12)

67. Mishra A, Yazici A, Mishra D (2012) Green information technology/information system
education: curriculum views. TTEMTechnics Technol Educ Manag 7(3):679–686

11 Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE. . . 285

Chapter 12
The Impact of Human Factors on Software
Sustainability

Asif Imran and Tevfik Kosar

Abstract Software engineering is a constantly evolving subject area that faces new
challenges every day as it tries to automate newer business processes. One of the key
challenges to the success of a software solution is attaining sustainability. The
inability of numerous software to sustain for the desired time length is caused by
limited consideration given to sustainability during the stages of software develop-
ment. This chapter presents a detailed and inclusive study covering human factor-
related challenges of and approaches to software sustainability. Sustainability can be
achieved by conducting specific activities at the human, environmental, and eco-
nomic level. Human factors include critical social activities such as leadership and
communication. This chapter groups the existing research efforts based on the above
aspects. Next, how those aspects affect software sustainability is studied via a survey
of software practitioners. Based on the findings, it was observed that human sus-
tainability aspects are important, and that taking one into consideration and ignoring
the other factors will threaten the sustainability of software products. Despite the
noteworthy advantages of making a software sustainable, the research community
has presented only a limited number of approaches that contribute to improving the
human factors to achieve sustainability. To the best of our knowledge, these repre-
sentations require further research. In this regard, an organized, structured, and
detailed study is required on existing human factor-related sustainability approaches
which will serve as a one-stop-service for researchers and software engineers who
are willing to learn about these.

12.1 Introduction

Software sustainability is an important area of software engineering research today.
The goal of software sustainability engineering is to ensure that software continues
to achieve its goals despite updates, modifications, and evolution [1]. We consider

A. Imran (*) · T. Kosar
University at Buffalo, Buffalo, NY, USA
e-mail: asifimra@buffalo.edu; tkosar@buffalo.edu

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_12

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_12&domain=pdf
mailto:asifimra@buffalo.edu
mailto:tkosar@buffalo.edu
https://doi.org/10.1007/978-3-030-69970-3_12#DOI

the definition of sustainability provided by the Software Sustainability Institute,
which states, “software you use today will be available—and continue to be
improved and supported in the future” [2]. Other definitions of software sustainabil-
ity consider the age of software and social aspects. Software sustainability can help
us achieve a number of useful goals. Some notable goals of software sustainability
are mentioned below:

• Operational efficiency: Sustainability of software used both in industries and by
individuals should be a natural part of the overall performance management
practice [3]. If the software possess the capability to sustain for a long time,
there is no need to train researchers on new type of software [4]. Researchers will
become more efficient if they use the same software for a long time, thereby
increasing their operational efficiency [4]. Also, an individual using a software for
a significant amount of time is likely to stick to that software rather than move to a
new one.

• Desirable reputation of software product: To remain competitive, companies
need to make innovation their top priority [5]. For example, if the software
developed by a company is sustainable from human, environment, and economic
perspectives, they can state that their software are long lasting and ensure high-
quality output [6]. Hence, consumers will find the software reliable and have
more confidence in using it. This, in turn, will provide the company with the
capacity to build a desirable reputation.

• Reduced cost: If a software used by an industry or an individual for day-to-day
activities is technologically sustainable, then that industry or individual does not
need to invest in a new software in the near future, and so their capital expenditure
is reduced, unless a new software is procured which offers increased benefits and
better fits the business needs [7]. On the other hand, if the software is not
sustainable and it needs to be replaced within a short time, the users (both industry
and individual) need to spend on procuring a new software, installing it on the
computers, arranging for training on the use of the new software, etc. Hence, both
the capital and current expenditures will rise due to the lack of sustainability of
software [8]. From a business perspective, investing in a software which is
sustainable will guarantee cost reduction and profit increase in the long run [8, 9].

• Accelerated progress of scientific software: The influence of digital technology
in modern research is manifold, where data and publications are being produced,
shared, analyzed, and stored using various types of scientific software
[10]. Although research software plays an important role in the field of science,
engineering, and other areas, in most cases they are not developed in a sustainable
way [11]. The researchers who develop them may be well versed in their own
discipline; however, they may not have the required knowledge on the best
practices of software maintainability and sustainability which are needed for
reproducibility of simulation results [11]. As stated by the US Research Software
Sustainability Institute (URSSI), there is a need for a strategic plan that will
conduct the necessary activities of training, prototyping, and implementation,

288 A. Imran and T. Kosar

with a goal to create improved and more sustainable software [10]. This software
in turn will accelerate the progress of science.

There are different kinds of activities involved in software sustainability engi-
neering. Depending on their complexity and applications, conceptually, sustainabil-
ity can be divided into three broad levels: human, environmental, and economic.
Human sustainability encompasses the development of skills and human capacity to
support the functions and sustainable software development of an organization and
to promote sustainable software development and usage practices. In this chapter we
focus on the areas of concern regarding human sustainability, identify what is being
currently done, determine the pillars of human sustainability in software, and
conduct a human-factor-based study on the impact on sustainability.

A previous survey paper by Penzenstadler et al. [12] covered several low-level
components for understanding software sustainability, focusing mostly on the envi-
ronmental and economic attributes. However, there is a need to identify the human
factors as well to provide a holistic viewpoint for software engineers and researchers.
Their extended review on sustainability [13] focused on the sustainable design of
software. They stated that secured software design and testing are important to
develop sustainable software. They limited their work to specific programming
components such as commenting code and following coding standards. However,
the authors did not analyze the effect of important aspects like requirement priori-
tization, code smell detection, change management, etc., which equally play a role in
ensuring sustainability. Calero et al. [14] provided a review on software sustainabil-
ity which is primarily based on environmental friendliness of software. However,
human and economic aspects like documentation skills, sustainability manifestos,
funding, and leadership skills of the project manager were not considered.

The objective of this chapter is to provide a systematic and comprehensive
overview of how stakeholders view human factors to be impacting sustainability.
We discuss various types of human activities which aim to make software sustain-
able. We compare and contrast how these approaches apply from the perspective of
software engineers.

Our findings show that software practitioners view certain human factors as
critical to sustainability. However, most of the sustainability techniques are rarely
applied due to lack of knowledge of the software community [10]. Currently,
organizations like the US Research Software Sustainability Institute (URSSI) [10]
and The Software Sustainability Institute [2] are investigating to address those
issues. Hence extensive research is required to solve the impact of human factors
on sustainability.

Based on our findings, we argue that under present circumstances there is still
room for improvement in the field of sustainable software development regarding
human factors. The open issues emerging from this study will provide input to
researchers who are willing to develop improved techniques for addressing human
factors to achieve software sustainability. We conclude that to achieve sustenance,
human, environmental, and economic factors need to be considered simultaneously.

12 The Impact of Human Factors on Software Sustainability 289

Considering one and ignoring the others will not provide long-term sustenance of
software.

Based on the above information, the major contribution of this chapter can be
stated as follows:

• Integrate software practitioner’s feedback to identify the negative impact of the
smells on architectural debt.

The rest of the chapter proceeds as follows. Section 12.2 illustrates the research
questions and identifies the survey questionnaire to collect expert opinions.
Section 12.3 describes the implementation of tools for architectural smell detection
and recording. It also describes how Spectral clustering is used to group smells.
Section 12.4 provides the obtained results and analyzes them. Section 12.5 discusses
related work, and Sect. 12.6 concludes the chapter and discusses future research
directions.

12.2 Empirical Study Setup

The workflow of the chapter proceeds as follows. Figure 12.1 shows the alignment
of the various human factors of this chapter to the core elements of sustainability
[15]. As seen in the figure, we identified six human factors, which are related to
software sustainability. We took expert opinion via a survey based on the assump-
tion that the impact of the human factors on sustainability for one software can be
applied to other, similar software [16]. We studied the feedback of software practi-
tioners to analyze impact since this added intelligence cannot be obtained from
software (source code, design documents, blogs, and QA reports).

Fig. 12.1 Representation of human factors affecting sustainability

290 A. Imran and T. Kosar

This study focuses on detecting the important human aspects to sustainability.
Next, their negative impact is analyzed via feedback from software practitioners.
Specifically, the following human factors are identified:

1. Team environment: The environment of the team should be such that all members
should own the project and believe in its scope, schedule, and chances of success.
If the teammates are not motivated to work towards success of the project, that
severely affects the sustainability as well [17].

2. Communication: Lack of effective communication can break the sustainability of
a software project. Even if all other aspects of the team are ideal, when commu-
nication is lacking, you will have sub-par sustainability. Effective communication
can also allow teams to overcome many less-than-ideal circumstances. Here, it
must be noted that for sustainability the power of the team members to listen
carefully to each other is critically important.

3. Leadership qualities: Leadership includes the skills through which a project
manager handles change management, timeline management, cost management,
employee turnover, etc. [14].

4. Difficult deadlines: These are stressful for the humans involved in the software
project, and if there are more than one, then it can be overwhelming. This leads to
software engineers trying to complete the software development rather than
focusing on the sustainability manifestos.

5. Peer pressure: Similar to difficult deadlines, peer pressure can create unnecessary
stress on software developers which can lead to the developers trying to finish the
project early to get into superiors’ good books, bypassing the sustainability
benchmarks of the software.

6. Acknowledgment of efforts: The appreciation of one’s hard work to follow
sustainability benchmarks while designing and developing software systems
can go a long way to ensure that the critical attributes of sustainability are
preserved.

12.2.1 Research Question

As software evolves from initial to matured phases, its sustainability may incur
significant interest. Hence, we should be able to identify which human factors have a
higher negative impact on sustainability based on expert opinion. This will help to
prioritize smells for refactoring. More specifically, the major research question is as
follows:

RQ:Which human factors have a greater impact on sustainability according
to software practitioners?

For impact determination, we gave the developers an option to determine whether
the impact on sustainability is high, low, or no impact. We provided a questionnaire
to the developers seeking answers for their selected impact for a human factor. The
questionnaire asked about the factors which influenced the developers to assign a

12 The Impact of Human Factors on Software Sustainability 291

specific impact to a smell. These factors included the impact of mental pressure to
meet deadlines [18], the causal effect, and the context dependency of a factor, which
resulted in more factors [19], and aspects focusing on team environment, and
communication issues [17]. Hence, the human factor and the presence of specific
community contexts were considered for impact on sustainability. These factors are
described in greater detail in the following section. The answers to these questions
can help team leaders address community issues which threaten sustainability.

12.2.2 Survey Structure

We designed an online survey questionnaire with a minimal number of questions.
The goal was to reduce the cognitive complexity and at the same time obtain the
required information [20]. The questionnaire aimed to define what is meant by
software sustainability and provide the human factors impacting sustainability to
the developer and, at the same time, ask them to tag the adverse impact of a factor as
high, low, or no impact. Also, we tried to obtain justification behind the tagging,
trying to identify the context and any human factor if present. To ensure that the
respondents are well aware of what is meant by sustainability, we conducted a
training session where we remotely presented the definitions, examples, and scenar-
ios where human factors threatening sustainability may occur and tried to determine
the impact caused by them. After the training, we provided them the questionnaire.
Then we identified the following questions based on motivation from Palomba
et al. [17].

Q1 Are you aware of the identified human factors? If yes, are those handled at your
company?

Q2 Will you tag the factor as having high, moderate negative impact, or no impact
on sustainability?

Q3 Was your answer to Q2 based on a specific software context, time, or effort?
Q4 Did any friction in your development community affect impact determination?

Explain.
Q5 How does the negative affect on the mindset of software engineers due to

COVID-19 impact sustainability of the software?

After detection of the issues, we present the factors to the software practitioners
together with the questionnaire. The software practitioners who worked the most on
the critical parts were asked the questions [17]. This was determined from the Git
commits. The respondents included system architect and senior developers in the
team who worked with the critical software components and were under stress to
meet deadlines. If there were multiple developers who worked equally on a class, we
identified the developer who worked solely on that class and no other classes. This is
based on the assumption that the developer who worked only on that class is possibly
the owner of the class and knows it in depth, and will be the best individual to know
whether any kind of human factors threatened the sustainability of the class.

292 A. Imran and T. Kosar

12.3 Survey Exercise

This section describes the implementation of the survey mechanism to determine
human factors and their impact on software sustainability. There is a need to group
sustainability factors based on human activities. The exercise has been applied to a
real-life software on a testing phase and feedback was collected from the developers.

As a result, we need to introduce context awareness. This is done via question-
naire tagging, and we have an additional option where the developer can flag a smell
as “having no negative impact” based on the context. We trust the software practi-
tioner’s knowledge and expert opinion in this regard. For clustering, we obtained the
refactored dataset and conducted the analysis.

For our impact analysis of human factors on software sustainability, we chose
OneDataShare [21] since we have full access to the developers of this software to get
the required response in the survey. OneDataShare is an open-source software which
started in 2016. This software have been studied earlier to analyze impacts in terms
of performance [22]. However the effect of human components on the sustainability
of the software has not been studied earlier. In this chapter, we aim to fill that gap.

Altogether, we collected data from 10 software practitioners who worked in the
OneDataShare project. In total, there were 14 developers, yielding a response rate of
71.43%. OneDataShare is a research software for fast data transfer, which is a
flagship project, hence easy access could be obtained to the respondents. Next, the
10 software practitioners who were surveyed worked the most with the classes
suffering from smells, and they were the most concerned, hence readily responded.

12.4 Results

In order to reliably state that the smells detected by the tool negatively impact
Architectural Technical Debt (ATD), we first need to establish reliance on the tool,
followed by taking community feedback to analyze the impact of smells. First, it is
highly important to justify that the tool is capable of accurately detecting smells, then
to compare the smell detection output of the tool by applying it to the software with a
predefined set of smells that are frequently used for experimental purposes in the
existing literature. Also, it is equally important to show that the tool can be generalized
and used to detect smells in software applications other than OneDataShare. We
answer the identified research questions which will generalize our findings.

12.4.1 Answer to RQs

This section describes the results obtained for each of the survey questions to analyze
the impact on ATD.

12 The Impact of Human Factors on Software Sustainability 293

1. Are you aware of the identified human factors? If yes, are those handled at your
company? [17]

The following awareness issues could be determined by analyzing the responses.

(a) Lack of awareness: The surveyed software practitioners were not aware of the
impact of certain factors described, such as peer pressure and acknowledgment
of efforts, on sustainability. They developed the software using asynchronous
event-driven network application framework which enabled quick and easy
development and did not consider other factors related to human behavior to
be significant catalysts for maintaining sustainability. Besides the lack of knowl-
edge of existing human resources, shorter time to market causes excess pressure
from management to deliver the software on-time which is another reason for not
paying attention to the human factors.

(b) Awareness of human factors: For certain software companies, the respondents
were well aware of the remaining factors. They rated that leadership of project
managers is the most important aspect of ensuring that the projects sustain. They
stated that many of those factors had been addressed from earlier stages of the
development life cycle. The respondents stated that regular team meetings, team
coffee sessions, sharing of ideas, and sharing a common goal of providing
sustainable software services are critical to eliminating the negative impacts of
the mentioned human factors in sustainability. During COVID-19, the technical
leads were responsible for conducting virtual sessions with team members, learn
their thoughts, and eliminate such factors. Even top-level directors tried to
communicate regularly with junior employees and interns to motivate them
towards building sustainable software.

2. Will you tag the factor as having high, moderate negative impact, or no impact on
sustainability?

The impact of the identified human factors on sustainability was determined
based on the opinions from experts. The response from various respondents regard-
ing the score given to each factor is shown in Fig. 12.2. We summarize the findings
as follows:

(a) Factors with a high negative impact on sustainability: We see that the
software practitioners have flagged the factor called “Leadership” as having a
high negative impact on sustainability. “Communication” has been identified as
an important factor as well. Many teams who responded were not aware of
human factors “peer pressure” and “acknowledgment of efforts.” Hence this
survey was an eye opener for them to address these issues.

(b) Factors with a moderate negative impact on ATD: The survey reported that
two types of smells called “Team environment” has a low impact on sustain-
ability according to numerous respondents. The reason was that this factor did
not affect a large number of modules of the sustainability software and required
relatively lesser effort to solve, given there is good leadership. We received
comments from software practitioners, such as, “In some cases like COVID-19,
it is the way the engineers are forced to work from home and during such times

294 A. Imran and T. Kosar

good leadership and continuous communication is more important. Team envi-
ronment is not important given good leadership since that happens automatically
if good leadership is present, and during COVID-19 teams are unable to meet
physically for the environment factor is absent. In other cases, we find that
effective communication is more important to result in good team environment.”
The respondents felt that given the short time to market and the COVID-19
situation when this survey was conducted, these factors should be given lower
priority compared to the others with a higher negative impact on sustainability.

(c) Factors with no negative impact: None of the identified factors were found to
have negligible impact on sustainability. In fact, the respondents said that other
human factors like gender-based discrimination and racial discrimination should
be included in future studies as other important human factors which affect
sustainability.

3. Was your answer to Q2 based on a specific software context, time, or effort?

During the survey, the following answers were obtained:

(a) Time and effort: In line with the survey the responses were motivated by the
time and effort required to solve them. Also, lack of awareness was another
aspect in this regard. For “difficult deadlines,” the deciding factor was time
as well.

(b) Software context: For the “Leadership qualities” factor, the experts primarily
based their answer on software context, stating that for large software, such
factors can have tremendous negative impact on sustainability. The reason being
that mostly this factor occurs when many employees work on a big project and
all of them are not clearly aware of its sustainability goals.

Fig. 12.2 Representation of human factors affecting sustainability

12 The Impact of Human Factors on Software Sustainability 295

4. Did any friction in your development community affect impact determination?
Explain.

For this question, all responses were the same, as discussed below:

(a) For all the human factors which were presented to the respondents, they
responded saying they did not have any communication issues or team friction.
Capable leadership and good communication may be a reason for such a
response. At the same time, the teams which were interviewed worked under
the same roof, and they were not affected by any communication gap which
happens during a collaboration between remote teams. Also, the hierarchy was
flat, which ensured swift decisions. However, studying the impacts of commu-
nity smells [17] on sustainability with respect to this type of software can be an
interesting topic.

12.4.2 Implications of Results

The analyses provided in this chapter can be applied to software researchers and
practitioners.

• Usefulness to researchers: Researchers can use this information to identify
which human factors occur specifically and cause a greater adverse impact on
sustainability. This will provide them a useful lead on which type of human
factors to focus their research on based on the type of software. Addressing
human factors of sustainability opens a new doorway of research in this area as
it can reduce the challenges to make a software sustainable.

• Usefulness to software practitioners: Firstly, managers in software companies
can apply the results on their projects, collect the data, and analyze results to
improve their sustainability practices. Also, by keeping the results of the chapter
in mind, attention can be paid to specific factors so as to incur minimum impact
on sustainability.

By surveying the impact of human factors on sustainability, this chapter allows
engineers and researchers to refactor only a subset of factors at a time.

12.5 Related Work

A model depicting the collective efforts required to detect architectural smells is
proposed based on the study of related literature [23]. The process of prioritizing
architectural smells based on the impact of those on ATD has been studied by
Martini et al. [24]. The authors analyzed how users perceive the smells to affect
architectural debt. Although the model considers important aspects of architectural

296 A. Imran and T. Kosar

smells, it does not study how those smells affect sustainability. Also, the human
factors which influence those smells were not considered.

Supervised machine learning approaches have been explored for code and archi-
tectural smells detection [25, 26]. However, the authors debated that exiting research
using such techniques deal with biased datasets for the training of smells. They
stated the need for further research with more realistic datasets to obtain the actual
performance of the tool. This leads to the need for further research using
unsupervised techniques for smell detection.

The effect of the developer’s seniority, frequency of commits, and interval of
commits on reducing architectural debts in software were evaluated by Alfayez et al.
[27]. The authors determined that seniority and frequency of commits are negatively
correlated with reducing architectural debt, whereas the interval of commits is
positively correlated. The authors used statistical analysis tests to validate the effects
of developer behavior on architectural smells. However, use of unsupervised
machine learning for grouping smells was not explored.

Existing tools for detecting architectural smells include Decor [28], Arcan [29],
and Designite [30]. Most of these focus on software written in languages other than
Java. AnaConDebt [31] is used to assess technical debt. Further research is required
to include community feedback for the smells detected by those software to prioritize
for ATD.

Polomba et al. [32] was able to detect code smell which could not be differenti-
ated via their structures. As a result, they made software suffering from those types
of code smells more sustainable by improving detection of smelly code which
ultimately set up its removal. The impact of community smells on software was
studied based on surveys from software engineers [17]. This motivates us to study
how community factors affect sustainability of the software as well.

Using open-source components in design and implementation of research soft-
ware guarantees its sustainability [33]. The researchers have cited that Mozilla
Firefox is a successful and sustainable application, mainly because of its open-
source structure. They stated that Mozilla still continues to support, train, and
research open-source software [34]. The authors highlighted that based on their
years of experience in mentoring open source software projects, there are primarily
three areas to consider in order to make an open-source project sustainable and
ensure its growth. They are training, peer support, and availability of financial and
computational resources. How effective training can be ensured for research-based
software is not identified by the authors. Also, they highlighted community support
for a largely used software like Mozilla, but how community support can be
achieved for a research software which serves a small group of researchers have
not been stated.

The importance of studying the experiences of the stewards who developed and
used a wide range of open-source software tools to identify and focus on open-
source software sustainability has been addressed in [35]. The Hierarchy Data
Format (HDF) group has been working with the research community for 30 years,
building open-source tools to provide them platforms for data storage, easy access,
and analysis. It has analyzed Github and found that nearly 1000 repositories are

12 The Impact of Human Factors on Software Sustainability 297

based on its open-source codes. At the same time several broadly successful open-
source systems are centered around HDF. The authors shared their experience of
PyTables that whenever an existing code is reused or refactored, there is a high
probability that it will present unforeseen issues which require correction and
addressing, thus reducing the time to market. However, effective refactoring tech-
niques for a fast data sharing software like OneDataShare have not been addressed.

Best practices in software usability and user experience can have a significant effect
on software sustainability [36]. By following software usability best practices, failures
in the software can be fixed at a lower cost, and performance can be enhanced
[37]. The importance of user experience has been emphasized in the academia by
designing course works in Human-Computer Interaction (HCI). However, most of the
HCI courses are non-major and considered to be esoteric by researchers coming from
scientific backgrounds. However, the dynamic nature of scientific software has made
user experience an important criterion for its sustainability [36]. As a result, the authors
combined heuristic studies, participant-driven interviews and surveys, usability obser-
vations, and evaluations to improve user experience of scientific applications. These
experiences have been used to develop User Interfaces data exploration and analysis,
create workflowmodels, and design and build data management tools. However, using
such tools for a research software that transfers a high volume of data within a
desirable time frame has not been addressed.

12.6 Conclusion and Future Work

This chapter identifies and analyzes the impact of human factors in sustainability via
a survey. We detected six types of factors and evaluated the impact of those by
interviewing experts in the field of software engineering. We proceeded to analyze
how software practitioners saw the negative impact of those factors. We provided a
questionnaire to the software practitioners to gather their viewpoints related to the
adverse effects of the human factors on sustainability. Results show that the “Lead-
ership” and “Communication” factors were rated by the practitioners to have a high
impact on sustainability. On the other hand, the factor called team environment had
less negative impact.

In the future, it may also be helpful to perform a longitudinal study that detects the
precision of the survey results by increasing the sample size. Another interesting area
would be to extend the list of human factors to include gender inequality and racial
discrimination, which also negatively impact sustainability.

References

1. I. of Electrical and E. Engineers. Defining software sustainability. [Online]. https://ieeexplore.
ieee.org/Xplore/home.jsp. Accessed 14 Sept 2019

298 A. Imran and T. Kosar

https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp

2. Software Sustainability Institute (2016) https://www.software.ac.uk/case-studies. Accessed
10 Sept 2019

3. Albertao F, Xiao J, Tian C, Lu Y, Zhang KQ, Liu C (2010) Measuring the sustainability
performance of software projects. In: 2010 IEEE 7th International Conference on E-Business
Engineering. IEEE, pp 369–373.

4. Penzenstadler B, Fleischmann A (2011) Teach sustainability in software engineering? In: 2011
24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T). IEEE,
pp 454–458

5. Dagli CH, Kilicay-Ergin N (2008) System of systems architecting. In: System of Systems
Engineering: Innovations for the 21st Century. pp 77–100

6. Durdik Z, Klatt B, Koziolek H, Krogmann K, Stammel J, Weiss R (2012) Sustainability
guidelines for long-living software systems. In: Software Maintenance (ICSM), 2012 28th
IEEE International Conference on. IEEE, pp 517–526

7. Stewart CA, Barnett WK, Wernert EA, Wernert JA, Welch V, Knepper R (2015) Sustained
software for cyberinfrastructure: analyses of successful efforts with a focus on nsf-funded
software. In: Proceedings of the 1st Workshop on The Science of Cyberinfrastructure:
Research, Experience, Applications and Models, ser. SCREAM ’15. ACM, New York, NY,
pp 63–72. [Online]. http://doi.acm.org/10.1145/2753524.2753533

8. Seacord RC, Elm J, Goethert W, Lewis GA, Plakosh D, Robert J, Wrage L, Lindvall M (2003)
Measuring software sustainability. In: International Conference on Software Maintenance
(ICSM). IEEE, p 450

9. Chitchyan R, Becker C, Betz S, Duboc L, Penzenstadler B, Seyff N, Venters CC (2016)
Sustainability design in requirements engineering: state of practice. In: Proceedings of the
38th International Conference on Software Engineering Companion, ser. ICSE ’16. ACM,
New York, NY, pp 533–542. [Online]. http://doi.acm.org/10.1145/2889160.2889217

10. URSSI. Developing a pathway to research software sustainability. http://urssi.us/. Accessed
14 Sept 2019

11. Carver JC, Gesing S, Katz DS, Ram K, Weber N (2018) Conceptualization of a us research
software sustainability institute (urssi). Comput Sci Eng 20(3):4–9

12. Penzenstadler B, Bauer V, Calero C, Franch X (2012) Sustainability in software engineering: a
systematic literature review

13. Penzenstadler B, Raturi A, Richardson D, Tomlinson B (2014) Safety, security, now sustain-
ability: the non-functional requirement for the 21st century. IEEE Softw 1:1

14. Calero C, Bertoa MF, Moraga MÁ (2013) A systematic literature review for software sustain-
ability measures. In: Proceedings of the 2nd International Workshop on Green and Sustainable
Software. IEEE Press, pp 46–53

15. Imran A, Kosar T (2019) Software sustainability: a systematic literature review and compre-
hensive analysis. arXiv preprint arXiv:1910.06109

16. Tockey S (2014) Aspects of software valuation. In: Economics-Driven Software Architecture.
Elsevier, pp 37–58

17. Palomba F, Tamburri DAA, Fontana FA, Oliveto R, Zaidman A, Serebrenik A (2018) Beyond
technical aspects: How do community smells influence the intensity of code smells?. IEEE
Trans Softw Eng

18. de Andrade HS, Almeida E, Crnkovic I (2014) Architectural bad smells in software product
lines: an exploratory study. In: Proceedings of the WICSA 2014 Companion Volume. ACM, p
12

19. Zazworka N, Shaw MA, Shull F, Seaman C (2011) Investigating the impact of design debt on
software quality. In: Proceedings of the 2nd Workshop on Managing Technical Debt, ser. MTD
’11. ACM, New York, NY, pp 17–23. [Online]. http://doi.acm.org/10.1145/1985362.1985366

20. Dillman DA (2011) Mail and Internet surveys: the tailored design method–2007 Update with
new Internet, visual, and mixed-mode guide. Wiley

12 The Impact of Human Factors on Software Sustainability 299

http://www.software.ac.uk/case-studies
http://www.software.ac.uk/case-studies
http://doi.acm.org/10.1145/2753524.2753533
http://doi.acm.org/10.1145/2889160.2889217
http://urssi.us/
http://doi.acm.org/10.1145/1985362.1985366

21. Imran A, Nine MS, Guner K, Kosar T (2018) Onedatashare-a vision for cloud-hosted data
transfer scheduling and optimization as a service. In: Proceedings of the 8th International
Conference on Cloud Computing and Services Science, vol 1

22. Imran A, Kosar T (2020) The impact of auto-refactoring code smells on the resource utilization
of cloud software. In: García-Castro R (ed) The 32nd International Conference on Software
Engineering and Knowledge Engineering, SEKE 2020, KSIR Virtual Conference Center, USA,
9–19 July 2020. KSI Research Inc., pp 299–304. [Online]. https://doi.org/10.18293/
SEKE2020-138

23. Besker T, Martini A, Bosch J (2016) A systematic literature review and a unified model of ATD.
In: 2016 42nd Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2016, pp 189–197

24. Martini A, Fontana FA, Biaggi A, Roveda R (2018) Identifying and prioritizing architectural
debt through architectural smells: a case study in a large software company. In: European
Conference on Software Architecture. Springer, pp 320–335

25. Caram FL, Rodrigues BRDO, Campanelli AS, Parreiras FS (2019) Machine learning techniques
for code smells detection: a systematic mapping study. Int J Softw Eng Knowl Eng 29
(02):285–316

26. Fontana FA, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experimenting machine
learning techniques for code smell detection. Empirical Softw Eng 21(3):1143–1191

27. Alfayez R, Behnamghader P, Srisopha K, Boehm B (2018) An exploratory study on the
influence of developers in technical debt. In: Proceedings of the 2018 International Conference
on Technical Debt, ser. TechDebt ’18. ACM, New York, NY, pp 1–10. [Online]. http://doi.acm.
org/10.1145/3194164.3194165

28. Moha N, Guéhéneuc Y-G, Le Meur A-F, Duchien L, Tiberghien A (2010) From a domain
analysis to the specification and detection of code and design smells. Formal Aspects Comput
22(3–4):345–361

29. Fontana FA, Pigazzini I, Roveda R, Tamburri D, Zanoni M, Di Nitto E (2017) Arcan: a tool for
architectural smells detection. In: 2017 IEEE International Conference on Software Architec-
ture Workshops (ICSAW). IEEE, pp 282–285

30. Suryanarayana G, Samarthyam G, Sharma T (2014) Refactoring for software design smells:
managing technical debt. Morgan Kaufmann

31. Martini A (2018) Anacondebt: a tool to assess and track technical debt. In: 2018 IEEE/ACM
International Conference on Technical Debt (TechDebt). IEEE, pp 55–56

32. Palomba F (2015) Textual analysis for code smell detection. In: Proceedings of the 37th
International Conference on Software Engineering – vol 2, ser. ICSE ’15. IEEE Press,
Piscataway, NJ, pp 769–771. [Online]. http://dl.acm.org/citation.cfm?id¼2819009.2819162

33. Cabunoc A (2018) Supporting research software by growing a culture of openness in academia
34. Brown AW, Booch G (2002) Reusing open-source software and practices: the impact of

opensource on commercial vendors. In: International Conference on Software Reuse. Springer,
pp 123–136

35. Haebermann T (2018) Sustainable open source tools for sharing and understanding data. In:
USRRI 1st Workshop on Software Sustainability. USRRI, pp 1561–1570

36. Kitzes J, Turek D, Deniz F (2017) The practice of reproducible research: case studies and
lessons from the data-intensive sciences. University of California Press

37. Gilb T, Finzi S (1988) Principles of software engineering management, vol 11. Addison-
Wesley, Reading, MA

300 A. Imran and T. Kosar

https://doi.org/10.18293/SEKE2020-138
https://doi.org/10.18293/SEKE2020-138
http://doi.acm.org/10.1145/3194164.3194165
http://doi.acm.org/10.1145/3194164.3194165
http://dl.acm.org/citation.cfm?id=2819009.2819162
http://dl.acm.org/citation.cfm?id=2819009.2819162

Chapter 13
Social Sustainability in the e-Health Domain
via Personalized and Self-Adaptive
Mobile Apps

Eoin Martino Grua, Martina De Sanctis, Ivano Malavolta,
Mark Hoogendoorn, and Patricia Lago

Abstract Within software engineering, social sustainability is the dimension of
sustainability that focuses on the “support of current and future generations to
have the same or greater access to social resources by pursuing social equity.” An
important domain that strives to achieve social sustainability is e-Health, and more
recently e-Health mobile apps.A wealth of e-Health mobile apps is available for
many purposes, such as lifestyle improvement and mental coaching. The interven-
tions, prompts, and encouragements of e-Health apps sometimes take context into
account (e.g., previous interactions or geographical location of the user), but they
still tend to be rigid, e.g., apps use fixed sets of rules or they are not sufficiently
tailored toward individuals’ needs. Personalization to the different users’ character-
istics and run-time adaptation to their changing needs and context provide a great
opportunity for getting users continuously engaged and active, eventually leading to
better physical and mental conditions. This chapter presents a reference architecture
for enabling AI-based personalization and self-adaptation of mobile apps for e-
Health. The reference architecture makes use of a dedicated goal model and multiple
MAPE loops operating at different levels of granularity and for different purposes.
The proposed reference architecture is instantiated in the context of a fitness-based
mobile application and exemplified through a series of typical usage scenarios
extracted from our industrial collaborations.

E. M. Grua (*) · I. Malavolta · M. Hoogendoorn · P. Lago
Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
e-mail: e.m.grua@vu.nl; i.malavolta@vu.nl; m.hoogendoorn@vu.nl; p.lago@vu.nl

M. De Sanctis
Gran Sasso Science Institute (GSSI), L’Aquila, Italy
e-mail: martina.desanctis@gssi.it

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_13

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_13&domain=pdf
mailto:e.m.grua@vu.nl
mailto:i.malavolta@vu.nl
mailto:m.hoogendoorn@vu.nl
mailto:p.lago@vu.nl
mailto:martina.desanctis@gssi.it
https://doi.org/10.1007/978-3-030-69970-3_13#DOI

13.1 Introduction

e-Health mobile apps are designed for assisting end users in tracking and improving
their own health-related activities [1]. With a projected market growth of US$102.3
billion by 2023, e-Health apps represent a significant market [2] providing a wide
spectrum of services, i.e., life style improvement, mental coaching, sport tracking,
and recording of medical data [3]. The unique characteristics of e-Health apps wrt
other health-related software systems are that e-Health apps (1) can take advantage
of smartphone sensors, (2) can reach an extremely wide audience with low infra-
structural investments, and (3) can leverage the intrinsic characteristics of the mobile
medium (i.e., being always on, personal, and always carried by the user) for
providing timely and in-context services [4].

However, even if the interventions, prompts, and encouragements of current
e-Health apps take context into account (e.g., previous interactions or geographical
location of the user), they still tend to be rigid and not fully tailored to individual
users, e.g., by using fixed rule sets or by not considering the unique traits and
behavioral characteristics of the user. In this context, we see personalization [5]
and self-adaptation [6–8] as effective instruments for getting users continuously
engaged and active, eventually leading to better physical and mental conditions. The
addition of intervention tailoring (via personalization and self-adaptation) is a crucial
step in addressing the main sustainability concern that e-Health mobile apps want to
achieve: social sustainability. By providing better interventions, we are not only
more likely to have the user interested in maintaining engagement with the app but
also help the user achieve better physical and mental conditions by allowing the app
to better address the personal needs and by extension the social ones too.

In this work, we combine personalization and software self-adaptation to provide
users of mobile e-Health apps with a better, more engaging and effective experience.
To this aim, we propose a reference architecture (RA) that combines data-driven
personalization with self-adaptation. The main design drivers that make the pro-
posed reference architecture unique are:

• The combination of multiple Monitor–Analyze–Plan–Execute (MAPE) loops [9]
operating at different levels of granularity and for different purposes, e.g., to
suggest users the most suitable and timely activities according to their (evolving)
health-related characteristics (e.g., active vs. less active), but also to cope with
technical aspects (e.g., connectivity hiccups, availability of IoT devices and third-
party apps on the user’s device) and the characteristics of the physical environ-
ment (e.g., indoor vs. outdoor, weather).

• A dedicated goal model for representing health-related goals via a descriptive
concise language accessible by healthcare professionals (e.g., fitness coaches,
psychologists).

• The exploitation of our online clustering algorithm for efficiently managing the
evolution of the behavior of users as multiple time series evolving over time. This
online clustering algorithm has been already extensively tested in a previously

302 E. M. Grua et al.

published article [10], showing promising results by doing better than the current
state of the art.

The main characteristics of the proposed reference architecture are the following:
(1) it caters the personalization of services to specific user preferences (e.g., preferred
sport activities); (2) it guarantees the correct functioning of the features via the use of
connected IoT devices (e.g., a smart-bracelet) and runtime adaptation strategies;
(3) it adapts the services depending on contextual factors such as environmental
conditions and weather; (4) it supports a smooth participation of domain experts
(e.g., psychologists) in the personalization and self-adaptation processes; and (5) it
can be applied in the context of a single e-Health app and by integrating the services
of third-party e-Health apps (e.g., already installed sport trackers). All of these
characteristics are shown in this work by evaluating the reference architecture and
the goal model with fitness coaching scenarios. We want to emphasize how most
characteristics have been engineered with the main goal of achieving social sustain-
ability. Possible exceptions are characteristics (2) and (5), which more specifically
addresses technical sustainability of the reference architecture. Our emphasis on
social sustainability will be further explained and explored throughout the chapter.

Lastly, in a previous study [11] we reported a preliminary version of our Refer-
ence Architecture (RA). Here we extend the work by: (1) framing the work in the
overall context of social sustainability, (2) document the methodology used to design
our RA, (3) report a scenario-based evaluation of our RA, (4) provide a goal model
to be used with the RA, (5) a viewpoint definition used to create the view of our RA.

13.2 Background

The notion of reference architecture (RA) is borrowed from Volpato et al. [12], who
define it as “a special type of software architectures that provide a characterization of
software systems functionalities in specific application domains,” e.g., SOA for
service orientation and AUTOSAR for automotive. In the context of this study, a
self-adaptive software system is defined as a system that can autonomously handle
changes and uncertainties in its environment, the system itself, and its goals [7].

For the definition of personalization, we build on that by Fan and Poole [5] and
define it as “a process that changes a system to increase its personal relevance to an
individual or a category of individuals.” Furthermore, to enhance personalization,
we use CluStream-GT (CluStream for Growing Time-series) [10]. CluStream-GT
was chosen for this RA as it is the state-of-the-art clustering algorithm for time-series
data (especially within the health domain). CluStream-GT works in two phases:
offline and online. First, the offline phase initializes the algorithm with a small initial
dataset; this is done either at design time or at the start of runtime. Afterward, during
the online phase the algorithm clusters the data that is being collected at runtime.
Clustering allows the RA to group similar users together, where similarity is
determined by the data gathered from the apps. This gives the RA a more sustainable

13 Social Sustainability in the e-Health Domain via Personalized and. . . 303

and scalable method of personalization, without requiring to create individual
personalization strategies but maintaining a suitable degree of personalization
[10, 13]. An example case where clustering can be used to aid personalization is
with the use of cluster-based Reinforcement Learning [14].

The methodology used for the design of our RA is the one presented by Angelov
et al. [15] (see Fig. 13.1), where the authors present their RA Framework to facilitate
software architects in the design of congruent RAs, i.e., RAs where the design,
context, and goals are explicit and coherent (adapted from [15]).

The RA Framework (or framework for short) consists of two elements: a
multidimensional classification space, and a set of predefined RA types (and variants
of these types). The former, through the use of strict questions and answers, supports
software architects in classifying RAs according to their context (Where?, Who?,
and When? questions in Fig. 13.1), goals (Why? in Fig. 13.1), and design (How?
and What? in Fig. 13.1) dimensions. The latter consists of specific combinations of
values from the multidimensional space. These types, and variants, are used to
evaluate the congruence of the RA being designed. If a RA is congruent
(i.e. matches a type or variant) it has a greater chance of becoming a success,
where, by success the authors mean “. . . the acceptance of the architecture by its
stakeholders and its usage in multiple projects” [15]. For each dimension, the authors
have defined subdimensions with respective questions and answers. During the
design of our RA we have worked with each dimension and, with the use of the
framework, classified our RA according to the possible values available for each
subdimension. As knowledge of our RA and its components is necessary to under-
stand the design process, we further explain the use of the framework in Sect. 13.7.

In recent years a larger body of work on software engineering and software
architecture address sustainability. Sustainability can be divided into four dimen-
sions: technical, economical, environmental, and social [16]. Within this work we
present an RA for the e-Health domain with the main goal of better addressing the
social dimension of sustainability, whilst the technical contributions of this work
include the combination of AI and self-adaptation. In this work we build on the
following definition of social sustainability: “focusing on supporting current and
future generations to have the same or greater access to social resources by pursuing
generational equity. For software-intensive systems, this dimension encompasses the
direct support of social communities, as well as the support of activities or processes
that indirectly create benefits for such communities” [16].

13.3 Related Work

Several RAs for IoT can be found in the literature [17–20]. In particular, Bauer et al.
[19] present several abstract architectural views and perspectives, which can be
differently instantiated. The adaptation of the system’s configuration is also
envisioned, at an abstract level. IoT-A [18] aims to be easily customized to different
needs, and it makes use of axioms and relationships to define connections among

304 E. M. Grua et al.

D
ef

in
e
W
hy

,
W
he

re
 a

nd
 W

he
n

In
vo

lv
e

St
ak

eh
ol

de
rs

(W
ho

)
M

at
ch

 w
ith

 a

Ty
pe

 /
Va

ria
nt

?
D

ef
in

e
W
ha

t
an

d
H
ow

St
op

C
la

ss
ify

 th
e

R
A

R
A

Fr
am

ew
or

k

C
on

te
xt

 a
nd

 G
oa

l d
im

en
si

on
s

de
fin

iti
on

D
es

ig
n

di
m

en
si

on
 d

ef
in

iti
on

M
at

ch
 w

ith
 a

Ty

pe
 /
Va

ria
nt

?

St
op

N
o

N
o

Ye
s

Ye
s

N
o

- r
ed

ef
in

e
go

al
s/

co
nt

ex
t

N
o

- r
ed

ef
in

e
go

al
s/

co
nt

ex
t

F
ig
.1

3.
1

M
et
ho

do
lo
gy

fo
r
th
e
de
si
gn

of
ou

r
R
A
[1
5]

13 Social Sustainability in the e-Health Domain via Personalized and. . . 305

IoT entities. Industrial Internet Reference Architecture (IIRA) [17] is particularly
tailored for industrial IoT systems. Web Services Oxigenated (WSO2) [20] presents
a layered structure and targets scalability and security aspects too. All of the above
RAs are abstract and domain independent. As such, they do not address required
features specific to the IoT-based e-Health domain. Moreover, they lack the needed
integration with AI for personalization used to tailor interventions to the user’s
health-related characteristics, an important technique used by the RA to address
social sustainability.

Other works providing service-oriented architectures (SOAs) focused on adapta-
tion but neglected user-based personalization. For example, Feljan et al. [21] defined
an SOA for planning and execution (SOA-PE) in Cyber Physical Systems (CPS) and
Mohalik et al. [22] proposed a MAPE-K autonomic computing framework to
manage adaptivity in service-based CPS. Morais et al. [23] present RAH, a RA for
IoT-based e-Health apps. RAH has a layered structure, and it provides components
for the prevention, monitoring and detection of faults. Different from RAH, our RA
explicitly manages the self-adaptation of e-Health mobile apps, both at the user and
architectural levels. Mizouni et al. [24] propose a framework for designing and
developing context-aware adaptive mobile apps. Their framework lacks other types
of adaptation, i.e., adaptation for user personalization and adaptation with other IoT
devices—which is possible with our RA.

Lopez and Condori-Fernandez [25] propose an architectural design for an adap-
tive persuasive mobile app with the goal of improving medication adherence.
Accordingly, the adaptation is here focused only on the messages given to the user
and lacks the other levels of adaptation (environment adaptation, etc.) that our RA
covers. Kim [26] proposes a general RA that can be used when developing adaptive
apps and implements a e-Health app as an example. However, being general, the RA
lacks the level of detail present in our work, the integration of AI for personalization,
and a way for involving domain experts in app design and operation, which is
essential in adaptive e-Health.

In summary, to the best of our knowledge, ours is the first RA for e-Health mobile
apps that simultaneously supports (1) personalization for the different users, Users
by exploiting users’ smart objects and preferences to dynamically get data about,
e.g., their mood and daily activities, and (2) runtime adaptation to user needs and
context in order to keep them engaged and active, so that we can better address social
sustainability.

13.4 Reference Architecture

Figure 13.2 shows our RA with the following stakeholders and components.
Section 13.8 defines the corresponding viewpoint.

Users provide and generate the data gathered by the e-Health app. At first
installation, the users are asked to input information to better understand their

306 E. M. Grua et al.

 S
m

ar
tp

h
o

n
e e-

H
ea

lt
h

 a
p

p

 S
m

ar
tp

h
o

n
e e-

H
ea

lt
h

 a
p

p

U
se

r
P

ro
ce

ss

S
m

ar
t

O
b

je
ct

s

In
te

rn
et

E
n

vi
ro

n
m

en
t

S
o

u
rc

es

A
p

p
 S

to
re

B
ac

k-
en

d

D
o

m
ai

n

E
xp

er
t

D
ev

el
o

p
m

en
t

Te
am

D
at

a

Users

D
is

tr
ib

ut
e

C
ol

le
ct

ed

D
at

a

R
el

ea
se

D
at

a

Data

A
I P

er
so

na
liz

at
io

n
A

da
pt

at
io

n

E
di

to
r

of

A
bs

tr
ac

t A
ct

iv
iti

es

&
 G

oa
ls

C
lu

st
er

in
g

H
is

to
ry

Q
ue

ry

C
re

at
e

&
 M

od
ify

C
ol

le
ct

ed
 D

at
a

U
se

r
P

ro
ce

ss

N
ot

ify

N
ot

ify

B
ac

k-
en

d

Update

Verify

L
eg

en
d

in
fo

rm
at

io
n-

flo
w

op
er

at
io

n

M
A

P
E

 lo
op

U
pd

at
e

C
at

al
og

 o
f

A
bs

tr
ac

t A
ct

iv
iti

es

&
 G

oa
ls

C
at

al
og

 o
f

S
up

po
rt

ed
 M

ob
ile

A
pp

lic
at

io
ns

Q
ue

ry

Datastore

Q
ue

ry

Q
ue

ry

U
pd

at
e

U
pd

at
e

Update

M
an

ag
e

U
se

r
P

ro
ce

ss
H

an
dl

er

 A
I P

er
so

na
liz

at
io

n

 In
te

rn
et

 C

on
ne

ct
iv

ity

 M
an

ag
er

 S
m

ar
t O

bj
ec

ts
 M

an
ag

er

 E
nv

iro
nm

en
t

 D
riv

en
 A

da
pt

at
io

n
 M

an
ag

er

 U
se

r
D

riv
en

 A

da
pt

at
io

n
 M

an
ag

er

 T
hi

rd
-p

ar
ty

 A

pp
lic

at
io

ns
 M

an
ag

er

D
at

a

F
ig
.1

3.
2

R
ef
er
en
ce

ar
ch
ite
ct
ur
e
fo
r
pe
rs
on

al
iz
ed

an
d
se
lf
-a
da
pt
iv
e
e-
H
ea
lth

ap
ps

13 Social Sustainability in the e-Health Domain via Personalized and. . . 307

aptitudes. After an initial usage phase and data collection, the system has enough
information to assign them to a cluster.

The smartphone is the host where the self-adaptive e-Health app is installed. In
the mobile app, four components, namely, User Driven Adaptation Manager,
Environment Driven Adaptation Manager, Smart Objects Manager, and Internet
Connectivity Manager, implement a MAPE loop to dynamically perform adaptation.
The Third-party Applications Manager, in turn, is responsible for communication
with third-party apps supported by the RA that can be exploited by the e-Health app
both during its nominal execution and when adaptation is performed. It is also
responsible for storing user preferences. Further details on these components are
given in Sect. 13.5.

Smart Objects are devices, other than the smartphone, that the app can commu-
nicate with. They are used to gather additional data about the users as well as
augmenting the data collected by the smartphone sensors. For instance, a smartwatch
would be used by the app to track the user’s heartrate, therefore adding extra
information on the real-time performance of the user.

Environment is the physical location of the user, and its measurable properties. It
is used by the e-Health app to make runtime adaptations according to its current
operational context and to the user’s scheduled activities, as described in Sect.
13.5.5.

The back-end of our RA (right-hand side in Fig. 13.2) is Managed by a Devel-
opment team. It additionally exposes an interface to the Domain Expert that is also
involved in the e-Health app design and operation. The back-end contains the
components needed to store the collected user data and to manage the user clusters.
It also hosts components supporting the general functioning of the app.

User Process Handler is in charge of sending User Processes to the users; it takes
care of sending the same User Process to all users of the same cluster. A User
Process is composed of one or more Abstract Activities. These activities are inspired
by the ones introduced in [27], although they differ both in the structure and in the
way they are refined, as explained later. An Abstract Activity is defined by a vector of
one or more Activity categories and an associated goal, with each vector entry
representing a day of the week. Examples of Abstract Activities are discussed later
in Sect. 13.9.

Each Abstract Activity is defined by the Domain Expert via the Editor of Abstract
Activities & Goals and later stored in the Catalog of Abstract Activities & Goals.
Each Activity category identifies the kind of activity the user should perform. As an
example, the user can receive either a Cardio or Strength Activity category and so
should perform an activity of that kind. More precisely, for each user, the Activity
categories are converted to Concrete Activities at runtime via the use of the User
Driven Adaptation Manager and based on the user’s preferences. For instance, a
cardio Activity category can be instantiated into different Concrete Activities such as
running, swimming, and walking. Moreover, if an Abstract Activity is composed of
multiple Activity categories, all or some of type Cardio, they can be converted into
different Concrete Activities. This implies that users who receive the same User

308 E. M. Grua et al.

Process will still be likely to have different Concrete Activities, therefore personal-
izing the experience to the individual user (this is further discussed in Sect. 13.5.2).

The goals associated with an Abstract Activity are also important for
distinguishing between Abstract Activities, besides converting them into Concrete
Activities. Two Abstract Activities containing the same vector of Activity categories
can be different solely based on their associated goal. More details on the goal model
are given in Sect. 13.6.

The User Process Handler receives Updates from (1) the AI Personalization and
the Editor of Abstract Activities & Goals in order to send User Processes to their
associated users. The AI Personalization Updates the User Process Handler every
time a user moves from one cluster to another, while the Editor of Abstract Activities
& Goals Updates it every time new clusters are analyzed by the Domain Expert
(along with the new associated User Process). These updates guarantee that the User
Process Handler remains up to date about the User Processes and their associated
users.

AI Personalization sends an Update to the Clustering History component when-
ever a change occurs in the clusters. The AI Personalization component uses the
CluStream-GT algorithm to cluster users into clusters in a real-time and online
fashion [10]. It receives the input data from the e-Health app (see Collected Data
in Fig. 13.2). More than one instance of CluStream-GT can be running at the same
time. In fact, there is one instance per category of data. For example, if the e-Health
app is recording both ecological momentary assessment [28] and biometric data, one
for the purpose of monitoring mood and the other for fitness, there will be two
running instances of the algorithm.

AI Personalization Adaptation is in charge of monitoring the evolution of
clusters and detecting if any change occurs. Examples include the merging of two
clusters or the generation of a new one. To do so, it periodically Queries the
Clustering History database. If one or more new clusters are detected, this compo-
nent will Notify both the Development Team and the Domain Expert. The Domain
Expert will examine the new information and add the appropriate User Process to the
Catalog of Abstract Activities & Goals via the dedicated editor. In turn, the Devel-
opment Team is notified just as a precaution so that it can verify if the new cluster is
not an anomaly. The specifics of the corresponding MAPE loop are described in
Sect. 13.5.1.

The role played by AI via the CluStream-GT algorithm is relevant in our RA as it
strongly supports both personalization and self-adaptation, thus guaranteeing a
continuous user engagement that is crucial in e-Health apps. Specifically, personal-
ization is achieved by clustering the users based on their preferences and their
physical and mental condition. This supports the RA in assigning appropriate User
Processes to each user, and further adapt them to continuously cope with the current
status of the user and by doing so better addressing social sustainability concerns.

Clustering History is a database of all the clusters created by the AI Personal-
ization component. For each cluster it keeps all of the composing micro-clusters with
all of their contained information.

13 Social Sustainability in the e-Health Domain via Personalized and. . . 309

Editor of Abstract Activities & Goals allows the Domain Expert to create and
modify Abstract Activities (and their associated goals) and to combine them as User
Processes. This is achieved via a web-based interactive UI and the editor’s ability to
Query the Catalog of Abstract Activities & Goals. It is also the editor’s responsibility
to update the User Process Handler if any new User Process has been created and is
currently in use.

Catalog of Abstract Activities & Goals is a database of all User Processes that
the Domain Expert has created for each unique current and past cluster. When a new
cluster is defined, the Domain Expert can assign to it an existing User Process from
this catalog, or create a new one and store it.

Catalog of Supported Mobile Applications is a database containing the meta-
data needed for interacting with supported third-party mobile apps installed on users’
devices. This database stores information such as the specific types of Android
intents (and their related extra data) needed for launching each third-party app, the
data it produces after a tracking session, etc. Indeed, our e-Health app does not
provide any specific functionality for executing the activities suggested to the user
(e.g., running, swimming); rather, it brings up third-party apps (e.g., Strava1 for
running and cycling, Swim.com2 for swimming) and collects the data produced by
the apps after the user performs the physical activities. The main reasons for this
design decision are: (1) we do not want to disrupt the users’ habits and preferences in
terms of apps used for tracking their activities and, (2) we want to build on existing
large user bases; we do not want to reinvent the wheel by reimplementing function-
alities already supported by development teams with years-long experience.

Whenever the e-Health app evolves by supporting new applications (or no longer
supporting certain applications), the Catalog of Supported Mobile Applications
Updates, through the Datastore, the Third-party Applications Manager. The
Third-party Applications Manager’s responsibility is to keep the list of supported
mobile apps up to date and provide the corresponding metadata to the User Driven
Adaptation Manager and the Environment Driven Adaptation Manager, when
needed.

The e-Health app and back-end communicate via the Internet. Specifically, the
communication from the e-Health app to the back-end is REST based and it is
performed by the Internet Connectivity Manager, which is responsible for sending
the Collected Data to the AI Personalization component in the back-end. Commu-
nication from the back-end to the e-Health app is performed by the User Process
Handler, which is in charge of sending the User Process to the e-Health app via push
notifications.

1https://www.strava.com/
2https://www.swim.com/

310 E. M. Grua et al.

http://swim.com
https://www.strava.com/
https://www.swim.com/

13.5 Components Supporting Self-Adaptation

The RA has five components used for self-adaptation. To accomplish its responsi-
bilities, each of these components implements a MAPE loop.

13.5.1 AI Personalization Adaptation

The main goal of the AI Personalization Adaptation is to keep track of the clusters
evolution and to enable the creation of new User Processes. It does it through its
MAPE loop depicted in Fig. 13.3.

During its Monitor phase, the AI Personalization Adaptation monitors the macro-
clusters. In its Analyze phase it determines if there are changes in the monitored
macro-clusters. To do so, the AI Personalization Adaptation periodically queries the
Clustering History database. It compares the current clusters with the previously
saved ones. If any of the current ones are significantly different, then the AI
Personalization Adaptation enters its Plan phase. The Plan phase gathers the IDs
of the users and macro-clusters involved in these significant changes. Since this
change involves the need for the creation of new User Processes for all of the users
belonging to the new clusters, the Domain Expert must be involved in this adapta-
tion. To achieve this we have exploited the type of adaptation described in [29],
which considers the involvement of humans in MAPE loops. In particular, in [29]
the authors describe various cases in which a human can be part of a MAPE loop. AI
Personalization Adaptation falls under what the authors refer to as: ‘System Feed-
back (Proactive/foreground)’. This type of adaptation is initiated by the system
which may send information to the human. The human (i.e., Domain Expert) uses
this information to execute the adaptation (by creating the new User Processes
necessary). To send the needed information to the Domain Expert, AI Personaliza-
tion Adaptation takes the gathered knowledge from the Plan phase and gives it to
Execute. Execute notifies (Fig. 13.2) both the Development Team and the Domain
Expert about the detected cluster change(s) and relays the gathered information.

To determine if a cluster is significantly different from another, we use a param-
eter delta. This parameter is set by the Development Team at design time and
determines how different the stored information of one cluster has to be from another

Fig. 13.3 AI Personalization Adaptation MAPE loop

13 Social Sustainability in the e-Health Domain via Personalized and. . . 311

one to identify them as unique. The Development Team is notified as a precaution, to
double check the change and verify that no errors occurred.

13.5.2 User Driven Adaptation Manager

The main responsibility of the User Driven Adaptation Manager is to receive the
User Process from the back-end and convert the contained Abstract Activities into
Concrete Activities. A Concrete Activity represents a specific activity that the user
can perform, also with the support of smart objects and/or corresponding mobile
apps. As an example, running is a concrete activity during which the user can exploit
a smart bracelet to monitor their cardio rate as well as a dedicated mobile app to
measure the run distance and the estimated burned calories. A Concrete Activity is
designed as a class containing multiple attributes that is stored on the smartphone.
The attributes are:

• Selectable: This is True if the User Driven Adaptation Manager or the Environ-
ment Driven Adaptation Manager can choose this Concrete Activity, when
dynamically refining Abstract Activities; False otherwise. It is set by the user
via the user preferences.

• Location: This specifies if the activity is performed indoors or outdoors. This
attribute is used by the Environment Driven Adaptation Manager to choose the
appropriate Concrete Activity according to weather conditions (see Sect. 13.5.5).

• Activity category: This defines what type of category the Concrete Activity falls
under; e.g., for a fitness activity, it specifies a cardio or strength training.

• Recurrence: This tracks how many times the user has performed the Concrete
Activity in the past. It allows the User Driven Adaptation Manager to have a
preference ranking system within all the selectable Concrete Activities.

For each user, the Concrete Activities are derived from their preferences stored in
the Third-party Applications Manager. During its nominal execution, the User
Driven Adaptation Manager is in charge of refining the Abstract Activities in the
User Process into Concrete ones. To do this, it queries the Third-party Applications
Manager and exploits its knowledge of the Concrete Activities and their attributes.
After completing the task, the User Driven Adaptation Manager presents the per-
sonalized User Process to the user as a schedule, where each slot in the vector of
Activity categories corresponds to a day. Therefore creating a personalized user
schedule of Concrete Activities.

Refining a User Process is required every time that the user is assigned with a new
process, to keep up with its improvements and/or cluster change. To this aim, a
dynamic User Process adaptation is needed to adapt at runtime the personalized user
schedule in a transparent way and without a direct user involvement. Figure 13.4
depicts the MAPE loop of the User Driven Adaptation Manager.

Once it accomplishes its main task of refining the User Process, the User Driven
Adaptation Manager enters the Monitor phase of its MAPE loop by monitoring the

312 E. M. Grua et al.

User Process. The Analyze phase receives the monitored User Process from Mon-
itor. Analyze is now responsible to determine if the user has been assigned a new
User Process. If so, the User Driven Adaptation Manager converts the Abstract
Activities in this new User Process into Concrete ones, taking into account the user
preferences. It makes this conversion by finding suitable Concrete activities during
the Plan phase. As all of the Abstract Activities have been matched with a
corresponding Concrete activity, the Execute phase makes the conversion, storing
this newly created personalized User Process and notifying the user about the new
activity schedule.

13.5.3 Smart Objects Manager

This component aims to maintain the connection with the user’s smart objects and, if
not possible, find alternative sensors to make the e-Health app able to continuously
collect user’s data and, thus, to perform optimally. To this aim, it implements a
MAPE loop, shown in Fig. 13.5, supporting the dynamic adaptation at the architec-
tural level of the smart objects.

The Monitor phase is devoted to the run-time monitoring of the connection status
with the smart objects. Connection problems can be due to either the smart objects
themselves, which can be out of battery, or to missing Internet, Bluetooth or
Bluetooth low energy connectivity. The Analyze phase is in charge of verifying
the current connection status (received by Monitor) and see if the connection status

Monitor Plan

User process Is the user process
new?

(Re)specify the user
activities based on
current preferences

and relevant installed
apps

Store the personalised
user process and notify

the user of the new
activities

Analyse Execute

Fig. 13.4 User Driven Adaptation Manager MAPE loop

Fig. 13.5 Smart Objects Manager MAPE loop

13 Social Sustainability in the e-Health Domain via Personalized and. . . 313

with any of the smart objects has changed. During the Plan phase, the MAPE will
create a sequential plan of actions that the Execute will have to perform. All of the
actions are aimed at reestablishing the lost connection or at finding a new source of
data (e.g. reconnect, notify the user, find a new source of data). For instance, if the
smart-watch connected to the smartphone runs out of battery and attempts to
reconnect to it fail, the Smart Objects Manager will switch to sensors inbuilt in the
smartphone (such as the accelerometer).

13.5.4 Internet Connectivity Manager

The main purposes of the Internet Connectivity Manager are to (1) to send the
Collected Data to the back-end and store them locally when the connection is
missing, and (2) to provide resilience to the e-Health app’s Internet connectivity.

As shown in the MAPE loop in Fig. 13.6, during the Monitor phase the Internet
Connectivity Manager runtime monitors the quality of the smartphone’s Internet
connection.

Analyze is then in charge of detecting whether a significant connection quality
alteration is taking place. If so, the Internet Connectivity Manager enters the Plan
phase and it plans for an alternative. The alternative can include switching the
connection type or storing the currently collected data locally on the smartphone.
As a new connection can be established, the component sends the data to the back-
end to be used by the AI Personalization.

13.5.5 Environment Driven Adaptation Manager

One of the objectives of the e-Health app is keeping users constantly engaged, to
ensure that they execute their planned schedule of activities. To this aim, the
Environment Driven Adaptation Manager plays an important role, which is essen-
tially supported by its MAPE loop, depicted in Fig. 13.7.

The purpose of this component is to constantly check whether the currently
scheduled Concrete Activity best matches the runtime environment (i.e., weather

Fig. 13.6 Internet Connectivity Manager MAPE loop

314 E. M. Grua et al.

conditions) the user is located in. To do so, the Environment Driven Adaptation
Manager monitors in runtime the user’s environment. The Monitor phase periodi-
cally updates the Analyze phase by sending the environment data. This phase
establishes if the environment significantly changed. If so, it triggers the Plan
phase that verifies whether the currently planned Concrete Activity is appropriate
for the user’s environment. If it is not, it finds an appropriate alternative and sends
the information to Execute. Execute swaps the planned Concrete Activity with the
newly found one and notifies the user of this change.

13.6 Goal Model

Goals have been used in many areas of computer science for a long time. For
instance, in AI planning they are used to describe desirable states of the world
(e.g., [30]) whereas in goal-oriented requirements engineering (GORE [31]) they are
used to model nonfunctional requirements (e.g., [32]). Goals have also been used in
self-adaptive systems to express the desired runtime behavior of systems execution
[27, 33]. More recently, goals are used to model personal objectives at the user level
[34], as done in our work.

As stated before, a User Process is composed of one or more Abstract Activities,
each defined as a vector of Activity categories with an associated goal. For each
cluster, the Domain Expert defines its User Process and corresponding goals,
through the Editor of Abstract Activities & Goals.

The syntax of our goal model is presented in Table 13.1. A goal of an Abstract
Activity, namely, G a, refers to the type of feature that the Abstract Activity
represents (e.g., mood, fitness). At the current stage of our work, we have mood-
based goals, mg, and fitness-based goals, fg.

A mood-based goal defines as objective a desirable mood that the user should
reach, considering their specific pathology. A mood-based goal can be specified in
two different ways: as a numerical value belonging to a given discrete range, such as
1, . . . , n, or as a string value belonging to a specific string set, such as [very sad, sad,
neutral, happy, very happy]. This goal type establishes the target mood that users are
expected to reach when performing mood-related activities. Specifically, we use the

Fig. 13.7 Environment Driven Adaptation Manager MAPE loop

13 Social Sustainability in the e-Health Domain via Personalized and. . . 315

one_of S T R I N G_SET construct to allow the Domain Expert to define as goal one
mood among the ones listed in the set S T R I N G_SET, for instance in (Eq. 13.1):

Ga≔mg one of neutral, happy, very happy½ � ð13:1Þ

When a numerical range is used to describe the user mood, we use relational
operators to specify a goal as a value in a subset of the given discrete range.
Moreover, for both mood-based goals, the expert can optionally specify the fre-
quency with which the user is asked to register their mood, through the ? F R E Q
construct. The frequency can be expressed in terms of T I M E S per day, per
week, or per month, where T I M E S belongs to a discrete range of values, as
given in (Eq. 13.2):

Ga≔mg � 7 in 1, . . ., 10½ � 3 per day ð13:2Þ

A mood-based goal mg succeeds if it satisfies the relation expressed by the goal.
In the presence of a frequency, instead, the user enters more than one mood. In this
case, the mood-based goal succeeds if the average computed among the registered
mood satisfies the relation expressed by the goal mg; it fails otherwise.

A fitness-based goal specifies the required intensity and frequency with which
users should perform fitness-related activities. In particular, the goal model pro-
vides two constructs to indicate the intensity, namely, I N T E N S I T Y time and
I N T E N S I T Y value. The former is used to express the intensity in terms of
duration of the activity (e.g., seconds, minutes, and hours). The latter is used to
express the intensity in non-time-based terms. Our goal model foresees the use of
values such as kcal, km, and step_count. As for mood-based goals, the Domain
Expert can optionally specify the frequency with which the user is asked to
perform the suggested activities, via the ? F R E Q construct. Relational operators
can be used to specify threshold values over intensity-based goals. Moreover,
control-flow constructs, namely, and, or, and one_of, can also be specified to
combine fitness-based goals. These constructs allow us to recursively combine
elementary goals, of I N T E N S I T Ytime, I N T E N S I T Yvalue, and threshold

Table 13.1 Goal model syntax

Ga: ::¼ mg | fg
mg ::¼ one_of S T R I N G_S E T ?(F R E Q) |<or � or >or � or

¼ value in [1, . . . ; n] ?(F R E Q)

fg ::¼ I N T E N S I T Y time ?(F R E Q) |I N T E N S I T Y value ?(F R E Q)
|<or � or >or � or ¼ fg |
fg and fg | fg or fg |one_of seq fg |T |⊥

I N T E N S I T Y time ::¼ Seconds |minutes | hours

I N T E N S I T Y value ::¼ kcal | km | step_count

F R E Q ::¼ T I M E S per day | T I M E S per week | T I M E S per month
T I M E S ::¼ [1, . . . ; n] 8n 2 N

316 E. M. Grua et al.

types, thus to create goals of different complexity. An example is given in
(Eq. 13.3):

Ga≔ f g � 1000 kcal 1 per day or f g > 5 km ð13:3Þ

A fitness-based goal fg of type intensity or threshold succeeds if the user performs
the suggested activities with the required time-based or value-based intensity; it fails
otherwise. Goals of type and and or represent combination of goals and they
succeed, respectively fail, as per the rule defined by the involved logical operators.
A goal one_of seq fg specifies the need for achieving one of the goals in the given
sequence. The choice of the goal to target among the available ones can depend on a
utility function or a user’s choice.

The presented goal model is open and easy to extend. If a new feature different
from mood and fitness is envisaged, it is sufficient to extend the rule related to Ga

with a further nonterminal term on the right-hand side of the rule, referring to the
new feature, along with one or more associated rules. The ease of use of the goal
model, as well as the Editor of Abstract Activities & Goals are designed as tools that
allow Domain Experts to make changes in the tailoring of the app to better meet the
interests and needs of the users. This is an important feature of the RA that allows it
to better address social sustainability.

13.7 Methodology

As introduced in Sect. 13.2, to design our RA we used the framework and the
methodology of Angelov et al. [15]. In Table 13.2 we list all questions for each
dimension (i.e., context, goals, and design), with the answers we gave whilst
designing our RA and the rationale for each answer.

In the goal dimension, the aim of our RA is providing guidelines for the design of
personalized and self-adaptive e-Health apps. To the best of our knowledge no RA of
this type exists in this domain (G1).

In the context dimension, our RA is devoted to any organization in the e-Health
domain who can benefit from it (C1). Particularly, during the design of our RA we
have used our collected experience from multiple collaborations with psychologists
and e-Health app providers to formulate the requirements needed to be addressed.
We were the sole designers of the RA (C2). The main objective was to design RA in
a way that it can utilize, in the same architecture, relevant techniques needed to
achieve both personalization and self-adaptation within this domain (C3).

In the domain dimension, the main ingredients of our RA are: software compo-
nents and their connectors, the CluStream-GT algorithm, the MAPE-loops, and the
goal model (D1). Specifically, the software components and goal model are semi-
detailed as they demonstrate implementation feasibility and a clear objective but are
not yet implemented. CluStream-GT is detailed as it is previously published and

13 Social Sustainability in the e-Health Domain via Personalized and. . . 317

tested work. The MAPE-loops only demonstrate the general communication and are
specified at an aggregated level (D2). As our RA is described, we mainly abstract
from concrete technologies (D3); in fact, the majority of the RA is currently
presented in a semi-formal manner with the exception of CluStream-GT (D4).

In Table 13.3 we present our final match of the RA with respect to the types/
variants (T/V) presented by Angelov et al. [15]. In particular, X denotes a match of
the architecture values with those in the T/V. As shown, our RA fits one of the
architecture variants identified and described by Angelov et al. (specifically variant
5.1); this demonstrates its congruence wrt its context, goals, and design. As stated in
[15], if a RA can be classified into one of their identified types it has a better chance
of being successful (i.e., “accepted by its stakeholders and used in multiple projects”
[15]).

Table 13.2 RA according to the three dimensions: context, goals, design

Dimension Values Rationale

G1: Why is it
defined?

Facilitation Our aim with this RA is to provide guide-
lines for the design of personalized and
self-adaptive e-Health apps.

#
C1: Where will
it be used?

Multiple organizations Multiple organizations within the e-Health
domain.

C2: Who
defines it?

Research centers (D), The RA was designed by the authors who
are all researchers.

User organizations (R), software
organizations (R)

Requirements for this RA were derived by
collaborations with domain experts and
e-Health app providers.

C3: When is it
defined?

Preliminary The algorithms, goal model, and MAPE-
loops do not exist in practice yet.

#
D1: What is
described?

Components, algorithms, proto-
cols, etc.

Components, CluStream-GT, MAPE-
loops, domain model.

D2: How
detailed is it
described?

Semi-detailed architecture,
detailed algorithms, and aggre-
gated protocols

The goal model and the software compo-
nents are semi-detailed, CluStream-GT is
detailed, and the MAPE-loops are
aggregated.

D3: How con-
crete is it
described?

Abstract elements At the time of design, our RA mainly
abstracts from concrete technologies.

D4: How is it
represented?

Semi-formal architecture repre-
sentation and a formal algorithm

The RA is described according to 42010,
CluStream-GT is implemented.

Table 13.3 Final match of our RA to one of the five types identified in [15]

T/V G1 C1 C2 C3 D1 D2 D3 D4

RA 5.1 X X X X X X X X

318 E. M. Grua et al.

13.8 Viewpoint Definition

This section describes the essential elements of the viewpoint defined to represent
Mobile-enabled Self-adaptive Personalized Systems (or MSaPS Viewpoint for
short).

We have used it to create the view of our RA for personalized and self-adaptive
e-Health Apps as described in Fig. 13.2. It must be noted, however, that the MSaPS
Viewpoint is not limited to reference architecture use: one could use it to design
specific e-Health mobile-enabled systems, as well as to describe mobile-enabled
systems not targeted at e-Health but involving personalization and self-adaptation.

The MSaPS Viewpoint relies on the guidelines provided in the ISO/IEC/IEEE
42010 Standard [35]. Accordingly, after a short description it frames (cf. Table 13.4)
the typical stakeholders, their concerns, the meta-model, and the related conforming
visual notation. The indication of which stakeholders may have which concerns is
further shown in Table 13.5.

13.9 Scenario-Based Evaluation

To evaluate how our RA would cover typical usage scenarios, we used the domain
expertise learnt from our industrial collaborations and have defined the example case
and associated scenarios described in this section (see Figs. 13.8 and 13.9). For each
scenario, we challenged how the RA can be used. Throughout the example we use a
hypothetical user named Connor and focus on fitness-based goals.

Scenario 1 (Fig. 13.8a). Connor downloads a fitness app that uses our proposed
RA. As a first step, he has to input some preferences about the kind of activities he
likes the most, complete a questionnaire used to understand his fitness level and give
consent for his data to be tracked and used by the app. The fitness app decides on his
first weekly schedule of activities.

This is a default schedule created by the Domain Expert, in accordance with the
information provided by Connor. The default schedule, represented as an Abstract
Activity, is adapted by the User Driven Adaptation Manager in accordance with
Connor’s preferences and supported third-party applications. This scenario high-
lights how our RA supports both user level adaptation (where the Abstract Activities
assigned to Connor are adapted by the User Driven Adaptation Manager) and
architecture level adaptation (where the Third-party Applications Manager realizes
the Concrete Activities by dynamically integrating the specific apps Connor uses on
his mobile device).

Scenario 2 (Fig. 13.8b). During the first week Connor performs the Concrete
Activities assigned to him. This first week is needed by the app to gather enough data
from Connor so that the AI Personalization can determine to which macro-cluster
Connor belongs. After successfully clustering Connor, the AI Personalization sends
an update to the User Process Handler, which is now able to send the appropriate

13 Social Sustainability in the e-Health Domain via Personalized and. . . 319

Table 13.4 Elements of the MSaPS viewpoint

Element Description

Viewpoint
description

This viewpoint captures the essential architectural and contextual elements
supporting the design of mobile-enabled self-adaptive and personalized systems

Typical
stakeholders

Domain experts, software architects, members development teams, user

Concerns C1: How to extend a mobile app with personalization and self-adaptation?
C2: How to integrate external smart objects and environmental information
flows?
C3: How to integrate Domain Expert knowledge into the mobile app’s
personalization?
C4: How to integrate third-party apps as part of the mobile app’s personalization?
C5: What are the components of MAPE loops and how do they
interact?
C6: Where is the user data stored?

Meta-model

Conforming
notation

320 E. M. Grua et al.

User Process to Connor. By querying the Third-party Applications Manager, the
Abstract Activity is adapted by the User Driven Adaptation Manager into appropri-
ate Concrete Activities. Like with the default schedule, the two Cardio entries are
converted into running, whilst the newly given Strength one is converted into weight
lifting. Furthermore, the new goal he receives is more challenging. This scenario
illustrates the same levels of adaptation as scenario 1, completed by the same
components. Additionally, the user level adaptation is further personalized by
clustering Connor and the User Process Handler sending him his cluster-related
User Process.

Scenario 3 (Fig. 13.8c). On Monday Connor goes running as suggested by the
app. Whilst he is running outdoors, both the Wi-Fi and 4G have no connection. The
Internet Connectivity Manager detects this and so decides to store the data locally.
When Connor gets back home after completing his run, the Wi-Fi connection is
reestablished. Aware of this, the Internet Connectivity Manager sends the locally
stored Collected Data to the back-end. This scenario illustrates an architectural
level adaptation—performed by the Internet Connectivity Manager by storing the
data locally and sending it to the back-end when the Internet connection is
reestablished.

Scenario 4 (Fig. 13.9a). On Wednesday as Connor is in the gym doing the
assigned weight training, the connection with the smartwatch is interrupted. The
disconnection is detected by the Smart Objects Manager that at runtime reconnects to
the smartwatch allowing the app to resume collecting the data about Connor via the
smart object. This scenario describes an example of architectural level adaptation—
performed by the Smart Objects Manager when Connor’s smartwatch is no longer
detected by the app.

Scenario 5 (Fig. 13.9b). On Friday, the Environment Driven Adaptation Manager
detects that the weather forecast predicts rain for the day. As Connor’s scheduled
Concrete Activity is running, an outdoor activity, the Environment Driven Adapta-
tion Manager needs to make a runtime adaptation. It queries the Third-party Appli-
cations Manager for Cardio activities suitable for indoors. As swimming is the best
alternative, it switches running with swimming and notifies Connor of the change,
saying that the activity will be carried out via the swim.com app. This scenario
focuses on both user level adaptation (when the Concrete Activity is adapted by the
Environment Driven Adaptation Manager), and architectural level adaptation
(when the Third-party Applications Manager accesses the third-party app).

Table 13.5 Stakeholders and related concerns

Concerns/stakeholders User Domain expert Developer Software architect

C1: Extend App w/Pers/Adapt ✓ ✓

C2: Integrate External Elements ✓ ✓

C3: Integrate ✓ ✓ ✓

C4: Integrate Apps ✓ ✓

C5: MAPE Interactions ✓

C6: User Data ✓

13 Social Sustainability in the e-Health Domain via Personalized and. . . 321

http://swim.com

Fig. 13.8 Scenarios 1–3

322 E. M. Grua et al.

Fig. 13.9 Scenarios 4–6

13 Social Sustainability in the e-Health Domain via Personalized and. . . 323

Scenario 6 (Fig. 13.9c). Connor has now finished his second week and has
successfully reached his assigned goal. In order to maintain the goal engaging and
challenging, Connor’s success, along with the success of other users, causes the AI
Personalization to create a new macro-cluster for them. As the new macro-cluster is
one that has never occurred in the system’s history, the AI Personalization Adapta-
tion deems this change significant and so notifies the Domain Expert to analyze
the new macro-cluster and associate with it a new User Process. The notified Domain
Expert makes the new User Process via the web-based Editor of Abstract Activities
& Goals. Given the users of the new macro-cluster’s success (including Connor), the
Domain Expert makes the User Process goal more challenging, increasing the
amount of kcal to 2000 and the km to 15 (as shown in the figure). This new User
Process is sent to the members of the new macro-cluster via the User Process
Handler. This scenario illustrates all three levels of adaptation: the cluster level
adaptation to the new macro-cluster performed by the AI Personalization Adapta-
tion, the user level adaptation performed by the User Driven Adaptation Manager
when adapting a new User Process, and the architectural level adaptation by
associating third-party apps to Concrete Activities performed by the Third-party
Applications Manager.

13.10 Discussion

It is important to note that our RA is extensible enough to support other domains
beyond fitness and mood. Specifically, the goal model has been designed such that
supporting an additional domain can be achieved by adding (1) a new nonterminal

Fig. 13.9 (continued)

324 E. M. Grua et al.

term in the root rule Ga and (2) one or more rules describing the goal within the new
domain. Also, many of the existing rules (e.g., F R E Q) are generic enough to be
reused by newly added rules. On the client side no changes are required, whereas the
only components which may need to be customized to a new application domain are:
(1) the Editor of Abstract Activities & Goals, so that it is tailored to the different
domain experts and the extended goal model, and (2) the Catalog of Supported
Mobile Applications, so that it now describes the interaction points with different
third-party apps.

Abstract Activities allow Domain Experts to define incremental goals spanning
over the duration of the whole User Process. In addition, User Processes are defined
at the cluster level (potentially including thousands of users) and can cover large
time spans (e.g., weeks or months). Those features make the operation of the RA
sustainable from the perspective of Domain Experts, who are not required to
frequently intervene for defining new goals or User Processes. Furthermore, these
features make the apps adopting our RA socially sustainable on multiple levels. The
cluster-level-defined User Processes allow for tailoring to a “community” of similar
users, empowering them to achieve a better life. On an individual level, the app fine-
tunes the User Processes to better suit the user’s needs and interests; this allows the
individual user to better achieve their goals both in the immediate and in the systemic
(as defined in [36]). Lastly, these features allow for the larger group of users utilizing
this RA to reach the same level of health benefits, as the interventions have been
specifically tailored for them for this goal.

Through the conversion from Activity Categories to Concrete Activities, which
takes place during the dynamic Abstract Activities refinement, we accommodate
both Type-to-Type adaptation (e.g., from the Cardio Activity Category to the
Running Concrete Activity) and the most common Type-to-Instance adaptation
(e.g., by using the Strava mobile app as an instance of the Running Concrete
Activity). Similarly, a Type-to-Type adaptation is reported by Calinescu et al. [37]
presenting an approach where elements are replaced with other elements providing
the same functionality but showing a superior quality to deal with changing condi-
tions (e.g., dynamic replacement of service instances in service-based systems). In
our approach, however, we go beyond, by replacing activities with others providing
different functionality to deal with changing conditions. To the best of our knowl-
edge, this adaptation type is uncommon in self-adaptive architectures, despite quite
helpful.

The components of the RA running on the smartphone can be deployed in two
different ways, each leading to a different business case. Firstly, those components
can be integrated into an existing e-Health app (e.g., Endomondo3 for sports
tracking) so as to provide personalization and self-adaptation capabilities to its
services. In this case the development team of the app just needs to deploy the
client-side components of the RA as a third-party library, suitably integrate the
original app with the added library, and launch the server-side components. The

3https://www.endomondo.com/

13 Social Sustainability in the e-Health Domain via Personalized and. . . 325

https://www.endomondo.com/

second business case regards the creation of a new meta-app integrating the services
of third-party apps, similarly to what apps like IFTTT4 do. In this case, the meta-app
makes an extensive usage of the Third-party Applications Manager component and
orchestrates the execution of the other apps already installed on the user device.

Finally, we are aware that our RA is responsible for managing highly sensitive
user data, which may raise severe privacy concerns. In order to mitigate potential
privacy threats, the communication between the mobile app and the back-end is
TLS-encrypted and the payload of push notifications is encrypted as well, e.g., by
using the Capillary Project [38] for Android apps, which supports state-of-the-art
encryption algorithms, such as RSA and Web Push encryption. Eventually, we
highlight that, according to the privacy level required by the Development Team,
the components running in the back-end can be deployed either on premises or on
the Cloud, e.g., by building on public Cloud services like Amazon AWS and
executing them behind additional authentication and authorization layers.

13.11 Conclusions and Future Work

In this paper we presented a RA for e-Health mobile apps. Its goal is to combine
AI-based personalization and self-adaptation. The RA achieves self-adaptation on
three levels: (1) adaptation to the users and their environment, (2) adaptation to smart
objects and third-party applications, and (3) adaptation according to the data of the
AI-based personalization, ensuring that users receive personalized activities that
evolve with the users’ runtime changes in behavior. This work emphasizes how
personalization and self-adaptation within the e-Health domain can be beneficial in
addressing social sustainability. By tailoring user interventions we empower mobile
app developers to better help their users in achieving better physical and mental
health; this leads to increased support for the community of people who suffer from
mental and physical illness and are working on increasing their health. The RA
therefore achieves what is defined as the core principal of social sustainability in the
realm of software-intensive systems. As future work we are realizing a prototype
implementing the RA and designing a controlled experiment to evaluate its effects
on user behavior and performance at runtime.

References

1. Williams PAH, McCauley V (2013) A rapidly moving target: conformance with e-health
standards for mobile computing. In: 2nd Australian eHealth Informatics and Security
Conference

4https://ifttt.com/

326 E. M. Grua et al.

https://ifttt.com/

2. Global Industry Analysts, I (2019) mhealth (mobile health) services – market analysis, trends,
and forecasts. https://tinyurl.com/rbvdtc3

3. PaschouM, Sakkopoulos E, Sourla E, Tsakalidis A (2013) Health internet of things: metrics and
methods for efficient data transfer. Simul Model Pract Theory 34:186–199

4. Fling B (2009) Mobile design and development: Practical concepts and techniques for creating
mobile sites and Web apps. O’Reilly Media, Inc.

5. Fan H, Poole MS (2006) What is personalization? Perspectives on the design and implemen-
tation of personalization in information systems. J Organ Comput Electron Comm 16
(3–4):179–202

6. Grua EM, Malavolta I, Lago P (2019) Self-adaptation in mobile apps: a systematic literature
study. In: IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). pp 51–62

7. Weyns D (2017) Software engineering of self-adaptive systems: an organised tour and future
challenges. In: Handbook of Software Engineering

8. Yang Z, Li Z, Jin Z, Chen Y (2014) A systematic literature review of requirements modeling
and analysis for self-adaptive systems. In: International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, pp 55–71

9. IBM (2006) An architectural blueprint for autonomic computing. Technical report. IBM
10. Grua EM, Hoogendoorn M, Malavolta I, Lago P, Eiben A (2019) Clustream-GT: Online

clustering for personalization in the health domain. In: IEEE/WIC/ACM International Confer-
ence on Web Intelligence. ACM, pp 270–275

11. Grua EM, De Sanctis M, Lago P (2020) A reference architecture for personalized and self-
adaptive e-health apps. In: Software Architecture: 14th European Conference, ECSA 2020
Tracks and Workshops, L’Aquila, Italy, 14–18 September 2020, Proceedings. Springer, pp
195–209

12. Volpato T, Oliveira BRN, Garcés L, Capilla R, Nakagawa EY (2017) Two perspectives on
reference architecture sustainability. In: Proceedings of the 11th European Conference on
Software Architecture: Companion. ACM, pp 188–194

13. Kim KJ, Ahn H (2004) Using a clustering genetic algorithm to support customer segmentation
for personalized recommender systems. In: International Conference on AI, Simulation, and
Planning in High Autonomy Systems. Springer, pp 409–415

14. Grua EM, Hoogendoorn M (2018) Exploring clustering techniques for effective reinforcement
learning based personalization for health and wellbeing. In: 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, pp 813–820

15. Angelov S, Grefen P, Greefhorst D (2012) A framework for analysis and design of software
reference architectures. Inf Softw Technol 54(4)

16. Lago P, Verdecchia R, Fernandez NC, Rahmadian E, Sturm J, van Nijnanten T, Bosma R,
Debuysscher C, Ricardo P (2020) Designing for sustainability: lessons learned from four
industrial projects. In: Environmental Informatics – Sustainability aware digital twins for
urban smart environments (EnviroInfo). Springer

17. (2019) The industrial internet of things volume G1: reference architecture. Industrial Internet
Consortium. https://bit.ly/2talimM

18. Bassi A, Bauer M, Fiedler M, Kramp T, van Kranenburg R, Lange S, Meissner S (2016)
Enabling things to talk: designing IoT solutions with the IoT architectural reference model, 1st
edn. Springer

19. Bauer M et al (2013) IoT reference architecture. In: enabling things to talk: designing IoT
solutions with the IoT architectural reference model

20. Fremantle P (2015) A reference architecture for the internet of things. WSO2 White paper.
https://bit.ly/2RMzCft

21. Feljan AV, Mohalik SK, Jayaraman MB, Badrinath R (2015) SOA-PE: a service-oriented
architecture for planning and execution in cyber-physical systems. In: 2015 International
Conference on Smart Sensors and Systems (IC-SSS). pp 1–6

13 Social Sustainability in the e-Health Domain via Personalized and. . . 327

https://tinyurl.com/rbvdtc3
https://bit.ly/2talimM
https://bit.ly/2RMzCft

22. Mohalik SK, Narendra NC, Badrinath R, Le D (2017) Adaptive service-oriented architectures
for cyber physical systems. In: IEEE Symposium on Service-Oriented System Engineering,
SOSE. pp 57–62

23. de Morais Barroca Filho I, Junior GSA, Batista TV (2019) Extending and instantiating a
software reference architecture for iot-based healthcare applications. In: Int. Conf. on Compu-
tational Science and Its Applications. pp 203–218

24. Mizouni R, Matar MA, Al Mahmoud Z, Alzahmi S, Salah A (2014) A framework for context-
aware self-adaptive mobile applications SPL. Expert Syst Applic 41(16):7549–7564

25. Lopez FS, Condori-Fernández N (2016) Design of an adaptive persuasive mobile application
for stimulating the medication adherence. In: International Conference on Intelligent Technol-
ogies for Interactive Entertainment. Springer, pp 99–105

26. Kim HK (2013) Architecture for adaptive mobile applications. Int J Bio-Sci Bio-Technol 5
(5):197–210

27. Bucchiarone A, Lluch-Lafuente A, Marconi A, Pistore M (2009) A formalisation of adaptable
pervasive flows. In: WS-FM. pp 61–75

28. Shiffman S, Stone AA, Hufford MR (2008) Ecological momentary assessment. Annu Rev Clin
Psychol 4:1–32

29. Gil M, Pelechano V, Fons J, Albert M (2016) Designing the human in the loop of self-adaptive
systems. In: International Conference on Ubiquitous Computing and Ambient Intelligence.
Springer, pp 437–449

30. Dal Lago U, Pistore M, Traverso P (2002) Planning with a language for extended goals. In:
Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artificial Intelligence. pp 447–454

31. Mylopoulos J, Chung L, Nixon BA (1992) Representing and using nonfunctional requirements:
a process-oriented approach. IEEE Trans Softw Eng 18(6):483–497

32. Santos M, Gralha C, Goulão M, Araújo J (2018) Increasing the semantic transparency of the
KAOS goal model concrete syntax. In: Conceptual Modeling – 37th International Conference,
ER. pp 424–439

33. Morandini M, Penserini L, Perini A (2008) Towards goal-oriented development of self-adaptive
systems. In: 2008 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS. pp 9–16

34. Qian W, Peng X, Wang H, Mylopoulos J, Zheng J, Zhao W (2018) MobiGoal: flexible
achievement of personal goals for mobile users. IEEE Trans Serv Comput 11(2):384–398

35. International Organization for Standardization (2011) ISO/IEC/IEEE 42010:2011 – Systems
and Software Engineering – Architecture Description. Technical report. International Organi-
zation for Standardization (ISO)

36. Lago P (2019) Architecture design decision maps for software sustainability. In: 2019 IEEE/
ACM 41st International Conference on Software Engineering: Software Engineering in Society
(ICSE-SEIS). IEEE, pp 61–64

37. Calinescu R, Weyns D, Gerasimou S, Iftikhar MU, Habli I, Kelly T (2018) Engineering
trustworthy self-adaptive software with dynamic assurance cases. IEEE Trans Softw Eng 44
(11):1039–1069

38. Hogben G, Perera M (2018) Project capillary: end-to-end encryption for push messaging,
simplified. https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-
encryption.html?m¼1

328 E. M. Grua et al.

https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html?m=1
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html?m=1
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html?m=1

Chapter 14
Human Sustainability in Software
Development

Vijanti Ramautar, Sietse Overbeek, and Sergio España

Abstract Human thriving and outsourcing can go hand in hand. This research aims
to outline outsourcing approaches for facilitating human thriving by conducting a
semi-systematic literature review. We identified three outsourcing approaches that
consider corporate social responsibility: impact sourcing, ethical outsourcing, and
Fair Trade Software. The aim of this research is to understand the effect of these
approaches on marginalized people, and the benefits and challenges for client
organizations. The following main conclusions are drawn. First, impact sourcing
provides marginalized people with the opportunity to generate an income, to develop
themselves professionally, and to build a social circle. In some cases it can generate
harmful impacts such as stress. Second, the benefits of impact sourcing for client
organizations compared to traditional outsourcing are reduced costs, reduced
employee turnover, improved corporate social responsibility, and new chances for
growth. Third, ethical outsourcing protects brand image and can improve stake-
holder management. However, the extra investments required may reduce compet-
itiveness. Last, Fair Trade Software is a relatively new model, and therefore the
benefits and challenges have yet to be assessed. A potential benefit is capacity
building by knowledge transfer and network strengthening. Currently some of the
biggest challenges are the lack of audits, caused by a lack of resources, and
increasing the adoption rate of this outsourcing model.

14.1 Introduction

Human thriving at work is indicated by the joint experience of vitality and learning at
work [1]. Despite the fact that traditional outsourcing often attempts to maximize
profits while neglecting human needs, many initiatives show that human thriving
and outsourcing can go hand in hand. This research aims to outline outsourcing

V. Ramautar (*) · S. Overbeek · S. España
Department of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands
e-mail: v.d.ramautar@uu.nl; s.j.overbeek@uu.nl; s.espana@uu.nl

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_14

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_14&domain=pdf
mailto:v.d.ramautar@uu.nl
mailto:s.j.overbeek@uu.nl
mailto:s.espana@uu.nl
https://doi.org/10.1007/978-3-030-69970-3_14#DOI

approaches for facilitating human thriving. The global outsourcing market is grow-
ing, and increasingly work is outsourced to outsourcing suppliers who employ
marginalized people [2]. Marginalized people are defined as disadvantaged individ-
uals who have few opportunities for employment [3]. Examples of marginalized
people are those who face discrimination, those who are poor, and those who live in
rural areas [4]. The education level can vary from no education to a university
diploma [5]. Therefore, labor that requires few skills (e.g., entering data) can be
outsourced to marginalized people, as well as labor that requires advanced skills
(e.g., developing software) [5].

There are many motivations for companies to outsource. Some potential benefits
are cost savings, access to new expertise and skills, and the chance to focus on core
capabilities [6]. Outsourcing companies, which are often referred to as “client
organizations,” might not always reap the benefits of outsourcing. Traditional
outsourcing, meaning outsourcing practices that do not consider corporate social
responsibility, focuses on maximizing profits. High staff turnover and poor market-
ing effect caused by negative publicity about working conditions can result in an
increase of the total costs. Therefore, maximizing profits by means of traditional
outsourcing might not be the best strategy [5]. The inability to reach the desired goal
has led to the development of more ethically and socially responsible outsourcing
approaches. These new approaches implement corporate social responsibility (CSR).
CSR is a theory that emphasizes that companies should implement policies and
practices toward the good of society [7]. One of these CSR-considering outsourcing
approaches is impact sourcing. It focuses on the training and hiring of marginalized
people [3]. Another approach is ethical outsourcing, in which work standards are
imposed on the outsourcing supplier (sometimes referred to as the providing orga-
nization) [5, 8]. These new business models of outsourcing can provide marginalized
people numerous benefits: an increase in income, the chance to learn new skills, and
an increase in social status [5]. These benefits can contribute to human thriving at
work. Client organizations can benefit from incorporating ethically and socially
responsible approaches as well. Impact sourcing allows client organizations to
maintain similar quality at reduced cost [9]. This is essential since client organiza-
tions, even those interested in impact sourcing, generally base their decision-making
regarding outsourcing on quality and cost [3, 5, 6, 9]. Therefore, we can conclude
that incorporating CSR in outsourcing can be beneficial to both marginalized people
and client organizations. Corporate social responsibility is becoming more important
in outsourcing [10], and impact sourcing accounted for 12% of the outsourcing
market in 2014 [2]. The value that incorporating CSR in outsourcing can provide to
both marginalized people and client organizations, as well as the rise of incorporat-
ing CSR in outsourcing, warrants an improved and comprehensive understanding of
the different ways in which it can benefit marginalized people and client
organizations.

To discover how client organizations can successfully implement corporate social
responsibility in their information technology outsourcing while enabling human
thriving of marginalized people, a semi-systematic literature review is conducted.
First, research and study selection criteria are identified. The study quality is then

330 V. Ramautar et al.

assessed by tracing the findings back to the research method. If this cannot be done
or if information on the method is lacking, the study is not included. Basic infor-
mation on the study is collected and the findings from the included research are
coded in NVivo. Three main nodes are defined to code the findings: efficacy,
benefits, and challenges. Subnodes are created to group related information from
different studies. The findings are then grouped and compared. Lastly, overviews of
the key findings, the focus of the research (either marginalized people or clients), and
the method of publication of the study are created.

The research performed has provided additional proof and detail on the efficacy
for marginalized people and the benefits for client organizations. Moreover, we
identified that harmful effects on marginalized people can also exist, in contrast to
prior literature [11, 12], which states that outsourcing to marginalized people is a
win-win situation for both marginalized people and client organizations. We dis-
covered three outsourcing approaches that consider CSR: impact sourcing, ethical
outsourcing, and Fair Trade Software. Each approach is elaborated upon by describ-
ing the benefits and challenges. Additionally the efficacy of the first approach is
discussed. For the remaining two approaches, no literature on the efficacy was
found. In the context of this work, efficacy is part of the Soft Systems Methodology
(SSM), which offers a structured way to deal with complex problems that involve
different stakeholders [13]. The SSM proposes a set of three variables to measure the
performance of transformational methods [13], like impact sourcing and ethical
outsourcing. The three variables proposed in the SMM are efficacy, which considers
whether or not a result is produced by the method; efficiency, which considers the
resources required to produce a result; and effectiveness, which considers the degree
to which long-term goals are achieved by the method [13]. An initial survey of
impact sourcing and ethical outsourcing literature indicated that efficiency and
effectiveness are not reported, and thus, these variables are excluded from this
research. To understand if there is a business case for client organizations to invest
in impact sourcing, ethical outsourcing, or Fair Trade Software, the benefits and
challenges for both approaches are determined.

The following sections will discuss the results from the semi-systematic literature
review. Section 14.2 identifies the outsourcing approaches that will be discussed
throughout this work. In Sect. 14.3 the efficacy, benefits, and challenges related to
impact sourcing are stated. The positive and negative aspects of ethical outsourcing
are stated in Sect. 14.4. The notion of Fair Trade Software and barriers for applying it
can be found in Sect. 14.5. Finally, the limitations, future research, and conclusion
are stated in Sect. 14.6.

14.2 Outsourcing Approaches That Consider CSR

Based on the literature found, we identified three outsourcing approaches that
consider CSR.

14 Human Sustainability in Software Development 331

• Impact sourcing, sometimes referred to as “social outsourcing” or “developmen-
tal outsourcing,” is the act of outsourcing to marginalized people who would
otherwise have difficulty finding employment [3]. These marginalized people are
typically hired and trained by a social enterprise (i.e., an enterprise that has social
aims, as well as business aims) [14]. An important type of impact sourcing is rural
outsourcing. This is the case when work is outsourced from urban to rural areas
[15]. For client organizations outsourcing to rural areas is often cheaper because
the average salary in rural labor pools is typically lower than in urban labor pools.
This form of impact sourcing increases the employment opportunities for mar-
ginalized people in rural areas [16].

• Ethical outsourcing, also referred to as “socially responsible outsourcing,” occurs
when the client organization imposes minimum social and environmental stan-
dards on the organization supplying the outsourced service [5, 8]. Successful
implementation of such standards ensures compliance to ethical values and pre-
vents unethical practices, such as child labor, slave wages, and workplace abuse.
Setting and pursuing these standards mitigates risks associated with a bad repu-
tation as a result of negative CSR [8]. We differentiate between the terms “ethical
outsourcing” and “ethical sourcing.” This research only discusses ethical
outsourcing, since ethical sourcing also encompasses finding suppliers for
goods, in which case sourcing relates more to procurement rather than
outsourcing.

• Fair Trade Software is a form of software development collaboration with teams
from both developing and developed countries with a focus on the transfer of
knowledge from the teams from developed countries to the teams from develop-
ing countries [17, 18]. It is promoted by the Fair Trade Software Foundation
(FTSF), a not-for-profit organization whose main value proposition is to ensure
that learning and knowledge transfer processes are put in place to stimulate the
knowledge economy of developing countries. One study supports this benefit by
observing that software development teams in Kenya were able to learn skills
such as project management from more experienced, Western software develop-
ment teams [19].

The following sections deepen into each of the approaches by explaining them
more elaborately and analyzing their effects on marginalized people and client
organizations.

14.3 Impact Sourcing: Efficacy, Benefits, and Challenges

This section will discuss the efficacy of impact sourcing for marginalized people and
the benefits and challenges for client organizations. The results of the literature study
on impact sourcing are summarized in Figs. 14.1, 14.2, and 14.3.

332 V. Ramautar et al.

14.3.1 Efficacy of Impact Sourcing for Marginalized People

Impact sourcing has a positive effect on employment opportunities of marginalized
people. Their newfound employment comes with (an increase in) income [14, 20–
28], an increase in income stability [14, 23, 28], and an increase in savings [14, 23,
25]. This income is, for instance, spent on education, medical supplies and services,
groceries, debt payments, and/or expenses to support family members [23, 24, 27,

Efficacy

Income

Income stability

Savings

Personal
development

Self-efficacy

Time

Household /
community

position
Confidence

Network
building

Marital issues
Female

employment
rate

Stress

Economy

Employment

Driver
Income
Development

Network strengthening + = increase in
Female participation – =decrease in
Harmful

+

+ +

+

+

+

+

+

++

+ +

++

+

Fig. 14.1 The efficacy of impact sourcing to marginalized people

14 Human Sustainability in Software Development 333

28]. An additional benefit of an increase in income can be the improvement of the
economy within a community [25], since more money can be spent and invested.
Another positive effect of impact sourcing is the possibility for marginalized people
to develop themselves and build self-efficacy. Employment affects the self-efficacy
of marginalized people mainly through job experience and training given on the job
[14, 20–24, 26–30]. Examples of training on the job are ICT training [14], language
training [26], and soft skills training [14, 29, 31]. This ability to learn on the job
contributes to human thriving at work. Apart from training on the job, employees can
spend their (increase in) income on education, to develop more skills and improve
job prospects [21, 32]. Income in general is also found to positively affect self-
efficacy as it creates financial independence [24, 27]. Gill and Tsai performed a study
that focused on the employment of traumatized people. These people received
special training to help cope with their shame and lack of sense of self-worth

Benefits

Cost

Employee
attrition

Achieved CSR
objectives

Societal impact

Unethical
business
practices

Untapped
labour pool
exploration

Impact sourcing

Accomplished
growth

strategies

Workforce

Driver
Cost
Employee turnover

CSR + = increase in
Growth – = decrease in

–

–

+

+

+

+

+

–

Fig. 14.2 The benefits of impact sourcing for client organizations

334 V. Ramautar et al.

Challenges

Lack of labour
skills

Low productivity

Poor HRM

Absenteeism

Insufficient
energy and

communication

Insufficient
transportation
infrastructre

Insufficient
logistic

infrastructure

Insufficient
social

infrastructure

Political
hindering

Political
instability

Cultural
differences

Business
language
barriers

Government
investments in

education

Government
investments in

public
infrastructure

Cost

Learn others'
business culture

Labour force
Infrastructure
Potential solutions

Political + = increase in
Cultural – = decrease in

–

–

+

+

+

+

–

–

–

–

–

–

Fig. 14.3 The challenges of impact sourcing for client organizations

14 Human Sustainability in Software Development 335

[29]. Lacity et al. performed a study focusing on prison inmates. The prison inmates
stated that being employed prevented them from performing unlawful conduct [24].

Due to their newly found employment, marginalized people may be perceived as
more powerful or receive a more prominent position within their home or commu-
nity. More convenient working locations can cause them to be able to spend more
time at home, and build new social and professional networks or extend their already
existing networks. At their job marginalized people are able to form relationships
with coworkers, which in turn helps them develop a social and professional network
[20, 23, 24, 33]. Within their own household, employees may start to have a more
authoritative position due to the fact that they generate income [14, 23,
26]. Employees may also become a source of inspiration or pride for their family
members [23, 24] and people within their community [14, 23, 24]. Three studies
found that newly formed relationships and improved household positions led to
more confidence and self-efficacy [14, 23, 26].

In some cases employment has harmful effects on marginalized people. For
instance, when marginalized women start earning more than their husbands or start
making money in general, it can lead to marital problems. This is due to the fact that
in some cultures men are expected to be the most important or sole income provider
[26, 34]. In some cases employment causes an increase in stress and other negative
psychological and behavioral effects for marginalized people. This can be caused by
inexperience in their new roles and increase in responsibilities. Not being able to
effectively communicate these difficulties to management worsens the problems
[23, 34, 35]. Sandeep and Ravishankar mention a case where marginalized people
struggle with the differences in cultures and values between their own community
and the workplace [33]. However, this problem was eventually alleviated by mar-
ginalized people introducing their family to their new working environment and to
their coworkers. In two cases employees could only work night shifts [34, 35], and
this may lead to resistance from other members of the household [35].

The efficacy of impact sourcing to marginalized people is shown in Fig. 14.1. The
figure is created based on the factors and effects found in the literature study on the
efficacy of impact sourcing. The newly found employment of marginalized people
serves as a driver for factors that determine the efficacy. The new job can create an
increase in income and saving and the stability thereof. These increases in income-
related factors can lead to a stronger economy. The new job can also contribute to
personal development and self-efficacy. More convenient working locations can
save marginalized people time, which they can spend on building a network. Their
new network can help build confidence and contribute to self-efficacy. Their new job
can also help marginalized people obtain a position with more authority, which can
also contribute to self-efficacy. Employing marginalized women increases the
female employment rate; the downside of this is that the number of marital issues
can increase due to the employment of women. Another harmful effect can occur
when an increase in employment results in an increase in stress.

336 V. Ramautar et al.

14.3.2 Benefits of Impact Sourcing for Clients

Impact sourcing can reduce the costs of outsourcing [2, 3, 9, 31, 36, 37]. A study
conducted by Everest Group compared the costs between impact sourcing and
traditional outsourcing in the same country and found that impact sourcing is
cheaper. Cost savings can range wildly from a few percentages up to 40%
[2]. This same study compared the costs between an organization impact sourcing
and an organization outsourcing to the USA or the UK. The results were cost savings
varying from 70% to almost 90% [2]. In impact sourcing, several cost items can turn
out to be lower, for example, labor costs, technology costs, operation costs,
recruiting costs [9], costs related to employee attrition and turnover, and location
costs [2]. When client organizations engage in impact sourcing, outsourcing sup-
pliers were found to have low employee attrition, with four studies citing lower
employee attrition in comparison to traditional outsourcing [2, 9, 20, 25]. However,
these studies do not provide a clear explanation of why these lower attrition and
turnover rates occur. Two studies provide possible explanations: strong family and
community ties [2, 25], education opportunities [2], good relationship with the
employer [2], and skills matching the job requirements [2].

Impact sourcing can help companies achieve CSR objectives (e.g., increasing
supplier diversity) [2, 3, 9] and create a societal impact, since providing work helps
increase the livelihood of both marginalized people and the communities they are a
part of [2, 5, 9]. It can also prevent unethical business practices, such as employment
under poor working conditions [5], and it allows access to a previously untapped
labor pool [2, 9]. This can be used to help achieve growth strategies [2, 9] or
complement workforce in case of talent shortages [31].

Figure 14.2 shows an overview of the benefits that client organizations can obtain
by impact sourcing. In the figure impact sourcing serves as a driver for lower costs,
lower employee attrition, more achieved CSR objectives, better societal impact, less
unethical business practices, and more access to untapped labor pools. The latter can
help organizations accomplish growth strategies and increase their workforce.

14.3.3 Challenges of Impact Sourcing for Clients

Several possible challenges were identified relating to the labor force, namely, not
enough skilled labor [9, 15, 23, 30, 38–41], low productivity [15, 39], poor human
resource management [15], and absenteeism [3, 23, 42]. Absenteeism can be caused
by inadequate transport infrastructure or social services, like day care [3]. Absentee-
ism can also occur when the income earned from impact sourcing is not the primary
source of income [42]. In this case marginalized people may prioritize the activity
generation of the primary income over the employment resulting from impact
sourcing.

14 Human Sustainability in Software Development 337

Another challenge can be inadequate public infrastructure. Multiple studies
identified energy and telecommunication infrastructure, for instance, electricity
and Internet connectivity [9, 15, 30, 38, 43, 44], transportation infrastructure that
allows travelling from home to the working place [15, 23, 43, 44], logistic infra-
structure (e.g., for importing raw materials) [39], and social infrastructure (e.g.,
education and day care) [43] as insufficient. This is especially a problem in the
more rural areas [43]. When public infrastructure is insufficient, higher costs can be
expected to compensate for this deficiency, for example, because transportation has
to be provided by the client or impact sourcing service providers (ISSP) [23]. In
some places public infrastructure is being improved upon, for instance, in
Malaysia [42].

Governments can stimulate or hinder impact sourcing attractiveness. The gov-
ernments of low-income countries can address challenges for client organizations by
enforcing policies. The public infrastructure challenge, for instance, can be reduced
if governments invest in electricity supply and telecommunications [15, 23, 25, 42,
45] and government expenditure on education can reduce challenges related to the
labor force [23, 43, 45]. Additionally, governments can stimulate outsourcing by
providing tax benefits and introducing import/export policies [15, 25]. The political
climate can also pose a challenge for client organizations. This is the case when
governments fail to stimulate the outsourcing industry and decide to solely focus on
regional production or when political instability results in uncertainty regarding the
outsourcing industry [9, 15, 46]. Dissimilar cultures and unfamiliarity with the
business language [15] or a mutual lack of respect for the different cultures and
differences [43] can result in problems. One proposed solution is to exploit any
similarities in culture and learn about the other country’s business culture [15]. In
one study the observation was made that understanding and respecting the culture of
the marginalized people played an important role for rural impact sourcers in
positioning themselves within the community [25].

Figure 14.3 shows the challenges that client organizations might have to over-
come to impact sourcing successfully. It also shows potential solutions for some of
these challenges. However, we were not able to identify potential solutions for all
challenges. There are challenges related to labor force, infrastructure, politics, and
culture. Certain challenges can have a strengthening effect on other challenges.
Insufficient transportation and social infrastructure can have a strengthening effect
on the level of absenteeism, for instance, because employees cannot go to work by
public transport. Insufficient transportation infrastructure can also result in extra
costs for the client organizations because they might have to arrange and pay for the
transport of their employees.

338 V. Ramautar et al.

14.4 Ethical Outsourcing: Benefits and Challenges

In this section the benefits and challenges of ethical outsourcing are discussed.
Ethical outsourcing can result in multiple benefits for client organization, such as a
positive brand image and better stakeholder interest management. We also discov-
ered that there is a scenario in which ethical outsourcing can result in a competitive
disadvantage for client organizations investing in this practice. These benefits and
challenges are elaborated upon in the following subsections.

14.4.1 Benefits of Ethical Outsourcing for Clients

Two studies state that ethical outsourcing can create a positive brand image, which
subsequently could increase the customer’s willingness to purchase products from a
particular company [47, 48]. A third study focuses on the absence of ethical
outsourcing. In this study some interviewees stated that they would stop purchasing
products from a company involved in a scandal [49]. Millennials were interviewed to
gain insights on outsourcing scandals concerning Apple. Following a scandal, 85%
of the millennials said they would continue purchasing Apple products versus 15%
saying they would not. The rationale millennials provided to continue using Apple
products are product loyalty and lack of competitors with good outsourcing prac-
tices. All interviewed millennials stated that they want the unethical practices to be
changed though [49]. Two studies discuss the positive effects of ethical outsourcing
on stakeholder interest management. Babin and Nicholson argue that newer gener-
ations of employees are more concerned with a company’s CSR activities [47]. Park
and Hollinshead argue that shareholders and senior management have interests in
CSR [48].

14.4.2 Challenges of Ethical Outsourcing for Clients

Ang states that client organizations might be hesitant to engage in ethical
outsourcing, due to the fact that investments in the provider’s CSR capabilities can
benefit other clients when they purchase goods and/or services from the same
provider. This allows competitors to gain advantage based on the ethical methods
of production without additional costs [50]. This scenario is shown in Fig. 14.4. Ang
suggests that creating multilateral contract (i.e., contracts that introduce more than
two stakeholders) can mitigate the risk of competitive disadvantage caused by
ethical sourcing [50].

To summarize, ethical outsourcing can protect the brand, help facilitate stake-
holder management, and decrease competitiveness.

14 Human Sustainability in Software Development 339

14.5 Fair Trade Software: Benefits and Challenges

The concept of Fair Trade Software is fairly new, and there are few companies
working according to this concept. This section will explain what Fair Trade
Software entails, why the model was created, and what the challenges in its appli-
cation are. Only a few scientific sources discuss Fair Trade Software. We collected
more practical insights by means of an interview. Like other Fair Trade models, Fair
Trade Software is a movement formed by individuals with a desire to help others in
developing countries. Initially formed in 2011 as a form of impact sourcing, over
time the model has evolved into its current form. The Fair Trade Software models
aim to deliver high-quality and cost-effective software for customers while helping

Client X

Client X

Client Y

Client Z

$

$

$

$

$

Provider A
without CSR practices

Provider A
without CSR practices

Provider A
with CSR practices

Provider A
with CSR practices

Ethical outsourcing

Money transfer

Goods/services transfer

becomes

1

2

3

Fig. 14.4 (1) Client X invests in Provider A, so Provider A can incorporate CSR practices.
(2) Provider A becomes a provider with CSR practices. (3) Clients X, Y, and Z engage in ethical
outsourcing with provider A. Clients Y and Z have not made any CSR-related investments in
Provider A, but thanks to the investments made by Client X, they can reap the benefits from ethical
outsourcing. Therefore, Clients Y and Z have a competitive advantage over Client X

340 V. Ramautar et al.

to grow and develop knowledge economies in developing countries [19]. The latter
is done by knowledge transfer from teams in developed countries to teams in
developing countries. To reach this goal learning and knowledge transfer processes
have to be introduced. To further develop the Fair Trade Software model and to
stimulate its use, the Fair Trade Software Foundation (FTSF) was founded. The
FTSF creates and sustains partnerships between software companies in developed
and developing countries, oversees companies using the model, and engages with
other stakeholders.

14.5.1 Benefits of Fair Trade Software

There is limited data available to assess the benefits of Fair Trade Software. One of
the potential benefits of the Fair Trade Software model, for teams in developing
countries, is capacity building. Capacity building is the process by which individuals
and organizations obtain, improve, and retain the skills, knowledge, tools, equip-
ment, and other resources needed to do their jobs competently. It allows individuals
and organizations to perform at a greater capacity [51]. Since knowledge and skill
transfer lays at the basis of the Fair Trade Software model, this presumably is one of
the benefits of the model. No literature was found on the benefits for teams in
developed countries, but based on an interview with the founder of the Fair Trade
Software Foundation, Andy Haxby, we discovered that the benefits for teams in
developed countries are motivation and self-satisfaction for individuals and market-
ing opportunities and brand enhancement for the companies they work for.

14.5.2 Challenges of Fair Trade Software

To develop Fair Trade Software, teams in developed and developing countries have
to work together according to the same development method. A key skill that is often
missing in developing countries is knowledge on working Agile. Working Agile has
proven to be an effective development method. In a study performed by Serrador and
Pinto, empirical evidence was collected to prove the success of working Agile. The
results mentioned that in 6% of the 1386 cases, the way of working was completely
Agile, and in 65% of the cases, there were some Agile elements. This study shows
that the higher the level of Agile working (or another iterative approach), the higher
the reported project success. The Agile methodology also scored significantly higher
on the overall project success, efficiency, and stakeholder success [52]. Budzier and
Flyvbjerg found that Agile methods also improve the delivery time of the
product [53].

To ensure IT companies in Kenya can reap the benefits of working Agile, the
FTSF transfers their knowledge on Agile project management methods [19]. To
successfully execute an Agile project, 25–33% of the project team has to be

14 Human Sustainability in Software Development 341

experienced with the Agile methodology [54]. Experienced team members deliver
the most added value in Agile projects [55]. So, to successfully communicate and
develop products, the team from the developing country needs to collaborate with a
team member that is experienced in working Agile. Haxby and Lekhi attest this by
stating that it is almost impossible to teach individuals about Agile methods without
them being immersed into already existing and experienced teams [19].

In addition to the challenges found in literature, we discovered challenges during
the interview with Haxby. The most pressing issues Haxby mentioned are the limited
resources within the FTSF. The limited time and people power create a challenge to
effectively audit organizations. For instance, if the FSTF helps an organization
obtain a grant, the means to test and audit the people and companies involved in
the project are too weak. Currently, there is no auditing body. Haxby also states that
it is difficult to sell Fair Trade Software, mainly because impact sourcing models are
hard to sell. Although FTS is different from impact sourcing, they share many of the
same difficulties and challenges. The difficulties and challenges are elaborated upon
in Sect. 14.3.3. Additionally, some organizations do not wish to be associated with
the Fair Trade brand. This is often the case for organizations that operate in industry
sectors typically considered socially or environmentally unsustainable (e.g., the
petroleum industry), because the FT brand does not fit with their customer demo-
graphic. This is an obstacle in making the model more widely adopted. The last issue
Haxby mentioned is the ineffectiveness of networks of responsible enterprises, in
relation to supporting Fair Trade Software. Networking events for responsible
enterprises, which are supposed to result in more support for models such as Fair
Trade Software, often attract people who cannot support these models adequately.
Fair Trade Software does not yet mobilize the desired partnerships and resources.

14.5.3 Challenges of Cross-Border Development

In addition to the challenges that relate to Fair Trade Software, specifically we
identify four major challenges of cross-border development. These challenges
apply for Fair Trade Software as well, since it is a specific form of cross-border
development. A common problem of cross-border software development is that
developers living and working in different locations sometimes use different soft-
ware [56]. This can be due to the fact that newer versions of software are not
accessible in some countries because of export regulations [57]. If the team members
in cross-border locations use different data repositories and these repositories are not
compatible with each other, this can lead to problems regarding data transfer
[58]. Moreover, developers often do not know each other on a personal level. A
good personal and working relationship is essential to the success of a project
[59]. Insufficient cooperation because of a lack of personal relationships can have
adverse consequences for sharing implicit knowledge and reduce motivation [59–
61].

342 V. Ramautar et al.

When realizing cross-border software development, the difference between time
zones, also known as temporal difference, should be taken into account [62]. It is
likely that there are differences in time zones and working hours in the countries
involved in a project [56, 60, 63]. Communication is one of the success factors of
cross-border software development [64], as well as a good product owner
[65]. When developers work and live in different time zones, there might be little
overlap in the working hours. The FTSF has mitigated this issue by focusing on
collaborations between teams in Europe and Africa. This complicates the use of
asynchronous communication technologies (e.g., chat and emails) [66, 67], increas-
ing the chance of miscommunication [68, 69]. Moreover, the use of asynchronous
communication technologies increases the response time, causing developers to
receive a response only the next day [59]. A delay in response can cause a developer
to be unable to continue working [70, 71]. When developers decide to continue
working without confirmation or response, it could lead to significant errors in the
code [63, 72]. The delay can affect the deadline, and this in turn can have conse-
quences and create frustration [59, 71].

Cultural barriers are one of the most common barriers when it comes to
outsourcing and cross-border cooperation in software development [71]. Haxby
and Lekhi state that cultural aspects complicated teaching Agile methods in
Kenya. The Kenyan education system is very competitive: few assignments are
performed in teams and competition among students is encouraged. The culture
surrounding individual competition makes it difficult to explain the added value of
working Agile. Moreover, miscommunication and/or lack of cultural awareness can
cause conflicts among peer and management [67].

Lastly, language can pose a barrier for cross-border development. Usually
English is the common language in cross-border development. A developer who is
not confident in the English language can have the tendency to choose for an
asynchronous communication tool, while synchronous communication tools (e.g.,
video or teleconference) have prevented misunderstandings [60, 73]. Additionally, it
is more probable that native English speakers obtain a higher position, due to their
linguistic advantage [60]. When non-native English speakers are skilled in the
English language, their fluency is often confused with an understanding of idiomatic
expressions [67]. If the non-native speaker is unaware of the actual meaning of the
expression, it can result in misunderstandings. Another issue related to linguistics is
that people might have different interpretations for similar words [74]. In turn, this
can lead to misunderstandings about the meaning of an explicit or implicit message.

14.6 Conclusions and Future Research

To create human sustainability when outsourcing, vitality and learning at work are
crucial. Impact sourcing and ethical outsourcing can contribute to human sustain-
ability. In Fair Trade Software especially the learning aspect of human sustainability
is emphasized. This research puts the different outsourcing approaches that consider

14 Human Sustainability in Software Development 343

CSR side by side, describing them and compiling what is known about them. This
has revealed that the approaches have similarities and differences, and that there is
preliminary evidence that they yield a good impact both on marginalized people and
on clients.

The literature postulates that outsourcing using a CSR-considering approach is a
win-win situation both for marginalized people and for client organizations. For
example, marginalized people may see an increase in income and client organiza-
tions may see a reduction in costs. Not surprisingly, incorporating CSR practices is
becoming more important in outsourcing [10], and impact sourcing even accounted
for 12% of the market in 2014 [2]. Fair Trade Software is a novel concept and little
scientific research can be found in this field; therefore, some findings related to Fair
Trade Software were derived from practice rather than from literature.

The results of this literature study indicate that the efficacy of impact sourcing can
be categorized in four ways, namely: it provides an opportunity for employment, it
improves personal and self-efficacy, it can improve existing social relationships and
result in new ones, and finally a variety of harmful effects can sometimes occur. No
literature was found on ethical outsourcing that relates to efficacy; thus, no conclu-
sions can be drawn on how ethical outsourcing affects the lives of marginalized
people.

Impact sourcing provides several benefits for client organizations compared to
traditional outsourcing: lower costs, lower employee attrition, and turnover. It helps
achieve CSR objectives and societal impact, and finally, it helps achieve growth
strategies. Additionally, the quality of the products and services delivered through
impact sourcing is of similar quality as that of traditional outsourcing. In order to
achieve these benefits of impact sourcing, client organizations have to overcome the
following four challenges: productivity and quality of labor force, reliability and
quality of public infrastructure, unstable or unfavorable political climate, and finally
cultural differences, which may lead to conflict. For ethical outsourcing two benefits
and one challenge were found, although supported by few studies. Ethical
outsourcing can protect brand image and may improve stakeholder management;
however, the extra investments required can cause a competitive disadvantage. With
regard to ethical outsourcing, no definitive conclusions can be drawn. We can
conclude that impact sourcing is considered beneficial for marginalized people and
potentially beneficial for client organizations. Fair Trade Software is a relatively new
model and there is little scientific literature mentioning the model. Nonetheless, we
were able to identify some potential benefits and challenges. A challenge of Fair
Trade Software is that it is difficult to teach teams who are unfamiliar with Agile
methodologies about working Agile—without them being part of an experienced
team. Additionally, cultural differences can cause employees who are unfamiliar
with these methodologies to not understand the added value of working according to
an Agile methodology. The limited resources of the FTSF cause them to be unable to
audit their members, which might threaten the reputation of Fair Trade Software.
Another reputation-related issue is that some organizations do not want to be
associated with the Fair Trade brand. Therefore, selling Fair Trade Software to
make it widely adapted in the software development landscape is challenging. We

344 V. Ramautar et al.

also found challenges related to cross-border development in general. The use of
different software by teams can cause compatibility issues, differences in time zones
can complicate communication, and cultural and linguistic differences can hinder
cooperation.

All in all, to discover the efficacy of Fair Trade Software and ethical outsourcing,
more research has to be performed. In the case of Fair Trade Software, future
research could focus on the impact of Fair Trade Software compared to non-Fair
Trade Software, barriers for choosing Fair Trade Software, and methods for
guaranteeing that software is produced under fair circumstances. The FTSF is
already in the process of engineering a certification method; this could ensure that
software is developed according to the Fair Trade Software model. For impact
sourcing, more research is necessary on the business case of impact sourcing for
client organizations. In particular, more evidence on lower cost benefit and on the
observation that quality is similar compared to the output of traditional outsourcing
is of importance, since client organizations cited these potential benefits as the most
important [3, 5, 6, 9]. Additionally, more research is necessary on ethical
outsourcing so that definitive conclusions can be drawn on this research field.

In conclusion, we hope that by contributing a compendium of existing knowledge
in the field of impact sourcing, ethical outsourcing, and Fair Trade Software and by
delineating new research endeavors, this chapter raises awareness of the importance
of these practices as a means to increase the social responsibility of the ICT industry.

Acknowledgments We would like to thank Joost Dijkers for his contributions to the semi-
systematic literature review on impact sourcing and ethical outsourcing. We would also like to
thank Andy Haxby, Olav Verhoeven, Huseyin Aksoy, Sander Paulus, and Louis Lomans for their
contributions on Fair Trade Software and cross-border development.

References

1. Spreitzer G, Porath CL, Gibson CB (2012) Toward human sustainability: how to enable more
thriving at work. Organ Dyn 41(2):155–162

2. Everest Group (2014) The case for impact sourcing. Technical report. Everest Group
3. Carmel E, Lacity MC, Doty A (2016) The impact of impact sourcing: framing a research

agenda. In: Socially responsible outsourcing. Springer, pp 16–47
4. Balit S (2007) Communication for isolated and marginalized groups. Commun Sustain Dev:101
5. Heeks R (2013) Information technology impact sourcing. Commun ACM 56(12):22–25
6. Lacity MC, Khan SA, Willcocks LP (2009) A review of the it outsourcing literature: insights for

practice. J Strateg Inf Syst 18(3):130–146
7. Matten D, Moon J (2008) “implicit” and “explicit” CSR: a conceptual framework for a

comparative understanding of corporate social responsibility. Acad Manag Rev 33(2):404–424
8. Roberts S (2003) Supply chain specific? Understanding the patchy success of ethical sourcing

initiatives. J Bus Ethics 44(2-3):159–170
9. Bulloch G, Long J (2012) Exploring the value proposition of impact sourcing. Technical report.

Accenture and Rockefeller Foundation
10. Nicholson B, Babin R, Lacity MC (2017) Socially responsible outsourcing: global sourcing

with social impact. Springer

14 Human Sustainability in Software Development 345

11. Accenture (2012) Exploring the value proposition from impact sourcing: the buyer’s perspec-
tive. Technical report

12. Markets MI (2011) Job creation through building the field of impact sourcing. Technical report,
Working Paper

13. Checkland P (2000) Soft systems methodology: a thirty year retrospective. Syst Res Behav Sci
17(S1):S11–S58

14. Heeks R, Arun S (2010) Social outsourcing as a development tool: the impact of outsourcing IT
services to women’s social enterprises in Kerala. J Int Dev J Dev Stud Assoc 22(4):441–454

15. Abbott P (2013) How can African countries advance their outsourcing industries: an overview
of possible approaches. Afr J Inf Syst 5(1):2

16. Lacity MC, Carmel E, Rottman J (2011) Rural outsourcing: delivering ITO and BPO services
from remote domestic locations. Computer 44(12):55–62

17. Haxby A, van Weperen E (2014) Creating shared value through Fair Trade Software: putting
the principle of shared value creation into practice: “Fair Trade Software (FTS); Where Open
Source meets Impact Sourcing”. Where Open Source meets Impact Sourcing

18. van Nijen S, Espana S, Overbeek S (2018) A method to certify Fair Trade Software practices.
B.S. Thesis, Utrecht University

19. Haxby A, Lekhi R (2017) Building capacity in Kenya’s ICT market using cross-border scrum
teams. In: International Conference on Social Implications of Computers in Developing Coun-
tries. Springer, pp 359–366

20. Burgess A, Ravishankar M, Oshri I (2015) Getting impact sourcing right
21. Chertok M, Hockenstein J (2013) Sourcing change: digital work building bridges to profes-

sional life. Innov Technol Govern Global 8(1–2):177–187
22. Harji K, Best H, Essien-Lore E, Troup S (2013) Digital jobs: building skills for the future. The

Rockefeller Foundation. rockefellerfoundation.org/blog/digital-jobsbuilding-skills-future
23. Kennedy R, Sheth S, London T, Jhaveri E, Kilibarda L (2013) Impact sourcing. Technical

report. The Rockefeller Foundation
24. Lacity MC, Rottman JW, Carmel E (2016) Impact sourcing: employing prison inmates to

perform digitally enabled business services. In: Socially responsible outsourcing. Springer, pp
138–163

25. Madon S, Ranjini C (2016) The rural BPO Sector in India: encouraging inclusive growth
through entrepreneurship. In: Socially responsible outsourcing. Springer, pp 65–80

26. Madon S, Sharanappa S (2013) Social it outsourcing and development: theorising the linkage.
Inf Syst J 23(5):381–399

27. Malik F, Nicholson B, Morgan S (2016) Assessing the social development potential of impact
sourcing. In: Socially responsible outsourcing. Springer, pp 97–118

28. McKague K, Morshed S, Rahman H (2013) Reducing poverty by employing young women:
Hathay Bunano’s scalable model for rural production in Bangladesh (innovations case narra-
tive: Hathay Bunano). Innov Technol Govern Global 8(1–2):69–88

29. Gill M, Cordisco Tsai L (2018) Building core skills among adult survivors of human trafficking
in a workplace setting in the Philippines. Int Soc Work:538–544

30. Ravi V, Venkatrama Raju D (2013) Rural business process outsourcing in India-opportunities
and challenges. Int J Bus Manag Invent 2(8):40–49

31. Herbert IP (2016) How students can combine earning with learning through flexible business
process sourcing: a proposition. Technical report. Loughborough University

32. Tinsley E, Agapitova N (2018) Reaching the last mile: social enterprise business models for
inclusive development. World Bank

33. Sandeep M, Ravishankar M (2016) Exploring the “impact” in impact sourcing ventures: a
sociology of space perspective. In: Socially responsible outsourcing. Springer, pp 48–64

34. Begum KJA (2016) Challenges and opportunities in BPOs–a case study of women working in
Bangalore. Skill India Dev Emerging Debates:125–136

35. Deka SJ, Sebastian N (2017) Globalisation and women employees: a study on women
employees in BPO industry in India. PhD thesis, Sikkim University

346 V. Ramautar et al.

http://rockefellerfoundation.org/blog/digital-jobsbuildingrockefellerfoundation.org/blog/digital-jobsbuilding-skills-future

36. Lester DL, Menefee ML, Pestonjee D (2010) An information technology services outsourcing
alternative: a business model. J Bus Entrepreneurship 22(1)

37. Lusero C, Taylor AR, Agrawal V (2013) A case review of Xpanxion: a software quality
assurance startup. Int J Manag Cases 15(2)

38. Bell B (2015) Creating regional advantage: the emergence of IT-enabled services in Nairobi and
Cape Town. PhD thesis, UC Berkeley

39. Fessehaie J, Morris M (2018) Global value chains and sustainable development goals: what role
for trade and industrial policies. Inclusive Econ Transf

40. van Gorp D, Brandt M, Kievit H (2015) Assessment of the attractiveness of Bangladesh as an
ICT offshoring destination. China-USA Bus Rev 14(2):67–78

41. Keijser C (2016) 10 Changing geographies of service delivery in South Africa. In: Globalisation
and services-driven economic growth: perspectives from the global north and south, p 167

42. Ismail SA, Aman A (2018) Impact sourcing initiatives in Malaysia: an insight through porter’s
diamond framework. In: State-of-the-art theories and empirical evidence. Springer, pp 197–214

43. Allouh A, Maurer R, Walker F, Wilcox Gwynne RH (2017) Designing a socially sustainable
impact sourcing model for integrating immigrants in Sweden

44. Wausi A, Mgendi R, Ngwenyi R (2013) Labour market analysis and business process
outsourcing in Kenya: poverty reduction through information and digital employment initiative.
University of Nairobi, Nairobi. Unpublished Research Report

45. Avasant (2012) Incentives and opportunities for scaling the “impact sourcing” sector
46. Babin R, Myers P (2015) Social responsibility trends and perceptions in global it outsourcing.

In: Proceedings of the Conference on Information Systems Applied Research ISSN, vol 2167, p
1508

47. Babin R, Nicholson B (2009) How green is my outsourcer-environmental responsibility in
global it outsourcing. In: ICIS 2009 Proceedings, p 83

48. Park KM, Hollinshead G (2011) Logics and limits in ethical outsourcing and offshoring in the
global financial services industry. Compet Chang 15(3):177–195

49. Mboga J (2017) A critical analysis of ethical outsourcing using comparative case examination
and eliciting consumer millennials perspectives. Eur J Econ Financ Res

50. Ang YS (2015) Ethical outsourcing and the act of acting together. In: Empowering organiza-
tions through corporate social responsibility. IGI Global, pp 113–130

51. Potter C, Brough R (2004) Systemic capacity building: a hierarchy of needs. Health Policy Plan
19(5):336–345

52. Serrador P, Pinto JK (2015) Does Agile work?—A quantitative analysis of agile project success.
Int J Proj Manag 33(5):1040–1051

53. Budzier A, Flyvbjerg B (2013) Making sense of the impact and importance of outliers in project
management through the use of power laws. In: Proceedings of IRNOP (International Research
Network on Organizing by Projects), Oslo, vol 11

54. Dorairaj S, Noble J, Malik P (2012) Knowledge management in distributed Agile software
development. In: 2012 Agile Conference. IEEE, pp 64–73

55. Lindvall M, Basili V, Boehm B, Costa P, Dangle K, Shull F, Tesoriero R, Williams L,
Zelkowitz M (2002) Empirical findings in Agile methods. In: Conference on extreme program-
ming and agile methods. Springer, pp 197–207

56. Herbsleb JD, Moitra D (2001) Global software development. IEEE Softw 18(2):16–20
57. Battin RD, Crocker R, Kreidler J, Subramanian K (2001) Leveraging resources in global

software development. IEEE Softw 18(2):70–77
58. Bhat JM, Gupta M, Murthy SN (2006) Overcoming requirements engineering challenges:

lessons from offshore outsourcing. IEEE Softw 23(5):38–44
59. Holmstrom H, Conchúir EÓ, Agerfalk J, Fitzgerald B (2006) Global software development

challenges: a case study on temporal, geographical and socio-cultural distance. In: 2006 IEEE
International Conference on Global Software Engineering (ICGSE’06). IEEE, pp 3–11

60. Noll J, Beecham S, Richardson I (2011) Global software development and collaboration:
barriers and solutions. ACM Inroads 1(3):66–78

14 Human Sustainability in Software Development 347

61. Phalnikar R, Deshpande V, Joshi S (2009) Applying agile principles for distributed software
development. In: 2009 International Conference on Advanced Computer Control. IEEE, pp
535–539

62. Carmel E (1999) Global software teams: collaborating across borders and time zones. Prentice
Hall PTR

63. Kiel L (2003) Experiences in distributed development: a case study. In: Proceedings of
International Workshop on Global Software Development at ICSE, Oregon, USA

64. Perry DE, Staudenmayer NA, Votta LG (1994) People, organizations, and process improve-
ment. IEEE Softw 11(4):36–45

65. Bass JM, Haxby A (2019) Tailoring product ownership in large-scale agile projects: managing
scale, distance, and governance. IEEE Softw 36(2):58–63

66. Hossain E, Bannerman PL, Jeffery DR (2011) Scrum practices in global software development:
a research framework. In: International Conference on Product Focused Software Process
Improvement. Springer, pp 88–102

67. Rao MT (2004) Key issues for global it sourcing: country and individual factors. Inf Syst
Manag 21(3):16–21

68. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software
development. IEEE Softw 18(2):22–29

69. Damian DE, Zowghi D (2002) The impact of stakeholders’ geographical distribution on
managing requirements in a multi-site organization. In: Proceedings IEEE Joint International
Conference on Requirements Engineering. IEEE, pp 319–328

70. Boland D, Fitzgerald B (2004) Transitioning from a co-located to a globally-distributed
software development team: a case study at Analog Devices Inc. In: 3rd Workshop on Global
Software Development. IET

71. Khan K, Zafar AA, Alnuem MA, Khan H (2012) Investigation of time delay factors in global
software development. World Acad Sci Eng Technol 63:380–388

72. Braun A, Dutoit AH, Brügge B (2003) A software architecture for knowledge acquisition and
retrieval for global distributed teams. In: International Workshop on Global Software Devel-
opment, International Conference on Software Engineering, Portland, OR

73. Niinimaki T, Piri A, Lassenius C (2009) Factors affecting audio and text-based communication
media choice in global software development projects. In: 2009 Fourth IEEE International
Conference on Global Software Engineering. IEEE, pp 153–162

74. Agerfalk PJ, Fitzgerald B, Holmstrom Olsson H, Lings B, Lundell B, Ó Conchúir E (2005) A
framework for considering opportunities and threats in distributed software development. In:
Proceedings of the International Workshop on Distributed Software Development

348 V. Ramautar et al.

Chapter 15
The Importance of Software Sustainability
in the CSR of Software Companies

Mª Ángeles Moraga, Ignacio García-Rodríguez de Guzmán, Félix García,
and Coral Calero

Abstract Organizations around the world, as well as their stakeholders, are becom-
ing increasingly aware of the need for, and the benefits of, socially responsible
behavior, and sustainability is a core aspect of this. Given the presence of software
systems in most companies and almost every aspect of modern-day life, the promo-
tion of the environmental aspects of software systems is a key factor in sustainable
development, and any company aspiring to be considered as a first-class corporate
citizen should provide for it in their CSR.

This chapter aims to ascertain how well the policies of companies that develop
software are aligned with Software Sustainability, as well as to give recommenda-
tions on including specific actions in their CSR to promote Software Sustainability.

The CSR policies of the ten biggest software companies have been studied,
identifying a list of actions that the software industry should include in their CSR.
In order to do this, different meetings were held among researchers. As a result, a list
of actions specific to Software Sustainability that the software industry should be
including in their CSR has been proposed. Moreover, we have analyzed the CSR of a
Spanish software company, obtaining that the percentage of coverage in respect of
the actions defined is 40%. The dimension with more actions is the human dimen-
sion, where the percentage of coverage is above 90%. Regarding the economic and
environmental dimensions, the company took into consideration 36% and 13% of
the actions, respectively. These resulted in a D level of Software Sustainability
(possible values: A–E). Based on these results, we have suggested some actions to
be implemented in order to improve the industry’s Software Sustainability level.

M. Á. Moraga (*) · I. G.-R. de Guzmán · F. García · C. Calero
Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: MariaAngeles.Moraga@uclm.es; Ignacio.GRodriguez@uclm.es; Felix.Garcia@uclm.es;
Coral.Calero@uclm.es

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_15

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_15&domain=pdf
mailto:MariaAngeles.Moraga@uclm.es
mailto:Ignacio.GRodriguez@uclm.es
mailto:Felix.Garcia@uclm.es
mailto:Coral.Calero@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_15#DOI

15.1 Introduction

Organizations around the world, as well as their stakeholders, are becoming increas-
ingly aware of the need for, and the benefits of, socially responsible behavior, and
sustainability is a core aspect of it. Indeed, sustainability has increasingly become
more important to businesses and must be tackled if we are to successfully develop
sustainable societies [1]. By means of sustainable development, the needs of the
present are fulfilled without compromising the ability of future generations to meet
their own needs [2]. To achieve this aim, sustainable development must satisfy the
requirements of three dimensions: society, the economy, and the environment [3]. A
business that fails to include sustainable development as one of its top priorities
could receive considerable public criticism and subsequently lose market legitimacy
[4]. Therefore, sustainable business models (SBMs) are not just a passing fancy but
are a field in their own right [5], and commercial organizations have begun to
redesign their business models on the basis of sustainability, treating sustainable
development as a new source of innovation, a new opportunity to cut costs, and a
new mechanism for gaining competitive advantages [4]. All of this can be brought
together under the umbrella concept of “strategic sustainability” [6]. When pursuing
strategic sustainability, technology is doubly important, as noted by [4]: on one
hand, because it helps organizations to tackle environmental issues (using web
conferences, repositories, and so on) and, on the other, because technology itself is
often responsible for major environmental degradation (e.g., due to the amounts of
energy consumed by the engineering processes used to manufacture products). This
mixed role that technology plays places organizations under tremendously
conflicting types of pressure. Internally, they are under pressure to transform existing
engineering processes into ones that are more environmentally friendly, while
externally they are expected to design new products that improve the sustainability
of society at large.

While sustainability is a standardized practice in several engineering disciplines,
there is currently no such awareness within the software engineering community, as
stated in [7]. It is of fundamental importance that such awareness be promoted in the
software industry by championing “sustainable software”—that is, software whose
direct and indirect negative impact resulting from its development, deployment, and
usage is either minimal or has a positive effect on sustainable development with
respect to the economy, society, humanity, and the environment [8]. But going a step
further, the whole software development process could be supported, with sustain-
able software engineering being defined as “the art of defining and developing
software products in such a way that the negative and positive impacts on sustain-
ability that result from and/or are expected to result from the software product over
its whole life cycle are continuously assessed, documented, and optimized”
[9]. There are several areas in which software sustainability needs to be applied:
software systems, software products, web applications, data centers, etc.

We therefore consider it to be of prime importance to find out the impact of
software sustainability in (1) the companies that develop software, (2) those who buy

350 M. Á. Moraga et al.

it, and (3) the people who use it. From an organizational perspective, an essential
reference document for analyzing how software sustainability is tackled is the
corporate social responsibility (CSR) document. The objective of social responsi-
bility is to contribute to sustainable development [2], and organizations are now
subject to greater scrutiny by their various stakeholders than ever before. CSR has to
“meet the needs of a firm’s direct and indirect stakeholders (such as shareholders,
employees, clients, pressure groups, communities, etc.) without compromising its
ability to meet the needs of future stakeholders as well” [10]. Indeed, this much is
stated by Friedman [11]:

people today expect (and demand) more of business than simply that they maximize their
profits without coming to grief by some violation of law. Consumers want and expect
attributes from what they buy—quality, safety, value. Employees want more than a pay-
check. Communities want the company to be a good corporate citizen and hire from the
community, provide employees with a living wage, not pollute and to pay its fair share of
taxes and support the community.

Therefore, the perception and reality of an organization’s performance as regards
social responsibility can influence, among other things, its competitive advantage, its
reputation, and its ability to attract and retain workers or members, customers,
clients, or users; it may also have an impact on the maintenance of employees’
morale, commitment, and productivity and affect the view of investors, owners,
donors, sponsors, and the financial community as well as the organization’s rela-
tionship with companies, governments, the media, suppliers, peers, customers, and
the community in which it operates. According to the results of the study by [12],
disseminating companies’ CSR results in improved brand value, and publishing
complete sustainability reports comes over as a matter of importance for companies.
Nave and Ferreira state that sustainability emerges as an increasing concern for those
companies which have focused on reducing the impact that their activities have on
the environment, while also implementing activities with social and economic
dimensions [13]. As a consequence, some related works deal with the management
of corporate sustainability in CSR, such as the theoretical model put forward by
Butler [14] which deals with integrating Green IS (information systems) into the
normal operations of a company, aligning these Green IS with the firm’s CSR.
Another example is the paper by Baumgartner [1], which proposes a framework for
corporate sustainability management that sets out the different tasks and action levels
for the transition of a company toward becoming “sustainable.”

In summary, given the presence of software systems in most industries and in
almost every aspect of current-day life, the promotion of the environmental aspects
of software systems is a key factor in sustainable development, and any company
aspiring to be regarded as a first-class corporate citizen should provide for it in their
CSR. This chapter aims to ascertain how well the policies of companies that develop
software are aligned with software sustainability, as well as to give recommenda-
tions on including specific actions in their CSR to promote software sustainability. In
our quest to fulfill this goal, we will study the CSR policies of the ten biggest
software companies, identifying a list of actions that the software industry should

15 The Importance of Software Sustainability in the CSR of Software Companies 351

include into their CSR. Finally, we have analyzed the CSR of a specific software
company and have suggested some actions to improve it.

The remainder of this chapter is organized as follows: the next section will present
the software companies selected for our study, along with an analysis of their
respective CSR documents. Section 15.3 will show the specific sustainability actions
for the software industry and its companies to take, together with indicators to select
the ones most suitable for a given company. Section 15.4 presents the improvements
we recommend for the CSR of a Spanish company we investigated, and finally, Sect.
15.5 will set out our conclusions and outline future work.

15.2 Overview of the CSR in Software Industries

15.2.1 Software Companies: A Representative Selection

To find out if, and to what degree, software companies are concerned about the
environmental aspects of the sustainability of the software they develop, we ana-
lyzed the CSR of several leading software companies. These were chosen based
upon the list of the top companies suggested in [6, 15]:

1. Apple
2. Microsoft
3. IBM
4. Oracle
5. SAP
6. Symantec Corp
7. EMC
8. Hewlett-Packard
9. VMware

10. CA Technologies

Next, we studied their CSR statements in depth from the point of view of software
sustainability.

15.2.2 Analyzing the CSR Software Sustainability Actions
in Software Companies: Work Method

To analyze the degree of awareness on the part of the selected companies as regards
the role of software sustainability in their CSR policies, we followed a specifically
defined method. The review was carried out by examining the sustainability actions
of each respective company, as included in the CSR information available on their
corporate websites.

352 M. Á. Moraga et al.

The template we built in order to collect from the companies’ CSRs data about
their actions on software sustainability includes the following sections:

• Category, which includes the general categories used to group together related
actions, such as “People,” “Planet,” etc.

• Subcategory, to cover specific categories for the actions, for example,
“Empowering communities” or “Empowering employees,” which fall under the
general category “People.”

• Action, which covers the specific actions carried out in the context of the CSR, for
example, the action “Employee feedback counts,” which allows workers to
participate in anonymous polls that serve to improve their work conditions.
Special care was taken to fill in the specific actions of all the companies and to
guarantee that each action included had a similar granularity level to the others,
thereby avoiding any validity threats to the comparative study.

• Sustainability dimension, used to classify a given action according to the partic-
ular dimension or dimensions in which it is applicable. The dimensions are
environmental, human, and economic. It should be noted that the environmental
dimension can in turn be divided into Green Software and Green Hardware (this
latter subdimension is out of our scope).

Having prepared the template and the inclusion and exclusion criteria, the
research method was defined and agreed on by all researchers. In the first step,
each researcher (the four authors of this chapter) was responsible for filling in the
templates of two to three companies. To do so, the weblink to the CSR of each
company, the empty template, and the inclusion and exclusion criteria were used.
The output of this step was a first set of completed templates (one per company).

Then, in the second step, each researcher reviewed the templates that had been
filled in by the other researchers, with the aim of ensuring that all the relevant
information was included and classified appropriately into categories, subcategories,
actions, and dimensions. The inputs for this step were the links to the CSRs of the
companies, the inclusion and exclusion criteria, and the completed templates. The
output was four sets of completed and reviewed templates.

The following step consisted of a meeting to discuss the differences identified
between the four reviewed templates for each company, and to resolve any discrep-
ancies. There were no actions which did not obtain the full consensus of the
participating researchers. The input for this step consisted of the CSR links of each
company, the completed and reviewed templates, and the inclusion and exclusion
criteria. The output was a list of agreed-on software-related sustainability actions,
taken from the verbatim CSR statements of each company.

Finally, and considering those sustainability actions, the researchers met to
propose a list of actions that could be valuable for software companies from the
point of view of sustainability. In addition, researchers evaluated every action in the
final list to provide (1) the added value that the inclusion of this action could provide
to the company and (2) an approximate complexity level that the implementation of
the action in the company would require. Section 15.3 presents the outcome of the
process described above.

15 The Importance of Software Sustainability in the CSR of Software Companies 353

15.2.3 Analyzing the Companies’ CSR from the Point of View
of Software Sustainability

As previously mentioned, the first step was the classification of the actions, more
information of which can be found in [16]. The next step was to analyze the
corporate social responsibility document of each selected company, with a view to
determining whether software sustainability aspects had been taken into account. In
the following subsections, we will present the results obtained from a top-down
perspective, as illustrated in Fig. 15.1.

15.2.3.1 Analysis of Software Sustainability Actions

In this analysis a comparison was carried out between the software sustainability
actions and other actions of the company. As can be observed in Fig. 15.2, the
majority of the actions are intended to address aspects not related to sustainability.
We see this as a clear demonstration of the relatively low importance that the
companies give to the issue of software sustainability.

So�ware
Sustainability ac�ons

vs.
Other ac�ons

Classifica�on of
Sustainability ac�ons
(Economic, Human,

Environmental)

Environmental
dimension

Ac�ons

Fig. 15.1 Levels of analysis carried out

354 M. Á. Moraga et al.

15.2.3.2 Analysis of Software Sustainability Actions

Software sustainability actions can be related variously to the human, economic, and
environmental dimensions of the company’s actions.

To give a more detailed breakdown of each of those activities listed in the CSR
documents of the different companies that are oriented toward software sustainabil-
ity, we classified them into three dimensions: human, economic, and environmental.
Table 15.1 presents a view of the relative effort each company makes, with respect to
the others, as regards these software sustainability dimensions. For each dimension,
the percentage figure of each company has been calculated as a mean between the
number of actions of the company and the total number of actions proposed by all
companies in that dimension. Table 15.1 thereby attempts to represent the relative
importance given by each company to each software sustainability dimension,
according to the number of actions proposed by them. It should be noted that,
although the CSR documents of all ten companies were analyzed, Table 15.1
shows only those companies with software sustainability actions.

Fig. 15.2 Comparison between sustainability-oriented actions and other kinds of actions

Table 15.1 Percentage of
activities devoted to the dif-
ferent dimensions of sustain-
ability per company

Company Human Economic Environmental

CA 14.81% 25.00% 13.51%

EMC 9.26% 0.00% 10.81%

HP 9.26% 6.25% 13.51%

Microsoft 14.81% 6.25% 5.41%

VMware 3.70% 0.00% 2.70%

Symantec Corp 3.70% 6.25% 0.00%

Apple 9.26% 0.00% 2.70%

IBM 33.33% 37.50% 43.24%

Oracle 1.85% 18.75% 8.11%

15 The Importance of Software Sustainability in the CSR of Software Companies 355

As already mentioned, we have classified the environmental dimension actions as
Green Hardware (GH) and Green Software—divided further between Green-IN
Software (GI) and Green-BY Software (GB). The distribution of the software
sustainability actions is depicted in graph form in Fig. 15.3.

From the previous analysis of each of the software sustainability dimensions, we
can conclude that two companies are more aware of software sustainability than the
others: IBM and CA.

We can thus conclude that, from the perspective of software sustainability actions,
IBM and CA are the most balanced and are the companies that propose the most actions.
The rest of the firms display different behavior but, in general, have most of their actions
classified into only one of the dimensions, with a few actions in the other two.

15.2.3.3 Environmental Dimension Actions

Focusing our analysis on the environmental dimension, Tables 15.2, 15.3, and 15.4
present a more detailed view of the actions for both categories in this dimension,
particularly as regards Green Software and Green Hardware.

Table 15.2 shows the percentage of activities based on Green Software, demon-
strating the percentage of actions in each company as compared to the number of
actions proposed by all companies. At first sight the table reveals something that is

Fig. 15.3 Distribution of the activities of the CSR per company

356 M. Á. Moraga et al.

highly significant: while only five companies implement actions that are categorized
as Green Software, the same number of companies is unaware of the importance of
providing such type of actions. A more detailed view of the results of this table may
be observed in Table 15.3: this presents a fine-grained view of Green Software,
which is made up of Green-IN and Green-BY actions.

These results are in sharp contrast to the actions belonging to the category of
Green Hardware (Table 15.4), where eight companies propose actions. It is also

Table 15.2 Percentage of
environmental (software-
related) activities in each
company’s CSR

Company Green software

CA 15.79%

EMC 5.26%

HP 10.53%

Microsoft 5.26%

VMware 0.00%

SAP 0.00%

Symantec Corp 0.00%

Apple 0.00%

IBM 63.16%

Oracle 0.00%

Table 15.3 Percentage of
environmental (Green-IN and
Green-BY) activities in each
company’s CSR

Company Green-IN Green-BY

CA 16.67% 15.38%

EMC 16.67% 0.00%

HP 16.67% 7.69%

Microsoft 0.00% 7.69%

VMware 0.00% 0.00%

SAP 0.00% 0.00%

Symantec Corp 0.00% 0.00%

Apple 0.00% 0.00%

IBM 50.00% 69.23%

Oracle 0.00% 0.00%

Table 15.4 Percentage of
environmental (hardware)
activities in each
company’s CSR

Company Green hardware

CA 11.11%

EMC 16.67%

HP 16.67%

Microsoft 5.56%

VMware 5.56%

SAP 0.00%

Symantec Corp 0.00%

Apple 5.56%

IBM 22.22%

Oracle 16.67%

15 The Importance of Software Sustainability in the CSR of Software Companies 357

striking that with respect to the Green Hardware category, all the percentages are
somewhat more balanced than those in the Green Software category. This remark-
able finding stems from the fact that in current IT infrastructures, hardware resources
have been the focus of continuous optimizations, in a quest to save energy and
reduce their carbon footprint.

From both analyses we can determine that the conclusion reached by Calero and
Piattini [17] from their research on software sustainability can be applied also to the
software industry in general: i.e., that there is more awareness of the need for Green
Hardware than for Green Software.

To conclude our analysis, Table 15.5 presents a comparison between the per-
centages of actions (categorized into Green-IN, Green-BY, and Green Hardware) for
the eight companies whose CSR documents include actions in the environmental
dimension. These data are especially useful to show the extent and distribution of the
efforts of the different companies in these three categories.

As far as the companies listed in Table 15.5 are concerned, only four of them
propose actions for Green-BY Software and another four propose actions for Green-
IN Software; the percentage is very low. All the companies shown present actions
for Green Hardware, allowing us to confirm our prior observation that the element to
which companies give more importance is Green Hardware, rather than Green
Software.

Finally, the actions of Green-IN represent the lowest percentages. This may be
due to a lack of knowledge about the impact of software on the environment, but it
may also be due to a lack of actions to reduce this impact.

15.3 Specific Actions for Software Industries

Based upon our analysis of the actions of these leading software companies’ CSRs, a
set of actions has been chosen that we believe are particularly interesting for software
companies, from the point of view of sustainability.

In Tables 15.6, 15.7, and 15.8, these actions are shown, grouped together
according to the sustainability dimension to which they belong. In each table the
following information is included:

Table 15.5 Percentage of
software (Green-IN and
Green-BY) and hardware
efforts for each company

Green-IN Green-BY GREEN HW

CA 20.00% 40.00% 40.00%

EMC 25.00% 0.00% 75.00%

HP 20.00% 20.00% 60.00%

Microsoft 0.00% 50.00% 50.00%

VMware 0.00% 0.00% 100.00%

Apple 0.00% 0.00% 100.00%

IBM 18.75% 56.25% 25.00%

Oracle 0.00% 0.00% 100.00%

358 M. Á. Moraga et al.

Table 15.6 Actions proposed to improve the human dimension

ID Action
Added
value (1–3)

Complexity
(1–3)

Employees must be encouraged to be successful in their jobs and to be innovative. To this
end:

H1 Employees must be supported to improve their skills and
acquire the ability to work in a different, innovative, and
open-minded way

1 1

H2 Employees must be encouraged to propose and implement
solutions that are innovative

2 1

H3 At the organizational level, a culture will be fostered that
facilitates employees and partners providing the necessary
feedback for the transformation of both the processes and the
business itself

3 2

Ethics and rights:

H4 (a) Create a work environment that respects the personal
circumstances of each employee and allows them to manage
their work responsibilities, reconciling these with their per-
sonal lives. (b) Provide our employees with principles,
guidelines, directives, and tools that enable them to effec-
tively manage their work

2 2

H5 Nondiscriminatory policies will be included to make the
company a safe place to work

2 2

H6 An open work environment characterized by trust, mutual
respect, and empathy is created, promoting leadership guided
by ethics and integrity

2 2

H7 Human rights, including the right to privacy and freedom of
expression, must be respected and upheld

3 2

H8 A good relationship between all company personnel should
be encouraged and good communication between organiza-
tional levels should be promoted

2 1

Women and technology:

H9 The company must be committed to the professional
advancement of its employees and encourage their access to
leadership positions within the company

3 2

Development of training programs for the acquisition of knowledge and skills:

H10 The company must offer training programs to improve the
skills and abilities of its employees, fostering a positive
culture for both the employee and the organization

2 2

Protecting people by:

H11 Setting standards that are rigorous to protect employees and
the planet during the software development process

3 3

H12 Rigorous standards should be established to make the orga-
nization’s facilities safe

3 3

H13 Occupational risk review, assessment, and awareness pro-
grams, covering both the physical and mental health of
employees, should be implemented to ensure the health and
well-being of employees

3 3

15 The Importance of Software Sustainability in the CSR of Software Companies 359

• Action: Short description of the action.
• Added Value: Effort required to be implemented in the company and the value

provided. To facilitate understanding of what is meant by “value” and “effort,” a
scale has been adopted where “1” is the lowest (easiest and least valuable,
respectively) and “3” is the highest (more complex and more valuable,
respectively).

• Complexity: Indicates how difficult it is to implement the action.

15.4 Analyzing and Improving the CSR of a Specific
Company

Having defined the actions specific to software sustainability that the software
industry should be including in their CSR, we now turn to analyze the CSR of a
specific medium-sized company in Spain. It is a consulting company which is

Table 15.7 Actions proposed to improve the economic dimension

ID Action
Added
value (1–3)

Complexity
(1–3)

E1 Sustainability must be part of the organization’s business
model

3 3

E2 Employees should preferably use video conferencing or
similar technologies in their communications, travelling only
when essential

1 1

E3 Policies that support software business continuity should be
encouraged

3 3

E4 The use of energy-efficient technologies should be consid-
ered within the business model

3 3

E5 The security and privacy of business and customer data must
be ensured to avoid excessive costs due to threats to data

2 1

E6 Customers must be provided with secure solutions with full
connectivity and availability

3 2

E7 GDPR (or current country-specific legislation) must be
implemented in all the organization’s contracts to ensure
compliance

3 3

E8 A policy must be defined to manage potential operational,
legislative, and financial risks affecting business continuity,
and technological support must be provided to carry out this
management

3 2

E9 Customers must be provided with IT solutions that optimize
resources, minimizing both unnecessary expenses and
energy

3 3

E10 It is necessary to analyze and monitor compliance with the
economic forecasts of software projects, identifying the rea-
sons for deviations and applying actions to correct them,
where necessary

2 2

E11 It is necessary to carry out the digital transformation of the
company, using software solutions that support the business
model by providing the necessary levels of security

3 3

360 M. Á. Moraga et al.

Table 15.8 Actions proposed to improve the environmental dimension

ID Action
Added
value (1–3)

Complexity
(1–3)

M1 Wherever possible, the resources needed for software
development will be reduced and reused

2 2

M2 It is necessary to reduce the KW/h required by each software
functionality

3 3

M3 Mechanisms should be defined to qualify software products
with respect to energy-saving criteria

3 1

M4 Energy efficiency of software products must be defined and
implemented as a corporate objective

3 3

M5 Regular monitoring is needed, through a process of accurate
and rigorous collection of software energy consumption in
all facilities

2 1

M6 Unnecessary energy expenditure should be avoided by using
shared infrastructures for software development and
execution

1 1

M7 The environmental footprint of software companies’ DPCs
must be reduced by using the state-of-the-art energy effi-
ciency and cooling technologies

2 1

M8 Operations associated with software development must be
persuaded to use efficient technologies (cloud computing,
service virtualization, parallelization, SaaS, infrastructure,
etc.)

2 2

M9 Software solutions for energy saving should be used in all
company facilities

1 1

M10 Any software features that promote sustainability through-
out its life cycle should be evaluated and improved

3 2

M11 The use of reporting systems for the sustainability manage-
ment of software products is recommended

1 1

M12 Environmental aspects (energy efficiency, sustainability,
etc.) should be incorporated into all stages of the life cycle
prior to the operation of the software

3 2

Regarding the process:

M13 It is necessary to develop and keep the process assets needed
for software development updated

2 2

Regarding the requirements:

M14 The environmental sustainability requirements (green
requirements) of the software must be selected, analyzed,
specified, validated, and managed throughout its life cycle

2 1

Regarding design:

M15 Green software requirements must be analyzed to obtain an
internal description of the software structure that serves as a
basis for its construction

3 2

M16 Solutions that promote green software must be provided
when defining its architecture (organization into components
and their relationships)

3 2

(continued)

15 The Importance of Software Sustainability in the CSR of Software Companies 361

specialized in Oracle technology and which carries out different types of projects
ranging from digital transformation to business analytics, data management to
security. Although the company has several locations throughout Spain, it is not
normal practice for its developers to relocate among these various locations. One of
the hallmarks of this company is a concern for the quality of life of its workers (from
the perspective of the work environment).

The company’s CSR is based on three basic foundations: the company, the
people, and the planet. Integrated in their CSR, they have a specific program
which addresses four fundamental topics, seen as being complementary to the day-
to-day work of their employees: personal well-being, solidarity, teamwork, and
ecological focus. This program is derived from the philosophy and the way of living
of the people who are part of the company. With regard to their ideal of solidarity, it
should be noted that the company collaborates with different associations and holds
events to support them. As regards well-being they propose, for example, that
employees have at least one healthy breakfast per month (fruit) or that they engage
in a “wellness month.” This activity consists in adopting healthy lifestyle habits, in
four areas (physical, mental, spiritual, and emotional). To foster teamwork, they
organize different recreational activities outside of the working day. In this way the
employees get to know each other better and can connect on a personal level and not
only professionally. Regarding their ecological focus, the company’s objective is to
contribute to the improvement of our environment. As part of their campaigns to

Table 15.8 (continued)

ID Action
Added
value (1–3)

Complexity
(1–3)

M17 Design decisions must be analyzed and any consequent
corrective actions that impact on the green requirements
must be carried out

3 2

M18 Design constraints related to green software must be man-
aged and supported

2 1

Regarding construction of the software:

M19 Functional software must be created to meet green require-
ments through a combination of coding, verification, unit
testing, integration testing, and debugging

2 1

M20 Construction approaches and technologies that support
green requirements must be selected

3 2

Regarding testing:

M21 The software must be dynamically verified to meet green
requirements through a finite set of test cases, appropriately
selected

2 1

M22 Problems with any green requirements identified during
testing should be verified as being satisfactorily resolved

2 1

Regarding maintenance:

M23 Software maintenance must be performed to ensure com-
pliance with green requirements

1 2

362 M. Á. Moraga et al.

raise employees’ awareness of the environmental importance and impact of their
actions, last year, they, for example, removed all plastic cups and cutlery and
replaced them with glass cups and wooden cutlery. The company has achieved the
certification of the HappyIndex AtWork, which is based on the evaluations given by
the employees and which recognizes them as a company in which the workforce
feels happy and motivated. Lastly, we can add that they have drawn up their own
code of ethics which is based on the principles of honesty, integrity, and respect.

With these special characteristics of the company in mind, we decided to analyze
their CSR. Their concern for their employees and their well-being, for the planet, and
so on was clear, but would they have also considered aspects related to software
sustainability within the CSR?

The process presented in Fig. 15.4 explains the different steps which were carried
out. Firstly, the researchers analyzed different documents which were provided by
the company: specifically the CSR, the code of ethics, a special program to translate
some general actions of the CSR into concrete actions, and a final report. With the
aim of selecting the list of actions to be proposed to the company, we compared these
documents with our list of proposed actions based on software sustainability (see
Tables 15.6, 15.7, and 15.8). As a result, a set of actions was selected—Step 1 in
Fig. 15.4. However, since the actions of the CSR are general in nature, the
researchers had doubts as to some of these actions (i.e., they were not sure whether
these actions were to be taken into account or not). To clear up these doubts, a
meeting was held among researchers and the company in question, as a result of
which the final set of actions that would be proposed to the company was obtained—
Step 2 in Fig. 15.4.

In Table 15.9, the final list of included actions is shown.

Fig. 15.4 Process to analyze and improve the CSR of the company

15 The Importance of Software Sustainability in the CSR of Software Companies 363

Once the actions were identified, a study of the coverage was made. In Fig. 15.5,
the percentage of coverage in respect to the actions defined by us is shown. As can be
seen, some 40% of the actions have been considered: a value which, although good
as a starting point, can be improved.

Taking into account the total number of actions that we had defined for each
dimension, we obtained the following coverage graphic (see Fig. 15.6). As can be
noted, the dimension with more actions is the human dimension, where the percent-
age of coverage is above 90%. In the economic dimension, the company took into
consideration 36% of the actions. The worst result is in the environmental dimen-
sion, in which only 13% of the actions were considered.

What stands out from these investigations is that, despite their avowed concern
for environmental issues, the company’s percentage of coverage in the environmen-
tal dimension is very low. Consequently, special attention was paid to this problem,
and interviews were carried out with the aim of detecting whether there had been any
misunderstanding. We concluded, however, that although the company is aware of
the impact that their daily actions have on the environment, such as the use of

Table 15.9 Actions included
in the CSR

Dimension

Economic Human Environmental

E2 H1 M1

E5 H2 M6

E7 H3 M8

E11 H4

H5

H6

H7

H8

H9

H11

H12

H13

40%

60%

% of coverage

% considered % not considered

Fig. 15.5 Percentage of
coverage considering the
total number of actions

364 M. Á. Moraga et al.

plastics, not having the refrigerator open for a long time, etc., they had not consid-
ered the damaging impact of software on the environment, and this in spite of the fact
that their work is focused on software development.

In addition, we have defined a label system that assigns to each company a value
ranging from A to E. This value is assigned depending on the level achieved on each
dimension, according to the percentage of coverage shown in Table 15.10. In order
to assess it, first off, it is necessary to determine the label of each dimension
according to Table 15.10.

In order to assess the final software sustainability level, the labels are converted
into numbers (the correspondences are shown in Table 15.11), and the software
sustainability level (SS) can be calculated following the next formula:

S S ¼ ð%ofcoverageEconomicþ%ofcoverageHuman
þ%ofcoverageEnvironmentalÞ=3 ð15:1Þ

And, finally, we calculate the Software Sustainability label using the information
in Table 15.10.

Bearing all this in mind, the analyzed company has the values shown in
Table 15.11, concluding that its software sustainability level is C.

With the aim of improving the software sustainability level of the company, a list
of actions to be included for the next version of the CSR was suggested by the
researchers to the company—see Step 3 in Fig. 15.1. The criteria for the selection of
these actions were twofold. The first is the difficulty of applying the action, and the

36

92

13

64

8

87

ECONOMIC HUMAN ENVIRONMENTAL

% OF COVERAGE

% considered % not considered

Fig. 15.6 Percentage of
coverage for each dimension

Table 15.10 Label according
to the % of coverage

% of coverage Label for the dimension

81–100 A

61–80 B

41–60 C

21–40 D

0–20 E

15 The Importance of Software Sustainability in the CSR of Software Companies 365

second is the benefit that the company could obtain from implementing the action
(as shown in the two right-hand columns in each of Tables 15.6, 15.7, and 15.8). The
list of the actions finally chosen is shown in Table 15.12.

As a future work, the company should include these actions into their CSR. Once
some or all of them are included, a new analysis should be done to determine
whether their software sustainability level has improved or not.

15.5 Conclusions and Future Work

It is essential that companies consider certain basic aspects of software sustainability
within their CSR. We have carried out an initial analysis of the CSRs of leading
software-related companies with the aims of (1) analyzing whether they take soft-
ware sustainability into account and (2) determining an initial set of actions that
should be included in future versions of their CSRs.

Subsequently, we have applied this process to a Spanish company which collab-
orated with us so that we could check the degree of coverage of the proposed actions
and recommend subsequent improvements to its CSR, based on the analysis carried
out. The new version of the CSR will need to be further revised and refined to
include more actions in a gradual way.

As to future work, we want to extend the study with more companies so as to
refine and complete the proposed actions, as well as to corroborate their
applicability.

Table 15.12 Recommended
actions to be included

Dimension

Economic Human Environmental

E6 H10 M3

E8 M5

E10 M7

M9

M14

M18

M19

M21

M22

Table 15.11 Labels for the
company

Dimension Label

Economic dimension D

Human dimension A

Environmental dimension E

Software sustainability C

366 M. Á. Moraga et al.

The results of this work are not static, but rather require an annual review in order
to ensure that the vision of actions toward sustainability is both realistic and reflects
how this issue evolves over time.

Acknowledgments This work has been funded by the BIZDEVOPS-GLOBAL project
(Ministerio de Ciencia, Innovación y Universidades, y Fondo Europeo de Desarrollo Regional
FEDER, RTI2018-098309-B-C31) and by the SOS and TESTIMO projects (Consejería de
Educación, Cultura y Deportes de la Dirección General de Universidades, Investigación e
Innovación de la JCCM, SBPLY/17/180501/000364 and SBPLY/17/180501/000503,
respectively).

References

1. Baumgartner R (2014) Managing corporate sustainability and CSR: a conceptual framework
combining values, strategies and instruments contributing to sustainable development. Corp
Soc Responsib Environ Manag 21. https://doi.org/10.1002/csr.1336

2. ISO26000 (2010) Guidance on social responsibility
3. UN (1987) Report of the World Commission on environment and development: our common

future. In: United Nations Conference on Environment and Development
4. Du W, Pan SL, Zuo M (2013) How to balance sustainability and profitability in technology

organisations: an ambidextrous perspective. IEEE Trans EngManag 60(2):366–385. https://doi.
org/10.1109/TEM.2012.2206113

5. Lüdeke-Freund F, Dembek K (2017) Sustainable business model research and practice: emerg-
ing field or passing fancy? J Clean Prod 168:1668–1678

6. Sroufe R, Sarkis J (eds) (2007) Strategic sustainability: the state of the art in corporate
environmental management systems. Greenleaf Publishing, Sheffield

7. Penzenstadler B, Bauer V, Calero C, Franch X (2012) Sustainability in software engineering: a
systematic literature review for building up a knowledge base. In: 16th International Conference
on Evaluation and Assessment in Software Engineering (EASE 2012)

8. Dick M, Naumann S, Kuhn N (2010) A model and selected instances of green and sustainable
software. Springer, Berlin, pp 248–259

9. Dick M, Naumann S (2010) Enhancing software engineering processes towards sustainable
software product design. In: Greve K, Cremers AB (eds) 24th International Conference on
Informatics for Environmental Protection. pp. 706–715

10. Dyllick T, Hockerts K (2002) Beyond the business case for corporate sustainability. Bus Strateg
Environ 11:130–141. https://doi.org/10.1002/bse.323

11. Friedman J (2013) Milton Friedman was wrong about corporate social responsibility. http://
www.huffingtonpost.com/john-friedman/milton-friedman-was-wrong_b_3417866.html.
Accessed 2017

12. Alcaide M, De La Poza E, Guadalajara N (2019) The impact of corporate social responsibility
transparency on the financial performance, brand value, and sustainability level of IT compa-
nies. Corp Soc Responsib Environ Manag 27:642–654. https://doi.org/10.1002/csr.1829

13. Nave A, Ferreira J (2019) Corporate social responsibility strategies: past research and future
challenges. Corp Soc Responsib Environ Manag 26(4):885–901

14. Butler T (2011) Compliance with institutional imperatives on environmental sustainability:
building theory on the role of Green IS. J Strateg Inf Syst 20(1):6–26. https://doi.org/10.1016/j.
jsis.2010.09.006

15 The Importance of Software Sustainability in the CSR of Software Companies 367

https://doi.org/10.1002/csr.1336
https://doi.org/10.1109/TEM.2012.2206113
https://doi.org/10.1109/TEM.2012.2206113
https://doi.org/10.1002/bse.323
http://www.huffingtonpost.com/john-friedman/milton-friedman-was-wrong_b_3417866.html
http://www.huffingtonpost.com/john-friedman/milton-friedman-was-wrong_b_3417866.html
https://doi.org/10.1002/csr.1829
https://doi.org/10.1016/j.jsis.2010.09.006
https://doi.org/10.1016/j.jsis.2010.09.006

15. Seth S (2017) World’s top 10 software companies. https://www.investopedia.com/articles/
personal-finance/121714/worlds-top-10-software-companies.asp

16. Calero C, García-Rodríguez de Guzmán I, Moraga M, García F (2019) Is software sustainability
considered in the CSR of software industry? Int J Sustain Dev World Ecol 26(5):439–459

17. Calero C, Piattini M (2017) Puzzling out software sustainability. Sustain Comput J Sustain
Comput Inf Syst 16:117–124

19. Stoller K (2017) The world’s largest tech companies 2017: Apple and Samsung Lead, Facebook
Rises. https://www.forbes.com/sites/kristinstoller/2017/05/24/the-worlds-largest-tech-compa
nies-2017-apple-and-samsung-lead-facebook-rises/#274f0e72d140. Accessed Nov 2017

368 M. Á. Moraga et al.

https://www.investopedia.com/articles/personal-finance/121714/worlds-top-10-software-companies.asp
https://www.investopedia.com/articles/personal-finance/121714/worlds-top-10-software-companies.asp
https://www.forbes.com/sites/kristinstoller/2017/05/24/the-worlds-largest-tech-companies-2017-apple-and-samsung-lead-facebook-rises/
https://www.forbes.com/sites/kristinstoller/2017/05/24/the-worlds-largest-tech-companies-2017-apple-and-samsung-lead-facebook-rises/

Chapter 16
Sustainability ArchDebts: An
Economics-Driven Approach for Evaluating
Sustainable Requirements

Bendra Ojameruaye and Rami Bahsoon

Abstract Sustainability refers to the ability of an architecture to achieve its goals and
continue to deliver value on technical, environmental, social, and/or economic dimen-
sions. Given the increased awareness of the need to conserve resources and be more
sustainable, users are becoming more reluctant to support design decisions that are
overdesigned or underperforming. There is a need for an efficient requirement evalu-
ation framework that ensures that optimal software performance is achieved at a
minimal cost. The goal of this chapter is to develop an objective decision-support
framework for reasoning about sustainability requirements in relation to architecture
decisions under uncertainty. We propose an economics-driven architectural evaluation
method which extends Cost Benefit Analysis Method (CBAM) and integrates princi-
ples of modern portfolio theory to address the risks when linking sustainability require-
ments to architectural design decisions. The method aims at identifying portfolios of
architecture design decisions which are more promising for adding/delivering value
while reducing risk on the sustainability dimensions, and it quantifies the sustainability
debt of these decisions. The results show that the method can make the value, cost, and
risks of architectural design decisions and sustainability requirements explicit.

16.1 Introduction

Sustainable development can be defined as “the ability to meet the needs of the
present without compromising the ability of future generations to satisfy their own
needs” [1, 2]. Systems should be environmentally, socially, economically, and
technically sustainable. The ability of a system to continue to deliver value on
these dimensions over time determines the level of the software’s sustainability.
The processes of requirement engineering and architectural design are interleaved
and intertwined, encompassing both technical and value-based (cost, value, and risk)
decision making. Linking technical decisions to value-based reasoning facilitates

B. Ojameruaye (*) · R. Bahsoon
University of Birmingham, Birmingham, UK
e-mail: bendra.o@gmail.com; r.bahsoon@cs.bham.ac.uk

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_16

369

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_16&domain=pdf
mailto:bendra.o@gmail.com
mailto:r.bahsoon@cs.bham.ac.uk
https://doi.org/10.1007/978-3-030-69970-3_16#DOI

better understanding of the risks and likely value added, when engineering require-
ments and architecting under uncertainty. Economics-driven software engineering
has acknowledged that integrating value-based theories with technical decision
making can yield measurable improvements in development cost, time, and risk
management.

An architecture is a set of design decisions that intends to meet all of the
functional requirements while optimizing the desired quality attributes [3]. The
problems in developing architectures are often due to an incomplete knowledge of
the system and its environment and capacities. It can be also due to poor estimates or
misperceptions of system requirements of the system environment and external
conditions. While the process of architectural design implies a fit between the
requirements, system conditions, and constraints, incomplete information and uncer-
tainty may increase the cost of the architecture, introduce risks, alter its value, and
influence the extent to which it can evolve and sustain over time. We generally
neglect to consider that many of the design problem parameters are not completely
known or deterministic, but they tend be estimated or stochastic. As a result, we
often fail to recognize that our final design may not have completely met the actual
requirements.

Technical debt is, per Brown et al., “a situation in which long-term code quality is
traded for short-term gain” [4]. Technical debt in the requirement phase of system
design is different from that in the implementation phases. It is incurred when
requirements are prioritized, which do not deliver the most value to the customer
[5]. Technical debt in the implementation refers to choices, to sacrifice quality for
short-term gain [4]. To mitigate the risks of not meeting the system’s goal and
failure, software architects tend to overdesign the components of the system and
build in redundancies rather than deal with the problem of uncertainty of parameters.
While architectures have become increasingly sophisticated to meet the require-
ments, architectural design decisions are often still based on estimates and subjective
judgment. The harm with this approach is that the final design is not usually
optimized for value creation and technical debt reduction. In previous work [6],
we introduced the concept of compliance debt. We had presented the hypothesis that
one way to understand compliance debt, in relation to goals and obstacles, is to
characterize it as the gap between what can be achieved with the available resources
and the hypothesized “ideal” environments, where the goals are successfully
achieved. In this chapter, we introduce the concept of sustainability debt as another
form of technical debt, which provides a metric and quantifies the gap between the
level of sustainability that will be achieved with a specific architecture and an ideal
environment where the sustainability requirements are completely achieved.

Consider the case of architecting for sustainability. Given the increased aware-
ness for the need to conserve resources and to be more sustainable, users are
becoming more reluctant to pay the “premium” that results in architectures which
are overdesigned. They are also reluctant to support design decisions which
underperform on sustainability dimensions. These drivers have created a demand
for an efficient requirement evaluation framework that ensures that optimal software
performance is achieved at a minimal cost. In many cases, only some requirements

370 B. Ojameruaye and R. Bahsoon

actually determine and shape a software architecture; these requirements are called
architecturally significant requirements (ASRs). Architecturally significant require-
ments are those requirements that play an important role in determining the archi-
tecture of the system [7]. Such requirements require special attention. They can be
explicitly or implicitly architecturally significant, and, in this chapter, we posit that
sustainability requirements can be considered as ASRs. Identifying and tracking
technical debt on the architecture over time can provide the decision maker with
insights into the extent to which the solution continues to be sustainable or tends to
hedge behind the optimal value.

This work proposes an economics-driven architectural evaluation method which
extends the Cost-Benefit Analysis Method (CBAM) and integrates the principles of
modern portfolio theory to evaluate software architectures for sustainability. The
extension acknowledges that architectural design decisions are based on estimates
and thus are subject to varying degrees of risks, uncertainty, and technical debt. It
hopes to identify architectural design decisions which minimize costs, reduce risk,
and maximize value on the identified sustainability dimensions—technical, environ-
mental, social, economic, and/or human. The analysis can provide insights on the
extent to which architectural design decisions overperform/underperform from the
ideal values—depicted as debt. As architectural design decisions are responsible for
fulfilling the system’s goals, their contribution to sustainability needs to be evaluated
in relation to value creation. We hope to support the reasoning about value
concerning the impact of alternatives on sustainability goals.

We build on the concept of debt in requirements [6] as a form of technical debt at
the requirement level, which is the result of neglecting nonfunctional compliance
when engineering the requirements of software. We propose a value-driven solution,
which builds on the CBAM by using portfolio-based thinking and technical debt
analysis to systematically manage sustainability requirements and the way they can
be met by the architecture. In this context, we hypothesize that some requirements
when met by the architecture may introduce debt that needs to be managed for
creating value and mitigating risks. In finance, a portfolio denotes a collection of
assets (investments) by an investor, usually used as a strategy for minimizing risks
and maximizing returns [7]. The goal of portfolio thinking is to select the combina-
tion of assets using a formal mathematical procedure that can minimize risks for an
expected level of return on investment while accounting for uncertainty in the real
world. We use portfolio thinking to make the links between costs, benefits, risks, and
technical debt explicit for requirement engineers.

16.2 Background

Research on three major areas—sustainability in software, architectural evaluation
methods, and portfolio theory—is related to our work.

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 371

16.2.1 Sustainability and Goal-Oriented Requirements

The term sustainable system can be interpreted as either the system is sustainable or
the system’s purpose is to support sustainability goals [3]. A sustainable system is
energy efficient, minimizes the environmental impact of the processes it supports,
and has a positive impact on the other dimensions including economic, social,
human, and technical sustainability [3, 8].

Sustainability requirements need to be aligned with prevailing regulations to
control compliance, to add value, and to meet the needs of the business. Sustain-
ability thinking for software is:

• Reasoning about sustainability as a value-seeking process
• Reasoning about sustainability in the presence of uncertainty and dynamism
• Reasoning about sustainability in heterogeneous and scalable environment

Our working hypothesis is that software sustainability can be considered as a
nonfunctional requirement and a composite attribute that is affected by other quality
attributes such as reliability, availability, and flexibility to change. Nonfunctional
requirements do not have simple true or false satisfaction criteria; rather their level of
satisfaction can vary [9]. Although sustainability requirements are crucial to the
business economic goals, they do not have a clear link to revenue generation.
Henceforth, the benefits and returns of sustainability investments are difficult to
comprehend and visualize. To analyze sustainability requirements, we employ
parallels in defining the objectives and elaborating the goals and risk analysis
techniques to identify relevant debts. We argue that making software sustainable is
ultimately an investment activity that requires value-driven decision making—about
selecting the right decision options or alternatives based on their impacts on different
sustainability perspectives, while handling the trade-offs associated with those
decision and quantifying the risks associated with wider issues.

16.2.2 Architectural Evaluation

The architecture of the system is the first design artifact that addresses the quality
goals of the system such as security, reliability, usability, modifiability, stability, and
real-time performance. Architectural evaluation is an activity for developing an
assessment of an architecture against the quality goals. Our method builds on the
previous methods for dealing with the uncertainty in software architecture decisions,
notably the Cost-Benefit Analysis Method (CBAM) [10, 11].

The CBAM is an architecture-driven method for analyzing the costs, benefits, and
schedule implications of architectural decisions. It consists of the following steps:

• Choosing scenarios and architectural strategies (ASs)
• Assessing quality attribute (QA) benefits
• Quantifying the architectural strategies

372 B. Ojameruaye and R. Bahsoon

• Costs and schedule implications
• Calculating desirability
• Making decisions

Upon completion of the evaluation using the CBAM, the stakeholders are guided
to determine a set of architectural strategies that address their highest priority
scenarios. These chosen strategies furthermore represent the optimal set of architec-
tural investments. They are optimal based upon considerations of the benefits, costs,
and schedule implications, within the constraints of the elicited uncertainty of these
judgments and the willingness of the stakeholders to withstand the risk implied by
uncertainty.

To quantify the benefits of architectural strategies, the stakeholders are asked to
rank each architectural strategy (AS) in terms of its contribution to each quality
attribute of�1 to +1. A +1 means that this AS has a substantial positive effect on the
QA (e.g., an AS under consideration might have a substantial positive effect on
performance) and �1 means the opposite. Each AS can be assigned a computed
benefit score from �100 to +100. The CBAM doesn’t provide a way to determine
the cost; it considers that cost determination is a well-established component of
software engineering and is outside its scope. The benefits and scores result in the
ability to calculate desirability metrics for each architectural strategy. The magnitude
of desirability can range from 0 to 100.

16.2.3 Portfolio Management and Requirements

Modern portfolio theory [12] was introduced in 1952 by Harry Markowitz. Its goal is
to select the combination of assets using a formal mathematical procedure that can
minimize risks for an expected level of return on investment while accounting for
uncertainty in the real world. In finance, a portfolio denotes a collection of weighed
compositions of assets (investments) by an investor, usually used as a strategy for
minimizing risks and maximizing returns. Portfolio theory attempts to show the
benefits of holding a diversified portfolio of risky assets rather than assets selected
individually. The theory can also assist in determining the optimal strategy for
diversification of assets to minimize risks and maximize returns. This can be linked
to the process of analyzing obstacles to sustainability, where analysts make decisions
on which obstacles should be resolved given a certain amount of resources with
minimum risks.

In modern portfolio theory, the risk of a portfolio RP is determined by the
individual risks associated with each asset R1, the weight of each asset in the
portfolio W1, and the correlations between the assets PIJ. These correlation coeffi-
cients range from �1 to +1 and 0 indicates no relationship between the items.

The link between the selection of requirements and market value using portfolio
has been first explored by [13]. They proposed a market-driven, systematic, and
more objective approach to supplement the selection of requirements, which

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 373

accounts for uncertainty and incomplete knowledge in the real world using portfolio
reasoning [13].

Sivzattian and Nuseibeh [14] elaborated on portfolio analysis to the software
decision problem. Sivzattian and Nuseibeh [14] presented an approach for selecting
and prioritizing requirements based on portfolio analysis.

Asundi et al. [1] applied portfolio theory to the CBAM to combine architectural
strategies with the aim of combining uncorrelated or negatively correlated AS to
reduce uncertainty. Our use of portfolio is different: We identify an architecture as an
optimal portfolio of architectural strategies. We employ the analysis on the goal and
architectural levels. We explicitly look at linking sustainability goals to architectural
strategies, risk, returns, and debt.

16.2.4 Related Work

In this section, we provide a review of software architecture evaluation methods that
are related to our work.

The Architecture Trade-off Analysis Method (ATAM) [15] does not only reveal
how well an architecture satisfies the particular quality goals but also provides
insight into how these goals interact with each other—how they trade off against
each other [16]. The ATAM is a scenario-based architectural evaluation method. The
Software Architecture Analysis Method (SAAM) [17] elicits stakeholders’ input to
identify explicitly the quality goals that the architecture is intended to satisfy. Unlike
the ATAM, which operates around a broad collection of quality attributes, the
SAAM concentrates on the attributes for modifiability, variability (suitable for
product line), and achievement of functionality. The Cost-Benefit Analysis Method
(CBAM) [10] is a method for analyzing the costs, benefits, and schedule implica-
tions of architectural decisions. It builds upon the ATAM to model the costs and
benefits of architectural design decisions and to provide means of optimizing such
decisions.

Our work builds on the CBAM. While the CBAM can be used for evaluating
quality attributes, it does not explicitly address sustainability. Also, although it ranks
architectural strategies based on their return on investments, it does not explicitly
address identifying optimal candidate architectures.

However, some approaches have considered identifying the optimal candidate
architecture. GuideArch [18] guides architectural decision making such as ranking
of the architectures and finding the optimal candidates, under uncertainty using
fuzzy logic. Letier [19] presents an evaluation method that allows describing uncer-
tainty about the impact of alternatives on stakeholders’ goals. The method calculates
the consequences of uncertainty through Monte Carlo simulation and shortlists
candidate architectures based on the expected costs, benefits, and risks. It also
assessed the value of obtaining additional information before deciding.

374 B. Ojameruaye and R. Bahsoon

Although none of these approaches explicitly address sustainability [1, 14], they
can be viewed as complementary to our approach as they could be used to shortlist
architectures and identify optimal architectures based on value.

16.3 The Problem

Sustainability needs to be aligned with the systems and business goals as well as the
prevailing regulations, to add value, and to meet the needs of the business. With
recent developments and demands for sustainable software, some software systems
have a few sustainability requirements to which it should comply with to retain or
improve its value. However, the stakeholders are interested in maximizing returns of
the systems while minimizing risks and costs of development.

A key to a good alignment between the business domain and sustainability
requirements is to keep the focus on value at both the requirement and architectural
level (architecturally significant requirements). Requirements and architectural deci-
sions need to add value, and this value can be characterized by maximizing benefits
while minimizing risks at a reasonable cost.

The objective is naturally to aid requirement analysis and decision making by
using an evaluation method that quantifies and visualizes value. In this context, a lot
of work has already been done in requirement analysis and software evaluation
method. Some architectural evaluation methods based on cost-benefit assessments
[10, 17, 20] already exist. However, these methods are generally applied at the
architectural level, once the requirements have been selected and specified. This
results in a gap between understanding the value of sustainability requirements and
the impact on the architecture.

Therefore, this work is focused on the requirement level, linking architectural
decisions with requirement analysis, instead of being only focused on architectures.

Existing methods are generally focused on finding the optimal architecture.
However, they fail to consider that the optimal solution may be unnecessary and
unaffordable or not deliver the best value to the customer. This leads to a gap referred
to as a debt between the optimal solution identified by the evaluation method and the
actual solution required with respect to the relevant decision space. This lack of
identification and quantification of debt prevents its understanding and management
(trade-offs), which may lead to poor decision making.

The problem we address is how to evaluate sustainability goals in architectures
quantitatively under uncertainty. We look at how the value of the architecture is
computed for higher-level sustainability requirements given the refinement ques-
tions and metrics for sustainability-related variables. We also look at quantifying the
debt that may be incurred in any suboptimal architecture.

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 375

16.3.1 Requirements for the Model

We started our investigation of the problem by undertaking a survey of portfolio
management practices in software and other industries [8, 21]. We included portfolio
management in our survey because we believe a portfolio viewpoint is needed to
manage risks [15]. As a result of this investigation, we identified a number of
requirements that any useful model ought to address. These requirements, which
include a definition of the two categories of risk our model aims to address, are:

• Linking technical decisions to value (cost, value, and risk).
• Evaluating sustainability as an architecturally significant requirement.
• Evaluating technical debt in the requirement phase of system design.
• Evaluating the impact of sustainability on architecture selection decisions.
• Evaluating the impact of uncertainty in cost estimates as a risk.
• Evaluating the impact of obstacles to operationalizing goals as a measure of risk:

While goals capture the desired objectives, obstacles [3] to these goals capture
undesirable properties that may obstruct those sustainability goals.

16.3.2 Requirements and Value Component
Relationship Model

Value breaks down into three components: risks, costs, and benefits. A typical value-
based approach begins with the identification of the decision parameters, followed
by the identification and analysis of risks attached to those decisions. After the risk
assessment process, a cost-benefit analysis is done to quantify the costs and the
benefits of the decisions. In the context of requirement/architectural evaluation, at
the end of the process, the value of an architecture plays a significant role in
determining how well it meets the initial requirements. Therefore, to systematically
understand the value of an architecture, it is necessary to explicate the relationships
between the sustainability requirement and the value components.

To systematically inquire about the value components expressed (or missing) in
sustainability requirement descriptions, we extend the Common Criteria model [16]
to also include sustainability requirements. The resulting model, as shown in
Fig. 16.1, leads to the conceptualization of a sustainability requirement in terms of
its related value components.

376 B. Ojameruaye and R. Bahsoon

16.4 Sustainability: A Technical Debt Perspective

The goal of the software architecture process is to create a detailed recipe of design
decisions for developing software that will satisfy the functional, quality, and
business requirements. Consequently, achieving this goal necessitates active deci-
sion analysis of the goals and architectural strategies (ASs) in order to ensure
stakeholders’ satisfaction and optimal investment decisions under uncertainty.
Architectural portfolio management involves decision making aimed at creating a
mix of ASs that returns maximum value for the resources invested. This leads to
critical decisions involving the selection of an optimum mix of requirements aimed
at satisfying the necessary goals.

Unlike previous work, we introduce a new dimension of using sustainability debt
as a decision factor for elaborating and managing requirements through architectural
evaluation. We incorporate the debt analysis at the requirement analysis and early
architectural decision levels. Technical debt can inform the architectural evaluation
process and the decision for investing in a specific architecture at the early stages of
the development life cycle. Our objective is to avoid inappropriate selection of an
architecture that is not value driven and debt aware. The key principle here is to
tackle and manage the increased and unjustified debt, which can be associated with
the selection of and consequently the inappropriate architecture candidates. We
assume that debt can vary with different architectures and each architecture can
deliver its own trade-offs for risk, value, cost, and debt reduction. We advocate a
predictive approach for anticipating and managing debt at the requirement and early
architectural evaluation stages. A predictive approach can be applied during the early
stages of the engineering process to predict the debt, its impact, when it will be

Cost

Incurs

Sustainability
Requirements

Driven By

Business Goals
Negated

Obstacles

Leads to

Risks component

Component

Component

Benefits

ValueHave

Provides

Fig. 16.1 Sustainability requirements and value component relationship model

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 377

incurred, when it will pay off, and the interest if any. Classical approaches to
managing technical debt in software development life cycle tend to be retrospective.
Unlike retrospective approaches, predictive approaches allow planning.

Technical debt in sustainability requirements can be traced back to require-
ments—the way requirements are engineered, elicited, selected, prioritized, and
analyzed. Debt can be linked to the alternative architectural strategies used to
operationalized requirements, their appropriateness, the resources used, and the
risk involved. The interest on this debt can be characterized as the rate of increase
in this distance. Uncertainty about whether or not a decision is appropriate will have
an associated penalty, which may incur a debt. In this sense, technical debt can be
considered as a particular type of risk; the problem of managing sustainability debt
boils down to managing risk and making informed decisions [22].

Our methodology combines the strengths of the CBAM [7] with portfolio theory
and technical debt. Our motivation for combining the aspects of these methods is
based on the observable strengths in each of them. The CBAM is a quantitative
approach for economic modeling of software engineering decisions, which builds
upon the Architecture Trade-off Analysis Method (ATAM) [1]. It provides the cost
and benefit of different architectural candidates. On the other hand, the goal of
modern portfolio theory is to select the combination of assets using a formal
mathematical procedure that can minimize risks for an expected level of return on
investment while accounting for uncertainty in the real world.

Given a set of design alternatives, these alternatives have varying prospects under
uncertainty, which in turn affects the overall value of the architecture. Requirement
engineers and architects should be able to classify their requirements and design
options at any given time. Beyond that, they should also understand how these
options affect the architecture’s value. Portfolio thinking can help us manage
alternatives more effectively in different ways. It allows us to estimate the value of
an architecture, before the refinement process actually ends, as well as assess each
design alternative as the development process progresses.

The set of requirements and design alternatives to be used can be called the option
space. This space is defined by metrics that help address issues such as selecting an
alternative. These metrics include the standard net present value and a measure of the
uncertainties.

The steps in our methodology are designed to support developers and analysts in
systematically estimating the value of prioritized or selected architecturally signifi-
cant requirements and architectures. The resulting insights help to establish the link
among sustainability requirements from various perspectives in the context of
system operation and understand the true value of requirements in the presence of
risk, cost, and uncertainty. Our value and risk-aware approach consists of the
following basic steps (Table 16.1).

378 B. Ojameruaye and R. Bahsoon

16.4.1 Step 1: Elicit and Prioritize the Goals, Cost,
and the Desired Sustainability Threshold
for These Goals

The first step of the CBAM consists of identifying the decisions to be taken together
with their architectural strategies (ASs), defining the goals against which to evaluate
the decisions. We use existing goal-oriented requirement engineering methods [23]
to elicit, elaborate, and refine the goal model. These ASs have parameters, and each
parameter is assigned a value.

16.4.2 Step 2: Develop Architectural Strategies for the Goals,
Elicit Their Parameter Values, and Define
the Architectural Decision Model

The decisions to be taken together with their architectural strategies (ASs), defining
the goals against which to evaluate the decisions, are identified using a goal-oriented
requirement engineering method. Based on the requirements implied by the elicited
goals, ASs or design options are developed and the parameter values elicited.
Following the CBAM principles, we associate utility with the AS in meeting
different sustainability requirements and the level of satisfaction. This consists of
eliciting the values of the contribution of the AS to the goal for all parameters in the
architectural models. The CBAM is however not constrained to the use of any
particular elicitation technique. For each AS and goal pair, the impact that the AS
is expected to have on that goal is then estimated.

Table 16.1 The value and risk-aware method

Step Description

1 Elicit and prioritize the goals, cost, and the desired sustainability threshold for these goals

2 Develop architectural strategies (ASs) for the goals, elicit their parameter values, and
define the architectural decision model

3 Determine architectural strategies’ (ASs) impact on sustainability

4 Elicit sustainability goals, design decisions, obstacle, and risk analysis

5 Determine the expected benefit of each design option

6 Analyzing the costs, benefits, risks, and value using portfolio thinking

7 Identify the optimal architecture, calculate debt, and rank other architectures

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 379

16.4.3 Step 3: Determine Architectural Strategies’ Impact
on Sustainability

Once the options have been developed and their parameter values elicited, its
relationship to sustainability goals such as technical and economic sustainability is
determined. The degree, to which each of these attributes is expected, varies from
domain to domain. The sustainability parameters [8] used in the framework pro-
posed in this chapter are as follows (the evaluation benefiting from these parameters
is long term and strategic in nature):

• Human sustainability [H] parameter checks the extent to which the AS being
evaluated is likely to contribute and support the individual benefiting from the
system over time. As an example, consider the case of the architecture of a
wearable medical device supporting an elderly individual. Parts of human
sustainability cover privacy, safety, security, and usability. In addition, there is
a strong focus on personal health and well-being, which still needs to be made
explicit in the requirements. Within software development, an example is the
number of people hours involved in the development and implementation. Soft-
ware is developed and managed by people. Therefore, it is fundamental to
consider the value aspects related to human capital while taking product man-
agement decisions.

• Economic sustainability [EC] parameter checks the extent to which the AS
being evaluated is economically viable and likely to economically sustain over
time. In this context, the AS is treated as an asset that needs to be maintained over
time and be monitored for its operational cost, its risks, and its ability to deliver
value and unlock its potentials during the lifetime of the system. The economic
sustainability is taken care of in terms of budget constraints and costs as well as
market requirements and long-term business objectives that get translated or
broken down into requirements for the system under consideration. Within a
software development context, the value aspects related to economic sustainabil-
ity need to be considered while taking decisions.

• Environmental sustainability [EN] parameter checks the extent to which the AS
being evaluated is likely to improve human welfare by reducing the carbon
footprint, protecting natural resources, and being energy aware. In particular,
the evaluation covers the production, operation, maintenance, and evolution
lifetime of the software system. The requirements with regard to resource
flows, including energy, can be elicited and analyzed by the life cycle analysis
(LCA). Other aspects are efficiency and time constraints. When building a
software system, these dimensions appear in the form of things like cost of
energy, efficient algorithms, and development processes.

• Technical sustainability [T] parameter checks if the AS being evaluated is
necessary to achieve technical sustainability. Technical sustainability has the
central objective of long-time usage of systems and their adequate evolution
with changing surrounding conditions and respective requirements.

380 B. Ojameruaye and R. Bahsoon

Penzenstadler and Venters et al. [3, 24] proposed that sustainability should be
considered as a measure of a system’s availability, integrity, maintainability, and
reliability. We view technical sustainability as the degree to which a system is
maintainable, reliable, usable, and portable.

• Social sustainability [S] parameter checks the extent to which the AS being
evaluated is likely to sustain and contribute to society. This parameter evaluates
the ability of the AS to maintain social capital and preserve societal communities
and their solidarity in the way they perceive the benefits of the AS over time. In
particular, the AS is evaluated for its likely positive/negative effects on society.
This analysis becomes more important once we develop the architectures of
systems of systems (SoS), ultra-large-scale architectures, architectures for smart
and federated cities, and social network systems, among others. Part of the social
sustainability dimension considers political, organizational, or regulatory
requirements [8].

We use the Software Value Map [15] which offers a unified view of value to
evaluate the impact of these dimensions based on three value perspectives: the
financial, the customer, and the internal business process.

• The financial perspective looks at the aspects of the implementation decision
that affect short- and long-term financial goals. Some of the most common
financial measures are the cost of implementation, earned value analysis, and
profit margins.

• The customer perspective looks at the value proposition of the software to the
customers. Measures that are selected for the customer perspective on sustain-
ability should calculate the value that is delivered to the customer with respect to
the perceived time, quality, performance and service, and cost [15].

• The internal process perspective is concerned with the processes that maintain
and encourage sustainability. Quality, cycle time, productivity, and cost are some
aspects where performance value can be measured [17] (Table 16.2).

We look at the interrelationship between the impacts on different value aspects.
This is necessary because selection decisions based on single-dimension impacts
could obscure other impacts that might cause equal or greater damage. The interre-
lationships can exist as the following effects:

• A positive impact on one value aspect might have a positive impact on one or
more sustainability dimensions.

• A negative impact on one value aspect might have a negative impact on one or
more sustainability dimensions.

• A positive impact on one value aspect might have a negative impact on one or
more sustainability dimensions and vice versa.

The next step is to compute the AS that has a likely impact on the sustainability
dimensions. The sustainability value of the AS is a utility function of the utility
values on H, S, EC, EN, and T. The parameters are assigned integer values from 1 to

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 381

5. Sp is the sustainability impact parameter and can assume integer values from 1 to
5. These parameters are calculated as follows:

Sp ¼ αHþ βSþ γEnþ δEcþ ETð Þ ð16:1Þ

where α, β, γ, δ, and ε are the relative weights assigned to the different parameter
values based on the relative importance of the system.

Usually qualitative metrics may be extended by quantifying or replacing the value
such as high, medium, or low with numerical weights. Although this principle is
often used in practice, problems such as lack of precision (for precise requirements)
and lack of clear criteria to validate the estimation still exist as this technique is
subjective. For simplicity, we propose a quantitative measurement metric that
considers the impact of the goal on different attributes based on subjective criteria
such as the stakeholders’ experience. The parameter values ranging from 1 to 3 are
assigned depending on whether the impact is high, medium, or low. For the
valuation to be accurate, it is important to estimate the parameters accurately. In

Table 16.2 Sustainability dimensions, value perspectives, and value indicators

Financial Customer Internal process

Individual The financial implica-
tions of user satisfaction
and retention

Sustained perceived
value to the user (e.g.,
perceived satisfaction,
convenience, etc.)

Implications on
resources including
human, time, etc. in
relation to develop-
ment, maintenance and
evolution, etc.

Economic Total development,
maintenance, and evolu-
tion costs, among others

Cost and value in
supporting user’s spe-
cific concerns (e.g., can
relate to users’ specific
functional and
nonfunctional
requirements)

Cost, value, and risks
for developing,
maintaining, and moni-
toring sustainability

Environmental The financial implication
of complying and/or
noncompliance with
environmental sustain-
ability. Market losses or
gains relative to market
sustainability

Environmental impact
due to energy usage and
CO2 emissions

Meeting market and
sustainability require-
ments and their cost.
Risk and value
implications

Technical Total development,
maintenance, and evolu-
tion costs, among others

Cost and value in
supporting functional
and nonfunctional
requirements

The value of
maintaining the system
over time

Social Value from incentives
such as cost and com-
plementary value
through network of users
and technologies

Development team
management

382 B. Ojameruaye and R. Bahsoon

this chapter, our focus is more on developing a framework for quantitative analysis
system rather than model parameterization. The decision on which level the param-
eters are investigated depends on the scope of the system under analysis.

16.4.4 Step 4: Elicit Sustainability Goals, Design Decisions,
Obstacle, and Risk Analysis

Architectural design decisions should take into consideration the risks associated
with each architectural decision and the resulting candidate architecture.

We compute the sustainability value and the corresponding risk values of the
AS. We take a goal-oriented requirement engineering (GORE) [23] approach for
specifying and refining H, S, EC, EN, and T.

We use the obstacle analysis [23] of GORE for identifying the risks on sustain-
ability in conjunction with the AS. In particular, various ASs correspond to the
agents operationalizing the goals in GORE terms. The presence of obstacles is an
indication of risks. Risks refer to the potential damage that can occur if that obstacle
is not resolved. When identifying the risks of the AS, each strategy should not be
considered in isolation. A risk to one AS might negate other AS. The use of GORE
provides decision makers with a systematic and traceability method for reasoning
about architectures in conjunction with sustainability goals and risks. The process of
goal refinement and elaboration benefits from the fundamentals of GORE; its
analysis and evaluation can be iterative and continuous. The approach can inform
the decision for further refinements for sustainability. The metric can also inform the
desirable stopping criteria for the refinements and analysis processes for accepting or
rejecting the AS.

Risks can be formally modeled using two properties—the criticality and the
likelihood of the risks occurring. The criticality of a risk indicates how bad the
consequence of the risk is likely to be. It also depends on its impact on higher-level
goals and the relative importance of those goals. Every risk incurs a cost for its
mitigation (mostly resource consumption), and this affects the risk’s criticality. In
the proposed method, criticality is computed on a five-point scale as shown in
Table 16.3.

Table 16.3 Criticality values of risks

Criticality Interpretation

Very high
(5)

The risk has a high impact on multiple higher-level goals

High (4) The risk has a high impact on a single higher-level goal

Medium (3) The risk produces a fair contribution to goal negation

Low (2) The risk has a low impact on multiple higher-level goals

Very low (1) The risk has a low impact on a single higher-level goal. Its impact can be
insignificant

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 383

Likelihood denotes the probability that the risk will occur. In our framework, we
calculate the likelihood of a risk occurring using historical data (e.g., figures
corresponding to T, EC, etc.) and on the basis of the value of evidence that increases
and reduces the likelihood. The likelihood is defined quantitatively and can take the
following values: almost certain (5), likely (4), occasionally (3), rare (2), and
unlikely (1). It can be determined by past occurrences, which represents the previous
incidents that have occurred due to the risk.

Rv ¼ log 2 Lo � Coð Þ ð16:2Þ

The reason for taking the logarithm to base 2 is to normalize the result within a
scale of 0–5. Every risk has a risk factor. Rv is the value of the risk, LO is the
likelihood that the risk will occur, and CO is the criticality. Another lightweight
technique to support this process consists of using the standard risk analysis matrix
in which the likelihood and criticality are estimated.

16.4.5 Step 5: Determine the Expected Benefit of Each
Design Option

We use the CBAM principles here, and we track the benefits on goals/scenarios
along with the sustainability goals. The benefit or the effectiveness of an AS is an
assessment of how well the option helps in achieving the sustainability goal. To
quantify the benefits, we associate utility with aspects of the option such as its
satisfaction of the sustainability and quality attributes. Based on the information
collected, the total sustainability benefit of each AS can be calculated across goals by
summing the impact on the sustainability attributes associated with each goal
(weighted by the importance of the goal and the attribute). This can be calculated
using CBAM (Eqs. 16.3 and 16.4).

16.4.6 Step 6: Analyzing the Costs, Benefits, Risks, and Value
Using Portfolio Thinking

We use the CBAM principles here and we track the benefits on goals/scenarios along
with the sustainability goals. The benefit or the effectiveness of an AS is an
assessment of how well the option helps in achieving the sustainability goal. To
quantify the benefits, we associate utility with aspects of the option such as its
satisfaction of the sustainability and quality attributes. Based on the information
collected, the total sustainability benefit of each AS can be calculated across goals by
summing the impact on the sustainability attributes associated with each goal

384 B. Ojameruaye and R. Bahsoon

(weighted by the importance of the goal and the attribute). This can be calculated
using CBAM (Eqs. 16.3 and 16.4).

Benefit ASð Þ ¼ contribScoreð Þ Qattribð Þ ð16:3Þ
Return ASð Þ ¼ Benefit=Cost ð16:4Þ

We now analyze the costs, benefits, and risks associated with alternative deci-
sions to create an architectural design using portfolio theory. Since sustainability
requirements do not have simple true or false satisfaction criteria, but are satisfied up
to a level [25], we can determine how well the goal needs to be achieved with the
available resources. With the measurements of the value of the individual options as
described above, all input information for the portfolio approach is ready. We can
start making decisions using the portfolio approach. Each AS has a risk value R1, a
cost P1, and the weight of the risk W1. Based on these values, we can then decide on
how many instances of the risks to the goal need to be resolved so that the global risk
of the goal being obstructed is reduced.

One can see that an architecture has similarities to the financial market. However,
we use portfolio theory to identify an architecture as an optimal portfolio of
architectural strategies with a total value that minimizes risks and maximizes return.

The total cost of an architecture is

C ¼
Xm
i¼1

C1 ð16:5Þ

And weight W is

W ¼ C1=
Xm
i¼1

C1

 !
ð16:6Þ

Where P1 is the return of the architectural strategy and W1 is the weight assigned
to that strategy, the expected return Ep of an architecture is

Xn
i¼1

Ep ¼ 1 ð16:7Þ

Ep ¼
Xm
n¼1

W1 B1=C1ð Þ ð16:8Þ

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 385

Ep ¼
Xm
n¼1

W1 W1P1ð Þ ð16:9Þ

Where R1 is the local risk of the architectural strategy and W1 is the weight
assigned to that strategy, the global risk of an architecture is

Rp ¼
Xm
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
W2

1R
2
1

q
ð16:10Þ

16.4.7 Step 7: Identify the Optimal Architecture, Calculate
Debt, and Rank Other Architectures

Evaluating and selecting the best architecture based on the requirements is a core
activity in the requirement elaboration process. We evaluate the architecture by
considering the amount of sustainability debt that each architecture may incur as
the deciding factor.

The next step is to shortlist valid and optimal architectures. An architecture is
valid, if it satisfies the relevant constraints such as cost, risk, schedule, or sustain-
ability score threshold. The default is to shortlist valid candidate architectures that
maximize the expected net benefits and minimize risks on dimensions related to
sustainability. Identifying the optimum architecture is a core activity in the evalua-
tion process. An architecture is optimal for a given problem if it achieves minimum
risk and maximizes value while satisfying critical constraints. This is defined as a
portfolio optimization problem to minimize risk and maximize return subject to cost
constraints. Where ER is the expected return and Pd is the standard deviation of the
portfolio, we define this term of Sharpe ratio as:

Maximise ER=Pd ð16:11Þ

This can also be used for comparison and benchmarking of other architectural
portfolios. The architecture with a high Sharpe ratio is the one that achieves the best
combination of value and risk in the presence of uncertainty.

The ability to find the optimal solution is complemented with the ability to rank
architecture candidate portfolios. The architecture is a portfolio of ASs, where each
AS has its risk and benefits on goals and the sustainability dimensions. We rank the
architecture (i.e., portfolio for our case) by considering the amount of debt that each
architecture may incur as the deciding factor. We calculate and assign the sustain-
ability debt of each alternative. We evaluate the different architectures by consider-
ing the amount of debt that each resolution tactic may incur as the deciding factor.
From our earlier explanation of the debt using the technical debt metaphor in as the
gap between what can be achieved with the available resources and the hypothesized

386 B. Ojameruaye and R. Bahsoon

“ideal” environments where the goals are successfully achieved, we formulate the
value of the debt as:

TD ¼ IRT � RT ð16:12Þ

where TD is the debt, IRT is the Sharpe ratio of an “optimal” architecture, and RT is
the Sharpe ratio cost of the selected architecture. The ideal value is context depen-
dent and is application and business dependent. TD for any other tactic is calculated
as the gap between the value of architecture k (IRT) and the value of the architecture
in question. The architectures can then be ranked from best (low TD) to worst (high
TD).

This approach models technical debt as a function of requirement trade-offs. It
presents the optimal solutions at a given point in time in terms of specific scenarios.
This approach is similar to technical debt in the implementation: Even though we
may implicitly know that a particular architecture is not optimal in the long term,
presumably we choose this architecture precisely because it works at that point in
time. It is only when time passes that debt begins to accrue as the sustainability and
business needs begin to favor the optimal solution more than the actual solution.
With respect to “interest” on the debt, which we loosely translate as the cost of
neglecting the debt, this is the rate of change between the current solution and the
current state of the requirements.

Debt can be attributed to the inability of the architecture to partially or fully meet
the changes in the requirements and the environment. We claim that a sustainable
system tends to add value with time and as it evolves and the added value is relative
to the stakeholders involved. Debt can be relative to the scenarios. It could be
discussed from the perspective of the end users and the perspective of the provider
(system developer). When TD is discussed in conjunction with and relative to all the
scenarios of interest, it can give an indication of the overall system’s sustainability.
TD at the requirement level can be attributed to different situations such as:

1. The architecture does not fully meet the requirements.
2. An overdesign of the architecture so the potentials of the architecture following

composition are not fully utilized and the operational cost tends to exceed that of
the generated benefits.

3. The absence of publicly available historical data for analyzing the impact of
decisions that may lead to poor and quick decisions that add a value in the short
term but can introduce long-term debt in situation where improving the system is
unavoidable.

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 387

16.5 Evaluation

We apply the proposed method to the case study from the literature [18], referred to
as Emergency Deployment System (EDS), to motivate, describe, and evaluate our
research. The objective of this case study is to validate the method and demonstrate
the derivation of variables and functions for sustainability evaluation from the
system’s goals. Our choice stems from the adequate level of complexity involved,
while taking into account the demands for the need for sustainable architecture and
the contradictory needs of the different stakeholders. For the simplicity of exposi-
tion, we look at a sustainability scenario which needs to be considered when
architecting the software system. In particular, the AS and the architecture that
compose these strategies need to preserve the reliability of the system, minimize
power consumption, minimize costs, and maximize response time to ensure techni-
cal, environmental, and economic sustainability.

The evaluation hopes to demonstrate the extent to which the method can system-
atically evaluate architectural strategies for sustainability and select a portfolio of
ASs which have the potential for reducing cost and risk and adding value on the
sustainability dimensions. The approach was modeled as a multi-objective optimi-
zation problem in which the utility, risk, and development cost functions formed the
three objectives. The case study relied on the following hypothesis:

• The framework is applicable to large-scale, industrial projects.
• The framework provides a better guide to addressing sustainability requirements

than conventional requirement models.
• The technique allows one to systematically identify a set of risks, some of which

may be missed if no systematic technique is applied, and to link each risk to
sustainability to the system goals it may impact.

The hypothesis can be considered true if the following objectives are met:

• Demonstrates the capability of the framework to describe, model, and analyze
sustainability requirements of software systems at design time systematically
both at the requirement and architectural levels

• Demonstrates how the results achieved using the framework offer a better guide
at addressing sustainability requirement

• Demonstrates the use of sustainability debt as a metric and measure of risk

In order to examine the validity of the hypothesis through these objectives, a
qualitative analysis of the use case models is conducted. The case study was selected
from emergency response domain as the systems in this domain need to be sustain-
able to accommodate uncertain conditions, increase efficiency, and reduce cost with
minimum risk to people.

388 B. Ojameruaye and R. Bahsoon

16.5.1 The Problem

The software to be designed is an Emergency Deployment System whose purpose is
to support the deployment of personnel in emergency response. For the case study,
the original design team applied GuideArch, an approach which supports design
decisions under uncertainty [18].

16.5.2 Design Decision Evaluation

16.5.2.1 Step 1: Elicit and Prioritize the Goals, Cost, and the Desired
Sustainability Threshold for These Goals

The original design team elicited priority values for each of the seven goals,
presented in Table 16.4. Goals G1, G2, G3, and G5 have sustainability implications,
which should be factored into the evaluation of the design. The strategic require-
ments related to the sustainability requirements are listed in Table 16.4.

16.5.2.2 Step 2: Develop Architectural Strategies for the Goals, Elicit
Their Parameter Values, and Define the Architectural
Decision Model

The original team had also defined models for computing the impact of the AS on the
goals using a three-point estimate for each parameter: Since the model has 25 pos-
sible ASs which could be induced by the alternatives and 7 goals, we have 25 � 7
(175) parameters. As we are interested in evaluating the sustainability of the ASs,
our architectural model would look at the contribution of an AS to a goal in terms of
sustainability. We thus define the goal evaluation function as the sum of the
contributions of each AS composing an architecture and its corresponding sustain-
ability impact.

Table 16.4 Sustainability
requirements for EDS

1. Minimize cost

2. Minimize battery usage

3. Maximize reliability

4. Minimize response time

5. Minimize ramp-up time

6. Minimize development time

7. Minimize deployment time

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 389

16.5.2.3 Step 3: Determine Architectural Strategies’ Impact
on Sustainability

Once the AS has been identified and their parameter values are elicited, we deter-
mine the likely impact an AS can have on sustainability goals, including technical
and economic sustainability. Since our work is concerned with sustainability goals, it
was necessary for us to design a characterization for sustainability which we use to
elicit sustainability-specific questions for evaluation.

Given an AS, we are interested in understanding its impact on sustainability. We
estimate the impact of the AS on sustainability goals using the already elicited
parameters. Since goals G1, G2, G3, and G5 are likely to impact sustainability, we
use the impact parameters to quantify the impact. For example, battery usage can be
linked to environment, and technical sustainability as an architecture with a high
battery usage may lead to low availability; the solution may not be technically
sustainable in the context of emergency response systems. Also, a high battery
usage means an increased carbon footprint, and this inversely affects environmental
sustainability. Similarly, reliability and response time figures could be linked to
technical and human sustainability, where any degradation in reliability may have
negative consequences on the system and human, threatening the system’s sustain-
ability. Increased development and deployment times could be linked to increased
carbon footprint, which can be linked to environmental sustainability. We compute
the impact values using a scale of 1–5 utilizing a three-point estimate for each
parameter (most likely, lowest, and highest values). Table 16.3 shows the result of
4 ASs out of the 25 ASs identified.

After the impact parameters are determined, we compute the relative weights of
each sustainability goal, to reflect their relative concerns. For this case, we illustrate
the computation on the technical sustainability. The total impact of an AS on
sustainability is described using Eq. (16.1) (Table 16.5).

16.5.2.4 Step 4: Elicit Sustainability Goals, Design Decisions, Obstacle,
and Risk Analysis

After computing the architectural options, sustainability impact values, the risks to
these ASs, and the corresponding risk values need to be modeled. The model used
for the original case study had no definition of risk. We model the risks of each
design decision alternative in terms of loss probability, criticality, and its effect on
sustainability on a scale of 1–5.

390 B. Ojameruaye and R. Bahsoon

16.5.2.5 Step 5: Determine the Expected Benefit of Each Design Option

Based on the information collected, the total sustainability benefits of each AS can
be calculated across goals by summing the impact on the sustainability goals
associated with each goal (weighted by the importance of the goal and the attribute).
This is calculated using the CBAM’s equations (Eqs. 16.3 and 16.4).

16.5.2.6 Step 6: Analyzing the Costs, Benefits, and Risks Using Portfolio
Thinking

The next step consists of analyzing the costs, benefits, and risks associated with
alternative ASs to create an architectural portfolio which optimize for risks related to
sustainability goals using portfolio thinking. After calculating the return and risks
associated with each AS, the next step is to determine the overall effectiveness of a
candidate architecture, which is liken to a portfolio of architectural strategies. The
overall effectiveness of an architecture is a function of the total expected return and
the global risk of that portfolio. Table 16.4 shows the result for one architecture.

Table 16.5 Summary of requirements for the case study

Requirements Alternatives Related quality/sustainability goals

Location finding 1. GPS
2. Radio transmission

1. Minimize cost
2. Minimize battery usage
3. Maximize reliability
4. Minimize response time
5. Minimize ramp-up time
6. Minimize development time
7. Minimize deployment time

Hardware platform 1. Nexus 1 (HTC)
2. Droid (Motorola)

File sharing package 1. File manager
2. In-house

Report synchronization 1. Explicit
2. Implicit

Chat protocol 1. Openfire
2. In-house

Map access 1. On demand (Google)
2. Cached (Google server)
3. Preloaded (ESRI)

Connectivity 1. Wi-Fi
2. LG on Nexus
3. 3G on droid
4. Bluetooth

Database 1. MySQL
2. SQLite

Architectural style 1. Peer to peer
2. Client-server
3. Push based

Data exchange format 1. XML
2. Compressed XML
3. Unformed data

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 391

16.5.2.7 Step 7: Identify the Optimal Architecture, Calculate Debt,
and Rank Other Architectures

We shortlisted valid architectures that maximize the expected net benefits and
minimize risks on dimensions related to sustainability. An architecture is valid, if
it satisfies the relevant constraints such as cost, risk, schedule, or the sustainability
score threshold. The overall effectiveness of an architecture is a function of the total
expected return and the global risk of that portfolio. Table 16.6 shows the analysis
and result of a candidate architecture, from selecting specific AS.

One of the requirements elicited by the original design team in EDS was to keep
the cost of a single handheld device below $1000. For this example, we assume that
the optimal architecture is the architecture with the highest Sharpe ratio while
satisfying the cost constraint of $1000.

For the case study, there was a total of 6912 alternatives, and after the constraint
was applied, we had about 2730 valid architectures and the optimal architecture had
a cost of $968.94, an expected return of 11%, and a global risk of 68%. The whole
method was implemented in Matlab to speed up the decision making.

Using Eq. (16.12), we ranked the other architectures from best (low TD) to worst
(high TD).This can also be used for comparison and benchmarking of other candidate
architectural portfolios. The architecture with a low debt Sharpe ratio is the one that
achieves the best combination of value and risk in the presence of uncertainty. The
ideal architecture is context dependent.

16.5.3 Findings

After modeling the different combinations of architectural strategies using portfolio
thinking with the cost constraint, one optimal architectural design portfolio is
selected. While some of the findings from the analysis may appear unsubtle, they

Table 16.6 Candidate architecture along with the results of the analysis

Goals Candidate AS Result of the analysis

Location finding Radio transmission Ep (expected return) 10%

Hardware platform Nexus 1 (HTC) Rp (global risks) 77%

File sharing package In-house Cost 756.78 pound

Report synchronization Explicit 2[4]*Sharpe ratio 2[4]*12%

Chat protocol Openfire

Map access Preloaded (ESRI)

Connectivity Wi-Fi

Database MySQL

Architectural style Push based

Data exchange format Unformed data

392 B. Ojameruaye and R. Bahsoon

were not obvious prior to the evaluation of the architecture using the method and
given the possible valid combinations for constructing a portfolio.

The main objective of the approach is to improve sustainability by maximizing
the returns of architectural strategies and minimizing the risks associated with the
architecture achieving the system’s goals through a portfolio. The debt metric pro-
vides insights on the significance of an architecture in mitigating risks given the
resources in hand. This is calculated as the gap between the Sharpe values of the
architecture in question relative to the ideal architecture achieving the system’s goals
for resolving this obstacle. As investing in the ideal architecture is not always
affordable, the metric is an expression for the risks tolerated if a different architecture
is chosen. This analysis provides analysts and architects with an objective tool to
assess and rethink their investment decisions in architecture using the expected
returns, global risk, and Sharpe ratio of portfolio value assuming the validity and
accuracy of the parameters’ probability distributions. The use of the debt metric had
made both the short-term and long-term risks visible in the evaluation and selection
process. In addition, the results should improve the architect’s confidence in the
fitness of the proposed architecture toward meeting critical requirements.

The data reported in the case study are limited. We used the data from the
literature where the case study was initially presented. We used subjective values,
which were derived by consulting similar projects in the literature. While this may
lead to subjective results, the estimates are useful in providing insights. The evalu-
ation and the quantification of values we used were intentionally oversimplified to
focus on demonstrating the technique and reasoning.

The technique presented in this chapter does not consider the interrelationship
between the impacts on different value aspects.

The evaluation presented in this section is limited primarily by the assumed
nature of the sustainability requirements. We assumed these requirements are visible
to software engineers and that their impacts are easily quantifiable.

16.5.4 Threats to Validity

This case study was based on a study reported in the literature. The objective for
carrying out the case study was to provide feedback on the method. For this reason,
we relied on the parameters elicited by the initial case study and made some
simplified assumptions. This imposed a few threats to their validity. These threats
considered based onWohlin [26] are construct, internal, and external validity threats.

1. Construct Validity: A threat to construct validity is that the case study was the
data used for the study. The data was assumed a fair representation of the actual
characteristics of the system to be built as it was elicited from stakeholders with
expert knowledge. In reality, this cannot be guaranteed. In addition, the analysis
was performed by a PhD candidate, who may be biased to produce a positive
result. This is considered a threat to the construct validity of the study. This risk

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 393

was reduced by comparing the results of this study to the published results of the
original study.

2. Internal Validity: This study does not account for all goals and architectural
strategies that may affect the system’s sustainability.

3. External Validity: A threat to external validity of the study was that the architec-
ture had already been evaluated in the literature; hence, we had an idea of what the
optimal architecture should be. In the analysis of a new system, deriving the
parameters for the models may not be as straightforward or easy.

16.6 Discussions

Using the framework proposed by [27], we compared our evaluation technique with
plain CBAM as shown in Table 16.7 The results indicate that the debt-aware and
portfolio-based approach is a more optimized and holistic approach for evaluating
architectures for sustainability. In particular, our method, which is based on the
concept of portfolio theory for finding the optimal architecture with risks on the
sustainability goals, offers a better coverage at optimizing architectural investment
decisions and ranking candidate architectures based on debt. At the moment, the
maturity stage rating of our method (i.e., inception) makes it hard to arrive at strong
claims about its generalization. Consequently, more examples, case studies, and
empirical investigations are required to further validate the method.

Table 16.7 Comparison of evaluation methods

Components CBAM Our technique GuideArch

Maturity
stage

Refinement Inception Refinement

Process
support

Comprehensive Comprehensive

Method’s
goals

Cost-based analysis Cost, risk, debt-based
analysis

Analysis under
uncertainty

Quality
attributes

Multiple attributes Sustainability attributes Multiple attributes

Applicable
project stage

Before
implementation

Before implementation Before implementation

Evaluation
approaches

Elicitation of values
from stakeholders
and tool-based
analysis

Elicitation of values from
stakeholders, historical data,
and economic tool-based
analysis

Elicitation of values from
stakeholders, fuzzy num-
bers, and tool-based
analysis

Tool support Available Partially available Available

Stakeholders
involved

All major
stakeholders

All major stakeholders All major stakeholders

Ranking Use return on
investment

Uses the Sharpe ratio Uses the normalized
value of the architecture

394 B. Ojameruaye and R. Bahsoon

Several aspects of the method contribute to making the method we propose easy
to use. For instance, the wide use of guidelines and templates to explain each phase
of the method facilitates the application of the method by users without previous
experience in evaluating the requirements at the architectural level. The method is
based on intuitive concepts organized in a structured manner, which contributes to its
repeatability. The users of the method do not need to understand the details of the
decision theory behind the method. On the other hand, they must have a compre-
hensive understanding of the organization’s objectives and knowledge about the
domain. Given that we have personally conducted the case studies, it is difficult to
have a conclusive validation of the overall ease of use of the method. As criticism,
eliciting the numeric values for the portfolio analysis is difficult. The evaluation team
preferred to use a qualitative scale ranging from low, medium, and high. As a result,
it is necessary for further evaluation to test the suitability of the prioritization in large
selection projects.

It was observed the method covers all major steps necessary to conduct a
disciplined evaluation process. The phases provide a clear, structured process to
guide the acquisition and analysis of relevant information. The benefit of the method
is that it provides guidance on how to manage risk by quantifying the debt associated
with different candidate architectures. We evaluated the method using some general
qualitative characteristics including simplicity of use, openness, and
comprehensiveness:

1. A notable desirable feature of the method is its flexibility and openness; the
method does not define rigorous ways for estimating its parameters, conducting
its steps, and confirming specific actions to execute. The nature of the decisions
made when applying the technique varies from one project to another, with the
addressed problem, and across domains. As a result, the effectiveness of its
application is subject to the context in which the model is applied.

2. The method is open; it could be easily integrated to complement existing evalu-
ation methods, with the objective of explicit evaluation for compliance while
taking a value-based perspective.

Using our method takes more time than the CBAM as more trade-offs are
involved in the analysis. In an environment where numerous components are
involved, our method may require much more time to get the results. The criticality
of the architecture or application domain may guide the solution and how this trade-
off can be prioritized, ignored, or empowered.

Portfolio theory is a well-accepted concept for diversifying risks; it is well
grounded in theory. The framework presented here, although useful, has its limita-
tions. Analyzing the portfolio depends on identifying the threats and estimating their
likelihood. This approach assumes sufficient awareness and experience of sustain-
ability goals, which can be subjective and suffer from inherent limitations for
completeness and accuracy. Furthermore, it assumes that stakeholders are confident
enough to anticipate the probabilities and the likely risks involved. Nevertheless,
anticipating risks is rather a subjective exercise, which can be biased to the perspec-
tive and the experience of the stakeholders involved. Consequently, due to the

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 395

different variables that might be estimated in a subjective way, this approach can
only provide a best-case/good-enough portfolio rather than optimal portfolio.

The requirements tend to change over time. Though the current study does not
explicitly cater to change and evolution in sustainability goals, the approach assumes
that the considered requirements provide baseline for realizing sustainability at that
specific time. However, the same process can be reiterated with any incoming
requirements and changes to sustainability goals. The ability of an architecture to
respond to change can also be modeled as a dimension for technical sustainability
subject to the extent to which we can anticipate changes.

We now summarize the lessons learned:

1. The evaluation method largely depends on the expertise of the analysts and
developers. From conducting the case study, a number of benefits of having a
disciplined method to guide the evaluation were observed. By following the
phases presented in the method, it was possible to provide a systematic and
repeatable process of gathering relevant information, analyzing alternatives, and
making decisions. However, it was also recognized that no matter how objective,
there are still underlying values and subjectivity in the ways that people perceive,
judge, and ultimately make decisions. Consequently, we consider that largely the
success of the selection process depends on the experience and domain knowl-
edge of the evaluation team.

2. The method to guide the evaluation needs to be customizable. It provided useful
guidance to conduct the case studies. Some parts of the method offered valuable
support, such as evaluating alternative architectures for value and debt. On the
other hand, although approaches such as the obstacle analysis technique were
beneficial to the project, their use was considered complex and time demanding.
Even when using a different risk analysis approach, the evaluation exercise
proved to be valid. In addition to that, it is obvious that there is no one-size-
fits-all solution to developing software systems.

3. Good understanding of organizational requirements is vital for the success of
selection process.

4. Sustainability debt is subjective. It can be affected by the following: (1) the
decision makers and their expertise (e.g., stakeholders), (2) the elicited parameter
values, (3) the importance of the requirements to the system design, and (4) the
potential use and value of the system. The threshold of debt depends on the
acceptance of stakeholders.

5. Value is subjective. It depends on the different variables. This can be modeled as
a function of the utility of the system, the dependencies, and the acceptance level
of the stakeholders.

396 B. Ojameruaye and R. Bahsoon

16.7 Conclusion

We have motivated the need for architectural evaluation methods suitable for
evaluating sustainability in architectures. In particular, we have presented an eval-
uation method based on the CBAM, portfolio theory, and technical debt for evalu-
ating the sustainability goals in architectures. The method aims at identifying the
portfolio(s) of architectural design decisions which are more promising for adding/
delivering value while reducing risk on the sustainability dimensions. The proposed
method hopes to identify more trade-offs and candidate ASs, which are risk and debt
aware on dimensions related to sustainability. These can be technical, human, social,
economic, and/or environmental. The ultimate goal is to develop an objective
decision-support framework for reasoning about sustainability requirements in rela-
tion to architectural decisions under uncertainty. We have illustrated the approach
with an Emergency Deployment System (EDS). The results show that the method
can make the value, cost, and risks of architectural design decisions and sustainabil-
ity requirements explicit.

References

1. Asundi J, Kazman R, Klein M (2001) Using economic considerations to choose among
architecture design alternatives

2. World Commission on Environment and Development (1987) Report of the world commission
on environment and development: our common future (the Brundtland report). Med Conflict
Survival 4

3. Penzenstadler B (2013) Towards a definition of sustainability in and for software engineering
4. Brown N, Ozkaya I, Sangwan R, Seaman C, Sullivan K, Zazworka N, Cai Y, Guo Y,

Kazman R, Kim M, Kruchten P, Lim E, MacCormack A, Nord R, Guo R, Ozkaya R (2010)
Managing technical debt in software-reliant systems. In: Proceedings of the FSE/SDP workshop
on Future of software engineering research, ser. FoSER ’10, p 47

5. Ernst NA (2012) On the role of requirements in understanding and managing technical debt
6. Ojameruaye B, Bahsoon R (2014) Systematic elaboration of compliance requirements using

compliance debt and portfolio theory. LNCS vol 8396
7. Chen L, Babar MA, Nuseibeh B (2013) Characterizing architecturally significant requirements.

IEEE Softw 30
8. Penzenstadler B, Raturi A, Richardson D, Calero C, Femmer H, Franch X (2014) Systematic

mapping study on software engineering for sustainability (se4s)
9. van Lamsweerde A, Letier E (1998) Integrating obstacles in goal-driven requirements

engineering
10. Kazman R, Asundi J, Klein M (2001) Quantifying the costs and benefits of architectural

decisions. In: Proceedings – International Conference on Software Engineering
11. Kazman R, Asundi J, Klein M (2002) Making architecture design decisions: an economic

approach. Software Engineering Institute Technical Report CMU/SEI-2002-TR-035
12. Markowitz H (1957) Portfolio selection: efficient diversification of investments
13. Butler S, Chalasani P, Jha S, Raz O, Shaw M (1999) The potential of portfolio analysis in

guiding software decisions. In: Proceedings of the First Workshop on Economics-Driven
Software Engineering Research (EDSER1)

16 Sustainability ArchDebts: An Economics-Driven Approach for Evaluating. . . 397

14. Sivzattian S, Nuseibeh B (2001) Linking the selection of requirements to market value: a
portfolio-based approach. In: REFS 2001. pp 202–213

15. Khurum M, Gorschek T, Wilson M (2013) The software value map – an exhaustive collection
of value aspects for the development of software intensive products. J Softw Evol Process 25

16. Clements P, Kazman R, Klein M (2001) Evaluating software architectures: methods and case
studies. Addison-Wesley Professional

17. Kazman R, Bass L, Abowd G, Webb M (1994) Saam: a method for analyzing the properties of
software architectures

18. Esfahani N, Malek S, Razavi K (2013) GuideArch: Guiding the exploration of architectural
solution space under uncertainty

19. Letier E, Stefan D, Barr ET (2014) Uncertainty, risk, and information value in software
requirements and architecture

20. Kazman R, Klein M, Clements P (2000) Atam: Method for architecture evaluation. Cmusei 4:83
21. Raturi A, Penzenstadler B, Tomlinson B, Richardson D (2014) Developing a sustainability

non-functional requirements framework. In: Proceedings of the 3rd International Workshop on
Green and Sustainable Software – GREENS 2014. pp 1–8

22. Van Lamsweerde A, Letier E (1998) B-Louvain la-neuve Belgium. Integrating obstacles in
goal-driven requirements engineering

23. van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour
24. Venters CC, Lau L, Griffiths MK, Holmes V, Ward RR, Jay C, Dibsdale CE, Xu J (2014) The

blind men and the elephant: towards an empirical evaluation framework for software sustain-
ability. J Open Res Softw 2

25. Van Lamsweerde A (2004) Elaborating security requirements by construction of intentional
antimodels

26. Wohlin C, Runeson P, M Höst, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering, vol 9783642290442

27. Babar MA, Zhu L, Jeffery R (2004) A framework for classifying and comparing software
architecture evaluation methods, vol 2004

398 B. Ojameruaye and R. Bahsoon

	Preface
	Overview
	Organization
	Target Readership

	Acknowledgments
	Contents
	Contributors
	List of Abbreviations
	Chapter 1: Introduction to Software Sustainability
	1.1 Introduction
	1.2 Sustainability
	1.2.1 IS Sustainability
	1.2.2 ICT/IT Sustainability
	1.2.3 Software Sustainability
	1.2.4 Software Engineering Sustainability

	1.3 Dimensions of Software Sustainability
	1.3.1 Sustainability Dimensions and the UN´s SDGs

	1.4 Conclusions
	References

	Chapter 2: Criteria for Sustainable Software Products: Analyzing Software, Informing Users, and Politics
	2.1 Introduction
	2.2 Related Work
	2.2.1 Sustainable Software
	2.2.2 Measurement of Software Sustainability
	2.2.3 Energy-Efficient Programming

	2.3 Criteria for Sustainable Software Products
	2.3.1 Criteria Categories
	2.3.2 Discussion of the Criteria

	2.4 Measurement Method
	2.5 Energy-Efficient Software Development and Deployment
	2.6 Conclusion and Outlook
	References

	Chapter 3: GSMP: Green Software Measurement Process
	3.1 Introduction
	3.2 Green Software Measurement Process
	3.2.1 Roles
	3.2.2 Phases
	3.2.3 Summary of Roles Involvement in GSMP
	3.2.4 Considerations for the Validity of Energy Consumption Measurements of Software

	3.3 Application of the GSMP
	3.3.1 Design
	3.3.2 Subject and Analysis Units
	3.3.3 Field Procedure and Data Collection
	3.3.4 Intervention in Case Study
	3.3.5 Case Study Analysis and Lessons Learned

	3.4 Conclusions
	References

	Chapter 4: FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental Goals of the Software
	4.1 Introduction
	4.2 FEETINGS
	4.2.1 Conceptual Component
	4.2.2 Methodological Component
	4.2.3 Technological Component
	4.2.3.1 EET (Energy Efficiency Tester)
	4.2.3.2 ELLIOT

	4.3 Application of FEETINGS: A Case Study of the Energy Consumed by Translators
	4.4 Best Practices Guideline on Software Sustainability
	4.5 Conclusions
	References

	Chapter 5: Patterns and Energy Consumption: Design, Implementation, Studies, and Stories
	5.1 Introduction
	5.2 Code-Level Patterns
	5.2.1 Patterns

	5.3 Energy Design Patterns
	5.3.1 Patterns

	5.4 Object-Oriented Patterns
	5.5 Patterns in Context
	5.6 Conclusions
	References

	Chapter 6: Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency
	6.1 Introduction
	6.2 Software Energy Consumption
	6.2.1 Gauging Energy Consumption

	6.3 Design Decisions
	6.3.1 I/O Constructs
	6.3.2 Collections Constructs
	6.3.3 Concurrent Programming Constructs

	6.4 Recommending Java Collections
	6.4.1 Evaluation
	6.4.2 Findings

	6.5 Energy Profiling in the Wild
	6.5.1 A Collaborative Approach to Android Energy Consumption Optimization

	6.6 Conclusion
	References

	Chapter 7: Tool Support for Green Android Development
	7.1 Introduction
	7.2 Related Work
	7.3 Methodology
	7.3.1 Research Questions
	7.3.2 Search Query
	7.3.3 Screening of Publications
	7.3.3.1 Duplicate Removal
	7.3.3.2 Inclusion Criteria
	7.3.3.3 Exclusion Criteria
	7.3.3.4 Quality Criteria

	7.3.4 Classification and Analysis

	7.4 Results
	7.4.1 Results of Screening
	7.4.2 Classification and Analysis

	7.5 Discussion
	7.5.1 Support Tools for Code Smell/Energy Bug Detection and Refactoring
	7.5.2 Support Tools for Third-Party Library Detection and Migration

	7.6 Threats to Validity
	7.7 Conclusions
	References

	Chapter 8: Architecting Green Mobile Cloud Apps
	8.1 Introduction
	8.2 Green Software
	8.2.1 Definition
	8.2.2 Green Software Objectives
	8.2.3 Green Software Approaches
	8.2.3.1 Conceptual Approaches
	8.2.3.2 Algorithmic Approaches
	8.2.3.3 Augmentation Approaches

	8.3 Mobile Cloud Applications
	8.3.1 MCA Offloading Schemes
	8.3.1.1 Identification of Offloadable Task (Manual vs Automated Transformation)
	8.3.1.2 Remote Execution of Offloadable Task (Partitioning vs Cloning)
	8.3.1.3 Decision Making (Static vs Dynamic Thresholds)

	8.3.2 MCA Environmental Factors
	8.3.2.1 Mobile CPU Availability
	8.3.2.2 Mobile Memory Availability
	8.3.2.3 Cloud CPU Availability
	8.3.2.4 Cloud Memory Availability
	8.3.2.5 Network Bandwidth
	8.3.2.6 Network Latency
	8.3.2.7 Data Size

	8.3.3 MCA-Associated Green Metrics
	8.3.3.1 Mobile Performance
	8.3.3.2 Mobile Energy
	8.3.3.3 Cloud Resource
	8.3.3.4 Software Availability

	8.3.4 Application Taxonomy
	8.3.4.1 Computation-Intensive Applications
	8.3.4.2 Data-Intensive Applications
	8.3.4.3 Hybrid Applications

	8.4 MCA Optimization Approach
	8.4.1 Gaps in Existing Approaches
	8.4.1.1 Challenges of Offloadable Tasks
	8.4.1.2 Challenges of the Decision Maker
	8.4.1.3 Challenges of Offloading Mechanism

	8.4.2 Considerations for Improved Solutions

	8.5 MCA Evaluation Approach
	8.5.1 Gaps in the Existing Approach
	8.5.1.1 Inconsistency in Evaluation Results of Scenarios for an Offloading Scheme
	8.5.1.2 Variability of Architecture Scenarios (Making It Difficult to Compare Between Offloading Schemes)
	8.5.1.3 Coarse Granularity of Evaluation

	8.5.2 Methodology for a Solution
	8.5.2.1 Behavior-Driven Development (BDD)
	8.5.2.2 Full-Tier as the New Fine-Grained Test Coverage for MCA

	8.6 Summary
	References

	Chapter 9: Sustainability: Delivering Agility´s Promise
	9.1 Introduction
	9.2 Sustainability
	9.2.1 Business and Sustainability
	9.2.2 ICT/Technology and Sustainability

	9.3 Agile and Sustainability
	9.3.1 Our Highest Priority Is to Satisfy the Customer Through Early and Continuous Delivery of Valuable Software
	9.3.2 Welcome Changing Requirements, Even Late in Development: Agile Processes Harness Change for the Customer´s Competitive A...
	9.3.3 Deliver Working Software Frequently, from a Couple of Weeks to a Couple of Months, with a Preference to the Shorter Time...
	9.3.4 Business People and Developers Must Work Together Daily Throughout the Project
	9.3.5 Build Projects Around Motivated Individuals. Give Them the Environment and Support They Need, and Trust Them to Get the ...
	9.3.6 The Most Efficient and Effective Method of Conveying Information to and Within a Development Team Is Face-to-Face Conver...
	9.3.7 Working Software Is the Primary Measure of Progress
	9.3.8 Agile Processes Promote Sustainable Development. The Sponsors, Developers, and Users Should Be Able to Maintain a Consta...
	9.3.9 Continuous Attention to Technical Excellence and Good Design Enhances Agility
	9.3.10 Simplicity-the Art of Maximizing the Amount of Work Not Done-Is Essential
	9.3.11 The Best Architectures, Requirements, and Designs Emerge from Self-Organizing Teams
	9.3.12 At Regular Intervals, the Team Reflects on How to Become More Effective, Then Tunes and Adjusts Its Behavior Accordingly
	9.3.13 Summary of the Agile Manifesto´s Perspective on Sustainability

	9.4 Case Studies: Leveraging Agility for Sustainability
	9.4.1 Agility and Partial Sustainability
	9.4.1.1 The Social Pillar
	9.4.1.2 The Environmental Pillar
	9.4.1.3 The Economical Pillar

	9.4.2 Company-Wide Agility and Holistic Sustainability
	9.4.2.1 Patagonia
	9.4.2.2 DSM-Niaga
	9.4.2.3 Sparda-Bank Munich

	9.5 Conclusion
	9.5.1 Criticism
	9.5.2 Outlook

	References

	Chapter 10: Governance and Management of Green IT
	10.1 Introduction
	10.2 ``Governance and Management Framework for Green IT´´ (GMGIT)
	10.2.1 Framework Structure
	10.2.2 Governance and Management Components of Green IT
	10.2.2.1 Principles, Policies, and Procedures
	10.2.2.2 Organizational Structures
	10.2.2.3 People, Skills, and Competencies
	10.2.2.4 Culture, Ethics, and Behavior
	10.2.2.5 Information
	10.2.2.6 Services, Infrastructure, and Applications
	10.2.2.7 Processes

	10.2.3 Evolution of the GMGIT

	10.3 Auditing the Green IT with the GMGIT
	10.3.1 Audit Framework of Green IT
	10.3.2 ISO/IEC 33000-Based Maturity Model for Green IT
	10.3.3 Audits Performed During the Development of the GMGIT

	10.4 Using the GMGIT for Green IT Improvement
	10.5 Conclusions
	References

	Chapter 11: Sustainable Software Engineering: Curriculum Development Based on ACM/IEEE Guidelines
	11.1 Introduction
	11.2 Related Work
	11.2.1 Software Quality and Sustainability
	11.2.2 Sustainability in SE Curricula
	11.2.3 Key Competencies in Sustainability

	11.3 Sustainable Software Engineering Curricula Outline
	11.3.1 Fundamental Concepts of Sustainability
	11.3.2 Core SE Courses
	11.3.3 Technical Elective Courses
	11.3.4 Nontechnical Elective Courses
	11.3.5 Project-Based Courses and Industrial Practice/Internships

	11.4 Discussion
	11.5 Conclusion and Outlook
	References

	Chapter 12: The Impact of Human Factors on Software Sustainability
	12.1 Introduction
	12.2 Empirical Study Setup
	12.2.1 Research Question
	12.2.2 Survey Structure

	12.3 Survey Exercise
	12.4 Results
	12.4.1 Answer to RQs
	12.4.2 Implications of Results

	12.5 Related Work
	12.6 Conclusion and Future Work
	References

	Chapter 13: Social Sustainability in the e-Health Domain via Personalized and Self-Adaptive Mobile Apps
	13.1 Introduction
	13.2 Background
	13.3 Related Work
	13.4 Reference Architecture
	13.5 Components Supporting Self-Adaptation
	13.5.1 AI Personalization Adaptation
	13.5.2 User Driven Adaptation Manager
	13.5.3 Smart Objects Manager
	13.5.4 Internet Connectivity Manager
	13.5.5 Environment Driven Adaptation Manager

	13.6 Goal Model
	13.7 Methodology
	13.8 Viewpoint Definition
	13.9 Scenario-Based Evaluation
	13.10 Discussion
	13.11 Conclusions and Future Work
	References

	Chapter 14: Human Sustainability in Software Development
	14.1 Introduction
	14.2 Outsourcing Approaches That Consider CSR
	14.3 Impact Sourcing: Efficacy, Benefits, and Challenges
	14.3.1 Efficacy of Impact Sourcing for Marginalized People
	14.3.2 Benefits of Impact Sourcing for Clients
	14.3.3 Challenges of Impact Sourcing for Clients

	14.4 Ethical Outsourcing: Benefits and Challenges
	14.4.1 Benefits of Ethical Outsourcing for Clients
	14.4.2 Challenges of Ethical Outsourcing for Clients

	14.5 Fair Trade Software: Benefits and Challenges
	14.5.1 Benefits of Fair Trade Software
	14.5.2 Challenges of Fair Trade Software
	14.5.3 Challenges of Cross-Border Development

	14.6 Conclusions and Future Research
	References

	Chapter 15: The Importance of Software Sustainability in the CSR of Software Companies
	15.1 Introduction
	15.2 Overview of the CSR in Software Industries
	15.2.1 Software Companies: A Representative Selection
	15.2.2 Analyzing the CSR Software Sustainability Actions in Software Companies: Work Method
	15.2.3 Analyzing the Companies´ CSR from the Point of View of Software Sustainability
	15.2.3.1 Analysis of Software Sustainability Actions
	15.2.3.2 Analysis of Software Sustainability Actions
	15.2.3.3 Environmental Dimension Actions

	15.3 Specific Actions for Software Industries
	15.4 Analyzing and Improving the CSR of a Specific Company
	15.5 Conclusions and Future Work
	References

	Chapter 16: Sustainability ArchDebts: An Economics-Driven Approach for Evaluating Sustainable Requirements
	16.1 Introduction
	16.2 Background
	16.2.1 Sustainability and Goal-Oriented Requirements
	16.2.2 Architectural Evaluation
	16.2.3 Portfolio Management and Requirements
	16.2.4 Related Work

	16.3 The Problem
	16.3.1 Requirements for the Model
	16.3.2 Requirements and Value Component Relationship Model

	16.4 Sustainability: A Technical Debt Perspective
	16.4.1 Step 1: Elicit and Prioritize the Goals, Cost, and the Desired Sustainability Threshold for These Goals
	16.4.2 Step 2: Develop Architectural Strategies for the Goals, Elicit Their Parameter Values, and Define the Architectural Dec...
	16.4.3 Step 3: Determine Architectural Strategies´ Impact on Sustainability
	16.4.4 Step 4: Elicit Sustainability Goals, Design Decisions, Obstacle, and Risk Analysis
	16.4.5 Step 5: Determine the Expected Benefit of Each Design Option
	16.4.6 Step 6: Analyzing the Costs, Benefits, Risks, and Value Using Portfolio Thinking
	16.4.7 Step 7: Identify the Optimal Architecture, Calculate Debt, and Rank Other Architectures

	16.5 Evaluation
	16.5.1 The Problem
	16.5.2 Design Decision Evaluation
	16.5.2.1 Step 1: Elicit and Prioritize the Goals, Cost, and the Desired Sustainability Threshold for These Goals
	16.5.2.2 Step 2: Develop Architectural Strategies for the Goals, Elicit Their Parameter Values, and Define the Architectural D...
	16.5.2.3 Step 3: Determine Architectural Strategies´ Impact on Sustainability
	16.5.2.4 Step 4: Elicit Sustainability Goals, Design Decisions, Obstacle, and Risk Analysis
	16.5.2.5 Step 5: Determine the Expected Benefit of Each Design Option
	16.5.2.6 Step 6: Analyzing the Costs, Benefits, and Risks Using Portfolio Thinking
	16.5.2.7 Step 7: Identify the Optimal Architecture, Calculate Debt, and Rank Other Architectures

	16.5.3 Findings
	16.5.4 Threats to Validity

	16.6 Discussions
	16.7 Conclusion
	References

