Coral Calero
M2 Angeles Moraga
Mario Piattini Editors

Software
Sustainability

Software Sustainability

Coral Calero * M* Angeles Moraga * Mario Piattini
Editors

Software Sustainability

@ Springer

Editors

Coral Calero

Alarcos Research Group, Institute of
Technologies and Information Systems
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

M* Angeles Moraga

Alarcos Research Group, Institute of
Technologies and Information Systems
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

Mario Piattini

Alarcos Research Group, Institute of
Technologies and Information Systems
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

ISBN 978-3-030-69969-7 ISBN 978-3-030-69970-3 (eBook)
https://doi.org/10.1007/978-3-030-69970-3

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0728-4176
https://orcid.org/0000-0001-9165-7144
https://orcid.org/0000-0002-7212-8279
https://doi.org/10.1007/978-3-030-69970-3

The editors want to dedicate this book to the

Green Team from the Alarcos research group
for their great work. We also want to dedicate
it to all the readers who are interested in the

sustainability of software.

To Olivia and Moisés. Because you deserve
the best world to live!!
Coral Calero

To my sons, Carlos and Javier, and my niece,
Elsa, who make my life more sustainable.
M“Angeles Moraga

To Beatriz, Catherine, and Sienna
Mario Piattini

Preface

Overview

The preservation of the environment has become one of the most urgent concerns of
today’s society. People have become aware of the need to cut down on energy
consumption and to reduce our carbon footprint. This means that sustainability has
arisen as a key aspect in several domains, guiding the development of the world’s
future. At an international level, there are many initiatives aiming to address these
issues, and the main research and development programs include sizeable amounts
of funding for projects seeking to achieve environmentally sound technologies.
Also, at a governmental level there are efforts to align societal development with
the goals of sustainability. The Paris Agreement is a good example of how countries
(as representatives of their citizens) are involved in an effort to combat global
climate change so as to ensure the best quality of life. According to the UN Climate
Change website,' “. .. the Paris Agreement’s central aim is to strengthen the global
response to the threat of climate change.” “It also aims to strengthen countries’
ability to deal with the impacts of climate change,” and “support them in their
efforts. . .to make finance flows consistent with a pathway towards low greenhouse
gas emissions and climate-resilient development.” “To reach these ambitious goals,
appropriate mobilisation and provision of financial resources, a new technology
framework and enhanced capacity-building is to be put in place, thus supporting
action by developing countries and the most vulnerable countries, in line with their
own national objectives” (UN Climate Change Secretariat 2015).

But sustainability is not just a matter of CO, emissions, it also depends on other
aspects. For example, it is necessary to develop software that takes into account not
only its own energy efficiency but also aspects related to the amount of resources
needed or the longevity of the software. It is important to integrate sustainability into

Thttps:/funfcee.int/process-and-meetings/the-paris-agreement/the-paris-agreement/key-aspects-of-
the-paris-agreement

vii

viii Preface

the core business processes devoted to producing software or services, ensuring the
continuity of the software industry and implementing appropriate risk-management
programs and policies. And last, but not least, software workers must be taken into
consideration as part of software sustainability: ethics, rights, protection, and train-
ing are among the necessary initiatives to support them.

There are therefore three key aspects of sustainability: the environment, society,
and the actions necessary to ensure economic sustainability.

In fact, the United Nations’ Brundtland Report defines sustainable development
as the ability to “meet the needs of the present without compromising the ability of
future generations to satisfy their own needs.””

Given the great relevance that software has today and the fact that it seems it will
be even greater in the future, it is of utmost importance to consider sustainability as a
key feature. The focus of this book is therefore on software sustainability, examined
in terms of how software can be developed while taking into consideration environ-
mental, social, and economic dimensions so as to meet the needs of the present
without compromising the future.

Software sustainability has three dimensions (Fig. 1):

* Environmental sustainability: how software product development, maintenance,
and use affect energy consumption and the consumption of other natural
resources. Environmental sustainability is directly related to a software product
characteristic. This dimension is also known as Green Software.

* Human sustainability: how software creation and use affect the sociological and
psychological aspects of the software development community and its members.
This encompasses topics such as labour rights, psychological health, social
support, social equity, and liveability.

e Economic sustainability: how software development and use protect stake-
holders’ investments, ensure benefits, reduce risks, and maintain assets.

A topic that has attracted a lot of attention in the last year is Green IT and Green
Software. As seen in Fig. 1, Green Software can be divided into Green IN Software
(when the environmental issues are related to software itself) and Green BY Soft-
ware (when software is used as a tool to support sustainability goals in any domain).
As our focus is specifically on how software must be produced so as to be sustain-
able, the book will be focused on the Green IN Software part.

The aim of this book is therefore to present the latest advances related to software
sustainability, the scope being those pieces of work developed within the environ-
mental (Green Software), human, or economic dimensions of software sustainabil-
ity, by way of a contribution on our part to raising the profile of software
sustainability. To that end, we have brought together the findings on this matter of
the main researchers in the field.

*United Nations World Commission on Environment and Development, “Report of the World
Commission on Environment and Development: Our Common Future.” At United Nations Con-
ference on Environment and Development. 1987.

Preface ix

Software
Sustainability

Environmental
Sustainability
(Green Software)

Economic
Software
Sustainability

Green BY
Software

Human
Software
Sustainability

Fig. 1 Software sustainability dimensions
Organization

The book is composed of 16 chapters structured as follows.

Chapter 1, written by the editors, introduces the main general concepts related to
software sustainability and defines its dimensions.

Then a set of chapters deal with the environmental (green) software dimension.

In Chap. 2, Achim Guldner, Eva Kern, Sandro Kreten, and Stefan Naumann
describe a set of criteria and a label for sustainable software products, the German
“Blue Angel,” energy-efficient programming techniques which seek to reduce the
consumption and provide a measurement method for the energy consumption of
software.

In Chap. 3, Javier Mancebo, Ignacio Rodriguez, M* Angeles Moraga, Félix
Garcia, and Coral Calero present GSMP, a Green Software Measurement Process
that integrates all the activities that must be carried out to measure and analyze the
energy consumption of any given software.

In Chap. 4, Javier Mancebo, Coral Calero, and Félix Garcia present FEETINGS
(Framework for Energy Efficiency Testing to Improve eNvironmental Goals of the
Software), a complete framework which aims to provide: (1) a solution to the lack of
a unique and agreed terminology; (2) a process to evaluate the energy efficiency of
the software; and (3) a technological environment that supports the process.

Chapter 5, by Daniel Feitosa, Luis Cruz, Rui Abreu, Joao Paulo Fernandes,
Marco Couto, and Jodo Saraiva, aims to demonstrate how patterns can help to
build energy-efficient software.

In Chap. 6, written by Wellington Oliveira, Hugo Matalonga, Gustavo Pinto,
Fernando Castor, and Jodo Paulo Fernandes, the authors advocate that developers
should leverage software diversity to make software systems more energy efficient.

X Preface

Their main insight is that non-specialists can build software that consumes less
energy in the development stage by alternating, at development time, between
readily available, diversely designed pieces of software implemented by third
parties.

Chapter 7, by Hina Anwar, Iffat Fatima, Dietmar Pfahl, and Usman Qamar,
presents the results of a systematic mapping study to overview the state-of-the-art
tools for detecting and refactoring code smells/energy bugs, and tools for detecting
and migrating third-party libraries in Android applications.

Chapter 8, written by Samuel Chinenyeze and Xiaodong Liu, presents the
knowledge base and reasoning around the Mobile Cloud Applications domain, and
some identified challenges in the domain, and offers some directions and key
considerations for an improved implementation and evaluation process in real-life
scenarios—mainly based on renowned software engineering techniques.

In Chap. 9, Jutta Eckstein and Claudia Melo provide a new lens through which to
understand the Agile Manifesto under the premise that the agile approach aims to
fulfill its promise for sustainability, and they provide various case studies of com-
panies attempting to use agile development to contribute to sustainability.

In Chap. 10, J. David Patén-Romero, Teresa Baldasarre, Moisés Rodriguez, and
Mario Piattini present GMGIT (“Governance and Management Framework for
Green IT”) which establishes the characteristics and elements of governance and
management that organizations should consider when implementing, assessing, and
improving Green IT.

Turning to the human dimension, Chap. 11, by Alok Mishra and Deepti Mishra,
looks at how sustainability can be included in various courses of the Software
Engineering (SE) curriculum by considering ACM/IEEE guidelines, carrying out a
review of the literature in this field, and also examining various viewpoints so that
SE students can acquire knowledge of sustainable software engineering. It also
includes an assessment of key competences in sustainability for proposed units in
the SE curriculum.

Chapter 12, by Asif Imran and Tevfik Kosar, presents a detailed and inclusive
study covering human factors (leadership, communication, etc.), related challenges,
and approaches to software sustainability. This chapter groups the existing research
efforts based on the above aspects. How these aspects affect software sustainability
is studied via a survey of software practitioners.

Chapter 13, by Vijanti Ramautar, Sietse Overbeek, and Sergio Espafia, aims to
outline outsourcing approaches for facilitating human progress by conducting a
semi-systematic literature review. The authors identify three outsourcing approaches
that consider corporate social responsibility: impact sourcing, ethical outsourcing,
and FairTrade Software. The ultimate aim is to understand the effect of these
approaches on marginalized people, and the benefits and challenges for client
organizations.

In Chap. 14, Eoin Martino Grua, Martina De Sanctis, Ivano Malavolta, Mark
Hoogendoorn, and Patricia Lago present a reference architecture for enabling
Al-based personalization and self-adaptation of mobile apps for e-Health. The
proposed reference architecture is instantiated in the context of a mobile fitness

Preface xi

Fig. 2 Keyword cloud performance
(created with Green design
https://worditout.com) requirements power

consumption agile criteria
development resource |
management quality Soctd
energy "N mobile
method p economic goa|

evaluation i
m remen benefits
easurement user developers

ey g ftware process

framework ~engineering
cloud .. .business ~ app model

timegfiaency tools product

code SUSTAINADIlItY

human information
architecture data

pattern
environmental

application and is exemplified through a series of typical usage scenarios extracted
from industrial collaborations.

In Chap. 15, M* Angeles Moraga, por Ignacio Garcia-Rodriguez de Guzmén,
Félix Garcia, and Coral Calero present ‘“The importance of software sustainability in
the CSRs of software companies.” The authors analyze the Corporate Social
Responsibility information of ten software companies and elaborate a list of specific
actions related to software sustainability that the software company should include.
They also suggest an initial set of actions which could be taken into account to
improve the CSR of a company.

And finally, in Chap. 16, Bendra Ojameruaye and Rami Bahsoon propose an
economics-driven architectural evaluation method which expands upon CBAM
(Cost Benefits Analysis Method) and integrates principles of modern portfolio
theory into the task of controlling risks when linking sustainability requirements to
architectural design decisions.

We have created a keyword cloud (see Fig. 2) where the terms used most
frequently in this book are written in a larger font to highlight the areas of special
focus in the book.

Target Readership

The target readership for this book is assumed to have previous knowledge of
information systems and software engineering, but we envisage CIOs (Chief Infor-
mation Officers), CEOs (Chief Executive Officers), CSOs (Chief Sustainability
Officers), CSRs (Chief Responsibility Officers), software developers, software man-
agers, auditors, business owners, and quality professionals. It is also intended for
masters’ and bachelors’ students studying Software Systems and Information

https://worditout.com

Xii Preface

Systems, Computer Science, and Computer Engineering, and software researchers
who want to inform themselves about the state of the art regarding software
sustainability.

Ciudad Real, Spain Coral Calero
December 2020 M? Angeles Moraga
Mario Piattini

Acknowledgments

We would like to express our gratitude to all those individuals and parties who
helped us to produce this volume. In the first place, we would like to thank all the
contributing authors and reviewers who helped to improve the final version. Special
thanks to Springer-Verlag and Ralf Gerstner for believing in us once again and for
giving us the opportunity to publish this work. We would also like to say how
grateful we are to Natalia Pinilla of Universidad de Castilla-La Mancha for her
support during the production of this book.

Finally, we wish to acknowledge the support of the SOS project (No. SBPLY/17/
180501/000364), funded by the Department of Education, Culture and Sport of the
Directorate General of Universities, Research and Innovation of the Regional
Government of the Autonomous Region of Castilla-La Mancha—Junta de
Communidades de Castilla-La Mancha (JCCM) and of the BIZDEVOPS-Global
project (RTI2018-098309-B-C31), financed by the Spanish Ministry of Economy,
Industry and Competitiveness and European FEDER funds.

Xiii

Contents

1 Introduction to Software Sustainability 1
Coral Calero, M* Angeles Moraga, and Mario Piattini

2 Criteria for Sustainable Software Products: Analyzing Software,
Informing Users, and Politics. 17
Achim Guldner, Eva Kern, Sandro Kreten, and Stefan Naumann

3 GSMP: Green Software Measurement Process. 43
Javier Mancebo, Coral Calero, and Félix Garcia

4 FEETINGS: Framework for Energy Efficiency Testing to Improve
eNvironmental Goals of the Software. 69
Javier Mancebo, Coral Calero, Félix Garcia, M* Angeles Moraga,
and Ignacio Garcia-Rodriguez de Guzman

5 Patterns and Energy Consumption: Design, Implementation,
Studies, and Stories. 89
Daniel Feitosa, Luis Cruz, Rui Abreu, Jodo Paulo Fernandes,
Marco Couto, and Jodo Saraiva

6 Small Changes, Big Impacts: Leveraging Diversity to Improve
Energy Efficiency 123
Wellington Oliveira, Hugo Matalonga, Gustavo Pinto,
Fernando Castor, and Jodo Paulo Fernandes

7 Tool Support for Green Android Development. 153
Hina Anwar, Iffat Fatima, Dietmar Pfahl, and Usman Qamar
8 Architecting Green Mobile Cloud Apps. 183

Samuel Jaachimma Chinenyeze and Xiaodong Liu

9 Sustainability: Delivering Agility’s Promise. 215
Jutta Eckstein and Claudia de O. Melo

XV

XVi

10

11

12

13

14

15

16

Governance and Management of Green IT
J. David Patén-Romero, Maria Teresa Baldassarre, Moisés Rodriguez,
and Mario Piattini

Sustainable Software Engineering: Curriculum Development

Based on ACM/IEEE Guidelines

Alok Mishra and Deepti Mishra

The Impact of Human Factors on Software Sustainability
Asif Imran and Tevfik Kosar

Social Sustainability in the e-Health Domain via Personalized

and Self-Adaptive Mobile Apps.

Eoin Martino Grua, Martina De Sanctis, Ivano Malavolta,
Mark Hoogendoorn, and Patricia Lago

Human Sustainability in Software Development.
Vijanti Ramautar, Sietse Overbeek, and Sergio Espafia

The Importance of Software Sustainability in the CSR

of Software Companies.

M? Angeles Moraga, Ignacio Garcia-Rodriguez de Guzmén,
Félix Garcia, and Coral Calero

Sustainability ArchDebts: An Economics-Driven Approach

for Evaluating Sustainable Requirements.

Bendra Ojameruaye and Rami Bahsoon

Contents

Contributors

Rui Abreu Faculty of Engineering, University of Porto & INESC-ID, Porto,
Portugal

Hina Anwar Institute of Computer Science, University of Tartu, Tartu, Estonia

Maria Teresa Baldassarre Department of Informatics, University of Bari “Aldo
Moro”, Bari, Italy

Rami Bashoon University of Birmingham, Birmingham, UK

Coral Calero Alarcos Research Group, Institute of Technologies and Information
Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Fernando Castor Federal University of Pernambuco, Pernambuco, Brasil

Samuel Jaachimma Chinenyeze Edinburgh Napier University, Edinburgh,
Scotland, UK

Marco Couto HASLab/INESC TEC and University of Minho, Braga, Portugal
Luis Cruz Delft University of Technology, Delft, The Netherlands
Jutta Eckstein Independent, Braunschweig, Germany

Sergio Espafia Department of Information and Computing Sciences, Utrecht Uni-
versity, Utrecht, The Netherlands

Iffat Fatima College of Electrical and Mechanical Engineering, National Univer-
sity of Sciences and Technology, Islamabad, Pakistan

Daniel Feitosa University of Groningen, Groningen, The Netherlands

Joao Paulo Fernandes CISUC and University of Coimbra, Coimbra, Portugal

Xvii

Xviii Contributors

Félix Garcia Alarcos Research Group, Institute of Technologies and Information
Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Eoin Martino Grua Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Achim Guldner University of Applied Sciences Trier, Trier, Germany

Ignacio Garcia-Rodriguez de Guzman Alarcos Research Group, Institute of
Technologies and Information Systems, University of Castilla-La Mancha
(UCLM), Ciudad Real, Spain

Mark Hoogendoorn Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Asif Imran University at Buffalo, Buffalo, NY, USA

Eva Kern Leuphana University Lueneburg, Lueneburg, Germany
University of Applied Sciences Trier, Trier, Germany

Tevfik Kosar University at Buffalo, Buffalo, NY, USA
Sandro Kreten University of Applied Sciences Trier, Trier, Germany

Patricia Lago Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Chalmers University of Technology, Gothenburg, Sweden

Xiaodong Liu Driven Software Engineering Research Group, Edinburgh Napier
University, Edinburgh, Scotland, UK

Ivano Malavolta Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Javier Mancebo Alarcos Research Group, Institute of Technologies and Informa-
tion Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Hugo Matalonga Minho University, Minho, Portugal
Claudia de O. Melo International Agency (United Nations), Vienna, Austria

Alok Mishra Molde University College, Molde, Norway
Department of Software Engineering, Atilim University, Ankara, Turkey

Deepti Mishra Department of Computer Science, Norwegian University of
Science and Technology, Gjgvik, Norway

M* Angeles Moraga Alarcos Research Group, Institute of Technologies and Infor-
mation Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Stefan Naumann University of Applied Sciences Trier, Trier, Germany
Bendra Ojameruaye University of Birmingham, Birmingham, UK
Wellington Oliveira Federal University of Pernambuco, Pernambuco, Brasil

Sietse Overbeek Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands

Contributors Xix

J. David Patén-Romero University of Castilla-La Mancha, Ciudad Real, Spain
University of Bari “Aldo Moro”, Bari, Italy
AQCLab, Ciudad Real, Spain

Dietmar Pfahl Institute of Computer Science, University of Tartu, Tartu, Estonia

Mario Piattini Alarcos Research Group, Institute of Technologies and Information
Systems, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain

Gustavo Pinto Federal University of Para, Par4, Brasil

Usman Qamar College of Electrical and Mechanical Engineering, National Uni-
versity of Sciences and Technology, Islamabad, Pakistan

Vijanti Ramautar Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands

Moisés Rodriguez AQCLab, Ciudad Real, Spain
Martina De Sanctis Gran Sasso Science Institute, L’ Aquila, Italy

Joao Saraiva HASLab/INESC TEC and University of Minho, Braga, Portugal

List of Abbreviations

ACL
ADB
AP

AS
ASRs
ATAM
BDD
CBAM
CD
CEO
CFO
CI

CIO
CMD
CPS
CSO
CSR
CTO
DAE
DBMSs
DCT
DUT
DVES
EC
ECG
EDS
EET
ETDC
FAAS

Access Control List

Android Debug Bridge
Additionally Performs
Architectural Strategies
Architecturally Significant Requirements
Trade-off Analysis Method
Behavior-Driven Development
Cost Benefits Analysis Method
Continuous Delivery

Chief Executive Officer

Chief Financial Officer
Continuous Integration

Chief Information Officer
Command-line Interface

Cyber Physical Systems

Chief Sustainability Officer
Corporate Social Responsibility
Chief Technology Officer

Data Aggregator and Evaluator
Database Management Systems
Dynamic Concurrency Throttling
Device Under Test

Dynamic Voltage and Frequency Scaling
Energy Consumption

Economy for the Common Good
Emergency Deployment System
Energy Efficiency Tester
End-Tagged Dense Code
Function as a Service

XX1

xxii

FEETINGS

FTSF
GB
GH
GHG
GI
GMGIT
GoF
GORE
GQM
GS3M
GSMO
GSMP
GSSE
GUI
HCI
HDF
HID
TIAAS
ICE
ICT
IDE
IoT
IQR

IS
ISSP
1T

JCF
JIT
LCA
LoC
LP
MADN
MAPE
MCA
MCC
MDE
MDGs
MSaPS
MSRs
OATH
OCR
OECD

List of Abbreviations

Framework for Energy Efficiency Testing to Improve eNvironmental
Goals of the Software

Fair Trade Software Foundation

Green-BY Software

Green Hardware

Greenhouse Gases

Green-IN Software

Governance and Management Framework for Green IT
Gang of Four

Goal Oriented Requirement Engineering
Goal/Question/Metric

Generic Sustainable Software Star Model
Green Software Measurement Ontology

Green Software Measurement Process

Green and Sustainable Software Engineering
Graphical User Interface

Human Computer Interaction

Hierarchy Data Format

Human Interface Device

Infrastructure as a Service

Immigration and Customs Enforcement
Information and Communication Technologies
Integrated Development Environment

Internet of Things

Interquartile Range Method

Information Systems

Impact Sourcing Service Providers
Information Technology

Java Collections Framework

Just-in-Time

Life Cycle Analysis

Lines of Code

Laboratory Package

Median Absolute Deviations from the Median
Monitor—Analyze—Plan—-Execute

Mobile Cloud Applications

Mobile Cloud Computing

Model-Driven Engineering

Millennium Development Goals
Mobile-enabled Self-adaptive Personalized Systems
Machine-Specific Registers

Open Authentication

Optical Character Recognition

Organisation for Economic Co-operation and Development

List of Abbreviations

00
OTP

P

PHR
PM

PP
PSM
QA
RA
RAPL
SAAM
SAAS
SBMs
SDGs
SDLC
SE
SE4S
SMO
SOA-PE
SOAs
SoS
SPLE
SS
SSC
SSE
SSM
STM
SUT
SUV
SVG
SWOT
TLOC
TPL
UML
UN
URSSI
VMs
WCED’s
WG
WWF

Object-Oriented

One-Time Password

Power

Personal Health Record

Power Meter

Primarily Performs

Practical Software Measurement
Quality Attribute

Reference Architecture

Running Average Power Limit
Software Architecture Analysis Method
Software as a Service

Sustainable Business Models
Sustainable Development Goals
Software Development Life Cycle
Software Engineering

Software Engineering for Sustainability
Software Measurement Ontology
SOA for planning and execution
Service-Oriented Architectures
Systems of Systems

Software Product Line Engineering
Software Sustainability
Sustainability Steering Committee
Sustainable Software Engineering
Soft Systems Methodology
Software Transactional Memory
System Under Test

Sport Utility Vehicles

Scalable Vector Graphics

Strengths, Weaknesses, Opportunities, and Threats

Total Lines of Code
Third-party Library

Unified Modeling Language
United Nations

US Research Software Sustainability Institute

Virtual Machines

World Commission on Environment and Development

Workload Generator
World Wide Fund for Nature

XXiii

Chapter 1 ®)
Introduction to Software Sustainability s

Coral Calero, M* Angeles Moraga, and Mario Piattini

Abstract Sustainability is gaining importance worldwide, reinforced by several
initiatives that have highlighted the importance of reducing energy consumption
and carbon footprint. Although these initiatives highlight ICTs as a key technology
in achieving these goals, we must be aware that ICTs can also have a negative impact
on the environment.

The main objective of this chapter is to provide an overview of the software
sustainability concept and its dimensions (human, environmental, and economic), as
well as the research efforts related to this area.

On the one hand, a review of the literature to define all the concepts related to
software sustainability has been carried out. On the other, a bibliometric analysis is
used to identify the main forum employed in the area for publishing the works and
the percentage of papers related to each of the software sustainability dimensions.

Several definitions for the different sustainability levels are presented. As a result
of the bibliometric analysis, it can be highlighted that the majority of the papers are
published in conferences and are focused on the environmental dimension, whereas
the number of books as well as the number of book chapters focused on software
sustainability remains low.

Regarding the software sustainability dimensions, most of the works are on the
environmental dimensions, highlighting the need for more research focused on the
human and economic dimensions.

C. Calero - M. A. Moraga (&) - M. Piattini

Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain

e-mail: Coral.Calero@uclm.es; MariaAngeles.Moraga@uclm.es; Mario.Piattini@uclm.es

© Springer Nature Switzerland AG 2021 1
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_1&domain=pdf
mailto:Coral.Calero@uclm.es
mailto:MariaAngeles.Moraga@uclm.es
mailto:Mario.Piattini@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_1#DOI

2 C. Calero et al.
1.1 Introduction

Sustainability is gaining importance worldwide, reinforced by several initiatives that
have received widespread media coverage such as Earth Hour,' a worldwide grass-
roots movement uniting people to protect the planet, organized by the WWF (World
Wide Fund for Nature). Other organizations such as the United Nations (UN) also
highlight the importance of reducing energy consumption and our carbon footprint,
including this issue among their Millennium Development Goals (MDGs").

Although these initiatives highlight ICTs (Information and Communication Tech-
nologies) as a key technology in achieving these goals, we must be aware that I[CTs
can also have a negative impact on the environment. In fact, as noted by [1], when
pursuing strategic sustainability, the impact of technology is simultaneously impor-
tant from two different points of view. While technology helps organizations to
tackle environmental issues (using videoconferences, reducing or eliminating mate-
rials, introducing more efficient processes, etc.), it is often responsible for major
environmental degradation (e.g., in the amounts of energy consumed by the engi-
neering processes used to manufacture products). The former concept is called
“sustainability by IT,” and the second “sustainability in IT.”

The main difference between sustainability in IT and sustainability by IT is
related to the role played by the specific IT. As indicated by [2], the difference lies
in whether one considers IT as a producer, handling the emissions produced by the
IT gadgets themselves, or as an enabler, facilitating the reduction of emissions across
all areas of an enterprise.

This dual aspect of technology means that organizations also face two challenges:
they need to have more sustainable processes, and they must also produce products
that contribute to a more sustainable society.

It is therefore essential to control the use of ICTs, in order to reduce as far as
possible their negative impact on sustainability. In this book we will focus specif-
ically on software technology, because software is more complex to sell, service, and
support than hardware; also, dollar for dollar, software generates more downstream
economic activity than does hardware.

In order to gain an overview of the research efforts related to this area, a
bibliometric study was carried out, at the beginning of November 2018. The dataset
used in the study was obtained from the computer science category of Scopus
between 2000 and 2018, was written in English, and resulted in the attainment of
a total of 542 papers [3]. Of these, just 2 were books and 21 were book chapters. To
update the analysis, and check if this low number of books and book chapters had
changed, a new bibliometric study covering up to the end of 2019 was carried out,
obtaining 151 new contributions. The results obtained from a total of 693 papers,
listing the forum of publication, are shown in Table 1.1. As can be seen, the majority
of the papers were published at conferences. Nonetheless, the number of books as

1http://www.earthhour.org/
Zhttp://www.un.org/millenniumgoals/

http://www.earthhour.org/
http://www.un.org/millenniumgoals/

1 Introduction to Software Sustainability 3

Table 1.1 Update of the No. Forum of publication Publication Percentage
main forums used in the area 1 Conference paper 417 62.9
2 Article 148 22.3
3 Conference review 48 7.2
4 Book chapter 28 4.2
5 Review 14 2.1
6 Editorial 3 0.5
7 Book 2 0.3
8 Note 1 0.2
9 Short survey 1 0.2
10 Undefined 1 0.2
Total 663 100

well as the number of book chapters remains low. Consequently, we believe in the
importance to researchers and software developers alike of works such as the present
book, which collate the results of studies on software sustainability.

From the point of view of business, sustainability has also become an increasingly
important consideration. A business that fails to make sustainable development one
of its top priorities could receive considerable public criticism and subsequently lose
market legitimacy [4]. All of this can be summarized under the concept of “strategic
sustainability,” as introduced by [5]. Most consumers claim that they will pay more
for a green product [6]. In 2010, the ISO 26000 standard [7] for Corporate Social
Responsibility (CSR) was published, providing executives with the necessary direc-
tions and measures for demonstrating social responsibility. In this standard, busi-
nesses are required to take a precautionary approach to protecting the environment;
the aim is to promote greater environmental responsibility through business practices
and to encourage the adoption of environmentally friendly information technologies.
CSR involves companies in the voluntary integration of social and environmental
concerns in their business operations, as well as in relationships with their partners
[8]. Expectations of corporations are now higher than ever before. Investors and
other stakeholders nowadays consider companies in terms of the “triple bottom
line,” reflecting financial performance, environmental practices, and corporate social
responsibility (CSR). The present-day dominant conception of CSR implies that
firms voluntarily integrate social and environmental concerns into their operations
and their interactions with stakeholders [9]. In Chap. 15, the authors analyze whether
software companies take account of software sustainability in their CSR.

In general, the initiatives that foster respect for the environment by means of ICT,
IT, software, etc. are called “sustainability in IT,” “Green ICT/IT/Software,” etc. A
problem that arises is that, as in any new discipline, there is as yet no clear map of
concepts and definitions [1].

In the next section we will try to clarify the differences, similarities, and relation-
ships between all these concepts.

C. Calero et al.

1.2 Sustainability

The aim of this section is to give a general definition of the word “sustainability,”
without linking it to any particular context. To do so, we will first summarize the
main existing definitions of sustainability.

Sustainability is a widely used term and refers to the capacity of something to last

a long time. Some more precise definitions are as follows:

Collins Dictionary [10] defines sustainability as “the ability to be maintained at a
steady level without exhausting natural resources or causing severe ecological
damage.”

A similar definition of “sustainable” can be found in the Merriam-Webster
Dictionary: “of, relating to, or being a method of harvesting or using a resource
so that the resource is not depleted or permanently damaged” [11].

According to [12], a sustainable world is broadly defined as “one in which
humans can survive without jeopardizing the continued survival of future gener-
ations of humans in a healthy environment.”

In [13], the authors affirm that “sustainability can be discussed with reference to a
concrete system (ecological system, a specific software system, etc.), therefore,
global sustainability implies the capacity for endurance given the functioning of
all these systems in concert.”

“Sustainability is the capacity to endure and, for humans, the potential for long-
term maintenance” [14].

From another perspective, sustainability can be viewed as “one more central
quality attribute in a row with the standard quality attributes of correctness,
efficiency, and so forth” [14]. These same authors also define the term sustainable
development as that which “includes the aspect to develop a sustainable product,
as well as the aspect to develop a product using a sustainable development
process.”

The Brundtland Report from the United Nations (UN) defines sustainable devel-
opment as the ability to “meet the needs of the present without compromising the
ability of future generations to satisfy their own needs” [15]. According to the
UN, sustainable development needs to satisfy the requirements of three dimen-
sions, which are society, the economy, and the environment.

In [16], the author identifies the same dimensions of sustainable development as
listed in the aforementioned UN report: economic development, social develop-
ment, and environmental protection:

— “Environmental sustainability ensures that the environment is able to replenish
itself at a faster rate than it is destroyed by human actions. For instance, the use
of recycled material for IT Hardware production helps to conserve natural
resources.

— Social development is concerned with creating a sustainable society which
includes social justice or reducing poverty and, in general, with all actions that
promote social equity and ethical consumerism.

1 Introduction to Software Sustainability 5

Information Systems (IS) Sustainablity

Information and Communications Technology
(ICT) Sustainability.

Information Technology (IT)
Sustainability

Software (Sw)
Sustainability

Software Engineering
(SE) Sustainability

Fig. 1.1 Sustainability levels

— The economic pillar ensures that our economic growth maintains a healthy
balance with our ecosystem; it integrates environmental and social concerns
into business.”

Of all the above definitions, the one most widely used is that established by the
Brundtland Report of the United Nations (UN) [15].

If we take a close look at the variety of definitions offered, we can observe that
there are two fundamental pillars underpinning the idea of sustainability: “The
capacity of something to last a long time” and “the resources used.”

Another aspect related to sustainability and found in the literature is the topic to
which it is applied: Information Systems, ICT, Software, etc. (Figure 1.1 summarizes
the different levels of sustainability according to the topic.)

In the following sections we will present definitions for each of the levels shown
in Fig. 1.1. We have worked mainly with papers published in the area of software,
software engineering and information systems, in line with the focus of this book.

1.2.1 IS Sustainability

It should be noted that, in general, authors do not differentiate between “IS Sustain-
ability” and “Sustainable IS” (the same applies to the other levels), so in this book we
take these concepts as being equivalent.

As articulated in the SIGGreen Statement, “the Information Systems discipline
can have a central role in creating an ecologically sustainable society because of the
field’s five decades of experience in designing, building, deploying, evaluating,
managing and studying information systems to resolve complex problems” [17].

6 C. Calero et al.

In [18] the authors recommend placing greater emphasis on IS sustainability over
IT sustainability, as they consider that the exclusive focus on information technol-
ogies is too narrow.

As remarked upon by [19], it is only through process change, and the application
of process-centered techniques, such as process analysis, process performance
measurement, and process improvement, that the transformative power of IS can
be fully leveraged to create environmentally sustainable organizations and, in turn,
an environmentally sustainable society.

Taking this one step further, we contend that IS researchers must consider
process-related concepts when theorizing about the role of IT in the transformation
towards sustainable organizations. This would allow us not only to better understand
the transformative power of IS in the context of sustainable development, but also to
proceed to more prescriptive, normative research that can have a direct impact on the
implementation of sustainable, IT-enabled business processes [19].

Although there are some groups working on information systems and environ-
mental friendliness, it is difficult to encounter the IS Sustainability concept. Most of
the work being done is instead about Green IS. In [6] the authors consider that
sustainability in IS must take account of such aspects as efficiency systems, fore-
casting, reporting and awareness, energy-efficient home computing, and behavior
modification. Finally, the book [20] focuses on “Green Business Process Manage-
ment,” consolidating the global state-of-the-art knowledge about how business
processes can be managed and improved in the light of sustainability objectives.

1.2.2 ICT/IT Sustainability

In [21] the authors remark that sustainable ICT can develop solutions that offer
benefits both internally and across the enterprise

e By aligning all ICT processes and practices with the core principles of sustain-
ability, which are to reduce, to reuse, and to recycle and

* By finding innovative ways to use ICT in business processes to deliver sustain-
ability benefits across the enterprise and beyond.

The Ericsson Report [22] points to the reduction or elimination of materials and
increased efficiency as the two main ways of aligning ICT with sustainability.
Following the definition provided by [2], IT sustainability is seen as a shorthand
for “global environmental sustainability,” a characteristic of the Earth’s future, in
which certain essential processes persist for a period comparable to human lives.

1 Introduction to Software Sustainability 7
1.2.3 Software Sustainability

There are several areas in which software sustainability should be applied: software
systems, software products, web applications, data centers, etc. Various projects are
currently being developed regarding the first of these areas, but most of this work
concerns data centers—since the energy consumption of data centers is significantly
higher than that of commercial office spaces [23].

As noted in [24], the main way to achieve sustainable software is by improving its
power consumption. Whereas hardware has been constantly improved to be energy
efficient, software has not. The software development lifecycle and related develop-
ment tools and methodologies rarely, if ever, consider energy efficiency as an
objective [25]. Energy efficiency has never been a key requirement in the develop-
ment of software-intensive technologies, and so as a result there is a very large
potential for efficiency improvements [26].

As remarked upon by [27], software plays a major role in sustainability, both as
part of the problem and as part of the solution. The behavior of the software has a
significant influence on whether the energy-saving features built into the platform
are effective or not [28].

In [13] it is stated that “The term Sustainable Software can be interpreted in two
ways: (1) the software code being sustainable, agnostic of purpose, or (2) the
software purpose being to support sustainability goals. Therefore, in our context,
sustainable software is energy-efficient, minimizes the environmental impact of the
processes it supports, and has a positive impact on social and/or economic sustain-
ability. These impacts can occur direct (energy), indirect (mitigated by service) or as
rebound effect” [29].

According to [30], sustainable software is “software, whose impacts on economy,
society, human beings, and environment that result from development, deployment,
and usage of the software are minimal and/or which have a positive effect on
sustainable development.”

These authors subsequently use the same ideas for the concept of green and
sustainable software, defining it as “software, whose direct and indirect negative
impacts on economy, society, human beings, and environment that result from
development, deployment, and usage of the software are minimal and/or which
has a positive effect on sustainable development” [31]. They consider that direct
impacts are related to resources and energy consumption during the production and
use of the software, while indirect impacts are effects from the software product
usage, together with other processes and long-term systemic effects.

One of the most complete definitions is the one proposed by [32], which con-
siders that green and sustainable software is software whose

» “direct and indirect consumption of natural resources, which arise out of deploy-
ment and utilization, are monitored, continuously measured, evaluated and opti-
mized already in the development process;

e appropriation and utilization aftermath can be continuously evaluated and
optimized;

8 C. Calero et al.

e development and production processes cyclically evaluate and minimize their
direct and indirect consumption of natural resources and energy.”

According to [3], software sustainability is about the capacity of software to last a
long time by using only the resources that are strictly needed.

Another related term is “sustainable computing.” It is used to convey the political
concept of sustainability in the field of computer systems, including material com-
ponents (hardware) as well as informational ones (software); it includes develop-
ment as well as consumption processes [33].

Some of the literature contains some definitions of “sustainable”
(or ‘“‘sustainability”), while other scholarship refers to the term “green”
(or “greenability”).

This phenomenon is especially noteworthy in the case of software, because
various authors such as [32] and [31] use both terms synonymously. We believe
that this approach is faulty and that it ought to be avoided, since we are talking about
two different concepts, as will be seen in due course.

What does seem true, however, is that software sustainability is a very important
research topic whose significance has been growing in the last few years.

1.2.4 Software Engineering Sustainability

Within the context of software engineering, not many proposals have so far tackled
the concept of sustainability [34], although in a recent updating of this work the
authors observed that the number of proposals has increased considerably over the
last few years [13]. This serves to demonstrate that there is an ever-growing concern
to address sustainability in the context of software engineering.

Sustainability should generally be considered from the very first stages of soft-
ware development. That is not always feasible, however, since it is not easy to
change the way in which developers work.

There are many definitions of “sustainable software engineering.” We will now
go on to present some of these (see Table 1.2).

1.3 Dimensions of Software Sustainability

As detected in several definitions, sustainability is generally considered from three
dimensions (the social, the economic, and the environmental) as provided by the UN
[15]. There are some proposals, as discussed in [1], that add to these three charac-
teristics which are, for instance, individual or technical. However, we consider that
software sustainability is the same as sustainability software. For that reason, from
our point of view, software sustainability has three dimensions that correspond to
those of sustainability as proposed in the Brundtland Report. Therefore, taking into

1 Introduction to Software Sustainability 9

Table 1.2 Sustainable software engineering

Reference

Term

Definition

[35]

Sustainable software
engineering

Sustainable software engineering aims to create reliable,
long-lasting software that meets the needs of users while
reducing environmental impacts, their goal is to create
better software so we will not have to compromise future
generations’ opportunities.

[36]

Sustainable software
engineering

Sustainable software engineering aims to create reliable,
long-lasting software that meets the needs of users,
while reducing negative impact on the economy, soci-
ety, and the environment.

[7]

Sustainable software
engineering

Sustainable software engineering is the art of defining
and developing software products in a way so that the
negative and positive impacts on sustainability that
result and/or are expected to result from the software
product over its whole lifecycle are continuously
assessed, documented, and optimized.

[37]

Sustainable software
engineering

Sustainable software engineering is the development
that balances rapid releases and long-term sustainability,
whereas sustainability is meant as the ability to react
rapidly to any change in the business or technical
environment.

[38]

Green and sustainable
software engineering

Green and sustainable software engineering is the art of
developing green and sustainable software with a green
and sustainable software engineering process. There-
fore, it is the art of defining and developing software
products in a way so that the negative and positive
impacts on sustainable development that result and/or
are expected to result from the software product over its
whole life cycle are continuously assessed, documented,
and used for a further optimization of the software
product.

[39]

Green and sustainable
software engineering

The objective of green and sustainable software engi-
neering is the enhancement of software engineering,
which targets:

1. the direct and indirect consumption of natural
resources and energy as well as

2. the aftermath that are caused by software systems
during their entire life cycle, the goal being to monitor,
continuously measure, evaluate and optimize these facts.

[40]

Software engineering for

sustainability

The aim of software engineering for sustainability
(SE4S) is to make use of methods and tools in order to
achieve this notion of sustainable software.

account the three types of resources required by software processes—human
resources (people involved in carrying out the software processes), economic
resources (needed to finance the software processes), and energy resources (all the
resources that the software consumes during its life)—we can identify the three
dimensions of software sustainability [1] (Fig. 1.2) as follows:

10 C. Calero et al.

SOFTWARE SUSTAINABILITY

Human
Sustainability

uo spedw|

Economic resources

‘ Human resources ‘ ‘ Energy resources ‘

SOFTWARE
Needs LIFECYCLE
PROCESSES

Fig. 1.2 Software sustainability dimensions

* Human sustainability: how software development and maintenance affect the
sociological and psychological aspects of the software development community
and its members. This encompasses topics such as labour rights, psychological
health, social support, social equity, and liveability.

* Economic sustainability: how the software lifecycle processes protect stake-
holders’ investments, ensure benefits, reduce risks, and maintain assets.

¢ Environmental sustainability: how software product development, maintenance,
and use affect energy consumption and the usage of other resources. Environ-
mental sustainability is directly related to a software product characteristic that we
call “Green Software.”

As mentioned in the first section, we have extended a previous bibliometric study
done on green and sustainable software [3] covering the period from 2000 to 2019
and obtaining a dataset of 663 papers. Analysing the dataset, we can see (Fig. 1.3)
that the environmental dimension is the one most analyzed, followed by the social
and the economic dimensions. However, we should be aware that only computer

1 Introduction to Software Sustainability 11

M Social Dimension

B Economic
Dimension

m Green Software
Dimension

Fig. 1.3 Distributions of software sustainability dimensions in computer science literature

science papers were reviewed and that if we were to analyze economic or business
sources the proportion would probably be different.

In this book 60% of the chapters are focused on the green software dimension
whereas the social and economic dimensions each represent 20% respectively.

Comparing the percentages of contributions on each sustainability dimension of
the bibliometric study and the number of chapters on each dimension in this book,
we can observe that they are quite similar, although we have made a special effort to
increase the number of chapters related to the human and economic dimensions. This
is because we consider that in the future the research lines should be focused on
filling the gap that currently exists in these dimensions.

1.3.1 Sustainability Dimensions and the UN’s SDGs

The 2030 Agenda for Sustainable Development, adopted in 2015 by all United
Nations Member States, provides a shared blueprint for peace and prosperity for
people and the planet, now and into the future. At its heart are the 17 Sustainable
Development Goals (SDGs) (see Fig. 1.4), which are an urgent call for action by all
countries—developed and developing—in a global partnership.’

3https://sdgs.un.org/goals

https://sdgs.un.org/goals

12 C. Calero et al.

QUALITY

EDUCATION

DECENT WORK AND 10 REDUCED
ECONOMIC GROWTH INEQUALITIES

o

CLMATE PARTNERSHIS .
13 ok AND 17 Bnicoans (5]

i SUSTAINABLE
@ S DEVELOPMENT
GALS

Fig. 1.4 UN Sustainable Development Goals

We believe it is interesting to relate these SDGs to software sustainability
dimensions. In particular, the most relevant of these goals are as follows:

* Goal 7: AFFORDABLE AND CLEAN ENERGY. Among the objectives of this
goal one can find the improvement of efficiency, which can be achieved through
sustainable software, as pursued by the environmental dimension.

* Goal 8: DECENT WORK AND ECONOMIC GROWTH. The creation of
quality jobs and job opportunities, and decent working conditions, are among
the sub-objectives of this goal, which is related to both the human and the
economic dimensions of software sustainability.

* Goal 9: INDUSTRY, INNOVATION, AND INFRASTRUCTURE. In this goal
the need for inclusive and sustainable industrial development is mentioned, as is
the need for technological solutions to ensure environmentally sound industrial-
ization, plus the technological progress required to achieve environmental objec-
tives, such as energy efficiency. All these objectives are related to the
environmental dimension of software sustainability.

* Goal 12: RESPONSIBLE CONSUMPTION AND PRODUCTION. This goal
promotes, among other things, resource and energy efficiency, green and decent
jobs, and a better quality of life for all, increasing net welfare gains from
economic activities by reducing resource use, degradation, and pollution through-
out the whole lifecycle, while improving the quality of life. It is thus related to all
three dimensions.

* Goal 13: CLIMATE ACTION. This is related to greenhouse gas emissions from
human activities—in our case, the emissions produced during the software
lifecycle. This has to do with the environmental dimension.

* Goal 17: PARTNERSHIPS. These inclusive partnerships are built upon princi-
ples and values, a shared vision, and common goals that place people and the
planet at the center. They also have to do with long-term investments in the
information and communications technologies sector. This goal is thus related to
the economic and the environmental dimensions.

1 Introduction to Software Sustainability 13

Table 1.3 Relationship between Software Sustainability dimensions and the UN Sustainable
Development Goals

SDG |SDG |SDG |SDG SDG SGD
7 8 9 12 13 17
Human Software Sustainability X X
Economic Software Sustainability X X X
Environmental Software X X X X X
Sustainability

Table 1.3 shows the relationships between software sustainability dimensions and
the UN sustainable development goals.

1.4 Conclusions

To date, the topic of sustainability has been of importance in several fields. However,
this aspect has only been addressed more recently in the field of software, with
software sustainability gaining increasing importance in the last decade. This is
reflected in the growing number of papers on software sustainability that can be
found in the literature and in the calls for it in both European and international
initiatives.

We highlight the fact that the three dimensions that make up software sustain-
ability are not being equally studied. As previously mentioned, the environmental
dimension is the most studied of them all. In fact, according to our bibliometric
analysis, there were no publications relating to the economic and social dimensions
at all until 2011. Now that the three sustainability dimensions are related to some of
the 17 Sustainable Development Goals proposed in the 2030 Agenda for Sustainable
Development, they should henceforth be taken into consideration in any attempt to
improve the global environment.

This book is a compilation of chapters related to the three dimensions, which we
hope will serve as a reference for researchers and developers who are concerned with
software sustainability. Moreover, we aim to raise awareness not only among
software developers (software industries, development departments, etc.) but also
among end-users, who hold in their hands the responsibility of choosing and
demanding software that is more respectful of the environment.

References

1. Calero C, Piattini M (2017) Puzzling out Software Sustainability. Sustain Comput Informatics
Syst 16:117-124. https://doi.org/10.1016/j.suscom.2017.10.011

2. Unhelkar B (2011) Green IT strategies and applications. Using environmental intelligence.
CRC, Boca Raton, FL

https://doi.org/10.1016/j.suscom.2017.10.011

14

(o]

10.

11

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. Calero et al.

. Calero C, Mancebo J, Garcia F, Moraga MA, Berna JAG, Fernandez-Alemén JL, Toval A
(2020) 5Ws of green and sustainable software. Tsinghua Sci Technol 25(3):401-414. https://
doi.org/10.26599/TST.2019.9010006

.Du W, Pan SL, Zuo M (2013) How to balance sustainability and profitability in technology
organizations: an ambidextrous perspective. IEEE Trans Eng Manag 60(2):366-385. https://
doi.org/10.1109/TEM.2012.2206113

. Sroufe R, Sarkis J (2007) Strategic sustainability: the state of the art in corporate environmental
management systems. Greenleaf, Sheffield

. Cazier J, Hopkins B (2011) Doing the right thing for the environment just got easier with a little
help from information

. ISO/IEC (2010) ISO26000 Guidance on social responsibility

. European Commission (2000) Green Book

. Branco MC, Rodrigues LL (2006) Corporate social responsibility and resource-based perspec-

tives. J Bus Ethics 69(2):111-132. https://doi.org/10.1007/s10551-006-9071-z

Collins (2020) Collins dictionary

. Merriam-Webster (2020) Dictionary by Merriam-Webster

Brown BJ, Hanson ME, Liverman DM, Merideth RW (1987) Global sustainability: toward

definition. Environ Manag 11(6):713-719. https://doi.org/10.1007/BF01867238

. Penzenstadler B, Raturi A, Richardson D, Calero C, Femmer H, Franch X (2014) Systematic

mapping study on software engineering for sustainability (SE4S). In: Proceedings of the 18th

International Conference on Evaluation and Assessment in Software Engineering, New York,

NY

Penzenstadler B, Fleischmann A (2011) Teach sustainability in software engineering? In:

Proceedings of the 2011 24th IEEE-CS Conference on Software Engineering Education and

Training, USA, pp 454-458

United Nations World Commission on Environment and Development (1987) Report of the

World Commission on Environment and Development: our common future. In: United Nations

conference on environment and development

Adams W (2006) The future of sustainability. Re-thinking environment and development in the

twenty-first century: technical report. [UCN

Hasan H, Molla A, Cooper V (2012) Towards a green IS taxonomy, p 25

Watson R, Boudreau M-C, Chen A (2010) Information systems and environmentally sustain-

able development: energy informatics and new directions for the IS community. MIS Q 34

(1):23-38

Seidel S, vom Brocke J (2010) Call for action: investigating the role of business process

management in green IS. p 132-133

vom Brocke J, Seidel S, Recker J (2012) Green business process management: towards the

sustainable enterprise. Springer, Berlin, p XII, 263 p

Donnellan B, Sheridan C, Curry E (2011) A capability maturity framework for sustainable

information and communication technology. IT Prof 13(1):33-40. https://doi.org/10.1109/

MITP.2011.2

Ericsson (2013) Ericsson energy, carbon report. On the impact of the networked society.

EAB-13:036469 Uen. Ericsson AB

Koomey J (2011) Growth in data center electricity use 2005 to 2010. Analytics, Oakland, CA

Calero C, Bertoa MF, Moraga MA (2013) A systematic literature review for software sustain-

ability measures. In: Proceedings of the 2nd International Workshop on Green and Sustainable

Software, pp 46-53

Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development

environments and energy efficiency in open source applications. Inf Softw Technol 54

(1):60-71. https://doi.org/10.1016/j.infsof.2011.07.005

The Climate Group (2008) SMART 2020: enabling the low carbon economy in the information

age. The Global eSustainability Initiative, Brussels

https://doi.org/10.26599/TST.2019.9010006
https://doi.org/10.26599/TST.2019.9010006
https://doi.org/10.1109/TEM.2012.2206113
https://doi.org/10.1109/TEM.2012.2206113
https://doi.org/10.1007/s10551-006-9071-z
https://doi.org/10.1007/BF01867238
https://doi.org/10.1109/MITP.2011.2
https://doi.org/10.1109/MITP.2011.2
https://doi.org/10.1016/j.infsof.2011.07.005

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Introduction to Software Sustainability 15

Easterbrook S (2010) Climate change: a grand software challenge. In: FoSER 2010, Santa Fe,
New Mexico, USA, November 7-8. ACM 978-1-4503-0427-6/10/11, p 99-103

Steigerwald, B. and Agrawal, A. 2011. Developing green software.

Hilty L, Arnfalk P, Erdmann L, Goodman J, Lehmann M, Wéger P (2006) The relevance of
information and communication technologies for environmental sustainability — a prospective
simulation study. Environ Model Softw

Dick M, Drangmeister J, Kern E, Naumann S (2013) Green software engineering with agile
methods. In: Proceedings of the 2nd International Workshop on Green and Sustainable Soft-
ware, pp 78-85

Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFT Model: a reference model for
green and sustainable software and its engineering. Sustain Comput Informatics Syst 1
(4):294-304. https://doi.org/10.1016/j.suscom.2011.06.004

Johann T, Dick M, Kern E, Naumann S (2011) Sustainable development, sustainable software,
and sustainable software engineering: an integrated approach, pp 34-39

Mocigemba D (2006) Sustainable computing. Poiesis Prax 4(3):163-184. https://doi.org/10.
1007/s10202-005-0018-8

Penzenstadler, B., Raturi, A., Richardson, D., Calero, C., Femmer, H. and Franch, X. 2014.
Sustainability in software engineering: a systematic literature review for building up a knowl-
edge base.

Amsel N, Ibrahim Z, Malik A, Tomlinson B (2011) Toward sustainable software engineering
(NIER Track). In: Proceedings of the 33rd International Conference on Software Engineering,
New York, NY, pp 976-979

Manteuffeal C, Loakeimidis S (2012) A systematic mapping study on sustainable software
engineering: a research preview, pp 3540

Tate K (2006) Sustainable software development: an agile perspective. Addison-Wesley, Upper
Saddle River, NJ

Dick N, Naumann S (2010) Enhancing software engineering processes towards sustainable
software product design. In: Greve K, Cremers AB (eds) Envirolnfo 2010: Integration of
environmental information in Europe. Shaker, Aachen, pp 706-715

Kern E, Dick M, Naumann S, Guldner A, Johann T (2013) Green software and green software
engineering — definitions, measurements, and quality aspects

IDC (2009) Aid to recovery: the economic impact of IT, software, and the Microsoft ecosystem
on the global economy

https://doi.org/10.1016/j.suscom.2011.06.004
https://doi.org/10.1007/s10202-005-0018-8
https://doi.org/10.1007/s10202-005-0018-8

Chapter 2 ®)
Criteria for Sustainable Software Products: oo
Analyzing Software, Informing Users,

and Politics

Achim Guldner, Eva Kern, Sandro Kreten, and Stefan Naumann

Abstract The energy consumption of information and communication technology
is still increasing and comprises components such as data centers, the network, end
devices, and also the software running on these components. Following the motto
“What you can’t measure you can’t manage,” it is helpful and reasonable to develop
and validate criteria for software products. In our chapter we describe some of these
criteria, and also introduce a label for sustainable software products, the German
“Blue Angel.” We also introduce some energy-efficient programming techniques in
order to reduce consumption even during the development phase, and a measure-
ment method for the energy consumption of software. We conclude with some
implications of our results and an outlook.

2.1 Introduction

The environmental impacts of information and communication technology (ICT)
regarding energy consumption and therefore greenhouse gas effects are still grow-
ing. Despite impacts from miniaturization (smartphones instead of desktop com-
puters) or economic causes such as the 2008 financial crisis, the energy consumption
is increasing with the growing number of devices, network traffic, computation
power, and usage time. It is expected that by 2030 the overall energy consumption
of ICT will exceed 20% of the worldwide total [1]. Therefore, it is necessary to find
and define criteria that allow for structuring, measuring, organizing, and also fore-
casting this energy consumption. These criteria can help users, administrators,
developers, and the whole ICT sector as well as decision makers in politics and
society.

The hardware aspects of ICT have been the subject of research regarding energy
for several years. Several labels, such as Energy Star and “TCO Certified,”

A. Guldner (<) - E. Kern - S. Kreten - S. Naumann

University of Applied Sciences Trier, Environmental Campus Birkenfeld, Germany
e-mail: a.guldner@umwelt-campus.de; e.kern@umwelt-campus.de;

s.kreten @umwelt-campus.de; s.naumann @umwelt-campus.de

© Springer Nature Switzerland AG 2021 17
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_2&domain=pdf
mailto:a.guldner@umwelt-campus.de
mailto:e.kern@umwelt-campus.de
mailto:s.kreten@umwelt-campus.de
mailto:s.naumann@umwelt-campus.de
https://doi.org/10.1007/978-3-030-69970-3_2#DOI

18 A. Guldner et al.

communicate the resource and energy efficiency of the hardware products. For
software, however, the situation is more complicated. Since there is a large variety
of software products regarding usage options, software architecture, and of course
purpose, it is necessary to take a deeper look at how especially software can be
analyzed and structured regarding energy consumption. Other publications show
that it is worth also taking software into account, since, for example, different
software with similar functionality can differ in several ways in their energy con-
sumption [2, 3]. In this chapter, we describe general criteria for measurements and
tips for programmers, especially regarding distributed container software such as
Docker,' which is in widespread use in data centers to support virtualization.

The chapter is organized as follows: In an overview of related work we give some
definitions, discuss the meaning of sustainable software, and take a thorough look at
the challenges of measuring software energy consumption and energy-efficient
programming. Then, we present criteria for sustainable software products and
describe a measurement method in detail. We then present aspects of energy-
efficient development and deployment. The chapter closes with an in-depth discus-
sion of the results and a conclusion with outlook.

2.2 Related Work

In general, the research field on “sustainable software” and its engineering is
relatively new. Here, we focus on criteria for sustainable software, measure-
ments of software sustainability, and programming guidelines for sustainable
software. The following section provides an overview on the current state of
research.

2.2.1 Sustainable Software

The environmental impacts and sustainability of software are discussed using
different terms, depending on the context. This chapter is based on the definition
by Dick et al. [4]: “Sustainable Software is software, whose impacts on economy,
society, human beings, and environment that result from development, deployment,
and usage of the software are minimal and/or which have a positive effect on
sustainable development” [4, 5]. We use the terms ‘“‘sustainable software,” “green
software,” and “energy- and resource-efficient software” interchangeably. The latter
terms point out the focus on consuming fewer natural resources, i.e., environmental

and resource protection.

1https://www.docker.com/ (March 16, 2020).

https://www.docker.com/

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 19

Penzenstadler [6] places a similar emphasis on this consideration, focusing on
energy efficiency while talking about “sustainable software.” According to Calero
et al. [7], sustainability of software can be understood as a non-functional require-
ment, i.e., the aspects need to be addressed at the latest in the design phase of a
software development process. Ahmad et al. [8] point out that developers should aim
at long-living systems. Further definitions of green and sustainable software are
presented and discussed in [9-15].

Overall, it can be stated that, depending on the literature and research focus,
different categorizations of criteria for sustainable software products are conceiv-
able. Table 2.1 provides an overview of these categorizations which can be found in
the literature.

In order to develop sustainable software, Penzenstadler [23] proposes a software
development that considers the different dimensions of sustainability in
corresponding application domains: development process, maintenance process,
system production, and system usage going into aspects of system, function, and
time. Along with the three dimensions according to the Brundtland Report [18]—
environment, economy, and society—the following technical dimension is men-
tioned: “From a point of view of (software) systems engineering, there is another
dimension that has to be considered. Technical sustainability has the central objec-
tive of long-time usage of systems and their adequate evolution with changing
surrounding conditions and respective requirements” [24-26]. Penzenstadler et al.
[25] summarize the definition in the question “How can software be created so that it
can easily adapt to future change?”’ Additionally, a “human” [27] or an "individual”
[25] dimension is defined in some literature.

In order to reach a sustainable software product, “software engineering for
sustainability” is required [6]. With the Karlskrona Manifesto for Sustainability
Design, Becker et al. [28] present principles for doing so. Additionally, Betz et al.
[29] point out that it is important to also include the underlying business processes
when integrating sustainability in the context of software systems. Table 2.2 presents
an overview of literature presenting criteria and characteristics of sustainable soft-
ware products.

2.2.2 Measurement of Software Sustainability

Once we understand what sustainable software is, the task of measuring seems rather
difficult, because of the complexity of the topic. Assessing the sustainability or rather
the environmental impact of a software product, several criteria were introduced, as
described above. We will now take a look at the two criteria commonly used for
measuring sustainability, hardware usage and energy consumption, to subsume
proposed criteria such as efficiency, energy efficiency, power awareness, carbon
footprint, pollution, and energy savings.

When commencing the task of measuring the hardware consumption and energy
efficiency of a software product, one can find several different approaches. All of

20

A. Guldner et al.

Table 2.1 Categories of characteristics of sustainable software

Categories Designation Description

In or by [5, 6, |Green in software | Activities on environmentally friendly ICT itself.

16] Green by software | The question how ICT can contribute to sustainable
development.

Relationship Common criteria | Result from the known and standardized quality charac-

[11, 17] teristics for software.

Direct criteria

Criteria relating to first-order effects.

Indirect criteria

Criteria concerning effects indirectly caused by ICTs
(e.g., energy savings through process optimization) and
on effects that have an indirect effect in the long term.

Effects [5, 17]

First order

“First-order effects” are environmental influences caused
by production and usage of ICT, e.g., energy consumption
during ICT use.

Second order

“Second-order effects” are caused, for example, by
dematerialization and produced substitution

Third order

Longer-term environmental and social impacts are
described as “third-order effects.” So-called rebound
effects are taken into account, which may reverse the
savings of other energy efficiency measures to the
opposite.

Sustainability
aspects [18]

Social Social aspects refer to society, but also to individuals and
their participation in the community or enabling it.

Ecological Ecological aspects consider effects on the environment.

Economic Economic aspects aim at protecting economic resources.

Life cycle
[5, 19]

Development

In the development phase, effects on a sustainable devel-
opment, directly and indirectly through activities during
the course of the software development.

Distribution With regard to a sustainable software product, the form of
dissemination is relevant. Examples: resource consump-
tion by printing a user manual, choice of media, and file
size when downloading the product.

Usage The use of software is primarily concerned with the eco-

logical aspects. Effects that occur are monitored, for
example, through product selection, update cycles, and
product and system configuration.

Deactivation &

At the end of the software life cycle, deactivation and

disposal disposal may influence the sustainability of the product.
When introducing a new product, existing data must be
backed up and converted. Especially the backup size plays
a role from an ecological point of view.
Quality model | Product Considers in particular the effect of a software on other
[11] sustainability products and services and thus includes usage effects as
well as systematic effects.
Process Evaluates the impact of product development or software
sustainability development process to sustainable development.

Social aspects

Comprise factors that affect society as well as individual
users or developers.

(continued)

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 21

Table 2.1 (continued)

Categories Designation Description
Portability Summarizes product features that can be used under
changed conditions (e.g., hardware, requirements).
Efficiency Refers to the economy of resources, computing time, and

storage space used to solve a specified problem.

25010+S [20]

Energy efficiency

Degree to which a software product consumes energy
while it is active.

Resource Degree to which the resources used by a software product
optimization are used optimally.

Capacity Degree to which the maximum of a product optimally
optimization meets the needs while only using the parameters that are

necessary.

Perdurability

Degree to which a software product can be used and
modified over a long period of time.

Labeling cate-
gories [21]

Efficiency

Refers to the economy of resources, computing time, and
storage space used to solve a specified problem.

Resources-ori-
ented feasibility

Includes aspects that affect resource consumption caused
by software (focus: environmental impacts).

Well-being-ori-
ented feasibility

Includes aspects that affect society caused by software
(focus: social impacts).

Longevity Describes how software is modified, adapted, and reused
(permanence) to be able to execute specific functions under specific
conditions for as long as possible.
Green factors Feasibility Describes how projects and processes of software devel-
[22] opment, maintenance, and use follow the principles of
sustainable development.
Efficiency Refers to the economy of resources, computing time, and
storage space used to solve a specified problem.
Sustainability Describes how software supports sustainable

development.

them make use of some kind of system under test (SUT), on which the software
product is executed. During the execution, measurements are taken to assess the
additional energy consumption of the SUT when the software is run. Meanwhile, the
hardware usage is usually monitored with a software tool that aggregates the usage
of the main components (CPU, RAM, etc.) of the SUT.

There are two main categories regarding measuring the energy consumption:
hardware-based measurements and software-based estimations. Table 2.3 lists and
categorizes current approaches.

As can be seen, the approaches can be categorized into their corresponding SUT
hardware (be it servers, PCs, mobile devices, or embedded systems) and the mea-
surement approach. The hardware-based measurement methods all consist of at least
one SUT and a power meter. For example, in the measurement framework described

22 A. Guldner et al.

Table 2.2 Criteria for sustainable software products

Reference Paper Criteria (examples)

Albertao et al. Proposal for | Modifiability, usability, accessibility, supportability, effi-

[19] criteria ciency, portability

Bouwers et al. Literature —

[30] review

Bozzelli et al. [2] | Literature —
review

Capra et al. [31] Proposal for | Framework entropy, functional types, number of methods,
criteria energy efficiency, energy, age

Calero et al. Proposal for | Adaptability, maintainability, availability, recoverability,

[7, 32] criteria fault tolerance, maturity

Condori- Proposal for | Functional completeness, coexistence, capacity, time

Fernandez et al. criteria behavior, learnability, user error protection, confidentiality,

[33] integrity, installability

Hilty [34] Proposal for | Demand adaptivity, user-oriented configuration, power
criteria awareness, flexibility

Kern et al. [11] Proposal for | Fit for purpose, memory usage, idleness, organization sus-
criteria tainability, carbon footprint, hardware obsolescence

Lago et al. Proposal for | Employment, pollution, energy savings, performance, edu-
criteria cation, configurability

Radu [35] Literature —
review

Taina et al. [22] Proposal for | Beauty, reduction, feasibility, energy consumption, waste,
criteria memory usage, efficiency

in [41], they use a EVM430-F6736 electricity meter and a database server. The load
is generated using an open-source benchmark suite for databases. They measure and
compare the execution time and energy consumption of three DBMSs and perform
an analysis of variance. They found differences (in some instances large ones) in
energy consumption and execution time among the three systems and even within
one system, depending on the data model. Similarly, our approach, described in [3],
uses one or more SUTs (server and PCs), a power meter, and a workload generator to
collect the data. The approach is described in detail in Sect. 2.4. Mancebo et al. [44]
take the measurement of energy consumption of PCs one step further and propose a
measurement setup for recording the energy consumption of individual hardware
components (CPU, processor, HDD, and graphics card). We have already compared
this method with our own in [48].

Jagroep et al. [43] use a Watts Up Pro power meter (discontinued) and measure
the energy consumption of two SUTs (application server and database server). They
also use a logging server to record the hardware usage. They compared one software
product (called “Document Generator”) over two consecutive releases and find that
the new functionality did have a negative impact on the energy consumption of all
SUTs. Furthermore, they compare the hardware-based measurements with

2http://www.ti,<:0m/t001/EVM430-F6736 (March 17, 2020).

http://www.ti.com/tool/EVM430-F6736

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 23

Table 2.3 Measurement approaches

Reference

Method

Categories

Becker et al.

[36] (2017)

Comparison of hardware-based measurement
and software-based estimation of the energy
consumption of software

Hardware-based, software-
based, PC, energy consumption

Bunse [37] Measurement and evaluation of code obfus- | Software-based, mobile devices,
(2018) cation techniques on mobile devices energy consumption

Cherupalli Application-specific peak power and energy | Hardware-based, embedded sys-
et al. [38] requirements for ultralow power processors tems, energy consumption
(2017)

Georgiou Energy consumption estimation approaches Software-based, embedded sys-
et al. [39] for IoT devices tems, energy consumption
(2018)

Godboley Analysis of the branch coverage and energy | Software-based, PC, energy

et al. [40] consumption using concolic testing consumption

(2017)

Gomes et al. | Measurements and comparison of energy Hardware-based, server, energy

[41] (2020)

consumption and execution time of NoSQL
database management systems (DBMSs)

consumption

Henderson
et al. [42]
(2020)

Framework (impact tracker) for reporting
energy consumption, hardware usage, and
carbon footprint of machine learning
algorithms

Software-based, machine learn-
ing, SUT not described, energy
consumption, hardware usage

Jagroep et al.

[43] (2016)

Measurement and comparison of energy con-
sumption and hardware usage of commercial,
distributed document generator across con-
secutive releases

Hardware-based, software-
based, server, energy consump-
tion, hardware usage

Kern et al. Measurement and comparison of software Hardware-based, PC, server,
[3] (2018) products within different groups (word pro- energy consumption, hardware
cessors, web browsers, content management | usage
systems, and database systems) with the goal
of assessing a criteria catalog for sustainable
software
Mancebo Measurement setup for assessing the energy | Hardware-based, PC, energy
et al. [44] consumption of software, based upon sensors | consumption
(2018) that measure the consumption of individual
hardware components
Palomba Measurement and estimation of the impact of | Software-based, mobile devices,
et al. [45] code smells on mobile applications energy consumption
(2019)
Sahin et al. Impact of code obfuscation on energy usage | Hardware-based, mobile
[46] (2016) devices, energy consumption
Strubell Estimation of the energy consumed in training | Software-based, machine learn-
et al. [47] artificial neural networks ing, SUT not described in detail;
(2019) they only speak of up to three

GPUs that were used to train the
networks, energy consumption

24 A. Guldner et al.

simultaneously obtained estimations, using Microsoft Joulemeter (deprecated) and
state that “on process level [...] we are still unable to explain a relatively large
amount [over 60% in this case] of the energy overhead of software execution.”
Similar conclusions can be drawn from [36], where the software-based estimation
was also below the hardware-based measurements.

However, in addition to the hardware-based methods, software-based approaches
exist that use mathematical models to estimate the energy consumption of compo-
nents from an SUT. Godboley et al. [40] also use Joulemeter to estimate the energy
consumption of a wide variety of Java programs, increasing the branch coverage.
Similarly, Acar et al. [49] propose a tool to estimate the power consumption of a
given software at runtime by taking into account CPU, memory, and hard disk power
consumption.

In regard to mobile devices, attempts to assess the energy consumption of the
software (or apps) seem to be even more appropriate, because of the limited battery
life. Because of the compact hardware architecture of the devices, hardware-based
measurements are difficult. Additionally, the much lower energy consumption of the
specialized hardware requires accurate measuring methods. Measuring the hardware
usage in case of mobile devices is also very complicated, because the overhead of a
logging software is often quite high and can, in some cases, outweigh the app being
measured.

Nevertheless, some approaches with software-based (e.g., [45]) estimations and
hardware-based (e.g., [46]) measurements show the viability of assessing and
improving mobile applications. Palomba et al. [45] used PETrA® to estimate the
energy consumption based upon the execution time of methods from the app under
consideration. Sahin et al. [46] used Google Nexus and Samsung Galaxy
smartphones, which they modified to power them with an external supply instead
of the battery. Using the Android Debug Bridge (ADB), they triggered the execution
of the scenario on the devices.

Embedded or IoT-devices face similar issues in regard to powering them using
batteries or energy harvesting. Of course, the usage of low-energy hardware plays a
key role in these cases; however, there are methods, e.g., busy-waiting vs. deep-
sleep, that are triggered by the software, which can have a large influence on the
energy consumption. Georgiou et al. [39, 50] present several approaches to estimate
energy consumption and promote energy transparency as “a concept that makes a
program’s energy consumption visible from hardware up to software.” Cherupalli
et al. [38] measured application-specific loads and power profiles of TI MSP430
microcontrollers, used for IoT devices. They measured the peak and average power
consumption for several benchmarks.

In terms of the field of machine learning, Strubell et al. [47] quantify the cost and
environmental impact of training off-the-shelf neural network models. They estimate
the energy consumption of the CPU and GPU of their SUT using Intel’s RAPL tool*

3 Available at https://doi.org/10.6084/m9.figshare.4233767.v1 (March 15, 2020).
“https://01.org/rapl-power-meter (March 17, 2020).

https://doi.org/10.6084/m9.figshare.4233767.v1
https://01.org/rapl-power-meter

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 25

and nvidia-smi° while training the networks and then approximate the CO, emis-
sions. Similarly, Henderson et al. [42] also use RAPL and nvidia-smi and propose an
experiment-impact-tracker framework which encapsulates the assessment of the
energy consumption to make it easier to use. They also include hardware usage
measurements in their framework.

Considering these approaches, we find that the components necessary for the
assessment of software sustainability are a SUT and measurement devices or esti-
mation models. In order to produce repeatable experiments, a mode of automating
the workload (workload generator or automated scenario playback) is also
recommended. With this setup, the energy consumption and hardware usage of a
software product can be recorded. This, in turn, can be used for comparisons
between software products that perform similar tasks, across releases of one software
product, or for different features of one software product.

2.2.3 Energy-Efficient Programming

Software development is a broad and diverse branch of computer science. Accord-
ingly, energy measurements in this field are mostly specifically bound to application
cases. For example, there are approaches in app development for smartphones as
well as in software development for embedded systems and web development. In the
following, examples of such work will be given, which treat the topic both in general
and in application-specific terms. As shown in [51], the choice of programming
language already shows visible differences in the energy consumption of software
and its development. Pereira et al. [52] also show significant differences in the
translation time of code depending on the language. Furthermore, program code
can contain several critical sections that can lead to increased power consumption.
To identify these sections, Pereira et al. have presented an approach in [53]. Another
model is suggested in Baek et al. [54], which allows programmers to approximate
expensive functions and loops. Looking further at different program constructs and
models of different programming languages, differences in energy consumption can
also be identified, as shown in [55]. Here, we examined different concurrency
models of the programming languages C#, GO, and Clojure.

Table 2.4 gives an overview of different approaches in the literature. Li et al. [56]
take a more in-depth approach when considering hybrid programming models that
use both messaging and shared memory, as large systems with multi-core and multi-
socket nodes are increasingly being used. In order to improve power consumption,
Li et al. [56] propose new software-driven execution schemes that consider the
effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency
scaling (DVFS) in the context of hybrid programming models.

Shttps://developer.nvidia.com/nvidia-system-management-interface (March 17, 2020).

https://developer.nvidia.com/nvidia-system-management-interface

26

Table 2.4 Energy-efficient programming

A. Guldner et al.

Reference

Title

Categories

Cuoto et al.
[51] (2017)

Towards a Green Ranking for Programming
Languages

Energy consumption, pro-
gramming languages

Pereira et al.
[52] (2017)

Energy efficiency across programming lan-
guages: how do energy, time, and memory
relate?

Energy consumption, pro-
gramming languages

Pereira et al.
[53] (2017)

Helping Programmers Improve the Energy
Efficiency of Source Code

Energy consumption, pro-
gramming languages

Back et al.
[54] (2010)

Green: a framework for supporting energy-
conscious programming using controlled
approximation

Energy-conscious program-
ming, controlled
approximation

Kreten et al.
[55] (2017)

Resource Consumption Behavior in Modern
Concurrency Models

Concurrency control, energy
consumption

Li et al. [56]

Strategies for Energy-Efficient Resource Man-

Energy-efficient resource

(2013) agement of Hybrid Programming Models management, concurrency
control

Chauhan A Green Software Development Life Cycle for | Energy consumption, software

et al. [57] Cloud Computing development, cloud

(2013) computing

Kreten et al. | An Analysis of the Energy Consumption Energy consumption, cloud

[58] (2018) Behavior of Scaled, Containerized Web Apps computing

Bunse [37] Measurement and evaluation of code obfusca- | Software-based, mobile

(2018) tion techniques on mobile devices devices, energy consumption

Lietal. [S9] | An investigation into energy-saving program- | Programming patterns, energy

(2014) ming practices for Android smartphone app consumption

development

Memeti et al.

[60] (2017)

Benchmarking OpenCL, OpenACC, OpenMP,
and CUDA: Programming Productivity, Per-
formance, and Energy Consumption

Performance, energy
consumption

Balladini
et al. [61]
(2011)

Impact of parallel programming models and
CPUs clock frequency on energy consumption
of HPC systems

Parallel programming, energy
consumption

Just by looking at the programming language, programming models, and code

components alone, the energy consumption of software development is not fully
investigated. Software development involves an entire software life cycle, which
Chauhan et al. [57] are concerned with. They include not only the code but also the
integration of new features and the delivery of the software. An important part of the
software life cycle are tests and code pipelines, which nowadays are often executed
in containers. Therefore, in [58] we considered the question of whether software that
is delivered in a container is less efficient overall than without it, whereas only web
apps were considered here.

Furthermore, there are different approaches in the different sub-areas of program-
ming. While Bunse [37] and Li et al. [59] are specifically concerned with the energy
consumption of code for smartphones and mobile devices, Memeti et al. [60] focus
on the programming of machine learning algorithms using different frameworks.

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 27

Overall, only a brief overview of the approaches to improving energy efficiency
in software development can be given here, as this field is extensive, as the selection
of the presented works shows. However, the approaches shown above also depict
how useful it is to consider energy consumption in software development, although
current developers are generally not forced to pay attention to the resource efficiency
of the programs.

2.3 Criteria for Sustainable Software Products

Even if there are different approaches to defining and characterizing sustainable
software products, a standardized environmental label for sustainable software
product was missing. This has changed—in Germany—with the publication of the
Blue Angel for resource and energy efficient software products in early 2020
[62]. As the world’s oldest environmental label, the Blue Angel is a trustworthy
label that distinguishes particularly environmentally friendly products and services
and is published by the German Federal Ministry for the Environment [63].

In contrast to other products awarded the Blue Angel, software products are
immaterial products which trigger the consumption of energy and resources and
thus, in general, the environmental impacts of the hardware they drive. Due to this
special characteristic of software products, the development of the criteria differed
from the criteria development of other Blue Angels. The process of establishing
criteria for sustainable software products is described in detail in [3]. In general, the
criteria for sustainable software products are divided into three categories.® For the
Blue Angel, several criteria were omitted, because they were either of little impor-
tance for the target group or too complex to assess. In the following, we give an
overview of the categories. We then discuss sensitivities, which criteria were
omitted, the process of putting the criteria into practice, and possible further aspects
to be taken into account, in addition to the development and usage phase.

2.3.1 Criteria Categories

The aim of the Blue Angel for software products is to reduce the overall energy
consumption of ICT and to increase resource efficiency. The eco-label especially
highlights products whose manufacturers disclose information about their products
for this transparency. In addition, a product whose manufacturer is actively com-
mitted to improving the resource and energy efficiency of its software products is
also labeled. Therefore, the criteria were grouped into three categories: resource and

5The whole catalog is available at https://www.umwelt-campus.de/en/research/projekte/green-
software-engineering/set-of-criteria/introduction

https://www.umwelt-campus.de/en/research/projekte/green-software-engineering/set-of-criteria/introduction
https://www.umwelt-campus.de/en/research/projekte/green-software-engineering/set-of-criteria/introduction

28 A. Guldner et al.

energy efficiency, potential hardware operating life, and user autonomy. Consider-
ing resource and energy efficiency, software products have to provide their func-
tionality with a minimum of resource effort and energy requirements. Thus, for the
Blue Angel, the following criteria were selected:

¢ Required minimum system requirements

* Hardware utilization and electrical power consumption when idle

e Hardware usage and energy requirements when running a standard usage
scenario

¢ Support of the energy management

For the hardware usage and power consumption measurements, the setup is
detailed in Sect. 2.4 and based upon the research described in Sect. 2.2.2. The
assessment of all other criteria is performed by the developers in accordance with
the description in the Basic Award Criteria in [62].

Potential hardware operating life describes how software must not contribute to
renewing existing hardware due to higher performance requirements. In particular,
software updates should not lead to hardware updates. Users should have the option
to decide about software and hardware renewal. Thus, the criterion here is “down-
ward compatibility,” which states that software products must be able to run on a
reference system that is at least 5 years old. Regarding user autonomy, a software
product should not limit the autonomy of users in handling the product or create
dependencies. This resulted in the following criteria:

* Data formats

* Transparency of the software product

¢ Continuity of the software product

* Uninstallability

* Offline capability

e Modularity

* Free of ads

* Documentation of the software product, the license, and usage conditions

To reduce the dependance of the users, developers have to publish the used data
formats and APIs with an adequate documentation to enable the interoperability
of the software product. Publishing the source code is optional, but a long-term use
of the product must be ensured. This is also true for continuity, especially in terms of
security updates. Making possible a modular installation of the software product can
lead to lower consumption, because the users can choose only the functionality they
need. The users must also be enabled to completely remove the software product
from their system without leaving unnecessary data. Offline capability not only
saves resources for the data transfer and remote processing, but also does not
encourage users to deactivate standby modes in their system, for fear of losing
data when standby is activated. Advertising increases the resource and energy
demand, especially for data transfer of the ads [64]. Thus, external ads are not
allowed in a labeled software product.

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 29

Eventually, to be awarded the Blue Angel, the developer must present a document
containing all the results from the resource and energy measurements, as well as the
proof of compliance with the other criteria. The compliance verification is checked
for plausibility by an unassociated auditor.

2.3.2 Discussion of the Criteria

From the perspective of research on sustainable software products, the label is an
example of how scientific concepts can be put into practice. It also shows the
relevance of research for the development of practice-relevant methods and pro-
cedures, which are needed, for example, to prove the presented criteria. During the
development of the methods for assessing the resource and energy efficiency, the
following sensitivities were identified:

» Selection of the software: considering the amount of available software types
(ranging, e.g., from hardware drivers through system and application software, to
distributed Al-systems), the available software products within a category (e.g.,
“word processors”) and the way users interact with a software product

» Configuration of the software: considering the possible ways in which users can
configure the product, e.g., different modes of displaying data, available func-
tionality, etc., and if and how users make use of those possibilities

* Usage scenarios: considering the way users interact with a software product, e.g.,
duration of activities, workflows, menu layouts, etc.

e Reference system and software stack: considering underlying hardware and
system software, e.g., the SUT, operating system, libraries, databases, etc.

In order to deal with these factors influencing the measurement results,
corresponding requirements are placed on the verification process. The Basic
Award Criteria currently only refer to application software that can be run on one
of the specified reference systems. Furthermore, the exact software product, includ-
ing the version number, for which the Blue Angel is applied and for which the
compliance verification is provided, must be specified. The exact details of the
product and the results of the verifications must be provided both when the applica-
tion is submitted and during the term of the contract, e.g., in the case of further
development and updates.

The standard usage scenario used for the verification must include the function-
alities typically used for the software product to be evaluated. It is developed by the
applicant in compliance with the measurement instructions provided in the Basic
Award Criteria. All energy and resource measurements must be carried out on one of
the reference systems.

30 A. Guldner et al.

Considering the criteria from the original set, as described in [3], some criteria
were omitted. They include:

» “Platform independence and portability”: Can the software product be executed
on different currently prevalent productive system environments (hardware and
software), and can users switch between them without disadvantages?

e “Hardware sufficiency”: Does the amount of hardware capacity used remain
constant over time as the software product is developed further and additional
functions are added?

¢ “Transparency of task management”: Does the software product inform users that
it is automatically launching or running tasks in the background that are possibly
not being used?

* “Capability to erase data”: Does the user receive sufficient support when erasing
data generated during operation of the software product as desired?

* “Maintenance functions”: Does the software product provide easy-to-use func-
tions permitting users to repair damage to data and programs?

These have not been included in the Blue Angel Award Ceriteria, either because
when the reference systems were defined, they were subsumed in other criteria (e.g.,
through requesting the software product to be able to run on five-year-old reference
systems), or due to the complexity of the assessment methods and feedback during
field tests. The aspects “modularity” and “freedom of advertising” were added.

Furthermore, because the Blue Angel is usually awarded for a time period of
several years, the energy requirement over this time was also taken into account:
Updates, new functionalities, etc. may not increase the energy consumption of the
product by more than 10% compared to the values at the time of application. This
was done because the energy consumption is an aggregating criterion that effectively
subsumes the hardware usage.

In addition to the criteria developed in the criteria catalogue for sustainable
software and those transferred to the Blue Angel for software, further environmental
and sustainability aspects for the evaluation of products are conceivable—especially
if the focus is not solely on ecological aspects during the product use phase. With
reference to a study from 2016 [65], questions concerning the manufacturer of the
product are often of interest to users:

* To whom does the profit of the manufacturing company go?

* Does the manufacturing company have an environmental management system?

¢ How are the environmental impacts of (a) the manufacturing company including
its infrastructure and (b) the development process to be assessed, e.g., energy
consumption, ecological footprint, use of green electricity?

A holistic sustainability assessment of software products can also raise questions
about prevailing working conditions. This refers to the entire value chain: extraction
of resources, conditions at the manufacturer and involved subcontractors (keyword
“corporate social responsibility”), interaction with people and nature during product
manufacture, or place where the product was significantly developed. A further
aspect is consideration of the ecological or social commitment of the software
company (e.g., Is the software product made available to social projects at a lower

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 31

System Under Test (SUT) Power Meter (PM)

Measures energy consumption

Data Aggregator
and Evaluator (DAE) \\

Legend:
%E Data flow
Workload Generator Energy Efficiency E:tmty_

(WG) Report

Fig. 2.1 Setup for measuring the energy consumption of software (cf. [68])

price?). Other possible social criteria include usability and user-friendliness. The
following questions can be taken up in this respect: Does the software have options
to facilitate usability? How much effort is required to learn how to use the software?
Is the software intuitive and easy to use?

If the entire life cycle of a software product is considered [5], it is also interesting to
look at software delivery: Can the software be obtained via download or via data
carriers (physical product)? What is the raw material consumption for the production
of the data carrier on which the software is delivered (environmental friendliness of
packaging, medium, transport)? Or what are the environmental impacts (e.g., resource
consumption, data center infrastructure, energy consumption, type of energy used) of
making the software available for download? How is the download made available
(design/structure of the website, keyword “Green Web Engineering” [66, 67])?

2.4 Measurement Method

In 2011, we started the development of our measurement method in Dick et al.
[68]. The setup is based upon ISO/IEC 14756, as introduced in [69]. It is depicted in
Fig. 2.1. As it provides hardware-based measurements, it consists of the following
components:

e System under test (SUT)
¢ Power meter (PM)

32 A. Guldner et al.

* Workload generator (WG)
e Data aggregator and evaluator (DAE)

The SUT is the hardware (PC, server, mobile device, IoT device, etc.) on which
the software product will be executed. To assess the hardware usage during the
execution, the SUT itself records its own performance data (CPU and RAM usage,
network traffic, and hard disk activity). The PM (in our case a Janitza UMG 6047)
records the energy consumption of the SUT during the execution of the software
product. An optional WG generates the workload on the SUT, e.g., by executing a
script, repeatedly calling an API, website, database, etc. The WG can also only be a
tool, running on the SUT itself that performs user inputs on the software product.
This functions much like a benchmark test. In the setup, we call it a “scenario.” All
generated data (performance from the SUT, power from the PM, and the log-file
from the WQ) is aggregated with the DAE to produce a report.

Before any measurements can be conducted, several conditions have to be met.
To be able to assess the excess energy consumption and hardware usage that is
triggered by the software product, a baseline has to be measured. Therefore, the SUT
is run without the software product and the measurements are taken. The average
consumption of the baseline is then subtracted from the scenario measurement
averages. This also allows for the inclusion of the WG in the SUT, as its consump-
tion is included in the baseline and later subtracted. To ensure that the measurements
do not influence each other, the SUT is reset after each software product to a state
before the software was installed. For this, we advise the usage of disk imaging
software such as Clonezilla.®

Finally, the scenarios must be recorded or scripted, in order to generate repro-
ducible measurements that are statistically sound. The sample size should not be
below 30 measurements [3, p. 206]. The implementation of the automation depends
on the scenario itself. Scripts on an external WG can be used to call websites or
databases; there are tools such as Monkey runner’ or appium'® for automating
mobile apps, and tools such as WinAutomation,'' Pulover’s Macro Creator,'? or
Actiona'® for automating PCs. We are also currently implementing a mouse and
keyboard emulator that runs on an arduino, functioning as a human interface device
(HID) that can then replay recorded keyboard and mouse inputs, thus externalizing
the WG for PCs.

Once the scenario can be recorded, it is also necessary to develop the actions to be
executed on the software product. Therefore, it is installed on the SUT with a

7https://www.janitza.de/umg-604-pro.html (April 20, 2020).
8https://clonezilla.org/ (April 20, 2020).
®https://developer.android.com/studio/test/monkeyrunner (April 20, 2020).
Phttp:/fappium.io/ (April 20, 2020).

1'https://www.winautomation.com/ (April 20, 2020).
12https://www.macrocreator.com/ (April 20, 2020).
Bhttps://wiki.actiona.tools/ (April 20, 2020).

https://www.janitza.de/umg-604-pro.html%20
https://clonezilla.org/%20
https://developer.android.com/studio/test/monkeyrunner%20
http://appium.io/%20
https://www.winautomation.com/%20
https://www.macrocreator.com/%20
https://wiki.actiona.tools/%20

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 33

standard configuration, i.e., the user does not change any settings during the instal-
lation process. We decided to create two separate scenarios: idle and standard. In the
idle scenario, the software is only started and then left to run for 10 min. This
measurement reveals how much hardware and energy the software is using when it is
not being used and if and when it switches, e.g., to a sleep mode. The usage scenario
then should execute all functions of the software like a user would typically do, when
working with the software product.

Once the scenarios are created, the measurements can be conducted, and the data
gathered and analyzed. Figure 2.2 shows the measurement result from two media
players. As can be seen, the two media players require different amounts of power
for the execution of the same task. The figure also shows an overview of the actions
executed during the usage scenario.

This measurement method provides an accessible way to assess software products
in accordance with the Basic Award Criteria for the Blue Angel. The compliance
verification requires the calculation of the sum of the additional load on the hardware
due to loading the software product and a percentage share of the baseline load (the
calculation guidelines can be found in the Basic Award Criteria, Appendix B in
[62]).

2.5 Energy-Efficient Software Development
and Deployment

In recent years, the range of software requirements of consumers has changed
significantly. Software must be highly flexible, which often results in a connection
of the software to the internet. Traditional desktop applications that used to rely on
licensing models, such as word processors, are moving to the cloud and becoming
widely available from different types of applications. As a result, software devel-
opers must adapt to the new requirements. Programming takes place in faster cycles
and software is developed modularly. Furthermore, elements such as continuous
integration (CI) and continuous delivery (CD) have become an integral part of
software development [70]. In addition, software is deployed faster, supported by
models such as Infrastructure as a Service (IAAS) and Function as a Service
(FAAS), which are also based in the cloud. This is evident in the increasing data
traffic from cloud data centers. By 2016, cloud traffic already accounted for 88% of
all data traffic. The number of hyperscale data centers grew from 338 to 448 between
2016 and 2018 [71].

For these reasons, the requirements for energy-efficient software development are
increasing rapidly and include more than just energy-efficient programming, from
the choice of programming language, testing, and CI and CD pipelines, to the actual
deployment of the application and the choice of the platform, as well as monitoring.
All these points are directly related to the energy consumption of the software
development. In the following section, we will therefore discuss the difficulties

A. Guldner et al.

34

zJlamod “Bae

|
M G285 J&.\ Y
uamod Bae T .r\..r‘?n\#.ﬂ.
I

syonpoid aremijos JoAe[d eipaw om] jo uostredwo) g "SI

[s] owny

apodawin
00§ 00y o} dwnp 00¢

M Ly'SS

)

yoeqAeld oapip YoeqgAeld oapip

yoeqAeld oapip

:uwwn._m X1) _ _ Avwwn-_m x2) *

2 JoAed eipaw Jo senjea Juswainseaw ueap

[s] ewiy

Bapodawin
00S 00¥ o1 dwinpe

“ 09pIA HElS _lF

L L

T T
(paads x1) (paads xg)
yoeqAeld oapip yoeqAeld oapin

yoeqAe|d oapIpa

| 49Ae|d eIpaw JO sanjeA Juawainseaw uea|\

0L

08

0L 09 0§

08

[m] Jemod

[M] 1emod

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 35

that arise in these areas in terms of energy efficiency, starting with the choice of
programming language. To support the information presented, practical examples
are given.

At the beginning of a software project, the first decision regarding energy
efficiency should be made by choosing a suitable programming language depending
on the requirements. As [55] shows, for example, programming languages can have
different energy efficiency levels depending on the application. Since there are often
different programming languages which are particularly suitable for a purpose, this
should be considered here as a precaution. Even if programming languages such as C
are resource-saving due to their proximity to the hardware, the application purpose
should still be in the foreground here. As [55] also shows, the language Go, which is
specially designed for development for the cloud, can almost keep up with the
energy efficiency of C, if we consider concurrency models. Furthermore, attention
must also be paid to resource efficiency during the programming itself. The choice of
data and control structures can have an influence on energy consumption, as can the
use of different network protocols, as these may alter the software’s runtime [72].

The next important area to be considered where energy can be saved during
software development is testing. Classical unit tests can be extended by the integra-
tion of containers, as in the example of test containers [73]. On the one hand, this
leads to greater possibilities in testing (e.g., direct testing of a web application in the
server), but on the other hand, additional costs arise here due to runtime, as well as
starting, stopping, and deleting the containers used in the tests. Such tests are often
executed in automated CI/CD pipelines that are triggered after committing the
software to versioning platforms such as Github'* or Gitlab.'®> Within such pipelines,
a variety of tests can be executed, starting from containers to test the build of the
software and individual functions. For this reason, not only the energy consumption
of the software must be considered during software development, but also the test
itself and the container in which the test is performed. Strictly speaking, the energy
consumption of the CI/CD platform is also included in the energy consumption of
the software development as well as the infrastructure on which the platform is
running (see also [74]).

After committing a new software version, the software is delivered. Since the new
requirements often mean that this software must be highly available, the finished
software is also delivered in a container. This is another reason why it often makes
sense to use containers in the CI/CD pipeline test in order to carry out integration
tests directly. Containers have the advantage that software can be easily scaled and
exchanged in case of errors, and can be moved to other systems. For example, [58]
and [75] show that the use of containers alone generates an overhead.

When considering energy efficiency, further factors must be taken into account in
software development, for example when software is delivered in containers. The
first thing to consider here is the cloud platform. Although it reduces administrative

“https://github.com/
Phttps://about.gitlab.com/

https://github.com/
https://about.gitlab.com/

36 A. Guldner et al.

tasks, which is why software delivery is increasingly becoming part of software
development, the use of the platform also generates energy consumption, which
should not be neglected. Furthermore, there are aspects that often cannot be
influenced by the developer and still have to be included in the energy consider-
ations. If users use Hosted Container Instances, Virtual Machines (VMs), or even
Hosted Container Cluster, only limited configurations can be made. Especially for
containers, the choice of different container runtimes or logging drivers can have an
influence on the energy consumption. Users of cloud services also have little
influence on networking. Although this overhead is small per container, it adds up
due to the sheer mass of these containers and therefore offers a possible way to save
energy within software development and delivery that should not be neglected.
Netflix alone launched over 3 million containers per week in 2018 [71].

However, it should also be mentioned that the cloud in itself increases the energy
efficiency of data centers. According to Amazon, a switch to the cloud can reduce
electricity consumption by 84%. This has to do with the better utilization of the
servers and the extended possibilities in horizontal and vertical scaling [76]. Hori-
zontal scaling describes the consolidation of unused VMs or containers or the
addition of new calculation units. Vertical scaling describes the addition or removal
of resources such as CPU or RAM.

Overall, it should be noted here that modern software development goes beyond
the actual programming and that a large number of factors must be taken into
account, particularly with regard to energy consumption in software. In particular,
the introduction of automatic testing and CI/CD increases the number of factors to be
considered. It must also be taken into account that the problems that developers face
when programming Al systems have not yet been addressed. Of course, this also
includes big data analysis, machine learning, and high-performance computing in
general. Programming for embedded systems or IoT as well as programming apps
for mobile devices are also not fully considered here. What they all have in common,
however, is that most of them are also developed with the help of a software
versioning platform and a code pipeline consisting of CI and CD.

2.6 Conclusion and Outlook

In summary, criteria for sustainable software products and corresponding methods
help in informing about environmental issues regarding software. Thus, it is impor-
tant to bring this information to all actors who are part of the software life cycle,
mainly developers, purchasers, and users. While an environmental label primarily
addresses the latter, software developers need guidelines for sustainable program-
ming, as presented in Sect. 2.5. Apart from these actors, stakeholder groups who can
push the proposed strategies to reach software developers and users need to be
addressed in order to close the gap between an intention to do something and the
actual behavior [77]. Stakeholders within the context of green and sustainable IT are
summarized by Penzenstadler et al. [78] and Herzog et al. [79]. Penzenstadtler et al.

2 Criteria for Sustainable Software Products: Analyzing Software, Informing. .. 37

structure their list of stakeholders, relevant in implementing sustainability issues in
the software context, along the five dimensions of sustainability: individual, techni-
cal, social, environmental, and economic [78]. Focusing on environmental issues
related to software, the stakeholders are the legislation (state authority), CSR
managers, and nature conservation activists and lobbyists. All of these stakeholders
are called to promote the reduction of resource consumption caused by ICT,
especially software. Herzog et al. set “Actors Developing Innovation in Green IT”
apart from “Actors Supporting Innovation for Green IT.” Here, the first group seems
to be more important, including standardization bodies, influential groups, univer-
sities and academic institutes, and company members [79].

Thus, education is of high relevance in the context of informing about the major
influence of software on the environmental impact of information and communica-
tion technologies. It is therefore necessary for future software developers to know
the requirements and methods of environmentally sound software. The knowledge
should be integrated in curricula, especially for students of computer science.
Students should be enabled to design environmentally friendly and resource-efficient
software and to understand the environmental and sustainability effects of software
and its interactions. Finishing their studies, they can bring their knowledge to the
software companies. First proposals for this were developed by Issa et al. [80],
Penzenstadtler et al. [81], and Gil [82].

From the point of view of communication, environmental associations play a
major role. To support the transfer from science to practice, appropriate information
and learning material should be created. Environmental associations are experienced
in bringing information into society, and could take up the topic of “software and its
environmental effects” here.

Procurement in companies as well as in agencies is a best practice that can
positively influence the consideration of environmental aspects in the software
sector. Here it can be shown how it is possible to integrate these aspects into
procurement guidelines. In addition, this will generate a corresponding demand for
resource- and energy-efficient software.

Additionally, certification bodies play a significant role in this context. The Blue
Angel for resource- and energy-efficient software is a first step to create awareness of
the topics in software companies. However, the profile of the environmental label
needs to be heightened. In addition, the scope of the label needs to be extended.

Apart from information and education, clear statements are needed from politi-
cians: procurement guidelines for software products that include ecological criteria
and oblige software companies to enter into license agreements that promote long-
term product use; requirements for software development that, similar to the hard-
ware sector, enable long-term use, so that changes to the software product do not
mean that the hardware has to be replaced in order to continue using the software and
functional extensions become possible, taking into account resource efficiency; and
pricing models that promote energy-saving products. Another important target group
for implications in this context are researchers.

In our chapter, we described an overview of how ICT, and especially software
products, can be attached to criteria regarding energy consumption and

38 A. Guldner et al.

environmental impact. Since the energy consumption of ICT is still increasing, and
software has a big influence on this consumption, we developed criteria to measure
and analyze software products. These include aspects of energy-efficient program-
ming as well as questions on how container solutions in data centers such as Docker
can be optimized. These solutions and criteria help stakeholders such as developers,
users, admins, and also decision makers from politics and society regarding
“greener” ICT solution. Looking at increasing network traffic, devices, and usage,
it is necessary to find and test concepts regarding how the energy and greenhouse
impact of ICT can be reduced or even flattened in its growth. The next step will be to
test several other products and especially the sensitivity of the influence factors.
Furthermore, the criteria and programming concepts have to be extended to other
architectures (client server, Software as a Service, etc.), programming languages,
and concepts. Possible next steps would be to enlarge the view of observed products
and also to refine and test the criteria with several software products. A vision for the
future is that labeling software products and publishing their energy consumption is
as common as stating system requirements or used libraries.

References

—

. Jones N (2018) The information factories. Springer Nature 561(7722):163—166. https://media.
nature.com/original/magazine-assets/d41586-018-06610-y/d41586-018-06610-y.pdf.
Accessed 19 Apr 2020
2. Bozzelli P, Gu Q, Lago P (2013) A systematic literature review on green software metrics. VU

University, Amsterdam
3. Kern E, Hilty LM, Guldner A, Maksimov YV, Filler A, Groger J, Naumann S (2018)
Sustainable software products—towards assessment criteria for resource and energy efficiency.
Future Gen Comput Syst 86:199-210. https://www.sciencedirect.com/science/article/pii/
S0167739X17314188. Accessed 19 Apr 2020
4. Dick M, Naumann S (2010) Enhancing software engineering processes towards sustainable
software product design. In: Envirolnfo. pp 706-715
5. Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFT model: a reference model for
green and sustainable software and its engineering. Sustain Comput Inf Syst 1(4):294-304
6. Penzenstadler B (2013) Towards a definition of sustainability in and for software engineering.
In: Proceedings of the 28th Annual ACM Symposium on Applied Computing. pp 1183-1185
7. Calero C, Moraga M, Bertoa MF (2013) Towards a software product sustainability model.
arXiv preprint arXiv:1309.1640
8. Ahmad R, Baharom F, Hussain A (2014) A systematic literature review on sustainability studies
in software engineering. In: Knowledge Management International Conference (KMICe),
Langkawi, Malaysia
9. Calero C, Piattini M (2015) Introduction to green in software engineering. In: Green in software
engineering. Springer, pp 3-27
10. Hilty LM, Aebischer B (2015) ICT for sustainability: an emerging research field. In: ICT
innovations for sustainability. Springer, pp 3-36
11. Kern E, Dick M, Naumann S, Guldner A, Johann T (2013) Green software and green software
engineering—definitions, measurements, and quality aspects. Hilty et al 2013:87-94

https://media.nature.com/original/magazine-assets/d41586-018-06610-y/d41586-018-06610-y.pdf
https://media.nature.com/original/magazine-assets/d41586-018-06610-y/d41586-018-06610-y.pdf
https://www.sciencedirect.com/science/article/pii/S0167739X17314188
https://www.sciencedirect.com/science/article/pii/S0167739X17314188

13.

14.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 39

. Kern E, Guldner A, Naumann S (2019) Including software aspects in green it: how to create

awareness for green software issues. In: Green IT engineering: social, business and industrial
applications. Springer, pp 3-20

Kharchenko V, Illiashenko O (2016) Concepts of green it engineering: taxonomy. Principles
and implementation

Mahaux M, Heymans P, Saval G (2011) Discovering sustainability requirements: an experience
report. In: International Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, pp 19-33

. Venters CC, Capilla R, Betz S, Penzenstadler B, Crick T, Crouch S, Nakagawa EY, Becker C,

Carrillo C (2018) Software sustainability: research and practice from a software architecture
viewpoint. J Syst Softw 138:174-188

Kern E, Naumann S, Dick M (2015) Processes for green and sustainable software engineering.
In: Green in software engineering. Springer, pp 61-81

Berkhout F, Hertin J (2001) Impacts of information and communication technologies on
environmental sustainability: speculations and evidence. Report to the OECD, Brighton, 21
Brundtland G, Khalid M et al (1987) Our common future: Report of the World Commission on
Environment and Development (United Nations General Assembly, the Brundtland
Commission).

. Albertao F, Xiao J, Tian C, Lu Y, Zhang KQ, Liu C (2010) Measuring the sustainability

performance of software projects. In: 2010 IEEE 7th International Conference on E-Business
Engineering. IEEE, pp 369-373

Calero C, Moraga MA, Bertoa MF, Duboc L (2015) Green software and software quality. In:
Green in software engineering. Springer, pp 231-260

Kern E, Dick M, Naumann S, Filler A (2015) Labelling sustainable software products and
websites: ideas, approaches, and challenges. In: Envirolnfo and ICT for sustainability 2015.
Atlantis Press

Taina J (2011) Good, bad, and beautiful software-in search of green software quality factors.
Cepis Upgrade 12(4):22-27

Penzenstadler B (2013) What does sustainability mean in and for software engineering? In:
Proceedings of the 1st International Conference on ICT for Sustainability (ICT4S), vol 94
Lago P, Kogak SA, Crnkovic I, Penzenstadler B (2015) Framing sustainability as a property of
software quality. Commun ACM 58(10):70-78

Penzenstadler B, Femmer H (2013) A generic model for sustainability with process- and
product-specific instances. In: Proceedings of the 2013 workshop on Green in/by software
engineering. pp 3-8

Razavian M, Procaccianti G, Tamburri DA et al (2014) Four-dimensional sustainable
e-services. In: Envirolnfopages. pp 221-228

Goodland R et al (2002) Sustainability: human, social, economic and environmental. Encyclo-
pedia Glob Environ Change 5:481-491

Becker C, Chitchyan R, Duboc L, Easterbrook S, Penzenstadler B, Seyff N, Venters CC (2015)
Sustainability design and software: the karlskrona manifesto. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol 2. IEEE, pp 467476

Betz S, Caporale T (2014) Sustainable software system engineering. In: 2014 IEEE Fourth
International Conference on Big Data and Cloud Computing. IEEE, pp 612-619

Bouwers E, van Deursen A, Visser J. Evaluating usefulness of software metrics: an industrial
experience report. In: 2013 35th International Conference on Software Engineering (ICSE).
IEEE, pp 921-930

Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development
environments and energy efficiency in open source applications. Inf Softw Technol 54(1):60-71
Calero C, Bertoa MF, Moraga MA (2013) Sustainability and quality: icing on the cake. In:
RE4SuSy@ RE

Condori-Fernandez N, Lago P (2018) Characterizing the contribution of quality requirements to
software sustainability. J Syst Softw 137:289-305

40

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

A. Guldner et al.

Hilty LM, Lohmann W, Behrendt S, Evers-Wolk M, Fichter K, Hintemann R (2015) Final
report of the project: Establishing and exploiting potentials for environmental protection in
information and communication technology (green it). Technical report, Federal Environment
Agency, Berlin. Forderkennzeichen 3710 95 302/3

Radu L-D (2018) An ecological view on software reuse. Informatica Economica 22(3):75-85
Becker Y, Naumann S (2017) Software based estimation of software induced energy dissipation
with powerstat. In: From science to society: the bridge provided by environmental informatics.
Shaker Verlag, pp 69-73

Bunse C (2018) On the impact of code obfuscation to software energy consumption. In: From
science to society. Progress in IS. Springer International Publishing

Cherupalli H, Duwe H, Ye W, Kumar R, Sartori J (2017) Determining application-specific peak
power and energy requirements for ultra-low-power processors. ACM Trans Comput Syst 35(3)
Georgiou K, Xavier-de Souza S, Eder K (2018) The IOT energy challenge: a software
perspective. IEEE Embed Syst Lett 10:53-56

Godboley S, Panda S, Dutta A, Mohapatra DP (2017) An automated analysis of the branch
coverage and energy consumption using concolic testing. Arab J Sci Eng 42(2):619-637
Gomes C, Tavares E, Junior MO (2020) Energy consumption evaluation of NOSQL DBMSs.
In: Anais do XV Workshop em Desempenho de Sistemas Computacionais e de Comunicagéo,
Porto Alegre, RS, Brasil. SBC, pp 71-81

Henderson P, Hu J, Romoff J, Brunskill E, Jurafsky D, Pineau J (2020) Towards the systematic
reporting of the energy and carbon footprints of machine learning

Jagroep EA, van der Werf JM, Brinkkemper S, Procaccianti G, Lago P, Blom L, Van Vliet R
(2016) Software energy profiling: comparing releases of a software product. In: Proceedings of
the 38th International Conference on Software Engineering Companion — ICSE 16. pp 523-532
Mancebo J, Arriaga HO, Garcia F, Moraga M, de Guzman IG-R, Calero C (2018) EET: a device
to support the measurement of software consumption. In: Proceedings of the 6th International
Workshop on Green and Sustainable Software. ACM, pp 16-22

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2019) On the impact of code
smells on the energy consumption of mobile applications. Inf Softw Technol 105:43-55
Sahin C, Wan M, Tornquist P, McKenna R, Pearson Z, Halfond WGJ, Clause J (2016) How
does code obfuscation impact energy usage? J Softw Evol Process 28(7):565-588

Strubell E, Ganesh A, McCallum A (2019) Energy and policy considerations for deep learning
in NLP

Mancebo J, Guldner A, Kern E, Kesseler P, Kreten S, Garcia F, Calero C, Naumann S (2020)
Assessing the sustainability of software products — a method comparison. In: Schaldach R,
Simon K-H, Weismiiller J, Wohlgemuth V (eds) Advances and new trends in environmental
informatics ICT for sustainable solutions. Springer International Publishing, 1-16

Acar H, Alptekin G, Gelas J-P, Ghodous P (2016) Teec: Improving power consumption
estimation of software. In: Envirolnfo 2016

Georgiou K, Kerrison S, Chamski Z, Eder K (2017) Energy transparency for deeply embedded
programs. ACM Trans Architect Code Optimization 14:03

M Marco Couto, Pereira R, Riberio F, Rua R, Saraiva J (2017) Towards a green ranking for
programming languages. In: Proceedings of the 21st Brazilian Symposium on Programming
Languages. ACM Proceedings

Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JaP, Saraiva Ja (2017) Energy
efficiency across programming languages: How do energy, time, and memory relate? In:
Proceedings of the 10th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2017, New York, NY. Association for Computing Machinery, pp 256-267
Pereira R (2017) Locating energy hotspots in source code. In: Proceedings of the 39th
International Conference on Software Engineering Companion. IEEE Press, pp 88-90

Baek W, Chilimbi TM (2010) Green: a framework for supporting energy-conscious program-
ming using controlled approximation. In: Proceedings of the 31st ACM SIGPLAN Conference

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Criteria for Sustainable Software Products: Analyzing Software, Informing. . . 41

on Programming Language Design and Implementation, PLDI 10, New York, NY. Association
for Computing Machinery, pp 198-209

Kreten S, Guldner A (2017) Resource consumption behavior in modern concurrency models.
In: Envirolnfo 2017 — From science to society: the bridge provided by environmental infor-
matics. Shaker

Li D, de Supinski BR, Schulz M, Nikolopoulos DS, Cameron KW (2013) Strategies for energy-
efficient resource management of hybrid programming models. IEEE Trans Parallel Distrib Syst
24(1):144-157

Chauhan NS, Saxena A (2013) A green software development life cycle for cloud computing.
IT Prof 15(1):28-34

Kreten S, Guldner A, Naumann S (2018) An analysis of the energy consumption behavior of
scaled, containerized web apps. Sustainability 10(8)

Li D, Halfond WGJ (2014) An investigation into energy-saving programming practices for
android smartphone app development. In: Proceedings of the 3rd International Workshop on
Green and Sustainable Software, GREENS 2014, New York, NY. Association for Computing
Machinery, pp 46-53

Memeti S, Li L, Pllana S, Ko-lodziej J, Kessler C (2017) Benchmarking OpenCL, OpenACC,
OpenMP, and CUDA: programming productivity, performance, and energy consumption. In:
Proceedings of the 2017 Workshop on Adaptive Resource Management and Scheduling for
Cloud Computing, ARMS-CC ’17, New York, NY. Association for Computing Machinery, pp
1-6

. Balladini J, Suppi R, Rexachs D, Luque E (2011) Impact of parallel programming models and

cpus clock frequency on energy consumption of hpc systems. In: 2011 9th IEEE/ACS Interna-
tional Conference on Computer Systems and Applications (AICCSA). pp 16-21

RAL gGmbH (2020) Blue angel — resource and energy-efficient software products. Website.
https://www.blauer-engel.de/en/get/productcategory/171. Accessed 16 Mar 2020

Horne RE (2009) Limits to labels: the role of eco-labels in the assessment of product sustain-
ability and routes to sustainable consumption. Int J Consum Stud 33(2):175-182

Parssinen M, Kotila M, Cuevas R, Phansalkar A, Manner J (2018) Environmental impact
assessment of online advertising. Environ Impact Assess Rev 73:177-200

Kern E (2018) Green computing, green software, and its characteristics: awareness, rating,
challenges. In: Otjacques B, Hitzelberger P, Naumann S, Wohlgemuth V (eds) From science to
society. Springer International Publishing, Cham, pp 263-273

Dick M, Kern E, Johann T, Naumann S, Giilden C (2012) Green web engineering-
measurements and findings. In: EnviroIlnfo. pp 599-606

Dick M, Naumann S, Held A (2010) Green web engineering. A set of principles to support the
development and operation of “Green” websites and their utilization during a website’s life
cycle. Filipe, Joaquim, pp 7-10

Dick M, Kern E, Drangmeister J, Naumann S, Johann T (2011) Measurement and rating of
software induced energy consumption of desktop pcs and servers. In: Pillmann W, Schade S,
Smits P (eds) Innovations in sharing environmental observations and information: Proceedings
of the 25th International Conference on Environmental Informatics October 5-7, 2011, Ispra,
Italy. Shaker Verlag, pp 290-299

Dirlewanger W (2006) Measurement and rating of computer systems performance and of
software efficiency. Kassel University Press, Kassel

Krishna R, Jayakrishnan R (2013) Impact of cloud services on software development life cycle.
In: Mahmood Z, Saeed S (eds) Software engineering frameworks for the cloud computing
paradigm. Springer London, London, pp 79-99

Cisco (2018) Cisco Global Cloud Index: Forecast and Methodology, 2016-2021. https:/www.
cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-
c11-738085.html. Accessed 15 July 2019

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The
MIT Press

https://www.blauer-engel.de/en/get/productcategory/171
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

42

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

A. Guldner et al.

Wittek K (2019) Auf dem Priifstand - Testen mit Docker und Testcontainers. In: iX - Magazin
fiir professionelle Informationstechnik, 7

Drangmeister J, Kern E, Dick M, Naumann S, Sparmann G, Guldner A (2013) Greening
software with continuous energy efficiency measurement. In: Horbach M
(ed) INFORMATIK 2013 — Informatik angepasst an Mensch, Organisation und Umwelt.
Gesellschaft fiir Informatik e.V., Bonn, pp 940-951

Tadesse SS, Malandrino F, Chiasserini C (2017) Energy consumption measurements in docker.
In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol
2. pp 272-273

AWS and Sustainability. https://aws.amazon.com/about-aws/sustainability/. Accessed 15 July
2019

Carrington MJ, Neville BA, Whitwell GJ (2010) Why ethical consumers don’t walk their talk:
towards a framework for understanding the gap between the ethical purchase intentions and
actual buying behaviour of ethically minded consumers. J Bus Ethics 97(1):139-158
Penzenstadler B, Femmer H, Richardson D (2013) Who is the advocate? Stakeholders for
sustainability. In: 2013 2nd International workshop on green and sustainable software
(GREENS). IEEE, pp 70-77

Herzog C, Lefévre L, Pierson J-M (2015) Actors for innovation in green it. In: ICT innovations
for sustainability. Springer, pp 49-67

Issa T, Issa T, Chang V (2014) Sustainability and green it education: practice for incorporating
in the Australian higher education curriculum. Int J Sustain Educ 9(2):19-30

Penzenstadler B, Fleischmann A (2011) Teach sustainability in software engineering? In: 2011
24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T). IEEE,
pp 454458

Gil D, Fernandez-Aleméan JL, Trujillo J, Garcia-Mateos G, Lujan-Mora S, Toval A (2018) The
effect of green software: a study of impact factors on the correctness of software. Sustainability
10(10):3471

https://aws.amazon.com/about-aws/sustainability/

Chapter 3)
GSMP: Green Software Measurement Creck o
Process

Javier Mancebo, Coral Calero, and Félix Garcia

Abstract To improve the sustainability of software it is necessary to be able to
measure the energy efficiency of the software. For this purpose, there are several
measuring instruments, but for these measurements to be as correct and reliable as
possible there must be a process to guide researchers in this effort.

The objective of this chapter is to define the activities to be carried out during the
software energy efficiency analysis process, so as to obtain greater control over the
measurements performed, ensuring the reliability and consistency of the information
obtained regarding energy efficiency. To this end, we have collected a set of good
practices in the measurement of energy consumption found in the literature and,
together with our own experience, we have defined the Green Software Measure-
ment Process (GSMP) that details all the activities and roles necessary to carry out
the measurement and analysis of the energy consumption of the software executed.
The GSMP ensures the reliability and consistency of the measurements, and also
allows the repetition and comparison of the studies carried out. Furthermore, to
validate the process, it was applied to a case study in which energy consumption was
analyzed using two measuring instruments.

3.1 Introduction

Improving software sustainability is not a trivial project. To do so, it is essential to be
aware of how efficient software is from an energy point of view when it is running.

To measure the energy efficiency of the software, several measuring instruments
allow us to know, with greater or lesser accuracy, the energy that is consumed by the
software. However, having these measuring instruments that allow us to fully
analyze consumption may not be enough. In order to conduct a successful evaluation
of the energy efficiency of software, it is necessary to define a process to guide

J. Mancebo - C. Calero (<) - F. Garcia

Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain

e-mail: Javier.Mancebo@uclm.es; Coral.Calero @uclm.es; Felix.Garcia@uclm.es

© Springer Nature Switzerland AG 2021 43
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_3&domain=pdf
mailto:Javier.Mancebo@uclm.es
mailto:Coral.Calero@uclm.es
mailto:Felix.Garcia@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_3#DOI

44 J. Mancebo et al.

researchers and practitioners as they seek to carry out measurements of the soft-
ware’s energy consumption. A well-defined and established process allows greater
control over the measurements performed, ensuring their reliability and consistency.
It also allows the studies performed to be easily replicated and the results obtained to
be comparable with those of other studies [1, 2].

Despite the importance of the existence of a process to evaluate the energy
efficiency of software, if we analyze the available empirical studies that perform
software energy consumption analysis, it is possible to identify a lack of a generally-
agreed-on methodology that would guide software energy consumption
measurements.

Different approaches that could be useful for this purpose can be found in the
existing literature. On the one hand, there are software measurement frameworks and
standards, which, although they are not related to energy measurement, have the aim
to provide guidelines for carrying out the software measurement process effectively
and systematically, based on the defined objectives. Some of the best-known
standards and methods are the Goal/Question/Metric (GQM) method [3], the Prac-
tical Software Measurement (PSM) method [4], and the ISO/IEC/IEEE 15939
standard [5]. On the other hand, to the best of our knowledge, there is also a unique
proposal that specifically measures the energy consumed by the software. This is the
research carried out by Hindle, which proposes an abstract methodology to measure
and correlate the energy consumption of a software application. This methodology is
known as the “Green Mining Methodology” [6]. The Green Mining methodology
describes the process of measuring, extracting, and analyzing energy consumption
information from the software that is running. The main defect in this methodology
is that it does not provide any protocol or good practices regarding how to carry out
the measurement in a way that is valid and reliable. For this reason, Jagroep et al. [7]
present a measurement protocol, in which an extension of “Green Mining” is
performed, detailing the specific measurement tasks to be carried out.

Bearing in mind the lack of a specific method to help researchers to analyze the
energy efficiency of software, and in the endeavor to ensure that the study can be
replicated and the results obtained compared with other studies, we have defined a
process, known as the Green Software Measurement Process (GSMP), that inte-
grates all of the activities that must be carried out to measure and analyze the energy
consumption of the software being evaluated. The GSMP is composed of seven
different phases, covering the main steps to be performed, from the measurement of
energy consumption right through to the analysis of the results, including actions
such as defining the scope of the study, details on how to conduct valid and reliable
measurements, and how the results obtained should be reported.

The following section of this chapter details each of the phases and activities of
the GSMP. In addition, Sect. 3.3 presents the application of the process described in
the case study in which energy consumption is analyzed using two measuring
instruments. Finally, Sect. 3.4 provides some conclusions.

3 GSMP: Green Software Measurement Process 45

Phase I: Scope 4 i
Definition Ph?se M Measuremept Phase V: Test Case Phase VII: Reporting
Environment Preparation Data Analysis the results
Phase lI: Measurement Phase IV: Peform the Phase VI: Software Entity
Environment Setting Measurements

Data Analysis

Fig. 3.1 GSMP phases

3.2 Green Software Measurement Process

The aim of the Green Software Measurement Process (GSMP) is to guide
researchers and practitioners as they seek to carry out measurements of software
energy consumption.

To define the GSMP, we have followed the method engineering approach [8],
using the SPEM 2.0 specification [9], and the EPF Composer tool to model the
defined process. In addition, to define some aspects or artifacts of the process, we
have taken as our basis well-known approaches to software measurement and good
practices related to green software that have been proposed by other authors.

The GSMP consists of seven phases (Fig. 3.1), which are divided into different
activities (Fig. 3.2). The GSMP is described in detail below, including roles, phases,
and activities (with inputs, outputs, and guidelines). A more detailed and compre-
hensive version of the process, along with its elements, can be consulted at https://
alarcos.esi.uclm.es/FEETINGS.

3.2.1 Roles

In this subsection, the different roles involved in the different phases and activities of
the process are described below:

* Client. The person interested in the results obtained from the measurement of the
energy consumption of the selected software. The client is also responsible for
providing information about the software to be evaluated and the requirements
needed to carry out the energy consumption measurement (Fig. 3.3).

* Measurement Analyst. The person responsible for defining in detail the scope of
measurements and the configuration of the measurement environment. This role
is also responsible for reporting and documenting the results obtained (Fig. 3.4).

https://alarcos.esi.uclm.es/FEETINGS
https://alarcos.esi.uclm.es/FEETINGS

46 J. Mancebo et al.

geewe

[E5 Phase I: Scope Definition
[A1.1 Elicitation of requirements
Lgh A1.2 Define the goal
Lg A1.3 Choose a Software Entity
Leh A1.4 Development of Test Cases
= £ Phase ll: Measurement Enviroment Settings
L& A2.1 Select a measuring instuments
g A2.2 Define specifications of the DUT
g A2.3 Select a set of the measures provided by Ml
[A2.4 Close unnecessary software applications and processes
g A2.5 Obtain the baseline energy consumption of the DUT
[£5 Phase lll: Measurement Enviroment Preparation
Las A3.1 Close unnecesary software applications and process
L& A3.2 Determine number of repetitions of measurements
L A3.3 Configure the testbed
= E3 Phase IV: Measurement Performance
= £ Iteration
[gh A4.1 Measure the energy consumed
g A4.2 Collect the raw data
= E3 PhaseV:Test Case Data Analysis
= % Iteration
L& A5.1 Prepare and describe the raw data to be analyzed
[A5.2 Statistical analysis of test case measurement
= £ Phase VI: Software Entity Data Analysis
Lg A6.1 Calclate the energy consumption by the software entity
o+ A6.2 State conclusions about the software entity’s energy consumption
= £33 Phase VIl: Reporting the results
L A7.1 Carry out the laboratory package
Lgh A7.2 Document the case study

Fig. 3.2 GSMP work breakdown structure

>

B performs A1.1 Elicitation of
requirements

Client responsible for v

Requirements
Specification

Fig. 3.3 GSMP: Client

47

3 GSMP: Green Software Measurement Process

pa129|9s JusWNIIsUl paiinbas
pupnseapy abeyped Aiojesoqe] suonesypeads 1nQ

g [~ g

1N Aq papinord INLER
aBeyoed Aioyesoqe) S3INSe3w ayy Jo Jo suoneayloads
ayno Aneg |2y 13S B 103135 £T7 auyaq v

- = <«

syuswalinbai
|esiisiels

papajes 1na

g

juswINIIsul
punnsesw
€ 13|95 LTy

d

paya|es
S2INSeaW 4O 39S

JsATeue JuowAINSeIN ‘JINSD '€ "SI

|eob pauyap sy aInseaw 0}
Jo asjwaid ayy uo suonadal
pajaidiayul synsay Jo JaquinN

g

juswinijsul funnseaw
40 U030

s958D) 159
J0 juswdoleAsq ¥ LY

|

=& E

uoljewuojul uolejuswndop

Apnis ased Apms ased /
E] Nk

J04 d|qIsuodsal 15Ajeuy

JusWRINSeIN
7
Apnys ased
ay3 usWINd0Q T'LY

=

swJoylad

Aug alemyos |eob
e 9500YD £'1Y

|ylsuyeg Ly

-« e

48 J. Mancebo et al.

* Measurement Performer. Prepares the measurement environment and sets up the
testbed. Furthermore, this role is responsible for carrying out the energy con-
sumption measurements in the selected environment (Fig. 3.5).

e Data Analyst. The person responsible for processing and analyzing the data
extracted from the measuring device and converting it into software energy
consumption information (Fig. 3.6).

3.2.2 Phases

The GSMP is intended to be performed iteratively, so the phases are closely related
to each other. The initial phase focuses primarily on the definition of the require-
ments and the software system to be evaluated. The next two phases focus on the
configuration and preparation of the measurement environment. In the fourth phase,
energy consumption measurement activities are carried out. Finally, the last phases
are the analysis of the data obtained and reporting.

Phase 1. Scope Definition

The main goal of this phase is to obtain a complete specification of the requirements
for the evaluation of energy efficiency. Moreover, the software to be analyzed must
be defined. To achieve this purpose, this phase is composed of four different
activities, with inputs and outputs as shown in Fig. 3.7.

The first activity of this phase is the elicitation of requirements (Activity Al.1) for
the analysis of software energy consumption. To do this, the Client provides the
Measurement Analyst with information about the software to be evaluated. In
addition, all the requirements for carrying out the energy consumption measurement
must be detailed. This information needs to be documented in the Requirements
Specification.

Once the Client has provided all the necessary information, the Measurement
Analyst performs the definition of the objective (Activity A1.2) and chooses the
collection of all the entities that satisfy the determined purpose, known as Software
Entity Class. We suggest using the recommendations of Wohlin et al. [2], based on
the application of the Goal/Question/Metric (GQM) method, so as to correctly define
the Goal and the Software Entity Class.

After choosing the Software Entity Class, the software entity must be chosen; this
is the software that is to be characterized by measuring its attributes. This corre-
sponds to the third activity in this phase (Activity A1.3). It is essential to check that
the entire selected software entity is available and can be installed, and/or to run the
Device Under Test (DUT). In the effort to facilitate the selection of the Entity’s
software, a template is included and can be consulted on the process website.

Finally, the fourth activity is dedicated to the development of test cases to execute
and measure energy consumption (Activity Al.4). Based on the software entities
defined in the previous activity, a representative test case must be built that will

49

221A9p Bupnseaw
wioJj uae) sanjep

uondwnsuod AB1aus
2y} aInsedl L'py

3 GSMP: Green Software Measurement Process

uondwnsuod
KbI1aus ejep mey

=

paqgisa)
2y} ainbyuo) 'y

d

ainseaw
0} Apeas InA

=)

suonnadai
Jo Jaquinu
sulwiReQ T'EvY

-

a1e18
[eniur ut 10

g

aJemyos
Kiessadauun

9s0D L'EV

-

Jourojrad JuowaInsedy (JINSD S°€ "SI

1na
3y} Jo uondwinsuod
KBiaud dujaseg

,, / hwrc_Otmn_
) 10] 3|qisuodsal udWRINSeIN

]
uondwnsuod i
KbBiaus suleseq (@)

3y1 uleyqo 'y swioysad

a -

J. Mancebo et al.

50

21eM)J0S 3y} Aq padnpul
ay3 Jo asiwalid ay3 uo uondwnsuod
pa3eidisiul synsay ejep passed0id ABiaug

= =

| |
! \

|eob pauyap

uondwnsuod Abisus
9yl aje|ndjed Loy

-

s,A11Ud d1eMYJOS Y} INOgR
UoISN|PUOD 33e1S Z'9V

-

JUSWIAINSEIW 358D
159340 sonsheys
aAndudsag

juswWaINseaw ased
159} JO sisAjeue
|esxnsnels ¢'sy

-«

IsAreue ele((dINSD 9°€ S

Ayjewou eyeq

. 10} 3|qisuodsai 1shjeuy ejeq
pasAjeue aq 0}
elep Mel 3y} aquUIsap

pue asedald L'SY swiojiad

a -

3 GSMP: Green Software Measurement Process 51

e
Goal
5%]
Lo Software L
Requirements Entity Software
Specification Class Entity
L€' fe’ [e, Le,
A1.1 Elicitation A1.2 Define the A1.3 Choose a A1.4 Development
of requirements goal Software Entity of Test Cases
£ B £ [
Requirements Goal Software Test
Specification Entity Case
Lo
Software
Entity
Class

Fig. 3.7 Phase I. Scope definition

exercise the necessary functionality of the software product whose energy consump-
tion is to be measured. The test case is expected to be independent and should not
affect the following test case [6]. A test case could simulate user input, or focus on
specific software tasks or on the execution of an algorithm. Moreover, if several
software entities have been chosen, the defined test cases should be able to be tested
in all software entities. This activity is very important, because if the test cases are
not well defined, this can cause problems in the analysis of the energy consumption
of the software product.

Phase I1. Measurement Environment Setting
The purpose of the second phase is the definition of the measurement environment
that will be used to satisfy the goal established in the first phase.

As can be observed in Fig. 3.8, the first activity carried out in this phase is the
selection of the measuring instrument (Activity 2.1). The measuring instrument is
used to perform the power consumption measurements of the software being ana-
lyzed. This measuring instrument may be a hardware device or a software tool;
depending on whether or not we want to obtain very precise measurements, and
depending on the availability of the measuring instrument, we will follow one of two
approaches.

The second activity consists of defining the specifications that the Device Under
Test (DUT) must have (Activity A2.2). The test cases defined in Activity Al.4 will
be executed in the selected DUT in order to carry out the energy consumption
measurements. To choose the right DUT, we have to consider the features of the
software entity, as it has to be able to be installed and run on the DUT. Moreover,

52 J. Mancebo et al.

BV

R 2N DUT
Collection of ready to
measuring Goal measure
instrument J
[Eo > (E54
Lo I Measuring 53 Measuring
Requirements DUT specifications instument DUT instrument
Specification required selected selected selected
= = S
S (o ‘s &
o o .
A2.1Selecta A2.2 Define specifications A2:3 Selectaset of A2.4Close unnecessary A2.5 tham the
measuring of the DUT the measures software applications baseline energy
instrument provided by Ml and processes consumption DUT
£52 > B8 [B8
Measuring DUT Set of DUTin Baseline energy
instrument selected measures initial state consumption
selected selected of the DUT

Fig. 3.8 Phase II. Measurement environment setting

depending on the results we want to obtain, the DUT will have different specifica-
tions. For example, if we want the results obtained to be more generalizable, we must
choose a DUT without special processing or storage capabilities and with a conven-
tional configuration. However, if we want to know the energy consumption in a
specific environment where the software will usually be executed, we must simulate
this environment by configuring the DUT to be as similar as possible to it.

The next step is to decide on the set of measures to be used for the analysis
(Activity A2.3). The main measure of interest is obviously the energy consumption
(EC), which is obtained by the measuring instrument. Sometimes it is necessary to
recover other measures, however, such as the performance of some hardware
components or different kinds of measures that are required for further analysis,
e.g., information about the executed source code (Total Lines of Code or
Complexity).

Activity 2.4 consists of checking that no other software is running in the back-
ground, while also interrupting all services and processes that may affect the baseline
measurement of consumption.

Finally, the fifth activity is to obtain baseline energy consumption (Activity 2.5).
The baseline measurement determines the idle energy consumption for the DUT that
is used. As the idle energy consumption depends mainly on the hardware used, this
value must be determined separately for each DUT used, by carrying out measure-
ments while the DUT is running without any active software [10]. The baseline
energy consumption allows us to calculate the energy consumption induced by the

3 GSMP: Green Software Measurement Process 53

execution of the selected test cases, under the assumption that the increase in the
energy consumed by the DUT depends exclusively on running the software entity
under test.

Phase II1. Measurement Environment Preparation

This phase focuses on the preparation of the energy consumption measurements to
be performed, and on the configuration of the measurement environment that was
defined in the second phase (Fig. 3.9).

The first activity to carry out before starting the energy consumption measure-
ments is to check that no other software is running in the background (Activity
A3.1). Then, we must interrupt any services or processes that are not required by the
software under test, seeking to minimize the effect they may have on the power
consumption of the DUT (e.g., the automatic update service or virus scans).

The next activity (Activity A3.2) to perform is that of determining the number of
times each measurement should be repeated. We consider a measurement to be a set
of energy consumption samples from a single test case run. There is no exact and
correct number of repetitions to be measured. The choice of this value depends on
the objective we have defined, as well as on the resources available. Some authors
[11] recommend that, for measurements of software energy consumption in a
controlled environment, 30 measurements are usually a sufficient sample size for
an analysis of each of the test cases devised, as the sampling distribution will tend to
be normal.

‘ e
L S
DUT
Goal selected
(SN Lo e
DUT Statistical Software
selected requirements Entity
o o S
A3.1 Close unnecessary A3.2 Determine the
. . A3.3 Configure the
software applications number of repetitions
testbed
and processes of measurements
e L e
DUT in Number of DUT ready
initial state repetitions to to measure

measure

Fig. 3.9 Phase III. Measurement environment preparation

54 J. Mancebo et al.

The last activity (Activity A3.3) in the preparation of the measurement environ-
ment is the configuration of the testbed. The software entity and the services required
in the DUT need to be installed. Once the measurements for one of the software
entities are completed, the DUT is restored, such that it returns to its initial state. This
procedure is repeated for the different software entities that are going to be assessed.
In this activity, the chosen software entity must also be prepared, so that it can
execute the test cases defined.

Phase IV. Measurement Performance

During this phase, energy consumption measurements will be carried out, as shown
in Fig. 3.10. The set of both activities of this phase are iteratively performed, as many
times as test cases were defined in the first phase, and the measurements will also be
repeated this number of times, as defined in Phase III. Measuring the energy
consumed (Activity 4.1) for the selected software entities is the first activity of this
phase. Once the measurement is completed, the testbed should be cleaned, so as to
avoid affecting the power consumption when another test case is run.

It is then time to collect the raw energy consumption data taken from the
measuring instrument (Activity A4.2). Later, the data obtained will be processed
to make its analysis easier. When storing the results of each test, the relevant
information, such as the details of the DUT, should be recorded, as should the

Fig. 3.10 Phase

£
lVl.ﬂfMeasurement NOMBarof
pertormance BN repetitions to
measure
DUT ready
to measure ol
Set of
measures
selected R
[
o “ X Lo Values taken
easurin
instrumengt Test case to from
celrrar] be evaluated measuring
device
Lo Lo
A4.1 Measurethe A4.2 Collect the
energy consumed raw data
£ Lt)
Values taken Raw data
from energy
measuring consumption

device

3 GSMP: Green Software Measurement Process 55

definition of the test cases, the current configuration, the start and end times, and the
power monitor trace itself.

Phase V. Test Case Data Analysis

From this phase onwards, the analysis of the energy consumption data obtained by
the measuring instrument begins. The main goal of Phase V is the processing and
analysis of the energy consumption data of each of the test cases that were defined in
the first phase. This phase is composed of two different activities, which are
summarized in Fig. 3.11.

The first activity focuses on the preparation of the raw data obtained by the
measuring instrument (Activity AS.1). The steps to be performed in this activity
depend on the source of the data, but it is crucial to achieve a transformation of the
raw data into useful information for performing an analysis. This process of data
transformation is known as Data Wrangling. The most outstanding tasks to be
performed in Data Wrangling, according to Kandel, S. et al. [12] are:

* Data formatting: reformatting and integrating data from different sources so that
they can be analyzed correctly.

» Correcting erroneous values: Once the data has been formatted, data preparation
begins. Data preparation includes the detection of outliers, the imputation of

Fig. 3.11 Phase V. Test

case data analysis L o
Raw data B
energy o
consumption Processed
Data
b =
3
© [<
A5.1 Prepare and A5.2 Statistical analysis
describe the raw of test case
data to be analyzed measurement
ES L
Processed Deserioti
Data escriptive

statistics of test
case measurement

56 J. Mancebo et al.

missing values, and the resolution of duplicate records. For the identification of
possible outliers that may be present in the samples of the measurements, we
recommend the use of robust parametric methods, such as the median of the
absolute deviations from the median [13, 14].

* Validating the measurements: Check that each of the measurements performed is
correct. To find unusual measurements, you can use the interquartile range
method (IQR) [14]. With this method, all values that fall below Q1 — 1.5 *
IQR or above Q3 + 1.5 * IQR, where Qi is the quartile, are considered extraneous
or incorrect. Another method of identifying incorrect measurements is to use a
confidence interval. However, the problem is that to define a confidence interval,
it is necessary to have made a large number of measurements beforehand.

The next step to be performed, once the data has been processed, is the statistical
analysis of the values obtained from the measurements of the defined test cases
(Activity A5.2). To carry out the analysis, the descriptive statistics for each test case
analyzed need to be calculated. To obtain the most complete information available
on energy consumption, we suggest the calculation of the following descriptive
statistics: on the one hand, standard descriptive statistics (maximum and minimum
value, range, mean, standard deviation, variance, or interquartile range), and on the
other hand, the robust descriptive statistics such as median, trimmed mean,
winsorized mean, or median absolute deviation. It is not compulsory to calculate
all the descriptive statistics mentioned. We must choose those that adapt to the
statistical analysis that we are going to carry out.

Phase VI. Software Entity Data Analysis

Once we have analyzed the energy consumption data of the test cases, we will be
able to determine how much energy was consumed when the software entity was
executed in the DUT. As a result of this phase, we will carry out an analysis of the
information on energy consumption, based on the goal defined at the beginning of
the process of measuring the energy efficiency of a software (Fig. 3.12).

The first activity in this phase consists of calculating the energy consumed by the
execution of the software entity (Activity A6.1). As mentioned above, the software
energy consumption depends mainly on the DUT used. Hence, to calculate the
energy required for the running of the software, the baseline energy consumption
of the DUT (Activity A2.4) needs to be subtracted from the average energy of the
software entity measurements. Before we can subtract the baseline energy consump-
tion from the DUT, we must adjust it to the software measurement performed. The
adjusted baseline energy consumption is calculated by dividing the average energy
of the baseline by the average duration of the baseline and multiplying it by the
average duration of the measurement:

EC Baseline

—————— * T Measurement (3.1)
T Baseline

Adjusted Baseline Energy Consumption =

The task of subtracting the baseline energy consumption of the DUT from the
average energy of the software entity’s measurements may not be performed if we

3 GSMP: Green Software Measurement Process

Fig. 3.12 Phase
VI. Software entity data
analysis

Lo
Baseline energy
consumption
of the DUT

[
Descriptive
statistics of

test case
measurement

‘o

A6.1 Calculate the
energy conumption
by the software entity

55
Energy
consumption
induced by the
execution of the
software entity

57

£

Energy
consumption
induced by the
execution of the
software entity

L
Goal

Lo
A6.2 State conclusions
about the software entity’s

energy consumption data

L
Results
interpreted
on the
premise
of the defined
goal

provide relative information on energy consumption. That is, if we classify or sort
according to the energy consumptions of each scenario that has been measured in the
same DUT, all the results will have been equally affected by the baseline energy, and
the classification will not vary.

The last activity of this phase deals with interpreting the data of the energy
consumed by the software entity analyzed and establishes some conclusions (Activ-
ity A6.7). As aresult of this activity, information is obtained on energy efficiency in
response to the objective defined. It is essential to have fulfilled all the requirements
proposed by the Client at the beginning of the process if the objective is to be
completely satisfied.

Phase VII. Reporting the Results

Finally, the last phase involves documenting the study performed, describing the
entire process followed, along with the results on the energy consumption of the
software that has been extracted. Figure 3.13 contains all the activities, inputs, and
outputs of this phase.

58

Fig. 3.13 Phase VIL

J. Mancebo et al.

Reporting the results Le»
Case study
: information
L
Case study LS
information Laboratory
package
LS R
Processed 20
data Results
interpreted
Lo on the
ise of
Raw.data premise o
W the defined
energy
. goal
consumption
o o
GBS A7.2 Document the
the laboratory
case study
package
Laboratory Case study
package documentation

The first activity in this phase focuses on the development of a laboratory package
(LP) intending to achieve repeatability of the experiment performed (Activity A7.1).
The main objective of an LP is to be an instrument for supporting knowledge
transfer, as well as for conducting replications; it should support all activities in
the experimental process and not only the implementation. Laboratory packages
should contain all the information and materials required to replicate an experiment
or case study [15, 16]. The content of an LP should not be static; it needs to be
adapted to the needs of the researcher and the limitations of the experiment. Indeed,
proposals for the development of correct LPs, such as the one put forward by [17],
can be followed, in which the content and structure of the laboratory packages for
software engineering experiments are indicated. Considering the indications of these
authors, the LP should include the following information:

3 GSMP: Green Software Measurement Process 59

* Planning: a description of each of the activities to be carried out and the order in
which they are to be performed. It is also recommended that the estimated
workload for the replicant experimenter be indicated.

» Study conception: a description of the high-level attributes that are studied by the
experiment, together with its goals. In addition, the variables used in the exper-
iment should be shown.

» Experimental design: information about the design of the experiment. It should
include details on what the subject of the evaluation will be, and in what cases.

* Operation: information for the creation of the laboratory environment to be used.
This includes specific software engineering objects (such as programs, specifica-
tions, or test cases) and instruments used for measurement and analysis of
the data.

* Analysis: a specification of the data wrangling process followed, as well as the
analysis methods applied. A report of the experiment should be included, and the
analysis should conclude with a high-level interpretation of the results. In addi-
tion, the raw data should be included in the standard format, so as to allow other
researchers to repeat all the analysis activities of the results.

The last activity of the process for the measurement of the energy efficiency of the
software is the production of detailed documentation, in which the whole process is
explained, along with the results obtained in the study (Activity A7.2). The main
difference with the laboratory package is that while it is oriented to other researchers
who want to replicate the experiment, the documentation is directed at the Client and
other stakeholders, with the information that has been obtained. The LP can be
considered to be a piece of this documentation. To report a study where we evaluate
the energy consumption of the software, we can use the guidelines proposed by
Jedlitschka and Pfahl [18].

3.2.3 Summary of Roles Involvement in GSMP

In line with SPEM2, roles can operate in the process in two different ways: Primarily
Performs (PP), which refers to the roles that participate in the realization of the
activity (see Sect. 3.2.1); and Additionally Performs (AP), which are the roles that
must be informed or which are in some way interested in the realization of the
activity. Table 3.1 presents a summary of the type of involvement of the four defined
roles in the GSMP.

3.2.4 Considerations for the Validity of Energy Consumption
Measurements of Software

Although the process described above provides a solid basis for carrying out energy
consumption measurements, the assumptions that may occur, and which jeopardize

60

J. Mancebo et al.

Table 3.1 Roles and their responsibilities in GSMP

Roles
Phase Activity |Client | Measurement analyst | Measurement performer | Data analyst
Phase 1 Al.l PP AP
Al.2 PP
Al3 PP
Al4 PP
Phase 11 A2.1 PP
A2.2 PP
A23 PP
A2.4 PA PP
A2.5 PA PP
Phase III | A3.1 PP
A3.2 PA PP
A3.3 PP
Phase IV | A4.1 PP
A4.2 PP
Phase V AS.1 PP
A5.2 PP
Phase VI | A6.1 PP
A6.2 AP PP
Phase VII | A7.1 PP AP AP
A7.2 PP

the validity of the measurements, must be identified. The assumptions that may
threaten the validity of software energy consumption measurements are shown
below:

Sampling interval: The frequency with which samples of the power consumed are
provided must be taken into consideration. If the frequency is too low, this might
lead to an underestimation of the energy consumed, due to the high frequency of
the hardware components [10].

OS effects and interaction with other software: The energy used by the operating
system is usually included in the energy consumption measurements. In addition,
other applications or services of the operating system may be activated during the
measurement. We mitigate this threat by performing a large number of measure-
ments, and by obtaining the baseline of DUT consumption.

Laboratory temperature: Not having direct control over the temperature in the
laboratory where measurements are performed can be harmful when measuring
accurate energy consumption. This risk can be mitigated by repeating the mea-
surements several times.

Experiment settings: The choice of the software entity to be analyzed, together
with the creation of the test cases to be run to measure energy consumption, can
be considered a limitation of the experiment. Hence, we cannot generalize the

3 GSMP: Green Software Measurement Process 61

results obtained for other software entities, although they may be useful for future
experiments.

* Measuring instrument: There is an inevitable dependence on the measuring
instrument in terms of accuracy and detail of measurements, as these may vary
when a different measuring instrument is used. However, when possible it is
always useful to provide comparisons about different instruments by clearly
stating their settings.

* DUT specificity: One of the main factors that can influence energy consumption
measurements is the configuration of the DUT in which the software being
evaluated is running, since the energy consumption obtained is specific to the
DUT used. It is therefore possible to use the results as absolute values, if the DUT
used is similar to the one on which the software will normally be run. Otherwise,
the values obtained must be considered relative, and serve to determine in which
situations there is a greater or lesser consumption of energy.

3.3 Application of the GSMP

This section presents the application of the process for evaluating the energy
efficiency of the software, which was defined in the previous section. To demon-
strate that the GSMP can be adapted to any study in which energy consumption is
evaluated, a case study is presented, following the protocol template defined by
Brereton et al. [19] and the guidelines proposed by Runeson and Host [20].

3.3.1 Design

The aim of this case study is to find out if the GSMP is useful for measuring and
analyzing software energy consumption. To this end, the following research ques-
tion is addressed: Is the GSMP comprehensive and detailed enough to guide
researchers and practitioners in performing software energy measurements?

3.3.2 Subject and Analysis Units

In this case study, the application of the GSMP for the measurement of energy
consumed when running different sorting algorithms is evaluated.

To demonstrate that this process can be adapted to any study of energy consump-
tion analysis, the measurements have been carried out with two different measuring
instruments. On the one hand, we have used the Energy Efficiency Tester (EET)
measuring instrument [21], which will be described in detail in the next chapter of

62 J. Mancebo et al.

this book. On the other hand, the same energy measurements were replicated by the
measuring instrument proposed by the Institute for Software Systems (ISS) [11].

Therefore, the units of analysis in this case study are the GSMP and the energy
consumption of the sorting algorithms.

3.3.3 Field Procedure and Data Collection

The field procedure and data collection for this case study are closely related to the
activities, roles, and templates of the GSMP described in the previous section.

Furthermore, other data collected are the energy consumption that have been
obtained by the EET and the ISS proposal.

3.3.4 Intervention in Case Study

This section presents the application of the GSMP for the measurement and analysis
of the energy efficiency of different sorting algorithms. Each of the phases and
activities performed is detailed below.

Phase 1. Scope Definition

The main goal of this case study is to determine which sorting algorithm consumes
the least amount of energy (Activity 1.1 and A1.2). In addition, it aims to demon-
strate that the GSMP is validated to carry out energy consumption measurements
with any measuring instrument.

For this purpose, we used five sorting algorithms (bubble sort, cocktail sort,
insertion sort, quicksort, and mergesort), which were chosen as the software entities
to be measured (Activity 1.3).

The last activity that has to be carried out in this phase is the creation of test cases
to be executed (Activity Al.4). In this case study, the sorting algorithms were
executed multiple times, and in each execution an item array with 50,000 random
numbers from 1 to 1000 was sorted, so the execution of each classification algorithm
takes approximately 2 min. Therefore:

* Bubble sort was executed 18 times (900,000 items sorted)

¢ Cocktail sort was executed 30 times (1.5 million items sorted)

¢ Insertion sort was executed 280 times (14 million items sorted)
¢ Quicksort was executed 20,000 times (1 billion items sorted)

e Mergesort was executed 10,000 times (500 million items sorted)

Phase I1. Measurement Environment Setting

As stated above, the test cases defined will be measured using two measuring
instruments (Activity 2.1). The first measuring instrument used was EET [21].
Afterwards, the energy measurements were replicated using the measuring instru-
ment proposed by the ISS [11].

3 GSMP: Green Software Measurement Process 63

Table 3.2 Specifications of the measurement environments used

SUT specifications used with the

Component DUT specifications used with EET proposal by ISS
Processor AMD Athlon 64 X2 Dual Core 5600+ | Intel Core 2 Duo E6750 2.66 GHz

2.81 GHz
Memory 4x1GBDDR2 4x1GBDDR2
Hard disk Seagate barracuda 7200 500 Gb 320 GB WD 3200YS-01PBGO
Mainboard Asus M2N-SLI Deluxe Intel Desktop Board DG33BU
Graphics card | Nvidia XfX 8600 GTS Nvidia GeForce 8600 GT
Power Supply | 350 W AopenZ350-08Fc 430 W Antec EarthWatts EA-430D
Operating Windows 10 Enterprise Windows 10 Pro
System
Java version Oracle Java 8u201 Oracle Java 8u201

Table 3.3 Measurement results of baseline energy consumption

Measuring instrument Mean |SD Median | Min Max Range |IQR
Baseline power [W] 1SS 78.78 10.58 |78.82 78.63 | 78.91 0.28 0.16
EET |73.40 |[3.71 |72.86 66.04 |78.80 |12.76 |2.53
Baseline energy [Wh] | ISS 13.13 [0.02 |13.13 13.10 |13.17 0.07 0.03
EET 6.18 |0.31 6.10 5.57 6.66 1.09 |0.19

The execution of the sorting algorithms was carried out on two different com-
puters, but with similar specifications (Activity 2.2). Table 3.2 shows the specifica-
tions of the DUT and system under test (SUT).

Concerning the set of measures to be used in this case study, we can identify the
energy consumption obtained by each of the measuring instruments (Activity 2.3).

Finally, it is determined whether any other software is running in the background,
while also interrupting all services and processes that may affect energy consump-
tion (Activity 2.4), and the baseline energy consumption of each of the computers
where the test cases measurements are to be carried out is measured (Activity 2.5).
Table 3.3 shows the results of the baseline measurement with EET and with the ISS
proposal.

Phase II1. Measurement Environment Preparation

Before starting the measurement, it is determined whether any other software is
running in the background. If any process or software not related to the software
entity to be analyzed is running, it must be closed (Activity A3.1).

Another aspect to be defined in this phase is the number of repetitions to be
performed for each measurement of a test case (Activity A3.2). We consider that
each test case should be measured 30 times, since being in a controlled environment
is enough to mitigate the effect of other processes that may be executed at the
same time.

64 J. Mancebo et al.

Table 3.4 Measurement results of the test run

Measuring instrument Mean SD | Median |Min Max Range |IQR
Test run power [W] ISS | 109.61 |2.41 |109.44 [109.24 |113.54 | 430 |0.120
EET |104.57 |6.26 |103.41 91.58 |130.68 |39.10 |8.46
Test run energy [Wh] |ISS 18.38 |0.21 18.32 18.23 19.33 1.10 |0.05
EET | 22.63 |1.99 | 22.37 20.04 | 2797 | 793 |1.95

Once it has been established, the DUT (or SUT) is configured, and the preparation
of the chosen software entity is carried out (Activity A3.3).

Phase IV. Measurement Performance

In this phase, power consumption measurements will be made for each of the chosen
sorting algorithms (Activity A4.1). Between every sorting algorithm there was a
break of 10 s and after every loop run there was a break of 60 s. The pauses between
the execution of the algorithms was added to allow the computer to return to its idle
state, before starting the next task, in order to capture irregular patterns in the
consumption. While the loop was running, two log files were generated for further
analysis with the power consumption data (Activity A4.2). In these log files, the
starting and ending timestamps of every test run and every sorting algorithm loop
were recorded.

Phase V. Test Case Data Analysis
During this phase, the analysis of the energy consumption data for each of the test
cases is carried out. The first activity is the preparation of the raw data, which has
been obtained from the measuring instruments in the previous phase. In this activity,
the average values of each of the measurements of the test cases are calculated. The
outliers are also identified and eliminated, and the values obtained are checked to
ensure they are valid (Activity AS5.1).

Once the data have been processed and prepared, the descriptive statistics of the
values obtained are calculated, as shown in Table 3.4 (Activity A5.2).

Phase VI. Software Entity Data Analysis

In this phase, the results obtained for each of the software entities (sorting algo-
rithms) are analyzed (Activity A6.1). To do so, the energy consumed induced by the
software run is calculated by subtracting the average adjusted baseline energy from
the average energy of the test run measurements, as shown in Table 3.5.

In addition, the energy consumption and the induced energy for each classifica-
tion algorithm have been obtained independently. Table 3.6 shows the consumed
energy values obtained by each of the measurement instruments, and the energy
consumption induced by each of the algorithms taking into account the reference
consumption.

Based on this information, we can draw some conclusions (Activity 6.2). As
shown in Fig. 3.14, the most energy-consuming sorting algorithm is Insertion Sort.
The quicksort algorithm is the most energy efficient.

3 GSMP: Green Software Measurement Process

Table 3.5 Energy consump-

tion induced

65

EET

ISS proposal

Energy consumption induced

6.74 Wh

5.17 Wh

Table 3.6 Energy consumption by each software entity (sorting algorithm)

Energy consumed Energy consumption induced

Sorting algorithm ISS EET ISS EET
Bubble Sort 3.35 Wh 3.45 Wh 0.90 Wh 0.83 Wh
Cocktail Sort 3.47 Wh 3.42 Wh 0.92 Wh 0.85 Wh
Insertion Sort 5.55 Wh 5.90 Wh 1.48 Wh 1.51 Wh
Quicksort 2.42 Wh 2.37 Wh 0.66 Wh 0.61 Wh
Mergesort 3.40 Wh 3.30 Wh 1.05 Wh 1.18 Wh

— 0 Algorithm

< < = Bubble Sort

E @ Cocktall Sort

c @ |Insertion Sort

2 ® Quicksort

Q = Mergesort

IS

3 o

c =

<}

o

>

<

@

c

[

g @

g o

S

£

o

£

Q o

[0} 5

° A B

Fig. 3.14 Energy consumption induced by each software entity (sorting algorithm)

Phase VII. Reporting the Results

Finally, all the results obtained, along with the process followed to achieve them, are
documented (Activity A7.1). In addition, the laboratory package' of the study is
created, so that it can be analyzed and replicated by other researchers (Activity
A7.2). The LP includes all the raw energy consumption data obtained from EET and
by the ISS proposal.

3.3.5 Case Study Analysis and Lessons Learned

After applying the GSMP to carry out software energy consumption measurements
with two different measuring instruments, we can conclude that the GSMP serves as

"hitps://doi.org/10.5281/zenodo.3257517

https://doi.org/10.5281/zenodo.3257517

66 J. Mancebo et al.

a guide in the activities that must be followed to carry out the measurement and
analysis of the software’s energy consumption, regardless of the measuring
instrument used.

Moreover, the use of this process helps to have greater control over the measure-
ments performed, since it enables us to identify when a measurement is incorrect, or
whether it is necessary to repeat the measurements, ensuring their reliability and
consistency.

3.4 Conclusions

The development of environmentally friendly software is not a trivial project. In fact,
to determine the energy efficiency of the software, it is necessary to be able to
evaluate the energy consumed when it is running. For this, it is necessary to follow
some suitable steps to ensure that the results obtained are correct and appropriate.
That has led us, in this chapter, to present our proposal for a process to evaluate the
energy efficiency of software, known as the Green Software Measurement Process.
Using the GSMP, we can improve reliability and consistency when measuring
energy consumption. To support the systematic development, management, and
growth of the proposed process by using a standardized representation, we have
used SPEM 2.0; this has also allowed us to generate documentation in a standard
format. The GSMP covers all the necessary phases in carrying out this type of study,
such as the definition of the scope and configuration of the environment, the
performance of the measurements, the subsequent analysis of the data obtained,
and the reporting of the results. Furthermore, this process was designed to be valid
with any measuring instrument that is used, regardless of the approach adopted. To
define some aspects or artifacts of the GSMP, we have used well-known approaches
to software measurement and good practices related to green software proposed by
other authors.

The GSMP defined allows us to analyze the energy efficiency of software. This
process enables researchers to obtain greater control over the measurements made,
guaranteeing their reliability and consistency. It also means that the studies carried
out can be easily replicated, and the results obtained are comparable to those of other
studies.

From the point of view of software professionals, this contribution helps them to
be aware that there are processes and tools to evaluate the energy efficiency of the
software applications they develop. They can thus develop software that is environ-
mentally friendly.

3

GSMP: Green Software Measurement Process 67

References

1.
2.

3.

4.

11.

13.

14.

15

16.

17.

18.

19.

20.

21.

Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC press
Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering. Springer Science & Business Media

Basili VR, Weiss DM (1984) A methodology for collecting valid software engineering data.
IEEE Trans Softw Eng 6:728-738

Defens USDo (2000) PSM: Practical software and systems measurement — a foundation for
objective project management vol version 4.0c

. Standard IIII (2017) ISO/IEC/IEEE 15939:2017 — Systems and software engineering-

Measurement process

. Hindle A (2015) Green mining: a methodology of relating software change and configuration to

power consumption. Empir Softw Eng 20(2):374-409

. Jagroep EA, van der Werf JM, Brinkkemper S, Procaccianti G, Lago P, Blom L, van Vliet R

(2016) Software energy profiling: comparing releases of a software product. In: Proceedings of
the 38th International Conference on Software Engineering Companion, pp 523-532

. Henderson-Sellers B (2003) Method engineering for OO systems development. Commun ACM

46(10):73-78

. OMG Software & Systems Process Engineering Metamodel specification (SPEM) Version 2.0
. Jagroep E, Procaccianti G, van der Werf JM, Brinkkemper S, Blom L, van Vliet R (2017)

Energy efficiency on the product roadmap: an empirical study across releases of a software
product. J Softw Evol Process 29(2):e1852

Kern E, Hilty LM, Guldner A, Maksimov YV, Filler A, Groger J, Naumann S (2018)
Sustainable software products—towards assessment criteria for resource and energy efficiency.
Futur Gener Comput Syst 86:199-210

. Kandel S, Heer J, Plaisant C, Kennedy J, Van Ham F, Riche NH, Weaver C, Lee B,

Brodbeck D, Buono P (2011) Research directions in data wrangling: visualizations and trans-
formations for usable and credible data. Inf Vis 10(4):271-288

Kitchenham B, Madeyski L, Budgen D, Keung J, Brereton P, Charters S, Gibbs S, Pohthong A
(2017) Robust statistical methods for empirical software engineering. Empir Softw Eng 22
(2):579-630

Wilcox RR (2011) Introduction to robust estimation and hypothesis testing. Academic Press

. Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineering. IEEE

Trans Softw Eng 7:733-743

Brooks A, Daly J, Miller J, Roper M, Wood M (1996) Replication of experimental results in
software engineering. International Software Engineering Research Network (ISERN) Techni-
cal Report ISERN-96-10, University of Strathclyde 2

Solari M, Vegas S, Juristo N (2018) Content and structure of laboratory packages for software
engineering experiments. Inf Softw Technol 97:64-79

Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled experiments in software
engineering. In: 2005 International Symposium on Empirical Software Engineering. IEEE, p 10
Brereton P, Kitchenham B, Budgen D, Li Z (2008) Using a protocol template for case study
planning. In: 12th International Conference on Evaluation and Assessment in Software Engi-
neering (EASE) 12, pp 1-8

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in
software engineering. Empir Softw Eng 14(2):131

Mancebo J, Arriaga HO, Garcia F, Moraga MA, de Guzmén IG-R, Calero C (2018) EET: a
device to support the measurement of software consumption. In: Proceedings of the 6th
International Workshop on Green and Sustainable Software, pp 16-22

Chapter 4)
FEETINGS: Framework for Energy ekl
Efficiency Testing to Improve

eNvironmental Goals of the Software

Javier Mancebo, Coral Calero, Félix Garcia, M* Angeles Moraga, and
Ignacio Garcia-Rodriguez de Guzman

Abstract Energy consumption and carbon emissions caused by the use of software
have been increasing in recent years, and it is necessary to increase the energy
awareness of both software developers and end users.

The objective of this chapter is to establish a framework that provides a solution
to the lack of a single and agreed terminology, a process that helps researchers
evaluate the energy efficiency of the software, and a technology environment that
allows for accurate measurements of energy consumed. The result is FEETINGS
(Framework for Energy Efficiency Testing to Improve eNvironmental Goals of the
Software), which promotes the reliability of capture, analysis, and interpretation of
software energy consumption data.

FEETINGS is composed of three main components: an ontology to provide
precise definitions and harmonize the terminology related to software energy mea-
surement; a process to guide researchers in carrying out the energy consumption
measurements of the software, and a technological environment which allows the
capture, analysis, and interpretation of software energy consumption data.

In addition, an example of the application of FEETINGS is presented, as well as a
guide to good practice for energy efficiency of software, based on different exper-
iments carried out with this framework.

The results obtained demonstrate that FEETINGS is a consistent, valid, and
useful framework to analyze the energy efficiency of software, promoting the
accuracy of its energy consumption measurements. Therefore, FEETINGS serves
as a tool to make developers and users aware of the impact that software has on the
environment.

J. Mancebo - C. Calero (5<) - F. Garcia - M. A. Moraga - I. G.-R. de Guzman

Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain

e-mail: Javier.Mancebo@uclm.es; Coral.Calero@uclm.es; Felix.Garcia@uclm.es;
MariaAngeles.Moraga@uclm.es; Ignacio.GRodriguez@uclm.es

© Springer Nature Switzerland AG 2021 69
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_4&domain=pdf
mailto:Javier.Mancebo@uclm.es
mailto:Coral.Calero@uclm.es
mailto:Felix.Garcia@uclm.es
mailto:MariaAngeles.Moraga@uclm.es
mailto:Ignacio.GRodriguez@uclm.es
https://doi.org/10.1007/978-3-030-69970-3_4#DOI

70 J. Mancebo et al.
4.1 Introduction

Tablets, computers, smartphones, smartwatches, and a multitude of technological
devices have invaded our daily lives. All of these devices require energy to operate,
which has led to a huge annual growth in energy consumption. According to recent
studies, energy used for global information and communications technology (ICT)
could exceed 20% of total energy, and emit up to 5.5% of the world’s carbon
emissions by 2025 [1, 2]. These data on the growth of energy consumption and
global emissions have raised issues of great concern for both software professionals
and users.

Although hardware is generally seen as the main culprit for ICT energy usage,
software also has a tremendous impact on the energy consumed [3]. Unfortunately,
to date, little attention has been given to this topic by the information and commu-
nications technology (ICT) community [4]. However, in recent years, trends such as
“Green Software” have gained importance [5]. The purpose of green software is to
promote improvements in the energy efficiency of software, minimizing the impact it
may have on the environment [6, 7].

To improve the energy efficiency of software, it is first necessary to raise energy
awareness among all stakeholders [4]. On the one hand, developers must be aware of
the energy that the software consumes when used, so that they can develop more
energy-efficient and environmentally friendly software. And software professionals
in general must treat energy efficiency as a quality attribute of the software, in the
same way that usability or security is treated [8—10].

On the other hand, awareness also needs to be raised among end users as to how
much energy is required by the software they use on a daily basis, so that they are
aware of the impact that software can have on the environment [4]. Ideally, end users
could compare the software applications that meet their needs, and choose the option
that consumes the least energy, and should also know how a given software
application can be used in a more efficient manner from the point of view of energy
consumption.

In order to raise awareness among stakeholders or to develop a sustainable and
environmentally friendly software product, it is first necessary to know the energy
consumption induced by the software when it is running, since if the energy
consumption is not measured, it cannot be managed [11, 12]. As the European
Union report indicates [13], “the existence of a methodology for measuring the
energy or CO2 of the ICT infrastructure is extremely important for this sector, as it
will allow the development of much more robust estimates of the impact of ICT.”

However, there is currently a lack of both knowledge and tools to reliably and
accurately analyze software energy consumption [5]. We consider that in this regard
one can identify three main problems:

e Several inconsistencies and terminological conflicts appear [14] due to the fact
that researchers have defined their methods of work using their own terms or
concepts, provoking numerous examples of both synonymy (same concepts with
different term associated) and homonymy (different concepts with the same

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 71

term). This lack of formal consensus makes it difficult to understand the main
concepts involved when performing a software energy consumption assessment.

* There is a lack of a generally-agreed-on methodology that would guide software
energy consumption assessments. This implies that the rigor of the studies carried
out cannot be guaranteed, meaning that it is more complicated to replicate or
compare the results obtained [15].

* Several measuring instruments are available for the analysis of software energy
consumption. It is important to note that each measurement instrument has its
own particular characteristics, and that it is necessary to choose the one that best
adapts to the particular evaluation requirements concerned [16].

To contribute to the mitigation of these problems, and to be able to raise energy
awareness among all stakeholders, we have developed a framework to promote the
reliability of capture, analysis, and interpretation of software energy consumption
data, known as “FEETINGS” (Framework for Energy Efficiency Testing to Improve
eNvironmental Goals of the Software). FEETINGS aims to provide: (1) a solution to
the lack of a unique and agreed terminology; (2) a process that helps researchers to
evaluate the energy efficiency of the software, allowing greater control over the
measurements made, thereby ensuring their reliability and consistency; and (3) a
technological environment that supports the process and allows for realistic mea-
surements of the energy consumed by the software and its subsequent analysis.

In this chapter, we present FEETINGS and an example of how to use it, so as to
guide end users. The contents of the chapter are structured as follows. First, we
present the different studies and proposals that have served as a basis for our
framework. Then, in Sect. 4.2, we present the FEETINGS framework, detailing
each of its components. In Sect. 4.3, an example of the application of FEETINGS is
presented. In Sect. 4.4, a best practice guideline for software energy efficiency is
proposed, based on different experiments carried out using FEETINGS. Finally,
Sect. 4.5 sets out some conclusions of this work.

4.2 FEETINGS

In this section, we will describe FEETINGS, a framework to promote more reliable
capture and analysis of software energy consumption data. This framework is made
up of three main components, classified according to their nature as conceptual,
methodological, and technological components (see Fig. 4.1), as described in the
following subsections.

72 J. Mancebo et al.

Fig. 4.1 Overview of

FEETINGS 6\ FEETINGS

Methodological component Technological component

Green Software >
Measurement Process

(GSMP) —> BRI
Green Software ELLIOT
Measurement Ontology
(GSMO)

Conceptual component

4.2.1 Conceptual Component

As commented upon in the introduction, one of the common problems is confusion
and inconsistencies in the main concepts used in software energy assessment. This
lack of formal consensus makes it difficult to understand the main concepts involved
when performing a software energy consumption measurement.

The conceptual part of FEETINGS seeks to solve the lack of a unique and agreed
terminology. For this purpose, an ontology has been elaborated which contains the
concepts related to the software energy measurement. According to Chandrasekaran
et al. [17], the unification of terms and concepts in an ontology allows knowledge to
be shared, while ontological analysis clarifies the structure of knowledge.

The ontology proposed is known as “Green Software Measurement Ontology”
(GSMO), and its purpose is to provide precise definitions of all terms related to
software energy measurement and to clarify the relationships between them, remov-
ing terminological conflicts and fostering the consistent application of the frame-
work by other researchers and practitioners with reference to a common vocabulary.
The Green Software Measurement Ontology (GSMO) is an extension of the SMO
ontology proposed by Garcia et al. [18] for green software measurement.

Figure 4.2 shows the graphical representation of the terms and relationships of the
GSMO, using UML (Unified Modeling Language). The highlighted concepts are the
new concepts which extend/adapt the SMO [18].

The conceptual component (GSMO ontology) aims to solve the problem of
terminology consistency in software energy measurement, since it proposes a com-
mon vocabulary extracted from several international standards and research pro-
posals. More details about the GSMO ontology can be found at [19].

73

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental.

OINSD oy jo weiSelp TN TP “Sid

0} Pa}osUUOI SI L
1PPOIN sisk[euy yoroaddy Judwdansedy na
= N
M
sosn
L 3
* uo uni sl
+0 JUIUWAINSEIYA] ISE)) IS,
I9POJA SIsA[euy uonduUNJ JUIWAINSBIA| JUSWINI)SU] SULINSLIJA
= L
A L L0 <0 0 L wouy
sey d
sesn wouy pawlopad s|
Um paje|nofes, Uim pajendled | sasn sesn paule}qo si)
! 1 N
<l * o,_\ =0 0 «b Lol
<l
JUIUWIINSBIA!
J10)ed1puU INSBIA] PIALIDQ JINSBIA dseqg l
seu | | ase) IS,
P
b
3
v sasn . sey
0 sojdureg L
P
P
ul EXUNET 7Y uo pawioyad s| .
pessaidxa — 10} paulap x b
— b Ll _ - Anuy dremyyos
saysies JUIUIIINSELIA] JO JIU() Y sey L *
.
0} buojaq ANqUPY "
= sey 0} sbuojeq
. —\ * .
A|_;| aeas sejeal <L
«0 3edg Jo adA], b
v r ssel) Apug a1eaj08
ynm
P9N uoneuLIOjUY pojeroosse s 3daduo)) spqeansedy

74 J. Mancebo et al.

This ontology has, moreover, served as a basis for the development of the
methodological component of FEETINGS, which is presented in the following
subsection.

4.2.2 Methodological Component

The methodological component consists in a process for measuring and analyzing
the energy efficiency of the software. This process is known as the “Green Software
Measurement Process” (GSMP). Its purpose is to guide researchers and practitioners
as they seek to carry out measurements of software energy consumption. The GSMP
ensures greater control over the measurements made, improving their reliability,
consistency, and coherence. It also ensures that the results obtained are comparable
with other studies and facilitates the replicability of the analyses performed.

To define the GSMP, we have followed the method engineering approach [20],
and we have also taken as our basis well-known approaches to software measure-
ment and good practices related to green software that have been proposed by other
authors.

The process consists of seven phases, which are summarized below:

* Phase I. Scope Definition: In this phase, a complete specification of requirements
for the evaluation of energy efficiency is obtained. In addition, the software which
is to be the subject of the study and the test cases to be analyzed must be defined.

* Phase II. Measurement Environment Settings: The purpose of this phase is the
definition of the measurement environment that is to be used in the software
energy consumption assessment. As a result of this phase, the measuring instru-
ment, its measurements, and the specifications of the Device Under Test (DUT)
are defined and the baseline energy consumption of the DUT is obtained.

* Phase Ill. Measurement Environment Preparation: This phase focuses on the
preparation of the energy consumption measurements to be performed and on the
configuration of the measurement environment.

* Phase IV. Measurements Performance: During this phase, energy consumption
measurements are carried out and raw energy consumption data taken from the
measuring instrument is collected.

* Phase V. Test Case Data Analysis: The raw data of energy consumption obtained
by the measuring instrument is processed, and the statistical analysis of the values
obtained from the measurements of the defined test cases is carried out.

* Phase VI. Software Entity Data Analysis: In this phase, with the results obtained
from the previous phases, the amount of energy consumed when the software
entity was executed in the DUT is determined and interpreted, and some conclu-
sions about the software energy consumption are stated.

e Phase VII. Reporting the Results: Finally, the study carried out is documented,
describing the entire process followed, and setting out the results obtained on the
energy consumption of the software.

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 75

In the previous chapter (Chap. 3) of this book, a more detailed and complete
version of the GSMP is presented, including a description of the roles, phases, and
activities (input, output, and guidelines).

4.2.3 Technological Component

In this section, the technological environment is presented. The main objective of the
technological component of the FEETINGS framework is to perform more realistic
measurements of the energy consumed by the software, and to use these results to

* Analyze the consumption of the software

e Learn about the behavior of the software and its different versions, to find out if
these versions worsen the software energy consumption or not

¢ Identify the consumption patterns that can guide the improvement of the energy
efficiency of software applications

* Recommend changes to software to improve energy efficiency

The technological component, as can be seen in Fig. 4.3, is composed of two
artifacts: EET (Energy Efficiency Tester) and ELLIOT.

4.2.3.1 EET (Energy Efficiency Tester)

EET [21, 22] is a measuring instrument that enables the accurate capture of the
energy consumption of the computer (DUT) on which the software is running. In
addition to the total energy consumption of the DUT, this measuring instrument
supports the measurement of four different hardware components: processor, hard
disk, graphic card, and monitor. Figure 4.4 shows the EET measuring instrument in
working use.

As can be seen in Fig. 4.4, the EET is connected to the DUT where the software is
executed, and is composed of three main components:

* A system microcontroller, whose task is to gather the information extracted from
the different sensors and store it in a MicroSD memory. It also allows the
frequency with which the device performs the measurements to be adjusted.

e A set of sensors, which are responsible for taking energy consumption measure-
ments of the hardware components (processor, hard disk, graphics card, and
monitor) of the DUT connected to the EET.

* A power supply, which must be connected to the device under test where the
software is executed, replacing the power supply of the DUT; the sensors are
connected to the energy distribution lines from the power supply to the different
hardware components.

In a nutshell, EET is a measuring instrument, which is considered a core compo-
nent of FEETINGS. It allows us to capture and record the energy efficiency of

76 J. Mancebo et al.

Software
jemememmessmesmemem e ——————— I e e >
to measure

Measurement
module

MEASUREMENT RESULTS
VISUALIZATION Measurement

storage

|EET:

RECOMMENDER

ELLIOT

Fig. 4.3 Artifacts of the technological component of FEETINGS

1. System microcontroller
& storage
2.Set of sensors

"| 3.Power supply

Fig. 4.4 EET measuring instrument

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 77

software when it is running. EET provides a realistic measurement of energy
consumption and, moreover, is capable of obtaining detailed energy measurements
from different components of the DUT (processor, graphic card, hard disk, and
monitor). Another advantage of this measuring instrument is its sampling frequency,
around 100 Hz, which provides very reliable consumption information.

As the EET produces a huge amount of data on energy consumption, it is
necessary to support the processing and analysis of these data with a suitable
software tool. For this reason, the ELLIOT tool was developed, which is described
in the following section.

4.2.3.2 ELLIOT

ELLIOT [19] is a software tool tasked with processing the data collected by the EET,
analyzing these data, and providing a visual environment that allows researchers to
process the software energy consumption data. Furthermore, the ELLIOT tool is
aligned with the GSMP described in the previous section.

The main functionalities supported by ELLIOT are outlined below:

¢ Processes all measurements carried out with the EET measuring instrument.

» Calculates different statistical variables of the energy consumption measurements
according to the user’s needs.

» Identifies possible outliers that may be present in the measurement samples, using
robust parametric methods such as median absolute deviations from the median
(MADN).

e Visualizes the results through graphs and data tables which contain information
on the measurements of the energy consumption of the software.

e Compares the results obtained from the different energy consumption
measurements.

* Generates reports that include all the information on the energy efficiency of the
software analyzed.

The ELLIOT tool is composed of four modules (see Fig. 4.5) that support these
functionalities. The modules are: (1) user management, which allows one to manage
the permissions and roles of ELLIOT users; (2) system management, to add and
modify information about the instruments and the DUT in which the measurements
are carried out; (3) measurement management, which is the central module of
ELLIOT since it supports all the tasks of processing, data wrangling, measurements
analysis, and visualization of the energy consumption information; and (4) report
management, which generates reports and allows comparisons between the
measurements.

78 J. Mancebo et al.

ELLIOT
I

.1, | :

2 & =

User System Measurement Report
Management Management Management Management

Fig. 4.5 ELLIOT tool modules

4.3 Application of FEETINGS: A Case Study of the Energy
Consumed by Translators

This section presents an application of the FEETINGS framework to measure and
analyze software energy consumption, as defined in the previous section. One of the
most widely used software applications today is online translation, which includes,
additionally, several options for automatic text translation, such as Google translate
and DeepL.

In this study, our aim is to analyze the energy consumption of the main online
translation tools in order to raise users’ awareness of the environmental impact of
their use, and also to try to provide them with a set of guidelines so that, when they
use these tools, such use is as efficient as possible.

Following the GSMP, Phase I defines the scope of the study. As mentioned
above, this study aims to determine the energy consumption of the main online
translators (Software Entity Class). The chosen translators (Software Entity) were
Google Translate, DeepL, Bing Translator, Tradukka, Systran Translate, and
Yandex. To evaluate the selected software entities, five test cases were defined:

e Translate a text with 10 characters.

¢ Translate a text with 100 characters.
¢ Translate a text with 1000 characters.
¢ Translate a text with 3000 characters.
¢ Translate a text with 5000 characters.

All defined test cases were executed in two different browsers (Google Chrome
and Firefox). Thus, we can also study the efficiency of the browser in which each of
the translators is used.

In the second phase of the process, we selected the FEETINGS technological
environment to analyze the energy consumption, choosing the EET as the measuring
instrument and ELLIOT to analyze and process the energy consumption data. The

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 79

Software Entity Class

Translators

A

belongs to

Measurement
N 0
Software Entity T Seis, “atiezs, 47.ee1
., 51, has)
et T
2, 1006, 38.669, 114.370 A
t,adukka 22000, 13‘:2‘3: 142,317 Samples

n, time, monitor, DUT

r% has Crl, 514, 34.611, 60.109
2, 1016, 32.828, 47.681
A a‘ 3, 1518, 33.117, 51.757
b bing Test Case Measurement 4, 2019, 33.593, 55.252
L) n, tine, monitor, DUT
lhas

1, 514, 34.611, 60.109
., 32.828, 47.681 A
Test Case 4 2008, 39213, 142,117
¢ 10 characters provides
Is performed fr
© 100 characters Eperiomec Tom

. 33.117, 51.757
* 1000 characters

33.593, 55.252
G 3000 characters

2

1 .108, 84.817
™\ 2, 1006, 38.669, 114.370
3
a

, 1507, 39.817, 152.527

itor, DUT
* 5000 characters

4 N\ a8 R N\
ieaxsoutedion Ei DUT Measuring Instrument
- EET + ELLIOT
Operating System Windows 10 Pro
Modherboard Asus M2M-SU Delux. » Is connected to
=l Processor: AMD Athom 64 x2 5600+ 281GHz. =
= Hardware RAM: 4x 1 GB 665 MHz Kinsgtonn
HDD Seagate barraCuda 7200 rpm 500GB.
Graphics Cards: Nvidia GForce 8600GTS
(. J (. J

Fig. 4.6 GSMO instantiation

specification of the DUT in which the test cases were executed was also defined. For
this study, we decided that from the measurements provided by the EET, we would
take into account only the energy measurements of the monitor and the total
consumption of the DUT. We have not recovered and analyzed data from the hard
disk, graphics card, or processor because, as all the translators were executed in a
web browser, the use of these components was minimal.

In accordance with the third phase of the process, we determined that each of the
test cases was to be run and measured (with EET) 35 times. Being a controlled test
environment, 35 measurements is usually a sufficient sample size to mitigate the
impact of outliers (such as energy consumption devoted to operating system tasks).

Figure 4.6 shows the instantiation of the concepts of this study, defined in the
GSMO ontology for this study, which also serves as a summary of the outputs
obtained in the first phases of the GSMP.

Tables 4.1 and 4.2 show the energy consumed once the measurement and analysis
tasks have been performed, by the DUT and the monitor respectively, in the
execution of each of the defined test cases.

80 J. Mancebo et al.

Table 4.1 DUT energy consumption for each test case

DUT energy consumption (Watts per second)
Test cases DeepL Bing Google Tradukka Systran Yandex
10 char. Firefox 46.12 64.65 46.21 41.56 61.09 45.11
Chrome | 50.77 53.07 | 45.09 61.07 40.27 43.26
100 char. Firefox 53.43 40.20 |76.23 44.47 64.03 53.61
Chrome |46.23 25.69 38.66 50.22 47.61 43.96
1000 char. Firefox 57.34 39.83 52.25 54.12 59.72 66.52
Chrome | 48.91 28.99 4542 32.57 40.67 51.37
3000 char. Firefox 56.38 4546 |47.36 70.64 95.20 62.72
Chrome |41.91 37.75 44.19 39.47 50.18 58.04
5000 char. Firefox 67.31 57.62 4945 62.98 77.29 66.56
Chrome |51.77 52.53 45.30 41.53 56.05 69.93

Table 4.2 Monitor energy consumption for each test case

Monitor energy consumption (Watts per second)

Test cases DeepL Bing Google Tradukka Systran Yandex
10 char. Firefox 63.06 70.40 65.54 53.27 65.50 60.14
Chrome 66.88 56.41 63.92 68.34 57.62 59.96
100 char. Firefox 75.83 58.51 62.28 61.07 64.77 70.15
Chrome 61.23 50.64 59.34 57.48 57.09 61.17
1000 char. Firefox 56.93 59.02 63.59 66.67 58.30 87.79
Chrome 57.82 49.66 69.96 58.42 56.31 63.01
3000 char. Firefox 56.61 54.90 67.10 52.87 73.70 72.07
Chrome 53.35 52.97 66.95 56.43 60.38 64.14
5000 char. Firefox 65.83 60.19 64.97 68.88 69.92 70.62
Chrome 61.98 63.34 66.58 57.24 63.31 77.27

To analyze the data in the above tables, we will study the test cases executed in
each of the browsers independently, and then compare the results obtained in both
browsers.

First, focusing on the test cases executed in Firefox, in Fig. 4.7, we can observe
that for translating texts of intermediate size (between 100 and 3000 characters) the
option that requires the least energy consumption in the DUT is the Bing translator.
However, Bing is the worst option for very small texts (around 10 characters), with
Tradukka being the most efficient option in this case. For large texts (5000 charac-
ters) Google Translate is the best option. The consumption data results obtained from
the monitor are very similar to those obtained from the DUT. The Yandex and
Systran translators are the worst choice in almost every test case.

Analyzing the consumption data of the tests executed in Google Chrome, we can
see in Fig. 4.8 that the energy consumption of the translators behaves in a similar
way as in Firefox. In this case, Bing is also the best choice for intermediate-length
text. But unlike the results obtained in Firefox, the Tradukka translator is the least
efficient option for small texts (fewer than 100 characters).

81

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . .

XOJOIL] Ul 3sed 159) yoed J0j uondwnsuod A310u0 [NA L SIq

> »
o & 0@« o) o O 5° & o S
+®oo & @.4.%/ \%o% &0@)0@@ +@0v & @.«.%/ \%o% voo/&)%9
0 0
0T 0T
0z 0¢
o€ (013
oy
ov
0s
0s 09
09 oL
0L 08
08 06
06 00T
X0j2414 - s4910e4eYD 000S X0J3ll4 - S4930e4Yd 000
N » Y
> &P S & ¢ & P IS O) IS
& & %o% S F +@AMV & %o% N & & & %o% S F
0 0 0
ot aF ot
0t
0t o€ 0z
0€
ov os
oy 0s
09 oY
0s
oL 0s
09 08
oL 06 09
0L
X0Ja4l4 - si912e4eyd 000T X0JaJl4 - s4910e4eYd 00T X0Jall4 - sia1oeieyd 01

J. Mancebo et al.

82

QWIOIYD) Ul Ised 359} yoed Joj uondwinsuod A310u0 1 Nd 8§ "SI

awoJy) - siaioeteyd 000s

awoJy) - sieyeteyd 000

-

0&
& »v} aw.%,

o
&
X

i |

r &°
&

0€

oy

av o%

™ e

0s

[2woJy) - si=10eqeyd 00T

09

2woJy) - sia3oeteyd 00T

[awoJy) - sie1deJqeyd QT

o
S

09

0L

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 83

DeepL Bing Google Tradukka Systran Yandex

80

70

60

5

o

4

o

3

o

N
o

=
o

M Firefox MChrome

Fig. 4.9 Comparison of the mean energy consumption by the DUT

To determine in which browser (Firefox or Chrome) it is better to use the trans-
lators, we have calculated the average power consumption of the executed test cases.
As shown in Fig. 4.9, all the translators analyzed have a lower DUT power
consumption in the Chrome browser than in Firefox. Regarding the monitor’s
energy consumption, the results are similar to those of the DUT, although here the
variation between browsers is less.

Considering the results obtained, the main conclusions that we can draw from this
study are as follows:

e The most energy-efficient scenario is to use the Tradukka translator with the
Google Chrome browser for texts of an intermediate length (1000 characters),
resulting in a consumption of 32.56 Ws.

* The most inefficient option (95.19 Ws) is to use the Systran translator in the
Firefox browser for large texts (3000 characters).

* All translators show a direct relationship when translating texts of more than 1000
characters, in which case an increase in the number of characters also increases
energy consumption.

e It is more efficient to use the Google Chrome browser to translate than Firefox.

4.4 Best Practices Guideline on Software Sustainability

As explained in the introduction, FEETINGS can be used for several purposes. One
of the main objectives of FEETINGS is to measure software energy efficiency so that
researchers and software professionals can develop software that is environmentally
friendly. Another purpose is focused on the other key perspective in software: the

84 J. Mancebo et al.

end user. This framework can help to make society aware of the responsible use of
software applications, so as to take care of the environment.

Keeping both perspectives in mind, this section presents some guidelines, based
on several studies we have conducted, to make software more sustainable, in both its
development and use.

First, we present the main findings that can be useful for researchers and practi-
tioners wishing to develop software that is more energy-efficient:

* In the study presented in [23], it was concluded that the most efficient classifica-
tion algorithm, in terms of energy, is the Quicksort, followed by the Bubble sort.
In contrast, the most energy-demanding is the Insertion sorting algorithm.

* For the Redmine software [24], after analyzing different versions and the rela-
tionship between its energy consumption and maintenance measures, we can
conclude that the Total Lines of Code (TLOC) maintainability measurement
affects the energy consumption of the processor and the DUT.

e The study presented in [25] shows that text compression, using End-Tagged
Dense Code (ETDC) or Tagged Huffman algorithms, not only reduces search
space and time, but also leads to lower energy consumption. In addition, the use
of search algorithms in compressed text, such as the Horspool algorithm, when
run on compressed data, also requires less CPU power than when run over
uncompressed data.

¢ In [26], recommendations were made to improve the energy efficiency of appli-
cations. The best practices in energy-efficient computing drawn from this study
are summarized below:

— A balance should be struck between the energy efficiency of the graphical user
interface and a good experience from the user’s perspective.

— Efficient Uls should be designed to allow a task to be completed quickly and
easily.

— Data redundancy should be reduced.

— Devices when not in use should be powered down by batch I/O.

¢ We have worked on the comparison of the time and energy consumption required
by three releases of the same application, developed with and without Spring. In
conclusion, it seems that products developed without using Spring are better in all
the conditions and for all the measures. This could indicate that, although Spring
has some advantages for programmers, once the product starts to run, this
advantage disappears to the benefit of the non-Spring development.

Second, we present the following set of guidelines to help end users make use of
the software in a more environmentally friendly way:

* To publish a tweet or a post on Facebook, you should consider that the most
energy-efficient option is to publish a single emoji or a picture. Furthermore, if
you want to be respectful of the environment, you should avoid publishing a GIF,
since it is the option that consumes the most energy [19].

4 FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 85

e The most energy-efficient personal health record (PHR) is the
NoMoreClipboard [26].

* As regards navigating the internet: if you are looking for browsers which are
environmentally friendly, choose Edge or Firefox; if you are looking for maxi-
mum privacy and energy efficiency use the DuckDuckGo search engine, espe-
cially when used with Edge and Firefox; if you are looking for lower emissions in
your searches use the Ecosia search engine; and if in any event you do wish to use
Chrome as your browser, then do so with DuckDuckGo.

4.5 Conclusions

Software plays an important role in the global energy consumption of a PC. For this
reason, it is very important that both professionals and users be aware that the use of
software has a great impact on the energy consumed by the devices on which it is
executed.

In order to raise awareness of energy consumption among stakeholders, it is
necessary to quantify its impact. Bearing this in mind, this chapter has presented the
FEETINGS framework, which aims to promote reliable measurement, analysis and
interpretation of software energy consumption data. FEETINGS is composed of
three main components: (1) a GSMO ontology, to provide precise definitions of all
concepts and their relationships related to software energy measurement; (2) a
GSMP, to guide researchers in carrying out the energy consumption measurements
of the software; and (3) a technological component, which is composed of two
artifacts: EET, a measuring instrument, and the software tool ELLIOT to process and
analyze data collected by the EET.

Thus, the use of FEETINGS serves two purposes. The first is to enable
researchers and professionals to measure and make them aware of the energy that
the software they develop consumes when in use, and thus be able to develop more
energy-efficient software. The second is to show end users just how much energy is
required by the software we use every day, and to make them aware of the impact
that software can have on the environment.

In this work, we have also demonstrated an application of the FEETINGS
framework to analyze the energy consumption involved in the use of different online
translators. In addition, we have presented a set of best practice guides on sustainable
software design based on our experience using the FEETINGS framework.

References

1. Andrae A (2019) Prediction studies of electricity use of global computing in 2030. Int J Sci Eng
Invest 8:27-33

86

2.

3.

4.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

J. Mancebo et al.

Vidal J (2017) Tsunami of data’could consume one fifth of global electricity by 2025. Climate
Home News 11

Pereira R, Car¢do T, Couto M, Cunha J, Fernandes JP, Saraiva J (2020) Spelling out energy
leaks: aiding developers locate energy inefficient code. J Syst Softw 161:110463

Fonseca A, Kazman R, Lago P (2019) A manifesto for energy-aware software. IEEE Softw 36
(6):79-82

. Pinto G, Castor F (2017) Energy efficiency: a new concern for application software developers.

Commun ACM 60(12):68-75

. Calero C, Piattini M (2015) Introduction to green in software engineering. In: Green in software

engineering. Springer, pp 3-27

. Calero C, Piattini M (2017) Puzzling out software sustainability. Sustain Comput Informatics

Syst 16:117-124

. Calero C, Moraga MA, Bertoa MF, Duboc L (2014) Quality in use and software greenability.

In: RE4SuSy@ RE. pp 28-36

. Condori-Fernandez N, Lago P (2018) Characterizing the contribution of quality requirements to

software sustainability. J Syst Softw 137:289-305
Penzenstadler B, Raturi A, Richardson D, Tomlinson B (2014) Safety, security, now sustain-
ability: the nonfunctional requirement for the 21st century. IEEE Softw 31(3):40—47

. Briand LC, Morasca S, Basili VR (1996) Property-based software engineering measurement.

IEEE Trans Softw Eng 22(1):68-86

Moraga MA, Bertoa MF (2015) Green software measurement. In: Green in software engineer-
ing. Springer, pp 261-282

European Union (2011) The contribution of ICT to Energy Efficiency: local and regional
initiatives

Pinto G, Castor F, Liu YD (2014) Understanding energy behaviors of thread management
constructs. In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, pp 345-360

Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC Press
Moura I, Pinto G, Ebert F, Castor F (2015) Mining energy-aware commits. In: IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, pp 56-67

Chandrasekaran B, Josephson JR, Benjamins VR (1999) What are ontologies, and why do we
need them? IEEE Intell Syst Their Applications 14(1):20-26

Garcia F, Bertoa MF, Calero C, Vallecillo A, Ruiz F, Piattini M, Genero M (2006) Towards a
consistent terminology for software measurement. Inf Softw Technol 48(8):631-644
Mancebo J, Calero C, Garcia F, Moraga MA, Garcia-Rodriguez De Guzman 1 (2020)
FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental Goal of
the Software. Paper presented at the The Eleventh International GREEN and Sustainable
Computing (under review)

Henderson-Sellers B (2003) Method engineering for OO systems development. Commun ACM
46(10):73-78

. Mancebo J, Arriaga HO, Garcia F, Moraga MA, de Guzman IG-R, Calero C (2018) EET: a

device to support the measurement of software consumption. In: Proceedings of the 6th
International Workshop on Green and Sustainable Software, pp 16-22

Piattini M, Calero C, Garcia F, Moraga MA, de Guzmén IGR, Mancebo J, Arriaga HO, Tabaco
R (2018) Aparato para medicién del consumo eléctrico de equipos informaticos (PC). ES
1199234 Y

23.

24.

25.

26.

FEETINGS: Framework for Energy Efficiency Testing to Improve eNvironmental. . . 87

Mancebo J, Guldner A, Kern E, Kesseler P, Kreten S, Garcia F, Calero C, Naumann S (2020)
Assessing the sustainability of software products—a method comparison. In: Advances and
new trends in environmental informatics. Springer, pp 1-15

Mancebo J, Calero C, Garcia F (2021) Does maintainability relate to the energy consumption of
software? A case study. Softw Qual J 29(1):101-127

Mancebo J, Calero C, Garcia F, Brisaboa N, Farifia A, Pedreira O (2019) Saving energy in text
search using compression. Paper presented at the GREEN 2019: The Fourth International
Conference on Green Communications, Computing and Technologies, Nice, France
Garcia-Berna JA, Fernandez-Aleman JL, Carrillo-de-Gea JM, Toval A, Mancebo J, Calero C,
Garcia F (2020) Energy efficiency in software: a case study on sustainability in Personal Health
Records. J Clean Prod

Chapter 5 m)
Patterns and Energy Consumption: Design, <o
Implementation, Studies, and Stories

Daniel Feitosa, Luis Cruz, Rui Abreu, Jodo Paulo Fernandes, Marco Couto,
and Joao Saraiva

Abstract Software patterns are well known to both researchers and practitioners.
They emerge from the need to tackle problems that become ever more common in
development activities. Thus, it is not surprising that patterns have also been
explored as a means to address issues related to energy consumption. In this chapter,
we discuss patterns at code and design level and address energy efficiency not only
as the main concern of patterns but also as a side effect of patterns that were not
originally intended to deal with this problem. We first elaborate on state-of-the-art
energy-oriented and general-purpose patterns. Next, we present cases of how pat-
terns appear naturally as part of decisions made in industrial projects. By looking at
the two levels of abstraction, we identify recurrent issues and solutions. In addition,
we illustrate how patterns take part in a network of interconnected components and
address energetic concerns. The reporting and cases discussed in this chapter
emphasize the importance of being aware of energy-efficient strategies to make
informed decisions, especially when developing sustainable software systems.

D. Feitosa (I<)
University of Groningen, Groningen, The Netherlands
e-mail: d.feitosa@rug.nl

L. Cruz
Delft University of Technology, Delft, The Netherlands
e-mail: l.cruz@tudelft.nl

R. Abreu
Faculty of Engineering, University of Porto & INESC-ID, Porto, Portugal
e-mail: rui @computer.org

J. P. Fernandes

CISUC and University of Coimbra, Coimbra, Portugal
e-mail: jpf@dei.uc.pt

M. Couto - J. Saraiva

HASLab/INESC TEC and University of Minho, Braga, Portugal
e-mail: marco.l.couto@inesctec.pt; jas@di.uminho.pt

© Springer Nature Switzerland AG 2021 89
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_5&domain=pdf
mailto:d.feitosa@rug.nl
mailto:l.cruz@tudelft.nl
mailto:rui@computer.org
mailto:jpf@dei.uc.pt
mailto:marco.l.couto@inesctec.pt
mailto:jas@di.uminho.pt
https://doi.org/10.1007/978-3-030-69970-3_5#DOI

90 D. Feitosa et al.
5.1 Introduction

The existence of patterns cannot be dissociated from our daily life. We may reason
about patterns as concrete observations that are grouped into coherent categories.
Patterns help us understand and describe our world. As an example, the evolutionary
theory proposed by Charles Darwin was synthesized based on his understanding of
patterns emerging from the observations he conducted during his voyage. Patterns
can also be found in music, and in this context it has been shown that only a few
musical notes sustain the essential melody of landmark music pieces.

Patterns are also well known to both researchers and practitioners in the software
development world. In between the various definitions and types of patterns, there is
a common understanding that they encapsulate solutions to recurrent problems
[1]. A collection of recurrent problems that have become ever more apparent
involves energy efficiency, as the growing energy demand associated with ICT
usage is already a concern [2]. Notably, energy consumption is an issue with data/
computation centers and their massive energy footprint [3], and, nowadays, the
ubiquitous use of battery-powered devices such as smartphones [4].

Within ICT, energy consumption is an issue that needs to be addressed not only at
hardware and firmware level, but also at the software, or application, level. Indeed,
energy efficiency is a multifaceted problem, which encompasses networks, hard-
ware, drivers, operating systems, and applications. In this chapter, we focus on
applications and address the problems as systems of forces that can be fully or
partially addressed by patterns [1]. In this context, software optimizations have been
discussed at source code, design, and architecture level, from which we focus on the
first two.

At the code level, we find solutions that are platform-specific and also commonly
language-specific, which benefit from being more straightforward to apply. As the
scopes open up, design patterns can be language-agnostic and generalizable to a
broader range of software domains.

In this chapter, we aim to demonstrate how patterns with various scopes can help
build energy-efficient software. Moreover, we discuss patterns that address energy
consumption as the main concern (i.e., energy patterns), and patterns that were not
initially intended to serve that purpose but have an energy-related side effect. To that
end, the subject matter is organized as depicted in Fig. 5.1. In particular, we present
energy-oriented code patterns in Sect. 5.2, move on to energy-oriented design
patterns in Sect. 5.3, and elaborate the impact of general purpose design patterns
on energy efficiency in Sect. 5.4.

Finally, we also illustrate how patterns appear naturally as part of decisions made
in industrial projects. Thus, in Sect. 5.5 we present cases from open source projects
where energy efficiency issues were factored in and a pattern was applied as part of
the solution.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 91

Fig. 5.1 Types of pattern .
solution addressed in the scope of solution
chapter

code design

Section 5.2 Section 5.3

pattern
main concern

Section 5.4

pattern

energy consumption
side effect

5.2 Code-Level Patterns

In this section, we focus on code-level patterns that have been shown to exhibit
greedy energy consumption behaviors. Identifying patterns at the code level facili-
tates their transformation into more efficient alternatives, an approach that is widely
known as refactoring. The potential of code refactorings is maximized when it is
possible to automatically realize them, namely using tools that locate code fragments
that can be improved and replacing them with the documented alternatives.

The patterns we consider in this section are specific to mobile application
development. Mobile devices are these days an essential component of our daily
lives, to support both our personal and professional activities. In this context, battery
life is one of the principal factors that influence the satisfaction of mobile device
users [5], and a recent survey in the US ranked battery life as the most important
factor influencing purchasing decisions [6]. Battery life is such a concern that it has
been suggested that nine out of ten users suffer from anxiety when their devices are
low on battery [7], and this anxiety is under discussion within the Diagnostic and
Statistical Manual of Mental Disorders as a potential clinical condition named
nomophobia, which reflects the fear of not being able to use one’s mobile phone [8].

The perception that an application causes excessive battery consumption is
actually one of the most common causes for bad app reviews in app stores
[9, 10]. This has raised the awareness of mobile application developers regarding
the impact their applications have on battery life. In fact, while it has been shown that
developers often seek information on how to improve the energy profile of their
applications, they rarely receive proper advice [11-13].

Our focus is on code patterns reported as energy greedy within Android. We will
refer to these patterns as EGAPs—Energy-Greedy Android Patterns. We synthesize
contributions from several works that have documented and validated energy-
oriented code refactorings. Specifically, we focus on energy-greedy patterns that

92 D. Feitosa et al.

have been automatically refactored in a large-scale empirical study involving 600+
applications [14]. We describe each pattern using the template shown next.'

Field Description

Problem A recurrent energy efficiency problem where the pattern can be used.
Solution Generic and reusable solution to the problem.

Example An illustration of a practical usage of the energy pattern.

The problem and solution for each pattern are tentatively provided by high-level
descriptions that we believe can be understood by a broad audience of users and
developers. Complementarily, we provide concrete instances of each pattern as snip-
pets whose interpretation is specially oriented toward Android application developers.

5.2.1 Patterns

Below we describe each type of pattern that we considered in [14].
Pattern: Draw Allocation

This pattern is detected by Android lint,2 and is the first of five EGAPs whose
energy impact analysis was included in [15, 16].

Problem Draw Allocation occurs when new objects are allocated along with draw
operations, which are very sensitive to performance. In other words, it is a bad design
practice to create objects inside the onDraw method of a class which extends a View
Android component.

Solution The recommended alternative for this EGAP is to move the allocation of
independent objects outside the method, turning it into a static variable.

Example The code snippet to the left should be transformed to the one on the right.

public class CMView extends View { public class CMView extends View {
@Override RectF rectFl = new RectF(); v
protected void onDraw(Canvas c) { @Override
RectF rectFl = new RectF(); X protected void onDraw(Canvas c) {
If(!clockwise) { if (!clockwise) {
rectFl.set (X2-r, Y2-r, X2+r, rectFl.set (X2-r, Y2-r, X2+r,
Y2+r) ; Y2+r) ;
Py} bl

'When the practical usage is obvious, we will exclude the illustrative example.

2Lint is a code analysis tool, provided by the Android SDK, which reports upon finding issues
related to the code structural quality.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 93

Pattern: Wakelock

Wakelock is the second Android lint performance issue [15-18].

Problem Wakelock occurs whenever a wakelock, a mechanism to control the
power state of the device and prevent the screen from turning off, is not properly
released, or is used when it is not necessary.

Solution The alternative here would be to simply add a release instruction.

Example The code snippet to the left should be transformed to the one on the right.

public class DMFSetTempo extends
o q
PowerManager.WakeLock 1;
public void onClickBtStart (View

public class DMFSetTempo extends
{

PowerManager.WakeLock 1;
public void onClickBtStart (View

v) |
e wakelock.acquire(); v
wakelock.acquire(); v) -acq ;
) .
@Override () @Og?‘frlde% .
public void onPause() { public void onPause() {

super.onPause () ;
if (l.isHeld()) l.release(); v
}

super.onPause () ; X }

}
}

There exist other types of wakelocks for resources such as Sensor, Camera, and
Media. They differ from the Screen only in the mechanism used to release the lock.

Pattern: Recycle

Recycle is another Android lint performance issue [15, 16].

Problem Recycle is detected when some collections or database-related objects,
such as TypedArrays or Cursors, are not recycled or closed after being used. When
this happens, other objects of the same type cannot efficiently use the same
resources.

Solution The alternative in this case would be to include a close method call before
the method’s return.

Example The code snippet to the left should be refactored to the one on the right.

. X X public Summoner getSummoner (int id) {
public Summoner getSummoner (int id) { SOLiteDatabase db =

SQLiteDatabase db = . B
th . tReadableDatab 7
this.getReadableDatabase () ; is.getReadablebatabase ()

Cursor ¢ = db.query(...);
Cursor ¢ = db.query(...);

c.close(); v
return summoner;

! }

return summoner; X

94 D. Feitosa et al.

Pattern: Obsolete Layout Parameter

The fourth Android lint performance issue, Obsolete Layout Parameter, is the
only one that is not Java-related [15, 16].

Problem The view layouts in Android are specified using XML, and they tend to
suffer several updates. As a consequence, some parameters that have no effect in the
view may still remain in the code, which causes excessive processing at runtime.

Solution The alternative is to parse the XML syntax tree and remove these useless
parameters.

Example The next snippet shows an example of a view component with parameters
that can be removed.

<TextView android:id="@+id/centertext"
android:layout width="wrap content" android:
layout _height="wrap content"
android:text="remote files"
Xlayout centerVertical="true" Xlayout alignParentRight="true" >
</TextView >

Pattern: View Holder

View Holder is the last Android lint performance issue [15, 16], whose alterna-
tive intends to make a smoother scroll in List Views.

Problem The process of drawing all items in a List View is costly, since they need
to be drawn separately.

Solution To reuse data from already drawn items, therefore reducing the number of
calls to findViewBylId(), known to be energy greedy [19].

Example Every time getView() is called, the system searches on all the view
components for both the TextView with the id “label” (@) and the ImageView with
the id “logo” (@), using the energy-greedy method findViewBylId(). The alternative
version is to cache the desired view components, with the following approach:

public View getView (int p, View v, ViewGroup par) {
LayoutInflater inflater = ...

v = inflater.inflate (R.layout.apps , par, false) ;
TextView txt=(TextView) v.findViewById(R.id.label); @
ImageView img= (ImageView) v.findViewById(R.id.logo); @
return row;

}

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 95

static class HolderItem {
TextView txtView; ImageView imgView;

public View getView (int p, View v, ViewGroup par) {
HolderItemhld; LayoutInflater inflater = ...

if (v ==null) { (3]

v = inflater.inflate(...); hld = new HolderItem() ;
hld.txtView = (TextView) v.findViewById (...); (4]
hld.imgView = (ImageView) v.findViewById (...); (5]

v.setTag (hld) ;
} else { h1d = (HolderItem) v.getTag(); } » (6]
TextView txt = hld.txtView; ImageView img = hld.imgView;

.

Condition © evaluates to true only once, which means instructions @ and @
execute once, i.e., findViewByld() executes twice, and its results are stored in the
ViewHolderItem instance. The following calls to getView() will use cached values
for the view components txt and img (Q).

Pattern: HashMap Usage

This EGAP is related to the usage of the HashMap collection [17, 20-22].

Problem The usage of HashMap is discouraged, since the alternative ArrayMap
is allegedly more energy efficient, without decreasing performance.”

Solution To simply replace the type HashMap, whenever used, by ArrayMap.

Pattern: Excessive Method Calls

Unnecessarily calling a method can penalize performance, since a call usually
involves pushing arguments to the call stack, storing the return value in the appro-
priate processor’s register, and cleaning the stack afterwards.

Problem Excessive Method Calls was explored by [20, 23], showing that the
energy consumption in Android applications can be decreased by removing method
calls inside loops that can be extracted from them.

Solution The alternative is to replace the method call by a variable that is declared
outside the loop, and is initialized with the return value of the method call extracted.

3As stated in the Android ArrayMap documentation: http://bit.ly/32hK0y9.

http://bit.ly/32hK0y9

96 D. Feitosa et al.

Example An example of an extractable method call would be one which receives
no arguments, and is accessed by an object that is not transformed in any way inside
the loop.

Pattern: Member Ignoring Method

This EGAP addresses the issue of having a non-static method inside a class, and
which could be static instead [17, 20].

Problem Having a method not declared as static, but which does not access any
class fields, does not directly invoke non-static methods, and is not an overriding
method. This causes multiple instances of the method to be created and used at
runtime, which can be avoided.

Solution Use static methods as these are stored in a memory block separated from
where objects are stored, and no matter how many class instances are created
throughout the program’s execution, only an instance of such a method will be
created and used. This mechanism helps in reducing energy consumption.

5.3 Energy Design Patterns

In the previous section, we learned about code patterns that are specific to a given
platform (i.e., Android) or paradigm (i.e., object oriented) and how they affect
energy consumption. In this section, we bring these patterns to a higher level of
abstraction: we delve into design patterns that provide reusable solutions that
generalize to any software of a given domain and that are not coupled with any
particular development framework or paradigm.

The energy patterns in this section do not give any particular advice on coding
practices. Rather, they help software engineers create energy-efficient software by
design. Nevertheless, these patterns may have a direct impact on the feature set of the
application and ultimately on the user experience.

In this particular case, we focus on energy patterns in the mobile domain. We
present a catalog of 22 energy patterns that are commonly used for mobile applica-
tions. This catalog is the result of an empirical study with more than 1700 mobile
applications [24] to document energy patterns that are commonly adopted by i10OS and
Android software engineers and are expected to generalize to any mobile platform.

We describe each energy pattern with the template used in the previous section,
explaining the problem and the solution while providing an illustrative example.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 97
5.3.1 Patterns

Below we pinpoint different design patterns to develop energy-efficient mobile
applications.

Pattern: Dark UI Colors

Provide a dark UI color theme to save battery on devices with AMOLED" screens
[25-28].

Problem One of the major sources of energy consumption in mobile devices comes
from the screen. Thus, mobile applications that rely on the screen for all use cases,
such as video apps or reading apps, can significantly drain the battery.

Solution Opt for dark colors when designing the UI. Smartphones typically feature
screens that are more energy efficient with dark colors. Depending on the applica-
tion, users can be given the option to choose between a light and a dark UI theme.
Alternatively, a special trigger (e.g., when battery is running low) can activate the
dark UI theme.

Example In a reading app, provide a theme with a dark background using a light
foreground color to display text. When compared to themes using light background
colors, a dark background will have a higher number of dark pixels.

Pattern: Dynamic Retry Delay

When trying to access a resource that is failing or not responding, increase the
waiting time before attempting a new access.

Problem Mobile apps often need to exchange data with different resources (e.g.,
connect to a server in the cloud). It may happen that the communication with these
resources fails and a new attempt needs to be made. However, if the resource is
temporary, the app will repeatedly try to connect to the resource with no success,
leading to unwanted energy consumption.

Solution After each failed connection, increase the waiting time before the next
attempt. A linear or exponential growth can be used for the waiting interval. Upon a
successful connection or a given change in the context (e.g., network status), the
waiting time can be set back to the original value.

*AMOLED is a display technology used in mobile devices and stands for Active Matrix Organic
Light Emitting Diodes.

98 D. Feitosa et al.

Example Consider the scenario in which an app with a news feed is not able to
communicate with the server to retrieve updates. The naive approach is to continu-
ously poll the server until the connection is successful—i.e., the server is available.
Instead, a dynamic retry delay can be used by, for example, adopting the Fibonacci
series” to increase the time between sequential attempts.

Pattern: Avoid Extraneous Work

Avoid tasks in the mobile application that do not add enough value to the user
experience or whose results quickly become obsolete.

Problem Typically, mobile applications execute multiple tasks at the same time.
However, there are cases in which the results of these tasks are not immediately
presented to the user. For example, when the application is synchronizing real-time
data that does not immediately meet the information needs of the user, it may
become obsolete before the user actually accesses it.

This is even more evident when apps are running in the background. The phone
will be using resources unnecessarily to update data that will never be used.

Solution Define the minimal set of data that is presented to the users. In addition,
disable all the tasks that are not affecting the data being displayed to the user.

Example Consider a plot with a time series of real-time data that is being continuously
updated. When the user scrolls up/down, the plot might move out of the visible area of
the UL In this case, updating the plot is a waste of energy. Drawing operations related to
updating the plot should be ceased and restarted when the plot is visible again.

Pattern: Race-to-idle

Resources or services ought to be closed as soon as possible (e.g., location
sensors, wakelocks, screen) [15, 29-31].

Problem Mobile apps resort to different resources and components that need to be
stopped after being used. After activating a given resource, it starts operating and is
ready to respond to the app’s requests. Even if the app is not making any request, the
resource will waste energy until it is properly closed.

Solution Make sure resources are inactive when they are not necessary by manually
closing them. Static analysis tools may help identify cases of resources that are not
being properly closed—e.g., Facebook Infer, Leafactor [16].

SFibonacci series is a sequence of numbers in which each number is the sum of the two preceding
numbers (i.e., 1, 1, 2, 3, 5, 8, etc.).

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 99

Example Wakelocks are commonly used by mobile applications to prevent phones
from entering sleep mode. Different types of wakelocks can be used; for example,
there are wakelocks specific for the screen, CPU, and so on. Always implement
event handlers that listen to the application events of the entering or leaving
background. Implement handlers for the events that are fired when the app goes to
background, and release wakelocks accordingly.

Pattern: Open Only When Necessary

Open/start resources/services immediately before they are required. This is sim-
ilar to the pattern Race-to-idle.

Problem Resources, such as location sensors or database connections, must be
activated before they are ready to use. Once a given resources is opened, it actively
consumes more energy. Thus, it should only be opened immediately before its usage.
In particular, resources should not be activated upon the creation of the view or
activity where it operates.

Solution Activate resources and services immediately before they are needed. This
will also prevent the activation of resources that are never used [29].

Example In a video call app, the camera is used to share the faces or images of the
different participants in the call. The camera should only start capturing video when
it is actually being displayed in the view to the user.®

Pattern: Push over Poll

Using push notifications is more energy efficient than actively polling for
notifications.

Problem Mobile apps typically resort to notifications to get updates from resources
(e.g., from a server). The naive approach to getting updates is by reaching the
resource and asking it for updates. The downside is that, by continuously asking a
server for updates, it might be making several requests without any update. This
leads to unnecessary energy consumption.

Solution Use push notifications to get updates. Note—for Free and Open Source
applications this is a big challenge because it requires having a cloud messaging

SA real example where the camera was being initiated too early can be found here: https:/github.
com/signalapp/Signal-Android/commit/cb9f225t5962d399f48b65d5f855¢e11f146¢c bbcb (visited
on June 15, 2020).

https://github.com/signalapp/Signal-Android/commit/cb9f225f5962d399f48b65d5f855e11f146c%20bbcb
https://github.com/signalapp/Signal-Android/commit/cb9f225f5962d399f48b65d5f855e11f146c%20bbcb

100 D. Feitosa et al.

server set-up. For example, in the case of Android there is no good open source
alternative to Google’s Firebase Cloud Messaging.

Example In a social network app, instead of actively reaching the server to provide
relevant notifications to the user, the app should prescribe push notifications.

Pattern: Power Save Mode

Implement an alternative execution mode in which some features are dropped to
ensure energy efficiency. In some cases, user experience is hindered.

Problem When the battery level is low, users may want to make sure they will not
lose connectivity before reaching a power station and charging their phone.

Solution Implement a power save mode that only provides the minimum function-
ality that is essential to the user. This mode can be manually activated by the user or
through power events (e.g., when battery reaches a given level) raised by the operative
system. In some cases, the mobile platform already features this out of the box—e.g.,
this is enforced in iOS for use cases using the BackgroundSync APIs.

Example Reduce update intervals, disable less important features, or disable Ul
animations.

Pattern: Power Awareness

Features operate in a different way regarding the battery level or depending on
whether the device is connected to a power station.

Problem There are some features that, despite improving user experience, are not
strictly necessary for users—e.g., Ul animations. Moreover, there are low-priority
operations that do not need to be executed immediately (e.g., backup data in the cloud).

Solution Adjust the feature set according to its power status. Even when the device
is being charged, the battery level may be low and it is better to wait for a higher
battery level before executing any intensive task.

Example Postpone intensive tasks, such as cloud syncing or image processing,
until the device reaches a satisfactory power level, typically above 20%.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 101

Pattern: Reduce Size

Minimize the size of data being transferred to the server.

Problem Mobile apps typically transfer data with servers over an internet connection.
Such operations are battery intensive and should be reduced to a minimum. There are
cases in which the size of the data can be reduced without affecting user experience.

Solution Exclusively transmit data that is strictly necessary and compression tech-
niques whenever possible.

Example Enable gzip content encoding when sending data over HTTP requests.

Pattern: WiFi over Cellular

Postpone features that require a heavy data connection until a WiFi network is
available.

Problem Mobile apps typically need to synchronize data with a server. However,
cellular data connections (e.g., 4G) tend to be energy greedy.

Solution WiFi connections are usually a more energy-efficient alternative to cellu-
lar connections [32]. These are use cases that do not require real-time sync and
should be postponed until a WiFi connection is available.

Example Consider a music stream application that allows users to play their favorite
songs and to organize them in playlists. In addition, the app allows users to play the
playlists offline—i.e., when there is no internet connection. When a new song is added to
a given offline playlist, the app waits for a WiFi connection before downloading the song.

Pattern: Suppress Logs

Avoid intensive logging as much as possible. Overusing logging leads to signif-
icant energy consumption, as found in previous work [33].

Problem Logging is commonly used to simplify debugging. However, there is a
trade-off between having the necessary information and energy efficiency that needs
to be considered.

Solution Manage logging rates to a maximum of one message per second.

Example In a mobile app that is processing real-time data, avoid logging this
behavior. If necessary, enable logging only for debugging executions.

102 D. Feitosa et al.

Pattern: Batch Operations

Bundle multiple operations instead of running them separately. This will avoid
putting the device into an active state many times in the same time window.

Problem Executing operations separately leads to extraneous energy consumption
related to turning a particular resource on and off—this is typically called fail energy
consumption [23, 34, 35]. Executing a task often induces tail energy consumption
related to starting and stopping resources (e.g., starting a cellular connection).

Solution Combine multiple operations in a single one to optimize tail energy
consumption. Although background tasks can be expensive, very often they have
flexible time constraints. For example, a given background task that needs to be
executed eventually does not need to be executed at a specific time. Thus, it can wait
for other operations to be scheduled before it is executed.

Example Use Operative System-wide APIs tailored for job scheduling (e.g.,
‘android.app.job.JobScheduler,” ‘Firebase JobDispatcher’). These APIs manage mul-
tiple background tasks occurring in a device to guarantee that the device will exit sleep
mode (or doze mode) only when the tasks in the waiting list really need to be executed.

Pattern: Cache

This pattern proposes the use of cache mechanisms to avoid unnecessary operations.

Problem A common functionality in mobile apps is to display data fetched from a
remote server. A potential issue with that need is that an app may fetch the same data
from the server multiple times during the lifetime of the mobile app.

Solution Mobile apps should put in place caching mechanisms to avoid fetching
data from the server [36]. Moreover, lightweight strategies to decide whether to
refresh the data in the cache need to be implemented to guarantee that the mobile app
is displaying the up-to-date data.

Example Consider a social network app that displays profiles of other users.
Instead of downloading basic information and profile pictures every time a given
profile is opened, the app can use data that was locally stored from earlier visits.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 103

Pattern: Decrease Rate

This pattern proposes to increase the time between syncs/sensor reads as needed.

Problem It is common for mobile apps to perform certain operations periodically.
A potential issue is that, if the time between two executions is small, the app will be
executing operations more often.

Solution Increase the time-between-operations to find the minimal time interval
that would compromise user experience, while having a positive impact on the
energy consumption. This time-between-operations can be manually tuned by
developers, defined by users, or even found in an empirical way. One could also
envisage more sophisticated and dynamic solutions that can also use context (e.g.,
time of day, history data) to infer the optimal update rate.

Example Consider a news app that gathers news from different sources, doing so by
fetching the news of a given source in its own thread. Instead of triggering updates for
all threads at the same rate, use data from previous updates to infer the optimal update
rate of these threads. Connect to the news source only if updates are expected.

Pattern: User Knows Best

This pattern proposes to offer capabilities to allow users to enable/disable certain
features to save energy.

Problem The number of features offered by a mobile app and power consumption is
a trade-off generally considered when devising energy-efficient solutions. However,
there is no one-size-fits-all user as far as this trade-off is concerned. There are users
who might be satisfied with fewer features but better energy efficiency, and vice versa.

Solution The possibility for users to customize their preferences regarding energy-
critical features is therefore important. This customization should be intuitive and an
optimal default set of preferences.

Example Consider a mail client for POP3 accounts as an example. One can imagine
that a user may want their mail client to check/poll for new messages every other
minute, and others—depending on the time of day—much less often. As there is no
automatic mechanism to infer the optimal update interval, the best option is to allow
users to define it.

104 D. Feitosa et al.

Pattern: Inform Users

This pattern proposes to inform the user when the app is performing any battery-
intensive operation.

Problem It is known that there are use cases in mobile apps that require a substan-
tial amount of energy. In turn, one can activate features to be energy efficient at the
cost of user experience. We argue that if users do not know the expected behavior
from the mobile app, they may flag its operation as failing.

Solution Inform users about battery-intensive operations or energy management
features. This could be done by flagging (e.g., via alerts) this information in the user
interface.

Example Alert users when (1) a power-saving mode is active or (2) a battery-
intensive operation is being executed.

Pattern: Enough Resolution

This pattern proposes that data should be pulled or provided with high accuracy
only when strictly necessary.

Problem Users tend to use precise data points when fetching and/or displaying
data. An issue with such a strategy is that the collection and manipulation requires
more resources, entailing, naturally, high-energy consumption. There are, however,
use cases where dealing with low-resolution data suffices.

Solution Developers should find the trade-off between data resolution and app/user
needs as well as user experience.

Example Take as an example a running app that is able to record running sessions.
The app shows the user the current overall distance to a given location. Instead of
using precise real-time processing of GPS or accelerometer sensors, which can be
energy greedy, a lightweight method could be used to estimate this information with
lower but reasonable accuracy. Evidently, at the end of the session, the accurate
results would still be processed, but without real-time constraints.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 105

Pattern: Sensor Fusion

This pattern proposes using data from low-power sensors to decide whether to
fetch data from high-power sensors.

Problem Operations to interact with distinct sensors or components may be energy
greedy, causing the app to consume a substantial amount of energy. Therefore, such
operations should be executed only in case of absolute necessity.

Solution Making use of data sources that entail low power consumption (such as
alternative low-power sensors) may prevent the need to execute an energy-greedy
operation.

Example As an example, one can imagine using the accelerometer to infer whether
the user has changed location, and only interacting with the energyintensive GPS to
obtain a more precise location in case of a location change.

Pattern: Kill Abnormal Tasks

This pattern proposes to offer capabilities to interrupt energy-greedy operations
(e.g., using timeouts, or users input).

Problem Mobile apps may trigger an operation that unexpectedly consumes more
energy than anticipated (e.g., taking a long time to execute).

Solution Offering an intuitive way for end users to interrupt an energy-greedy
operation would help to fix this issue. Alternatively, a fair timeout could be included
for energy-greedy tasks or wakelocks.

Example As an example, consider a mobile app that features an alarm clock.
Implementing a fair timeout for the duration of the alarm, in case the user is not
able to turn it off, will prevent the battery from being drained.

Pattern: No Screen Interaction

This pattern proposes to allow interaction without using the display whenever
possible.

Problem There are mobile apps that involve constant use of the screen. However,
there may be cases in which the screen can be replaced by less power-intensive
alternatives.

Solution Enable users to use alternate interfaces (e.g. audio) to communicate with
the app.

106 D. Feitosa et al.

Example As an example, consider a navigation app. There are use cases in which
users may be using audio instructions only, having no need the see updates on the
screen. This strategy is commonly adopted by audio players that use the earphone
buttons to play/pause or skip songs.

Pattern: Avoid Extraneous Graphics and Animations

Graphics and animations are at the forefront as far as improving the user expe-
rience is concerned, but can also be battery intensive. Therefore, this pattern pro-
poses to use them with care [37]. This is well aligned with what is recommended in
the official documentation for i0S developers.7

Problem Mobile apps often feature impressive visual effects. However, they need
to be properly tuned to prevent the battery from being drained quickly. This has been
shown to be particularly critical in e-paper devices.

Solution Study the importance and impact of visual effects (such as graphics and
animations) to the user experience. The improvement in user experience may not be
sufficient to overcome the overhead imposed on the energy consumption. Therefore,
developers should consider avoiding using visual effects or high-quality graphics,
and should instead resort to low frame rates for animations when viable and/or
feasible.

Example For instance, high frame rates may make sense while playing a game, but
a lower frame rate may suffice while in the menu screens. In other words, use a high
frame rate only when the user experience requires it.

Pattern: Manual Sync, On Demand

This pattern proposes to execute tasks if, and only if, requested by the user.

Problem Some tasks may be energy intensive, but not really needed to give the best
user experience of the app. Hence, they could be avoided.

Solution Providing a mechanism in the UI (e.g., button) which allows users to
trigger energy-intensive tasks would be helpful in letting the user decide which tasks
he wants to trade off for energy consumption.

"Energy Efficiency Guide for iOS Apps—Avoid Extraneous Graphics and Animations available
here: https://developer.apple.com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-iOS/AvoidExtraneousGraphicsAnd Animations.html (visited on June 15, 2020).

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 107

Example Take as an example a beacon monitoring app. There may be situations in
which the user does not need to keep track of her/his beacons. This app could
implement a mechanism to let the user (manually) start and stop monitoring.

5.4 Object-Oriented Patterns

In this section, we focus on patterns that are tailored to a certain programming
paradigm. In particular, we discuss the Gang of Four (GoF) patterns, a popular
catalog of object-oriented (OO) design patterns proposed by Gamma, Helm, John-
son, and Vlissides [38] that describe recurring solutions to common OO problems.
Although these patterns do not primarily target energy efficiency, they do have an
impact that ought to be considered when designing sustainable systems. To refresh
the reader’s mind, we present two such patterns.

Pattern: Template Method

An algorithm must accommodate custom steps while maintaining the same
overall structure [38].

Problem Software systems oftentimes implement behaviors that are similar,
containing only a couple of steps that differ. Maintaining the code for each behavior
independently incurs greater effort. Moreover, there is a risk that patches will not be
applied uniformly among similar instances, which may unnecessarily (and poten-
tially erroneously) diverge the designs.

Solution The overarching steps among all behaviors should be implemented in a
single component. The steps that are implemented differently between the behaviors
are accessed via an interface. The individual behaviors must now inherit the general
component and only implement the interfaced steps.

Example A library implements several supervised learning classification algo-
rithms. The steps to create and use such an algorithm are similar, e.g., configure
model, define features and response variables, train model, and predict new values.
In this scenario, template methods can be used on steps such as train and predict,
while centralizing the implementation of the overall classification task.

108 D. Feitosa et al.

Pattern: State

A single component may alter its states with different behaviors as if the com-
ponent had been replaced [38].

Problem One or more behaviors of a component depend on a state that is only
identifiable at runtime. Although the state is mutable, the set of possible states and
the different ways behavior is implemented are well defined.

Solution The component consists of an interface accessible to other components
(i.e., clients). Each state implements the interface. The state of the component is
reassessed internally upon the execution of an implemented behavior.

Example A sensor component offers the behaviors read_data, turn_on, turn_off,
and get_state, which are implemented for the states enabled, disabled, and defec-
tive. Upon an unsuccessful read in the enabled state, the component changes its state
to defective. Otherwise, the state is defined via turn_on and turn_off.

The GoF patterns can be grouped according to the purpose they serve, i.e., to
create objects, to organize structure, or to orchestrate behavior. A pattern instance
comprises the association of one or more classes and interfaces fulfilling the various
roles described by the pattern. For example, the instance of a State pattern comprises
an interface that is implemented on a set of state classes that can provide a different
behavior for the predefined actions, which are in turn accessed by a context (client)
class.

As the reader may already know or have noticed by now, the GoF patterns do not
address energy problems by intent. However, design pattern instances (like any
design) have effects on quality attributes. Moreover, the instantiations of a design
pattern are not uniform, nor are their effects on quality attributes [39]. In particular,
several studies suggest that the effect of a pattern on a quality attribute depends on
factors such as the number of classes, invoked methods, and polymorphic methods
[39-41].

Considering the systematic use of OO features (e.g., polymorphism) in pattern
instances, one may expect a potential impact (positive or negative) on energy
consumption. Furthermore, researchers consistently find that, at least on Java sys-
tems, approximately 30% of the classes participate in one or more instances of GoF
patterns [42—44]. This picture adds up to a growing concern and interest in the
research community. In this context, if a pattern instance is not the optimal design
solution, an alternative (non-pattern) design solution can be applied. Several authors
(including GoF design pattern advocates) have proposed such alternatives [38, 45—
49].

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 109

In efforts to investigate the aforementioned effect, Litke et al. [50] studied the
energy consumption of five design patterns® through six toy examples and were able
to detect a negligible consumption overhead for the Factory Method and Adapter
pattern. Sahin et al. [51] investigated 15 design patterns’; however, there were some
inconclusive results, as they could observe both an increase and a decrease in energy
consumption. To shed further light on the matter, Noureddine and Rajan [52]
examined in detail two design patterns for which they identified a significant
overhead, namely Observer and Decorator patterns. The comparison involved not
only pattern and alternative non-pattern solutions but also a transformed pattern
solution that optimizes the number of object creations and method calls. Although
the pattern solution showed overheads between 15% and 30%, the optimized
solution reduced these observations by up to 25%.

The preceding work shows that there is indeed a potential systematic effect of
GoF patterns in energy consumption and that negative effects may be countered on
certain cases. Such knowledge is relevant for both greenfield projects (i.e., fresh
development), where it can support an energy-smart application of patterns, and
brownfield projects (e.g., refactoring of a system to a new purpose), where it can
inform decisions on what parts of the system to refactor. However, to fulfill these
goals, more insights and guidelines are necessary to fully understand what influences
the energy consumption of GoF patterns.

To that end, one of the authors was the lead researcher in a study to investigate the
effect of Template Method and State/Strategy patterns on energy consumption [53].
In particular, an experiment was set up to compare the energy consumption of
pattern and alternative (non-pattern) solutions and, more importantly, to examine
factors that influenced the observed results. To improve accuracy, the energy
measurements were collected at both system and method level. The energy effi-
ciency of pattern instances was analyzed at the method level, from which both the
size (measured in source lines of code—SLOC) and the number of foreign calls
(measured via the message passing coupling metric—MPC'?) were assessed.

The results of the study showed that the non-pattern solutions consume less
energy than their pattern counterpart. However, as in other studies, there were
cases in which the pattern solution had a similar or marginally lower energy
consumption. One of the main contributions of this work is the investigation of the
related factors. Upon examining the SLOC and MPC metrics, it was possible to
establish that instances of GoF patterns tend to provide an equitable or more energy-
efficient solution when used to implement logic with longer methods and multiple
calls to external classes, i.e., complex behaviors. These findings are illustrated in
Fig. 5.2, which compares the energy consumption of pattern (y-axis, left chart) and
non-pattern (x-axis, left chart) solutions for all assessed methods. These data points

8Factory Method, Adapter, Observer, Bridge, and Composite.

9 Abstract Factory, Bridge, Builder, Command, Composite, Decorator, Factory Method, Flyweight,
Mediator Observer, Prototype, Proxy, Singleton, Strategy, and Visitor.

""Number of invocations to methods that are not owned or inherited by the class being measured.

110 D. Feitosa et al.

2 (a) Comparison of energy consumption (b) Clusters' metrics average
2 A 2.0 .
_§ Cluster
£ 2000 e A
g 1500 ° § '3 5
3 - & N
£]
2 1000 Cluster & 1.0
L . . A £
) . g
B =
§ 500 = 005
a C
£ D
g
S 0 v v v r v v v v v
o 0 500 1000 1500 2000 2 3 4 5 6
Consumption of non-pattern solution (in Joules) Cluster's average SLOC

Fig. 5.2 Comparison of energy consumption and associated factors

are clustered by energy efficiency (distinguished by shape and color) and the average
SLOC and MPC of each cluster are depicted in the right-hand chart.

These findings serve to reiterate and discuss a set of recurring concerns around the
use of GoF patterns. First, they should only be applied if the extra (design) com-
plexity that they introduce is lower than the one that they resolve. In other words, if
the context or logical complexity is trivial, the design solution should also be trivial.
Otherwise, quality attributes, including energy efficiency, are likely to deteriorate
[40, 41]. For example, longer methods reduce the ratio between localization time of
the overall computation (i.e., logic) and thus also the overall overhead caused by the
polymorphic mechanism.

Finally, note that as patterns promote improved structuring of the source code,
energy efficiency may also be achieved through more efficient bytecode. For
example, we observed that the Java Virtual Machine applies internal optimizations
when pattern-related methods comprise a set of external invocations (i.e., to methods
that are not owned or inherited by the pattern class). Such optimizations might not be
triggered in a non-pattern alternative, as the structure is altered.

5.5 Patterns in Context

In this section, we present a series of cases describing situations in which patterns
can help improve the energy consumption of software-intensive systems. These
cases were extracted from real projects or created based on scenarios that practi-
tioners may regularly encounter. As the cases comprise the application of patterns,
we resort to a well-known template for capturing design decisions related to patterns
described by Harrison et al. [54]. Each case is described according to the fields
presented in Table 5.1. We clarify that there are additional fields available in the
template by Harrison et al., e.g., related patterns and related requirements. However,
we restricted our analyses to the parts of the systems on which we report, and thus we
do not establish links between decisions within a project.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 111

Table 5.1 Template for documenting pattern-related decisions

Field Description
Context Scenario (incl. constraints) in which the pattern is (or would be) applied.
Problem Stakeholders’ concern that must be addressed.

Alternatives Alternatives (according to forces) that have been considered to tackle the issue.

Solution Generic solution (provided by the pattern) to the design problem.
Rationale Rationale of applying the pattern’s solution in relation to the forces.
Pattern Pattern name.

Consequences | Context and implications of applying the pattern.
Notes Relevant points that do not fit in another field.

Source Origin of the case, or description of the fictional context.
Case: Android Token

oken

TokenList 969259 TokenCountDown

(Activity) y{\/lew Component)
Nork VP

704944

Fig. 5.3 The main activity of Android Token

Android Token is an application suited for generating and managing One-Time
Password (OTP) tokens, to be used in software requiring Open Authentication (OATH).
It is completely free and open source, and is available in the F-Droid application catalog.

Context The main purpose of this application is to provide information regarding
the properties of the generated tokens, such as their value, where are they being used,
and how much time is left until the token expires. As such, the application’s main
view (which is managed by the main Activity, depicted in Fig. 5.3) shows a list of all
tokens, with all of the aforementioned properties displayed. Since the information
per token is the same, it is expected that there will be several identical view
components displayed (such as labels or progress bars).

Problem Drawing the same type of view components for each token means repeat-
ing almost the exact same task, but with different values. Once an application is
created, the Android system puts all the metadata of all view components within the
application inside the same wrapper class. Each Activity is then responsible for
fetching the required components to be drawn in their associated layouts. The
fetching process is available in Android only through an API call already known
to be energy greedy [19]. Moreover, due to how Android internally handles the

112 D. Feitosa et al.

process of swapping between activities, moving to a new activity or going back to a
previously visited one means redrawing all the components. As expected, this has a
huge impact on the amount of work performed by both the CPU and the GPU.

Essentially, this problem creates two optimization challenges. The first one is the
excessive number of component fetching and redrawing tasks, which should be
reduced. Second, since the actual component’s draw operation itself is repeated
several times, it should be focused only on the component-drawing process, and not
on tasks such as setting up of any kind, or creating objects.

Solution For the first problem, the solution requires a caching strategy, to avoid
unnecessary fetching, and to optimize the redrawing process. Therefore, the Activity
responsible for fetching and drawing the view components should internally keep a
copied reference of each one, collected the first time they are drawn.

The second problem can be tackled by reducing to a minimum the number of
instructions not related to the drawing process. As such, creating new objects should
be avoided in the onDraw method of a view component, as described in the Android
documentation."'

Rationale Caching view components means reducing the effort required by the
CPU to traverse through (potentially) all existing components, and avoiding unnec-
essary calls to an energy-greedy Android APL It also means reducing the effort
required by the GPU to redraw the same components. Avoiding object allocation
inside the onDraw method is also a CPU effort reduction optimization, since many
objects require an expensive initialization procedure.

Ultimately, reducing the effort on these tasks translates to reducing the energy
consumed by the application, and consequently increasing the device’s battery
uptime.

Pattern The patterns that provide the solution to the aforementioned problems are
commonly known as ViewHolder and DrawAllocation, respectively.

Consequences Implementing both the patterns has a significant impact on code
readability and maintainability, especially for ViewHolder. It requires including an
inner class inside the Activity to hold the view components, and to increase the
complexity of the fetching/drawing method. As for DrawAllocation, developers
should preallocate objects (by using class variables), which, depending on the type
of object, may require additional effort and reduce the code readability. When
applying both patterns on an existing application, it also means restructuring code,
critical to the application, with a new concept, which can be a delicate and costly task.

""Android View documentation: https:/developer.android.com/training/custom-views/custom-
drawing#createobject

https://developer.android.com/training/custom-views/custom-drawing#createobject
https://developer.android.com/training/custom-views/custom-drawing#createobject

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 113

Case: Nextcloud Android app

Nextcloud is a file hosting service client-server solution for file hosting services.
Anyone can install it on their own private server. It is distributed under the General
Public License v2.0 open-source license, which also means that anyone can con-
tribute to the project. It provides a software suite with a cloud server and client apps
for different desktop and mobile platforms. In this particular case, we are looking at
their Android app.

Context As in most mobile apps for cloud services, data exchanging is a recurrent
task in their feature set. In the case of Nextcloud, all the files need to be synchronized
with the different user devices. Thus, whenever a new file is added or updated, it
needs to be uploaded to the cloud server.

Problem Uploading files is a resource-intensive task that may take a few minutes to
execute. This may considerably reduce battery level. However, there are cases in
which the user is not so interested in having all the files immediately uploaded to the
server. Depending on the user context, the trade-off between file consistency and
battery level may be different.

Solution Allow the user to define when the app should prioritize energy efficiency
above other features. Typically, mobile operating systems already provide a power
save mode that can be activated manually or when the battery reaches a critical level
(e.g., 20% of full capacity). All the apps have access to this setting and can change
their behavior accordingly. In the example of Nextcloud, developers decided to
deactivate any file upload during this mode.

Rationale The power save mode is a deliberate user action that expresses that the
user is prioritizing battery life above other features. Thus, it is important that energy-
intensive features, such as file transfers, are avoided.

Pattern Power Save Mode.

Alternatives The patterns Inform Users (i.e., warn users of energy-intensive
actions) and Power Awareness (e.g., change behavior according to the battery
level) can also be used in this context.

Consequences This strategy can have a big impact on the user experience. It is
important that users understand that during this mode their files are not going to be
uploaded to the server. Thus, this behavior should be properly flagged in the user
interface, so that users are well informed of it. In this particular case, the Nextcloud
app allows users to override the Power Save Mode behavior by clicking on a button
that manually triggers a synchronization with the server. Finally, some studies have
found evidence that, when not coded properly, this pattern may hinder the main-
tainability of the project.

114 D. Feitosa et al.

Notes This pattern is usually supported by any modern mobile operating system. It
is always a good practice to implement this pattern in a mobile app.

Source This case is reported in the Nextcloud app’s GitHub project: https://github.
com/nextcloud/android/commit/8bc432027e0d33e8043cf401922

Case: K-9 Mail

K9-Mail is a free and open-source e-mail client for Android. It was first written in
2008 and it is still under active development, being one of the oldest Android apps.
Like any mobile application, K-9 Mail runs under limited energy resources. Battery
life needs to be optimized to prevent hindering user experience. Thus, along the
history of its project, we encounter a number of code changes that were made to
improve energy efficiency.

Context An important activity done by an e-mail client app is synchronizing data
and communicating with e-mail providers. For example, when new emails appear in
the user’s inbox, the app needs to communicate with the server and download this
new data.

Problem Servers do not always work as intended. There are many reasons for
servers being unreachable: slow or no internet connection, too many users accessing
the server, server is down for maintenance, and so on. This means that the features
requiring server communication will fail until the required server can be reached
again. Typically, the communication can be established after a few unsuccessful
attempts. Thus, it is common that for asynchronous tasks the app will try the
communication again after some delay. However, in some cases the server may be
unreachable for hours or days. This means that the app will silently be draining the
battery while continuously attempting to establish a connection with the server.
Debugging this behavior is not trivial since the app will not necessarily fail but the
task keeps running in the background. In this particular case, K9-Mail is trying to
communicate with the server to set up the synchronization mechanism IMAP IDLE
protocol.'?

Solution The typical fix for this situation is creating a threshold for the maximum
number of times a communication can fail. After this defined threshold, the app
should permanently stop trying to reach the server. In addition, it is a good practice
to increase the delay between attempts. For example, while the initial attempts can be
made within a few seconds, the following delays should be subsequently increased.

Rationale Often when a server is not reachable within seconds, it is due to a more
severe communication problem. Thus, it is unwise to continuously attempt new

2 IMAP IDLE is a feature defined by the standard RFC 2177 that allows a client to indicate to the
server that it is ready to accept real-time notifications.

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf401922
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf401922

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 115

connections. It is better to kill the task and wait for the user to trigger a new attempt
later. This approach gives more control to the user to define whether (1) the task is
indeed critical and battery life is not so important or (2) the other way around.

Pattern This pattern is commonly known as Dynamic Retry Delay.

Alternatives Alternatives (according to forces) that have been considered to tackle
the issue.

Consequences The main consequence of this approach is that new code needs to be
added to accomplish this behavior. It is always a good practice to use existing APIs
to schedule this kind of task in the background.

Notes The same problem can be found in other features of a mobile app, for
example syncing with a wearable device, getting location data, and accessing.

Source This issue was found by K-9 Mail developers and their solution can be
found on GitHub: https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d

Case: WebAssembly design

WebAssembly is an assembly-like language that can be executed in modern web
browsers.'> With this context in focus, the language was designed to produce a
compact binary that can be executed with near-native performance, i.e., comparable
to binaries compiled for native platforms (e.g., x86, ARM)."*

The WebAssembly project has a repository dedicated to its design'> and the bug
tracking system is used to discuss issues related to it. Among the discussed issues are
matters related to energy efficiency.

Context The WebAssembly group aims at providing a Just-in-Time (JIT) interface
part of its specification.'® However, the level of detail provided in the specification
dictates the level of flexibility that library implementations would have. For exam-
ple, depending on the level of detail in the specification, a library could allow for
more undefined behaviors, e.g., at what moment a function definition is evaluated
and how deep the checking goes.

Problem The specification of the moment in which a function is evaluated also
requires the specification of when errors are reported. This concern was brought up
and discussed in an issue opened on the aforementioned GitHub repository.'” In

Bhitps://developer.mozilla.org/en-US/docs/WebAssembly
“https://webassembly.org/
Bhttps://github.com/WebAssembly/design

lf’https :/Iwebassembly.org/docs/jit-library/
https://github.com/WebAssembly/design/pull/719

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d
https://developer.mozilla.org/en-US/docs/WebAssembly
https://webassembly.org/
https://github.com/WebAssembly/design
https://webassembly.org/docs/jit-library/
https://github.com/WebAssembly/design/pull/719

116 D. Feitosa et al.

short, developers argued about the proper moment for a JIT compiler to flag a
malformed or not fully implemented feature (e.g., function or module) as an error.

Alternatives The main alternatives discussed by the developers were threefold:

e Ahead of time. Maintain the current situation and enforce the validation of
features as early as possible. This option provides a more deterministic solution
but also may result in waste of resources.

* Lazy loading. Modify the expected behavior to validate features at call time. This
option allows potential savings w.r.t. resources as modules and functions will
only be validated and loaded if used, which may oftentimes not be the case.

* Mixed approach. Use lazy loading by default, but provide a compiler setting
(WebAssembly.validate) that allows compilation ahead of time. This option will
require library developers to maintain the two behaviors.

Solution Although the aforementioned issue is still open at the time of writing this
chapter, the current solution is to partially abandon WebAssembly.

Rationale A specification that allows for a greater degree of lazy loading gives
library developers the freedom to define the level of aggressiveness of the JIT
compiler and balance responsiveness with other aspects, notably startup perfor-
mance, battery, and memory. Furthermore, some stakeholders expected that
WebAssembly code would be mainly generated by tools, which provides less
room for true positives (i.e., actually malformed or defective features).

Pattern Lazy loading.

Consequences There are three main side effects raised by those involved in the
discussion. First, the JIT compilation is abstracted from developers, who lose some
control over optimization (e.g., for parallelizing loading tasks). However, it is
expected that the benefits outweigh the optimizations that could be manually
implemented. Second, although validation is performed at call time, the time at
which errors are thrown is non-deterministic. This behavior may change entirely if a
variable is set to enforce validation ahead of time. Finally, it is possible that
non-deterministic aspects of the compiler may make testing more complicated.
However, foreseeable problems can be averted by enforcing feature validation
ahead of time (manually or by setting).

Source This issue was found by WebAssembly developers and their solution can be
found at the aforementioned link.

5.6 Conclusions

In this chapter, we addressed energy efficiency as a pattern-related problem, where
issues are not unique and reoccur systematically in a variety of software systems. In
particular, we looked at two levels of abstraction, namely code and design, to

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 117

Fig. 5.4 Word cloud of
chapter content

identify recurrent issues and solutions. Furthermore, we acknowledge that parts of a
system are rarely islands, isolated from each other, and rather comprise a network of
interconnected components, in which other patterns may be in play. Thus, we also
considered and discussed energy efficiency from two perspectives: as a main
concern of patterns and as a side effect of applying patterns.

To consolidate the concepts in this chapter, we showed how the different patterns
were used in four real scenarios. These use cases emphasize the importance of being
aware of energy-efficiency strategies to make informed decisions when developing
sustainable software systems. In Fig. 5.4, we depict the most recurrent words in this
chapter and, in light of the presented knowledge, we provide the following takeaway
messages and advice.

There exists a consolidated list of refactorings for code-level patterns that can
consistently be explored to improve the energy efficiency of Android mobile appli-
cations. Along these lines, we should, however, note that we have previously shown
that combining as many individual refactorings as possible most often, but not
always, increases energy savings. The interested reader may consult all the details
on the magnitude and realization of the expected savings in [14].

On a different level of abstraction, design patterns have been used to improve
energy efficiency. These patterns ought to be considered when designing software
with critical energy requirements, such as mobile applications. By gaining knowl-
edge about these patterns, developers can learn from the vast experiences of different
developers across different platforms.

Finally, even if a pattern is not intended to address energy-related issues, it may
still have a substantial effect on energy consumption. Thus, it is paramount to not

118 D. Feitosa et al.

only be aware of the patterns applied in the system but also how to harvest their
benefits while avoiding detriments to the overall energy consumption of the system.
As a rule of thumb for OO systems, we suggest avoiding the application of patterns
to encapsulate trivial functionality, e.g., small in size or that do not communicate
with other classes.

References

1. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented software
architecture: a system of patterns, vol 1. Wiley
2. Andrae A, Edler T (2015) On global electricity usage of communication technology: trends to
2030. Challenges 6(1):117-157. https://doi.org/10.3390/challe6010117
3. Power consumption in data centers is a global problem. https://www.datacenterdynamics.com/
en/opinions/power-consumption-data-centers-global-problem/. Accessed 10 Jun 2020
4. Pinto G, Castor F (2017) Energy efficiency: a new concern for application software developers.
Commun ACM 60(12):68-75. https://doi.org/10.1145/3154384
5. Thorwart A, O’Neill D (2017) Camera and battery features continue to drive consumer
satisfaction of smartphones in US. https://www.prnewswire.com/news-releases/camera-and-
battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.
html. Accessed 06 Feb 2019
6. The most wanted smartphone features. https://www.statista.com/chart/5995/the-most-wanted-
smartphone-features. Accessed 24 Jan 2018
7. Mickle T (2018) Your phone is almost out of battery. Remain calm. Call a doctor. https://www.
wsj.com/articles/your-phone-is-almost-out-of-battery-remain-calm-call-a-doctor-1525449283.
Accessed 05 Feb 2019
8. Bragazzi NL, Del Puente G (2014) A proposal for including nomophobia in the new dsm-v.
Psychol Res Behav Manag 7:155. https://doi.org/10.2147/PRBM.S41386
9. Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N (2013) Why people hate your app: making
sense of user feedback in a mobile app store. In: Proc. ACM SIGKDD 19th Int. Conf.
Knowledge Discovery and Data Mining (KDD ’13). ACM, Chicago, IL, pp 1276-1284.
https://doi.org/10.1145/2487575.2488202
10. Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain
about? IEEE Softw 32(3):70-77. https://doi.org/10.1109/MS.2014.50
11. Manotas I, Bird C, Zhang R, Shepherd D, Jaspan C, Sadowski C, Pollock L, Clause J (2016) An
empirical study of practitioners’ perspectives on green software engineering. In: Proc. IEEE/
ACM 38th Int. Conf. Software Engineering (ICSE °16), pp. 237-248. IEEE, Austin, TX. https://
doi.org/10.1145/2884781.2884810
12. Pang C, Hindle A, Adams B, Hassan AE (2016) What do programmers know about software
energy consumption? IEEE Softw 33(3):83-89. https://doi.org/10.1109/MS.2015.83
13. Pinto G, Castor F, Liu YD (2014) Mining questions about software energy consumption. In:
Proc. 11th Working Conf. Mining Software Repositories (MSR ’14). ACM, Hyderabad, pp
22-31. https://doi.org/10.1145/2597073.2597110
14. Couto M, Saraiva J, Fernandes JP (2020) Energy refactorings for android in the large and in the
wild. In: Proc. IEEE 27th Int. Conf. Software Analysis, Evolution and Reengineering (SANER
’20). London, ON, pp 217-228. https://doi.org/10.1109/SANER48275.2020.9054858
15. Cruz L, Abreu R (2017) Performance-based guidelines for energy efficient mobile applications.
In: Proc. IEEE/ACM 4th Int. Conf. Mobile Software Engineering and Systems (MobileSoft
’17). IEEE, Buenos Aires, pp 46-57. https://doi.org/10.1109/MOBILESoft.2017.19

https://doi.org/10.3390/challe6010117
https://www.datacenterdynamics.com/en/opinions/power-consumption-data-centers-global-problem/
https://www.datacenterdynamics.com/en/opinions/power-consumption-data-centers-global-problem/
https://doi.org/10.1145/3154384
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.wsj.com/articles/your-phone-is-almost-out-of-battery-remain-calm-call-a-doctor-1525449283
https://www.wsj.com/articles/your-phone-is-almost-out-of-battery-remain-calm-call-a-doctor-1525449283
https://doi.org/10.2147/PRBM.S41386
https://doi.org/10.1145/2487575.2488202
https://doi.org/10.1109/MS.2014.50
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1109/SANER48275.2020.9054858
https://doi.org/10.1109/MOBILESoft.2017.19

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 119

Cruz L, Abreu R (2018) Using automatic refactoring to improve energy efficiency of android
apps. In: Proc. XXI Ibero-American Conf. Software Engineering (CIbSE ’18). Bogota, Colom-
bia, pp 1-14

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2019) On the impact of code
smells on the energy consumption of mobile applications. Inf Softw Technol 105:43-55. https://
doi.org/10.1016/j.infs0f.2018.08.004

Vekris P, Jhala R, Lerner S, Agarwal Y (2012) Towards verifying Android apps for the absence
of no-sleep energy bugs. In: Proc. USENIX 5th Conf. Power-Aware Computing and Systems
(HotPower ’12). USENIX Association, Hollywood, CA

Linares-Vasquez M, Bavota G, Bernal-Cardenas C, Oliveto R, Di Penta M, Poshyvanyk D
(2014) Mining energy-greedy API usage patterns in android apps: an empirical study. In: Proc.
11th Working Conf. Mining Software Repositories (MSR ’14). ACM, Hyderabad, pp 2-11.
https://doi.org/10.1145/2597073.2597085

Carette A, Younes MAA, Hecht G, Moha N, Rouvoy R (2017) Investigating the energy impact
of Android smells. In: Proc. IEEE 24th Int. Conf. Software Analysis, Evolution and
Reengineering (SANER °’17). Klagenfurt, Austria, pp 115-126. https://doi.org/10.1109/
SANER.2017.7884614

Morales R, Saborido R, Khomh F, Chicano F, Antoniol G (2018) EARMO: an energy-aware
refactoring approach for mobile apps. IEEE Trans Softw Eng 44(12):1176-1206. https://doi.
org/10.1109/TSE.2017.2757486

Saborido R, Morales R, Khomh F, Guéhéneuc YG, Antoniol G (2018) Getting the most from
map data structures in Android. Empir Softw Eng 23(5):2829-2864. https://doi.org/10.1007/
$10664-018-9607-8

Li D, Halfond WG (2014) An investigation into energy-saving programming practices for
android smartphone app development. In: Proc. 3rd Int. Workshop on Green and Sustainable
Software (GREENS ’14). ACM, Hyderabad, pp 46-53. https://doi.org/10.1145/2593743.
2593750

Cruz L, Abreu R (2019) Catalog of energy patterns for mobile applications. Empir Softw Eng
24(4):2209-2235. https://doi.org/10.1007/s10664-019-09682-0

Agolli T, Pollock L, Clause J (2017) Investigating decreasing energy usage in mobile apps via
indistinguishable color changes. In: Proc. IEEE/ACM 4th Int. Conf. Mobile Software Engi-
neering and Systems (MOBILESoft *17). IEEE, Buenos Aires, pp 30-34. https://doi.org/10.
1109/MOBILESof£t.2017.17

Li D, Tran AH, Halfond WG (2014) Making web applications more energy efficient for old
smartphones. In: Proc. 36th Int. Conf. Software Engineering (ICSE ’14). ACM, Hyderabad, pp
527-538. https://doi.org/10.1145/2568225.2568321

Li D, Tran AH, Halfond WG (2015) Nyx: a display energy optimizer for mobile web apps. In:
Proc. 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE ’15). ACM,
Bergamo, Italy, pp 958-961. https://doi.org/10.1145/2786805.2803190

Linares-Vasquez M, Bernal-Cardenas C, Bavota G, Oliveto R, Di Penta M, Poshyvanyk D
(2017) Gemma: multi-objective optimization of energy consumption of guis in android apps. In:
Proc. 39th Int. Conf. Software Engineering Companion (ICSE-C ’17). IEEE, Buenos Aires, pp
11-14. https://doi.org/10.1109/ICSE-C.2017.10

Banerjee A, Roychoudhury A (2016) Automated re-factoring of android apps to enhance
energy-efficiency. In: Proc. IEEE/ACM 3rd Int. Conf. Mobile Software Engineering and
Systems (MOBILESoft *16). ACM, Austin, TX, pp 139-150

Liu Y, Xu C, Cheung SC, Terragni V (2016) Understanding and detecting wake lock misuses
for android applications. In: Proc. ACM SIGSOFT 24th Int. Symposium on Foundations of
Software Engineering (FSE °16). ACM, Seattle, WA, pp 396-409. https://doi.org/10.1145/
2950290.2950297

Pathak A, Jindal A, Hu YC, Midkiff SP (2012) What is keeping my phone awake?: Character-
izing and detecting no-sleep energy bugs in smartphone apps. In: Proc. 10th Int. Conf. Mobile
Systems, Applications, and Services (MobiSys ’12). ACM, Windermere, pp 267-280. https://
doi.org/10.1145/2307636.2307661

https://doi.org/10.1016/j.infsof.2018.08.004
https://doi.org/10.1016/j.infsof.2018.08.004
https://doi.org/10.1145/2597073.2597085
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1145/2593743.2593750
https://doi.org/10.1145/2593743.2593750
https://doi.org/10.1007/s10664-019-09682-0
https://doi.org/10.1109/MOBILESoft.2017.17
https://doi.org/10.1109/MOBILESoft.2017.17
https://doi.org/10.1145/2568225.2568321
https://doi.org/10.1145/2786805.2803190
https://doi.org/10.1109/ICSE-C.2017.10
https://doi.org/10.1145/2950290.2950297
https://doi.org/10.1145/2950290.2950297
https://doi.org/10.1145/2307636.2307661
https://doi.org/10.1145/2307636.2307661

120

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

D. Feitosa et al.

Metri G, Agrawal A, Peri R, Shi W (2012) What is eating up battery life on my smartphone: a
case study. In: Proc. 2nd Int. Conf. Energy Aware Computing (ICEAC ’12). IEEE, Morphou,
Cyprus, pp 1-6. https://doi.org/10.1109/ICEAC.2012.6471003

Chowdhury S, Di Nardo S, Hindle A, Jiang ZMJ (2018) An exploratory study on assessing the
energy impact of logging on android applications. Empir Softw Eng 23(3):1422-1456. https://
doi.org/10.1007/s10664-017-9545-x

Corral L, Georgiev AB, Janes A, Kofler S (2015) Energy-aware performance evaluation of
android custom kernels. In: Proc. IEEE/ACM 4th Int. Workshop on Green and Sustainable
Software (GREENS ’15). IEEE, Florence, pp 1-7. https://doi.org/10.5555/2820158.2820160
Huang G, Cai H, Swiech M, Zhang Y, Liu X, Dinda P (2017) DelayDroid: an instrumented
approach to reducing tail-time energy of Android apps. SCIENCE CHINA Inf Sci 60
(1):012106. https://doi.org/10.1007/s11432-015-1026-y

Gottschalk M, Jelschen J, Winter A (2014) Saving energy on mobile devices by refactoring. In:
Proc. 28th Conf. Environmental Informatics (Envirolnfo ’14). BIS-Verlag, Oldenburg, Ger-
many, pp 437-444

Kim D, Jung N, Chon Y, Cha H (2016) Content-centric energy management of mobile displays.
IEEE Trans Mob Comput 15(8):1925-1938. https://doi.org/10.1109/TMC.2015.2467393
Gamma E, Helm R, Johnson R, Vlissides JM (1994) Design patterns: elements of reusable
object-oriented software, 1st edn. Addison-Wesley Professional

Ampatzoglou A, Charalampidou S, Stamelos I (2013) Research state of the art on GoF design
patterns: a mapping study. J Syst Softw 86(7):1945-1964. https://doi.org/10.1016/j.jss.2013.
03.063

Hsueh NL, Chu PH, Chu W (2008) A quantitative approach for evaluating the quality of design
patterns. J Syst Softw 81(8):1430-1439. https://doi.org/10.1016/j.jss.2007.11.724

Huston B (2001) The effects of design pattern application on metric scores. J Syst Softw 58
(3):261-269. https://doi.org/10.1016/s0164-1212(01)00043-7

Ampatzoglou A, Chatzigeorgiou A, Charalampidou S, Avgeriou P (2015) The effect of GoF
design patterns on stability: a case study. IEEE Trans Softw Eng 41(8):781-802. https://doi.org/
10.1109/tse.2015.2414917

Feitosa D, Ampatzoglou A, Avgeriou P, Chatzigeorgiou A, Nakagawa E (2019) What can
violations of good practices tell about the relationship between GoF patterns and run-time
quality attributes? Inf Softw Technol 105:1-16. https://doi.org/10.1016/j.infsof.2018.07.014
Khomh F, Gueheneuc YG, Antoniol G (2009) Playing roles in design patterns: An empirical
descriptive and analytic study. In: Proc. IEEE 25th Int. Conf. Software Maintenance (ICSM
’09). IEEE, Timigoara, Romania. https://doi.org/10.1109/icsm.2009.5306327

Adamczyk P (2004) Selected patterns for implementing finite state machines. In: Proc. 11th
Conf. Pattern Languages of Programs (PLoP *04). Monticello, IL, pp 1-41

Ampatzoglou A, Charalampidou S, Stamelos I (2013) Design pattern alternatives. In: Proc. 17th
Panhellenic Conf. Informatics (PCI *13). ACM, Thessaloniki. https://doi.org/10.1145/2491845.
2491857

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of
existing code. Object technology series. Addison-Wesley

Lyardet FD (1997) The dynamic template pattern. In: Proc. 4th Conf. Pattern Languages of
Programs (PLoP ’97). Monticello, IL, pp 1-8. https://hillside.net/plop/plop/plop97/Pro
ceedings/chai.pdf

Sadde AV, Victério RASS, Coutinho GCA (2010) Persistent state pattern. In: Proc. 17th Conf.
Pattern Languages of Programs (PLoP *10). ACM, Reno, NV. https://doi.org/10.1145/2493288.
2493293

Litke A, Zotos K, Chatzigeorgiou A, Stephanides G (2005) Energy consumption analysis of
design patterns. Proc World Acad Sci Eng Technol 6:86-90

https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1007/s10664-017-9545-x
https://doi.org/10.1007/s10664-017-9545-x
https://doi.org/10.5555/2820158.2820160
https://doi.org/10.1007/s11432-015-1026-y
https://doi.org/10.1109/TMC.2015.2467393
https://doi.org/10.1016/j.jss.2013.03.063
https://doi.org/10.1016/j.jss.2013.03.063
https://doi.org/10.1016/j.jss.2007.11.724
https://doi.org/10.1016/s0164-1212(01)00043-7
https://doi.org/10.1109/tse.2015.2414917
https://doi.org/10.1109/tse.2015.2414917
https://doi.org/10.1016/j.infsof.2018.07.014
https://doi.org/10.1109/icsm.2009.5306327
https://doi.org/10.1145/2491845.2491857
https://doi.org/10.1145/2491845.2491857
https://hillside.net/plop/plop/plop97/Proceedings/chai.pdf
https://hillside.net/plop/plop/plop97/Proceedings/chai.pdf
https://doi.org/10.1145/2493288.2493293
https://doi.org/10.1145/2493288.2493293

51

52.

53.

54.

Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 121

Sahin C, Cayci F, Gutiérrez ILM, Clause J, Kiamilev F, Pollock L, Winbladh K (2012) Initial
explorations on design pattern energy usage. In: Proc. 1st Int. Workshop on Green and
Sustainable Software (GREENS °’12). IEEE, Zurich, pp 55-61. https://doi.org/10.1109/
GREENS.2012.6224257

Noureddine A, Rajan A (2015) Optimising energy consumption of design patterns. In: Proc.
37th Int. Conf. Software Engineering (ICSE ’15). IEEE, pp 623-626

Feitosa D, Alders R, Ampatzoglou A, Avgeriou P, Nakagawa EY (2017) Investigating the
effect of design patterns on energy consumption. J Softw Evol Process 29(2):e1851. https://doi.
org/10.1002/smr.1851

Harrison NB, Avgeriou P, Zdun U (2007) Using patterns to capture architectural decisions.
IEEE Softw 24(4):38-45. https://doi.org/10.1109/MS.2007.124

https://doi.org/10.1109/GREENS.2012.6224257
https://doi.org/10.1109/GREENS.2012.6224257
https://doi.org/10.1002/smr.1851
https://doi.org/10.1002/smr.1851
https://doi.org/10.1109/MS.2007.124

Chapter 6)
Small Changes, Big Impacts: Leveraging oo
Diversity to Improve Energy Efficiency

Wellington Oliveira, Hugo Matalonga, Gustavo Pinto, Fernando Castor,
and Joao Paulo Fernandes

Abstract In this chapter, we advocate that developers should leverage software
diversity to make software systems more energy efficient. Our main goal is to show
that non-specialists can build software that consumes less energy by alternating at
development time between readily available, diversely designed pieces of software
implemented by third parties. By revisiting the main findings of research work we
conducted in the past few years, we noticed that they share a common observation:
small changes can make a big difference in terms of energy consumption. These
changes can usually be implemented by very simple modifications, sometimes
amounting to a single line of code. Based on experimental results, one small change
that could make a big difference is to replace most of the uses of a Hashtable class
with uses of the ConcurrentHashMap class. In most of the cases, it was only
necessary to modify the line where the Hashtable object was created. This simple
reengineering effort promoted a reduction of up to 17.8% in the energy consumption
of Xalan and up to 9.32% for Tomcat, when using the workloads of the DaCapo
benchmark suite.

Conclusions: The main insight we draw is that small changes can make a big
contribution to reducing energy consumption, especially in mobile devices. We have
also witnessed in practice that the huge variability of devices in the market and the
vast number of factors influencing energy consumption is a real problem when
experimenting with energy consumption. To try to minimize this problem, we finally

W. Oliveira - F. Castor
Federal University of Pernambuco, Recife, Brazil
e-mail: fjclf@cin.ufpe.br

H. Matalonga
Minho University, Braga, Portugal
e-mail: hugo@hmatalonga.com

G. Pinto ()
Federal University of Para, Belém, Brazil
e-mail: gpinto@ufpa.br

J. P. Fernandes
CISUC and University of Coimbra, Coimbra, Portugal
e-mail: jpf@dei.uc.pt

© Springer Nature Switzerland AG 2021 123
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_6&domain=pdf
mailto:fjclf@cin.ufpe.br
mailto:hugo@hmatalonga.com
mailto:gpinto@ufpa.br
mailto:jpf@dei.uc.pt
https://doi.org/10.1007/978-3-030-69970-3_6#DOI

124 W. Oliveira et al.

present an initiative that aims to collect real-world usage information about thou-
sands of mobile devices and make it publicly available to researchers and companies
interested in energy efficiency.

6.1 Introduction

In 2012, information and communication technology was estimated to be responsi-
ble for 4.7% of the world’s electrical energy consumption [1]. Although that energy
is to a large extent used to reduce energy consumption in other productive sectors
[1, 2], it is still a considerable percentage. Moreover, that figure is estimated to grow
to between 8 and 21% of the global demand for energy by 2030 [3]. In addition,
energy has a high cost for many organizations [4]. Reducing that cost, even by a
small percentage, can mean savings in the order of millions of dollars.

High energy consumption also has a direct impact on our daily lives, especially
when we consider mobile devices. Long battery life is considered one of the most
important smartphone features by users [5, 6]. In addition, from a sustainability
standpoint, batteries that last longer need to be recharged less often, which also
increases the lifespan of mobile devices. Making the battery last longer with a single
charge involves a combination of energy-efficient hardware, infrastructure software,
and applications.

In the last few years, a growing body of research has proposed methods, tech-
niques, and tools to support developers in the construction of software that consumes
less energy. These solutions leverage diverse approaches such as version history
mining [7], analytical models [8], identifying energy-efficient color schemes [9], and
optimizing the packaging of HTTP requests [10].

In this chapter, we present a complementary approach. We advocate that devel-
opers should leverage software diversity to make software systems more energy
efficient. Our main insight is that non-specialists can build software that consumes
less energy by alternating at development time between readily available, diversely
designed pieces of software implemented by third parties. These pieces of software
can vary in nature, granularity, and quality attributes. Examples include data struc-
tures and constructs for thread management and synchronization.

Diversity can be leveraged in a number of different situations to improve the
quality of both software systems and the processes through which they are built.
According to the Merriam-Webster dictionary, diversity is “the quality or state of
having many different forms, types, ideas, etc.” In the context of fault-tolerant
software, design diversity has been employed since the 1970s [11, 12]. The idea is
that different implementations built from the same specification are likely to fail
independently and thus can be combined to build more reliable software. Another
flavor of design diversity aiming to improve reliability can be observed when
developers write detailed behavioral contracts for functions [13]. A contract can be
seen as a diverse implementation written in a declarative language that is close to
mathematics. Design diversity is also important for the construction of software

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 125

systems that have dependencies on external libraries, components, or frameworks. In
2016, the unpublication of a small npm Javascript package' broke thousands of
client projects. Availability of diverse packages with similar functionality can help
reduce the impact of this kind of problem. Diversity is applicable beyond software
design, in other software-related situations. Not long ago, Google discussed [14] one
of its approaches to reducing latency: to have multiple servers serve the same
request. In this scenario, we have latency (or timing) diversity, since a multitude of
factors can affect the response time of each server at any given moment.

In this chapter we discuss the use of software diversity as a tool in the developers’
toolbox to build more energy-efficient software. Diversity, in this case, expands the
design and implementation options [15] available for developers. To assess the
impact of these options, throughout this chapter we revisit the main findings of
research work we conducted in the past few years (e.g., [16-21]). Although these
works target different programming languages, execution environments, and pro-
gramming constructs, they share a common observation: small changes can make a
big difference in terms of energy consumption. These changes can usually be
implemented by very simple modifications, sometimes amounting to a single line
of code. Nonetheless, the results can be significant.

In our work we have, for example, refactored two Java systems, the TOMCAT web
server and the XALAN library for XML processing. Based on experimental results
[20], we replaced most of the uses of the Hashtable class, which implements the
Map interface, with uses of the ConcurrentHashMap class, which implements
the same interface. In most of the cases, it was only necessary to modify the line
where the Hashtable object was created. This simple reengineering effort pro-
moted a reduction of up to 17.8% in the energy consumption of XALAN and up to
9.32% for TOMCAT, when using the workloads of the DaCapo [22] benchmark suite.

This chapter first introduces some of the aforementioned studies (Sect. 6.3). It
then proceeds to present an automated approach to help developers to select poten-
tially more energy-efficient options in situations where diversity is available (Sect.
6.4). On the one hand, this approach works statically, and experiments conducted
show that it is able to improve the energy efficiency of real-world systems. On the
other hand, for mobile devices, results vary widely (particularly due to the fragmen-
tation of Android devices and their versions), which requires additional information
and experimentation on their usage profiles. Based on this, we present a more recent
initiative that aims to collect real-world usage information about thousands of
mobile devices and make it publicly available to researchers and companies inter-
ested in energy efficiency (Sect. 6.5).

Thttps://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

126 W. Oliveira et al.
6.2 Software Energy Consumption

Although software systems do not consume energy themselves, they affect hardware
utilization, leading to indirect energy consumption. Energy consumption E is an
accumulation of power dissipation P over time ¢, that is, E = P t. Power P is
measured in watts, whereas energy E is measured in joules. As an example, if one
operation takes 10 seconds to complete and dissipates 5 watts, it consumes 50 joules
of energy E = 5 10. In particular, when talking about software energy consumption,
one should pay attention to:

e The hardware platform.
e The context of the computation.
e The time spent.

To understand the importance of a hardware platform, consider an application
that communicates through the network. Any commodity smartphone supports, at
least, WiFi, 3G, and 4G. Some researchers observed that 3G can consume about 70%
more energy than WiFi, whereas 4G can consume about 30% more energy than 3G,
while performing the same task, on the same hardware platform [23].

Context is relevant because the way in which software is built and used has a
critical influence on energy consumption. A program may impact the energy con-
sumption of different parts of a device, for instance, the CPU, when performing
CPU-intensive computations [24], the DRAM, when performing intensive accesses
to data structures [25], the network, when sending and receiving HTTP requests
[26], or on OLED displays, when using lighter-colored backgrounds [9].

Finally, time plays a key role in this equation. A common misconception among
developers is that reducing execution time also reduces energy consumption
[27, 28], the ¢ of the energy equation. However, chances are that this reduction in
execution time might increase energy consumption by imposing a heavier burden on
the device, e.g., by using multiple CPUs [16]. This in turn can increase the number of
context switches and, as a consequence, might also increase the P of the equation,
impacting the overall energy consumption.

6.2.1 Gauging Energy Consumption

Power Measurement and Energy Estimation are high-level approaches
encompassing multiple techniques to gauge energy consumption at different levels
of granularity. The first group of techniques makes use of power measurement
hardware to obtain power samples. The main advantage of this technique is its
ability to capture actual power use, possibly with high precision. Its main disadvan-
tage, however, is that it is only possible to attribute the measured power to specific
hardware or software elements indirectly. This usually requires software-based
techniques and energy estimation (see below). Many different power meters are

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 127

currently available in the market. Different power meters have different character-
istics. Among these characteristics, one of the most important is the sampling rate,
that is, the number of samples obtained per second. The sample is often measured in
watts, P (power). Depending on the power meter used, the sampling rate can vary
from 1 sample per second to more than 10,000 samples per second. The higher the
sampling rate, the more accurate the power curve will be.

The second area, energy estimation, assumes that developers do not have access
to power measurement hardware and uses software-based techniques to predict how
much energy an application will consume at run time. These predictions are based on
mathematical models of how the different aspects of the hardware under examina-
tion consume energy, while accounting for their workloads. One example of this
approach is the powertop” utility. This tool takes one sample per second and
generates a log with these measurements. It analyzes the programs, device drivers,
and kernel options running on a computer based on the Linux and Solaris operating
systems, and estimates the power consumption resulting from their use. Powertop
can also instrument laptop battery features in order to estimate power usage
(in watts) and battery life.

The Running Average Power Limit (RAPL) interface [29], originally designed by
Intel to enable chip-level power management, is widely supported in today’s Intel
architectures, including Xeon server-level CPUs and the popular i5 and i7. RAPL-
enabled architectures monitor performance counters in a machine and estimate the
energy consumption, storing the estimates in Machine-Specific Registers (MSRs).
Such MSRs can be accessed by the OS, e.g., by means of the msr kernel module in
Linux. RAPL is an appealing design, particularly because it allows energy/power
consumption to be reported at a fine-grained level, e.g., monitoring CPU core, CPU
uncore (caches, on-chip GPUs, and interconnects), and DRAM separately. Previous
work has shown that RAPL estimates are precise when compared to measurements
obtained by power measurement equipment [8]. One drawback of this approach is
the fact that programmers need a deep knowledge on how to use these low-level
registers, which is not straightforward.

Liu and colleagues [25] introduced jRAPL, a library for profiling Java programs
running on CPUs with RAPL support. This library can be viewed as a software
wrapper to access the MSRs. Since the user interface for jRAPL is simple, the
programmer can focus her efforts on the high-level application design. For any block
of code in the application whose energy/performance information is of interest to the
user, she just needs to enclose the code block with a pair of statCheck invoca-
tions. For example, the following code snippet attempts to measure the energy
consumption of the doWork () method, whose value is the difference between
the beginning and end variables:

Zhttps://01.org/powertop

https://01.org/powertop

128 W. Oliveira et al.

double beginning = EnergyCheck.statCheck () ;
doWork () ;
double end = EnergyCheck.statCheck () ;

A shortcoming of the jRAPL library is that it can only be used on desktop
computers that leverage Intel CPUs. Thus, it provides little help for measuring
energy consumption of mobile apps in tablets, smartphones, or smartwatches.

In November, 2014, as part of Android 5.0, Google released the Android Power
Profiler, which queries battery information from Android devices. It is currently
available on every Android device since version 5.0 (which corresponds to over 85%
of all Android devices®). The Android Power Profiler has many advantages over
similar libraries. First, it requires no extra instrumentation. As the profiler is natively
executed, no external applications are needed either. Second, it provides a straight-
forward interface to gather battery information and it does not require any setup.
Third, the profiler distinguishes battery usage in terms of the different components
used on the device (e.g., WiFi, CPU, GPS). The Android Power Profiler, similarly to
RAPL, is based on energy estimation.

To use the Android Power Profiler tools it is necessary to use the Android Debug
Bridge (ADB).* ADB is a command-line tool that works like a communication
interface, using the client-server model, where the device being used is the client and
the development machine is the server. ADB allows one to install and debug apps,
collect data about the device, execute automated tests, etc. For instance, the adb
shell dumpsys batterystats command collects battery information and
may save it onto an output file. The exported file could be an input to other programs
to manipulate and analyze data. A growing number of research works are taking
advantage of the Android Power Profiler (e.g., [8, 18, 30, 31]).

6.3 Design Decisions

In this section we explore three different approaches that share the same observation
that small design decisions can greatly impact energy consumption. More specifi-
cally, we discuss how it is possible to reduce the energy footprint of software
systems by leveraging diversity in IO primitives (Sect. 6.3.1), collection
implementations (Sect. 6.3.2), and concurrent programming constructs (Sect. 6.3.3).

3https://www.statista.com/statistics/27 1774/share-of-android-platforms-on-mobile-devices-with-
android-os/
“https://developer.android.com/studio/command-line/adb

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://developer.android.com/studio/command-line/adb

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 129

6.3.1 1/0 Constructs

I/O programming constructs are not only the building blocks of several low-level
communication channels such as sockets or database drivers, but also the bedrock of
high-level software applications that have anything to do with data storage or
transmission. Despite their widespread use, the energy consumption of I/O program-
ming constructs is not well understood. This is particularly unfortunate since related
work suggests that I/O APIs could severely impact energy consumption. For
instance, Lyu and colleagues [32] indicated that about 10% of the energy consump-
tion of mobile applications is spent in I/O operations. Similarly, Liu and colleagues
[25] pointed out that it was possible to save 4.29% of energy consumption by
changing I/O programming constructs. A comprehensive energy characterization
of I/O programming constructs could help practitioners to further improve the
energy behaviors of their software applications.

In the study by Rocha and colleagues [21], we presented a comprehensive
characterization of Java I/O APIs. In this work we conducted a broad experimental
exploration of 22 Java I/O APIs, aiming to answer two research questions: (RQ1)
What is the energy consumption behavior of the Java I/0 APIs? and (RQ2) Can we
improve the energy consumption of non-trivial benchmarks by refactoring their use
of Java I/O APIs?

To answer these research questions, we employ what we consider to be three
types of benchmarks. For the first research question, we created and instrumented
22 micro-benchmarks. The micro-benchmarks are small programs (around 200 lines
of code) that perform a single task (e.g., reading a file from the disk), each one using
a different Java I/O API. These Java I/O APIs have been introduced in the Java
programming language in its very early versions and are in widespread use. For
instance, the FileInputStream Java I/O API is used in 2823 open-source
projects in BOA [33] (we ran this query in April 2019). Each one of the studied
Java I/0 APIs implements at least one method for input operations or at least one
method for output operations.

For the second research question, we performed refactorings in the code base of
optimized benchmarks and macro-benchmarks. On the one hand, optimized bench-
marks are similar to micro-benchmarks in size, but are optimized for performance,
while macro-benchmarks are full-fledged working software systems comprising
thousands of lines of code. The macro-benchmarks used are as follows: XALAN
(an XSLT processor that translates XML documents into HTML files, or other types
of documents), FOP (an XSLT processor that translates XML documents into
HTML files, or other types of documents), BATIK (a toolkit for applications that
want to use images in the Scalable Vector Graphics (SVG) format), COMMONS - IO
(a utility library used to provide high-level I/O abstractions to third-party software
applications), and PGJDBC (the official PostgreSQL driver for the Java program-
ming language).

To avoid non-working solutions, we focused on refactorings that do not require
extensive code changes (e.g., changes between Java I/O APIs that extend the same

130 W. Oliveira et al.

a b
@ @
o o
> 3
o o
= 2 —
5 5 £
=1 = [+~ cpru
£ E < |=-= UNCORE
[l
g g H DRAM
[&] o o
3 3
@ @
j = f=4
w w
= P 2 2 Q@ Q@ =2 =2 @
L P @ a Q 8 %) S %
[E2 DRAM &= UNCORE CCPU]| [ESDRAM =8 UNCORE ==1CPU|

Fig. 6.1 Energy consumption behavior of Java I/O APIs. Energy data is presented in a logarithmic
scale. For the figure on the left, PBIS stands for PushbackInputStream, FIS stands for
FileInputStream, RAF stands for RadomAccessFile, SCN stands for Scanner, PBR
stands for PushbackReader, FR stands for FileReader, LNR stands for
LineNumberReader, BR stands for BufferedReader, CAR stands for
CharArrayReader, BIS stands for BufferedInputStream, BAIS stands for
ByteArrayInputStream, SR stands for StringReader, RFAL stands for Files.
readAllLines, BRFL stands for Files.newBufferedReader, and RFL stands for
Files.lines. For the figure on the right, FW stands for FileWriter, PST stands for
PrintStream, BW stands for Buf feredWriter, PW stands for PrintWriter, FOS stands
for FileOutputStream, BOS stands for BufferedOutputStream, SW stands for
StringWriter, CAW stands for CharArrayWriter, and BAOS stands for
ByteArrayOutputStream

interface). These refactorings could also be easily automated by a general purpose
tool. To conduct the experimentation process, we executed each benchmark
10 times. Since it requires some time for the Just-In-Time (JIT) compiler to identify
the hot code and perform optimizations, we discarded the first three executions of the
benchmarks. We report the average of the seven remaining executions. We also fixed
the garbage collector and the heap size accordingly: we used the parallel garbage
collector (-XX:+UseParallelGC), and the heap size was fixed at 261 MB,
minimum (—Xms), and 4183 MB, maximum (—Xmx). No other JVM options were
employed.

After conducting this process, we observed many interesting findings. Figure 6.1
shows an overview of the energy behavior of Java I/O APIs for the micro-
benchmarks. First, we found that input operations consume more energy than output
operations (on average: 96 joules vs 0.80 joules, respectively). The
PushbackInputStream Java I/O API is the most energy-consuming one
(492 joules consumed), followed by FileInputStream (474 joules). Analyzing
the PushbackInputStream implementation, we perceived that this Java 1/O
API adds a flag in the Input St ream that marks bytes as “not read.” Such bytes are
included back in the buffer to be read again. However, before reading the bytes, this
Java I/O API also checks whether the stream is still open using the ensureOpen ()
method. This repetitive operation could be the source of this high energy

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 131

consumption. The Files Java /O API, however, which could act as a potential
replacement for FileInputStream, is the one with the least energy consump-
tion, when executing its 1ines method (1.86 joules).

When considering the macro- and optimized benchmarks, it was not possible to
use all the Java I/O APIs mentioned in Fig. 6.1. This happened because there is a
semantic gap between the Java I/O APIs that do not inherit from the same parent, and
we opted not to bridge this gap. We then only refactored instances of Java I/O APIs
that share the same parent class. This problem did not occur for the micro-
benchmarks because of the more straightforward way in which they use the APIs.
In the end, we had 21 refactored versions of these benchmarks.

Overall, when refactoring the macro- and optimized benchmarks, we observed
energy improvements in 8 out of the 21 refactored versions of the benchmarks. In
particular, we observed that one optimized benchmark and one macro-benchmark
improved their overall energy consumption when changing their use of Java 1/O
APIs to the Files class. With very minor modifications, we were able to improve
up to 17% of the energy consumption of these benchmarks. These initial results
provide evidence that small changes in Java I/O APIs might have the potential for
improving the energy consumption of benchmarks already optimized for
performance.

6.3.2 Collections Constructs

Collections provide easy access to reliable implementations that can reduce the
complexity of developing applications. In Java, each collection’s API has multiple
implementations. Collection implementations that can be safely used by several
concurrent threads are considered “thread-safe.” This safety usually comes with
extra complexity or inferior performance, which might favor the use of “thread-
unsafe” collections. This is expected, since there are a number of different algo-
rithms and data structures that can implement the abstract concept of lists, sets, and
maps. There are a number of different ways in which a collection can be
implemented, and these diverse implementations can have a non-negligible impact
on energy consumption.

In the last few years, a number of researchers have attempted to address the
problem of helping developers to understand collections energy usage [16, 19, 20,
34-36]. These works conducted extensive exploration of collection usage. While
some papers focused on the energy usage of collection implementations that are part
of the Java Development Kit [20], others were broader in scope and covered not only
the official implementations but also third-party libraries [19]. Similarly, while some
works performed the experiments on commodity devices [36], others conducted
experiments on servers [20], while others also experimented with mobile devices
[19, 34]. Generally speaking, these works followed a similar approach for collecting
data: they created small and large benchmarks, and executed these benchmarks 10 or
more times, reporting the averages as the results.

132 W. Oliveira et al.

The work of Oliveira and colleagues [19] followed a slightly different approach
because they created the so-called energy profiles, inspired by previous work [34],
and attempted to make recommendations by leveraging these profiles. We devote
Sect. 6.4 to providing a more comprehensive overview of this work. An energy
profile is a number that can be used to compare similar constructs under the same
circumstances. Energy profiles for collections can be produced by executing several
micro-benchmarks on different collection operations, aiming to gather information
about the energy behavior of these programming constructs in an application-
independent way. For instance, an energy profile for the operation ArrayList.
add (Object o) could be 10. After we create the profiles, we perform static
analysis to estimate in which ways and how intensively a system employs these
collections. If we know that the program under investigation uses exclusively
ArrayList.add (Object o) 100 times, its energy consumption could be
(roughly) inferred as 100 10 (their energy profile). Since the work of Oliveira and
colleagues [19] focuses on code recommendation, a collection is more likely to be
recommended if its energy profiles are low.

Since these works performed computations in very different environments, the
results cannot be easily merged together. However, some interesting findings seem
to emerge. For instance, these papers explored the energy consumption of the most
commonly used methods. In the case of ArrayList, they investigated the add
(Object o) method. For example, in the work of Pinto and colleagues [20], the
authors observed that the method ArrayList.add (Object o) consumes the
least energy, when compared to the thread-safe implementations. On the other hand,
both Pinto et al. [20] and Pereira et al. [36] observed that the most energy-consuming
implementation among the thread-safe collections is CopyOnWriteArrayList.
In particular, Pinto et al. [20] noted that insertion operations over
CopyOnWriteArrayList consumed about 152X more energy than Vector
(which consumes 14 x more than ArrayList). In terms of Map implementations,
it was found that the concurrent implementation ConcurrentHashMap had a
similar performance when compared to the non-thread safe implementation,
LinkedHashMap, on both insertion and removal operations. Indeed,
ConcurrentHashMap performed around three times better than Hashtable,
one of the most common Map implementations.

It is important to note that these findings were observed in small benchmarks, that
is, ~100 lines of code programs that perform one collection operation a number of
times. Given these observations in a controlled setting, Pinto et al. [20] also
manually refactored two large-scale open-source programs: XALAN (a program
that transforms XML documents into HTML, which had 170 k lines of code in the
version we studied) and TOMCAT (an open-source web server, which had 188 k lines
of code in the version we studied). In both programs, the authors changed 100+ uses
of Hashtable to ConcurrentHashMap. After applying these modifications, it
was observed that there was an energy saving of 12% for XALAN and 17% TOMCAT,
considering the workloads of the DaCapo benchmark suite [22]. Oliveira and
colleagues [19] also employed a similar approach for alternating between collection
implementations. In their work, they found that by refactoring from ArrayList to

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 133

FastList (a third-party List implementation) it was possible to save 17% in
energy consumption of one mobile app, PASSWORDGEN. These findings share a
common trend: with no prior knowledge of the application domains or the system
implementations, it was possible to reduce the energy consumption of a software
system by means of simple changes in collection usage.

6.3.3 Concurrent Programming Constructs

Concurrency control and thread management are additional software features where
it is possible to reap the benefits of software diversity. Early work by Trefethen and
Thiyagalingam [37] observed that, for parallel applications in the area of scientific
computing, performance is often not a proxy for energy consumption. A subsequent
study [24] investigated the impact of different approaches to manage concurrent and
parallel execution in Java programs. This study found that different thread manage-
ment approaches, e.g., percore threads, thread pools, and work-stealing, have
diverse, significant, and hard to predict impacts on energy consumption. It also
observed that performance is not a good proxy for energy efficiency in the studied
benchmarks, which comprised both small programs and real-world, high-perfor-
mance Java applications.

These studies inspired us to investigate how thread management constructs affect
energy consumption in a different setting, namely, programs written in Haskell, a
lazy, purely functional programming language. Haskell programs can create light-
weight threads that may be associated with a specific physical core or operating
system thread, or managed entirely by the Haskell scheduler. Furthermore, the
language has multiple primitives for data sharing between threads which act as
concurrency control primitives, including a lock-based approach, a fully featured
implementation of software transactional memory [38] (STM), and an STM-based
solution that simulates locks.

We conducted a study with nine Haskell benchmarks. The benchmarks were
selected from multiple sources, such as the Computer Language Benchmarks Game®
and Rosetta Code.® We selected the benchmarks based on their diversity. For
instance, two of them are synchronization-intensive programs, two are
CPU-intensive and scale up well on a multicore machine, two are CPU- and
memory-intensive, one is I/O-intensive, one is CPU- and I/O-intensive, and one is
peculiar in that it is CPU-, memory-, synchronization-, and I/O-intensive. We
implemented and ran different variants of these benchmarks considering the nine
possible combinations of thread management constructs and data sharing/concur-
rency control primitives. Not every possible variant could be used, e.g., because

5 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
Shitp://www.rosettacode.org

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
http://www.rosettacode.org

134 W. Oliveira et al.

Fig. 6.2 Energy dining-philosophers
measurements for the dining
philosophers benchmark, 600 :
considering six 500
combinations of thread = .
2 400 ’
management constructs g
(forkIO, forkOn, and @ 300]
fork0S) and concurrency 2 200 \ . —
L L a a g —
control primitives (MVar e ——
and TMVar) [16] 100 | e
0 K R A .
4 8 1620 32 40 64
Number of Capabilities
—— forklO-MVar forkOn-MVar = forkOS-MVar
forklO-TMVar o forkOn-TMVar forkOS-TMVar

some benchmarks do not leverage concurrency control. The details of the method-
ology of this study are presented elsewhere [16].

We ran all the experiments on a server machine with 2x10-core Intel Xeon
E5-2660 v2 processors (Ivy Bridge microarchitecture, 2-node NUMA) and 256GB
of DDR3 1600 MHz memory. This machine runs the Ubuntu Server 14.04.3 LTS
(kernel 3.19.0-25) OS. The compiler was GHC 7.10.2. The benchmarks were
exercised by Criterion [39], a benchmarking library to measure the performance of
Haskell code. To collect information about energy usage, we had to modify the
implementations of Criterion and the Haskell profiler to make them energy-aware.
We executed the benchmarks with 1, 2, 4, 8, 16, 20, 32, 40, and 64 capabilities. The
number of capabilities of the Haskell run time determines how many Haskell threads
can run truly simultaneously at any given time.

Once again, we found that small changes can make a big difference in terms of
energy consumption. For example, in one of our benchmarks, under a specific
configuration, choosing one data sharing primitive (MVar) over another (TMVar)
can yield 60% energy savings. However, there is no universal winner. The results
vary depending on the characteristics of each program. In another benchmark,
TMVars can yield up to 30% energy savings over Mvars.

Figure 6.2 illustrates an extreme case. When considering 20 capabilities, the
forkOS-TMVar variant of the dining philosophers benchmark consumed 268%
more energy than the forkIO-MVar variant. These results indicate that it is also
possible to exploit software diversity in Haskell in order to improve energy
efficiency.

Similar to previous studies [24, 37], we found that the relationship between
energy consumption and performance is not always clear. High performance is
usually a proxy for low energy consumption. Nonetheless, we found scenarios
where the configuration with the best performance (30% faster than the one with
the worst performance) also exhibited the second worst energy consumption (used
133% more energy than the one with the lowest usage). The scatterplots in Fig. 6.3
illustrate how energy and time are imperfectly aligned. This is different from what

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 135

dining-philosophers fasta
40000
400
— 30000
- —_
=)
8 - B ‘
2 8
w I & 20000
200 2.
¢ 10000
‘. .
3 ol
/ ¥R
Oms 0
0.0 25 5.0 7.5 10.0 125 100 200 300
Time(s) Time(s)

Fig. 6.3 Scatterplots for the relationship between time (x-axis) and energy (y-axis) for two of the
analyzed Haskell benchmarks [16]

we would observe, for example, in sequential Haskell collections [16], where the
points would be almost perfectly aligned along the diagonal.

In addition to these results, we propose some guidelines that Haskell developers
can follow to make applications more energy efficient, based on our empirical
results. First, CPU-bound applications should avoid setting more capabilities than
physical cores, since these applications will not benefit from the enhanced thread
switching afforded by hyperthreading’ and similar approaches. Second, they should
use the forkOn function, which attempts to pin threads to specific physical cores, to
create threads in embarrassingly parallel applications. This reduces thread migration
overhead in applications where workloads are evenly distributed among threads and
threads do not have data dependencies. Third, they should avoid using the fork0OS
function to spawn new threads. Since this function binds a Haskell thread to an OS
thread, it results in thread switching involving OS threads whenever new Haskell
threads must be executed. Fourth, if energy matters, only use STM if transaction
conflicts are rare. Although transactional memory may improve performance due to
optimistic concurrency, the large number of conflicts can have a strong impact on
energy consumption, even if they do not hinder performance. As mentioned earlier,
for one of the analyzed benchmarks, the variant with the best performance exhibited
more than twice the energy consumption of the most energy-efficient variant.

Thttps://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-
threading-technology.html

https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html

136 W. Oliveira et al.
6.4 Recommending Java Collections

Developing applications, complex systems that have functional and non-functional
requirements combined to solve a non-trivial problem, can be a difficult task.
Leveraging previously implemented software solutions to solve pieces of these
challenging problems can help to reduce that complexity. Examples of these solu-
tions are libraries, APIs, frameworks, gists,8 and answers from Q&A sites such as
StackOverflow.

In this context, designing and implementing software has become a task of
selecting appropriate solutions among multiple options [15] and combining them
to build working systems. We call energy variation hotspots the programming
constructs, idioms, libraries, components, and tools in a system for which there are
multiple, interchangeable, readily available solutions that have potentially different
energy footprints. A number of previous papers have measured and analyzed
different types of energy variation hotspots, such as programming languages
[18, 40, 41], API usage [9, 21, 42], thread management constructs [16, 24], data
structures [16, 20, 34, 36], color schemes [43, 44], and machine learning approaches
[45], among many others. Having to choose the most energy-efficient solution for an
energy variation hotspot can be difficult for developers, as the energy consumption
of these constructs is usually not easily measurable. Furthermore, information on
how to execute tests to measure the energy impact of different solutions can be hard
to find.

In this section, we present our solution to reduce the energy consumption of
software applications, making it easier for non-specialist developers to exploit
energy variation hotspots. This solution can be separated into three different steps.
In the first step, we exercise the available alternative solutions, aiming to build
energy consumption profiles [34]. In the second step, we analyze the application,
collecting and organizing the usage of the selected energy variation hotspots, in
particular, to estimate how intensively the system uses them. Finally, in the third
step, we combine the energy profile and the results of analyzing the system to make
potentially energy-saving recommendations specific to the application-device pair.
This approach is instantiated in an energy-saving tool called CT+. Using this tool,
non-specialist developers can optimize the energy efficiency of Java collections.

While experimenting with CT+, we selected collections from three different
sources: Java Collections Framework (JCF),9 Apache Commons Collections,10
and Eclipse Collections.'' These sources are widely used on Java projects, with a
query on GitHub projects'? showing 1,276,939 occurrences for Apache Commons,
537,956 occurrences for Eclipse Collections, and 85,865,270 occurrences for the

8https://gist.github.com
ghttps://docs.oracle.com/javase/8/d0cs/technotes/guides/collections/
10https://commons.apache.org/proper/commons—co]lections/
11https://www.eclipse.org/collections/

>These queries were executed in April 2020.

https://gist.github.com
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://commons.apache.org/proper/commons-collections/
https://www.eclipse.org/collections/

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 137

most widely used collection implementations from the JCF. All sources have thread-
safe and thread-unsafe collections.

We implemented CT+ following our approach step by step. In the first step, it
automatically runs multiple micro-benchmarks (i.e., executing specific collection
operations such as List.add(Object o)) for 39 distinct Java collection
implementations in an application-independent manner and builds their energy pro-
files. List, Map, and Set are the three collection APIs targeted by our tool. A
varying number of operations was exercised for each API, with List having
12 operations, Map 4, and Set 3. Our collection pool comprises implementations
from the Java Collections Framework (25 implementations), Apache Commons
Collections (5 implementations), and Eclipse Collections (9 implementations). The
energy consumption profile is built with the data from these micro-benchmarks.

For the second step, an inter-procedural static analysis using WALA'® is
performed on the application source code. This analysis collects and organizes
data on how the application uses collection implementations on its source code,
such as frequency and location of use, which operations were used, method and
variable names, and calling context, among others.

The third and final step consists of combining these two pieces of information,
that is, the energy profile and the analysis of the application. CT+ identifies the most
energy-efficient collection implementations across the whole program and automat-
ically applies these recommendations to the source code. We evaluated CT+ in two
distinct studies, analyzing the impact of different devices and different energy pro-
files, aiming to answer the following four research questions: (RQ1) To what extent
can we improve the energy efficiency of an application by statically replacing Java
collections implementations? (RQ2) Are the recommendations device-independent?
(RQ3) To what extent does workload size impact the energy efficiency of a Java
collection implementation? and (RQ4) Are the recommendations profile-
independent?

6.4.1 Evaluation

The main objective of our evaluation was to compare the energy consumption of the
original versions of software systems with the versions where the recommendations
made by CT+ were applied. This was made across two different studies. Overall, our
evaluation comprises two different execution environments, desktop and mobile,
and six distinct devices.

In the first part of our experiment, our main goal was to evaluate the collection
implementation recommendations made by CT+ (RQ1 and RQ2). On the desktop
environment we executed CT+ across two machines, a notebook and a high-end
server. We labeled the notebook as dell (Dell Inspiron 7000) and the server as server

Bhttp://wala.sourceforge. net/wiki/index.php/Main_Page

http://wala.sourceforge.net/wiki/index.php/Main_Page

138 W. Oliveira et al.

(the same machine described in Sect. 6.3.3). On the mobile environment, we
executed our tool on three smartphones and a tablet: Samsung Galaxy J7 (J7),
Samsung Galaxy S8 (S8), Motorola G2 (G2), and Samsung Galaxy Table 4
(Tab4). In this experiment, we analyzed seven desktop-based software systems,
BARBECUE, BATTLECRY, JODATIME, version 6.0.20 of TOMCAT,
TWFBPLAYER, XALAN, and XISEMELE; two mobile-based software systems,
FASTSEARCH and PASSWORDGEN; and three that work on both environments:
APACHE COMMONS MATH 3.4 (COMMONS MATH for short), GOOGLE GSON, and
XSTREAM.

In the second part of the experiment, we have analyzed the energy impact of three
different strategies to build energy profiles (RQ3 and RQ4) For this study, a single
device was used: a notebook asus (ASUS X555UB). To explore the impact of
different energy profiles on the energy-efficiency behavior of Java collection
implementations, we created three different profiles for asus: small, medium,
and big. These profiles were created to simulate three different scenarios of usage
intensity of the collection implementations: small, to be used for applications that
have a light usage of collections; medium, an intermediate profile, for general
purpose usage; and big to be used on applications that have a very intense usage
of collections. We used as targets systems six applications from the latest version of
Dacapo: BIOJAVA, CASSANDRA, GRAPHCHI, KAFKA, ZXING, and version 9.0.2
of TOMCAT, the latter with two different types of workload: LARGE and HUGE.

To measure the energy consumption of the devices in both studies, we employ
JRAPL to collect the energy data in the desktop environment and the Android
Energy Profiler in the mobile environment. While running our experiments, for
some systems the difference between original and modified versions was not statis-
tically significant. That was the case for TWFBPLAYER, XISEMELE, CASSANDRA,
and KAFKA and for the device Tab4. To better focus on more relevant data, these
results are not presented here. However, all data from every system used in our
experiments can be found at the companion website, https://energycollections.
github.io/.

Across both studies, CT+ performed 1454 changes that impacted the energy
consumption across 17 software systems, 12 targeting a desktop environment,
2 targeting a mobile environment, and 3 that work in both scenarios, for a total of
46 modified versions. The analyzed applications were, for the most part, mature
systems comprising thousands of lines of code (LoC), such as BIOJAVA with
914kLoC, CASSANDRA with 466kLoC, and TOMCAT with 433kLoC. Even without
any prior knowledge of the application domains, CT+ reduced the energy consump-
tion of 13 out of the 17 systems.

Analyzing Different Devices Figure 6.4 summarizes the results of our modifica-
tions on the desktop and mobile devices. For the desktop environment, CT+ made
477 recommendations, with all the modified systems consuming less energy than the
original versions. Among the software systems that only ran on the dell machine,
JODATIME exhibited the greatest improvement, with the modified version consum-
ing 7.13% less than the original one. The modified version of TOMCAT v6 was

https://energycollections.github.io
https://energycollections.github.io

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 139

20

15
|

Energy Reduction (%)
10

JodaTime Xalan Barbecue Tomcat Battlecry Xstream CommonsMath Google Gson PassGen FastSearch

Fig. 6.4 Percentage of energy reduction in the study on different devices. Greater is better

energy efficient on dell and server, consuming 4.12% and 4.3% less energy,
respectively. We found that, for the same workload, systems running on server
consumed more than twice the energy they consumed on dell.

For both devices we can observe a trend of recommendations to replace well-
known collections from the JCF (Vector, ArrayList, and HashMap) with
alternative sources. For the specific case of XALAN, among the 119 recommendations
across the two desktop machines, just three suggested the use of implementations
from the Java Collections Framework.

On the mobile environment, CT+ made 107 recommendations among the ana-
lyzed devices, with an expressive variation in their effectiveness. Modified versions
of PASSWORDGEN on S8 and J7 devices exhibited significant improvements over
the original versions, consuming 4.7% and 17.34% less energy, but on G2 the
modifications did not have a significant impact. The modified version of GOOGLE
GSON exhibited an improvement of 5.03% on J7; however, the modifications
yielded a small 0.95% improvement on S8. COMMONS MATH had more inconsistent
results. Although the modified version consumed 11.31% less energy than the
original version on S8, this was not the case on G2 and J7, where the modified
versions consumed 1.2% and 0.33% more energy, respectively. Finally,
FASTSEARCH showed statistically significant results only on S8, with the modified
version having a very slight reduction of 0.09% in energy consumption.

Analyzing Different Profiles Figure 6.5 summarizes the results of our modifica-
tions on the three different profiles. Among the modified systems, GRAPHCHI was
the one which presented the best results, with a reduction of 12.73% on small,
11.09% on medium, and 5.30% on big. While executing TOMCAT V9 using the
LARGE workload, CT+ recommendations resulted in a reduction of energy con-
sumed across all profiles. On the other hand, while using the HUGE workload, CT+
modifications did not provide a statistically significant result, with the exception of
the profile small, where the modified version consumed more energy than the
original version, making it less energy efficient.

Among the profiles, there was no overall winner. Each profile had at least one
application with the best energy efficiency. TOMCAT - LARGE consumes less energy

140 W. Oliveira et al.

L o

~ -

c = small

2 o medium
© -~ bi

5 i

3 g

2 e] e e T YT TTTCITT T IrrTryr
>

g o

| =

w

Biojava Graphchi Zxing Tomcat-L Tomcat-H

Fig. 6.5 Percentage of energy reduction in the study on different profiles. Greater is better

using the recommendations made using the small profile; GRAPHCHI and ZXING
the medium profile; and BIOJAVA the big profile.

There was an expressive variation in the number of implementation changes
across the profiles, with medium having the most with 456 changes, followed by
small with 352, and finally big with 62, for a total of 870 recommendations that
wielded reduced energy consumption.

These changes were not evenly distributed, with some cases having a noticeable
change in the number of recommendations made for an application based on the
profile (e.g., BIOJAVA had 13 times more changes on the profile medium than on
the profile big). The changed collections were also different. As an example, the
number of list implementations changed on big are 5% of the number of list
implementations changed on the other profiles. In addition, the changed collections
were different. As an example, the number of list implementations changed on big
are 5% of the number of list implementations changed on the other profiles. Most of
the time, these recommendations changed an implementation from JCF to an
implementation from one of our alternative sources, i.e., Eclipse Collections or
Apache Commons Collections. More specifically, this was the case for 95% of the
recommendations when using the small profile, 98% for medium, and 60%
for big.

6.4.2 Findings

Analyzing more in depth the results from both studies produced some interesting
lessons.

Java Collections Framework is not the most energy efficient. The majority of
the CT+ recommendations were for collection implementations not in the JCF. In the
desktop environment, only 5.8% of the changes recommended by CT+ used JCF
implementations, while in the mobile environment CT+ recommended JCF collec-
tion implementations in one third of the cases. Across the two different environ-
ments, 91.9% of the recommendations originated from the Apache Common
Collections and Eclipse Collections.

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 141

Collection popularity does not reflect energy efficiency. Looking at the most
widely used collections in Java projects, i.e., Hashtable, HashMap, HashSet,
Vector, and ArrayList, CT+ changes to them comprise the best part of all
changes made (94.2% on the desktop environment and 94.39% on the mobile
environment). In the specific case of ArrayList, the overall most popular Java
collection by far [19], this happened for two reasons. First, two common operations
(namely, insert (value) and iteration (random)) usually have a worse
performance in ArrayList when compared to other implementations. Second, in
the cases where it was the best implementation, due to its widespread use, it is
already being employed and thus no benefits could be achieved.

The energy behavior varied heavily across devices, even when executing the
same application. Using XALAN as an example, while being analyzed on dell, CT+
recommended ten ArrayList instances to be changed to FastList and one to
NodeCachingLinkedList. This was not the case on server, where CT+
recommended only two instances of ArrayList and suggested the use of
TreeList. Nevertheless, there was an improvement in energy efficiency in both
machines. Another example is XSTREAM. None of the mobile modified versions,
even while consuming less energy, differed statistically from their original version.
This was not the case on dell, where the modified version consumed less energy and
exhibited a statistically significant difference.

The profiles heavily influenced the energy savings. Using the wrong profile can
result in the energy consumption of the application rising instead of dropping, as in
the case of the modified version of TOMCAT, on the profile small and using the
workload with size HUGE. This happened because small was created to use small-
sized collections, and thus it is optimized to that case while HUGE represents exactly
the opposite. This illustrates that even though profile creation is an application-
independent step of the proposed approach, knowledge about actual usage profiles
can be leveraged to produce more useful energy profiles. A better use of the profiles
can be seen in the recommendations applied to TOMCAT using the workload LARGE,
resulting in a positive impact on energy efficiency, with statistical significance in the
three different profiles.

The best implementation is workload-dependent. Among our recommenda-
tions on asus, 95% of list modifications on small and medium were changes from
ArrayList to a different implementation. In BIOJAVA, the system representing
60% of all ArrayList modifications, two operations were the most intensively
used: insert (value) and iteration (iterator). This is reflected in the
collection implementations that most often replace ArrayList in the profiles
small and medium, NodeCachingLinkedList and FastList, respec-
tively, consuming less energy than ArrayList for these two operations. On the
other hand, the profile big did not have a single implementation that had lower
consumption for these operations, with ArrayList outperforming all the other
implementations. Nevertheless, the changes made by CT+ on BIOJAVA resulted in
an improvement in energy efficiency across all profiles.

There is dominance between collections implementations Out of the 39 possi-
ble implementations available to CT+ only 20 were recommended. When trying to

142 W. Oliveira et al.

understand this behavior, we observed that some collection implementations con-
sistently dominate [46] others. An implementation C; dominates implementation C,
when every operation in the former consumes less energy, on average, than the same
operation in the latter. In this case, the dominated collection is never recommended
by CT+. Among all implementations, ConcurrentHashMap shows a particular
behavior that is worth mentioning. That implementation was changed 26 times on
the desktop environment, 25 out of 26 cases for ConcurrentHashMap (EC).
Nevertheless, ConcurrentHashMap was also recommended 47 times, always
replacing Hashtable. This illustrates that if an implementation is not dominated
by another, there will be cases where it may still perform better.

Energy profile creation is not trivial During our experiments, we noticed that
some factors could make it infeasible to create profiles at a larger scale. Due to the
enormous variance in the execution times of operations, the original process [19] of
creating the energy profiles can take a long time, i.e., hours for desktop devices and
days for mobile devices. To reduce this time we used two approaches. First, we
executed each operation three times, and measured and collected the energy con-
sumption of those operations. In the cases where a relation of dominance was found,
the dominated collection was not included as an option for recommendation. Sec-
ond, we delimited a threshold based on how long each operation could run. This
threshold was based on the fastest operation among all implementations in a specific
group (e.g., insert (start) for thread-safe Lists). Very expensive operations
were discarded if they spent more time than our threshold. In our experiments, this
threshold was set at two orders of magnitude, i.e., 100 times the average time of the
fastest alternative.

6.5 Energy Profiling in the Wild

Addressing energy efficiency within mobile devices is particularly relevant as these
devices have become one of our most used gadgets, and most often run powered by
batteries. As a consequence, battery life is a high-priority concern for users and one
of the major factors influencing consumer satisfaction [5, 6]. On the other hand,
battery life is also important for app developers, as excessive battery consumption is
one of the most common causes for bad app reviews in app stores [47, 48].

As we have already witnessed in the previous section regarding the choice of data
structures, developer decisions can directly impact the energy consumption of a
mobile application (or simply “app”). In general, when considering other factors
such as location services [49], programming languages [18], color Schemes [9, 50],
or code refactorings [51], the use of one available solution over another can have a
non-negligible effect on energy consumption.

Keeping energy usage to a minimum is so important for app developers that IDEs
for the most popular smartphone platforms include energy profilers. However,
profiling for energy within mobile environments is a particularly difficult problem,
and especially within Android, the mobile platform with the largest market share,

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 143

and by a big margin.'* Indeed, Android is a highly heterogeneous platform: in 2015
there were already more than 24,000 Android device models available,15 and a
recent study found that there are more than 2.5 million apps in the Google Play
Store.'® In addition, the Android operating system is currently in its tenth major
release, with multiple minor releases throughout the years. These numbers combined
with the different ways in which apps and devices are used produce a virtually
infinite number of potential usage scenarios.

In this context, profiling for energy consumption has only limited applicability.
Alternatively, one needs to obtain large-scale information about energy use in real
usage scenarios to make informed, effective decisions about energy optimization. In
this section, we describe how we leverage crowdsourcing to collect information
about energy in real-world usage scenarios. We introduce the GreenHub initiative,
https://greenhubproject.org/, which aims to promote collaboration as a path to
produce the best energy-saving solutions. The most visible outcome of the initiative
is a large dataset, called Farmer, that reflects in the wild, real-world usage of Android
devices [17].

The entries in Farmer include multiple pieces of information such as active
sensors, memory usage, battery voltage and temperature, running applications,
model and manufacturer, and network details. This raw data was obtained by
continuous crowdsourcing through a mobile application called BatteryHub. The
collected data is strictly, and by construction, anonymous so as to ensure the privacy
of all the app users. Indeed, it is impossible to associate any data with the user who
originated it. The data collected by BatteryHub is then uploaded to a remote server,
where it is made publicly available to be used by third parties in research on
improving the energy efficiency of apps, infrastructure software, and devices.

In order to foster the involvement of the community, Farmer is available for
download in raw format and can be accessed by means of a backend web app that
provides an overview of the data and makes it available through a REST API. The
dataset can also be queried by means of Lumberjack, a command-line tool for
interacting with the REST APL

Within the GreenHub initiative, we have so far been able to collect a dataset
which is sizable. Thus far it comprises 48+ million unique samples. The dataset is
also diverse. It includes data stemming from 2.5 k + different brands,
15 k + smartphone models, from over 73 Android versions, across 211 countries.

In the remainder of this section, we describe in detail the alternatives that we have
implemented to allow the community to access the data within our dataset. The main
motivation for the section is to foster the engagement of the community in exploring
the data we are providing, in this way contributing to increasing the knowledge on
how energy-saving strategies can be realized within Android devices. We therefore

"https://gs.statcounter.com/os-market-share/mobile/worldwide

Phttps://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-
brands/
"®https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

https://greenhubproject.org/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.zdnet.com/article/android-fragmentation-there-are-now-24000-devices-from-1300-brands/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

144 W. Oliveira et al.

BatteryHub —_—e e e e —————
| RESTAPI Database

Stores/Retrieves
Data

Instruments Data

Farmer Dashboard

Lumberjack

5

Performs Queries

— e — — ———— —— ——— — — — ol

Fig. 6.6 GreenHub platform architecture

expect that this section will be particularly interesting for researchers and/or practi-
tioners focusing on mobile development, and who have a data mining mindset.

6.5.1 A Collaborative Approach to Android Energy
Consumption Optimization

The success of GreenHub is dependent on its data, and to keep such data coming in
we plan to give back to the community in concrete and valuable ways. In this section,
we focus on the ways that the community can access the data we are collecting.

The initiative relies on an open-source technological platform,'” whose architec-
ture overview is shown in Fig. 6.6. This platform includes our data collection
Android app called BatteryHub, a command-line application interface called Lum-
berjack, and the Farmer REST API for prototyping queries, dashboard interface, and
database for storing data. These components are further defined in the following
sub-sections.

Data Collection is provided by BatteryHub, an Android app whose development
was inspired by Carat [52]. Initially, we forked Carat’s open-source code to take
advantage of the data collection and storage mechanisms. On top of that, we updated
its data model to consider more details on modern devices, such as NFC and
Flashlight usage. In the same spirit as Carat, BatteryHub is entirely open-source.

https://github.com/greenhub-project

https://github.com/greenhub-project

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 145

In contrast with Carat, however, all our collected data is permanently and publicly
available, so as to strongly encourage and help others in collaborating, inspecting,
and/or reusing any artifact that we have developed or collected.

BatteryHub is available at Google’s Play Store,'® and tracks the broadcast of
system events, such as changes to the battery’s state, and, when such an event
occurs, obtains a sample of the device’s current state. BatteryHub either uses the
official Android SDK or custom implementations for universal device compatibility
support, and periodically communicates with the server application (over HTTP) to
upload, and afterwards remove, the locally stored samples. Each sample character-
izes a wide range of aspects that may affect battery usage, such as sensor usage,
temperature, and the list of running applications.

It is important to mention that the data collected from each user is made anony-
mous by design. Each installation of BatteryHub is associated with a random unique
identifier and no personal information, such as phone number, location, or IMEI, is
collected. This means that it is (strictly) not possible to identify any BatteryHub user,
nor is it possible to associate any data with the user from whom it originates.

In regard to sample collection frequency, a new data measurement is collected
(to be sent to our server) when the battery’s state changes. In most cases, this
translates to a sample being sent at each 1% battery change (which accounts for
95% of the time according to our data). The app allows for configurable alerts, e.g.,
when the battery reaches a certain temperature. Our overarching goal is to use
BatteryHub to give suggestions to users, based on their usage profiles, on how to
reduce the energy consumption of their device.

Besides BatteryHub, our infrastructure includes four additional components, as
depicted in Fig. 6.6. We envision that they can be used in different stages of mining
our dataset, which are described in the remainder of this section. Finally, our
infrastructure also includes a web dashboard interface'® that provides access to up-
to-date statistics about the collected samples.

Fast prototyping of queries can be made by using Farmer’s REST API, which
was designed as a means to quickly interface with and explore the dataset. As every
request made to the API must be authenticated, users must first obtain an API key in
order to access the data in this fashion.”® The API provides real-time, selective
access to the dataset and one may query, e.g., all samples for a given brand or OS
version. Since the API is designed according to the REST methodology, this allows
us to incrementally add new data models to be reflected within the API itself as the
data protocol evolves over time. After an API key has been successfully generated,
one may request his/her own user profile from the API:

farmer.greenhubproject.org/api/vl/me?api token=yourTokenHere

18https://play. google.com/store/apps/details?id=com.hmatalonga.greenhub
"https://farmer.greenhubproject.org/
Znttps://docs.greenhubproject.org/api/getting-started.html

https://play.google.com/store/apps/details?id=com.hmatalonga.greenhub
https://play.google.com/store/apps/details?id=com.hmatalonga.greenhub
https://farmer.greenhubproject.org/
https://docs.greenhubproject.org/api/getting-started.html

146 W. Oliveira et al.

Every successful API response is a JSON formatted document, and in this case
the server will reply with the user details, as shown next.

{ "data": {
nidn: XX,
"name": "Your Name",
"email": "your@email.com",

"emai l_veriﬁed_at ", "YYYY-MM-DD HH:MM:SS",
"created_at": "Mon. DD, YYYY",

"updated_at " "YYYY-MM-DD HH:MM:SS",
"roles": [...]1}}

It is now possible to use the API, for example, to list devices:

farmer.greenhubproject.org/api/vl/devices?api token=yourToken

This request can take additional parameters for page and devices per page. A full
description of all the available parameters for each request can be found in the API
Reference.?’

The expected response from the request above is as follows:

{ "data": [
{ "brand": "asus",
"created at": "2017-10-28 02:51:09",
"id": 2518,
"is root": false,
"kernel version": "3.1835+",
"manufacturer": "asus",
"model": "ASUS X008D",
"product": "WW_Phone",
"os_version": "7.0",
"updated at": "2017-10-28 02:51:09"
Y, oo,
"links": { ...},
"meta": { ... }}

To obtain more detailed information, e.g., about a particular device whose
identifier is 123, it is possible to request its samples:

farmer.greenhubproject.org/api/vl/devices/123/samples?
api_token=yourToken

A complementary approach to interface with the API is to use its command-line
application interface, Lumberjack. Using this tool, users can perform flexible,
on-demand queries to the data repository, to support quick prototyping of data
queries applying different filters and parameters. Furthermore, users can quickly

2'https://docs.greenhubproject.org/api-reference/

https://docs.greenhubproject.org/api-reference/

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 147

Devices ('_1 (—? CPU_Statuses
n 1

1

o 5 Samples < 5
Network_Details 1 P 1 Battery_Detalils

1T 11 N
N n
Settings A > Storage_Details

pp_Processes

Fig. 6.7 Entity relationship diagram of the dataset

fetch subsets of the data without the need to download a snapshot of the entire
dataset. The following is an example of a Lumberjack query to obtain the list of
Google brand devices:

$ greenhub lumberjack devices brand:google -o googleDevices.json

The following example queries the dataset for samples whose model is nexus and
that were uploaded before May 31, 2018:

$ greenhub lumberjack samples model:nexus -R ..2018-05-31

Extensive Mining can be conducted from the samples we collected, which are
accessible through Farmer. The dataset is available as a zip archive file, in CSV
format,”® and also in Parquet® binary format,®* which can be analyzed more
efficiently than a plain text dump. The dataset is also available as a MariaDB
relational database. The samples sent by BatteryHub are queued to be processed
by a PHP server application built using the Laravel framework.” Each sample is
received as a JSON formatted string that is deconstructed and correctly mapped
within the database.

The (simplified) data model that we employ is shown in Fig. 6.7, where each box
represents a table (or a CSV file) in the dataset. Samples is the most important of
them, including multiple features of varied nature, e.g., the unique sample id, the
timestamp for each sample, the state of the battery (charging or discharging), the
level of charge of the battery, whether the screen was on or not, and the free memory
on the device.

App_Processes is the largest among the tables of the dataset, containing infor-
mation about each running process in the device at the time the sample was collected,
e.g., whether it was a service or an app running in the foreground, its name, and
version. Battery Details provides battery-related information such as whether the

Zhttps://farmer.greenhubproject.org/storage/dataset. 7z
23http://parquet.apache.org/

24https ://farmer.greenhubproject.org/storage/dataset.parquet.7z
Zhitps://aravel.com/

https://farmer.greenhubproject.org/storage/dataset.7z
http://parquet.apache.org/
https://farmer.greenhubproject.org/storage/dataset.parquet.7z
https://laravel.com/

148 W. Oliveira et al.

device was plugged into a charger or not and the temperature of the battery. Cpu
Statuses indicates the percentage of the CPU under use, the accumulated up time,
and sleep time. Devices provides device-specific information, such as the model and
manufacturer of the device and the version of the operating system running on
it. Network Details groups network-related information, e.g., network operator and
type, whether the device is connected to a wifi network, and the strength of the wifi
signal. The Settings table records multiple yes/no settings for services such as
Bluetooth, location, power saver mode, and NFC, among others. Finally, Storage
Details provides multiple features related to the secondary storage of the device.

6.6 Conclusion

Although developers have recently become more aware of the importance of creat-
ing energy-efficient software systems, they are still missing important knowledge
and tools to help them achieve their goals. In summary, with this chapter we hope to
show the following relevant aspects of green development.

Small changes can make a big difference in terms of energy consumption,
especially in mobile devices. Throughout this chapter we discussed the importance
of diversity and the energy consumption of different pieces of software, such as I/O
APIs, concurrent mechanisms, and Java collections. For every one of these con-
structs, performing modifications to employ diversely designed, more energy-
efficient versions resulted in a reduction in energy consumption, with some cases
only requiring changing a single line of code. Focusing on these energy variation
hotspots can greatly reduce the complexity of improving the energy efficiency of an
application, making it viable for non-specialists to enhance their systems. Knowing
this, developers and researchers can focus on easily exchangeable, power-hungry
aspects of the software to reduce the energy consumption of an application with
minimum effort.

Device variability is a real problem when experimenting on energy consump-
tion. Similar to performance, energy efficiency can be impacted by a number of
factors, at different abstraction levels, including factors that are not obvious for
non-specialists. Factors such as a device’s battery’s age or the room temperature can
have a significant influence on the energy consumption. Even worse, when dealing
with different devices, every decision made by the manufacturer can change the
energy efficiency of the device and turn a seemingly sound experiment into conclu-
sions that only work in specific cases. Knowing this, developers and researchers can
try to mitigate this factor by executing their experiments on a bigger pool of devices,
greatly reducing this bias factor in their results. In case only a single device is
available, its characteristics should be fully presented so other researchers/devel-
opers can have a clear understanding of the results and in which devices they would
be relevant.

Crowdsourcing can be used to see the big picture of energy consumption.
Although very important for several factors, such as studying particular cases and

6 Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 149

learning about energy consumption behavior, controlled experiments on mobile
devices hardly extrapolate to the whole environment. Even when dealing with just
the Android OS, there is so much variability (e.g., OS versions, manufacturers,
device versions) that no controlled experiment will be truly general enough to cover
a significant number of devices and thus have widespread applicably.
Crowdsourcing can be a way to mitigate this by using the data provided by the
users, leveraging thousands of different devices to achieve a truly panoramic view of
the ecosystem as a whole. The biggest problem with the crowdsourcing solution is
that it depends on end-users for the energy samples. Convincing them to provide
their data and, even more importantly, getting enough of it to be statistically relevant
can be arduous. We propose that developers and researchers who want to investigate
the energy behavior of the mobile devices in the Android environment should use the
GreenHub initiative, an already well-established database with millions of data-
points.

References

1. Gelenbe E, Caseau Y (2015) The impact of information technology on energy consumption and
carbon emissions. Ubiquity, 2015 (June)

2. Coroama V, Hilty LM (2009) Energy consumed vs. energy saved by ICT — a closer look. In:
Wohlgemuth V, Page B, Voigt K (eds) Environmental informatics and industrial environmental
protection: concepts, methods and tools. Shaker Verlag, Aachen

3. Andrae A, Edler T (2015) On global electricity usage of communication technology: trends to
2030. Challenges 6(1):117-157

4. Andrews RNL, Johnson E (2016) Energy use, behavioral change, and business organizations:
Reviewing recent findings and proposing a future research agenda. Energy Res Soc Sci
11:195-208

5. Richter F. The most wanted smartphone features. https://www.statista.com/chart/5995/the-
most-wanted-smartphone-features. Accessed 24 Jan 2018

6. Thorwart A, O’Neill D (2017) Camera and battery features continue to drive consumer
satisfaction of smartphones in US. https://www.prnewswire.com/news-releases/camera-and-
battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.
html Last visit: 2019-02-06

7. Hindle A (2012) Green mining: a methodology of relating software change to power consump-
tion. In: 9th IEEE working conference on Mining Software Repositories (MSR), June 2012, pp
78-87

8. Di Nucci D, Palomba F, Prota A, Panichella A, Zaidman A, De Lucia A (2017) Software-based
energy profiling of Android apps: simple, efficient and reliable? In 2017 IEEE 24th international
conference on software analysis, evolution and reengineering (SANER), pp 103-114

9. Linares-Vasquez M, Bavota G, Bernal-Cardenas C, Di Penta M, Oliveto R, Poshyvanyk D
(2018) Multi-objective optimization of energy consumption of GUIs in android apps. ACM
Trans Softw Eng Methodol 27(3):14:1-14:47

10. Li D, Lyu Y, Gui J, Halfond WGJ (2016) Automated energy optimization of HTTP requests for
mobile applications. In Dillon LK, Visser W, Williams L (eds) Proceedings of the 38th
international conference on software engineering, ICSE 2016, ACM, Austin, TX, May
14-22, 2016, pp 249-260

11. Avizienis A, Kelly JPJ (1984) Fault tolerance by design diversity: concepts and experiments.
IEEE Comp 17(8):67-80

https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.statista.com/chart/5995/the-most-wanted-smartphone-features
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html
https://www.prnewswire.com/news-releases/camera-and-battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.html

150 W. Oliveira et al.

12.

13.

14.

15.

16.

17.

18

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Randell B (1975) System structure for software fault tolerance. IEEE Trans Softw Eng 1
(2):221-232

Rustan Leino K (2017) Accessible software verification with Dafny. IEEE Softw 34(6):94-97
Dean J, Barroso LA (2013) The tail at scale. Commun ACM 56(2):74-80

Baldwin CY, Clark KB (2000) Design rules, vol 1: the power of modularity. MIT Press

Lima LG, Soares-Neto F, Lieuthier P, Castor F, Melfe G, Fernandes JP (2019) On haskell and
energy efficiency. J Syst Softw 149:554-580

Matalonga H, Cabral B, Castor F, Couto M, Pereira R, de Sousa SM, Fernandes JP (2019)
GreenHub farmer: real-world data for android energy mining. In 2019 IEEE/ACM 16th
international conference on mining software repositories (MSR), pp 171-175. IEEE

. Oliveira W, Oliveira R, Castor F (2017) A study on the energy consumption of android app

development approaches. In 2017 IEEE/ACM 14th international conference on mining soft-
ware repositories (MSR)

Oliveira W, Oliveira R, Castor F, Fernandes B, Pinto G (2019) Recommending energy-efficient
java collections. In 2019 16th international conference on mining software repositories (MSR),
pp 160-170

Pinto G, Liu K, Castor F, Liu YD (2016) A comprehensive study on the energy efficiency of
java thread-safe collections. In ICSME, 2016

Rocha G, Castor F, Pinto G (2019) Comprehending energy behaviors of Java I/O APIs. In 2019
ACM/IEEE international symposium on empirical software engineering and measurement
(ESEM), pp 1-12. IEEE

Blackburn SM, Garner R, Hoffmann C, Khang AM, McKinley KS, Bentzur R, Diwan A,
Feinberg D, Frampton D, Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Moss JEB,
Phansalkar A, Stefanovic D, VanDrunen T, von Dincklage D, Wiedermann B (2006) The
dacapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on object-oriented programming systems, languages, and
applications, OOPSLA ’06, ACM, New York, NY, pp 169-190

Kwon Y-W, Tilevich E (2013) Reducing the energy consumption of mobile applications behind
the scenes. In 2013 IEEE international conference on software maintenance, IEEE Computer
Society, Eindhoven, September 22-28, pp 170-179

Pinto G, Castor F, Liu YD (2014) Understanding energy behaviors of thread management
constructs. In Proceedings of the 2014 ACM international conference on object oriented
programming systems languages and applications, OOPSLA ’14, pp 345-360

Liu K, Pinto G, Liu D (2015) Data-oriented characterization of application-level energy
optimization. In Proceedings of the 18th international conference on fundamental approaches
to software engineering, FASE’15

Chowdhury SA, Sapra V, Hindle A (2016) Client-side energy efficiency of HTTP/2 for web and
mobile app developers. In IEEE 23rd international conference on software analysis, evolution,
and reengineering, SANER 2016, Suita, Osaka, March 14-18, 2016, vol 1. IEEE Computer
Society, pp 529-540

Manotas I, Bird C, Zhang R, Shepherd DC, Jaspan C, Sadowski C, Pollock LL, Clause J (2016)
An empirical study of practitioners’ perspectives on green software engineering. In Proceedings
of the 38th international conference on software engineering, ICSE 2016, Austin, TX, May
14-22, 2016, pp 237-248. ACM

Pinto G, Castor F, Liu YD (2014) Mining questions about software energy consumption. In
Proceedings of the 11th working conference on mining software repositories, MSR 2014, pp
22-31

David H, Gorbatov E, Hanebutte UR, Khanna R, Le C (2010) Rapl: memory power estimation
and capping. In 2010 ACM/IEEE international symposium on low-power electronics and
design (ISLPED), pp 189-194

Di Nucci D, Palomba F, Prota A, Panichella A, Zaidman A, De Lucia A (2017) Petra: a
software-based tool for estimating the energy profile of android applications. In 2017 IEEE/
ACM 39th international conference on software engineering companion (ICSE-C), pp 3-6

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Small Changes, Big Impacts: Leveraging Diversity to Improve Energy Efficiency 151

Gao X, Liu D, Liu D, Wang H, Stavrou A (2017) E-Android: a new energy profiling tool for
smartphones. In 2017 IEEE 37th international conference on distributed computing systems
(ICDCS), pp 492-502

Lyu Y, Gui J, Wan M, Halfond WGJ (2017) An empirical study of local database usage in
android applications. In Proceedings of the international conference on software maintenance
and evolution (ICSME), Sept 2017

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2015) Boa: Ultralarge-scale software repository
and source-code mining. ACM Trans Softw Eng Methodol 25(1):7:1-7:34

Hasan S, King Z, Hafiz M, Sayagh M, Adams B, Hindle A (2016) Energy profiles of java
collections classes. In Proceedings of the 38th international conference on software engineering,
New York, NY, pp 225-236

Manotas I, Pollock L, Clause J (2014) Seeds: a software engineer’s energy-optimization
decision support framework. In Proceedings of the 36th international conference on software
engineering, ICSE 2014, pp 503-514

Pereira R, Couto M, Saraiva J, Cunha J, Fernandes JP (2016) The influence of the java
collection framework on overall energy consumption. In Proceedings of the 5th international
workshop on green and sustainable software, GREENS ’16, pp 15-21, ACM, New York, NY
Trefethen AE, Thiyagalingam J (2013) Energy-aware software: challenges, opportunities and
strategies. J Comput Sci 4(6):444-449

Shavit N, Touitou D (1997) Software transactional memory. Distributed Comput 10(2):99-116
O’Sullivan B (2009) Criterion: robust, reliable performance measurement and analysis. http://
www.serpentine.com/criterion/. Last access 22 Jan 2019

Georgiou S, Spinellis D (2020) Energy-delay investigation of remote inter-process communi-
cation technologies. J Syst Softw 162:110506

Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JP, Saraiva J (2017) Energy
efficiency across programming languages: How do energy, time, and memory relate? In Pro-
ceedings of the 10th ACM SIGPLAN international conference on software language engineer-
ing, SLE 2017, pp 256-267, ACM, New York, NY

Aggarwal K, Zhang C, Campbell JC, Hindle A, Stroulia E (2014) The power of system call
traces: predicting the software energy consumption impact of changes. In Proceedings of 24th
annual international conference on computer science and software engineering, CASCON
2014, pp 219-233. IBM/ACM

Li D, Tran AH, Halfond WGJ (2014) Making web applications more energy efficient for OLED
smartphones. In 36th international conference on software engineering (ICSE *2014), ACM, pp
527-538

Linares-Vasquez M, Bavota G, Bernal Cardenas CE, Oliveto R, Di Penta M, Poshyvanyk D
(2015) Optimizing energy consumption of GUISs in android apps: a multi-objective approach. In
Proceedings of the 2015 10th joint meeting on foundations of software engineering, ESEC/FSE
2015, pp 143-154, ACM, New York, NY

Mcintosh A, Hassan S, Hindle A (2019) What can android mobile app developers do about the
energy consumption of machine learning? Empirical Softw Eng 24(2):562-601

Peterson M (2009) Decisions under ignorance, pp 40—-63. Cambridge introductions to philos-
ophy. Cambridge University Press

Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N (2013) Why people hate your app: Making
sense of user feedback in a mobile app store. In Proceedings of the 19th ACM SIGKDD
international conference on knowledge discovery and data mining. ACM, pp 1276-1284
Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain
about? IEEE Softw 32(3):70-77

http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/

152 W. Oliveira et al.

49. Lin K, Kansal A, Lymberopoulos D, Zhao F (2010) Energy-accuracy trade-off for continuous
mobile device location. In Proceedings of the 8th international conference on Mobile systems,
applications, and services. ACM, pp 285-298

50. Wan M, Jin Y, Li D, Gui J, Mahajan S, Halfond WGJ (2017) Detecting display energy hotspots
in android apps. Softw Test Verification Reliab 27(6):16-35

51. Couto M, Saraiva J, Fernandes JP (2020) Energy refactorings for android in the large and in the
wild. In Proceedings of the IEEE 27th international conference on software analysis, evolution
and reengineering (SANER °20), pp 217-228

52. Oliner AJ, Iyer AP, Stoica I, Lagerspetz E, Tarkoma S (2013) Carat: collaborative energy
diagnosis for mobile devices. In Proceedings of the 11th ACM conference on embedded
networked sensor systems, SenSys 13, Roma, November 11-15, 2013, pp 10:1-10:14. ACM

Chapter 7 ®)
Tool Support for Green Android s
Development

Hina Anwar, Iffat Fatima, Dietmar Pfahl, and Usman Qamar

Abstract Mobile applications are developed with limited battery resources in mind.
To build energy-efficient mobile apps, many support tools have been developed
which aid developers during the development and maintenance phases. To under-
stand what is already available and what is still needed to support green Android
development, we conducted a systematic mapping study to overview the state of the
art and to identify further research opportunities. After applying inclusion/exclusion
and quality criteria, we identified tools for detecting/refactoring code smells/energy
bugs, and for detecting/migrating third-party libraries in Android applications. The
main contributions of this study are: (1) classification of identified tools based on the
support they offer to aid green Android development, (2) classification of the
identified tools based on techniques used to offer support to developers, and (3)
characterization of the identified tools based on the user interface, IDE integration,
and availability. The most important finding is that the tools for detecting/migrating
third-party libraries in Android development do not provide support to developers to
optimize code w.r.t. energy consumption, which merits further research.

7.1 Introduction

Global warming due to CO, emissions has been one of the most prominent envi-
ronmental issues in the past decade. A part of these CO, emissions is contributed by
the information and communication technology (ICT) industry [1]. Therefore, pro-
ducing green or sustainable products and practices has been the focus of many
researchers in the ICT community. Recently, however, the focus of research in the

H. Anwar (0<) - D. Pfahl
Institute of Computer Science, University of Tartu, Tartu, Estonia
e-mail: hina.anwar@ut.ee; dietmar.pfahl@ut.ece

I. Fatima - U. Qamar

College of Electrical and Mechanical Engineering, National University of Sciences and
Technology, Islamabad, Pakistan

e-mail: iffat.fatima@ce.ceme.edu.pk; usmanq@ceme.nust.edu.pk

© Springer Nature Switzerland AG 2021 153
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_7&domain=pdf
mailto:hina.anwar@ut.ee
mailto:dietmar.pfahl@ut.ee
mailto:iffat.fatima@ce.ceme.edu.pk
mailto:usmanq@ceme.nust.edu.pk
https://doi.org/10.1007/978-3-030-69970-3_7#DOI

154 H. Anwar et al.

ICT community has shifted from optimizing the energy consumption of hardware to
optimizing the energy consumption of software [2-8], as software indirectly con-
sumes energy by controlling the equipment. An efficiently designed software might
use resources optimally, thus reducing energy consumption [9—11]. Among portable
devices, mobile phones are the most commonly used. Statistics show that the usage
of mobile devices will grow in the coming years [12], indicating an increase in the
carbon footprint.

Green software development encompasses green by software and green in soft-
ware. Green by software means using software products to make other domains of
life more sustainable. Green in software refers to the study and practice of designing,
developing, maintaining, and disposing of software products in such a way that they
have a minimal negative impact on the environment, community, economy, indi-
viduals, and technology [13, 14].

This chapter mostly focuses on green in software and summarizes the tool support
available to improve the green-ability of Android apps in the development and
maintenance phases. The term “Android development” refers to the development
of applications that are developed to operate on devices running the Android
operating system. These applications can be developed in various languages; how-
ever, in this chapter, we focus on Android development in Java. Android develop-
ment differs from traditional software development in terms of context, user
experience, and a touch-based interface. Android applications are designed for
portable devices, which have limited resources such as memory or battery. A
common struggle during Android application development is how to make the
applications efficient in terms of resource usage. Banarjee et al. summarize the
problem nicely as follows: “High computational power coupled with small battery
capacity and the application development in an energy-oblivious fashion can only
lead to one situation: short battery life and an unsatisfied user base” [15].

Previous studies have explored applications in app stores in order to define
procedures to optimize their energy consumption [16-23]. Some studies have
focused on profiling energy [24-28] consumed by applications, while others have
developed support tools [29, 30]. As compared to desktop or web applications,
Android applications contain multiple components that have user-driven workflows.
A typical Android application consists of activities, fragments, services, content
providers, and broadcast receivers. Due to the difference in architecture, the support
tools used in the development of traditional Java-based applications are not so useful
in Android application development and maintenance. Android application code can
be roughly divided into two part: custom code and reusable code. While custom code
is unique to each app, reusable code includes third-party libraries that are included in
apps to speed up the development process.

In the domain of Android application development, research has been focused on
development activities related to energy efficiency, memory usage, performance,
etc., and maintenance activities related to code smell detection and correction,
energy bug detection and correction, detection/migration of third-party libraries, etc.

Code smells are an indication of possible problems in source code or design of the
applications. Such problems can be avoided by refactoring the code [31]. However,

7 Tool Support for Green Android Development 155

object-oriented code smells are different from Android-specific code smells. In
Android development, code smell can appear due to frequent development and
update cycles of applications. Some studies [32—-34] have focused on identifying,
cataloguing, and profiling the energy consumption of Android-specific code smells.
Energy bugs are scenarios which cause unexpected energy drains such as preventing
the mobile device from going into the idle state even after the application execution
has completed. Such malfunctioning can cause battery drain and should be avoided
[15]. To build an energy-efficient Android application developers need to identify
and refactor code smells/energy bugs.

Third-party libraries are reusable components available to implement various
functionalities in the app, such as billing, advertisement, and networking. Up until
June 2020, the online Maven repository’ contained 344,869 unique libraries. Such a
huge supply of third-party libraries is linked to the demands and needs of developers
[35]. Almost 60% of code in Android applications is related to third-party libraries
[36]. However, these libraries could introduce various security-, privacy-,
permission-, and resource usage-related issues in applications [37]. The research
on the detection/migration of third-party libraries has many uses. Some studies have
used third-party library detection techniques for finding security vulnerabilities [38—
41] in Android apps, while others have focused on privacy leaks [42—46]. Third-
party libraries have been detected and removed as noise in clone, app repackage, and
malicious app detection studies [47-51]. Third-party libraries are detected and
removed from these studies in order to improve the accuracy of the analysis. Studies
related to the energy impact of third-party Android libraries are limited [52].

In order to build effective Android-specific support tools to aid green Android
development, we first need to understand what is already available, what is still
needed, and how the problems in existing tools can be overcome. Based on
published literature we outlined an explorative analysis of support tools available
to (1) optimize code in Android applications through code smell detection/
refactoring, and (2) optimize reusable code in Android applications through detec-
tion/migration of third-party libraries. This study extends our previous work [53]
comparing 21 tools in the following ways: we have improved search string and
extended our analysis for one more year, which gave us 30 more tools and also
additional results. We provide further information about the interface, availability,
and integrated development environment (IDE) integration of all 51 tools.

The remainder of this chapter is organized as follows. Section 7.2 presents related
work. Section 7.3 describes the methodology used to analyze the literature.
Section 7.4 presents the result of screening the publications and classification and
analysis. Section 7.5 provides a discussion to identify future research directions.
Section 7.6 provides possible threats to the validity of this study. Section 7.7
concludes the chapter by summarizing the main findings.

"https://search.maven.org/stats, statistics for central repository

https://search.maven.org/stats

156 H. Anwar et al.

7.2 Related Work

Secondary studies related to energy efficiency in Android development are scarce.
Some [54-56] have reviewed tools and techniques for improving the quality of Java
projects in the object-oriented paradigm (with regard to performance or
maintainability).

Most Android projects use Java as the programing language; however, the
support tools and techniques used for Java projects reviewed by previous secondary
studies [54-56] cannot be effectively applied to Android projects. Therefore, many
specialized support tools have been developed to improve the quality of Android
apps with regard to maintainability, performance, security, or energy. Li et al. [57]
performed a systematic literature review to analyze static source code analysis
techniques and tools proposed for Android to assess issues related to security,
performance, or energy. The authors have reviewed work published between 2011
and 2015, consisting of 124 studies. The review concluded that the majority of static
analysis techniques only uncover security flaws in Android apps. Degu A
[58]. performed a systematic literature review to classify primary studies with a
focus on resource usage, energy consumption, and performance in Android apps.
The classification is high level based on the main research focus, type of contribu-
tion, and type of evaluation method adopted in selected studies. Their results did not
provide an in-depth review of support tools in green Android development.

Another group of studies has compared the state-of-the-art tools through exper-
iments in order to benchmark their performance, accuracy, and reporting capabili-
ties. Qiu et al. [59] provide a comparison between three static analysis tools:
FlowDroid/IccTA, Amandroid, and Droidsafe. They evaluated these tools using a
common configuration setup and the same set of benchmark applications. Results
were compared to those of previous studies in order to identify reasons for inaccu-
racy in existing tools. Corrodi et al. [60] review the state-of-the-art in Android data
leak detection tools. Out of 87 state-of-the-art tools, they executed five based on
availability. They compared these five tools against a set of known vulnerabilities
and discussed the overall performance of the tools. Ndagi and Alhassan [61] provide
a comparison of machine classifiers for detecting phishing attacks in Adware in
Android applications. This study concluded that many existing machine classifiers,
if adequately explored, could yield more accurate results for phishing detection.

Another group of studies has focused on reviewing the technique related to
security, malware, similarity, and repackaging in Android apps. Cooper et al. [62]
provide an overview of security threats posed by Android malware. They also survey
some common defense techniques to mitigate the impact of malware applications
and characteristics that are commonly found in malware applications that could
enable detection techniques. Li et al. [63] provide a literature review that summarizes
the challenges and current solutions for detecting repackaged apps. They concluded
that many existing solutions merit further research as they are tested on closed
datasets and might not be as efficient or accurate as they claim to be. Roy et al.

7 Tool Support for Green Android Development 157

[64] provide a qualitative comparison of clone detection techniques and tools. They
classify, compare, and evaluate these tools.

We found some studies that have conducted controlled experiments to measure
the energy consumption of third-party libraries. For example, Wang et al. [65]
presented an algorithmic solution to model the energy minimization problem for
ad prefetching in Android apps. Rasmussen et al. [66] conducted a study to compare
the power efficiency of various methods of blocking advertisements on an Android
platform. They found many cases where ad-blocking software or methods resulted in
increased power usage. In Android applications, there could be many reasons for
long-running operations in the background that continuously consume resources.
Such operations could cause battery drain and performance degradation. Shao et al.
[67] demonstrated through an experiment that sometimes such behavior is not
intentional and is caused by third-party libraries.

However, we could not find any secondary study that provides an overview of the
state of the art w.r.t. to support tools available for detecting/migrating third-party
libraries in Android apps. To the best of our knowledge, none of the previous
secondary studies has reviewed the literature from the point of view of support
tools developed to aid green Android development. Most of the secondary studies
discussed above have covered published work until 2015 or 2017 in the object-
oriented paradigm, and many of the reviewed tools in these studies are now outdated/
obsolete. Therefore, in this study we provide a different view of the literature by
analyzing recently developed support tools for energy profiling, code optimization,
refactoring, and third-party library detection or migration in Android development to
improve energy efficiency in apps. We explore whether these support tools aid green
Android development. We also provide an overview of the techniques used in these
support tools.

7.3 Methodology

We conducted a systematic mapping study following the method described in
[68]. First, we formulated research questions, and then based on those research
questions we formulated two general search queries and conducted the search in
the following online repositories for primary publications: IEEE Xplore, ACM
digital library, Science Direct, and Springer. In this study, we cover publications
from 2014 to June 2020, as from 2014 onwards the focus of many publications has
been Android and energy-efficient app development, indicating a shift in research
focus.

158 H. Anwar et al.
7.3.1 Research Questions

As the objective of this study is to analyze the current support tools available to
improve custom code through detection/refactoring of code smell/energy bugs and
to improve reusable code through detection/migration of third-party libraries in
Android applications, we formulated the following research questions.

RQ1: What state-of-the-art support tools have been developed to aid software
practitioners in detecting/refactoring code smells/energy bugs in Android apps?

RQ2: What state-of-the-art support tools have been developed to aid software
practitioners in detecting/migrating third-party libraries in Android apps?

RQ3: How do existing support tools compare to one another in terms of techniques
they use for offering the support?

RQ4: How do existing support tools compare to one another in terms of the support
they offer to practitioners for improving energy efficiency in Android apps?

RQland RQ2 aim to classify publications based on the tools they offer. RQ3 aims
to classify and analyze publications based on techniques used in the tool to offer
support to developers. RQ4 deals with the characterization of all the identified tools
in terms of the support (such as output or interface or availability) they offer to
developers to aid green Android development.

7.3.2 Search Query

We derived search terms to use in our search query from the research questions of
this study. We looked for alternatives to the search terms in publications we already
knew and refined our search terms to return the most relevant publications. We used
the “*” operator to cover possible variations on the selected search terms in the
search query. The keyword “OR” was used to improve search coverage.

Based on our previous work [53], we improved our search query and extended
our search in terms of publication years to include one more year. The first search
query is designed to retrieve publications that provide a support tool to detect/
refactor code smells/energy bugs in Android apps. The second search query is
designed to retrieve publications that provide a support tool to detect/migrate
third-party libraries in Android apps.

We did not use the search terms “mobile development,” “apps,” “optimization,”
“green,” “sustainability,” and “recommendation” in isolation as they were too high
level and produced quite a large corpus consisting of a high number of irrelevant
publications, while the search terms “resource leaks,” “APL” “tool,” “framework,”
and “technique” were eliminated to avoid being too specific. The search queries were
applied to popular online repositories IEEE Xplore, ACM digital library, Science
Direct, and Springer) to find a dataset of relevant primary publications. In each
repository, based on available advanced search options, filters were applied to refine

7 Tool Support for Green Android Development 159

Table 7.1 Search query filter ey Value
Publication year 2014-2020 (up until June)
Content-type Journal Article, Conference Paper

the query results. Applied filters are shown in Table 7.1. The search queries were
applied to the titles, abstracts, and keywords of the publications.

Search Query 1

Android AND (energy OR code smell OR bug OR refactor* OR correct* OR detect*
OR optimiz* OR efficien*) AND NOT (environ* OR iot OR edu* OR hardware OR
home)

Search Query 2
(Android) AND (“third-party libr*” OR “third-party Android lib*” OR “libr*”)
AND NOT (environ* OR iot OR indus* OR edu* OR hardware OR home)

7.3.3 Screening of Publications

We first removed duplicate results and then defined inclusion, exclusion, and quality
criteria for further screening of search results.

7.3.3.1 Duplicate Removal

The search results from online repositories were first loaded in Zotero® (an open-
source reference management system) to create a dataset of relevant publications.
Using the feature in Zotero, duplicate publications were removed from the dataset.
Next, we manually applied inclusion, exclusion, and quality criteria to the remaining
publications.

7.3.3.2 Inclusion Criteria

For inclusion, the selected publication should be a primary study generally related to
the software engineering domain with a focus on third-party libraries or code smells
or energy bugs in Android apps. A tool/automated technique for third-party library/
code smell/energy bug detection, modification, or replacement was presented in the
publication to support Android development. We considered only conference and
journal articles published in English.

Zhttps://www.zotero.org/

https://www.zotero.org/

160 H. Anwar et al.

Table 7.2 Quality assessment criteria

ID | Description Rating

1 | Does the publication clearly state contributions that are directly related to third- 0.5
party libraries/code smells/energy bugs in Android apps?

Is the contributions related to green in Android development? 0.5

—

3 | Is the contributions a tool/automated technique that could be used in Android
development/maintenance?

Is the research method adequately explained? 0.5
5 | Are threats to validity and future research directions discussed separately? 0.5
Total 3

7.3.3.3 Exclusion Criteria

Publications that were unrelated to Android development or third-party library/code
smell/energy bugs in Android apps were excluded. The publications that focused
only on hardware, environmental, security, privacy, networks, malware, clones,
repackaging of apps, obfuscation issues, iOS, or present secondary data were also
excluded. Work presented in a thesis or a book chapter is usually published in
relevant journals or conferences as well. Therefore, doctoral symposium papers,
magazine articles, book chapters, work-in-progress papers, and papers that were not
in English were excluded as well.

7.3.3.4 Quality Criteria

The quality criteria applied to selected publications are shown in Table 7.2. Abstracts
of the publications and structure of the publication were inspected for further quality
assessment. If a quality rule was true for a publication, it was awarded full points;
otherwise, no points were awarded. In case a rule partially applied to a publication,
half points were awarded. After applying all five quality rules, the points were added
to get a final quality score for a publication. A maximum quality score of 3 could be
assigned to a publication. If a publication was below a total quality score of 2, it was
removed from the results.

7.3.4 Classification and Analysis

To answer RQ1-RQ3, we identified the main keywords of the selected publications
along with the commonly used terms in the abstracts to define categories of support
tools. Research methodology and results of selected publications were additionally
studied when needed. We kept extracted data in Excel spreadsheets for further
processing. During data extraction, if there was a conflict of opinion, it was
discussed among the authors until a consensus was reached. To answer RQ1 and

7 Tool Support for Green Android Development 161

Table 7.3 Categories of support tools (RQ1)

ID |Category | Description

CP | Profiler A software program that measures the energy consumption of an Android app
or parts of apps

CD | Detector | A software program that only identifies and detects energy bugs/code smells in
an Android app

CO | Optimizer | A software program that identifies energy bugs/code smells as well as refactor
source code of an Android app to improve energy consumption

Table 7.4 Categories of support tools (RQ2)

ID |Category | Description

CI |Identifier | A software program that only identifies and detects third-party libraries in an
Android app

CM | Migrator | A software program that identifies third-party libraries as well as helping in
updating or migrating the third-party libraries (to an alternative library or
version) in the source code of an Android app

CC | Controller | A software program that identifies third-party libraries to control, isolate, or
de-escalate privileges and permissions granted to third-party libraries in an
Android app

RQ2, a bottom-up merging technique was adopted to build our own classification
schemes (see Tables 7.3 and 7.4). Once classification schemes were established, we
extracted data from each selected publication to identify its main contribution and
assigned the tool mentioned in the publication to a category based on the classifica-
tion scheme. To answer RQ3, a classification scheme was needed to classify
techniques used in support tools for offering support to aid Android development.
We used the bottom-up approach to build this classification scheme by combining
the specialized analysis methods/techniques into more generic higher-level tech-
niques. The identified generic techniques along with their definitions are described in
Tables 7.5 and 7.6. Once we had established the classification schemes, we extracted
data from the abstract and research methodology of each selected publication and
assigned it to a category defined in the classification schemes.

To answer RQ4, we extracted data form each selected publication to gather
information about the kind of support the identified tool offers. We compare these
tools based on the inputs of the tool, outputs of the tool, code smells/energy bugs/
third-party libraries coverage, interface type, integrated development environment
(IDE) support, and availability. In general, a code smell is defined as “a surface
indication that usually corresponds to a deeper problem in the system” [69] and an
energy bug is defined as an “error in the system (application, OS, hardware,
firmware, external conditions or combination) that causes an unexpected amount
of high energy consumption by the system as a whole” [70]. A third-party library is a
reusable component related to specific functionality that can be integrated into the
application to speed up the development process. A third-party library could be for
advertising, analytics, Image, Network, Social Media, Utility, etc. [71]. In the light

162

H. Anwar et al.

Table 7.5 Categories of techniques used in support tools for code smell/energy bugs (RQ3)

ID | Technique Definition
T1 | Byte Code A technique that injects code in the Smali files of the app under test.
Manipulation The injected code is either a log statement or an energy evaluation
function. These statements help determine the part of the source code
that consumes a specific amount of energy at runtime.
T2 | Code A technique that instruments the app, using instrumented test cases
Instrumentation that are capable of running specific parts of the app, in such a way
that it is run in a specific environment while calling known methods/
classes of the app under test. It uses finite state machines and device-
specific power consumption details to measure energy.
T3 | Logcat Analysis A technique that uses system-level log files to obtain energy con-
sumption information provided by the OS for the app under test.
These logs are compared with application-level logs to give graphical
information about the energy consumption of the app.
T4 | Static Source Code | A technique that uses the source code of the app and analyzes it using
Analysis one or a combination of the following methods: control flow graphs
analysis, point-to-analysis, inter-procedural, intra-procedural, com-
ponent call analysis, abstract syntax tree traversal, or taint analysis.
T5 | Search-Based A technique that uses a multi-objective search algorithm to find
Algorithms multiple refactoring solutions and the most optimal solution is
selected as final refactoring output by iteratively comparing the
quality of design and energy usage.
T6 | Dynamic Analysis | A technique based on the identification of information flow between

objects at runtime for the detection of vulnerabilities in the app under
test. It monitors the spread of sensory data during different app states.

of these definitions, we looked for Android-specific code smells, energy bugs, and
third-party libraries in the studies.

7.4 Results

In this section, we present the result of the mapping study. The list of selected
publications and additional details about code smells/energy bugs covered by sup-
port tools are shown in a separate file (additional materials).

3 Additional material: https://figshare.com/s/da429977adc4e928fd64

https://figshare.com/s/da429977adc4e928fd64

7 Tool Support for Green Android Development

163

Table 7.6 Categories of techniques used in support tools for third-party libraries (RQ3)

ID | Technique Description

T7 | Feature Similarity A technique that uses machine learning to extract code clusters or
train classifiers by using feature hashing or similarity metrics or
pattern digest or similarity digest on apps and third-party libraries
code in order to identify and classify third-party libraries.

T8 | Whitelist A technique that compares third-party library names/versions/

Comparison package information to whitelist in order to detect third-party
libraries.

T9 | API Hooking A technique that intercepts or redirects API calls at various levels in
order to regulate permission or policy-related operations.

T10 | Module Decoupling | A technique to divide code into modules and extract code features
such as package name, package structure, and inheritance relation-
ships for clustering/classification to detect library.

T11 | Process Isolation A technique to isolate untrusted components in the operating sys-
tem. This technique requires system-level modification.

T12 | Class Profile A technique to extract (strict or relaxed) profiles from libraries and

Similarity apps code based on structural hierarchies. Based on similarity
(exact or fuzzy) between these profiles library is detected.
T13 | Collaborative A technique to predict or recommend third-party libraries based on
Filtering feature vectors and their similarity against a set of similar apps or
neighborhood apps. It includes model-based approaches (such as
matrix factorization), memory, and item-based approaches.

T14 | Natural Language A technique used to identify or recommend third-party libraries

Processing based on textual descriptions. It includes techniques such as word
embedding, skip-gram model, continuous bag-of-words model,
domain-specific relational and categorical tag embedding, and topic
modeling.

7.4.1 Results of Screening

Search Query 1 (Support Tools for Code Smell/Energy Bugs)

As a result of running search query 1 and applying filters (see Table 7.1) to search
results, 2334 publications were found from the selected online repositories. These
publications were loaded into the Zotero software for the screening and removal of
duplicates, and the total number of publications was reduced to 2241 after duplicate
removal. Inclusion and exclusion criteria were applied to the remaining publications,
and the number was reduced to 575. We read abstracts of these publications and
looked at the structure to assign them a quality score based on quality criteria. After
applying the quality criteria, the number of selected publications was reduced to
24 (see Tables 7.7, 7.8, and 7.9).

Search Query 2 (Support Tools for Third-Party Libraries)

As a result of running search query 2 and applying filters (see Table 7.1) to search
results, 545 publications were found from the selected online repositories. These
publications were loaded into the Zotero software for the screening and removal of
duplicates, and the total number of publications was reduced to 521 after duplicate

164

Table 7.7 Number of studies extracted per online repository (search query 1)

H. Anwar et al.

Sr. Repo. # of papers Conference papers Journal articles
1 IEEE Xplore 1170 910 260

2 ACM Digital library 483 459 24

3 Springer 595 362 231

4 Science Direct 86 4 82

Table 7.8 Number of articles per screening step (search query 1)

Sr. Step in the screening of publications # of publications
1 Search string results after applying filters 2334

2 Remove duplicates 2241

3 Apply inclusion and exclusion criteria 575

4 Apply quality criteria 24

Table 7.9 Quality score assigned to each selected publication (search query 1)

Publication ID

Quality score

P2, P11, P12, P14, P16, P17, P19, P20

2

P5, P6, P7, P13, P21, P24 2.25
P1, P4, P8, P9, P10, P15, P22, P23 2.5
P3, P18 2.75

Table 7.10 Number of studies extracted per online repository (search query 2)

Sr. Repo. # of papers Conference papers Journal articles
1 IEEE Xplore 312 296 12

2 ACM Digital library 177 157 20

3 Springer 28 22 6

4 Science Direct 28 0 28

Table 7.11 Number of articles after applying filters and screening steps (search query 2)

Sr. Step in the screening of publications # of publications
1 Search string results after applying filters 545

2 Remove duplicates 521

3 Apply inclusion and exclusion criteria 131

4 Apply quality criteria 27

removal. Inclusion and exclusion criteria were applied to the remaining publications
and the number was reduced to 131. We read abstracts of these publications and
looked at the structure to assign them a quality score based on quality criteria. After
applying the quality criteria, the number of selected publications was reduced to

27 (see Tables 7.10, 7.11, and 7.12).

7 Tool Support for Green Android Development 165

Table 7.12 Quality score assigned to each selected publication (search query 2)

Publication ID Quality score
P31, P43 2

P26, P29, P33, P34, P35, P36, P39, P40, P48, P49 2.25

P25, P27, P28, P30, P32, P37, P38, P41, P42, P44, P45, P46, P47, P50, P51 2.5

Table 7.13 Distribution of studies in each category (search query 1)

ID Selected publications # Tools
CP P6, P14, P16, P12, P13, P20, P19 7
CD P1, P3, P4, P5, P8, P9, P7, P17 8
CcO P10, P11, P15, P18, P2, P21, P22, P23, P24 9

Profiler @Optimizer @Detector

NO. OF PUBLICATIONS
O AN W e e o~

R
EDD

2014 2015 2016 2017 2018 2019 2020
YEAR OF PUBLICATION

Fig. 7.1 Publications per year per category (search query 1)

7.4.2 Classification and Analysis

RQ1: What State-of-the-Art Support Tools Have Been Developed to Aid Soft-
ware Practitioners in Detecting/Refactoring Code Smells/Energy Bugs
in Android Apps?

To answer RQ1, the classification scheme defined in Table 7.3 (cf. Sect. 7.3.4) was
used and the selected publications were divided into three categories, i.e., (1) “Pro-
filer,” (2) “Detector,” and (3) “Optimizer,” based on the support tool they offer to aid
green Android development. Table 7.13 gives an overview of the distribution of
selected publications in each category, along with the total number of tools in each
category. Figure 7.1 shows the number of publications each year. The colors in the
bars indicate the number of tools in each category each year from 2014 to 2020. We
can see a decrease in the number of “Profiler” tools while there is an increase in the
number of “Optimizer” tools. In 2019 and 2020 (until June), no new “Detector” tool
was published.

166 H. Anwar et al.

Table 7.14 Distribution of publications in each category (search query 2)

ID Selected publications # Tools
CI P26, P27, P29, P30, P31, P32, P33, P37, P40, P41, P42, P44, P47, P48, P49 | 16
CM | P35, P45, P50, P51 4
CC | P25, P28, P34, P36, P38, P39, P43, P46 7

n 8 : o ,

Z < o |dentifier @ Migrator = Controller

]

:: U

O 5

B 4

2 5 & il

m |

o2 w \ 3 I

I Wk =

2014 2015 2016 2017 2018 2019 2020
YEAR OF PUBLICATION

Fig. 7.2 Publications per year per category (search query 2)

Table 7.15 Overview of support tools (for code smell/energy bug detection and refactoring)
showing the technique used for offering support to developers

Techniques

Ct. |T1 T2 T3 T4 TS |T6
CP |P6,P16 |P12, ‘P13,P19 |P14,P20 |- - P17
CD |- - P1, P3, P7, P8, P9, P4, P5 - -
Cco |- - - P11, P21, P2, P10, P22, P23, P24 | P15 |P18

RQ2: What State-of-the-Art Support Tools Have Been Developed to Aid Soft-
ware Practitioners in Detecting/Migrating Third-Party Libraries
in Android Apps?

To answer RQ2, the classification scheme defined in Table 7.4 (cf. Sect. 7.3.4) was
used and the selected publications were divided into the categories (1) “Identifier,”
(2) “Migrator,” and (3) “Controller,” based on the support tool they offer to aid
Android development. Table 7.14 gives an overview of the distribution of selected
publications in each category, along with the total number of tools in each category.
Figure 7.2 shows the number of publications each year. The colors in the bars
indicate the number of tools in each category each year from 2014 to 2020 (until
June). We can see at least one “Identifier” and “Controller” tool each year. In
addition, we can see an increase in the number of “Migrator” tools in 2019 and 2020.

RQ3: How Do Existing Support Tools Compare to One Another in Terms
of Techniques They Use for Offering the Support?

To answer RQ3, we identify techniques used in each tool for improving the energy
efficiency of apps. Tables 7.15 and 7.16 give an overview of tools and techniques

7 Tool Support for Green Android Development 167

Table 7.16 Overview of support tools (for third-party library detection and migration) showing the
technique used for offering support to developers

Techniques
Ct. |T7 T8 T9 T10 T11 |T12 T13 |T14
CI | P26, P42, P31, P27, P29, P32, P30,
P49, P33, P47 P44, P33, P37, P41,
P37, P40 P40, P47 P48
CM P45 P35, | P35,
P51 | P50
CC P34, P36, P28 P25
P38, P39,
P43, P46

along with reference to selected publications. Based on Table 7.15, we observed that
no tool in any category used a combination of techniques. Each tool could be easily
classified into exactly one category of techniques (defined in Sect. 7.3.4). However,
in Table 7.16, many tools used a combination of techniques such as module
decoupling and feature similarity, or collaborative filtering and natural language
processing.

As a result of fine-tuning search query 1, we were able to identify three new
“Optimizer” tools [P22, P23, and P24] which used static source code analysis to
refactor and optimize the application code. See additional materials® for more details
on techniques used in the “Profiler,” “Detector,” and “Optimizer” categories.

Identifier “Identifier” tools mostly used feature similarity or module decoupling or
both techniques to detect third-party libraries. The authors of [P26] used similarity
digests (which are similar to standard hashes) and compared them against a database
consisting of original compiled code of third-party libraries. The authors of [P42]
also used similarity digests to measure the similarity between data objects. The
authors of [P49] used design pattern digests, fuzzy signatures, and fuzzy hash to
match design patterns from app and library code. The authors of [P27 and P29]
identified third-party libraries by decoupling an app into modules using package
hierarchy clustering and clustering based on locality sensitive hashing, respectively.
The authors of [P32 and P44] decoupled apps into modules to extract package
dependencies for identifying third-party libraries. The authors of [P33, P37 and
P40] used a combination of module decoupling and feature hashing/digests to
provide a list of detected third-party libraries. The authors of [P47] used whitelist-
based detection for non-obfuscated* apps and used motifs subgraph-based detection
for obfuscated apps. The authors of [P31] used whitelist-based detection by com-
paring library name and package information against a list of commonly used third-
party libraries. The authors of [P31, P41, and P48] extracted method signatures and

“Code obfuscation is used to conceal or obscure the code in order to avoid tempering.

168 H. Anwar et al.

package hierarchy structures from libraries to build profiles per library and used
these profiles for third-party library identification.

Migrator “Migrator” tools mostly used a combination of collaborative filtering and
natural language processing techniques. The authors of [P35] used collaborative
filtering in combination with topic modeling (applied to the textual description in
readme files). Based on results of topic modeling, similar apps were identified, and
the set of third-party libraries extracted from these similar apps were then used to
recommend libraries to developers. The authors of [P50] applied word embedding
and domain-specific relational and categorical knowledge on stack overflow ques-
tions to recommend alternative libraries. The authors of [P51] used collaborative
filtering and applied the matrix factorization approach to neutralize bias while
recommending libraries. The authors of [P45] used the “LibScout” tool to extract
library profiles. These profiles were then used to determine if a library version should
be updated or not.

Controller “Controller” tools mostly used API hooking techniques to provide
control over library privileges based on policy. The authors of [P34] intercepted
and controlled framework APIs. The authors of [P36] intercepted system APIs to
extract runtime library sequence information. The authors of [P38] tracked the
execution entry of the module and all related asynchronous executions at thread
level. The authors of [P39] used the tool “Soot Spark™ to get call graphs in order to
identify Android APIs that leak data (based on a given policy). The authors of [P43]
used binder hooking, in-VM API hooking, and GOT (global offset table) hooking to
regulate permission and file-related operation of third-party libraries. The authors of
[P46] intercepted permissions protected calls and checked them against a compiled
list of third-party libraries in order to regulate privileges. The authors of [P28]
extracted code features and package information to train a classifier to detect libraries
and grant them privileges. The authors of [P25] used system-level process isolation
in order to separate third-party library privileges.

Techniques used to provide support by the various categories of support tools for
detecting and refactoring code smells/energy bugs are as follows:

“Profiler” tools typically use a variety of techniques to measure energy consumption but
none of the tools in this category uses static source code analysis.

Almost all “Detector” and “Optimizer” tools use static source code analysis of APK/SC
based on a predefined set of rules.

Techniques used to provide support by the various categories of support tools for
detecting and migrating third-party libraries are as follows:

“Identifier” tools use a variety of techniques for detecting third-party libraries. However,
feature similarity and/or module decoupling techniques are more frequent.

Almost all “Migrator” tools used collaborative filtering and/or natural language
processing techniques to recommend library migration.

Almost all “Controller” tools used API hooking techniques to control privileges/permis-
sions related to third-party libraries.

7 Tool Support for Green Android Development 169

RQ4: How Do Existing Support Tools Compare to One Another in Terms
of the Support They Offer to Practitioners for Improving Energy Efficiency
in Android Apps?

To answer RQ4, we first list all the support tools for code smell/energy bug
detection/correction (see Table 7.17) and compare them in terms of input, output,
user interface, integrated development environment (IDE) integration, availability,
and code smell/energy bug coverage. Second, we list all the support tools for
detecting/migrating third-party libraries (see Table 7.18) and compare them in
terms of input, output, library coverage, user interface, availability, and IDE inte-
gration support.

In Tables 7.17 and 7.18, the “input” column provides information about the input
for each tool. The “output” column provides information about the support the tool
offers based on the input. The “UI” column provides information about the user
interface of the tool. The “open source” column provides information about tool
availability for usage/extension. The “IDE” column (in Table 7.17) provides infor-
mation about the IDE integration capability of tools. The “TPL Type” column
(in Table 7.18) provides information about the third-party library (TPL) coverage
of the tool.

Support Tools for Code Smell/Energy Bug Detection and Refactoring

In Table 7.17, we provide a list of all the tools identified in the “Profiler,” ‘“Detector,”
and “Optimizer” categories. As a result of fine-tuning search query 1, we were able
to identify three new “Optimizer” tools [P22, P23, P24] that were not included in our
previous work [53]. For all the 24 tools listed in Table 7.17 we provide additional
information related to interface, availability, and IDE integration that was not
included in previous work [53].

Studies in the category “Profiler” offer support to the practitioners by providing
tools that can measure the energy consumed by the whole/parts of an app or device
sensors used in the apps. The measured information is usually presented to practi-
tioners as graphs for energy consumption over time. Studies in the “Profiler”
category do not recommend when, where, and how practitioners can use the
information from these graphs during development to improve the energy consump-
tion of their apps. Studies in the category “Detector” offer support to practitioners by
developing tools that present as output lists of energy bugs/code smells causing a
change in energy consumption of apps. Studies in the category “Optimizer” offer
support to practitioners by developing tools that present as output refactored source
code of apps optimized for energy. The studies in this category do not explicitly give
the recommendation to the developers about how to optimize the source code for
energy efficiency as the tools automatically refactor the code.

Out of the 24 tools listed in Table 7.17, only seven are open source. Out of the
seven open-source tools, three are “Detector” tools, and four are “Optimizer” tools.
Most of the tools do not offer IDE integration. Four tools in “Optimizer” category
support integration with Eclipse IDE [P11, P18, P21, P24] while one tool [P22]
supports integration with Android Studio IDE. Out of 24 tools, 12 offer command-
line interface (CMD) [P1, P3, P5, P9, P7, P10, P13, P15, P17, P20, P22, P23], eight

170

H. Anwar et al.

Table 7.17 List of support tools in “Profiler,” “Detector,” and “Optimizer” categories along with
information about their inputs and outputs, user interface, IDE support, and availability

Open
Ct. | Tool Input | Output Ul IDE source |ID
CP |Orka APK | ECG GUI No No P6
SEPIA AE ECG GUI No No P12
Mantis PBC Program CRC CMD No No P13
predictors
AEP* SL, ECG GUI No No P14
PID
via
ADB
E-Spector SL, ECG GUI No No P16
AL
via
ADB
SEMA PID, |Logof EC CMD No No P20
MVC
Keong et. al | SC ECG GUI + CMD | No No P19
CD |Wuetal. SC List of energy bugs CMD No No P1
Kim et al. PBC | List of energy bugs CMD No No P3
Statedroid APK | List of energy bugs CMD No No P5
PatBugs SC List of detected NS No No P8
warnings
SAAD APK | List of energy bugs CMD No No P9
aDoctor SC List of code smells GUI + CMD | No Yes P4
GreenDroid | PBC, |List of energy bugs + | CMD No Yes P17
CF severity level
Paprika APK, | List of code smells CMD No Yes P7
PM
CO |DelayDroid | APK | Refactored APK NS No No P2
HOT- APK | Most energy efficient | CMD No Yes P10
PEPPER APK, Refactored SC,
and List of refactoring
Asyncdroid | SC Refactored SC GUI Eclipse | No P11
EARMO APK | Refactored APK CMD No Yes P15
EnergyPatch | APK | Refactored APK GUI Eclipse | No P18
Nguyen SC Refactored SC GUI Eclipse | No P21
et al.
Chimera SC Refactored APK CMD Android | No P22
Studio
ServDroid APK | Refactored APK CMD No Yes P23
Leafactor SC Refactored APK file GUI Eclipse | Yes P24

Ct. category, SC source code, APK android package kit, PBC program byte code,

SL system log

files, AL application log files, PID process ID, ADB android debug bridge, CRC computational
resource consumption, AE application events, CF configuration files, MVC measurements of
voltage and current, ECG energy consumption graph, SM software metrics values, PM playstore
metadata, GUI graphical user interface, CMD command line, EC energy consumption

7 Tool Support for Green Android Development 171

Table 7.18 List of support tools in “Identifier,” “Migrator,” and “Controller” categories along with
information about their inputs and outputs, library coverage, Ul, and availability

TPL Open
Ct. | Tool Input Output Type |UI source | Ref
CI | Duet APK Library integrity Java NS No P26
pass/fail ratio
AdDetect APK List of detected TPLs |Java- | NS No P27
Ad
AnDarwin APK Detect and exclude Java NS No P29

TPLs + Set clone or
rebranded apps
LibScout TPL .jar/. Presence of given Java CMD | Yes P30
aar + APK TPL based on simi-
larity score

DeGuard APK De-obfuscated APK | Java GUI* | Yes P31
(containing detected
TPLs)
LibSift APK List of detected TPLs | Java NS No P32
LibRadar APK List of detected TPLs | Java GUI* | Yes P33
sorted by popularity
+ info about TPLs
LibD APK List of detected TPLs | Java CMD | Yes P37
Ordol APK List of detected TPL | Java NS No P40
versions + similarity
score.
LibPecker TPL name + | Presence of given Java NS No P41
APK TPL based on the
similarity score
Orlis APK List of detected TPLs | Java NS Yes P42
PanGuard APK List of detected TPLs | Java GUI* |No P44
He et al. APK List of detected TPLs | Java NS No P47
+ risk assessment
Feichtner APK/TPL List of detected TPLs | Java CMD" | Yes P48
et al. and versions + simi-
larity score
DPAK APK/ List of detected TPLs | Java CMD® | No P49
Android jar
CM | AppLibRec SC List of recommended |Java NS No P35
TPLs
Appcommune | APK Tailored app without | Java GUI° |No P45

TPLs and updated/
customized TPLs
SimilarTech TPL name List of recommended | Java GUI* |No P50
TPLs + information
about usage
LibSeek APK List of recommended | Java NS No P51
TPLs

(continued)

172 H. Anwar et al.

Table 7.18 (continued)

TPL Open
Ct. | Tool Input Output Type |UI source | Ref
CC |NativeGuard | APK Split original APK Native |CMD | No P25
into Service APK and
Client APK
Pedal APK Repackaged APK Java- |GUI° |No P28
with privilege Ad
de-escalated for
detected TPLs
LibCage SC + list of Deny unnecessary Java+ | NS No P34
permissions TPL permission on Native
required by runtime
TPLs
Zhan et al. SC + Policy Grant or deny per- Java NS No P36

missions to TPLs
based on policy

Perman APK Grant or deny per- Java GUI° |No P38
missions to TPLs
based on policy

SurgeScan TPL bytecode | Dex and jar files of Java NS No P39
+ Android.jar | TPL with the policy

+ policy implemented
AdCapsule SC + policy Grant or deny per- Java- | NS No P43
missions to TPLs Ad
based on policy
Reaper APK Grant or deny per- Java+ |GUI® | Yes P46
missions to TPLs Native
based on user
preference

Ct. category, Ul user interface, SC source code, APK android package kit, TPL third-party libraries,
GUI graphical user interface, CMD command-line interface, NS not specified in publication
“Web service

"Executable jar

“App on Android device

tools offer graphical user interface (GUI) [P6, P11, P12, P14, P16, P18, P21, P24],
and two tools offer both [P4, P19], while for the rest of them information about
interface is not specified in the publications.

See additional material® for details about definitions of code smells/energy bugs
covered by tools in the “Detector” and “Optimizer” categories. Figure 7.3 shows the
Android energy bug coverage of tools in the “Detector” and “Optimizer” categories.
The Android energy bugs are shown on the horizontal axis. The percentage of tools
in the “Detector” and “Optimizer” categories covering Android energy bugs is
shown on the vertical axis. We can see that Android energy bugs “TMV,” “TDL,”
“UL,” “UP,” and “VBS” are detected by 13% of the tools, whereas “RL,” “WB,” and
“NCD” are detected by 75%, 50%, and 38% of the tools in the “Detector” category
respectively. None of the tools in the “Optimizer” category covers. “TMV,” “TDL,”

7 Tool Support for Green Android Development 173

100%
mDetector @mOptimizer
90%
80%
70%
60%
50%
40% 75% | B
30%

20% 38%

13% M 13% 13% 13%‘ 13% M H
| | | | ! |
B

RL wB VBS 1B ™MV TOL NCD uL UP oLP VH EMC
TYPE OF ENERGY BUG

PERCENTAGE OF TOOLS DETECTING ANDROID
ENERGY BUGS

0%

Fig. 7.3 Percentage of the tools in “Detector”” and “Optimizer” categories that can detect Android
energy bugs (RL resource leak, WB wake-lock bug, VBS vacuous background services, /B immor-
tality bug, TMV too many views, TDL too deep layout, NCD not using compound drawables, UL
useless leaf, UP useless parent, OLP obsolete layout parameter, VHB view holder bug, EMC
excessive method calls)

“UL,” and “UP” energy bugs. On the other hand, energy bugs “IB,” “OLP,” “VHB,”
and “EMC” are covered by tools in the “Optimizer” category, whereas none of the
tools in the “Detector” category covers them. “RL” and “VBS” energy bugs are
detected by 44% of the tools in the “Optimizer” category.

Figure 7.4 shows the Android code smell coverage of tools in the “Detector” and
“Optimizer” categories. The Android code smells are shown on the vertical axis. The
percentage of tools in the “Detector” and “Optimizer” categories covering Android
code smells is shown on the horizontal axis. We can see that Android code smells
“ERB” and “VHP” are not detected by any tool in the “Detector” category, whereas
“LWS,” “LC,” “RAM,” “PD,” “ISQLQ,” “IDFP,” “DW,” “DR,” and “DTWC” are
not detected by any of the tools in the “Optimizer” category. Android code smells
such as “IOD,” “HBR,” “HSS,” “HAT,” “IWR,” “UIO,” “BFU,” “UHA,” “LWS,”
“LC,” “SL,” “RAM,” “PD,” “NLMR,” “MIM,” “LT,” “IDS,” “IDFP,” “DW,”
“DR,” and “DTWC” are detected by 13-25% of the tools in the “Detectors”
category.

Typical support given by the various categories of support tools for detecting and
refactoring code smells/energy bugs are as follows:

“Profiler” tools support developers by visualizing the energy consumption of the whole app
or parts of it.

“Detector” tools support developers with lists of energy bugs and code smells to be
manually fixed by the developer for energy improvement.

“Optimizer” tools support developers by automatically refactoring APK/SC versions
based on predefined rules.

174 H. Anwar et al.

VHPO% 1% .
ERBO% 20% = Detector + Optimizer
10D S — a4%

HBR YN 11%
HSS m13%m 1%
HAT ISv%m 22%
WR D% 11%
UIO I 11%
BFU mEmS%mEN 1%

4 UHA 1%

T Lws eSS0

3 LC mssmossm—0%

W UC G 3 33%

S Sl s 11%

o RAM IEET3YEEOP:

o PD mEI3%mN0%

& NMR s 1%

oM s — 22%

LT mEmm 1%
UC Dw2ssm 1%
16S T 25% 22%
ISOLQ AP
DS 25— 3%
IDFP IS%mN0%
DW I3SEEN0%
DR I3%m0%
DTWC Jsi3%mm0P
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

PERCENTAGE OF TOOLS DETECTING CODE SMELLS

Fig. 7.4 Percentage of code smells detected by each tool in “Detector” and “Optimizer” categories.
DTWC data transmission without compression, DR debuggable release, DW durable wake-lock,
IDFP inefficient data format and parser, IDS inefficient data structure, ISQOLQ inefficient SQL
query, IGS internal getter and setter, LIC leaking inner class, LT leaking thread, MIM member
ignoring method, NLMR no low memory resolver, PD public data, RAM rigid alarm manager, SL
slow loop, UC unclosed closeable, LC lifetime containment, LWS long wait state, UHA unsupported
hardware acceleration, BFU bitmap format usage, UIO Ul overdraw, IWR invalidate without rect,
HAT heavy AsyncTask, HSS heavy service start, HBR heavy broadcast receiver, /OD init ONDraw,
ERB early resource binding, VHP view holder pattern

Support Tools for Third-Party Library Detection and Migration

In Table 7.18, we provide a list of all the tools identified in the “Identifier,”
“Migrator,” and “Controller” categories. Publications in the category “Identifier”
offer support to practitioners by providing tools that detect third-party libraries
present in the apps. The information is usually presented to practitioners as a list
of detected libraries along with their version/similarity scores. Publications in the
category “Migrator” offer support to practitioners by developing tools that present as
output lists of recommended third-party libraries. Publications in the category
“Controller” offer support to practitioners by developing tools that present as output
policy-based privilege/permission control over third-party libraries. Most tools in the
“Identifier,” “Migrator,” and “Controller” categories provide coverage for all types
(advertisement, social, network, billing, analytics, etc.) of Java-based third-party
libraries. Some tools such as AdDetect (CI) or Pedal (CC) cover only the
advertisement-related third-party libraries. NativeGuard (CC) provides coverage
for only native third-party libraries. Reaper (CC) and LibCage (CC) provide cover-
age for native and Java-based third-party libraries. For many tools listed in

7 Tool Support for Green Android Development 175

Table 7.18, interface type was not specified in publications, while others provide
either a command-line interface (CMD) or a graphical user interface (GUI). Out of
the 27 tools listed in Table 7.18, only seven tools are open source. Out of the seven
open-source tools, six tools [P30, P31, P33, P37, P42, P48] are “Identifier” tools and
one tool [P46] is a “Controller” tool. None of the tools listed in Table 7.18 provides
IDE integration support.

The tools in the “Identifier,” “Migrator,” and “Controller” categories do not detect/update/
control/migrate third-party libraries to optimize the source code of Android applications for
energy efficiency.

Typical support given by the various categories of support tools for detecting and
migrating third-party libraries are as follows:
“Identifier” tools support developers by detecting third-party libraries present in apps.
“Migrator” tools support developers with lists of recommended third-party libraries
along with the mapping information of these libraries for updating/migrating them.
“Controller” tools support developers by separating third-party library privileges from
the app privileges based on policy defined by developers.

7.5 Discussion

In this section, we discuss the results of the mapping study to identify future research
opportunities.

7.5.1 Support Tools for Code Smell/Energy Bug Detection
and Refactoring

We observed that most of the support tools in the “Profiler,” “Detector,” and
“Optimizer” categories are not open source, making them inaccessible to many
developers. On top of that, most of these support tools do not support IDE integra-
tion. Due to the rapid development process of Android applications, developers are
more likely to use tools that are integrated with the IDEs and share the same interface
design. The current state-of-the-art tools could be extended to integrate with other
industrially famous code analyzers like Android Lint, Check Style, Find Bugs and
PMD. Each tool in “Detector” and “Optimizer” category provided a limited coverage
over Android-specific code smells/energy bugs. The industry relevance of the
current state-of-the-art support tools might not be obvious because they are not
evaluated in industrial settings. In principle, if developers spent time and effort to
learn one such tool they still might not be able to identify many code smells/energy
bugs in their code, unless they use a combination of these tools to get complete
coverage. Most tools in the “Detector” and “Optimizer” categories used static source
code analysis, which indicates that dynamic issues such as those related to

176 H. Anwar et al.

asynchronous tasks are not covered by these tools. For the development of better
support tools, hybrid techniques encompassing both dynamic and static analysis
could be used. In addition, non-intrusive techniques could be used to collect software
metrics for identifying code smells/energy bugs. The results from the selected
publications could be expanded to include cross-project predictions and corrections
for energy bugs. Analysis and inclusion of multi-threaded programming approaches
in the experiments could be another direction for future researchers.

7.5.2 Support Tools for Third-Party Library Detection
and Migration

We observed that none of the support tools in the “Identifier,” “Migrator,” and
“Controller” categories provides support for IDE integration and many of these tools
are also not open source, making them inaccessible to developers. We also observed
the none of the support tools in these categories offers any support to developers to
aid green Android development. One possible reason could be that so far research
related to third-party library identification is mostly used in clone detection, detec-
tion of rebranded/similar/malicious apps, and detection of issues related to security,
privacy, or data leaks (see related work). However, there is a gap in the literature
regarding support tools that identify/update/recommend third-party libraries to aid
green Android development. Anwar et al. [52] have investigated the energy con-
sumption of third-party libraries in Android applications, indicating that the energy
consumption of alternative third-party libraries varies significantly in various use
cases. Rasmussen et al. [66] showed that blocking advertisements in Android apps
reduces energy consumption. However, these studies have only focused on a small
subset of network- and advertisement-related libraries. Energy consumption of other
types of libraries such as social, analytical, or utility has not yet been explored, and
merits further research. Data from such studies could be used by tool developers to
recommend energy-efficient libraries to developers during development. Support
tools in the “Migrator” category are good candidates for this type of research as the
collaborative filtering and natural language processing techniques could supplement
the data gathered from energy reading of third-party libraries. Such information
could be useful in mapping the function of one library to another alternative library
for a smooth migration. Support tools in the “Identifier” category generally use two
techniques: (a) whitelist-based and (b) similarity-based. Tools that used whitelist-
based approaches are fast due to a smaller feature set, and thus could perform better
in large-scale analysis. However, this technique cannot identify third-party libraries
without prior knowledge. On the other hand, tools that use similarity-based
approaches such as feature hashing use a larger feature set and can identify third-
party libraries without prior knowledge. Due to the extended feature set, these tools
might be more accurate but time-consuming. Many tools in the “Identifier” category
(such as “LibD,” “LibScout,” “LibRadar,” or “AdDetect”) consider code

7 Tool Support for Green Android Development 177

obfuscation during library detections in order to give accurate results. However, not
many tools are resilient against code shrinking as they rely on package hierarchies.
Support tools in the “Controller” category rely on API hooking techniques which
separate libraries from app code. Such tools could also benefit from using an access
control list to split privileges. Because current techniques require system-level
changes, this makes the deployment of “Controller” tools difficult.

7.6 Threats to Validity

The search queries and classification of selected publications could be biased by the
researcher’s knowledge. We mitigated this threat by defining the inclusion, exclu-
sion, and quality criteria for the selection of the publications. Conflicting opinions
were discussed among authors of this study until a consensus was reached. In order
to avoid false-positives and false-negatives in the search results, we used the
wildcard character (*) to maximize coverage and the keyword “AND NOT” to
remove irrelevant studies. We did not use the terms “energy” or “efficiency” in
combination with “Android” in the second search query, as we had already executed
this combination in search query 1. The results of the search strings were manually
checked and further refined by the authors. Online repositories continuously update
their databases to include new publications, and therefore executing the same queries
might yield some additional results that were not included in this study. We already
knew about many relevant studies and we recaptured almost 90% of them when we
executed the search queries. On each online repository the search mechanism is
slightly different and we tried to keep the queries as consistent as possible, but there
might be a slight difference due to the difference in search mechanism provided by
different online repositories. Some selected publications use the terms code smells
and energy bugs interchangeably, which could affect the classification. To mitigate
this threat, we used the selected definitions (cf. Sect. 7.3.4) for code smells and
energy bugs to correctly classify the studies in the right category.

We have excluded publications that did not focus on Android development yet
still contributed a tool for detecting/recommending third-party libraries. Maven
central repository contains a huge quantity of Java-based third-party libraries that
can be used in any Java-based application. However, in this study, we focused
particularly on the support tools for energy profiling, code optimization and
refactoring of code smells/energy bugs, and detection/migration of third-party
libraries to help aid green Android development. Other types of support tools,
such as tools for style checking, interface optimization, test generation, requirement
engineering, and code obfuscation, were not in the scope of this study. Therefore,
while applying inclusion/exclusion criteria, we filtered support tools such as
“LibFinder,” LibCPU, CrossRec, and RAPIM [72-75]. These tools could identify/
recommend third-party libraries but they were not designed to be used specifically
with Android applications. We plan to cover such tools in future work.

178 H. Anwar et al.

7.7 Conclusions

We conducted a mapping study to give an overview of the state of the art and to find
research opportunities with respect to support tools available for green Android
development. Based on our analysis we identified tools for detecting/refactoring
code smells/energy bugs, which were classified into three categories: (1) “Profiler,”
(2) “Detector,” and (3) “Optimizer.” Additionally, we identified tools for detecting/
migrating third-party libraries in Android applications, which were classified into
(1) Identifier, (2) Migrator, and (3) Controller categories. The main findings of this
study are that most “Profiler” tools provide a graphical representation of energy
consumption over time. Most “Detector” tools provide a list of energy bugs/code
smells to be manually corrected by a developer for the improvement of energy. Most
“Optimizer” tools automatically convert original APK/SC into a refactored version
of APK/SC. Tools in the “Identifier,” “Migrator,” and “Controller” categories do not
provide support to developers to optimize code w.r.t. energy consumption. The most
typical technique in the “Detector” and “Optimizer” categories was static source
code analysis using a predefined set of code smells and rules. The most typical
techniques in the “Identifier” category were module decoupling and feature similar-
ity, while in the “Migrator” and “Controller” categories, API hooking and collabo-
rative filtering in combination with natural language processing were used,
respectively.

Acknowledgments This work was supported by the Estonian Center of Excellence in ICT
research (EXCITE), the group grant PRG887 funded by the Estonian Research Council, and the
Estonian state stipend for doctoral studies.

References

—

. GeSI (2015) #SMARTer2030 ICT solutions for 21st century challenges. Accessed 06 Jun 2020.
http://smarter2030.gesi.org/downloads/Full_report.pdf

2. Acar H (2017) Software development methodology in a Green IT environment. Université de
Lyon

3. Calero C, Piattini M (2015) Introduction to green in software engineering. In: Calero C, Piattini
M (eds) Green in software engineering. Springer International Publishing, Cham, pp 3-27

4. Chauhan NS, Saxena A (2013) A green software development life cycle for cloud computing.
IT Prof 15(1):28-34. https://doi.org/10.1109/MITP.2013.6

5. Federal Ministry for Economic Affairs and Energy (2014) Energy-efficient ICT in practice:
planning and implementation of GreenIT measures in data centres and the office

6. Jagroep E, van der Werf JM, Brinkkemper S, Blom L, van Vliet R (2017) Extending software
architecture views with an energy consumption perspective. Computing 99(6):553-573. https://
doi.org/10.1007/s00607-016-0502-0

7. Kumar S, Buyya R (2012) Green cloud computing and environmental sustainability.
Harnessing Green It Princ Pract:315-339. https://doi.org/10.1002/9781118305393.ch16

8. Oyedeji S, Seffah A, Penzenstadler B (2018) A catalogue supporting software sustainability

design. Sustainability 10(7):2296. https://doi.org/10.3390/su10072296

http://smarter2030.gesi.org/downloads/Full_report.pdf
https://doi.org/10.1109/MITP.2013.6
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1002/9781118305393.ch16
https://doi.org/10.3390/su10072296

11.

12.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

Tool Support for Green Android Development 179

. Gupta PK, Singh G (2012) Minimizing power consumption by personal computers: a technical

survey. Int J Inf Technol Comput Sci 4(10):57-66. https://doi.org/10.5815/ijitcs.2012.10.07

. Kern E et al (2018) Sustainable software products—towards assessment criteria for resource

and energy efficiency. Futur Gener Comput Syst 86(3715):199-210. https://doi.org/10.1016/j.
future.2018.02.044

Murugesan S, Gangadharan GR (2012) Green IT: an overview. In: Murugesan S, Gangadharan
GR (eds) Harnessing green IT: principles and practices. Wiley, pp 1-21

Egham (2018) Gartner says worldwide end-user device spending set to increase 7 percent in
2018; global device shipments are forecast to return to growth. Gartner, Press Releases.
Accessed 11 Feb 2019. https://www.gartner.com/en/newsroom/press-releases/2018-04-05-
gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-
device-shipments-are-forecast-to-return-to-growth

. Penzenstadler B, Femmer H (2013) A generic model for sustainability with process- and

product-specific instances. In: Proceedings of the 2013 Workshop on Green by Software
Engineering, pp 3-7. doi:https://doi.org/10.1145/2451605.2451609

Raturi A, Tomlinson B, Richardson D (2015) Green software engineering environments. In:
Green in software engineering. Springer International Publishing, pp 31-59

Banerjee A, Chong LK, Chattopadhyay S, Roychoudhury A (2014) Detecting energy bugs and
hotspots in mobile apps. In: Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering - FSE, vol 16-21-Nov, pp 588-598, doi: https://doi.org/
10.1145/2635868.2635871

Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) AndroZoo: collecting millions of Android
apps for the research community. In: Proceedings of the 13th international workshop on mining
software repositories - MSR, May 2016, pp 468471, doi: https://doi.org/10.1145/2901739.
2903508

Anwar H, Pfahl D (2017) Towards greener software engineering using software analytics: a
systematic mapping. In: Proceedings of the 43rd Euromicro conference on software engineering
and advanced applications -SEAA, Aug 2017, pp 157-166, doi: https://doi.org/10.1109/SEAA.
2017.56

. Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2017) A survey of app store analysis for

software engineering. IEEE Trans Softw Eng 43(9):817-847. https://doi.org/10.1109/TSE.
2016.2630689

Oliveira W, Oliveira R, Castor F (2017) A study on the energy consumption of android app
development approaches. In: Proceedings of the IEEE/ACM 14th international conference on
mining software repositories - MSR, May 2017, pp 42-52, doi: https://doi.org/10.1109/MSR.
2017.66

Rawassizadeh R (2010) Mobile application benchmarking based on the resource usage moni-
toring. Int J Mob Comput Multimed Commun 1(4):64-75. https://doi.org/10.4018/jmcmc.
2009072805

Viennot N, Garcia E, Nieh J (2014) A measurement study of google play. ACM SIGMETRICS
Perform Eval Rev 42(1):221-233. https://doi.org/10.1145/2637364.2592003

Wang H et al (2017) An explorative study of the mobile app ecosystem from app developers’
perspective. In: Proceedings of the 26th international conference on World Wide Web, pp
163-172, doi:https://doi.org/10.1145/3038912.3052712

Wang H et al (2018) Beyond Google play: a large-scale comparative study of Chinese Android
App Markets. ArXiv, vol 1810.07780, Sep 2018. http://arxiv.org/abs/1810.07780

Ardito L, Procaccianti G, Torchiano M, Migliore G (2013) Profiling power consumption on
mobile devices. In: Proceedings of the third international conference on smart grids, green
communications and IT Energy-aware Technologies, pp 101-106

Azevedo L, Dantas A, Camilo-Junior CG. DroidBugs: an android benchmark for automated
program repair. ArXiv, vol abs/1809.0, 2018 [Online]. http://arxiv.org/abs/1809.07353

https://doi.org/10.5815/ijitcs.2012.10.07
https://doi.org/10.1016/j.future.2018.02.044
https://doi.org/10.1016/j.future.2018.02.044
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://www.gartner.com/en/newsroom/press-releases/2018-04-05-gartner-says-worldwide-end-user-device-spending-set-to-increase-7-percent-in-2018-global-device-shipments-are-forecast-to-return-to-growth
https://doi.org/10.1145/2451605.2451609
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.4018/jmcmc.2009072805
https://doi.org/10.4018/jmcmc.2009072805
https://doi.org/10.1145/2637364.2592003
https://doi.org/10.1145/3038912.3052712
http://arxiv.org/abs/1810.07780
http://arxiv.org/abs/1809.07353

180

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

H. Anwar et al.

Chung YF, Lin CY, King CT (2011) ANEPROF: energy profiling for android java virtual
machine and applications. In: Proceedings of the international conferences on parallel and
distributed systems - ICPADS, pp 372-379, doi: https://doi.org/10.1109/ICPADS.2011.28
Kansal A, Zhao F (2008) Fine-grained energy profiling for power-aware application design.
ACM SIGMETRICS Perform Eval Rev 36(2):26. https://doi.org/10.1145/1453175.1453180
Pathak A, Hu YC, Zhang M (2012) Where is the energy spent inside my app? Fine Grained
Energy Accounting on Smartphones with Eprof. EuroSys, pp 29-42, Accessed 04 Apr 2018.
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.
pdf

Banerjee A, Roychoudhury A (2016) Automated re-factoring of Android apps to enhance
energy-efficiency. In: Proceedings of the international workshop on mobile software engineer-
ing and system - MOBILESoft, pp 139-150, doi: https://doi.org/10.1145/2897073.2897086
Fernandes TS, Cota E, Moreira AF (2014) Performance evaluation of android applications: a
case study. In: Proceedings of the Brazilian symposium on computing system engineering, Nov
2014, vol 1998-Jan, pp 79-84, doi: https://doi.org/10.1109/SBESC.2014.17

. Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley

Hecht G, Rouvoy R, Moha N, Duchien L (2015) Detecting antipatterns in android apps. In:
Proceedings of the 2nd ACM international conference on mobile software engineering and
systems, MOBILESoft, Sep 2015, pp 148-149, doi: https://doi.org/10.1109/MobileSoft.
2015.38

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2017) Lightweight detection of
Android-specific code smells: the aDoctor project. In: Proceedings of the 24th IEEE interna-
tional conference software analysis evolution and reengineering - SANER, pp 487—-491. doi:
https://doi.org/10.1109/SANER.2017.7884659

Rasool G, Ali A (2020) Recovering android bad smells from android applications. Arab J Sci
Eng 45(4):3289-3315. https://doi.org/10.1007/s13369-020-04365-1

Xu B, An L, Thung F, Khomh F, Lo D (2020) Why reinventing the wheels? An empirical study
on library reuse and re-implementation. Empir Softw Eng 25(1):755-789. https://doi.org/10.
1007/s10664-019-09771-0

Wang H, Guo Y (2017) Understanding third-party libraries in mobile app analysis. In: Pro-
ceedings of the IEEE/ACM 39th international conference on software engineering companion,
pp 515-516, doi: https://doi.org/10.1109/ICSE-C.2017.161

Zhan J, Zhou Q, Gu X, Wang Y, Niu Y (2017) Splitting third-party libraries’ privileges from
android apps. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol 10343 LNCS, Springer, pp
80-94

Gkortzis A, Feitosa D, Spinellis D (2019) A double-edged sword? Software reuse and potential
security vulnerabilities. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 11602 LNCS, pp
187-203, doi: https://doi.org/10.1007/978-3-030-22888-0_13

Ikram M, Vallina-Rodriguez N, Seneviratne S, Kaafar MA, Paxson V (2016) An analysis of the
privacy and security risks of android VPN permission-enabled apps. In: Proceedings of the
ACM SIGCOMM internet measurement conference - IMC, vol 14-16-Nov, pp 349-364, doi:
https://doi.org/10.1145/2987443.2987471

Mazuera-Rozo A, Bautista-Mora J, Linares-Vasquez M, Rueda S, Bavota G (2019) The
Android OS stack and its vulnerabilities: an empirical study. Empir Softw Eng 24
(4):2056-2101. https://doi.org/10.1007/s10664-019-09689-7

Ogawa H, Takimoto E, Mouri K, Saito S (2018) User-side updating of third-party libraries for
android applications. In: Proceedings of the sixth international symposium on computing and
networking workshops - CANDARW, Nov 2018, pp 452458, doi: https://doi.org/10.1109/
CANDARW.2018.00088

Binns R, Zhao J, Van Kleek M, Shadbolt N (2018) Measuring third-party tracker power across
web and mobile. ACM Trans Internet Technol 18(4). doi: https://doi.org/10.1145/3176246

https://doi.org/10.1109/ICPADS.2011.28
https://doi.org/10.1145/1453175.1453180
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.pdf
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/energy-eprof-tool.pdf
https://doi.org/10.1145/2897073.2897086
https://doi.org/10.1109/SBESC.2014.17
https://doi.org/10.1109/MobileSoft.2015.38
https://doi.org/10.1109/MobileSoft.2015.38
https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1007/s13369-020-04365-1
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1109/ICSE-C.2017.161
https://doi.org/10.1007/978-3-030-22888-0_13
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1007/s10664-019-09689-7
https://doi.org/10.1109/CANDARW.2018.00088
https://doi.org/10.1109/CANDARW.2018.00088
https://doi.org/10.1145/3176246

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

Tool Support for Green Android Development 181

Ful,Zhou Y, Liu H, Kang Y, Wang X (2017) Perman: fine-grained permission management for
android applications. In: Proceedings of the IEEE 28th international symposium on software
reliability engineering - ISSRE, Oct 2017, vol 2017-Oct, pp 250-259, doi: https://doi.org/10.
1109/ISSRE.2017.38

Gao X, Liu D, Wang H, Sun K (2016) PmDroid: permission supervision for android advertis-
ing. In: Proceedings of the IEEE symposium on reliable distributed systems, vol 2016-Jan, pp
120-129, doi: https://doi.org/10.1109/SRDS.2015.41

Jin H et al. (2018) Why are they collecting my data?. In: Proceedings of the ACM on interactive,
mobile, wearable and ubiquitous Techniques, Dec 2018, vol 2(4), pp 1-27, doi:https://doi.org/
10.1145/3287051

Wang H, Li Y, Guo Y, Agarwal Y, Hong JI (2017) Understanding the purpose of permission
use in mobile apps. ACM Trans Inf Syst 35(4). https://doi.org/10.1145/3086677

Chen K, Liu P, Zhang Y (2014) Achieving accuracy and scalability simultaneously in detecting
application clones on Android markets. In: Proceedings of the international conference on
software engineering, no 1, pp 175-186, doi: https://doi.org/10.1145/2568225.2568286

Li L, Bissyandé¢ TF, Wang HY, Klein J (2019) On identifying and explaining similarities in
android apps. J Comput Sci Technol 34(2):437-455. https://doi.org/10.1007/s11390-019-1918-
8

Soh C, Tan HBK, Arnatovich YL, Wang L (2015) Detecting clones in android applications
through analyzing user interfaces. In: Proceedings of the IEEE 23rd international conference on
program comprehension, May 2015, pp 163—173, doi:https://doi.org/10.1109/ICPC.2015.25
Yuan L (2016) Detecting similar components between android applications with obfuscation.
In: Proceedings of the 5th international conference on computer science and networking
technologies - ICCSNT, Dec 2016, pp 186-190, doi:https://doi.org/10.1109/ICCSNT.2016.
8070145

Zhang Y, Ren W, Zhu T, Ren Y (2019) SaaS: a situational awareness and analysis system for
massive android malware detection. Futur Gener Comput Syst 95:548-559. https://doi.org/10.
1016/j.future.2018.12.028

Anwar H, Demirer B, Pfahl D, Srirama SN (2020) Should energy consumption influence the
choice of Android third-party HTTP libraries?. In: Proceedings of the [IEEE/ACM 7th Interna-
tional conference on mobile software engineering and systems, MOBILESoft, pp 87-97. doi:
https://doi.org/10.1145/3387905.3392095

Fatima I, Anwar H, Pfahl D, Qamar U (2020) Tool support for green android development: a
systematic mapping study. In: Proceedings of the 15th international conference on software
technologies - ICSOFT, pp 409-417

Fontana FA, Mariani E, Mornioli A, Sormani R, Tonello A (2011) An Experience report on
using code smells detection tools. In: Proceedings of the IEEE fourth international conference
on software testing, verification and validation workshops, Mar 2011, pp 450457, doi:https://
doi.org/10.1109/ICSTW.2011.12

Kaur A, Dhiman G (2019) A review on search-based tools and techniques to identify bad code
smells in object-oriented systems. Adv Intell Syst Comput 741:909-921. https://doi.org/10.
1007/978-981-13-0761-4_86

Singh S, Kaur S (2017) A systematic literature review: refactoring for disclosing code smells in
object oriented software. Ain Shams Eng J 9(4):2129-2151. https://doi.org/10.1016/J.ASEJ.
2017.03.002

Li L et al (2017) Static analysis of android apps: a systematic literature review. Inform Softw
Technol 88:67-95. https://doi.org/10.1016/j.infsof.2017.04.001

Degu A (2019) Android application memory and energy performance: systematic literature
review. IOSR J Comp Eng 21(3):20-32

Qiu L, Wang Y, Rubin J (2018) Analyzing the analyzers: FlowDroid/IccTA, AmanDroid, and
DroidSafe. In: Proceedings of the 27th ACM SIGSOFT international symposium on software
testing and analysis - ISSTA, pp 176-186, doi:https://doi.org/10.1145/3213846.3213873

https://doi.org/10.1109/ISSRE.2017.38
https://doi.org/10.1109/ISSRE.2017.38
https://doi.org/10.1109/SRDS.2015.41
https://doi.org/10.1145/3287051
https://doi.org/10.1145/3287051
https://doi.org/10.1145/3086677
https://doi.org/10.1145/2568225.2568286
https://doi.org/10.1007/s11390-019-1918-8
https://doi.org/10.1007/s11390-019-1918-8
https://doi.org/10.1109/ICPC.2015.25
https://doi.org/10.1109/ICCSNT.2016.8070145
https://doi.org/10.1109/ICCSNT.2016.8070145
https://doi.org/10.1016/j.future.2018.12.028
https://doi.org/10.1016/j.future.2018.12.028
https://doi.org/10.1145/3387905.3392095
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1007/978-981-13-0761-4_86
https://doi.org/10.1007/978-981-13-0761-4_86
https://doi.org/10.1016/J.ASEJ.2017.03.002
https://doi.org/10.1016/J.ASEJ.2017.03.002
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1145/3213846.3213873

182 H. Anwar et al.

60. Corrodi C, Spring T, Ghafari M, Nierstrasz O (2018) Idea: benchmarking android data leak
detection tools. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Jun 2018, vol 10953 LNCS, pp
116-123, doi: https://doi.org/10.1007/978-3-319-94496-8_9

61. Ndagi JY, Alhassan JK (2019) Machine learning classification algorithms for adware in android
devices: a comparative evaluation and analysis. In: Proceedings of the 15th international
conference on electronics, computing, and computation - ICECCO, Dec 2019, pp 1-6, doi:
https://doi.org/10.1109/ICECC0O48375.2019.9043288

62. Cooper VN, Shahriar H, Haddad HM (2014) A survey of android malware and mitigation
techniques. In: Proceedings of the 11th international conference on information technology:
new generations, Apr 2014, pp 327-332, doi: https://doi.org/10.1109/ITNG.2014.71

63. Li L, Bissyande TF, Klein J (2019) Rebooting research on detecting repackaged android apps:
literature review and benchmark. IEEE Trans Softw Eng:1-1. https://doi.org/10.1109/tse.2019.
2901679

64. Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection
techniques and tools: a qualitative approach. Sci Comput Program 74(7):470-495. https://doi.
org/10.1016/j.scic0.2009.02.007

65. Wang Y, Li Y, Lan T (2017) Capitalizing on the promise of Ad prefetching in real-world mobile
systems. In: Proceedings of the IEEE 14th international conference on mobile Ad Hoc and
sensor systems - MASS, Oct 2017, pp 162-170, doi:https://doi.org/10.1109/MASS.2017.46

66. Rasmussen K, Wilson A, Hindle A (2014) Green mining: energy consumption of advertisement
blocking methods. In: Proceedings of the 3rd international workshop on green and sustainable
software - GREENS, pp 38-45, doi:https://doi.org/10.1145/2593743.2593749

67. Shao Y, Wang R, Chen X, Azab AM, Mao ZM (2019) A lightweight framework for fine-
grained lifecycle control of android applications. In: Proceedings of the 14th EuroSys confer-
ence - EuroSys, pp 1-14, doi:https://doi.org/10.1145/3302424.3303956

68. Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software
engineering. In: Proceedings of the 12th international conference on evaluation and assessment
in software engineering - EASE, pp 68-77

69. Fowler M (2002) Refactoring: improving the design of existing code. In: Extreme programming
and agile methods — XP/Agile universe. Springer, Berlin, pp 256-256

70. Pathak A, Charlie Hu Y, Zhang M (2011) Bootstrapping energy debugging on smartphones: a
first look at energy bugs in mobile devices. In: Proceedings of the 10th ACM workshop on hot
topics in networks (HotNets-X). Association for Computing Machinery, New York, NY,
Article 5, 1-6. doi:https://doi.org/10.1145/2070562.2070567

71. Yasumatsu T, Watanabe T, Kanei F, Shioji E, Akiyama M, Mori T (2019) Understanding the
responsiveness of mobile app developers to software library updates. In: Proceedings of the 9th
ACM conference on data and application security and privacy - CODASPY, pp 13-24, doi:
https://doi.org/10.1145/3292006.3300020

72. Alrubaye H, Mkaouer MW, Khokhlov I, Reznik L, Ouni A, Mcgoff J (2020) Learning to
recommend third-party library migration opportunities at the API level. Appl Soft Comput
90:106140. https://doi.org/10.1016/j.as0c.2020.106140

73. Nguyen PT, Di Rocco J, Di Ruscio D, Di Penta M (2020) CrossRec: supporting software
developers by recommending third-party libraries. J Syst Softw 161:110460. https://doi.org/10.
1016/j.jss.2019.110460

74. Ouni A, Kula RG, Kessentini M, Ishio T, German DM, Inoue K (2017) Search-based software
library recommendation using multi-objective optimization. Inf Softw Technol 83:55-75.
https://doi.org/10.1016/j.infsof.2016.11.007

75. Saied MA, Ouni A, Sahraoui H, Kula RG, Inoue K, Lo D (2018) Improving reusability of
software libraries through usage pattern mining. J Syst Softw 145:164—179. https://doi.org/10.
1016/j.jss.2018.08.032

https://doi.org/10.1007/978-3-319-94496-8_9
https://doi.org/10.1109/ICECCO48375.2019.9043288
https://doi.org/10.1109/ITNG.2014.71
https://doi.org/10.1109/tse.2019.2901679
https://doi.org/10.1109/tse.2019.2901679
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1109/MASS.2017.46
https://doi.org/10.1145/2593743.2593749
https://doi.org/10.1145/3302424.3303956
https://doi.org/10.1145/2070562.2070567
https://doi.org/10.1145/3292006.3300020
https://doi.org/10.1016/j.asoc.2020.106140
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1016/j.jss.2018.08.032

Chapter 8 m)
Architecting Green Mobile Cloud Apps s

Key Considerations for Implementation and Evaluation
of Mobile Cloud Apps

Samuel Jaachimma Chinenyeze and Xiaodong Liu

Abstract With the resource-constrained nature of mobile devices, and the resource-
abundant offerings of the cloud, several promising optimization techniques have
been proposed by the green computing research community. Prominent techniques
and unique methods have been developed to offload resource-/computation-inten-
sive tasks from mobile devices to the cloud. Most of the existing offloading
techniques can only be applied to legacy mobile applications as they are motivated
by existing systems. Consequently, they are realized with custom runtimes, which
incurs overhead on the application. Moreover, existing approaches which can be
applied to the software development phase are difficult to implement (based on
manual process) and also fall short of overall (mobile to cloud) efficiency in software
quality attributes or awareness of full-tier (mobile to cloud) implications.

To address the above issues, this chapter first examines existing approaches to
highlight key sources of overhead in the current methods of MCA implementation
and evaluation. It then proposes key architectural considerations for implementing
and evaluating MCA applications which easily integrate software quality attributes
with the green optimization objective of Mobile Cloud Computing—in other words,
minimizing overhead. The solution proposed in the chapter builds on the benefits of
already existing software engineering concepts, such as Model-Driven Engineering
and Aspect-oriented Programming for MCA implementation, and Behavior-Driven
Development and full-tier test coverage concepts for MCA evaluation.

S. J. Chinenyeze (P<)

Edinburgh Napier University, Edinburgh, Scotland, UK

e-mail: sjchinenyeze @gmail.com

X. Liu

Driven Software Engineering Research Group, Edinburgh Napier University, Edinburgh,

Scotland, UK
e-mail: x.liu@napier.ac.uk

© Springer Nature Switzerland AG 2021 183
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69970-3_8&domain=pdf
mailto:sjchinenyeze@gmail.com
mailto:x.liu@napier.ac.uk
https://doi.org/10.1007/978-3-030-69970-3_8#DOI

184 S. J. Chinenyeze and X. Liu
8.1 Introduction

Mobile cloud computing (MCC) is a well-known technique used to address the
challenges—such as limited performance and constrained power capacity—com-
monly faced by mobile devices by use of cloud computing as a surrogate. Mobile
Cloud Applications (MCA) are applications that leverage the MCC technique. What
makes MCC particularly popular is the rich resource offering and high availability of
the cloud computing infrastructure. And due to the kind of metrics which MCC uses
for mobile devices, such as energy efficiency, it is generally known as a “green
software” approach. Research studies propose various MCC techniques for
addressing the aforementioned mobile challenges. The aim of this chapter is to
present the knowledge base and reasoning around the MCA domain, and some
identified challenges in the domain, and consequently offer some directions/key
considerations for an improved implementation and evaluation process in real-life
scenarios—mainly based on renowned software engineering techniques.

The documentation starts by presenting a background to green software, and
further develops the thesis on how MCC is a green software technique. MCA is then
introduced, from its architectural composition (what it’s made of and how it works)
to the green metrics used for MCAs to the taxonomy of apps best suited for MCAs.
The work then dives into the details of the MCA architecture, exploring the
challenges and proposing solutions. This is similar for the MCA evaluation
approach. Finally, the chapter concludes with a summary of the outlined solutions.

8.2 Green Software

8.2.1 Definition

Green software [1-3] is a subset of the green computing initiative, which involves
reducing the overall impact of IT on the environment. The initial green computing
initiative, however, focused more on the computing hardware—investigating opti-
mal processes for the manufacture, usage, and disposal of computing hardware
products with minimal impact on the environment.

As the research on green hardware thrived, the outcome presented the need to
apply similar optimal processes to software—i.e., the need for green software—since
software is the driver of hardware utilization. For example, research shows that IT
hardware has a direct impact on the environment, which is inherent in software, as
application inefficiencies such as inefficient algorithms and high resource (e.g.,
CPU) usage, are sources of high energy consumption [3, 4]. Furthermore, as the
total electrical energy consumption by computer equipment increases, there is a
consequent increase in greenhouse gas emissions. Moreover, each personal com-
puter in use generates approximately a ton of CO, every year [5], and personal

8 Architecting Green Mobile Cloud Apps 185

computers are only useful in terms of the number and kind of software applications
they run. In sum, software has indirect environmental implications.

The term “green software” is therefore used to refer to software applications that
efficiently monitor, manage, and utilize underlying resources with minimal or
controlled impact on the environment [1-3, 6]. Green Software Engineering is a
newly coined term and a branch of software engineering that is increasingly gaining
interest, aiming toward improving existing software design and implementation
approaches to achieve energy-efficient or resource-efficient software. Green com-
puting presents two key roles played by software in sustainability, which are as
follows:

» Software as a “green” enabler: where software contributes as a tool to monitor and
help reduce the resource and environmental footprint of hardware systems and
other industrial processes. This is also referred to as Greening by Software.

* Software as a “greening” target: where software itself is improved or optimized so
that its execution and lifecycle meet green initiatives—such as energy efficiency.
This is also referred to as Greening in Software [3, 7, 8].

Green software engineering focuses on optimizing software in such a way that its
process or execution is energy efficient—i.e., greening in software. In the rest of the
chapter green software will be used to mainly refer to greening in software, except
where otherwise stated.

8.2.2 Green Software Objectives

Although software may not have direct environmental impact, it contributes indi-
rectly through resources [6, 9]. For example, several works show direct correlation
between efficient resource usage (such as CPU and memory) and improved energy
usage by software [9]. More specifically, improvement in application energy usage
has often been achieved by better monitoring and utilization of system resources.
Therefore, as presented in Sect. 8.2.1:

* A key objective of green software is efficient resource usage and efficient energy
usage [10, 11]. Energy efficiency and resource efficiency are often considered as
congruent in the research.

The focus of green software on energy and resource efficiency was motivated by
the success of green computing research for the datacenters domain [12—14], which
largely targeted optimization of data centers for low energy and optimum hardware
resource requirements.

Furthermore, software systems are often presented in terms of functional and
non-functional requirements [15]. While functional requirements deal with the
functionalities, capabilities, services, or behaviors of the system, non-functional
requirements (or quality attributes) deal with requirements that support the delivery

186 S. J. Chinenyeze and X. Liu

of system functionalities. Examples of quality attributes are performance, accessi-
bility, security, and development efficiency, to mention but a few [15].

Thus far energy efficiency and resource efficiency (popular target of green
optimization) are often considered in context and conjunction with other software
quality attributes. Hence the varying themes of green software research: perfor-
mance (response or execution time) and energy efficiency [16—18], optimal acces-
sibility and resource efficiency [16], energy-efficient secure systems [19],
development efficiency and energy efficiency [8], etc. The practice of implementing
green metrics as a quality attribute in the context of other quality attributes—such as
performance, accessibility, and security—is often imbibed by current research as a
means to explore trade-offs of green optimization, while keeping in sight software
quality assurance. This trade-off capability of the software product to meet the
current needs of a set (required) functionality—say resource usage—without
compromising the ability to meet future needs—say changing workload/perfor-
mance—is often referred to as Sustainability of Software [2]. This is a core green
software objective. Thus:

* Another key objective of green software is to achieve greenness as a quality
attribute while considering other software qualities such as performance and
availability. This means, for example; achieving energy efficiency (green metrics)
with little or no performance compromise (software quality).

8.2.3 Green Software Approaches

Green software optimization targets two main artifacts: the process and code
[2, 6]. Artifacts or assets is the term used to describe what is being optimized. We
have classified green approaches into conceptual, algorithmic, and augmentation.

Green optimization approaches which target the software process are often
abstract and systemic, and sometimes holistic—these are the conceptual
approaches. On the other hand, there are approaches which are more specific
regarding monitoring and improving code execution—these are examples of algo-
rithmic approaches. There is also a third kind, which employs strengths of success-
ful computing paradigms (and can be a hybrid of conceptual and algorithmic
approaches) to solve a domain problem. For the purpose of this chapter, we have
called these augmentation approaches.

8.2.3.1 Conceptual Approaches

Conceptual techniques such as architectures or models present a comprehensive plan
required for achieving green computing [20], and can span multiple phases of the
Software Development Life Cycle (SDLC). An example is the GREENSOFT model
which adopts a layered approach to software sustainability, to structure concepts,

8 Architecting Green Mobile Cloud Apps 187

strategies or guidelines, activities, and processes for (1) green software and (2) its
engineering [6]. The aspect of GREENSOFT model which focuses on the engineer-
ing of green software (i.e., (2), as given in statement above) adopts a lifecycle
approach to investigate optimization concepts for various phases of the SDLC. In
practice, however, existing green software conceptual models do not integrate well
with the SDLC, and this means that they may be more effective for business
planning but less effective in a software implementation context. The conceptual
approach is an area that could be better explored for greening in software in various
domains of applications, since software models are effective at solving domain
problems. In this chapter we will apply a conceptual model approach to software
engineering (i.e., Model-Driven Engineering) to solve MCA domain problems.

8.2.3.2 Algorithmic Approaches

Algorithmic approaches are techniques that directly apply to or make changes to the
software code. These include (a) refactoring for efficient resource usage, (b) use of
energy-aware custom runtimes which manipulate the program’s execution or
codebase, and (c) green compilers or IDEs.

(a) Refactoring techniques
Refactoring techniques aim to make changes to the structural composition of
the system in such a way that the new code base or optimized component uses
fewer resources to accomplish the same or even more tasks (e.g., Hsu et al. [21]).
In green software, optimizing the code base can warrant structural change which
leads to a more optimized architecture. For example, the research in Zhong et al.
[22], through comparison of two commonly used distributed architectural pat-
terns, shows that the choice of architecture adopted in a software program affects
its energy consumption.
(b) Custom runtimes
Custom runtimes are additional codebase—often independent of the func-
tional features of the system—implemented in a software application to aid its
efficient use of resources or energy (e.g., Morgan and MacEachern [23] and
Tayeb et al. [24]). Custom runtimes are often used for executing custom opti-
mization logic which is otherwise foreign to the base runtime of a program. The
runtimes may comprise monitors (power monitor, for energy awareness; or
resource monitor, for resource awareness) which monitor different environmen-
tal states in order to make an optimization decision at runtime.
(c) Green compilers
Green compilers are used for generation of optimized codebase for efficient
use of resources or energy [21, 25, 26]. Green compilers are targeted toward
specific resources such as CPU optimization or GPU optimization, and are
therefore often vendor specific as well as resource-type specific.

188 S. J. Chinenyeze and X. Liu

8.2.3.3 Augmentation Approaches

Augmentation approaches are techniques which employ the strengths of successful
computing paradigms—and can be a hybrid of conceptual and algorithmic
approaches—to solve a problem in a domain. Below we present two domains, and
their example augmentation approaches found in the research.

(a) Cloud domain. Example augmentation approaches: Virtualization, Load-
balancing, Aspect-orientation, Context-awareness

The domain problem which green IT aims to solve within the cloud is
overutilization (runtime bloat) or underutilization (runtime waste) of resources.
This directly translates to increasing energy demands in data centers.

Several approaches have been explored to address this domain problem (e.g.,
Yanggratoke et al. [27], Hsu et al. [21], Yamini [28], Chen and Kazman [29]). A
popular software-based approach is load-balancing, which deals with even
distribution of workload across interconnected servers to mitigate overutilization
or underutilization of resources [21, 30-32].

Some examples are based on external monitoring and load-balancing, in other
words power-aware or resource-aware load-balancing, such as shown in Hsu
et al. [21]—an example of greening by software. However, there are also works
that explore the application of greening in software for the cloud. Examples of
these are, to name but two: (1) a context-aware Virtualization technique—a
technique which optimizes resource provisioning by employing benefits from
the Virtualization paradigm and based on the awareness of user-defined rules
[31]; and (2) a context-aware Aspect-Oriented model—a technique for resource
optimization which employs benefits of the Aspect-oriented paradigm and per-
forms load-balancing based on awareness of application real-time resource
context [32].

(b) Mobile domain. Example augmentation approach: Mobile Cloud Computing

The domain challenge with the mobile device is its limited resources and
limited power supply—battery based.

To address the mobile domain problem, quick and easy solutions have been
proposed in the form of mobile app tools which provide monitor-and-tweak
functionalities to extend battery life. An example is the App power monitor
which comes with the Android OS and other power modeling tools [33] to
monitor and shut down services which are not being used—these are examples
of greening by software.

However, with the ever-increasing demand for mobile devices, advances
have been made in green software for mobile domains to address the domain
challenges and improve user experience, at a more efficient and intuitive scale. A
popular technique known as computation offloading has been massively adopted
in current works. This is a technique that adopts the augmentation approach by
the leveraging cloud computing paradigm to solve the mobile domain problem.
In other words, this is achieved by using the cloud as a surrogate for the
execution of computation- or data-intensive tasks [34, 35]. This computation

8 Architecting Green Mobile Cloud Apps 189

augmentation approach is known as Mobile Cloud Computing (MCC).
Although many works have shown MCC to be efficient and intuitive, it is not
an easy solution to implement, due to difficulty in replicating research proposi-
tions in real-world scenarios. Furthermore, some MCC solutions are automated
with runtimes, which makes it promising to replicate the solution; however, in
many cases, at best the automation becomes the main added value to the real-
world application, as the key objective (the gains) of green metrics becomes
difficult to replicate in a real-world scenario. In this chapter we propose a
solution that makes it easy to apply the natural software engineering paradigm
in MCC for implementation and evaluation to ensure ease of adoption and
replication. Furthermore, given that Android is the most popularly investigated
platform for MCA, as shown in the literature (e.g., Cuervo et al. [36], Chun et al.
[37], Kwon and Tilevich [38], Zhang et al. [39], Hassan et al. [40], Justino and
Buyya [41]), consequently, MCA applications in this chapter are based on the
Android platform.

8.3 Mobile Cloud Applications

Mobile Cloud Applications (MCA) are mobile applications that employ the MCC
paradigm, i.e., they are optimized by using the cloud as a surrogate for execution of
resource-intensive tasks. Thus, MCC transforms mobile applications into two tiers—
the mobile and cloud tier—MCA.

The mobile tier of MCA is composed of the mobile device, whereas the cloud tier
is popularly implemented as clouds or fogs (cloudlets). Fogs or cloudlets are
installations of small data centers at designated locations and connected to the larger
cloud server via the Internet. Fogs are much closer to the end-user device than the
cloud, with the aim of providing mobility at the cloud tier [35].

A number of MCC studies also propose the use of mobile services at the cloud
tier, similar to cloud services but provisioned by a collection of mobile devices. In
other words, mobile devices are considered as providers of the cloud, making up a
peer-to-peer network as in Zachariadis et al. [42], Marinelli [43], and Wichtlhuber
et al. [44]. This is also a form of fog computing; however, the focus is on the use of
mobile devices for cloud provisioning, rather than cloudlets.

From a greening in software perspective, MCAs are realized through a key MCC
technique known as Offloading [34, 35], as mentioned earlier. Thus, the research
explores solutions for MCA through the lens of offloading schemes [36—40].

8.3.1 MCA Offloading Schemes

Computation/task offloading is an algorithmic mobile optimization technique that
involves the transfer of computation- or resource-intensive tasks of a mobile

190 S. J. Chinenyeze and X. Liu

Before: Mobile After: MCA Mobile tier After: MCA Cloud tier

App

A

intercept

v
Custom

runtime @

runtime 753
App . .
Automated transformation Cloning
Manual transformation Partitioning

App
@ @ @
[o][or][or] LorlLor]lor]
1intercept
Key: Custom Custom
OT§Offloadabletask/component% runtime fO‘:Z runtime @

Fig. 8.1 MCA architecture characteristics

application to a remote system (cloud or fog) with higher processing capability for
execution [39, 45]. Existing offloading schemes employ both code refactoring
techniques and the use of custom runtimes; thus, an algorithmic approach
(as presented in Sect. 8.2.3) is used and, more so, an augmentation approach, as
offloading is done from a mobile to a cloud computing environment. MCA
offloading schemes involve three main activities/features hinged on the offloading
task. The activities, in simple terms, are identification, execution, and decision.
Figure 8.1 depicts different features of these activities, as will be explained below.

8.3.1.1 Identification of Offloadable Task (Manual vs Automated
Transformation)

To transform a mobile application into MCA, identification of offloadable tasks is a
sine qua non activity. This can be achieved either manually or automatically.
Schemes classified by manual transformation require source code modification for
identification of the offloadable task. In this scenario, annotations are used by the
developer to identify methods of the code that are resource intensive [36, 38]. The
challenge with manual identification of offloadable components is that it is difficult
to ascertain which components are actually resource intensive prior to execution/
runtime. Moreover, a manually identified task may be tightly coupled to a resource-
dependent code, making it a difficult and coarse-grained approach to optimization
(even if the identified task may actually be resource intensive). A resource-
dependent code is a code fragment or method which requires a mobile resource to

8 Architecting Green Mobile Cloud Apps 191

execute and is thus tightly coupled to the resource, e.g., a piece of code that
continuously reads GPS.

Schemes classified by automated transformation do not require source code
modification in the identification of offloadable tasks. The automated transformation
approach makes use of static and dynamic analysis of an application to identify the
offloadable tasks [40, 46]. The purpose of the static analysis is to identify resource-
dependent code and filter it out, leaving potentially offloadable units. Static analysis
is achieved by performing a call-graph analysis on the bytecode of the application
(whether packaged or not). The purpose of dynamic analysis is to estimate that a
statically identified offloadable task yields benefit when executed remotely in the
cloud. This estimation is achieved by comparing the local execution time of the
offloadable task against its remote execution time. While static analysis does not
require execution of the program, dynamic analysis does, and also requires that the
offloadable task be set up in the cloud prior to the analysis.

Since automated transformation does not require source code modification (i.e.,
no need for annotations), the custom runtime stores the method signatures of
offloadable tasks and intercepts any methods at runtime which have their signature
stored in the repository of the custom runtime [37, 40]. Automated transformation is
explored for legacy systems—where source code may not be available for
refactoring—but it can also be used for new applications where source code is
accessible. However, the manual approach is not only ineffective but also limited
to scenarios where the source code is accessible.

8.3.1.2 Remote Execution of Offloadable Task (Partitioning vs Cloning)

The feature that achieves the remote execution of offloadable tasks is referred to as
the offloading mechanism in the literature [38, 40]. This feature describes the
structural composition of the cloud tier after the MCA refactoring process. To
execute the offloadable tasks remotely, the cloud tier can be set up either as a
clone of the mobile device (i.e., cloning) or as independent components executed
remotely (i.e., partitioning).

Cloning [36-38] involves the setup of a virtual mobile device in the cloud. The
full mobile application is also installed on the virtual device and executes remotely at
the same time as the local application. The cloning approach works by state
synchronization/checkpointing. In other words, when a check-pointed state (i.e.,
thread) is reached, a snapshot is created for fault-tolerance and the state of execution
is offloaded to the cloud, which continues execution on the virtual device (in the
cloud), after which the final state (of remote execution) is synchronized with the
local state.

Partitioning [39, 40] involves the setup of identified offloadable tasks as inde-
pendent components in the cloud. In partitioning, a virtual device is not required.
Partitioning works by use of sockets to transmit execution parameters to the cloud.
The component in the cloud then listens for socket connections and processes the

192 S. J. Chinenyeze and X. Liu

mobile request using the parameters sent. The response is in turn sent to the mobile
tier after execution using socket APL

8.3.1.3 Decision Making (Static vs Dynamic Thresholds)

The decision-making feature—decision maker—is a feature in offloading schemes
which is used to decide when to offload or when not to offload. Decision making can
be based on static thresholds, which use fixed values for decisions [38], or dynamic
thresholds, which use machine learning algorithms such as multi-layer perceptrons
[40]. In either case, these algorithms employ varying environmental factors in
offload decision making. Hassan et al. [40] state that the more environmental factors
considered in the decision-making process, the greater the depth of accuracy of the
decision maker. However, accuracy is traded off for an element of overhead due to
much monitoring, as shown in Hassan et al. [40].

8.3.2 MCA Environmental Factors

Offloading schemes makes decisions by monitoring and learning from the environ-
mental factors of MCA. Any number of factors can be used in decision making,
ranging from one, e.g., data size [38], to a few, e.g., network bandwidth and latency
[36], to all factors [40] depending on the kind of application, as will be explained
below. The awareness or monitoring of environmental factors is also referred to as
context awareness [47-49]. The generally investigated factors impacting MCAs are
as follows.

8.3.2.1 Mobile CPU Availability

Mobile CPU availability is measured in percent and is of particular importance for
computation-intensive tasks. In other words, the lower the percentage of CPU
availability, the greater the chance of mobile energy consumption or performance
compromise for a computation-intensive task. Thus, the objective is to only execute
a (computation-intensive) task on the mobile device when the percentage of CPU
availability is higher or at least above a set threshold. Mobile CPU availability is
obtained programmatically by examining the /proc/stat files in Android to compute
the percentage of CPU availability.

8.3.2.2 Mobile Memory Availability

Mobile memory availability is measured in percent and is of particular importance
for data-intensive tasks. In other words, the lower the percentage of memory

8 Architecting Green Mobile Cloud Apps 193

availability, the greater the chance of mobile energy consumption or performance
compromise for a data-intensive task. Thus, the objective is to execute a (data-
intensive) task on the mobile device only when the percentage of memory availabil-
ity is higher or at least above a set threshold. A higher-bound mobile CPU and
memory availability is useful for determining when to execute a task on a mobile
device. Mobile memory availability is obtained programmatically by examining the /
proc/meminfo files in Android to compute the percentage of memory availability.

8.3.2.3 Cloud CPU Availability

Cloud CPU availability is measured in percent and is of particular importance for
computation-intensive tasks. In other words, the lower the percentage of CPU
availability, the greater the chance of mobile energy consumption or performance
compromise for a computation-intensive task. Thus, the objective is to execute a
(computation-intensive) task on the cloud when its percentage of CPU availability is
higher or at least above a set threshold. The concept is that avoiding offloading to the
cloud when the cloud CPU is overworked can curtail mobile performance compro-
mise. Cloud CPU availability is obtained programmatically by examining the /proc/
stat files in a Linux-based server to compute the percentage of CPU availability.

8.3.2.4 Cloud Memory Availability

Cloud memory availability is measured in percent and is of particular importance for
data-intensive tasks. In other words, the lower the percentage of memory availabil-
ity, the greater the chance of mobile energy consumption or performance compro-
mise for a data-intensive task. Thus, the objective is to execute a (data-intensive) task
on the cloud when its percentage of memory availability is higher or at least above a
set threshold. The idea is that avoiding offloading to the cloud when the cloud
memory is overworked can curtail mobile performance compromise. A higher-
bound cloud CPU and memory availability is useful for determining when to offload
a task to the cloud. Cloud memory availability is obtained programmatically by
examining the /proc/meminfo files in a Linux-based server to compute the percent-
age of memory availability.

8.3.2.5 Network Bandwidth

Network bandwidth is the average rate of a successful data transfer through a
network communication path. It is measured in bits per second and is achieved
programmatically by sending packets to and from the server to measure the band-
width. The objective of monitoring the bandwidth is to offload a task when the
bandwidth is higher than a set threshold. The idea is that the higher the bandwidth,
the greater the tendency for mobile energy or performance savings.

194 S. J. Chinenyeze and X. Liu

8.3.2.6 Network Latency

Network latency is the time interval or delay between request and response over a
network communication path. It is measured in milliseconds and is similar to
bandwidth. It is achieved programmatically by sending packets to and from the
server to measure the latency. The objective of monitoring latency is to offload a task
when the latency is lower than a set threshold. The concept is that the lower the
latency, the greater the tendency for mobile energy or performance savings.

8.3.2.7 Data Size

Data size is the size of the data transmitted over the communication network. It is
measured in series of bytes (i.e., B, KB, and MB) and can be achieved program-
matically by checking the byte size of the request packet prior to client socket
transmission. The objective of monitoring the data size is to offload a task when
the data size is lower than a set threshold. The idea is that transmitting larger data
packets over the network could result in increased mobile energy usage or perfor-
mance compromise.

The popularly investigated metrics in the literature for MCA offloading schemes
are performance and energy efficiency, and the aforementioned environmental
factors are used to optimally attain these green metrics. The following section
presents the most frequently explored MCA green metrics, including additional
metrics we view as relevant to MCA.

8.3.3 MCA-Associated Green Metrics

Following the green software objective (Sect. 8.2.2), the green metrics are energy
and resource efficiency [10]. In the context of MCAs, the core investigated green
metric is mobile energy efficiency, given that the focus of MCA offloading schemes
is the optimization of mobile application. However, MCA is two tiered, i.e., also
involving the cloud tier, and thus this research presents cloud resource efficiency as
another relevant green metric for MCA.

Furthermore, the green software objective also investigates trade-offs based on
other software qualities, and the popularly investigated software quality in the
literature for MCA offloading schemes is mobile performance. In this chapter,
software availability is also presented (at both mobile and cloud tier) as a relevant
software quality for MCAs.

8 Architecting Green Mobile Cloud Apps 195

8.3.3.1 Mobile Performance

According to Bass et al. [15], performance is how long it takes an application to
respond to an event. The key driver of the advancement in mobile computing is the
portability of mobile devices, which is defined by fluidity and ease of operation
[45, 50, 51]. From the user perspective, the ease of operation or usability of a mobile
application is critically dependent on its performance. Thus performance is a crucial
MCA metric, as shown in the literature (e.g., Cuervo et al. [36], Chun et al. [37],
Kwon and Tilevich [38], Zhang et al. [39], and Hassan et al. [40]), and is popularly
explored in the context of MCAs as a trade-off software quality for mobile energy
efficiency.

In MCA, mobile performance is often measured by computing the difference
between the time of call (or request) to an offloadable task and the time of result
(or response) after execution of the offloadable task. While call and result refers to a
scenario where the offloadable task is executed on a mobile device, request and
response refers to when it is offloaded to the cloud. The fime is representative of
timestamp, measured in ms, and often computed programmatically using the Java
timestamp utility as in Zhong et al. [22].

8.3.3.2 Mobile Energy

According to Johann et al. [26], energy efficiency is the ratio of useful work done to
used energy. In other words, it is the amount of energy incurred for executing a task.

Energy efficiency is derived from three quantities: power, time, and work done
[8, 26]—in this way, energy efficiency is used in the comparison of two or more
entities where their useful work done is likely to vary, as in the case of Zhong et al.
[22] and Johann et al. [26]. However, in a situation of comparison between entities of
similar work done or singular evaluation, energy efficiency is congruent with energy
usage, which is based on two quantities: power and time. Consequently, the terms
energy efficiency and energy usage are used interchangeably in the MCA research.
Power Tutor [52] is a popularly adopted tool in the literature [36—40] for mobile
power monitoring.

8.3.3.3 Cloud Resource

Achieving cloud resource efficiency in a mobile cloud environment requires care so
as not to compromise mobile performance (see the cloud environmental factors in
section 8.3.2). Resource efficiency in servers (the cloud) is often achieved through
load-balancing [21, 30-32].

Although cloud resource efficiency is not often explored in the research on
MCAs, investigating resource efficiency/usage for the cloud can be achieved using
the core impacted resource of the cloud, i.e., the CPU and memory resources. Thus,

196 S. J. Chinenyeze and X. Liu

for cloud resource usage of MCAs, percentage of CPU utilization and memory
utilization are the key metrics. Percentage of CPU utilization and memory utilization
can be measured by examining the /proc/stat and /proc/meminfo files in a Linux-
based server.

8.3.3.4 Software Availability

According to Bass et al. [15], availability is the probability that a system will be
operational when it is needed. In other words, availability is concerned with the
consequences of a system failure. Most research does not take software availability
into consideration in the implementation of MCA schemes. This category of
schemes uses only network exception catch (e.g., Cuervo et al. [36], Chun et al.
[37], Zhang et al. [39]). Moreover, several studies which consider availability
investigate only at the mobile tier (e.g., Kwon and Tilevich [38]). Availability is
achieved at the mobile tier by implementing a time limit for how long the mobile
device can wait for the cloud to complete the execution of a request. When the time
limit has elapsed, the execution is made on the mobile tier. Availability can also be
implemented in a similar manner for the cloud tier.

The mobile tier availability time limit can be obtained by measuring the accept-
able network communication time (to and from the cloud) plus the acceptable cloud
execution time. The time limit for the cloud tier can be obtained by measuring only
the acceptable cloud execution time.

Availability is a software quality relating to performance and therefore realized in
ms. At the mobile tier, availability and performance are congruent; however, at the
cloud tier availability is distinctly specified while performance is not.

8.3.4 Application Taxonomy

The application taxonomy presents the classification for applications in which
MCAs have been explored. The MCA taxonomy has been derived by exploring
the case studies used in the evaluation of offloading schemes, as shown in Table 8.1.
Furthermore, the offloading schemes used to generate the taxonomy span across the
characteristic features of MCA architectures (presented in Sect. 8.3.1) and are based
on Android apps. The offloading schemes reviewed are: (1) POMAC'—categorized
under automated transformation schemes, (2) EFDMz—categorized under manual
transformation schemes and cloning schemes, and (3) DPartner—categorized under
partitioning.

As shown in Table 8.1, three taxonomies are identified from the MCA literature:

"POMAC: Properly Offloading Mobile Applications to Clouds.
“EFDM: Energy-Efficient and Fault-Tolerant Distributed Mobile Execution.

8 Architecting Green Mobile Cloud Apps 197

Table 8.1 Application taxonomy

S/N | Case study apps Taxonomy Sample offloading schemes

1 Picaso [53] Data intensive POMAC [40, 46]

2 MatCalc [54] Data intensive POMALC [40, 46]

3 MathDroid [55] Data intensive POMAC [40, 46]

4 NQueen [56] Computation intensive | POMAC [40, 46]

5 Droidslator [57] Hybrid POMAC [40, 46], EFDM [38]
6 Mezzofanti [58] Computation intensive | POMAC [40, 46], EFDM [38]
7 ZXing [59] Data intensive POMAC [40, 46], EFDM [38]
8 JJIL [60] Computation intensive | EFDM [38]

9 OsmAnd [61] Computation intensive | EFDM [38]

10 Andgoid (Zhang et al. [39]) | Hybrid Dpartner [39]

11 Linpack (Cokulov [62]) Computation intensive | Dpartner [39]

12 XRace [63] Hybrid Dpartner [39]

Note that the references are appended to the Apps links to the source code or Google Play app

* Computation-intensive applications.
* Data-intensive applications.
» Hybrid applications.

8.3.4.1 Computation-Intensive Applications

Computation-intensive applications are a class of mobile applications that are highly
or significantly dependent on the computing power, i.e., the CPU resource, of the
mobile device. The core benefits of offloading schemes are realized with
computation-intensive applications, as this class of applications consume the most
battery power from the mobile device. Most computation-intensive applications fall
within the category of gaming applications and media processing applications—such
as face recognition apps and optical character recognition apps—as shown in the
literature [36, 40, 46, 64].

8.3.4.2 Data-Intensive Applications

Data-intensive applications are a class of mobile applications that devote most of
their processing time to I/O and data manipulation. Due to the focus on manipulation
of data, these applications make more use of memory than the processing power. In
most scenarios data-intensive applications do not consume significant mobile
energy, unless in situations where the data-intensive components also require exten-
sive computation. The literature [38, 46] has emphatically shown that offloading
applications that do not consume significant mobile energy (such as data-intensive
applications) can result in mobile performance compromise or even slight throttle in
energy usage.

198 S. J. Chinenyeze and X. Liu

Mobile App] Cloud
Offloadable :
Task
Offloading Offloadable
—irogding | 5
Decision Mechanism Tas
Maker
Custom Runtime £33 Custom Runtime £33

Fig. 8.2 MCA architecture (based on custom runtime)

8.3.4.3 Hybrid Applications

Hybrid applications are applications that are composed of different offloadable tasks
with at least one computation-intensive task and at least one data-intensive task. As
mentioned earlier, offloading such tasks will likely save energy only if they consume
significant mobile energy.

8.4 MCA Optimization Approach

This section identifies the challenges associated with the approaches used for
designing MCAs, i.e., the optimization or offloading schemes. Furthermore, key
considerations toward an improved solution are presented and also justified.

8.4.1 Gaps in Existing Approaches

This section reviews the main studies that have addressed MCAs, particularly
offloading techniques for mobile performance and energy improvement. The chal-
lenges in related work are presented in terms of overheads in the components that
make up the generic MCA architecture (illustrated in Fig. 8.2). Consequently, the
gaps motivating this research are highlighted from the review.

8.4.1.1 Challenges of Offloadable Tasks

The key challenge with offloadable tasks is the identification phase. A task is
identified for offload if it possesses chances of performance or energy improvement
when executed remotely, i.e., its remote execution time is shorter than local time.

8 Architecting Green Mobile Cloud Apps 199

Table 8.2 Comparison of offload models

Identification of
offloadable task Decision maker Offloading mechanism
Fully Fine Custom
System automatic granularity | Thresholds | Parameters | Type runtime
Kwon No No Static Resource | Cloning Yes
et al. [38] | (annotation)
MAUI No No Dynamic Resource Cloning Yes
[36] (annotation)
Hassan Yes No Dynamic Resource Partitioning | Partial
et al. (full) (machine
[40, 46] learning)
Native Yes No Dynamic Resource Partitioning | Yes
Offloader
[65]

N.B. This table is not an exhaustive list of the models explained in the related work, but a list of
distinct representative models

A key constraint impacting the performance gain of an offloadable task is its
dependence on mobile-only resources, such as a sensor or camera.

Zhang et al. [66] adopt a shortest path algorithm to identify an optimal cut which
minimizes offloading overhead. However, this does not take into account the
aforementioned constraint when identifying an offloadable task. Elicit [46] uses
the shortest path approach for identifying offloadable tasks, and taking the constraint
into account provides better performance gain. In the literature offloadable tasks can
either be identified manually using annotations or automatically through static/
dynamic analysis, as shown in Table 8.2. The automatic identification technique is
more development efficient—as per automated, and accurate—as per code analysis
[46, 65].

Furthermore, not all offloaded tasks prove to be performance or energy efficient,
particularly the data-intensive applications, as shown in the literature [39, 40, 46],
thus, raising thus question of the effectiveness of the approach used in identification
of offloadable tasks. Two concepts can be deduced: either the task in question was
wrongly identified as offloadable or there was an overhead during runtime which
was unaccounted for during the identification process. The second concept is likely a
more valid point, because if decision-making and offloading components add an
overhead during runtime which was not considered during identification, then a
particular offloading task may never yield performance or energy-efficiency benefits,
i.e., in a scenario where the runtime overhead overshadows the offloading gain.
Existing work [38—40, 46, 64] to the best of our knowledge does not consider this
challenge, as their offloading task identification does not include all MCA compo-
nents during evaluation. It can be argued that the decision maker would effectively
allow such scenarios to execute locally. However, the decision-making process is a
required precondition, and thus overhead would have already been made. In other
words, the identification process offered by existing offload models is not fine

200 S. J. Chinenyeze and X. Liu

grained (as shown in Table 8.2). Thus, an effective identification process must take
into account all the MCA components of Fig. 8.2 for fine granularity.

Moreover, with automated transformations, dynamic and static analyses are used
independently in the research. Hassan et al. [46] adopted dynamic analysis—i.e.,
transformation at bytecode level or runtime—for existing applications as there was
no access to the source codes of the apps. Thus, the case for exploring the use of both
static and dynamic analysis throughout the MCA development cycle has not been
well explored.

8.4.1.2 Challenges of the Decision Maker

A good way to understand the decision-making component is as a kind of monitor
and comparator, rather than just a set of if else conditions.

As a monitor: Conditions are executed by checking (i.e., monitoring) the actual
environmental state. In MCA a given environmental state is defined by different
factors/parameters: mobile device CPU and memory availability, network band-
width and latency, cloud CPU and memory availability, and transmitted data size,
as used in the literature [39, 40, 46]. Note that the parameters employed by existing
current work are resource based (i.e., CPU, memory, and network)—also see
Table 8.2. For accuracy in the decision-making process, it is critical that these
factors be captured by the decision maker.

Some research such as Hassan et al. [40] takes into account all of the aforemen-
tioned factors for decision making, thus providing a more accurate picture of the
environmental state. Most works, however, only consider one or a few factors during
decision making, for example data size alone [38], or a combination of bandwidth
and latency [36]. Whichever combination of factors is used, an overhead is added to
the application performance. For example, monitoring network bandwidth and
latency requires sending packets to and from the communicating endpoints (e.g.,
Hassan et al. [40, 46]), which contributes its own overhead. Thus, the more factors
considered, the greater the overhead introduced and the greater the accuracy in
decision making. This is a trade-off to take into account.

As a comparator (or thresholding mechanism): The actual environmental state,
obtained by measuring the aforementioned factors, is compared against a (set of)
predetermined value(s). Hassan et al. [40] use a machine learning algorithm, specif-
ically multi-layer perceptron, as a comparator due to the use of multiple environ-
mental factors in the monitoring. Expected environmental factors are obtained as
training data, collected for offload condition, i.e., when remote execution time is
shorter than local time, and non-offload condition. Kwon and Tilevich [38] use a
single thresholding approach on data size for offload condition. However, this is
ineffective, given the varying factors affecting MCA, and the unpredictable nature of
the environment. Cuervo et al. [36] use a linear regression model on bandwidth and
latency, which also fails to compare other factors.

As noted, the decision maker decides when or when not to offload, based on a
satisfied scenario, obtained from monitored environmental factors. The satisfied

8 Architecting Green Mobile Cloud Apps 201

scenario is the scenario where the remote execution time of an offloadable compo-
nent is shorter than its local or mobile execution time. Thus, the core factor is the
elapsed execution time. However, as this factor cannot be determined explicitly
before runtime, the aforementioned factors, with support from dynamic thresholds,
e.g., learning models [36, 40], or static thresholds [38], are used to determine the
time factor, as shown in the literature. Thus, an effective decision-making process
must effectively predict elapsed time for an environmental state with minimal
overheads.

8.4.1.3 Challenges of Offloading Mechanism

There are two key categories of the offloading mechanisms used in the literature:
cloning and partitioning (see Table 8.2). Many offloading models implement their
offloading mechanisms as runtime engines.

As the term implies, cloning involves execution of a virtual device on the cloud. It
is based on checkpointing, i.e., adding fault-tolerance by saving snapshots, thus
creating more overhead in offloading due to state synchronization. Chun et al. [37]
state that cloning can require a data transfer as high as 100 MB.

Partitioning makes use of remote procedure calls. Unlike the cloning approach,
which requires the virtual device to run on the cloud, the partitioning approach only
requires the offloadable component to execute on the cloud. Thus, it is more
efficient—saving energy and time—compared to cloning.

Whether cloning or partitioning, the key challenge is the dependence on custom
runtime engine (e.g., Kwon and Tilevich [38] and Justino and Buyya [41]). As such
deeply layered frameworks contribute runtime bloat [8, 67, 68], an appropriate
mechanism would need to be simplified—and without dependencies on custom
runtimes for minimal overheads.

8.4.2 Considerations for Improved Solutions

Following the challenge of offloadable tasks, it is critical that the process for
identifying offloadable tasks take into account the cost of decision making and
offloading. In other words:

e Solution 1: A task should be qualified for offload if and only if the combined
overhead of the decision-making component, offloading mechanism, and remote
execution is less than local.

Offloading any task which compromises the aforementioned condition will
always compromise performance, even if the remote execution time is shorter than
that of local.

As mentioned earlier, the core of the decision maker is the ability to predict the
elapsed time prior to offload, so as to know if there will be gain or loss given the

202 S. J. Chinenyeze and X. Liu

current environmental state. This prediction is currently obtained from different
factors and using learning models (contributing overheads) or inaccurate thresholds.
For better decision making:

* Solution 2: Adopt the use of an adaptive full-tier time-based decision making
(at the mobile and cloud tier).

Adaptive means that the decision maker needs to adapt to various environmental
states, and this is achieved by monitoring for environmental factors. Full-tier means
that the monitoring is not only on the mobile, but also on the cloud tier. The objective
of full-tier is to achieve software qualities at both mobile and cloud tier.

Full-tier time-based decision making means that the comparator or thresholding
mechanism is based on a set of predetermined optimal execution times at both the
mobile and cloud tier. The aim of using a set of predetermined optimal execution
times is to achieve overall target green objectives while eliminating existing chal-
lenges of existing counterparts, e.g., the complexity and overhead introduced by
machine learning models like MLP [40], and the inaccuracies of static thresholding.

Current works use custom runtimes to handle offloading; this is to dynamically
intercept code and perform cloning or partitioning. However, these custom runtimes
introduce runtime overhead. Moreover, they increase the size of the application
itself. Although these techniques may be useful for existing systems, where there is
no access to source code, they are impractical for building MCAs. To address the
challenge of overhead caused by custom runtime:

* Solution 3: Adopt the use of sockets as offloading mechanism (this is a
partitioning technique). Cloning techniques are more expensive and consume a
lot of cloud resource as they require virtual mobile devices in the cloud.
Partitioning would involve having only a copy of the offloadable code in the
cloud.

* Solution 4: Adopt Aspects from Aspect-oriented Programming to dynamically
intercept the application when it reaches the offloadable task. Aspects are light-
weight constructs used to implement cross-cutting concerns [69]. They can be
used to implement offloading logic in such a way that the MCA application code
is not altered, thus maintaining a clean separation of concerns while eliminating
the overhead of custom runtime.

As noted earlier in the chapter, the problem being solved by MCA is a domain
problem—a mobile domain problem, an environment of constrained resources.
Furthermore, the issues identified with the MCA solutions are also domain prob-
lems—involving the mobile and cloud domain, however juxtaposed, but targeting
the mobile domain problem. In software engineering, Model-Driven Engineering
focuses on exploiting domain models to effectively solve recurring domain problems
by providing abstraction through high-level models. Thus, for an effective domain
solution for MCA:

e Solution 5: Adopt the use of model-driven tools to encapsulate the aforemen-
tioned solutions alongside design patterns of the MCA app being built. This will

8 Architecting Green Mobile Cloud Apps 203

simplify the development process, increase productivity, and enhance repeatabil-
ity of good solutions [70-73].

8.5 MCA Evaluation Approach

This section presents the gaps and methodology associated with the evaluation
techniques applied to MCAs. Consequently, steps and methodologies toward an
improved solution are presented and justified.

8.5.1 Gaps in the Existing Approach

In this section, we use examples from the research to highlight the challenges and
difficulties of the currently used MCA evaluation approach (i.e., the architecture
scenario approach) in the evaluation and comparison of offloading schemes.

A Motivating Example Let us consider a situation in the development of mobile
cloud applications. The choice of offloading scheme would be a critical decision, as
it is the core functionality which transforms a mobile app to MCA [36, 38—
40]. Assuming the development team chooses to use an existing scheme, they will
need to evaluate and compare between other offloading schemes or other variations
of a scheme. Two offloading schemes have been selected, one based on single
thresholding [38]—ST for brevity—and another based on the multi-layer perceptron
learning algorithm [40]—known as POMAC. Also selected is an Optical Character
Recognition (OCR) Android app called Mezzofanti, which is used in the source
literature to validate the schemes [38, 40]. From the source literature the
computation-intensive offloadable component is the OCR functionality
[38, 40]. The data presented in Table 8.2 is obtained from the source literature
using WebPlotDigitizer [74].

To achieve the evaluation of individual schemes and comparison between the
schemes—ST and POMAC—the mobile-centric architecture scenarios provided by
the source literature are used. The term “mobile-centric” indicates that the approach
provides green metrics results for only the mobile tier, i.e., mobile performance and
energy usage. Using mobile-centric architecture scenarios which are prevalent in the
research [36, 38—40], however, comes with challenges which make it difficult to
come to a satisfactory conclusion for both schemes, in terms of evaluation and
comparison.

The research challenges identified for mobile-centric architecture scenarios are
presented below.

204

S. J. Chinenyeze and X. Liu

(a) Mobile architecture

(b) MCA architecture

Key:
- without offloading - with offloading
MC : Mobile offloadable
D Mobile App D Mobile App Cloud vé: components
— SC : Server offloaded
l’li‘ SQ components
| Mc MCy | SCx — Offloadable
: vA Ay components
MeN Offloader — ,_—;—- Launcher 1 Focus of evaluation
P | lace e (mobile-centric)
Classifier ppe scheme Classifier. , ,
—— Architecture scenario
Local Local
P i Server (c) MCA evaluation by
~—__ Optimal architecture scenarios
The Scheme

Fig. 8.3 MCA architecture showing mobile-centric architecture scenarios

Table 8.3 MCA evaluation and comparison by architecture scenarios

ST [38] POMAC [40]
Arch.scenarios | Elapsed time (ms) | Used energy (J) | Elapsed time (ms) | Used energy (mJ)
Local 49,331.55 86.59 3930.33 4854.24
Server 27,673.79 63.86 34,873.15 19,839.42
Optimal 17,486.63 44.73 3986.21 4845.10
The scheme 10,347.59 41.33 4242.32 5085.80
Local % diff. 130.65 70.76 —7.64 —4.66
Server % diff. 91.14 42.84 156.62 118.38
Optimal % diff. 51.30 7.90 —6.23 —4.85

Note: Local % diff., Server % diff., and Optimal % diff. are the % difference of the scheme in
comparison to local, server, and optimal scenarios respectively. A negative value is used to signify
loss in energy or performance. Note that the metrics presented, i.e., elapsed time and used energy,
are for the mobile tier

8.5.1.1 Inconsistency in Evaluation Results of Scenarios for an
Offloading Scheme

To evaluate POMAC, Hassan et al. [40] define four® scenarios (illustrated in
Fig. 8.3). The efficiency of POMAC is evaluated by comparing the POMAC scheme
against other defined architecture scenarios, using % difference. Deducing from
Table 8.3, for energy usage we can conclude that POMAC is approximately 5%
inefficient compared to both local and optimal scenarios and 118% efficient com-
pared to the server scenario. Although the local and optimal % differences seem to

3Four scenarios are defined by Hassan et al. [40] for evaluating POMAC: OnDevice, OnServer,
Optimal, and POMAC.

8 Architecting Green Mobile Cloud Apps 205

Table 8.4 Variability of architecture scenarios

Summary of architecture Scenarios adopted in
scenarios Scenarios adopted in ST [38] POMAC [40]
Local Smartphone only OnDevice
Server Offloading w/all objects OnServer
Optimal Offloading w/necessary objects | Optimal
(delta)
The scheme Offloading w/threshold check POMAC

arrive at the same conclusions, there is no clear relationship between the scenarios.
This is shown by ST, which has approximately 71%, 43%, and 8% energy improve-
ment based on local, server, and optimal respectively. This challenge makes it
difficult to weigh a scheme based on easily verifiable values or conclusions.

8.5.1.2 Variability of Architecture Scenarios (Making It Difficult
to Compare Between Offloading Schemes)

Different literature uses varying scenarios to evaluate proposed schemes. For exam-
ple, Hassan et al. [40] define four’ scenarios to evaluate POMAC, while Kwon and
Tilevich [38] define five* scenarios to evaluate ST. Therefore, to establish a basis for
comparison, scenarios will have to be matched (as shown in Table 8.4). This process
introduces complexity in comparing schemes, especially since scenarios which may
be congruent by inference may have slightly different definitions from each other
based on the actual literature implementation. This introduces difficulty in commu-
nicating varying scenarios between the development teams and also a challenge to
comparison.

The summary column of Table 8.4 is used to match the scenarios from the
literature [38, 40]. Local is the execution of the application without any offloading.
Server is a scenario where all offloadable objects are always executed on the server.
Optimal is a scenario where only assessed objects are offloaded. Assessed objects are
the objects identified as computation or data intensive. The Scheme is based on
extending the previous optimal scenario with decision-making® mechanisms for
offload. It refers to the proposed offloading schemes in the literature.

“Five scenarios are defined by Kwon and Tilevich [38] for evaluating ST: Smartphone only,
Offloading w/All objects, Offloading w/Necessary objects, Offloading w/Necessary objects
(delta), and Offloading w/Threshold check.

Decision making is the check on the environmental conditions of the communications which
influence the offloading. Decision-making mechanisms can be based on single (static) thresholds
[38] or predictive learning [40].

206 S. J. Chinenyeze and X. Liu

8.5.1.3 Coarse Granularity of Evaluation

Different literature uses different levels of experimental rigor. For example, Hassan
et al. [40] performed a more rigorous experiment for POMAC evaluation (as the
scheme is based on MLP), compared to Kwon and Tilevich [38]’s experiment for ST
which is not as rigorous. Comparing ST energy with POMAC (using the optimal
scenario as reference) gives an approximately 8% gain in ST and 5% loss in
POMAC. The case may be that in adverse environmental conditions the ST scheme
fails to save mobile energy. Also, since the analysis is mobile-centric, it fails to
provide the overall implications of a scheme’s decision regarding whether to offload.
This challenge makes it difficult to establish the overall efficiency of a scheme, i.e.,
the extent to which the scheme is mobile as well as cloud aware.

8.5.2 Methodology for a Solution

To propose a solution for the identified gaps in the existing MCA evaluation
approach (i.e., mobile-specific architecture scenarios) we adopt concepts from
Behavior-Driven Development and Software Test Coverage (Fine-Grained Testing).

8.5.2.1 Behavior-Driven Development (BDD)

A gap in MCA evaluation identified earlier is the variability of architecture scenar-
ios, which makes it difficult to compare between offloading techniques. Since there
is no standard for determining what scenarios to use for justifying the efficiency of
an offloading technique, different literature or techniques use different scenarios. To
curtail the aforementioned difficulty, an approach can be investigated to capture all
the necessary environmental factors surrounding typical MCA scenarios, and per-
form an evaluation or comparison on the basis of these factors rather than varying
scenarios.

For example, for a typical scenario (Table 8.4), whether server, optimal, or
scheme, the environmental factors surrounding the efficiency of the application are
mobile CPU and memory availability, server CPU and memory availability, and
network bandwidth and latency [40, 46]. Rather than evaluate schemes by compar-
ing against different scenarios which are all affected by the aforementioned factors,

* Solution 1: Evaluate and compare schemes on the basis of the environmental
factors themselves which affect MCA schemes.

Evaluation: The implication of the proposed technique above is that to evaluate
an offloading scheme S1, a result can be presented thus:

8 Architecting Green Mobile Cloud Apps 207

The performance and energy usage of S1 are x and y respectively, given the
aforementioned factors. This is a simplified (straightforward to interpret) and
efficient approach.

Rather than:

The performance and energy usage of S1 is x and y respectively, compared to a
scenario A, which is affected by its own uncontrolled factors, and another
scenario B, which is also affected by its own uncontrolled factors, and yet another
scenario C, which is also affected by its own unique factors. This is the case when
varying scenarios are used to evaluate a scheme. Apart from introduced com-
plexities, this approach is inefficient.

Comparison: To compare a second offloading scheme of interest, say S2 to the

previous one, S1, the process would be performed as follows:

Given that the factors of S1 and S2 are closely related compare S1 to S2.
Assuming that S1 is more efficient, then the result can be presented as follows:

S1 is x% and y% more performance and energy efficient than S2 given the
factors.

Rather than:

Compare S1 to A and S2 to A; then S1 to B and S2 to B; then S1 to C and S2 to C.
Assuming that S1 is more efficient, then the result can be presented as follows:
S1 is x% and y% more performance and energy efficient than S2 in A, and/or.

S1 is x% and y% more performance and energy efficient than S2 in B, and/or
S1 is x% and y% more performance and energy efficient than S2 in C.
“And/or” means that in most cases SI might not be more efficient in all the

compared scenarios, and thus it is difficult to establish a concrete result for compar-
ison using varying scenarios.

Note that for the proposed approach, the syntax is “given environmental factors

then assert results.” The above syntax is the core of Behavior-Driven Development
(BDD). Thus, to curtail the aforementioned difficulty:

Solution 2: Adopt the use of the BDD technique, which is based on simple clause
semantics such as given, when, and then. This will also help to simplify software
design decisions and can be automated by tooling.

BDD is a design approach to aid collaboration between non-technical contribu-

tors (such as business analysts or users) and software engineers. Consequently, BDD
is geared toward a more verifiable and collaborative test process by being able to
compare expected behaviors with actual results, following standard simplified sce-
narios constructed by simple language clauses, such as GIVEN, WHEN, and
THEN [75].

208 S. J. Chinenyeze and X. Liu

8.5.2.2 Full-Tier as the New Fine-Grained Test Coverage for MCA

Also presented as a key challenge to the current multi-scenario approach adopted in
the MCA evaluation process is the mobile-centric nature of the evaluation process.
Thus, only the impact of an offloading scheme on the mobile device is estimated.
However, MCA is composed of mobile and cloud tiers. Therefore, to address the
coarse granularity of the current approach, an effective solution must take into
consideration the mobile as well as the cloud resource impact of an offloading
scheme.

Johann et al. [26] show that a fine-grained approach to energy measurement
(using counters) aid reveals specific energy usage in relation to specific points of
execution. Furthermore, in software testing, test coverage is a metric used to measure
the extent of testing in respect to the code being executed. In MCA the actual
execution involves the mobile and the cloud tiers; therefore, to achieve fine-grained
testing with acceptable optimum coverage (i.e., a test coverage that reflects both tiers
of MCA):

¢ Solution 3: Adopt a full-tier testing to measure across the mobile tier (for mobile
metrics, e.g., mobile performance and energy usage) and cloud tier (for cloud
metrics, e.g., CPU and memory usage).

With full-tier evaluation one can better understand if a scheme just keeps
offloading to server, or if it checks server availability (i.e., robustness), thus ensuring
that a scheme is aware of both mobile and cloud resource consumption.

8.6 Summary

This chapter presented the current state of the art in mobile cloud applications
development. Consequently, it highlighted the key issues with the domain, in
terms of the optimization approach and evaluation approach.

The chapter presented the gaps in the existing optimization approaches (repli-
cated in Table 8.5, which includes proposed solution) as follows:

¢ Coarse granularity in identification of offloadable task which leads to unnecessary
MCA transformation of mobile applications, which in turn results in performance
overhead.

e Multiple parameter-based decision making (with intension of accuracy in envi-
ronmental prediction), which leads to performance overhead.

¢ Runtime-dependent and development-inefficient offloading mechanism which
incurs performance overhead and implementation complexities.

To address the identified gaps in existing optimization approaches the research
proposed the use of a Model-Driven Approach with the following solutions:

8 Architecting Green Mobile Cloud Apps 209

Table 8.5 Summary of offload models including proposed solution

Identification of offloadable
task Decision maker Offloading mechanism
Fully Fine Custom
System automated granularity | Thresholds | Parameters | Type runtime
Kwon No No Static Resource | Cloning Yes
et al. [38] | (annotation)
MAUI No No Dynamic Resource Cloning Yes
[36] (annotation)
Hassan Yes No Dynamic Resource Partitioning | Partial
et al. (full) (machine
[40, 46] learning)
Native Yes No Dynamic Resource | Partitioning | Yes
Offloader
[65]
Proposed | Yes (static Yes Dynamic Time Partitioning | No
solution and dynamic (aspect- (model-
analysis) oriented) driven)

* Ensure that identified offloadable tasks will most certainly yield benefits, during
optimization, prior to final deployment.

* Monitoring and decision making is based on execution times in full-tier as
opposed to multiple environmental factors as parameters. Thus, the approach
does not seek (or monitor) best path of execution (requiring extensive resource
monitoring, thus causing overhead), but adopts a good-fit path with respect to
execution time. That is to say that the decision to offload is made based on time,
and control of remote execution is achieved based on time (as threshold).

e The scheme is based on Model-Driven Engineering, and thus mitigates the
overhead caused by custom runtimes. Furthermore, the proposed scheme is
based on partitioning (not cloning), which further eliminates runtime overheads
of cloning solutions.

Furthermore, the chapter furthered the case for improving the existing MCA
evaluation approach by presenting the inefficiencies in the existing state-of-the-art
evaluation approach to MCA, i.e., the scenario-based approach. The current gaps
were presented as follows:

* Inconsistency in evaluation results of scenarios for an offloading scheme.

* Variability of architecture scenarios (making it difficult to compare between
offloading schemes).

* Coarse granularity of evaluation—focused on mobile implications of an MCA or
its offloading scheme.

To address the identified gaps in the scenario-based evaluation approach the
research proposed the use of a Behavior-Driven (BDD) approach with the following
solutions:

210 S. J. Chinenyeze and X. Liu

Use environmental factors as parameters for evaluation rather than varying
scenarios. Applying environmental factors in the evaluation process would pro-
vide information on the environmental state (i.e., measurements) at a finer
granularity, and since this is not within the optimization code, there is no cause
for concern about performance overhead. Thus, the evaluation process is best
suited for real-time environmental factors, rather than the optimization process,
which can cause performance overhead every time offload decisions are made.
Simplify the evaluation process using simple clauses, as offered by BDD—as
exemplified in the BEFTIGRE solution [76].

Adopt the concept of fine-grained software coverage testing, which takes into
account all components of software for higher coverage. Specifically, this means
taking into account the mobile tier as well as the cloud tier during MCA
evaluation—a full-tier evaluation—as exemplified in the BEFTIGRE
solution [76].

References

10.

11.

12.

13.

. Dick M, Naumann S, Kuhn N (2010) A model and selected instances of green and sustainable

software. In: Berle