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Abstract. Towards implementation of adult hearing screening tests that can be
delivered via a mobile app, we have recently designed a novel speech-in-noise
test based on the following requirements: user-operated, fast, reliable, accurate,
viable for use by listeners of unknown native language and viable for testing at a
distance. This study addresses specific models to (i) investigate the ability of the
test to identify ears with mild hearing loss usingmachine learning; and (ii) address
the range of the output levels generated using different transducers. Our results
demonstrate that the test classification performance using decision tree models
is in line with the performance of validated, language-dependent speech-in-noise
tests.We observed, on average, 0.75 accuracy, 0.64 sensitivity and 0.81 specificity.
Regarding the analysis of output levels, we demonstrated substantial variability of
transducers’ characteristics and dynamic range, with headphones yielding higher
output levels compared to earphones. These findings confirm the importance of
a self-adjusted volume option. These results also suggest that earphones may not
be suitable for test execution as the output levels may be relatively low, particu-
larly for subjects with hearing loss or for those who skip the volume adjustment
step. Further research is needed to fully address test performance, e.g. testing
a larger sample of subjects, addressing different classification approaches, and
characterizing test reliability in varying conditions using different devices and
transducers.

Keywords: Classification · Decision trees · Hearing loss · Hearing screening ·
Smartphone app · Speech-in-noise testing

1 Background

The digital health revolution, supported by ubiquitous connectivity, enables new ways
of delivering decentralized healthcare services using eHealth and mHealth solutions,

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
R. Goleva et al. (Eds.): HealthyIoT 2020, LNICST 360, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-69963-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69963-5_1&domain=pdf
http://orcid.org/0000-0002-6323-7350
http://orcid.org/0000-0001-9381-3833
http://orcid.org/0000-0002-1341-2560
https://doi.org/10.1007/978-3-030-69963-5_1


4 E. M. Polo et al.

and hearing healthcare makes no exception [1–4]. In the ‘new normal’ brought by the
COVID-19 pandemic, no-touch services are now critical for individuals with age-related
hearing loss, who are typically at the highest risk for morbidity and mortality due to their
age [5]. In this context, smartphone hearing health apps have grown popular but the avail-
ability of validated apps for hearing screening and assessment is still limited [4, 6–8].
Some validated hearing testing apps are currently available on the market, for exam-
ple SHOEBOX Audiometry (an FDA Class II medical device for pure-tone audiometry
requiring calibrated transducers) developed by SHOEBOX Ltd, hearScreen (a pure-
tone audiometry screening app coupled with calibrated headphones), and hearWHO (a
speech-in-noise testing app, based on the digits-in-noise test [9] in English, endorsed by
the World Health Organization), both developed by hearX Group.

Hearing screening in adults is particularly important to identify early signs of hearing
loss, and therefore trigger timely intervention, thus preventing or delaying the progres-
sion of hearing loss and its impact on communication and psychosocial functioning. In
fact, hearing loss is typically neglected in adults and access to care is frequently delayed
until major effects in health-related quality of life occur, leading to increased health care
costs and utilization patterns [10, 11].

Speech-in-noise tests can be helpful in adult hearing screening to identify the real-life
communication problems and to promote awareness in individuals whowould otherwise
not seek help, or who would seek help very late. Speech-in-noise tests can overcome
some of the limitations that make pure-tone audiometry unfeasible for widespread auto-
mated self-testing on remote (e.g., need for calibrated transducers, need for low-noise
environment) [12, 13]. Moreover, speech-in-noise tests can be easily implemented in
an automatic way, for example using multiple-choice tasks on a user-operated interface
(e.g., [14–16]). However, a potential limitation of speech-in-noise tests in the context of
widespread screening (for example via smartphone apps) is related to the fact that they
are typically language-dependent. In fact, these tests typically use sentences, words, or
digits and therefore they need to undergo translation, adaptation for psychometric per-
formance, and validation when a new language version has to be developed (e.g., [15,
16]). The use of language-dependent tests may potentially lead to decreased access to
screening, disparities, or inaccurate results for non-native listeners and minorities. This
is particularly relevant for tests delivered at a distance via smartphone apps as the target
population is scattered across native languages.

Recently, we have developed a new and automated speech-in-noise test that reduces
possible issues related to language dependence. The test is aimed at adult hearing screen-
ing for future implementation in a smartphone app. The main requirements followed for
test design are discussed below, alongwith an outline of the current stage of development:

– Automated, user-operated execution. The test is based on a multiple-choice recogni-
tion task via an easy-to-use graphical user interface that is optimized for delivery via
a touch-sensitive screen. A three-alternative forced-choice task is used with alterna-
tives determined on a maximal opposition criterion (different in place, manner, and
voicing) as a proven trade-off between test complexity and psychometric performance
[14, 17].

– Speech stimuli viable for use in individuals of unknown language. The test is based on
meaningless Vowel-Consonant-Vowel (VCV) stimuli spoken by a professional male
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native English speaker and a set of consonants common across some of the top spoken
languages worldwide (e.g., English, Spanish, French, Portuguese, German, Italian),
taking into consideration their viability for application in non-native listeners who are
familiar with the Latin alphabet [18, 19]. Preliminary results in native and non-native
listeners indicated that the test performancewas stable in listeners of varying language
[20].

– Short test duration. To enable faster convergence of the adaptive algorithm, the test
uses a newly developed staircase procedure that, based on the estimated psychometric
curves of stimuli, determines optimized upward and downward steps as opposed to
conventional staircase procedures that use pre-determined, equal upward and down-
ward steps. Preliminary results in normal hearing adults showed that the test duration
of the new staircase was, on average, two minutes shorter than that of a conventional
staircase (i.e., about 3 min 30 s vs. About 5 min 30 s). Moreover, similar values of test
duration were observed in subjects with normal hearing and in subjects with hearing
loss [20, 21].

– Reliable in repeated measures, to ensure intra-individual repeatability of test results.
Preliminary results showed that the proposed test provides repeatable estimates of
the speech reception threshold (SRT) and repeatable performance (number of stimuli
presented, test duration, and percentage of correct responses) in individuals with
normal hearing and with hearing loss. In addition, results showed that, thanks to the
short test duration and the multiple-choice design, no perceptual learning effect was
observed in the second execution of the test compared to the first one [20, 21].

– Accurate in identifying hearing loss, to ensure accurate screening outcomes. Prelim-
inary results obtained in a population of 98 adults (including normal hearing and
unscreened adults) have shown that, in terms of SRT estimation, the test was as accu-
rate as a conventional adaptive staircase [20, 21]. Preliminary analysis of the test
classification performance, based on the SRT only, showed that the accuracy (ACC)
of the test for the identification of ears with pure-tone thresholds higher than 25 dB
HL at 1, 2, or 4 kHz was equal to 0.82 and the area under the receiver operating char-
acteristic (AUC) was equal to 0.84 [20]. For a full characterization of classification
performance for the purpose of test validation, comprehensive analysis of classifica-
tion performance based on the full set of test features (e.g., SRT, number of trials, test
duration, percentage of correct responses, average reaction time, and so on) and on
a larger sample of individuals is needed. This contribution presents the first results
obtained from a multivariate classification approach on a population of 148 adults
including subjects with normal hearing and subjects with varying degrees of hearing
loss.

– Viable for testing at a distance, to ensure reliability of results in varying settings (i.e., in
different environments and with different instrumentation). Preliminary results from a
group of 26 normal hearing adults showed that the test provided consistent outcomes in
terms of SRT estimation and test-retest repeatability in controlled environmental noise
settings (audiometer-controlled output levels) and in uncontrolled environmental noise
settings (self-adjusted test volume) [21]. However, to fully demonstrate the reliability
of test results in varying settings, a deeper analysis of the possible influence of the
environmental noise, instrumentation, and test settings is needed. This contribution
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presents the first results obtained in this direction, specifically a quantitative analysis
of the influence of different transducers on the output levels of the test.

Within this context, the aimof this studywas twofold. First, regarding the requirement
of test accuracy in identifying hearing loss, we performed a preliminary analysis, using
a machine learning approach, of the classification performance considering the full
set of available features (Sects. 2.2 and 3.1). Second, regarding the requirement of
viability for testing at a distance in uncontrolled settings, we conducted an experiment to
quantitatively address the influence of self-adjusted test volume settings using different
consumer transducers on the output levels of the test (Sects. 2.3 and 3.2). An investigation
of these aspects is crucial to fully address the viability of the proposed test for adult
hearing screening via a smartphone app.

2 Materials and Methods

2.1 Speech-in-Noise Test

Theproposed speech-in-noise test is based on three-alternative forced-choice recognition
of VCV stimuli via a graphical user interface. The set of stimuli includes 12 spoken
consonants (/b, d, f, g, k, l, m, n, p, r, s, t/) in the context of the vowel /a/ (e.g., aba,
ada) recorded from a male professional native English speaker [14, 20, 21]. VCVs were
combined with speech-shaped noise at varying signal-to-noise ratio (SNR). The noise
is generated by filtering a Gaussian white noise of amplitude equal to the average level
of VCV recordings with the international long-term average speech spectrum [22] and
a low-pass filter (cutoff = 1.4 kHz, roll-off slope = 100 dB/octave) and then by adding
a noise floor determined by the same filtered noise attenuated by 15 dB [23].

After initial collection of information about the subjects’ age and gender through the
graphical user interface, the test starts at an initial comfortable level of+8 dB SNR from
a stimulus randomly selected from the set of VCVs. Then, it adapts the intelligibility
based on a one-up/three-down (1U3D) rule, i.e. the intelligibility is decreased after
three correct responses and increased after one incorrect response. The intelligibility is
adjusted by changing, concurrently, the VCV and the SNR based on a newly developed
staircase procedure [20, 21]. Specifically, the upward and downward steps in SNR are
determined adaptively at each trial, based on the psychometric curves of VCV stimuli
and therefore the steps depend on the specific stimulus and SNR at each trial. The steps
are set using the optimal recommended ratio between downward and upward step size
for 1U3D staircases (i.e., 0.74), therefore enabling rapid convergence of the tracking
procedure as suggested by [24]. At each step, the VCV presented and the order of the
alternatives displayed on the screen are randomized. The procedure is terminated after
12 reversals in SNR and the SRT is estimated as the average of the SNRs at the midpoints
of the last four ascending runs [20–24].

2.2 Classification Performance

Participants. Participants were 148 adults (age = 52.1 ± 20.4 years; age range: 20–
89 years; 46 male, 102 female) tested in uncontrolled environmental noise settings in



A Novel Adult Hearing Screening Technique 7

the lab and at local health screening initiatives (i.e. at universities of senior citizens,
health prevention and awareness events for the general public). The group of partici-
pants included individuals with normal hearing and individuals with varying degrees
of hearing impairment. The experimental protocol was approved by the Politecnico di
Milano Research Ethical Committee (Opinion n. 2/2019). All subjects were informed
about the protocol and the study as a whole and they took part in the experiment on a
voluntary basis. Due to the opportunistic nature of the local screening initiatives, partic-
ipants were given the option to choose in which ear(s) to perform the test. As a result, 8
participants performed the test sequentially in both ears whereas 140 performed the test
only in one ear, for a total of 156 ears tested.

Procedures. An outline of the experiment is shown in Fig. 1. Participants were tested
with: (i) pure-tone audiometry at 0.5, 1, 2, and 4 kHz (Amplaid 177+, Amplifon with
TDH49 headphones), and (ii) the proposed speech-in-noise test in uncontrolled envi-
ronmental noise settings. The test was run on an Apple® Macbook Air® 13′′ (OS X
Yosemite version 10.10.5 and macOS High Sierra version 10.13.6) connected to Sony
MDRZX110APW headphones. The speech-in-noise test was executed in self-adjusted
volume settings therefore participants were given the option to adjust the volume at a
comfortable level before the test via the graphical user interface.

Data Analysis. The pure-tone threshold average (PTA) was computed as the average
of hearing thresholds at the four frequencies tested. Then, the tested ears were classified
based on their PTA in two classes using the World Health Organization (WHO) cri-
terion for slight/mild hearing impairment: PTA>25 dB HL (slight/mild hearing loss) and
PTA≤25 dB HL (no hearing loss) [25]. For a multivariate analysis of the test classifica-
tion performance, the following features were extracted from the speech-in-noise test
software: SRT, total number of trials (#trials), number of correct responses (#correct),
percentage of correct responses (%correct), average reaction time (i.e., the average of
individual response time throughout the test), test duration, output volume, and age. The
eight features extracted from the test were used as input variables of a decision tree (DT)
model and the PTA class was used as the output variable (Fig. 1).

A DT approach was used in this first study as it is one of the most broadly used clas-
sification methods due to its ability to convert paths in the tree into intelligible decision
rules. The Gini index was chosen as splitting rule in place of entropy as they lead to sim-
ilar results but the Gini index has lower computational weight [26]. To limit the possible
effects of overfitting and therefore model bias, the dataset was first split randomly into
training (80% of the sample, 124 ears) and test (20% of the sample, 32 ears) datasets.
Then, the DT model was optimized using 5-fold cross-validation on the training dataset
and finally its predictions were tested on the test dataset. Classification performance was
assessed by measuring: accuracy (ACC) on the training and test datasets, area under the
curve (AUC), sensitivity (SEN), and specificity (SPE). Due to the relatively small size of
the dataset, we also addressed the variability of the model performance. Specifically, we
ran 1000 iterations of the model optimization process by randomly changing the initial
splitting into training and testing datasets (keeping an 80%/20% splitting ratio) and the
inner cross-validation subsets (keeping a 5-fold inner splitting) and then we measured
the average and standard deviation of the performance parameters (ACC on the training
and test datasets, AUC, SEN, and SPE).
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Fig. 1. Classification performance analysis methodology. Top panel: Based on the PTAmeasured
with pure-tone audiometry, ears were classified using the WHO criterion for slight/mild hearing
impairment as PTA>25 dB HL and PTA≤25 dB HL. Bottom panel: Based on eight features extracted
from the speech-in-noise test software, ears were classified into pass and fail using a DT approach
based on the PTA class as the output variable. DT = decision tree; PTA = pure-tone threshold
average; WHO = World Health Organization.

2.3 Characterization of Transducers

In order to assess the influence of self-adjusted volume settings on the actual output
levels of the test, we characterized the performance of different consumer transducers,
specifically we measured the actual output levels of the test obtained using a variety of
transducers as a function of the self-adjusted test volume settings. In fact, when a screen-
ing test is delivered via a smartphone app in uncontrolled environmental noise settings, a
variety of transducers can be used therefore it is important to understand the actual output
level for a given test volume selected by the user. In this study, we have characterized
five different headphones models and two different earphones models widely available
on the market, i.e.: Bose Quitecomfort II (in two versions: noise canceling mode ON
and noise canceling mode OFF), Sony MDRZX110APW, Sony MDR-7506, Sennheiser
PC 310, Akg Y45, Apple EarPods, and Mpow In-ear (price range: 9.99 to 299 e).

The experimental setup for the characterization of transducers is shown in Fig. 2.
First, to take into account all the stimuli in the set, an audio file including the sequence of
all VCVs, with no pauses, was created. The volume range of the same laptop computer
used in the listening tests (described in 1.2) was discretized in 17 levels using a step
equal to the size of the volume bars of the laptop. The VCV sequence reproduced via the
different transducers, at each of the 17 volume levels, was recorded using aNeumannKU
100 dummy head powered from an external P48 phantom power supply. Each recording
was then routed back to the laptop computer via a RME Babyface Pro sound card and
the corresponding digital audio files were saved using GarageBand software (version
10.1.3). In order to record the VCV sequence under the same conditions for all the
transducers, the dummy head was positioned and remained in the same location in a
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quiet room and the RME Babyface Pro input gain (dummy head/laptop) was maintained
fixed and low throughout the experiment to avoid possible sound saturation.

Fig. 2. Characterization of transducers. Panel (1): the VCV sequence for each transducer is
recorded via a dummy head and a sound card. Panel (2) and (3) show the two steps of the
calibration process. Panel (2): the sound card output gain was set to let the white noise from the
loudspeaker reach 90 dB SPL on the SLM. Panel (3): the SLM was replaced by the dummy head
which recorded the 90 dB SPL white noise and saved it into the laptop maintaining the same input
gain of the sound card as that of the VCV sequence recordings. R = right ear; L = left ear; SLM
= sound level meter.

A calibration step was needed to convert wave units into dB sound pressure level
(SPL). In fact, the absolute amplitude of the recording sequences was in wave units,
which are given by the combination of the actual SPL and any other digital gains of the
transfer function of the laptop-transducer chain. The calibration process was performed
with the dummy head and a loudspeaker and therefore a white noise was used as the
recorded loudness of white noise is less influenced by the acoustical attenuation due to
the wide frequency range. The white noise was sent via the laptop computer and sound
card to the loudspeaker and the loudness was measured using a Sound Level Meter
(SLM; Brüel & Kjær Type 2250 Hand Held Analyzer with BZ-7222 Sound Level Meter
Software) placed on a tripod in front of the loudspeaker at a distance of 1 m. First, the
output gain of the sound card was changed to let the noise loudness reach 90 dB SPL
at the SLM. Then, the tripod with the SLM was removed and replaced by the dummy
head. Finally, to obtain a calibration factor the white noise was played with the output
gain corresponding to a known SLM loudness of 90 dB SPL maintaining the input gain
used for the VCV sequence and recorded by the dummy head. The VCV sequences
recorded with the different transducers at each of the 17 volume levels were therefore
converted in dB SPL and then filtered using an A-weighted filter to approximate the SPL
perceived by the average human ear. The experiment was conducted at the Department
of Electrical Engineering (ESAT) at KU Leuven.

The characteristics of the transducers, in terms of dB SPL as a function of the volume
level were obtained by fitting the 17 sampled measures using polynomial models of
order 1–9 using the least-squares method and the optimal model order for each curve
was determined using the Akaike information criterion.
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3 Results

3.1 Classification Performance

Figure 3 shows the optimal DT model obtained by using the full set of eight features.
Here, it is important to note that, in classifying ears into pass or fail (as defined by the
WHO criterion for slight/mild hearing loss) the top decision node takes into account the
value of SRT estimated by the test and uses a cut-off equal to about −7.5 dB SNR to
split the tree into branches. On the right-hand side branch, the SRT is also used again
down the tree (fourth level split) to classify a subset of 27 ears from subjects older than
58 years (second level split) in which the number of correct responses was lower than
or equal to 89 (third level split).

In general, in addition to SRT, the most relevant features for classification are: the
subjects’ age (with fail outcomes associated with older age), the test duration (totsec
in the figure, with fail outcomes associated with longer test duration), and the average
reaction time (avg_ans_time in the figure, with fail outcomes associated with longer
duration). Splitting rules involving other features such as the total number of correct
responses (#correct in the figure), the percentage of correct responses (perc_correct in
the figure), or the total number of trials (#trials in the figure) seem to be less informative
as rules based on these features are associated with leaf nodes with a very small number
of ears (less than 3).

Fig. 3. Optimal model for classification of ears into pass and fail using the full set of features as
input variables and the WHO definition of normal hearing/mild hearing loss as output variable.
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To address the possible relationships between the model features and their distribu-
tion in the two PTA classes, we analyzed the scatter plots for each combination of paired
features as well as the distribution of each feature in the two classes. Results are shown
in Fig. 4.

Fig. 4. Scatter plots of paired features and, on the diagonal, distributions of single features in
the two classes. Magnified versions of two exemplary scatter plots (SRT vs. Age and SRT vs.
%correct) are shown on the right-hand side. Green dots: ears with PTA ≤ 25 dB HL. Red dots:
ears with PTA > 25 dB HL. (Color figure online)

Thedistributions of each feature, reportedon the diagonal of thematrix inFig. 4, show
that some features may be likely candidates for classifying ears in the two PTA classes.
Specifically, the better candidates are SRT, age, number of trials and number of correct
responses, as well as percentage of correct responses derived from the previous two, and
average reaction time. Features such as test duration and volume level show comparable
values between the two PTA classes. The scatter plots between pairs of features show
that, for example, the SRT combined with features such as age, percentage of correct
responses, and average reaction time (as shown in the leftmost column in Fig. 4) generate
clusters of data points that are relatively grouped into the twoPTAclasses, suggesting that
a selection of these features may be possibly used to generate simpler DT classification
models that are based on a smaller set of rules and may be possibly more intelligible.

To address the performance of models based on a smaller set of rules, we considered
DTs with four input features (SRT, age, percentage of correct responses, and average
reaction time), as determined by the analysis of the results in Fig. 4. The maximum
depth of the DT with four features was set to 4 to counterbalance possible overfitting
effects caused by a reduced number of features. The optimal DT model obtained using
this selection of features is shown in Fig. 5.
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Fig. 5. Optimal model for classification of ears into pass and fail using four features as input
variables and the WHO definition of normal hearing/mild hearing loss as output variable.

The root node of the DT with four selected features showed in Fig. 5 uses the
same rule as the root node of the full model with eight features, i.e. a split on the SRT
value using a cut-off equal to −7.5 dB SNR. Noticeably, this cut-off value is close
to the cut-off determined in our earlier study using only the SRT on a smaller set of
cases, i.e., −8 dB SNR [20]. Importantly, using a generalized linear model with age
and SRT as input variables on a dataset of 58 subjects we also showed that, in addition
to SRT, the interaction between age and SRT was a significant predictor of PTA class
(slight/mild hearing impairment vs no hearing impairment) [27]. This aspect is reflected
in the observedDTmodel as the secondmost important feature is the subject’s age which
is used at the second, third, and fourth levels of the tree (Fig. 5). The average reaction
time (avg_ans_time in the figure) is also relevant as shown in the right-hand branch of
the model at the third and fourth levels of the tree, with fail outcomes associated with
lower or alternatively with higher reaction times. In fact, it may be that individuals who
have difficulty in speech recognition may just tend to select an alternative on the screen
quickly and let the test proceed when they haven’t heard the stimulus or, alternatively, it
may be that they spend a relatively long time to choose among the alternatives because
they are not sure about what they have heard.

Table 1 shows the classification performance and the variability of performance
on 1000 iterations (mean ± standard deviation) obtained with the optimal DT models,
the one with eight features and the one with four features. The first row shows the
accuracy observed in the training dataset (ACCtrain) whereas the remaining rows show
the performance (ACC, AUC, SEN, and SPE) observed in the test dataset.

It is important to notice that the two models have slightly different values of ACC
on the training and test datasets. For the model with eight features, ACC on the test set
is slightly higher than ACCtrain whereas for the model with four features the opposite
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Table 1. Classification performance and variability of performance of the optimal DT models
with eight input features and with four input features.

Parameter Optimal model
(8 features)

1000 iterations
(8 features)

Optimal model
(4 features)

1000 iterations
(4 features)

ACCtrain 0.73 0.77 ± 0.0342 0.77 0.76 ± 0.0339

ACC 0.78 0.76 ± 0.0721 0.75 0.77 ± 0.0707

AUC 0.77 0.74 ± 0.0810 0.72 0.75 ± 0.0803

SEN 0.73 0.67 ± 0.1418 0.64 0.67 ± 0.1482

SPE 0.81 0.81 ± 0.0895 0.81 0.82 ± 0.0868

trend is observed. However, for each model the mean values of ACC observed on 1000
iterations are similar in the training and testing datasets, and the ACC values are similar
between the two models indicating that, overall, the DT classifiers here shown have an
average accuracy in the range 0.76 to 0.77, with standard deviation of about 0.07. In
general, the observed performance is similar for the DT models with eight and four
features in terms of ACC, AUC, SEN, and SPE values. The SEN observed with the
optimalmodelwith eight features is seemingly higher than that observedwith the optimal
model with four features (i.e., 0.73 vs. 0.64). However, the analysis of the mean values
obtained on 1000 iterations shows that the average performance of the two models is
strikingly similar. Moreover, the observed standard deviations are relatively low for
each of the observed performance parameters. The standard deviation is smaller than
0.1 for all the parameters except for sensitivity for which it is about 0.14 and 0.15 for the
models with eight and four features, respectively. Therefore, the observed difference in
SEN between the two models (0.73 vs. 0.64) may be the result of the inherent variability
of the models generated using different distributions of data into the training and test
datasets.

3.2 Characterization of Transducers

The characteristics of the tested transducers, in terms of dB SPL as a function of volume
level (percent value), are shown in Fig. 6. Overall, two different sets of curves were
observed for earphones (Apple EarPods and Mpow in-ear) and for headphones. Among
the headphones here used, the highest output levels were observed with the Bose Quite-
Comfort II headphones with noise canceling mode OFF whereas the characteristics of
the remaining headphones were, overall, similar, with differences lower than 6.1 dB SPL
across the volume range.

The two tested earphones had an overall linear dynamics and produced lower SPL
for a given volume level across the whole volume range. For example, when the volume
level is 50% (i.e., the default level on the test software) the output level with the Bose
QuiteComfort II headphones with noise canceling mode OFF is about 71.5 dB SPL
whereas with Apple ear-pods and Mpow in-ear the output level is about 47.5 and 50 dB
SPL, respectively. Similarly, when the volume level is set at the top limit of the range, i.e.
at 100% the output level with the BoseQuiteComfort II headphones with noise canceling
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Fig. 6. Transducers characteristics: measured output levels (in dB SPL) as a function of laptop
volume level (percent value). n.c. = noise canceling.

mode OFF is about 87.5 dB SPL whereas with Apple ear-pods and Mpow in-ear the
output level is about 66.5 and 68.5 dB SPL, respectively. The largest differences between
transducers were observed at a volume of about 70%, with an observed difference of
about 25 dB SPL between Bose QuiteComfort II headphones with noise canceling mode
OFF and Apple ear-pods.

4 Discussion

In this study, we begun our analysis by addressing classification performance of the
proposed speech-in-noise test against the WHO criterion for mild hearing loss using
a DT approach in two different configurations: (i) using the full set of eight features
(SRT, number of trials, number of correct responses, percentage of correct responses,
average reaction time, test duration, output volume, and age) and (ii) using a subset of
four features (i.e., SRT, age, percentage of correct responses, and average reaction time)
that were selected based on their distributions in the two classes of the output variable.

Overall, the performance of the DTmodels using eight and four features was similar
as shown in Table 1. In addition, the average model performance, determined by running
1000 iterations of model optimization on different realizations of the training and test
datasets, was strikingly similar for the DT models with eight and four features in terms
of ACC, AUC, SEN, and SPE. The observed variability of performance was also similar
between the two models (Table 1).

Compared to the DTmodel with the full set of eight features, the DTmodel with four
features may have the advantage of being less demanding in terms of computational cost
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and simpler in terms of interpretability of rules. TheDTmodel with SRT, age, percentage
of correct responses, and average reaction time as input features had on the test dataset
an ACC equal to 0.75, an AUC equal to 0.72, SEN equal to 0.64 and SPE equal to
0.81. In our earlier analysis of test performance [20], using only the SRT to classify
106 ears from 98 subjects into pass and fail, we observed an ACC equal to 0.82, SEN
equal to 0.7, and SPE equal to 0.9 using a cut-off SRT value of -8 dB SNR, i.e. a
value close to the cut-off value found in the root nodes of the DT models in this study
(Fig. 3, Fig. 5). The AUC measured across the different cut-off SRTs was equal to 0.84
[20]. The values here observed with the DT approach are slightly lower than the values
previously observed on a smaller dataset but still in line with the average classification
performance of speech-in-noise tests. In general, amoderate level of accuracy is expected
due to the inherently different nature of the two hearing tests compared (i.e. pure-tone
detection and speech-in-noise recognition), that involve different auditory functions.
The performance of other speech-in-noise tests based on multiple-choice recognition of
short words is similar or lower than the one here observed. For example, the Earcheck
and the Occupational Earcheck (i.e. Internet-based adaptive speech-in-noise tests based
on multiple-choice recognition of consonant-vowel-consonant words) had a sensitivity
of 0.51 and 0.92 and a specificity of 0.90 and 0.49, respectively, for the detection of
ears with noise-induced hearing loss [28]. Similarly, another study on the Occupational
Earcheck in a noise-exposed population showed a sensitivity of 0.65 and specificity
of 0.63 to detect high-frequency hearing loss above 25 dB HL [29]. Another example
is the Speech Understanding in Noise (SUN) test, that uses a list of VCV stimuli in a
three-alternatives multiple-choice task presented at predetermined SNRs. The test, when
administered sequentially in both ears reached a sensitivity and specificity of about 0.85
for detecting disabling hearing impairment (i.e., PTA > 40 dB HL) [14]. Similarly, the
original version of the digits-in-noise test delivered by telephone yielded a sensitivity
of 0.75 and a specificity of 0.91 to identify ears with PTA higher than 20.6 dB HL and
for the U.S. version of the digits-in-noise test a sensitivity of 0.8 and a specificity of
0.83 to identify ears with PTA higher than 20 dB HL were reported [9, 30]. Therefore,
considering the performance of the DT model with four features and the clarity and
coherence of the rules generated by this simpler model, so far the DT with SRT, age,
percentage of correct responses, and average reaction time as input features is the best
candidate model for implementation into the smartphone app for the sake of identifying
ears with mild hearing loss.

In the secondpart of the study,wehave analysed the quantitative relationship between
the self-adjusted volume levels of the test and the actual output levels in terms of SPL
values using a range of consumer transducers, including headphones and earphones.
This is relevant for the sake of implementation of a smartphone app as the app may be
used with unknown transducers and the actual output levels, i.e. the level at which the
speech-in-noise stimuli are delivered to the users’ ears, may vary significantly.

Results in Fig. 6 show that the characteristics of different transducers vary greatly
across the range of volume levels enabled by the device. The headphones yielded overall
higher output SPL compared to earphones, with no substantial differences between types
of earphones and types of headphones, except for the Bose QuiteComfort II headphones
with noise canceling mode OFF that showed the broadest dynamics and the highest SPL
values across the entire volume range of the device.
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In general, these results suggest that including the self-adjusted volume option in a
future app may help compensate, at least in part, for the different characteristics of the
chosen transducer as the subject has the option to set the volume at a comfortable level
based on his/her actual loudness perception, which depends on the actual SPL of the
stimuli all the other things being equal (hearing sensitivity, mobile device characteristics,
transducer, and environmental noise levels). This provides further support to the choice
of including a self-adjusted volume option to enable test delivery via a mobile app in
uncontrolled environment and with unknown transducers.

The results in Fig. 6 also point out that the range of output SPLs that can be generated
with earphones is, in general, narrower than the one that canbeobtainedwith headphones,
with earphones providing much lower SPL values than headphones – up to about 20–
25 dB SPL lower when a volume in the range 50–70% is used. This means that, even by
using the full range of available output levels, the maximum SPL that can be obtained by
using the tested earphoneswill be between 65 and 70 dB.As a benchmark, conversational
speech occurs at an average of 65 dB SPL with a typical dynamic range of 30 dB (12 dB
above and 18 dB below the average) [31, 32]. Therefore, the maximum SPL reached by
the earphones models here tested might not be sufficient to provide clearly intelligible
speech stimuli to subjectswith reduced hearing sensitivity due hearing loss. For example,
subjects with minimal hearing loss as defined by the WHO criterion would hear the test
sounds attenuated by an average of 25 dB and the perceived sounds will be even weaker
in case of mild or moderate hearing losses with higher PTA. For example, in case of PTA
equal to 25 dB HL (which is the lowest PTA in the mild hearing loss range), a sound at
70 dB SPL would be perceived, on average, in a similar way as a sound of 45 dB SPL,
a level that corresponds to faint speech and that would be therefore barely perceivable.
Moreover, it may also happen that some of the tested subjects may not wish to adjust
the device volume, as we observed for example in our listening tests. In fact, the average
volume measured in our experiments was 0.48 (standard deviation= 0.11) and 83 out of
48 participants left the volume unchanged to the default value of 50%. Therefore, these
results indicate that it may be important to recommend that headphones are used rather
than earphones in combination with the smartphone testing app.

5 Limitations and Future Work

This study provided promising results but it has some limitations. First, the values of per-
formance observed following a single model optimization process are slightly different
than the average performance estimated across several iterations of the process, as shown
in Table 1. This discrepancy is mainly due to the limited size of our dataset therefore
it happens that a single optimized model may not accurately reflect the potential per-
formance of the method in this task. Future studies will be necessary, on a significantly
larger sample of adults and older adults, to increase the sample size and therefore improve
the quality of the classifier developed before the algorithm can be safely implemented
into a mobile app.

Second, in this studywe investigatedonlyone typeof classification algorithm, theDT,
due to itswidespread use and its ability to generate intelligible decision rules.However, to
fully explore the potential of multivariate classification algorithms for the identification
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of hearing loss and the possible advantages of machine learning methods over univariate
classification approaches further research is needed. For example, it will be important
to test different DT models by varying the set of input features and different machine
learning algorithms, including both explainable (rule-based) and black-box approaches.
The final outcome of this future investigation will be the identification of an optimal
classification model that is accurate and reliable in identifying ears with hearing loss
and that can be implemented into a smartphone app as part of the testing software.

In addition, the test partially addresses the problem of language-dependence. On the
one hand, the use of meaningless VCVs and a set of consonants that is common across
some of the top spoken languages worldwide makes the test feasible for use in non-
native listeners. On the other hand, listeners who are not familiar with the Latin alphabet
or native listeners of character-based languages such as Mandarin or Japanese may be
subjected to ambiguities arising from the phoneme-grapheme correspondence. Investi-
gation of test performance in a larger sample of native languages would be important
to understand the possible modifications needed to improve test validity on a broader
population.

Although we are getting very close to our final goal, further research is still needed
to fully define the optimal settings for test delivery via a smartphone app. For example,
it will be important to measure the output levels obtained using mobile devices to under-
stand the potential output levels range that can be obtained using a smartphone or a tablet
device. Moreover, it will be useful to address the characteristics of additional transduc-
ers, including additional earphones models with broader dynamic range, to understand
which models are more suited for test execution and define minimum requirements for
transducers to be used in the test in uncontrolled environmental conditions.

6 Conclusions

In this study, we have shown that an approach based on explainable machine learning
using a decision tree algorithm in combinationwith the proposed speech-in-noise test can
classify ears with similar accuracy, sensitivity, and specificity as that of popular validated
speech-in-noise tests. Moreover, we have shown that a simplified classification model
with a reduced set of features can lead to simpler, more intelligible rules and maintain
the same performance of more complex models based on a larger set of input features.
Regarding the analysis of the output levels of the test as a functionof different transducers,
we have highlighted important differences in output levels between types of transducers
(headphones vs. earphones) aswell as between different transducermodels, also showing
that some transducersmay not be adequate to ensure an appropriate range of output levels
for the sake of conducting the test in self-adjusted volume settings. Further research will
be needed to fully address the accuracy of the test, specifically it will be important to
collect data from a larger sample of subjects, to evaluate the performance of different
machine learning algorithms, preferably those able to generate explainable (e.g., rule-
based) models, and to characterize the reliability of the test in varying environmental
noise conditions and using different devices.

Acknowledgement. The research leading to these results has received funding from the European
Research Council under the European Union’s Horizon 2020 research and innovation program or



18 E. M. Polo et al.

ERC Consolidator Grant: SONORA (773268). This article reflects only the authors’ views, and
the Union is not liable for any use that may be made of the contained information.

The authors are grateful to the Lions Clubs International and to Associazione La Rotonda,
Baranzate (MI) for their support in the organization and management of experiments in the
unscreened population of adults. The authors wish to thank Anna Bersani, Carola Butera, and
Antonio Carrella from Politecnico di Milano who helped with data collection at Associazione La
Rotonda. The Authors would also like to thank Dr. Randall Ali from the Department of Elec-
trical Engineering at KU Leuven for providing guidance during the transducers characterization
experiment.

References

1. Swanepoel, D.W.: eHealth technologies enable more accessible hearing care. In: Seminars in
Hearing, vol. 41, no. 02, pp. 133–140 (2020)

2. Paglialonga, A.: eHealth andmHealth for audiologic rehabilitation. In:Montano, J.J., Spitzer,
J.B. (eds.) Adult Audiologic Rehabilitation, 3rd edn. Plural Publishing, San Diego (2020)

3. Paglialonga, A., Cleveland Nielsen, A., Ingo, E., Barr, C., Laplante-Lévesque, A.: eHealth
and the hearing aid adult patient journey: a state-of-the-art review. BioMed. Eng. Online 17,
101 (2018)

4. Paglialonga, A., Tognola, G., Pinciroli, F.: Apps for hearing science and care. Am. J. Audiol.
24(3), 293–298 (2015)

5. Audiology Today: Tele-audiology in a Pandemic and Beyond: Flexibility and Suitability
inAudiologyPractice. https://www.audiology.org/audiology-today-julyaugust-2020/tele-aud
iology-pandemic-and-beyond-flexibility-and-suitability. Accessed 24 July 2020

6. Bright, T., Pallawela, D.: Validated smartphone-based apps for ear and hearing assessments:
a review. JMIR Rehabil. Assist. Tech. 3(2), e13 (2016)

7. Colsman, A., Supp, G.G., Neumann, J., Schneider, T.R.: Evaluation of accuracy and reliability
of a mobile screening audiometer in normal hearing adults. Front. Psychol. 11, 744 (2020)

8. De Sousa, K.C., Swanepoel, D.W., Moore, D.R., Smits, C.: A smartphone national hearing
test: performance and characteristics of users. Am. J. Audiol. 27(3S), 448–454 (2018)

9. Smits, A., Kapteyn, T., Houtgast, T.: Development and validation of an automatic speech-in-
noise screening test by telephone. Int. J. Audiol. 43, 1–28 (2004)

10. Nachtegaal, J., Festen, J.M., Kramer, S.E.: Hearing ability and its relationship with psy-
chosocial health, work-related variables, and health care use: the national longitudinal study
on hearing. Audiol. Res. 1(1), e9 (2011)

11. Reed, N.S., et al.: Trends in health care costs and utilization associated with untreated hearing
loss over 10 years. JAMA Otolaryngol. Head Neck Surg. 145(1), 27–34 (2019)

12. Humes, L.E.: Understanding the speech-understanding problems of older adults. Am. J.
Audiol. 22(2), 303–305 (2013)

13. Killion, M.C., Niquette, P.A., Gudmundsen, G.I., Revit, L.J., Banerjee, S.: Development of
a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and
hearing-impaired listeners. J. Acoust. Soc. Am. 116, 2395–2405 (2004)

14. Paglialonga, A., Tognola, G., Grandori, F.: A user-operated test of suprathreshold acuity in
noise for adult hearing screening: the SUN (Speech Understanding in Noise) test. Comput.
Biol. Med. 52, 66–72 (2014)

15. Jansen, S., Luts, H., Wagener, K.C., Frachet, B., Wouters, J.: The French digit triplet test: a
hearing screening tool for speech intelligibility in noise. Int. J. Audiol. 49(5), 378–387 (2010)

https://www.audiology.org/audiology-today-julyaugust-2020/tele-audiology-pandemic-and-beyond-flexibility-and-suitability


A Novel Adult Hearing Screening Technique 19

16. Potgieter, J.M., Swanepoel, W., Myburgh, H.C., Smits, C.: The South African English smart-
phone digits-in-noise hearing test: effect of age, hearing loss, and speaking competence. Ear
Hear. 39(4), 656–663 (2019)

17. Leek, M.R.: Adaptive procedures in psychophysical research. Percept. Psychophys. 63(8),
1279–1292 (2001)

18. Cooke, M., Lecumberri, M.L.G., Scharenborg, O., van Dommelen, W.A.: Language-
independent processing in speechperception: identification ofEnglish intervocalic consonants
by speakers of eight European languages. Speech Commun. 52, 954–967 (2010)

19. Rocco G.: Design, implementation, and pilot testing of a language-independent speech
intelligibility test. M.Sc. thesis dissertation, Department of Electronics Information and
Bioengineering, Politecnico di Milano, Milan, Italy (2018)

20. Paglialonga, A., Polo, E.M., Zanet, M., Rocco, G., van Waterschoot, T., Barbieri, R.: An
automated speech-in-noise test for remote testing: development and preliminary evaluation.
Am. J. Audiol. 29(3S), 564–576 (2020)

21. Zanet,M., Polo, E.M., Rocco, G., Paglialonga, A., Barbieri, R.: Development and preliminary
evaluation of a novel adaptive staircase procedure for automated speech-in-noise testing. In:
Proceedings of the 41stAnnual InternationalConference of the IEEEEngineering inMedicine
and Biology Society (EMBC) (2019)

22. Byrne, D., et al.: An international comparison of long-term average speech spectra. J. Acoust.
Soc. Am. 96(4), 2108–2120 (1994)

23. Leensen, M.C., de Laat, J.A., Snik, A.F., Dreschler, W.A.: Speech-in-noise screening tests
by Internet, part 2: improving test sensitivity for noise-induced hearing loss. Int. J. Audiol.
50(11), 835–848 (2011)

24. García-Pérez, M.A.: Forced-choice staircases with fixed step sizes: asymptotic and small-
sample properties. Vision. Res. 38(12), 1861–1881 (1998)

25. WorldHealth Organization (WHO): Grades of hearing impairment. https://www.who.int/pbd/
deafness/hearing_impairment_grades/en/#. Accessed 02 Aug 2020

26. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the Gini index and information
gain criteria. Ann. Math. Artif. Intell. 41, 77–93 (2004)

27. Polo, E.M., Zanet, M., Paglialonga, A., Barbieri, R.: Preliminary evaluation of a novel lan-
guage independent speech-in-noise test for adult hearing screening. In: Jarm, T., Cvetkoska,
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