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Preface

Healthy IoT 2020, the 7th EAI International Conference on IoT Technologies for
HealthCare, was planned to take place in Viana do Castelo, Portugal on 2 December,
2020 under the umbrella of the 6th annual SmartCity 360˚Summit. However, due to the
COVID-19 crises it was organized online on 3 Dec. 2020. The event was endorsed by
the European Alliance for Innovation, an international professional community-based
organization devoted to the advancement of innovation in the field of ICT.

Healthy IoT 2020 was the seventh edition of an international scientific event series
dedicated to the Internet of Things and Healthcare. The Internet of Things together with
cloud computing have evolved multiple existing and emerging technologies, solutions
and services, and can provide heterogeneous approaches towards the delivery of
Healthcare 4.0 to the broad range of citizens. Healthy IoT brings together technology
experts, researchers, industry and international authorities contributing towards the
design, development and deployment of healthcare solutions based on IoT technolo-
gies, standards and procedures.

The technical program of Healthy IoT 2020 consisted of 12 full papers in oral
presentation sessions at the main workshop tracks. The papers submitted and presented
during the workshop cover many health sensors and systems technologies, applications
and services as well as solutions. Multiple topics have been covered, including: remote
sensing of women during pregnancy with attention to drug addiction and emergency
situations; noninvasive screening of the hearing of adults based on a smartphone
application; use of pressure sensors on the insoles for activity and moving problem
detection; continuous stress detection based on sensor information; classification of
psychological conditions; analyses of the psychological response to acoustic stimuli
using sensors; visual acuity analyses supported by wearable devices; early diagnosis of
kidney problems using data mining classification; study of teenager’s health at school
with attention to physical activity; a proposal of scenarios and time scheduling for
medical applications; development of wearable devices for sport and rehabilitation
tracking; the security of remote medication processes.

Mladen Veinović organized a panel discussion on the role of IT and IoT in
responding to epidemic/pandemic-related challenges. It turns out that IT plays a fun-
damental role in mitigating risks and consequences, and providing alternative ways of
performing fundamental tasks.

Coordination with the steering chair, Imrich Chlamtac, as well as the valuable
support of Aleksandar Jevremović, Susanna Spinsante, Bruno Silva, Nuno M. Garcia,
Nuno Pombo, Mlađan Jovanović, Francisco Floréz-Revuelta, Luis Oliveira, Hugo
Silva, Nenad Ristić, Marko Šarac and, Leonice Pereira were essential for the success
of the workshop. We sincerely appreciate their continuous work and support.

We strongly believe that the Healthy IoT 2020 workshop provided a good forum for
all researchers, developers and practitioners to discuss all scientific and technological
aspects that are relevant to smart health. We also expect that the future Healthy IoT



2021 workshop will be as successful and stimulating, as indicated by the contributions
presented in this volume.
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Development and Evaluation of a Novel Method
for Adult Hearing Screening: Towards

a Dedicated Smartphone App

Edoardo Maria Polo1,2, Marco Zanet3, Marta Lenatti2, Toon van Waterschoot4 ,
Riccardo Barbieri2 , and Alessia Paglialonga3(B)

1 DIAG, Sapienza University of Rome, 00185 Rome, Italy
2 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,

20133 Milan, Italy
3 Institute of Electronics, Information Engineering and Telecommunications (IEIIT),

National Research Council of Italy (CNR), 20133 Milan, Italy
alessia.paglialonga@ieiit.cnr.it

4 Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, 3001 Leuven, Belgium

Abstract. Towards implementation of adult hearing screening tests that can be
delivered via a mobile app, we have recently designed a novel speech-in-noise
test based on the following requirements: user-operated, fast, reliable, accurate,
viable for use by listeners of unknown native language and viable for testing at a
distance. This study addresses specific models to (i) investigate the ability of the
test to identify ears with mild hearing loss usingmachine learning; and (ii) address
the range of the output levels generated using different transducers. Our results
demonstrate that the test classification performance using decision tree models
is in line with the performance of validated, language-dependent speech-in-noise
tests.We observed, on average, 0.75 accuracy, 0.64 sensitivity and 0.81 specificity.
Regarding the analysis of output levels, we demonstrated substantial variability of
transducers’ characteristics and dynamic range, with headphones yielding higher
output levels compared to earphones. These findings confirm the importance of
a self-adjusted volume option. These results also suggest that earphones may not
be suitable for test execution as the output levels may be relatively low, particu-
larly for subjects with hearing loss or for those who skip the volume adjustment
step. Further research is needed to fully address test performance, e.g. testing
a larger sample of subjects, addressing different classification approaches, and
characterizing test reliability in varying conditions using different devices and
transducers.

Keywords: Classification · Decision trees · Hearing loss · Hearing screening ·
Smartphone app · Speech-in-noise testing

1 Background

The digital health revolution, supported by ubiquitous connectivity, enables new ways
of delivering decentralized healthcare services using eHealth and mHealth solutions,

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
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and hearing healthcare makes no exception [1–4]. In the ‘new normal’ brought by the
COVID-19 pandemic, no-touch services are now critical for individuals with age-related
hearing loss, who are typically at the highest risk for morbidity and mortality due to their
age [5]. In this context, smartphone hearing health apps have grown popular but the avail-
ability of validated apps for hearing screening and assessment is still limited [4, 6–8].
Some validated hearing testing apps are currently available on the market, for exam-
ple SHOEBOX Audiometry (an FDA Class II medical device for pure-tone audiometry
requiring calibrated transducers) developed by SHOEBOX Ltd, hearScreen (a pure-
tone audiometry screening app coupled with calibrated headphones), and hearWHO (a
speech-in-noise testing app, based on the digits-in-noise test [9] in English, endorsed by
the World Health Organization), both developed by hearX Group.

Hearing screening in adults is particularly important to identify early signs of hearing
loss, and therefore trigger timely intervention, thus preventing or delaying the progres-
sion of hearing loss and its impact on communication and psychosocial functioning. In
fact, hearing loss is typically neglected in adults and access to care is frequently delayed
until major effects in health-related quality of life occur, leading to increased health care
costs and utilization patterns [10, 11].

Speech-in-noise tests can be helpful in adult hearing screening to identify the real-life
communication problems and to promote awareness in individuals whowould otherwise
not seek help, or who would seek help very late. Speech-in-noise tests can overcome
some of the limitations that make pure-tone audiometry unfeasible for widespread auto-
mated self-testing on remote (e.g., need for calibrated transducers, need for low-noise
environment) [12, 13]. Moreover, speech-in-noise tests can be easily implemented in
an automatic way, for example using multiple-choice tasks on a user-operated interface
(e.g., [14–16]). However, a potential limitation of speech-in-noise tests in the context of
widespread screening (for example via smartphone apps) is related to the fact that they
are typically language-dependent. In fact, these tests typically use sentences, words, or
digits and therefore they need to undergo translation, adaptation for psychometric per-
formance, and validation when a new language version has to be developed (e.g., [15,
16]). The use of language-dependent tests may potentially lead to decreased access to
screening, disparities, or inaccurate results for non-native listeners and minorities. This
is particularly relevant for tests delivered at a distance via smartphone apps as the target
population is scattered across native languages.

Recently, we have developed a new and automated speech-in-noise test that reduces
possible issues related to language dependence. The test is aimed at adult hearing screen-
ing for future implementation in a smartphone app. The main requirements followed for
test design are discussed below, alongwith an outline of the current stage of development:

– Automated, user-operated execution. The test is based on a multiple-choice recogni-
tion task via an easy-to-use graphical user interface that is optimized for delivery via
a touch-sensitive screen. A three-alternative forced-choice task is used with alterna-
tives determined on a maximal opposition criterion (different in place, manner, and
voicing) as a proven trade-off between test complexity and psychometric performance
[14, 17].

– Speech stimuli viable for use in individuals of unknown language. The test is based on
meaningless Vowel-Consonant-Vowel (VCV) stimuli spoken by a professional male
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native English speaker and a set of consonants common across some of the top spoken
languages worldwide (e.g., English, Spanish, French, Portuguese, German, Italian),
taking into consideration their viability for application in non-native listeners who are
familiar with the Latin alphabet [18, 19]. Preliminary results in native and non-native
listeners indicated that the test performancewas stable in listeners of varying language
[20].

– Short test duration. To enable faster convergence of the adaptive algorithm, the test
uses a newly developed staircase procedure that, based on the estimated psychometric
curves of stimuli, determines optimized upward and downward steps as opposed to
conventional staircase procedures that use pre-determined, equal upward and down-
ward steps. Preliminary results in normal hearing adults showed that the test duration
of the new staircase was, on average, two minutes shorter than that of a conventional
staircase (i.e., about 3 min 30 s vs. About 5 min 30 s). Moreover, similar values of test
duration were observed in subjects with normal hearing and in subjects with hearing
loss [20, 21].

– Reliable in repeated measures, to ensure intra-individual repeatability of test results.
Preliminary results showed that the proposed test provides repeatable estimates of
the speech reception threshold (SRT) and repeatable performance (number of stimuli
presented, test duration, and percentage of correct responses) in individuals with
normal hearing and with hearing loss. In addition, results showed that, thanks to the
short test duration and the multiple-choice design, no perceptual learning effect was
observed in the second execution of the test compared to the first one [20, 21].

– Accurate in identifying hearing loss, to ensure accurate screening outcomes. Prelim-
inary results obtained in a population of 98 adults (including normal hearing and
unscreened adults) have shown that, in terms of SRT estimation, the test was as accu-
rate as a conventional adaptive staircase [20, 21]. Preliminary analysis of the test
classification performance, based on the SRT only, showed that the accuracy (ACC)
of the test for the identification of ears with pure-tone thresholds higher than 25 dB
HL at 1, 2, or 4 kHz was equal to 0.82 and the area under the receiver operating char-
acteristic (AUC) was equal to 0.84 [20]. For a full characterization of classification
performance for the purpose of test validation, comprehensive analysis of classifica-
tion performance based on the full set of test features (e.g., SRT, number of trials, test
duration, percentage of correct responses, average reaction time, and so on) and on
a larger sample of individuals is needed. This contribution presents the first results
obtained from a multivariate classification approach on a population of 148 adults
including subjects with normal hearing and subjects with varying degrees of hearing
loss.

– Viable for testing at a distance, to ensure reliability of results in varying settings (i.e., in
different environments and with different instrumentation). Preliminary results from a
group of 26 normal hearing adults showed that the test provided consistent outcomes in
terms of SRT estimation and test-retest repeatability in controlled environmental noise
settings (audiometer-controlled output levels) and in uncontrolled environmental noise
settings (self-adjusted test volume) [21]. However, to fully demonstrate the reliability
of test results in varying settings, a deeper analysis of the possible influence of the
environmental noise, instrumentation, and test settings is needed. This contribution
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presents the first results obtained in this direction, specifically a quantitative analysis
of the influence of different transducers on the output levels of the test.

Within this context, the aimof this studywas twofold. First, regarding the requirement
of test accuracy in identifying hearing loss, we performed a preliminary analysis, using
a machine learning approach, of the classification performance considering the full
set of available features (Sects. 2.2 and 3.1). Second, regarding the requirement of
viability for testing at a distance in uncontrolled settings, we conducted an experiment to
quantitatively address the influence of self-adjusted test volume settings using different
consumer transducers on the output levels of the test (Sects. 2.3 and 3.2). An investigation
of these aspects is crucial to fully address the viability of the proposed test for adult
hearing screening via a smartphone app.

2 Materials and Methods

2.1 Speech-in-Noise Test

Theproposed speech-in-noise test is based on three-alternative forced-choice recognition
of VCV stimuli via a graphical user interface. The set of stimuli includes 12 spoken
consonants (/b, d, f, g, k, l, m, n, p, r, s, t/) in the context of the vowel /a/ (e.g., aba,
ada) recorded from a male professional native English speaker [14, 20, 21]. VCVs were
combined with speech-shaped noise at varying signal-to-noise ratio (SNR). The noise
is generated by filtering a Gaussian white noise of amplitude equal to the average level
of VCV recordings with the international long-term average speech spectrum [22] and
a low-pass filter (cutoff = 1.4 kHz, roll-off slope = 100 dB/octave) and then by adding
a noise floor determined by the same filtered noise attenuated by 15 dB [23].

After initial collection of information about the subjects’ age and gender through the
graphical user interface, the test starts at an initial comfortable level of+8 dB SNR from
a stimulus randomly selected from the set of VCVs. Then, it adapts the intelligibility
based on a one-up/three-down (1U3D) rule, i.e. the intelligibility is decreased after
three correct responses and increased after one incorrect response. The intelligibility is
adjusted by changing, concurrently, the VCV and the SNR based on a newly developed
staircase procedure [20, 21]. Specifically, the upward and downward steps in SNR are
determined adaptively at each trial, based on the psychometric curves of VCV stimuli
and therefore the steps depend on the specific stimulus and SNR at each trial. The steps
are set using the optimal recommended ratio between downward and upward step size
for 1U3D staircases (i.e., 0.74), therefore enabling rapid convergence of the tracking
procedure as suggested by [24]. At each step, the VCV presented and the order of the
alternatives displayed on the screen are randomized. The procedure is terminated after
12 reversals in SNR and the SRT is estimated as the average of the SNRs at the midpoints
of the last four ascending runs [20–24].

2.2 Classification Performance

Participants. Participants were 148 adults (age = 52.1 ± 20.4 years; age range: 20–
89 years; 46 male, 102 female) tested in uncontrolled environmental noise settings in
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the lab and at local health screening initiatives (i.e. at universities of senior citizens,
health prevention and awareness events for the general public). The group of partici-
pants included individuals with normal hearing and individuals with varying degrees
of hearing impairment. The experimental protocol was approved by the Politecnico di
Milano Research Ethical Committee (Opinion n. 2/2019). All subjects were informed
about the protocol and the study as a whole and they took part in the experiment on a
voluntary basis. Due to the opportunistic nature of the local screening initiatives, partic-
ipants were given the option to choose in which ear(s) to perform the test. As a result, 8
participants performed the test sequentially in both ears whereas 140 performed the test
only in one ear, for a total of 156 ears tested.

Procedures. An outline of the experiment is shown in Fig. 1. Participants were tested
with: (i) pure-tone audiometry at 0.5, 1, 2, and 4 kHz (Amplaid 177+, Amplifon with
TDH49 headphones), and (ii) the proposed speech-in-noise test in uncontrolled envi-
ronmental noise settings. The test was run on an Apple® Macbook Air® 13′′ (OS X
Yosemite version 10.10.5 and macOS High Sierra version 10.13.6) connected to Sony
MDRZX110APW headphones. The speech-in-noise test was executed in self-adjusted
volume settings therefore participants were given the option to adjust the volume at a
comfortable level before the test via the graphical user interface.

Data Analysis. The pure-tone threshold average (PTA) was computed as the average
of hearing thresholds at the four frequencies tested. Then, the tested ears were classified
based on their PTA in two classes using the World Health Organization (WHO) cri-
terion for slight/mild hearing impairment: PTA>25 dB HL (slight/mild hearing loss) and
PTA≤25 dB HL (no hearing loss) [25]. For a multivariate analysis of the test classifica-
tion performance, the following features were extracted from the speech-in-noise test
software: SRT, total number of trials (#trials), number of correct responses (#correct),
percentage of correct responses (%correct), average reaction time (i.e., the average of
individual response time throughout the test), test duration, output volume, and age. The
eight features extracted from the test were used as input variables of a decision tree (DT)
model and the PTA class was used as the output variable (Fig. 1).

A DT approach was used in this first study as it is one of the most broadly used clas-
sification methods due to its ability to convert paths in the tree into intelligible decision
rules. The Gini index was chosen as splitting rule in place of entropy as they lead to sim-
ilar results but the Gini index has lower computational weight [26]. To limit the possible
effects of overfitting and therefore model bias, the dataset was first split randomly into
training (80% of the sample, 124 ears) and test (20% of the sample, 32 ears) datasets.
Then, the DT model was optimized using 5-fold cross-validation on the training dataset
and finally its predictions were tested on the test dataset. Classification performance was
assessed by measuring: accuracy (ACC) on the training and test datasets, area under the
curve (AUC), sensitivity (SEN), and specificity (SPE). Due to the relatively small size of
the dataset, we also addressed the variability of the model performance. Specifically, we
ran 1000 iterations of the model optimization process by randomly changing the initial
splitting into training and testing datasets (keeping an 80%/20% splitting ratio) and the
inner cross-validation subsets (keeping a 5-fold inner splitting) and then we measured
the average and standard deviation of the performance parameters (ACC on the training
and test datasets, AUC, SEN, and SPE).
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Fig. 1. Classification performance analysis methodology. Top panel: Based on the PTAmeasured
with pure-tone audiometry, ears were classified using the WHO criterion for slight/mild hearing
impairment as PTA>25 dB HL and PTA≤25 dB HL. Bottom panel: Based on eight features extracted
from the speech-in-noise test software, ears were classified into pass and fail using a DT approach
based on the PTA class as the output variable. DT = decision tree; PTA = pure-tone threshold
average; WHO = World Health Organization.

2.3 Characterization of Transducers

In order to assess the influence of self-adjusted volume settings on the actual output
levels of the test, we characterized the performance of different consumer transducers,
specifically we measured the actual output levels of the test obtained using a variety of
transducers as a function of the self-adjusted test volume settings. In fact, when a screen-
ing test is delivered via a smartphone app in uncontrolled environmental noise settings, a
variety of transducers can be used therefore it is important to understand the actual output
level for a given test volume selected by the user. In this study, we have characterized
five different headphones models and two different earphones models widely available
on the market, i.e.: Bose Quitecomfort II (in two versions: noise canceling mode ON
and noise canceling mode OFF), Sony MDRZX110APW, Sony MDR-7506, Sennheiser
PC 310, Akg Y45, Apple EarPods, and Mpow In-ear (price range: 9.99 to 299 e).

The experimental setup for the characterization of transducers is shown in Fig. 2.
First, to take into account all the stimuli in the set, an audio file including the sequence of
all VCVs, with no pauses, was created. The volume range of the same laptop computer
used in the listening tests (described in 1.2) was discretized in 17 levels using a step
equal to the size of the volume bars of the laptop. The VCV sequence reproduced via the
different transducers, at each of the 17 volume levels, was recorded using aNeumannKU
100 dummy head powered from an external P48 phantom power supply. Each recording
was then routed back to the laptop computer via a RME Babyface Pro sound card and
the corresponding digital audio files were saved using GarageBand software (version
10.1.3). In order to record the VCV sequence under the same conditions for all the
transducers, the dummy head was positioned and remained in the same location in a
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quiet room and the RME Babyface Pro input gain (dummy head/laptop) was maintained
fixed and low throughout the experiment to avoid possible sound saturation.

Fig. 2. Characterization of transducers. Panel (1): the VCV sequence for each transducer is
recorded via a dummy head and a sound card. Panel (2) and (3) show the two steps of the
calibration process. Panel (2): the sound card output gain was set to let the white noise from the
loudspeaker reach 90 dB SPL on the SLM. Panel (3): the SLM was replaced by the dummy head
which recorded the 90 dB SPL white noise and saved it into the laptop maintaining the same input
gain of the sound card as that of the VCV sequence recordings. R = right ear; L = left ear; SLM
= sound level meter.

A calibration step was needed to convert wave units into dB sound pressure level
(SPL). In fact, the absolute amplitude of the recording sequences was in wave units,
which are given by the combination of the actual SPL and any other digital gains of the
transfer function of the laptop-transducer chain. The calibration process was performed
with the dummy head and a loudspeaker and therefore a white noise was used as the
recorded loudness of white noise is less influenced by the acoustical attenuation due to
the wide frequency range. The white noise was sent via the laptop computer and sound
card to the loudspeaker and the loudness was measured using a Sound Level Meter
(SLM; Brüel & Kjær Type 2250 Hand Held Analyzer with BZ-7222 Sound Level Meter
Software) placed on a tripod in front of the loudspeaker at a distance of 1 m. First, the
output gain of the sound card was changed to let the noise loudness reach 90 dB SPL
at the SLM. Then, the tripod with the SLM was removed and replaced by the dummy
head. Finally, to obtain a calibration factor the white noise was played with the output
gain corresponding to a known SLM loudness of 90 dB SPL maintaining the input gain
used for the VCV sequence and recorded by the dummy head. The VCV sequences
recorded with the different transducers at each of the 17 volume levels were therefore
converted in dB SPL and then filtered using an A-weighted filter to approximate the SPL
perceived by the average human ear. The experiment was conducted at the Department
of Electrical Engineering (ESAT) at KU Leuven.

The characteristics of the transducers, in terms of dB SPL as a function of the volume
level were obtained by fitting the 17 sampled measures using polynomial models of
order 1–9 using the least-squares method and the optimal model order for each curve
was determined using the Akaike information criterion.
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3 Results

3.1 Classification Performance

Figure 3 shows the optimal DT model obtained by using the full set of eight features.
Here, it is important to note that, in classifying ears into pass or fail (as defined by the
WHO criterion for slight/mild hearing loss) the top decision node takes into account the
value of SRT estimated by the test and uses a cut-off equal to about −7.5 dB SNR to
split the tree into branches. On the right-hand side branch, the SRT is also used again
down the tree (fourth level split) to classify a subset of 27 ears from subjects older than
58 years (second level split) in which the number of correct responses was lower than
or equal to 89 (third level split).

In general, in addition to SRT, the most relevant features for classification are: the
subjects’ age (with fail outcomes associated with older age), the test duration (totsec
in the figure, with fail outcomes associated with longer test duration), and the average
reaction time (avg_ans_time in the figure, with fail outcomes associated with longer
duration). Splitting rules involving other features such as the total number of correct
responses (#correct in the figure), the percentage of correct responses (perc_correct in
the figure), or the total number of trials (#trials in the figure) seem to be less informative
as rules based on these features are associated with leaf nodes with a very small number
of ears (less than 3).

Fig. 3. Optimal model for classification of ears into pass and fail using the full set of features as
input variables and the WHO definition of normal hearing/mild hearing loss as output variable.
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To address the possible relationships between the model features and their distribu-
tion in the two PTA classes, we analyzed the scatter plots for each combination of paired
features as well as the distribution of each feature in the two classes. Results are shown
in Fig. 4.

Fig. 4. Scatter plots of paired features and, on the diagonal, distributions of single features in
the two classes. Magnified versions of two exemplary scatter plots (SRT vs. Age and SRT vs.
%correct) are shown on the right-hand side. Green dots: ears with PTA ≤ 25 dB HL. Red dots:
ears with PTA > 25 dB HL. (Color figure online)

Thedistributions of each feature, reportedon the diagonal of thematrix inFig. 4, show
that some features may be likely candidates for classifying ears in the two PTA classes.
Specifically, the better candidates are SRT, age, number of trials and number of correct
responses, as well as percentage of correct responses derived from the previous two, and
average reaction time. Features such as test duration and volume level show comparable
values between the two PTA classes. The scatter plots between pairs of features show
that, for example, the SRT combined with features such as age, percentage of correct
responses, and average reaction time (as shown in the leftmost column in Fig. 4) generate
clusters of data points that are relatively grouped into the twoPTAclasses, suggesting that
a selection of these features may be possibly used to generate simpler DT classification
models that are based on a smaller set of rules and may be possibly more intelligible.

To address the performance of models based on a smaller set of rules, we considered
DTs with four input features (SRT, age, percentage of correct responses, and average
reaction time), as determined by the analysis of the results in Fig. 4. The maximum
depth of the DT with four features was set to 4 to counterbalance possible overfitting
effects caused by a reduced number of features. The optimal DT model obtained using
this selection of features is shown in Fig. 5.
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Fig. 5. Optimal model for classification of ears into pass and fail using four features as input
variables and the WHO definition of normal hearing/mild hearing loss as output variable.

The root node of the DT with four selected features showed in Fig. 5 uses the
same rule as the root node of the full model with eight features, i.e. a split on the SRT
value using a cut-off equal to −7.5 dB SNR. Noticeably, this cut-off value is close
to the cut-off determined in our earlier study using only the SRT on a smaller set of
cases, i.e., −8 dB SNR [20]. Importantly, using a generalized linear model with age
and SRT as input variables on a dataset of 58 subjects we also showed that, in addition
to SRT, the interaction between age and SRT was a significant predictor of PTA class
(slight/mild hearing impairment vs no hearing impairment) [27]. This aspect is reflected
in the observedDTmodel as the secondmost important feature is the subject’s age which
is used at the second, third, and fourth levels of the tree (Fig. 5). The average reaction
time (avg_ans_time in the figure) is also relevant as shown in the right-hand branch of
the model at the third and fourth levels of the tree, with fail outcomes associated with
lower or alternatively with higher reaction times. In fact, it may be that individuals who
have difficulty in speech recognition may just tend to select an alternative on the screen
quickly and let the test proceed when they haven’t heard the stimulus or, alternatively, it
may be that they spend a relatively long time to choose among the alternatives because
they are not sure about what they have heard.

Table 1 shows the classification performance and the variability of performance
on 1000 iterations (mean ± standard deviation) obtained with the optimal DT models,
the one with eight features and the one with four features. The first row shows the
accuracy observed in the training dataset (ACCtrain) whereas the remaining rows show
the performance (ACC, AUC, SEN, and SPE) observed in the test dataset.

It is important to notice that the two models have slightly different values of ACC
on the training and test datasets. For the model with eight features, ACC on the test set
is slightly higher than ACCtrain whereas for the model with four features the opposite
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Table 1. Classification performance and variability of performance of the optimal DT models
with eight input features and with four input features.

Parameter Optimal model
(8 features)

1000 iterations
(8 features)

Optimal model
(4 features)

1000 iterations
(4 features)

ACCtrain 0.73 0.77 ± 0.0342 0.77 0.76 ± 0.0339

ACC 0.78 0.76 ± 0.0721 0.75 0.77 ± 0.0707

AUC 0.77 0.74 ± 0.0810 0.72 0.75 ± 0.0803

SEN 0.73 0.67 ± 0.1418 0.64 0.67 ± 0.1482

SPE 0.81 0.81 ± 0.0895 0.81 0.82 ± 0.0868

trend is observed. However, for each model the mean values of ACC observed on 1000
iterations are similar in the training and testing datasets, and the ACC values are similar
between the two models indicating that, overall, the DT classifiers here shown have an
average accuracy in the range 0.76 to 0.77, with standard deviation of about 0.07. In
general, the observed performance is similar for the DT models with eight and four
features in terms of ACC, AUC, SEN, and SPE values. The SEN observed with the
optimalmodelwith eight features is seemingly higher than that observedwith the optimal
model with four features (i.e., 0.73 vs. 0.64). However, the analysis of the mean values
obtained on 1000 iterations shows that the average performance of the two models is
strikingly similar. Moreover, the observed standard deviations are relatively low for
each of the observed performance parameters. The standard deviation is smaller than
0.1 for all the parameters except for sensitivity for which it is about 0.14 and 0.15 for the
models with eight and four features, respectively. Therefore, the observed difference in
SEN between the two models (0.73 vs. 0.64) may be the result of the inherent variability
of the models generated using different distributions of data into the training and test
datasets.

3.2 Characterization of Transducers

The characteristics of the tested transducers, in terms of dB SPL as a function of volume
level (percent value), are shown in Fig. 6. Overall, two different sets of curves were
observed for earphones (Apple EarPods and Mpow in-ear) and for headphones. Among
the headphones here used, the highest output levels were observed with the Bose Quite-
Comfort II headphones with noise canceling mode OFF whereas the characteristics of
the remaining headphones were, overall, similar, with differences lower than 6.1 dB SPL
across the volume range.

The two tested earphones had an overall linear dynamics and produced lower SPL
for a given volume level across the whole volume range. For example, when the volume
level is 50% (i.e., the default level on the test software) the output level with the Bose
QuiteComfort II headphones with noise canceling mode OFF is about 71.5 dB SPL
whereas with Apple ear-pods and Mpow in-ear the output level is about 47.5 and 50 dB
SPL, respectively. Similarly, when the volume level is set at the top limit of the range, i.e.
at 100% the output level with the BoseQuiteComfort II headphones with noise canceling
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Fig. 6. Transducers characteristics: measured output levels (in dB SPL) as a function of laptop
volume level (percent value). n.c. = noise canceling.

mode OFF is about 87.5 dB SPL whereas with Apple ear-pods and Mpow in-ear the
output level is about 66.5 and 68.5 dB SPL, respectively. The largest differences between
transducers were observed at a volume of about 70%, with an observed difference of
about 25 dB SPL between Bose QuiteComfort II headphones with noise canceling mode
OFF and Apple ear-pods.

4 Discussion

In this study, we begun our analysis by addressing classification performance of the
proposed speech-in-noise test against the WHO criterion for mild hearing loss using
a DT approach in two different configurations: (i) using the full set of eight features
(SRT, number of trials, number of correct responses, percentage of correct responses,
average reaction time, test duration, output volume, and age) and (ii) using a subset of
four features (i.e., SRT, age, percentage of correct responses, and average reaction time)
that were selected based on their distributions in the two classes of the output variable.

Overall, the performance of the DTmodels using eight and four features was similar
as shown in Table 1. In addition, the average model performance, determined by running
1000 iterations of model optimization on different realizations of the training and test
datasets, was strikingly similar for the DT models with eight and four features in terms
of ACC, AUC, SEN, and SPE. The observed variability of performance was also similar
between the two models (Table 1).

Compared to the DTmodel with the full set of eight features, the DTmodel with four
features may have the advantage of being less demanding in terms of computational cost
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and simpler in terms of interpretability of rules. TheDTmodel with SRT, age, percentage
of correct responses, and average reaction time as input features had on the test dataset
an ACC equal to 0.75, an AUC equal to 0.72, SEN equal to 0.64 and SPE equal to
0.81. In our earlier analysis of test performance [20], using only the SRT to classify
106 ears from 98 subjects into pass and fail, we observed an ACC equal to 0.82, SEN
equal to 0.7, and SPE equal to 0.9 using a cut-off SRT value of -8 dB SNR, i.e. a
value close to the cut-off value found in the root nodes of the DT models in this study
(Fig. 3, Fig. 5). The AUC measured across the different cut-off SRTs was equal to 0.84
[20]. The values here observed with the DT approach are slightly lower than the values
previously observed on a smaller dataset but still in line with the average classification
performance of speech-in-noise tests. In general, amoderate level of accuracy is expected
due to the inherently different nature of the two hearing tests compared (i.e. pure-tone
detection and speech-in-noise recognition), that involve different auditory functions.
The performance of other speech-in-noise tests based on multiple-choice recognition of
short words is similar or lower than the one here observed. For example, the Earcheck
and the Occupational Earcheck (i.e. Internet-based adaptive speech-in-noise tests based
on multiple-choice recognition of consonant-vowel-consonant words) had a sensitivity
of 0.51 and 0.92 and a specificity of 0.90 and 0.49, respectively, for the detection of
ears with noise-induced hearing loss [28]. Similarly, another study on the Occupational
Earcheck in a noise-exposed population showed a sensitivity of 0.65 and specificity
of 0.63 to detect high-frequency hearing loss above 25 dB HL [29]. Another example
is the Speech Understanding in Noise (SUN) test, that uses a list of VCV stimuli in a
three-alternatives multiple-choice task presented at predetermined SNRs. The test, when
administered sequentially in both ears reached a sensitivity and specificity of about 0.85
for detecting disabling hearing impairment (i.e., PTA > 40 dB HL) [14]. Similarly, the
original version of the digits-in-noise test delivered by telephone yielded a sensitivity
of 0.75 and a specificity of 0.91 to identify ears with PTA higher than 20.6 dB HL and
for the U.S. version of the digits-in-noise test a sensitivity of 0.8 and a specificity of
0.83 to identify ears with PTA higher than 20 dB HL were reported [9, 30]. Therefore,
considering the performance of the DT model with four features and the clarity and
coherence of the rules generated by this simpler model, so far the DT with SRT, age,
percentage of correct responses, and average reaction time as input features is the best
candidate model for implementation into the smartphone app for the sake of identifying
ears with mild hearing loss.

In the secondpart of the study,wehave analysed the quantitative relationship between
the self-adjusted volume levels of the test and the actual output levels in terms of SPL
values using a range of consumer transducers, including headphones and earphones.
This is relevant for the sake of implementation of a smartphone app as the app may be
used with unknown transducers and the actual output levels, i.e. the level at which the
speech-in-noise stimuli are delivered to the users’ ears, may vary significantly.

Results in Fig. 6 show that the characteristics of different transducers vary greatly
across the range of volume levels enabled by the device. The headphones yielded overall
higher output SPL compared to earphones, with no substantial differences between types
of earphones and types of headphones, except for the Bose QuiteComfort II headphones
with noise canceling mode OFF that showed the broadest dynamics and the highest SPL
values across the entire volume range of the device.
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In general, these results suggest that including the self-adjusted volume option in a
future app may help compensate, at least in part, for the different characteristics of the
chosen transducer as the subject has the option to set the volume at a comfortable level
based on his/her actual loudness perception, which depends on the actual SPL of the
stimuli all the other things being equal (hearing sensitivity, mobile device characteristics,
transducer, and environmental noise levels). This provides further support to the choice
of including a self-adjusted volume option to enable test delivery via a mobile app in
uncontrolled environment and with unknown transducers.

The results in Fig. 6 also point out that the range of output SPLs that can be generated
with earphones is, in general, narrower than the one that canbeobtainedwith headphones,
with earphones providing much lower SPL values than headphones – up to about 20–
25 dB SPL lower when a volume in the range 50–70% is used. This means that, even by
using the full range of available output levels, the maximum SPL that can be obtained by
using the tested earphoneswill be between 65 and 70 dB.As a benchmark, conversational
speech occurs at an average of 65 dB SPL with a typical dynamic range of 30 dB (12 dB
above and 18 dB below the average) [31, 32]. Therefore, the maximum SPL reached by
the earphones models here tested might not be sufficient to provide clearly intelligible
speech stimuli to subjectswith reduced hearing sensitivity due hearing loss. For example,
subjects with minimal hearing loss as defined by the WHO criterion would hear the test
sounds attenuated by an average of 25 dB and the perceived sounds will be even weaker
in case of mild or moderate hearing losses with higher PTA. For example, in case of PTA
equal to 25 dB HL (which is the lowest PTA in the mild hearing loss range), a sound at
70 dB SPL would be perceived, on average, in a similar way as a sound of 45 dB SPL,
a level that corresponds to faint speech and that would be therefore barely perceivable.
Moreover, it may also happen that some of the tested subjects may not wish to adjust
the device volume, as we observed for example in our listening tests. In fact, the average
volume measured in our experiments was 0.48 (standard deviation= 0.11) and 83 out of
48 participants left the volume unchanged to the default value of 50%. Therefore, these
results indicate that it may be important to recommend that headphones are used rather
than earphones in combination with the smartphone testing app.

5 Limitations and Future Work

This study provided promising results but it has some limitations. First, the values of per-
formance observed following a single model optimization process are slightly different
than the average performance estimated across several iterations of the process, as shown
in Table 1. This discrepancy is mainly due to the limited size of our dataset therefore
it happens that a single optimized model may not accurately reflect the potential per-
formance of the method in this task. Future studies will be necessary, on a significantly
larger sample of adults and older adults, to increase the sample size and therefore improve
the quality of the classifier developed before the algorithm can be safely implemented
into a mobile app.

Second, in this studywe investigatedonlyone typeof classification algorithm, theDT,
due to itswidespread use and its ability to generate intelligible decision rules.However, to
fully explore the potential of multivariate classification algorithms for the identification
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of hearing loss and the possible advantages of machine learning methods over univariate
classification approaches further research is needed. For example, it will be important
to test different DT models by varying the set of input features and different machine
learning algorithms, including both explainable (rule-based) and black-box approaches.
The final outcome of this future investigation will be the identification of an optimal
classification model that is accurate and reliable in identifying ears with hearing loss
and that can be implemented into a smartphone app as part of the testing software.

In addition, the test partially addresses the problem of language-dependence. On the
one hand, the use of meaningless VCVs and a set of consonants that is common across
some of the top spoken languages worldwide makes the test feasible for use in non-
native listeners. On the other hand, listeners who are not familiar with the Latin alphabet
or native listeners of character-based languages such as Mandarin or Japanese may be
subjected to ambiguities arising from the phoneme-grapheme correspondence. Investi-
gation of test performance in a larger sample of native languages would be important
to understand the possible modifications needed to improve test validity on a broader
population.

Although we are getting very close to our final goal, further research is still needed
to fully define the optimal settings for test delivery via a smartphone app. For example,
it will be important to measure the output levels obtained using mobile devices to under-
stand the potential output levels range that can be obtained using a smartphone or a tablet
device. Moreover, it will be useful to address the characteristics of additional transduc-
ers, including additional earphones models with broader dynamic range, to understand
which models are more suited for test execution and define minimum requirements for
transducers to be used in the test in uncontrolled environmental conditions.

6 Conclusions

In this study, we have shown that an approach based on explainable machine learning
using a decision tree algorithm in combinationwith the proposed speech-in-noise test can
classify ears with similar accuracy, sensitivity, and specificity as that of popular validated
speech-in-noise tests. Moreover, we have shown that a simplified classification model
with a reduced set of features can lead to simpler, more intelligible rules and maintain
the same performance of more complex models based on a larger set of input features.
Regarding the analysis of the output levels of the test as a functionof different transducers,
we have highlighted important differences in output levels between types of transducers
(headphones vs. earphones) aswell as between different transducermodels, also showing
that some transducersmay not be adequate to ensure an appropriate range of output levels
for the sake of conducting the test in self-adjusted volume settings. Further research will
be needed to fully address the accuracy of the test, specifically it will be important to
collect data from a larger sample of subjects, to evaluate the performance of different
machine learning algorithms, preferably those able to generate explainable (e.g., rule-
based) models, and to characterize the reliability of the test in varying environmental
noise conditions and using different devices.
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Abstract. Drug abuse among pregnant women and the subsequent
neonatal illness are very crucial clinical and social problems. Drugs mis-
use during pregnancy places the mother and her baby at increased risk of
severe complications including deformities, low birth weight, and mental
disabilities. Pregnancy can motivate a woman to enter into an addic-
tion treatment program to protect her unborn baby from the effects of
drug misuse. Despite the availability of several treatment centers, many
women do not seek needed help during and after pregnancy. Some of
the reasons include stigmatization, fear of their babies being taken away
by Child and Family Services, and the fear of confinement to a facility.
In this paper, we propose a non-invasive Cloud-based Internet-of-Things
(IoT) and Data Analytics framework that will provide support for women
seeking addiction treatment during pregnancy. The system will use sim-
plified sensors incorporated into a smartwatch to monitor, collect, and
process vital data from pregnant women to identify instances of emer-
gencies. During emergencies, the system automatically contacts specific
needed service(s) and sends the processed data to the cloud for storage
and Data Analytics to provide deeper insight and necessary decision mak-
ing. The framework ensures that pregnant women are not confined into
a facility and are reachable remotely by healthcare practitioners dur-
ing addiction treatment. These capabilities guarantee that the system
is operational during global pandemics like COVID-19. The framework
integrates every patient’s data into a centralized database accessible to
all healthcare practitioners thereby preventing multiple prescriptions of
the same medication by different doctors.
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1 Introduction

The unprecedented increase in drug abuse among pregnant women in recent time
and the ensuing neonatal illness are very crucial clinical and social concerns. Any
pregnant woman that wants to give birth to a healthy baby devoid of medical
problems must ensure that she promotes a healthy pregnancy. The possibility of
having a healthy baby is drastically reduced if such a woman uses illegal drugs
and does not seek addiction treatment during pregnancy. The use of drugs during
pregnancy can lead to fetal growth limitations such as diminished body mass and
other medical difficulties including preterm birth and infectious diseases. Poole
[11] reported that when the fetus is exposed to alcohol, it can lead to varieties of
undesirable consequences collectively known as fetal alcohol spectrum disorder,
including fetal alcohol syndrome (FAS). The same report stated that FAS occurs
at a rate of one to two cases per 1,000 live births in Canada. Some of the mani-
festations of FAS in births include facial abnormalities, growth deficiencies and
damage to the central nervous system. When pregnant women use cocaine, it
can lead to narrowing of blood vessels in the uterus and placenta, with the even-
tual result of malnourished fetal growth [5]. Children given birth to by mothers
having issues with addictions suffer from postnatal issues including poor parent-
ing, neglect, abuse, mental illness, and in some cases death. Therefore, there is a
need to effectively address these complex prenatal and postnatal problems so as
to provide help needed by pregnant women struggling with addictions and their
unborn babies.

The importance of addiction treatments for women struggling with drug mis-
use during pregnancy cannot be overemphasized. Finnegan et al. [5], observed
that when pregnant women struggling with drug addictions are supported with
treatments, they are more likely to give birth to children with lesser birth defects.
Over the years, several addiction centers have been set up by both private and
public initiatives so as to support individuals struggling with different categories
of substance misuse. Pregnancy period has been deemed as a time of increased
motivation for women to enter into an addiction treatment program so as to
protect their unborn babies from the effects of drug misuse. Despite the avail-
ability of these treatment centers, many of these women do not seek needed help
during and after pregnancy. Some of the reasons given by such women include
stigmatization as a result of their addictive behaviors, fear of their babies being
taken away by Child and Family Services (CFS), the fear of being confined to
a facility during addiction treatments, lack of access to specific treatment pro-
grams for addiction during pregnancy, and lack of support from partners or
family members. Finnegan [3] reiterated that the fear of stigmatization makes
women reluctant in seeking help with their addictions and when they do, they
meet with obstacles that make it difficult for them to obtain needed medical and
obstetrical services. Such obstacles include misinformation, denials, and unre-
sponsiveness of the health service providers. In recent time, with the onset of
the COVID-19 pandemic, continuous access of pregnant women seeking addic-
tion treatment to healthcare services has been greatly impacted. The concepts
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of social distancing and working from home have further contributed to lack of
access to such services.

2 Problem Statement - Pregnant Women and Drug
Addiction

Close to 3% of the 4.1 million women in the United States that are within the
childbearing age but abuse drugs are believed to keep on using drugs even when
pregnant [8]. The United States’ 2010 National Survey on Drug Use and Health
(NSDUH) stated that 4.4% of pregnant women between the age of 15–44 years
reported illicit drug use [12]. According to the 2006–2007 Maternity Experience
Survey done in Canada, 10.5% of women smoked cigarettes daily or occasionally
during the last three months of pregnancy, 10.5% drank alcohol during their
pregnancy, and 1% used street drugs while pregnant [11]. In [10], Reproductive
Health Working Group in Alberta reported that 2.3% of women who gave birth
to live infants in 2006 used illicit drugs during pregnancy. On the national level,
[16] stated that the 2008 Canadian Perinatal Health Report shows that 11%
of pregnant women consumed alcohol while 5% of women used illegal drugs
during pregnancy. Another report by [7] revealed that in the previous year,
among Canadian women of childbearing age, 76.7% consumed alcohol, about
11% used cannabis, and 2.1% used illicit drugs including cocaine, ecstasy, speed,
hallucinogens and heroin during pregnancy.

The effect of drug misuse during pregnancy both on the mother and the
unborn baby cannot be overemphasized. Center for Behavioral Health Statistics
and Quality [26] reported that about 7 million people in 2015 suffer from ille-
gal drug use disorder while about one to four deaths were attributed to drug
misuse, tobacco and alcohol. But it was estimated by the same report that only
about 14% of adults with illegal drug use disorder actually received treatments
within the year. The author in [3] stated that when pregnant women engage in
drug misuse, it places the mother at increased risk of several childbirth compli-
cations including early pregnancy loss, premature detachment of the placenta
from the wall of the uterus, placental insufficiency, sudden rise in blood pres-
sure, convulsions or coma, premature labor, premature rupture of membranes,
and postpartum hemorrhage. Apart from the effect of drug addiction on the
mother and child, Florence et al. [27] stated that misuse of prescription opioid
costs the U.S. economy more than 78.5 billion every year.

2.1 Notable Signs of Drug Misuse in Pregnant Women

Pregnant women and other people struggling with illicit drug addictions irre-
spective of the type of the drug can be distinguished using some pathological set
of behaviors that associate with the misuse of any illegal drug. American Addic-
tion Centers [24], grouped these behaviors into four main categories including
impaired control, social impairment, risky use and pharmacological indicators
(tolerance and withdrawal). Impaired control of substance includes evidence
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of someone using a larger amount of a substance than intended, using it for an
extended period than intended, and uncontrolled cravings for the substance such
that the user is unable to function or think of anything else. Social impairment
is characterized by sets of harmful behaviors exhibited as a result of repeated use
of a substance. Evidence of this includes people continuously using substances
even when the usage has caused them their jobs, families, friendships and other
social responsibilities. Such a one might also give up or reduce important recre-
ational activities like playing sports with friends. Risky use of substances is
manifested when substance users continued with the usage of drugs despite the
harm they experienced. Such a one continued to use the substance despite they
are in physically hazardous scenarios like driving a car, continuous smoking
of cigarettes even though the abuser is experiencing respiratory problems and
continuous drinking of alcohol even when a pregnant woman knows that it is
dangerous for the fetus. The last notable sign of drug misuse in people including
pregnant women is categorized as pharmacological indicators. This has to
do with the level of adjustment that the body makes so as to tolerate frequent
misuse of drugs. When someone has developed tolerance for a drug, the body will
respond to a drastic stoppage of the drug by exhibiting withdrawal symptoms.
These symptoms could be very fatal and as such, pregnant women attempting to
stop the misuse of illicit drugs need medical support and other related support
systems so as not to endanger the health of the fetus.

As reported by [24], for example, withdrawal from cocaine misuse is normally
demonstrated in three major phases including initial crash, acute withdrawal and
extinction period. The initial crash period is characterized by extended sleeping,
increase in appetite and the feeling of depression or agitation of the individ-
ual with the cocaine addiction. The acute withdrawal period is characterized
by periods of sleeplessness, anxiety, fatigue and irritability. While the extinction
period climaxed with the thought of suicide and intense cravings for cocaine
which might continue for several months even after the stoppage of cocaine. As
further explained in the same report, withdrawal from alcohol has varieties of
side effects including seizures, fever, severe confusion, hallucinations, agitation,
fatigue, muscle aches, loss of appetite, dizziness and sleeplessness to mention a
few. Finnegan et al. [4] reported that medical issues perceived in babies deliv-
ered by heroin-addicted mothers are functions of the quantity of prenatal care
received by the mother as well as the level of exposure of the fetus to drugs
from the mother during pregnancy. The authors stated that when a pregnant
woman is exposed to multiple drugs, it can lead to overdose and complicated
withdrawal symptoms that can endanger the health of the woman as well as the
fetus. Therefore, it is important that pregnant women exhibiting these symptoms
are provided with immediate medical attention and other necessary support to
prevent further fatalities.
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2.2 Classifying Addictions in Pregnant Women and Identifying
Level of Prenatal and Postnatal Support Needed

Addictions in pregnant women or in any other people can be classified into three
different levels based on the ability to carry on with day-to-day activities. These
include functional, semi-functional and non-functional addictions. We use this
simplified taxonomy with the intent of describing the functional level of the
addicted pregnant women with respect to their ability to go about their daily
activities. This will help us to determine the level of support needed as they
undergo addiction treatment during and after pregnancy. These classifications
closely agree with the taxonomy presented in [15] where substance use disorder
was described using three sub-classifications including mild addiction, moderate
addiction and severe addiction.

The pregnant women that fall within the category of functional (mild) addic-
tion are those that though they use illicit drugs and may sometimes experience
overdose, but they are able to carry on with their day-to-day activities including
maintaining a job or profession, maintaining a shelter, attending medical related
appointments and are able to control their behaviors during drug misuse. At the
other end of the addiction spectrum is thenon-functional (severe) addicted preg-
nant woman. These women lose total control of themselves when using illicit drugs
and as such they are not able to maintain a job, accommodation or provide the
basic necessity of life to keep themselves and their unborn babies healthy during
and after pregnancy. These categories of women are the most vulnerable as they
have the tendency to exhibit all the negative effects of drug addiction both in the
pregnant mother and their babies. They are mostly homeless, malnourished and
needing intensive medical attention during and after pregnancy. At the center of
the addiction spectrum is yet another level of addiction which we refer to as semi-
functional (moderate) addiction. The women in this class of addiction are able
to carry out some basic activities of life but with close supervision or support from
other people. These women might be in and out of jobs frequently as a result of
their addictive tendencies, they could also be homeless most times or needing help
to live with friends and family members. They cannot be relied on to keep medical
appointments or to maintain a daily schedule that will be advantageous to their
health and that of their unborn babies.

2.3 Supporting Addicted Pregnant Women - Issues and Challenges

Misuse of illegal drugs in pregnant women can be very challenging to treat by the
current healthcare system. The fact that there are different levels of drug addic-
tions in pregnant women suggests that they will require different levels of sup-
port system. Therefore, there is a need to develop a holistic treatment approach
and integrated support services that consider the level of support needed by the
addicted mother during treatment without adverse effect on both mother and
child. Finnegan [3] confirmed that the pregnancy is a period of increased motiva-
tion for women to enter into an addiction treatment program. Despite this, many
pregnant women do not enter into addiction recovery programs during pregnancy.
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Some of the reasons emanate from the discrimination and stigmatization experi-
enced by pregnant women as a result of their addictive behaviors. This can create
a huge barrier to engaging in prenatal care and drug misuse treatment programs.
Some other reasons why pregnant women do not seek addiction treatment during
pregnancy include illiteracy, fear of their babies being taken away by Child and
Family Services (CFS), the fear of being confined to a facility during addiction
treatments, lack of information about and access to specific treatment programs
for addiction during pregnancy, and lack of support from their partners or family
members.

3 Method of Solution - IoT Support for Drug Addicted
Pregnant Women

The goal of this research is to use a lightweight IoT (Internet of Things)-based
wearable device (smartwatch) to support pregnant women struggling with drug
addiction with the intent of providing them with access to real-time medical sup-
port especially during emergencies and global pandemics like COVID-19. The
wearable device, with the aid of the inbuilt sensors will be used to monitor and
collect vital data such as blood pressure, heartbeat rate, movement pattern,
and body temperature from the pregnant women. The data collected could be
immediately processed using the mobile phone of the pregnant woman or could
be processed using an edge/fog computing device. The basic data analytics can
be performed at this level to determine if the user is in need of urgent medi-
cal assistance. When there is an emergency, the mobile phone or edge device
will alert the necessary emergency service(s) automatically so as to immediately
attend to the need of the pregnant woman. The major advantage of this approach
is that the technology will allow pregnant women struggling with addiction to
go through a rehabilitation process without being confined to a controlled facil-
ity. In addition, location data collected through the sensors embedded into the
smartwatch of a pregnant woman can be used to enhance an automated con-
tact tracing system for anyone that has been in close contact with any pregnant
women showing symptoms of COVID-19. In the rest of this paper, we will present
the details of the different technologies and techniques of our proposed approach,
the challenges of using this approach to support pregnant women struggling with
addictions and how to overcome these challenges.

3.1 IoT in Health-Care

Fan et al. [20] described the Internet of Things (IoT) as a network consisting
of several devices interacting together in a machine to machine communications
with the aim of collection and exchange of data. IoT and the development of
other wireless technologies like Wireless Body Area Network (WBAN), have been
earmarked as potential solutions for enabling patient’s health monitoring appli-
cations that can be streamlined in real-time to health practitioners, especially
during emergency [19]. WBAN is the intercommunication of several wearable or
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implanted mobile sensors with the aim of collecting vital data from the body
to a home base station where it can be processed and sent to a health center
for needed care [16]. Certain human body parameters including movement pat-
tern, heart rate, blood pressure, body temperature and respiration rate can be
measured by sensors and portable devices without human intervention [14].

With the increasing support and integration of IoT in healthcare services
and applications, handling the massive healthcare data that need to be stored,
secured, managed and exchanged between devices, and accessed ubiquitously can
be very challenging. A potential solution to overcoming these challenges is the
use of Cloud computing. Cloud computing in recent times has become a de facto
standard for providing on-demand computing resources because of its mobility,
scalability and security. Cloud computing can be used as a backbone network
to provide storage and network services to support IoT healthcare systems [22].
Recently, there is an increasing change in computing paradigm from centralized
(Cloud) computing to decentralized (Fog/Edge) computing [23]. The concept
of Fog or Edge computing was first introduced by CISCO as they attempt to
provide a network solution that extends the computing power and storage capa-
bility of the Cloud closer to the edge of the WBAN [21]. Fog computing brings
the Cloud closer to the network users, thereby enabling the collection, storage
and local processing of data. The advantages of Fog computing include real-time
processing, reduced network latency, improved data privacy and reduced cost of
implementation [14].

3.2 Related Work

In this section, we present a review of some research that has been done that
has close connection with our proposed system. The intent of this review is to
analyze what has been done with respect to IoT for healthcare delivery, so as to
identify why the current systems are not suitable to provide technological-based
support for pregnant women struggling with drug addiction. Baker et al. [1],
described generally the basic elements of an IoT in the healthcare system. The
authors introduce a framework that can be used in various IoT for healthcare
applications without particular reference to how to apply it in supporting preg-
nant women with drug addiction. Farahani et al. [2], introduced a systematic IoT
e-health ecosystem made up of hardware and software devices without a specific
implementation of such IoT models. Kumari et al. [9] presented a three-layer
healthcare architecture for real-time applications that includes a fog comput-
ing layer. The authors further addressed the opportunities and challenges of
implementing such IoT-enabled architecture for health service delivery. In [13],
the authors presented an IoT system that can collect data about patient health
status through multiple sensors and the data collected can be conveyed to a
remote server for real-time analysis. [6] proposed a fog computing-based frame-
work which was applied on a prototype so as to accelerate the response to mobile
patients.
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Dang et al. [14] described a system where a network of connected sensors
record a patient’s vitals and the data is continuously sent to a broker. The bro-
ker in turn analyzes and stores processed data on the cloud. The system allows a
subscriber to directly monitor patients from any location and to respond imme-
diately to emergencies. The system was not investigated for supporting sensitive
applications like the monitoring of pregnant women with addiction problems in
which the patients cannot be attached with sensors that can easily be detached
from the body during a medical crisis. There is a need to investigate a framework
that uses sensors that are embedded within mobile devices that are normally
worn by users (e.g. smartwatch) and not an extra attachment or carry on for the
user. Pasluosta et al. [17] investigated an IoT technology for monitoring patients
suffering from Parkinson’s Disease. The author concluded that wearable sensors
for observing gait patterns, tremors, and general activity levels could be used in
combination with vision-based technologies (i.e. cameras) around the home to
monitor progression of Parkinson’s Disease. This work only investigated IoT for
Parkinson’s Disease and there is no significant correlation with application that
involved monitoring addiction in pregnant women. In [25], an ECG sensor was
used to measure heart activity of patients using a microcontroller. Though the
authors suggested that such a system could be used to predict incidents of heart
attack, the bulkiness of the system makes it unsuitable for use in monitoring
addicted pregnant women.

4 Cloud-Based IoT Support for Drug Addicted Pregnant
Women

Healthcare support and monitoring system that confines the user to a restricted
facility is not desirable for supporting the different categories of addicted preg-
nant women requiring different levels of support. The functional addicted women
are able to go about their daily activities despite their momentary addiction ten-
dencies and as such should not be confined to a facility for addiction treatment.
In addition, IoT systems that use sensors implemented on a circuit board that
needs to be attached to the body or sensors that need to be attached to differ-
ent parts of the body are also not desirable for supporting addicted pregnant
women. This is because, the sensors will constitute as extra weight or object that
the pregnant women might find inconvenient to carry around. When a pregnant
woman is also going through a crisis due to addiction, the attached sensors could
be easily stripped off by the pregnant women, leading to monitoring failure.

In order to solve the problems associated with monitoring addicted preg-
nant women, we propose an IoT-enabled healthcare support system that uses a
smartwatch that is normally worn by the user. The smartwatch is embedded with
essential sensors that are needed to monitor the behavior of the pregnant woman
during drug overdose or when exhibiting withdrawal symptoms. This approach
will provide the pregnant women with a non-intrusive and portable monitoring
system that allows the users to go about their day-to-day activities while receiv-
ing addiction treatment. Another advantage is that the pregnant women will
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find addiction treatment services more accessible and attractive since they are
not confined to a place or required to carry around a heavy monitoring device.
Likewise, the approach disallows the embedding of monitoring sensors under the
skin of pregnant women. To the best of our knowledge, this will be the first
time that a non-invasive Cloud-based IoT healthcare service delivery is being
considered for supporting pregnant women struggling with drug misuse.

The architecture of our proposed IoT-enabled healthcare system is presented
in Fig. 1. The body sensors embedded within the smartwatch constantly moni-
tor and collect pregnant women health parameters including movement pattern,
body temperature, blood pressure and heart rate. The data collected are sent
to the user’s mobile phone where it is temporarily stored and analyzed before
it is sent to the cloud for permanent storage and further processing. If a health
concern or emergency incident is detected when the data is processed within the
mobile phone, the mobile phone will automatically alert the respective health
service provider needed to support the pregnant woman at that instance. Alter-
natively, instead of using the mobile phone for processing, the collected data can
be sent by the mobile phone to an edge or fog computing device where it can be
analyzed to provide real-time support for the user. As a result of this design, the
health caregivers are able to monitor pregnant women remotely and are able to
respond in a timely manner to crisis and emergencies due to drug misuse.

5 The Architecture of IoT Support for Drug Addicted
Pregnant Women

The architecture presented in Fig. 1 is a four-layer architecture consisting of
the sensor/WBAN layer, the personal server/fog computing layer, the cloud
computing layer and the medical service layer.

5.1 Sensor or WBAN Layer

The Sensor or WBAN layer is where health-related data are collected from the
body of the users with the aid of sensors embedded within the smartwatch worn
by the users. [1,18] identify some portable sensors that can be used for collecting
data from users in a WBAN. Some of the sensors that we consider relevant to
collecting data related to drug addiction behavior in pregnant women include
the Accelerometer for measuring body movement so as to track users steps and
sleeping patterns, Heart Rate monitor, EMG (electromyography) sensor for mon-
itoring muscle activity, Oximetry sensor for measuring blood oxygen which is the
key to reporting accurate pulse rates, skin conductance sensor for measuring the
galvanic skin response or how much a user sweats, Blood Pressure sensor, skin
temperature sensor for monitoring user’s body temperature and GPS to identify
user’s current location.
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5.2 Personal Server/Fog Computing Layer

The Personal Server or Fog Computing layer is the link between the Sensor layer,
the Medical Service layer and the Cloud Computing layer. The health-related
data collected by the sensors are sent using the short-range Zigbee or Bluetooth
wireless technologies to the pregnant women smartphone which will serve as the
gateway. An example of such a gateway is the Android gateway [34] which enables
local storage and pre-processing of data collected from the WBAN sensors. This
layer can be implemented using a cell phone or using an edge/fog network device.
The services performed at this layer includes initialization, configuration, and
synchronization of the sensors. Sensors readings are also collected at this layer for
immediate processing and integration of data so as to provide real-time insight
and decision making about the state of the user. The pregnant women could also
be provided with audio and graphical interface to disseminating alert messages or
needed guidance during medical crises. When the user is experiencing medical
emergencies as indicated by the analyzed data, the Personal Server layer will
establish a secured long-range Internet communication with the Medical Service
layer and alert the respective remote healthcare service provider.

Fig. 1. Cloud-based IoT support for drug addicted pregnant women
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5.3 Medical Service Layer

The Medical Service layer is made up of all the medical, family and community
support services that are needed by pregnant women struggling with addiction.
The layer allows real-time monitoring of the patient by service providers includ-
ing Gynecologist, Obstetrician, General Physician, Emergency Response team,
Health/Community Workers, families and friends. These groups of stakehold-
ers are automatically contacted or alerted when there are cases of emergencies
relating to the pregnant women (patient). Depending on the type of emergen-
cies, the Personal Server layer will provide a detailed account of the situation of
the patient, the current location of the patient and the level of support needed
by the patient. In addition, the healthcare service providers will have access to
a cloud-enabled centralized Medical Database that provides historical data and
results of analysis of both current and previous data collected by the IoT sys-
tem. The IoT system grants access to the centralized database depending on the
level of services that are provided by a service provider. The advantages of the
centralized Medical Database include providing real-time access to vital medical
information about patients, providing deeper insights and decision making func-
tionality based on the results of the Big Data analytics done in the cloud system,
and preventing double-doctoring which can lead to multiple prescriptions of the
same medication. Double-doctoring is a situation that can arise when there is
no centralized medical database in which a doctor can prescribe a medication
without reference to a previous prescription made by another doctor of the same
medication. Also, the personal data collected through the sensors at the fog layer
would be useful for medical personnels in providing swift medical support for
COVID-19 infected pregnant women with underlying medical conditions.

5.4 Cloud Computing Layer

The physiological data collected overtime at the Personal Server layer can
become so massive that it requires a larger, permanent and secured storage
system. In addition, such Big Data requires a storage system where extensive
processing and data analytics can be carried out so as to derive deeper insights
into the patient’s condition with the aim of proving decision making support for
the medical practitioners. Therefore, the Cloud Computing layer serves as the
center where the massive physiological data are aggregated, stored, processed
and analyzed to provide support to healthcare service providers. The cloud sys-
tem also hosts a centralized Medical Database where both historical and current
medical data are stored for centralized access by medical practitioners and other
healthcare stakeholders. As more and more data are being added from the Per-
sonal Server layer, machine learning algorithms could be engaged to allow the
system to learn from the past and current data to make predictions and provide
vital information about the patient’s symptoms and possible diagnosis. Machine
learning allows the identification of trends in medical physiological data that
were formerly unidentified so as to provide specific diagnosis, treatment plans
and decision support for healthcare service providers. The patients could also



Non-invasive IoT System and Analytics for Drug Addicted Pregnant Women 31

be alerted as a result of the outcome of the data analytics and machine learning
algorithms implemented in the cloud. For instance, if the data collected suggests
that a patient is becoming restless and agitated, the system could send an alert
to the patient and instruct the patient on what can be done to calm down.

6 Big Data Problem in IoT Health Applications - A Case
of Drug Addicted Women

The advent of IoT in health applications such as neonatal care and ambient
assisted living [28], wellness recommendation [29], ECG health monitoring sys-
tems [30], and prognosis [31] accentuates the generation and collection of high
volumes, high velocity, wide varieties, and valuable data with various degrees
of veracity-popularly referred to as 5Vs of big data. Our proposed IoT and
Data Analytics system for drug addicted women is made up of several sensors
collecting vital data in different forms and format from users at real-time. The
heterogeneous physiological data collected overtime from the users will gradually
snowballed to a massive data. Some of the anticipated challenges of this Big Data
collection from the IoT support system for the drug addicted women includes
dealing with errors in the captured data, handling increase in time required for
data processing and analytics, ensuring data privacy, and providing a scalable
data storage system.

6.1 Data Analytics for IoT Health Support for Drug Addicted
Pregnant Women

The Big Data collected from the addicted pregnant women would be a good
platform for fine-grained data analytics that will provide deep insights on the
pregnant women’s health status. This platform can also provide intelligent rec-
ommendations for the physicians, emergency support unit, and other healthcare
service providers. Therefore, the Data Analytics component of our proposed sys-
tem will employ several data munging techniques such as feature extraction and
dimensionality reduction to optimize the data and ensure that noise and redun-
dancy are eliminated from the data. In addition, we will employ machine learning
algorithms such as neural networks and decision trees to allow the system to learn
from the past and current data for enhanced predictive analysis. This will help to
provide vital information about the patient’s symptoms and possible diagnosis.
Besides, data mining techniques such as association rules would be employed to
identify trends in medical physiological data that were formerly unidentified so
as to provide specific diagnosis, treatment plans and decision support for health-
care service providers. We will ensure that a lightweight predictive algorithm is
deployed at the Fog layer of our proposed IoT system so as to provide immedi-
ate and on-demand healthcare services to the users. Furthermore, our proposed
system will profit from the implementation of Big Data processing frameworks
including Apache Spark [32] and Kafka [33] so as to speed up the data analyt-
ics process and provide a platform for enhanced scalability as the size of the
healthcare related data increases.
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7 Conclusion and Future Research Direction

In this paper, we presented a non-invasive cloud-based IoT healthcare infras-
tructure for supporting pregnant women seeking treatments from drug misuse
during pregnancy and public emergencies like COVID-19. We discovered that
the current IoT systems that use bulky devices or devices inserted under the
skin to monitor patients’ vitals are not desirable in this application. The novelty
of our proposed system stems from its ability to allow pregnant women seeking
addiction treatment to continue with their normal daily activities while receiving
intensive healthcare support without being confined to a facility. The system also
profits from real-time local data analysis at the fog layer as well as the exten-
sive data analysis at the cloud layer. The local data analysis provides immediate
services to the pregnant women while the extensive cloud-based data analysis
provides long term support for the pregnant women as well as the supporting
health service providers. A detailed description of our Data Analytics approach
will be presented in a future paper. In our future work, we plan to implement
the IoT-based healthcare system with the aim of evaluating its efficiency and
effectiveness in supporting the intended users. We will also consider relevant
security and safety issues that have to do with the usage of the proposed system
especially during global pandemics like COVID-19
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Abstract. The design of technological aids to assist older adults in their
ageing process and to ensure proper attendance and care, despite the
decreasing percentage of young people in the demographic profiles of
many developed countries, requires the proper selection of sensing com-
ponents, in order to come up with devices that can be easily used and
integrated into everyday life. This paper addresses the metrological char-
acterization of pressure sensors to be inserted into smart insoles aimed at
monitoring the older adult’s physical activity levels. Two types of sens-
ing elements are evaluated and a recommendation provided, based on the
main requirement of designing a calibration-free insole: in this case, the
pressure sensor should act as a switch, and the FSR 402 Short sensing
element appears to be the proper solution to adopt.

Keywords: Smart insole · Force Sensing Resistor · Step counter ·
Healthy ageing

1 Introduction

In the last years, world population has undergone a demographic transition, in
which the mortality and the birth rates both decreased. This means that globally,
world population is shifting from a young age structure towards an old age one. The
number of elders, especially in developed and wealthy countries, has increased and
is now 10% higher than the number of young people. Because of the illnesses that
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inevitably appear after a certain age, or simply because the physical resources dry
out as people grow old, at some point older adults may find themselves in need for
attendance and caring. But, due to the demographic ageing, there are fewer and
fewer young people who can assist the older ones. This is the reason why there is a
great need for an extra helping hand, something that can aid both the elderly and
the people who take care of them. This huge help can be achieved through so called
assistive technology (AT).

Research projects like vINCI [12] address the situation, aiming at designing the
technological support that the elders and their caregivers need. Its purpose is to
integrate different devices needed to monitor and improve the older adult’s life, in
a single, unifying platform.Moreover, it targets to enhance and sustain active aging
of older adults, with devices like smart watches, smart insoles, monitoring cameras,
together with tablets and properly designed software applications, which can be
differently combined and composed according to the user’s needs and preferences.
In order to reach these goals, certain technical requirements must be met, either at
the device and the cloud platform level. Not only devices must be able to connect
to the platform and send data in a proper and recognized format, but also the cloud
needs to be available all the time to prevent any data loss and to satisfy the users
that interactwith the dashboards or applications.All the interfaces need to be user-
friendly and intuitive, especially because the users consists of older people who can
be not very familiar with technology.

Among the requirements pertaining to the devices connected to the monitor-
ing platform, a specific one refers to smart insoles [1], like those shown in Fig. 1.
These are wearable devices, connected over a Bluetooth Low Energy (BLE) link
to a smartphone or eventually equipped with a long-range communication inter-
face [10], which can be easily inserted into a user’s common shoes, and they allow
to count the steps performed in a day, and to recognize different motion statuses,
such as walking, standing, sitting or not wearing the insole [5,11]. According to
the World Health Organization (WHO) guidelines about physical activity (PA)

Fig. 1. Smart insoles prototypes developed within the vINCI project.
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in the older age [9], the amount of steps performed by an older adult in a day
is a very important indicator of their physical and mental health status [6,7]. In
order to have devices that can be easily used by older adults, without the need
for complex calibration processes, like those typically requested by smart insoles
designed for sport and fitness purposes, a calibration-free design must be tar-
geted. In fact, we aim for a device which is not expected to estimate the walked
distance or the amount of burnt calories but, surprisingly, such a smart insole is
currently not available in the market. As a consequence, this paper addresses the
technical design of the smart insoles, specifically focusing on the proper selection
of the sensing elements, which should allow to fulfill the expected aims avoiding
the need for calibrating the subject’s walking profile. The main contribution of
this paper is the metrological characterization of two different types of pres-
sure sensors, in order to identify the most suitable solution for the design of a
durable smart insole able to provide reliable data about the user’s PA, despite
not requiring the calibration of the device by the user.

The paper is organized as follows: Sect. 2 shortly reviews the state-of-the-
art about sensorized insoles for physical activity monitoring. Section 3 presents
the design of the sensing insole, including motivations and sensors selection.
Materials and methods for sensors characterization are presented in Sect. 4, while
Sect. 5 presents and discusses the results obtained, under different conditions and
analyses. Finally, Sect. 6 concludes the paper.

2 Background

Looking at the recent results about the design of smart insoles and in-shoe sensor
systems, it appears that most of the studies are aimed at specific applications
with clinical outcomes, such as gait analysis, real-time estimation of temporal
gait parameters, foot motion analysis, and health monitoring.

Tahir et al. [13] discuss the growing interest in developing smart insoles
associated to gait analysis, to be exploited in rehabilitation, clinical diagnostics
and sport activities applications. Specifically, vertical Ground Reaction Forces
(vGRF) and other gait variables could be measured by suitably designed wear-
able devices, able to continuously monitor plantar pressure through embedded
sensors converting it into an electrical signal that can be further processed and
eventually transmitted. In applications having potential clinical impact, it is
important to use calibrated sensors to provide reliable measurements. In the
mentioned work, authors state that calibration approaches adopted by differ-
ent teams required expensive instruments such as universal testing machines
or infrared motion capture cameras. In contrast, authors propose a systematic
design and characterization procedure for three different types of pressure sen-
sors: force-sensitive resistors (FSRs), ceramic piezoelectric sensors, and flexible
piezoelectric sensors that can be used for detecting vGRF in a smart insole. The
FSR proves to be the most effective sensor among the three tested, for smart
insole applications. Shoe-embedded sensors have potentially huge advantages for
the design of wearable robotic devices aimed at locomotion-related applications.
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In [3], the development of a pair of pressure-sensitive insoles based on opto-
electronic sensors for the real-time estimation of temporal gait parameters is
presented. The system is assessed relatively to both vGRF and progression, pro-
viding satisfactory results in tests of ground-level walking at two speeds involving
ten healthy participants. Recent advances in research concerning smart socks and
in-shoe systems for foot motion analysis and health monitoring are reviewed in
[2]. The considered devices represent textile-based systems and pressure sensi-
tive insole (PSI) systems, respectively. They are analyzed with respect to special
medical applications, for gait and foot pressure analysis, in comparison to the
Pedar system used in medicine and sports. This paper aims to provide readers
with a detailed overview of the above mentioned devices, to possibly improve
their design and functionality, and find new application areas.

Considering the design of a connected smart insole for healthy aging-related
applications, previous papers from some of the co-authors [1,5,10,11] mostly
addressed the electronics components and the data transmission interface. In
this paper, the focus is on the choice and characterization of the sensing elements
to be inserted into the insole, targeting a calibration-free device. With respect
to the state-of-the-art presented above and summarized in Table 1, the current
work provides details about the behavior of two specific pressure sensors selected
for a smart insole not aimed at clinical observation but at the monitoring of PA
in older adults. Usability and avoidance of complex configuration procedures are
the leading design criteria for the device.

Table 1. Summary of recent smart insoles development in the literature.

Research paper Application and main results

Tahir et al. [13] Wearable sensors employed to detect vertical ground
reaction forces (vGRF) and other gait variables. The paper
provides a systematic design and characterization
procedure for three different pressure sensors: FSRs,
ceramic piezoelectric sensors, and flexible piezoelectric
sensors

Martini et al. [3] The development of a pair of pressure-sensitive insoles
based on optoelectronic sensors for the real-time
estimation of temporal gait parameters is presented

Dragulinescu et al. [2] Both textile-based and pressure sensitive insole (PSI)
systems are analyzed with respect to special medical
applications, for gait and foot pressure analysis

3 Design of the Sensing Insole

3.1 Motivations

The decision to address the design of a smart insole for the aims of the vINCI
project purposes, was motivated by the fact that, performing a deep and careful
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analysis of the devices available in the market, a few potential candidates were
found, which were however not suitable for the project.

As a matter of fact, commercial devices such as Digitsole smart insole
(https://www.digitsole.com/) or Moticon sensor insole (https://www.moticon.
de/) are designed for runners and people interested in monitoring their perfor-
mances during physical activities. In order to do so and to estimate, among
others, the distance covered during a run or in general during the whole day just
by walking, these devices typically require a calibration procedure with the user
running on a treadmill, at different paces, for specific amount of time. For exam-
ple, in the case of the insoles sold by Digitsole, the user is recommended to take
about 200 steps at a fast pace so that the soles can analyze how he/she runs. The
calibration shall be completed for a more detailed analysis of the strokes, as it
allows the insoles to better understand the runner profile and therefore to more
effectively measure the subsequent performance. Such a calibration, joint with
details about height, weight, gender and age of the subject, provided through a
specific app designed on purpose for the device, also enables the estimation of
the amount of calories burnt by a subject, over a given period of time. It would
not be possible for many older adults to perform such a type of calibration pro-
cess. In general, this could be a barrier to the use of the smart insole by older
customers, as addressed by the project.

For these reasons, we aimed at designing a smart insole that can enable the
unobtrusive monitoring of the physical activity performed by an older adult,
without requiring a calibration process. Of course, this choice implies that some
functionalities, such as the estimation of the walked distance and the amount of
calories burnt will not be possible. However, taking into account the fact that PA
in older adults is defined in a broader way than for younger subjects (consider,
for example, the definition of light activity [14] by the National Health System
in UK), the design of the device can be somehow simplified and made more
acceptable by users. Specifically, the design was based on the use of Force Sensing
Resistors (FSRs) as pressure transducers, to generate signals from which both
the number of steps performed and the type of PA carried out can be attained.
Accelerometers are not considered in a first design phase, aiming for the simplest
data processing possible, leading to minimal hardware requirements.

3.2 Sensors Selection

Two kinds of sensors were evaluated to identify the viable solution: the FSR 402
Short provided by Interlink Electronics, and the FlexiForce A301 provided by
Tekscan.

FSR 402 Short. This tiny device, based on the thick-film technology, is basi-
cally a resistor which allows to detect weight and pressure by changing its resis-
tance value. The use of this sensor model is suggested for the majority of do-
it-yourself (DIY) Arduino-based projects and applications. The sensor essen-
tial design shown in Fig. 2(a) consists of two layers separated by a spacer.

https://www.digitsole.com/
https://www.moticon.de/
https://www.moticon.de/
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(a) (b)

Fig. 2. (a) FSR 402 Short design. (b) FSR 402 Short Resistance/Force curve.

The upper layer (called FSR layer) is made of some flexible material such as
PET or polymide, coated with FSR carbon-based ink. The spacer has the dou-
ble function of keeping together the two layers and maintaining the air gap. Its
thickness is between 0.03 mm ad 0.15 mm. The lower layer consists of a flexible
polymer sheet such as polycarbonate or thin metal. It has also two sets of inter-
digited traces. When the user applies a pressure on the bottom layer, the FSR
ink shorts with the two tracks generating a variable resistance. The advantage
of this technology is the increased miniaturization of the sensor provided by the
incorporation of the passive element into the substrate. It allows a wide range
of resistance with reasonable curing temperature, even if the resistance value
becomes more unstable over the long period (especially with high temperature
and humidity conditions). Interlink Electronics states that the force sensitiv-
ity range goes from 0.2 N to 20 N with a minimum of 0.2 N as actuation force.
By using a repeatable actuation system, the repeatability of the single part is
about ±2% of the initial reading. The long term drift ensured is <5% per log10
(time). This data is referred to 35 days of testing with 1 kg load. The hysteresis
is +10% of the full scale. In Fig. 2(b) the sensor resistance trend is shown, when
the applied force changes. The actuation force is the one required to bring the
sensor from the open circuit condition to below 100 kΩ resistance.

FlexiForce A301. Tekscan provides these piezoresistive sensors whose behavior
is determined by strain and the Hooke’s Law. The former is defined as the relative
change in the shape or size of an elastic object due to an applied force. The latter
states that the strain of an elastic object is directly proportional to the applied
force. This way, it is clear that by measuring the physical changing of an object
after the application of a force it is possible to measure the force itself. The most
common device used for this purpose is an electrical resistance strain gauge, since
the resistance of a conductor is directly proportional to its length and inversely
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(a) (b)

Fig. 3. (a) FlexiForce A301 design. (b) Resistance/Force and Conductance/Force
trends for a 100lb FlexiForce A301 sensor (in black, an ideal linear dependency between
force and output resistance).

proportional to its cross-sectional area:

R =
∫

ΔL

ρ(l)dl

S(l)
(1)

where ρ(l) is the electrical resistivity of the conductor, S(l) is the cross sectional
area and ΔL is the length variation of the conductor. If the resistance is attached
to an elastic element, when it is modified, the resistance length changes too. As
we can see in Fig. 3(b) the resistance has a non-linear trend with strain, so
usually a linearization circuit is required.

Having clarified the basic principles, we have to consider that the A301 is
made of a piezoresistive material located between two conductive layers. This
particular material differs from a simply resistive one from the fact that its
resistance depends on the force applied to the material, rather than its size
change. Similar to the FSR sensor, the resistance of a piezoresistive one drops
from several MΩ when no force is applied, to a few kΩ when pressed.

Tekscan provides three versions of this sensor: the first one can tolerate a
maximum 4.4 N load, the second one a 111 N load, and the third one a 445 N
load. By using a repeatable actuation system, the ensured repeatability is ±2.5%
of the initial reading. The long term drift ensured is <5% per log10(time), tested
with a constant 111 N load. The hysteresis is <4.5% of the full scale.

4 Materials and Method for Sensors Characterization

The measurement setup for sensor characterization is presented in this section.
It consists of an Arduino UNO board with a voltage divider, a baropodometric
platform and a software tool developed in Python to control the Arduino board,
and allow the serial communication with the computer. Two main functions are
implemented: the former enables the acquisition of a single resistance value and
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it is used for a preliminary check of operation. The latter allows a continuous
stream of data and plots them. The acquisition is stopped manually by the
operator.

The role of the Arduino board is to acquire the variations of the sensor
resistance originated by the pressure applied on it. Sensors are connected to the
board through a voltage divider shown in Fig. 4, where the variable resistance R2

represents the sensor, whereas R1 is a reference resistance of fixed value. This
way, the variation of resistance is converted into a voltage signal to measure,
named Vout, which is given by:

Vout = Vin
R2

R1 + R2
(2)

The reference voltage Vin is 5 V and it is taken directly from one of the Arduino
pin. The Vout value is taken from an analog reading of the A0 pin of the board.
The Arduino sampling frequency 20 Hz and the ADC (Analog to Digital Con-
verter) has a resolution of 10 bits. In order to get the sensor resistance value,
the following equations are applied:

Rsensor =
Vin − Vout

Vout
· R1 (3)

Vout =
Vin · Vread

1024
(4)

Where Rsensor is the resistance value of the sensor, Vread is the analog read
voltage (it must be converted according to the Arduino ADC resolution: a 10-
bit resolution involves a range of 1024 values), Vout is the real output tension
and R1 is the 10 kΩ reference resistance.

A fixed dynamometric platform (Bertec H4060) based on strain gauge tech-
nology is used as the reference measurement instrument [4], in such a way to
have a calibrated and accurate measurement of the force applied on the sensor.
Data from the platform are acquired by means of a professional movement anal-
ysis system (Elite, BTS-Bioengineering, Italy) with a sampling rate 500 Hz.

Fig. 4. Voltage divider used for the sensors characterization.
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Two different experiment sessions were carried out: the former with heavy
weights, the latter with light weights. Since we want to characterize force sensi-
tive resistors, we need to known exactly how heavy is the applied load, and its
distribution over the measuring devices. So, we used a 3 kg triangular medium
shown in Fig. 5 as a supporting tool to measure heavy weights, and a 0.6 kg wooden
medium to help measuring light weights. Both of them were based on three rebars
slightly smaller than the sensors sensitive areas. This way, by adding loads over the
medium, we can be sure that the weight is evenly distributed on the sensor active
area. The load consists of an increasing number of 10 kg and 1 kg weight plates for
the first kind of data acquisitions, and an increasing number of 0.1 kg of water-filled
elements in the range [0.1, 0.3] kg for the second one.

In order to get an accurate measurement of the force (in Newton) applied on
the sensor we used the baropodometric platform (shown in Fig. 5) for the high
weights measurements and an electronic kitchen scale with resolution 1 g for the
lowweights ones.Thisway it is possible to determine the resistance value in relation
to the applied force. It is important to explain the measurement procedure when
the baropodometric platform is used: at the beginning of each measurement, it is
necessary to clear out the platform in order to measure the no-load offset. After
that, the operator can put the load and start the measurement. Since Arduino and
the force platform are stand-alone devices, as shown in Fig. 6, the trigger for their
synchronisation was verbally determined by two computer operators. The output
of the takes is a pair of .dat files ready to be processed. Because of the different

Fig. 5. Experimental measurement setup.
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Fig. 6. Functional scheme of the measurement setup.

sampling frequencies of the two devices and the approximate vocal trigger for the
acquisition, data should be downsampled 20 Hz and the excess values should be
discarded, to obtain a matrix without zeros.

5 Experimental Results and Discussion

In this section the experimental results about mean resistance values measure-
ments are presented, as well as considerations relating to the drift phenomenon
affecting the sensors under evaluation.

5.1 Sensors Characterization in the Case of High Weights

Mean Resistance/Force (R/F) Values. Some first useful measurements are
obtained as the mean values of the resistance assumed by the sensors during
each measurement operation1.

In Fig. 7 and Fig. 8 the trend of the resistance values assumed by the FSR
402 Short and the relative scatter-plots obtained during two measurement ses-
sions are reported. In Fig. 9 and Fig. 10 the same results are shown when the
FlexiForce A301 is used.

As we can see from the plots in Fig. 7 and Fig. 9, by applying the 3 kg
medium only on the sensors (i.e. performing an off-load measurement), none
of them reaches the saturation condition, even if the FSR assumes a resistance
value much lower than the FlexiForce one (0.68 kΩ compared with 225.58 kΩ).

By applying a load of about 13 kg2 on the devices, a different behavior of the
sensors is observed. The 402 Short sensor enters its saturation zone: it takes on
a 0.21 kΩ resistance value from which the following variations are very small,
even when increasing the applied load. In fact, by adding an increased amount of
weight, the measured resistance decreases a little, down to a floor of about 0.16
kΩ. On the other hand, the A301 sensor, whose datasheet ensures a maximum

1 E.g. three consecutive measurement operations are performed, by applying 12 N on
the sensor, so the values plotted in Fig. 7 are the mean of each measurement session.

2 10 kg weight plate plus 3 kg of the supporting medium.
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Fig. 7. FSR 402 Short force/resistance trend. Plotted values are the mean ones col-
lected during the acquisitions. It is indicated the standard deviation of each value.
The dashed line shows the resistance values obtained when 4.5 kg, 7.5 kg and 8.9 kg are
applied in a second measurement session.
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Fig. 8. Force/resistance values scatter plot of the FSR 402 Short sensor for the same
applied load values of Fig. 7.
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Fig. 9. FlexiForce A301 force/resistance trend. Plotted values are the mean ones col-
lected during the acquisitions. It is indicated the standard deviation of each value. The
dashed line shows the resistance values obtained when 4.5 kg, 7.5 kg and 8.9 kg load
values are applied in a second measurement session.
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Fig. 10. Force/resistance values scatter plot of the FlexiForce A301 sensor for the same
applied load values of Fig. 9.
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load of 45 kg, is still in its linear working zone. As we can see from Fig. 9, the
R/F curve keeps a slight concavity and a little offset corresponding to the [13]
kg range. This means that the range of values assumed by the sensor is still
wide, and not limited by the floor resistance value (by applying a 146.6 N load,
a resistance value of 76.9 kΩ is obtained; for a 327.18 N load, the resistance
value is 52.8 kΩ). This is also confirmed by Fig. 8, in which the value markers
of each measurement are densely placed around the floor resistance value, while
in Fig. 10 they are more widespread.

The dashed lines of Fig. 7 and Fig. 9 show the resistance values assumed by
the FSR 402 Short and the FlexiForce A301 sensors, respectively, when 4.5 kg,
7.5 kg and 8.9 kg are applied, during a different measurement session. Even if
the resistance values exhibited by the 402 Short sensor are not representative of
the general trend obtained during the first test, they lie within a range of values
coherent with the other measurements. On the other hand, the resistance values
provided by the A301 sensor are quite patchy. We can assume that this is because
for this different measurement session we used a commercial balance, which is
not so sensitive to the 0.1-fold weight variations. Furthermore, we changed the
specific sensor devices under test (even if, of course, belonging to the same FSR
402 Short and FlexiForce A301 families). This means that each sensor item
is more or less sensible to weight variations, so it would always request an a
priori calibration, if aimed at measuring the force value applied. We need also
to observe the position of the supporting medium on the sensors’ active areas.
In fact, if the medium is barely located on the A301 spacer, this can affect the
weight distribution, causing a possible resistance value shift of up to 100 kΩ.

Drift Evaluation. Another useful data for a sensor characterization is the
drift factor. Considering the procedures used in [8], the drift analysis has been
led through a 60 s-long static measurement when the sensors are in their linear
working zone, so when the 3 kg medium only is applied on the FSR 402 Short,
and when a 20 kg-weight plate plus the 3 kg medium is located on the A301
sensor. Measuring the initial and final value of the resistance, given by Ri and
Rf , respectively, the percent drift of the resistance value (DR) is calculated as:

DR = 100 · (Rf − Ri)/Ri (5)

Figure 11 and Fig. 12 provide a qualitative information about the sensors’
drift reporting the resistance values oscillations and decreasing exhibited by the
sensors during the constant weight application.

Even if the A301 resistance floats over a greater number of different values,
after 60 s (i.e. 1200 samples), the drift factor is about the 6.94% of the initial
value. This is lower than the FSR 402 Short one, which is about the 10% of the
initial value, as shown in Fig. 11.
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Fig. 11. Scatter plot of the FSR 402 Short sensor when the 3 kg medium is statically
applied for a time of 60 s, aimed at its drift analysis.

0 200 400 600 800 1,000

72

73

74

75

76

77

78

79

80

Sample

R
es
is
ta
nc

e
[k

Ω
]

FlexiForce A301

Fig. 12. Scatter plot of the FlexiForce A301 sensor when the 23 kg are applied for 60 s
for a drift analysis.
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Fig. 13. Comparison between resistance values distributions: (a) A301 with 23 kg
applied, linear working zone; (b) A301 with 33 kg applied, linear working zone, but
near to the saturation one; (c) 402 Short with 3 kg applied, linear working zone, but
near to the saturation one; (d) 402 Short with 13 kg applied, entering the saturation
working zone.

By considering that both datasheets ensured a drift factor <5% of the initial
value, it is clear that the FlexiForce sensor is not so far from this condition,
while the FSR one has a quite different performance. Another consideration is
necessary. By calculating the mean drift factor of all the acquisition takes for
each sensor, it results that the 402 Short sensor has a drift factor equal to the
3.33% of the initial value, while the A301 one is about the 5.22% of the initial
values. This results seem to conflict with all the previous considerations. However
it should be noticed that during most of the measurements the FSR worked in
its saturation zone, so, as far as a constant weight is applied, its resistance value
cannot be lower than the floor one. Therefore, it is clear that the drift factor
will certainly be lower than the A301 one, which works in linear zone and can
assume a wider range of value.
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To investigate the distributions of the resistance values assumed by the sen-
sors, Fig. 13 show the values frequency of the A301 and FSR 402 in linear
working zone and when the saturation one is approached. In all the cases, by
gradually approaching the saturation working zone, the amount of values the
sensors’ resistance can assume decreases. When the weight applied on the A301
is 23 kg, the sensor resistance floats among 12 values (Fig. 13(a)). In Fig. 13(b)
the weight applied is about 33 kg. By remembering that the maximum admitted
weight for this sensor is 45 kg, we are approaching the saturation working zone,
so the number of values assumed by the resistance goes down to 8. By apply-
ing about 3 kg on the FSR 402 sensor (Fig. 13(c)), we are in a border working
zone, so the number of assumed resistance values is 6. When a 13 kg weight it
is applied on it (Fig. 13(d)), this number decreases even further, to 3 values,
floating around the floor. In view of this, data is consistent with what has been
observed before.

5.2 Sensors Characterization in the Case of Low Weights

Very different results are obtained from the low weights measurements as it can
be seen from the trend and scatter plot of Fig. 14 and Fig. 15 for the FSR
402. In this case the sensors exhibit a reverse behaviour: the FSR 402 Short
seems to be more sensitive to the 0.1-fold weight variations. As it is shown in
Fig. 14 and Fig. 15, except for a little offset when 2.1 kg and 2.2 kg are applied,
the Force/Resistance trend is more akin to the datasheet one, and the standard
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Fig. 14. Low weight FSR 402 Short Force/Resistance trend. Plotted values are the
mean ones collected during the acquisitions. The standard deviation of each value is
also reported.
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Fig. 15. Low weights Force/Resistance values scatter plot of the FSR 402 Short sensor.
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Fig. 16. Low weight FlexiForce A301 Force/Resistance trend. Plotted values are the
mean ones collected during the acquisitions. The standard deviation of each value is
also reported.
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Fig. 17. Low weights Force/Resistance values scatter plot of the FlexiForce A301
sensor.

deviation is very small, so the resistance values are quite accurate. Furthermore,
when 2.9 kg are applied on the sensor, its resistance value is about 1.032 kΩ,
which, according to what we have said at the end of Sect. 5.1, after a previous
calibration, should be easily led to 0.68 kΩ of the Fig. 7. By observing the plots
in Fig. 16 and Fig. 17, in which the resistance values trend and scatter plot for
the FlexiForce are reported, it is clear that the A301 sensor is not very sensitive
to low weights variations. In fact, it does not work until 0.5 kg are applied on it.
After that threshold, the resistance values don’t have an identifiable pattern and
the standard deviation values are greater than in the other cases. This means
that after 30 s of acquisition, the resistance values float between a certain value
and zero. We can explain this behaviour by the fact that the activation force of
this sensor has not been reached yet, and so, over the long term, it exhibits an
unstable output.

6 Conclusion

Following the results presented above, two kinds of applications may be targeted
by the examined sensors: those exploiting the sensor as a switch, and those
which use it as an indicator of the weight applied. The specific devices tested
may be recommended for the first kind of applications. In fact, after having
selected a certain threshold, based on the calibration results performed in the
lab on each sensor item, the random floating of the attained resistance values
becomes irrelevant to the application. Then, the sensor to use should be selected
based on the expected load and the supported range. As far as the second kind
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of application is concerned, A301 sensors are recommended for high weights
and the FSR 402 Short for the low ones, especially for touch-based interaction
applications, thanks to the high sensitivity of the device. Based on these findings,
the FSR used in the first insole prototype design was the FSR 402 Short, to
detect, by means of a proper software application running on the embedded
board, the three different activity statuses mentioned before. The raw sensor
measurements are not transmitted; the information about the status is generated
onboard, by processing locally the raw sensor measurements. Transmissions from
the insole take place only at a status change, and whenever the step counter
increases. As a future development of the smart insole design, it is foreseen to
integrate the FSR data with acceleration measurements, in order to improve
the PA detection, the classification of the activity performed, and, possibly, to
implement the evaluation of the covered distance within a day.

Acknowledgment. Authors wish to thank Dr. Federica Verdini from the Information
Engineering Department at the Marche Polytechnic University for her help in collecting
measurements from the baropodometric platform available at the Movement Analysis
Bioengineering Lab.
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Abstract. In recent years, the application of IoT for health purposes, including
the intense use of wearable devices, has been considerably growing. Among the
wearable devices, the systems for measuring EMG (electromyography) signals
are highly investigated. The possibility of recording different signals in a multi-
channel approach can lead to reliable data that can be used to improve diagnos-
tic techniques, analyze performance in sports professionals and perform remote
rehabilitation. In this work, we describe the design of a novel wearable system for
surface EMG using a compact electronic board and a printed matrix of electrodes.
The whole system has an estimated maximum current absorption of 55 mA at
3.3 V. We focused on the subsystem integration and on the real-time data trans-
mission through Bluetooth Low Energy (BLE) with a throughput of 28 kB/s with
a success rate of 99%. Some preliminary data are collected on a healthy man’s
arm to validate the design. The acquired data are then analyzed and processed to
improve information quality and extract contraction patterns.

Keywords: Multielectrode EMG ·Wearable device · Printed electrodes

1 Introduction

In the last decades, the measurement of physiological signals from the human body has
raised great interest to the scientific community, as it allows monitoring subjects’ health
[1], diagnosing diseases, and providing suitable therapies [2] also for rehabilitation.
among themeasured signals, biopotential is detected bywell-knownmedical techniques,
such as electrocardiography (ECG), electroencephalography (EEG), electromyography
(EMG), and electrooculography (EOG) to track the activity of heart, brain, muscles, and
eyes, respectively [3, 4]. For instance, EMG signal is exploited to obtain information
about muscular activity for diagnosis or rehabilitation purposes, as well as an input to
trigger active devices, such as human-machine interfaces and prostheses [5]. State of art
EMG devices are usually bulky and require different cables that could be uncomfortable
for the final user. To overcome those problems wearable devices are lately arising. These
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devices have small dimensions and they can be worn and carried by the users without
interfering with their everyday life improving both the user experience and the quality
of collected data. Wearables EMG devices were lately explored for example to remotely
monitor patients [6], evaluate neck fatigue [7] and discriminate wrist gestures [8]. In this
work we propose a novel wearable device to perform EMG acquisition using a compact
electronic board and a matrix of electrodes fabricated by aerosol jet printing (AJP) that
can be used in remote rehabilitation or training applications. This device is able to provide
a real-time, reliable, wireless data transmission to provide data to a custom application
running on a remote unit that can be both a pc or a mobile phone that can send feedback
to a clinician to remotely monitor a patient’s improvement during remote rehabilitation.
In Sect. 2, we discuss the design process and the system’s architecture that is later tested
and validated in Sect. 3.

2 Materials and Methods

2.1 Device Design

The overall system’s architecture (Fig. 1) consists of two main parts: a wearable unit and
a remote one. The former acquires signals from the human body through the electrodes,
converts them to digital ones and sends them through Bluetooth Low Energy (BLE)
to the remote unit that is devoted to store the data, perform pre-processing steps and
provide the results to custom applications.

Fig. 1. The architecture of the system.

2.2 Electrode Fabrication

A matrix of 16 electrodes to achieve an 8 channel EMG was designed and fabricated by
aerosol jet printing (AJP). This matrix configuration allows monitoring different parts
of a muscle to analyze its functionality and the signal transmission, or to interface EMG
signals realizing a human-machine interface. AJP is a fully additive printing method that
atomizes an ink and deposes it with a sheath gas through a nozzle. With this technique, it
is possible to depose a wide set of inks in a low-temperature environment on substrates
that are not conventional for electronics, like plastic sheets and paper. The matrix of
16 electrodes was printed (Fig. 2) using the Novacentrix Metalon HPS-108AE1, silver
nanoflakes based ink on a photographic paper. This combination allows to achieve flexi-
bility, low-cost, biocompatibility and sustainability (it can be burned after use) and thus
simplifies the adhesion between the electrodes and non-planar surface of the body.
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Fig. 2. Matrix electrode during the fabrication

2.3 Wearable Unit

The 52.5mm× 48.0mmelectrodematrix is connectedwith thewearable unit that imple-
ments analog signal conditioning, signal sampling, data organization and transmission.
In Fig. 3 the device block scheme is depicted. In order to optimize device dimensions,
its power requirements and its efficiency, the design mostly uses off-the-shelf integrated
circuits (IC) and minimizes the number of required components. ADS1298 by Texas
Instruments was selected to provide a dedicated analog front-end (AFE) and a 24-bit
delta-sigma�� analog-to-digital converter (ADC) to each of its 8 differential channels.
This device is controlled by Serial Peripheral Interface (SPI) commands and allows dif-
ferent gains (the possible are: 1, 2, 3, 4, 6, 8, or 12) and sampling frequencies. To define
this last parameter, we considered that most of EMG signal’s information is situated
below 500 Hz and thus we decided to use a minimum sampling frequency fs = 1 kHz.
As regards the gain, in the experimental setup, we finally defined as reliable a value
of 12. All the 8 differential channels are sampled synchronously and when the data is
ready they are collected through SPI as a 27-Byte array called sample (it also includes
a 3 Byte status word that provides information about the ADS1298 status e.g. the val-
ues of its GPIOs) by CYBLE-222014–01 Cypress Semiconductor microcontroller. This
component controls the device behavior and integrates also a BLE module to transmit
towards the remote unit the EMG data. The BLE module was set using the microcon-
troller API to be a GATT server and to produce a notification event when a packet is
ready. The fabricated printed circuit board (PCB) has a dimension of 4.5 cm × 4.5 cm
printed circuit board (PCB). This includes the already described components, several
required passive components and a TPS709 Texas Instruments voltage regulator that
provides a stable 3.3 V supply voltage. The maximum current absorption of 55 mA was
estimated for the device during the elaboration and BLE communication. With these
specifications (using fs = 1 kHz, 18 ms are required to collect the data), we estimated
an average transmission time of 9.5 ms, thus ensuring a possible real-time communica-
tion; the maximum transmission time is 65 ms and thus, to avoid overwriting packets, a
circular output buffer was introduced.
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Fig. 3. Block scheme of the wearable unit where the main used components are underlined.

2.4 Remote Unit

The remote unit performs specific communication taskswith thewearable unit in order to
configure it and to retrieve data from it. Moreover, the remote unit elaborates, stores and
displays the incoming data. CY5677 - CySmart Bluetooth Low Energy 4.2 USB Dongle
by Cypress Semiconductors was selected to interface via BLE the wearable unit and a
PC to collect and save data in real-time. A dedicated program to elaborate, visualize and
save as.csv files the data. Those files could be used to feed some application programs
for example to track signal propagation on muscles, evaluate muscles damages, deduce
activation patterns and upload on an online database the collected information.

2.5 Testing and Validation

To validate the proposed approach, at first, a signal generator was connected to one of
the input channels of the wearable device to verify the correct implementation of the
data retrieval and transmission towards the remote unit. In order to optimize the com-
munication with the wearable unit, different packet lengths were tested, and the average
and maximum transmission time were measured. Each BLE packet provides different
additional information including the incremental number that allowed to track howmany
packets were received correctly, how long it takes to receive a defined packet and the
average throughput. Thanks to this information it is possible to evaluate the overall effi-
cacy of the communication measuring from the remote unit these key parameters. As
experimental setup, the wearable device and the remote unit were positioned less than
2 m afar and then we started collecting data for different periods of time from 41.67 s
up to 486 s. According to the preliminary experimental results we chose to put in each
packet 500 B to store 18 samples and a successive packet identifier.

Furthermore, to validate the proposed wearable device in an application-like fashion,
we performed a measure on a healthy volunteer. The printed matrix of 16 electrodes was
attached to the brachial biceps using an electroconductive gel to improve the electrodes
performances. The electrodes were wired and connected to the PCB. It was required
to the subject to follow a pattern mixing maximal isometric contractions with rough
duration of 30 s with relaxation periods. The retrieved signals were conditioned and
analyzed in both time- and frequency-domain on the remote unit by usingMATLAB and
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including digital notch filters to remove all the 50 Hz harmonics. A proper comparison
between commercial and printed electrodes was reported in [9] where is stated that
printed electrodes have slightly worse performances than the commercial ones but on
the other hand, they present a reduced encumbrance and thickness that are better on the
wearability and conformability on the body.

3 Results

From the measurements performed during the transmission test, an average throughput
of (27 763 ± 19) B/s was calculated considering that more than 99.7% of the packets
were delivered correctly. As regards the transmission time, a mean value of (18.01 ±
0.01) ms was measured for the average transmission time and (63.4 ± 7.0) ms for the
maximum transmission time that confirms the values that we used to design the device.

During the system validation on a healthy subject, we were able to correctly retrieve
EMG signal on each channel (Fig. 4), where it is possible to clearly distinguish between
contraction and relaxation of the muscles. We also observed different spikes on the
signals probably due to wiring movements during the acquisition.

Fig. 4. Resulting signals after digital filtering Fig. 5. FFT of the signal on one of the
channels. In blue we present the contraction
periods and in red the relaxation ones (Color
figure online)

Then a fast Fourier transform (FFT) of the signals was performed dividing them
between contraction and relaxation of the muscle. Figure 5 shows that most of the
energy of the signals during contraction was before 150 Hz as expected. Moreover, we
were able to observe both the influence of the filters and noise components introduced
by the analog front-end, that are well visible analyzing the relaxed signal. It was also
observed the energy difference between the two sets of data. Signal to noise ratio (SNR)
was calculated using the RMS value of the contraction (that we used as signal) and the
relaxation period (thatwe used as noise sample).Weobtained anSNRof thewhole circuit
higher than 28 dB. This result can be improved by modifying the electrode geometry
such as increasing the area of the electrodes and their adhesion on the muscles.
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4 Conclusions

In this work, a novel wearable device to perform a multichannel EMG using an AJP
printed matrix of electrodes is shown. The proposed solution allows for flexibility, low-
cost, biocompatibility, sustainability and less invasiveness. This device provides a real-
time stream of data from wearable to remote unit using BLE achieving an average
throughput of 27 763 B/s with a success rate sending packets above 99.7%. The device
samples eight channels at fs = 1 kHz and this limits the useful signal the bandwidth to
500 Hz. On the remote unit, a set of digital filters were developed to attenuate spurious
components and thus improve the SNR to 28 dB. This device exploiting the potentiality
of IoT can be used to provide data to a remote unit to perform different tasks as detect
activation patterns, monitor muscles fatigue and integrity.
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Abstract. Chronic Kidney Disease (CKD) is currently a worldwide chronic dis-
ease with an increasing incidence, prevalence and high cost to health systems. A
delayed recognition and prevention often lead to a premature mortality due to pro-
gressive and incurable loss of kidney function.Datamining classifiers employment
to discover patterns in CKD indicators would contribute to an early diagnosis that
allow patients to prevent such kidney severe damage. Adopting the cross Industry
Standard Process of Data Mining (CRISP-DM) methodology, this work develops
a classifier model that would support healthcare professionals in early diagnosis
of CKD patients. By building a data pipeline that manages the different phases
of CRISP-DM, an automated data transformation, modelling and evaluation is
applied to the CKD dataset extracted from the UCI ML repository. Moreover, the
pipeline along with the Scikit-learn package’s GridSearchCV is used to carry out
an exhaustive search of the best data mining classifier and the different parameters
of the data preparation’s sub-stages like data missing and feature selection. Thus,
AdaBoost is selected as the best classifier and it outperforms with a 100% in terms
of accuracy, precision, sensivity, specificity, f1-score and roc auc, the classifica-
tion results obtained by the related works reviewed. Moreover, the application of
feature selection reduces up to 12 out of 24 features which are employed in the
classifier model developed.

Keywords: Chronic kidney disease · Early diagnosis · Data mining ·
Classification · Feature selection

1 Introduction

Chronic kidney disease (CKD) is a worldwide public health problem with an increasing
incidence, prevalence, and high cost to health systems. Globally, in 2017, 1.2 million
people died fromCKD, increasing the all-age mortality rate up to 41.5% since 1990. The
same year, a number of 697.5 million cases of all-stage CKDwere recorded that implies
a global prevalence of 9,1% [1]. CKD is the most common type of kidney diseases that
lead a vast majority of CKD patients to suffer premature mortality due to cardiovascular
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disease and the progressive loss of kidney function; as well as other types of kidney-
injured syndromes with significant negative effects on their quality of life and survival
rate [2].

Typically, CKD presents no symptoms in an early stage, but later, symptoms may
appear like leg swelling, extreme fatigue and generalized weakness, shortness of breath,
loss of appetite, or confusion. Slowing the progression of the kidney damage, usually
by controlling the underlying causes, is the main focus of CKD treatment. A delayed
recognition and prevention often lead to further kidney injury and health problemswhere
hemodialysis or even kidney transplantation are the only way to keep the patient alive [3,
4]. However, the diagnosis of CKD is a process of 3 months where the level Glomerular
Filtration Rate (GFR) is assessed, although is not practical for daily clinical use due to
complexity of the measure procedure [5, 6]. Therefore, other estimation approaches of
GFR, like Cockcroft-Gault equation or Modification of Diet in Renal Disease equation
[7], are widely accepted by using filtration markers or risk factors which are easily
collected like hypertension, obesity, heart disease, age, diabetes, drug abuse, family
history of kidney disease, race/ethnicity [8]. By having the disease diagnosed at the
beginning phase the corresponding treatments can be initiated and the patient can live
longer even with these insufficient kidney functions.

However, an opaque relationship between CKD and various symptoms exists, thus,
data mining is appropriate to discover the latent correlation between them contributing
significantly to assess individuals with potential CKD risk. Data mining provides use-
ful tools for multivariate data analysis, namely classification and regression, allowing
predictions based on the established models and hence offering a suitable advantage for
risk assessment of many diseases including CKD [9]. Therefore, as early detection and
proper treatments are the cornerstone to prevent CKD, automated and accurate diagnosis
methods of CKD based on data mining are necessary to assist medical personnel to early
discover patients at risk and so increase their quality of life expectation.

Large amounts of complex data are being generated by healthcare stakeholders about
patients, diseases, hospitals, medical equipment, claims, treatment cost, etc. that requires
processing and analysis for knowledge extraction [10]. Machine learning and data min-
ing had been successfully applied, over the past few decades, to build computer-aided
diagnosis (CAD) systems for diagnosing complex health issues with good accuracy and
efficiency by recognizing potentially useful, original, and comprehensible patterns in
health data [11, 12]. Data Mining is particularly useful in medicine when no availability
of evidence favoring a certain treatment option is found. Classification is a data mining
technique, which belongs to supervised learning methods, with the primary objective of
forecasting target classes precisely and accurately for a given case.

This paper aims at enhancing the quality of CKD early diagnosis by developing an
automated and accurate classifier model of CKD patients based on data preprocessing
and feature selection techniques, as well as an exhaustive search of the best data mining
classifier. Themain contributions achieved are: a datamanagement pipeline that provides
an automated control of classification task and its previous data preparation; a classifier
model that outperforms the related works reviewed not only in the training but also in
testing phase with new unseen data; and a reduced group of features from the original
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dataset which are employed by the model to obtain high accurate results in classifying
CKD patients.

The next sections of the paper are organized as follows: Sect. 2 shows related works
in the CKD diagnosis field, Sect. 3 discusses the methodology employed to build the
classifier model, Sect. 4 and 5 shows and discusses the results obtained respectively, and
Sect. 6 points the conclusions drawn in this research.

2 Related Works

Several data mining approaches have been considered for the detection of CKDs in
the literature dealing with either medical images or clinical indicators. In these works,
different classifiers have been mainly used such as Logistic Regression (LR), K-Nearest
Neighbors (KNN), Support Vector Machines (SVM), Decision Trees (DT), Näive Bayes
(NB), RandomForest (RF), Ensemble Learning (Adaboost, Bagging, etc.), andArtificial
Neural Networks (ANN).

Despite good accurate results achieved in detecting CKD through data mining clas-
sifiers by Chiu et al. (94,75% accuracy) [13], Baby et al. (100% accuracy) [14], or
Lakshim et al. (93.85% accuracy) [15]; a comparison cannot be carried out due to dif-
ferent datasets employed in the classification task. However, other different studies that
employed, like this research, the CKD dataset from UCI repository [16] are described
as following with the aim at comparing them to our results.

Different classifiers as Radial Basis Function (RBF), LR and Multilayer perceptron
(MLP) were assessed by Rubini et al. [17] being the MLP the best one with results
as: 99.75% accuracy, 99.66% F1-score, 99.33% recall and 100% specificity. Ani et al.
[18] built a clinical decision support system for CKD risk prediction comparing several
classifier and ranking its accuracy: BackProp neural network (81.5%), NB (78%), LDA
(76%), KNN(90%), DT (93%), and Random subspace classification algorithms (94%).
Other classifiers (KNN, SVM, LR, DT) were explored by Charleonnan et al. [19], being
SVM the most accurate (98,3%) with a sensivity of 99% and specificity of 98%. Chen
et al. [2] also demonstrated SVM had better accuracy (99.7%) over other methods as
KNN or soft independent modeling of class analogy (SIMCA) in classifying CKD.
In their research, Kunwar et al. [10] showed that NB outperforms ANN in accuracy
(100% over 72.73%). Jeewantha et al. applied the percentage split method on the dataset,
demonstrating most classifiers have better accuracy when percentage of training data is
higher, with the MLP as the most accurate model (98.66%). The only study identified
where cross-validation technique were not applied was performed by Imran et al. [11]
obtaining a 99% of F1-score, precision, recall and area under the curve ROC (Roc Auc)
with a model based on Feedforward neural networks over unseen samples of the test set.
In addition, Van Eyck et al. [20] achieved in 2016 the best results so far with a 100% in
terms of accuracy, precision, sensivity and specificity by using RF.

On the other hand, other studies explored the influence of feature selection in the
classifiers result. Thus, Chetty et al. [21] applied different classifiers along with wrapper
feature selection methods demonstrating that the classifiers tested performed better on
reduced dataset than the original with an accuracy of 100% by using best first search
strategy in wrapper feature selection and KNN classifier. Salekin et al. [7] found RF had
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better accuracy (99%) than KNN and ANN when wrapper feature selection or Lasso
with 12 or 10 features respectively was applied. The combination of RF with feature
selection as the most accurate (99.75%) was confirmed by Siyad et al. [22] among other
as NB (97.5%), LR (98%) or DT(98%). Feature selection was also tested by Basar
et al. [23] on ensemble classifiers like AdaBoost, Bagging or Random Subspaces, being
the latter the best one with 100% of accuracy by considering only 10 features of the
original UCI dataset. Wibawa et al. [24] added another research to works on testing
ensemble classifiers with feature selection, having an accuracy of 98,1% and 98% as
F-score, prediction and recall in a resultant dataset of 17 features with AdaBoost-KNN
classifiers. In the same line, Zubair et al. [25] obtained an accuracy of 99% by using
AdaBoost classifier plus ExtraTree to select the 13 most important features.

Table 1. Classification results (expressed in %) of related works. *: cross-validation technique
not applied

Article Accuracy F1-Score Precision Specificity Recall Roc Auc

Rubini [17] 100 100 – 100 99 –

Basar [23] 100 – – – – –

Van Eyck [20] 100 – 100 100 100 100

Ani [18] 94 95 97 – 93 –

Chen [2] 100 – – – 100 –

Chetty [21] 100 – – – – –

Kunwar [10] 100 – – – – –

Jeewantha [8] 99 – – – – 100

Salekin [7] – 99 – – – –

Wibawa [24] 98 98 98 – 98 –

Zubair [25] 99 99 – – – –

Charleonnan [19] 98 – – 98 99 –

Siyad [22] 100 – – – – –

Imran [11](*) 99 97 – – 99 99

As Table 1 shows, the results obtained by the different studies are almost perfect
in terms of accuracy (values close to 100%). However, it must be noted that all papers
reviewed, except one (Imran et al. [11]), performed the cross-validation technique to
obtain their results. This technique allows using every sample of the dataset to train the
model. Only Imran’s model was performed over unseen data samples. Therefore, the
rest of models’ performance would be unknown in a deployment phase with data that
have not been used for training.
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3 Material and Methods

For this study, the Cross-Industry Standard Process for Data Mining (CRISP-DM) has
been adopted [26]. CRISP-DM gives a methodological way to manage data mining
development. As shown in Fig. 1, CRISP-DM establishes a continuous loop composed
of 6 steps: Business Understanding, Data Understanding, Data Preparation, Modeling,
Evaluation, Deployment.

Fig. 1. CRISP-DM methodology [26].

With the aim at improving the automation and efficiency in building the classifier
model as well as deploying it in a real-world scenario, developers usually combine the
phases of data preparation, modelling and evaluation into a data management pipeline
that controls the data flow through all algorithms applied.

3.1 Business Understanding

This stage is the most important because the intention of the project is outlined here. The
main objective of this research work is to achieve a data mining model that guarantees
a highly accurate and efficient classification of CKD patients.

3.2 Data Understanding

This step beginswith an underlying data gathering and continueswith actions to facilitate
the understanding of what the project wants and needs in terms of data.

As mentioned before, the CKD dataset used in this research was extracted from
the UCI Machine Learning Repository [16]. The data set, collected from the Apollo
Hospitals, Karaikudi, India during a nearly 2-month period in 2015, includes a total
of 400 samples depicted by 11 numeric, 13 nominal attributes and a class attribute
(ckd/notckd). Out of 400 samples, 250 samples belonged to the CKD group (62.5%),
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and the other 150 samples to the non-CKD group implying an imbalanced dataset. Table
2 lists the attributes from the original data set. It must be noted every attribute contained
missing values except the class attribute, due to possibly to the fault of the receiver input,
sensor error or reluctance on data resource. The indicators considered in this dataset are
feasible to collect [7] in clinical routine favoring an early diagnosis of CKD.

Table 2. Attributes description of CKD dataset

Attributes [Acronym] Indication Average/nominal values

1 Age (year) [age] Numerical 51.5 (avg)

2 Blood pressure (mm/Hg)
[bp]

Numerical 76.5 (avg)

3 Specific gravity [sg] Nominal (1.005, 1.010, 1.015,
1.020, 1.025)

7, 84, 75, 106, 81

4 Albumin [al] Nominal (0, 1, 2, 3, 4, 5) 199, 44, 43, 43, 24, 1

5 Sugar [su] Nominal (0, 1, 2, 3, 4, 5) 290, 13, 18, 14, 13, 3

6 Red blood cells [rbc] Normal or abnormal 47 abnormal

7 Pus cell [pc] Normal or abnormal 76 abnormal

8 Pus cell clumps [pcc] Present or not present 42 present

9 Bacteria [ba] Present or not present 22 present

10 Blood glucose random
(mgs/dl) [bgr]

Numerical 148.04 (avg)

11 Blood urea (mgs/dl) [bu] Numerical 57.43 (avg)

12 Serum creatinine (mgs/dl)
[sc]

Numerical 3.07 (avg)

13 Sodium (mEq/l) [sod] Numerical 137.53 (avg)

14 Potassium (mEq/l) [pot] Numerical 4.63 (avg)

15 Hemoglobin (gms) [hemo] Numerical 12.53 (avg)

16 Packed cell volume [pcv] Numerical 38.88 (avg)

17 White blood cell count
(cells/cumm) [wc]

Numerical 8406.12 (avg)

18 Red blood cell count
(cells/cumm) [rc]

Numerical 4.71 (avg)

19 Hypertension [htn] Yes or no 147 yes

20 Diabetes mellitus [dm] Yes or no 137 yes

21 Coronary artery disease
[cad]

Yes or no 34 yes

22 Appetite [appet] Good or poor 82 poor

23 Pedal edema [pe] Yes or no 76 yes

24 Anemia [ane] Yes or no 60 yes

25 Target class ckd or notckd 250 ckd
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3.3 Data Preparation

Once the data has been collected, it must be transformed or preprocessed into a usable
subset by checking for questionable, missing or ambiguous cases.

Missing value imputation is one of the important tasks in data mining especially
in the cases where the data is small and there is a need of using all available data, as
occurs with CKD dataset [9]. For handling data missing values several approaches can
be followed depending on the type of attribute or feature. Regarding numerical features,
replacement can be done by Bayesian imputation with median or mean of the rest of
feature’s values; or applying multivariate imputation through techniques as KNN or
iterative correlation among all features. In case of nominal features, the most common
approach is to substitute missing value for the most common value of the feature.

Relatively many features can overload the classifier contributing negatively towards
the calculation of the classification as well as increasing the computational time. Feature
subset selection aims to reduce computing time and improve the results of prediction by
removing the features/attributes in a dataset that are considered unimportant or unable to
contribute to accuracy of the classification [17]. Features selection method also depends
on the input feature category and the target class’ category, although there are meth-
ods that can be used for both like mutual information or recursive feature elimination
(RFE). Apart from the two latter, this study will use ANOVA and Chi-Squared (Chi2)
for numerical and nominal categories respectively.

Another technique used in data preparation is feature scaling to allow the model to
process the samples of numerical features with a normalized range of values by applying
for instance minmax scaling (used here) or standard scaling. On the other hand, nominal
features are usually encoded into numbers to allow the model to perform correctly.

3.4 Modeling

Once data is prepared for being processed, several data mining classifiers can be applied
in order to discover underlying patterns and so to gain meaningful insights. This is the
purpose of data mining: to create knowledge information that has meaning and utility.

Depending on the data mining tasks, models used can be classifiers or regressors.
As the goal of this research was to enhance early diagnosis of CKD patients through
classification, the following classifiers employed were: Logistic Regression, Support
Vector Machine, Decision Trees, Random Forest, Multilayer Perceptron, Naïve Bayes,
K-Nearest Neighbors, and AdaBoost with Decision Tree as base classifier. These clas-
sifiers have been employed in related works described previously, and their usage will
allow to compare the performance of the model developed in this research.

3.5 Evaluation

Classifier model selection must be done by dealing with a portion of the data and adjust-
ments are made if necessary. Therefore, splitting the training set is recommended in
this phase to divide in into a training subset, to decide which model performs better,
and a validation subset, to tweak the hyperparameters of the selected model refining the
classification accuracy. The k-fold cross-validation technique allows using each sample
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of the dataset for training k-1 times and testing 1 time [27]. Therefore, the variance of
classification result can beminimized. However, the dataset should have been previously
split to save a test set with the aim to run the model on unseen data, thus, ensuring new
samples will be classified as expected in the next deployment phase. In this research, a
test set is firstly generated, and the cross-validation technique is used on training set to
select the model and the parameters of the data preparation phase.

To estimate classification performance, several metrics are used in this research,
namely: accuracy, precision, recall/sensitivity, specificity, f1-score and roc-auc. Accu-
racy describes the rate of true predictions and it is suitable for balanced data among
classes. However, because the data on CKD dataset is not balanced, the other metrics
will be used to assess the model classifier. As following, the formulas of the measures
used are shown considering the acronyms depicted in the confusion matrix (Tables 3
and 4).

Table 3. Confusion matrix layout

Predicted class

0 1

Actual class 0 TN (True Negative) FP (False Positive)

1 FN (False Negative) TP (True Positive)

Table 4. Classification metrics formula

Classification metrics Formula

Accuracy: the overall success rate of true prediction (TP+TN)
(TP+TN+FP+FN) (1)

Sensitivity/Recall: fraction of positive instances predicted
correctly

TP
(TP+FN) (2)

Specificity: fraction of negative instances predicted correctly TN
(FP+TN) (3)

Precision: fraction of true positive data given all true predicted
data

TP
(TP+FP) (4)

F1-Score: harmonic mean from precision and recall 2 ∗ ( Precision ∗Recall
Precision+Recall ) (5)

Roc-Auc: Area under curve ROC (Receiver Operating Characteristic). Values between 0 and 1
and higher values imply better classification performance

3.6 Deployment

This stage is envisioned to put the selected model to perform on new data in a production
environment in line with the project’s objectives. Concerning this research, in this phase
the model selected would be performed in clinical routine. The new interactions at this
phase might reveal the new variables and needs for the dataset and model. These new
challenges could initiate revision of either business needs and actions, or the model and
data, or both.
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3.7 Data Mining Software

In this research, Python [28] has been used as language programming along with scikit-
learn package [29] that allows to develop every stage of the CRISP-DMmethodology. In
particular, by using the scikit-learn’s module GridSearchCV, multiple combinations of
classifiers, data missing imputation, scaling and feature selection techniques have been
tested to find the best model to classify CKD.

4 Results

4.1 CKD Classifier Experimental Setup

As mentioned before, developers are encouraged to build pipelines that manage the
data operations tackled in the data preparation, modelling and evaluation phases of
CRISP-DM methodology.

Fig. 2. CKD classifier model’s pipeline
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Figure 2 shows the different steps of the data management pipeline developed in
this research that allows to find the best model to classify CKD patients. As a previous
step, the original dataset was split for training (70% i.e. 280 samples) and testing (30%
i.e. 120 samples), maintaining the same proportion of ckd/non-ckd in both sets. Next,
the first step of this two-branch pipeline entails the separation of numerical and nomi-
nal features. Regarding numeric features, data missing techniques are applied first and
then continuing with selection of those relevant features and a further scaling apply-
ing mixmax normalization. Data missing is also tackled first in nominal features and
before applying feature selection, these features are encoded into numbers to ensure a
correct performance in further steps. In order to select the model which performs the
best classification of CKD patients, the classifier is trained and then validated by using
5-fold cross-validation. For that purpose, the scikit-learn’s module GridSearchCV was
employed since it allows to find the best classifier applying cross-validation as well as
trying a grid of parameters for every stage of the pipeline. Finally, samples from the
test set were used with the best model found to evaluate its classification performance
with unseen data. This last evaluation gives a real notion about the selected model’s
performance with new data (i.e. data not used for training).

GridSearchCV allows developers to find the best combination of a model’s param-
eters by applying an exhaustive search with multiple candidates generated from a pre-
defined grid of parameters. Therefore, in this research the parameters needed to be
optimized for the best resultant model corresponded to data missing techniques, feature
selection strategy and its number of output features, as well as the type of data mining
classifier employed. Table 5 shows the different values considered for these parameters.

Table 5. GridSearch CV parameters employed

GridSearchCV parameters Values

Data missing strategy for numeric features Mean, median, KNN, iterative

Feature selection strategy ANOVA (only numeric features), Chi2 (only
nominal features), mutual information, Recursive
Feature Elimination (RFE)

Number of output features 1 to 11 for numeric; 1 to 13 for nominal

Classifiers Logistic Regression, Support Vector Machine,
Decision Trees, Random Forest, Multilayer
Perceptron, Naïve Bayes, K-Nearest Neighbors,
and AdaBoost with decision tree as base classifier

4.2 CKD Classification and Feature Selection Results

According toGridSearchCV results, the best model’s parameters foundwere:median for
data missing strategy; RFE and 4 output features for numeric features; RFE and 5 output
features for nominal features; andAdaBoost classifier. The first 3 best combination found
by GridSearchCV results are shown in Table 6.
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Table 6. Best 3 models found by GridSearchCV (all cells expressed in %)

Best Model (classifier, data
missing, numeric feature
selection, nominal feature
selection)

Accuracy F1-Score Precision Specificity Recall Roc Auc

AdaBoost, median, RFE#4,
RFE#5

100 100 100 100 100 100

AdaBoost, median,
ANOVA#7; Chi2#7

99.64 99.53 99.09 99.42 100 99.71

AdaBoost, median,
ANOVA#7, RFE#5

99.64 99.51 100 100 99.04 99.52

Moreover, Table 7 shows a comparison of the cross-validation results using the
different classifiers but maintaining the best model’s parameters related to data missing
and feature selection.

Table 7. Comparison of best model parameters with all classifier considered (all cells expressed
in %)

Classifier Accuracy F1-Score Precision Specificity Recall Roc Auc

AdaBoost 100 100 100 100 100 100

Random Forest 99.29 99.00 100 100 98.10 99.05

Multilayer Perceptron 98.57 98.16 96.44 97.71 100 98.86

Logistic Regression 98.21 97.70 95.53 97.14 100 98.57

Decision Trees 98.21 97.67 97.50 98.29 98.10 98.19

Support Vector Machine 97.86 97.29 94.85 96.57 100 98.29

K-Nearest Neighbors 97.86 97.29 94.85 96.57 100 98.29

Naïve Bayes 95.71 94.61 89.78 93.14 100 96.57

The final step of the pipeline proposed in this research entailed the evaluation of the
bestmodel achieved on the test set’s samples to see its performancewith newunseen data.
The 3 best models extracted in GridSearchCV results were evaluated in these conditions
and classification results are shown in Table 8:
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Table 8. 3 best models found by GridSearchCV evaluated on test set (all cells expressed in %)

Best model Accuracy F1-Score Precision Specificity Recall Roc Auc

AdaBoost, median,
RFE#4, RFE#5

98.33 98.34 98.40 98.33 98.83 98.67

AdaBoost, median,
ANOVA#7; Chi2#7

99.17 99.17 99.18 99.17 99.17 99.33

AdaBoost, median,
ANOVA#7, RFE#5

100 100 100 100 100 100

The confusion matrix of these models by using the samples of test set (120 samples)
are depicted in Table 9.

Table 9. Confusion matrix of best selected models with samples of test set.

Predicted class

ckd notckd

AdaBoost, median, RFE#4, RFE#5 Actual class ckd 73 2

notckd 0 45

AdaBoost, median, ANOVA#7; Chi2#7 Actual class ckd 74 1

notckd 0 45

AdaBoost, median, ANOVA#7, RFE#5 Actual class ckd 75 0

notckd 0 45

In addition, the best models indicated that only 9, 12 and 14 out of 24 features were
considered as relevant to achieve such results. The features selected for the 3 best models
are shown in Table 10.

Table 10. Features selected in the 3 best models found by GridSearchCV

Best models Numeric features Nominal features

AdaBoost, median,
RFE#4, RFE#5

Serum creatinine, Potassium,
Hemoglobin, Red blood cell
count

Specific gravity, Albumin,
Hypertension, Diabetes mellitus,
Pedal edema

AdaBoost, median,
ANOVA#7; Chi2#7

Blood glucose random, Blood
urea, Serum creatinine, Sodium,
Hemoglobin, Packed cell volume,
Red blood cell count

Specific gravity, Albumin, Sugar,
Hypertension, Diabetes mellitus,
Appetite, Pedal edema

AdaBoost, median,
ANOVA#7, RFE#5

Blood glucose random, Blood
urea, Serum creatinine, Sodium,
Hemoglobin, Packed cell volume,
Red blood cell count

Specific gravity, Albumin,
Hypertension, Diabetes mellitus,
Pedal edema
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5 Discussion

The pipeline developed in this research offers the possibility to automate not only the
training and testing of the model but also the searching of best parameters involved in
the data preparation phase as well as the data mining classifier employed. Furthermore,
this pipeline would manage classification of new samples in case it appeared, as well as
the consequent model retraining and adaptation to new incoming data.

The classification results achieved by this research after applying cross-validation
technique through GridSearchCV manifested that the classifier AdaBoost performed
a better classification task compared to other classifiers considered. Moreover, such
classifier alongwith the parameters selected byGridSearchCV (median, RFE#4, RFE#5)
obtained results of 100% in terms of accuracy, precision, sensivity, specificity, f1-score
and Roc Auc. Compared to the results from other related works, this research reached
the most accurate figures so far like research developed by Van Eyck et al. [20].

However, the best model selected with cross-validation did not perform as the best
with the new data belonging to the test set. Here, a clear example of overfitting existed
since the best trained model was not the most accurate in classifying new unseen
data. Consequently, other model that involved a bigger number of selected features
(ANOVA#7, RFE#5) was evaluated and it classified better since the new information
of features added allowed to achieve results of 100% in every classification metric con-
sidered. For the best of our knowledge, this research outperforms the rest of studies
developed in CKD patients classification so far, because not only equalizing the best
model obtained by using cross validation, but also achieving a perfect classification with
unseen data which has not been found in any related work. The split of the dataset into a
training/validation subset, on one side, and test subset on the other, with a ratio of 70/30
could negatively affect the model performance since a small group of samples were ded-
icated for training. However, the classification results demonstrated the decision made
about developing the pipeline and using the cross-validation strategy developed was
correct.

Moreover this study contributes to the state-of-art by proposing a reduced group
among the entire dataset’s features with several implications: higher feasibility in clas-
sifying CKD patients since the number of features to be collected are lower; and a
decreasing cost to healthcare systems as extracting less clinical indicators proposed by
such features selected.

Due to the fact that the classifier selected is AdaBoost with Decision Tree as base
classifier, an exploration of features importance in the classification task could be car-
ried out with the aim at giving healthcare professionals an easier understanding and
interpretability of the outcomes generated by the model. By doing so, not only would
clinicians achieve an early diagnosis with a reduced group of indicators but also, they
could focus on treatment for those important features to the risk of suffering CKD or
even revert the disease progress returning to an earlier CKD stage.

6 Conclusion

This article shows a development of a classifier model aimed at early diagnosis of
Chronic Kidney Disease (CKD) patients. CKD is a worldwide chronic disease with an
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increasing incidence that leads patients to a premature mortality if it is detected in later
stages. A review of the related works has been carried out by depicting the classification
results achieved by different authors. The CRISP-DMmethodology has been adopted in
the classifier model development to ensure data is properly processed. Moreover, a data
management pipeline has been developed for automating all stages of data preparation,
modeling and evaluation. After applying cross-validation technique through scikit-learn
package’s GridSearchCV, the best model comprises AdaBoost, as best classifier; and
median, RFE#4, RFE#5 as best data preparation’s parameters. Next, this best model is
also tested with new unseen data by using the test set that has been previously split from
the original dataset before using the pipeline developed. Moreover, an exploration of
the features selected during the data preparation phase are carried out to depict those
dataset’s attributes that contribute to the model performance. A case of overfitting is
identified since the best trained model performs worse than the other model with more
features selected when dealing with unseen data in the testing phase. To the best of
our knowledge, the classification results obtained either in cross-validation or in testing
phase outperforms the existing results of the related works reviewed.
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Abstract. Using a wearable electroencephalogram (EEG) device, this
paper introduces a novel method of quantifying and understanding the
visual acuity of the human eye with the steady-state visually evoked
potential (SSVEP) technique. This method gives users easy access to
self-track and to monitor their eye health. The study focuses on how
varying the SSVEP stimulus frequency and duration affect the overall
representation of a person’s visual perception. The study proposes two
methods for this visual representation. The first method is a hardware
system that utilizes long-exposure photography to augment reality and
collocate the visual map onto the plane of interest. The second is a
software implementation that captures the visual field at a set distance.
A three-dimensional mapping is created by gathering software-defined
visual maps at various set distances. Preliminary results show that these
methods can gain some insight into the user’s central vision, peripheral
vision, and depth perception.

Keywords: Wearable sensing · Human monitoring ·
Electroencephalography · Steady-state visually evoked potentials ·
Quantified self · Augmented reality

1 Background and Introduction

Wearable technology has enabled the “quantified self” movement to transform
from a cultural phenomenon into an essential lifestyle [15,36]. The ability to self-
track and log various aspects of one’s life leads to cheaper and more accessible
means of personalized health and wellness care [1,14]. Personal informatics allows
users to understand how their body reacts and performs under different scenarios
and lifestyles [8]. In effect, wearable technology can act as an early diagnostic
tool for detecting undesirable changes to a user’s daily functioning.

Wearable electroencephalogram (EEG) devices are an example of wear-
able technology that tracks user’s sleep patterns, mental states, and cognitive
health [5]. The collected EEG data can provide immediate feedback to the user
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about possible behavioral changes to improve the user’s mental health and well-
ness. The accumulated data can also contribute as a diagnostic measurement to
detect early signs of changes to the user’s cognitive health [19].

This paper extends from this idea of cognitive health tracking and considers
how humans can use a wearable EEG device as a reliable and accessible eye
health monitoring device. By placing EEG electrodes at certain positions on the
scalp, users can gather cognitive activity data of particular interest. One such
cognitive activity is the visual perception of the human eye, which directly con-
nects to the brain through the visual cortex. Visually-evoked potentials (VEPs)
correspond directly to the eye’s visual acuity since VEPs are a measure of visual
activity originating from the photoreceptors to the occipital cortex [9,34].

Visual acuity refers to how well the human eyes can precisely acquire details
at a distance. This ability is quite complex, with many biological parts required
to be in working order to process information [20]. Deficiencies in visual acu-
ity have been shown to significantly reduce a person’s quality of life [3,33].
Despite this importance, data collection to further understand and diagnose
human vision is done through subject testimony, cellular response activation, or
brain-based imaging techniques [4,35]. Personal testimonies are often subjective
but widely used, for example, in the case of eye examinations. On the other hand,
cellular responses and traditional non-wearable neuroimaging devices require
substantial investment to procure and use [21,29,30].

This paper investigates how a wearable EEG device and a visual activity mea-
surement technique known as steady-state visually evoked potential (SSVEP)
can provide insight into the visual acuity of the human eye and hence human
visual perception. Essentially, this study aims to quantify and perceive how the
human eye sees.

1.1 Steady-State Visually Evoked Potential (SSVEP)

Steady-state visually evoked potentials are periodic responses evoked by a visual
stimulus flickering at specific frequencies ranging from 1 to 90 Hz [16,30,31].
SSVEP responses oscillate at the same frequency as the flickering stimulus.
SSVEP responses peak 15 Hz and decreases at higher frequencies [32]. EEG or
functional magnetic resonance imaging (fMRI) can monitor SSVEP responses
by measuring brain activation in the visual cortex [17,30].

1.2 Human Visual Perception

The human eye can see objects that emit or reflect light. The distance, spa-
tial location, and the illuminance of the object affect perception. The density
of receptor and ganglion cells in the retina is higher at the foveal area, and
therefore central vision is more sensitive to observing details than the peripheral
vision [37].

Varying levels of human attention impacts human visual perception [2]. A
higher attention span has the effect of increasing SSVEP strength when a flick-
ering stimulus is presented in the attended region of the visual field [6].
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2 Ayinography

Ayinography is a technique to visualize the biological veillance flux of the human
visual field by using the eye itself as a camera [11,24,25,27]. The participant is
fitted with a wearable EEG sensing device, such as the Muse by Interaxon Inc.
Normally, the Muse wearable device can only measure EEG signals at the frontal
and temporal regions. By adding an external electrode, the device can detect
EEG signals at the occipital point, the Oz location of the 10–20 system [18].

The ayinography technique requires the user to fix their eyes on a particu-
lar location while a stimulus traverses across the participant’s visual field in
a grid-like fashion. The wearable device records EEG data and obtains the
SSVEP responses at every grid point location. These response activation val-
ues are mapped onto their corresponding spatial positions. This process repeats
at varying distances from the user to construct a map of human visual percep-
tion. This study uses two different types of ayinography, a hardware-based and a
software-based approach to prove the concept and investigate the human visual
field as shown in Fig. 1.

2.1 Hardware Ayinography

The typical implementation of hardware-based ayinography utilizes the Sequen-
tial Wave Imprinting Machine (SWIM) technique to overlay the visual field onto
the desired spatial plane. The SWIM uses multi-mediated reality to visualize
invisible physical phenomenology, and thus it can be used for scientific measure-
ment and analysis [7,10,22,23,26,28]. Typically, the SWIM uses a linear array
of light sources connected to and receiving signals from a computing device.
The array of light sources is moved back and forth to visualize measurements of
waveforms. The system makes use of metavision, which is defined as the vision
of vision [11], and overlays the human visual field onto the environment using
augmented reality (AR).

Figure 1a shows an example of the hardware ayinography apparatus. The
apparatus operates using two stepper motors and a belt assembly to move an
arm in two dimensions within the bounds of its operation. The arm connects to
a display device with a flashing stimulus at a set frequency. The plotter receives
position vectors at regular intervals as the stimulus flashes. The user focuses on
the approximate center of the apparatus as the stimulus traverses through the
different predefined positions. Once the system collects the EEG data for all the
predefined points, it constructs a mapping of the visual field of the mind’s eye.
The apparatus is then fitted with an RGB LED to trace out the mapping of the
visual field. As the LED traverses, different colors are produced depending on
the strength of the SSVEP response at a given position. The obtained result is
a two-dimensional AR ayinograph by capturing the entire LED tracing process
with a long-exposure photograph.
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(a) Hardware apparatus. (b) Software screen display.

Fig. 1. The hardware ayinography apparatus and the software ayinography display.
(a) A display device with a flickering stimulus is secured to a robotic arm. The arm
moves in a grid-like fashion, allowing for the collection of data to create the ayinograph.
(b) An application which displays a flickering stimulus moving in a grid-like fashion
to gather the data for vismaps required to create a software-based ayinograph. The
red arrow shows the movement direction of the stimulus and the red cross shows the
location of the center screen 3-pixel indicator. Both the red arrow and cross are visual
aid overlays. (Color figure online)

2.2 Software Ayinography

The software ayinography makes use of a computer monitor as a two-dimensional
plane as shown in Fig. 1b. The user focuses on a fixed graticule in the center of
a black background while a stimulus of constant size flashes across the screen,
traveling in a right-to-left and top-to-bottom manner. At each position, the
stimulus flashes at a particular frequency for a fixed duration. Each position has
80 % overlap to the next known position. Once the EEG data is collected, the
subsequent SSVEP activation mapping of the mind’s eye results in a 23× 23 px
slice of the user’s visual field. The resulting representation is referred to as a
vismap (or vidmap) from the Latin words “visio” which means “vision” (or
“videre” which means “to see”) and “mappa” which means a plane surface on
which maps were drawn. The sequence may be repeated at various distances to
the eye to recreate a three-dimensional ayinograph. Thus, software ayinography
creates a more holistic mapping of the visual field through the mind’s eye in
three-dimensional space.

3 Signal Processing Algorithm

3.1 Lock-In Amplifier (LIA) Algorithm

The lock-in amplifier is originally an analog device that isolates and amplifies a
certain oscillatory frequency while rejecting all other frequencies. This method
of signal extraction is useful in an extremely noisy environment, provided that
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the reference signal frequency is precise and known. A more advanced form of
LIA uses an additional reference signal that is 90◦ phase-shifted compared to
the first reference. From Eq. 1, if the original reference is a cosine wave with a
frequency set at fs, then the additional reference is a sine wave.

sin(ωt) = cos(ωt +
π

2
), t = (t1, t2, . . . , tn)

ω = 2πfs
(1)

Given the frequency that the stimulus is flashing at, two reference signals, a
sine wave and a cosine wave, are multiplied to the original signal. A software-
based LIA is useful for the study since the algorithm extracts the SSVEP
response frequency, as long as the stimulus frequency is known.

The algorithm replicates the performance of a hardware-based LIA. Eq. 2
details this implementation. The algorithm multiplies the raw 256 Hz sampled
EEG data collected from the Oz position with the cosine and sine reference
waves at the stimulus frequency to extract the SSVEP at that frequency. Then,
a second-order Butterworth low-pass filter (LPF) at 0.7 Hz is applied to yield
an output that mostly contains the amplitude information of the signal. The
low-pass filter is set to 0.7 Hz since this is approximately a decade less than the
frequencies of interest.

Vcos(ωtj) = LPF
[
u(t)cos(ωtj), 0.7 Hz

]

Vsin(ωtj) = LPF
[
u(t)sin(ωtj), 0.7 Hz

]

α(ωtj) =
√

Vcos(ωtj)2 + Vsin(ωtj)2
(2)

Equation 3 averages the summed magnitudes, and this value indicates the
extracted value of a particular spatial location.

pixel =
1
n

n∑

j=1

α(ωtj) (3)

3.2 Threshold Denoising Algorithm

A simple threshold denoising algorithm is applied to isolate quantifiable features
on the resulting bitmap. The algorithm weakens values below the threshold and
strengthens the values above it. Next, by comparing each pixel value to its neigh-
boring pixels and removing outliers, the single-pixel noise is removed. Lastly,
the method averages the pixel value among the neighboring pixels by applying
a Gaussian filter to the image.

4 Experimental Procedure

There were five participants in the experiments, 4 males and 1 female in their
mid-20s to early 30s. All participants are not diagnosed with any brain or vision-
related issues. User C and D wore prescription corrective lenses during the exper-
iments. Table 1 lists the software ayinography experiment variation for each user.
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(a) Hardware ayinography. (b) Ayinography AR overlay.

(c) Software ayinography. (d) Vismap for 20 cm distance.

Fig. 2. A user participating in both software and hardware variants of the ayinography
experiment. From left to right, the first image is the hardware ayinography experiment
performed by a user. The second image is the hardware ayinograph overlayed onto the
real-world environment using long-exposure photography at 8.5 Hz stimulus frequency
and 2 s stimulus duration. The third image is the software ayinography experiment
performed by the same user. The last image is the user’s vismap at 20 cm, 8.5 Hz
stimulus frequency and 2 s stimulus duration.

Table 1. Software ayinography experiment variation.

User Diagonal window size (cm) Frequencies (Hz)

A 43.5 6, 11, 16

B 26.8 7, 12, 17

C 53.0 8, 13, 18

D 38.1 9, 14, 19

E 22.5 10, 15, 20
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Figure 2 shows a user performing the hardware and software experiments
and their corresponding processed outputs. During the experiments, the users
focus their vision on a centered indicator while the stimulus moves to different
predefined locations. Table 1 summarizes, for each user, the frequency at which
the stimulus flashes and the diagonal window size. Adding timestamps to both
the collected EEG data and the stimulus position helps in matching the data to
its corresponding position. At each predefined location, the stimulus flashes for
a set duration of 1 s or 2 s for the software ayinography, and 2 s for the hardware
ayinography experiment.

(a) Zigzag movement pattern. (b) Unidirectional movement pattern.

Fig. 3. Side view of the hardware ayinography apparatus as the stimulus is being
presented. The stimulus moves in the direction of the arrows and experiment proper
occurs when the arrow is solid. Two different stimulus movement patterns are examined.
(a) shows the zigzag movement pattern. (b) shows the unidirectional movement pattern.

In the software ayinography experiment, the stimulus moves left to right for
each predefined row, and then top to bottom. The stimulus used is a 200×200 px
black and white flashing circle. The stimulus size is dependent on the user’s
screen size, which is shown in Table 1. This experimental procedure mirrors a
previous study investigating the SSVEP response with the stimulus at different
positions [11]. Expanding from the previous study, the experiment is repeated
with the user’s eyes set at 20 cm, 30 cm, 40 cm, and 50 cm away from the screen
to obtain enough data to reconstruct the user’s field of vision.

In the hardware ayinography experiment, a square stimulus is projected using
a smartphone with a screen size of 12 cm. This study experiments with two
different stimulus movements as shown in Fig. 3. The first is a zigzag pattern
where the stimulus moves from bottom to top, then back, and repeats in this
fashion until the end of the experiment. The second is a unidirectional pattern
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where the stimulus starts from bottom to top and then resets to the next bottom
position.

Once all the data are collected, the signals are processed using the software-
defined lock-in amplifier (LIA) algorithm to extract the SSVEP at that fre-
quency. The algorithm obtains the pixel value for each stimulus location by
averaging the magnitude over the time duration for that particular stimulus
location.

The vismaps that form the software ayinographs are generated by taking
these averaged magnitudes and plotting them onto a heatmap based on their
values. The threshold denoising algorithm is then applied to the vismaps to
extract quantifiable information. The hardware ayinographs are formed by con-
structing a bitmap of the averaged magnitudes, scaling up to 42 × 22 px, and
plotting the results with an RGB LED. Figure 2b shows a sample result as an
augmented reality overlay using long-exposure photography.

5 Results and Discussion

5.1 Foveal Activation and Direction

Based on the results from software-based ayinography, the vismaps portrayed the
existence of a foveal area through the mind’s eye. This foveal area had a higher
SSVEP activation, forming a circular pattern within the participant’s field of
view and corresponded to a higher intensity color as shown from the ayinographs
in Fig. 4. The algorithm extracted this area by applying a threshold filter on the
vismaps to remove noise. Certain images had high, isolated activations outside
the foveal region. These outliers were then smoothed or dampened using the
threshold denoising algorithm to increase the gains of the focal center. Figure 5
shows sample denoised vismaps that clearly show the focal center. The isolated
focal center pixels were then computed and normalized by the window sizes,
Table 1, used by each user. Figure 6 shows the retrieved foveal areas. For results
in which a clear foveal area is not visible, the results are recorded as 0 px.

In both hardware and software ayinography, the SSVEP response peaked
when the stimulus was flashing close to the central vision: the focal point. The
foveal area was found to depend on stimulus distance, size, and duration. In the
software ayinography, the focal point is represented by a circle of high activation
in the center of vismaps, as shown in Fig. 4. In the hardware ayinography, the
focal point is represented by lines of high activation near the center of the SWIM,
as shown in Fig. 7.

Using these ayinography methods, a participant’s focal point and attention
could be visibly seen. In Fig. 7a, the participant was looking at a downward angle
when the hardware ayinograph was taken, while in Fig. 7b, the same participant
was looking straight.

From Fig. 6, as well as the original vismaps, data taken at 1 s stimulus dura-
tion had a higher rate of noise in the foveal area data compared to data taken
at 2 s stimulus duration. Since the higher stimulus duration had more sample
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(a) User A’s ayinograph at 11Hz stimulus frequency.

(b) User B’s ayinograph at 17Hz stimulus frequency.

(c) User C’s ayinograph at 18Hz stimulus frequency.

(d) User D’s ayinograph at 14Hz stimulus frequency.

(e) User E’s ayinograph at 15Hz stimulus frequency.

Fig. 4. Software ayinograph obtained from each user’s EEG data at 2 s stimulus dura-
tion. Vismaps at different distances are collated to form the ayinograph.
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Fig. 5. Denoising of vismaps from User C at 18 Hz stimulus frequency in order to
isolate the pixels for calculating the focal area. (a) to (d) are vismaps at 1 s stimulus
duration. (e) to (h) are vismaps at 2 s stimulus duration.

points per stimulus location, the LIA algorithm has more data to work with for
signal extraction and noise filtering.

Another observation was that the foveal area remained relatively static, with
only a slightly increasing trend over the set of distances as shown in Fig. 4
and 7. Also, the foveal area changed for every stimulus frequency. Each user had
a specific frequency which provided a consistently larger activation area: 11 Hz
for User A, 17 Hz for User B, 13 Hz for User C, 9 Hz for User D, and 15 Hz for
User E.

Subjects noted that the procedures were harder to follow for the hardware
ayinography experiment than for software ayinography. The difficulty was due to
the absence of a display that is coplanar to the stimulus. Subjects are required to
refocus their vision whenever the stimulus enters and leaves their central field.
Unfocusing and refocusing many times may cause changes in their attention
levels and reconfigure their line of sight, which may decrease the SSVEP response
strength.

5.2 Blink Interference

A human blink occurs at frequencies of 6 Hz and lower and strongly affects human
visual perception and EEG signals [13]. Blinking affects visual perception since
the individual momentarily loses sight of the stimulus while the eyes are closed.
The muscle signals sent to the eye during a blink will interfere with SSVEP. The
EEG amplifier will pick up this muscle signal as noise. This could have resulted
in noisy data obtained at the 6 Hz by User A in Fig. 6a.
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Fig. 6. Foveal area in cm2 calculated based on SSVEP responses at various stimulus
frequencies, duration and distance for each user.



88 D. E. Garcia et al.

(a) User B zigzag pattern. (b) User B unidirectional pattern.

(c) User C zigzag pattern. (d) User C unidirectional pattern.

Fig. 7. Hardware ayinograph AR images from processed EEG data. (a) and (c) data are
collected using a zigzag pattern while (b) and (d) are collected using the unidirectional
pattern. Stimulus frequency for User B is set at 17 Hz while User C is set at 18 Hz.
Stimulus duration for all experiments is set at 2 s.

5.3 SSVEP Response Delay

A response delay between the time of presentation of visual stimulus and the
activation of SSVEP was examined during the experiments. This was clearly
shown by comparing the results of the two moving patterns of hardware ayinog-
raphy as seen in Fig. 7. When the stimulus was moving in a zigzag pattern,
SSVEP response was shifted up and down depending on the direction of stimu-
lus movement. In contrast, when the stimulus was moving in the unidirectional
pattern, the start positions of the activations were more aligned. These contrast-
ing observations indicate that the SSVEP activations were shifted in the same
direction for the unidirectional pattern ayinographs.

As a result of the unidirectional shift, the area of activation in unidirectional
pattern ayinographs had inherent inaccuracies since estimating the response time
and the length of the shift were difficult. The response time in the zigzag pattern
ayinographs shifted activation to both directions, minimizing the effect of response
time on focal area estimations. Assuming response time is roughly the same for
each row since activation on every other row is shifted in a different direction, the
actual time for stimulus flashing is approximately the average of rows.
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6 Conclusion

This paper provides an exploration of SSVEP frequencies, human vision, and
response times. Wearable EEG devices can do more than just track users’ sleep
patterns, mental states, and cognitive health. Through the use of ayinography,
EEG devices can also examine the foveal area of the human eye. This opens a
potential path to personal eye informatics, perceiving and quantifying the visual
acuity of the human eye.

Ayinography is a technique to visualize the visual field of the human as it
changes in space. Two types of ayinography are presented: software-based and
hardware-based. The software ayinograph is constructed with multiple vismaps
at various distances. Each vismap represents the SSVEP responses obtained by
displaying a moving flickering stimulus at a set distance from the eye. The hard-
ware ayinograph is a two-dimensional AR overlay that is produced using long-
exposure photography, and an LED tracing procedure to represent the SSVEP
responses from a moving flickering stimulus.

Based on the results presented, the ayinography methods sufficiently capture
the participant’s focal point and attention. The foveal area remains largely static
over distances, while a longer stimulus duration returns a less noisy signal for
data collection. The existence of a response delay for SSVEP can be shown
via the hardware ayinograph. The unidirectional pattern ayinograph shows a
straight beam of activation from left to right, while the zigzag pattern ayinograph
shows shifted activations based on the stimulus direction.

7 Future Work

7.1 Investigations into Stimulus Size

Due to the pandemic at the time of submission, experimental setups were recre-
ated at multiple locations for each user. Thus, stimulus size, hardware specifi-
cations, and screen size were a few factors that had an effect on the outcome
of the experiments. For future experiments, these factors may be explored or
controlled.

7.2 Augmented Reality for Bioveillance

SWIMs, in general, have been used for visualizing phenomenological realities
that are otherwise invisible to the human eye. By showing its usefulness in visu-
alizing the human visual field, a future direction may include plans for using this
augmented reality method to explore and visualize other biological phenomena.

7.3 Cognitive Studies and Visual Acuity

Ayinography can help determine the visual acuity of a person and quantify how
eye defects hamper vision. This new form of visual perception analysis can lead
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to new insights into the correlations between vision and cognition. Additionally,
using this technique, future directions can potentially lead to cognitive-visual
exercises, brain-computer interfaces [12,24], or perhaps even explore visual per-
ception within dreams.

7.4 Assessment Tool for Eye Health

Ayinography can be developed for use as an eye health assessment tool. When
one visits the eye doctor, some degree of subjectivity in the form of user testi-
mony is still present. Assessment by ayinography is more objective and accurate.
By using a wearable EEG device, the assessment method becomes more acces-
sible and cost-effective both in terms of assessment time and economic costs
over traditional non-wearable neuroimaging devices. Using different colors in
the flashing stimulus may provide insight into the presence of color blindness.
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Abstract. The problem of stress detection and classification has attr-
acted a lot of attention in the past decade. It has been tackled with
mainly two different approaches, where signals were either collected in
ambulatory settings, which can be limited to the period of presence in
the hospital, or in continuous mode in the field. A sensor-based con-
tinuous measurement of stress in daily life has a potential to increase
awareness of patterns of stress occurrence. In this work, we first present
a data-flow infrastructure suitable for two types of studies that conforms
with the data protection requirements of the ethics committee monitor-
ing the research on humans. The detection and binary classification of
stress events is compared with three different machine learning models
based on the features (meta-data) extracted from physiological signals
acquired in laboratory conditions and ground-truth stress level informa-
tion provided by the subjects themselves via questionnaires associated
with these features. The main signals considered in current classification
are electro-dermal activity (EDA) and blood volume pulse (BVP) sig-
nals. Different models are compared and the best configuration yields an
F1 score of 0.71 (random baseline: 0.48). The importance on prediction of
phasic and tonic EDA components is also investigated. Our results also
pave the way for further work on this topic with both machine learning
approaches and signal processing directions.

Keywords: Physiological monitoring · Stress prediction · Sympathetic
and parasympathetic activation · Affective computing ·
Telemonitoring · Self-management systems

1 Introduction

At the physiological level, stress is an organism’s response to some external
stimuli, or a challenge. In presence of stressor, the “fight or flight” response is
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activated through the sympathetic nervous system (SNS), which results in release
of cortisol and adrenaline, leading to heart rate increase, sweating, and increased
concentration of all senses on current situation. The parasympathetic nervous
system (PSNS) works in concert with SNS. Its main function is to activate
the ‘rest and digest’ response and return the body to homeostasis after the
“fight or flight” response. This results in a reversion of the physical effects of
SNS activation and particularly in a heart-rate decrease. Both SNS and PSNS
represent the autonomous nervous system (ANS).

In a sense, stress is a natural reaction of the organism. However, there exist
many studies showing the link between stress and illnesses [18]. This means that
it is not the fact of stress that causes problems to the organism, it is the level of
stress that might be excessive to an organism, such that the PSNS fails to return
it to homeostasis. Such an excessive and often prolonged stress is called a distress.
Identification of distress is not simple, since asking a person about how she or he
thinks, or feel is susceptible to a wide range of biases since humans are very often
not even aware of how they are affected by various stimuli or situations. This
way, it is important to give an objective quantitative evaluation to the level of
stress and study the activation of ANS as the first step towards definition of the
border between a positive stimulation of the organism and distress. This may
allow to not only detect the stress conditions leading to distress, but potentially
reduce the fear of stress and its unnecessary consequences.

The approaches to stress detection can be roughly classified into: 1) those
performed in the ambulatory setting during a relatively short period of time,
and 2) those that are performed during the long term when the participant
continue his/her normal life activities. The signals reflecting the ANS activity,
can be divided into physiological, such as, for example, electro-dermal activity
(EDA) [4], heart rate (HR), heart rate variability (HRV) [15], and levels of
cortisol [13,20], and behavioural, such as smartphone activity statistics [16], and
annotated geolocation. It is clear that experiment settings define the set of signals
that must be considered as more reliable for that experiment. It is obvious that
behavioural signals make much less sense in the ambulatory settings as well as
the level of cortisol, since its level is a subject to circadian rhythms. The other
physiological signals (EDA, HR, and HRV), in contrast, are less reliable in long
terms studies since they are often heavily corrupted with the movement artifacts
that are difficult to filter out. However, their good classification in the laboratory
setting could help to find the means to improve their use in the long term studies.

The ultimate goal of our study is a system for real-life seamless monitoring
of stress. Therefore, we have first created a data-flow application suitable for
two types of studies that conforms with the data protection requirements of the
ethics committee monitoring the research on humans, as described in this paper.

The stress classification approach presented in this paper is covering the
experiments performed in the laboratory setting during which EDA, and HRV
signals were collected by means of the Empatica E4 wrist bracelet. The partic-
ipants of the experiment were induced with four types of stress stimuli, aiming
to provoke emotional, intellectual, and physical activity types of stress as well as
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pain, alternated with relaxation periods. The signals are annotated with the indi-
cators of relative changes of perceived stress levels provided by each participant.
Further, all the signals are processed and vectors of important signals features
are extracted. The vectors of signal features with stress indicators are then com-
bined into simple or multiple windows and given as an input to machine learning
based models. Furthermore, a comparison of deep learning models is presented.

This paper is organized as follows: Sect. 2 presents related work for stress
evaluation, Sect. 3 provides details on the dataset, Sect. 4 presents details of
each data-flow step and Sect. 5 discuss experimental results. Finally, in Sect. 6
we summarize the importance of our contribution and suggest some future work.

2 Related Work

Several works proposed in literature aim to detect the condition of stress and
estimate the level of mental effort by using wearable sensors and mobile appli-
cations, such as in [3] and [12], which have demonstrated that smartphone data
can be used for mood classification.

Physiological measures such as EDA, HR and HRV are frequently used in
studies related to affection and well-being [16]. [6] proposes a smart-watch based
system to collect and analyses biosignal data to detect unobtrusively and at
low cost mental stress condition during daily life activities. In particular, EDA
has long been used to study a variety of physiological subjects including stress,
emotion, depression, anxiety, attention and information processing [7]. In [16] the
link between EDA and stress is explored. In the same study, the authors collected
data for the analysis and prediction of stress from smartphone logs. [14] proves
that the EDA is sensitive to cognitive stress during water immersion while others
used derivatives of the BVP signal as in [9] where information on respiratory rate
(RR) and HRV is analyzed to obtain reliable interpretation parameters for stress
assessment.

Some works have also added other types of data to better support their
results as in [2] which adds diameter of the pupil to the characteristics of the
user’s physiological signals such as blood volume pulse (BVP) providing HRV,
galvanic skin response (GSR), i.e. EDA, and temperature of the skin, to provide
a system for detecting stress. In [10], a classification method to determine stress
on GSR and speech was proposed. In our work we are focusing on signals that
can be acquired in a seamless manned in everyday life. Therefore, we are not
considering pupil dilatation as a potential physiological measure for our system,
even though we admit that it is a useful indicator of stress. Though, we might
consider speech recognition as a potential extension of our system in the future.

The wide variety of classification algorithms have been applied to tackle the
classification problem. In [2], signal processing techniques were applied to the
physiological signals monitored to extract characteristics used by various learning
algorithms: Naive Bayes, decision trees, and SVM to classify relaxed states (non-
stress) compared to stressed states (stress). In [10], the decision tree, K-means
clustering, and support vector machine (SVM) classifiers were proposed. In [6] a
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KNN classifier was used to predict stress, from the body temperature, GSR and
RR interval. The signals were collected to detect mental stress generated by the
subject solving the Tower of Hanoi puzzle. This work [21] used logistic regression
to predict the probability of stress state. In [11], the authors use a deep learning
model with 7 hidden layers to predict stress state using EEG signal. It is common
to classify stress with a binary class as in [8], with an RNN algorithm detecting
stress from a voice signal.

The most relevant to our approach is the method of WESAD experiment [17],
during which a multi modal data set was collected for stress classification and
tested by several algorithms based on physiological data. Data collection was
carried out in the laboratory. A binary definition of stress (stress, non-stress),
as well as a three-class definition (baseline, stress, and amusement), are tested.
However, all the tested algorithms are based on single sequence inputs, such as
decision trees, kNN, or AdaBoost.

3 Data Collection

In this section, we describe how the DESY dataset used for the detection and
classification of stress was collected.

The signals were acquired from 6 students of our university who have
signed the consent form. The study protocol (see Sect. 3.1) was approved by
the ethics committee on human resource (CER-VD) [1]. Exclusion criteria,
stated in the study invitation, were pregnancy or lactation, major psycho-neuro-
endocrinological or cardiac diseases and mental disorders, as well as participants
having insufficient knowledge of the project language. All selected subject wore
the Empatica E4 bracelet on their non dominant hand and the E4 records BVP
(64 Hz), EDA (4 Hz), TEMP (4 Hz), and ACC (32 Hz) were recorded during the
whole study. For more details about collected signals see Sect. 4. All the collected
data were carefully anonymized.

3.1 Study Protocol

The goal of this experiment was to record physiological signals that will have the
least possible movement induced artifacts often corrupting the physiological data
collected using wearable technologies. Therefore, this experiment was performed
in the laboratory conditions, while the participants were asked to make as little as
possible movement with the hand with the bracelet to avoid as much as possible
the movement artifacts. As the possible sources of stress we have selected the
emotional arousal, intellectual efforts, physical exercises, and pain.

In order to allow each participant to come to his/her baseline condition the
experiment was started by filling in a small questionnaire that was used further
to define the subjective level of the current health and stress conditions. The
participants were asked to answer the following questions using the 5 grade-
scale:
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– In general, my health is... - [Excellent (5) .. Poor (1)]
– I feel energetic... - [All of the time (5) .. Almost never (1)]
– Personality: I often stress when unexpected and difficult situations arise -

[Strongly agree (5) .. Strongly disagree (1)]
– Daily activities: I stressed a lot in the past 24 h - [Strongly agree (5) .. Strongly

disagree (1)]
– Sleep quality (1): I had trouble sleeping and had many sleep disturbances last

night - [Strongly agree (5) .. Strongly disagree (1)]
– Sleep quality (2): I did not sleep in the past 24 h - [Strongly agree (5) ..

Strongly disagree (1)]
– Sleep quality (3): I had trouble sleeping and had many sleep disturbances in

the past month - [Strongly agree (5) .. Strongly disagree (1)]
– Right now, I fell... - [Relaxed (5) .. Stressed (1)]

Fig. 1. An example of sequence of stressful and relaxing events with questionnaires.
Note that each participant had his own order of stressful events.

To emulate each of the sources of stress each participant was asked to perform
different activities. This way:

1. Emotional arousal was stimulated by showing a scary video during about
3 min;

2. Intellectual efforts was done by solving some riddles that were chosen by each
participant randomly from a bunch of riddles printed on a paper (2–3 min);

3. Physical activity was represented by series of squats (2–3 min);
4. Pain was emulated by letting the participant to put his hand in the icy water

for 1–2 min.

Each volunteer was participating in the above described studies with the ran-
domized order of stress test to avoid influence of the order of stressful events
on the results of classification. Each stressful period was followed by minimum
7 min of relaxation with some peaceful music and videos of the nature.

After each period (stressful or relaxed) of the experiment, each participate
was asked to report their perceived stress level regarding the just finished activity
describing it as either of the following: 1) I feel more relaxed, 2) No difference,
3) I feel less relaxed, and 4) I feel more stressed. An example of the sequence of
stressful and relaxing events is shown on Fig. 1.
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4 Methods

The general architecture of the dataflow in our data processing chain is presented
on Fig. 2. It starts with the raw physiological signals collected from bracelet sen-
sors (1), which are further sent to the mobile application (2). Next, the data flow
is securely sent to the RedCap platform (3), frequently used and recommended
for managing medical data. The data are stored in the cloud for further extrac-
tion of various features (4) using our proprietary signal processing and feature
extraction algorithms. After signal processing, the features are sent back sent to
the REDCap cloud. Further, the data are picked up by a classification algorithm
(5) capable of predicting the stressful events (6).

Fig. 2. The general architecture of the dataflow.

4.1 Wearable Sensor

The Empatica E4 bracelet1, the device that was used for this work, offers the
acquisition of physiological signals in real-time. The company has made avail-
able the Empatica Connect platform2, which allows to visualise the graphs corre-
sponding to the different signals. The bracelet works in two modes: (a) streaming
mode: the bracelet connects via Bluetooth with the mobile application, and (b)
recording mode: the wristband records the data in the internal memory, while it
can record up to 60 h. The Empatica E4 bracelet is equipped with the following
physiological sensors:

– EDA Sensor (or GSR Sensor): The skin is the only tissue of human body that
is innervated by only SNS branches of the ANS and not by PNS branch fibres.

1 https://www.empatica.com/en-eu/research/e4.
2 https://www.empatica.com/connect.

https://www.empatica.com/en-eu/research/e4
https://www.empatica.com/connect
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Activation of the SNS provokes activation of sweat gland and thereby reduc-
ing skin electrical resistance and increasing conductance, whose fluctuating
changes are measured by the EDA sensor in µSiemens. Consists of a tonic
(referred to as skin conductance level (SCL)) and a phasic (skin conductance
response (SCR)) component.

– PPG Sensor (Photoplethysmography Sensor) measures the blood volume
pulse (BVP) from which two important signals can be derived: (1) heart
rate (HR), and the inter-beat-interval (IBI). The blood volume pulse is mea-
sured in nanoWatts, heart rate HR in beats per minute (bpm), while IBI is
measured in time periods between two consecutive beats.

– Infrared Thermopile: measures the temperature of the skin and contains the
data measured in celsius degrees.

– 3-axis Accelerometer (ACC): measures activity based on motion, contains
the data of the 3-axis channels (x, y, and z) accelerometer sensor. It mea-
sures continuous gravitational force (g) applied to each of the three spacial
dimensions.

As was already mentioned earlier, in our study, we have used the signals
acquired only with EDA and PPG sensors. We believe that skin temperature is
greatly influenced by the temperature of the environment and therefore without
knowing the real environmental conditions it would be difficult to receive a
meaningful informations out of that particular signals. ACC signal, in contrast,
is very useful, especially for classification of different types of stress, in particular
differentiation between physical activity, with intensive movements or pain, with
abrupt movement, and emotional/intellectual stress, with minimal movements.
However, in this work we aim at binary classification, and therefore, the ACC
signal is not used in the current study. Once we extend the use of our prediction
model to the 5-class stress identification, this signal will be used.

4.2 Mobile Application

In order to perform experiments we have developed our proprietary mobile appli-
cation for Android mobile platform with a user-friendly frontend and a backend
performing three basic features, such as:

1. Data collection from the Empatica E4 bracelet and its temporal storage at
the smartphone;

2. Questionnaire, allowing to collect the perceived level of stress by each
participant;

3. Secure transmission of the recorded data into the RedCap database.

As temporary storage before sending data to cloud REDCap database at
the end of each experiment an intern database (SQlite) was used. Once the
experiment was over, all the signals were converted into the comma-separated
values (CSV) format and were sent to the cloud for further processing.
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4.3 REDCap Database

There exist several secure solutions to support human health data collection and
storage. REDCap3 is one of those with the further advantage of being available
for free for research purposes. REDCap is a secure web application for building
and managing online surveys and databases. REDCap provides multiple use-
ful features, including secure mailing facilities supporting exchange of big data
among researcher participants, as well as a built-in project calendar, a schedul-
ing module, and ad hoc reporting tools. One feature of interest is the REDCap
Mobile App interface that allows collecting data offline, for example, by a mobile
device when there is no Wi-Fi or cellular connection, and then, later, sync data
back to the server.

The logical portions of data in REDCap are grouped as ‘Instruments’. The
instruments of the DESY database in REDCap can be classified into communi-
cations with participants of the experiment (e.g. consent form), and ‘instruments
folders’ containing raw signals, features extracted from the raw signals, and ques-
tionnaires, providing ground-truth information.

4.4 Signal Processing

Signal processing was automatized, such that in one click all the available signal
processing techniques are performed on the raw data following the steps:

1. Getting the raw data from the REDCap;
2. Signal processing, analysis and restoration;
3. Features extraction;
4. Sending processed signals and features to REDCap.

It is quite often that the signals recorded by Empatica E4 bracelet are incom-
plete, such that some data are lost. This usually happens if the signal quality
was not good enough, for example, due to the weak connection of the PPG sen-
sor with the wrist. However, since feature extraction is done by small portions
from a part of signal selected by a window of as parameterized size sliding over
the signal with a regular step, it is crucial to have a complete signal. Therefore,
we have developed several methods for restoration of lost data based on another
available signal.

After analyzing the collected data, we have discovered that the most cor-
rupted physiological signal among those collected from E4 is the BVP signal
of the PPG sensor. However, it is rare that the data are lost from more than
20 s, especially when the experiments are performed in laboratory setting with
minimum movements during the experiment. Therefore, first of all we have imple-
mented an algorithm for HR signal extraction from BVP E4 signal by using a
simple Fast Fourier Transform (FFT) for a sliding window size (i.e. 30 s, 1 min
etc.) of the signal with a variable step that can be chosen according to the need,
e.g. 1 s, 5 s, 30 s, etc.

3 https://www.project-redcap.org/.

https://www.project-redcap.org/
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Apart from the raw BVP signal, Empatica E4 bracelet provides the IBI sig-
nal, the derivative of the BVP, representing the series of time interval between
individual beats of the participant heart, largely used in the HRV analysis (see
Sect. 4.5). Since IBI signal is build directly from the BVP signal that has missing
data, it also has missing data in the same time periods. However, the reconstruc-
tion of IBI signal is simpler than of the raw BVP. Therefore, we have developed
another algorithm that is reconstructing the missing parts of the IBI signal from
the HR signal extracted using our first algorithm. Such a reconstruction cannot
result in an ideal signal. Therefore, we also create a vector of quality of each
value of the IBI time series with three quality levels, where level 0 corresponds
to an optimal quality (the values provided by Empatica E4), level 2 - are the
values reconstructed from the HR, and level 3 - values that have no meaning.
Currently, this vector is not used but in our future work it is planned to be used
by the classification algorithm to weight the credibility of the data.

4.5 Features Extracted

The main signals used for classification were the IBI and EDA. This section
summarizes the features extracted from these two signals.

HRV Analysis: IBI signal analysis is often also called HRV analysis, and it
is the study of variations in the instantaneous heart rate time series using the
beat-to-beat RR-intervals (the RR tachogram, not to confuse with Respiratory
Rate (RR)). There exist three main approaches to HRV analysis: 1) time-domain
based, 2) frequency domain based, and 3) geometrical methods. The HR may be
increased due to activation of the SNS or decreased due to PSNS (vagal) activity.
While, in opposite, the variability of HR is decreasing with the activation of the
SNS and increasing with PSNS, leading to the decrease (for SNS) and increase
(for PSNS) of standard deviation (STD) of RR-intervals. The balance between
the effects of SNS and PSNS, is called sympathovagal balance and is believed to
be reflected in the beat-to-beat changes of the cardiac cycle. The time domain
features (mostly various calculations of STD of RR-intervals) used in our study
are presented in Table 1. While the frequency domain and geometrical domain
features are presented in Table 2 and 3, respectively.

Table 1. Time domain features

Feature Formula

Standard deviation SDNN = 1
N−1

√
(
∑N

i=1(RRi − RR)2)

Coefficient of variation CV = SDNN
RR

Standard deviation of the average RR
interval

SDSD = 1
N−1

√
(
∑N−1

i=1 (ΔRRi − ΔRR)2)
ΔRRi = RRi+1 − RRi

Mean difference of successive NN intervals RMSSD = 1
N−1

√
(
∑N−1

i=1 (RRi+1 − RRi)2)

Number of RR intervals NN50

Vagus activity pNN50 = NN50
(N−1)
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Table 2. Frequency domain features

Feature Formula Meaning

The power of the complete
signal

TP Associated with the
hypothalamic-pituitary
complex activity

High frequency 0.15–0.4 Hz HF Associated with breathing
arrhythmia and PSNS
activity. Subject to
circadian rhythms 24 h
signal analyzed

Normalized HF nHF = HF/TP

Low frequency 0.04–0.15 Hz LW Slow waves of first order,
SNS activity. Subject to
circadian rhythms if 24 h
signal analyzed

Normalized LF nLF = LF/TP Grows with SNS
activation, since TP goes
down and LF does not
change

Index of vagosympathetic
cooperation

LF/HF

Very low frequency
0.015–0.04 Hz

V LF Psycho-emotional tension

Ultra low frequency
<0.003 Hz

ULF Is measured only for long
term signals (≈24 h).
Subject to circadian
rhythm. Therefore, it was
not used in our study

Index of centralization IC = (V LF + LF )/HF

Table 3. Geometrical domain features

Feature Formula

Mode of the histogram Mo

Amplitude of the histogram AMo

Width of the histogram DeltaX(TINN)

Width normalized value DealtaX/RR

Index of SNS activity SNSind = AMo/(2 ∗ Mo ∗ deltaX)

Index of PSNS activity PSNSind = 1/(Mo ∗ deltaX)
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Table 4. EDA time domain features

Description Feature

SCR amplitude peak counts EDApeakCount

The minimum value found in the section EDAMIN

The maximum value in the section EDAMAX

Area under curve EDAAUC

Mean of first order derivatives EDAMEAN derivative

Mean of negative values of first order derivatives EDAMEAN negative derivative

Hjorth features [19] EDAcomplexity

EDA Analysis. The overall signal called EDA of electrodermal activity consists
of two components. One of the components is the EDA general tonic level which
relates to an overall signal level, the most common measure of this component is
the SCL and the changes in the SCL are believed to reflect the general changes
in autonomic arousal. The value of SCL can vary widely, typically between 2–20
µS, due to environmental and personal factors [5]. The second component is the
phasic component and this refers to the fast response variations of the signal in
the form of peaks, i.e. the SCRs, and appears either in response to a stimulus or
without evident stimulation. These instantaneous peaks can be characterized by
a rise time, amplitude and a half recovery time. In healthy adults, the rise time
is usually between 1 and 3 s, the amplitude often varies (a minimum is usually
between 0.01 and 0.05 µS), and the half recovery time is usually between 2 and
10 s [5]. The example of an EDA signal annotated with stress stimuli is presented
on Fig. 3.

From these signals we can extract several features in the time and frequency
domain. For our study we have chosen the most relevant ones, that are presented
in Tables 4 and 5.

Fig. 3. The EDA signal with four stressful activities and an unexpected stressful even
related to the knocking on the door.
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Table 5. EDA frequency domain features

Description Formula

Energy of the signal EDASignal Energy

Summation of FFT harmonics EDAharmonics summation

Area under curve of FFT EDAAUC fft

Standard deviation of FFT EDASTD fft

Mean of FFT EDAMEAN fft

Signal values in the frequency domain EDAcoefficients

4.6 Machine Learning

Stress can be detected and predicted by machine learning methods with classi-
fication or regression models. In the DESY dataset, stress and its predictors are
represented as a time series.

For the purpose of binary classification, we decided to compare 3 different
methods. First, a decision tree models based on a summarized time window
is presented. Second, a recurrent neural network (RNN) capable of handling
multiple time windows is tested. And third, an augmented RNN with some
convolutional layers first (CRNNs) is tested for a more in-depth extraction of
features.

Architecture and Learning Process. The DESY dataset consists of 6
patients, each with a duration of about 44 min. Due to the nature of time series
and to the need of a stratified split, we used 4 patients for the training set and 2
patients for the test set, resulting in 28% for the test set, cross-validated (K = 3).

The stress label, as described in Sect. 3, is filled in by participants at the end
of each period. All the values in between these periods are linearly interpolated.
The decision tree is augmented with gradient boosting and implemented with
the CatBoost library. The prediction of a single time window is performed with
a maximum depth of 6. The RNN consists of a single layer of LSTM cells, some
batch normalization, and a dense layer for the classification task (see Table 6).

Table 6. Architecture of the RNN. ‘None’ indicates the batch size (set to 256).

Layer Output shape # Parameters

LSTM (None, 64) 25’088

Batch normalization (None, 64) 256

Dense (sigmoid) (None, 1) 65

Total parameters: 25’409 Trainable parameters: 25’281 Non-trainable parameters: 128
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The CRNN consists of a single layer of the same RNN preceded by 3 convo-
lutional layers (see Table 7). All the methods use the same set features, however
with different window strategies.

Table 7. Architecture of the CRNN. ‘None’ indicates the batch size (set to 256).

Layer Output shape # Parameters

1D convolution (None, 10, 8) 4608

Batch normalization (None, 10, 8) 32

ReLU (None, 10, 8) 0

Max pooling (None, 5, 8) 0

1D convolution (None, 5, 16) 1536

Batch normalization (None, 5, 16) 64

ReLU (None, 5, 16) 0

Max pooling (None, 2, 16) 0

1D convolution (None, 2, 32) 3072

Batch normalization (None, 2, 32) 128

ReLU (None, 2, 32) 0

Max pooling (None, 1, 32) 0

LSTM (None, 64) 24’832

Dense (None, 256) 16’640

Batch normalization (None, 256) 1024

Activation (None, 256) 0

Dense (None, 32) 8224

Batch normalization (None, 32) 128

Activation (None, 32) 0

Dense (None, 1) 33

Total parameters: 60’321 Trainable parameters: 59’633 Non-trainable parameters: 688

Experimental Results. The overall results comparing the three different
approaches are presented in Table 8. The performance of the best classifier is
presented in Fig. 4. The threshold of the classifiers is selected according to the
Youden’s J statistic.

Furthermore, the impact of the phasic and tonic parts of the EDA signal is
investigated by their ablation (Table 9). That is the best model is trained and
tested without the presence of their related features.
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Table 8. Evaluation of the different machine learning models and pre-processing
parameters

Gradient boosting DT RNN CRNN

window size [sec] 30 60 120 180 30 60 120 180 30 60 120 180

step size [sec] 15 15 15 15 15 15 15 15 15 15 15 15 15

total # of windows 889 878 854 830 889 878 854 830 889 878 854 830

postive classes [%] 43 43 44 46 43 43 44 46 43 43 44 46

# time steps N/A N/A N/A N/A 10 10 10 10 10 10 10 10

AUC 0.63 0.62 0.61 0.62 0.64 0.65 0.71 0.73 0.62 0.63 0.59 0.61

weighted F1 0.57 0.58 0.56 0.58 0.65 0.61 0.72 0.77 0.67 0.69 0.65 0.68

macro F1 0.58 0.58 0.55 0.58 0.62 0.58 0.67 0.71 0.63 0.65 0.60 0.63

3-fold std macro F1 0.08 0.04 0.05 0.04 0.02 0.04 0.06 0.05 0.05 0.02 0.04 0.07

Random baseline macro F1: 0.48

Fig. 4. Classification metrics of the best RNN model

Table 9. Ablation results for the EDA signal with the RNN model of the best macro
F1

All features except tonic EDA All features except phasic EDA All features

AUC 0.65 0.71 0.73

weighted F1 0.67 0.75 0.77

macro F1 0.62 0.68 0.71

difference −13% −5%

5 Discussion

The best model for the binary classification of stress is achieved with a recurrent
neural network, and yields a macro F1 of 71%. In our tests, the lowest score is
of 55% (because of the imbalanced nature of the dataset, the random baseline
is of 48%). The AUC of the ROC curve of the best model is of 0.716, meaning
that if the focus were to detect stress with a better recall, an accuracy of almost
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100% could be achieved, traded off by almost 50% of false positives). We did
not include other metrics (such as accuracy) because of the imbalanced nature
of our dataset.

In almost every situation, RNN and CRNN outperforms decision trees. This
result confirms the general idea that time series are better handled by deep learn-
ing architectures and more precisely recurrent or convolutional networks, thanks
to their capacity to handle sequences of time. However, the hyper-parameters
for building the time sequences may highly impact the score (from 0.58 to 0.71
in the same RNN). We were unfortunately not able to acquire more data at this
stage of the project, since experimental part was planned for the beginning of
March 2020, when global confinement due to COVID-19 has started. Neverthe-
less, even though we had only six participants, for each of them we have recorded
signals, time-series, of about 35 minutes long. The feature extraction algorithms
processed these time-series with window size of 1 min and step of half a minutes,
thus providing a time-series of training point of 70 for each of six participants.
Despite the small size of our training set, the received results are promising,
especially considering a deep learning architecture.

As mentioned in Sect. 4, EDA contains information not only related to slow
changes, that is the tonic component, but also in the rapid or phasic changes of
the signal. We observed that the prediction of stress is strongly based rather on
the tonic component, with a drop of 13% on the F1 score with its ablation.

As future work, globally, we aim at developing a wearable system allowing
for seamless monitoring and detection of critical signatures of stress leading to
distress. To achieve this goal we still have a long road. First of all, to improve the
quality of stress prediction, we intend to continue our project towards implement-
ing a more personalized prediction, since the values contained in physiological
signals are specific for each participant. For example, as was already mentioned,
the value of SCL can vary widely, typically between 2–20 µS. Therefore, such
factors as physical constitution as well as the baseline level of stress of partici-
pant must be taken into account. Further, we would like to take into account the
ACC signal and provides a five-class definition of stress, differentiating between
emotional, intellectual, and physical stress, as well as pain, in contrast to the
non-stress conditions.

Once we will go from laboratory setting to everyday life our dataset will
include the contextual data, as well as measurement of cortisol. Measurements
of cortisol are quite intrusive. However, since some studies have presented
already that slow arousal of the morning cortisol level serves as the indication of
“burnout” state [13], its measurement performed with participants of the long
experiments will allows us defining the signature of stress events leading to the
‘burnout’ or distress state. Finally, other machine learning algorithms can be
implemented allowing to choose the best ones among them, in order to improve
stress detection and monitoring.
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6 Conclusion

Stress causes biochemical, physiological and behavioral changes, and can be
described as an uncomfortable emotion. The long-term exposure to stress can
cause illness. In this paper we have implemented a prediction stress detection
system from a wrist-device sensor providing stress relevant physiological signals.
We have implemented three classification algorithms providing two-class classi-
fication Stress vs Non-Stress. A reasonable prediction can be observed when we
apply a recurrent neural network, this model yiels a macro F1 of 71%. Our work
will not stop here, and as described in Sect. 5 we have several perspectives to
improve the system.
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Abstract. This work presents anxiety classification using physiological
data, namely, EDA (eletrodermal activity) and HR (heart rate), collected
with a sensing wrist-wearable device during a neutral baseline state con-
dition. For this purpose, the WESAD public available dataset was used.
The baseline condition was collected for around 20 min on 15 partici-
pants. Afterwards, to assess anxiety scores, the shortened 6-item STAI was
filled by the participants. Using train and test sets with 70% and 30% of
data, respectively, the proposed ensemble of 100 bagged classification trees
obtained an overall accuracy of 95.7%. This, along with the high precision
and recall obtained, reveal the good performance of the proposed classifier
and support the ability of anxiety score classification using physiological
data. Such a classification task can be integrated in a mobile application
presenting coping strategies to deal and manage anxiety.

Keywords: Anxiety · Physiological data · Heart rate · Eletrodermal
activity · Wearable measurements · Mobile applications

1 Introduction

Considering that it is of utmost importance to properly assess anxiety, recent
studies stress out alterations of physiological signals related with it. Occasional
anxiety, which is expected to be experienced along lifetime, is related with tem-
porary worry or fear when facing a particular situation. Anxiety disorders go
beyond temporary. In those cases, anxiety occurs frequently and at undue time,
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it does not go way and get worse over time [3]. When diagnosed, the treatment
can rely on medication, on behavioural therapy or on the combination of both.

In 2019, anxiety disorders were estimated to affect 4.05% of the world popu-
lation, mostly women [2], with serious implications in quality of life, daily activ-
ities, workplace, families and society [20]. Anxiety disorders are affecting 301
million people, cutting across age groups, and with an increasing trend. This
growing estimate are of major concern, and coping strategies to deal with anxi-
ety disorders are of great interest. In Portugal, it affects 9.08% of the population
[2], a percentage of great relevance when comparing with worldwide data.

Regarding the global rise of the consumption of antidepressants, according
to the OECD (Organisation for Economic Co-operation and Development) indi-
cators [1], in 2017, Portugal was the fifth country of the OECD with the high-
est consumption of antidepressants, with 104 daily doses per thousand people.
Although it may be associated with a greater recognition and diagnosis of anxi-
ety and depression disorders, it clearly reveals the increase of incidence of these
disorders when compared to 2000 (when the consumption was estimated to be
slightly below one third).

Considering this rise, awareness and attention need to be devoted to mental
illness, and strategies to deal and manage anxiety are crucially needed. More
than ever, due to COVID-19 pandemic, and considering the disrupt situation
that we are facing and social distancing, anxiety can become overwhelming.

1.1 Motivation, Goals and Outline

The rational above, reinforces the urge of cognitive-behavioural therapies, acces-
sible at a glance, helping people with anxiety disorders, presenting different ways
of thinking, behaving, and reacting to anxiety-producing and fearful objects and
situations [3].

Sensing wrist-wearable devices grant the easy and on the fly measurement of
physiological signals, which can be integrated with a mobile application (app)
for anxiety classification based on these physiological signals. Therefore, such a
classification system can be integrated within a mobile app for self-management
strategies to deal, in real time, with anxiety symptoms.

In a university context, this app could have significant improvements in stu-
dents’ well-being, helping to overcome daily and recurrent stressful situations,
such as works’ or projects’ deadlines, exams, oral presentations, among others.

Targeting the psychophysiological perspective of anxiety, this work aims to
provide motivation and support for the development of a mobile app with coping
strategies to deal with anxiety, based on the ecological momentary assessment
of the anxiety of the users through the analysis of EDA and HR.

Therefore, the goal of this study is to classify anxiety through physiological
signals from data without any affective state elicitation. Thus, using data gath-
ered with a Empatica wristband [7], this work presents anxiety classification,
based on EDA and HR collected during a baseline neutral state condition.
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The obtained results allow the identification of physiological correlates of
anxiety states and can be further integrated into wearable and smart sensing
contexts. Indeed, the results support the feasibility and encourage the develop-
ment of a mobile app, that connected with a similar wristband, and according
to anxiety score classification, can present coping strategies to deal and manage
with it.

For these purposes, it was used the WESAD multimodal dataset [18], con-
taining self-reports, motion and physiological data, recorded with a wristband
(Empatica wristband) and a chest-worn device (Biosignalsplux RespiBAN Pro-
fessional), of 15 participants during a lab study designed for stress and affect
detection.

The remain of this work is organized as follow. Section 2 presents related
works on anxiety disorders and mobile applications to deal with it. Section 3,
after a brief description of the dataset used, presents the methodology used.
Afterwards, Sect. 4 compares and discusses the results on relating EDA and HR
with anxiety and on anxiety classification. Concluding remarks and possibilities
for further research are presented in Sect. 5.

2 Related Works

In the past decade, several studies have shown that common symptoms associ-
ated with anxiety are alterations in HRV (heart rate variability), HR and sweat-
ing [6,9,10,12,13,17,18]. However, the physiological relation with anxiety is still
an open problem. These findings may open new doors to cognitive behavioural
therapies helping control and manage anxiety, particularly given the accessibility
and affordability of new wearable technologies, such as wristbands, allowing the
continuous collection of physiological data.

Moreover, these biomedical sensors are often wireless and can stream to sev-
eral and small devices, like smartphones, supporting the feasibility of the anal-
ysis of physiological signals and assisting with suggestions to deal with anxi-
ety. Indeed, more recently, due to the increasing concern on mental disorders,
namely anxiety, and to the technological advances which widespread the access
and usage of mobile devices, there had been proposed mobile applications to
help users dealing with anxiety [4,16,19,21].

The work [8] provides a review on e-health treatments for anxiety, showing
the efficacy of internet-delivered cognitive behavioural therapies to deal with
anxiety disorders and identifying the limitations in engaging patients. Moreover,
the authors also addressed the potential of mobile apps and virtual reality inter-
ventions for the treatment of anxiety symptoms, supporting their feasibility.

More recently, [19] provides a review supporting the use of mobile apps as
helpful and accessible tools in the assessment and treatment of anxiety in youth.
Although, the overall good results concerning ease of use and acceptability, and
high satisfaction ratings, the authors pointed out the burdensome of user engage-
ment over time, as well the work [8].

Regarding applications for self-management of symptoms related to mental
disorders, the work [4] proposed the use of the Mindfulness Meditation app,
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showing the relevance of embracing HRV in the assessment and treatment of
these conditions, and providing a step further in the feasibility of using HRV as
a biomarker and biofeedback tool within clinical and health psychology.

Although not addressing physiological responses, the work [16] contributes
with an evaluation of the effectiveness of the Feel Stress Free app, useful for the
treatment of depression and anxiety symptoms. During a 6-week trial with 168
university students, this cognitive behavioural therapy-based app, which provides
relaxation activities, mood tracking and thought challenging, and minigames,
shown promising results to deal with depression and anxiety symptoms.

On the other hand, the work [13] proposes the assessment of mental well-
being and health through a mobile application for HRV analysis, showing a
positive relationship between both.

The authors of the used dataset (WESAD) provided a study on classifying
different affective states (neutral, stress, amusement), using a protocol specifi-
cally designed for elicitation of the affective states [18]. Besides comparing the
chest and wrist devices, in this threeclass classification problem (baseline vs.
stress vs. amusement), the authors reached accuracies up to 93%.

Depart from studies relying on the elicitation of affective states, the presented
work relies only on data collected during the baseline, representing a neutral state
condition without any elicitation.

3 Data and Methodology

This section briefly describes the WESAD dataset, explaining the physiological
signals used for the purpose of anxiety classification, the methodology to achieve
them and the evaluation metrics to assess the obtained results. All the data
pre-processing and processing and statistical evaluations were performed using
MATLAB R2019b [15].

3.1 WESAD Dataset and Physiological Data Used

WESAD is a public available multimodal dataset1, containing self-reports,
motion and physiological data of 15 participants during a lab study designed for
stress and affect detection, recorded with the Empatica wristband [7] (namely,
blood volume pulse - BVP, electrodermal activity, body temperature and three-
axis acceleration), and with the Biosignalsplux RespiBAN Professional chest-
worn device [5] (namely, electrocardiogram, electrodermal activity, electromyo-
gram, respiration, body temperature and three-axis acceleration). The authors
also provide the average heart rate extracted from the BVP signal. According to
the goals, the protocol for collecting WESAD dataset was designed with several
conditions in two different combinations.

1 https://archive.ics.uci.edu/ml/datasets/WESAD+%28Wearable+Stress+and+
Affect+Detection\%29\#.

https://archive.ics.uci.edu/ml/datasets/WESAD+%28Wearable+Stress+and+Affect+Detection\%29\#
https://archive.ics.uci.edu/ml/datasets/WESAD+%28Wearable+Stress+and+Affect+Detection\%29\#
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To attain the purpose of anxiety classification, this study used only the data
collected during the baseline condition, which aimed to reflect a neutral affec-
tive state while participants were sitting/standing at a table with neutral reading
material. For class identification, as ground truth, it was used the responses of
participants, after baseline condition, to the shortened 6-item STAI (Spielberger
State-Trait Anxiety Inventory), varying from a minimum score of 4 to a maxi-
mum score of 24, which offers a briefer and acceptable scale, while remains sen-
sitive to different degrees of anxiety [14]. In the 6-item STAI, participant scored
from “1” = “Not at all” to “4” = “Very much so”, the following 6 conditions:

– I feel at ease
– I feel nervous
– I am jittery
– I am relaxed
– I am worried
– I feel pleasant

As the goal of this study is to classify the self-reported anxiety through
physiological signals, it relies on data without any affective state elicitation,
therefore data collected during a baseline condition (mean = 19.57 min and
std = 0.26 min), and the results from the 6-item STAI (with summed scores
ranged from 10 to 16). Figure 1 shows the EDA and HR signals for participants
with minimum and maximum, respectively, upper and bottom, anxiety scores
in the 6-item STAI. For these participants, from the HR signals, it can not be
stressed out any pattern or trend. However, it can be observed considerable
differences regarding the EDA signal, which is significantly higher for a great
STAI score.

Fig. 1. EDA and HR (upper and bottom, respectively) of two participants with STAI
score of 10 and 16 (minimum and maximum in this dataset).
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3.2 Methodology for Anxiety Classification

Aiming at classify anxiety through physiological signals, the first step con-
cerns the categorization of participants according to anxiety scores, which in
this dataset ranges from 10 to 16, distributed according to the Fig. 2. As it
can be observed, the majority class corresponds to a score of 12 in the 6-item
STAI, while scores of 15 and 16, are the minority classes. Although data is not
equally distributed, this work will not use any technique to deal with imbal-
anced datasets. Instead, it relies on other evaluation metrics, rather than only
accuracy, to assess the performance of the classifier.

Fig. 2. Anxiety distribution, according to the score in the 6-item STAI, of WESAD
dataset participants.

Regarding the EDA, collected at a sample rate of 4 Hz, and the HR, computed
from the BVP, the box plots of both were analysed to explore the differences
between the EDA and HR medians of different STAI scores, for all participants,
during the baseline condition.

To analyse the differences between STAI scores, it was first applied the Lil-
liefors test to decide if data comes from a normal distributed family. Both EDA
and HR failed to be normal distributed.

Therefore, to perform a global evaluation, was applied the Kruskal-Wallis
(KW) Test [11], a nonparametric test, that allows to decide if the samples from
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the different STAI scores were originated from the same distribution, by com-
paring the mean ranks of EDA and HR of the different scores.

In case of differences between the score groups, those are further analysed,
through multiple comparisons between the groups. In this case, is used the mult-
compare function from MATLAB, which besides returning the pairwise compari-
son results based on the KS outputs, also allows an interactive graphical multiple
comparison of the groups, displaying the rank mean estimates and the compar-
ison intervals for each group.

To decide on the best method for classifying anxiety scores through EDA and
HR measured during the baseline condition, it was created an ensemble of learn-
ers for classification with data from the 15 participants, using bagging, adaptive
boosting and random undersampling boosting (to deal with the imbalance of the
dataset) algorithms.

Afterwards, using the best method to fit the ensemble with the EDA and HR
data to STAI scores, data from baseline was used to estimate the misclassification
rate and confusion matrix using 5-fold cross-validation.

Finally, this ensemble was trained with 70% of EDA and HR data, and the
remain 30% of the data, held out for testing, was used on the model to make
predictions.

3.3 Evaluation Metrics

The accuracy of a model is not a recommended measure to use in class imbal-
anced problems, as it translates performance of a model by dividing the number
of corrected classifications by the total number of data examples.

Therefore, to evaluate the performance of the classifier, the confusion matrix
was calculated, allowing to compute quality metrics as Precision and Recall.
The Precision gives the ratio between the correct predictions (TP) and all the
predictions of a given class, true positives plus false positives (TP+FP), and the
Recall is defined as the ratio between the examples of a class that were correctly
classified on this class, true positives plus false negatives (TP+FN). For both,
the closer to 100%, the better the results are. Indeed, in the case of both get
high values, then classes are properly handled by the classifier.

Combining both, the F1 measure is the harmonic mean of Precision and
Recall.

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
and F1 = 2

Precision ∗ Recall

Precision + Recall

4 Results

Regarding the distribution of EDA and HR values of the 15 participants, Fig. 3
show the box plots of EDA and HR for the 15 participants under study. The left
and right figures show the EDA and HR, respectively, according to anxiety scores
from the 6-item STAI. The left figure points out, with 95% confidence, that the
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EDA medians of the STAI scores 11, 12 and 16 are different, as the notches in
the box plots do not overlap. With respect to the right figure, it shows, with
95% confidence, that the HR medians of the STAI scores 10, 11, 12, 14 and 15
are different. Therefore, using both as features to predict anxiety score would be
an advantage, as one surpasses the drawbacks of the other.

Fig. 3. Box plots of EDA and HR (left and right, respectively) for the 15 participants
in WESAD dataset.

An analysis of the box plots, allows to observe the EDA and HR differences
between the different anxiety scores. The EDA associated with anxiety scores
11, 13 and 14 present a higher variability, while EDA from anxiety scores 15 and
16 present smaller variability. When anxiety scored 12, EDA presented a great
number of outlier values. Regarding HR, for anxiety scores of 10, 13 and 15, it
can be observed a great number of outliers, while when anxiety scored 12 and
14, despite without outliers, the HR presented a higher variability.

With respect to the Kruskal-Wallis test performed using the EDA and HR
data of the 15 participants, the returned p-value (0 < 0.01, for both cases)
indicates that, at a significance level of 1%, the null hypothesis that the EDA,
or HR, from the different anxiety scores (6-item STAI) come from the same
distribution is rejected.

As the Kruskal-Wallis test allowed to conclude that the median values of
EDA and HR from the different anxiety scores are significant different, it is
performed multiple comparisons tests to reveal which from the 7 groups are
significant different from the others.

Figure 4 presents the estimates of the mean rank order of EDA and HR values,
and 99% confidence comparison intervals, for the anxiety scores. Regarding EDA
(left), it can be concluded that groups with anxiety score of 12 and 14 have mean
ranks significantly different from all the remain 6 scores, while anxiety scores 10,
11 and 15 only presented mean ranks significantly different from scores 12, 13,
14 and 16, and scores 13 and 16 have mean ranks not significantly different from
each other. With respect to HR (right), with the exception of anxiety scores 10
and 15 and anxiety scores 13 and 16, that present mean ranks not significantly
different from each other, the remain anxiety scores (11, 12 and 14) have mean
ranks significantly different from all the remain 6 scores.

The presented analysis, concludes with the construction of a classifier, using
these time series (EDA and HR) as features, to predict the different anxiety
scores during the baseline condition.
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Fig. 4. Multicomparison graphics for the mean rank of EDA and HR (left and right,
respectively) grouped by the 7 anxiety scores (6-item STAI).

At first, to decide on the best method for classifying anxiety scores, it was
constructed a predictive classification ensemble using all available predictor vari-
ables in EDA and HR data (71684 samples, corresponding to around 20 min of
baseline condition from 15 participants, collected at a sample rate of 4 Hz). After
optimization, results suggested that the best method was bagging, with random
predictor selections at each split (random forest).

Therefore, using all the available data, the misclassification rate and confu-
sion matrix were estimated, using 5-fold cross-validation, obtaining an estimate
cross-validated classification error of 3.77%. The obtained confusion matrix, pre-
sented in Table 1, shows, for all the classes, high values of true positives (correct
predictions), displayed in the principal diagonal of the matrix, and small values
(when compared to these) of true negatives, false positives and false negatives.

Table 1. Confusion matrix of anxiety classification using EDA and HR during the
baseline condition.

Predicted anxiety score
10 11 12 13 14 15 16

10 9092 55 103 141 134 36 39
11 65 9313 123 46 38 3 0
12 124 123 23295 82 109 158 29

Anxiety score STAI 13 54 21 82 9391 67 41 0
14 149 28 104 113 8977 20 113
15 28 4 161 40 16 4358 9
16 99 0 25 0 116 1 4559

Finally, due to the good results obtained so far, an ensemble of 100 bagged
classification trees was trained using 70% of the data (50179 samples). The
remain 30% of data were used to test the ensemble (21505 samples). Both test
and train sets were constructed preserving the original class distribution.

The obtained accuracy of 95.7% is reinforced by the obtained high values for
the precision, recall and F1, which indicate a good performance of the classifier,



Classification of Anxiety Based on EDA and HR 121

validating its capability to classify anxiety scores using EDA and HR data. For
each of anxiety scores, or classes, the precision, recall and F1 are presented at
Table 2.

Table 2. Precision, recall and F1 measure for classifying anxiety scores using EDA
and HR during the baseline condition.

Anxiety score Precision Recall F1 score

10 96.953 96.656 96.804

11 97.47 96.453 96.959

12 93.951 95.451 94.695

13 92.482 94.152 93.309

14 93.564 93.827 93.695

15 96.641 96.341 96.491

16 95.077 93.889 94.479

5 Conclusions and Further Research

The recent global increase of anxiety disorders and the rise of the consumption
of antidepressants, demands that awareness and attention need to be devoted
to mental illness. Therefore, coping strategies to deal and manage with anxiety
are crucially. Moreover, sensing wrist-wearable devices, which are a minimally
invasive equipment that can assess, continuously and with low-compliance, phys-
iological signals, offers an excellent opportunity to monitor the physiological
alterations under different conditions, namely stress and anxiety.

In this context, this work targets the psychophysiological perspective of anx-
iety, providing motivation and support for the development of a mobile app
with coping strategies to deal with anxiety, based on the ecological momentary
assessment of the anxiety of the users through the analysis of EDA and HR.

It proposes an ensemble of 100 bagged classification trees that, presenting an
overall accuracy of 95.7% and precision, recall and F1 means, for all classes, of
95.16%, 95.25% and 95.20%, respectively, shows to be feasible to classify anxiety
scores through EDA and HR collected with Empatica, a wrist-wearable device.
These results allow the identification of physiological correlates of anxiety states
and can be further integrated into wearable and smart sensing contexts.

Although relying in a public available dataset with 15 participants, the
encouraging obtained results sustain a future design of a protocol specially fitted
to this problem.

Moreover, further research will devote efforts to develop a mobile app, that
receiving physiological data collected with a wearable wrist device, classifies
anxiety states and provides feedback and strategies to deal with anxiety.
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Abstract. Emotions play a key role in everyday life of human beings,
and since several years, researchers have investigated the physiological
changes caused by external stimuli, looking for methods to automat-
ically classify the emotional involvement of individuals. The Galvanic
Skin Response, or ElectroDermal Activity, is one of the most interesting
signals used in emotion research. In this preliminary study, a few par-
ticipants were submitted to auditory stimuli (i.e., pleasant, neutral and
unpleasant sounds) and their skin conductance signals were measured
by means of a wireless and IoT-enabled wearable device, the Empatica
E4. To investigate the impact of the emotional stimuli, data measured as
emotion elicitation and retrieved from the Empatica cloud platform, was
analysed in the time domain, showing that pleasant and neutral sounds
do not produce evident effects, while listening to an unpleasant sound
increases the subjective response, with higher impact when the sound
duration is shorter. The preliminary outcomes obtained confirm great
intra- and inter-subject variability that deserves further investigation,
by involving a bigger population of test users.

Keywords: ElectroDermal Activity · Galvanic Skin Response ·
Wearable device · Emotions · Acoustic stimuli

1 Introduction

In the last decades, human emotion recognition has gained growing worldwide
interest in many application fields, especially healthcare [15] and neuromarket-
ing [25]. Initially, speech analytic [16], facial expressions [7] and self-reports have
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been used for human emotion detection. However, such approaches are not reli-
able to detect emotions, especially if the subjects under test want to hide their
feelings. A reliable approach, on the other hand, may be designed around the
use of physiological signals, from which objective measurements can be derived,
to detect the actual emotional changes of subjects. Among physiological signals,
recently the Galvanic Skin Response (GSR) has gained huge interest, thanks
to the availability of wearable devices to measure it, and nowadays it is one of
the most involved signals in emotion research. GSR, named also as Electroder-
mal Activity (EDA) or Skin Conductance (SC), is a biometric index reflecting
changes in the electrical properties of the skin [23]. When humans are exposed
to stimuli such as images, sounds and physical efforts, the sympathetic division
of the Autonomic Nervous System (ANS), with no conscious control, induces a
sweat reaction. By using two electrodes positioned on specific regions of the skin
surface (e.g., fingers, hand and foot palm), the fluctuations of the skin’s elec-
trical properties can be measured [21]. The gathered information is double: the
tonic component (i.e., Skin Conductance Level, SCL) related to slow changing
baseline levels as individual background characteristics, and the phasic compo-
nent (i.e., Skin Conductance Response, SCR) corresponding to the fast changing
signal contribution which can be event-related [19].

The development of Internet of Things (IoT)-enabled wearable devices with
wireless technology support has allowed and facilitated the shift from the mea-
surement of GSR in laboratory settings, usually with bulky wired instruments,
to minimally-invasive, comfortable and real-time recordings, in free-living condi-
tions [4] with devices capable of streaming their data to a cloud-based repository.

Hereby we propose an approach to investigate whether and how the GSR sig-
nal changes in response to external stimuli, namely auditory ones, by examining
the morphological characteristics of this specific physiological signal. In order to
measure the impact of auditory emotional stimuli, a small dataset was collected
from seven individuals both at rest condition and during the sound listening,
using a single wrist-worn device with electrodes located on the bracelet. The
information extracted from the GSR signals was compared against the subjects’
own evaluation of their emotional status, using a standardised classification scale.
After describing the methodology for the acquisition and the elaboration of the
GSR signals, the results are evaluated by using statistical metrics.

The paper is organized as follows: Sect. 2 shortly reviews the state-of-the-
art about GSR changes under different stimuli and the related issues. Section 3
presents the main steps of the work, including the materials and the methods to
collect and process data. Section 5 presents and discusses the results obtained,
including statistical metrics used. Finally, Sect. 6 concludes the paper.

2 Background

This section reviews the state-of-the-art about emotion investigation based on
the physiological reactions.

By stimulating emotional responses with external stimuli, bodily variations
(e.g., heart rate and skin conductance) can be measured. Among the most
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common stimuli, the video stimuli are widely delivered trying to evoke strong
responses [22]. For example, Dominguez et al. [5] used 2 short video clips to elicit
sadness, amusement and neutral reactions. The results show that by collecting
only the GSR data, the target emotions raised can be well-recognised, especially
from Random Forest (RF) classifier (up to 100% of accuracy). However, the
physiological changes are highly affected by the subject’s personal, cultural and
cognitive aspects (e.g., expectations and perceptions) [20]. To tackle this issue,
other approaches, like the work proposed by Zhao et al. [27], recorded multi-
physiological signals (i.e., EDA, heart rate variability (HRV) and skin tempera-
ture), but the average accuracy of the emotion recognition process dropped down
to 75.56%. It is interesting to notice how, since the native culture may affect the
emotional response, data were collected by Chinese participants before and dur-
ing watching Chinese video clips.

Other studies employed 2D visual stimuli selected from the International
Affective Picture System (IAPS), a large database of pictures [3]. For exam-
ple Dumitriu et al. [6] evaluated different emotion classification techniques,
by extracting 166 images, among which pleasant and unpleasant pictures for
exciting feelings, and neutral ones for calm emotions. Also in real-life scenario,
Myroniv et al. [14] used images from IAPS as a triggering mechanism for the
investigation of positive, neutral, and negative emotions. The proposed system
included three off-the-shelf wearable biosensors (i.e., heart rate, EDA, and skin
temperature sensors) to measure physiological signals, and six different Machine
Learning (ML) algorithms were applied to recognise the corresponding emo-
tional statuses. From the experiments, the proposed system achieved up to 97%
recognition accuracy by adopting the k-Nearest Neighbour (k-NN) classifier.

An alternative to visual stimuli is represented by auditory stimuli. In this
case, the International Affective Digital Sounds (IADS) [26] database is among
the most used repositories, containing a huge collection of sound clips, together
with classification labels generated by using the Self-Assessment Manikin (SAM)
and three basic-emotion rating scales. However, relatively few studies have inves-
tigated the GSR response under auditory stimuli. Pozzi et al. [9], in his master
thesis, aimed to understand how the relationship between music and emotion is
structured. To do this, he suggested to investigate and to merge the features
from both physiological and audio signals. Although the framework reached
good results, some issues due to the subjective nature of emotion perception
are declared (e.g., the reliability of ground truth data and the evaluation of pre-
diction results). Such issues strongly affect the recognition accuracy, as detailed
in [13] where the final percentage shifts from 95% to 70% for subject-dependent
and subject-independent classification, respectively. According to Duncan et al.
[24], the GSR data are also strictly influenced by the interaction between music
and familiarity, which induces learned emotional responses rather than totally
unconscious experiences. For this reason, other researchers such as Hu et al.
[11], explored the possibility of using combinations of physiological signals (i.e.,
HRV and EDA) to detect users emotion response to music, considering also the
personality and music preferences.
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As mentioned above, whatever stimulus is used to elicit an emotion, this
is supposed to affect participants’ cognitive, and consequently physiological sta-
tus. To combine the users’ perception of an emotional stimulus together with the
physiological recordings, self-assessment questionnaires have been used in litera-
ture, such as the above-mentioned SAM [2]. However, the mentioned studies are
mostly focused on the emotion classification, performed by extracting features
to feed and test several ML algorithms. In order to obtain a high performance
from such an automatic approach to emotion detection, a detailed analysis of
the GSR measurement data properties is essential. Therefore, we propose a pre-
liminary study to investigate the characteristics of the physiological signals in
response to acoustic stimuli, namely by analysing the event-related changes in
GSR curve morphology. Such signals are measured in real-life contexts, i.e. out
of a lab, thanks to the use of the Empatica E4 device, which may open new
possibilities in terms of exploitation of physiological information generated from
wearable devices.

3 Materials and Methods

3.1 Measurement Device

Data was acquired using a single wearable device, called Empatica E41: a multi-
sensor wristband device designed for comfortable, real-time and continuous data
acquisition in everyday life. According to the datasheet provided by the manu-
facturer [8], four sensors are embedded in such a device, namely a photoplethys-
mographic sensor (PPG), a 3-axial MEMS accelerometer (sampling frequency,
fs = 32 Hz), an EDA sensor (fs = 4 Hz) and optical infrared thermometer (fs
= 4 Hz).

This specific work was focused on the signal measured by the EDA sensor
(see Table 1 for details). Regarding this sensor, the E4 device provides a way
to measure the electrical conductance by passing a minuscule amount of current
between two silver-coated electrodes in contact with the wrist skin, as they are
located onto the device bracelet.

Table 1. Technical specification of the EDA sensor embedded in Empatica E4.

Specification Value

Sampling frequency (fs) 4 Hz

Resolution 900 pS

Range 0.01–100 µS

Alternating current (max 100 µA) frequency 8 Hz

Time needed for automatic calibration 15 s

1 https://www.empatica.com/en-eu/research/e4/.

https://www.empatica.com/en-eu/research/e4/
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Fig. 1. Graphic representation of the IoT-enabled EDA measurements acquisition pro-
cess. After the measuring session, data is retrieved through download from the Empat-
ica cloud platform.

The E4 device can be used in two different modalities: streaming and record-
ing mode, with the battery life declared as >20 h and >36 h, respectively. Herein,
participants run the device in streaming mode allowing to monitor data in real-
time from the mobile App (i.e., E4 realtime) over a Bluetooth Low Energy (BLE)
connection. The EDA measurement and data acquisition process is graphically
shown in Fig. 1. In order to access and download the recorded measurement data,
the users shall create a personal account in the E4 Connect cloud-based reposi-
tory, in which their own sessions are saved, including details about the duration,
the device serial number, and the session date. Raw data can be downloaded
as a compressed directory (.zip), containing one .csv file for each sensor and
an additional file (named tags.csv) related to events marked during a session.
Specifically, the EDA files are organised in single-column format, where the first
row reports the starting time (t0) of the data measurement process, the sec-
ond shows the sampling rate, then measurement samples from the EDA sensor,
giving skin conductance values in microSiemens (µS), are listed. Instead, in the
tags.csv files each row represents the time instant in which the physical button
located on the E4 has been pressed, expressed in UTC and synchronised with
the acquisition start time t0 specified in the other files, belonging to the same
session.

3.2 Test Population and Data Collection

Seven healthy subjects, 2 males and 5 females of age (35.7 ± 17.9) years (mean
± standard deviation), were recruited. To gather their physiological measure-
ment data, participants were submitted to six sessions of auditory stimulation:
three sessions lasted 11 min and the remaining ones 12 min, as shown in Fig. 2.
Specifically, in the first and last 5 min of each session, the subject’s baseline (i.e.,
EDA data at resting condition) was acquired, while during the central minutes
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(i.e., 1 or 2 min) the physiological changes under acoustic stimuli were measured.
In order to reduce possible distractions during sessions, the participants were left
alone in their room, lying on a bed with closed eyes. The E4 was attached on
the dominant wrist to acquire the skin electrical signal. Prior to signals registra-
tion, volunteers were asked to push the event-marker button of the wristband,
at the start and at the end of the acoustic stimulus, thus allowing the real-time
annotations of sessions.

Fig. 2. Schematic representation of the temporal structure of the auditory stimulation
sessions presented to the participants: 11 min (upper graph) and 12 min long (bottom
graph).

To elicit emotions in volunteers, three audio clips were extracted from the
IADS database, which includes a list of sounds categorised in terms of valence,
arousal and dominance using the SAM scale. The three clips, lasting 6 s each,
were selected considering the associated valence score: pleasant (no. 815: ‘Rock-
NRoll’), neutral (no. 722: ‘Walking’) and unpleasant (no. 275: ‘Scream’) sound.
Table 2 lists the mean and standard deviation values of the three evaluation
dimensions of each audio clip chosen from the IADS database, according to
female and male subjects.

Table 2. Gender-based evaluation (mean ± standard deviation) of the stimuli (i.e.
audio clips) chosen to elicit emotions in the volunteers, for each dimension.

Gender Sound Valence Arousal Dominance

Female RockNRoll 8.13 ± 1.41 6.75 ± 2.28 6.99 ± 1.99

Walking 5.02 ± 1.19 4.87 ± 1.86 4.85 ± 1.41

Scream 1.65 ± 1.16 8.35 ± 1.32 2.11 ± 1.74

Male RockNRoll 7.56 ± 1.65 7.00 ± 1.77 6.67 ± 2.00

Walking 4.61 ± 1.22 5.08 ± 2.00 4.45 ± 1.56

Scream 2.49 ± 1.94 7.96 ± 1.67 3.04 ± 2.19

Previous studies, such as Akdermir et al. [17], found that stimuli lasting
from 2 to 4 min are useful to produce variations of physiological parameters,
including the EDA. Therefore, in this study, two playlists with different length
were created for each sound, to investigate the effect of the stimulus duration on
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the elicited physiological changes. Given the fact that audio clips in the IADS
database are only 6 s long, in the first playlist the same clip was reproduced
ten times, thus obtaining a 1 min-long stimulus, while in the second playlist the
audio clip was repeated twenty times, in order to reach a total duration of 2 min.
This way, the 2 min-long audio clip allowed to replicate the procedure used in
[17]; the 1 min-long clip was added in order to check whether the repetition of
the same sound may affect or not the subjects’ reaction.

Based on the subjective assessment of sound, the presented audio tracks can
elicit different emotions in different individuals. Hence, to measure the emotional
response after each sound, participants were provided with the standardised
SAM scale to identify themselves with the five different pictographs (scoring
from 1 to 9) along the three dimensions. Such scores were compared with the
standardised values provided by the IADS database, to investigate whether the
experience from our participants was consistent or not with the standardised
ranges.

4 Data Processing

In order to accurately analyse the SCR as a reaction to the stimulus, raw data
were analysed in time domain, not by resorting to automatic tools (such as
LedaLAB2) but following the standard procedure described by iMotions [12].
First of all, data from the first and last 4 s within the trials were discarded to
remove the artefacts (e.g., transient noise due to the movement of the subjects
during the recordings, mostly at the beginning and at the end of each session).
Secondly, scanning each signal sample by sample, as in a sliding-window filter,
the median EDA was computed for each sample and the surrounding samples
in a window of 4 s, centred on the current sample. Such median filter allowed
to decompose the phasic component from the EDA signal, and peak-related
features were extracted [1,12]. In this sense, we use the phasic component as
representing the signal physiological content, and the number of peaks as a
meaningful feature to represent the effects of an external stimulus [18], and thus
to compare the reaction to different stimuli of a same subject, or to the same
stimulus by different people. According to literature [10], a peak-and-through
detection algorithm has been developed to identify two thresholds of the SCR
curve: the onsets at THon = 0.01 µS and offset at THoff = 0 µS. Therefore,
an onset was identified when SCR > THon and an offset when SCR < THoff .
Then, back to the original EDA signal, for each onset-offset couple, the exact
position of each peak was identified and counted as peak. An example is shown
in Fig. 3.

2 http://www.ledalab.de/.

http://www.ledalab.de/
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Fig. 3. Example of raw EDA signal (blue) with onsets (green), peaks (yellow) and
offsets (red) marked. The SCR signal is in red. (Color figure online)

5 Results and Discussions

In the following sections, the findings from the proposed algorithm described in
Sect. 4 are reported and discussed in detail, by comparing the results observed
among the subjects involved and among the different acoustic stimuli.

5.1 Comparison Among Individuals

As explained in Sect. 3.2, each session was composed by three parts of different
duration. For this reason, the number of EDA peaks per minute was defined (a
kind of peaks frequency) as a representative metric and counted for each part, in
order to understand how the peaks frequency changed during the music listening
phase, and in the absence of acoustic stimuli phase, irrespective of the absolute
time duration of each phase. Graphs in Fig. 4 show the results of the peaks
frequency analysis, with values obtained by averaging the outcomes on the three
sessions. For each subject, the orange bar represents the peaks frequency in the
first 5 min of acquisition at rest (i.e., pre-stimulus); the yellow bar indicates the
rate of EDA peaks in the phase of external stimulation (i.e., stimulus), while the
green bar states the number of peaks per minute computed in the last minutes,
following the end of the sound clip (i.e., post-stimulus).

By comparing the three columns and the two rows in Fig. 4, especially focus-
ing on the middle phase of acquisition, it is evident that the reaction determined
by listening to different sounds is subjective. For example, by examining how
much the pleasant sound affects the physiological changes in EDA properties, it
is possible to notice that while the subjects S3, S4 and S5 are more sensitive to
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Fig. 4. Average number of peaks per minute recorded on signal acquired during the
listening of pleasant (first column), unpleasant (second column) and neutral (third
column) sound for each subject: a) one-minute-long sound clip, b) two-minute-long
sound clip.

sound clips lasting one minute, the subjects S1, S2, S6 and S7 are more sensi-
tive to pleasant sound two minutes long. Regarding the effect of the unpleasant
sound on the EDA signals, in one-minute-long sound clips, six out of seven par-
ticipants, except S3, show a number of peaks per minute greater or equal to
the one recorded during the resting phase (i.e., ≥1). This illustrates an increase
of the number of peaks per minute from the resting to the stimulating phase.
However, when the stimulating period was longer (i.e., 2 min), the number of
peaks per minute decreases drastically, even reaching zero for S4. Therefore the
subjects S2, S5, S6 and S7 appear to be more sensitive to unpleasant sounds
of short duration. Finally, the values obtained from the analysis of EDA signals
measured during the listening to the neutral sound are interesting: four out of
seven participants, namely S2, S4, S5 and S7, show an average peaks frequency
that increases from 0 to higher values under longer stimuli. The opposite con-
siderations can be applied to S6.

5.2 Comparison Among Different Acoustic Stimuli

In this section, the results obtained from the analysis of signals acquired during
listening sessions of pleasant, neutral and unpleasant sounds are compared. In
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particular, the peaks rate was averaged over all the participants, in order to
obtain a single value for each sound listened to, for both the sound clip lengths.
Figure 5 displays the findings from acquisitions with the external stimuli lasting
one minute (left side), and two minutes (right side).

Fig. 5. Changes in average EDA peaks rate over all subjects: before, during and after
the listening of pleasant (green line), neutral (blue line) and unpleasant (yellow line)
sound clips, lasting one minute (left side) and two minutes (right side). (Color figure
online)

According to the first analysis among the subjects, it is evident how the
acoustic sounds produce different effects on the EDA signals of the listeners,
depending on both the length and the valence score of the sound clip. Specifically,
the unpleasant sound elicits a different effect depending on the time duration of
the stimulus. Looking at the effects of unpleasant sound stimulus lasting one-
minute, it is possible to see an increase of EDA peaks per minute during the
period of sound listening, and then it returns close to starting values. However,
slight changes and variations are observable in unpleasant sounds lasting two
minutes, as well as when using neutral sounds as external stimulus.

In order to explore if the physiological response of the participants was
somehow associated to the emotional experience, we compared the SAM scores
declared by the participants, given in Table 3, and the number of peaks per
minute counted from the EDA signals.

Table 3. Average scores of valence, arousal and dominance and related standard devi-
ation for each sound clip listened, over all the tests participants.

Valence Arousal Dominance

RockNRoll 7.1 ± 0.8 6.9 ± 0.7 6.5 ± 1.1

Walking 5.3 ± 0.5 4.0 ± 0.9 5.1 ± 1.5

Scream 2.3 ± 0.8 6.7 ± 0.9 3.1 ± 1.1

The values rated by subjects involved in our experimental test are compara-
ble to the standardised scores in IADS database: the ‘RockNRoll’ and ‘Scream’



134 A. Poli et al.

sounds were evaluated as arousing, while the ‘Walking’ as a relaxing sound. Even
though both the pleasant and unpleasant sounds have a high and quite similar
arousal score, ‘Scream’ was assessed with a low value of valence, that corresponds
to an unhappy emotional state according to the SAM scale. Regarding the dom-
inance and control dimensions, the ‘Scream’ elicited subjects feeling dominated
and dependent on the sound, the ‘RockNRoll’ sound produces a sensation of max-
imum control in the situation, while the ‘Walking’ sound was rated as neutral.

6 Conclusion

EDA (or equivalenty GSR) is a biometric signal reflecting changes in the elec-
trical properties of the skin, produced by external emotional stimuli [23]. In this
work, the EDA signal was measured by using the E4 wristband and then pro-
cessed in time domain, by evaluating the effects of different type and length of
acoustic stimuli, in a small population. In particular, the number of peaks per
minute of the EDA curve was counted, being the event-related feature, and then
compared among the subjects and among the stimuli. Regarding the unpleas-
ant sound, the same effect (i.e. an increase of EDA peaks per minute during
the listening period) in almost all individuals was presented especially for short
sound, probably due to the track played: an unexpected and well-known annoy-
ing sound (i.e., ‘Scream’). Probably, the negative emotion was able to induce a
high sweat reaction, and consequently evident physiological changes. However
the same reaction, if the external stimulus is too long, can be affected by the
habituation phenomenon, resulting in a lower number of peaks per minute in
the EDA curve. Contrarily, the findings from the pleasant and neutral stimuli
are more randomly distributed. Many subjects did not show any physiological
reaction to ‘Walking’ and ‘RockNRoll’ sounds, especially when presented the
one-minute-long tracks.

In general, the results confirm that the physiological changes in EDA are vis-
ible, but subjective. Even though different individuals can share some emotional
status or mental perception of the same sound track (as declared in SAM scale
scores), their physiological features can have significant differences. This state-
ment is evident for pleasant sound, where high perception of affective valence
and intensity corresponds to a small number of peaks during the stimulation.
Contrarily, the low valence and high arousal of ‘Scream’ sound can be strictly
associated to the bigger number of peaks during the elicitation of an unpleasant
experience.

Although the results of this preliminary experiment are promising, some clear
limitations rely in the use of a single audio clip per IADS category, the small
population affected by gender imbalance, and the use of the time-domain peak
detection approach alone. More accurate findings can be achieved by enrolling
a wider and more heterogeneous population in terms of gender and age. For
example, the different perception of an external stimulus (e.g. acoustic), and
consequently the resulting EDA fluctuations can be compared among males and
females of different ages. Additionally, also selecting more sound tracks of the
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same valence scores from the IADS database, can allow to obtain more gener-
alised and reliable findings. These activities are foreseen as future developments
of the research.
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Abstract. Obesity is one of the most common problem that can be avoid with the
correct education of the teenagers. There are different methods, but the use of the
mobile devices to promote the creation of social challenges is important, because
the teenagers act mainly in groups. The use of questionnaires, challenges and
gamification purposes may promote the use of this type of mobile applications by
teenagers. It is a special population that needs the adoption of different interactive
technologies. The studies available are not validated by healthcare professionals.
First of all, we started to analyze the related work of obesity problem, mobile
applications, and different methodologies adopted with teenagers. By the end,
seven students participated in the study with the performance of visualization
of daily tips and curiosities, answering questionnaires, monitoring of physical
activity and gamification. The teenagers were satisfied with the strategies adopted,
but this study was affected by the pandemic situation around the world. In general,
the participants were satisfied with the use of the mobile, and they would like to
use it in the future for the improvement of their nutrition and physical activity
habits.

Keywords: Teenagers ·Mobile application · Nutrition · Physical activity ·
Health · Education

1 Introduction

Nowadays, it was verified that the teenagers have an inadequate and little knowledge
about healthy nutrition and physical activity. They spend a lot of time with technological
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equipment and did not practice physical activity [1, 2]. It causes different healthcare
problems in the teenagers, including the obesity [3–5]. One of the factors for the poor
habits of the teenagers are socioeconomic factors [6]. Still, the reduces physical activity
and the energy intake is other important factor in this type of population [5].

The obesity is caused by the excessive body fat with the difference between energy
expenditure and calories intake [7]. It caused the development of several diseases, includ-
ing hyperglycemia, dyslipidemia, hypertriglyceridemia, low levels of High-Density
Lipoprotein, and hypertension [8]. However, the performance of physical activity is
the best method to spend calories and control the weight [9].

The prevalence and incidence of obesity and overweight in teenagerswas proposed in
the National Health Plan - Review and Extension to 2020 [10]. Portugal is not exception,
and the National Program for the Promotion of Healthy Eating was created to promote
the combat of the obesity. One of the strategies that Portugal adopted was to attempt to
increase the levels of physical activity in young people and teenagers [11].

A Body Mass Index (BMI) for age with more than a typical deviation above the
median established in child growth patterns and obesity as being higher than two standard
deviations above the norm established in child growth patterns was created by theWorld
Health Organization (WHO) for individuals aged between 5 and 19 years old [7]. This
population is considered as overweight between the 85th and 95th percentile, and obese
above the 95th percentile [12]. Thus, the WHO verified, in 2016, that the number of
teenagers that are overweight or obese exceeded 340 millions of individuals [7].

The purpose of this study is to use a mobile application for the promotion of healthy
nutrition and physical activity habits by teenagers during a trial of five weeks. During
the time of the study, different tips, curiosities, challenges, and questionnaires were
proposed for the seven teenagers that participated in the study. The teenagers were aged
between 13 and 16 years old, and they are students in the public schools in the Covilhã,
and Fundão municipalities (Portugal) [14]. The mobile application includes different
methodologies to captivate the attention of the teenagers, and it also includes methods
to stimulate the physical activity. The gamification, personalized messages, and medical
control are some of the methodologies implemented. The teenagers answered different
questionnaires about physical activity and nutrition during the study. The analysis of the
different answers was performed to evaluate the knowledge level of the teenagers.

This study revealed that the use of a mobile application is a good method to promote
health nutrition and physical activity habits in teenagers. It was also verified that these
population valued gamification techniques and the medical control. The effects of the
use of mobile application should be reevaluated after the pandemic situation.

This paragraph and the introductory section. Section 2 presents the related work
about the obesity, mobile applications for nutrition and physical activity and different
methodologies used with this population. The methodology of CoviHealth project is
presented in Sect. 3. Next, Sect. 4 presented the analysis of the initial questionnaire,
the answers in the questionnaires about nutrition and physical activity, and the feed-
back questionnaire. The discussion of this study, and comparison with other studies are
presented in Sect. 5. The conclusions are presented in Sect. 6.
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2 Related Work

Obesity is considered a chronic, complex and multifactorial disease that is unfavorable
for health, being characterized by an excessive increase in body fat that results from the
imbalance of caloric expenditure and energy intake [7]. This imbalance is favorable to the
development of several metabolic complications, namely insulin resistance, which leads
to hyperglycemia, dyslipidemia, namely hypertriglyceridemia and low levels of High
Density Lipoprotein (HDL), and arterial hypertension [8], also affecting the intestinal
microbiota [15] that results from the interaction of several genetic, environmental and
lifestyle factors [16].

The reduction and control of the incidence and prevalence of overweight and obesity
in the child and school population is one of the goals proposed for 2020 in the National
Health Plan - Review and Extension to 2020 [10]. Thus, in Portugal, the Directorate-
General for Health created the National Program for the Promotion of Healthy Eating,
in which public health strategies for combating obesity are addressed and created.

For children, adolescents and young adults between 5 and 19 years old, the World
Health Organization (WHO) defines excess weight as the Body Mass Index (BMI) for
agewithmore than a typical deviation above themedian established inHDL child growth
patterns. In turn, obesity is defined as being greater than 2 typical deviations above the
median established in child growth patterns [7]. Thus, children, adolescents and young
adults aged 13 to 19 between the 85th and 95th percentiles are overweight. It is further
mentioned that with a percentile higher than the 95th percentile, they are classified as
obese [12].

In 2018, the study [17], which presents data collected between 2015 and 2016 in
Portugal, concludes that the prevalence of obesity increases with increasing age, being
less prevalent in children and higher in the elderly. There are 3 inflection points in the
prevalence of obesity throughout life, being them at 5, at 15 and, finally, at 75 years
old. This study resulted in approximately 17.3% of children, under the age of 10 years,
having pre-obesity and 23.6% of adolescents, aged between 10 and 18 years, having
pre-obesity. 7.7% of children and 8.7% of adolescents were obese.

In 2017, the WHO estimates that, as adolescents are older, the level of physical
activity decreases [18]. However, when analyzing the answers related to the question
related to the accomplishment of “at least one hour ofmoderate to vigorous activity every
day”, this was performed by 25%of the children of 11 years, but for those of 15 years, the
number drops to 16% [18]. The authors also conclude that the probability of sedentary
behavior increases with age, with only 50% of 11-year-old children reporting watching
2 or more hours of television during the week, against 63% of those who are older [18].

In order to understand what type of functionalities are the most frequently present in
mobile applications aimed at nutrition, physical activity and health, in the general pop-
ulation, a search was carried out in the Google Play Store, since the mobile application
would be developed for theAndroid operating system [19]. The following keywords “nu-
trition”, “diet”, “calories”, “health”, “exercise” and “weight” were used for this search.
250 applications resulted from this search [19]. Thus, only 73 were analyzed, where the
remaining were excluded by previously defined criteria [19]. The 73 applications were
classified, verifying that most of them corresponds to applications related to “diet and
nutrition” (52%) [19]. The remaining mobile applications are distributed by “health”
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(25%), “physical activity” (12%) and education (11%) [19]. We also analyzed and cat-
egorized the different functionalities, including “diet”, “anthropometric parameters”,
“social”, “physical activity”, “medical parameters”, and, “vital parameters” [19]. From
the study of the 73 mobile applications, we verified that the most features encountered
in the mobile applications were weight, height, age, gender, objectives, calculation of
calories needed, diet diary, database of food and calories, calories burned and calculation
of intake of calories [19].

Finally, in order to discover the most used methodologies to obtain the participation
and attention of young people with the use of mobile applications to improve health, a
search for different studies was made. A search was made in different digital libraries,
such as Springer, IEEE Xplore, and PubMed. Initially, we found 13,218 articles, where,
after the exclusions, 9 articles were remaining due to the criteria that we established
previously. These studies indicate the different techniques to attract the attention of
young people, where, generally, it includes questionnaires and gamification techniques.
The different features used in the different studies include the paper diary, the digital
diet diary, the digital exercise diary, the use of notifications, the diet plan, the record of
physical activity, the use of photos, the use of games, and the use of SMS.

3 Methods

Before this study, a methodology was proposed with the use of a mobile application
[14], which was built with the aim of monitoring, advising and educating young people
about health. This mobile application was named as CoviHealth, where young peo-
ple could register their diet, physical activity, medication plans, anthropometric data,
alerts and objectives. In addition, the teenagers could accept the challenges related to
physical activity and fill the weekly questionnaires. The main screen will show a daily
curiosity/suggestion related to nutrition and physical activity, and their effects on health.

As the project was developed in Covilhã, Portugal, two schools were proposed to
collaborate, such as Escola Quinta das Palmeiras (Covilhã), and Escola Secundária com
3º Ciclo Ensino Básico do Fundão (Fundão). The selected students were aged between
13 and 18 years old, where 68 were selected from Fundão, and 105 were selected from
Covilhã.

Between the 173 students, only 155 of them were validated, because the remaining
reported an invalid email or they do not have a smartphone with Android operating
system. During the study 28 students downloaded the mobile application from Google
Play Store, where one was excluded by age range and execution of the questionnaires
in the mobile application.

All validated students used the mobile application for 5 weeks, where 18 curiosities
and 10 suggestions related to nutrition or physical activity were presented. In addition,
6 challenges in relation to the number of steps and calories were provided. Thus, 4
questionnaires related to the curiosities and suggestions provided were presented to the
teenager.

At the end of the first fiveweeks, themobile applicationwas evaluated by the teenager
with a questionnaire. All questionnaires were statistically analyzed by quantitative and
qualitative variables. Finally, the analysis was performed by groups, applying the Chi-
square test with the contingency tables.



CoviHealth: A Pilot Study with Teenagers in Schools 143

4 Results

4.1 Sample Analysis

The population included in the study tries to have equivalent number of people from
different genders, where the population has 14 of female gender, and 12 of male gender.
In addition, the individuals are distributed by different ages, i.e., between 13 and 18 years
old.

In this study is also studied the presence of pathologies in the different subjects,
where only 19% of teenagers reported that have some diseases, but only 8% reported
that are taking some medication.

The different teenagers have between 1.43 m and 1.87 m of height, but they have
major incidence between 1.60 m and 1.70 m of height. Related to the weight, they
reported that have between 35 kg and 80 kg, but they have major incidence between
40 kg and 50 kg. Thus, it is possible to calculate the Body Mass Index (BMI) with these
values, reporting that 67% reported the normal level of BMI, i.e., between 18.5 and 24.9.

4.2 Analysis of Population Habits

In relation to the sleeping habits, most of the students are sleeping between 8 and 9 hours
per night, and the majority is not consuming alcoholic beverages. Fortunately, 65%
of analyzed teenagers practice sports, but only 62% are frequenting the gymnasium,
where also 62% of teenagers practice exercise during 1 or 2 h for each day. Regarding
the sports played, 39% of the teenagers play football, and 23% of the teenagers play
basketball. Regarding the group sports, 35% of students prefer individual sports, and
31% of teenagers prefer team sports.

In general, the teenagers involved in the study did not have specific diet, where only
62% of individuals are consuming one or two pieces of fruit per day. However, only 4%
are consuming candies between 5 to 6 times a week. In contrast, 54% of teenagers are
drinking only between 0.5 L and 1 L of water per day.

4.3 Analysis of Weekly Questionnaires

The participants had available in the mobile application 4 weekly questionnaires,
answered by the end of each week of the study and they are related to the different tips
and curiosities presented during each week. Table 1 shows the answers on the different
questionnaires. The correct answers are highlighted in Table 1.

Regarding the different questionnaires, in average, 54% of the answers of the ques-
tionnaire 1 are correct, 39.75% of the answers in the questionnaire 2 are correct, 73% of
the answers in the questionnaire 3 are correct, and 50%of the answers in the questionnaire
4 are correct.
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Table 1. Different answers of the different questionnaires.

Questionnaires Questions Answer 1 Answer 2 Answer 3 Answer 4 

1 

1 13% 20% 47% 20% 
2 13% 7% 7% 73% 
3 60% 40% - - 
4 60% 13% 7% 20% 

2 

1 42% 17% 8% 33% 
2 25% 42% 17% 17% 
3 58% 42% - - 
4 25% 8% 42% 25% 

3 

1 8% 92% 0% 0% 
2 0% 17% 17% 67% 
3 17% 8% 75% 0% 
4 0% 58% 25% 17% 

4 

1 14% 43% 0% 43% 
2 43% 0% 57% 0% 
3 29% 29% 29% 14% 
4 14% 14% 0% 71% 

4.4 Analysis of Feedback Questionnaire

Related to the monitoring of physical activity components of the mobile application, the
users are mainly satisfied with the different functionalities, but most of the students that
answered the questionnaire said that theymaintained the level of physical activity during
the study. In addition, most of the teenagers are satisfied with the use of the training plan
functionality. Related to the food, most of the students maintained their food habits.

Related to the educational features, the use of tips and curiosities are useful for
most of the students, and the use of questionnaires are mainly reasonably useful to the
improvement of the knowledge about education of nutrition and physical activity. In
general, most of the students answered that the use of gamification motivated the use of
the mobile application. The mobile application also allows the medical control, where
most of the teenagers said that it is important.

In general, people are reasonably satisfied with the mobile application, and a large
part of the students involved in the study said that will use the proposed mobile
application.

5 Discussion

Due to the presence of similar studies in the literature, the results obtained by our study
can be discussed with them. The CoviHealth project was implemented for 5 weeks, and
only one study found was implemented in the same number of weeks and a similar num-
ber of teenagers [20]. Spook et al. [21] and Reid et al. [22] are two studies implemented
during only one week. In [23], a larger number of teenagers participated in the study
during only 4 weeks. Finally, Lee et al. [24] performed a study with a similar number
of teenagers than CoviHealth project for 12 weeks.
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It was verified that one study improved the diet of the teenagers with mobile appli-
cations [20]. Still, the dietary habits did not changed in the study [23]. The satisfaction
with the methodology implemented was higher in the study [25]. However, in the study
[24], the teenagers are clearly satisfied, and, in study [23], the teenagers are not satisfied.
Regarding our study, the majority of the teenagers agreed to the use of mobile applica-
tions. Thus, similarly to our study, in [21], the teenagers said that they would continue
using the mobile application.

Therefore, the use of mobile applications by teenagers is not recommended until
between 14 and 16 years old [26], and we need to act in earlier age to promote health-
ier habits. The technological equipment, chu as mobile devices, is a good manner to
prometon good habits in the different communities of teenagers.

The technology allows the healthcare professionals to monitor the teenagers any-
where, and it can be explained to the teenager in a consultation. Different validatedmeth-
ods are important to captivate the attention of the teenagers, including the pedometer,
and the measurement of the energy expenditure [27–30].

Finally, CoviHealth project demonstrated that the use of a mobile application
increases the good habits for physical activity and nutrition. However, this study was
implemented in a pandemic situation and it affected the results obtained as well as the
low number of teenagers that completed the study. The main limitation was that the
mobile application was only focused in nutrition and physical activity. The technologies
captivate this type of population.

6 Conclusions

The CoviHealth application intends to educate the teenagers about physical activity and
nutrition with daily tips and curiosities, questionnaires, gamification, challenges, and
other functionalities. The teenagers win points with the use of the mobile application to
earn discounts in different stores.

At the beginning this study involved 26 teenagers, but we only analyzed the seven
teenagers that finalized the study. The analyzed teenagers are aged between 13 and
16 years old, and they answered the feedback questionnaire. The study has the duration
of five weeks with the availability of four weekly questionnaires about the tips and
curiosities provided by the mobile application.

Regarding the different functionalities of the mobile application, the teenagers are
mainly satisfied with the physical activity monitoring, tips and curiosities, and ques-
tionnaires. By the way, they choose the medical control as a relevant feature, and they
indicated that the gamification functionalitiesmotivated the use of themobile application.

It was concluded that the use of the mobile application for the promotion of healthy
nutrition and physical activity habits is reliable. However, due to the pandemic situation,
this study should be performed with a more diverse population and an larger samples in
the analysis.
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Abstract. Different wireless sensing methods have been proposed for
acquisition and measurement of body signals. In medical healthcare, it is
critical that data are received simultaneously, processed, and analyzed in
order to diagnose the disease accurately. For instance, to detect a patient
with sleep apnea, it is necessary for the biosignals from dozens of biosen-
sors including electroencephalography (EEG), electrocardiogram (ECG),
photoplethysmogram (PPG), and peripheral oxygen saturation (SpO2)
to be received in sequence it is used for diagnosis. However, it is difficult
to accurately received these signals as their measurement frequencies are
different from each other. Precise synchronization of the heartbeat with
other measuring cycles of each biosensor is a critical attribute for iden-
tifying the correlation of each biosignal. Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) used in existing body area net-
works to guarantee the precise synchronization of multi-biosignals. This
paper addressed this issue by proposing a bio-inspired Dynamic Time
Division Scheduling Protocol (D-TDSP) based on the Frog Calling Algo-
rithm (FCA) to adjust the timing of data transmission and to guarantee
the synchronization of the sensing and receiving of multi-biosignals. The
accuracy of the proposed algorithm is compared with the CSMA/CA
method using a TelosB and XM1000 sensor nodes.

Keywords: Frog Calling Algorithm · Bio-inspired · Biosensor ·
Synchronization · Transmission data · Health monitoring

1 Introduction

Medical devices in the wireless body sensor networks (WBSNs) can be broadly
divided into wired and wireless. Wired medical devices have high precision, but
they are inconvenient to wear, complicated, and difficult to use by individual
patients. In contrast, wireless medical devices are usually worn by the patient
in the form of wearable devices making it more popular to be used at home
for medical physiological monitoring and diagnosis [1,8]. These devices can be
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added to the networks as new or additional biometric needs to be collected.
WBSNs consist of a number of short-range wireless communication devices. The
biosensor on each device periodically receives biometric signal data through the
connected biosensors. The biosensor can be embedded within the communication
devices, or implant or attached outside the human body [3]. Each device is placed
near the human body to collect data such as electrocardiograms, heart rate, and
acceleration.

Individual device periodically receives the biometric data from the biosen-
sor and transmit the signal collected to a centralised server for processing.
Each device can perform time synchronization using periodic biosignal gener-
ated from the individual nodes. To analyze different biosignals received from
different biosensor for medical diagnosis, it is necessary to read those biosig-
nals from one or several devices accuracy and periodically in a synchronised
manner [2]. As the biosensor devices are attached at different body parts, sig-
nals arriving from several devices may not be synchronized with the measured
time. According to Pflugradt et al. [7], biosignal measurements can be partially
obstructed by environmental influences and motion artifacts as the patients are
usually not at rest. Data acquisition devices like ECG and PPG sensors are can
be disrupted due to contacts failure or shifting photosensor positions [7]. The
presence of intermittent radio interference from other medical devices can also
disrupt the bio-signal transmission of the nodes [6]. Hence, there is a need to
develop a fault tolerance data transmission scheduling algorithm that can guar-
antee sensing data synchronization and sequencing to make accuracy medical
diagnosis.

In this paper, a time division based scheduling algorithm is proposed that can
adapt and adjust its firing time according to the environment without affecting
the sensing data sequence and the synchronized transmission. The main contri-
bution of this paper is the development and analysis of a novel Bio-inspired
algorithm called Dynamic Time Division Scheduling Protocol (D-TDSP) for
Wireless Biosensor Networks (WBN) that capture and transmit the biomed-
ical signals according to actual diagnosis pathway for a disease. The D-TDSP
dynamically allocated the transmission time for each node using a modified Time
Division Multiple Access (TDMA) approaches based on Frog Calling Algorithms
(FCA).

The analysis from hardware experimental results have shown that the pro-
posed D-TDSP is tolerate to single point of failure as there is no centralised
control on the transmission scheduling. Individual node can adjust its transmis-
sion period according to the transmission time of its neighboring nodes. The
proposed algorithm can also adapt to network changes due to device addition,
and node removal or temporary anomaly due to interference compare to Firefly
Synchronization (FAST) or default CSMA/CA.

Section 2 presents the basic background on the works related to time syn-
chronization and scheduling in WBSNs followed by the design of the proposed
algorithm in Sect. 3. In Sect. 4, the scenario and experimental setup used for
the evaluation of the proposed D-TDSP are described. Section 5 and 6 discusses
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and validates the results obtained from the hardware experiments using a com-
bination of two types of nodes. In Sect. 7, we conclude with future research.

2 Remote Healthcare Diagnosis and Detection

The WBSN can be used to sense, monitor, capture and extract physiological
information of a patient using biosensor such as the electroencephalography
(EEG), electrocardiogram (ECG), photoplethysmogram (PPG), and peripheral
oxygen saturation (SpO2) [5]. They can also be used to assist in other aspects of
a patient’s care, such as reporting on the current real-time location of a patient,
recording a patient’s condition for later analysis, or communicating a patient’s
condition to a remote party, such as a hospital or physician. These biosensor
node can be attached or implanted to the patient’s body [10].

WBSN applications need to be easy to use and with minimal user config-
uration. The attached biosensors should not intervene with the patient daily
activities. It should be able to deliver and manage the information related to the
patient care remotely [8]. Each biosensor will have its own timing circuit with a
local clock. The biosensor needs to be connected to the network and the com-
munication timing between biosensor nodes need to be synchronized to transmit
the biodata without interfering with another nodes.

Most of these functions require tight time synchronization to function prop-
erly especially for applications that require two or more parameters for diagnostic
or treatment [9]. They usually involves time synchronization of multiple biosen-
sors forming a dynamically network. These networks need to be reconfigurable
automatically to allow the nodes to join or leave the network, or to overcome
communication failure triggered by interference from other radio devices. Upon
joining the network, each node in the WBSNs must synchronize with one another.
This synchronization may account for a number of possible sources of time dis-
crepancy, such as differences in time stamping, communications latency during
signal transmittance and/or other sources.

2.1 Packet Synchronization in Medical Application

Time synchronization is critical for time-sensitive applications such as medical
health [12] for diagnostic in an Artificial Intelligence based medical application
[7]. Zong et al. [11] mentioned the applications of time synchronization can be
collaborated, coordinated and localized the position of the nodes. They found
out that these nodes require precise timing in order to cooperate and monitor
the physical or environmental variables.

Fixed time synchronization algorithm has been used in the MAC layer to
ensure that data can be collected and transmitted reliable at a predetermined
interval. In fixed time synchronization, the transmission interval allocated to
individual node is equally divided among a set of nodes within a time period.
Each node will need to transmit at the assigned interval to avoid packet collisions
using time division approaches. However, fixed time synchronization approach
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is not suitable for medical application as the sensing data needs to be trans-
mitted at any time when a critical event is detected. The default CSMA/CA
transmission protocol at the MAC layer is prone to collision when the num-
ber of biosensor nodes increases. Hence, there is a need to apply bio-inspired
synchronization algorithm at the application layer to ensure that the patient
physiological data can be received promptly and reliably.

2.2 Frog Calling Synchronization Algorithm

The bio-inspired, Frog Calling Algorithm (FCA) is a self-organized control algo-
rithm. This synchronization is based on the calling behavior of the Japanese
Frog developed and modeled by Aihara et al. [4]. The main purpose of this frog
behavior is to attract the female frog. The process is when there is a group
of male frogs in the area, when one start calling, the others will start calling
too. With the multiple calling, the female frog will have difficulties to distin-
guish which male frog is calling. Hence, they shifted the time of their calling
[4]. Aihara et al. [4] developed a self-organizing scheduling scheme inspired by
FCA for collision-free transmission scheduling in Wireless Sensor Networks. The
authors evaluated their proposed algorithm in simulation and the results have
shown that it can reduce the data transmission failures and improves the data
collection ratio up to 24% compared to a random transmission method.

3 Dynamic Time Division Scheduling Protocol

In this section presents the algorithm framework of the D-TDSP. The D-TDSP
allows the nodes fired evenly distributed within a time period. In a network, there
are a set of number of nodes which work in a single hop topology. Each of the node
will have the same period of time, where in this case T = 32 kHz. Figure 1 below
shows the process of the dynamic time division scheduling protocol approach.

Figure 1(a) shows the initial stage before the algorithm starts. All of the
nodes seen are not in periodic and synchronized position. When node A fired,
it will look for the previous node, which is node B and it will use the Eq. 1 to
evaluate the new position. As soon as Node B jump to new position, B as shown
in Fig. 1 (b) and consequently. This will be repeated with the other nodes. Each
node will adjust its transmission position until all of the nodes are evenly spread
within the length period of time of the basestation (as shown in Fig. 1(c) below).

f(x) = f−1(f(t
′
) − ε) (1)

The value of ε is determined by Eq. 2, the mathematical equation shown
below.

ε = (
t

′′
+ t

′

2
)α (2)

where alpha is a synchronization damping function.
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Fig. 1. Adaptive transmission scheduling algorithm (a) Node fires at a time period T.
(b) Node responds to neighbors firing to adjust its firing timing between A and C

4 Experimental Setup

To evaluate the performance of D-TDSP against CSMA/CA random transmis-
sion and a firefly-inspired scheduling algorithm called Firefly Adaptive Schedul-
ing Transmission (FAST), an xm1000 motes will be used as the WBN node.
These nodes will be deployed in a similar manners to the application in the
healthcare monitoring systems shown in Fig. 2. The bio sensors are to be attached
on or implanted into the human body to collect physiological information such
the electrocardiogram (ECG), electroencephalography (EEG), pulse rate, blood
pressure, body temperature and (SpO2) and each biosensor will be connected to
the XM1000 nodes. The WBSN will be operating in a star topology configura-
tion, where all the data from the biosensor will be sent to the base station using
single hop communications.

Fig. 2. The WBNs with biosensor attached to the body and a node to transmit the
sensed data to the gateway.
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A TelosB node will be used as a monitoring base station to collect the
synchronization statistics and monitor the scheduling of the data transmission.
XM1000 mote will be used as the individual sensor nodes that will collect the
biodata to be transmitted within a clock cycle as shown in Fig. 3. Each nodes
will have a unique id and the base station will need to capture the sequence
and order of the packet received, and calculate the Packet Delivery Rate (PDR)
using Eq. 3 below.

Fig. 3. The 5, 10, and 15 XM1000 nodes used for the experiment with one telosB mote
connected to the notebook for data collection.

PacketDelivery Ratio, PDR =
Prx × 100
∑n

i=1 PG(i)

(3)

Where Prx is the total number of data packets received by the sink node and
PG is the packet generated by the source node.

Different numbers of 5, 10, 15 XM1000 motes were used to evaluate the scala-
bility of the proposed algorithms as shown in Fig. 3. A laptop will be connected
to the monitoring node to store and display the statistics collected. The syn-
chronization process will begin when the first node starts to fire. The rest of
the sensor nodes receiving the message will adjust its transmission period and
transmit its own messages. This process will continue until the experiment ends.

Three set of experiments are conducted and repeated to compare the order
of packet arrival at the base station and reliability in term of the PDR.

5 Results

In this section, the performance analysis of D-TDSP is compare against the
random CSMA/CA and FAST. Three set of experiments are performed. The first
experiment evaluates the sequencing of the packet received and the PDR against
the network size for the three algorithms. The second and third experiments
analyze the reliability of all the three algorithms when 1. a new node is added
to the network and 2. When a node temporary fail to model scenario such as
radio interference or node maintenance to replace battery.
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5.1 Sequencing of Packet Delivered for 5 Nodes

In Fig. 4, Fig. 5 and Fig. 6 below show the synchronization process of the three
synchronizations, the D-TDSP, FAST and CSMA/CA. It can be seen that the
D-TDSP and FAST synchronization can achieved synchronization within the
period of time as shown in Fig. 4 and Fig. 5 respectively. By observing the
FAST synchronization process in Period 3, when all of the nodes transmitted it
shows that the nodes were then in sleep mode for a short time before going into
Period 4. In the D-TDSP, the nodes in Period 4 can be seen that it broadcasted
the data in an evenly manners. While in CSMA/CA shown in Fig. 5 shows that
the nodes transmit at a synchronicity patterns but the firing time will be at
random and the nodes will only fire from the previous cycles.

However, when analysing the data arriving sequence of D-TDSP transmission
shows that all the nodes have broadcasted the data in a synchronous pattern
for every 20 cycle, while in the FAST and CSMA/CA only managed to synchro-
nised 10% and 30% of every 20 cycles respectively. The FAST has the lowest
synchronicity as the nodes will continuous to update the firing time even when
synchronization is achieved.

Fig. 4. The order of
packet received by the
basestation from 5 nodes
for D-TDSP

Fig. 5. The order of packet
received by the basestation
from 5 nodes for FAST

Fig. 6. The order of packet
received by the basestation
from 5 nodes for random
CSMA/CA

5.2 Statistical Test on the Synchronization Period for 5 Nodes

In the average synchronization period shown in Table 1, the D-TDSP and the
CSMA/CA approach have consistent average period through out the process
compare to FAST. This means that the transmission period for the nodes are
equally distributed and each node always transmit at the allocated time within
the period. The p-value obtained in the T-Test also shown that the transmission
period is statistically significant. Hence, the results show that the D-TDSP per-
forms better compared to the FAST synchronization and CSMA/CA and can
broadcast in a synchronized and evenly distributed patterns when the numbers
of nodes is small.
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Table 1. Average of synchronization period for 5 nodes.

Node ID D-TDSP FAST Random CSMA/CA

Av. cycle period p-value Av. cycle period p-value Av. cycle period p-value

1 35800.00 7.10 × 10−68 56192.03 1.11 × 10−36 32254.90 1.14 × 10−9

2 35800.00 6.22 × 10−58 50840.00 3.72 × 10−24 32254.90 1.14 × 10−9

3 35800.00 6.22 × 10−58 49125.47 9.13 × 10−22 32254.90 1.14 × 10−9

4 35800.00 6.22 × 10−58 49841.18 1.27 × 10−22 32254.90 1.14 × 10−9

5 35800.00 6.22 × 10−58 49771.47 2.87 × 10−23 32254.90 1.14 × 10−9

5.3 Sequencing of Packet Delivered for 10 Nodes

The packet arrival sequences for 10 nodes transmitting in the networks is shown
in Fig. 7, Fig. 8 and Fig. 9.

Fig. 7. The order of
packet received by the
basestation from 10
nodes for D-TDSP

Fig. 8. The order of packet
received by the basestation
from 10 nodes for FAST

Fig. 9. The order of packet
received by the basesta-
tion from 10 nodes random
CSMA/CA

The results show that the D-TDSP allows each node transmitted in a syn-
chronized and evenly distributed as the packets received are always in ordered.
As for FAST, packets transmitted by all the nodes are received at the basestation
but not in evenly distributed manners. This is because the nodes in the network
were trying to align their time in order to collect the data simultaneously. The
D-TDSP has achieved 100% synchronicity for every cycles throughout the trans-
mission while FAST only achieves 10% synchronicity and CSMA/CA 70%. This
means that data arrival schedule transmitted by the nodes in the network is not
always the same for FAST.

5.4 Statistical Test on the Synchronization Period for 10 Nodes

In the statistical test shown in Table 2, the synchronization period shows that D-
TDSP and the CSMA/CA have a consistent average cycle period at 34700.00 µs
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and 32063.34 µs respectively as the p-value is ≤ than 0.01. The consistent average
period indicates the nodes in the networks always transmit at the allocated
synchronized time. FOR CSMA/CA, the transmission time is configured in the
program while for D-TDSP, each node will determine its own transmission based
on its neighboring firing.

Table 2. Average of synchronization period 10 nodes.

Node ID D-TDSP FAST Random CSMA/CA

Av. cycle period p-value Av. cycle period p-value Av. cycle period p-value

1 34700.00 3.35 × 10−226 27387.62 8.96 × 10−22 32063.34 9.35 × 10−11

2 33800.00 1.15 × 10−209 34278.92 1.12 × 10−22 32063.34 9.35 × 10−11

3 34700.00 1.12 × 10−221 34278.92 1.12 × 10−22 32063.34 9.35 × 10−11

4 34700.00 3.92 × 10−227 34278.92 1.12 × 10−22 32063.34 9.35 × 10−11

5 34700.00 4.00 × 10−234 33344.77 8.89 × 10−22 32063.34 9.35 × 10−11

6 34700.00 3.95 × 10−289 34095.28 7.82 × 10−22 32063.34 9.35 × 10−11

7 34700.00 3.08 × 10−221 34233.08 6.80 × 10−18 32063.34 9.35 × 10−11

8 34700.00 4.46 × 10−209 33997.90 4.63 × 10−24 32063.34 9.35 × 10−11

9 34400.00 9.45 × 10−226 33366.90 1.55 × 10−21 32063.34 9.35 × 10−11

10 34100.00 9.37 × 10−230 34069.78 2.39 × 10−19 32063.34 9.35 × 10−11

5.5 Sequencing of Packet Delivered for 15 Nodes

In Fig. 10, Fig. 11 and Fig. 12 below show the synchronization process of the
three synchronizations, the D-TDSP, FAST and CSMA/CA.

As the network size is increased to 15 nodes, D-TDSP has managed to broad-
cast the data to the basestation in an evenly distributed period of time. The D-
TDSP had achieved 65% synchronicity. As for the FAST and CSMA/CA, they
only managed to maintain 15% and 45% synchronicity respectively. This is due
to the increase of interference between nodes during transmission. It is shown
that the D-TDSP can avoid interference once the network has been synchronised.

5.6 Statistical Test on the Synchronization Period for 15 Nodes

When the number of nodes increases to 15, the average transmission period for
each node is not consistent for every cycle in D-TDSP as shown in Table 3. This
was because of the large scale of the nodes which can cause delay in transmission
from the nodes, the signal period propagated between 32000.00 µs and 34700.00
µs. However, the difference in transmission cycle between the nodes is small
compared to FAST which is between 32409.70 µs and 35682.48 µs. The p-value
of ≤0.01 also shows that the transmission period for every cycles is statistically
significant. This means that the nodes always transmit at the allocated time.
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Fig. 10. The order of
packet received by the
basestation from 15
nodes using D-TDSP

Fig. 11. The order of
packet received by the
basestation from 15 nodes
using FAST

Fig. 12. The order of
packet received by the
basestation from 15 nodes
using random CSMA/CA

Table 3. Average of synchronization period for 15 nodes.

Node ID D-TDSP FAST Random CSMA/CA

Av. cycle period p-value Av. cycle period p-value Av. cycle period p-value

1 33900.00 6.16 × 10−214 33722.83 1.10 × 10−74 32212.30 1.09 × 10−5

2 33900.00 9.05 × 10−203 35095.05 8.44 × 10−82 32745.67 7.40 × 10−5

3 34200.00 1.52 × 10−205 35095.05 8.44 × 10−82 31998.87 4.15 × 10−10

4 33800.00 3.23 × 10−197 35095.05 8.44 × 10−82 32105.40 1.10 × 10−5

5 34700.00 4.00 × 10−234 32273.12 4.57 × 10−86 31998.30 1.15 × 10−9

6 32000.00 9.35 × 10−178 35173.33 1.38 × 10−78 31999.47 5.16 × 10−10

7 34200.00 1.04 × 10−200 32409.70 1.44 × 10−76 31998.30 1.01 × 10−9

8 34200.00 2.64 × 10−281 33988.58 7.14 × 10−85 31999.50 1.54 × 10−5

9 34200.00 8.78 × 10303 35682.48 4.59 × 10−83 31999.40 7.12 × 10−10

10 33300.00 1.87 × 10−208 35009.18 1.96 × 10−78 32105.63 1.10 × 10−5

11 34200.00 2.50 × 10−207 34350.10 2.76 × 10−84 32105.40 1.12 × 10−5

12 33600.00 2.44 × 10−201 34383.87 1.88 × 10−82 32532.77 4.30 × 10−5

13 34200.00 8.22 × 10−285 34248.22 3.32 × 10−78 31998.63 1.53 × 10−9

14 34200.00 3.18 × 10−290 34248.22 3.32 × 10−78 31999.23 2.08 × 10−9

15 33300.00 7.87 × 10−194 34248.22 3.32 × 10−78 31999.17 1.50 × 10−9

5.7 Evaluation of Packet Delivery Rate

In term of the PDR, Fig. 13, Fig. 14 and Fig. 15 shows that the D-TDSP had
a PDR of between 98.4% and 100%, while random CSMA/CA had a PDR of
between 97% and 100%. For all the networks sizes, D-TDSP has managed to
maintain the PDR of above 98% and is higher than the FAST and random
CSMA/CA (Table 4).

5.8 The Scheduling Effect During Network Interference

In the next two section, two different type of interference are introduced to the
networks to evaluate the ability of the three algorithms to maintain the syn-
chronicity of the nodes in the WBN. In this section, a node will be temporary
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Fig. 13. The PDR using
D-TDSP

Fig. 14. The PDR using
FAST

Fig. 15. The PDR using
random CSMA/CA

Table 4. Average of Packet Delivery Rate (PDR) for 100 cycles for 5, 10, and 15 nodes.

No. of nodes D-TDSP FAST Random CSMA/CA

Average PDR(%) p-value Average PDR(%) p-value Average PDR(%) p-value

5 100 1.84 × 10−101 99.71 1.62 × 10−222 99.60 1.56 × 10−11

10 99.8 1.36 × 10−244 99.75 1.03 × 10−274 99.74 2.81 × 10−11

15 99.6 7.53 × 10−241 66.50 3.93 × 10−267 99.79 1.65 × 10−17

remove from the network to replicate the node battery replacement. Both exper-
iments will measure and compare the packet arrival sequence in the base station
for 5 and 10 nodes.

Figure 16, Fig. 17 and Fig. 18 show the synchronization periods of the D-
TDSP, FAST and random CSMA/CA respectively for 5 nodes. It was observed
that during the initial time, all of the three techniques shown that all of the nodes
were in a synchronized pattern and in-phase. But when a node was added, the
sensor nodes in D-TDSP can still maintain its synchronized pattern. While in
CSMA/CA, the new nodes managed to transmit during the free slot. However,
for FAST, the nodes are not in synchronicity. From the observation, FAST has
difficulty in synchronizing the patterns, as the new node will interfere with the
other nodes.

Fig. 16. Scheduling process
of D-TDSP for 5 nodes when
a node is removed temporary

Fig. 17. Scheduling process
of FAST for 5 nodes when a
node is removed temporary

Fig. 18. Scheduling pro-
cess of CSMA/CA for 5
nodes when a node is
removed temporary
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In Fig. 19, Fig. 20 and Fig. 21, the scheduling effect for 10 nodes are pre-
sented.It can be seen that in FAST and D-TDSP, the nodes were able to trans-
mit the data in synchronized patterns. By analysing the synchronicity nodes in
every cycles, it is found out that D-TDSP has achieved 100% compared to the
CSMA/CA and FAST (50% and 0% respectively). FAST has not been able to
maintain the order of the packet received when a failure occurs.

Fig. 19. Scheduling process
of D-TDSP for 10 nodes when
a node is removed temporary

Fig. 20. Scheduling pro-
cess of FAST for 10 nodes
when a node is removed
temporary

Fig. 21. Scheduling pro-
cess of CSMA/CA for 10
nodes when a node is
removed temporary

5.9 The Scheduling Effect During Node Addition

In this section, a new node will be added to the networks to evaluate the ability
of the WBNs algorithms to maintain synchronicity. The new node introduced
will cause the others nodes to hear the broadcast of the packet. The previous
node and the next node to transmit will need to adjust its transmission time
without affecting the order of node transmission.

The results from Fig. 22, Fig. 23 and Fig. 24 shows the synchronization
process when a node added to the network with 5 nodes. From observations,
the CSMA/CA has managed to maintained the transmission pattern while in
FAST, only 30% of the nodes were in synchronicity after node added. However,
in D-TDSP, it shown that the nodes were 100% synchronized after a node added.
It can be seen from Fig. 22 that some of the node had delayed their transmission
because of the synchronization error.

In the next set of results shown in Fig. 25, Fig. 26 and Fig. 27, the number
of nodes in the networks is increased to 10 sensor nodes.

In this scenario, the D-TDSP and CSMA/CA show the nodes are transmit-
ting in synchronizing pattern to the basestation compared to FAST. In D-TDSP,
during the synchronization process, some of the nodes were seen transmitted
twice in a period. This is because the synchronization convergence time was low.
This will cause the nodes time to drift quickly and prompting the continuous
resynchronization.
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Fig. 22. Scheduling process
of D-TDSP for 5 nodes
when a node is added

Fig. 23. Scheduling process
of FAST for 5 nodes when a
node is added

Fig. 24. Scheduling process
of CSMA/CA for 5 nodes
when a node is added

Fig. 25. Scheduling process
of D-TDSP for 10 nodes
when a node is added

Fig. 26. Scheduling process
of FAST for 10 nodes when
a node is added

Fig. 27. Scheduling process
of CSMA/CD for 10 nodes
when a node is added

6 Discussion

From the results, it shown that D-TDSP has achieved the highest PDR compared
to FAST and random CSMA/CA. As the number of sensor nodes increases, the
D-TDSP can maintain the synchronicity of the data. It also shows that during
node failure, D-TDSP can manage to transmit the packets in a synchronized
period and patterns.

Similarly, when a node was added to the networks, D-TDSP is able to tolerate
to temporary radio interference. Hence, any changes of the WBNs the D-TDSP
will be able to recover and continue to broadcast the data to the basestation.

7 Conclusion

The results above shows that the proposed frog inspired algorithm, D-TDSP, has
performed better than CSMA/CA and FAST. The results proved that when a
node needed for maintenance, the D-TDSP managed to synchronize the packet
data in a short time. Similarly, when there was addition of sensor nodes in the
network, the algorithm can readjust its transmission interval. The D-TDSP is
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able to synchronize the packet sequence and equally distributed the broadcast
time of the sensor nodes and is tolerate to failure.
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Abstract. Remote health monitoring and medication systems are
becoming prevalent owing to the advances in sensing and connectiv-
ity technologies as well as the social and economical demands due to
high health care costs as well as low availability of skilled health care
providers. The significance of such devices and coordination are also high-
lighted in the context of recent pandemic outbreaks underlying the need
for physical distancing as well as even lock-downs globally. Though such
devices bring forth large scale benefits, being the safety critical nature
of such applications, one has to be vigilant regarding the potential risk
factors. Apart from the device and application level faults, ensuring the
secure operation becomes paramount due to increased network connec-
tivity of these systems and services. In this paper, we present a systematic
approach for identification of cyber threats and vulnerabilities and how
to mitigate them in the context of remote medication and monitoring
devices. We specifically elaborate our approach and present the results
using a case study of an electronic medication device.

Keywords: Medical IoT · Cybersecurity · Safety · Remote eHealth
solutions · Medicine dosage · Remote adherence monitoring

1 Introduction

Advanced communication technologies are already an integral part of health
services. As smart devices grow in number and equipped with advanced emerging
communication technologies, they will be able to communicate directly (device-
to-device) and to cloud based health services (device-to-cloud) via either a base
station or a gateway. They will form the medical internet of things (MIoT)
and will provide diagnostic data access to remotely located disease management
system over the internet. This will enable patient mobility and remote medication
capabilities as well as continuous adherence monitoring among other interesting
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applications and possibilities. Though this will bring interesting applications
into the medical domain, there is also a great risk that these devices become
vulnerable to cybersecurity attacks by adversaries as they are connected to the
internet which in turn can put the safety of patients in danger.

Safety practices in critical solutions in the domain are well established and
prescribed by safety standards1. These standards state clearly how systems
should be developed, verified and maintained to minimize risks of accidents and
failure over the lifetime of a product. Yet, established safety practices fall short
of addressing the new cybersecurity threats and system vulnerabilities that can
originate from the growing connectivity and addition of new smart communica-
tion technologies and grid components. There are no standards yet on how to
deal against these inevitable cybersecurity threats and device vulnerabilities to
adversary attacks, but there are guideline documents2,3 that provide recommen-
dation on what to consider and which controls to implement to reduce the risks
and to guard patients from any potential danger. For wider adoption of these
devices and their enhanced communication features, it is necessary to do cyber-
security related risk assessment and to mitigation the risks in order to guarantee
dependability of health services so that users can rely on them.

The goal of this research is to help creating trustworthy remote medication
monitoring system involving intelligent oral medicine dosing device. We have
proposed an approach for a detailed cybersecurity threat identification, analysis
and mitigation. Following that, we have performed a detailed study on identify-
ing potential threats and vulnerabilities in the system. The investigation covers
all system components and scenario including cybersecurity related risks dur-
ing hardware (HW) and software (SW) design and development (production
flow of the HW and SW), distribution (packaging and transportation to end
customer), maintenance and post-distribution phases of the product. We have
also investigated all network related cybesecurity threats. Finally, we performed
an investigation on how cybersecurity preventive strategies can be improved to
guard the device against threats that can exploit vulnerabilities in the device as
well as on how the device can continue to function despite the system is exposed
to a cyber attack.

The paper is organized as follows. Section 2 provides brief information in
remote medication and monitoring solutions in general followed by more elab-
orated information on remote electronic medication and adherence monitoring
devices and finally describes safety and cybersecurity challenges. The method
and steps required to do threat identification and analysis will be explained
in Sect. 3. Section 4 provides description on the use case device and related
safety and security challenges and the proposed approach will be used to do risk

1 EN ISO 14971:2007 Medical device – Application of risk management to medical
devices.

2 FDA, Content of Premarket Submissions for Management of Cybersecurity in Med-
ical Devices, 2018.

3 FDA, Post market Management of Cybersecurity in Medical Devices, 2016.
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identification and analysis followed by possible mitigation solutions for identified
critical risks. The conclusion remarks are given in Sect. 5.

2 Remote Medication and Adherence Monitoring

According to [9], figure of world population aged 65 and above will be doubled
in 2025 relative to the figures in 1990. The European population projection
in 2012 [7] shows that this will keep on increasing if life expectancy keeps on
growing. The same states that the size of working-age population in some regions
of Europe will decline considerably including in health care domain. Altogether
can have a great impact on the ratio of patients to health care personnel, which
necessitates novel remote health care solutions for medication, monitoring as
well as treatment purposes.

Adherence is the degree to which a patient follows medication advice and
guidelines. Poor adherence is a significant problem across all medical fields and
one of the major causes of illness and of treatment failure, and limits providers’
abilities to fulfill their ethical obligation of working to improve patients’ health
and well-being. Patients with chronic diseases and elders require continuous fol-
low up to make sure that they are taking their prescribed medication properly.
When patients do not respond to a certain prescribed medication, it can be
difficult to determine whether the lack of response is due to nonadherence or
whether the medication itself is not effective. [1] found a 76% discrepancy rate
between what medicines patients were prescribed, and what medicines they actu-
ally took. Up to 25–50% of patients do not take their treatments as prescribed,
threatening their health and well-being [2]. A quantitative review of 50 years of
research shows; among patients with some disorders (e.g., schizophrenia, dia-
betes, asthma), nonadherence is the largest driver of relapse and hospitalization.
Moreover, misuse or abuse and redirection of controlled substances is a major
health issue, with over 50 000 deaths yearly in the USA4. In addition to the
financial costs of nonadherence, patients who do not adhere to their medications
face other potential serious consequences, including higher rates of complications
and death. The cost of additional treatments and hospitalizations from nonad-
herence is estimated to be billions of dollars annually. Furthermore, clinical trials
to assess the safety and efficiency of new drugs necessarily rely on proper med-
ication adherence by study participants to obtain accurate data. Adherence or
lack thereof has significant impact on the expected treatment outcomes and a
significant cost to healthcare domain and society and leads to unnecessary suf-
fering. Therefore, accurate assessment of medication adherence is both clinically
important and challenging to all involved parties in the sector.

Existing and emerging advanced smart sensors and connectivity technologies
are core components behind a rapid growth of remote care delivery solutions.
There are numerous eHealth devices out in the market where patients can med-
icate themselves with and report disease symptoms. These devices are equipped
with smart sensors and advanced connectivity technologies [3] and can track
4 https://www.drugabuse.g.ov/related-topics/trends-statistics/overdose-death-rates.

https://www.drugabuse.g.ov/related-topics/trends-statistics/overdose-death-rates
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medication activities and upload either the diagnostic data or just alerts to a
remote central disease management system. This brings great values from per-
sonalized medication to remote adherence monitoring. But most importantly
brings ability to make improved and fast decision by care givers or smart central
disease management system as well as to provide feedback to patients through
adjusting dosing size or doing a remote critical medical operations. In a big-
ger picture these solutions will bring many advantages like saving both time and
resources, reduce the time required for diagnosis and treatment and reduce needs
for hospitalization and emergency room visits. This will improve survival rate,
especially to patients living in rural areas, and reduce health care costs both for
patients and the health care organizations.

2.1 Remote Electronic Medication Adherence Monitoring

Traditionally, clinicians had to rely on patients’ self-reporting of adherence to
medications [5]. Studies show that self-reporting is unreliable: Patients may
have inaccurate memories of taking their medications or may be embarrassed
to admit failure to comply or inability to access (lack of finances, not under-
standing instructions, memory problems) medications. Scholars have pointed to
the need for a more accurate measure of whether and when patients take their
medications. Products that incorporate adherence monitoring are already on the
market and others are awaiting FDA approval. There are different sorts of them:

1. Electronic medicine dosing device
2. Implanted and wearable body sensors [9]
3. Digital medicine: Proteus developed ingestible sensor5.

Widely-used Medication Event Monitoring System (MEMS)6 provides very
high standard information about adherence. The electronic pillbox7 is a sim-
ple electronic medication adherence tracking device based on a standards that
overcomes some of limitations of previously developed similar products [4]. Pro-
teus Digital Health developed ingestible sensor8 that emits a weak signal when
the medication is ingested and the signal is relayed via a patch worn on the
abdomen that links with a smart-phone app and records that the medication
was taken. eCare Companion9 enables patient to enter medical information like
blood pressure, etc. and fill answers to questionnaires about their timely health
condition. This system communicates with sensor devices such as pulse oxime-
ter, weight scale, blood pressure meter, and medicine dispenser to collect data
automatically. Philips claims that they provide security and privacy protection
of the patient’s data, but do not provide details on mechanisms used.

5 https://www.proteus.com/how-it-works/.
6 https://www.aardexgroup.com/solution/MEMS-adherence-software/22.
7 http://www.med-tracker.com/.
8 https://www.proteus.com/how-it-works/.
9 https://www.usa.philips.com/healthcare/product/HC453564553051/ecarecompan-

ion-patient-app-your-patients-gateway-to-care.

https://www.proteus.com/how-it-works/
https://www.aardexgroup.com/solution/MEMS-adherence-software/22
http://www.med-tracker.com/
https://www.proteus.com/how-it-works/
https://www.usa.philips.com/healthcare/product/HC453564553051/ecarecompan-ion-patient-app-your-patients-gateway-to-care
https://www.usa.philips.com/healthcare/product/HC453564553051/ecarecompan-ion-patient-app-your-patients-gateway-to-care
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Although electronic medication devices may not provide a direct or a com-
plete evidence of medication ingestion as digital medicine does so, they can
still provide enough amount of information related to medication adherence. On
another hand, combining existing electronic medicine medication devices with
an ingestible sensor or wearable sensors would improve efficiency of adherence
report. Otsuka Pharmaceuticals’ is working on combining ABILIFY (i.e., arip-
iprazole, which is currently FDA approved for a range of indications in the treat-
ment of serious mental illnesses) with the Proteus ingestible sensor and uses an
app to record patients’ ingestion of their medication10. The app can also track, if
the patient wishes, additional information such as self-reported mood and sleep
ratings. What these devices have in common is automated collection of patient
information, the ability to share that information with designated others, and
the link to medication (ingesting a pill, signaling a dose of insulin).

Patients using electronic medication device can log symptom data or wearable
sensors can track the state of disease activity and body response to medication,
and link it to a connected system, have great potential to improve decisions
making on right medication and right dosing which will enable better overall
treatment decisions and better outcomes. In a connected system, these decisions
can be made faster and simpler, saving both time and resources. Being able to
track dosing and track a digital signal if medications are used outside the normal
pattern or if the dispensing device is tampered with would allow healthcare
and caregivers to act faster if misuse occur, and this feature in itself will have
preventive impact on potential misuse.

2.2 Safety and Security Challenges

As MIoT products & solutions are getting cheaper and better, more and more
patients will be heavily relying on them. To date, there are few accidents or
disasters due to faulty or malicious devices, while as the volume and application
space increases, these devices will be more prone to such cybersecurity attacks
(imagine what an adversary could do with an access to a celebrity’s medication
device). If these medical end devices fail to work as advertised, at the least
patients may lose trust using the devices and at the most, may endanger their
lives. Therefore, it is very important to guarantee safety and security of those
device. The proposed approach in this paper focuses on guarding such systems
from safety failures due to cyber threats.

Safety Challenges. Existing methods of tracking medication adherence are
far from being perfect and has many potential issues. Most commonly used pill
count methods usually overestimate adherence11. Medication Event Monitoring
Systems (MEMS)12 suffer from several drawbacks. First, its cap is difficult to
10 https://www.otsuka-us.com/discover/articles-1033.
11 https://www.affirmhealth.com/blog/pill-counts-a-tool-for-medication-adherence-

and-diversion-reduction.
12 https://www.aardexgroup.com/solution/MEMS-adherence-software/22.

https://www.otsuka-us.com/discover/articles-1033
https://www.affirmhealth.com/blog/pill-counts-a-tool-for-medication-adherence-and-diversion-reduction
https://www.affirmhealth.com/blog/pill-counts-a-tool-for-medication-adherence-and-diversion-reduction
https://www.aardexgroup.com/solution/MEMS-adherence-software/22
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open with arthritic hands. Second, it does not report adherence in real time, so
intervention cannot take place if medication time is missed. Third, it does not
accommodate the use of pill boxes for sorting medications into daily doses, as are
commonly used by the elderly and when multiple drugs are taken. [6] discusses
various causes of performance failures in infusion pumps13. These medical devices
and solutions will be even more prone to failures due to network congestion and
cyber attacks as they are increasingly getting connected to the internet.

Security Challenges. Cybersecurity threats (CST ) are often indicative of
weaknesses in the system design and those weaknesses make the system vulner-
able to attacks by adversaries. As demonstrated14, adversaries could forge an
erratic signal with radio frequency electromagnetic waves in order to hack the
implants inside the body. This false signal could inhibit required stimulation or
induce unnecessary shocks in human brain and hence endanger life. This is just
one example of medical device that can be hacked. Similarly, all MIoT solution
can be hacked and threat vector becomes even larger when things are connected
in order to push diagnosis and other data to cloud or health server. Therefore,
it is paramount to design a structured approach and methods in order to do a
comprehensive cybersecurity identification and analysis.

Mitigations. Actively looking for potential issues coming from different dimen-
sions (such as SW defects or bugs, HW faults or failures, cyber attacks and
human errors) and analyzing them on a continuous basis is very important, fol-
lowed by identifying both static and dynamic mitigation strategies to ensure
fault/attack tolerant operation of remote health monitoring solutions empow-
ered by advanced communication technologies. Regulators, like the FDA, that
approves such adherence monitoring products will also need to develop exper-
tise in evaluating these safety and security issues in order to provide rigorous
guidelines. The approach proposed below also considers countermeasures and
provided some generic control methods in the use case part for certain type of
common vulnerabilities in MIoT applications.

3 Approach

Here we propose a top-down, step-by-step approach to investigate and analyze
cybersecurity threats and vulnerabilities of a medical device followed by con-
trol strategies to mitigate critical risks with higher impacts on safety of target
patient. Essentially our approach has three stages viz., cybersecurity threat and
vulnerability identification, risk assessment and risk control (see Fig. 1).

13 https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/
infusion-pumps.

14 https://www.youtube.com/watch?v=FmFLAlZO6ig.

https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/infusion-pumps
https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/infusion-pumps
https://www.youtube.com/watch?v=FmFLAlZO6ig
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Fig. 1. A step-by-step approach to investigate, analyze and mitigate cyber threats.

3.1 Threat and Vulnerability Identification

The first stage should focus on identification of cybersecurity threats and vulner-
abilities of the system under consideration. This can be done; first by formally
describing the different assets or components (COMPs) of the system. Threat
agents (TAs) are people with bad intention and intend to exploit system vulner-
abilities to damage the system under consideration. These TAs can be different
based on the intention they have and all types should be identified. Following
that random and intentional cyber threats that can endanger safety of a patient
as well as all potential vulnerabilities (VLs) in the system should be identified.
Both existing and emerging cyber threats should be envisage. Similar systems
or products and their threat documentation can be referred to get more exist-
ing threats and internal and external information sources can be used to gain a
better understanding of potential emerging threats.

3.2 Risk Analysis

The risk analysis is guided by the overall risk management process described
in15 (the flow chart is shown in Fig. 2 with minor modification to reflect the
15 ISO 14971: Medical device - Application of risk management to medical devices,

2012.
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Fig. 2. Risk analysis process.

contribution of this paper). According to this standard; failure mode is defined
as a manner in which an item fails and failure effect is defined as a consequence
of a failure mode in terms of the operation, function or status of the item.
A comparable cause-effect chain is suggested in [8] for security threat-effect as
threat mode (TM ) and threat effect (TE) and will be used same analogy in our
approach as well. Therefore, TM is defined as manner of threat impact where
as TE is defined as consequence of a TM in terms of the operation, function
or status of the item and both should be identified in this stage.

TE is quantified by defining severity (S) scale for a system under consid-
eration and typical severity rates are indicated on a scale of 1 to 10 where 1 is
lowest severity and 10 is highest. The chances of a VL being exploited is quanti-
fied by defining probability (P) scale and it depends on mainly vulnerabilities in
a system but also target environment (EN ) and the type of TA trying to dam-
age the system. Risk criticality level (RCL) shows level of damage to a system
caused by threat agent. This RCL can be determined based on the quantified
severity and probability of occurrence. Eventual risk criticality level should be
evaluated to know if the risk is minimal or significant. System specific S , P and
RCL matrices should all be defined in this stage.
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3.3 Risk Mitigation

In the third stage of our approach, countermeasures (CM s) will be suggested if
risk criticality of a threat is not deemed to be acceptable. One or more of the follow-
ing riskCM s can be used in the priority order listed. The first one is to eliminate or
reduce risks as far as possible (inherent safety by design), e.g. to add a safety mech-
anism. The second one is to take protective measures in the medical device itself
or in the manufacturing process, e.g. an alarm, in relations to risks that cannot be
eliminated as well as information of the residual risk due to any shortcomings of
the protection measures adopted (though warning information is not considered
as risk control measure, and not intended to lower any risk).

4 Use Case

4.1 Intelligent Drug Dosing Device

Fig. 3. The OnDosis drug dos-
ing device

OnDosis, here after called the Device, is a hand-
held, digital and intelligent medicine container
and dosing device to patients with chronic dis-
eases such as attention deficit hyperactivity dis-
order (ADHD). It will transform existing systems
into simpler and more convenient micro parti-
cles form integrated to an intelligent device. The
Device prototype is shown in Fig. 3 where the
display provides status information (e.g., dose
size) and a disposable cartridge storing and dis-
pensing a medicine formulated as granules. The
device consists of a control unit programmed for
a specific medicine and a disposable cartridge
containing the specific medicine formulated as
granules. The Device will comply in full with
the standards16,17,18,19,20 mandated by Radio
Equipment Directive (RED).

16 EN 55024 Information technology equipment - Immunity characteristics - Limits and
methods of measurement.

17 EN 62479-2010: Assessment of the compliance of low power electronic and electrical
equipment with the basic restrictions related to human exposure to electromagnetic
fields (10 MHz to 300 GHz).

18 ETSI EN 301 489-1 ElectroMagnetic Compatibility (EMC) standard for radio equip-
ment and services Part 1: Common technical requirements.

19 ETSI EN 301 489-17 ElectroMagnetic Compatibility (EMC) standard for radio
equipment and services Part 17: Specific conditions for Broadband Data Transmis-
sion Systems.

20 ETSI EN 300 328 Wideband transmission systems; Data transmission equipment
operating in the 2,4 GHz ISM band and using wide band modulation techniques.
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4.2 Closed Loop Medication Management

Fig. 4. OnDosis connectivity to LMU and Cloud.

All dispensing event(s) will be
communicated to local monitor-
ing unit (LMU), e.g., a smart-
phone over a Bluetooth low
energy (BLE). Symptoms will
be reported using LMU by the
patient guided through ques-
tionnaires. Physical parameters
will be recorded using smart
wearable devices attached to
a patient and will be com-
municated to LMU over Wi-
Fi. These collected diagnostic
data will be used for monitor-
ing the patient condition on
local premises using LMU and
then will be pushed to cloud for
remote monitoring. AI engine
will be used for further automatic analysis and remote device setting and hence
closed loop medication management (CLMM). Figure 4 shows the communica-
tion framework and data flows from the Device to LMU and then to cloud. OnDo-
sis connectivity and synchronization of data from device to smartphone appli-
cation through BLE connection. Further connectivity to health server in order
to provide decision support and remote adherence monitoring. This CLMM
system will enable mobility, frequent & automatic data collection and local &
remote adherence monitoring on a continuous basis.

4.3 Cybersecurity Analysis of the CLMM System

The approach explained in previous section will be applied in here to investigate
cybersecurity related risks of the Device to improve its cyber attack defense to
guard safety of patients.

Threat and Vulnerability Identification. Brainstorming sessions was per-
formed with the device development team and identified the following details on
device assets, usage environments, threat agents, threats and vulnerabilities.

On a higher level, the system comprises the dosing device, network technolo-
gies, local monitoring devices & services as well as cloud services as shown in
Fig. 4. These different COMPs of the system are further listed in Table 1 below.
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Table 1. Components

COMP-ID Components

COMP-1 The Device

COMP-2 Software (SW) storage and SW execution in the Device

COMP-3 Configuration data, event data and device/SW parameters storage

COMP-4 Communications (in the device)

COMP-5 Communications (from device to LMUa)

COMP-6 Communication (from LMU to edge/cloud services)

COMP-7 LMU and Diagnostic tools
a Local Monitoring Unit (e.g. Smartphone, Tablet, PC).

The Device is intended for a Home Healthcare Environment in accordance
with21, but can also be used at school or office. The organization, production
center and patient’s home can be considered as indoor environments where the
device will be connected to private network. Where as school, office and public
gathering areas are considered as outdoor environments where the device will be
connected to public network.

Threat agents can be grouped in different categories based on their intentions
as well as target environment. For example, possible thereat agent at indoor envi-
ronment is insider and intentions can be just curiosity to see certain undisclosed
information. On another hand, hacker is a possible agent in outdoor environ-
ment and may have intention of harming a patient by altering system settings.
Terrorists are agents with way bigger evil intention like mass destruction. Possi-
ble types of threat agents are shown in Table 2, but only insider and hacker are
considered as threat agent types for the use case system under study.

Table 2. Threat agents

TA-ID Threat agents

TA-1 Insider

TA-2 Hacker

TA-3 Computer criminals

TA-4 Terrorists

Table 3 lists threat classes base on STRIDE model. Spoofing consists using
someone else credential without their knowledge which usually targets weak
authentications. Tampering is modifying a system or a data by adding or remov-
ing functional element and destroying or modifying data. Repudiating is hiding

21 IEC 60601-1-11 Medical electrical equipment—Part 1–11: General requirements for
basic safety and essential performance.
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attacker identity by erasing system logs or acting as some other by stealing cre-
dentials. Information disclosure involves data breaching to get a hold of confi-
dential information. Denial of service is preventing user from accessing a system.
Escalate privilege is acquiring additional privilege by spoofing user or tampering
a system.

Table 3. Cybersecurity threats

CST-ID Cybersecurity threats

CST-1 Spoofing

CST-2 Tampering

CST-3 Repudiation

CST-4 Information disclosure

CST-5 Denial of service

CST-6 Escalate privilege

TAs abuse a system by using VLs in it. For example if a system does not
have user identification and authentication, then it is easy for an attacker to
do unintended system settings which can result either system damage or death
of a patient uses the system. Table 4 lists potential vulnerabilities in a medical
devices.

Table 4. Potential vulnerabilities

VL-ID Vulnerabilities Description

VL-1 Unverified SW Poor software verification features

VL-2 Unprotected memory Poor storage security features

VL-3 Interceptable network Poor network security features

VL-4 Interruptable network Poor interference rejection features

VL-5 Unauthorized connection Poor entity connection verification

VL-6 No user identification Poor device access authentication

VL-7 Weak user identification Poor device access authentication

VL-8 Trojan circuit Poor device electronics protection

VL-9 Weak malware defense Poor malware protection

VL-10 Unverified data reception Poor participant verification

VL-11 Unverified entity connection Poor connection verification
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Risk Analysis. According to the approach; threat modes, threat effects, sever-
ity of effects, attack probability and risk criticality levels need to be determined
in this stage. After surveying and collecting multiple potential threat related
characteristics from literature and relevant standards, we zeroed-in on the fol-
lowing aspects based on critical thinking and discussions among development
and verification teams.

A threat mode is a manner in which a system fail due to a cyber threat.
Adherence monitoring on local device like smartphone will not be available if
the BLE channel is continuously jammed. Hence, jamming the BLE network is
a TM . Table 5 shows list of identified TM s for the CLMM system and their
relation with specific threat type indicated in Table 3.

Table 5. Threat modes

TM-ID Threat modes CST-ID

TM-1 Booting from a wrong boot SW CST-3

TM-2 Executing a wrong SW CST-3

TM-3 Unauthorized SW modification CST-2

TM-4 Unauthorized data modification CST-2

TM-5 Tampering HW CST-2

TM-6 Injecting malware CST-5

TM-7 Jamming network CST-5

TM-8 Sniffing network CST-4

TM-9 Tapping wired connections CST-4

TM-10 Repudiating (acting as a genuine sender) CST-3

TM-11 Unauthorized access to device features CST-4

TM-12 Escalating access right CST-6

TM-13 Spoofing (disguise unauthorized changes) CST-1

TM-14 Spoofing (stealing credentials) CST-1

Threat effect is a consequence of a certain threat mode. The consequence of
jamming the BLE network is interruption of adherence monitoring service, hence
the system is no longer available. One or more of the TM s shown in Table 5
can result the TEs listed in Table 6 and Table 7 shows defined severity scales
and their meanings (in the descending order of severity).
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Table 6. Threat effects

TE-ID Threat effects

TE-1 Inaccurate functionality

TE-2 Incorrect settings (dose size, time of medication)

TE-3 Incorrect diagnostic data

TE-4 Unable to use the device

TE-5 Wrong cartridge with wrong medicine

TE-6 Adherence service interruption

TE-7 Information disclosure

TE-8 Credential theft

TE-9 Drug abuse

Table 7. Severity

Level Category Description

4 Catastrophic Patient death

3 Critical Permanent impairment or life-threatening injury

2 Serious Injury or impairment requiring professional intervention

1 Minor Injury or impairment not requiring professional intervention

0 Negligible Inconvenience or temporary discomfort

Table 8. Probability of occurrence

Level Category Description

4 Frequent Likely to happen often

3 Probable Likely to occur some times per year

2 Occasional Can happen, but not frequently

1 Improbable Unlikely to happen, rare, remote

0 Impossible Will not happen

The probability of a system being hacked by a hacker is higher in outdoor
than indoor and therefore, target environments should be envisaged when esti-
mating the probability of a vulnerability being exploited. The probability matrix
for this system is defined in Table 8.

Table 9 shows defined risk criticality level (RCL) matrix which is derived by
multiplying the quantified severity and probability of occurrence. If S is serious
or below and the probability of occurrence is impossible or below, then the risk
is considered as acceptable (A). Similarly, if P is improbable or below and the
severity is minor and below, then the risk can be again considered as acceptable.
Risks which are not insignificant but not clearly unacceptable are considered as
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Table 9. Risk criticality levels

Probability
0 1 2 3 4

Severity 0 – – – – –
1 – A A L U
2 – A L U U
3 – L U U U
4 – U U U U

A Acceptable risk. L Elevated
risk. U Unacceptable risk.

Table 10. Cybersecurity related risks and mitigation

TMs TEs S VLs TAs P RCL CMs

The Device

Unauthorized device access Drug abuse 2 No user identification Insider 3 U User authentication

Unauthorized device access Incorrect settings 4 No user identification Insider 3 U User authentication

Escalating privilege Incorrect settings 4 Weak user identification Insider 2 U Force strong password

Software Storage and Execution in the Device

Executing a wrong SW Inaccurate functionality 3 Unverified SW execution Insider 1 L SW signature

Executing a wrong SW Inaccurate functionality 3 Unverified SW execution Hacker 2 U SW signature

Unauthorized SW modification Inaccurate functionality 3 Unprotected memory Hacker 2 U Memory protection

Configuration Data, Event data and Device/Software Parameters in Local Storage

Unauthorized data modification Incorrect settings 4 Unprotected memory Insider 1 U Memory protection

Unauthorized data modification Incorrect settings 4 Unprotected memory Hacker 2 U Memory protection

Communications (in the device)

Tapping wired connections Information disclosure 1 Trojan circuit Hacker 1 A

Communications (from device to LMU)

Spoofing Incorrect diagnostic data 4 Interceptable network Hacker 2 U Encrypt data on transit

Sniffing network Information disclosure 1 Interceptable network Hacker 2 A

Jamming network Adherence service interruption 2 Interruptable network Hacker 3 U Frequency hopping

Repudiating Incorrect diagnostic data 4 Unverified data reception Hacker 2 U User signature

Unauthorized entity connection Incorrect settings 4 Unverified entity connection Hacker 3 U Entity authentication

Communications (from LMU to edge/cloud services)

Spoofing Incorrect diagnostic data 4 Interceptable network Hacker 2 U Encrypt data on transit

Sniffing network Information disclosure 1 Interceptable network Hacker 2 A

Jamming network Adherence service interruption 2 Interruptable network Hacker 3 U Frequency hopping

Repudiating Incorrect diagnostic data 4 Unverified data reception Hacker 2 U User signature

Unauthorized entity connection Incorrect settings 4 Unverified entity connection Hacker 3 U Entity authentication

LMU and Diagnostic tools

Injecting malware Unable to use the device 2 Weak malware defense Hacker 3 U Malware protection

Unauthorized SW modification Inaccurate functionality 3 Unauthorized access Hacker 3 U User authentication

elevated (L) risks. Risks in this region may be accepted if further risk is not
practicable. Risks critical than elevated region are considered as unacceptable
(U ) risk.

Risk Mitigation. Vulnerabilities in a system requires countermeasure in order
to reduce cyber related risks. If risk criticality is evaluated as acceptable, shown
in green in Table 10, then there is no need for implementation of any countermea-
sure as the threat impact on safety of a patient is minimal. However, if a threat
mode give rise to elevated risk, marked in yellow in the table, or unacceptable risk,
marked as red in the table, then the system requires countermeasure implemen-
tation to get rid of the corresponding vulnerability. The countermeasure column
in the table provides suggestion on generic control mechanisms by leaving specific
mechanisms, for example encryption type, for the system developer.
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5 Concluding Remarks

The result of the use case study demonstrates the impact of cyber threats on
today’s internet enabled monitoring and medication health solutions. Network
and system integration security are important to consider in the product devel-
opment and need to implement countermeasures for probable cyber related risks
to guarantee safety of patients using such products.

A systematic approach is crucial for comprehensive identification of cyber
threats and vulnerabilities of the system under consideration. Domain specific
cybersecurity standards are prevalent and need to be commercially available to
bind product developers to guarantee implementation of necessary countermea-
sures.

Investigating the security specification of existing advanced communication
technologies would be beneficial, as a future work, to select technology with
better security implementation and in such a way minimize the effort required
from product developers.
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