
Chapter 12
A Dynamic Evaluation Mechanism
of Human Upper Limb Muscle Forces

Qing Tao, Zhaobo Li, Quanbao Lai, Shoudong Wang, Lili Liu,
and Jinsheng Kang

Abstract Dynamic evaluation mechanisms of the human upper limb are of great
value for research and applications in upper limb rehabilitation, especially for the
development of robotic upper limb rehabilitation systems. This paper proposes a
muscle force prediction method based on the Hill muscle model. The proposed
approach, which combines sEMG signals and kinematic data, provides a deep under-
standing of the dynamic motion mechanisms and parameters that characterize the
upper limbs of the human body. The study provides a theoretical benchmark for the
evaluation of rehabilitation training practices and for improved designs of upper limb
rehabilitation robots that are used for upper limb neuro-rehabilitation. Specifically,
the system collected motion data and sEMG signals from the upper limbs of the
human body through a high-speed infrared motion capture system and skin sEMG
sensors. By applying human kinematics and dynamics theories, real-time joint angle
and torque information was obtained and imported into OpenSim. This platform can
simulate the real-timemuscle force values produced by the upper limbs duringmove-
ments. Themyoelectric signals were first filtered to remove noise, and an exponential
model was then used to obtain the muscle activation. These data were then entered
into the Hill-type predictionmodel to determine an individual’s muscle forces. In this
paper, grasping movements commonly used in everyday situations were taken as a
testing case. The results of the experiments showed that an individual’s muscle forces
can be predicted using a Hill-type model. The results are consistent with those from
simulated muscle force models and can reflect the real forces experienced during
upper limb exercises.
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12.1 Introduction

Cardio-cerebrovascular disease, more commonly referred to as a stroke or heart
attack, is the second most common cause of death and the eighth most common
cause of severe disability in the elderly population worldwide [1, 2]. One of the
most serious symptoms of stroke is hemiparesis. It usually leads to the loss of motor
function in the upper limb, which is important for activities of daily living, such as
eating, bathing, and getting dressed independently. Studies have shown that rehabil-
itation robots can effectively improve the motor function of stroke patients because
the device is designed to have multiple DOFs to mimic various limb movements
and accommodate all types of exercises [3]. Rehabilitation machines are becoming
increasingly important for stroke rehabilitation, and they have many potential advan-
tages over traditional rehabilitation therapies in treating motor dysfunction in stroke
patients [4].

At present, upper limb rehabilitation robots can be divided into three main types
based on their structure [5–8]. The first type of robots is called rehabilitation robots
with end-guided structures. The subject’s body is placed on a separate structure,
while a separate robotic mechanism guides the movement of the forearm or the
hand to train and rehabilitate the affected limb [9–11]. The second type of robots is
called exoskeleton rehabilitation robots, where the robotic arms closely follow the
form and function of the affected limb and can consequently achieve a variety of
rehabilitation training actions [12–15]. The third type of robots is called compound
rehabilitation training robots, which have a combination of features from the first two
types of rehabilitation robots and are used to complete rehabilitation training [16–
21]. Regardless of the type of upper limb rehabilitation robot used, it is necessary to
conduct a quantitative evaluation of the patient’s upper limb impairment and provide
personalized rehabilitation treatment. Since the mechanism of human upper limb
movement is very complicated and the range of functional movements achievable is
wide, the sports medicine field has not developed a standard for assessing upper limb
movement patterns. Currently, the most immediate challenge is to develop objective
indicators that are related to upper limb motion and can be applied to assess upper
limb function under everyday conditions.

To address the challenges mentioned above, a model simulating the output force
from muscle fibers was established, and predictive models of muscle forces for
individuals with different demographics were obtained in this paper. We combined
the musculoskeletal model of an upper extremity with the movement and EMG-
assisted method to estimate the individual muscle forces of the musculoskeletal
structure. The EMG signals were considered inputs to the musculoskeletal model
to estimate the muscle activation information. A simulation tool commonly used in
biomechanical analyses, OpenSim, was used to analyze the agreement in muscle
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force estimations. Through our method, therapists can more accurately describe the
power of stroke patients’ upper limbs during daily activities and can design better
rehabilitation techniques. In addition, the research can also be useful for controlling
an upper limb exoskeleton.

The rest of this paper is organized as follows. Section 12.2 presents the related
works and muscle estimation growing trend. Section 12.3 describes experiment
details and data procession and muscle estimation model. Section 12.4 compares the
estimated muscle force by our NMS (Neuromuscular Subjective) model with force
simulated in OpenSim. Section 12.5 evaluates the performances of NMS model and
discusses. Section 12.6 summarizes this article.

12.2 Related Work

Three main approaches including clinical scales, movement evaluations, and surface
electromyography (sEMG) analyses, are widely applied in objective evaluations of
the upper extremities [22, 23]. Clinical scales are inherently subjective due to their
reliance on a physician’s visual assessment of amovement and generally. It is difficult
to summarize a movement with a single score, especially when several aspects, such
as the speed and amplitude of the movement, have to be taken into account in the
evaluation of functional tasks [24]. Movement evaluation methods mainly include
motion capture systems, which represent the gold standard in humanmovement anal-
ysis [25–27]. Motion capture systems can accurately assess the kinematics of upper
limb movements during daily activities in stroke patients [28]. However, although
they can overcome the limitations of clinical scales, which lack the ability to monitor
a patient’s movements, motion capture systems cannot assess the internal features of
a patient’s muscles.

Surface electromyography (sEMG) is a popular research tool that is used exten-
sively in sports medicine and rehabilitation sciences. Based on sEMG analysis,
researchers have attempted to draw conclusions concerning the neuro and electro-
physiological mechanisms of force production and make hypotheses about potential
muscular force adaptation rates and hypertrophy [29]. sEMG signal decomposition
algorithms can be roughly divided into two categories. The first type of sEMG signal
decomposition involveswaveformdetection andpattern recognition. The second type
involves a blind source separation method or system identification so that the sEMG
signal can be described and interpreted. Recent experiments have suggested that
the central nervous system can spontaneously follow certain optimization criteria to
overcome the motion uncertainty caused by kinematic mechanism positional redun-
dancy [30, 31]. Although sEMG signal analysis has value in certain applications in
upper limb function evaluations, quantitative evaluations cannot be conducted due to
the lack of deep muscle activation information. Surface EMG signals can be easily
obtained, but the activations of deep muscles cannot be measured by non-invasive
methods [32–34]. The identification of force profiles of individual muscles during
upper limb movements may help provide a better understanding of the functional
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roles of these muscles as well as the neuro-musculoskeletal impairments, leading to
a better understanding of how these factors affect movement [35, 36].

Hill-type or Hill-type modified models are vastly used in muscle estimation. All
the models take sEMG as the only one input parameter in order to simplify compute
procession. Muscle forces are calculated just like a black box. But it involves non-
linear relationships in the expressions like muscle fiber length verse muscle force
curve or muscle contraction velocity verse muscle force curve, which makes the
computational process very complex. In order to acquire universality, the relationship
between muscle contraction velocity and fiber length verse muscle force must be
scaled [35, 39, 41]. In contrast toHill-typemodel computemuscle force using sEMG,
there is another method called inverse dynamics. The inverse dynamics method takes
position, velocity, and acceleration as input parameters to calculate the jet moment.
Then static or dynamic optimization is used to obtain individual muscle force. This
method greatly simplifies the calculation procession but suffers from the problem of
imprecision.

12.3 Materials and Methods

The experimental goal for this paper was to simultaneously capture data about a
human subject’s upper limb motion and about his or her limb surface EMG signals.
These data were then analyzed and processed using optimizing calculations to obtain
accurate values predicting muscle forces during exercise. The human upper limb
musculoskeletal model was established by OpenSim, and then the kinematic data
gathered by motion capture were used to simulate the muscle forces during the upper
limb movements. The surface EMG signal data were then imported into a Hill-type
model. By adjusting the parametric coefficients to achieve model predictive values
close to the simulated muscle force values, we established a method of predicting
muscle force directly from the surface EMG signal data (Fig. 12.1).

12.3.1 Data Collection and Preprocessing

Four healthy male subjects (age: 23.5 ± 1.2 years old, height: 171.3 ± 3.5 cm,
weight: 72 ± 6.5 kg) volunteered to participate in the experiment and were included
in the study after they signed written informed consent forms. The research project
was pre-approved by the Research Ethics Committee of Xinjiang University. While
the subjects sat in a chair, they autonomously moved their arm from the natural
relaxed state to grasp a raised ball that was suspended directly in front of them
at head height, released the ball and put their arm down. The body motion data
from the subjects were collected using a VICON optical motion capture system, and
the surface electromyography data from the relevant muscles of the upper limbs of
the subjects were collected using a Neuracle 16 channel electromyography signal
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Fig. 12.1 The flowchart of our muscle force prediction method

acquisition system. The signals from 7 muscles were recorded: the short head of
the biceps brachii (BICshort), long head of the biceps brachii (BIClong), brachialis
(BRA), long head of the triceps brachii (TRIlong), lateral head of the triceps brachii
(TRIlat), medial head of the triceps brachii (TRImed), and anconeus (ANC). The
electrodeswere placed longitudinally along themuscles in the direction of themuscle
fibers and on the relevant part of each muscle according to the recommendations of
the SENIAM (surface electromyography for the non-invasive assessment ofmuscles)
project. A ground electrode was placed on the elbow joint (Fig. 12.2).

Fig. 12.2 Experimental setup. a Experimental setup for the actual tests, bDiagram from themotion
capture system interface, c OpenSim skeletal model, d Raw EMG Signal
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12.3.2 Joint Angle Estimation

There are specific challenges concerning the collection of point data of humanmotion
in an experiment. Although a human’s limbs rotate around a single point within
the skeletal structure, it is relatively difficult to maintain the joint at the zero-point
throughout the testing process. To compensate for displacement of the joint, the space
vector methodwas used to calculate the relative position in space and relative angular
difference between two dependent point-lines. A space vector is a relative coordinate
system, and the variation of the zero-point position can therefore be ignored. The
human body parts were simplified to form a stickmodel and calculate the angle of the
joint. A unique 3D coordinate positional system was established, and the value for
n points for volunteer m at time t was collected. One vector segment was defined by
two points in space, and the angle was obtained by measuring the relative positions
of the two vector line segments (Fig. 12.3).

The angle of the left shoulder joint (SAl), the angle of the left elbow joint (EAl),
and the angle of the left wrist joint (WAl) are shown in this diagram.

Suppose that a, b, c are three points in space; then, ∠abc represents the angle
of joint b, and two vectors ending at a, and c are defined, which correspond to two
marker points on volunteer m. The solution to the angle is as follows:

cos θ = M̄ml(a − b) × M̄ml(c − b)
∣
∣M̄ml(a − b)

∣
∣ ∗ ∣

∣M̄ml(c − b)
∣
∣

(12.1)

Fig. 12.3 Upper limb joint
angle calculation definition
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Fig. 12.4 Human upper
limb musculoskeletal model
generated in OpenSim

⇒ θ = ar cos θ.

12.3.3 OpenSim Simulation

OpenSim [37] skeletal muscle simulation software was used to generate a dynamic
simulation. An OpenSim upper limb musculoskeletal model [38] developed by Saul
et al. consisting of 7 body segments and 32 muscles was used to generate a simu-
lation relative to the kinematic data, and muscle kinematics parameters, such as the
musculotendon unit (MTU) lengths and moment arms, were obtained. This upper
limb musculoskeletal model is shown in Fig. 12.4. First, scaling was carried out to
calibrate the model to the subject according to the subject’s anthropometric parame-
ters. Inverse kinematics was then used to reconcile the differences in values between
the actual 3D coordinates and the simulated virtual marker points. This process
was achieved by a weighted least-squares method, which reduced the values to
the minimum values possible. Last, dynamic optimization was carried out on the
muscle forces in the main muscle group during the upper limb movement, which
was performed in the simulation.

12.3.4 Muscle Activation Dynamics

(1) Data preprocessing
First, the original sEMG signal was preprocessed. The preprocessing phase
mainly included three steps: (a) 50 Hz notch filtering to remove power
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Fig. 12.5 Preprocessing phase for an sEMG signal

frequency interference; (b) 30 Hz zero-phase high-pass filtering to remove
motion artefacts; and (c) full-wave rectification, which involves taking the
absolute value of the signal (Fig. 12.5).

(2) Low-pass filter
The low-pass filter used was a 5 Hz zero-phase low-pass filter, which is a
low-pass filter commonly used to smooth muscle signals.

(3) Normalization
The same method (data preprocessing → low-pass filter) was used to process
the sEMG signal at maximal voluntary contraction (MVC) and identify the
maximum value of the sEMG signal at MVC, which was considered 100% of
the magnitude of the muscle activation signal. The normalized signal e(t) was
obtained by dividing the processed myoelectric signal (data preprocessing →
low-pass filter) recorded during normal motion by the maximum value.

(4) Neural activation model
EMG is a measure of the electrical activity that spreads across the muscle,
causing it to activate. This process results in the production of a muscle force.
However, it takes time for the force to be generated—it does not happen instan-
taneously. Thus, we adopted a second-order discrete linearmodel [39] tomodel
the neural activation from muscle excitation obtained through preprocessing
in the form of a recursive filter:

u(t) = αe(t − d) − (c1 + c2)u(t − 1) − c1c2u(t − 2), (12.2)

where e(t) is the muscle excitation at time t, u (t) is the neural activation, α is the
muscle gain, c1 and c2 are recursive coefficients, and d is the electromechanical delay.

(5) Muscle activation model

The neural activations were then adjusted to account for either a linear or non-
liasdnear EMG-force relationship [40]:

a(t) = eAut (t) − 1

eA − 1
, (12.3)

where a(t) is themuscle activation, u(t) is the neural activation, andA is the non-linear
shape factor.

After obtaining the muscle activation a(t), we computed the muscle force by
integrating aHill-typemusclemodel consistingof twoelements: a contractile element
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Fig. 12.6 Analysis of the
Hill-type model mechanics

producing the active muscle force Fm
A and a parallel elastic element producing the

passive force Fm
P . As shown in Fig. 12.6 [41], lm is the muscle fiber length, lt is the

total length of the tendons, and ϕ is the pennation angle. Thus, the musculotendon
length lmt can be expressed as follows.

The muscle-tendon force (Fmt ) is calculated as

Fmt = (

f A(l) · fv(v) · a(t) + f p(l)
) · Fm

o cos(φ), (12.4)

where l = lm/ lmo ,v = vm/vm
o , a(t) is the muscle activation, Fm

o is the maximum
isometric muscle force, lmo represents the optimal fiber length, vm

o is the maximum
muscle contraction velocity, l is the normalized muscle fiber length, and v is the
normalized muscle fiber velocity. f A(l), fV (v), and fP(l) define the normalized
active force-length relationship, force-velocity relationship, and the normalized
passive elastic force-length relationship, respectively.

12.4 Results

Using the above formula, we can calculate the relative values of the extension angles
between the wrist, elbow, and shoulder joints when the upper limb of the human
body performs the exercise. The joint angle data and point data were imported into
OpenSim, the steps and parameters of the model described in the previous section
were followed, and the upper limb model was run to simulate the motion and the
changes inmuscle forces in the short head of the biceps brachii (BICshort), long head
of the biceps brachii (BIClong), brachialis (BRA), long head of the triceps brachii
(TRIlong), lateral head of the triceps brachii (TRIlat), medial head of the triceps
brachii (TRImed), and anconeus (ANC) (Fig. 12.7).

A surface electromyography signal acquisition device was used, and the sampling
frequency was 1000 Hz. The surface electromyography signals of the seven muscles
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Fig. 12.7 Human upper limb muscle forces simulation generated by OpenSim

(the short head of the biceps brachii (BICshort), long head of the biceps brachii
(BIClong), brachialis (BRA), long head of the triceps brachii (TRIlong), lateral
head of the triceps brachii (TRIlat), medial head of the triceps brachii (TRImed),
and anconeus (ANC)) involved in the movement of the upper arm of the human
body were collected. The original signals were preprocessed and substituted into
the muscle activation values obtained by formula (12.3), the muscle force predictive
values were obtained by substituting the muscle activations into formula (12.4),
and the above data were calculated with MATLAB R2014b. Figure 12.8 shows the
changes in the muscle force of the brachialis.

We compared the force of the same muscles with the predicted values calculated
by OpenSim and sEMG, and the curves were very close, as shown in Fig. 12.9.
With a statistical analysis, the muscle force values of the other six muscles were
also compared, showing a strong correlation (P < 0.05). The comparative trial in this
paper also verified the feasibility of predicting muscle forces by sEMG.

12.5 Discussion

Calculating joint angles and muscle forces from motion capture data is a simple
process. There are many formulas and simulation software available, but the short-
comings of motion capture experiments are that the space required for experiments
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Fig. 12.8 Muscle force of the brachialis according to the sEMG prediction

Fig. 12.9 Comparison of the muscle force values obtained from OpenSim and sEMG
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is too large and the experimental process is cumbersome. Motion capture data can be
used for offline scientific experiments but are unreliable when used to generate real-
time or online active control signals, such as those applied to an upper limb robotic
exoskeleton. The advantages of surface EMG include the facts that the acquisi-
tion process is simple, the associated experimental equipment is small and portable,
and real-time signals can be acquired and generated for control, but EMG signals
are weak, and the process of calculating and processing the signals is complicated.
Therefore, an experiment for the synchronous acquisition of motion capture data and
sEMG signals was carried out to verify the sEMG signal calculation results obtained
by using the calculatedmotion capture data. The final verification results also suggest
the feasibility of using EMG signals to calculate muscle forces.

As upper extremity robotic exoskeletons and rehabilitation robots continue to
develop, pattern recognition, which is an offline control method, does not meet the
needs of practical applications. A control source signal requires real-time acquisi-
tion control, which requires the acquisition process to be simple and easy to perform
and the signal to be stable and continuous. sEMG signals can meet these demands.
This paper studies the dynamic evaluation mechanism of human upper limb move-
ment, which was designed to convert offline motion capture calculations to online
electromyography calculations. Real-time calculations of muscle force can provide
more accurate control of robotic exoskeletons and real-time evaluations of upper
limb motion states. In the future, sEMG signal changes and upper limb joint angles
should be analyzed more deeply to detect changes in the joint through the surface
EMG signal; then, robotic exoskeletons or rehabilitation robots can be controlled in
real time by surface EMG signals.

Several limitations should be noted. First, uncertain noises in EMG signals still
existed, even if we tried to avoid it, such as cross-talk from other muscles, baseline
noise, and artifact. Due to difference of individual physiologic and electrode posi-
tions, the outputs will be a little bit different. But it can still serve as a reference in
rehabilitation.

12.6 Conclusions

Multi-parameter human–computer interaction technology is an important new devel-
opment in the field of human physics and neuro-rehabilitation. This study proposes
a set of upper limb kinematic analysis methods, which include muscle force predic-
tion methods. In addition, this work can provide reference values for the evaluation
of upper limb motor function and the auxiliary control of upper limb rehabilita-
tion robots. Accurate muscle force prediction methods can be used to assess an
individual’s ability to generate limb movements, which can promote a deeper under-
standing of the condition of the patient’s nervous system. This knowledge can be
used to guide the selection of rehabilitative treatments and to design better rehabil-
itation robots that can assist people with upper extremity dyskinesia during upper
limb tasks.
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