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Preface

Advanced methods recently developed in artificial intelligence (AI), computation,
and data science have contributed to many major breakthroughs in medicine and life
sciences. The integration of new medical knowledge and smart computer algorithms
is making significant progress toward personalized medicine, precision medicine,
and personalized healthcare. An example is the use of AI, computation, and data
science for intelligent natural language processing that recognizes patients’ answers
to medical doctors’ questions then extracts and stores critical information into elec-
tronic health records for constructing structured medical reports [1], and electronic
health records can be utilized for clinical predictivemodeling using deep learning [2].
It was reported [3] that recurrent neural networks were able to decode speech from
neural activity recorded from a sensor implanted in a human brain and transformed
the cortical signals into a synthetic voice for clinical assessment and treatment.
This technology is helpful for patients who suffer from neurological paralysis, for
example, because of stroke, traumatic brain injury, and neurodegenerative diseases.

Current AI, computation, and data science have made significant advances
in medical research toward precision and personalized medicine, particularly in
oncology, healthcare, and surgery [4–9]. The precision or personalized medicine
approach will allow medical doctors to predict more accurately which treatment and
prevention strategies for a disease will be effective for which groups of people. It
contrasts with the one-size-fits-all approach, in which disease treatment and preven-
tion strategies are developed for the average person, with less consideration for
the differences between individuals. Computer-aided surgery can guide surgeons
to perform accurately on patients over the areas of interest that even experienced
surgeons fail to detect. Figure 1 shows our point of view about the roles of AI,
computation, and data science in medicine and life sciences, which can help turn the
concept of personalized and precision medicine into reality.

After the recovery fromperiods of theAIwinter,whichwas coined to be analogous
to the idea of a nuclear winter to indicate a time of serious setback for funding and
research interest in AI [10], it is witnessed that AI contributes to significant advances
inmany scientific fields andmaking societal impacts. This ismainly due to the birth of
deep learningmethods [11, 12].Medicine and life science are among areas of research
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Fig. 1 Point of view about how personalized medicine, precision medicine, and personalized
healthcare can be achieved with the role of AI, computation, and data science in medicine and
life sciences

that AI is considered to lead the foremost successful applications [13–15], and on
top of these areas is the role of AI in cancer study. Over the past decade, AI has been
useful for solving problems in basic and clinical cancer research, where solutions to
such problems were thought to be impossible due to the limitation of human-based
analysis of large volumes of complex biomedical data. A major contribution of AI to
cancer is its power to provide fast and accurate diagnostics [16], for example, where
AI could assist a medical specialist to detect a cancerous brain tumor correctly
in a child as glioblastoma instead of medulloblastoma that was first thought by a
neuropathologist. As a result, correct treatment could be recommended to the patient
to prevent adverse effects in addition to the failure to kill the cancer.

Another significant contribution of AI to clinical cancer research is prediction and
prognosis [17]. Prediction of survival of patients with brain tumors based on tissue
and genomic data with state-of-the-art AI known as convolutional neural networks
was reported in [18]. This study used the AI method to learn the visual patterns
and molecular biomarkers associated with the patient outcomes. As a result, the AI
method outperformed the prognosis carried out by conventional clinical standards for
brain-tumor classification. Furthermore, the use of pretrained deep neural networks
was able to discover the power of a protein biomarker known as DNp73 in rectal
cancer [19]. The networks were trained and validated with immunohistochemistry
(IHC) imaging data of DNp73 expression on biopsy and surgically resected tumor
samples collected from a cohort of 143 rectal cancer patients from the Swedish rectal
cancer trialwhowere either randomly selected for preoperative radiotherapy (pRT) or
without pRT. While conventional pathology analysis of the DNp73 expression failed
to provide the correlation with the survival rate, the AI-based approach achieved
very high accuracy rates for the 5-year prediction and prognosis of the rectal cancer
patients either with or without pRT. Figure 2 shows the manual pathology-based
quantification of DNp73 expression on IHC imaging, which meets with difficulty
in finding the correlation between the protein biomarker and survival information.
In cancer therapy, AI is thought to have the potential in many aspects such as drug
discovery, development, and validation [20]. Finding the optimal drug for cancer
treatment is an expensive and time-consuming process. The augmentation of cancer
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Fig. 2 DNp73 expression by immunohistochemistry staining in tumor samples from rectal cancer
patients. A representative immunohistochemistry image of DNp73 expression in biopsies (a) and
surgically resected samples, including distant normal mucosa, adjacent normal mucosa, and surgi-
cally resected tumor (b); DNp73 expression in distant normal mucosa, adjacent normal mucosa, and
surgical tumor obtained fromwhole samples (c), andmatched samples (d).Whole samples indicated
all surgically resected samples. Matched samples included surgically resected samples (including
distant normal, adjacent normal and primary tumor samples) from the same patient (reused from
open access article published under the terms of the Creative Commons Attribution License [19])

therapy with advanced machine intelligence methods can reduce both cost and time
significantly and increase accuracy in many solutions involving biomarker discovery
that can rigorouslymatch a patient’s own data to clinical trials to achieve personalized
cancer treatment [20].

Regarding successful applications of computational methods in medicine and life
sciences, one of the most noticeable development is tensor computing or also known
as tensor decompositions or tensor factorization [21, 22], which is a generalization
of vectors and matrices and is considered as a multidimensional array. For example,
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a vector is a one-dimensional or first-order tensor and a matrix is a two-dimensional
or second-order tensor.

Tensor decomposition-based features allow an effective and efficient way for
machine learning to perform accurate pattern classification. Tensor-decomposition
methods have been applied to the reconstruction of the pathways of a cellular system
from genome-scale signals [23], integrative analysis of massive weighted biological
networks [24], analysis of physiological signals [25, 26], and extraction of burn
areas in color images [27]. Furthermore, tensor computing has been realized as a
computational tool for achieving precision medicine in updating medical knowledge
[28] and addressing heart failure [29]. In addition, methods of tensor decompositions
have been suggested to be useful for machine learning [30, 31], and compressing the
dense weight matrix of the fully-connected layers of deep neural networks to allow
much faster machine training time [32].

Data science is an emerging multi-disciplinary research area that combines math-
ematics, statistics, and data-processing methods to represent and extract meaningful
information from big data sources to be used for downstream analysis. Because of
its multiple disciplines, AI and computation are complementary to data science. In
fact, advanced data-science tools have been realized to have the potential to discover
meaningful information from big data, which can be utilized to bring into innova-
tion in clinical practice, ranging from personalized therapy, timely drug design, to
population screening and electronic health records [33].

Advances in AI, computation, and data science together with enhanced computer
hardware for rapid mathematical calculations and cloud computing, which can
process big biomedical data efficiently and timely, are promising to bring bene-
fits to three aspects of medicine: clinicians, health systems, and patients. For clini-
cians, accurate medical information for diagnosis, prognosis, and treatment can be
obtained; for health systems, time and space enclosing clinical activities, environ-
ments, technologies, people, and organizations engaged in promoting and providing
health care can be improved; and for patients, self-assessment of their own clinical
data to promote own health can be carried out [13].

Given many advantages offered by AI, computation, and data science to medicine
and life science, there are several technical and implementation challenges to over-
come. For example, some of the current implementation issues include privacy
protection, security, and transparency [13]. Regarding technical challenges, an issue
in using AI methods such as deep learning is the problem of data imbalance, where
the class distributions are highly imbalanced. Due to imbalanced data, classifiers tend
to result in low predictive accuracy for the minority class. This is particularly true for
applying AI to medicine [34, 35]. Medical datasets are often not balanced in the class
labels because of limited samples collected from patients and the cost for acquiring
annotated data. Current research focuses on using novel data transformation and
statistical simulations to address this issue.

This edited monograph consists of 15 chapters addressing applications and devel-
opment of AI, Computation, andData Science in four areas: Bioinformatics,Medical
Image Analysis, Physiology, and Innovation in Medicine and Health.



Preface ix

In Bioinformatics, the work entitled “Intelligent Learning and Verification
of Biological Networks” by Helen Richards, Yunge Wang, Tong Si, Hao Zhang, and
Haijun Gong addresses the combination of machine-learning and model-checking
methods for verifying complex biological networks from omics data, which can
provide insights into the pathogenesis of cancers. The chapter entitled “Differential
Expression Analysis of RNA-Seq Data and Co-expression Networks” by Sana Javed
describes mathematical methods for the analysis of RNA-seq data and coexpression
networks with an application to studying lung cancer cell lines. Marta B. Lopes and
Susana Vinga contribute a chapter entitled “Learning Biomedical Networks: Toward
Data-Informed Clinical Decision and Therapy”, which shows network science is
a promising tool for contributing to the reality of precision medicine by imple-
menting network analysis of clinical and molecular data for targeted therapies.
Basel Abu-Jamous and Asoke K. Nandi presents simultaneous-clustering and deep-
learningmethods for analyzingmultiple gene expression datasets in their contributed
chapter entitled “Simultaneous Clustering of Multiple Gene Expression Datasets
for Pattern Discovery”, in which three cases using real high-throughput biological
datasets were studied to illustrate the usefulness of the presented computational
methods. Another chapter entitled “Artificial Intelligence for Drug Development”
by Muhammad Waqar Ashraf gives a short review on the role of AI and machine
learning in the field of chemistry for new drug development using big data for pre-
clinical and post-marketing observation. Several interesting theoretical models for
studying andmonitoring spatial ecology and insect species distribution are presented
in the chapter entitled “Mathematical Bases for 2D Insect Trap Counts Modelling”
byDanishA.Ahmed, JosephD. Bailey, Sergei V. Petrovskii, andMichael B. Bonsall,
which is certainly of interest to ecologists, entomologists, and those performing field
experiments.

In Medical Image Analysis, the chapter entitled “Artificial Intelligence in Derma-
tology: ACase Study for Facial Skin Diseases” contributed by Rola El-Saleh, Hazem
Zein, Samer Chantaf, and Amine Nait-ali presents deep learning of images and
computer software for identifying common human facial skin diseases. Another
chapter entitled “Medical Imaging Based Diagnosis Through Machine Learning
and Data Analysis” by Jianjia Zhang, Yan Wang, Chen Zu, Biting Yu, Lei Wang,
and Luping Zhou discusses conventional and state-of-the-art machine learning
approaches for medical image analysis, including brain tumor segmentation, mental
disease classification, and modeling of brain networks. Vinayakumar Ravi, Harini
Narasimhan, and Tuan D. Pham contribute a chapter entitled “EfficientNet-Based
Convolutional Neural Networks for Tuberculosis Classification”, which studied 26
pretrained convolutional neural networks for detecting tuberculosis (TB). The deep-
learning networks were tested using a large public database of TB X-rays, and the
results suggest EfficientNet models are promising for early diagnosis of TB. Another
contribution entitled “AI in the Detection and Analysis of Colorectal Lesions Using
Colonoscopy” by ZheGuo, Xin Zhu, Daiki Nemoto, and Kazunori Togashi describes
the use of colonoscopy for the screening, diagnosis, and therapy of colorectal cancer,
and proposes anAI-based concept for assisting endoscopists in performing their task.
Another work on the application of AI to medical imaging equipment is addressed in



x Preface

the chapter entitled “Deep Learning-DrivenModels for Endoscopic Image Analysis”
by Xiao Jia, Xiaohan Xing, Yixuan Yuan, and Max Q.-H. Meng.

In Physiology, the chapter entitled “ADynamic EvaluationMechanism of Human
Upper LimbMuscle Forces” byQingTao, ZhaoboLi,QuanbaoLai, ShoudongWang,
Lili Liu, and Jinsheng Kang investigates the mechanisms of the human upper limb,
where a Hill-type model was used for predicting muscle forces and can be useful
for developing robotic upper limb rehabilitation systems. Another chapter entitled
“Resting-State EEG Sex Classification Using Selected Brain Connectivity Repre-
sentation” by Jean Li, Jeremiah D. Deng, Divya Adhia, and Dirk De Ridder presents
classifier ensembles and feature analysis methods for sex difference classification
using electroencephalography (EEG) signals.

Regarding Innovation in Medicine and Health, Giovanni Briganti contributes a
chapter entitled “Augmented Medicine: Changing Clinical Practice with Artificial
Intelligence”, in which an innovation in medical technologies known as augmented
medicine are addressed with applications to clinical practice, and discussed for
potential future directions. Finally, the chapter entitled “Environmental Assess-
ment Based on Health Information Using Artificial Intelligence” by Jannik Fleßner,
Johannes Hurka, and Melina Frenken shows how novel communication, computa-
tional, and AI methods can contribute to healthcare by means of effective assessment
of patient-specific environmental risk factors.

In summary, AI has become pervasive in many areas of research and applications.
While computation can significantly reduce mental efforts for complex problem
solving, effective computer algorithms allow continuous improvement of AI tools
to handle complexity in both time and memory requirements for machine learning
with large datasets. Data science is an evolving scientific discipline that strives for
overcoming the hindrance of analytics with big data encountered by traditional skills
that are too limited to enable the discovery of useful intelligence for leveraging
research outcomes. Solutions to many problems in medicine and life sciences, which
cannot be provided by conventional approaches, are urgently needed for the society.
This edited book attempts to report recent advances in the complementary domains
of AI, computation, and data science with applications in medicine, health, and life
sciences. Benefits to the readers are manifold as researchers from similar or different
fields can be aware of advanced developments and novel applications that can be
useful for either immediate implementations or future scientific pursuit.

Khobar, Saudi Arabia
Kowloon, Hong Kong
Khobar, Saudi Arabia
Linköping, Sweden
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Chapter 1
Intelligent Learning and Verification
of Biological Networks

Helen Richards, Yunge Wang, Tong Si, Hao Zhang, and Haijun Gong

Abstract Machine learning and model checking are two types of intelligent com-
puting techniques that have been widely used to study different complicated systems
nowadays. It is well-known that the cellular functions and biological processes are
strictly regulated by different biological networks, for example, signaling pathways
and gene regulatory networks. The pathogenesis of cancers is associated with the
dysfunctions of some regulatory networks or signaling pathways. A comprehen-
sive understanding of the biological networks could identify cellular signatures and
uncover hidden pathological mechanisms, and help develop targeted therapies for
cancers and other diseases. In order to correctly reconstruct biological networks,
statisticians and computer scientists have been motivated to develop many intelli-
gent methods, but it is still a challenging task due to the complexity of the biological
system and the curse of dimensionality of the high-dimensional biological data. In
this work, we will review different machine learning algorithms and formal veri-
fication (model checking) techniques that have been proposed and applied in our
previous work and discuss how to integrate these computational methods together to
intelligently infer and verify complex biological networks from biological data. The
advantages and disadvantages of these methods are also discussed in this work.

1.1 Introduction

Nowadays, targeted therapy has become an important and effective treatmentmethod
for many types of cancers, which uses specific chemical compounds to target some
mutated genes and proteins implicated in tumorigenesis. To develop targeted ther-
apies, we need to identify important genetic mutations and understand how these
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mutated genes and proteins influence the gene regulatory networks and signaling
pathways that are involved in the cancer cell growth. So, understanding of the bio-
logical network is one of the key steps to investigate the cellular system and patho-
genesis of different diseases. Reconstruction of biological networks involves two
major steps: inference and verification, that is, how to intelligently and correctly
infer optimal networks, and how to intelligently and automatically verify or falsify
the inferred networks. Statisticians and computer scientists have proposed different
statistical learning and model checking techniques to implement network inference
and verification in the past years.

Different learning methods have been developed to infer the biological networks
from high-dimensional omics data generated by the modern genomic technologies.
The traditional deterministic methods are based on the ordinary differential equa-
tions [3], which is not convenient to handle the noisy high-dimensional data. Most
network learningmethods are based on the probabilistic graphicalmodels (PGM) [16,
17, 31], for example, the Bayesian network and dynamic Bayesian networks meth-
ods. In the PGM, each node represents a variablewhich could be a gene or protein, and
the edge connecting two nodes indicates a possible causal or conditional dependency
relationship (which could be activation or inhibition or association). The simplest
PGM is a Bayesian network (BN) model, but the BN model can not handle the
positive or negative feedback loops which are important processes in the genetic
networks and signaling pathways. In most omics datasets, the number of observa-
tions or measurements is significantly fewer than the number of genes or proteins,
some LASSO-based methods, for example, graphical LASSO [15, 36], have been
developed to estimate inverse covariance matrix, which can infer some undirected
networks.

To reconstruct a networkwhich contains causality information andallows the feed-
back loops, different DynamicBayesian network (DBN) [17, 31, 32, 37]-basedmod-
els, which assume a first-order Markov chain, have been proposed to learn directed
networks. We are more interested in the regulatory networks which contain more
information than the correlation and causality graphs. Most network learning meth-
ods can not identify the “activation” and “inhibition” relationship between different
nodes in the regulatory networks. Our previous work [22, 35] introduced a signed
integer weight by modifying the influence score proposed in [49] to identify the
activation/inhibition relationship for each edge on the regulatory networks.

Several biomedical studies [4, 11, 29, 34] found that, in some biological systems,
the network structure is time-varying at different stages. For example, the network
structure of naive/effector T cells is different from the senescent T cells [11] due
to some mutations during tumorigenesis. Recently, time-varying network inference
methods were proposed [1, 18, 27, 40, 44], including dynamic vector autoregres-
sive model [18], heterogeneous DBN model [27], L1-regularized logistic regression
model [1], and dynamic linear model [44]. However, these methods can only be used
to learn time-varying causality networks or undirected graphs, instead of regulatory
networks.

There are several steps that are challenging in the reconstruction of time-varying
regulatory network than the stationary network inference. The first step before the
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network structure learning is to identify when the network structure starts to make
changes. This is a change-points detection problem in statistics. The change-point
detection is an open problem in high-dimensional time-series statistical data anal-
ysis, it is especially difficult if both the number and locations of change-points are
unknown. The second challenge is how to learn the optimal time-varying networks at
different stages. Our recent work [43] indicates that if we could identify the change-
points, we still can use the dynamic Bayesian network model to learn the optimal
networks at different stages. Another challenge is how to intelligently and auto-
matically check whether or not the inferred networks are consistent with existing
experiments or known databases. It is not realistic to manually verify complex net-
works which are composed of thousands of genes, proteins, and interactions. Our
previouswork [19, 20, 22, 24, 25] had introduced and applied differentmodel check-
ing techniques, including statistical model checking, symbolic model checking and
probabilistic model checking, to formally analyze the signaling pathway models
and gene regulatory networks by checking some desired temporal logic formulas
abstracted from the experiment and known database.

Our recent work [43] proposed a preliminary integrative approach to recon-
struct time-varying regulatory networks. The reconstruction of regulatory networks
from time-series high-dimensional data involves several key steps: identification of
change-points, network structure learning and searching at different stages, learn
the activation/inhibition relationship for each edge, and verification of inferred net-
works. In this chapter, wewill review several machine learning algorithms andmodel
checking techniques that we have proposed and applied in our previous biological
network studies [19, 20, 22, 24, 25, 35, 43] and discuss their limitations in the
network inference and verification, and propose a way to integrate these techniques
together for the regulatory network reconstruction.

1.2 Statistical Learning of Regulatory Networks

During the pathogenesis of some diseases or stimulation under some conditions,
some genetic or protein mutations might change the structure of genetic networks
or sequence of signal transduction. For example, the mutations of tumor-suppressor
proteins P53 and Rb, and oncoproteins RAS and MDM2 could change the signal
transduction in the P53-MDM2, Rb-E2F, and RAS networks. Figure 1.1 illustrates
simple regulatory networks, which are composed of three-nodes, with time-varying
network structures. These structure changes include some newborn edges connecting
two nodes, removal of some old edges, changes of activation/inhibition relationship.
To reconstruct a regulatory network, we should first check the network structure is
time-invariant or time-varying over time from the high-dimensional time-series data,
which is a change-points detection problem in statistics.

To identify the change-points, which describe when the network structure starts
to make changes, from the high-dimensional time-series data is a difficult prob-
lem in statistics. This is especially challenging if both the number and locations
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Fig. 1.1 Illustration of time-varying regulatory networks at three different stages. The arrow rep-
resents activation and the filled ball arrow represents inhibition relationship

of change-points are jointly unknown. Some unsupervised and supervised learning-
based change-points detection methods [13, 14, 26, 30, 39, 41] have been proposed,
including the density-ratio test [30], Bayesian inference approaches [13, 41], prod-
uct partition model [5], reversible jump Markov Chain Monte Carlo sampling algo-
rithm [26], logistic regression [14], and hidden Markov model [39]. If the data is
low-dimensional, most of these methods work well. To handle the high-dimensional
omics data, most existing methods have their limitations.

1.2.1 INSPECT Change-Points Identification

Tochoose a change-points identificationmethod that canhandle thehigh-dimensional
omics data is the first important step in the network reconstruction, it is challenging if
both the number and locations of change-points are unknown. In our recentwork [43],
we adopted a change-point estimationmethod called INSPECT proposed by [42] and
applied it to identify the change-points from the high-dimensional microarray data.
Our studies found this method could be used to identify multiple change-points from
high-dimensional time-series data if we can choose some correct values for a small
number of parameters.

The INSPECT (informative sparse projection for estimation of change-points)
algorithm is based on the ADMM (alternating direction method of multipliers)
algorithm to perform sparse singular value decomposition on the CUSUM (cumu-
lative sum) transformation matrix [10, 42] and find sparse leading left singu-
lar vectors for the change-points identification. The details are given in [42], for
completeness, we summarize some key points of this algorithm in this chapter.
Given some high-dimensional time-series microarray data described by a matrix
X = (X1, . . . , Xn)

T ∈ Rn×p, which consists of p genes measured at n different time
points, in which, Xt (1 ≤ t ≤ n) describes the expression level of all the p genes
observed at time t . Xt follows some unknown distribution with a time-changing
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mean vector μt at different stages. Assuming there are ν change-points denoted by
{c1, . . . , cν} in the data X , where 1 ≤ c1 < c2 < · · · < cν ≤ n − 1, then, there are
ν + 1 stages described by {s1, . . . , sν+1}, where si = (ci , ci+1). At any stage, the
network structure is assumed to be time-invariant, then, the mean vectors μ(i) is a
constant at its stage si .

Algorithm 1: Change-points Estimation INSPECT Pseudocode [42]

Input: High-dimensional time-series data D; Parameters (regularization, threshold)

1. Perform CUSUM transformation T, where

[Tn,p(X)]t,i =
√

n
t (n−t)

(
t
n

∑n
j=1 X j,i − ∑t

j=1 X j,i

)
.

2. Find k-sparse leading left singular vectors v̂k of CUSUM using ADMM algorithm: solve
convex optimization problem: v̂k = argmax ||T T v||2, with the constraint
||μ(i) − μ(i−1)||0 ≤ k, where i = 1, 2, . . . , ν, and k ∈ {1, . . . , p}.

3. Locate change-points by wild Binary segmentation.

Output: Number and locations of change-points

Algorithm 1 summarizes the procedure of INSPECT method [42] to estimate the
number and locations of multiple change-points from high-dimensional time-series
data. The first step is to perform the CUSUM (cumulative sum) transformation [10,
42] matrix Tn,p : Rn×p → R(n−1)×p, which is defined in the Algorithm 1, to obtain
the optimal projection direction that are closely aligned with the changes of mean
vectors between the stages si and si+1. The second step is to find the k-sparse leading
left singular vectors v̂k [42, 46] of the CUSUM transformation matrix T, which
is equivalent to solving a convex optimization problem. Most parts of the network
structure should be conserved, so, there should not be too many edge-changes during
stage transition. A sparsity is introduced using the constraint ||μ(i) − μ(i−1)||0 ≤ k to
constrain the number of edge-changes. Finally, locate change-points by wild Binary
segmentation. More details with proof are in Wang et al.’s work [42].

This work only discussed the INSPECT change-points detection algorithm that
we have applied in our previous work, the interested readers could also refer to [5,
13, 14, 26, 39, 41] for different change-points detection methods for comparison.

1.2.2 Network Structure Learning and Searching

Given the time-series dataset D which is expressed by an n × p matrix showing
the expression levels of p genes measured at n different time points. The change-
points detection algorithm is implemented first, if there is no change-point, then, the
network can be modeled by a stationary dynamic Bayesian network (DBN); if there
are at least one change-points, then, the network structure is time-varying, we should
infer different DBN models at different stages, that is, time-varying DBNs.
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1.2.2.1 Time-Invariant DBN Learning

Dynamic Bayesian Network (DBN) has been reviewed in many previous studies.
We will briefly review this method. DBNmodel is a pair (G,�), where G = (V, E)

represents a directed graph, in which V represents a set of random variables or nodes,
E is a set of edges, and � = P(X |Par(X)) is a set of conditional probability distri-
butions of the nodes X ∈ V given its parental nodes denoted by Par(X). Figure 1.2
illustrates how to use a DBN to model a simple three-nodes regulatory network (left)
given in Fig. 1.1. In the time-invariant DBNmodel, the network structure is assumed
stationary, and the state of each nodemeasured at time t + 1 is dependent on the states
of its parental nodes and itself measured at time t only. For example in Fig. 1.2, the
node X2’s value at time t2 is dependent on its parental nodes X1 and X3’s values and
itself at t1.

The directed time-invariant DBN can be encoded by a joint distribution [31] over
all the random variables V = (X1,X2, . . . ,Xn):

P(V ) = P(X1,X2, . . . ,Xn) = ∏
X∈V P(X|Par(X))

= P(X1)P(X2|X1) × . . . × P(Xn|Xn−1),

where, P(Xt|Xt−1) = P(Xt1|Par(Xt1)) × · · · × P(Xtp|Par(Xtp)), Par(Xt j ) rep-
resents the gene j’s parents’ level measured at time t − 1.

Given the data D, a scoring function is needed to evaluate the goodness of the
network. Different scoring metrics, including the Bayesian Dirichlet equivalence
(BDe) metric [28], BIC/AIC [2], Chow-Liu tree learning algorithm [8], have been
applied to learn the structure of the dynamic Bayesian network. Bayesian Dirichlet
equivalence (BDe) metric [28] is one of the most widely used methods to learn the
network structures. Learning an optimal directed network (G∗,�) is equivalent to

Fig. 1.2 Illustration of a three-nodes regulatory network (left) and a stationary dynamic Bayesian
network model (right) whose structure is invariant with time. The state of each node measured at
time t + 1 is dependent on the states of its parental nodes and itself measured at time t only
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maximizing the posterior distribution of the network G, that is to solve the following
optimization problem:

G∗ = argmaxG P(G|D) = argmaxG P(G,D) = argmaxG P(D|G)P(G),

P(D|G) =
∫

P(D|G,�)P(�|G)d�,

D|� ∼ Multinomial(�),

�|G ∼ Dirichlet (α).

where, P(G) is the prior of the network G, which can be chosen in different ways,
e.g, the minimal description length (MDL) was used in [17]. P(D|G) is the likeli-
hood function if the parameter vector � is continuous. The structure parameters �’s
prior follows Dirichlet distribution with a hyperparameter vector α given a network
G; while the D is a multinomial sample dependent on the parameters �; and � are
assumed to be globally and locally independent. Later, some heuristic searching algo-
rithms (e.g., greedy searching and simulated annealing which was used in the Banjo)
are applied to find the optimal networks. Algorithm 2 summarizes the procedure to
infer an optimal stationary dynamic Bayesian network model. It is noteworthy to
mention that, the BDe metric has assumed the following two assumptions are valid:
two directed acyclic networks G1, G2 are equivalent if they encode the same joint
probability distribution; and, if the network G1 is equivalent to G2, the distribution
function of � will be same in both networks.

Algorithm 2: BDe-based Stationary Network Structure Learning

Input: High-dimensional time-series data D

for each network G do
Optimal network structure learning;

D|� ∼ Multinomial(�);
Dirichlet prior distribution for �|G;
Estimate Bayesian Dirichlet equivalence (BDe) metric;

end
Optimal network searching:
Sort networks according to BDe scores;
Search optimal network by simulated annealing;

Output: Optimal regulatory networks

Another popular method is to maximize the BIC score which is written as
BIC(G) = logP(G|D) − f (N )|G|, where f (N ) is a non-negative penalization
function, and |G| denotes the network complexity. Thus, finding an optimal net-
work requires trading off fit and complexity of network. It is also called mini-
mal description length (MDL) score. If f (N ) = 1, we get the Akaike Information
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Criterion (AIC) scoring function [2]. Many network structure learning algorithms
have been proposed in the past twenty years, the interested readers could refer to [2]
and other references for details.

1.2.2.2 Time-Varying DBN Learning

Figure 1.3 illustrates time-varying regulatory networks and how to use the dynamic
Bayesian networks to model these regulatory networks with different structures at
different stages. The regulatory network experiences structure changes from stage
G1 to G2 to G3, including the removal of edges (X1 activates X2), birth of new edges
(X3 inhibits X1), and change of activation/inhibition relationship (X3 inhibits X2)
at three different stages. If there is at least one change-point, the first-order Markov
property will not be valid in the time-varying DBN because of the new network
structure. Our recent work [43] proposed that, in the time-varying DBN model, the
first-order Markov property should be updated as: the state of any node measured
at time t + 1 is dependent on the states of itself and its parental nodes measured

Fig. 1.3 Illustration of time-varying regulatory network (up), and time-varying dynamic Bayesian
network model (bottom). The regulatory network experiences structure changes from stage G1 to
G2 to G3, including the removal of edges (X1 activates X2), birth of new edges (X3 inhibits X1),
and change of activation/inhibition relationship (X3 inhibits X2) at three different stages
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at time t and also its current network structure or stage. So the structure parameter
� which is described by the conditional probability distribution can be written as
� = P(X |Par(X), S), where X ∈ V , and S represents the stage.

In the time-varying DBN learning, there will be different optimal network struc-
tures denoted by G∗ = (G∗

1, . . . ,G
∗
ν+1) at different stages S = (S1, . . . , Sν+1) if

there exist ν change-points (c1, . . . , cν). To learn the optimal time-varying network
structures is to maximize the joint posterior distribution of all the network structures
which are stage dependent, the optimization problem is express as

(G1, . . . ,Gν+1)
∗ = argmax(G1,G2,...,Gν+1)

P((G1, . . . ,Gν+1)|D, S)

= argmaxG=(G1,G2,...,Gν+1)
P(D|S)P(G|S)

To directly solve the above optimization problem is very difficult, in our recent
work [43], we first applied the INSPECT algorithm to identify the number and loca-
tions of change-points. That is, we know how many stages and when the structure
starts to make changes. Then, we used the stationary DBN model to learn the net-
work structures at different stages individually. That is, we assume these network
structures are independent at different stages, so the above optimization problem can
be simplified as

(G1, . . . ,Gν+1)
∗ = argmax(G1,G2,...,Gν+1)

P((G1, . . . ,Gν+1)|(D1, . . . , Dν+1), (S1, . . . , Sν+1))

= argmaxG=(G1,G2,...,Gν+1)
P(G1|D1, S1) . . . P(Gν+1|Dν+1, Sν+1)

where, Di represents the observation data at stage Si . Algorithm 3 summarizes the
pseudocode of the time-varying network structure learning.

Algorithm 3: Time-varying Network Structure Learning

Input: High-dimensional time-series data D;

1st, Identify Number and locations of change-points;
2nd, Divide the data D according to stages;

for data Dt of the stage St do
for each network Gt do

Stationary DBN network structure learning at stage St ;
end
Optimal network searching;

end
Output: Optimal time-varying regulatory networks

Most existing network reconstruction methods based on the dynamic Bayesian
network could only infer a causality or correlation graph, not a regulatory network.
The regulatory network should contain the activation and inhibition information
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to describe the regulatory relationship. Next, we will discuss how to identify the
regulatory relationship on the inferred stationary and time-varying networks.

1.2.3 Regulatory Relationship Identification

Figures 1.2 and 1.3 illustrate time-invariant and time-varying regulatory networks.
On the graph, an arrow is used to represent the activation event, while the filled
ball arrow is used to represent the inhibition event. In our previous work [35], we
introduced and estimated the signed integer weights, which modified the influence
score proposed in [49], to identify the activation and inhibition relationship and
interaction strength. If it is a time-invariant regulatory network, the identified acti-
vation/inhibition relationship on each edge will not change over time. A positive
weight corresponds to an activation event, while a negative value corresponds to
an inhibition event between two nodes. The Bayesian network inference with Java
objects [49] estimated the influence score according to the cumulative distribution
function which is written as

Gi jk(t) =
k∑

m=0

ωi jm(t) =
k∑

m=0

P(Xti = m|Par(Xti ) = j). (1.1)

Gi jk(t) calculates the probability that gene Xti ’s level is no more than k given its
parent gene takes a value of j . For the gene Xti at time t , if ωi jm is an increasing
function, Xti ’s expression level has a high chance to be upgraded given that its
parent’s level increases. Then, the interaction between Xti and its parent will be voted
as an activation event by a predefined voting machine [49] based on the values of
Gi jk(t); else, it will be voted as an inhibition event. Our previous work [35] converted
the influence score to be a signed integer weight, which can not only describe the
regulatory relationship and interaction strength, but also update the state transfer
function in the symbolic model checking.

In the time-varying networks, the structure changes could influence the sign and
magnitude of interaction strength. Our recent work [43] extended the Eq. 1.1 to allow
the integer weights to change at different stages in response to the network structure
changes. Now the quantityGi jk(t, St ) in Eq. 1.2measures the probability that, at time
t in the stage St , a node Xi will take a value m ∈ {0, 1, . . . , k} given that its parent
nodes Par(Xi ) taking a value of j at stage St . If ωi jm is an increasing (decreasing)
function of its parent node’s value, then, this interaction will be voted as an activation
(inhibition) event at a specific stage St based on the values of Gi jk(t, St ). Finally, the
influence score will be converted into a signed integer weights at different stages.

Gi jk(t, St ) =
k∑

m=0

ωi jm(t, St ) =
k∑

m=0

P(Xti = m|Par(Xti ) = j, St ). (1.2)
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The estimation of stage-dependent integer weight using the Eq. 1.2 is not easy
compared with Eq. 1.1 if the change-points or stages are unknown. To simplify the
problem, if we can identify the change-points in the first step using the change-points
detection algorithm, we can estimate the integer weights of the networks at different
stages individually using the Eq. 1.1. This simplification is based on the assumption
that the network structures are independent at different stages. Algorithm 4 summa-
rizes the procedure for the time-varying regulatory network structure learning and
integer weight estimation.

Algorithm 4: Signed Integer Weight Estimation in Time-varying Networks

Input: High-dimensional time-series data D;

1st, Identify Number and locations of change-points;
2nd, Divide the data D according to stages;

for data Dt of the stage St do
for each network Gt do

Optimal stationary DBN network structure learning;
Signed integer weight estimation;
for each edge (Xi , Par(Xi )) do

Compute ωi jm(t, St ) = P(Xti = m|Par(Xti ) = j, St );

Compute Gi jk(t, St ) = ∑k
m=0 ωi jm(t, St );

Calculate Influence Score based on Gi jk(t, St );
Convert the influence score into signed integer weights;

end
Optimal network searching;

end
end
Output 2: Optimal time-varying regulatory networks;

Signed integer weights at different stages.

Gene regulatory networks or signaling pathways models are normally complex
and composedof thousands of genes or hundreds of proteins and interactions, butwith
a small number of observations, especially in the time-series data. All the network
inference and change-points detection algorithms are dependent on some parameters.
The inferred “optimal” network could be different if we change some parameters’
values. After the networks are inferred, how to validate these “optimal” networks?
Without validation, we can not trust the simulation results or predictions made by
the inferred networks. Next section, we will introduce two major formal verification
methods, symbolicmodel checker SMVand probabilisticmodel checker PRISM that
have been applied in our previous studies, and discuss how to use them to formally
verify the inferred networks.
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1.3 Formal Analysis of Regulatory Networks

Model Checking [9] is a formal verification technique for the finite state systems
modeled by a Kripke Structure, which is depicted by M = (S, s0, R, L), where S is
a finite set of states with the initial state s0 ∈ S, R is a transition relation between
states, and L is a labeling function. During model checking, the model M will first be
converted into a state transition system, then, model checker will automatically and
exhaustively search the state transition system to verify or falsify the desired property,
which is expressed as a temporal logic formula ψ , starting from the initial state s0.
Model Checking problem [9] is expressed as {s ∈ S|M, s |= ψ}, which means, the
model M satisfies ψ . Different model checking tools, for example, BLAST, Prism,
SPIN, NuSMV, et al., have been developed to verify the design of hardware and
software systems. The model checking technique was also introduced to study the
cyber-physical system [7, 38] and biological systems [19, 20, 23]. Our previous
studies [19, 20, 22, 24, 25] have introduced and applied different model checking
techniques, including statistical model checker, symbolic model checker SMV, and
probabilistic model checker PRISM, to formally analyze signaling pathway models
and gene regulatory networks. This technique has been very successful in hardware
systems verification, according to our studies, it is very promising that it could be a
powerful tool in biological network verification.

Though we had discussed the temporal logic formulas in our previous studies [19,
20, 22, 24, 25], we will revisit some key formulas and semantics in this section again
for completeness.

1.3.1 Temporal Logic Formula

Temporal logic formulasψ can be divided into two subtypes, Linear Temporal Logic
(LTL) and Computation Tree Logic (CTL). The LTL or CTL formulaψ is composed
of an atomic proposition AP , Boolean variables, Boolean connectives which include
∨ (or), ∧ (and), ¬ (not), and → (implication), but in SMV or PRISM code, we use
the following symbols | (or), & (and), ! (not) to encode the Boolean connectives.
In the LTL formula, we also need the temporal operators X, F, G, U to describe
some property on a path, in which, Xp means p holds in the next state of the path;
Fp—p holds at some state in the Future (eventually) on the path; Gp—p holds
Globally (always) at every state on the path; pUq—p holds Until q holds on the
path. A CTL formula describes properties of computation trees [9], which have
branches corresponding to all possible paths from the root (that is, initial state of the
system). In the CTL formula, the path quantifierA, Emust precede the LTL operators
X, F, G, U, so there are eight CTL operators: AX, EX, AG, EG, AF, EF, AU, EU
that are frequently used in our studies.

Given the state formulas ψ and path formulas φ, the syntax of the CTL logic is
expressed as [9]
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ψ :: = AP | ψ1 ∨ ψ2 | ¬ψ | Eφ | Aφ

φ:: = Xψ | Fψ | Gψ | ψ1Uψ2.

The path π = s0, s1, . . . represents an infinite sequence of states, where si ∈ S, and
for every i ≥ 0, (si , si+1) ∈ R represents a transition of the system, and π i denotes
the suffix of π starting at si . The semantics of a CTL formula is summarized below
[9]

M, s |= p iff p ∈ L(s);
M, s |= ¬ψ iff M, s |= ψ does not hold;
M, s |= ψ1 ∨ ψ2 iff M, s |= ψ1 or M, s |= ψ2;
M, π |= Xψ iff M, π1 |= ψ;
M, π |= ψ1Uψ2 iff there exists k ≥ 0 such that, M, π k |= ψ2

and for all 0 ≤ j < k, M, π j |= ψ1;
M, s |= Eφ iff there exists a path π from ssuch that M, π |= φ;
M, s |= Aφ iff for every path π from s, M, π |= φ.

The readers could refer to [9] for more details about the LTL and CTL semantics
and formulas.

1.3.2 Symbolic Model Checking

The symbolic model verifier (SMV) encoded by the ordered binary decision diagram
(OBDD) [6] is a powerful model checking technique that has been successfully
used for the verification of CPU or digital circuits designs. Our previous work have
applied SMV to verify different regulatory networks [35, 43] and signaling pathway
models [20, 23]. Algorithm 5 describes the pseudocode of SMV program given a
network and some experimental observations. Each program startswith a “MODULE
MAIN”, and all the variables (describing the genes/proteins) are defined by “VAR”
and initialized by “init” under the keyword “ASSIGN”. The state transition for any
node for the next state is updated by a state transfer function which is dependent
on the signed integer weights estimated by the Algorithm 4, the value of the current
state and corresponding parental nodes’ values.

After the network is encoded, finally, the keyword “SPEC” will be used to encode
somedesiredCTL formulaswhich are abstracted from the experimental observations.
SMV can exhaustively search the state transition system M and check whether M |=
ψ is true or not. If the model M satisfies the property ψ , SMV will output “True”,
else, “False” with a counter-example will be given.

The LTL and CTL formula discussed in the Sects. 1.3.1–1.3.2 can only describe
properties of an infinite sequence of states. That is, there is no time bound. However,
if M describes a stochastic model, in most simulation studies, we have to stop the
simulation to check someproperties, so there is a timebound. For example,we canuse
the software BioNetGen [25] to model the stochastic biochemical reactions, which
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Algorithm 5: Symbolic Model Verification of Regulatory Networks

Part 1: SMV Code Structures

Input 1: Inferred networks M ;
Signed integer weights;
Temporal logic formula ψ

for each network, do
MODULE MAIN: Starter of SMV code;
VAR: Declare variables;
ASSIGN & init: Initialize variables and assign values;
next: Update state by the transfer functions;

end

Output 1: SMV Code for each network

Part 2: SMV Verification of CTL Formula

Input 2 : SMV Code from Part 1;
Observations/Experimental results

1. Design desired CTL formula ψ from experiment;
2. SPEC: Specify the CTL formula ψ ;
3. Attach CTL formula to the end of SMV code;
4. Run SMV Model Checker to verify M |= ψ .

Output 2: Network M satisfies ψ : True or False

will generate some traces or executions. The temporal logic formula describing these
traces are time-bounded. Next, we will introduce the time-bounded linear temporal
logic (BLTL).

1.3.3 Time-Bounded Linear Temporal Logic (BLTL)

Similar to the LTL formula, a time-bounded LTL (BLTL) formula is constructed
by the atomic propositions (AP) using boolean connectives and bounded temporal
operators. The syntax of the logic is expressed as

φ:: = AP | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ1 | φ1Utφ2.

There are three frequently used time-bounded operators: F, G, and U, which are
defined as: Ftφ or F(≤ t)[φ] means φ holds true within time t ; Gtφ or G(≤ t)[φ]
means φ holds true globally up to time t ; the time-bounded until operator φ1Utφ2

or φ1U(≤ t) φ2 means, within time t , φ1 will hold until φ2 becomes true. The basic
BLTL operators Ft ,Gt ,Ut can also be combined together to construct a composite
operator to verify somecomplicated properties. In ourwork,wehaveused the formula
Ft1Gt2 [φ] to describe the property thatφ holds truewithin time t1 andwill be globally
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true up to time t2. The semantics of time-bounded LTL is defined with respect to
the trace of a stochastic system. If σ k denotes the trace starting at the step k, then,
σ k |= φ means that, the track σ k satisfies the bounded LTL formula φ. The semantics
of time-bounded LTL is written as

• σ k |= AP if and only if AP holds true in sk ;
• σ k |= φ1 ∨ φ2 if and only if σ k |= φ1 or σ k |= φ2;
• σ k |= φ1 ∧ φ2 if and only if σ k |= φ1 and σ k |= φ2;
• σ k |= ¬φ1 if and only if σ k |= φ1 does not hold;
• σ k |= φ1Utφ2 if and only if there exists i ∈ N such that, for each 0 ≤ j < i ,

σ k+ j |= φ1, and if
∑

0≤l<i tk+l ≤ t , then σ k+i |= φ2.

The interested readers could refer to [21, 25] for more details about the BLTL seman-
tics and formulas.

1.3.4 Probabilistic Model Checker PRISM

Most cellular signaling pathways or genetic network stochastic simulation models
are continuous-time stochastic processes. PRISM is a popular probabilistic model
checker, which can automatically and formally model and verify three types of prob-
abilistic models, including the discrete-time Markov chains, Markov decision pro-
cesses, and continuous-timeMarkov chains (CTMCs)models, and the PRISMmodel
file is given an extension .sm.

Algorithm 6: PRISM Model Checking Pseudocode

Part1 : ctmc // Continuous-Time Markov Chains Model: model.sm

Input: Probabilistic M ;
Bounded temporal logic formula ψ

const double c = 0.1; // Declare constant c
const int N = 100; // Declare constant N

module NAME //Starter of a module NAME;
Gene1: [0..N] init N; // Initialize variable and assign values;
[] predicate → rates: updates // State update form;
[] geneA >0 → c*geneA: geneA’ = geneA - 1 // Update geneA’s state with a rate c*geneA
endmodule

Part 2: PRISM Verification: property.csl

const double T = 80; define a constant time T = 80 seconds;
const double p = 0.9; define a constant probability p = 90%;
P>=p [F <=T (geneA >= 50)]; check the property is true/false;
P=? [F<=T (geneA >= 50)]; estimate the probability;

Output: True/False, or Estimate the probability that ψ is true
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Algorithm 6 summarizes the procedure to write PRISM code to verify a CTMC
stochastic model. In our stochastic simulation models of cellular networks, the
PRISM code starts with the keyword ctmc. We first should define some constants
using the keyword const, for example, the reaction rates. All the PRISM programs
should contain at least one module using the keyword “module ... endmodule”,
which contains all the variables and updates. The variables should be declared and
initialized first. For example, we can define the possibles for the geneA using the
code: “geneA: [0..N ] init N;”, which means, geneA takes an integer value ranging
from 0 to N , and its initial value is specified (as N) with the keyword init.

PRISM can implement both synchronous and asynchronous update of modules,
so it can model most biochemical reactions occurring asynchronously in the cell.
The state update of each variable in the module are decided by the “predicate” and
“updates” taking the form: [] predicate → rates : updates. That is, for each variable
X , if the predicate is true, then, the states of the corresponding variable X in the
module will be updated “asynchronously” (using an “empty” square bracket []). The
variable X ’s valuewill be updated to a new value X ′ according to the “updates” rules
in the form of X ′ = f (X)with a rate of “rates”. The “rates” should be proportional
to some known parameters (e.g., reaction rates) and the number of molecules that
each variable represents.

In the continuous-timeMarkov chain models, we will use the continuous stochas-
tic logic (CSL), which is a property specification language for CTMC process, to
specify the temporal logic properties. The PRISM can formally verify two types of
properties. The first type of property is to verify or falsify the formula P≥p [φ], which
is an assertion, the answer could be true or false. PRISM applies the Wald’s sequen-
tial probability ratio test (SPRT) to check a given CSL formula on-the-fly when the
simulation traces can give an answer (“True”, “False”) at a given confidence level p.
For example in the Algorithm 6, the property “P>=p [F<=t (geneA ≥ 50)]” means,
within t seconds, the probability that “the number of geneAmolecules in the cell will
be no less than 50” is at least p. This verification procedure is similar to the hypothe-
sis testing-based statistical model checking method [25, 47, 48]. The second type of
CSL formula that PRISM can analyze is to use the confidence interval (CI) method
to estimate a numerical value of a bounded property P=?[φ], that is to estimate the
probability that the formula could be true. For example, “P=? [F<=t (geneA ≥ 50)]”
estimates the probability that the number of geneA molecules will be no less than 50
within t seconds. PRISM could run the simulation to check the property on the fly
and estimate the probability.

Now, we have introduced change-points detection algorithm, stationary and time-
varying dynamic Bayesian network structure learning algorithm, signed integer
weights estimation algorithm, symbolic model checking technique SMV and proba-
bilistic model verification technique PRISM. Next, we will discuss how to integrate
all these methods in a unified framework to reconstruct regulatory networks.
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1.4 Integrative Data Analysis

The Drosophila microarray data [4], which measures 4028 genes’ expression levels
of Drosophila at four stages: embryonic, larval, pupal periods, and adulthood with
67 time points, has been used to study the regulatory networks that are involved
in the muscle development. Some algorithms [33, 40, 41] have been developed
to reconstruct undirected networks associated with the muscle development. Since
the number of time points is significantly smaller than the number of genes, some
dimensional reduction methods have been used to select a small number of genes to
study. In this section, we will discuss the procedure how to integrate these methods
together to analyze the Drosophila data.

We have known the real change-points of the Drosophila microarray data [4] are
at the location/index (31, 41, 59). In Fig. 1.4, we applied the stationary DBN to
reconstruct a time-invariant network which is composed of 11 genes from all the
67 time-point observations. Some studies have indicated that the network structure
should be different in the Drosophila’s life cycle. Below, we will reconstruct the
time-varying networks at different stages for comparison.

Fig. 1.4 Reconstruction of an optimal regulatory network using stationary DBN from all the 67
time-point observations in the Drosophila’s life cycle
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Fig. 1.5 Estimation of change-points from 11 genes, where the blue vertical lines represent the
change-point lines with different threshold values (A: threshold = 25; B: threshold = [30, 50])

We will apply the INSPECT algorithm to infer the change-points assuming both
thenumber and locationof change-points are unknown.Most change-points detection
algorithms are sensitive to some parameters when analyzing the high-dimensional
data. INSPECT is sensitive to at least one parameter, for example, the parame-
ter “threshold”, which is used to test whether an identified change-point is a true
changepoint.

We first identified the change-points from the low-dimensional dataset which has
only eleven genes that are involved in the wing muscle development identified in the
previous studies [12, 50]. Figure 1.5 plots the inferred change-points on the heatmap
of 11 genes, the blue vertical lines represent the change-points. Figure 1.5A has 4
change-points (18, 40, 52, 60)with a threshold value 25,while Fig. 1.5Bhas 3 change-
points (18, 40, 52) with a threshold value ranging within [30,50]. Our results indicate
that the parameter’s value influences the number of change-points only, it does not
change the locations. Then, we test the performance of the INSPECT algorithm on
high-dimensional data. We randomly sampled 400 genes from the 4028 genes and
repeat 100 times and count the frequencies for the identified change-points. Figure 1.6
plots some histograms of estimated change-point locations using different threshold
values. The results are similar to the Fig. 1.5, a smaller threshold value will lead to
more change-points, while a larger threshold value will infer fewer change-points.
To find a threshold value that is universal to any size of high-dimensional data is not
realistic, our studies found when you change the data size, the previous threshold
value will not work anymore.

After the change-points are identified, the next step is to apply dynamic Bayesian
network inference method and signed integer weight estimation algorithm to infer
optimal time-varying regulatory networks of Drosophila’s muscle development.
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Fig. 1.6 Histograms of estimated change-point locations using different threshold values.A smaller
threshold value will lead to more change-points (A), while a larger threshold value will infer fewer
change-points (C)

Since the change-points are already known, the data can be splitted into four dif-
ferent subsets for the network reconstruction at different stages individually.

Figure 1.7 illustrates four optimal regulatory networks during theDrosophila’s life
cycle from the embryonic (A), larval (B), pupal (C) to adulthood (D). The solid lines
with arrows represent activation, while the circle-head arrows represent inhibition.
The integers on the directed edges are signed integer weights, which describe the
interaction strength between twonodes and regulatory relationship.Apparently, these
four optimal regulatory networks undergo systematic rewiring, that is, they are not
invariant in the Drosophila’s life cycle, but most regulatory relationships are still
conserved. Figure 1.7 shows that, in the embryonic stage, the gene msp300 is an
upstream gene, it can continuously activate several downstream genes, including the
mlc1, up, eve, andmyo61f to promote the embryonic development. But when the cell
enters the larval, pupal, and adulthood stage, msp300’s activities will be regulated by
some of its previous downstreamgenes, for example, it could be inhibited by themlc1
and but activated by themhcgene. This result could explain the previous experimental
discovery [45] that msp300 regulates the actin-dependent nuclear anchorage. Our
previous work [43] first identified msp300 as a hub gene in the muscle development
and explained the experimental discoveries.

This network reconstructionmethod is very sensitive to someparameters due to the
small number of measurements, and this method could infer more than one optimal
network at the same stage using the same data. Figure 1.8 illustrates another inferred
four top-scoring non-identical networks at different stages. Comparison of Figs. 1.7
and 1.8 shows several differences in these optimal network structures. Our technique
could output any number of top-scoring optimal regulatory networks. These networks
are all “statistically” optimal, it does not mean that they are biologically correct. The
next step is to verify or falsify the inferred network and choose the best network that
is consistent with the experiments and used for further data analysis and simulation.
Next, we will discuss how to apply SMV and PRISM model checker for the formal
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Fig. 1.7 Optimal regulatory networks during the Drosophila’s life cycle from the embryonic (A),
larval (B), pupal (C) to adulthood (D)

analysis of inferred networks. The below examples are used for demonstration only,
the interested readers could refer to our previous work [21, 22, 35, 43] for more
details.

Before the application of model checkers for network verification, we need to
build a model first to describe the system. During the SMV network verification,
we prefer to build a discrete value model with fewer parameters than other types of
models, that is, each variable or gene can only take discrete values. For example, we
can assume that each gene or variable can take three possible values {−1, 0, 1}, which
represent down-regulated, normal, and up-regulated, and the initial state is randomly
assigned a value of either 0 or −1. Note, we can also assume that the variable can
take n possible values {1, 2, . . . , n} if needed. Then, we use state transfer functions
to update the state of each variable at different stages. For example, the SMV code
for the state update of the gene “twi” in the adulthood stage is not only dependent
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Fig. 1.8 Another four top-scoring regulatory networks during the Drosophila’s life cycle

on the values of the parental genes myo61f, sls, glf.lmd, and eve, but also dependent
on the signed integer weights:

next(twi) :=
case

630*myo61f + 601*sls + 630*gfl.lmd - 611*eve > 0 : 1;
630*myo61f + 601*sls + 630*gfl.lmd - 611*eve = 0 : 0;
630*myo61f + 601*sls + 630*gfl.lmd - 611*eve < 0 :-1;

esac;

For illustration, we designed some putativeCTL formulas to showhow to translate
some experimental results or existing database into temporal logic formulas for the
SMV model checker to verify or falsify the inferred networks in Table 1.1.
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Table 1.1 Putative CTL formulas for the regulatory networks verification

Property CTL formula

P1 AG(msp300 > 0 → AX(mlc1 = 1 & up = 1 & eve = 1))

P2 AG(msp300 > 0 → AF(twi < 0 & sls < 0 & prm < 0) )

P3 AG(msp300 > 0 → AF(twi > 0 & sls > 0 & prm > 0) )

P4 EG((mlc1 = 1 | msp300 = 1 | gfl.lmd = 1) → EF(twi ≤ 0 & up ≥ 0))

P5 AG((mlc1 = 1 | msp300 = 1 | gfl.lmd = 1) → AF(twi ≤ 0 & up ≥ 0))

P6 AG(mhc=1 → AF(prm = 1 & mlc1 = 1 & up = 1))

P7 AG((mhc = 1 → msp300 = 1) → EF(msp300 = 1 & mhc ≤ 0))

P8 AG((mhc = 1 → AF(prm = 1)) & (prm = 1 → AF(sls = 1))

& (sls = 1 → AF(mhc ≥ 0)))

P9 AG((sls = 1 ) → AF(mhc = 1 & mhc ≤ 0))

P10 AG((msp300 = 1 → AF(mlc1 = -1)) & (mlc1 = 1 → AF(myo61f = -1))

& (myo61f = 1 → AF(msp = 1)))

P11 AG((sls = 1 → AF(myo61f = 1)) & (myo61f = 1 → AF(eve = -1))

& (eve = 1 → AF(twi = - 1)) & (twi = 1 → AF(sls = - 1)))

Our recent work [43] has verified or falsified several temporal logic formulas
related to the time-varying regulatory network of Drosophila. We list some similar
CTL formulas in Table 1.1 to explain how to construct temporal logic formulas and
their meanings in biology, but we will not provide the verification results in this
chapter. The interested readers could refer to [43] for similar examples and computer
code. The formulas P1-P3 describe the properties related to the gene msp300. These
formulas have the operators AX and AF. P1 means, the activation of msp300 will
activate the genes mlc1, up, and eve if they are msp300’s downstream genes. This
type of formula could intelligently identify many downstream genes at the same
time in the large network. P2-P3 are used to check whether or not there exists a
path on which msp300’s overexpression will finally inhibit (P2) or activate (P3) the
genes twi, sls, and prm’s expression levels. Similar formulas like the P1-P3 can be
designed to check some hub genes and their downstream genes’ behaviors. Formu-
las P4-P5 describe the properties of (twi, up)’s parental genes mlc1, msp300 and
gfl.lmd, for some (P4) or all (P5) paths, it is globally true that either mlc1 or msp300
or gfl.lmd’s overexpression will finally inhibit twi’s activity but promote the gene
up’s expression. The formula P4 with the “EF” operator is weaker than P5 with the
“AF” operator in verification. P6 checkswhether or not themhc’s overexpressionwill
finally promote the genes prm, mlc, and up’s activity. Property 7 describes a negative
feedback loop between mhc and msp300. P8-P11 describes a sequence of reaction
events, which can be easily expressed using the CTL formula, then verified or falsi-
fied by the SMV model checker. These properties are not easy to be simulated using
traditional computational methods (e.g., stochastic simulation or differential equa-
tions). Using the traditional simulationmethods, you have to estimatemany unknown
parameters if the computational models are complicated which is very challenging.
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Our SMV verification technique can avoid using some unknown parameters. In our
previous work, we have applied this technique to identify some key biomarkers and
processes that can initiate the cell’s apoptosis or proliferation. If we can translate the
KEGG database into CTL formulas, the SMV model checker could automatically
verify/falsify whether or not the inferred networks are consistent with the KEGG
database, instead of manually checking with the database. If the formula is satisfied,
SMV will output “True”, else it will output “False” with a counter-example. The
networks satisfying all or most properties will be biologically correct or reasonable,
which can be used for further analysis or modeling and predictions.

Finally, we will obtain one or more than one inferred optimal networks that are
verified to be consistent with most existing experiments by the SMVmodel checker.
Sometimes, given some small networks, we can use stochastic continuous models
to describe the inferred optimal networks. The probabilistic model checker PRISM,
based on sequential probability ratio test and confidence interval estimationmethods,
can formally analyze some quantitative properties of the system described by the
bounded temporal logic formulas.

Table 1.2 designed some putative BLTL formulas for the PRISM analysis if we
could build a stochastic continuous model. Formula P1 means that, within time t ,
the number of “prm” molecules will be at least 100 with a probability of at least 0.9.
Formula P2 checks whether the number of “msp300”molecules will be continuously
greater than 50 from time 10 to t . PRISM can check whether these formulas are true
or not with different values of time t . PRISM can also estimate the probability
that the number of “prm” molecules will be at least 100 within time t , which is
expressed as P3. P4 will estimate the probability that the msp300’s level will be
above 50 all the time during the time interval [10, 30]. However, the continuous
models contain many unknown parameters than the discrete value models, including
the rates of reaction, synthesis, binding or degradation. Most of these parameters are
not easy to be estimated from the experiments. The formulas in Table 1.2 are used for
demonstration only since we do not know the parameters in the inferred regulatory
network. We usually use PRISM to formally analyze some small networks with
known parameters. Our previous work [21] has applied PRISM to formally analyze
a stochastic signaling pathway model, the interested readers could refer to [21] for
computer code and more details.

Table 1.2 Two types of putative BLTL formulas used for the PRISM model verification. These
formulas are used for demonstration only

BLTL formula

Assertion P1 P≥0.9(φ1) = P≥0.9 [F≤t (prm ≥ 100)]
Assertion P2 P≥0.9(φ2) = P≥0.9 {G[10,t] (msp300 > 50)}
Estimation P3 P=?(φ3) = P=? [F≤t (prm ≥ 100)]
Estimation P4 P=?(φ4) = P=? {G[10,30] (msp300 > 50)}
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1.5 Discussions

In this work, we discussed how to integrate themachine learning andmodel checking
methods to reconstruct regulatory network from the high-dimensional data. In the
integrative approach, the change-points detection algorithm is first applied to identify
the change-points which describe when the system moves to a new stage; then, the
dataset is splitted into subsets for individual analysis according to the stages. The sta-
tionary dynamic Bayesian network method is applied to learn the optimal network
structure at different stages; in the meantime, a signed integer weight estimation
algorithm is used to learn the regulatory relationship (activation/inhibition). There
could be several inferred optimal networks using the current network inferencemeth-
ods, then SMV model checker will be applied to formally verify the inferred time-
varying networks by checking some temporal logic formulas which are abstracted
from experiment or KEGG. The optimal and biologically correct network should
be consistent with existing experiments and known databases. Given a continuous
stochastic model, PRISM was introduced for further analysis of the networks by
checking some time-bounded temporal logic formulas. However, PRISM is only
applicable to some small networks with all parameters already known to us because
it is not realistic to estimate many model parameters in large networks.

This work and our recent study [43] found that the change-points detection algo-
rithm is sensitive to the parameter’s values and the data size in the high-dimensional
time-series data analysis. It is not possible to find a universal parameter value for the
change-points estimation according to our analysis. So, the change-points detection
is still one of the most challenging problems in network reconstruction. During the
time-varying network structure learning, we assume the network structures are inde-
pendent at different stages, so we can split the data according to the change-points
and infer the networks and estimate the integer weights at different stages individu-
ally. However, the networks might not be independent at different stages. In the long
run, we need to develop a real time-varying network structure learning algorithm that
does not assume the stage independence, and propose novel change-points estimation
algorithms to overcome the shortcomings of previous methods in the time-varying
network reconstruction.
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Chapter 2
Differential Expression Analysis
of RNA-Seq Data and Co-expression
Networks

Sana Javed

Abstract Atpresent, RNA-seq has become themost commonandpowerful platform
in the study of transcriptomes. Amajor goal of RNA-seq analysis is the identification
of genes and molecular pathways which are differentially expressed in two altered
situations. Such difference in expression profiles might be linked with changes in
biology giving an indication for further intense investigation. Generally, the tradi-
tional statistical methods used in the study of differential expression analysis of
gene profiles are restricted to individual genes and do not provide any information
regarding interactivities of genes contributing to a certain biological system. This
need led the scientists to develop new computational methods to identify such inter-
actions of genes. The most common approach used to study gene-set interactivities
is gene network inference. Co-expression gene networks are the correlation-based
networks which are commonly used to identify the set of genes significantly involved
in the occurrence or presence of a particular biological process. This chapter describes
a basic procedure of an RNA-seq analysis along with a brief description about the
techniques used in the analysis: an illustration on a real data set is also shown. In
addition, a basic pipeline is presented to elucidate how to construct a co-expression
network and detect modules from the RNA-seq data.

Keywords RNA-seq · Normalization · Co-expression networks · Modules

2.1 Systems Biology

Systems biology is an interdisciplinary field comprising various statistical and math-
ematical techniques along with modelling of complicated biological systems. This
field is concerned to reveal complex phenomenon occurring in biological processes
at different levels like cellular, molecular or organism [1]. One major goal of
systems biology is to model and deduce emergent properties of different interac-
tive processes occurring in biological systems whose theoretical description might
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be given only through systems biology methodologies [2]. Such approaches usually
involve the information about metabolic networks or cell signalling networks [3].
TheHumanGenomeProject has opened a newdoor for researchers to conduct collab-
orative research on the biological processes using information provided at gene level
[4]. Researchers use gene expression profiles obtained via different platforms like
microarray, SOLid or HeliScope for further analysis using computational methods.

2.2 High Throughput Sequencing

Microarray analysis was in use at a wider level by scientists in past decades to
identify the gene expression profiles. Microarray is a tool that contains thousands
of short DNA elements called probes on a chip which are used in hybridization
of a cDNA/cRNA library to see relative profusion of nucleic acid sequence in the
library. However, microarray analysis still has some limitations and one of them
is the preparation of adequate target DNA samples and DNA fragments spotted
slides. To overcome this issue high throughput sequencing (HTS) techniques have
been introduced which are cost effective, rapid, enhanced and time saving [5]. HTS
technologies an alternative to microarray analysis have brought the revolution in the
field of molecular biology [6, 7]. These technologies read a large amount of genes at
once and helps in identifying the key regulators involved in a specific process. The
most common and economical platform used nowadays to measure gene expression
profiles is RNA-seq and its ability comparatively tomicroarray is very high. RNA-seq
analysis has the ability to sequence the entire transcriptome instead of just measuring
predefined transcripts as in microarray analysis. A comparison between RNA-seq
and microarray analysis is shown in Fig. 2.1.

2.3 RNA-seq Analysis

RNA-seq could provide us the information about the status of gene whether it is
on/off, expression levels of genes and the time of their activation or deactivation.
Such information assists scientists/researchers to study cell biology at intensive level
and evaluate variations which might indicate disease.

A major goal of RNA-seq analysis is the identification of genes and molecular
pathwayswhich are differentially expressed in twoormore environmental conditions.
Suchdifferences in expressionprofilesmight be linkedwith changes in biologygiving
a sign for further investigation.

For instance, suppose we have two groups of cells; one group consists of normal
cells while the other group includes cancer cells. It is obvious that functioning of
cancer cells differs from normal cells. We are intended to identify what genetic
mechanism is instigating such difference. During some cellular processes, some of
the genes are active through mRNA while some are inactive. HTS provides us the
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Fig. 2.1 Microarray versus RNA-seq; gene expressions in microarrays are based on the intensity
while in RNA-seq they depend on sequencing

information which genes are active, and how much they are transcribed. RNA-seq
method determines the sequence of nucleotides in a segment of RNA. RNA-seq
analysis is used to measure the gene expressions in normal cells and cancer cells
through which we can infer the variations between both groups.

A workflow of RNA-seq analysis includes the following:

• formulating a sequencing library,
• biological and technical variations,
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• assessment of variations,
• method for differential expression analysis,
• generalized linear models,
• hypothesis test,
• normalization of data,
• principal component analysis,
• data analysis of gene expression profiles.

2.4 Formulating a Sequencing Library

There are several procedures and platforms to organize a sequence library but Illu-
mina is the one that is most frequently used. A rapid progress in Illumina technology
over the past decades has profoundly allocated the pace for the remarkable improve-
ments in upshots and declines in cost. As a result, Illumina technologies lead the
HTS market.

In the preparation of a sequencing library, initially we segregate the RNA and
separate the RNA into small fragments due to the reason that RNA sequence might
be thousands of bases long but machines can sequence only (200–300 bp) frag-
ments. Then RNA fragments are converted into double-stranded DNA. Further, we
attach sequencing adaptors which let the sequencing machine to identify the frag-
ments yielding an opportunity to align distinct samples at the same instant as distinct
samples employ distinct adaptors. There might be numerous DNA fragments with
missing adaptors so PCA amplification is performed to amplify the genes containing
adaptors. Further, a quality control is executed to check the library depths and library
fragment lengths; they should be ofmoderate length. The cDNA library is then exam-
ined by HTS, constructing small sequences that correspond to either one or both ends
of the fragment (see Fig. 2.2).

A location in the reference genome is determined by the genome fragments that
match the read fragments. Once we determine the location for a read we can easily
identify whether it lies within coordinates of the gene or it is associated with some
other interesting feature. Finally, we obtain a gene expression matrix like Table 2.1
after determining the gene counts. Feature counts [8] and HTSeq [9] are the famous
tools used to determine the gene counts. The total number of read counts in a particular
sample sets up the expression profile or library for that sample.

2.5 Biological and Technical Variations

Technical and biological variations are two kinds of variations which might be
encounteredduring anyRNA-seq experiment.Biological variation (BV ) comeswhen
experiments are conducted on different samples under same condition while tech-
nical variation (T V ) occurs due to disparity in measurements of gene counts on the
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Fig. 2.2 RNA-seq process (1) estimation of gene counts from mRNA (2) alignment of gene counts
back to the reference genome

Table 2.1 Gene expression matrix

Gene Normal cells Cancer cells

Sample 1 Sample 2 Sample 3 Sample 4

Gene 1 12 15 7 34

Gene 2 334 246 500 300

Gene 3 2560 2500 3000 2250

same sample run at different time points independently. So, the coefficient of total
variation V is defined as follows [10]:

(Coefficient of V )2 = (Coefficient of BV )2 + (Coefficient of T V )2

The coefficient of BV is the disparity through which the unspecified real concen-
tration of the gene differs among RNA replicates, and it is not affected even if we
increase library depths. On the other hand, the coefficient of T V decreases if we
escalate the sequencing depth. It shows that coefficient of biological variation plays
an important role in RNA-seq analysis, and it is elementary to consider differential
expression analysis with respect to biological variation (BV ). As many researchers
still find RNA-seq experiments very expensive so it is essential to assess coefficient
of BV in a more reliable way with few number of replicates by keeping in view the
fact that distinct genes might have distinct levels of BV .
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Although we can use the same approach to analyse the RNA-seq data like
microarray in which gene counts are standardized and transformed to achieve
normality [11–13], for smaller sequencing depths it is incapable to handle small
gene counts. An additional prevailing and major difficulty is that count data usually
displays a vigorous mean–variance connection that is not appreciated by current
normal-based evaluates, providing theoretically poor statistical conclusions. This
issue can be handled by considering accurate probability distributions for the gene
counts and estimating their exact probabilities which subsequently provide efficient
statistical inferences [14–17]. Additional benefit of fitting accurate distribution is that
they provide flexibility for unravelling biological variation from technical variation
[16, 17].

2.6 Assessment of Variations

The most common frameworks used to estimate the differentially expressed genes
patterns in an analysis are the Poisson and the negative binomial (NB) distributions.
Although Poisson distribution is more convenient to use comparatively to NB as it
is based on only one parameter, it has a shortcoming that it doesn’t accumulate the
BV in the data [16, 18] which might bring the deviation in concentration of different
genes in different RNA samples. Such dissimilarity in abundance of gene counts
across distinct samples will show overdispersion of gene counts relative to Poisson
model, which puts a constraint that mean and variance of the model are identical.

2.6.1 Poisson’s Distribution

Let the number of read counts of gene G in sample k be denoted by zGk and the
total number of genes considered in the experiment be NG . Assume that zGk follow
a Poisson distribution and the experiment is conducted on the same sample with the
recurrent sequencing runs. Let ρGk denote the fraction of read counts of gene G in
the sample k

∑NG
G=1 ρGk = 1 for each sample k.

⇒E(zGk) = μGk = ρGkNk; Nk = Total number of read counts in library k
⇒var(zGk) = Eρ(var(z|ρ)) + varρ(E(z|ρ)) = μGk + ϕGμ2

Gk

⇒ var(zGk )

μ2
Gk

= 1
μ2
Gk

+ ϕG⇒ Coefficient of V 2 = 1
μ2
Gk

+ ϕG,

where
√

ϕG = standarddeviation
mean denote the coefficient of BV of ρGk , while first term

represents the coefficient of T V 2 of ρGk . Though
√

ϕG is the coefficient of BV ,
it also takes into account technical sources like library formation along with BV
among samples [10].
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2.6.2 Negative Binomial Distribution

In an RNA-seq analysis, biological replicates contain more BV as compared to
technical replicates. In case of biological replicates, such issue should be tackled
at an intense level otherwise it might results in false-positive rates (FPR) due to
miscalculation of sampling error. NB-distribution has two parameters, mean and
dispersion, which permits modelling with more general mean–variance association.
It provides a precise modelling when we have low gene counts, and also accom-
modate BV among biological replicates through its dispersion parameter [10]. The
NB framework might be expanded with quasi-likelihood (QL) approaches to explain
gene-associated inconsistency encountered through biological and technical causes
[19].

Let zGk represents the number of counts of gene G in k-th sample. Then
E(zGk) = μGk and var(zGk) = σ 2

G(μGk +ϕμ2
Gk)where ϕ and σ 2

G denote NB and QL
dispersion parameters [20]. Disparity in gene counts across different samples can
be modelled through any or both of NB/QL dispersion parameters. Here, ϕ being a
global parameter and σ 2

G a gene-specific parameter reflects their distinct roles in the
analysis. From the definitions of ϕ, it is clear that NB dispersion parameter accounts
for the overall variation across all genes and its square root is known as the coeffi-
cient of BV [10], whereas σ 2

G considers only gene-associated inconsistency above
and below the overall level. This global parameterϕ gives advantage toNBmodelling
over Poisson as it has aptitude of capturing innate variation in the biological system.

Generally, instead of ϕ a trended NB dispersion is estimated by fitting a mean-
dispersion trend across all genes. This trended dispersion is basically a function
ϕ(B), where B represents the overall expression level of gene G [10]. This approach
is more flexible and accounts for empirical mean–variance relationships as well.

Mostly we have limited numbers of replicates so it is hard to estimate QL disper-
sion parameter so an empirical Bayes (EB) technique is implemented by which
moderated EB estimates are obtained [19, 21, 22]. This method basically compresses
the raw QL dispersion estimates towards a mean-dependent trend to obtain EB
estimates.

2.7 Method for Differential Expression Analysis

There are several packages available in R, which have the functions to share informa-
tion across genes for dispersion evaluation like edgeR, DESeq, BBSeq, DSS, baySeq
and ShrinkBayes. edgeR package shrinks dispersion/variance estimates towards a
common/local estimate to obtain moderated estimates [10, 16]. DEseq considers
the mean expression strength across all samples to identify and rectify very low
dispersion estimates [14]. In BBSeq framework, the dispersion is modelled on the
mean; the main objective of this method is to lessen the effect of outliers through the
mean absolute deviance of dispersion estimations [23]. A Bayesian methodology,
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DSS, provided in [24] estimates the variance for separate genes that accounts for the
diversity of dispersion estimates for distinct genes. baySeq [25] and ShrinkBayes
[26] approaches are associated with Bayesian model and primarily relevant with the
estimation of posterior probabilities or FDR for differential expressions.

2.8 Generalized Linear Model (GLM)

Consider the read counts for geneG in sample k then the mean value for these counts
in a generalized linear framework will be modelled as follows:

log(μGk) =
n∑

l=1

yklαGl + logNk;

ykl= sample-associated predictor for coefficient l,
αGl= gene-associated value for coefficient l; l = 1, 2, . . . , n,
Nk= Total number of reads in the library k.
Each of the coefficients ykl and αGl; l = 1, . . . , n depicts a feature of the exper-

imental design. The nonzero value of ykl shows its contribution to the expression
of sample k while αGl defines its influence on the expression value of gene G in
affected samples. As there might be different resources used in the formation of
different samples so the library depths might vary from sample to sample. To over-
come this issue an offset term is introduced which is primarily the log-transformed
library size and confirms that such disparity in library depths will not bring any
specious changes in expressions.

2.9 Hypothesis Test

There are two common choices for gene-wise testing namely likelihood ratio tests and
quasi-likelihood (QL) F-test. The likelihood ratio tests are frequently usedwithGLM
framework while QL F-test is preferred when we have a few number of replicates
as they provide more robust and authentic results in such scenario. Mostly, a null
hypothesis is set that the coefficient or contrast is equivalent to zero against the two-
sided alternative that it is nonzero to conduct a comparative analysis of RNA-seq
data. For instance, testing the null hypothesis that log fold change (FC) between
control and diseased gene expression is exactly zero, i.e. gene is not affected by or
playing a significant role in disease.
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Table 2.2 Read counts per
sample

Genes Sample 1 Sample 2

Gene 1 500 1000

Gene 2 700 900

Gene 3 300 1100

Total 1500 3000

2.10 Normalization of Data

Normalization of data is usually done before analysis of the gene expression profiles
because of the varying library/sample sizes since number of reads assigned to the
samples may differ, as shown in Table 2.2. The main factor behind this variation
might be the higher concentration of low-quality reads captured on the flow cell in
some samples comparatively to others. To tackle this issue and adjust the read counts
in each sample, the easiest way is normalization, i.e. to divide read count per gene
by the sum of read counts per sample.

There are several procedures of normalization implemented in R or R-Studio.
Some of them, implemented in the edgeR library of R, are described below. An
initial step before normalization is to remove all the genes having 0 counts across
all the samples. So the genes which are not transcribed will have no effect on the
calculated scaling factors.

2.11 Trimmed Mean of M-values (TMM)

TMM[27] is theweighted trimmedmean ofM-valueswith theweights from the delta
method on Binomial data. In the case of unstated reference sample, the sample with
upper quartile nearest to the mean upper quartile will be considered. An application
on a test data is shown as following:

Firstly a dataset (Console 2.1) is created consisting of two groups normal and
diseased each containing two samples. Further, a DGEList object is generated.

Finally, we have calculated the scaling factors using method TMM in edgeR
library of R-Studio and run the DE test; results are shown in Console 2.2.

If we look at the normalization factor of gene 1, then it is clear that first gene is
not differentially expressed among the groups because 5/0.7071068 ~ 10/1.4142136
~ 7.07 and the test implies that only 15 genes are DE.
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Console 2.1 Dataset along with DGEList object

2.12 Relative Log Expression (RLE)

RLE is the scaling factor technique introduced by Anders and Huber [14]. A median
sample is computed from the geometric mean of all samples and the median ratio of
each sample to the median one is used as the scaling factor. Console 2.3 shows the
normalization factors and test results obtained via RLE method applied on the data
set in Console 2.1.

2.13 Upper-Quartile Normalization

This technique, developed by Bullard et al. [28], calculates the scaling factors from
the 75% quantile of the expression values for each sample. The results obtained
through upper-quartile normalization method on the same data set used above are
shown in Console 2.4.
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Console 2.2 TMM normalization

2.14 Principal Component Analysis

Principal component analysis (PCA) is used to decrease the dimension of data. Prin-
cipal component analysis (PCA) plays a vital role in RNA-seq analysis as it gives an
idea about insignificant features of the datawhich assists in reducing the dimension of
data. This analysis helps us in detecting the interesting differences between samples
along with the information which samples to exclude from downstream analysis. It is
also less expensive from computational point of view. Principal component analysis
is based on linear algebra concepts. It uses matrix algebra along with some statistical
techniques like standardization, variance, covariance, independence, etc.
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Console 2.3 RLE normalization

Console 2.4 Upper-quartile normalization
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2.14.1 Steps of PCA Analysis

1. Compute the covariance matrix ZT Z to see the relation between the variables
of a data which is very helpful in taking a decision about a variable.

2. Find eigenvalues and eigenvectors of the covariance matrix. An eigenvector
basically shows the direction of data points in a scatterplot and we can choose
the most important directions by using such information.

3. Lastly, we make a supposition that more inconsistency in a particular direction
correlates with elucidating the behaviour of the dependent variable. High vari-
ability generally gives signal, while small variation produces noise. Thus, the
more variability there is in a particular direction is, theoretically, revealing of
something significant we want to identify.

2.15 Data Analysis of Gene Expression Profiles

Generally, the main objective of the differential expression (DE) study is to create a
list of genes passing multiple testing adjustments, ranked by P-values. P-values are
adjusted to control the FDR by the well-known procedure Benjamini and Hochberg
[29]. The procedure is stated as follows:

Suppose we have H1, H2, · · · , Hn null hypotheses tested and p1, p2, . . . , pn be
their corresponding p-values.

1. Arrange the p-value in increasing order and rename them as P1, P2, . . . , Pn.
2. For a given α, determine the largest value of l satisfying the inequality Pl ≤ l

nα.

3. Reject the null hypothesis Hi for all i = 1, 2, . . . , l.

The differentially expressed genes between two groups can be visualized through
a plot as shown in Fig. 2.3 The x-axis describes how much a gene is transcribed
in CPM (counts per million) scale, while the y-axis shows the relative difference
between two groups for instance the normal and diseased samples.

Fig. 2.3 Differentially expressed genes; black dots represent the genes which are not differentially
expressed
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Such analysis helps us to solve two types of problems:

• Validate your hypothesis using experiment.
• Find a certain pathwaywhich is enriched in someparticular condition, for instance,

normal or diseased.

2.16 An Illustration: A Differential Gene Expression
Analysis Conducted on a Real Dataset

To conduct a differential expression analysis on real data set we have used the study
by Kurppa et al. [30] to get gene expression profiles, the data is online accessible
from GEO database under the accession number GSE131594. This data consists of
three cancer cell lines PC-9, HCC827 and HCC4006. Half of the samples of data
consists of DMSO treated control cells while the remaining half sample consists of
dormant cells. There are two batches in the original dataset, however, we have just
considered the first batch in our analysis. Both batches can be considered together
by removing batch effects from the replicates. This can be done by adding a batch
column in the design matrix.

The dimension of data is 6 57905 × 12, which contains 6 57905 genes and 12
samples. We have 6 groups of experiments corresponding to 3 cell lines with 2 repli-
cates. This grouping is based on the biological conditions (DMSO vs. DORMANT).
We have modified the names of samples for simplicity. The head of the data is in
Console 2.5.

Console 2.5 Head (data)
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Table 2.3 Sample
information

Sample name Cell type Status

HCC4DR1 HCC4006 DMSO

HCC4DR2 HCC4006 DMSO

HCC4TR1 HCC4006 DORMANT

HCC4TR2 HCC4006 DORMANT

HCC8DR1 HCC827 DMSO

HCC8DR2 HCC827 DMSO

HCC8TR1 HCC827 DORMANT

HCC8TR2 HCC827 DORMANT

PCDR1 PC-9 DMSO

PCDR2 PC-9 DMSO

PCTR1 PC-9 DORMANT

PCTR2 PC-9 DORMANT

Detailed information about samples is given in Table 2.3.

2.17 R Packages Used in the RNA-Seq Analysis

R/R-Studio packages used in the subsequent differential expressional analysis of
RNA-seq data are RCurl, limma, edgeR, Glimma, RColorBrewer, gplots, statmod,
org.Hs.eg.db.

Most of the packages used in the analysis are Bioconductor tools and can
be installed from Bioconductor website https://www.bioconductor.org/packages/rel
ease/bioc/. Bioconductor tools havemade the analysis of high throughput sequencing
very auspicious for the researchers. The main programming language used in
Bioconductor is R.

2.18 Removal of Lowly Transcribed Genes

Genes with low expression values are usually not very informative in differential
expression study so removal of those genes is worthful as this step reduces the
computational burden of downstream analysis. For this purpose, a threshold is chosen
detecting the CPM that relates to a count of 10 which in our case approximates the
value 11.3 as shown in Fig. 2.4. In our analysis, a gene retains if it appears in at
least two groups, however, this restriction might be reduced to one group as well
by selecting value 2 instead of 4. Firstly, CPM values for the entire gene counts
are computed by using command cpm() as depicted in Console 2.6 then we put the
threshold and obtained the required genes, only 4559 genes fulfilled our criteria.

https://www.bioconductor.org/packages/release/bioc/
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Console 2.6 Gene counts thresholding

Fig. 2.4 Selection of threshold based on CPM and expression data

2.19 Formation of DGEList Object Using EdgeR

An object of DGE list in Console 2.7 is created that is a main data class in edgeR
and consists of different slots to hold different types of information about the data.
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Console 2.7 DGEList object

Console 2.8 Samples density distribution in logCPM

2.20 Density Distributions

To observe the density distribution of gene counts, we have measured log intensities
using cpm function for raw counts Console 2.8.

Box plots in Fig. 2.5 illustrate an analogous behaviour of density distributions
across all samples so we don’t need to examine any sample further.

2.21 Normalization

Normalization factors have been calculated using the method TMM. By default,
edgeR uses themethod TMMsowe don’t need to specify themethod in the command
y < −calcNormFactors(y). Table 2.4 shows the norm.factors corresponding to each
library.
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Fig. 2.5 log2 (CPM)

Table 2.4 Norm.factors Sample Lib. size Norm. factors

HCC4DR1 751,507.7 1.5781530

HCC4DR2 749,466 1.5850865

HCC4TR1 898,050.7 0.9691410

HCC4TR2 897,158.6 0.9709712

HCC8DR1 886,306.5 0.9897554

HCC8DR2 886,316.2 0.9963440

HCC8TR1 957,065.4 0.8959495

HCC8TR2 955,566.4 0.9030861

PC9DR1 796,577.1 0.9024373

PC9DR2 1 795,879.1 0.9044958

PC9TR1 868,377.3 0.8055157

PC9TR2 866,746.3 0.8097616

In Table 2.4, the value lower than unity indicates that the library size must be
decreased while a value above one depicts intensification in the library size. The
performance of the normalization method might be checked for each sample through
meandifference (MD)plotting.MDplot illustrates the log ratio of two libraries versus
mean log expression of those libraries. In Table 2.4, the minimum value occurs
corresponding to the sample PC9TR1, whereas the maximum value corresponds to
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Console 2.9 MD plots

HCC4DR2 so MD plots for both samples before and after TMM normalization are
shown in Figs. 2.6 and 2.7, respectively. Code for both figures is displayed in Console
2.9.

All libraries excluding the one under consideration are considered in the reference
library. A single library might be chosen as reference as well for instance the sample
with median library size. We can easily see the difference between the libraries as
in Fig. 2.7 most of the genes are centred at log ratio of 0 which is not the case in the
MDS plots in Fig. 2.6.

Fig. 2.6 MD plots for samples HCC4DR2 and PC9TR1 before normalization
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Fig. 2.7 MD plots for samples HCC4DR2 and PC9TR1 after normalization

2.22 Principal Component Analysis

MDS plots are used to visualize the principal components of the data. It assists
to recognize the most important directions of the data and the direction of most
important component lies along x-axis. This 2D plotting shows the distance between
the samples. To find the distance between two samples is calculated by picking the
highest 500 log2 FC genes between both samples and then evaluating their root mean
square. TwoMDS plots, code in Console 2.10, are shown in Fig. 2.8 with two distinct
clutch information one with cell categories and the other with DMSO induced and
DORMANTstate levels. The largest distance along leading log FCdim1 is appearing
between HCC4D and PC9D samples.

2.23 Design Matrix

Next we formulated a design matrix shown in Console 2.11. Each column of the
design matrix corresponds to one of six groups considered in the analysis. All the
samples contained in the same group have been assigned the value 1. This setting is
known as group mean parametrization.



2 Differential Expression Analysis of RNA-Seq Data and Co-expression … 49

Console 2.10 Principal components of data based on cell type and status

Fig. 2.8 MDS plots showing distances between samples based on cell types and status
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Console 2.11 Design matrix

2.24 NB and QL Dispersion Evaluation

NB dispersion estimate which is also the square of coefficient of BV is evaluated
using the function estimateDisp() while glmQLFit() command is used to find QL
dispersion estimates. The function estimateDisp() creates an object containing esti-
mates for three types of dispersions namely common, trended and tagwise (Console
2.12).

Console 2.12 Dispersion estimates
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The commandglmQLFit()provides aDGEGLMobject (Console 2.13) containing
all the gene-associated GLM coefficients. The trend in NB dispersions varies
inversely with gene expressions since the highly expressed genes are more stabilized
comparatively to lowly expressed genes. This factmight be utilized to recognize batch
effects or trended biases in highly expressed gene profiles. The function glmQLFit()
provides a vector comprising of df.prior values which provides the information about
variation in QL dispersions between genes. The higher values for df.prior indicates
stronger EB moderation while small values show the reverse.

We can also visualize DGEGLM object by using command plotQLDisp()as
shown in Fig. 2.9.

2.25 Annotating Genes

We can add some annotations in our downstream analysis by using the package
org.Hs.eg.db, for a mouse data set the available package is org.Mm.eg.db. We
can select from available options the annotation of our choice. In our analysis,
we have used ENTREZID and SYMBOL as both are very important from gene
enrichment analysis point of view. Console 2.14 shows how to add gene anno-
tation information, since our data is using ENSEMBL gene ids so we have used
keytype = “ENSEMBL′′.

2.26 Gene Testing

Now, our subsequent task is to find a list of differentially expressed genes between two
groups of our interest. Such comparisons can be defined using the makeContrasts()
command. We will specify the comparisons between DMSO and DORMANT states

Console 2.13 DGEGLM object
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Fig. 2.9 Quarter root QL dispersion against average abundance of log2 CPM

for each cell line. This chapter contains the gene testing for the cell line HCC4006
only, analyses for the other two cell lines might be conducted on the same lines. We
have used the glmQLFTest to check the significant difference in each gene expression
profile. The contrast is defined between the conditions DMSO and DORMANT. We
can get the uppermost significant genes with respect to measure of logFC or PValue
by using the command topTags. The total number of genes found to be differentially
expressed in the analysis is equal to 2230, among which 1145 are down-regulated
and 1085 are up-regulated. The related code is provided in Console 2.15.

Let’s visualize the differentially expressed genes using MD plots with log FC
vs average abundance for each gene. In Fig. 2.10, significantly expressed genes are
shown in green and red colours where green dots represent up-regulated genes and
red dots represent down-regulated. Code for the plot is given in Console 2.16.

We can have a look at the top genes ranked according to P-values by using the
command topTags. We can also pick a gene we are interested in and visualize it
sample-wise using stripchart command, for instance, pick CEACAM6 from Console
2.17. Code for the stripchart plot is given in Console 2.16.We can see in Fig. 2.11, the
normalized log expression value for CEACAM6 is very high in the second sample,
i.e. HCC4006DORMANT.

2.27 GO Analysis

There are several gene sets testing approaches which might be used to deduce the
biological interpretation of theDE analysis. One of them is gene ontology enrichment
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Console 2.14 Gene annotations

analysis also known asGOenrichment analysis. This analysis tells uswhich gene sets
or pathways are up signified and which are down in a DE analysis. GO enrichment
analysis can be conducted by using goana() function in R.We have to define a species
for the analysis, for instance, in human data setswe useHswhile inmouse datawe can
use Mm. There are three classes of ontology used in GO analysis namely biological
process, molecular function and cellular component abbreviated as BP, MF and CC,
respectively. In Console 2.18 if we look at the first GO term that is GO: 0,003,735
then it is shown that in the current DE analysis the GO term structural constituent of
ribosome, a molecular function, consists of 147 annotated genes among which 114
are significantly differentially expressed subject to our defined contrast.

We can also use gene lengths in gene enrichment analysis. There is an R package
‘EDASeq’ which has a built-in function specifically made to find gene lengths, i.e.
getGeneLengthAndGCContent(). More details about the package ‘EDASeq’ can
be found at the website https://homolog.us/Bioconductor/EDASeq.html. We assume

https://homolog.us/Bioconductor/EDASeq.html
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Console 2.15 Contrasts, glmQLFTest and DGE list

Console 2.16 MD plot for differentially expressed genes and strip chart code
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Fig. 2.10 Visualizing differentially expressed genes using MD plots

Console 2.17 Top differentially expressed genes
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Fig. 2.11 Normalized expression of CEACAM6 across all samples

that the gene lengths have already been found before the analysis of raw data. This
data is stored in the file “gene length.tsv” which has 3 columnsgene_id, length andgc.
Since this data include all the genes initially involved in the analysis so the list of
gene_id is further matched with the rownames of fit.cont object to extract the desired
genes. Then, the GO enrichment analysis is conducted incorporating the information
about gene lengths. We can easily see few differences in P.Up and P.Down columns
in Consoles 2.18 and 2.19 which has also changed the ordering of associated genes.

If we are concerned with a specific domain for ontology like MF, CC, and BP,
then we can explicitly define it in topGo() to extract the relevant information only.
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Console 2.18 GO enrichment analysis

Console 2.19 Go analysis including gene length information
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Console 2.20 ROAST analysis using human_c2_v5p2.rdata

2.28 ROAST Analysis

Rotation gene set test (ROAST) [31] is another analysis that is commonly used to
investigate whether the majority of genes in our prescribed comparison are DE or
not. ROAST has no concern with the functioning of genes that is what kind of role
they are playing in a certain process. ROAST is useful in the scenarios when all the
genes involved in a specific pathway are available.

In our ROAST analysis, code given in Console 2.20, we have used human C2
gene sets, these sets are formed by assembling information from several pathway
databases including KEGG and Reactome. We have run ROAST method only for
the set of genes involved in MYC pathways.

2.29 CAMERA Test

CAMERA works by fixing a small inter-gene correlation around 0.05 via the
inter.gene.cor argument. We have applied CAMERA on the same human C2 gene
sets used in ROAST analysis and found that the total number of significant gene sets
at FDR < 0.05 is 85 (see Console 2.21).
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Console 2.21 Camera Test using human_c2_v5p2.rdata

Console 2.22 Camera test using human_H_v5p2.rdata

We have run the camera test on another human gene sets human_H_v5p2.rdata
including Hallmark pathways Console 2.22. In this case, only 5 genes are showing
significant behaviour.

2.30 Visualizing Gene Tests

We can visualize the results for any specific gene set using barcodes. For instance, we
can consider the top set HALLMARK_MYC_TARGETS_V1 obtained in CAMERA
test. We have used logFC statistic for comparison between DMSO and DORMANT
states (Console 2.23).

Barcode-plot in Fig. 2.12 clearly shows the down regulation of most of the genes
in comparison involved in HALLMARK_MYC_TARGETS_V1 pathway.
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Console 2.23 Code for bar plot

Fig. 2.12 Barcode plots for genes involved in the pathway HALLMARK_MYC_TARGETS_V1
based on LogFC

2.31 Graph Theory Terminologies

Agraph ornetwork G is a collection of vertices (nodes)V (G) and edges (links)E(G).
Vertices are joined through edges showing a relationship among them; a graph is
shown in Fig. 2.13. If the edges of the graph have directions, then we call it a
directed graph otherwise an undirected graph. A Weighted graph has weights on
the edges, the magnitude of a weight on an edge basically shows the strength of the
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Fig. 2.13 A graph (network)

relationship between the vertices incident to that edge. A graph H of a graph G is
called its subgraph or sub-network if V (H) ⊆ V (G) and E(H) ⊆ E(G) while H is
called an induced subgraph of G if all the edges between the vertices in V (G) from
E(G) are in E(H). The total number of edges incident to a vertex is called degree of
the vertex. Two edges of a graph are called adjacent if they share a common vertex.
A path from a vertex u to a vertex v is a sequence of adjacent edges where u is
incident to the first edge in the sequence while v is incident to the last edge of the
sequence.

An adjacency matrix is a mathematical form of a graph. Each entry of the adja-
cency matrix shows whether we have an edge between two vertices or not. An
adjacency matrix for unweighted graph has only 0 and 1 entries while the weighted
adjacencymatrix contains the weights of the edges. In Table 2.5, an adjacencymatrix
corresponding to the weighted graph given in Fig. 2.13 is shown.

Table 2.5 Adjacency matrix

Vertices v1 v2 v3 v4 v5 v6

v1 0 4 15 0 2 0

v2 4 0 9 0 0 6

v3 15 9 0 14 0 0

v4 0 0 14 0 20 0

v5 2 0 0 20 0 0

v6 0 6 0 0 0 0
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Fig. 2.14 A gene regulatory
network

2.32 Gene Regulatory Network (GRN)

Many biological systems have been studied using networks. There are different types
of networks used in biological processes. These types include protein–protein inter-
action (PPI), co-expression network, transcriptional regulatory network (TRN), gene
regulatory network (GRN). PPI shows a relationship between proteins while co-
expression network tells a connection between genes only. There are also some
factors involved in the functioning of biological processes like TF which regulates
the gene expression a network consisting of this relationship is known as TRN. GRN
is used to show the relation of gene with any factor involved in its regulation either
it is another gene, TF or RNA BP (RNA binding protein). Figure 2.14 shows a gene
regulatory network.

2.33 Inference of Gene Regulatory Networks

Currently, a major challenge confronted by the scientists is the utilization of the
data mixed out by various ‘omics’ technologies like genomics, transcriptomics, etc.
Instead of encircling around an isolated gene or protein, scientists are nowproceeding
further to have a complete view through all stages of study including data assort-
ment, data processing, data analysis, information achievement, hypothesis testing
and consequent experimental design. This provides a new approach towards biology
with dramatic effect on the way that research is implemented. Under the control of
TFs, each gene affects the cellular activity throughmRNA that directs the production
of proteins through a complicated cellular procedure named as ribosome. During this
process several biochemical reactions and molecular processes take place, some of
the proteins synthesized during this process reside again in the nucleus of the cell and
act as TFs to regulate gene activities. This whole scenario might be depicted through
a network which is named as gene regulatory network (GRN). The inference of
gene regulatory networks helps to understand the complex phenomena lying under
different cellular processes by the use of information provided by the biologists. It
helps us to understand the transcriptomic regulation, and the means through which
gene expression profiles could be utilized to investigate the multifarious interactions
among genes and proteins that make a GRN. We can do gene annotations to get
information about genes by using different databases like GO, EC and KEGGwhich
might be further incorporated to find the solution.Moreover, information about a part
of network structure can give an idea to determine different features of the network
like edge betweenness or network topology, to validate the inferred network.



2 Differential Expression Analysis of RNA-Seq Data and Co-expression … 63

2.34 Gene Regulatory Network Modelling

Gene expression profiles are used to construct gene regulatory networks to illus-
trate the phenotypic behaviour of a system under consideration. Initially, a model is
developed showing the system’s behaviour in a specific experimental/environmental
situation to reconstruct a GRN. Further, the model predictions are compared with
the given experimental data to check the performance of the model.

Subject to the reliability of the experimental data, if predicted data with certain
novel conditions doesn’t match the observed data then the model must be revised.
This process is repeated until a reliable model is achieved.

From computational point of view, this whole process is very time consuming
which motivated the researchers to develop another approach known as reverse engi-
neering, it is a paradigm with substantial aptitude towards analysing and inferring
biological networks using experimental facts [32–34]. Without prior knowledge and
repeated trials, it is not possible to regenerate a network until the sufficient data is
accessible to infer a gene regulatory network.

In the case of gene regulatory networks, this practice usually alters the gene
network in some manner and uses computational approaches to capture the topology
of underlying network. Such information can be assimilated into computational
schemes to obtain an accurate model. Several machine learning and correlation-
based methods have been developed to estimate parametric values for a given model
to create a network which is further used to create and evaluate the simulated model
by matching the behaviour of the inferred model with observed data [35–43]. Instead
of using expression profiles directly, we can also incorporate the prior information
deduced from the data set in regeneration of gene regulatory networks (Fig. 2.15).

A major step in reverse engineering problems is to pick a network model that is
most compatible with the observed data under consideration, i.e. we can fit the data

Fig. 2.15 A general framework for reverse engineering approach
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into parameters of network.Many gene regulatorymodels have been proposed which
ranges from very conceptual like Boolean to very realistic like stochastic, subject to
the problem under consideration [44].

2.35 Correlation and Partial Correlation-based Methods

As discussed before mostly the expression data obtained via HT-Sequencing consists
of a high number of genes (n) with a small number of experiments or samples (p).
Classical statisticalmethods usually do not provide accurate results in the case n > p.
To deal with such an issue, researchers have introduced the concept of sparsity in
networks structures [45]. The most common approach used is based on correlation
and partial correlation. Correlation-based methods generally estimate covariance
matrices � and reconstruct co-expressed networks and modules using � [46–48].
Due to the transitive nature of interactions, covariance matrices also include indirect
links which approximates inaccurate networks as the size of the network increases.
On the other hand, partial correlation methods which are based on precision matrices
� = �−1 allow only direct links among the variables. A relation between correlation
and partial correlation methods is estimated in [49] using Neumann series which
might be informative when analysing the performance of correlation and partial
correlation-based approaches. Some of the common methods based on precision
matrices include node-wise regression lasso [50], graphical lasso [51], and adaptive
lasso [52] while thresholded sample covariance [48] and covariance lasso [53] are
the correlation-based approaches consisting of only one parameter. A comparison
between all of these methods is shown in [49].

2.36 Co-expression Networks

Co-expression network analysis is used to describe the relation between gene expres-
sion profiles. This analysis is based on finding the patterns among the genes, more
precisely the groups of genes which are clustered together which are also known as
modules. This analysis also provides the information about interrelated modules.
Co-expression networks are basically the correlation-based networks which are
commonly used to identify the genes significantly involved in the occurrence or pres-
ence of a certain disease or to find therapeutic targets. A basic pipeline to conduct
this analysis on RNA-seq data is provided below.
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2.37 Pre-processing of Data

Pre-processing of the data includes almost all the steps we have done in the RNA-
Seq analysis earlier including log2CPM, removal of low counts genes, normaliza-
tion and identification of differentially expressed genes. The step of identifying the
differentially expressed genes provides more robust and accurate results in further
analysis.

2.38 Construction of Covariance Matrix

To form a covariance matrix, we can set any similarity measure like Euclidean
Distance (ED, Pearson, Spearman or Kendell. A combination of ED and Pearson
correlation measures was introduced by [54] with a source code available at
tutorial/README.md that is defined as follows:

S = sign(cor(X)) ×
|cor(X)| +

(
1 − log(dist(X)+1)

max(log(dist(X)+1))

)

2
, (2.1)

where X is the data matrix, and cor and dist denote the correlation and distance
functions, respectively. The sign function is just storing the sign of the correlation.
The first term in the equation is simply the sign of the correlation function, which
serves to preserve the sign of the interaction. The values closer to −1 are showing
highly negatively correlated genes while a value closer to 1 is showing high similarity
among the genes.

2.39 Measure of Similarity

Unsigned or signed measures are two types of similarity measures which can be
defined for correlation coefficient to approximate an adjacency matrix. Let x1 and x2
denote the expression profiles of two genes G1 and G2 in an expression matrix X ,
respectively, and cor(x1, x2) denotes the coefficient of correlation between x1 and
x2.

The unsigned measure between x1 and x2 is defined as the absolute value of
the correlation between the expression values of gene x1 and gene x2, i.e. s12 =
|cor(x1, x2)|. It transforms all negative correlations into positive.

The signed measure between x1 and x2 is determined as s12 =
0.5(1 + cor(x1, x2)). It is obvious from the definition of signed measure that it will
take values on [0, 1] and two inversely expressed genes with correlation −1 will be
mapped to 0.
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2.40 Network Construction

Similarity,matrix S = [skl]; k, l ∈ {1, 2, . . . , n} consisting of the similaritymeasures
skl for each pair of genes in an expression matrix X is an intermediate quantity
between correlation and adjacency matrices. A hard thresholding with parameter τ

or soft thresholding with parameter β is applied on the similarity measures to obtain
entries of adjacency matrices of the network.

A hard thresholding approximates an unweighted adjacency matrix A =
[akl]; k, l ∈ {1, 2, . . . , n} with the matrix entries akl equals 1 if the corresponding
value skl ≥ τ in S otherwise akl = 0 [48].

A weighted adjacency matrix A = [akl] is estimated by a power transformation,
i.e.akl = sβ

kl for all k, l ∈ {1, 2, . . . , n};β ≥ 1 [55]. On logarithmic scale, weighted
adjacency measures are proportional to their corresponding similarity measures. For
parameter selection, a scale-free topology criterion might be used which suggests
choosing the smallest value of β needed to reach a scale free topology [55].

2.41 Module Detection

A sub-network of a network in whichmost of the nodes are interconnected is referred
to as a module. These modules are usually signified in the form of clusters. Now, the
next step is to detect distinct modules lying in a network. To accomplish this task, we
need to define some measure of interconnectedness in the network. There are quite
a few procedures proposed to assess network connectedness including topological
overlap measure (TOM) [55–58]. TOM is used at a vast level to estimate the network
interconnectedness due to its accurateness. The topological overlap of two genes
is evaluated by examining neighbourhood of those genes; genes lying in the same
neighbourhood are more likely to have high topological overlap.

A TOM of two nodes xk and xl is defined as follows [57]:

tkl =
{

rkl+akl
min{mk ,ml }+1−akl

; k 	= l

1; k = l

}

where rkl = ∑
v 	=k,l akvavl ,mk = ∑

u 	=k aku and A = [akl] is an n × n unweighted
adjacency matrix. Since A is unweighted so the number of common neighbours of
nodes k and l is equal to rkl .

Hierarchical clustering is used to visualize the modules where branches of the
dendogram represent the modules and can be identified by using any branch cutting
method [59].
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2.42 Module Enrichment

Co-expressed modules might be the indication of the existence of certain pathways
or can be the results of some noise. A main objective of co-expressed module is to
explore its significance from biological point of view for which gene ontology infor-
mation can be employed. To do such analysis usually a gene significance measure is
defined to check the importance of the gene in a particular biological process. This
measure mainly specifies pathway membership of a gene and also depends on the
problem under consideration.

2.43 WGCNA Package in R

Peter Langfelder introduced a software package WGCNA in R language [48]
which includes several features to perform a weighted correlation network anal-
ysis. WGCNA has the ability to construct networks, identify co-expressed modules,
simulate and visualize data, and selection of genes.

2.44 Co-expression Network Analysis with Real Dataset

A basic workflow to identify co-expressed modules in a network is shown below
on the same real data used in the RNA-seq analysis previously. In the subsequent
analysis, only DE genes between the samples of Dormant and DMSO induced cell
line HCC4006 are considered. Themain objective is to detect the co-expressed genes
in dormant state of the tumour. To visualize networks, the platform of Cytoscape
is used which is especially designed to visualize complex networks, and is freely
available software and can be downloaded from https://cytoscape.org/.

R Packages used in co-expression network analysis:

(1) ggplot2,
(2) knitr,
(3) reshape2,
(4) WGCNA.

We will start our analysis from the list of DE genes obtained in our previous
RNA-seq analysis by focusing on the highly ranked genes based on P − values. We
have set a cutoff for P − values see Console 2.25. We are left with only 398 genes
for further analysis; this P − values cutoff is defined just for tutorial purpose.

Next we will obtain a similarity matrix Console 2.25 by defining similarity
measure as a combination of Pearson correlation and Euclidean distance as given in
Eq. (2.1).

Let’s have a look at the similarity matrix Fig. 2.16 by using heatmap.2() function
as in Console 2.26.

https://cytoscape.org/
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Console 2.24 P-value thresholding

Console 2.25 Similarity matrix

Console 2.26 Heatmap code for similarity matrix

Firstly, we will shift the signed measures from [−1, 1] to [0, 1] by using signed
type and then we will transform the shifted measures by using power transformation
(Console 2.27).

Now let’s have a look at the heatmap of adjacency matrix Fig. 2.17. We can see
that the major region of the plot is red which is giving an idea about the good sparsity
of the network. This is our required co-expression network.

We can further analyse this network by detecting different modules. We will use
hclust() function (Console 2.29) to detect modules in our network. A gene clustering
dendogram is shown in Fig. 2.18.

We can write the graph into ‘graphml’ format using ‘igraph’ package, for more
detail how to convert a graph into some other format see the following link: https://
cneurocvs.rmki.kfki.hu/igraph/doc/R/write.graph.html.

We further import this file into Cytoscape to visualize the network. We firstly
filtered the genes by setting the option Degree in + out is not between 0 and 1
inclusive. We have used the attribute circle layout with module and degree.layout
options. Both networks are presented in Figs. 2.19 and 2.20. There are several other

https://cneurocvs.rmki.kfki.hu/igraph/doc/R/write.graph.html
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Fig. 2.16 Similarity matrix visualization

Console 2.27 Adjacency matrix code

Console 2.28 Adjacency matrix heatmap code
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Console 2.29 Gene dendogram code

Fig. 2.17 Visualization of adjacency matrix

functions available in Cytoscape which might be used for further analysis. To have a
complete look at Cytoscape features see the tutorials available at Cytoscape website
https://cytoscape.org/.

https://cytoscape.org/
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Fig. 2.18 Gene clustering dendogram

2.45 Concluding Remarks

This chapter explains the basic steps needed for an RNA-seq and co-expression
network analyses. Real data of lung cancer cell lines have been selected for illustra-
tion purpose which is downloaded from GEO database. Our data contains 3 types
of cell lines PC-9, HCC827 and HCC4006 along with two distinct biological condi-
tions DMSO induced cancer lines and the DORMANT state of cancer. We have
used GO analysis, CAMERA test and roast test for gene enrichment analysis. The
co-expression network analysis has been conducted on the same genes found differ-
entially expressed during RNA-seq analysis. Co-expression network analysis helped
us to find the subsets of genes which are densely connected which might be the indi-
cation of their similar functioning. This chapter also briefly describes the concepts
of normalization, biological and technical variations found in gene expression data,
principal component analysis and generalized linear models. A description of gene
regulatory networks inference is also provided in the chapter.



72 S. Javed

Fig. 2.19 Circle layout with module preference
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Fig. 2.20 Circle layout with degree.layout
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Chapter 3
Learning Biomedical Networks: Toward
Data-Informed Clinical Decision and
Therapy

Marta B. Lopes and Susana Vinga

Abstract Precision medicine has emerged to tailor clinical decisions based on
patient genetic features in a personalized healthcare perspective. The ultimate
goal is to drive disease diagnosis and treatment selection based on the patient
molecular profiles, usually given by large volumes of data, which is intrinsically
high-dimensional, heterogeneous, noisy, and incomplete. Along with the notable
improvement of experimental technologies, statistical learning has accompanied the
associated challenges by the significant development of novel methods and algo-
rithms. In particular, network-based learning is providing promising results toward
more personalized medicine. This short survey will describe three main intercon-
nected trends identified to address these challenges and all with a firm root in network
science: differential network analysis, network-based regularization, and causal dis-
covery and inference. An overview of the main applications is provided, along with
available software. Biomedical networks support more informed and interpretable
statistical learning models from patients’ data, thus improving clinical decisions and
supporting therapy optimization.

3.1 Biological Data and the Rise of Targeted Therapies

Precision medicine integrates clinical and molecular data (e.g., genetic aberrations
and gene expression) to deciphering disease mechanisms and improve clinical deci-
sions and patient outcomes. The ultimate goal is to drive disease diagnosis and treat-
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ment selection based on the patient molecular profiles, such as genetic aberrations
and gene expression.

As the sequencing technologies rapidly evolve, massive amounts of information
per patient from multiple molecular layers by diverse omic assays are generated,
which is expected to provide comprehensive insights into cellular behavior. This
growth in data brings, however, many challenges to be tackled for effective knowl-
edge discovery. Indeed, the data is usually high-dimensional, with often the number
of features, such as the whole transcriptome, being much larger than the number of
available observations (e.g., patients), which hampers the unequivocal identification
of a model. The data usually comes from different sources and is intrinsically het-
erogeneous, which also calls for novel methods that can cope with a mix of different
data types (nominal, ordinal, interval) and characteristics (static, temporal). Missing
data and noise also pose interesting questions regarding model estimation, adding
further obstacles to inferring accurate models.

Great international efforts have been put forth to the construction of biologi-
cal databases to support network analysis. These comprise, e.g., genome/proteome
projects, pathway annotation, and protein-protein interaction (PPI) libraries. For a
non-exhaustive review of available databases, see Table 3.1 and Refs. [1–3].

Alongside the remarkable explosion of molecular data and challenges, there is,
therefore, a continuous demand for the development of statistical and machine learn-
ingmethods able to translate the great amounts of data into clinical-oriented and ther-
apeutical targetable mechanisms, ultimately contributing to a proactive, preventive,
and cost-effective healthcare. For example, major cancer centers worldwide are now
offering Next Generation Sequencing (NGS)-based personalized oncology for clin-
ical practice, e.g., via institutional molecular tumor boards, built upon the molecular
profiling of genetic aberrations of tumors and potential matching treatments [4].

Network learning is becoming crucial to address the described challenges. Many
biological processes and phenomena can indeed be represented via networks (gene
regulatory, metabolic, protein-protein interaction); therefore, it not surprising that the
incorporation of network science in the learning process is now the state-of-the-art
procedure toward more interpretable models and better decision-making.

Among many recent endeavors in network learning, the present short survey
focuses on three specific topics: (1) differential networks, (2) network-based reg-
ularization, and (3) causal inference. This overall learning process is illustrated in
Fig. 3.1.

3.2 Network Analysis in Biomedical Informatics

The major goal of network discovery in molecular data is to estimate associations
and the cascade effect of DNA variants on downstream phenotypes and potentially
identify therapeutic targets across multilayered molecular data.

Identifying association and causality in complex disease phenotypes plays a cru-
cial role in effective healthcare management. Network reconstruction has assumed
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Table 3.1 Biological databases. Databases with information regarding the Genome/Proteome, for
Pathway Analysis, and Protein-Protein (PPI) networks

Databases Link

Genome/Proteome

The Cancer Genome Atlas (TCGA) https://portal.gdc.cancer.gov

International Cancer Genome Consortium https://dcc.icgc.org

Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo

European Genome-phenome Archive
repository (EGA)

https://www.ebi.ac.uk/ega

Clinical Proteomic Tumor Analysis
Consortium (CPTAC)

https://proteomics.cancer.gov/programs/cptac

Genotype-Tissue Expression (GTEx) https://gtexportal.org

ArrayExpress https://www.ebi.ac.uk/arrayexpress

Sequence Read Archive (SRA) https://www.ncbi.nlm.nih.gov/sra

Pathway Analysis

g:Profiler http://biit.cs.ut.ee/gprofiler/gost

Gene Set Enrichment Analysis (GSEA) https://www.gsea-msigdb.org/gsea/

Cytoscape http://apps.cytoscape.org/

Kyoto Encyclopedia of Genes and Genomes
(KEGG)

http://www.genome.jp/kegg

Reactome https://reactome.org

BioCarta http://www.biocarta.com

BioCyc https://biocyc.org

VisANT http://www.visantnet.org

GeneAnalytics https://geneanalytics.genecards.org

FunRich http://www.funrich.org/

Pathway Commons https://www.pathwaycommons.org

PPI-Networks

BioGrid https://thebiogrid.org

IntAct https://www.ebi.ac.uk/intact

STRING https://string-db.org

MINT https://mint.bio.uniroma2.it

HPRD http://www.hprd.org

a pivotal role in biomedical sciences. An immediate goal is to identify gene sub-
networks involved in the disease process and improve model performance to pre-
dict future outcomes. However, the increasingly available multilayered omics data
on large populations comes at the cost of high dimensionality, measurement error,
missing data, and multiple platform integration, which represent great challenges
when recovering the network structure underlying the biological process.

Disease-specific gene biomarkers are crucial molecular tools in disease manage-
ment that allow understanding the molecular pathogenesis, disease stratification and

https://portal.gdc.cancer.gov
https://dcc.icgc.org
https://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/ega
https://proteomics.cancer.gov/programs/cptac
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https://www.ebi.ac.uk/arrayexpress
https://www.ncbi.nlm.nih.gov/sra
http://biit.cs.ut.ee/gprofiler/gost
https://www.gsea-msigdb.org/gsea/
http://apps.cytoscape.org/
http://www.genome.jp/kegg
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http://www.biocarta.com
https://biocyc.org
http://www.visantnet.org
https://geneanalytics.genecards.org
http://www.funrich.org/
https://www.pathwaycommons.org
https://thebiogrid.org
https://www.ebi.ac.uk/intact
https://string-db.org
https://mint.bio.uniroma2.it
http://www.hprd.org
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Fig. 3.1 Overview of the network learning process in precision medicine. From molecular data to
decision-making, using network learning

monitoring, and therapeutic response. Although disclosing single-gene biomarkers
remains clinically useful, network biomarkers are gaining attention as genes interact
in a network to carry a function and define complex phenotypes. Besides allowing
for an increased understanding of cellular mechanisms, such information is expected
to improve estimation and inference. It is noteworthy that, in precision oncology,
cancer-driven aberrations often target genes in the same pathways [5], which further
strengthens the application of network-based learning for analyzing cancer data and
for obtaining interpretable models.

3.2.1 Differential Network Analysis

Molecular aberrations across multiple genes and pathways are in the genesis of can-
cer development and progression [6]. Identifying differentially expressed genes in
two groups (e.g., patients of different disease types and states, cell types, treatment
response) is a common and essential task in cancer genomics. However, traditional
methods for differential analysis focus on individual genes, disregarding the cooper-
ation between genes in biological systems. Therefore, a shift from differential gene
expression to a differential network is of paramount importance to identify dysfunc-
tional regulatory networks in disease states [7]. Examples of contributions in this
field are the Two-Dimensional Graphical lasso (TDJGL) [8], Integrated Differential
Expression and Differential Network Analysis (INDEED) [9], Differential Network
Analysis in Genomics (DINGO, iDINGO) [6, 10], and Differential Gene Regulatory
Network (DiffGRN) [11], all based on network regularization (see next section),
with applications in asthma and cancer domains.
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3.2.2 Network-Based Regularization

Patientomics data comprise thousands of variables, largely outnumbering the number
of samples, which calls for the need to find low-dimensional data explanations.
Regularized optimization is a state-of-the-art strategy to promote the selection of
a subset of relevant features while learning the model (sparsity) or to include a
priori knowledge via constraints [12]. In this regard, the Least Absolute Shrinkage
and Selection Operator (lasso) [13] and the Elastic Net (EN) [14] are among the
most widely used regularizers for feature selection in high-dimensional and highly
correlated data.

Beyond methods that penalize combinations of �p-norms, there is a growing
interest in regularizers that impose more sophisticated constraints and structure to
the obtained solutions. For example, it is possible to induce grouping formation,
such as group lasso [15] and fused lasso [16, 17], to name a few. More recently,
network-based regularizers have provided additional insight for structured models
complying with many different assumptions (see [18] for a review).

Formally, a network is represented by a weighted graph G = (V, E,W ), where
V is the set of the p vertices or nodes, (i, j) ∈ E is an element of the edge set
E ⊆ V × V , and W = (wi j ) are the weights associated with each edge.

Gene networks can be represented by graphs, in which vertices are genes, and
edges represent a weighted relation between genes. A primary option for network
analysis concerns identifying aberrant subnetworks derived from cancer processes
and predictive of disease phenotypes. This can be achieved through graphical mod-
els. The graph Laplacian [19] and graphical lasso [20] are popular network-based
regularizers.

Li and Li (2008) [21] introduced a network-constrained penalty function that
penalizes the �1-norm (lasso) of the coefficients while encouraging the smoothness
of the coefficients on the network through a graph Laplacian constraint (Eq. (3.1)):

F(β) = λ1 ‖β‖1 + λ2β
TLβ

= λ1

p∑

i=1

|βi | + λ2

∑

(i, j)∈E
wi j

(
βi√
di

− β j√
d j

)2

, (3.1)

where L = {li j } is the symmetric normalized Laplacian matrix defined by

li j =

⎧
⎪⎨

⎪⎩

1 − wi j

di
, if i = j and di �= 0,

− wi j√
di d j

, if (i, j) ∈ E,

0, otherwise,

(3.2)

and di represents the degree of each node

di =
∑

j :(i, j)∈E
wi j . (3.3)
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Themethodwas successful in the identification of subnetworks based on glioblas-
toma microarray gene-expression data, related to survival in this cancer.

In the survival analysis domain, Zhang et al. (2013) [22] proposed a network-based
Cox proportional hazard model, Net-Cox, in which a graph Laplacian constraint is
introduced as a smoothness requirement on the gene network. It is noteworthy that
the graph Laplacian was also used in logistic and Support Vector Machines (SVM),
illustrating its broad applicability ([5] and references therein).

Graphical lasso has been introduced by Friedman and co-authors (2008) [20] to
estimate sparse graphs by a lasso penalty applied to the inverse covariance matrix in
simulated and cell-signaling proteomics scenarios, thus allowing the estimation of
partial correlation networks.

Danaher and co-authors (2014) [23] proposed the joint graphical lasso (JGL) as
an extension to graphical lasso, to estimate graphical models in high-dimensional
data, with observations belonging to different classes, to overcome the assumption
of all samples drawn from the same distribution. JGL employs a fast ADMM algo-
rithm with generalized fused lasso or group lasso penalties. The method enables
the identification of shared edges between networks (classes) and edges present in
single networks. The suitability of the method for high-dimensional scenarios was
demonstrated for a lung cancer microarray dataset accounting for∼18, 000 features.

To take advantage of the increasing availability of patients’ data from multi-
ple platforms of high-throughput technologies, Zhang and co-authors [8] proposed
a two-dimensional joint graphical lasso (TDJGL) model to simultaneously infer
group-specific gene dependency networks from gene expression data collected from
different platforms. The performance of TDJGL was shown in the identification of
differential networks associated with platinum response in ovarian cancer.

Also aiming at integrating multiple types of molecular (omic) data toward
biomarker discovery, a modularity-constrained lasso model has been presented to
analyze Alzheimer’s disease data generated by multi-omic platforms jointly (e.g.,
genotype, gene expression, and protein expression) [24]. The penalty term maxi-
mizes the global modularity of the subnetwork of selected markers and encourages
the selection of trans-omic markers with dense functional connectivity.

When the goal is to build a predictive model, the state-of-the-art modeling direc-
tion is to incorporate prior graph-based knowledge on the gene features via model
constraints and drive parameter estimation toward explainable biological solutions.
Network-based model regularization has been proposed to such an end. Prior infor-
mation comes, e.g., from node centrality measures obtained from external avail-
able biological networks. Another option is to consider node association measures
given by the correlation/covariance network structure of the input data, such as in
DegreeCox [25], twiner [26, 27], and TCox [28], as shown in the development
of survival and classification models based on bulk and single-cell RNA-sequencing
data from cancer patients. In a recent work extending lasso and EN in the presence
of highly correlated variables, a graph corresponding to the covariance structure of
the covariates was used to regularize regression weights to promote alignment with
the covariance structure [29].
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3.2.3 Causal Discovery and Inference

Causal inference has been a century-old quest, whose progress has an indisputable
impact in biomedical informatics [30]. Philosophers and scientists have long been
debating how to identify causal relationships betweenvariables and events beyond the
highly controlled setting given by randomized controlled trials. In medicine, with
the increase of available observational data, e.g., from Electronic Health Records
(EHR), it has become crucial to profit from this wealth of information to identify
possible causal factors that affect target variables and outcomes.

The continuous improvement, greater availability, and decreasing cost of molecu-
lar profiling opened new avenues for the discovery of disease mechanisms via causal
inference, beyond association analysis [31, 32]. Understanding the causal relation-
ships in a disease process is an actively growing research front. With the recent
technological and computational advances, it became now possible to infer causality
in biological processes from observational data, besides data obtained from random-
ized controlled trials, used in causal inference traditional approaches, often difficult
to implement due, e.g., to costs, sample size, and ethical issues. In this short sur-
vey, causal inference methods, their characteristics, and applications across several
biomedical domains are covered.

Pioneering work in causal discovery is rooted in Bayesian Network (BN) the-
ory [33], in which a BN takes the form of a directed acyclic graph (DAG) together
with a collection of conditional probability tables. The rationale of this approach is
to factorize a joint probability distribution by using only one vertex parent.

The last years assisted in significant growth of research in causal inference algo-
rithms. Depending on the type of method, they can be generally classified into
constraint-based or score-based; some methods can also accept hidden or latent
variables or confounders, and others take into account inherent causal models. For
comprehensive reviews on causal discovery algorithms and the challenges posed in
the causal and sampling processes to generate the observed data, readers may refer
to, e.g., [30, 32, 34]. The following sections will briefly overview recent algorithms
and corresponding applications to the biomedical area.

3.2.3.1 Constraint-Based Methods

Constraint-based methods use (conditional) independence tests to evaluate the exis-
tence of edges between each pair of variables [35]. They first learn an undirected
skeleton using repeated conditional independent tests and then assign edge directions
by solving directional constraints on this structure.

One of the first methods proposed was the PC algorithm [36], which infers a DAG
from observational data (in the absence of hidden variables or latent confounders).
Some variants such as the PC-simple [37] and PC-stable [38] were also developed
which are computationally feasible even for a high number of variables.
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TheFCI algorithm [36, 39] is another constraint-basedmethod but that nowallows
latent variables. It has already been applied to microarray data [40], along with its
variant FCI+ [41]. Its polynomial version for sparse graphs, RFCI [42], also accounts
for hidden and selection variables.

3.2.3.2 Score-Based Methods

Score-based methods use a score to measure the goodness-of-fit of different graphs,
and use a search procedure to find the best one [35].

The Greedy Equivalent Search (GES) algorithm [43] uses a score-equivalent and
decomposable score, such as the Bayesian information criterion (BIC) score, and
greedily searches the space of DAGs, by sequentially adding edges that maximize
the score. The Greedy Interventional Equivalence Search (GIES) algorithm [44] is
a generalization of GES to the case where a mix of observational and interventional
data is available. An exact version that uses dynamic programming was also formu-
lated [45] and implemented in the package pcalg (see Table 3.2 for more details).

3.2.3.3 Hybrid Methods

The combination of constraint-based and score-based methods gave rise to hybrid
methods. For example, the Greedy Fast Causal Inference (GFCI) [46] uses a com-
bination of GES and FCI, where GES is applied to find a graph skeleton, and FCI
is used as a post-processor for GES to remove the extra adjacencies, and correct the
orientations in the output of GES.

The Sparsest Permutation (SP) algorithm [47] also uses conditional independence
but then ranks the DAGs based on the number of edges, under a sparsity assumption.

The Greedy Sparsest Permutation (GSP), the greedy version of SP [48], performs
a search over orderings of the genes to find the sparsest causal network that best
fits the data, and it has been successfully applied to single-cell gene expression data
before [49]. GSP [48] was recently incorporated in a computational platform to
identify druggable protein targets SARS-CoV-2, integrating multiple available data
modalities, e.g., transcriptomic, proteomic, and structural, with a principled causal
framework [49]. Inferring causal networks is a valuable tool for drug repositioning
in precision medicine to reduce the high costs associated with developing new drugs,
by using existing drugs on novel targets in drug-target networks. GSP’s performance
was compared against PC [36] and GES [43].

Squires et al. (2020) introduced the Unknown-Target IGSP (UT-IGSP), an inter-
ventional adaptation of the Greedy Sparsest Permutation (GSP) algorithm [48],
based on a new scoring function making use of the interventional data without
requiring knowledge of the intervention targets. This method is implemented in
the causaldag package [50]. Bernstein et al. (2020) proposed the sparsest poset
(SPo), a hybrid method for causal structure discovery in the presence of latent con-
founders that uses both a scoring criterion and conditional independence testing to
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learn the model [51]. The authors also introduced a greedy search over the space of
posets, Greedy Sparsest Poset (GSPo).

3.2.3.4 Covariate Adjustment Methods

The intervention calculuswhen theDAG is absent (IDA)method [52] predicts bounds
for causal effects from observational data alone and without hidden variables. IDA
has been used to estimate causal effects of microRNA onRNA expression of genes in
cancer cell lines from epithelial-to-mesenchymal transition (EMT) datasets [53], and
also to predict single gene deletions in Saccharomyces cerevisiae, by using whole-
genome expression profiles (observational data) together with a collection ofmutants
information (interventional data) [54]. Notably, PC and IDA algorithms were also
applied to TCGA metastatic melanoma data [55].

The Joint-IDA [56] algorithm, a generalization of the IDAmethod to estimate the
effect ofmultiple simultaneous interventions, e.g., multiple gene knockouts, was also
applied successfully in reverse engineering of gene regulatory networks associated
with the DREAM4 In Silico Network Challenge.

Causal Stability Ranking (CStaR) [57] combines the IDA algorithmwith stability
selection [58], and was applied to study Arabidopsis thaliana flowering time, and
also to analyze Saccharomyces cerevisiae gene expression datasets.

3.2.3.5 Difference Causal Inference

Another direction in causal inference methods has been the disclosure of the dif-
ferences between different estimated graphs. Under this topic, Belyaeva et al.
(2020) [59] devised the Difference Causal Inference (DCI) method to address the
challenge of efficiently estimating differences in gene regulatory networks (i.e., edges
that appeared, disappeared, and changed weight) in different conditions (e.g., disease
states and cell types), without the need for estimating each individual graph sepa-
rately. The algorithm performance was demonstrated on bulk and single-cell gene
expression datasets.

3.2.3.6 Structural Equation Models (SEM)

In Structural Equation Models (SEM) or Functional Causal Models (FCM), the
value of each variable is a function of its direct causes and the unmeasured dis-
turbances [34]). Some examples include the Linear non-Gaussian acyclic model
(LiNGAM) [60], the nonlinear additive noise (ANM) models [61], and the post-
nonlinear (PNL) causal model [62].

Invariant Causal Prediction (ICP) and hiddenICP (allowing for hidden variables)
methods [58, 63] are based on SEM and an invariance principle, and are able to deal
with data from both observational and perturbation settings, with no need to specify
the nature of an experimental setting.
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3.2.3.7 Mendelian Randomization

PrincipleMendelianRandomization-basedmethods adopt thePrinciple ofMendelian
Randomization (PMR), under which the genotype only affects the disease status
indirectly and is assigned randomly (given the parents’ genes) at meiosis, indepen-
dently of the possible confounding factors [64]. Badsha et al. (2019) [65] intro-
duced the MRPC, which combines the PMR and machine learning, by incorporating
the PMR into PC algorithms. MRPC was developed to learn causal networks from
genotype and molecular phenotype data. Its performance was evaluated for Lym-
phoblastoid Cell Lines (LCLs). The suitability of MR and other methods (e.g., SEM
and Bayesian Networks) for causal inference in genome-wide association studies
(GWAS) in multi-omic settings has been investigated by GAW20 Causal Modeling
Working Group [66].

3.2.3.8 Causality in Time Series

The problem of estimating causal processes can also be formulated in the time series
domain. Many biomedical problems can be described by multivariate time series
data, e.g., RNA expression series in patients followed for a period of time.

Inferring temporal relationships has been approached via Dynamic Bayesian Net-
works (DBN) [67], by extending BNs to account for temporal information. DBNs
have been applied in the identification of gene regulatory networks from time-course
microarray data [68].

Gong et al. (2015, 2017) [69, 70] addressed the challenge of estimating tem-
poral causal relationships when the data sampling frequency differs from the true
causal frequency or data are temporarily aggregated, to overcome limitations of
Granger Causality [71, 72] methods, which usually assume that the sampling fre-
quencymatches the true frequency of the underlying causal process, and are therefore
sensitive to subsampling or temporal aggregation. The authors show that under cer-
tain mild conditions on the structure of the causal relations where the noise terms
are non-Gaussian, the causal relations are identifiable [70].

To overcome the limitation of Granger Causality methods with the increased
dimension in the variable space compared to the sample size, variable selection has
been integrated into Granger Causality models, e.g., a truncating lasso penalty for the
estimation of graphical Granger models [73], with the resulting estimate providing
information on the time lag between the activation of transcription factors and their
effects on regulated genes. Another example is the group lasso graphical Granger
model [74], which applies a regression method suited for high-dimensional data
by taking advantage of the group structure among the lagged temporal variables
according to the specific time series they belong to. The effectiveness of this novel
methodology is shown for gene regulatory networks from human cancer cell cycle
data.
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Yang et al. (2017) [75] developed a framework for nonlinear causal network
reconstruction from time series with limited observations. The authors designed the
group lasso nonlinear conditional Granger causality (GLasso-NCGC), a method to
handle nonlinearity and directionality of complex networked systems. The method
was applied to gene regulatory benchmark datasets of the DREAM3 Challenge4.

3.2.3.9 Challenges in Causal Inference and Discovery

Causal Discovery in the presence of measurement error. Saeed et al. (2020) [76]
addressed the problem of learning a causal graph in the presence of measurement
error, a common problem in genomics, with errors in gene expression arriving from
the measurement process, as is the case of the dropout phenomenon in single-cell
RNA sequencing experiments. The authors developed a procedure for estimating the
causal structure in a linear Gaussian structural equation model under the Anchored
Causal Model, where each corrupted observed variable is generated from a latent
uncorrupted variable. The method was applied to single-cell gene expression data
collected from human pancreatic and bone marrow-derived dendritic cells. Also,
work by Zhang et al. (2017) [77] concerned with the identifiability conditions for
the measurement-error free causal given contaminated observations, for which the
causal model is partially or even fully identifiable.

CausalDiscovery in the presence ofmissing data.Missing data are common across
many biomedical and healthcare datasets, which are generated, e.g., by anomalies
in data acquisition due to technical issues or deficient data collection. Missing data
entries might compromise (conditional) independence relations in the complete data
generated by the underlying causal process, leading to unreliable conclusions drawn
by available causal discovery methods. Tu and co-authors (2019) [78] have recently
proposed Missing Value PC (MVPC), an extension to the PC algorithm to recover
the underlying causal structure from observed data that are missing under different
mechanisms by incorporating additional corrections on erroneous edges. TheMVPC
methodwas applied to understand the causal rations in theUSCognition dataset [79],
and among various factors and healing outcomes in Achilles Tendon Rupture (ATR)
data [80, 81].

3.3 Software and Biomedical Applications

The development of novel algorithms has been accompanied by the implementation
of the methods in several software packages, such as in R. Table 3.2 lists some of the
most common software described in this survey. Although not exhaustive, it provides
references and examples of freely available code that will facilitate future work.
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Table 3.2 Overview of software packages for network-based biomedical data analysis
Software Observations Ref.

Differential network analysis

DINGO/iDINGO Differential network analysis in genomics [6, 10]

INDEED Integrated differential expression and differential
network analysis

[9]

Network-based learning and visualization

glmSparseNet Network centrality metrics for elastic-net
regularized models

[82, 83]

glmnet Lasso and elastic-net regularized generalized linear
models

[84]

JGL Joint graphical lasso [23]

glasso Estimation of Gaussian graphical models [85]

bootnet Bootstrap methods for various network estimation
routines

[86]

grangerTlasso Truncating lasso for graphical Granger models [73]

NetworkComparisonTest Statistical comparison of two networks based on
invariance measures

[87]

qgraph Network visualizations of relationships in
psychometric data

[88]

igraph The igraph software package for complex network
research

[89]

Cytoscape Network data integration, analysis, and
visualization in a box

[90]

NAViGaTOR Network analysis, visualization, and graphing
TORonto

[91]

MONGKIE Integrated network analysis and visualization
platform for multi-omics

[92]

GliomaDB Webserver for integrating glioma omics data and
interactive analysis

[93]

Rgraphviz Provide plotting capabilities for R graph objects [94]

Gephi An open-source software for exploring and
manipulating networks

[95]

Causal inference

InvariantCausalPrediction Invariant causal prediction [63]

nonlinearICP Invariant causal prediction for nonlinear models [96]

seqICP Sequential invariant causal prediction (for
sequential data)

[63, 97]

causalDAG Creation, manipulation, and learning of causal
DAGs

[59]

MendelianRandomization Mendelian randomization package [98]

MRPC PC algorithm with the principle of Mendelian
randomization

[65]

pcalg Methods for graphical models and causal inference [44, 99]

ParallelPC Parallelized constraint-based causal discovery
algorithms

[100]

bnlearn Bayesian network learning and inference [101]

The Tetrad project CCD causal software [102]
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3.4 Conclusions and Future Work

Describing complex biological interactions is crucial to understand cell functions
and disease. Network-based modeling has been pointed as a core technique to model
omics data. The review has three pillars, identified as the main aspects of network-
based learning. The first is related to the identification of differentially expressed
genes using the inherent pathway or gene network structure. The second is related to
regularized optimization using the graph of the studied features. Finally, the growing
field of causal inference and discovery, with several associated challenges.

Besides overviewing these three main topics in network-based learning for
biomedical data, this survey has identified a collection of software packages that
support these research topics, along with biological databases that provide key infor-
mation for network-statistical learning. Precision medicine is expected to signifi-
cantly benefit from these new methods and algorithms, with an undoubtful impact
on clinical decision-making in the future.
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Chapter 4
Simultaneous Clustering of Multiple
Gene Expression Datasets for Pattern
Discovery

Basel Abu-Jamous and Asoke K. Nandi

Background Healthy cells run sophisticated genetic programmes in order to carry
out their various biological processes such as cellular growth, cell division, stress
response, and metabolism. The regulation of these genetic programmes is realised
at different levels by controlling the production of the required types of large
biomolecules such as RNAs, proteins, glycans, and lipids, with different amounts,
at different times, and in different sub-cellular locations. Although all cells in an
organism, such as skin cells, liver cells, bone cells, and neurons nominally have the
same genomic material, they differ in shape and function because of the differences
in the genetic programmes that they run.

A better understanding of genetic programmes has the potential not only to improve
our biological knowledge but can also lead to breakthroughs in various applications.
For instance, understanding how cancerous cells deviate from nearby healthy cells
in their genetic programmes can help in discovering malignancy biomarkers and
identifying potential drug targets [10, 59, 65]. Beyond human health, understanding
the genetics regulating themolecularmechanisms in trees and cropsmayhelp develop
the next generation of plants that are more productive, more efficient in resource
usage, and more resilient to environmental stress [27, 36]. Furthermore, the genetic
engineering of the molecular pathways in some microorganisms may render them
industrial factories of the future that will produce widely used chemical compounds
[39].

As science has entered the era of data-driven discoveries, plenty of technologies
are being developed to capture different views of cells and tissues. Amongst the most
widely used are those that quantify the expression levels of genes in cells, namely
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the older RNA microarray technology and the more recent RNA next-generation
sequencing (NGS) technology. Millions of samples linked to hundreds of thousands
of gene expression datasets have become available in public repositories and in
private laboratories taken from a plethora of biological conditions and a large variety
of species. Publicly available repositories of gene expression data include the Gene
Expression Omnibus (GEO) [30] and ArrayExpress [9].

In many cases, a dataset is generated by a research laboratory to address a specific
research question and is analysed accordingly. However, this approach does not
usually utilise the full capacity of that dataset, and therefore it is made available
in a public repository for other researchers to exploit. Consequently, within a given
biological context (e.g., a disease), many datasets have been generated from different
laboratories, in different years, using different technologies, and with different spec-
ifications. Thus, not only is each one of these datasets likely to be underexploited
but also the synergetic value from the exploration of these datasets collectively has
been missed.

With this mine of valuable data available, the challenge is to develop and apply
a new generation of computational methods that have the ability to explore multiple
gene expression datasets simultaneously in order to arrive at discoveries that would
not have been otherwise feasible. This ambition requires overcoming a number of
challenges including dealing with heterogeneous datasets that have different struc-
tures and dissimilar numerical features as well as the correct consideration of the
biological semantics of these different datasets, their relation to the research ques-
tion being addressed, and the assumptions made by the designed algorithm [2].
Several methods have already been designed with this aim, such as the binarisation
of consensus partition matrices (Bi-CoPaM) [6, 7], clust [5], and cluster of clus-
ters (COCA) [17]. Nonetheless, further algorithmic developments are expected to
emerge to expand the types of datasets simultaneously analysed and the quality and
relevance of the results obtained by the application of these algorithms.

In this chapter, we review the state-of-the-art methods in the context of simulta-
neous analysis of multiple gene expression datasets and then we present three case
studies that demonstrate the potential of this approach in a microorganism, namely
budding yeast, in humans, and in rotifer animals.

4.1 Simultaneous Clustering Methods

Clustering methods, or generally machine learning methods, that are designed to
analysemultiple datasets simultaneously can be ascribed to one of three broad classes
based on the stage at which integration takes place, namely early, intermediate, and
late integration. A list of some clustering methods is shown in Table 4.1.

Early integration approaches first concatenate individual datasets to form a single
dataset with a higher feature space. Later clustering is applied to the concatenated
dataset using traditional methods such as k-means [54], hierarchical clustering [31],
and self-organising maps (SOMs) [42], or some of the more modern single-dataset



4 Simultaneous Clustering of Multiple Gene Expression Datasets … 95

Table 4.1 Clustering methods

Method Complete/Partial Earlya/Intermediate/Late
integration

References

k-means Complete Early [54]

Hierarchical clustering (HC) Complete Early [31]

Markov clustering (MCL) Partial Early [34]

WGCNA Partial Early [48]

Cluster of clusters (COCA) Complete Late [74]

Bi-CoPaM Partial Late [6]

UNCLES Partial Late [4]

Cross clustering (CC) Partial Early [73]

Clust Partial Late [5]

aEarly integration methods are in reality methods that were not designed to perform integrative
clustering; rather theywere designed to performclustering on a single dataset. Thus, early integration
refers to the application of such methods to a single dataset compiled by the direct concatenation
of the individual datasets involved

clustering methods such as weighted correlation network analysis (WGCNA) [48]
and Markov clustering [34]. Although this approach may seem intuitive, it requires
homogeneity across datasets for a valid concatenation. Standardisation may be
applied to raw datasets to enable early integration. However, if there was a substantial
imbalance across the datasets in their statistical distributions, dimensions of feature
spaces, or sparsity, early integration approaches become invalid.

Intermediate integration approaches treat different datasets as different views
of the clusters to be produced from the data. Therefore, datasets with heteroge-
neous feature spaces are transformed into a homogeneous feature space before being
concatenated to form a single dataset. Then, clustering is applied to that single
concatenated dataset. Although these approaches allow for the integration of hetero-
geneous datasets, the feature-space transformation step reduces the interpretability
of the produced clusters in the context of their original features.

Late integration approaches apply clustering to each dataset independently before
integrating these individual results into a single consensus result. This allows for the
simultaneous analysis of multiple heterogeneous datasets without requiring their
feature spaces to be converted to a homogeneous feature space, as the latter is not
always trivial or even feasible. Examples of late integration methods include Bi-
CoPaM [6], clust [5], and COCA [17, 74].

Clustering methods can be further classified into complete, fuzzy, and partial
methods. This classification applies to clustering methods that are applicable to a
single dataset or to multiple datasets. Complete clustering methods are those that
partition the entire set of input genes into clusters where every gene is assigned to
one and only one cluster. On the other hand, fuzzy clustering assigns each gene to
each cluster with a fuzzy membership value ranging from zero to unity, where the
membership values of a given gene in all clusters must sum up to unity. As for partial
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clustering methods, they do not force every input gene to be included in one of the
clusters; they rather allow some genes to be unassigned to any of the clusters. We
can also refer to complete clustering as data partitioning and to partial clustering as
cluster extraction.

Partial clustering has been increasingly gaining importance in gene expression
clustering because it meets the biological expectation that many genes would be
irrelevant to the context of the dataset(s) being analysed or at least will not form
groups of co-regulated genes, and therefore should not be included in clusters. Exam-
ples of partial clustering methods include, in addition to Bi-CoPaM and clust, Cross
Clustering [73], Markov Clustering [34], and WGCNA [48].

4.1.1 Cluster of Clusters (COCA)

TheCOCAalgorithmwas first proposed as part of a comprehensive analysis of breast
cancer data from the TCGA dataset by the Cancer Genome Atlas Network [74], and
then became a popular tool in multi-dataset cancer analysis [17]. This method has
been applied tomultiple gene expression datasets as well as to datasets from different
omic types.

Given a set of datasets {X1, . . . , XL} measuring the gene expression profiles of
the same n genes but over different sets of conditions, and given one or more base
clustering methods { f1, . . . , fC } such as k-means, COCA is applied by the following
steps:

1. Apply each one of the base clustering methods to each one of the datasets and
optimise the number of clusters separately for each case using a user-chosen
cluster validation index (e.g. silhouette):

Ul,c = optimisek∈K( fc(Xl , k)), (4.1)

where K is the set of k values to be tested and the optimise (·) function identi-
fies the k value yielding the optimum result as per the adopted cluster validation
index. Ul,c is the clustering result of the lth dataset using the cth clustering
methodwith the optimum k value that is denoted as k̂l,c. The clustering resultUl,c

is formatted as a partition matrix with rows representing k̂l,c clusters, columns
representing n genes, and elements of one or zero values indicating if the corre-
sponding gene is assigned to the corresponding cluster or not, respectively. The
result of this step is the generation of R = L×C partition matrices for the same
set of n genes but with varying numbers of clusters.

2. Concatenate all R partition matrices to obtain one super-partition matrix U .
The matrix U will have n columns while the number of its rows will be the
summation of the numbers of clusters in the individual partition matrices:
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U =

⎡
⎢⎢⎣

U1,1

U1,2

. . .

UL ,C

⎤
⎥⎥⎦ ∈ {0, 1}k×n,

where

k =
∑
∀l∀c

k̂l,c. (4.2)

3. Apply hierarchical clustering to the genes in U to obtain the final set of clusters.

The COCA algorithm is implemented in R as the coca package in the Compre-
hensive R Archive Network (CRAN) [17].

4.1.2 Bi-CoPaM

Given a set of datasets {X1, . . . , XL}, where each one has n genes with expression
measured over different numbers of conditions or time-points, the Bi-CoPaMmethod
is applied by the following steps [6]:

1. A selected set of base clustering methods { f1, . . . , fC }, e.g. k-means, HC, and
SOMs, are applied to each one of the L datasets to produce R = L×C clustering
results

{
U 1, . . . ,UR

}
.

• Each result is formatted as a partition matrix U with rows representing k
clusters and columns representing n genes.

• U = {
ui, j ∈ {0, 1}|i ∈ {1, . . . , k}; j ∈ {1, . . . , n}}, where each element

represents belongingness of the corresponding j th gene in the corresponding
i th cluster.

• The number of clusters k must be set by the user, either based on a priori
knowledge or by systematic optimisation.

2. The partition matrices are aligned so that the i th cluster in each partition matrix
corresponds to the i th cluster in each other partition matrix using the min–min
approach explained in [6].

• This realignment transforms each partition matrix U to an aligned partition
matrix Û .

3. A consensus partitionmatrix (CoPaM),U ∗, is generated by averaging all aligned
partition matrices:

U ∗ = 1

R

∑
r∈{1...R}

Û r (4.3)
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• The CoPaM matrix is a fuzzy partition matrix with elements ranging from
zero to unity, in proportion to the number of individual partition matrices
that assigned the corresponding gene to the corresponding cluster.

4. The fuzzy CoPaM matrix is made binary by the difference threshold binarisa-
tion (DTB) technique to produce a final binary partition matrix B:

• DTB assigns a gene to a cluster if its membership in that cluster in the
CoPaM matrix U ∗ is greater than its membership in all other clusters, and
the margin between this membership and its membership in the closest
competitor cluster is not smaller than the tuning parameter δ ∈ [0.0, 1.0].
Otherwise, the gene is not assigned to any cluster.

B = {bi, j
}; bi, j =

{
1, ∀h �= i,

(
u∗
i, j − u∗

h, j

)
≥ δ

0, otherwise
(4.4)

• The tuning parameter δ is set by the user; if it set to zero, each gene is assigned
to the cluster in which it has its maximum membership. Ties where the gene
is equally assigned to multiple clusters are solved by assigning the gene to
each of those clusters. If δ is set to unity, a gene is only assigned to a cluster
if its fuzzy membership value in it is unity, that is, if all individual clustering
results unanimously assigned it to that cluster. Therefore, δ = 0.0 produces
the loosest clusters, δ = 1.0 produces the tightest clusters, and δ values in
between these two extremes produce clusters of a corresponding tightness
level.

• Other binarisation techniques beyond DTB can be found in [6].

4.1.3 UNCLES and M–N Scatter Plots

The UNCLES method is based on the Bi-CoPaM method but extends it in two main
directions [4]:

1. UNCLES has multiple modes of application allowing the researcher not only
to discover clusters of genes that are co-clustered in all given datasets, but also
to discover clusters of genes that are co-clustered in a given subset of datasets
while being poorly co-clustered in another subset of datasets. This option is
beyond the scope of this chapter but is detailed in [4].

2. The Bi-CoPaM method requires the number of clusters (k) to be specified by
the researcher as well as the tuning parameter δ. The UNCLES method solves
this problem by defining an algorithmic framework that incorporates Bi-CoPaM
with the proposedM–N scatter plots technique in order to automate the selection
of the number of clusters.
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Furthermore, a modification was proposed to the UNCLESmethod in [1] to allow
for the simultaneous analysis of gene expression datasets that do not necessarily
include the exactly same set of genes.

Let X = {X1, . . . , XL} be the set of L gene expression datasets, let F =
{ f1, . . . , fC }be the set of base clusteringmethods (e.g. k-means,HC, andSOMs), and

let Gk,δ = BiCoPaM(X,F, k, δ) be the set of k clusters Gk,δ =
{
Gk,δ

1 , . . . ,Gk,δ
k

}

generated by applying Bi-CoPaM to the X datasets, using the F base clustering
methods, and with the pre-set number of clusters k and the Bi-CoPaM tuning param-
eter δ. Each cluster Gk,δ

i = {g1, . . . , gni } is represented by the set of ni genes
belonging to it. Therefore, the steps of applying UNCLES incorporating Bi-CoPaM
and the M–N scatter plots are

1. For each k value in a set of k values to test (e.g. k ∈ K = {2, 4, . . . , 18, 20}),
and for each δ value in a set of δ values (e.g., δ ∈ D{0.0, 0.1, . . . , 1.0}), apply
the Bi-CoPaM method to generate a set of clusters:

For k ∈ K

For δ ∈ D

G
k,δ = BiCoPaM(X,F, k, δ) (4.5)

2. Merge all individual clusters generated by the step above into a single set of
clusters (G∀):

G
∀ = union

({
G

k,δ|∀k ∈ K; ∀δ ∈ D
})

, (4.6)

where G∀ = {G1, . . . ,Gk∀ },
where k∀ = |D|∑K is the total number of all clusters generated by all
individual Bi-CoPaM experiments.

3. Drop empty clusters from G
∀:

G
∀ ← G

∀ − {Gi |ni = 0
}

(4.7)

4. Calculate these two metrics for each remaining cluster Gi in G∀:

• The scaled average normalised mean-squared error (MSE):

Mi =
MSE(Gi ) − min

∀G j∈G∀
MSE

(
G j
)

max
∀G j∈G∀

MSE
(
G j
)− min

∀G j∈G∀
MSE

(
G j
) ∈ [0.0, 1.0], (4.8)

Where
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MSE(Gi ) = 1

L · ni · di

∑
l∈{1...L}

∑
g j∈Gi

||xl,g − zl,Gi ||2, (4.9)

where ni is the number of genes in the cluster Gi , di is the number of
dimensions in that cluster, xl,g is the expression profile of the gene g in the
lth dataset, zl,Gi is the average profile of all genes in the cluster Gi in the
lth dataset, and || · ||2 is the second norm.

• The scaled logarithm of the cluster size:

Ni =
log ni − min

∀ j∈{1...k∀} log n
j

max
∀ j∈{1...k∀} log n

j − min
∀ j∈{1...k∀} log n

j
∈ [0.0, 1.0]. (4.10)

5. Construct a unit-square scatter plot for all clusters where the horizontal axis
represents the cluster’s dispersion as measured by M and the vertical axis
represents the cluster’s size as measured by N , hence the name “M–N scatter
plot”.

6. Initiate an empty ordered set of final clusters:

G
final = ∅ (4.11)

7. With the aim of minimising dispersion while maximising cluster size, the
optimumpoint on theM–Nscatter plot is its top-left cornerwhereMi = 0.0 and
Ni = 1.0. Therefore, measure the Euclidean distance between each cluster’s
point on the scatter plot and the top-left corner:

di =
√
M2

i + (1 − Ni )
2. (4.12)

Here, di ∈
[
0.0,

√
2
]
is called the M–N distance for the i th cluster and is

a metric for the quality of the cluster where smaller values indicate better
clusters.

8. Amongst the clusters in G∀, select the cluster with the smallest M–N distance
(d) and append it to the end of the ordered list of final clusters:

Gbest = argmin
∀i∈{1...|G∀|}

(di ),

G
final ← G

final ∪ (Gbest
)

(4.13)

9. Remove all clusters that overlap with Gbest from the set G∀:

G
∀ ← G

∀ − {Gi |Gi ∩ Gbest �= ∅} (4.14)
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10. If there are clusters remaining in G∀, that is G∀ �= ∅, go back to step 8 above;
otherwise, terminate the process.

The outcome of the process above is an ordered list of non-overlapping clusters
alongside their d values, where smaller values of these distances indicate “better”
clusters. The researcher may choose to proceed only with the top few clusters in
downstream analysis as these clusters are the largest in size with the tightest profiles.

4.1.4 Clust

Clust represents further development on top of Bi-CoPaM, UNCLES, and the M–
N scatter plots methods [5]. Clust contributes by (1) the automation of steps with
empirically validated default values, (2) the optimisation and completion of clusters
in terms of removing outliers and inclusion of missing genes that have been missed
by previous steps. These two points will be clarified as the steps of clust are described
below. Despite default automation, users of clust are given the ability to tune some
master parameters if they wish to customise them.

Let X = {X1, . . . , XL} be the set of L gene expression datasets, let F =
{ f1, . . . , fC } be the set of base clusteringmethods (e.g. k-means, HC, and SOMs), let
K = {k1, . . . , k|K|

}
be the set of k values (numbers of clusters) to be considered by

UNCLES, and letD = {δ1, . . . , δ|D|
}
be the set of the binarisation tuning parameters

δ to be considered by UNCLES. Redefine the Mi metric of cluster dispersion, which
is used by the M–N scatter plots (defined in Eq. 4.8), as

Mi = t ×
⎛
⎜⎝

MSE(Gi ) − min
∀G j∈G∀

MSE
(
G j
)

max
∀G j∈G∀

MSE
(
G j
)− min

∀G j∈G∀
MSE

(
G j
)
⎞
⎟⎠∈ [0.0, t], (4.15)

where G
∀, Gi , and MSE(·) are as used in Eq. (4.8) and t ≥ 0.0 is a parameter

of tightness with the default value of 1.0 and is tuneable by the user. With this

modification, the range of the M–N distance (d) values will be
[
0.0,

√
1 + t2

]
. As

the M–N plots technique aims to maximise clusters’ sizes while minimising their
dispersion, t controls the weight of contribution of the dispersion to this equation.
When t < 1.0, less tight but larger clusters are favoured, while when t > 1.0 tighter
but smaller clusters are favoured.

Let be the list of clusters G = {
G1, . . . ,G |G|

}
paired with their ordered list of M–N distance values

{
d1, . . . , d|G|

}
as generated by

applying UNCLES to the X datasets, using the F base clustering methods, with the
K set of numbers of clusters, the D set of δ values, and the user-defined tightness
parameter t . Therefore, clust is applied by the following steps [5]:

1. Apply UNCLES to obtain an ordered list of clusters alongside their M–N
distance values:
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(4.16)

2. Keep “good” clusters and filter out the rest:
The distribution of d values in has been seen in many examples to have few
small (good) values and a long tail of large (bad) values. Therefore, define the
point in the ordered list that splits between good and bad clusters as the largest
gap (difference) between any two consecutive d values after weighting these
gaps by their reversed order. In other words, larger weights are given to the gaps
closer to the top of the list, to avoid selecting the large gaps that tend to appear
towards the higher tail of the distribution:

(4.17)

where �i is the weighted gap size (difference) between the two values di and
di+1 and kgood is the number of good clusters.

3. Optimise and complete the set of good clusters by removing outlier genes and
including genes thatweremissed despite fittingwithin clusters’ dynamic ranges.
This is done by the following steps:

• For each dataset, calculate the absolute difference between the expression
values of each gene and the mean expression profile of the cluster to which
that gene is assigned:

G
nonzero
l = {G ∈ G

good|(∃zl,G,s �= 0.0
)
for any s

}

el,i,s =
∑

G∈Gnonzero

λi,G · ∣∣xl,i,s − zG,l,s

∣∣,

λi,G =
{
1, (gene i) ∈ (cluster G)

0, (gene i) /∈ (cluster G)
∈ {0, 1}, (4.18)

where G
nonzero is the set of good clusters with average expression profiles

that are not equal to zero across all samples, λi,G is the membership of the
i th gene in the Gth cluster, xl,i,s is the gene expression value of the i th gene
in sth sample (condition or time-point) of the lth dataset, and zG,l,s is the
average expression of the values of the sth sample in the lth dataset for all
genes belonging to the Gth cluster:

zG,l,s = 1∑
λi,G

∑
λi,Gxl,i,s . (4.19)
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Note that el,i,s is not calculated for all genes in all datasets, but only for genes
belonging to clusters with expression profiles that are not flat and equal to
zero over all samples. As some clusters may have zero average profiles in
some datasets but not in others, some genes may have el,i,s values based on
some but not all datasets.

• Calculate the third quartile of all el,i,s values separately for each sample in
each dataset:

ql,s = third_quartile
∀s∈l

(
el,i,s

)
. (4.20)

The distribution of e values usually is one-tailed with its mode being at zero
or another close-to-zero value.

• Calculate data-driven lower and upper boundaries (margins around average)
of each cluster at each sample of each dataset:

lowG,l,s = zG,l,s − γ · ql,s
upG,l,s = zG,l,s + γ · ql,s, (4.21)

where γ has the default value of 2.0 but can be customised by the user.
Here the boundaries are calculated for each sample in each dataset with
the assumption that different samples even in a single dataset might have
inherently different dynamics and distributions.

• Resolve overlapping boundaries between clusters. This problem happens
when the boundaries overlap across all samples in all datasets. Let tl,s,G1,G2 ∈
{−1, 0, 1, 2} be the type of the overlap between the boundaries of the clusters
G1 and G2 at the sth sample of the lth dataset:

tl,s,G1,G2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1, (lowG2,l,s ≤ lowG1,l,s ≤ upG1,l,s ≤ upG2,l,s)

∪
(lowG1,l,s ≤ lowG2,l,s ≤ upG2,l,s ≤ upG1,l,s)

0, (lowG1,l,s < lowG2,l,s ≤ upG1,l,s ≤ upG2,l,s)

1, (lowG2,l,s < lowG1,l,s ≤ upG2,l,s ≤ upG1,l,s)

2, otherwise(no overlap)

. (4.22)

The overlap type tov of −1 indicates that one of the two clusters’ boundaries
is entirely encompassed by the other cluster’s boundaries, the types 0 and
1 indicate that the upper boundary of the cluster G1 or G2, respectively, is
within the boundaries of the other cluster, and the type 2 indicates that there
is no overlap between the two clusters at this sample. Let the value of the
overlap at the sth sample of the lth dataset between the clusters G1 and G2
be:
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ovl,s,G1,G2 =

⎧⎪⎪⎨
⎪⎪⎩

∞, tl,s,G1,G2 = −1
upG1,l,s − lowG2,l,s, tl,s,G1,G2 = 0
upG2,l,s − lowG1,l,s, tl,s,G1,G2 = 1
−1, tl,s,G1,G2 = 2

. (4.23)

Finally, resolve the overlap with minimum disruption by altering the bound-
aries at the sample with the minimum overlap. Also, make that change in the
cluster with higher (worse) M–N distance d amongst the pair of the clusters
to introduce less change to the clusters with better (lower) d values. For each
cluster pair (G1,G2) where dG1 ≤ dG2, let lmin and smin be the dataset
and the sample at which the overlap value is the minimum:

(
lmin, smin

)
= argmin

∀l∀s
ovl,s,G1,G2. (4.24)

Then resolve the overlap by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G
good ← G

good − {G2}, t
lmin,smin,G1,G2

= −1

low
G2,lmin,smin = up

G1,lmin,smin + ε, t
lmin,smin,G1,G2

= 0

up
G2,lmin,smin = low

G1,lmin,smin − ε, t
lmin,smin,G1,G2

= 1

do nothing, t
lmin,smin,G1,G2

= 2

(4.25)

where ε is a very small positive real number.
• Drop all genes included in the set of good clusters and reconstruct them from

scratch by including in each cluster all genes that have expression profiles
consistently fitting within its boundaries at all samples in all datasets. This
is done by revisiting all genes in the dataset and not only those previous
included in Ggood .

G
final ← {

Gfinal,∀G ∈ G
good}

Gfinal ← {
g|lowl,G,s ≤ xl,g,s ≤ upl,G,s,∀l∀s

}
. (4.26)

Note that the original genes in clusters were used to learn the average profiles
of these clusters and their upper and lower boundaries around those averages.
However, if some of genes originally included in the clusters were outliers,
that is, had expression values outside of the data-driven boundaries, they
will not be included in the reconstructed clusters. Furthermore, it had been
empirically seen that it is likely to findmany geneswith profiles that fit within
the generated clusters’ boundaries but were missed from them; such genes
will be included in the reconstructed clusters.

• Remove clusters with fewer genes that the size of the smallest acceptable
cluster sc, which is set to 11 by default by can be customised by the user:
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G
final ← {

G ∈ G
final||G| ≥ sc

}
(4.27)

A Python implementation of clust along with instructions for users are openly
available at https://github.com/BaselAbujamous/clust. It can be installed from the
Python Package Index (PyPi) with the direct command line “pip install clust”, and
a webpage implementation is available at http://clust.baselabujamous.com/.

4.1.5 Deep Learning Approaches

Deep learning has emerged as the state-of-the-art machine learning enabling more
complex pattern recognition and prediction tasks and powered by the developments
in parallel computing. Various studies have proposed deep learning approaches to
analyse multiple gene expression datasets, or in many cases, multiple omic datasets,
simultaneously.

For instance, Chaudhary and colleagues proposed a framework in which tens of
thousands of omic features from multiple datasets were submitted in parallel to an
autoencoder architecture to embed into a space with a lower dimension [19]. Then,
downstream analysis was applied to this embedded space aiming to train a model
that classifies cancer patients into clusters with differential survival risk scores. This
approach in fact was not designed to find clusters of genes based on their profiles over
multiple samples; rather it aimed at clustering patients based on their gene expression
profiles as well as their profiles in other omic datasets, namely microRNA expression
and methylomics. However, it can be adapted to gene clustering based on multiple
gene expression datasets by considering single genes as the training samples of the
deep learning architecture and by considering the pooled collection of samples or
conditions from all datasets as the feature space. This method is an example of an
intermediate integration approach.

In another study, Cheerla and Gevaert proposed an intermediate integration
approach aiming to predict patients with different survival profiles based on their
profiles in gene expression datasets as well as in datasets of other types such as
clinical data and image data [20]. Their model embeds different datasets of different
types into the same space of 512 dimensions before applying downstream analysis
[20]. This is carried out through a separate feedforward network for each dataset
suiting its type. For example, highway networks were used for gene expression and
microRNAdatasets and convolutional neural networks (CNN)were used for imaging
datasets. Given multiple data vectors for the same patient in different datasets, the
networks were trained to maximise the similarity between the embedded values of
each of these vectors. This architecture assumes that the same patient has multiple
profiles in different datasets. However, for gene clustering, themodel can be altered to
assume that the same gene has multiple profiles in multiple datasets across different
sets of conditions and time points.

Taken together, the ability of deep learning models to process high dimensional
data in complex formats enables the design of novel architectures that do not

https://github.com/BaselAbujamous/clust
http://clust.baselabujamous.com/


106 B. Abu-Jamous andA. K. Nandi

only analyse multiple gene expression datasets simultaneously, but also incorporate
further types of related data. The variety in possible deep learning architectures allows
them to be customised to fit the structures of datasets more flexibly. However, these
methods require large numbers of samples for their training to converge sufficiently
and should only be employed where applicable.

4.2 Case Study 1: A Novel Subset of Genes with Expression
Consistently Oppositely Correlated with Ribosome
Biogenesis in Forty Yeast Datasets

Budding yeast Saccharomyces cerevisiae represents a well-studied eukaryotic model
species due to its short cell-cycle duration, ease in handling, and low-cost accessi-
bility. This has resulted in an accumulation of many gene expression datasets investi-
gating this species under a variety of conditions. Although each one of these datasets
was generated within a specific context in order to answer a specific research ques-
tion, a biological question of value would be to learn if there are centrally regulated
processes in budding yeast regardless of the biological context and specific condi-
tions. In order to achieve that, a simultaneous analysis of a diverse collection of
budding yeast gene expression datasets could be performed.

4.2.1 Data and Approach

Forty budding yeast microarray datasets, listed in Table 4.2, were analysed simulta-
neously using the binarisation of consensus partition matrices (Bi-CoPaM) method
[6] in order to extract the subsets of genes that are consistently co-expressed in all
of these datasets [3].

4.2.2 Results and Discussion

Two Consistently Anti-correlated Clusters of Genes were Identified in Budding
Yeast by Simultaneous Clustering

The application of Bi-CoPaM to the forty datasets revealed that there are two subsets
of genes consistently co-expressed in all forty datasets, which are labelled as C1
and C2 [3]. The profiles of these two clusters in each one of the forty datasets are
shown in Fig. 4.1. The first cluster, C1, has 257 genes, and the second cluster, C2,
has 47 genes. The full lists of gene names in these two clusters can be found in
Supplementary Table S1 in [3].
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Table 4.2 Forty yeast microarray datasets (from Table 1 in [3])

ID GEO accession Nb Description References

D01 GSE8799 15 Two mitotic cell-cycles (w/t) [60]

D02 GSE8799 15 Two mitotic cell-cycles (mutated cyclins) [60]

D03 E-MTAB-643a 15 Response to an impulse of glucose [28]

D04 E-MTAB-643a 15 Response to an impulse of ammonium [28]

D05 GSE54951 6 Response of dal80Δ mutant yeast to oxidative stress
induced by linoleic acid hydroperoxide

–

D06 GSE25002 9 Osmotic stress response and treatment of
transformants expressing the C. albicans Nik1 gene

–

D07 GSE36298 6 Mutations of OPI1, INO2, and INO4 under
carbon-limited growth conditions

[24]

D08 GSE50728 8 120 h time-course during fermentation –

D09 GSE36599 5 Stress adaptation and recovery [78]

D10 GSE47712 6 Combinations of the yeast mediator complex’s tail
subunits mutations

[50]

D11 GSE21870 4 Combinations of mutations in DNUP60 and DADA2 –

D12 GSE38848 6 Various strains under aerobic or anaerobic growth [52]

D13 GSE36954 6 Response to mycotoxic type B trichothecenes [71]

D14 GSE33276 6 Response to heat stress for three different strains –

D15 GSE40399 7 Response to various perturbations (heat, myriocin
treatment, and lipid supplement)

–

D16 GSE31176 6 W/t, rlm1Δ, and swi3Δ cells with or without Congo
Red exposure

[64]

D17 GSE26923 5 Varying levels of GCN5 F221A mutant expression [49]

D18 GSE30054 31 CEN.PK122 oscillating for 2 h –

D19 GSE30051 32 CEN.PL113-7D oscillating for 2 h [23]

D20 GSE30052 49 CEN.PL113-7D oscillating for 4 h [23]

D21 GSE32974 15 About 5 h of cell-cycle (w/t). [44]

D22 GSE32974 15 About 4 h of cell-cycle (mutant lacking Cdk1
activity)

[44]

D23 GSE24888 5 Untreated yeast versus yeasts treated with E. arvense
herbs from the USE, China, Europe, or India

–

D24 GSE19302 6 Response to degron induction for w/t and nab2-td
mutant

[38]

D25 GSE33427 5 Untreated w/t, and wt/t, yap1Δ, yap8Δ, and double
mutant treated with AsV

[35]

D26 GSE17716 7 Effect of overexpression and deletion of MSS11 and
FLO8

[12]

D27 GSE31366 4 Presence and absence of multi-inhibitors for parental
and tolerant strains

–

(continued)
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Table 4.2 (continued)

ID GEO accession Nb Description References

D28 GSE26171 4 Response to patulin and/or ascorbic acid [70]

D29 GSE22270 4 PY1 and Met30 strains in room temperature or 35 °C –

D30 GSE29273 4 Time-series during yeast second fermentation –

D31 GSE29353 5 Different haploid strains growing in low glucose
medium

[63]

D32 GSE21571 8 Different combinations of mutations in HTZ1,
SWR1, SWC2, and SWC5

[58]

D33 GSE17364 4 Untreated w/t and Slt2-deficient yeasts, or treated
with sodium arsenate for two hours

[55]

D34 GSE15352 8 24 h time-course of yeast grown under a low
temperature (10 °C)

[69]

D35 GSE15352 8 24 h time-course of yeast grown under a normal
temperature (28 °C)

[69]

D36 GSE15352 8 24 h time-course of yeast grown under a high
temperature (37 °C)

[69]

D37 GSE16799 21 UC-V irradiation of w/t, mig3Δ, SNF1Δ, RAD23Δ,
RAD4Δ, and snf1Δrad23Δ

[75]

D38 GSE16346 4 BY474 cells grown to mid-log under presence versus
absence of L-carnitine and/or H2O2

–

D39 GSE14227 10 Two hours of wild-type yeast growth [37]

D40 GSE14227 9 Two hours of sch9Δ mutant yeast growth [37]

aD03 and D04 have accession numbers in the European Bioinformatics Institute (EBI) repository
rather than GEO accession numbers
bN is the number of conditions or time-points in the dataset, i.e. the number of dimensions

The fact that genes in any of these two clusters are consistently co-expressed in
all forty datasets does not necessitate that their average profiles in all forty datasets
are the same. In fact, the biological conditions or time-points of these datasets,
represented by their x-axes, differ substantially, and are not aligned. For instance, the
15 time-points on the x-axis of D01 and D02 measure gene expression profiles over
two mitotic cell-cycles, the 8 time-points on the x-axis of D08 measure expression
profiles over two hours during fermentation, and the 4 conditions in D29 measure
gene expression of PY1 or Met30 yeast strains, each under room temperature or
35 °C. Note that the latter does not resemble a time-series dataset as there is no
temporal element ordering its four dimensions. Therefore, the fact that a subset of
genes is consistently co-expressed in all forty datasets means that these genes are
upregulated together and down-regulated together, in each one of these datasets.

Functional Characterisation of the Two Clusters of Genes

Gene ontology (GO) term analysis revealed that C1 is enrichedwith rRNAprocessing
and ribosome biogenesis, and therefore was labelled as RRB. As for C2, it contained
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Fig. 4.1 The average
profiles of the two
consistently co-expressed
clusters C1 and C2 in each
one of the forty budding
yeast microarray datasets.
Taken from Fig. 3 in [3]

some stress response genes and numerous genes with unknown function. Therefore,
C2 was labelled as “anti-phase with ribosome biogenesis”, or Apha-RiB.

Transcriptional Regulators of the Two Anti-correlated Clusters

It may be hypothesised that the consistent anti-correlated gene expression profiles
of C1 and C2 are due to their being co-regulated by the same regulatory machinery,
but in two opposite directions. In order to search for potential mutual regulators
of the two clusters, and in order to understand the regulatory network controlling
both clusters in general, the MEME tool was used to identify overrepresented DNA
sequences in the upstream regions of genes in the C1 or C2 clusters. Three motifs,
labelled as C1-1, C1-2, and C1-3, were found in the upstream regions of C1 genes,
and two motifs, labelled as C2-1 and C2-2, were found in the upstream regions of
C2 genes (Fig. 4.2). Furthermore, the TOMTOM tool was used to identify known
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Fig. 4.2 DNAmotifs (short sequences) overrepresented in the upstream regions of genes in C1 and
C2 aligned with the known binding sites of some transcription factors. The motifs were labelled as
C1-1 (A), C1-2 (B), C2-3 (C) for those in the upstream sequences of C1 genes, and C2-1 (D) and
C2-2 (E) for those in the upstream sequences of C2 genes. This Figure has been compiled from
Figs. 4 and 5 in [3]

transcription factor binding sites that significantly match the identified DNA motifs
(Fig. 4.2).

Notably, the PACmotif, which is the binding site of the Dot6p transcription factor,
and the RRPE motif, which is the binding site of the Stb3p transcription factor, were
both found significantly overrepresented in the upstream regions of C1 (Fig. 4.2a, b).
This result is in line with the observation that C1 is enriched with rRNA processing
and ribosome biogenesis genes, as these two DNAmotifs are known to be associated
with these processes [14]. Also, the overrepresentation of the stress response element
(STRE), which is the binding site of the Msn2p/Msn4p transcription factors, is in
agreement with the known role of this element and these transcription factors in
response to stress [13].

With the hypothesis that both clusters may be co-regulated by the same regu-
lator(s) but in opposite directions, it is interesting to note that the binding site of
Azf1p is overrepresented in both clusters. Therefore, Azf1p might be part of the
hypothesised mutual regulatory machinery. Furthermore, the binding site of Stb1,
which is TGAAAA, substantially overlaps with the motif C2-1 (Fig. 4.2), and there-
fore it might also be part of the mutual regulatory machinery, especially given that
its overexpression was seen to increase resistance to oxidative stress [29].
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Fig. 4.3 A summary diagram of the hypothesised regulatory network controlling the expression of
the genes in the two clusters C1 and C2 under growth and stress conditions

Figure 4.3 summarises the speculated regulatory network stimulated by growth
and stress conditions resulting in anti-correlated expression profiles of the C1 (RRB)
genes and the C2 (APha-RiB) genes. Further confirmatory experiments will be
required to validate the hypothesised links in this network.

4.2.3 Summary and Conclusions

Two subsets of genes are consistently co-expressed in forty different yeast gene
expression datasets. These two subsets are also consistently anti-correlated with
each other, indicating that they may be regulated by a mutual regulatory machinery
but in opposite directions. The first subset is enriched with genes participating in
rRNA processing and ribosome biogenesis, and is labelled as RRB, while the second
subset has some stress response genes and many genes of unknown function, as is
therefore labelled as being in “antiphase with ribosome biogenesis” (Apha-RiB). An
investigation of the upstream sequences of genes in these two subsets revealed that
the RRB group is regulated by Sfp1, Dot6/Tod6, and Stb3, while the Apha-RiB group
is regulated by Msn2/Msn4. Speculations on potential common regulators for both
groups highlighted Stb3 and Azf1 as potential candidates, which have to be further
validated by biological experiments.
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4.3 Case Study 2: A Transcriptomic Signature Derived
from a Study of Sixteen Breast Cancer Cell-Line
Datasets Predicts Poor Prognosis

Hypoxia, which is the deficiency in oxygen supply, is a characteristic of poor prog-
nosis in cancers with solid tumours such as breast cancer [40, 67]. Altered transcrip-
tional programmes are induced in tumour cells to produce resistance to the hypoxic
conditions mediated by stabilising the hypoxia-inducible factor (HIF) proteins [67,
68]. Therefore, numerous studies attempted to identify the subset of genes directly
regulated by HIF proteins, or by hypoxic conditions in general, and thereafter sought
to use their expression levels as prognostic markers [16, 41].

Consequently, several datasets have been produced measuring gene expression in
cancer under different conditions related to hypoxia. Simultaneous clustering of these
datasets can identify a data-driven hypoxia transcriptomic signature with prognostic
power.

4.3.1 Data and Approach

Table 4.3 lists sixteen microarray gene expression datasets of breast cancer cell-lines
under such conditions. The consensus clustering method UNCLES [4] was applied
to these datasets to identify subsets of genes that are consistently co-expressed under
all of these conditions [1].

4.3.2 Results and Discussion

Consensus Clustering Identifies Two Anti-correlated Clusters of Genes

As the sixteen datasets were generated using different microarray platforms, some
genes are not represented by probes in all these datasets. A total of 15,588 genes were
present in at least thirteen datasets and were therefore submitted to the UNCLES
method for simultaneous clustering. UNCLES analysis followed by cluster quality
filters identified two clusters of genes, which were labelled as C1 (504 genes) and C2
(598 genes). The remaining 14,486 genes included in the input were not assigned to
any of these two clusters. The gene expression profiles of these clusters are displayed
in Fig. 4.4.

Notably, these two discovered clusters are consistently anti-correlated over all
sixteen datasets (ρ < −0.85). In other words, whenever C1 genes are upregulated,
C2 genes are downregulated, and vice versa. This observation may indicate that
these two clusters are anti-regulated by the same regulatory machinery, directly or
indirectly.
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C2 is Induced Under Hypoxic Conditions and is Enriched with HIF Targets

Acloser look into the expression profiles of C1 andC2 in the conditions of the sixteen
datasets shows that C1 is consistently upregulated under growth conditions, such as
normal oxygen levels, and is downregulated under hypoxic conditions, while C2 is
expressed the other way around.

Table 4.3 List of the 16 microarray datasets of breast cancer cell-lines under conditions related to
hypoxia. This table is constructed from Table 1 in [1]

ID GEO acc. Year Nb Cell-lines(s) Description References

D01 GSE3188a 2005 7 MCF7 Same samples of the
last two datasets in the
same order, but a
different platform

[32]

D02 GSE47533 2014 4 MCF7 Time-series data
through 48 h of
exposure to hypoxia
(1% O)

[18]

D03 GSE41491 2012 8 MCF7 Time-series data
through 24 h of
exposure to hypoxia
(1% O)

[43]

D04 GSE47009 2014 3 MCF7 Samples at normoxia,
hypoxia, and anoxia,
respectively

–

D05 GSE18494 2009 4 MDA-MB-231 Time-series data
through 12 h of
exposure to hypoxia
(0.5% O)

[77]

D06 GSE3188a 2005 3 MCF7 Samples at normoxia,
hypoxia, and normoxia
exposed to DMOG,
respectively

[32]

D07 GSE17188a 2010 3 SCP2 subline of
MDA-MB-231

Time-series data
through 24 h of
exposure to hypoxia

[53]

D08 GSE17188a 2010 3 LM2 subline of
MDA-MB-231

Time-series data
through 24 h of
exposure to hypoxia

[53]

D09 GSE15530 2010 4 MCF7 Normoxia samples
versus hypoxia
samples, each is either
transfected with
non-specific shRNA or
with reptin shRNA

[51]

(continued)
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Table 4.3 (continued)

ID GEO acc. Year Nb Cell-lines(s) Description References

D10 GSE45362 2013 4 MB231RN-LM derived
from MDA-MB-231

Non-transfected
samples versus
transfected with
has-miR-18a, each is in
either a control
medium or treated with
Cobalt(II) chloride
(CoCl2)
hypoxia-mimicking
agent

[45]

D11 GSE29406 2012 4 MCF7 Normoxia samples
versus hypoxia
samples, each is either
untreated or treated
with lactic acid

[72]

D12 GSE18384 2010 4 MCF7 Normoxia samples
versus hypoxia
samples, each is either
non-transfected or
transfected with
siRNA#1 against
JMJD2B

[79]

D13 GSE3188a 2005 4 MCF7 Samples exposed
to/transfected with
oligogectamine, HIF1α
siRNA, HIF2α siRNA,
or both siRNAs,
respectively. All
samples were grown
under hypoxia (1% O)
for 16 h

[32]

D14 GSE33438 2011 4 MCF7 & ZR-75-1 Samples from each of
the two cell-lines were
exposed to hypoxia for
24 or 48 h

[8]

D15 GSE49953 2013 4 T47D & MDA-MB-231 A control sample and
an
XBP1-knocked-down
sample from each of
the two cell-lines. All
samples are under
hypoxia and glucose
deprivation

[22]

(continued)
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Table 4.3 (continued)

ID GEO acc. Year Nb Cell-lines(s) Description References

D16 GSE30019 2012 6 MCF7 Time-series data
through 24 h of
reoxygenation after
having been in hypoxia
(0.5% O) for 24 h

[47]

aThese accession numbers refer to datasets that include samples that semantically form multiple
different datasets
bN is the number of conditions in the dataset, i.e. the number of dimensions

The two clusters were functionally characterised by gene ontology (GO) enrich-
ment analysis and pathway enrichment analysis; the latter was performed using the
GeneCodis online tool over the KEGG pathways database. This revealed that C1 is
enriched with genes that participate in ribosomal RNA (rRNA) processing and ribo-
some biogenesis (aka RRB), which is in line with the fact that this cluster is upregu-
lated under growth conditions. On the other hand, C2 is enriched with genes involved
in signal transduction, positive regulation of I-kappaB kinase/NF-kappaB cascade,
carbohydrate metabolism, glycolysis, and response to hypoxia; these processes are
induced to respond to the hypoxic stress.

The two clusters were further assessed in their content of targets of the HIF
hypoxia-induced factor. Seven lists of potential HIF1α and HIF2α targets were
fetched from different studies and are described in Table 4.4. Surprisingly, the inter-
section of these seven lists contains only two genes, while the union of all these
lists has 1521 (Table 4.5). As shown in Table 4.5, C2 is enriched with HIF targets
regardless of which combination of lists of HIF potential targets was considered,
while C1 is not. This adds to the evidence that the upregulation of C2 represents a
transcriptomic signature of hypoxia in breast cancer cell-lines.

In order to identify potential regulators of the genes in C1, usage of the Enrichr
analysis tool [21, 46] revealed that C1 is enriched with targets of the MYC tran-
scription factor, which is an oncogene encoding a transcription factor that selectively
amplifies the expression of genes participating in cell growth and proliferation. The
same analysis tool, when applied to the C2 cluster, confirmed that it is enriched with
targets of HIF1α.

C1 and C2 form Multiple Sub-clusters in Clinical Tumours

Although this data-driven hypoxia signature is consistent across sixteen breast cancer
cell-line datasets and was further supported by functional characterisation, it is vital
to confirm its prognostic value in clinical samples of breast tumours. Therefore,
their expression profiles were investigated in The Cancer Genome Atlas (TCGA)
dataset, which includes gene expression profiles of 1026 breast tumour samples.
Interestingly, each one of the two clusters C1 and C2 formed multiple sub-clusters
of genes with substantially different expression profiles in these tumour samples
(Fig. 4.5). This indicates the disagreement between clinical samples andwhat appears
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Fig. 4.4 Average expression profiles of the genes in the clusters C1 and C2 in each one of the 16
datasets. Horizontal axes represent different biological conditions or time-points, and the vertical
axes represent normalized gene expression values (z-scores). This figure was taken from Fig. 2 in
[1]

to be consistent across sixteen different cell-line datasets, hinting to the fact that
research findings from cell-line studies must always be considered with care. The
major sub-clusters formed from C1 and C2 were labelled as C1a, C1b, C2a, C2b,
and C2c.

To assess if these sub-clusters are significantly co-expressed in clinical datasets
beyond the TCGA dataset, the mean-squared error (MSE) was calculated amongst
their genes in a number of other breast cancer clinical datasets listed in Table 4.6.
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Table 4.4 Description of seven lists of genes which were identified as potential targets for HIF
(from Table 3 in [1])

List TFa Nb Approach References

L1 HIF1α 500 Integrative genomes (computational & experimental) [11]

L2 HIF1α 394 Genome-wide ChIP [57]

L3 HIF2α 131 Genome-wide ChIP [57]

L4 HIF1α 311 ChIP-chip [77]

L5 HIF 216 Genome-wide computational approaches [61]

L6 HIF1α 323 ChIP-seq. [66]

L7 HIF2α 268 ChIP-seq. [66]

aThe HIF transcription factor (TF) which was considered in the study
bThe number of distinct genes included in the list (N)

Table 4.5 Different combinations of the seven lists of HIF potential targets (from Table 4 in [1])

Combination Na In this studyb C1 C2

Union of all 1521 1172 42 (p = 0.26) 145 (p = 1×10−38)

Intersection of all 2 2 0 (p = 1.00) 1 (p = 8×10−2)

Intersection of studies with HIF1α
(L1, L2, L4, L5, and L6)

11 10 0 (p = 1.00) 6 (p = 6×10−7)

In 3 lists or more 144 126 0 (p = 1.00) 61 (p = 1×10−52)

In 4 lists or more 60 49 0 (p = 1.00) 30 (p = 2×10−30)

In 5 lists or more 28 22 0 (p = 1.00) 15 (p = 6×10−17)

aThe number of genes in the corresponding combination of lists
bThe number of genes in the corresponding combination of lists that are included in the input 15,588
genes in our study

An empirical p-value was calculated to quantify the significance of the observed
MSE values by calculating an empirical distribution of MSE values via generating
1000 random clusters of similar sizes. The result was that four out of these five sub-
clusters showed significant co-expression in all six clinical datasets with p-values
ranging from 10−6 to 10−300, namely C1a, C1b, C2a, and C2b. Interestingly, the full
C2 cluster showed far fewer significant p-values of co-expression in these clinical
datasets (p-values ranging from 0.99 to 10−6).

C1, But Not C2, Sub-clusters Demonstrate Significant Prognostic Power

The prognostic power of each one of the sub-clusters of C1 and C2 was exam-
ined using COX proportional hazards (COX-PH) analysis and was compared with
two published transcriptomic signatures of prognostic value. These two signatures
include 51 [16] and 20 genes, respectively, and therefore were labelled as the 51-gene
signature and the 20-gene signature [41], respectively.

The sub-clusters of the hypoxia-repressed cluster C1 showed significant prog-
nostic power as their upregulation in breast cancer tumours predicts poor prognosis.
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Fig. 4.5 C1 and C2, derived from consensus clustering of 16 cell-line datasets, form multiple
sub-clusters of co-expressed genes in the TCGA breast cancer clinical dataset (from Fig. 6 in [1])
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Table 4.6 Breast cancer clinical datasets from Table 5 in [1]

Title Number of samples OS and ER information? References

TCGA 1026 Yes [25]

GE 196 No [15]

GSE2034 286 Yes [76]

GSE3494 251 Yes [56]

METABRIC-disc 997 Yes [26]

METABRIC-val 995 Yes [26]
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METABRIC-disc METABRIC-val

Years of survival

HR = 2.72
(p.v. 0.042)

GSE2034TCGA GSE3494

Fig. 4.6 KaplanMeier (KM) survival curves for the sub-clusters C1a andC1b aswell as the 51-gene
signature in each one of the five named clinical datasets. The displayed hazard ratio (HR) values
were calculated using COX-PH regression and the p-values were calculated using the log-rank test
(from Fig. 7 in [1])

This appears to be similar to the 51-gene signature or even more powerful than that
in Fig. 4.6.

4.3.3 Summary and Conclusions

Analysis of sixteen breast cancer cell-line datasets revealed two clusters of genes that
are consistently co-expressed in all datasets. The first cluster has genes participating
in various growth-related processes such as the cell-cycle and proliferation, while the
second cluster is enriched with genes participating in the stress response. Consistent
anti-correlation between the expression profiles of these two clusters was observed,
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where the first cluster is upregulated under normal oxygen levels suitable for growth
and repressed under hypoxic stress conditions, while the second cluster behaves
oppositely. Moreover, and as expected, the first cluster is enriched with targets of
the MYC transcription factor and the second cluster is enriched with targets of the
hypoxia-induced factor (HIF) protein, which is induced under hypoxia. Interestingly,
both clusters do not show a similar consistent co-expression pattern when examined
in clinical breast tumour samples; rather each of them was split into smaller sub-
clusters therein. The more striking observation was that the upregulation of the first
cluster, and not the second cluster, in clinical tumours predicts poor prognosis, which
is counterintuitive. In other words, the upregulation of growth-related genes, and not
hypoxia response genes, predicts poor outcomes in breast tumours. Finally, this
study demonstrated an example of mismatch between cancer cell-lines and clinical
tumours, where a pattern that was observed consistently in sixteen cell-line datasets
did not hold in clinical tumour datasets. Therefore, analysis driven from cell-line
data must be considered with caution.

4.4 Case Study 3: Cross-Species Application of Clust
Reveals Clusters with Contrasting Profiles Under
Thermal Stress in Two Rotifer Animal Species

Response to thermal shock has been studied extensively in various species as it influ-
ences the genetic and physiological behaviours of organisms. An analysis of two
closely related microscopic rotifer animal species that are known to respond differ-
ently to thermal stress was conducted in order to identify the underlying genetic
basis for the observed divergence in response. The two species were the heat-
tolerant Brachionus calyciflorus s.s. and its closely related heat-sensitive Brachionus
fernandoi [62].

Gene expression profiles were measured for each one of the two species while
cultured under control, mild, and high levels of heat exposure. Control heat level was
set to 20 °C for both species. However, as B. calyciflorus s.s. is more heat-tolerant
thanB. fernandoi, mild temperatureswere defined as 26 and 23 °C for the two species,
respectively, and high temperatures were defined as 32 °C and 26 °C, respectively.
Attempts to culture B. fernandoi under 32 °C yielded high mortality rates and low
usable sample sizes. Two to four replicates from each species at each temperature
were taken with approximately 1000 individuals per sample. RNA was extracted
from all samples and sequenced using the Illumina HiSeq 4000 platform. RNA-seq
reads were pre-processed followed by gene expression quantification according to
the protocol described in [62].

Orthologous genes across the two species were identified using OrthoFinder [33].
This identified orthogroups (OGs), where each OG contains none, one, or multiple
genes from each one of the two species such that all genes in an OG are orthologues.
As the clustmethod allows for the analysis of multiple datasets frommultiple species
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Fig. 4.7 Clusters of biological interest containing contrasting co-expressed orthogroups (OGs)
between the heat-tolerant species Brachionus calyciflorus s.s. and the related heat-sensitive species
Brachionus fernandoi. This figure is Fig. 6 in [62]

simultaneously while taking orthology information into account [5], gene expres-
sion datasets from both species along with the OrthoFinder’s output of OGs were
submitted to clust in order to extract clusters of co-expressed genes, or rather OGs.

Clust automatically extracted eight clusters of OGs that are consistently co-
expressed in both datasets across their three levels of heat. Out of these clusters,
three clusters were identified as interesting in terms of their similar or contrasting
gene expression profiles, namely, clusters C1, C6, and C7 (Fig. 4.7).

C1 showed a similar profile in both species as it is upregulated under mild and
high levels of heat. In contrast, C6 and C7 showed anti-correlated expression profiles
across the two species. The heat-tolerance in B. calyciflorus s.s. might be mediated
by the differential regulation of these two clusters in comparison to its closely related
heat-sensitive B. fernandoi. Understanding these clusters does not only provide
insights intowhichmolecularmechanisms control heat-tolerance, but it also provides
potential biomarkers of heat sensitivity in other less-understood related species.

4.5 Summary and Conclusions

With the acceleration of emergence of high-throughput biological datasets, it has
become more crucial to develop computational methods and algorithms that can
exploit such very large amounts of data to derive useful insights. Amongst the most
abundant types of such datasets are gene expression datasets, which measure the
expression levels of each gene in the analysed organism over multiple biological
conditions or time points. Given any biological context of interest, such as a given
type of human disease or a particular biological process in bacteria, it is likely to
find multiple gene expression datasets already generated but with different specific
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designs and detailed conditions. Each one of these datasets would have been gener-
ated to answer a specific question. It can be argued that there is a benefit in analysing
such collections of datasets simultaneously in order to extract synergistically insights
and discoveries that would not have otherwise been found by analysing each dataset
separately. The above three case studies offer credence to this argument.

Cluster analysis is one of the domains of computational methods that have been
extensively used in the analysis of gene expression datasets. With recent develop-
ments, clustering algorithms that can simultaneously analyse multiple gene expres-
sion datasets have emerged, such as the Bi-CoPaM, clust, COCA, and deep learning
methods. The former two have the extra benefit of performing partial clustering, that
is, the extraction of tight clusters of genes from input gene expression data without
enforcing every input gene to be included in one of the output clusters. This behaviour
is consistent with the biological fact that, given a biological context, not all genes are
expected to form subsets of co-regulated genes. In fact, the clust algorithm,which has
a publicly available implementation at https://github.com/BaselAbujamous/clust, is
based on the Bi-CoPaM algorithm but with added automation of parameter selection
as well as added steps of cluster optimisation and completion. Nonetheless, further
developments in the computational methods within this domain will be needed to
analyse gene expression datasets as well as other types of datasets simultaneously.
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Chapter 5
Artificial Intelligence for Drug
Development

Muhammad Waqar Ashraf

Abstract Drugs are treated as life-saving medicines against life-threatening
diseases. However, drug developments pass through very complex and closely moni-
tored phases to ensure the safety and efficacy of the intended purpose. The efforts are
to keep highly toxic drugs from reaching even clinical trials. Even after the approval
for drug distribution in themarket, the drug’s post-marketing safety is analyzed by the
number of reported Adverse Events (AEs). It requires the analysis and interpretation
of massive data in all three stages namely pre-clinical, clinical and post-marketing
stages. In this article, we explore the use of Artificial Intelligence (AI) in interpreting
the huge data that is generated in the pre-clinical and clinical trials for safety purposes.

5.1 Introduction

The use of computers is not new in the field of Chemistry. It has been used in drug
development, for fertilizers of a crop, immunization programs through vaccinations
in human beings and many available cures of diseases. From the molecular struc-
tures to the delivery of a drug in the market, there are several stages where the
safety and efficacy of the drug need to be testified. All these steps involve massive
data that needs to be analyzed fully and their correlation with each other has to
be interpreted rightly in a limited time. In the era before computer involvement in
computation, all of these steps were done by an expert and experienced chemist. But
many linear/nonlinear patterns in that either were overlooked or not rightly inter-
preted by them. As the computational powers are increased, many methods have
been developed to analyze and interpret the data correctly. Drug development for the
treatment of disease needs extra careful examination to avoid any harm to human
health. It generally has two major stages: (1) clinical trials and (2) post-market anal-
ysis. Even before the clinical trial, there are various testings performed on animals
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to keep the toxicities from reaching clinical trials. These practices are essential to
ensure the safety of clinical trials in human beings. Clinical trials make sure that the
drug works well for its intended purpose safely. Post-market surveillance is gener-
ally analyzed by reported Adverse Events (AE). Unexpected toxicities are the major
factor of mortalities during clinical trials. Even some drugs have to be pulled off
from the market due to unexpected toxicities in post-market surveillance. Moreover,
drug development faces other challenges, too, like the associated cost of the process
[1], complexity of analyzing the safety data [2], etc. There are huge data involved in
all of these processes. It, therefore, is of utmost value to analyze the data and inter-
pret the results correctly during each stage. Artificial intelligence (AI) plays a very
important role in deciding the optimizing values of these parameters (e.g. molecular
structure, associated cost, safety in clinical trials and post-market safety record) in
the study of drug development [3–5]. Machine learning (ML) [6–8] is a data-driven
approach. It produces quite efficient results in analyzing various parameters related
to safety and the toxicity of medicine that is generally overlooked due to rare AEs. AI
application in analyzing vast data of the spread of a disease and clinical trials in drug
development has saved time in the development process of drugs and improved their
prediction and efficacy [9, 10]. These quick results give the decision-makers ample
time to be ready in time in a health emergency (pandemic, outbreak of a disease, etc.)
and make the right decisions to save lives. AI can be used to find the best treatment
strategies based on methods of diagnosis, drug and associated efficacy, safety and
least or no AEs [11]. A fast diagnosis of the COVID-19 pandemic can be made by
using AI in medical imaging. AI can pick the nonlinearities in the patterns without
the requirement of human involvement.

A significant research field that can benefit from implementing modern machine
learning and AI-based methods is the study of huge chemical datasets. The NCI
Open Database [12], published in 1999 and containing around 250,000 molecules,
was the only more extensive public chemical dataset available for several years.
The emergence of PubChem [13] and later ChEMBL [14] databases significantly
increased the quantity of chemical data accessible to the public for model training
and validation purposes. At present, PubChem has more than 100 million specific
compounds. In its latest 26th release, ChEMBL holds data on almost 2 million
compounds, 13,000 targets and 16 million connections between these compounds
and targets. The ZINCdatabase [15], which provides information on over 230million
currently accessible compounds, is another valuable source of public chemical data.
These three database channels provide a user-friendly web user interface, as the
data can be retrieved and locally analyzed. Several new analysis and visualization
tools have also been developed [16, 17]. The quantity of available data has recently
increased by different orders of magnitude through two new experimental advances.
DNA-based library synthesis [18] is one of those technologies where tens or even
hundreds of millions of molecules can be found in a single library. Today, chemical
databases contain large quantities of usable data but not all of these are publicly
available. Their advantages include many data points containing many chemical
information types, including toxicity, statistical results and even metadata [19].
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The approaches based on AI and machine learning can play an essential role in
navigating vast chemical spaces and independently converging on the right areas.
Vernek et al. [20] presented the AI approaches based on Generative Topographic
Mapping, a sophisticated dimensionality reduction technique used to compare in the
company database of a major pharmaceutical company with more than 8 million
commercially available samples. In this study, the accuracy of the approaches was
increased by using the AutoZoom function, which targets and automatically extracts
the data from the populated regions of chemical space. The technique was used to
classify commercial molecules collections that optimize the chemical space covered
by the molecules already accessible in the company archive under investigation.
Such approaches allow compound sets to be adaptively enriched. Tetko et al. [21]
identify a centered library generator capable of producing molecules with a greater
probability of displaying the desired characteristics. The generator is based on the
recurrent deep neural network of long short-term memory (LSTM) with outcomes
guided to a particular target by the reinforcement learning process.

The community expects more increases in available chemical matter with these
advances in mind, so we are likely to experience datasets with several billion
compound structures in the next century. Classical methods of computational chem-
istry always struggle with such very large datasets, while some major advancements
are promising [22, 23].

Below, we discuss the literature of artificial intelligence (AI) methods, both ML
andDL, on new collected huge data for pre-clinical and post-marketing observations.

5.2 Methodologies in Pre-clinical and Clinical Trials

Quantitative Structure-Activity Relationship (QSAR) is a method that establishes
a quantitative relationship between the molecular structure and pharma activity.
QSARM has first been reported by Hanch and Fujita [24] and Free and Wilson
[25]. Hanch and Fujita [24] have performed a regression analysis of molecular struc-
ture on biological activity. Motivated by the study, many researchers have used the
regression analysis model of chemical structures and their characteristic properties.
Moreover, various drug safety points can be modeled and rightly interpreted by the
QSARmodel [26, 27]. In particular, a good QSARmodel can analyze the correlation
between molecular structure and biological activity.

Early QSAR methods have used multivariate linear regression to analyze the
drug’s chemical properties [28].Due to the high dimensionality of data,many of these
methods follow certain data pointsmore closely and don′t give a goodfit. It, therefore,
interprets the results wrongly. To overcome these limitations, regressionmodels have
been developed. The linear regression model consists of biological activity (y) as a
dependent variable and molecular descriptor of the drug as a dependent variable (x).
So the prediction of biological property can be mathematically represented by y =
mx + c. The slope of above line “m” is called the Regression Coefficient.
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In the multiple linear regression (MLR) model [29], there will be more than one
molecular descriptor of the drug, and the property of the drug is determined by more
than one descriptor. Regression-based models have significantly improved the inter-
pretations of a QSARmodel but still, it has limitations. High data dimensionality and
assumption of linearity in regression models have restricted the use of QSARmodels
to limited tasks. Support Vector Machines (SVMs) [30] are used as an alternative to
interpreting the results than QSAR models better.

In SVMs, one finds a hyperplane in n-dimensional vector space. Here n refers to
a number of features. SVMs classify the data into two non-overlapping categories.
Wesley et al. [31] have reported that SVMs perform better than QSAR models.
SVMs can also be used in combination with LR/MLRmodels for better prediction of
biological properties. Recently, Nekoei [32] has combined a generic algorithm with
SVM to develop a QSAR model of the novel 4-aminopyrimidine-5-carbaldehyde
oxime derivatives as effective and selective inhibitors of potent VEGFR-2.

Artificial Intelligence uses an artificial neural network (ANN), which consists of
three layers, namely input, intermediate and output layers. The input layer carries the
molecular structure, which is processed in the intermediate layer, and drug property
is received as an output. The ANN model is quite useful to highly variable datasets
[33].

5.3 Post-Market Trials

Phocomelia in newborns was often thought of due to genetic inheritance before it was
revealed in 1962 by post-market trials. The disease is due to a commonly prescribed
sleeping pill given to pregnant women [34]. It shows that pre-clinical and clinical
trials are not full proof and there may be a chance of long-term negative effects on
human health. Therefore post-market trials are very important to remove toxic drugs
from the market. The post-market surveillance is done based on reported Adverse
Events (AEs). FDA in the United States maintains a database for reporting AEs.
However, it faces various challenges in terms of under-reporting and interpretation
of the dataset. To overcome the challenge, a new database and sophisticated compu-
tational techniques are required. The database should contain the adverse effects of
the drug on target and off-target. AI is beneficial to meet the challenge. Lorberbaum
et al. [35] proposed a modular assembly of drug safety subnetwork (MADSS) that
combines various biological and chemical data sources into a common network and
identifies an AE-module. The AE-module, along with the network, is used to find
out the correlation of drugs with reported AEs.
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5.4 Concluding Remarks

AI has attracted the attention of researchers due to its usefulness in a variety of
research fields, including chemistry and biology. AI has made it easy to study the
correlation between various parameters and find out the nonlinear behavior, if any.
The huge data generated in pre-clinical, clinical and post-clinical trials can be inter-
preted without human interference quickly. AI can also correlate the medical history
of patients with the reported AEs to find out the shortcomings of trials. This is a work
in progress and many correlations (genetically, lifestyle, etc.) are still to be explored
using AI in predicting AEs.
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Chapter 6
Mathematical Bases for 2D Insect Trap
Counts Modelling

Danish A. Ahmed, Joseph D. Bailey, Sergei V. Petrovskii,
and Michael B. Bonsall

Abstract Pitfall trapping is a predominant sampling method in insect ecology, inva-
sive species and agricultural pestmanagement. Once samples are collected, their con-
tent is analyzed, different species are identified and counted and then used to provide
reliable estimates of relative population abundance. Such estimates are essential for
a variety of reasons, such as the general survey of insect diversity, detection of new
insect invasions or simply for monitoring population levels. However, interpreting
trap counts is a challenging task, since captures can depend on a variety of factors,
such as environmental conditions, trap or survey design, insect movement behaviour,
etc. Mathematical models provide an extremely useful description of how insects
move in the field and in turn, can simulate the trapping process. In this chapter, we
present the mathematical bases for 2D insect trap counts modelling, at the mean-field
level using the diffusion equation and on an individual level using randomwalks. We
reveal the intricacies of the trap counts dynamics, with details on how trap geometries
and movement types can affect captures. We also describe the mathematical details
for other trapping methods, such as baited trapping, where an attractant is used to
lure the insects towards the trap location.
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6.1 Introduction

Insect trapping is central to many ecological studies [1, 2]. For ground-dwelling
(surface-active) insects, trap count samples are almost entirely collected with pitfall
traps [3]. These counts are then manipulated to provide key ecological information
on activity patterns, spatial distributions, total population abundance etc [4–7]. The
interpretation of trap counts is a notoriously difficult task, mainly due to the fact
that captures can be heavily influenced by many factors, for example, experimen-
tal design, insect movement behaviour, individual differences, weather conditions,
habitat type etc [8–11]. For some time now, field ecologists have highlighted that
since population estimates are drawn from the analysis of samples and, in some cases
used to inform control action policy, a better understanding of trap counts dynamics
is required [12].

Mathematical models and simulations provide an effective approach to investigate
trap counts [13, 14]. Simulations are cost effective, easy to replicate, and can provide
useful theoretical insights, that would normally be difficult to obtain from real field
experiments [15]. In this chapter, we present the mathematical bases behind the
modelling of 2D insect movement and trap counts.

• In Sect. 6.2, we describe the simplest models of insect movement in an isotropic
environment, using twodifferent yet equivalent approaches. Themean-field approach
using the diffusion equation describes the spatio-temporal population density, and
the random walk framework provides a mechanistic model for individual insect
movement. We also present the mathematical details of how to compute trap counts.

• In Sect. 6.3, we focusmore on the intricacies of trap counts based on geometrical
aspects. We investigate simulation artefacts, and how the shape or size of the trap or
arena can impact trap counts.

• In Sect. 6.4, we provide the reader with an overview of more complicated
movement models, whichmore closely describe real insect movement. Thesemodels
allow for short-term and/or long-term directional persistence in the movement. We
present their mathematical properties and summarize those metrics that are useful
for the analysis of movement paths.

• In Sect. 6.5, we reveal how captures can be affected by the type of movement
behaviour, and the mechanisms involved behind baited trapping, where insects are
receptive to an attractant, and therefore, are lured towards the trap.

A better understanding of the trap counts dynamics contributes towards improved
trap count interpretations, and has critical implications for spatial ecology and for
understanding the distribution and abundance of insect species. We hope that this
chapter will serve as an introductory read for ecologists, entomologists and field
experimentalists, who may be interested in the mathematical or theoretical aspects
of trap counts modelling.
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6.2 Mean Field and Mechanistic Models of Insect
Movement with Trapping

6.2.1 Isotropic Diffusion Model and Computing Trap Counts

Consider a population of insects browsing within a field with a single trap located
at the centre. At a simple level, if the environment is homogenous (isotropic) and
the insects are considered to be identical and moving randomly, then the population
density u can be modelled using the diffusion equation [16–18]

∂u

∂t
= D∇2u (6.1)

where ∇2 is the Laplacian operator, u = u(x, t) is a function of space x = (x, y)
and time t , and D is the (constant) diffusion coefficient. Alongside this movement
description, information is required related to the trap/field geometry, and how the
insects are distributed across space [13, 19]. For the choice of trap shape, we consider
a circular pitfall trap,which is themost frequently used infield studies, and also shown
to be the most capture efficient [8, 20]. Also, we consider the arena boundary to be
of circular shape and impenetrable, so that the whole population is confined at all
times. The choice of the arena boundary shape or size is not important, as long as it
is sufficiently larger than the trap size, see later Sect. 6.3.2 for more details.

Following these geometrical considerations, we use polar co-ordinates to describe
spatial location

x = r cos θ, y = r sin θ, r > 0, −π < θ ≤ π, (6.2)

with inverse
r =

√
x2 + y2, θ = atan2 (y, x) , (6.3)

where atan2 (y, x) is equal to arctan
( y
x

)
for x ≥ 0 and to arctan

( y
x

) ± π for x < 0.
The diffusion equation in (6.1) can then be expressed as

∂u

∂t
= D

(
1

r

∂u

∂r
+ ∂2u

∂r2

)
(6.4)

wherewehave assumed that the diffusion is everywhere radial and thus the population
density u = u(r, t) is axisymmetric i.e. independent of the angle θ. The domain of
the annular arena can be formally written as

Darena = {(r, θ) : a < r < R,−π < θ ≤ π} (6.5)
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Fig. 6.1 Snapshots of the population density u. The diffusion equation (6.4)was solved numerically
alongside the boundary conditions (6.6)–(6.7)with initial condition (6.8). Even for this simple geom-
etry, alongside these conditions, an analytical solution is difficult to obtain and it may not always
be instructive (e.g. being expressed as an infinite series of Bessel functions). Model parameters
include: diffusion coefficient D = 1, trap radius a = 1, outer boundary radius R = 20, and initial
density u0 = 1 (corresponding to a population size N0 ≈ 1254). The colour bar represents density
values

with trap radius a and outer boundary radius R. For the boundary conditions, we
have the zero-density condition on the trap boundary

u = 0 for r = a, (6.6)

and the zero-flux condition on the outer boundary

∂u

∂r
= 0 for r = R. (6.7)

If we assume that the population of insects is initially homogeneously distributed
over space, then the initial density is constant

u(r, t = 0) = u0. (6.8)

The population size as a function of time N (t) can be computed as

N (t) = 2π
∫ R

a
ru(r, t)dr, (6.9)

with initial population size N0 = N (t = 0) = π(R2 − a2).
Figure 6.1 illustrates snapshots of the population density, which is zero inside

the trap. Notice the perturbation that develops around the vicinity of the trap as the
density decreases closer to the trap boundary due to trapping.

Trap counts J (t) can be computed as the total diffusive flux through the circular
trap boundary over time t [21, 22], as
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J (t) = 2πD
∫ t

0

∂u

∂r

∣∣∣∣
r=a

dt ′. (6.10)

On assuming that there is no insect mortality or reproduction, the total number of
individuals that remain on the arena and the trap counts must always sum to the total
population size N0, leading to the relation

N (t) + J (t) = N0. (6.11)

Similarly, one could apply these concepts to a more complicated trap shapes, for
example, square shaped [13].

6.2.2 Individual Based Modelling Using Random Walks

The 2D curvilinear movement path of a single insect in the field x(t) = (x(t), y(t))
can be modelled using a discrete time and continuous space random walk (RW). The
path is mapped as a series of discrete steps linking an insects location xi = x(ti ),
recorded at discrete times ti = {t0, t1, t2, . . .}, and distance between any two suc-
cessive steps as step lengths li = |xi − xi−1| = {l1, l2, l3, . . .} with average velocity
vi = xi−xi−1

Δt and speed vi = |vi | [23]. Discrete time analyses of insect telemetry data
often work with regular time steps, and therefore, we assume ti = iΔt , with constant
time increment Δt = E[l]

v
independent of i , where E[l] is the mean step length and v

is the mean speed. The total duration in an n step RW is simply given as T = nΔt .
If we consider an insect situated at location xi−1 = (xi−1, yi−1) at time ti−1, then

the location at the next time step ti can be expressed as

xi = xi−1 + (Δx)i , i = 1, 2, 3, . . . (6.12)

where (Δx)i = (Δxi ,Δyi ) is a step vector whose components are random variables,
for the i th step along the walk. The 2D RW can be described in polar co-ordinates,
by expressing the step vector in terms of step lengths l and step orientations (or
headings) θ, using the transformation

Δx = l cos θ, Δy = l sin θ, l ∈ [0,∞), θ ∈ (−π,π] (6.13)

with inverse transformation

l =
√

(Δx)2 + (Δy)2, θ = atan2 (Δy,Δx) . (6.14)

The turning angleαi can then be measured as the difference between the orientations
of two successive steps

αi = θi − θi−1. (6.15)
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On assuming that step lengths and step orientations are neither autocorrelated nor
cross-correlated [24], the individual movement can be simulated once the distribu-
tions of step lengths λ(l) and turning angles ψ(α) are prescribed.

The mean cosine cα and the mean sine sα, defined as

cα = E[cosα] =
∫ π

−π

cos(α)ψ(α)dα, sα = E[sinα] =
∫ π

−π

sin(α)ψ(α)dα,

(6.16)
both lie between 0 and 1, and are useful statistical parameters that characterize the
turning angle distribution ψ(α). A null mean sine sα = 0 corresponds to a balanced
RW (i.e. left and right turns are equiprobable), in which case ψ(α) is centrally
symmetric. The mean cosine cα represents the correlation between the orientations
of successive steps. A null mean cosine cα = 0 corresponds to completely random
movement (known as a simpleRW), and at the other extreme end, cα = 1 corresponds
to straight line (or ballistic) movement [25].

6.2.3 Simple Random Walk (SRW)

The simple random walk (SRW) is isotropic (unbiased) which means that the indi-
vidual is equally likely to move in each possible direction [17, 26, 27]. In this case,
the distribution of turning angles ψ(α) is uniform and defined over the interval from
−π to π with null mean sine and cosine, i.e. a balanced uncorrelated RW. In general,
the SRW provides an oversimplified description for insect movement, and usually
serves as a theoretical baseline model for more complicated movement behaviours
[28, 29]. However, under certain scenarios, such a model can provide an accurate
description, for example, in the case of infected ants that behave like ‘zombies’, since
their movement behaviour has been observed to be completely random, rather than
directional walking [30].

The earliest successful modelling attempts to model movements of insects were
entirely based on SRWs whilst considering Gaussian increments, which is a discrete
time model of Brownian motion [13, 19]. For the remainder of this chapter, we
choose to rely on this, so that the distribution for the components of the step vector
Δx is:

φ(Δx) = 1

σ
√
2π

exp

(
− (Δx)2

2σ2

)
, φ(Δy) = 1

σ
√
2π

exp

(
− (Δy)2

2σ2

)
(6.17)

with mean E[Δx] = 0 and variance Var[Δx] = σ2, and exact same expressions for
Δy. Due to isotropicity, the variances are equal and depend on a single parameter σ
which represents the mobility of the insect. Also, note that in the more general case
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of non-Gaussian increments, the basic requirements are that the distribution of each
increment is symmetrical and zero-centered with finite variance.1

The corresponding probability distribution functions for step lengths and turning
angles (l,α) are given by

λ(l;σ) = l

σ2
exp

(
− l2

2σ2

)
, ψ(α) = 1

2π
, (6.18)

where λ(l) is the Rayleigh distribution with mean step length and mean squared step
length

E[l] = σ
√
2π

2
, E[l2] = 2σ2 (6.19)

and ψ(α) is the uniform distribution, see [14] for a derivation of the equations in
(6.18) from the Gaussian step increments in (6.17). Note that, a finite variance is
always ensured if the step length distribution λ(l) decays sufficiently fast at large
l, and this holds for the Rayleigh distribution whose end tail decays faster than
exponential.

6.2.4 Simulating Trapping

Recall that in Sect. 6.2.1 we considered a confined population of N0 individuals, ini-
tially homogenously distributed on an annular arena (a < r < R). For an individual
based description, the initial location x0 of each individual is simulated as

x0 ∼
(√(

R2 − a2
)
U + a2, 2πU

)
(6.20)

where U is a random variable drawn from the uniform distribution between 0 and
1. Note that, for an arbitrary trap shape or outer boundary, the arena no longer has
an infinite number of symmetry axes, and therefore, initial locations can be drawn at
random over the whole space within the outer boundary, and remove those occurring
within the trap. Once the initial distribution is prescribed, the movement of each
individual can be modelled independently by a SRW with Gaussian increments, and
therefore, by extension, the distribution of the population in space [33]. The popula-
tion is confined due to the impenetrable arena boundary, and therefore, we impose
the ‘no-go’ condition, so that if an individual attempts to overstep the boundary, then
an alternative step with a completely new random direction is chosen at the previous
location [34].

1 This is to avoid any resulting global biases in the movement path (Biased RW [27], see later
Sect. 6.4.4) or the case of heavy tails (Lévy walks or flights [31, 32]).
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Fig. 6.2 Snapshots of the population spatial distribution with initial density u0 = 1 (corresponding
to a population size N0 ≈ 1254 individuals). Each individual performs a SRWwith Gaussian incre-
ments (independently) with mobility parameter σ = √

0.02 ≈ 0.1414. Trap and arena boundary
radii are a = 1 and R = 20. Time is computed as t = nΔt with time increment Δt = 0.01, where
n is the maximum number of steps in the walk

We introduce the concept of trapping by stating that at each time ti , those indi-
viduals whose location lies within the trap (r < a) are removed, and these counts
are summed so that (accumulated) trap counts J (ti ) can be computed [13, 20]. Trap
counts can then be presented as a monotonously increasing stochastic trajectory in
terms of discrete time, (see later, the dashed curve in Fig. 6.3). The effect of noise
can be further decreased by averaging over many simulation runs, resembling a col-
lection of multiple samples in the real field, or by increasing the population size N0

(or equivalently the initial density u0 given a fixed arena area).
Figure 6.2 illustrates snapshots of the spatial distribution of a confined population

performing a SRW on an annulus with a circular trap installed at the centre. With
time, the population decreases as a result of trapping. Compare this to Fig. 6.1, where
the equivalent mean-field diffusion model was used.

6.2.5 Equivalent Trap Counts

It is well known that for a SRW, the governing mean-field equation is the diffusion
equation, which can be explicitly derived from first principles [26, 27, 35]. A useful
metric to analyze movement patterns is the mean squared displacement (MSD),
which is defined as the expected value of the squared beeline distance between an
individuals initial and final positions. For the SRW, the MSD is

E
[
R2
n

] = nE
[
l2

]
(6.21)

and can also be related to the diffusion coefficient D, as follows:

E
[
R2
n

] = 4DnΔt, (6.22)
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Fig. 6.3 Trap counts computed using: a mean-field approach as the total diffusive flux through the
circular trap boundary, see Eq. (6.10), and b individual-basedmodel where trap counts are simulated
using the method described in Sect. 6.2.4. All details regarding arena dimensions, and movement
parameters are the same as in the captions of Figs. 6.1 and 6.2. Note that the relation between the
movement parameters σ and D satisfy Eq. (6.23), which links these different approaches

which illustrates that the MSD grows linearly with time [18, 27, 36]. On equating
(6.21) and (6.22), and given that the mean squared step length for a SRW with
Gaussian increments is 2σ2 from (6.19), one gets

σ2 = 2DΔt. (6.23)

This provides a direct relationship between the mobility parameter of individual
movement σ and the diffusion coefficient D.

Figure 6.3 demonstrates that the trap counts are equivalent, whether we model
insect movement at the individual level or using the corresponding mean-field
description. This is a classical example of how these different modelling approaches
are complementary.

6.3 Geometrical Considerations for Trap Counts Modelling

6.3.1 Simulation Artefacts Due to the RW Jump Process

The RWmodel described in Sect. 6.2.2 is essentially a position jump process, where
only the location of an individual after each step is recorded, and any information
regarding the movement path in between locations is lost [37, 38]. Under this con-
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Fig. 6.4 Trap counts recorded at the end location (‘jumping’), or using sub step lengths (‘crawling’)
with a step length increment ofΔl = 0.1. An annular arena is consideredwith outer boundary radius
R = 20, and circular trap installed at the centre with radius a = 1 or a = 2. Each individual in the
population performs a SRW with Gaussian increments, with σ varied, and executes a maximum
number of n = 200 steps. The population density is chosen to be sufficiently large to reduce noise

struction, the line segment which links two subsequent locations may intersect with
the trap boundary, and therefore, it is possible for an individual to ‘jump’ over the
trap and go undetected—resulting in a null trap count. This is more likely to occur
if an individual can execute longer steps, i.e. if the mobility parameter σ is large
enough, as it is directly linked to the mean step length. Following this, one could
expect a critical relation between σ and the characteristic scale length of the trap.

Suppose that an individual moves from location xi−1 to xi with step length li .
Rather than checking if the individual lies within the trap at each end location,
we can check at intermediate points (sub step lengths) by considering step length
increments of Δl

(Δl)li with 0 < Δl < 1. (6.24)

This process could resemble an insect that persists to ‘crawl’ from xi−1 to xi , whilst
maintaining the same direction of movement, but only execute a turn once it arrives
at location xi .

Figure 6.4 demonstrates the critical value beyond which the trap count dynamics
shift, precisely where the mean step length is equal to the circular trap diameter
E(l) = 2a, indicated by the vertical dashed line. If

E[l] < 2a, (6.25)

then the chances of the individual jumping over the trap are less likely, and therefore,
the trap counts are similar. However, if E[l] ≥ 2a, the frequency of jumping over the
trap is more likely, and as a result trap counts can be grossly underestimated. In the
particular case of a SRW with Gaussian increments, we can derive an upper bound
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on the mobility parameter from Eq. (6.25), so that one gets

σ <
4a√
2π

(6.26)

where the mean step length is given in Eq. (6.19).

6.3.2 Impact of the Arena Boundary Shape, Size and the
Average Release Distance

The impact of the arena boundary shape and size on trap counts is negligible as long
as it is sufficiently larger than the trap size. However, this raises the question: how
much larger should it be so that the effect is not realized? To determine this, we
consider the arena boundary to be of circular or square shape, which is usually the
default choice in real field experiments, with a circular trap installed at the centre.
Here, we consider the area of the arena to be equal (see Fig. 6.5), so that the insects
browse over the same amount of space.

Figure 6.6 shows that if the arena area is greater than 5000 units2, then the absolute
trap count differences lie well below 1%, indicated by the horizontal dotted line.
However, for much larger trap sizes these differences decay more slowly, and thus

Fig. 6.5 Plots a–c Annular arena with increasing outer boundary radius R = 5, 10, 20. Plots d–f
Square boundary with side lengths L . The arenas have the same area, and boundary dimensions are
related by the equation L = √

πR. In either case, a circular trap is placed at the centre with radius
a = 1
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Fig. 6.6 Absolute trap count differences were computed between the set up described in Fig. 6.5.
Circular traps of varying sizeswere consideredwith radius a = 0.5, 1, 2. Each individual performed
a SRW with Gaussian increments with σ = 0.5. Trap counts were computed at time t = 20, and
the initial population density was fixed to ensure sufficient reduction of noise. Note that, for small
arena sizes, trap counts accumulate much faster, even for a short amount of time, and therefore, trap
count differences can vary significantly

requires a larger arena size to offset the impact on trap count differences. It follows
that, in the case of an annular arena with a circular trap of unit radius, the outer
boundary radius must be at least 40 fold, and under this condition, its shape is not
that important.

This result also has some further implications, as the average initial release dis-
tance of the individuals (as measured from the centre of the trap), will be different
depending on the shape of the outer boundary. One may naively assume that these
differences can possibly explain a variation in trap counts. However, we have demon-
strated that this depends on the relative size of the outer boundary, and if sufficiently
larger than the trap size, any fundamental trap count differences that may emerge
due to other factors (for example, different trap shapes or movement types, etc.), are
actual and not a result of differences in the average initial release distance.

6.3.3 Impact of Trap Shape

To determine how trap counts may be impacted by the trap shape, we consider the
circular, square and slot (rectangular) trap shapes with geometry D defined as

(i) Circular trap with radius a
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Dcircle = {
(x, y)| x2 + y2 < a2

}
(6.27)

(ii) Square trap with equal side lengths b

Dsquare =
{
(x, y)

∣∣∣∣ |x | <
b

2
, |y| <

b

2

}
, (6.28)

(iii) Slot trap with base length b1 and width b2

Dslot =
{
(x, y)

∣∣∣∣ |x | <
b1
2

, |y| <
b2
2

}
. (6.29)

For the slot trap, we can express the width in terms of base length as b2 = εb1, where
ε is the aspect ratio, and the square trap can be considered as a particular case for
ε = 1, so that b1 = b2 = b. Square or slot traps are sometimes used in real field
experiments [39].

We consider different scenarios where a single trap of either shape (6.27)–(6.29)
is placed at the centre of an arena with a circular outer boundary of radius R. To fairly
compare trap efficiencies in confined space, the trap dimensions should be related
on a basis of equal perimeter lengths P (and not by trap area) [1, 8, 40]. This can be
argued by the fact that trapping is fundamentally a phenomenon of interactions with
the trap boundary. Following this, one gets

b1 = πa

1 + ε
, b2 = εb1 (6.30)

which reads b = πa
2 on relating the circular and square traps.

Figure 6.7 illustrates the trap shapes of equal perimeter lengths: (a) circle trap,
(b)–(d) shows the transition from square to slot shape, which is characterized by the
aspect ratio ε. As ε increases from 1, the base length decreases and width increases,
forming a thinner rectangular slot with smaller area. Recall from Eq. (6.25) that if
the mean step length is less than the trap diameter, then sub step lengths need not

Fig. 6.7 Illustration of the trap shapes. a Circular trap with radius a = 1, b Square trap with side
lengths b = π

2 (ε = 1), c Slot trap with base length b1 = π
6 and width b2 = 5π

6 (ε = 5). c Thinner
slot trap with b1 = π

11 and b2 = 10π
11 (ε = 10). All traps have the same perimeter length P = πa



146 D. A. Ahmed et al.

Fig. 6.8 Trap counts computed for different trap shapes whilst allowing for a individuals to ‘jump’
over the trap or b using sub step lengths with incrementΔl = 0.1. Trap shapes are either circle with
radius a = 1, square (ε = 1) or rectangular slot (ε = 5, 10) with equal perimeter lengths P = 2π.
Dimensions of the square/slot traps can be determined from the equations in (6.30). The outer
boundary is of circular shape with radius R = 20. Note that, the impact of different arena sizes
(or equivalently average initial release distances) due to small changes in trap areas is negligible.
The movement process is a SRW with Gaussian increments with σ = 1.5, so that E(l) < 2a, and
therefore, trap counts are similar for the circular trap in both plots, where it does not matter if
individuals are allowed to jump over the trap or not. The initial population was uniformly distributed
over the arena, and the density was fixed to ensure sufficient reduction of noise

be considered. However, for thinner slots, it is more likely for individuals to ‘jump’
over the trap, and therefore, one must take additional care and use sub steps.

Figure 6.8 compares trap counts across different scenarios with circle, square or
slot shaped traps of equal perimeter lengths. In plot (a) we find that there is a large
difference between trapping efficiencies, but this is a direct result of individuals
‘jumping’ over the trap, where trap counts were grossly underestimated for thinner
slot traps. This methodology was used in [20]. In plot (b) we have the ‘actual’
corrected trap counts by using sub step lengths. In either case, we find that there is
a hierarchy of trap shapes in terms of trapping efficiency, with the circle trap as the
optimal shape, followed by the square and slot traps—with decreasing efficiency for
thinner slots (i.e. as the aspect ratio ε increases). In plot (b), the trap count differences
may seem minute, however, in a multiple trapping scenario, the differences in the
number of captures can be exacerbated based on the choice of trap shape.
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6.4 Anisotropic Models of Insect Movement

6.4.1 Correlated Random Walk (CRW)

In a more realistic scenario, an insect is more likely to keep moving in the same
direction in the short term rather than to perform abrupt turns—allowing for corre-
lation between the orientations of successive steps. As a result, there is a short-term
localized directional bias in the movement path (forward persistence), and the cor-
responding movement process is anisotropic and known as the correlated random
walk (CRW)’ [41–44]. In this case, the turning angle distribution is zero-centered
and centrally symmetric with null mean sine if we consider a balanced CRW, and
peaked about the mean value. An example of such is the von Mises distribution

ψ(α;κ) = eκ cosα

2π I0(κ)
, I0(κ) = 1

2π

∫ π

−π

eκ cosαdα (6.31)

which ranges from −π to π, and the concentration parameter κ ∈ [0,∞) measures
the strength of the short-term directional persistence [45]. Here, I0(κ) denotes the
zeroth order modified Bessel function of the first kind, defined through the integral
indicated in Eq. (6.31).

For the von Mises distribution, the mean cosine cα is computed as

cα = I1(κ)

I0(κ)
. (6.32)

With increasing cα (or equivalentlyκ) there is an increase in the short-termdirectional
persistence. However, in the case of a null mean cosine, the von Mises distribution
reduces to the uniform distribution, in which case the SRW can be considered as a
special case of the CRW. Note that other types of peaked circular distributions which
are commonly used include the wrapped or truncated normal or the wrapped Cauchy
distribution [46, 47].

6.4.2 MSD Formula for the CRW

The Mean Squared Displacement (MSD) of a 2D balanced CRW, is given by

E
[
R2
n

] = nE
[
l2

] + 2E[l]2 cα

1 − cα

(
n − 1 − cnα

1 − cα

)
, (6.33)

which is expressed in terms of moments of step length l, mean cosine of the turning
angle cα, and step number n [27, 42]. As an aside note, the equation for the MSD
of a non-balanced CRW is more complicated, and can be found in [43]. For a SRW,
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we have that cα = 0, and therefore, the MSD reduces to that previously seen in
Eq. (6.21).

In case of a CRW, for a large number of steps n, the MSD approaches

E
[
R2
n

]
a = n

(
E

[
l2

] + 2E[l]2 cα

1 − cα

)
, (6.34)

where the subscript ‘a’ is included here to represent the asymptotic value to which
the MSD tends when n increases indefinitely.

It is readily seen from Eq. (6.34) that the actual MSD is asymptotically propor-
tional to n, and therefore, the walk becomes isotropically diffusive in the long term.
To demonstrate how the MSD behaves for a small number of steps, consider the case
with a high directional persistence, so that cα = 1 − δ where δ � 1. It follows that:

1 − cnα = 1 − (1 − δ)n = nδ − 1

2
n(n − 1)δ2 + O(δ3), (6.35)

and on omitting terms of order δ3 and higher, Eq. (6.33) becomes

E
[
R2
n

]
b = n

(
E

[
l2

] + E[l]2(1 − δ)(n − 1)
)
, (6.36)

where subscript ‘b’ is used for the MSD expression in case of small n. Therefore, in
the general case cα �= 0, the actualMSD in Eq. (6.33) describes the movement that in
the course of time (measured here as the number of steps along the path) slows down
from almost ballistic movement (i.e. the dominant term in E

[
R2
n

]
b is n

2) to diffusion
motion (i.e. E

[
R2
n

]
a grows linearly with n). This is also valid, more generally, for

any cα > 0, but is more prominent when cα is close to 1.

6.4.3 Measuring Tortuosity

The amount of turning in an insect’s movement path (tortuosity), can be quantified
by the sinuosity index [24, 25, 48], defined as

S =
√

v

D
, (6.37)

where v = E[l]
Δt is the mean speed and D is the diffusion coefficient, which can also

be written as

S =
√

E[l]
DΔt

. (6.38)

For an isotropically diffusive 2D RW, the MSD is related to D through Eq. (6.22).
It follows that an equivalent expression for the sinuosity index, written explicitly in
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terms of the asymptotic MSD in Eq. (6.34) and mean path length L = nE[l] is

S = 2

√
L

E
[
R2
n

]
a

. (6.39)

Note that, although the sinuosity index S is frequently used, there are various other
methods of quantifying the tortuosity of discrete movement paths, see [49].

6.4.4 Biased Random Walk (BRW)

The Biased Random Walk (BRW) differs from the SRW and CRW by featuring
a preference towards a certain direction at each time step and, unlike the CRW,
retains no knowledge of the previous movement direction. Therefore, the BRW can
be considered as a SRW with a latent preference to move towards a target and is
often referred to as a random walk with drift. This bias in movement can be towards
a specific point in space, in which case the orientation of the preferred direction will
depend upon the spatial location of the individual at each step [27, 50, 51], or it can
be towards a specific direction (often referred to as a ‘point at infinity’), for example,
magnetic North [24, 27, 52].

In the case of the bias being towards a constant global direction, the distribution
of turning angles ψ(α) will remain zero-centred and centrally symmetric with mean
cosine c′

α and null mean sine s ′
α = 0 (we include the prime to distinguish between

this and the mean cosine/sine used for the CRW). However, the distribution of the
global directions ω(θ) which measures the angle of each location clockwise from
the positive x-axis (equivalent to the angle θ used in polar form in Sect. 6.2.2), will
not necessarily be zero-centred. Instead, ω(θ)will be centred around the angle of the
global direction bias measured from the positive x-axis. Mathematically this results
in the mean sine sθ, not necessarily being equal to 0. For example, the von Mises
distribution would now have the form

ω(θ;κ′,μ) = eκ′ cos(θ−μ)

2π I0(κ′)
, (6.40)

whereκ′ is the concentration parameter andμ is the angle towards the global direction
of bias taken clockwise relative to the positive x-axis, c.f. Eq. (6.31).

The strength of the bias is now dependent on both the mean cosine cθ and mean
sine sθ values of ω, or the mean cosine c′

α of the turning angle, and are related to κ′
by the relation

c′
α = c2θ + s2θ =

(
I1(κ′)
I0(κ′)

)2

. (6.41)
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Increasing values of c2θ + s2θ (or equivalently κ′) gives an increase in the strength of
the bias, with c2θ + s2θ → 1 resulting in movement that is close to ‘straight-line’ or
ballistic. Whereas, c2θ + s2θ = 0 (or κ′ = 0) reduces the von Mises distribution to the
uniform distribution, and therefore, the BRW is equivalent to a SRW.

An important difference between the BRW and the CRW (including SRW as a
special case) is that the expected location of an individual E[x], is now not equal
to the starting location of the individual. In the case for the bias being in a global
direction, the expected location increases linearlywith the number of steps n, towards
the direction of the bias, and is given by

E[x] = (x0, y0) + nE[l](cθ, sθ), (6.42)

where (x0, y0) is the starting location and E[l](cθ, sθ) is the drift [53].

6.4.5 MSD Formula for the BRW

In the case of a BRW, where the bias is towards a constant global direction, the MSD
is given by

E[R2
n] = nE[l2] + n(n − 1)E[l]2c′

α = n
(
E[l2] − E[l]2c′

α

)

︸ ︷︷ ︸
diffusion term

+ n2E[l]2c′
α︸ ︷︷ ︸

drift term

(6.43)

where c′
α is the mean cosine of the turning angles for the BRW. Equation (6.43)

reflects the fact that the BRW is essentially a combination of the diffusive random
walk and a drift, so that in the large time the corresponding MSD is dominated by
the contribution from the drift [24]. In the case where there is no long-term bias,
the mean cosine c′

α is null, and hence the MSD reduces to the MSD for the SRW as
previously see in Eq. (6.21).

6.4.6 Equivalent RWs in Terms of Diffusion

In this section, we derive the conditions under which two balanced CRWs are
‘equivalent’, in the sense that they have the same MSD after n steps, given that n is
sufficiently large. The MSD from Eq. (6.34) can be written as

E
[
R2
n

] = LE[l]
(
1 + cα

1 − cα
+ γ2

)
, (6.44)

where L = nE[l] is the mean path length and γ =
√

E[l2]
E[l]2 − 1 is the coefficient of

variation. If we consider a second balanced RW with step length l∗ and mean cosine
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c∗
α, assuming the same coefficient of variation and mean path length L , we obtain
the following ‘condition of equivalence’:

E[l∗]
E[l] =

⎛

⎝ 1 − c∗
α

1 +
(
1−γ2

1+γ2

)
c∗
α

⎞

⎠

⎛

⎝
1 +

(
1−γ2

1+γ2

)
cα

1 − cα

⎞

⎠ , (6.45)

so that both RWs have, asymptotically, the exact sameMSD. If we consider the above
relation, where one of the RWs is a SRW, say c∗

α = 0, then the above reduces to

E[l∗]
E[l] =

1 +
(
1−γ2

1+γ2

)
cα

1 − cα
. (6.46)

Now consider a CRW and a BRW with step lengths l, l ′ and mean cosines cα, c′
α,

respectively. To obtain a condition of equivalence between these RWs we assume the
same path length L , same coefficient of variation γ and the same diffusivity, i.e. the
same MSD part which arises from diffusion. In a CRW, the MSD is asymptotically
due only to diffusion and is given by Eq. (6.44). In a BRW, the MSD given by
Eq. (6.43), written as the sum of diffusion and drift terms, can be written as

E
[
R2
n

] = LE
[
l ′
]
(1 − c′

α + γ2)
︸ ︷︷ ︸

diffusion term

+ L2c′
α︸︷︷︸

drift term

. (6.47)

By Eq. (6.44) with the diffusive term in Eq. (6.47), and on re-arranging, one gets

E[l]
E[l ′] =

(
1 − c′

α

1 + γ2

)⎛

⎝ 1 − cα

1 +
(
1−γ2

1+γ2

)
cα

⎞

⎠ , (6.48)

If we consider a SRW as a special case of the CRW with step length l∗ and mean
cosine c∗

α = 0, then the above relation reduces to

E[l∗]
E[l ′] = 1 − c′

α

1 + γ2
(6.49)

where c′
α is given in Eq. (6.41) for a von Mises distribution of turning angles.

6.4.7 Drift Diffusion Equation

In Sect. 6.2.5, wementioned that for a SRW the governingmean-field equation for the
spatio-temporal population density u = u(x, t) is the standard diffusion equation. In
the case of a BRW,which has a constant global preferred direction, the corresponding
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equation is the drift (or advection) diffusion equation [27], written as

∂u

∂t
= −v · ∇u + D∇2u, (6.50)

where ∇ =
(

∂
∂x ,

∂
∂y

)
is the gradient operator, v = (v1, v2) is the (constant) average

drift velocity and D is the constant diffusion coefficient. The first term on the RHS
in the above equation relates to the drift involved in the BRW whilst the second
term describes the diffusion. Note that, in the case where there is no drift v = 0, the
drift diffusion equation returns to the standard diffusion equation previously seen in
Eq. (6.1).

The drift diffusion equation provides a useful baseline case for modelling a pop-
ulation that responds to an attractant (or lure) in a unified global direction. However,
formore complicated trapping scenarios, for example, with a baited trap in an annular
arena, the bias is spatially dependent, and the governing PDE is much more complex
(i.e. the Fokker Planck equation [27]). Analytical solutions are only available in very
specific cases [27, 54], and therefore, for the most part must be solved numerically.

6.4.8 Biased and Correlated Random Walk (BCRW)

The BRW and CRW models can be extended if we consider a RW which allows
for both short and long-term biases. These biased and correlated random walks
(BCRW) give a more flexible approach to modelling insect movement, as they allow
individuals to move with both some knowledge of their previous direction, as well as
with a preference towards a specific direction or target [51, 55, 56]. BCRW can be
expressed in various ways depending on how the biased and correlated components
are to be combined. For example, they can be considered as a weighted vector sum
where the change in location is governed by the equations [56, 57]

(Δx)i =li
[
w cos (Ωi−1) + (1 − w) cos θi−1

]
,

(Δy)i =li
[
w sin (Ωi−1) + (1 − w) sin θi−1

]
, (6.51)

where li is the step length, w is the weighting factor w ∈ [0, 1], Ωi−1 is the local
direction of the target and θi−1 is the previous direction of movement, and all angles
aremeasuredwith respect to the positive x-axis andmodelled by circular distributions
as in Sect. 6.4.4.

A similar model for a BCRW is formed by weighting the angles of movement
[51, 58]

θi = wΩi−1 + (1 − w)θi−1. (6.52)

Note that for both these cases as w → 0 the BCRW more closely resembles a pure
CRW, whereas as w → 1 the movement becomes more similar to a BRW.
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Whilst these two models look similar, there is a subtle but important difference
that can lead to qualitatively and quantitatively different movement behaviour. The
vector weighted method in Eq. (6.51) uses the weighting parameter to decide how
far in the direction of each component the individual moves, whereas, Eq. (6.52)
gives a weighted average of the two directional angles dependent on the weighting.
This difference can be highlighted by considering the extreme case whereΩi−1 = 0,
θi−1 = π andw = 0.5. In the vector weighted approach, the individual would remain
at its current location, whereas in the angular approach the individual moves in a
direction with angle θi = π

2 . Both these models require the individual to constantly
balance their forward persistence and navigation at each time step.

6.5 Effect of Movement on Trap Counts

6.5.1 Effect of Movement Diffusion

In Sect. 6.3 we focused on the impact of geometry on trap counts, and relied solely
on a SRWmodel for individual movement. To understand how short-term directional
persistence may effect trap counts, we consider two scenarios, where each individ-
ual in the population performs a CRW with either (a) increasing diffusion, or (b)
with the same diffusion. For the latter, we have already presented the conditions of
‘equivalence’ in Sect. 6.4.6 to directly relate the CRW to a SRW, see Eq. (6.46).

Consider a CRW and a SRW with Gaussian increments, so that step lengths
l, l∗ are distributed according to the Rayleigh distribution given in (6.18) with scale
parameters σ,σ∗, respectively. The turning angle distribution is given by the von
Mises distribution in (6.31) for the CRW with mean cosine cα, and the uniform
distribution for the SRW with null mean cosine. Assuming that both these walks
have the same mean path length and fixed step length coefficient of variation γ =√

4
π

− 1, and provided that the step number n is sufficiently large, we can relate scale
parameters from Eq. (6.46), which reads

σ∗

σ
= 1 + (

π
2 − 1

)
cα

1 − cα
. (6.53)

Also, note that a CRWbehaves as a SRW in the long term, and therefore, the sinuosity
is the same with value

S =
(
2π

σ∗2

) 1
4

. (6.54)

Figure 6.9 demonstrates that if all individuals traverse the same maximum path
length, the trap counts tend to remain the same with an increase in diffusion, but
can decrease significantly if there is a strong short-term directional persistence. This
can be explained by the fact that a strong short-term bias leads to a movement path
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Fig. 6.9 Trap counts plotted as a function of mean cosines. Each individual in the population
performs a CRW, with the SRW as a special case for c∗

α = 0. In a, the diffusion increases with
the mean cosine cα, and the movement scale parameters are the same for all walks σ∗ = σ = 1.5.
Sinuosity values gradually decrease from S = 1.29 for c∗

α = 0 (κ∗ = 0) to S = 0.16 for cα = 0.975
(κ = 20.26). In this case, the step number is fixed as n = 1000 (corresponding to time t = 10 with
time increment Δt = 0.01), and the same maximum path length L = 1880 is traversed. In b, the
movement scale parameter σ decreases from σ∗ = 1.5 with an increase in cα, and the step number n
is increased (corresponding to different times), to ensure that each RW has the exact same sinuosity
value S = 1.29, see Eqs. (6.53) and (6.54), and the same maximum path length L = 1880. As a
result, the asymptoticMSD remains the same. In terms of geometry, we considered a circular trap of
unit radius with circular outer boundary of radius R = 20, with an initial homogeneous population
distribution on the arena. To ensure the population is confined at all times, if an individual attempts
to overstep the boundary, then an alternative step with a completely random direction is chosen at
the previous location. Note that, for the SRW (c∗

α = 0), the trap counts correspond with those seen
in Fig. 6.8 for the circular trap

which is close to straight line movement, therefore, those individuals moving away
from the trap and close to the outer boundary will tend to accumulate at the boundary
edge. However, if diffusion is kept constant, then the trap counts remain the same,
irrespective of the strength of the short-term directional bias.

6.5.2 Baited Trapping

Traps can be baited with the use of chemical or visual lures (for example, sex or
aggregation pheromones, or light), to attract insects towards the trap location, and
are commonly used to monitor insect pest populations [2, 59]. Clearly, attractant
baited traps are more efficient in obtaining trap counts in comparison to passive
pitfall traps. This can be particularly useful in capturing pest insect species at low
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Fig. 6.10 Trap counts plotted as a function of the weighting factor w. Each individual in the
population performs a BCRW with the centre of the circular trap as the global target direction.
We considered Gaussian step increments with movement scale parameter σ = 1.5. The strength
of the long-term bias was fixed, and measured through the mean cosine with value c′

α = 0.25
(corresponding to concentration parameter κ′ = 1.16), and cα corresponds to the strength of the
short-term directional persistence. Each individual in the population executes a maximum number
of n = 100 steps, corresponding to time t = 1 with time increment Δt = 0.01. All other details are
the same as in the caption of Fig. 6.9

densities [60], or to detect foreign or ‘exotic’ pests as soon as they enter an area [61].
Once a trap is baited, and the insect population is receptive to the lure, the movement
is globally biased towards the trap location and can be modelled using a BCRW, see
Sect. 6.4.8. Under such a description, the insects may balance short and long-term
directional persistence mechanisms as they navigate through space.

Figure 6.10 shows that in the absence of long term bias (w = 0), trap counts
decrease with increasing short-term directional persistence (or increasing diffusion),
as previously seen in Sect. 6.5.1. However, with an increase in w, the long-term bias
becomes more dominant, as more weight is given to the BRW component, and as
a result each individual navigates in the long term towards the trap, resembling the
type of movement behaviour one may expect if the trap is baited.

6.6 Concluding Remarks

Ground dwelling insects are almost exclusively sampled through the use of pitfall
traps [3]. This is mainly due to the simplicity of the methods, where these sorts of
traps are relatively easy to construct and deploy and, trap counts can be manipulated
to obtain important information on patterns on insect distribution and abundance [1,
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62]. Interpreting trap count data is challenging, partly due to the fact trappingmethod-
ologies can vary considerably, in relation to survey design and how trap counts are
reported [63, 64]. Although there have been some recent attempts to address this (see
[11]),more broadly, it can be difficult to drawmeaningful comparisons across studies.
In this context, mathematical models provide a useful and cost-effective alternative
to real field experiments [13, 19, 65]. In particular, mean-field approaches andmech-
anistic models of individual movement can be used to study the details of trap counts
dynamics, often providing complementary information or even information that may
be difficult to obtain from field sampling [14]. In this chapter, we have provided an
overview of the keymathematical approaches that have been developed for 2D insect
trap counts modelling and have focused on important concepts related to trapping.
In particular, we have highlighted the variation in trap counts due to trap geome-
tries, differences between passive and baited traps and the effects of movement. This
information has important implications for spatial ecology.

Spatial ecology necessitates a full understanding of movement. Understanding
how habitats are connected by dispersal and movement is critical to determining the
distribution, abundance and persistence of insect species. For instance, understand-
ing the drivers of asynchrony in population fluctuations in metapopulation dynamics
(e.g. [66]) now necessitates great attention to mechanistic detail. The mean squared
displacement is an important metric for evaluating movement patterns and partic-
ularly for inferring random walks from data [43] (see Sect. 6.4.2). Utilizing these
approaches allows the spatial distribution, and hence the likelymetapopulation struc-
tures of a species to be determined (e.g. [67]). The approaches we review in this
chapter highlight the importance of trap counts modelling to spatial dynamics (albeit
in 2D). Extending these mechanistic explanations for movement further is critical
for advancing spatial ecology and building the work we present here to 3D (i.e. for
flying insects) is critical for a richer appreciation of mechanistic movement ecologies
to metapopulation and spatial ecological dynamics [68, 69].
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Chapter 7
Artificial Intelligence in Dermatology:
A Case Study for Facial Skin Diseases

Rola El-Saleh, Hazem Zein, Samer Chantaf, and Amine Nait-ali

Abstract The purpose of the first part of this chapter is to cover broadly the concept
of using Artificial Intelligence (AI) in the field of dermatology. Afterward, it will
mainly focus on facial skin diseases by covering some commonAI-based approaches.
The aim of this research application is the ability to identify certain pathologies by
analyzing face images with present lesions through both AI and computer vision
techniques. In particular, a special interest will be addressed toMachine-learning and
Deep-learning approaches. In a case study, some key functionalities of a prototype
software, developed by our research biometric group, will be presented.

7.1 Introduction

Analyzing human skin health using artificial intelligence (AI) is neither a new idea
nor a new technology. For decades, researchers have been developing automatic tech-
niques to analyze human skin images in order to identify diseases, to quantify and
to track their evolution over time. General-purpose image processing and, in partic-
ular, pattern recognition algorithms were used for this purpose. After the processing
phase, extracted features are then passed through classifiers in order to assign each
skin lesion to the most likely disease. Based on this analysis, this type of processing
may somehowbe considered asAI-based.However, it is controversial in the scientific
community because some may argue that the processing models are not obviously
inspired from human perception. Nowadays, technologies dedicated to skin analysis
are getting much and more advanced. Consequently, AI-based methods make more
sense due to the following reasons: (1) easy access to high-performance computers
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(2) recent advances in machine-learning and deep-learning, (3) increase of medical
image databases in terms of quantity and quality. Considering dermatology applica-
tions, it is obvious that we reached a stage where dermatologists are currently using
AI as a clinical assistant system. This statement doesn’t exclude the fact that, one
day, AI might compete with humans in this field. Within this context, many research
groups are collaborating with companies to develop interesting and promising appli-
cations such as the analysis of skin cancer. This is achieved by training the AI models
over thousands or even hundred of thousands of skin images. Such systems are able
to classify lesion images, either as benign or malignant (e.g., melanoma). More-
over, they can be used to predict or prevent the occurrence of some skin diseases.
By pushing further the functionalities, AI-based systems can also consider multiple
classes in order to distinguish between numerous skin lesions. Recently, smartphone
applications have been designed for users so that they can remotely analyze their
skin. Some of the functionalities aim to prevent the onset of skin diseases, and others
provide useful skincare recommendations. Technically speaking, these applications
require an interactivity between the user and the AI model. In some other cases, it
can involve dermatologists when critical decisions are to be made. In this chapter, it
specifically focuses on facial skin diseases using AI models. The case study in this
chapter highlights an AI-based system (still under development) which is capable of
classifying numerous facial skin diseases such as acne, Actinic Keratosis, and Ble-
pharitis. This chapter is organized as follows: in Sect. 7.2, it focuses on the state of
the art of facial skin diseases. In Sect. 7.3, a case study is presented and some specific
AI approaches which are embedded in a software we have developed in Sect. 7.4 are
discussed. Finally, a conclusion is provided in Sect. 7.5.

7.2 State of the Art

The use of automated methods to detect facial skin diseases has started in the past
few years and was mostly focused on the detection of acne. Many techniques have
been proposed and researches have been carried out to increase the accuracy of iden-
tification. Khongsuwan et al. used UV fluorescence images to detect and count acne.
UV images are cropped, resized, converted to a gray image and enhanced and finally,
H-maxima transform is used to count acne. Despite its efficiency, this technique may
hurt the skin if exposed to UV light for a long duration [1]. Chang et al. detected
automatically face skin defects and classified them into spots, acne, and normal skin
using support-vector-machine-based classifier. The classification is preceded by an
automatic selection of the region of interest and then extraction of the skin defects.
They used images in front and profile views. The experimental results show the pro-
posed approach is adequate and procures good accuracy [2]. Chantharaphaichit et
al. proposed an automatic method to detect acne. Their approach consists first on
marking the round-shaped areas in the face skin using blob detection method. Then
they extract the specific features from the selected regions and finally send them to a
Bayesian classifier to decide whether it is acne or not. The accuracy of this technique
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is affected by the place, form, and lighting conditions of acne in the image [3]. Kit-
tigul worked on the detection and quantification of acne using Speeded Up Robust
Features. She extracted 6 main characteristics to recognize acne. The classification is
achieved by K-Nearest Neighbors algorithm [4]. Xiao lei Shen et al. detected facial
acne vulgaris using CNN networks. Their method is based on two parts. Firstly, they
detect skin to select the region of interest using a binary-classifier deciding skin or
non-skin. Secondly, acne vulgaris is classified into one of seven classes including
a healthy skin class using a seven-classifier [5]. Amini et al. developed a mobile
application to detect and classify acne. The face image is captured by the camera
of the mobile and then undergoes a series of image processing to extract the region
of interest then identify and classify acne into two types: papules and pastules. The
application could recognize and classify acne with high accuracy [6]. Binol et al pro-
posed an aided diagnostic system to identify rosacea using deep learning. They used
Inception and ResNet networks to extract features from facial images and then iden-
tify rosacea lesions [7]. Yang et al. developed a model to diagnose benign pigmented
facial skin lesions using two CNN networks. They could identify six pigmentary
facial skin pathologies. They extract lesions from images to train the networks. This
model achieved good performance [8].

7.3 Study Case

We developed an automated system based on deep learning approach to help der-
matologists diagnosing many facial skin diseases with high accuracy. Our system
could recognize 8 face skin disorders, healthy skin, and no skin. For this purpose, we
proposed a fine-tuned version of VGG-16 adapted to facial skin diseases recognition
that we called Facial Skin Diseases Network (FSDNet). We created a dataset con-
stituted of 20000 images gathered from online sources representing the ten classes
classified by our network. The dataset is divided into training set to learn our network
and fit the parameters and validation set to evaluate the efficiency and robustness of
the system. The images are first labeled and then resized to fit our model. Five divide
modes are used 90:10, 80:20, 70:30, 60:40, and 50:50 for training versus validation
sets. Finally, to assess the effectiveness of the model, we give the system face skin
images not included in the dataset to classify them.

7.3.1 Considered Skin Diseases

In our application,we considered eightmost common facial skin diseases affecting all
ages, genders, and races. These diseases are Acne, Actinic Keratosis, Angioedema,
Blepharitis, Rosacea, Vitiligo, Melasma, and Eczema.
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Fig. 7.1 Acne disease [23]. a Acne in female, b Acne in male

7.3.1.1 Acne

Acne is one of the most common facial skin diseases that affect especially teenagers.
It is due to many factors such as hormonal changes, sebum production, bacteria, and
inflammation [9]. It can be mild, moderate, or severe and is commonly located on
the face (see Fig. 7.1), neck, shoulders, chest, and upper back; it is characterized by
blackheads, whiteheads, pustules, papules, cysts, and nodules. This disease can scar
or darken the skin if left untreated.

7.3.1.2 Actinic Keratosis

It is also known as Solar keratosis. Actinic keratosis or solar keratosis is a precancer
characterized by scaly patches on the skin (see Fig. 7.2a). It is caused by recurrent
exposure to ultraviolet radiation from the sun or tanning beds [10]. It can be found
on the face, lips, ears, the backs of your hands, forearms, shoulders, scalp, or neck.
It appears as small, scaly, thick spots on the skin of different colors.

7.3.1.3 Blepharitis

Blepharitis is an inflammation affecting the eyelids caused by bacteria, dandruff,
rosacea, or even allergy to substances used in contact with lids [11]. This disorder is
mostly characterized by redness, sticking, and crusting of the eyelids, itch, blurring
sight (see Fig. 7.2b).
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Fig. 7.2 a Actinic Keratosis, b Blepharitis [23]

7.3.1.4 Angioedema

Angioedema is a swell of short life in the layer just under the skin. It occurs in many
parts of the body but mostly around the eyes and lips (see Fig. 7.3). The swell can
cause ache and warmth in the affected area [12]. Angioedema can result from an
allergic reaction to food, animal, plant, or drug and also can be hereditary.

Fig. 7.3 Angioedema disease [23]. a Angioedema around the lips, b Angioedema around the eyes



168 R. El-Saleh et al.

7.3.1.5 Vitiligo

Vitiligo is a long-term skin disease characterized by white spots (depigmentation)
on the skin, of variable size, appearance, and location, which tend to enlarge (see
Fig. 7.4). It is more observable in dark-skinned persons [13]. Vitiligo is caused by the
loss of melanin due to an autoimmune disorder or heredity. Persons suffering from
vitiligo are more exposed to sunburns, loss of hearing, stress, and sight problems.

7.3.1.6 Rosacea

Rosacea is a skin disorder affecting mostly Caucasians persons of middle age in the
face, mainly the nose, cheeks, forehead, and chin [14]. It occurs due to inflammatory,
environmental, or hereditary factors. It has many symptoms such as red papules, red
enlarged nose, red face bumps, swelling, eyelids redness, and dryness of facial skin
(see Fig. 7.5a).

7.3.1.7 Melasma

Melasma is a skin pigmentation disease causing brown patches mainly on the face
(see Fig. 7.5b). It affects women more than men and even persons with brown skin
[15]. Sun exposure, hormone changes, pregnancy, and thyroid diseases may cause
melasma. It doesn’t always necessitate treatment and also may come back even if
treated.

Fig. 7.4 Vitiligo disease [23]. a Vitiligo in male, b Vitiligo in female
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Fig. 7.5 a Rosacea, bMelasma, c Eczema [23]

7.3.1.8 Eczema

Eczema is a skin condition characterized by inflamed red and itchy skin. There are
many types of eczema and it could affect all ages [16]. It is provoked foods, environ-
mental conditions, soaps, detergents, sweating, and stress. Eczema is always accom-
panied by itch. Affected areas may be red, irritating, greasy, or oily (see Fig. 7.5c).
Hair loss can occur in the area with the rash.

7.3.2 Machine-Learning/Deep-Learning Approaches

Machine learning is a branch of artificial intelligence. It is described as the brain that
permits systems to learn automatically, analyze data, and thus provide an adequate
decision. Machine learning approaches are grouped depending on their learning
type: supervised, unsupervised, and semi-supervised learning. It existsmanymachine
learning techniques: regression algorithms including linear regression, and logistic
regression, Decision Tree algorithm, Support Vector Machine, and Artificial Neural
Networks forming the basis of deep learning.

Deep Learning is a sub-area of machine learning defined as neural network archi-
tectures with multiple layers and parameters. It is useful for recognition, information
processing, and classification purpose and its use has broadened in industries such
as cars, aerospace, electronics, and also in defense and medical fields. To obtain
high system performance, deep learning requires large data to train the model and
significant computing power to speed up data processing. There are many types of
deep learning models:

1. Autoencoders which are unsupervised networks mainly used for dimensionality
minimization.

2. Convolutional Neural Networks (CNN) used mainly in image recognition pur-
poses.
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3. Recurrent Neural networks designed for sequence identification such as speech,
text, or signal.

4. Recursive Neural Networks used in natural language processing.

In our application, we are concerned by CNN models. CNN are the most prevalent
type of deep learning models due to their architecture [17]. They are very efficient
for image classification for many reasons. They use 2D convolution layers which
makes them suitable to process 2D data such as images. CNN extract features auto-
matically from images and learn them during the training process. This automatic
extraction makes the model very accurate especially for computer vision purposes
such as object classification and image classification. Even more, CNN can reduce
the number of parameters in the network without losing any information which is
very important in image recognition tasks. CNN architecture includes an input layer,
convolution layers responsible for extracting the features, pooling layers reducing
the number of parameters to learn while retaining information, and fully connected
layers flattening outputs coming from preceding layers and predicting the class of
the image (see Fig. 7.6) [18]. It exists in many CNN architectures differing by their
structure, number of layers, and their design. The most important ones are LeNet
[19], AlexNet [20], Googlenet (also called Inception) [21], and VGGNet [22] that we
used in our applicationmainly VGG-16model. VGG-16 is a deep network consisting
of 16 weight layers: 13 convolutional layers and 3 fully connected layers followed
by a Softmax classifier. The convolutional layers are divided into five groups each
followed by a Maxpooling layer. We proposed a fine-tuned version of the VGG-16
model adapted to face skin disorders classification. We modify the structure of the
fully connected layers (see Fig. 7.7).

Fig. 7.6 General architecture of CNN

Fig. 7.7 FSDNet architecture
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7.3.3 Preliminary Results

In this method, 20000 images were used and partitioned randomly into training and
validation purposes. Five divide modes were considered to study the efficiency of
the network. FSDNet gave promising results in facial skin diseases recognition with
accuracies of up to 97%. The accuracy and loss in each case are shown in Table 7.1
The accuracy varies between 94.9% and 97% and the loss between 0.2 and 0.09 for
split cases 50:50 and 90:10, respectively, and a batch size of 16 and epoch size of 10.

To study howwell the diseases are identified, we calculated the confusionmatrices
presented in Fig. 7.8. These matrices show that few images were wrongly classified.
Compared to related works in number and variety of used diseases, our model reveals
uniqueness in the performance and implementation. It reached a precision compara-
ble and in some cases higher than that obtained previously. Noting that the majority
of works in the state of the art deals with acne and its subtypes.

The model performance was tested with images from outside our dataset. They
were all well classified accuracies up to 100% (see Fig. 7.9).

7.4 Developed Software

When the training and testing phase is finished, the trained deep learning model
is ready to be deployed. Therefore, our biometrics group developed a software to
become an assistant to the doctor in his work. This software can assist the doctor
in many tasks including, organizing patients profiles, remote communication and
consultationswith the patients, notification system for easily notifyingpatients of new
changes, classifying skin diseases, issuing treatments and tracking patient condition
and treatment progress. The prototype software includes two parts: patient side and
doctor side.

Table 7.1 Accuracy of facial skin diseases network

Split of images training
(%)/validation (%)

Accuracy (%) Loss

90/10 97 0.0996

80/20 96.7 0.1452

70/30 95.5 0.2153

60/40 95.4 0.2566

50/50 94.9 0.2791
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Fig. 7.8 Confusion matrix in five data split cases for training versus validation sets. a 90:10, b
80:20, c 70:30, d 60:40, e 50:50
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Fig. 7.9 Test of images out of the database. a Acne classified with accuracy of 99.7%, bMelasma
classified with accuracy of 98.1%, c Angioedema classified with accuracy of 100%, d Eczema
classified with accuracy of 99.9%, e Vitiligo classified with accuracy of 100%, f normal skin
classified with accuracy of 100%

7.4.1 Patient Actions

After creating and submitting the registering form and creating an account, the patient
can proceed to start having consultations and treatments from the assigned doctor
while using many tools that will help him and the doctor build a patient profile
with all the needed data. In the automatic diagnosis tab, the patient has the ability
to take images that automatically crops the patient’s face, adjust image conditions
(brightness and contrast) and save it to the database to be sent to the doctor for
evaluation. In addition, the patient can use the trained Deep learning model to get
a real-time prediction on the video feed with automatic face detection to identify
which class the facial skin disease belongs to (see Fig. 7.10). This AI can be useful
as an assistant to the doctor in identifying the skin disease type.

The patient can review the taken images in the E-Consultation tab, delete the
selected images, upload new images from a local directory, and use the trained AI
model to get class predictions on these locally loaded images. The doctor’s diagnosis
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Fig. 7.10 Real-time facial skin disease detection

area contains the final doctor’s decision about patient condition evaluation (see Fig.
7.11).

A metric will be defined and calculated from several factors in the future to show
the progress of the patient’s condition. This tab will include several visualizations of
the metric starting from the start date of consultation and will include also visualiza-
tion of treatments. These visualizations will help to track if the progress is becoming
worse to do the necessary changes specified by the doctor or when the treatment
becomes better then that means the treatment is going well. The chat box feature lets
the patients chat with the assigned doctor for discussing the patient’s condition or
any other matter related to this subject.

7.4.2 Doctor Actions

Patient data tab contains the images that the patient has uploaded using the real-time
face capture feed or images uploaded locally. The doctor can use the trained deep
learning model as an assistant to his classifying of the facial skin disease.

The doctor can also use the history table to keep track of the patient’s progress
by adding new records containing the doctor notes taken in the evaluation date and
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Fig. 7.11 E-Consultation Tab

entering the metric used to visualize the patient progress. Finally, the doctor can
input his final evaluation for the patient to be shown in the doctor’s diagnosis area.
The face analysis tab provides the doctor with many useful features to evaluate the
facial skin disease. This tab contains the following features:

• Automatic selection of face regions
• Manual selection of face regions

This feature allows the doctor to divide the face into the following parts:

• Forehead
• Left Eye
• Right Eye
• Left Cheek
• Right Cheek
• Mouth
• Nose

After applying a transparent mask to visually divide the face to the mentioned parts,
the doctor can select each part to zoom in to have a better view of the selected part
for a better evaluation. This feature also allows us to gather data to train future deep
learning models to classify individual parts of the face. In Fig. 7.12, we can see
examples of automatic region selection.

Manual selection of face Regions tool gives the doctor the ability to draw a poly-
gon over the desired area to crop it and visualize it in a new window for better
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Fig. 7.12 Automatic region selection tool. a Forehead region, b Right cheek region

Fig. 7.13 Manual face
region selection tool

condition evaluation. It can be used as one of the factors defining the metric. Saving
the cropped area can also help gather a dataset to train a model for individual face
parts classification. Figure 7.13 shows an example of the manual region selection
tool.

Allowing the patient to use the software freely without any doctor restrictions can
be dangerous for the patients because they might stop consulting the doctor and use
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it for doing self-evaluations. Therefore, the doctor has access to the a permissions
tab, which he can change depending on the access doctors think patients can have.

When the patient submits the information form, the doctor can visualize this
information and use them to evaluate the skin disease. It will provide help with ways
of treatment. These forms can be useful in gathering datasets that can be used in
training a machine learning models to study patterns to detect the cause of some skin
diseases or to be able to suggest treatment with the approval of the doctor based on
input data of the model. A notification system will be created to allow the doctor to
receive a notification about being assigned a new patient and any new changes done
by the patient.

In this part, we reviewed the different functionalities and tools in the desktop
application developed to help the doctor in the diagnosis process using the trained
deep learning model, managing patients’ profile quickly, and making remote consul-
tations easier and efficient for the patient. There are plenty of additions that could be
done to improve the doctor–patient experience, such as expanding to new popular
platforms(web application, mobile application).

7.5 Conclusion

In this chapter, an overview of artificial intelligence as an advanced technology in
the field of dermatology is provided through a case study. The focus is on facial skin
diseases using deep-learning based identification of skin diseases. One can point
out that the whole facial features are considered as input for the AI-system rather
than injecting separate lesions. Preliminary results highlight an accuracy of more
than 94%. This is, in fact, a promising result when considering the technology as an
“assistance-system”. At this stage, the role of dermatologists is either to confirm, or
correct AI-system estimation. Such actions highly contribute to the increase of accu-
racy and, consequently, improve the performances. If the system is used bymore than
one dermatologist, more data is collected and the system will naturally be updated
more often. Consequently, AI-systems will be smarter, in the sense that this will
narrow down the differences between human-evaluation and machine-evaluation. In
the future, it is technically not impossible for AI to provide better diagnosis than
humans do.
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Chapter 8
Medical Imaging Based Diagnosis
Through Machine Learning and Data
Analysis

Jianjia Zhang, Yan Wang, Chen Zu, Biting Yu, Lei Wang, and Luping Zhou

Abstract Machine learning techniques have played an essential role in computer-
assisted medical image analysis. In this chapter, we will introduce several of our
recent achievements with machine learning methods for feature extraction and rep-
resentation, classification, dense prediction (segmentation and synthesis), and multi-
modality analysis, across the pipeline of computer-assisted diagnosis (CAD). These
methods consist of both traditional machine learning techniques and state-of-the-
art deep learning based approaches. They were proposed to address pain points in
the techniques, for example, similarity metric learning for better classification, 3D
and sample-adaptive dense prediction models for segmentation and synthesis, and
effective multi-modal imaging data fusion. These methods have been employed in
different levels of medical imaging applications, such as medical image synthesis
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within and across imaging modalities, brain tumor segmentation, and mental disease
classification. Common approaches used for related research topics are also briefly
reviewed.

8.1 Introduction

With the pervasive use of medical imaging devices, a large amount of medical imag-
ing data are acquired, stored, processed and analyzed in clinics everyday. Therefore,
systems andmethods that can automatically analyzemedical imaging data are in high
demand to reduce doctors’ workloads and provide diagnostic measurements that are
precise, objective, and reproducible. Traditional medical image analysis methods
focused on processing a single image with signal processing techniques. However,
evidence from a single image is often insufficient to well represent the complexity
of abnormalities and deal with the large variations among patients’ imaging data.
Consequently, researchers have turned to learning inferences from existing samples
using machine learning techniques. Nowadays, machine learning has been widely
utilized in themedical imaging field, spreading from low-level pixel processing, such
as super-resolution [93], through middle-level ROI (Region of Interest) detection,
such as tumor segmentation [21, 54], to high-level diagnostic decision-making, such
as disease classification [48, 79, 141] and survival prediction [128], which cover the
whole computer-assisted diagnosis pipeline. In this chapter, we are going to briefly
review the machine learning techniques used in different levels of medical imaging
applications, and focus on introducing several advanced machine learning models
from our achievements, which cover two major types of medical image analysis
tasks, i.e., medical image classification and dense prediction (e.g., medical image
segmentation and synthesis), and extend from single image modalities to multiple
imaging modalities.

Specifically, this chapter is organized as follows. First, we introduce classifica-
tion methods for diagnosis in Sect. 8.2. Rather than relying on intensively studied
classifiers, we focus on designing and learning sample similarity measures for better
classification. In addition to image-level predictions in Sect. 8.2, in Sect. 8.3 we also
address dense pixel-level prediction, which involves both medical image segmenta-
tion and synthesis. For segmentation, a deep segmentation model jointly trained with
sample-adaptive intensity lookup tables is used to improve brain tumor segmentation.
For synthesis, two deep models based on Generative Adversarial Networks (GANs)
are introduced forwithin- and cross-modality image synthesis. In Sect. 8.4,we extend
medical image analysis to multi-modal imaging data, and explain two pieces of our
work in this field. The first is based on traditional machine learning methods, which
jointly learn a similarity measure and select features from multiple modalities. The
second is a deep learning based approach, which effectively integratesmultiple imag-
ing modalities to synthesize full-dose Positron Emission Tomography (PET) images.
This chapter is concluded in Sect. 8.5.
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8.2 Classification

A major task of medical image analysis is to assist in diagnostic decisions by label-
ing (or classifying) the images into different population categories, e.g., diseased or
healthy. In machine learning, many linear and nonlinear classifiers have been pro-
posed based on different assumptions about the underlying distribution of the data
or the forms of the discriminant functions. Deep learning based classifiers integrate
feature learning and classification into a single model. Reviews are in [75, 104],
and we will comment but will focus on similarity measures. In most classification
algorithms, the decision is based on the distance/similarity between samples, so how
this is measured will affect the performance. Common similarity measures are based
on Euclidean distances among samples; however, high-dimensional feature vectors
of medical imaging data often reside on a low-dimensional subspace/manifold. Con-
sidering this structure could provide a more precise similarity measure. Therefore,
different types of similaritymetrics that could improve classification and how to auto-
matically learn a similarity measure from data are discussed below in this section.

8.2.1 Classifiers

To model a classifier is to estimate a mapping function that takes a data point (e.g.,
a feature vector) and predicts a discrete variable as a category label. Classification
algorithms in medical diagnosis tasks, include traditional non-deep-learning based
classifiers such as linear regression [8] and Support Vector Machines [113] (SVM),
and deep learning based classifiers.

Traditional classification methods either make assumptions about the underly-
ing data distribution and optimize the distribution parameters by either maximum a
posteriori estimation (MAP) or maximum likelihood estimation (MLE) as in Naive
Bayesian Classifier and Gaussian Mixture Model or they make assumptions about
the form of the discriminant/decision function rather than the data, for example, lin-
ear regression and SVM. Linear regression predicts a scalar response by fitting a
linear combination of variables of a data point, and a map function, such as a logis-
tic function, can further map predictions to discrete class labels. SVM constructs a
hyperplane which admits the largest margin between the two classes to maximize
the distance between the nearest data points on each side of the hyperplane which
increases the error margin for an unseen point and the generality of the classifier.
To address two classes that are not linearly separable in a finite-dimensional space,
a nonlinear kernel function can map the original space into a higher dimensional or
infinite-dimensional space, making separation easier. A kernel function calculates
dot products of pairs of input data vectors in the mapped space and can be considered
as a similarity measure. Selection or design of an appropriate kernel function for a
specific application is a critical issue. A binary SVM classifier can easily be extended
to multi-class cases with one-vs-all or one-vs-one strategies.
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Deep learning models take the raw pixels in medical images and do not require
feature engineering. Of their various architectures, such as Multilayer Perceptrons
(MLP), deep belief networks, and recurrent neural networks, convolutional Neural
Networks (CNN) [69] have been widely used for medical image classification [42,
108], segmentation [81], retrieval [92], and reconstruction [100]. A typical CNN
model consists of multiple convolution-pooling blocks followed by one (or several)
fully connected layer(s) as a classifier. A convolutional layer filters input from the
previous layer with a set of fixed-size convolutional kernels and outputs feature maps
to the next layer. A pooling layer reduces the dimensions of the feature maps from
the previous layer by aggregating them (e.g., by computing the max or average).
By stacking the convolutional and pooling layers, a CNN can effectively extract
hierarchical patterns corresponding to different levels of semantics. On top of the
convolution-pooling blocks, there are usually one or more fully connected layers
which flatten the feature maps to output predicted class labels. A CNN is more
suitable for image-based analysis, since it significantly reduces the number of model
parameters to learn, relative to a classical MLP, by utilizing a local receptive field,
weight sharing, sparse connectivity, and preserving spatial information contained
in images. Thus “deep” models can extract complex and high-level patterns while
reducing the risk of overfitting data. Typical CNN models include

• AlexNet [68] which has an eight-layer architecture, utilizes a ReLu (Rectified Lin-
ear Units) activation function, dropout, and data augmentation, and was trained on
a GPU to improve performance. It achieved a considerable accuracy improvement
on ILSVRC2012 [98].

• VGGNet [103] increases model depth by using an architecture with very small
(3 × 3) convolution filters and showed a significant performance improvement.

• GoogLeNet [107] consists of multiple inceptionmodules that apply parallel filters
corresponding to multiple receptive fields to extract features at different levels
of detail simultaneously. It increases the depth and width of the network while
keeping the computational budget constant by using a carefully crafted design. It
also removes the fully connected layers at the end, which significantly reduces the
number of model parameters.

• ResNet [46] learns residuals rather than the mapping function directly. It makes
use of shortcut/skip connections, allowing simple copying of activations from layer
to layer to preserve information as data goes through the layers. This mitigates the
vanishing gradient problem in training very deep CNN models.

These CNN models originated from generic image recognition tasks and have been
applied to effective analysis of medical imaging data. AlexNet [14] and Inception-
v3 (GoogLeNet) [43] were used to classify retinal images to diagnose diabetic
retinopathy; VGG19 classified skin images based on tumor thickness to diagnose
melanoma [57]; and ResNet was used to detect COVID-19 patients based on Chest
X-rays [36]. To deal with 3D volumetric medical imaging data, such as CT scans
and MRI, 3D CNN models have been developed [104].

Despite the success of deep learning models, non-deep-learning based machine
learning techniques still have a role in medical image analysis. Non-deep-learning
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methods are usually formed in a principled way and are relatively easier to interpret
than black-box like deep learning models. This can be critical in medical imaging
applications where understanding the results is important. Non-deep-learning meth-
ods require less data and may work when only limited training data and computing
resources are available.

However,most classifiers are based, explicitly or implicitly, on similaritymeasures
of data points. In the following, two examples, on designing and learning similarity
measures in the framework of an SVM to improve classification, are presented.

8.2.2 Example 1: Similarity Metric

Constructing and analyzing functional brain networks based on resting-state fMRI
(rs-fMRI) holds great promise for the diagnosis of brain diseases [114], e.g., Atten-
tion Deficit Hyperactivity Disorder (ADHD) and Alzheimer’s disease (AD). Recent
studies have identified ADHD-related brain connectivity differences relative to nor-
mal subjects, e.g., increased connectivity between the right pulvinar and bilateral
occipital regions and reduced connectivity between the bilateral pulvinar and right
prefrontal regions [13, 32, 72]. With these disease-related connectivity differences,
diagnosis of brain diseases could be achieved by modeling and classifying brain
connectivity networks.

A large body of research work models the functional connectivity based on co-
varying patterns of rs-fMRI time series across brain regions via correlation-based
statistics. Among them, sparse inverse covariance estimation (SICE) is a princi-
pled method for partial correlation estimation, which factors out the effects of other
regions while measuring pair-wise regional correlations. In SICE, each individual
brain network is represented by an inverse covariance matrix (referred to as a SICE
matrix in this chapter) whose off-diagonal entries correspond to the partial correla-
tions between two brain regions. Therefore, how similarity between SICEmatrices is
measured is fundamental for accurate diagnosis. This section introduces an example
[140] that explores the properties of SICE matrices, derives a compact representa-
tion method with specifically designed similarity metrics, and demonstrates that this
representation will lead to improved diagnosistic performance.

As an inverse covariance matrix, a SICE matrix is symmetric positive definite
(SPD), which restricts SICE matrices to a lower dimensional Riemannian manifold
rather than the full d × d-dimensional Euclidean space. Brain connectivity patterns
are specific and generally similar across different subjects, so SICE matrices repre-
senting brain connectivity should be concentrated on an even smaller subset of this
manifold. Therefore, the intrinsic degree of freedom of these SICE matrices will
be much lower than the apparent dimensions of d × d. These two factors motivate
an exploration of a compact representation that better characterizes the underlying
distribution of SICE matrices [140].

Linear principal component analysis (PCA), while commonly used for unsuper-
vised dimensionality reduction, is not expected to work well due to the manifold
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structure of SICE matrices. Several similarity measures have been proposed for SPD
matrices that consider the underlying manifold structure. Multiple SPD kernels, such
as the Stein [105] and Log-Euclidean [3] kernels, have been proposed and implic-
itly embed the Riemannian manifold of SPD matrices to a kernel-induced feature
space F . They offer a better measure than their counterparts in Euclidean spaces and
require less computation than a Riemannianmetric [105]. Reference [140] uses these
kernels to conduct an SPD-kernel-based PCA and derive a compact representation
that can mitigate the curse of dimensionality, as elaborated below.

8.2.2.1 SICE Representation Using SPD-Kernel Based PCA

The SICEmethod was applied to N subjects to obtain a training set {S1,S2, . . . ,SN }
⊂ Sym+

d , where Si is the SICE matrix for the i-th subject. The kernel mapping is
defined as �(·): Sym+

d �→ F , which is implicitly induced by a given SPD kernel.
Kernel PCA which generalizes linear PCA to a kernel-induced feature space F is
described brieflybelow (also see [101]).Without loss of generality, assume that�(Si )
is centered, i.e.,

∑N
i=1 �(Si ) = 0. This can be achieved by computation with a kernel

matrix [101]. Then an N × N kernel matrixK can be obtained with each entryKi j =
〈�(Si ),�(S j )〉 = k(Si ,S j ). Kernel PCA first performs the eigen-decomposition on
the kernel matrix: K = U�U�. The i-th column of U, denoted by ui , corresponds
to the i-th eigenvector, and � = diag( λ1, λ2, . . . , λN ), where λi corresponds to the
i-th eigenvalue in descending order. Let �� denote the covariance matrix computed
by {�(Si )}Ni=1 in F . The i-th eigenvector of �� can be expressed as

vi = 1√
λi

�ui , (8.1)

where � = [�(S1), �(S2), . . . , �(SN )].
Analogous to linear PCA, for a given SICE matrix S, �(S) can be projected onto

the top m eigenvectors to obtain an m-dimensional principal component vector:

α = V�
m�(S),

where Vm = [v1, v2, . . . , vm]. Note that the i-th component of α, denoted by αi , is
v�
i �(S). Using a kernel, it can be computed as

αi = v�
i �(S) = 1√

λi
u�
i ���(S) = 1√

λi
u�
i kS, (8.2)

where kS = [k(S,S1), k(S,S2), . . . , k(S,SN )]�. Once α is obtained as a new repre-
sentation for each SICE matrix, an SVM or k-NN classifier can be trained on α with
class labels.
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This section studies four commonly used SPD kernels, Cholesky kernel (CHK)
[58], Power Euclidean kernel (PEK) [58], Log-Euclidean kernel (LEK) [3], and Stein
kernel (SK) [105]. The four kernels are all in the form of

k(Si ,S j ) = exp
(− θ · d2(Si ,S j )

)
, (8.3)

where d(·, ·) is a distance between two SPD matrices. Different definitions of d(·, ·)
lead to different kernels, and the distance functions in the four kernels are Cholesky
distance [35], Power Euclidean distance [35], Log-Euclidean distance [3], and root
Stein divergence [105], respectively.

Cholesky distance measures the difference between Si and S j by

d(Si ,S j ) = || chol(Si ) − chol(S j )||F , (8.4)

where chol(S) is a lower triangular matrix with positive diagonal entries obtained by
the Cholesky decomposition of S, that is, S = chol(S) chol(S)� and || · ||F denotes
the Frobenius matrix norm.

Power Euclidean distance between Si and S j is given by

d(Si ,S j ) = 1

p
||Sp

i − Sp
j ||F (8.5)

where p ∈ R. Note thatS, as a SPDmatrix, can be eigen-decomposed as S = U�U�,
and Sp can be computed by Sp = U�pU�. In this section, it is set as p = 0.5, which
gave the best result in the literature [35, 58] and the experiments in this section.

Log-Euclidean distance is defined as

d(Si ,S j ) = || log(Si ) − log(S j )||F , (8.6)

where log(S) = U log(�)U� and log(�) takes the logarithm of each diagonal ele-
ment of �.

Root Stein divergence is the square root of Stein divergence, which is defined as

d(Si ,S j ) =
[

log

(

det

(
Si + S j

2

))

− 1

2
log
(
det(SiS j )

)
] 1

2

. (8.7)

With root Stein divergence as the distance function, the θ in k(Si ,S j ) = exp
(− θ ·

d2(Si ,S j )
)
is a positive scalarwithin the rangeof { 12 , 2

2 ,
3
2 , . . . ,

(d−1)
2 } ∪ ( (d−1)

2 ,+∞)

to guarantee the Stein kernel to be a Mercer kernel [105].
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The four distance functions and their kernels are applied to SPD-kernel PCA to
produce the principal component vector α.

8.2.2.2 Experimental Study

Rs-fMRI data of 44MCI and 38 NC subjects were downloaded from the ADNI web-
site1 and used in this study. The data were acquired on a 3 Tesla (Philips) scanner with
TR/TE set as 3000/30ms and flip angle of 80◦. Each series has 140 volumes, and each
volume consists of 48 slices of image matrices with dimensions 64 × 64 with voxel
size of 3.31 × 3.31 × 3.31 mm3. Preprocessing was carried out using SPM82 and
DPARSFA [15]. The first 10 volumes of each series were discarded for signal equi-
librium. Slice timing, head motion correction, and MNI space normalization were
performed. Participants with too much head motion were excluded. The normalized
brain images were warped into the automatic anatomical labeling (AAL) [111] atlas
to obtain 90 ROIs as nodes. The ROI mean time series were extracted and band-pass
filtered to obtain multiple sub-bands by following the work in [124].

The functional connectivity networks of 82 participants were obtained by the
SICE method using SLEP [78], with sparsity levels of λ = [0.1 : 0.1 : 0.9]. For
comparison, constrained sparse linear regression (SLR) [124] was also used to learn
functional connectivity networks with the same settings. Functional connectivity
networks constructed by SICE and SLR were called “SICE matrices” and “SLR
matrices,” respectively. To make full use of the limited number of subjects, a leave-
one-out procedure was used for training and testing. Both SVM and k-NN were
used as the classifier to compare the classification accuracy of different methods.
The parameters, including the sparsity level λ, the sub-band of the time series, the
number of eigenvectors m, and the regularization parameter of SVM, were tuned by
cross-validation on the training set. θ in all the four SPD kernels was empirically set
as 0.5, and the k of k-NN was set as 7.

In this experiment, the comparison involved the performance of classification by
the compact representation obtained by the proposed SPD-kernel PCA, linear PCA,
and the method computing the local clustering coefficient (LCC). LCC, as a measure
of local neighborhood connectivity for a node, is defined as the ratio of the number
of edges existing between the neighbors of the node and the number of potential
connections between these neighbors [63]. In this case, LCC can map a network,
represented by a d × d Adjacency matrix, to a d-dimensional vector, where d is the
number of nodes in the network.

Table 8.1 shows the classification results when using the compact representation
of SICE or SLR matrices using k-NN with Euclidean distance and a linear kernel
SVM. LCC achieved 65.9% for both SICE and SLR matrices with k-NN as the
classifier. When linear PCA was applied to the vectorized SICE or SLR matrices
to extract the top m principal components as features, the classification accuracy

1 http://adni.loni.usc.edu.
2 http://www.fil.ion.ucl.ac.uk/spm/software/.

http://adni.loni.usc.edu
http://www.fil.ion.ucl.ac.uk/spm/software/
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Table 8.1 Classification accuracy (in %) of compact representation on SICE/SLR matrices
LCC Linear PCA LEK PCA SK PCA CHK PCA PEK PCA

k-NN SVM k-NN SVM k-NN SVM k-NN SVM k-NN SVM k-NN SVM

SLR [124] 65.9 64.6 67.1 65.9 N.A. Because SLR matrices are not necessarily SPD

SICE 65.9 63.4 67.1 68.3 69.5 69.5 72 73.2 68.3 70.7 72 73.2

increased to 67.1% for both SICE and SLR matrices. This indicated the power of
compact representation and preliminarily justifies our idea of exploring the lower
intrinsic dimensions of the SICE matrices. By taking the SPD property into account
and using the proposed SPD-kernel PCA to extract the compact representation, the
classification accuracy was significantly boosted to 73.2% for both SK-PCA and
PEK-PCA,withSVMas the classifier. This achieved an improvement of 4.9% (73.2%
vs. 68.3%) over linear PCA and 7.3% (73.2% vs. 65.9%) over LCC. These results
demonstrate that (i) The obtained compact representation can effectively improve
the generalization of the classifier in the case of limited training samples. (ii) It
is important to consider the manifold property of SICE matrices to obtain a better
compact representation.

8.2.3 Example 2: Similarity Learning

Section 8.2.2 demonstrated the importance of selecting an appropriate similarity
metric by considering the properties of data. However, existing metrics may not be
optimal for certain tasks. In this section, another example [139] is introduced to
demonstrate that a similarity metric can be adaptively learned to better align with
specific applications.

The Stein kernel (Sect. 8.2.2) that evaluates the similarity between two SPD
matrices through their eigenvalues has shown promising performance on classifying
images represented by SPD matrices. However, directly using the original eigen-
values cause problems because (i) Eigenvalue estimation becomes biased when the
number of samples is inadequate, which may lead to unreliable kernel evaluation;
(ii) More importantly, eigenvalues only reflect the property of an individual SPD
matrix and are not necessarily optimal for computing a Stein kernel when the goal is
to discriminate different classes of SPD matrices. To address these issues, a discrim-
inative Stein kernel was proposed in [139] by introducing an extra parameter vector
to adjust the eigenvalues of input SPD matrices. The optimal parameter values were
sought by optimizing a proxy of classification performance. To show the generality
of the proposed method, three kernel learning criteria that are commonly used in the
literature were employed as proxies. The results demonstrated that the discrimina-
tive Stein kernel can attain greater discrimination and better align with classification
tasks by altering the eigenvalues.
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8.2.3.1 The Proposed Method

Let λi (X) denote the i th eigenvalue of a SPD matrix X , where λi (X) is always
positive due to the SPD property. Throughout this section, it is assumed that the d
eigenvalues have been sorted in descending order. Noting that the determinant of X
equals

∏d
i=1 λi (X), the Stein Divergence in Eq. (8.7) can be rewritten as

S(X,Y) = log

(

det

(
X + Y

2

))

− 1

2
log (det(XY))

=
d∑

i=1

log λi

(
X + Y

2

)

− 1

2

d∑

i=1

(log λi (X) + log λi (Y)) .

(8.8)

The important role of eigenvalues in computing S(X,Y) can be observed. Inappro-
priate eigenvalues will affect the precision of Stein Divergence and in turn the Stein
kernel.

On Issue-I. Eigenvalues of a sample-based covariance matrix are biased estimates
of true eigenvalues [102], especially when the number of samples is small.

On Issue-II. Even if true eigenvalues could be obtained, a more important issue
exists when the goal is to classify different sets of SPD matrices. A SPD matrix can
be expressed as

X = λ1u1u�
1 + λ2u2u�

2 + · · · + λdudu�
d ,

where λi and ui denote the i th eigenvalue and the corresponding eigenvector. The
magnitude of λi only reflects the property of this specific SPD matrix, for example,
the data variance along the direction of ui . It does not characterize this matrix from
the perspective of discriminating among different sets of SPD matrices. We know
that, by fixing the d eigenvectors, varying the eigenvalues changes the matrix X .
Geometrically, a SPD matrix corresponds to a hyper-ellipsoid in a d-dimensional
Euclidean space. This change is analogous to varying the lengths of the axes of the
hyper-ellipsoid while maintaining their directions. To make the Stein kernel better
prepared for class discrimination, can we adjust the eigenvalues to make the SPD
matrices in the same class as similar to each other as possible while maintaining the
SPDmatrices across classes to be sufficiently different? “Similar” and “different” are
defined in the sense of the Stein kernel. This idea can be considered as “can an ideal
similarity measure be more sensitive to inter-class differences and less affected by
intra-class variation?” Without exception, this should also apply to the Stein kernel.

8.2.3.2 Proposed Discriminative Stein Kernel (DSK)

Let α = [α1, α2, . . . , αd ]� be a vector of adjustment parameters. Let X = U�U�
denote the eigen-decomposition of a SPDmatrix,where the columns ofU correspond
to the eigenvectors and � = diag(λ1, . . . , λd). α is used for eigenvalue adjustment
and to define the adjusted X as
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X̃ p = U

⎛

⎜
⎜
⎜
⎝

λ
α1
1

λ
α2
2

. . .

λ
αd
d

⎞

⎟
⎟
⎟
⎠
U� (8.9)

and X̃c = U

⎛

⎜
⎜
⎜
⎝

α1λ1

α2λ2

. . .

αdλd

⎞

⎟
⎟
⎟
⎠
U�. (8.10)

In the first case, α is used as the power of eigenvalues. It can naturally maintain
the SPD property because λ

αi
i is always positive. In the second case, α is used as

the coefficient of eigenvalues. It is mathematically simpler but needs to impose the
constraint αi > 0 (i = 1, . . . , d) to maintain the SPD property. The two adjusted
matrices are denoted by X̃ p and X̃c, where p and c refer to “power” and “coefficient”.
Both cases are investigated in this section.

Given two SPD matrices X and Y , the α-adjusted Stein Divergence is defined as

Sα(X,Y) � S(X̃, Ỹ). (8.11)

For the two ways of using α, the term S(X̃, Ỹ) can be expressed as

S(X̃ p, Ỹ p) =
d∑

i=1

log λi

(
X̃ p + Ỹ p

2

)

− 1

2

d∑

i=1

αi (log λi (X) + log λi (Y))

and S(X̃c, Ỹ c) =
d∑

i=1

log λi

(
X̃c + Ỹ c

2

)

− 1

2

d∑

i=1

(2 logαi + log λi (X) + log λi (Y)) .

Based on the above definition, the discriminative Stein kernel (DSK) is proposed as

kα(X,Y) = exp (−θ · Sα (X,Y)) . (8.12)

Note that the DSK will remain a Mercer kernel as long as θ varies in the range of �

defined in Root Stein divergence in Sect. 8.2.2.1, because kα(X,Y) can always be
viewed as k(X̃, Ỹ), the original Stein kernel applied to two adjusted SPD matrices
X̃ and Ỹ .
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Treating α as the kernel parameter of kα(X,Y), kernel learning techniques are
applied to find its optimal value.Many learning criteria such as kernel alignment [30],
kernel class separability [115], and radius margin bound [16] have been proposed.
In this work, to investigate the generality of the proposed DSK, all three criteria are
employed to solve the kernel parameters α.

Let� = {(X i , ti )}ni=1 be a set of n training SPDmatrices, each ofwhich represents
a sample, e.g., an image to be classified. ti denotes the class label of the i th sample,
where ti ∈ {1, . . . , M}with M denoting the number of classes. K denotes the kernel
matrix computed with DSK on �, with K i j = kα(X i , X j ). In the following part,
three frameworks are developed to learn the optimal value of α.

8.2.3.3 Kernel Alignment Based Framework

Kernel alignment measures the similarity of two kernel functions and can be used to
quantify the degree of agreement between a kernel and a given classification task [30].
With kernel alignment, the optimal α can be obtained through optimization as

α∗ = argmax
α∈A J (K , T ) − λ‖α − α0‖22, (8.13)

where T is an n × n matrix with T i j = 1 if X i and X j are from the same class and
T i j = −1 otherwise. This definition of T naturally handlesmulti-class classification.
J (K , T ) is defined as the kernel alignment criterion:

J (K , T ) = 〈T , K 〉F√〈T , T 〉F 〈K , K 〉F
, (8.14)

where 〈·, ·〉F denotes the Frobenius inner product between two matrices. J (K , T )

measures the degree of agreement between K and T , where T is regarded as the
ideal kernel of a learning task. The α0 is a priori estimate of α, and ‖α − α0‖22
is the regularizer which constrains α to be around α0 to avoid overfitting. We can
simply set α0 = [1, . . . , 1]�, which corresponds to the original Stein kernel. λ is the
regularization parameter to be selected via cross-validation. A denotes the domain
of α: when α is used as a power, A denotes a Euclidean space Rd ; when α is used
as a coefficient, A is constrained to R

d+.
As seen in Eq. (8.12), there is a kernel parameter θ inherited from the original Stein

kernel. θ and α play different roles in the proposed kernel and cannot be replaced
with each other. The value of θ needs to be appropriately chosen because it impacts
the kernel value and in turn the optimization of α. A commonly used way to tune θ

is k-fold cross-validation. In this section, to better align with the kernel alignment
criterion, θ is tuned by maximizing the kernel alignment before adjusting α,

θ∗ = argmax
θ∈�

J (K |α=1, T ), (8.15)
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where 1 is a d-dimensional vector with all entries equal to 1 and K |α=1 denotes the
kernel matrix computed by the original Stein kernel without α-adjustment. Through
this optimization, a reasonably good θ is found and then α is optimized. The max-
imization problem in Eq. (8.15) can be conveniently solved by choosing θ in the
range of � = { 12 , 2

2 ,
3
2 , . . . ,

d−1
2

} ∪ ( d−1
2 ,+∞). θ is not optimized jointly with α

since the noncontinuous range of θ could complicate gradient-based optimization.
As will be shown in the experimental study, optimizing θ and α sequentially can lead
to promising results.

After obtaining θ∗ and α∗, the proposed DSK will be applied to both training
and test data for classification, with classifiers such as k-nearest neighbor (k-NN) or
SVM. For a given classification task, the optimization of θ and α only needs to be
conducted once with training data. After that, they are used as fixed parameters to
compute the Stein kernel for each pair of SPD matrices.

8.2.3.4 Class Separability Based Framework

Class separability is another commonly used criterion formodel and feature selection
[115, 116, 130]. For a training sample set defined as � = {(X i , ti )}ni=1, where ti ∈
{1, . . . , M}, let �i be the set of training samples from the i th class, with ni denoting
the size of�i . K�′,�′′ denotes a kernel matrix computed over two training subsets�′
and �′′, where {K�′,�′′ }i j = k(X i , X j ) = 〈φ(X i ), φ(X j )〉 with X i ∈ �′ and X j ∈
�′′. The class separability in the feature spaceF induced by a kernel k can be defined
as

J = tr(SB)

tr(SW )
, (8.16)

where tr(·) is the trace of a matrix, and SB and SW are the between-class scatter
matrix and thewithin-class scatter matrix, respectively. Letm andmi denote the total
sample mean and the i th class mean. They can be expressed asm = 1

n

∑
X i∈� φ(X i )

and mi = 1
ni

∑
X j∈�i

φ(X j ).
The terms tr(SB) and tr(SW ) can be expressed as

tr(SB) = tr

[
M∑

i=1

ni (mi − m) (mi − m)�
]

=
M∑

i=1

1�K�i ,�i1
ni

− 1�K�,�1
n

,

(8.17)

and
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tr(SW ) = tr

⎡

⎣
M∑

i=1

ni∑

j=1

(
φ
(
X i j
)− mi

)(
φ
(
X i j
)− mi

)�
⎤

⎦

= tr
(
K�,�

)−
M∑

i=1

1�K�i ,�i1
ni

,

(8.18)

where 1 = [1, 1, . . . , 1]�.
The class separability can reflect the goodness of a kernel function with respect

to a given task.

8.2.3.5 Radius Margin Bound Based Framework

The radius margin bound is an upper bound on the number of classification errors in
a leave-one-out (LOO) procedure of a hard margin binary SVM [16, 67]. This bound
can be extended to an L2-norm soft margin SVM with a slightly modified kernel.
It has been widely used for parameter tuning [16] and model selection [116]. We
first consider a binary classification task and then extend the result to the multi-class
case. Let �′ ∪ �′′ be a training set of l samples, and without loss of generality, the
samples are labeled by t ∈ {−1, 1}. With a given kernel function k, the optimization
problem of a SVM with an L2-norm soft margin can be expressed as

1

2
‖w‖2 = max

η∈Rl

[ l∑

i=1

ηi − 1

2

l∑

i, j=1

ηiη j ti t j k̃(X i , X j )
]

subject to
l∑

i=1

ηi ti = 0; ηi ≥ 0 (i = 1, 2, . . . , l),

(8.19)

where k̃(X i , X j ) = k(X i , X j ) + 1
C δi j ; C is the regularization parameter; δi j = 1

if i = j , and 0 otherwise; and w is the normal vector of the optimal separating
hyperplane of the SVM. Tuning of the parameters in k̃ can be achieved byminimizing
an estimate of the LOO errors. The following radius margin bound holds [113]:

E(LOO) ≤ 4 · R
2

γ 2
= 4R2‖w‖2, (8.20)

where E(LOO) denotes the number of LOO errors performed on the l training
samples in �′ ∪ �′′; R is the radius of the smallest sphere enclosing all the l training
samples; and γ denotes the margin with respect to the optimal separating hyperplane
and equals 1/‖w‖. R2 can be obtained by the following optimization problem,
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R2 = max
β∈Rl

[ l∑

i=1

βi k̃(X i , X i ) −
l∑

i, j=1

βiβ j k̃(X i , X j )
]

subject to:
l∑

i=1

βi = 1; βi ≥ 0 (i = 1, 2, . . . , l).

(8.21)

Both R and w are functions of the kernel k̃. The kernel function k is set as kα

defined in Eq. (8.12). The model parameters in k̃, i.e., {θ,α,C}, can be optimized
by minimizing R2‖w‖2 on the training set. A reasonably good θ∗ can be chosen by
optimizing Eq. (8.22) with respect to θ and C while fixing α as 1.

{θ∗,C∗} = arg min
θ∈�,C>0|α=1

R2‖w‖2. (8.22)

Once θ∗ is obtained, {α,C}, denoted by υ, can then be jointly optimized as follows:

υ∗ = arg min
υ∈ϒ|θ=θ∗ R2‖w‖2, (8.23)

where ϒ = {α,C |α ∈ A;C > 0}. Let υz be the zth parameter of υ.
Formulti-class classification tasks,υ can be optimized by a pair-wise combination

of the radius margin bounds of binary SVM classifiers [116].

8.2.3.6 Experimental Result

In this experiment, the proposed discriminative Stein kernel (DSK) was compared
with the original Stein kernel (SK) on the resting-state functional Magnetic Reso-
nance Imaging (rs-fMRI) dataset from the ADNI benchmark database.We employed
both k-NN and SVMas the classifiers. For the kernel alignment and class separability
frameworks, k-NNwas usedwith the DSK as the similaritymeasure, since it does not
involve any other (except k) algorithmic parameter. This allowed the comparison to
directly reflect the change from SK to DSK. For the radius margin bound framework,
a SVM classifier was used since it is inherently related to this bound.

In this experiment, the DSK obtained by the kernel alignment and class sep-
arability were called DSK-KA and DSK-CS. Also, DSK-RM indicates the DSK
obtained by the radius margin bound, while DSK-TM denotes the DSK obtained by
the trace margin criterion. Subscripts p or c are used to indicate whether α acts as
the power or the coefficient of eigenvalues. The names are summarized in Table 8.2.
All parameters, including the k of k-NN, the regularization parameter of the SVM,
λ in Eq. (8.13), θ in all the kernels, and the power order ζ in the Power Euclidean
metric are chosen via multi-fold cross-validation on the training set.

DSKwas tested on brain imaging analysis using a correlationmatrix, a SPDmatrix
in which each off-diagonal element denotes the correlation coefficient between a
pair of variables. It is commonly used in neuroimaging analysis to model functional



194 J. Zhang et al.

Table 8.2 The name of DSK under different learning criteria

α as Kernel alignment Class separability Radius margin
bound

Trace margin
criterion

Power DSK-KAp DSK-CSp DSK-RMp DSK-TMp

Coefficient DSK-KAc DSK-CSc DSK-RMc DSK-TMc

Table 8.3 Comparison of classification accuracy (in percentage) on fMRI data

k-NN SVM

Competing methods DSK (proposed) Competing methods DSK (proposed)

AIRM CHK EUK DSK-
KAp

DSK-
KAc

AIRM CHK EUK DSK-
RMp

DSK-
RMc

56.10 52.44 50.00 60.98 59.76 N.A. 53.66 54.88 59.76 54.88

SK LEK PEK DSK-
CSp

DSK-
CSc

SK LEK PEK DSK-
TMp

DSK-
TMc

56.10 54.88 51.22 60.98 62.20 54.88 53.66 57.32 59.76 53.66

brain networks to discriminate patients with Alzheimer’s Disease (AD) from healthy
controls [123]. In this task, a correlation matrix was extracted from each rs-fMRI
image and used to represent the brain network of the corresponding subject. This is
also a classification task involving SPD matrices.

The rs-fMRIdataset fromADNIconsists of 44patientswithmild cognitive impair-
ment (MCI, an early warning stage of Alzheimer’s disease), and 38 healthy controls.
The rs-fMRI images of these subjectswere pre-processed by a standard pipeline using
SPM8 (http://www.fil.ion.ucl.ac.uk/spm) for rs-fMRI. All the images were spatially
normalized into a common space and parcellated into 116 regions of interest (ROI)
based on a predefined brain atlas. 42 ROIs that are known to be related to AD were
selected [51] in our experiment and the mean rs-fMRI signal within each ROI was
extracted as the features. A 42 × 42 correlation matrix was then constructed for each
subject [123].

In this experiment, DSK was compared with the other methods to classify the
correlation matrices. The classification was conducted in the LOO manner due to
the limited number of samples. This process was repeated for each of the samples.
DSK achieved the best classification performance (Table 8.3). DSK-CSc increased
the classification accuracy of SK from 56.1% to 62.2% with k-NN as the classifier.
DSK-RMp obtained an improvement of 4.9 percentage points over SK when SVM
was used as the classifier. This experimental result indicated that DSK holds promise
for the classification of SPD matrices.

http://www.fil.ion.ucl.ac.uk/spm


8 Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis 195

8.3 Dense Prediction

For classification tasks, prediction is made at the image-level, i.e., the class label
is assigned to the whole image. For some medical imaging applications prediction
is required at the pixel-level. This is known as dense prediction, i.e., predicting the
value at every single pixel position in an image. Two typical dense prediction prob-
lems are medical image segmentation and synthesis. Medical image segmentation
corresponds to per-pixel classification as it categories every image pixel into Regions
of Interest (ROI) or background, while medical image synthesis corresponds to per-
pixel regression as it estimates the intensity value at each pixel in a transformed
image. Two dense prediction problems are elaborated in detail.

8.3.1 Segmentation

8.3.1.1 Overview

Medical image segmentation identifies regions of interest and delineates their con-
tours giving shape and volume related clinical parameters to assist computer-aided
diagnosis and treatment planning. Deep convolutional neural networks (CNNs) have
been applied to segmentation tasks, such as organ, substructure, or lesion segmenta-
tion [74]. This use of deep CNNs in segmentation applications started from introduc-
ing classification models into pixel-/voxel-wise labeling [9, 24, 38, 71, 83, 84, 95,
109, 146]. These models conducted patch-to-pixel/voxel segmentation where each
cropped patch from a given image was taken as input. After processing by convolu-
tional and fully connected layers, CNNs estimate the segmentation label of its center
pixel/voxel. Bymoving slidingwindows over the entire image, the final segmentation
result can be predicted. This approach was first applied by 2D CNNs to axial slices
of 3Dmedical images [24, 38, 71, 83, 84, 109]. Then, 2.5D CNNs were proposed to
extract features from all three views of medical images [9, 95, 146]. The axial, coro-
nal, and sagittal patch slices that have the same central voxel are separately put into
the three input pathways of these CNNs, and then their deep featuremaps are fused to
estimate the final label. With this strategy, the label annotation of each voxel can see
the three views of its surroundings, so that more volumetric information will be cap-
tured, and the segmentation accuracy will be improved.Some effective approaches
from generic image segmentation, like multi-scale feature extraction, residual learn-
ing, and cascade structure, were integrated into these CNNs to promote their seg-
mentation performance [9, 24, 83, 84]. Direct application of classification models to
infer segmentation has low efficacy. Insufficient acquisition of global-level informa-
tion in classification models lowers their performance. Fully convolutional networks
(FCNs) [80] that generated same-size labels on generic images were explored for
medical image segmentation and extended to 2D, 2.5D, and 3D variants [34, 65, 97,
110, 136, 144]. A bounding box was introduced to better delineate small objects,
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like pancreas, in larger images, and deep supervision and residual learning strategies
were used to build more back-propagation paths during training [34, 136]. CNNs
with Unet-like structures that consist of contracting and expanding paths with skip
connections [94] were used for global-level segmentation to mitigate the issue of
vanishing gradients [26, 54, 55, 59, 64, 73, 86, 87, 91, 145]. Some exploited the
inter-slice spatial dependence on 3D medical images [91] and connections among
neighboring and distant feature maps [81] to increase segmentation accuracy. Dense
blocks and dilated convolutional layers were incorporated into the architectures [33,
85], respectively, to enhance learning of hierarchical visual information.

8.3.1.2 Example: Learning Sample-Adaptive Intensity Lookup Table
for Brain Tumor Segmentation [135]

Learning sample-adaptive intensity lookup tables (LuTs) were used to explicitly han-
dle variation in MR intensity in a brain tumor segmentation framework [135]. An
intensity LuT corresponds to a nonlinear mapping function that could be used to
adjust the intensity levels of MR images from one set to another. A sample-specific
mapping function may be needed and could be guided by the performance of the
segmentation. Figure 8.1 illustrates the SA-LuT-Net framework [135], which incor-
porates a LuT module and a subsequent segmentation module. The LuT module
generates the sample-adaptive parameters to determine mapping functions that are
applied to change the intensity contrast of the MR image and applied to the segmen-
tation module. Through end-to-end training, the LuT and segmentation modules are
jointly trained and negotiated with each other to achieve the optimal segmentation
result.

Diverse nonlinear functions could be used to model the intensity transformation
mappings of LuTs. For simplicity and flexibility, a family of nonlinear functions, i.e.,
piece-wise linear functions, is used in this work. A three-segment piece-wise linear
function is plotted in Fig. 8.2a as an example, and is mathematically formulated as

Segmentation module

Intensity lookup tableLuT moduleMR images

Fig. 8.1 Overview of SA-LuT-Net framework under a multi-modality scenario
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Fig. 8.2 Two intensity lookup tables using a piece-wise linear function, to transform the input
intensity levels in anMR image to target levels by estimated sample-specific parameters of mapping
functions

x̂ =

⎧
⎪⎨

⎪⎩

a1x + b1, 0≤x < s1,

a2x + b2, s1≤x≤(s1 + s2),

a3x + b3, (s1 + s2) < x≤1,

(8.24)

where the intensity levels in the given MR image and its LuT-transformed image are
indicated by x and x̂, respectively. To estimate the parameters of mapping functions,
the LuT module consists of convolutional blocks and fully connected (FC) blocks,
as shown in Fig. 8.2b.

Different segmentation backbones could be employed as the segmentation mod-
ule of SA-LuT-Net. DMFNet [21] and a modified 3DUnet model [54], two advanced
brain tumor segmentation models, were applied as the backbones in this work. The
first backbone network, DMFNet [21], has 69 convolutional layers built as a 3DUnet-
like structure with skip connections. It replaces the ordinary convolutional layers in
its first six encoding residual units with more efficient adaptive dilated multi-fiber
layers to capture multi-scale feature representations from brain tumor images. It
attained comparable results on the BRATS2018 validation set [4] to the challenge
first-placed model, NVDLMED [86], but requires about 1/10 of the learning param-
eters of NVDLMED. The modified 3D Unet model [54], contains 26 convolutional
layers. It incorporates residual connections in its encoding convolutional blocks to
combine neighboring shallow and deep features, and integrates different-depth seg-
mentation outputs in an element-wise summation way to apply deep supervision for
the final model output and achieved third place in BRATS2017 [4].

TheSA-LuT-Net frameworkwas evaluated on theFLAIR images from the training
set of the BRATS2018 [4] dataset by fivefold cross-validation, and compared with
its baselines, DMFNet [21] and modified 3D Unet model [54]. Their Dice scores
are presented in Table 8.4. SA-LuT-Nets achieved significant improvements over
the baselines. Improvement on segmenting the TC region was the largest on both
backbone models.
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Table 8.4 Dice scores of FLAIR segmentation results on the BRATS2018 training set, reported
by mean(std)

Methods WT TC ET

Modified 3D
Unet [54] (baseline)

0.8437(0.1520) 0.5912(0.2104) 0.3520(0.2342)

SA-LuT-Net (3D
Unet based)

0.8621(0.1258) 0.6450(0.1968) 0.3959(0.2647)

DMFNet [21]
(baseline)

0.8549(0.1031) 0.5499(0.2408) 0.3696(0.3055)

SA-LuT-Net
(DMFNet based)

0.8746(0.0864) 0.6459(0.2353) 0.3776(0.2944)

8.3.2 Synthesis

8.3.2.1 Overview

Medical image synthesis is defined as a mapping between images of an unknown
target-modality and source-modalities. Current approaches can be roughly grouped
into two categories, atlas- and learning-based methods. Atlas-based methods uti-
lize paired image atlases of source- and target-modalities to calculate atlas-to-
image transformations in the source-modality, and then explore this transformation
to synthesize target-modality-like images from their corresponding target-modality
atlases [10, 25, 49, 50, 96]. Since most atlases are built from healthy subjects, these
methods perform less satisfactorily on images with pronounced abnormalities. The
second category, learning-based methods, can mitigate this as these methods directly
learn amapping from the source- to target-modality. Once a training set appropriately
contains a pathology, that information could be captured by the learned model, so
that abnormalities, such as brain tumors, can also be synthesized in target-modality
images.

A large category of learning-based synthesis methods train a nonlinear model
that maps each small source-modality patch to the voxel at the center of the patch
at the same location in the target-modality [53, 119, 132]. All these patch-based
methods are limited by ignoring spatial relationships among the small patches in the
image and that can lead to contrast inconsistency in the synthesized image. Global
spatial information captured by multi-resolution patch regression [60] can alleviate
this for cross-modality image synthesis. However, handcrafted features [53, 60,
119, 132] limited the descriptive power to represent complicated contextual details
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in images and affected synthesis quality. Patch-based estimation is usually applied
to each individual voxel and the final estimation of a whole image is determined by
a large number of highly overlapped patches resulting in over-smoothed synthesized
images and heavy computational costs.

Deep learning based models, especially CNNs, have been used to automatically
learn features with better descriptive power [46, 80]. This section mainly focuses
on discussing CNN-based synthesis of three important medical images, CT, PET,
and MRI. The applications of medical image synthesis can be roughly categorized
into two classes, within- and cross-modality synthesis. Within-modality synthesis
targets prediction of higher quality images from source images with lower quality.
It includes synthesis of full-dose images from low-dose CT images [22, 23, 66], 7T
MR images from 3T images [20, 89, 137], and full-dose PET images from low-dose
images [129]. Cross-modality synthesis aims to transform visual information from
the input source-modality to generate the target-modality images. It usually consists
of a synthesis between MR and CT images [17, 37, 45, 47, 70, 77, 88, 89, 142],
CT and PET images [2, 5, 6], MR and PET images [27, 125], and various MR
modalities (T1, T2, FLAIR, and MRA) [18, 31, 90, 112, 126, 131]. Despite their
different applications, they share the same technical basis to build a mapping from
the source to the target image.

8.3.2.2 Example: 3D Conditional Generative Adversarial Networks for
High-Quality PET Image Estimation at Low Dose

Medical images are usually stored in a 3D form. Most GAN methods split the 3D
source images into axial slices and map these slices to 2D target slices [29, 44,
99, 127, 133], which are concatenated to form a 3D image. This leads to a loss
of contextual information along the sagittal and coronal directions and strong dis-
continuities in the final image. A 3D-based architecture was proposed to mitigate
this problem. [120] will be used as an example to describe a 3D cGAN method
targeted at the synthesis of high-quality positron emission tomography (PET). PET
is widely used to visualize metabolic processes in clinical diagnosis and research,
and clear images are needed. A full dose of a radioactive tracer attached to a bio-
logically active molecule is injected into a patient and pairs of gamma rays emitted
from the tracer can be detected by the scanner and constructed into 3D PET images.
The risk of radiation exposure from the tracer is accumulative and raises concerns
about potential hazards for, especially pediatric, patients who need to take multiple
PET scans. Lowering the injected dose to a half dose, causes poor image quality.
Comparison of full- (F-PET) and low-dose (L-PET) PET images shows less noise in
F-PET images (Fig. 8.3). Maintaining the high quality of PET images while reducing
radiation doses is important.
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Fig. 8.3 Visual comparison
between a low-dose PET
(L-PET) image and the
corresponding full-dose PET
(F-PET) image. Image
courtesy of [121]

The overall framework of the 3D cGANproposed in [120] is illustrated in Fig. 8.4.
It is comprised of two sub-modules: a 3D U-net-like generator G and a 3D CNN-
based discriminator D. The entire network of G consists of 12 convolutional layers,
6 down- and 6 up-convolutional layers. The generator, G, drops pooling layers as
they are not suitable for voxel-wise image quality enhancement. G learns underlying
information from anL-PET image and generates an F-PET image to resemble the real
target F-PET modality. The discriminator D differentiates the synthetic F-PET-like

Fig. 8.4 Framework for training a 3D cGAN to estimate a full-dose PET image from a low-dose
counterpart. Image courtesy of [120]
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Fig. 8.5 Progressive refinement based on the concatenated 3D c-GANs. Image courtesy of [120]

image pair from the real one. G and D are trained alternatively with the optimization
of adversarial and estimation error (L1) loss.

Due to possible large differences in feature distributions, a concatenated progres-
sive refinement scheme is used. Denote I L as L-PET images, I F as real F-PET
images, and Ĩ F(i) as the synthetic F-PET-like images from the i th layer refinement
cGAN (Fig. 8.5). Estimation results from the previous 3D cGAN will be fed into the
next 3D cGAN architecture to produce a new set of estimations.

The proposed 3D cGAN was evaluated on a real human brain dataset of 8 normal
subjects and 8 subjects diagnosed with mild cognitive impairment (MCI) [120]. All
the experiments were conducted with a “Leave-One-Subject-Out cross-validation”
strategy. Considering the limited number of training images, large image patches of
size 64× 64× 64were extracted from each PET image of size 128× 128× 128with
a stride of 16, producing 125 patches for each training image. Peak signal-to-noise
ratio (PSNR) and normalized mean squared error (NMSE) were utilized to measure
the PET synthesis performance. Three 2D cGANs were separately trained with 2D
slices from the corresponding axial, coronal, and sagittal views and were compared
with our proposed 3D cGAN model (Fig. 8.6). The images estimated by all the
cGANs show better quality than low-dose images, with reduced noise and enhanced
image quality. Images generated by the proposed 3D cGAN (blue block, Fig. 8.6)
exhibit better visual quality in all three views. Results from the 2D cGANs showgood
performance in the trained views indicated by red circles, but were distorted in the
other two views. 2D cGANs cause discontinuous estimation and lose 3D structural
information by considering the image slice by slice. The 3D cGANmodel yielded the
best PSNR and NMSE values on both normal and MCI subjects (Fig. 8.7). In [120],
a concatenated architecture with two 3D cGANs was also constructed to compare
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Fig. 8.6 Qualitative comparison between 2D and 3D cGANs. In the axial and coronal images, the
left side of the image is the right side of the brain, and the right side of the image is the left side of
the brain. Image courtesy of [120]

Fig. 8.7 Quantitative comparison between 2D and 3D cGAN, in terms of PSNR and NMSE. Error
bars indicate the standard deviation. Image courtesy of [120]

progressive refinement against a single 3D cGAN architecture. It shows that the
concatenated 3D cGANs could achieve a higher PSNR for both normal and MCI
subjects.

Three state-of-the-art PET estimation methods were compared with the proposed
3D cGAN model: (1) mapping-based sparse representation (m-SR) [118], (2) semi-
supervised tripled dictionary learning method (t-DL) [117], and (3) common CNN-
based method [129]. 3D cGAN performed best among all methods as judged by
PSNR and NMSE (Fig. 8.8).
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Fig. 8.8 Quantitative comparison between existing PET estimation methods and the proposed
method, in terms of PSNR and NMSE. Error bars indicate the standard deviation. Image courtesy
of [120]

8.3.2.3 Example: Edge-Aware Generative Adversarial Networks for
Cross-Modality MR Image Synthesis [134]

Most cGAN models, like 3D cGAN [120], focus on pixel-to-pixel/voxel-to-voxel
image synthesis and usually enforce pixel/voxel-wise intensity similarity between
the synthesized and real images. However, they ignore structural details, such as
texture in a MR image [11]. Since edges reflect local intensity changes and show
the boundaries between different tissues in a MR image, maintaining edges could
capture the textural structure and help sharpen the synthesized MR images. When
lesions are contained in MR images, the edge information helps differentiate lesion
and normal tissues, contributing to better depicting the contours of abnormal regions,
e.g., glioma tumors in brain MR images [106]. To enforce edge preservation during
MR image synthesis, an extra constraint based on the similarity of the edgemaps from
synthesized and real images can be added [134]. Edge maps were computed using
the Sobel operator due to its simplicity, and its derivative can easily be computed for
back-propagation.

In this work, three Sobel filters, Fi , Fj , and Fk , were used to convolve an image
A to generate three edge maps corresponding to the intensity gradients along the i ,
j , and k directions of images. These three edge maps were merged into a final edge
map S(A) by

S(A) =
√

(Fi ∗ A)2 + (Fj ∗ A)2 + (Fk ∗ A)2, (8.25)

where ∗ means the convolution operation.
The proposed MR image synthesis framework dEa-GAN (Fig. 8.9) consists of

three modules, a generator G, a discriminator D, and a Sobel edge detector S. For
cross-modality MR image synthesis, a source-modality image x ∼ pdata(x) and a
target-modality image y ∼ pdata(y)were scanned on the same subject with different
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Fig. 8.9 The framework of dEa-GAN includes a generator G, a discriminator D, and a Sobel edge
detector S

contrasts. The generator G of the proposed dEa-GAN aims to synthesize target-
modality-like images G(x) that can pass its discriminator D by training with the
adversarial loss. L1-norm penalties were applied through G to down-weight the dis-
similarity between the real and synthesized images, and between their edge maps
extracted by the Sobel edge detector S. The constraint of edge map similarity is
ignored in the cGAN, as in 3D cGAN. In this way, both the voxel-wise intensity
similarity and the edge similarity are enforced during the synthesis. dEa-GAN incor-
porates the edge maps so both the generator and discriminator benefit through adver-
sarial learning from the synthesized image and its edge map. Thus, the discriminator
utilizes the edge details to differentiate real and synthesized images, and this enforces
the generator to produce better edge details for synthesis.

The generator G in the dEa-GAN model was trained using the adversarial loss,
the voxel-wise intensity difference loss, and the edge difference loss for synthesis,
according to

LG
dEa−GAN = Ex∼pdata(x)[log (1 − D(x,G(x), S(G(x)))) +

λl1Ex,y∼pdata(x,y)[‖y − G(x)‖1] +
λedgeEx,y∼pdata(x,y)[‖S(y) − S(G(x))‖1].

(8.26)

The edge map S(G(x)) implicitly appears in the first term of Eq. (8.26) through the
output of the discriminator D.

The objective of the discriminator D becomes

LD
dEa−GAN = −Ex,y∼pdata(x,y)[log D(x, y, S(y))] −

Ex∼pdata(x)[log (1 − D(x,G(x), S(G(x)))]. (8.27)

The discriminator takes a triplet as its input by adding the edge map S(G(x)) or
S(y). For a synthesized triplet composed of x, G(x), and S(G(x)), the label is zero;
for a real triplet composed of x, y, S(y), the label is one. The discriminator tries to
differentiate these triplets.
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Table 8.5 Quantitative evaluation results of the synthesised T1-to-FLAIR from the BRATS2015
dataset (mean ± standard deviation). A paired t-test was conducted between dEa-GAN and each
of the other methods with a significance level of 0.05. When the improvement of dEa-GAN over a
given method was statistically significant, the result for that method was underlined

Methods PSNR NMSE SSIM

Replica [60] 27.17 ± 2.60 0.171 ± 0.267 0.939 ± 0.013

Multimodal [18] 27.26 ± 2.82 0.184 ± 0.284 0.950 ± 0.014

Pix2pix [56] 27.46 ± 2.55 0.144 ± 0.189 0.940 ± 0.015

3D cGAN 29.26 ± 3.21 0.119 ± 0.205 0.958 ± 0.016

gradient cGAN 29.38 ± 3.25 0.116 ± 0.204 0.960 ± 0.017

dEa-GAN 30.11±3.22 0.105±0.174 0.963±0.016

The final objective of the dEa-GAN model is

LdEa−GAN = LG
dEa−GAN + LD

dEa−GAN . (8.28)

To validate the effectiveness of dEa-GAN, it was compared with five methods: (1)
handcrafted feature used Replica [60], (2) commonCNN-basedMultimodal [18], (3)
2D cGAN based pix2pix [56], (4) 3D cGAN, and (5) gradient loss utilized gradient
cGAN. They are all evaluated for synthesis of T1-to-FLAIR on the BRATS2015
dataset by fivefold cross-validation. The evaluation metrics, PSNR, NMSE, and
SSIM [122] were applied separately on the synthesized whole images. dEa-GAN
achieved the best performance at FLAIR synthesis among all themethods (Table 8.5).
dEa-GAN produced higher quality images than its baseline 3D cGAN with statisti-
cally significant improvements on all evaluation metrics. dEa-GAN synthesizes MR
images better than the compared methods by using edge maps in cGAN models.

8.4 Multi-modality Analysis

Medical imaging devices use imaging modalities, such as CT, PET, and differen-
tial contrast MRI, which may contain complementary information as they reflect
the body from different perspectives. Integrating multiple modalities for analysis
should demonstrate better diagnostic power than a single imaging modality. How-
ever, effective fusion of multiple imaging modalities for analysis is not straight-
forward. The relationships among different imaging modalities and the increase in
features or model parameters, given the limited training samples, need to be con-
sidered. We introduce two multi-modality based methods, i.e., a non-deep-learning
based approach that simultaneously learns a similarity metric and selects features
from multi-modality imaging data for classification, and a deep learning model that
applies a locality-adaptive strategy to effectively fusemultiple imagingmodalities for
PET image synthesis while keeping the increase of the number of model parameters
low.
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8.4.1 Example: A Non-deep-Learning Based Approach for
Multi-modal Feature Selection

8.4.1.1 Overview

Machine learning and pattern classification methods have been widely applied for
early diagnosis of AD based on a single modality of biomarkers. Examples are
a novel landmark-based feature extraction method on MRI images that does not
require nonlinear registration and tissue segmentation [141], an inherent structure-
based multi-view learning method which utilizes structural information of MRI data
[79], and fluorodeoxyglucose positron emission tomography (FDG- PET) to classify
AD or MCI [28, 40, 48].

When analyzing neural images for disease diagnosis and therapy, features corre-
spond to brain regions and effective feature selection can detect regions with brain
atrophy, pathological amyloid depositions or metabolic alterations. Promising per-
formance has been achieved by methods using multimodal data; however, training
subjects are insufficient for the large feature dimensions and limit further improve-
ment. High-dimensional feature vectors usually contain some irrelevant and redun-
dant features and lead to overfitting. Therefore, feature selection is an important topic
for multi-modal analysis of medical images.

Feature selection has been addressed by multi-task feature selection (MTFS) that
selects a common subset of relevant features fromeachmodality [138], inter-modality
multi-task feature selection (IMTFS) that preserves complementary inter-modality
information that can maintain the geometric structure of different modalities from
the same subject [76], and a manifold regularized multi-task feature learning method
(M2TFS) that preserves the information in each modality separately [7]. MTFS
focuses on feature selection, without considering the underlying data structure while
IMTFS and M2TFS also take account of the training subjects’ relationships.

The neighbors and similarity of the original high-dimensional data are obtained
separately from each individual modality. However, due to noisy and redundant fea-
tures, the relationship of subjects in a high-dimensional space may not necessarily
reveal the underlying data structure in the low-dimensional space after feature selec-
tion.

Therefore, similarity should be adaptive to changes in low-dimensional represen-
tations after feature selection. Similarity is a variable which can be optimized when
selecting multi-modality features. A large amount of real-world high-dimensional
data lies on low-dimensional manifolds embedded within a high-dimensional space
[39]. Provided there is sufficient data (the manifold is well-sampled), each data point
and its neighbors should lie on or close to a locally linear patch of the manifold.
The local geometry of these patches can be characterized by linear coefficients that
reconstruct each data point from its neighbors. Since neighborhood similarity ismore
reliable than similarity from farther samples, preserving local neighborhood structure
can help to construct an accurate similarity matrix.



8 Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis 207

In light of this, we proposed a novel learning method, Adaptive Similarity Multi-
modality Feature Selection (ASMFS), which is able to capture the intrinsic similarity
across data from different modalities and select the most informative features [147].
This method includes two major steps: (1) adaptive similarity learning with multi-
modality feature selection and (2) multimodal classification. In step one, simultane-
ously the sparse weight coefficient is optimized and the similarity matrix is updated.
The manifold hypothesis is introduced in adaptive similarity learning and K local
neighborhood similarities of every subjectwill be updated at one time.Tobetter depict
the inherent correlation among multiple modalities, the similarity matrix is shared
by different modality data collected from the same subject. The objective function is
optimized in an alternatingmanner. Experiments using theAlzheimer’sDiseaseNeu-
roimaging Initiative (ADNI) database illustrated that the proposed method discovers
disease sensitive biomarkers.

8.4.1.2 Method

The details of the ASMFS method in [147] are elaborated. First, a similarity mea-
sure is learned from both single and multi-modality data through adaptive similarity
learning. Then, this similarity learning is embedded into the multi-modality feature
selection framework.

Suppose that in a d-dimensional space, the data matrix of n subjects is denoted
as X = [x1, x2, . . . , xn] ∈ R

d×n . The subjects can be divided into c classes and the
corresponding label vector is given as y = [y1, y2, . . . , yn] . The similarity matrix
S of the data pairs can be constructed based on two principles: (1) if the distance
‖xi − x j‖22 between xi and x j is quite small, the similarity si j should be large, (2) if
xi and x j belong to different classes, the similarity si j should be zero. The objective
function to determine the similarities si j is

min
si

n∑

j=1

‖xi − x j‖22si j

s.t. sTi 1 = 1, 0 ≤ si ≤ 1

si j = 0, if yi �= y j ,

(8.29)

where si ∈ R
n is a vector of which the j-th entry is si j and 1 denotes a column vector

with all the elements as one. By solving problem (8.35), it can be found that only one
subject which is the closest neighbor to xi has the similarity si j = 1, while the others
are 0. In other words, it is a trivial solution. Now, suppose the distance information
is unavailable between subjects and the following problem is solved to estimate the
similarities:
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min
si

n∑

j=1

s2i j

s.t. sTi 1 = 1, 0 ≤ si ≤ 1

si j = 0, if yi �= y j

(8.30)

The solution of si j = 1/N reveals that all the subjects will become the nearest
neighbors of xi with 1/N probability. The problem (8.30) can be actually regarded as
the prior of the nearest neighbor probability when the subject distance is unknown.
Considering problems (8.35) and (8.30) jointly, we solve the following objective to
obtain the similarities si j :

min
si

n∑

j=1

(‖xi − x j‖22si j + αs2i j )

s.t. sTi 1 = 1, 0 ≤ si ≤ 1

si j = 0, if yi �= y j .

(8.31)

The second term s2i j can be regarded as a regularization term to avoid a trivial solution
and α is the regularization parameter. The problem (8.31) can be applied to calculate
the similarities for each subject xi . Consequently, we estimate the similarities for all
subjects by solving the following problem:

min
si

n∑

i=1

n∑

j=1

(‖xi − x j‖22si j + αs2i j )

s.t. sTi 1 = 1, 0 ≤ si ≤ 1

si j = 0, if yi �= y j .

(8.32)

And the matrix S = [s1, s2, . . . , sn]T ∈ R
n×n can be treated as a similarity matrix

of n data subjects. Now, we extend the above adaptive similarity learning to themulti-
modality case. The multi-modality data are denoted as X1, X2, . . . , XM , where M
is the number of modalities. The data matrix of the m-th modality is defined as
Xm = [x (m)

1 , x (m)
2 , . . . , x (m)

n ]. For all the multi-modality data, we solve the following
problem to obtain the similarity matrix S:

min
si

n∑

i=1

n∑

j=1

(

M∑

m=1

‖xi − x j‖22si j + αs2i j )

s.t. sTi 1 = 1, 0 ≤ si ≤ 1

si j = 0, if yi �= y j .

(8.33)

Please note that different from traditionalmulti-modalitymethodswhich calculate
the similarity for each modality separately, the similarity matrix S obtained in (8.33)



8 Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis 209

is shared by different modality data. By doing so, we assume that the different
modality data collected from the same subject should be generated via the same
intrinsic distribution, thus the similarities of these data in diverse modalities would
be identical.

Then,we embed the adaptive similarity learning intomulti-modality feature selec-
tion in order to learn the optimal neighborhood similarity, thereby improving the
performance of multi-modality classification by utilizing the more discriminative
information.

To integrate the similarity learning problem (8.33) with multi-modality feature
selection, the objective function of our proposed method is defined as

min
W,S

M∑

m=1

‖y − wT
mXm‖22 + λ‖W‖2,1

+ μ

n∑

i=1

n∑

j=1

(

M∑

m=1

‖xi − x j‖22si j + γ s2i j )

s.t. sTi 1 = 1, 0 ≤ si ≤ 1

si j = 0, if yi �= y j ,

(8.34)

where W = [w1,w2, . . . ,wM ] ∈ R
d×M is the coefficient matrix, wm ∈ R

d is the
coefficient of the m-th modality. The l2,1 norm of W is defined as ‖W‖2,1 =
∑d

i

√∑M
j w2

i j , which can result in a sparse row of W to achieve feature selec-
tion. ASMFS considers different modalities of subject into similarity construction.
λ, μ and γ are regularization parameters which are capable of balancing the weights
in (8.34). From (8.34), we can not only seize the inherent similarity shared across
different modality data, but also select the most informative features.

8.4.1.3 Experimental Results

The data used in [147] are obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (www.loni.usc.edu). The ADNI was launched by a wide
range of academic institutions and private corporations and the subjects were col-
lected from approximately 200 cognitively normal older individuals to be followed
for 3 years, 400 MCI patients to be followed for 3 years, and 200 early AD patients
to be followed for 2 years across the United States and Canada. We use imaging data
from 202 ADNI participants with corresponding baseline MRI and PET data. In par-
ticular, it includes 51 AD patients, 99 MCI patients, and 52 NC. The MCI patients
were divided into 43 MCI converters (MCI-C) who have progressed to AD with
18 months and 56 MCI non-converters (MCI-NC) whose diagnoses have remained
stable over 18 months.

The most discriminative brain regions are defined as those that are ranked by
the cumulative regression coefficient W . Tables 8.6, 8.7, and 8.8 show the top 10

www.loni.usc.edu
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Table 8.6 Top 10 ROIs selected by the proposed method for AD versus NC

Number of ROIs Selected ROIs

69 Hippocampal formation left

41 Precuneus left

80 Middle temporal gyrus right

84 Inferior temporal gyrus right

18 Angular gyrus right

87 Angular gyrus left

26 Precuneus right

46 Uncus left

83 Amygdala right

90 Lateral occipitotemporal gyrus left

Table 8.7 Top 10 ROIs selected by the proposed method for MCI versus NC

Number of ROIs Selected ROIs

87 Angular gyrus left

69 Hippocampal formation left

64 Entorhinal cortex left

40 Cuneus left

83 Amygdala right

41 Precuneus left

63 Temporal pole left

92 Occipital pole left

30 Hippocampal formation right

17 Parahippocampal gyrus left

selected brain regions in the classification of AD versus NC, MCI versus NC, and
MCI-C versus MCI-NC, respectively. For AD versus NC, brain regions such as
the hippocampus, amygdala, precuneus, uncus, and temporal pole were found to
be sensitive indicators of AD by our proposed method. [41, 82] have proved that
the hippocampus is responsible for short-term memory, and in the early stage of
Alzheimer’s disease also known as MCI, the hippocampus begins to be destroyed,
which directly results in the decline of short-term memory and disorientation. The
amygdala is the part of brain that is responsible for managing basic emotions such
as fear and anger. Damage to the amygdala caused by AD can result in paranoia and
anxiety. This finding is consistent with many studies in the literature. The proposed
method can also help researchers to focus on the brain regions selected in this exper-
iment but neglected before, to help identify more brain regions related to AD and
assist in the diagnosis of AD.
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Table 8.8 Top 10 ROIs selected by the proposed method for MCI-C versus MCI-NC

Number of ROIs Selected ROIs

41 Precuneus left

61 Perirhinal cortex left

35 Anterior limb of internal capsule left

48 Middle temporal gyrus left

10 Superior frontal gyrus right

83 Amygdala right

49 Lingual gyrus left

86 Middle occipital gyrus left

30 Hippocampal formation right

24 Fornix left

8.4.2 Example: A Deep Learning Based Approach for
Multi-modality Fusion

8.4.2.1 Overview

Multi-modality fusion refers to the process ofmergingmultiple images from single or
multiple imagingmodalities. Generally speaking, different modalities exhibit unique
pathological features. The addition of other modalities can provide complementary
information to the current one during the synthesis, theoretically boosting the qual-
ity of the synthesized result. Recent works also report that utilization of various
modalities with functional or morphological information, like PET/CT or PET/MRI,
enhances the quality of medical images [12, 52]. Researchers [62, 90, 143] have
made efforts to synthesize the desired target modality by taking into account multi-
ple modalities with regard to the same anatomical structure. A random forest regres-
sion based method, REPLICA [61], was proposed for multi-modal MRI synthesis
as a representative of machine learning methods. Deep learning, CNN-based archi-
tectures, like MILR [19], have emerged due to their automatic learning of complex
features. GAN-based approaches [6, 99], which can preserve high-frequency details,
improve the performance of image synthesis with the help of multi-modality input.
However, a critical problem ofmulti-modality fusion is how to combine thesemodal-
ity images effectively. A majority of the methods mentioned before directly stack
different modalities or fuse them by employing a maximum or average operation,
which inevitably causes the loss of some important information. To tackle this issue,
a 3D locality adaptive multi-modality GAN, named as LA-GAN, was constructed
in [121]. In the next section, we will take LA-GAN as an example and describe its
performance at multi-modality fusion.

Acquiring a high-quality PET image needs a full dose of radioactive tracer
injected into the human body, raising the risk of radiation exposure. Scanning MRI
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is radiation-free for patients. Thus, it is reasonable and beneficial to employ medi-
cal images of T1-weighted (T1-MRI), fractional anisotropy diffusion tensor imaging
(FA-DTI), andmean diffusivity DTI (MD-DTI) to assist the synthesis of high-quality
F-PET from L-PET images. Traditionally, for convenient processing, the same con-
volution filter was applied to all image locations in each input modality. Multiple
input images were regarded as a multi-channel image in a global manner, which
neglected the varying local contributions from the different modalities. To this end,
the LA-GAN was proposed for the synthesis of F-PET from L-PET with accompa-
nying T1-MRI, FA-DTI, and MD-DTI.

8.4.2.2 Framework

The proposed LA-GAN is composed of three modules: (1) the locality-adaptive
fusion (LAF) network, (2) the generator network, and (3) the discriminator network,
as presented in Fig. 8.10. The structures of the generator and the discriminator are
similar to those of the 3D cGAN in Sect. 4.2. The newly incorporated LAF network
takes an L-PET image and corresponding T1-MRI image, an FA-DTI image and an
MD-DTI image as input, and processes them as a multi-channel image to produce
a fused modality by applying different convolution kernels across different image
locations. The received four modality images are divided into N non-overlapping
small patches in the same way, each of which is represented by a different color
in Fig. 8.10. The patches from the four input modalities are denoted in turn as

Fig. 8.10 Overview of locality adaptive multi-modality GANs

http://dx.doi.org/10.1007/978-3-030-69951-2_4
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(8.35)

In this way, N groups of different convolution kernels for N×4 patches at N local
regions can be learned. This end-to-end architecture can reduce the increase of param-
eters under a limited number of training samples. The fused image will be fed into
the generator via the locality-adaptive fusion module to synthesize a realistic F-
PET image, which will be optimized by competition between the generator and the
discriminator.

8.4.2.3 Experimental Results

To test the effectiveness of the proposed LA-GAN, a phantom dataset consisting of
only L-PET, T1-MRI, and F-PETwas utilized. Each image volume of size 128× 128
× 128 was extracted to 125 3D image patches of size 64× 64× 64. To train the LAF
network, each 3D image patch was further partitioned into non-overlapping 8 × 8 ×
8 regions for fusion. All experiments were performed with a “Leave-One-Subject-
Out” strategy andmeasured byPSNRand the structural similarity indexmeasurement
(SSIM). Figure 8.11 shows three examples of the synthesized F-PET by LA-GAN
(the middle column), with the corresponding L-PET and F-PET images, left and
right, respectively. The PSNR is given under each image. A significant improve-
ment over L-PET was achieved in the synthetic results by LA-GAN. To verify the
locality-varying contributions of different modalities, the color coded weights for
different regions in different modalities are shown in Fig. 8.12. We also evaluated
LA-GAN on a clinical dataset that had 8 normal control (NC) and 8 MCI subjects,
each with an L-PET image, an F-PET image, a T1-MRI image, an FA-DTI image,
and an MD-DTI image. The strategies used for the clinical dataset were consistent
with those for the phantom data. To study the contribution of the newly proposed
LAF module, the common multi-channel GAN was compared with LA-GAN. LA-
GAN gave fewer artifacts and clearer details (red rectangles), as shown in Fig. 8.13.
PSNR and SSIM for these methods are displayed in Table 8.9. LA-GAN had the
highest PSNR and SSIM values, indicating its superiority over the common multi-
channel processing method. Its improvement against the multi-channel method was
statistically significant (p = 0.0482 for NC subjects and p = 0.0161 for MCI subjects,
paired t-test, significant at p < 0.05). The qualitative and quantitative results demon-
strated the effectiveness of the LAF network for the full-dose PET synthesis task. To
study the contributions of the multimodal MRI images for F-PET synthesis against
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Fig. 8.11 Examples of the
synthetic F-PET image by
our auto-context LA-GANs
method from three subjects:
a L-PET b Synthesized
F-PET c real F-PET. The
values under the images
denote the PSNR of the
corresponding image. Image
courtesy of [121]

single modality images, we used (1) MRI images (T1+DTI), (2) L-PET image, (3)
L-PET+T1images, and (4) L-PET+T1+DTI images, for synthesis. The group just
receiving L-PET for F-PET synthesis exactly followed the single modality GAN in
[120]. Quantitative comparison results for PSNR and SSIM are given in Fig. 8.14.
The lower measurement values for MRI are due to the difference in imaging mech-
anism between PET and MRI. Compared with the single modality of L-PET, the
two modalities (L-PET and T1) achieved a better result, which was further improved
when DTI images were incorporated. The proposed multi-modality LA-GAN statis-
tically significantly outperformed (paired t-test, significant at p < 0.05) the single
modality model in [120], with p-values of 0.0089 for NC subjects and 0.0035 for
MCI subjects.

Four state-of-the-art approaches: (1)mapping-based sparse representationmethod
(m-SR) [118], (2) tripled dictionary learning method (t-DL) [117], (3) multi-level
CCA method (m-CCA) [1], and (4) auto-context CNN method (auto-CNN) [129]
were compared with LA-GAN to validate its advances. The quantitative evaluation
(Fig. 8.15) shows that LA-GAN had the highest values of PSNR and SSIM, the best
performance among the methods.
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Fig. 8.12 Locality adaptive weights of different regions in different modalities. Image courtesy
to [121]

Fig. 8.13 Visual comparison with multi-channel GANs method. Image courtesy of [121]
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Table 8.9 Quantitative comparison with the multi-channel GANs method on normal and MCI
subjects. Mean (standard deviation), Median

Methods PSNR SSIM

Mean (std.) Med. Mean (std.) Med.

Normal Subjects L-PET 19.88 (2.34) 20.68 0.9790 (0.0074) 0.980

Multi-channel 24.36 (1.93) 24.78 0.9810 (0.0065) 0.983

LA-GAN 24.61 (1.79) 25.32 0.9860 (0.0053) 0.987

MCI Subjects L-PET 21.33 (2.53) 21.62 0.9760 (0.0102) 0.979

Multi-channel 24.99 (2.03) 25.36 0.9795 (0.0098) 0.982

LA-GAN 25.19 (1.98) 25.54 0.9843 (0.0097) 0.988

Fig. 8.14 Comparison results of our LA-GANs model using different modalities in terms of PSNR
and SSIM. Image courtesy of [121]
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Fig. 8.15 Qualitative comparison with the state-of-the-art PET estimation methods in terms of
PSNR and SSIM. † indicates p< 0.01 in the t-test while * means p< 0.05. Image courtesy of [121]

8.5 Conclusion

Machine learning methods have been widely used in computer-assisted medical
image analysis. In this chapter, we briefly reviewed representative machine learning
methods for classification, segmentation, synthesis, andmulti-modality fusion,which
are used in medical imaging applications. Due to the challenges faced by existing
methods, we presented several advanced machine learning models from our work
that improve performance. We demonstrated the development of our models and
verified their effectiveness with experimental results. Our proposed methods are a
general methodology that could be applied to medical image analysis beyond those
presented in this chapter.
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Chapter 9
EfficientNet-Based Convolutional Neural
Networks for Tuberculosis Classification

Vinayakumar Ravi, Harini Narasimhan, and Tuan D. Pham

Abstract Tuberculosis (TB) is an infectious disease that remained as a major health
threat in the world. The computer-aided diagnosis (CAD) system for TB is one of the
automated methods in early diagnosis and treatment, particularly used in developing
countries. Literature survey shows that many methods exist based on machine learn-
ing for TB classification using X-ray images. Recently, deep learning approaches
have been used instead of machine learning in many applications. This is mainly
due to the reason that deep learning can learn optimal features from the raw dataset
implicitly and obtains better performances. Due to the lack of X-ray image TB
datasets, there are a small number of works on deep learning addressing the image-
based classification of TB. In addition, the existing works can only classify X-ray
images of a patient as TB or Healthy. This work presents a detailed investigation
and analysis of 26 pretrained convolutional neural network (CNN) models using a
recently released and large public database of TB X-ray. The proposed models have
the capability to classify X-ray of a patient as TB, Healthy, or Sick but non-TB.
Various visualization methods are adopted to show the optimal features learnt by the
pretrained CNN models. Most of the pretrained CNN models achieved above 99%
accuracy and less than 0.005 loss with 15 epochs during the training. All 7 different
types of EfficientNet (ENet)-based CNN models performed better in comparison to
other models in terms of accuracy, average and macro precision, recall, F1 score.
Moreover, the proposed ENet-based CNN models performed better than other exist-
ingmethods such as VGG16 and ResNet-50 for TB classification tasks. These results
demonstrate that ENet-based models can be effectively used as a useful tool for TB
classification.
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9.1 Introduction

Tuberculosis (TB) is a serious infectious disease caused by themycobacterium tuber-
culosis bacteria consisting of both drug-resistant and drug-sensitive sets. The drug-
resistant set being unreactive to the medicine is the reason for many deaths all over
the world. The drug-sensitive set is curable when treated properly at the early stages
and the rate of fatality is more than 50% when left untreated [1]. Though the bac-
teriological culture and molecular analysis based diagnosis methods are accurate
in detecting TB, the time-consuming and cost-restrictive attributes make them less
effective for developing countries. Delay in the TB diagnosis increases the risk of
disease transmission to contacts causing high infection rate in the world [2].

A recent report from the World Health Organization (WHO) states that tubercu-
losis is one of the top 10 causes of deaths in the lower-middle-income countries [3].
Also, the potential impact of the COVID-19 pandemic on global TB deaths results
in a minimum increase of 200,000 deaths bringing the total from 1.6 to 1.8 million
in the year 2020 [4]. These aspects make the early and accurate diagnosis of TB as
a necessity to treat the patients effectively. The most popular and cheapest diagnos-
tic methods are sputum smear microscopy and Chest X-rays (CXRs). For an early
screening, the CXR is the most promoted tool by WHO and it is the most sensitive
tool unlike sputum smear microscopy [5]. The CXR also performs ideally on detect-
ing fibrotic lesions which is at the risk of developing active TB disease in the future
[6]. Radiologists prefer the CXR for not just diagnosing the TB but also to predict
the risk of developing TB with the patients which in turn helps to deliver the right
treatment. Analyzing each X-rays with a qualified radiologist is time consuming and
difficult for widespread adoption. Recent advances in computer-aided tuberculosis
diagnosis (CTD) tools help radiologists to analyze CXRs in a faster, cheaper, and
more accurate way.

Utilizing the machine learning and deep learning methods on detecting TB has
shown improved performance in the recent years.Machine learning algorithms aim at
extracting valuable features fromCXRs and then classify them to detect the presence
of TB. Using CNN for TB classification has evident improvement in the results as
reported in [7–9]. These methods incorporated binary classification of CXRs as TB
or non-TB. The binary classification might lead the model to perform on detecting
the sickness but not particularly TB. Other deep learning models as proposed in [10,
11] classified different types of TB but were restricted to limited samples of data.
The promising performance of deep learning in the analysis of chest X-rays can be
accomplished by training the deep networks with some large size of samples. One
such dataset proposed by Liu et al. [12] consists of a large number of samples with
three classes: TB, Sick but non-TB, and Healthy. Using this dataset to train a deep
learning model makes it better to identify TB from other lung infections. In [12],
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the architecture used for TB classification backbone are Resnet-50 and VGG-16
with both pretraining and training from scratch. The use of transfer learning from a
pretrained network on classifying the images produces better results as a pretrained
network iswell learned on the high-level features extracted from the images.Here,we
study the use of 26 pretrained networks available in literature for TB classification.
These networks are analyzed, and their performance metrics are compared in terms
of accuracy, precision, recall, and F1 score. The contributions of this chapter are
outlined as follows.

• We compare the performance on TB classification on using 26 pretrained deep
networks.

• We compare the TB classification performance with the baseline networks Resnet-
50 and VGG-16 reported in [12].

• We propose the use of the EfficientNet (ENet) as the state-of-the-art performance
for TB classification.

• Wepropose the feature visualization techniques based on the t-distributed stochas-
tic neighbor embedding (t-SNE) to analyze the performance of the pretrained
networks.

The remaining sections of this chapter are organized as follows: Existing works
for TB classification are discussed in Sect. 9.2. Section 9.3 includes the details for
the proposed method for TB classification. Section 9.4 is the description of the
dataset. Results and analysis for all the CNN-based pretrained models are included
and discussed in Sect. 9.5. Conclusion and future works are discussed in Sect. 9.6.

9.2 Related Work

TBdetection and classification using deep learning is commonly performed bymeans
of CXRs or computed tomography (CT) scans. A well-known public challenge in
TB classification from CT scans is the ImageCLEF tuberculosis task [13]. This
task has three subtasks, including detecting, classifying, and severity scoring of TB
infection, and a combination of CNN and recurrent neural network (RNN) models
was proposed for classifying TB achieved the top 5 performances [13]. Various deep
Learning approaches were also proposed on classifying and assessing the severity of
TB infection from CT scans [14]. Among which the transfer-learning approach was
proposed [15] using the ResNet-50, which achieved the best accuracy. Another study
involving two subtasks as severity scoring (SVR) and CT report (CTR), where a deep
learning approach coupled with the generation of semantic descriptors performed
well with both subtasks [16]. Another transfer-learning-based CT report generation
using the ShuffleNet-v2 was ranked third among several other methods [17].

Jaeger et al. [18] proposed an automated approach for the diagnosis of TB by
extracting texture and shape features of segmented lung regions in CXRs. These
extracted features were used to classify with the support vector machine (SVM).
Deep learning methods can overcome the need of feature extraction as it is capable
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of learning high-level as well as low-level features of images. A CNN model pro-
posed in [19] achieved more than 80% accuracy for the binary classification as TB
and non-TB onCXRs. Thismethod utilized 600CXRs for training and then validated
on 200 images. To address the limited availability of data samples, image augmen-
tation techniques and the use of pretrained networks were proposed in [20]. These
deep convolutional neural networks (DCNNs) ensembled Alexnet and GoogLeNet
achieved the AUC of 0.99 on identifying TB X-rays, and these models had the lim-
itation on flagging the non-TB prevalent locations as TB positive. TB visualization
methods for CNNs such as saliency maps and grad CAMs are proposed in [21],
which provided good visual explanations. The TB-Net [22] is a deep neural network
with a data augmentation pipeline to meet the limitation of inadequate data samples.

Lopes et al. [23] demonstrated the potential use of pretrained CNNs as a feature
extractor for medical images and then used the extracted features for classification
with SVM classifiers. A similar approach [24] used features from the top stack layer
of Inception-v3 and classified the features with the SVM and achieved an accuracy
about 95%. In [25], a different method of transfer learning was used by freezing only
a few sets of layers in the pretrained models, which helped the deep learning model
to learn the low-level features of the CXRs and improved the classification results. In
[26], the use of the ensembles of three pretrained CNNmodels achieved higher accu-
racy and surpassed the need of feature extraction and data preparation techniques.
Munadi et al. [27] proposed three image enhancement methods to improve the per-
formance of pretrained CNN models. Multiple public datasets were combined in
[28] to create large data samples that were trained on nine different pretrained CNNs
for the classification task. Another approach utilizes large sample data (about 5,000
images of normal CXRs and 5,000 images of TB-present CXRs) for training a CNN
model [29]. All these methods showed the performance improvement with the use
of transfer learning.

A multiclass classification of TB based on the severity of the infection was imple-
mented by Chithra et al. [30], where image segmentation and feature extraction
algorithms were used to identify the patient severity as normal, level 1, and level
2. A TB detection system that categorized TB lesions was introduced by Xie et al.
[11], which achieved good performance on two public datasets. CNN models for
identifying seven different TB manifestations were proposed in [31], which resulted
in a good performance in detecting lung abnormalities. Though these methods car-
ried out a multiclass classification, the data used did not include other sickness such
as lung infections being similar to TB. In [12], a large dataset on TB detection and
classification was introduced, where the classes in the dataset are TB, Healthy, and
Sick but non-TB. Using this dataset for training the deep learning model could make
it more robust to identify TB infections from CXRs.
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9.3 Methodology

An overview of the proposed architecture based on the EfficientNet-B0 (ENetbo)
[32] for TB classification is shown in Fig. 9.1. The architecture has two sections, and
they are discussed below.

Data preprocessing: The original X-ray image data shape is 512×512. The X-ray
image datasets are resized into 224×224 and normalization is employed to convert
the values into 0-1 range.

Feature extraction and Classification: The transfer learning approach with the
ENetbo [32] pretrained model is used in this work for feature extraction. This archi-
tecture has less number of parameters compared to the other existing models such
as Xception, VGG-16, VGG-19, ResNet-50, ResNet-101, ResNet-152, ResNet-50-
v2, ResNet-101-v2, ResNet-152-v2, Inception-v3, InceptionResNet-v2, DenseNet-
121, DenseNet-169, DenseNet-201, and NASNetLarge. The architecture consists
of a compound scaling which uniformly scales all dimensions of depth, width, and
resolution. More importantly, the ENetbo model performs better than the existing
aforementioned architectures for the TB classification. Parameters for the ENetbo
architecture are shown in Table 9.1.

Fig. 9.1 Proposed architecture for TB classification using the ENetbo pretrained model

Table 9.1 Parameters for proposed model for TB classification based on ENetbo

Layer Output shape Parameters

EfficientNet-b0 (Functional) (None, 8, 8, 1280) 4049564

global_average_pooling2d (None, 1280) 0

Dense (None, 3) 3843

Total params: 4,053,407

Trainable parameters: 4,011,391

Non-trainable parameters: 42,016
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In addition to ENetb0, this work has used other pretrained models such as Xcep-
tion, VGG-16 [12], VGG-19, ResNet-50 [12], ResNet-101, ResNet-152, ResNe-50-
v2, ResNet-101-v2, ResNet-152-v2, Inception-v3, InceptionResNet-v2, MobileNet,
MobileNet-v2,DenseNet-121,DenseNet-169,DenseNet-201,NASNetMobile,NAS-
NetLarge, EfficientNet-B1 (ENetb1), EfficientNet-B2 (ENetb2), EfficientNet-B3
(ENetb3), EfficientNet-B4 (ENetb4), EfficientNet-B5 (ENetb5), EfficientNet-B6
(ENetb6), and EfficientNet-B7 (ENetb7) for TB classification. The total parameters
of Xception are VGG-16 [12], VGG-19, ResNet-50 [12], ResNet-101, ResNet-152,
ResNet-50-v2, ResNet-101-v2, ResNet-152-v2, Inception-v3, InceptionResNet-v2,
MobileNet, MobileNet-v2, DenseNet-121, DenseNet-169, DenseNet-201, NAS-
NetMobile, NASNetLarge, ENetb1, ENetb2, ENetb3, ENetb4, ENetb5, ENetb6,
and ENetb7 are 22,910,480, 138,357,544, 143,667,240, 25,636,712, 44,707,176,
60,419,944, 25,613,800, 44,675,560, 60,380,648, 23,851,784, 55,873,736, 4,253,864,
3,538,984, 8,062,504, 14,307,880, 20,242,984, 5,326,716, 88,949,818, 7,856,239,
9,177,569, 12,320,535, 19,466,823, 30,562,527, 43,265,143, and66,658,687, respec-
tively. All these pretrained models are CNN-based architectures. These pretrained
models can reduce the training time, faster convergence rate, and achieve optimal
performances for the TB classification. All these pretrained models were trained
on ImageNet database which has more than one million images. This database has
1,000 classes and some of the classes of this ImageNet database aremouse, keyboard,
etc. These models have learnt rich features which represent images from different
classes. To achieve better performances on the ImageNet database, researchers used
these different CNN architectures which have the same property with different scal-
ing schemes. Scaling means arbitrarily increasing the CNN depth or width or using
larger input image resolution for training and evaluation. In this work, these models
are reused as a transfer-learning approach with the aim to transfer similar perfor-
mances for the TB classification.

In all the models, the last layer is removed, and global average pooling and dense
layer are added. The global average pooling operation estimates the average output
of each feature map. As a result, the average pooling reduces the size of the feature
maps. Finally, the dense layer has three neurons which are Healthy, Sick but non-TB
and TB. The dense layer has a softmax activation function with categorical cross
entropy as loss function. The softmax provides the probability values as a vector
for all the three classes and the total sum is 1. The vector contains three values and
choosing the maximum value results in a target class such as Healthy or Sick but
non-TN or TB. Adam optimizer is used for all the models which helps to update the
weights and learning rate with the aim to reduce the loss for the TB classification.

9.4 Description of Dataset

There are four different types of TB X-ray datasets available publicly for CTD
research. However, all these datasets have very few numbers of X-ray data sam-
ples. The details of the existing datasets are shown in Table 9.2. Recently, deep
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Table 9.2 Summary of TB datasets

Dataset Number of X-ray images

Jaeger et al. [18] 138

Jaeger et al. [18] 662

Chauhan et al. [34] 156

Chauhan et al. [34] 150

Liu et al. [12] 11,200

Table 9.3 Summary of TB dataset [12]

Category Healthy Sick but non-TB TB Total

Train 2,495 2,589 544 5,628

Test 1,305 1,211 256 2,772

Total 3,800 3,800 800 8,400

learning models have achieved good performance in most of the image-based appli-
cations [33]. Training deep learning models requires large-scale dataset. Recently,
with the aim to enhance the performance of CTD, a large-scale dataset is made
publicly available for research purpose [12]. The detailed statistics of the datasets
are shown in Table 9.3. To enhance the performance of the CTD, this dataset is
used in the challenge.1 In this work, the dataset was randomly divided into training
(67%) and testing (33%) datasets. This large-scale TB dataset can help to enhance
the performance of CTD and develop a real-time CTD system. The dataset has three
classes: Healthy, Sick but non-TB, and TB. The class samples are shown in Fig. 9.1.
All existing datasets have only two classes such as TB and Healthy. There are cases
where the patient is Sick but non-TB. This can increase the false positive rate. To
avoid this, another class such as Sick but non-TB was included. Around 5–10 expert
radiologists were involved in the TB X-ray labeling process. The process included
double-checking by radiologists to avoid errors in the labeling process.

9.5 Results and Discussions

In this work, TensorFlow2 with Keras3 python library was used to implement the
models. The experiments of all the models were run inside Google Colab4, which
has Tesla K80 GPU of about 25GB RAM.

1 https://competitions.codalab.org/competitions/25848.
2 https://www.tensorflow.org/.
3 https://keras.io/.
4 https://colab.research.google.com.

https://competitions.codalab.org/competitions/25848
https://www.tensorflow.org/
https://keras.io/
https://colab.research.google.com
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The performances of all the models were estimated by the most commonly used
metrics such as accuracy, precision, recall, and F1 score, which were computed from
the confusion matrix. The confusion matrix is a representation of true positive (TP),
true negative (TN), false negative (FN), and false positive (FP). Since the dataset
is imbalanced, the metrics for both macro and weighted were used with accuracy,
precision, recall, and F1 score. The literature survey shows that macro is the most
commonly used metric with precision, recall and F1 score for an imbalanced dataset.
Macro computes the precision, recall and F1 score for each class and returns the
average without considering the proportion for each class in the TB dataset. The
weighted computes the precision, recall, and F1 score for each class and returns
the average by considering the proportion for each class in the TB dataset. The
aforementioned metrics are defined as follows:

Accuracy = T P + T N

T P + T N + FP + FN
(9.1)

Precision = T P

T P + FP
(9.2)

Recall = T P

T P + FN
(9.3)

F1 score = 2× Precision × Recall

Precision + Recall
(9.4)

Here, TP and TN are the number of images correctly classified and misclassified
to a given class by the pretrained model, respectively, FP is a measure that indicates
that the presence of a TB when TB is not present, and FN is the opposite to FP that
fails to indicate the presence of TB when TB is present.

All the pretrained models were trained using the training dataset for TB classifi-
cation. During the training, the models were run for 15 epochs with the batch size
of 64 and learning rate of 0.001. Most models achieved the training accuracy in the
range 95–99.99%with the epochs in the range 10–15.We run experiments of ENetb0
for more than 15 epochs during the training and we observed successive reduction in
train accuracy over epochs after 15. This may be due to overfitting. Thus, we decided
to set 15 as the optimal value for epochs. The training accuracy for the best perform
model such as ENetbo in terms of accuracy and loss is shown in Figs. 9.2 and 9.3,
respectively. These figures show that the training model of ENetbo achieved a better
performance in terms of accuracy and loss within 15 epochs. After 10 epochs most of
the models obtained good performances in terms of accuracy and loss. For compar-
ison purposes, the graphs for training architectures such as VGG-16 and ResNet-50
in terms of accuracy and loss are shown in Figs. 9.4 and 9.5, respectively. These
graphs show that the ResNet-50 achieved an accuracy in the range 95–99.9% within
5. However, the VGG-16 showed successive performance enhancement in terms of
accuracy and loss.
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Fig. 9.2 Training accuracy of ENet models

Fig. 9.3 Training loss of ENet models
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Fig. 9.4 Training accuracy of VGG-16 and ResNet-50 for TB classification

Fig. 9.5 Training loss of VGG-16 and ResNet-50 for TB classification
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Next, the trained model performances were assessed using the test datasets for
TB classification. The testing results are shown in Table 9.4, which shows that the
performance of ENetbo is the best compared to other pretrained models and existing
models such asVGG-16 andResNet-50 in terms of precision, recall andF1 score. The
model shows 99% for accuracy, precision, recall, and F1 score for both weighted and
macro. Since the dataset is imbalanced, performances for both weighted and macro
are reported for eachmetric such as precision, recall, and F1 score.Most importantly,
the ENetbo has less number of parameters and as a result, the proposed model is
computationally inexpensive compared to all other models. The performances of
other pretrained models such as InceptionResNet-v2 and DenseNet-121 are closer to
the ENetbo. There is only 1–2%difference between the precision, recall, and F1 score
obtained from InceptionResNet-v2, DenseNet-121, and ENetbo. The performances
of other models such as Xception, ResNet-101, Inception-v3, and MobileNet are
similar but the performance of ENetbo is the best among these three models. All
these three models achieved more than 90% for precision, recall, F1 score for both
weighted andmacro.MobileNet-v2,NASNetMobile, andNASNetLarge showed less
than 50% for the recall and F1 score in both average and macro in comparison to
other pretrained models. ENet models such as ENetb2 and ENetb4 showed similar
performances as ENetb0. However, both ENetb2 and ENetb4 have more parameters
than ENetbo. Hence, they are computationally expensive during the training and
testing in comparison to ENetb0. More importantly, the performances of VGG-16
and Renet-50 are not desirable and have larger differences in terms of weighted and
macro precision, recall, and F1 score. In summary, the ENetbo is more robust and
has the capability to accurately learn and classify the variants of the patients’ X-rays.
In other words, the ENetbo model can classify the unseen patients’ X-ray data more
accurately than other models.

Results for the best performing model (ENetbo) is shown in Table 9.5, which
shows that the ENetb0 model has attained 100% for both precision and recall. For
the class Sick but non-TB, the ENetbo achieved 100% for recall and 99% for both
precision and F1 score.

The confusion matrices for ENet models such as ENetbo, ENetb1, ENetb2,
ENetb3, ENetb4, ENetb5, ENetb6, and ENetb7 are shown in Fig. 9.6. The ENetb0
models misclassified 8 samples of Healthy as Sick but non-TB, 2 samples of Sick
but non-TB as TB and 6 samples of TB as Sick but non-TB. Overall, the model has
learned to distinguish the patients of Healthy or TB more accurately. There are 8
patients which were misclassified as Sick but non-TB. Overall, the model achieved
an accuracy of 99.42% with a misclassification rate of 0.0058. For the Healthy class,
ENetb1, ENetb4, ENetb5, and ENetb7 achieved better classification rates compared
to the ENetbo but resulted in poorer classification rates for the classes Sick but non-
TB and TB. Models such as ENetb2 and ENetb6 achieved better classification rates
for the Sick but non-TB compared to the ENetb0 but had poorer classification rates
for other two classes such as Healthy and TB. The ENetb4 attained better classifi-
cation rate for the TB compared to the ENetbo model. Overall, each model has its
unique characteristics and combining all the models using a feature fusion approach
can be expected to improve the classification. Confusionmatrices for existingmodels
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Table 9.4 TB classification results

Model Accuracy Type Precision Recall F1 score

Xception 0.93 Macro 0.94 0.91 0.92

Weighted 0.94 0.93 0.93

VGG-16 [12] 0.94 Macro 0.91 0.85 0.87

Weighted 0.94 0.94 0.94

VGG-19 0.47 Macro 0.16 0.33 0.21

Weighted 0.22 0.47 0.30

ResNet-50 [12] 0.10 Macro 0.63 0.34 0.07

Weighted 0.82 0.10 0.03

ResNet-101 0.91 Macro 0.93 0.79 0.83

Weighted 0.92 0.91 0.91

ResNet-152 0.48 Macro 0.79 0.37 0.28

Weighted 0.74 0.48 0.32

ResNet-50-v2 0.85 Macro 0.90 0.81 0.84

Weighted 0.88 0.85 0.85

ResNet-101-v2 0.85 Macro 0.90 0.81 0.84

Weighted 0.88 0.85 0.85

ResNet-152-v2 0.77 Macro 0.85 0.68 0.71

Weighted 0.84 0.77 0.76

Inception-v3 0.94 Macro 0.87 0.96 0.90

Weighted 0.96 0.94 0.95

InceptionResNet-v2 0.99 Macro 0.99 0.97 0.98

Weighted 0.99 0.99 0.99

MobileNet 0.98 Macro 0.98 0.95 0.96

Weighted 0.98 0.98 0.98

MobileNet-v2 0.11 Macro 0.68 0.35 0.09

Weighted 0.89 0.11 0.06

DenseNet-121 0.99 Macro 0.99 0.97 0.98

Weighted 0.99 0.99 0.99

DenseNet-169 0.52 Macro 0.63 0.61 0.40

Weighted 0.75 0.52 0.38

DenseNet-201 0.71 Macro 0.71 0.76 0.63

Weighted 0.86 0.71 0.70

NASNetMobile 0.47 Macro 0.21 0.35 0.24

Weighted 0.24 0.47 0.31

NASNetLarge 0.47 Macro 0.82 0.33 0.22

Weighted 0.75 0.47 0.30

ENetb0 0.99 Macro 0.99 0.99 0.99
Weighted 0.99 0.99 0.99

(continued)
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Table 9.4 (continued)

Model Accuracy Type Precision Recall F1 score

ENetb1 0.99 Macro 0.99 0.98 0.99

Weighted 0.99 0.99 0.99

ENetb2 0.99 Macro 0.99 0.99 0.99

Weighted 0.99 0.99 0.99

ENetb3 0.96 Macro 0.93 0.97 0.95

Weighted 0.97 0.96 0.96

ENetb4 0.99 Macro 0.99 0.99 0.99

Weighted 0.99 0.99 0.99

ENetb5 0.98 Macro 0.98 0.96 0.97

Weighted 0.98 0.98 0.98

ENetb6 0.99 Macro 0.99 0.98 0.99

Weighted 0.99 0.99 0.99

ENetb7 0.99 Macro 0.98 0.98 0.98

Weighted 0.99 0.99 0.99

Table 9.5 Class-wise results of ENetb0 model for TB classification

Category Precision Recall F1 score

Healthy 1.00 0.99 1.00

Sick but non-TB 0.99 1.00 0.99

TB 0.99 0.98 0.98

VGG-16 and ResNet-50 are shown in Fig. 9.6, whose performance are not better than
the ENetb0; however, VGG-16 and Renset-50 achieved better classification rates for
Healthy and TB. Thus, the optimal features of these two models can be used along
with the ENetb0 to enhance the performance for TB classification. However, this
requires a feature selection approach to extract important features from VGG-16 and
Resnet-50 models.

9.5.1 Feature Visualization of pretrained models for TB
classification

All the pretrained models have more than one hidden layers and patients’ image
data passed across these hidden layers to learn to differentiate between Healthy, Sick
but non-TB, and TB. Generally, the size of hidden layers is large in nature. Since
deep learning models are black-box [33], feature visualization is an important task
in TB classification. Feature visualization helps to gain insight into the learned opti-
mal features of a model to allow more detailed analysis of the results. Generally,
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Fig. 9.6 Confusion matrix
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(a) ENetb0. (b) ResNet-50 [12].

(c) VGG-16 [12].

Fig. 9.7 Penultimate layer feature representation using t-SNE

the information can help to find the reason behind the misclassifications. Following,
in this work, the penultimate layer features of size 1,280 of EBetb0 and existing
methods such as VGG-16 and ResNet-50 are passed into the t-SNE. This reduces
the dimension of features of size 1,280 to two dimensions using the principal com-
ponent analysis. The low-dimensional feature representation of ENetb0, VGG-16,
and ResNet-50 is shown in Fig. 9.7. The t-SNE plot of Enetbo shows that the model
has completely learned the optimal features to distinguish Healthy, Sick but non-TB
and TB X-rays. We can observe from the figure that the X-rays of Healthy, Sick but
non-TB, and TB appear to be clustered. Moreover, the model obtained only very few
misclassifications between Sick but non-TB and TB. The t-SNE plot for VGG-16
shows that the model learnt optimal features to differentiate the patients of Healthy
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condition and TB but there were misclassifications for Healthy, Sick but non-TB, and
TB. The ResNet-50 learned optimal features to recognize the Healthy patients but
it completely failed to classify the Sick but non-TB and TB. The penultimate layer
features of ENetbo, VGG-16, and ResNet-50 can be merged using a feature fusion
approach. It is possible that this type of method can obtain a better performance and
be considered as an issue for future work.

9.6 Conclusions

TB classification using deep learning is an important area of research that has been
recognized to be clinically useful by radiologists. In this study, ENetbo-based model
was proposed for TB classification using X-rays. A detailed analysis of the proposed
model was carried out using very large datasets. The performance of the proposed
model was compared with 23 pretrained CNN models and existing VGG-16 and
Resnet-50. In all experiments, the proposed model performed better than the two
existing models and other pretrained CNN models for TB classification.

All these models can also be used for other image modality such as CT scans for
TB classification. The proposed model can be used as a diagnostic tool for an early
diagnosis of TB. Moreover, the model has the capability to analyze very sensitive
details of X-rays, and as a result it can provide more accurate results. The dataset
used in this study has information of TB areas as bounding boxes with labels as
Healthy, Sick but non-TB, and TB. The class of TB has stage information such as
activate, latent, and uncertain together with the comprehensive clinical information
such as age and gender for X-ray of patients. Thus, the model can be developed for
detecting TB stages and the existing clinical information can be used to enhance TB
diagnosis.
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Chapter 10
AI in the Detection and Analysis
of Colorectal Lesions Using Colonoscopy

Zhe Guo, Xin Zhu, Daiki Nemoto, and Kazunori Togashi

10.1 Introduction

Figure 10.1 illustrates the organization of this chapter. We begin with a brief review
of colon anatomy and an overview of general information on colorectal cancers
(CRCs). In Sect. 1.2, we introduce the details of colonoscopy, the most important
tool for the screening, diagnosis, and therapy of CRCs. The colorectal cancer stages
are introduced in Sect. 1.3. In Sect. 1.4, we give a brief introduction about the history
of implementing artificial intelligence (AI) to assist endoscopists in the detection
and analysis of colorectal polyps and cancer.

10.1.1 Colorectum and Colorectal Cancer

CRCs develop in colon or rectum, i.e., large intestine as shown in Fig. 10.2. The
colon and rectum are parts of human digestive system, i.e., gastrointestinal system.
Digestive systems process food for acquiring energy,water, and nutrition, and remove
solid waste (fecal matter or stool). After food is chewed and swallowed in mouths,
remaining travels from esophagus to stomach, small intestine, and then colon.

In Fig. 10.2, circumambient sections composed of tubes are colorectum. The first
section of colon starting from cecum is called ascending colon, i.e., the beginning of
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Fig. 10.1 The organization of this chapter

Fig. 10.2 The structure of colorectum
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colorectum. Digested food from small intestinemoves upward via ascending colon at
the right side of the abdomen to transverse colon, the second section of colorectum.
Transverse colon is named as it crosses the body from the right to the left side.
Descending colon, the third section of colorectum, descends at the left side. The
fourth section is called sigmoid colon because of its “S” shape. The sigmoid colon
joins rectum, the final part of colorectum.

Cancer is a leading cause of death, killingmillions of people annually in theworld.
CRC has the world’s third largest incidence and fourth largest mortality among all
cancer [1]. The incidence of CRCs is increasing rapidly and has been more than
that of lung cancer recently, especially in developed countries [2]. CRC is prevalent
in both developed and developing countries. The number of subjects suffered from
CRCs in developing countrieswas even larger than those of developed countries in the
1990s [3]. The discrepancy might attribute to the fact that CRCs are rarely screened
by physicians using colonoscopy in developing countries because the stool-based
testing of the traditional CRC screening method is less sensitive than colonoscopy
examinations [4]. In Japan, CRCs were cancer with the largest incidence in 2017 and
cancer with the second largest mortality in 2018 [5]. The incidence and mortality
rates of CRCs are expected to steadily increase in the future because the coming of
aging society [5]. The incidence of CRCs is also increasing in the young generations,
although they account for a relatively lower proportion of overall incidences [6, 7].

Fortunately, CRCs are usually developed from precursors, such as adenomatous
polyps with a rather slow progressive speed, and sessile serrated lesions. Therefore,
CRCs are preventable by screening through timely colonoscopy examinations. The
incidence andmortality ofCRCswouldbe reducedby76–90%and53%, respectively,
by colonoscopic polypectomy according to the 1993 and 2012National PolypStudies
[8, 9].

Typically, the group of over 60 years old has the highest incidence of colorectal
cancer; therefore, the screening of CRCs should be performed at the age of 40–
50 years old. Subjects with a family history of colorectal polyps or cancer are also
at a higher risk, so they are recommended to have a colonoscopy examination every
3–5 years. Patients with Crohn’s and ulcerative colitis also have higher risks of CRCs
[10]. Subjects of African origin have a higher risk of CRCs and also have a higher
risk of CRC-related death [11]. Some measures in daily life may reduce people’s
risks of CRCs. Evidence suggests a healthy diet, rich in fruits and vegetables, low
in fat, high in fiber, avoiding smoking, and maintaining a good weight [12, 13].
Furthermore, if we can perform early therapy for colorectal cancer, the survival rate
can be significantly improved even although surgery operations are still the main
therapeuticmethods for colorectal cancer in case of deep invasiveness andmetastasis.

A fecal occult blood test is also used for the screening of colorectal cancer because
of convenience and low cost. However, CRCs are very complicated and versatile in
symptoms as follows:

i. When CRCs is in an early stage with no clinical symptoms, stool would be
completely normal. Therefore, subjects with normal stools may also have
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intestinal cancer. Colonoscopy or other examinations are needed to avoid false
negative.

ii. If a tumor causes intestinal mucosal damage and bleeding, there will be
symptoms of blood in stool, such as bloody stools or blood clots.

iii. If a tumor grows and causes intestinal stenosis, it will make the stool thin.
If it also causes changes in intestinal functions, symptoms of constipation or
diarrhea would appear.

As a result, the sensitivity of fecal occult blood test is significantly lower than that
of colonoscopy examination.

10.1.2 Colorectal Cancer Stages

The colorectal cancer stages as listed in Table 10.1 [14] are mainly determined by the
extent to which CRC has spread through those layers of the colorectum wall and/or
into lymph nodes or other organs. There are three parameters as follows to describe
the CRCs:

T (tumor): This describes the size and invasive depth of an original tumor.
N (node): This indicates whether cancer is present in lymph nodes.
M (metastasis): This refers to whether cancer has spread to other organs or other
parts of the body. The T, N, and M scores collaboratively determined the stages
of CRCs.

A number (I-IV or 1-4) or a letter X is assigned to each parameter. Using this
colorectal cancer staging system, a larger number indicates increasing severity. For
instance, a T1 indicates a less invasive and smaller tumor than T2 or T3. X means
the information could not be assessed.

Table 10.1 Colorectal cancer stages (modified according to the standard of America Joint
Committee on Cancer [14])
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Stage 0: Abnormal cells or growths, such as hyperplastic polyps, are found on the
mucosa (the inner lining of the colorectum). This is known as carcinoma in situ as a
result of the cells are confined to their place of origin and there is no evidence they
have spread to other layers of the colorectum or to lymph nodes or have metastasized
to other organs or other parts of the body. Cells found in stage 0 CRCs may be
cancerous or precancerous.

Stage I: The CRCs have grown into the intestinal wall, through the mucosa (inner
lining), and into the submucosa and may have entered the muscle. There is no
evidence the CRCs have spread to lymph nodes or distant organs or other parts
of the body.

Stage II: Stage II CRCs are divided into three categories:

• Stage IIA: The CRCs have grown into the serosa (the outermost layer of the
colorectum), but have not grown through it. It has not reached nearby organs or
lymph nodes, and has not spread to distant organs or other parts of the body.

• Stage IIB: The CRCs have grown through all the layers of the colorectum, but
have not spread to lymph nodes or distant organs or other parts of the body.

• Stage IIC: The CRCs have grown through all the layers of the colorectum and
also have grown into nearby organs or tissues. The CRCs have not spread to the
lymph nodes or distant organs or other parts of the body.

Stage III: Stage III CRCs are divided into three categories:

• Stage IIIA: The CRCs have grown into the intestine wall, through the mucosa (the
inner lining), and into the submucosa and may have entered the muscle. Cancer
has spread to up to three lymph nodes near the site of the primary tumor.

• Stage IIIB: The CRCs have grown into or through the outermost layer of the
colorectum and may have spread into nearby organs or tissues. The CRCs have
spread to up to three lymph nodes near the primary site but have not spread to
distant organs or other parts of the body.

• Stage IIIC: The CRCs have grown into or through the outermost layer of the
colorectum and may have spread to four or more lymph nodes near the primary
site. The CRCs have also spread to nearby organs.

Stage IV: Stage IV is the most advanced stage of CRCs. If patients have been
diagnosed with stage IV of CRCs, it means that the CRCs have metastasized to
distant organs or other parts of the body, such as the liver or stomach. The CRCs
may or may not have grown through the wall of the colorectum, and lymph nodes
may or may not have been affected. Stage IV of CRCs is further divided into two
categories, depending on whether or not the metastasis has affected more than one
organ or other parts of the body. The original tumor can be of any size and lymph
nodes may or may not be involved, but if the CRCs have spread to another organ it
is considered stage IVA, while more than one organ would be defined as stage IVB.

Stage IV of CRCs can be defined by any T or N category, with the only difference
stemming from whether the M1 or M2 assignment is more appropriate.
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In both forms of stage IV CRCs, the tumor can be of any size (T), and lymph
nodes may or may not be involved (N). M1a indicates that the CRCs have spread to
just one organ, while M1b would mean that more than one organ has been affected.

10.1.3 Colonoscopy and Colorectal Polyps

Figure 10.3 illustrates a scene of colonoscopy. Colonoscopy is the gold standard for
CRCs screening and the most common therapeutic tool for CRCs [15, 16]. Most
colon polyps are harmless, but some may develop into cancer [17, 18]. Hyperplastic
polyps are benign and usually do not have a prompt threat, but they are recommended
to be removed because they would grow up and cause colon obstructions. However,
adenomatous polyps and sessile serrated lesions may develop to CRCs, and therefore
should be timely detected and removed. 80–90% of CRCs develop from polyps. The
evolution process of normal intestinal mucosa → diminutive polyps (≤ 5mm) →
small polyps (> 5 ∼ 10mm) → large polyps (> 10mm) → dysplasia → carcinoma
→ metastasis.

Endoscopy can be used to perform minimally invasive surgical operations, with
lower risks comparedwith traditional ones.Before endoscopyanddiagnostic imaging
were widely used, most internal diseases could only be treated through open surgery.
For the therapy of colorectal polyps and cancer, polypectomy is a minimally invasive
treatment technique that endoscopists use endoscopy tools to resect polyps under
colonoscopy.

Fig. 10.3 An illustration of routine colonoscopy examination
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Fig. 10.4 The illustration of polypectomy

Polypectomy illustrated in Fig. 10.4 can be performed by excision using
endoscopy tools. The procedure is relatively noninvasive and is usually carried out
at the same time during a colonoscopy examination.

In addition, Endoscopic mucosal resection (EMR) and Endoscopic submucosal
dissection (ESD) are also used for the resection of large colorectal polyps and cancer.
Colon bleed is the main complication of polypectomy, EMR, and ESD. Thanks to the
efforts of endoscopists and new-generation endoscopy devices, the rate of bleeding
complications has been significantly reduced.

Olympus, Fujifilm, and PENTAX Medical are currently the three leading endo-
scope manufacturers in the world. Olympus is the inventor of endoscope and has
maintained its leading position in the industry since the 1980s. Endoscopes inte-
grate traditional optics, ergonomics, precision machinery, modern electronics, math-
ematics, software, and other multidisciplinary testing equipment. Classical endo-
scopes usually have two optical fibers. The “optical fiber” carries light into the body
cavity, and the “imaging fiber” carries the image of the body cavity back to the
endoscopists’ sight glass. There is also a separate port that allows dosing, suction,
and flushing. The port as shown in Fig. 10.5 can also be used to introduce small
folding tools such as forceps, scissors, brushes, snares, and baskets for tissue resec-
tion (removal), sampling, or other diagnostic and therapeutic work. The endoscope
can be usedwith a camera or video recorder.More advanced endoscopes are equipped
with digital functions for recording, processing, and enhancing video images. The
endoscopes usually have good flexibility and convenient operation performance. It
can reach narrow or curved space in colons, and even small intestines. The image
transmission sub-objective, the relay system and the eyepiece are used together to



252 Z. Guo et al.

Fig. 10.5 Overview of the distal tip of endoscopy

transmit images. The illumination part transfers halogen, xenon, LED, or laser lights
via optical fibers into colon. The main function of stomata is to supply air, water, and
pass unyielding biopsy forceps. Currently, multifunctional high-definition electronic
endoscopes have mainly being used in clinical medicine. They can not only obtain
diagnostic information of tissues and organs but also measure various physiological
functions of tissues and organs. Image processing technology or special light can
also be used to obtain special module images of lesions, and image analysis tech-
nology can be used to achieve quantitative analysis and diagnosis of colon diseases.
For example, narrow-band imaging (NBI) is proposed by Olympus Corp., and blue
light imaging (or blue laser imaging) and linked color imaging (LCI) are employed
by Fujifilm Corp. for the analysis of colorectal lesions.

10.1.4 Application of AI in Colonoscopy

With the progress of deep learning, artificial intelligence is currently referred to deep
learning. However, AI actually has a broadermeaning than deep learning. Figure 10.6
illustrates the relationship between AI, machine learning, and deep learning. AI was
proposed by McCarthy et al. at the 1956 Dartmouth Conference. AI has shown great
potentials in many aspects after decades of development. Humans are dreaming
of realizing a super-complex computer, thinking like human beings, and having
similarities even beyond human intelligence. Machine learning is a type of artifi-
cial intelligence that allows systems to automatically learn from data and improve
performance without prediction rules being explicitly programmed. Deep neural
network was inspired by the biological properties of the human brain, particularly
neuronal connections. Deep learning is a type of machine learning to learn data using
a hierarchical structure similar to brain neurons.
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Fig. 10.6 Overview of the artificial intelligence

However, traditional AI was far away from being as intelligent as what humans
expect, but more like a robot carrying certain tasks followed commands. Careful
designed features and rules should be employed to get satisfying performance for
detection and classification based on traditional AI. In contrast, deep learning is able
to learn features automatically from training datasets instead of using handcrafted
features. Deep learning, has also shown its potential in many aspects, including but
not limited to image classification/recognition, natural language processing, machine
translation, autonomous driving. Some unilateral capabilities such as image recog-
nition, language analysis, and board games have reached a level surpassing humans.
For example, inMarch 2016,AlphaGo (AI of board gameGo) defeated a professional
player (former World Go champion) in Korea. This incident has made people realize
that AI is a reality that would develop into science fiction scenes seen in movies and
novels. At the same time, the development of graphics processing unit provides a
low-cost, fast, and powerful parallel processing environment for the study of AI.

With the implementation of deep learning in image procession, AI is also adopted
inmedical image-baseddiagnoses andhas gainedunprecedented interest and success,
such as pathology, radiology, and endoscopy in the medical field. The availability of
enhanced computing power in graphics processing units (GPU), and access to large
datasets also accelerate the progress of this field. For example, a convolutional neural
network (CNN) trained on 129,450 skin images is comparable to the performance of
expert dermatologists in distinguishing benign andmalignant lesions [19]. In another
study, the accuracy of a deep neural network algorithm was similar to those of expert
pathologists in evaluating the presence of breast cancer metastasis in sentinel axillary
lymph node specimens in 129 pathological slice images [20]. When performing
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limited-time exercises that simulate real-life clinical practice, the best-performing
algorithm can achieve better diagnostic performance than 11 pathologists.

Computer-aided diagnosis system is a kind of designed AI to assist clinicians
to interpret medical images. AI is applied in gastrointestinal endoscopy in a good
time, particularly on the diagnosis and detection of colorectal polyps in recent years.
Many studies have shown the feasibility of using AI to classify CRCs, and the results
are encouraging. Hence, AI can be considered as a virtual second observer to assist
diagnose CRCs, and it can be of great help to endoscopists under CRCs, particularly
for the less-experienced endoscopists on the detection and diagnosis of CRCs.

10.2 Computer-Aided Detection in Colorectal Polyps

In the previous section, we mainly summarize CRCs and related knowledge, and we
are acquainted that the resection of polyps, the precursors of CRCs, can effectively
prevent the progress of CRCs [9]. In this section, we address how to perform polyp
detection by using computer-aided detection (CADe) system assistants endoscopists
resection.

10.2.1 Why Computer-Aided Detection

Asmentioned in the previous section, colonoscopy is the gold standard for the detec-
tion of polyp. However, the efficacy of colonoscopy depends on endoscopists’ tech-
niques and their expertise accumulated over their careers. Endoscopists usually have
various proficient skills. As a result, the adenoma detection rate (ADR) showed a
wide variation among them, consequently causing an adenoma miss rate of 6–27%
found in clinical trials [21]. In the last two decades, techniques to increase ADR
and decrease the adenoma miss rate have been studied and developed. Evidence has
demonstrated the usefulness of image-enhanced endoscopy, optimal observation time
and various distal attachments have provided colonoscopists with tools to increase
the ADR [21, 22].

Corley et al. found each 1.0% increase of ADR would reduce 3.0% of the
risk of cancer [24, 25]. However, in a systematic review study, the miss rate with
colonoscopywas 22% for polyps, especially 26% for diminutive adenomas (1–5mm)
[26]. Substantial evidence suggests that colonoscopy screening is less effective for
right-sided than left-sided CRCs. The main reasons include poor bowel preparation,
the narrow inspection field of view, diminutive polyps, and less-experienced endo-
scopists. More recently, a research indicated an 8.6% post-colonoscopy CRCs rate
within 3 years of colonoscopy [27]. Evidence suggests that these may be caused by
missed cancer diagnosis or incomplete resection of the lesions [28].

Many devices and optical strategies have been proposed in colonoscopy screening
to improve ADR. Various physical distal colonoscope attachments expand viewing
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areas to facilitate the detection; however, a meta-analysis indicates only small
improvements in ADR. Advanced image-enhanced technologies such as NBI, BLI,
and LCI increase ADR by enhancing the color of polyp, but studies have failed to
demonstrate conclusive increments in ADR during colonoscopy using these new
imaging modules.

Endoscopists might fail to detect lesions even when polyps are within the endo-
scopic field of view. That is why some studies have shown that nurses participate in
colonoscopy as a second observer can improve the ADR [29]. However, this requires
human resource consumption, and the detection rate of adenoma has not been signif-
icantly improved. Specific visual cues might alert endoscopists achieving high levels
of detection to subtle lesions that could otherwise be overlooked

10.2.2 Early Computer-Aided Detection Algorithm

Generally, there are four modalities of endoscopic images. (1) Standard white light
endoscope images are used in routine screening of CRCs. Researchers also focus on
analyzing polyp appearance on images from standard endoscopes since our aim is to
assist the endoscopist to find more polyps during routine screening; (2) Magnifying
endoscope images are usually used by endoscopists to clinically view the characteris-
tics of polyps, but are not commonly used for the research of polyp detection; (3) NBI
is an enhanced imaging method, with different color ranges from those of standard
endoscopes. The concave patterns of polyps can be clearly observed in the magnified
endoscope. They are used in areas where the endoscopist suspects abnormalities, not
typically seen using standard scopes; (4) Wireless capsule endoscope images are
generally regarded as poor image quality and difficult to obtain. We excluded CADe
algorithms with narrow-band imaging and chromoendoscopy because these methods
were usually used after detecting the polyps.

In Table 10.2, we summarized the main features of early methods in polyp detec-
tion. Early computer-aided polyp detection focused on techniques guided by polyp
characteristics, such as color, shape, or texture. However, since there is no open
database available to test differentmethods, it is difficult to compare them. Therefore,
we can only compare different methods based on certain metrics (such as precision,
recall, and F1), always taking into account that these metrics are calculated based on
private datasets.

An efficient CADe algorithmmay be able to assist colonoscopists in finding suspi-
cious lesions, thus increasing the ADR and decreasing the adenoma miss rate. In our
previous study using still images [30], the sensitivity of CADe for neoplastic lesions
was 99.0% (194/196) and the specificity was 98.2% (110/112), showing excellent
results. However, these CADe algorithms have a significant drawback because they
only work on still images, instead of videos needed by clinical practice. For the
detection of colorectal polyps in videos, we require a real-time CADe system with
high sensitivity and specificity, and a low false positive rate with nearly no time delay.
The CADe system can be useful as a second observer in clinical practice if satisfies



256 Z. Guo et al.

Table 10.2 Early computer-aided detection based on machine learning

Dataset Techniques Feature class

Krishnan et al. 2 normal and 4
abnormal images

Edge detection to extract
contours, curvature analysis

Shape

Maroulis et al. Wavelet transform-based
statistical features

Texture

S. A. Karkanis et al. 66 videos Color wavelet, covariance
texture features

Texture, color

Tjoa et al. 12 normal and 54
abnormal images

Texture spectrum color
histograms

Texture, color

Li et al. 12 normal and 46
abnormal images

Wavelet coefficients, lab
histograms

Texture, color

Coimbra et al. 899 images MPEG-7 descriptors; shape
descriptor; edge histogram;
scalable color

Shape, texture

B. V. Dhandra et al. 50 normal and 50
abnormal images

Combination of region color,
texture, and edges

Shape, color

Hwang et al. 27 polyp shots Curve direction, curvature,
edge distance, intensity

Shape, color

D. C. Cheng et al. Region texture Texture

J. Bernal et al. 300 images from 15
colonoscopy videos

Shape-descriptors Shape

S. Y. Park et al. 35 colonoscopy
videos

Spatial and temporal features Shape, color

Wang et al. 42 images Shape-descriptors Shape

Guo et al. 299 abnormal and
255 normal images

Texture spectrum, color
histograms

Texture, color

the above requirements. Apparently, the early CADe algorithms do not satisfy the
requirement for a CADe system.

10.2.3 Recent Computer-Aided Detection Algorithms

Recently, due to the development of algorithms, the availability of enhanced
computing power in graphics processing units, and access to large datasets, i.e.
big data, deep learning-based methods are now gaining unprecedented interest
and success in medical image analysis. Particularly, deep learning-based algo-
rithms using CNN (Table 2.2) showed powerful polyp detection capabilities and
are expected to be used for CRCs screening in the near future. In Oct. 2020,
Olympus starts selling ENDO-AID CADe, an AI-aided diagnosis system for
colonoscopy(https://www.olympus.co.jp/news/2020/nr01856.html). Fujifilm would

https://www.olympus.co.jp/news/2020/nr01856.html
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sell its CAD EYETM, a computer-aided function for the diagnosis using endoscopy
on Nov. 30th, 2020(https://www.fujifilm.com/jp/ja/news/list/5581).

Misawa et al. [31] developed an algorithm based on a convolutional three-
dimensional neural network to detect polyps from colonoscopic videos and achieved
a per-frame sensitivity of 90.0%, per-frame specificity of 63.3% and the accuracy
was 76.5% on 135 short videos. The area under the receiver operating characteristic
curve (AUC) was 0.87. Convolutional three-dimensional neural networks, designed
for processing spatiotemporal data especially suitable for video data, differ from
previous CNN. This preliminary study used a dataset consisting of 73 colonoscopy
video sequences with 155 polyps removed from the cecal intubation to the anus and
391 short videoswithout polyps. Flat lesions accounted for 64.5%of the dataset. Each
frame containing polyps was retrospectively annotated by two endoscopy experts as
a reference for the existence of polyps. The dataset is randomly separated to train
and test CNN. According to the analysis of receiver operating characteristics (ROC),
the detection probability of polyps is set to a cut-off value of 15%.

Urban et al. [32] developed a deep learning algorithm and tested it on 20 full
colonoscopy videos with a false positive rate of 7%. The cross-validation accuracy
of polyps detected by CNN is 96.4%, and the AUC is 0.991. Two colonoscopy
video datasets were further analyzed, and three colonoscope experts (ADR ≥ 50%)
identified frames containing polyps without the help of CNN. A senior expert (ADR
≥ 50% and >20,000 colonoscopy) also reviewed the video with CNN’s detection
results, i.e., green boxes superimpose on detected polyps with a confidence value
greater than 95%. Three experts (without using CNN) reviewed intact videos and
found a totally 36 polyps. With the aid of CNN, senior experts identified a total
of 45 polyps. Among the other nine polyps found with the assistance of CNN, the
confidence values determined by senior experts were lower for six and higher for
three polyps. The second dataset included 11 videos with 73 polyps. These videos
were recorded when the colonoscopy expert did not move the colonoscope closer to
identify polyps during withdrawal to purposely simulate the procedures of missed
polyps. CNN identified 67 polyps in 73 cases,with a false positive rate of 5% frameby
frame. The results of this feasibility study support the concept that CNN’s assistance
can improve ADR by showing polyps that may be missed. Urban and his colleagues
evaluated the proposed CNN using a dataset of 8641 hand-selected colonoscopy
images, which are consisted of more than 40 images with polyps and 4,553 polyp-
free images from more than 2,000 patients. A group of colonoscopists annotated
images with polyps. Senior experts set a confidence level (high or low) for polyps as
references. The first dataset consists of nine videos where colonoscopists removed
28 polyps.

Wang et al. [33] proposed a polyp detection algorithm based on SegNet using
a deep learning algorithm [34] to real-time detect polyps in clinical colonoscopy
with high sensitivity and specificity. They used data from 1,290 patients to train
the model, and validate it using 27,113 colonoscopy images from 1,138 patients.
They achieved a sensitivity of 94.38%, specificity of 95.92% and AUC is 0.984.
Furthermore, on 138 colonoscopy videos with polyps, the algorithm realizes per-
polyp sensitivity of 100%, and on 54 colonoscopy videos without polyps achieved

https://www.fujifilm.com/jp/ja/news/list/5581
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per-frame of specificity of 95.4%. Besides, in a prospective randomized controlled
clinical trial [35], the same group obtained a significant difference in ADR (CADe
29% vs. control 20%) on 1058 patients. 536 and 522 patients were randomized
to standard colonoscopy and colonoscopy with CADe, respectively. The AI system
significantly increasedADR (29.1%vs20.3%) and themean number of adenomas per
patient (0.53vs0.31, p < 0.001). This difference is mainly caused by the numbers of
detected diminutive adenomas (185 vs 102), while there was no statistical difference
in larger adenomas (77vs 58). In the following double-blind randomized study, the
ADR was significantly greater in the CADe group than that in the control group.

Through the collaborationwithAizuMedical Center, FukushimaMedical Univer-
sity, we started to perform the development of a polyp detection algorithm based on
deep learning to remind endoscopists of undiscovered lesions. We focused on the
detection of diminutive polyps (no more than 5 mm) and small polyps (no more than
10mmbut larger than 5mm). These two kinds of polyps are themostlymissed polyps
in colonoscopy examinations but may have higher potential for malignancy, such as
adenomous polyps [36, 18]. Through finetuning a CADe system based on YoloV3,
we achieved a per-video sensitivity of 88% for polyp detection and a per-frame false
positive rate of 2.8% using a confidence level of ≥30% [37]. Four endoscopists
performed detection using the same validation dataset. The per-video sensitivity of
two senior endoscopists was 88%, and the sensitivities of the two physicians in
training were 84% and 76%, respectively. For endoscopists, the numbers of frames
with missed polyps appearing on short videos were significantly less than those of
the frames with detected polyps. No trends were observed regarding polyp sizes,
morphology, or colors. Furthermore, for full video readings, the CADe algorithm
achieved a per-polyp sensitivity of 100%, a per-frame false positive rate of 1.7%,
and per-frame specificity of 98.3%.

In order to validate various polyp detection algorithms, it is necessary to build a
balanced and open database with good image quality. Medical Imaging Computing
and Computer-Assisted Intervention 2015 conference provided an open database for
automated polyp detection and sought to define performance metrics on publicly
annotated databases to enable comparisons of multiple methods. The quality of the
database should be improved for comparing variousmethods. Despite this, the results
from the challenge competition also showed that CNN-based methods were state of
the art, and a combination of methods led to improved performance.

CADe based polyp detection systems, especially those using deep learning tech-
nology, have broad prospects in providing clinicians with real-time support and may
reduce human behavior differences. However, most methods are validated on small
private datasets composed of high-quality still images, polyp morphology lacks vari-
ability, and obtained from devices made by the same manufacturer. In addition, few
studies have explored the potential impact of other quality variables (such as bowel
preparation and withdrawal time) on performance. The detection performance of
CADe polyps may vary depending on the characteristics of the operator (such as
withdrawal speed and inspection quality). Furthermore, analysis and detection using
AI may significantly increase examination durations because more polyps may be



10 AI in the Detection andAnalysis of Colorectal Lesions Using Colonoscopy 259

found, and physicians may have to confirm the results of AI detection if there are too
many false negatives.

To overcome these challenges and develop large-scale annotated datasets with
more easily available consistent performance evaluation metrics, the collaboration
between clinicians and computer scientists is necessary (Table 10.3).

10.3 Computer-Aided Classification in Colorectal Polyps

With the continuous improvement in the quality of endoscopic imaging systems,
optical diagnosis is increasingly used on histology prediction of colorectal polyps,
such as the presence of neoplastic lesions or even submucosal invasion instead
of using pathological images. This information could be a great benefit in deter-
mining endoscopic removable polyps or superficial cancer. In this section, wemainly
introduce the computer-aided diagnosis for polyp classification in clinical optical
diagnosis and related methods. The reason why we need computer-aided diagnosis
will be introduced in 3.1. for the early and advanced methods of computer-aided
classification are introduced at 3.2 and 3.3.

10.3.1 Why Computer-Aided Classification

CRCs limited to mucosa and with superficial submucosal invasion without unfavor-
able histology have lower risks of lymph node metastases and could be removed by
endoscopic therapy [38–40]. In contrast, CRCswith deep (≥1mm) submucosal inva-
sion have a higher risk of metastases. Recurrent lesions may develop after endoscop-
ically removing deeply invasive CRCs, especially those with unfavorable histology
[40]. Therefore, it is imperative to discriminate submucosal invasion stage CRCs
from superficially invasive ones. However, endoscopic images of submucosal inva-
sion stage CRCs resemble those of mucosa/superficial submucosal invasion stage
CRCs [41, 42], and colonoscopists frequently have difficulty in visual classification.

Clinical optical diagnosis of polyp histology, especially for the diminutive polyps
(<=5 mm), can potentially result in enormous cost savings in ways of the “resect
and discard” strategy for diminutive adenoma polyps and the “do not resect”
strategy for diminutive hyperplastic polyps in the distal colon. The formal strategy
using virtual chromoendoscopy assistant endoscopists to confirm resect polyps [43].
The later strategy suggests polyps could be left if optically characterized as non-
neoplastic. Studies have also shown that using the NBI diagnosis of diminutive
polyp histology, experts can accurately define successive surveillance colonoscopy
intervals. If the histology of diminutive polyps can be characterized by endoscopists
using colonoscopy, cost burden may be alleviated. However, chromoendoscopy has
not been adopted in routine clinical practice especially in the west as it is perceived to
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be cumbersome and impractical, requires extra time (for dye spraying), and increases
the cost of the procedure (dye, spray catheter).

Polyp characterization during colonoscopy is highly limited in view of endo-
scopists’ knowledge and experiences. More importantly, according to the reports by
Preservation and Incorporation of Valuable Endoscopic Innovations of the Amer-
ican Society for Gastrointestinal Endoscopy, that recommends endoscopists require
intensive training on image enhanced endoscopy that achieves a negative predictive
value of >90% in predicting the absence of adenomatous histology. The proposed
“resect and discard” approach for diminutive colorectal polyps relies heavily on the
accuracy of prediction of colorectal polyp histology. The standard of “diagnose and
leave” strategy can be implemented in academic settings, but not always in commu-
nity practice, which limits the time it can be incorporated into routine care [44,
45]. The performance difference between experts and non-experts and other reasons
make it extremely important for clinically accurate and stable uniform inspection
standards.

The subtle lesions that may be overlooked are recognized by AI systems because
of specific features, and visual clues may remind endoscopists to perform detailed
analysis to identify cancer. And many studies have shown AI systems have the
potential ability for histology recognition. It could improve non-expects’ diagnostic
accuracies.

10.3.2 Early Computer-Aided Analysis (CADx)

Early image-based CADx systems are based on traditional computer vision and
machine learning methods as described in Table 3.1. These methods require
researchers to manually select meaningful image features, design algorithms to
extract and pack features and construct a trainable predictive algorithm classifier.
Since the early computer-aided classification system has inherent defects such as
poor practicability, poor effect, inconvenient operation, and slow running speed, we
don’t provide further information here (Table 10.4).

10.3.3 Recent Progress of CADx

Deep learning developed recently overcomes the above issues by automatic feature
extraction for better-representing data in a trainable manner. To date, the best
results can be obtained using CNN. CNN is composed of multiple layers of simple
computing nodes, but with complex connections that can mimic the behaviors of
human visual cortexes. Therefore, CNN can continuously learn high-level features.
CAD with the recent progress of image-enhanced endoscopy incorporating AI espe-
cially deep learning technologies (summarized in Table 3.2), offers a promising
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Table 10.5 Recent computer-aided analysis based on deep learning
Training dataset Test dataset image-modality CAD results Experts results

Gross et al.
-------

214 patients, 434 polyps Magnifition NBI 95.0% sensitivity;
90.3% specificity;
93.1% accuracy

-------

Kominami et al.
-------

41 patients, 118 polyps Magnifition NBI 95.9% sensitivity;
93.3% specificity;
94.9% accuracy

-------

Tamai et al.
-------

121 polyps Magnifition NBI 83.9% sensitivity;
82.6% specificity;
82.8% accuracy

70.0% sensitivity;
96.1% specificity;
92.6% accuracy

Byrne et al.
-------

125 polyps Magnifition NBI 98% sensitivity; 83%
specificity; 94%
accuracy

-------

Chen et al.
-------

193 patients, 284 polyps Magnifition NBI 96.3% sensitivity;
78.1% specificity;
90.1% accuracy

97.3% sensitivity;
77.1% specificity;
90.5% accuracy

Mori et al.
-------

152 patients, 176 polyps Endocytoscopy 92.0% sensitivity;
79.5% specificity;
89.2% accuracy

-------

Mori et al.
-------

123 patients, 205 polyps Endocytoscopy 89% sensitivity; 88%
specificity; 89%
accuracy

91% sensitivity;
89% specificity;
90% accuracy

Misawa et al.
-------

100 polyps Endocytoscopy 84.5% sensitivity;
97.6% specificity;
90.0% accuracy

-------

Takeda et al. 5543 images 200 images Endocytoscopy 98.1% sensitivity;
100% specificity;
99.3% accuracy

-------

Mori et al.
-------

325 patients, 466 polyps Endocytoscopy, NBI 93.3% sensitivity;
91.0% specificity;
92.7% accuracy

-------

Maeda et al. 12900 images 525 lesions Endocytoscopy 74% sensitivity; 97%
specificity; 91%
accuracy

-------

Komeda et al.
-------

10 polyps White light
endoscopy, NBI,
chromoendoscopy

70% accuracy
-------

Tokunaga et al. 2751 images 691 images White light
endoscopy

96.7% sensitivity;
75.0% specificity;
90.3% accuracy

96.5% sensitivity;
72.5% specificity;
89.4% accuracy

Nakajima et al. 313 lesions, 1839
images

44 lesions, 58 images White light
endoscopy

81% sensitivity; 87%
specificity; 84%
accuracy

86% sensitivity;
100% specificity;
93% accuracy

solution to help endoscopists by providing decision support during colonoscopy
examinations (Table 10.5).

10.3.3.1 Narrow Band Image-Based Classification

NBI is a technology using rotating filters in front of light sources to filter the band-
width of the projected light centered to 30 nm wide spectra of 415 nm (blue) and
549 nm (green) to create pseudo-colored images.

Tischendorf et al. first evaluated computer-aided classification of colorectal polyps
usingNBImagnification images to classify neoplastic and non-neoplastic [46]. Then,
they improved the computer-aided system in another prospective study where they
analyzed 434 polyps of no more than 10 mm from 214 patients [47]. They evaluated
nine classification features and achieved a sensitivity, specificity, and accuracy of
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95%, 90.3%, and 93.1%, respectively. These were similar to those of experts and
superior to those of non-experts.

Tamai et al. developed a novel method based on AI systems to classify hyper-
plastic polyps, adenoma/adenocarcinoma lesions, and deep submucosal lesions using
magnified NBI [48]. On a test using 121 reviewed lesions, their AI system demon-
strates similar performance to that of experienced endoscopists. The sensitivity, speci-
ficity, positive and negative predictive values, and accuracy of the AI system for
neoplastic lesions were 83.9%, 82.6%, 53.1%, 95.6%, and 82.8%, respectively. The
values for deep submucosal lesions were 83.9%, 82.6%, 53.1%, 95.6%, and 82.8%,
respectively.

Byrne et al. developed anAImodel to differentiate hyperplastic polyps and adeno-
matous from diminutive adenomas for real-time assessment [49]. The polyps were
detected in the normal mode and then viewed in the magnified mode before being
resected. The AI model uses NBI frames with a mixture of normal focus and near
focus for training and testing. The training data consisted of 223 polyp videos in
NBI. Further validation was performed using 40 videos. The final test set consisted
of 125 consecutively identified diminutive polyps (74 adenomas and 51 hyperplastic
polyps). The AI model can process videos for 50 ms per frame. A probability score
was calculated together with the classification according to NICE criteria. Themodel
did not build enough confidence to predict the histology in 19 polyps, but for the
remaining 106 polyp videos the model has an overall accuracy, sensitivity, speci-
ficity, PPV, and NPV of 94%, 98%, 83%, 90%, and 97%, respectively. They expect
to conduct clinical trials to further evaluate the algorithm.

More recently, Chen et al. developed a deep neural network system to charac-
terize diminutive polyps using magnification NBI images [50]. Images from 1476
neoplastic polyps and 681 hyperplastic polyps were collected for training their deep
AI system. Regions of interest were manually selected from high-quality images
by two endoscopists. The deep AI system was tested on 96 hyperplastic and 188
neoplastic diminutive polyp images collected in the same way as the training data.
Histological results were used as the reference standard. The deep AI system differ-
entiated neoplastic from hyperplastic polyp images with a sensitivity of 96.3%, a
specificity of 78.1%, an accuracy of 90.1%. The performance of the deep AI system
was superior to that of four novice endoscopists (<1 year of colonoscopy experience)
and non-inferior when compared with two experts. The deep AI system provided a
diagnosis in 0.45 s, which was shorter than the time taken by endoscopists (expert
group 1.54 s and non-experts 1.77 s).

10.3.3.2 Endocytoscopy-Based Classification

Although the magnified NBI based AI system has provided a powerful tool for the
analysis of diminutive polyps, the generalizability of this system is limited because
magnification colonoscopy is not accessible at most endoscopy centers worldwide. A
more powerful and advancedmagnified endoscopy, endocytoscopy, with a hundreds-
fold ultra-magnifying contact microscope for visualization of nuclei in vivo, has been
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developed for the prediction of histologic severity. Kudo and his team conducted a
series of clinical research to verify the performance of endocytoscopy with an AI
system [51–56].In a recent study on ulcerative colitis, 525 validation data of 525
independent segments were collected from 100 patients, and 12,900 endocytoscopy
images from the 87 patients were used to construct their AI system. The AI system
provided a diagnostic sensitivity, specificity, and accuracy of 74%, 97%, and 91%,
respectively.

10.3.3.3 White Light Image-Based Classification

Generally, the visual recognition of deeply invasive colorectal cancer requires expert
experience and is very difficult for most endoscopists. Tokunaga et al. extracted
3442 white light non-magnified images from 1035 consecutive colorectal lesions to
develop and validate a computer-aided diagnosis system diagnosis for the prediction
of invasion depth [57]. They evaluated the performance of the proposed system to
distinguish shallowly and deeply invasive lesions by comparing with the results of
two experts and two trainees. The artificial system distinguished deeply invasive
lesions with a sensitivity, specificity, and accuracy of 96.7%, 75.0%, and 90.3%,
respectively. The results were significantly higher than trainees (92.1%, 67.6%, and
84.9%, respectively) and were compared to experts (96.5%, 72.5%, and 89.4%,
respectively). This study also suggests trainees assisted by AI system demonstrated
a diagnostic capability comparable to those of experts. This may indicate a potential
role of CADx to predict invasion depth of CRCs.

Recently, Nakajima et al. proposed a computer-aided analysis system (CADx)
using only white light non-magnified plain endoscopic images to classify CRCs
with deep submucosal invasion and mucosal/superficial submucosal invasion, and
compared the performance of CADxwith those of six endoscopists [58]. This system
was trained by 1839 images from two medical institutions and tested by 44 CRCs
of 78 images for the third one; it achieved a sensitivity, specificity, and accuracy
of 81%, 87%, and 84%, respectively. The specificity (primary outcome) was 100%
and 96% for two experts, 61% for two gastroenterology trainees, and 48% and 22%
for two novices. The specificity of the proposed system was superior to novices and
gastroenterology trainees but slightly inferior to experts.

10.3.4 Limitations of CADx

Unlike CADe systems, the performance of CADx is far from satisfying. The reasons
may be as follows,

(1) Data imbalance because of few cases in some subtypes. For example, sessile
serrated lesions (SSL) are also precursors as well as adenoma polyps; however, the
incidence of SSL is much less than adenoma polyps. As a result, it is very hard
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to collect enough cases for the classification of SSL from other polyps. Recently,
oversampling and focal loss may help lessen the influence caused by data imbalance.

(2) High sensitivity and low specificity for malignant lesions. Physicians usually
try to maintain lower sensitivity but higher specificity for malignant colon lesions
because further surgical operations could be performed even if deeply invasive cancer
is regarded as mild lesions and resected by endoscopy in advance. However, AI
systems usually maintain a high sensitivity and low specificity to avoid missing
malignant lesions. This issue may be resolved by finding a feasible threshold using
ROC curves.

10.4 Conclusion

Colonoscopy is the gold standard for CRC screening. Polypectomy, EMR, and ESD
have been themost common treatment therapeutic procedures to prevent the progres-
sion of polyps to CRCs. To date, it has not been fully verified whether AI can
significantly improve medical performance, reduce medical costs, and increase the
satisfaction of patients and medical staff who use AI in the medical field. In addition,
even if the same AI is used, treatment results may vary depending on the indications
and scope of application. Moreover, it is difficult to prove the efficacy of AI through
clinical trials and establish guidelines for the application of AI. Therefore, it is neces-
sary to prove the clinical efficacy of AI based on more prospective trials, develop
an AI-friendly endoscopists interface, and train endoscopists to use AI. AI would
help endoscopists but endoscopists are responsible for admitting the detection and
classification results of AI. When physicians use AI to interpret endoscopic images,
AI would help doctors reduce misses in the interpretation of endoscopic images and
improve medical efficiency. Therefore, endoscopists should seek the best way to
provide better care for their patients with the help of AI. However, it is necessary to
reach a social consensus on forensic issues and educate future AI physicians, because
AI may cause legal and ethical issues.

AI based diagnosis couldmake optical diagnosiswidely applicable but is currently
in its early developmental stage. The automatic detection of polyps based on deep
learning or the analysis of endoscopy images of CRCs should be further validated
through clinical trials. In the next few decades, CNN-based automatic endoscopy
diagnosis is expected to become the mainstream diagnostic technology, and deep
learning is expected to help endoscopists provide a more accurate diagnosis by
automatically detecting and classifying endoscopic lesions. One of the most impor-
tant factors in the development of endoscopy would be the availability of a large
number of high-quality endoscopy images/videos, and endoscopists’ enthusiasm,
knowledge, and experiences AI technology. Many endoscopists are focusing on this
new technology and trying to promote progress on CRCs diagnosis.
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Chapter 11
Deep Learning-Driven Models for
Endoscopic Image Analysis

Xiao Jia, Xiaohan Xing, Yixuan Yuan, and Max Q.-H Meng

Abstract The advent of video endoscopy has led to an increased interest in the
development of computer-aided diagnosis (CAD) approaches. Many of these focus
on the use of deep learning methods as a means of automatically identifying abnor-
malities during endoscopy to lessen the workload on doctors. In this chapter, we take
two tasks in endoscopic image analysis as examples, to survey the state of the art,
recent advances, and future directions of CAD applications, especially with regard to
deep learning models. We introduce the fundamentals of deep learning-driven meth-
ods and elaborate on their success in areas such as endoscopic image classification,
detection of abnormal regions, and lesion boundary segmentation.

11.1 Introduction

Over the past few decades, there has been a great revolution in endoscopic imag-
ing modalities, such as wireless capsule endoscopy (WCE) for gastrointestinal tract
examination and video colonoscopy for large intestinal examination. Unlike many
other medical imaging techniques, endoscopes used during examination procedures
are inserted into the organ and allow the doctor to directly view the interior of the
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organ. Computer-aided diagnosis (CAD) approaches, as a means of automatically
identifying the abnormalities during endoscopy, will enhance diagnostic accuracy
and efficiency.

Computational methods in endoscopy can be traced back to the early 2000s for
tumor recognition in endoscopic images [1, 2]. Since then, several other methods,
primarily based on computer vision techniques, have been proposed by computer
engineers and scientists to supportmedical decision-making in the form of automated
recognition of lesions [3].

The majority of early studies were based on hand-engineered methods, which
typically started with a step of manually designed (also referred to as handcrafted)
feature extraction, followed by a separate process to train a classifier.

With the progress of computational technologies, deep learning is making major
advances in the computer vision field due to its unique capability to learn features.
Deep learning has turned out to be highly capable of discovering representations
via large amounts of available data and computation. The widespread use of deep
learning for image analysis started in 2012, when Krizhevsky et al. [4] proposed
their convolutional neural network (CNN) model, AlexNet, and won the ImageNet
challenge by a large margin. To date, deep learning has become the dominant tech-
nology for almost all recognition tasks and has led to remarkable advances not only
in natural image analysis [4, 5], but also in biomedical applications, such as cell
classification [6], robotic tool detection [7], and gland segmentation [8].

Challenges in Endoscopic Image Analysis Despite the promising results obtained
using computational methods, there remain several unsolved challenges facing the
medical application of deep learning-driven strategies to automated lesion recogni-
tion with endoscopy. It is often difficult for deep learning models to extract features
that discriminate between true abnormalities and artifacts due to the complexmucosa
of the hollow organ. Further efforts and innovative approaches with enhanced learn-
ing capabilities are needed to improve on the present level of recognition accuracy.
Annotated datasets in endoscopic imaging are small compared to natural image
datasets. The generality of deep learning-driven approaches needs to be improved
to address the challenges brought by relatively few training data being available
for feature extraction and learning. The need for a cost-effective recognition system
is increasingly demanded by clinical workflows. Trade-offs between recognition
accuracy and computational efficiency should be carefully studied to achieve better
performance in a clinical setting.

The remainder of this chapter is organized as follows. Section 11.2 describes
various deep learning architectures applied in endoscopic image analysis, with an
emphasis on the typical techniques encountered in the current literature for endo-
scopic image classification, detection of abnormal regions, and lesion boundary seg-
mentation. Sections 11.3 and 11.4 examine application areas for gastrointestinal (GI)
lesion screening. We take two tasks in endoscopic image analysis as examples, gas-
trointestinal hemorrhage recognition in wireless capsule endoscopy images (Sect.
11.3) and colorectal polyp recognition in colonoscopy images (Sect. 11.4), to elab-
orate on methods achieving state-of-the-art performance. Concluding remarks and
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some possible future directions are given in Sect. 11.5. Our earlier works related to
this chapter were published in Refs. [9–14].

11.2 Deep Learning Architectures

11.2.1 Convolutional Neural Networks for Image
Classification

Classification of images plays an important role in the clinical practice of screening
lesions. Accurate classification can facilitate diagnosis, while missing an abnormal
frame could lead to adverse or even life-threatening consequences for the patient.
The classification result can provide information for subsequent lesion detection and
segmentation tasks.

Convolutional neural networks (CNNs) are a type of deep neural network and
form the basis of most deep learning methods used in computer vision. The basic
building blocks to construct a CNN model are the convolutional and pooling layers.
At each convolutional layer l, the input image is convolved with a set of k kernels
Wl = Wl

1,W
l
2, ...,W

l
k and added biases bl = bl1, b

l
2, ..., b

l
k , each generating a new

feature map xlk . These features are subjected to an element-wise non-linear transform
σ(.) and the same process is repeated for every convolutional layer l (“∗” denotes
the convolution operation):

xl+1
k = σ(Wl

k ∗ xlk + blk). (11.1)

A pooling layer (average or max-pooling) follows a convolutional layer to downsam-
ple the featuremaps.With the final fully connected layers, an end-to-end CNNmodel
can be constructed for image classification tasks. Training of CNN-based models is
performed by backpropagation and stochastic gradient descent. When new data is
available, a well-trainedmodel is able to predict and generate the corresponding class
labels.

Figure 11.1 shows an eight-layer convolutional neural network for GI hemorrhage
recognition that is composed of three convolutional layers (conv1–conv3), three
pooling layers (pool1–pool3), and two fully connected layers (fc1, fc2) [9]. The first
convolutional layer (conv1) filters the 240 × 240 × 3 input image with 32 kernels of
size 5 × 5 × 3 with a stride of 1 pixel (this is the distance between the receptive field
centers of neighboring neurons in a kernelmap) and a pad of 2 pixels (this specifies the
number of pixels to implicitly add to each side of the input). The second convolutional
layer (conv2) has 32 kernels of size 5 × 5 × 32 connected to the pooled outputs of
the first convolutional layer (conv1). The third convolutional layer (conv3) has 64
kernels of size 5 × 5 × 32, and the first fully connected layer (fc1) has 50 neurons.
Rectified linear units (ReLUs) are used as the activation function in convolutional
layers (conv1–conv3) and the first fully connected layer (fc1).Max-pooling is applied
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Fig. 11.1 Typical CNN framework for endoscopic image classification. The proposed deep model
generates class labels for each input frame

in the pooling layers (pool1–pool3) to select the maximal activations over input
patches. The output of the second fully connected layer (fc2) consists of 2 neurons
(hemorrhage and normal) and can be activated by a softmax regression function,
which is defined as

fθ (x(l)) =

⎡
⎢⎢⎢⎣

P(y = 1|x(l); θ)

P(y = 2|x(l); θ)
...

P(y = K |x(l); θ)

⎤
⎥⎥⎥⎦ = 1∑K

j=1 exp((θ
( j))�x(l))

⎡
⎢⎢⎢⎣

exp((θ (1))�x(l))

exp((θ (2))�x(l))
...

exp((θ (K ))�x(l))

⎤
⎥⎥⎥⎦ ,

(11.2)
where x(l) ∈ R

n are the input attributes with the corresponding labels y(l). K is the
number of classes. The model parameters θ (1), θ (2), . . . , θ (K ) ∈ R

n are trained to
minimize the loss function:

L(θ) = −
[ m∑
l=1

K∑
k=1

1
{
y(l) = k

}
log

exp((θ (k))�x(l))∑K
j=1 exp((θ

( j))�x(l))

]
, (11.3)

where m denotes the size of the training set. In the binary classification setting, we
have y(l) ∈ {0, 1} and K = 2.

11.2.2 Region-Level CNNs for Lesion Detection

Apart from classification tasks that identify whether a frame contains a lesion, the
output of region-level detection algorithms can also indicate the location of the lesion
in the selected frames. The importance of region-level detection algorithms can be
explained from two perspectives. One, the location boxes of GI lesions can provide
auxiliary information for diagnosis and instruct doctors to conduct surgery and two,
an indication of the location of the lesion enables explainable and reliable diagnosis.

Faster R-CNN [15] is an advanced CNN framework for object detection that can
take arbitrarily sized images as input and output a set of class-specified rectangular
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Fig. 11.2 Faster R-CNN framework for region-level lesion detection. The output highlights the
location box areas with the presence of GI lesions

regions (also referred to as location or bounding boxes). Figure 11.2 illustrates a polyp
detector we constructed in [13], which can be seen as a binary-class implementation
of FasterR-CNN,where bothRegionProposalNetwork (RPN) andRegion of Interest
(RoI) layers are adopted to perform classification and bounding box regression in
parallel. TheRPN is the core operation of Faster R-CNNand replaces the handcrafted
RoI selection by embedding it into the network that can be trained end-to-end. The
RoI pooling layer [16] is amax-pooling layer that allows downsampling of arbitrarily
sized features inside the proposal regions into feature maps with a small, fixed spatial
size (we use 7 × 7 by default). We use two 1,024-d fc layers (each followed by a
ReLU) before the final class-specific classifier and bounding box regressor. The
detection output highlights the bounding box areas with the presence of GI lesions.

In the training phase, the loss function can beminimized by adapting themulti-task
loss defined in [16]:

L(p, c∗, b, r∗) = Lcls(p, c
∗) + λc∗Lreg(b, r

∗). (11.4)

Here p is the predicted probability distribution over the two categories (polyp and
background). b is a vector showing the four coordinates of the predicted bounding
box. c∗ and r∗ represent the ground truth class and bounding box regression target,
respectively. c∗ is 1 if the target is an area presenting a polyp, and 0 otherwise. Lcls

is a log loss for binary classification, i.e., Lcls(p, c∗) = −log(pc∗) for true class c∗.
For bounding box regression, we use the smooth L1 loss [16] to eliminate sensitivity
to outliers:

smoothL1(y) =
{
0.5y2 if |y| < 1

|y| − 0.5 otherwise,
(11.5)

and Lreg(b, r∗) = smoothL1(b − r∗) is activated simply for polyp targets. Thehyper-
parameter λ is applied for weight-balancing between Lcls and Lreg .
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11.2.3 Fully Convolutional Neural Networks for
Segmentation

To achieve finer recognition, the next step is tomake a pixel-accurate inferencewhich
produces an object mask for each frame. Compared to image-level classification and
region-level detection, lesion segmentation is considered as a higher-level recogni-
tion task as it aims to classify every pixel in an input image and predict the exact
outlines of the lesion region. Pixel-by-pixel details are learned and provided for lesion
recognition, as opposed to classification models, which identify whether an image
contains a lesion, and detection models, which place a bounding box around the
lesion. Segmentation is related to both classification and region detection, because
these techniques facilitate learning in a segmentation model—after an abnormal
frame is selected and the region of the lesion is isolated with a bounding box, further
learning within a segmentation model can achieve pixel-accurate prediction.

Deep models for segmentation tasks are expected to be capable of encoding a
lesion’s spatial layout in the input frames. Thus, unlike the image-level recognition
or region-level localization that inevitably lack spatial dimensions—feature maps in
thosemodels are collapsed into vector representations by the fully connected layers—
the segmentation implementation is expected tomaintain the explicit spatial structure
throughout the network and hasmore powerful discrimination capability. To this end,
we resort to the fully convolutional network (FCN) [5] which enables in-network
upsampling and pixel-wise inference using a fully convolutional approach. As shown
in Fig. 11.3, FCN preserves the pixel-to-pixel spatial correspondence by converting
all fully connected layers to convolutions and performs per-pixel categorization for
segmentation tasks. Upsampling (sometimes referred to as deconvolution) is the key
element of FCN to increase the spatial dimension and thus bridge the resolution gap
between coarse featuremaps and dense output predictions. The upsampling operation
is performed by bilinear interpolation [17] that computes the value of each output
point from the four nearby input points on the feature map. 1 × 1 convolution is
applied as a special case of the convolutional layer where a convolution kernel of
size 1 × 1 is used for dimensionality reduction:

Fig. 11.3 FCN framework for pixel-wise segmentation. The proposed method produces a pixel-
accurate lesion mask for each input frame
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(xl+1)1,1 = (Wl ∗ xl)1,1 + b, (11.6)

where “∗” denotes the convolution operation, xl is the input neuron, xl+1 is the output
neuron, and Wl denotes the weight parameter connecting xl with xl+1. b is the bias
unit.

We use a per-pixel binary loss to train the FCN for segmentation:

Lseg(zi , ti ) = −
[
ti log f (zi ) + (1 − ti ) log(1 − f (zi ))

]
, (11.7)

where zi is the pixel-wise predicted score with the corresponding class label ti . ti is 1
if the pixel belongs to the lesion area, and is 0 for the background. f (zi ) is a sigmoid
function (logistic function) that squashes zi in the range [0, 1]:

f (zi ) = 1

1 + ezi
. (11.8)

11.3 Case Study I: Gastrointestinal Hemorrhage
Recognition in WCE Images

11.3.1 Background of the Application

The Wireless Capsule Endoscope (WCE) [18] is a revolutionary device to provide
direct, painless, and non-invasive inspection of the gastrointestinal (GI) tract. It takes
two or more color pictures of the GI tract every second for around 8h until the
batteries are exhausted. These images are compressed and transmitted wirelessly to
a data-recording device attached to the waist of the patient. Approximately 50,000
images are generated and downloaded to a computer. WCE sequences are reviewed
by clinicians to analyze potential diseases and their sources in the GI tract.

Although the WCE has shown significant advantages over traditional endoscopes
when inspecting the GI tract, there is still room for improvement. One problem is
thatWCE sequences are manually reviewed, which is laborious and time-consuming
[19]. The mean reading time is 45 min (ranging from 30 to 75 min), while captured
abnormal images usually occupy less than 5% of the collected images [20]. WCE
frames show different spatial characteristics (shape, texture, and size), which can
make it difficult for clinicians to reliably detect them in all circumstances [21]. In
this regard, the development of computational support systems for automated analysis
of WCE sequences is highly desirable.

Gastrointestinal (GI) hemorrhage, also known as GI bleeding, is one of the most
common abnormalities in the GI tract [22]. GI bleeding can be categorized as active
bleeding (i.e., ongoing bleeding) (Fig. 11.4b) versus inactive bleeding (Fig. 11.4c),
such as erythema and arteriovenousmalformation, andmay occur anywhere through-
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Fig. 11.4 Examples of WCE images in our dataset. a Normal WCE images. b Active bleeding
WCE images. c Inactive bleeding WCE images

out the GI tract. Hemorrhagic abnormalities show great intra-class variation in terms
of morphology, size, and location (Fig. 11.4), making hemorrhage recognition in
WCE sequences vitally important, but challenging.

With the aim of relieving the workload of physicians, computerized approaches to
gastrointestinal (GI) hemorrhage recognition in wireless capsule endoscope (WCE)
images have become an active research area. Existing methods typically start with
a manually designed feature (handcrafted features) extraction step, followed by a
separate process training the classifier. In the first stage, features such as color [23],
texture [24], and statistical information [25] are manually extracted from original
WCE images. These feature vectors are used to learn a binary or discrete classifier,
where both support vector machine (SVM) [23, 26] and k-nearest neighbor (KNN)
[24, 25] techniques are commonly used.

11.3.2 Improved Learning Strategy

11.3.2.1 Image-Level Hemorrhage Recognition

Handcrafted features are useful in that they attempt to model the kinds of features
that doctors look for when identifying a GI hemorrhage. For example, as hemorrhage
has a distinct red hue, computer engineers could empirically define a certain range of
chromaticity in which features of GI hemorrhage appear to be concentrated. How-
ever, their design circle relies heavily on domain knowledge. Another drawback of
hand-engineered approaches is that theymay lose useful information and not be opti-
mized, because they are not part of an end-to-end learning system (i.e., feature design
is separate from training the classifier). These issues motivated us to improve recog-
nition performance by developing deep learning-driven methods to find higher-level
and more discriminatory features. Deep learning methods are usually more complex
computationally and require a large number of annotated images for model training.
As we have obtained handcrafted features in previous studies, there is an appeal in
combining the merits of domain knowledge and hierarchical feature learning, so that
these two could complement each other, and potentially outperform either individual
strategy for hemorrhage recognition.
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Fig. 11.5 An overview of the proposed framework for image-level hemorrhage recognition

Figure 11.5 shows an overview of the proposed framework for image-level hemor-
rhage recognition. Its three stages are joint feature extraction, feature integration, and
classification. In joint feature extraction, both CNN-derived and handcrafted (HC)
features are extracted from the input frame. We use k-means clustering to extract for
handcrafted features and for feature learning via CNN, the output of the first fully
connected layer in Fig. 11.1 constitutes the CNN feature vector of each input frame.
Features of the two categories are integrated based on a defined strategy so that the
combined feature vector serves as the input for classification. The final decision is
obtained via a Softmax classifier.

Before feature integration, normalization is performed on the HC and CNN fea-
tures. Then for each inputWCE image, its HC and CNN features are jointly modeled
through an integration process, which takes the form:

[CNN , HC]i = [wc × CNNi ,wh × HCi ], wc + wh = 1, (11.9)

where i denotes the indexof the input sample.wc,wh areweighting factors determined
empirically through the experiment. The combined feature vector with a total length
of 50 + 50 = 100 is used to learn a binary classifier (Fig. 11.5).

11.3.2.2 Pixel-Level Hemorrhage Recognition

Technically, the above work provides a solution for whole-image classification. The
next step in the progression of hemorrhage recognition is to make a pixel-wise pre-
diction, i.e., to segment the blood region within the screened frames. To this end,
we considered casting the pre-trained networks into a fully convolutional form, by
using fully convolutional networks (FCNs).

Before training the FCN models, one concern is that regions with active or inac-
tive bleeding abnormalities may exhibit large differences in their color and texture



280 X. Jia et al.

Fig. 11.6 Anoverviewof the proposed framework for hemorrhage segmentation [11]. The proposed
method first classifies the hemorrhage frames into active and inactive subgroups based on the
statistical features derived from the histogram of the probability of the color space. Then for each
subgroup, we highlight the blood regions via fully convolutional networks (FCNs)

components. To resolve this problem, we first classify the images with the presence
of a hemorrhage into two distinct subgroups based on their statistical features. The
purpose of this step is to enhance the learning process in the segmentation model.

Figure 11.6 depicts an overview of the proposed method, which comprises two
stages: classification of hemorrhage frames and segmentation of hemorrhage regions.
Specifically, the first stage aims to roughly classify the hemorrhage samples into two
subgroups based on their statistical features, i.e., frameswith apparent active bleeding
regions and frames with small regions of inactive bleeding. The statistical features
are described by a normalized color histogram, where a k-means algorithm and a
softmax classifier are used to make decisions to classify the hemorrhage frame. In
the segmentation stage, two fully convolutional network models, FCN-active and
FCN-inactive, are trained separately for each subgroup. Subsequently, hemorrhage
regions within the input frame can be identified by forward-passing the established
network.

11.3.3 Dataset

To evaluate the performance of image-level recognition, we constructed a largeWCE
dataset for bleeding detection that contains 10,000 annotated images, including 2,850
GI bleeding frames and 7,150 normal frames (see Fig. 11.4). These images are
extracted from 80 different patients’ videos and manually annotated by expert physi-
cians. Apart from the conventional bleeding samples with apparent active bleeding
regions (Fig. 11.4b), this dataset also collects images that contain small regions of
inactive bleeding (Fig. 11.4c), making the detection task more challenging. Images
containing a bleeding region are labeled as positive (Fig. 11.4b, c), otherwise, they
are labeled as negative (Fig. 11.4a). The size of each WCE image is 240 × 240 × 3.
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To assess the performance of pixel-level recognition, we further construct a pixel-
wise labeled WCE dataset. The dataset consists of 300 WCE images, all with blood-
based abnormalities, including 148 active bleeding frames and 152 inactive ones.
These images were extracted from 60 WCE video snippets of 12 different patients
and manually annotated by expert physicians. Pixels within a bleeding region are
labeled as positive, otherwise, they are labeled as negative.

11.3.4 Evaluation Metrics

We measure the performance of image-level hemorrhage recognition quantitatively
by employing three commonly used metrics:

Recall = T P

T P + FN
,

Precision = T P

T P + FP
, (11.10)

F1 score = 2 × Precision × Recall

Precision + Recall
,

where true positive (TP) is the number of positive samples correctly classified; false
negative (FN) is the number of positive samples incorrectly classified as negative;
true negative (TN) is the number of negative samples correctly classified, and false
positive (FP) is the number of negative samples incorrectly classified as positive. In
particular, the F1 score is a measure of a test’s accuracy in the statistical analysis of
binary classification.

The performance of pixel-level recognition is measured quantitatively by report-
ing four metrics from common semantic segmentation tasks:

Mean IU = 1

ncl

∑
i nii

ti + ∑
j n ji − nii

,

Frequency weighted IU = 1∑
k tk

∑
i ti nii

ti + ∑
j n ji − nii

,

Mean accuracy = 1

ncl

∑
i nii
ti

, (11.11)

Pixel accuracy =
∑

i nii∑
i ti

,

where ni j is the number of pixels of class i predicted to belong to class j , ti = ∑
j ni j

is the total number of pixels of class i , and there are ncl different classes. IU stands
for the region intersection over union.
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11.3.5 Experimental Results

11.3.5.1 Performance of Image-Level Hemorrhage Recognition

We show in Fig. 11.7a–c the constructed feature histograms of a normalWCE frame,
an active bleeding frame, and an inactive bleeding frame, respectively. The histogram
components vary greatly among the three categories of WCE samples, revealing that
the proposed hand-engineered method is effective in feature extraction, and thus
provides a reliable basis for the following recognition tasks. Since we apply k-means
clustering to summarize the color information, the dimensionality of theWCE images
could be considerably reduced leading to high-speed processing of the classification.

After the CNN model optimization is completed, the discriminatory regions of
active bleeding and inactive bleeding are highlighted (Fig. 11.8d), suggesting that
the feature maps generated by the CNN are able to characterize hemorrhage from the
complex gastrointestinal mucosa. The recognition accuracy of the proposed CNN
model reached 0.9813 recall, 0.9899 precision, and 0.9856 F1 score, thereby vali-
dating that deep learning is highly capable of hemorrhage recognition.

At this point, we expect feature generation based on domain knowledge and CNN
learning will be complementary, and joint modeling of handcrafted features and the
CNN features could further improve the recognition performance.

We compared the image-level recognition performance of our proposed method
with the latest approaches by Fu et al. [23] and Yuan et al. [27], where both utilized
handcrafted features. We implemented their methods on our dataset to perform a
direct comparison and report the results in Table 11.1. The proposed hand-engineered
method (referred to as Ours (HC only)) and CNN-based method (referred to as
Ours (CNN only)) are also involved to validate the key ideas we present. Ours (HC
only) characterizes the input images using the proposed handcrafted manner only,
whereas in Ours (CNN only) each WCE image is summarized via purely CNN-
derived features. Apart from the image-level metrics defined in Eq. (11.11), TP,
TN, FP, and FN are listed to provide a comparative reference. The two subsets of
our method (i.e., Ours (HC only) and Ours (CNN only)) perform comparably or
better than the state-of-the-art methods, demonstrating the efficacy of our ideas.
More importantly, the proposed strategy with joint feature extraction (i.e., Ours
(CNN+HC)) outperforms the other four comparisons by a considerable margin for

Fig. 11.7 Some examples of the constructed feature histogram [12]. a Example of a normal sample
and its feature histogram. b Example of an active bleeding sample and its feature histogram. c
Example of an inactive bleeding sample and its feature histogram
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Fig. 11.8 Some training samples and their #26, #27, #28 feature maps after forward-passing the
first convolutional layer (conv1) [9]. a Raw data. b The #26 feature maps. c The #27 feature maps.
d The #28 feature maps

all seven measures, especially in terms of recall (from 0.9538 to 0.9975) and F1

score (from 0.9744 to 0.9968), suggesting that the CNN and handcrafted features are
effective complements to each other.

We further investigated the impact of the size of the training set on the performance
of hemorrhage recognition. Experiments were performed by varying the size of the
training set from 200 to 8200 (fixed ratio sampling, posi tive : negative = 1 : 3)
with a step size of 200 images.

Figure 11.9 illustrates the comparative results in terms of F1 score, where Fig.
11.9a gives the comparison among Ours (CNN+HC) and the two subset versions,
Fig. 11.9b plots the performance curve for both Ours (CNN+HC) and the two lead-
ing approaches by [23, 27]. From Fig. 11.9a, the proposed method combining both
CNN and HC features outperforms either class of feature extraction strategies indi-
vidually, showing the improvement obtained by integrating HC and CNN features.
Figure 11.9b shows the recognition performance (in terms of F1 score) among Ours
(CNN+HC) and the two comparison methods. Our method outperforms the state-
of-the-art approaches in two points: (1) When only a relatively small-sized training
set (<1000) is available, the proposed method leads to stronger results compared to
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Table 11.1 Quantitative comparison of our methods with state-of-the-art hemorrhage recognition
approaches. The same training and test sets are used in all five methods. Boldface indicates the best
performance
Method Type TP TN FP FN Recall Precision F1 score

Fu et al.
[23]

HC 758 987 13 42 0.9475 0.9831 0.9650

Yuan et al.
[27]

HC 763 997 3 37 0.9538 0.9961 0.9744

Ours (HC
only)

HC 775 994 6 25 0.9688 0.9923 0.9804

Ours
(CNN
only)

CNN 785 992 8 15 0.9813 0.9899 0.9856

Ours
(CNN+HC)

CNN+HC 798 997 3 2 0.9975 0.9962 0.9968

Fig. 11.9 Comparison of hemorrhage recognition performance (in terms of F1 score) with variable
sizes of the training set. a Comparison of F1 score among Ours (HC only), Ours (CNN only), and
Ours (CNN+HC). b Comparison of F1 score among [23, 27] and Ours (CNN+HC)

[23, 27], indicating that the combined strategy benefits from the CNN architecture
extracting richer information via high-level representations even with limited data;
(2) As the number of training samples increases, the performance of both ours and
the two other methods saturates quickly, thus, a clear improvement of the proposed
method can be observed. Our method further advances the state of the art in WCE
hemorrhage recognition.

Running Time Computational costs were recorded in terms of time efficiency: test-
ing a 240 × 240 RGB image takes around∼100ms using the joint modeling method
on a desktop with an Intel Xeon Processor E5-2630V3 and a single GPU of NVIDIA
GeForce GTX TITAN X. In the training stage, the proposed CNNmodel converges in
about 50 min. Including the time needed to extract handcrafted features (20 min in a
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pureMATLAB implementation), all training for CNN+HC can be completed within
2h, which is significantly faster than directly training a very deep CNN model.

The above results validate that the proposed CNN and handcrafted features are
efficacious complements to each other, with an achieved F1 score of up to 0.9968.
By performing high-level recognition while minimizing the computing resources
required, our method combines the merits of domain knowledge and hierarchical
feature learning, and thus further improves the classification accuracy of GI hemor-
rhage recognition in WCE images.

11.3.5.2 Performance of Pixel-Level Hemorrhage Recognition

Figure 11.10 shows the segmentation results on the test sets after 10, 000, 50, 000,
and 100, 000 training iterations. Performance rises quickly for both subgroups. The
segmentation results yielded after 50, 000 training iterations for FCN-active and
100, 000 training iterations for FCN-inactive are quite satisfactory when compared
with the corresponding ground truth, validating the learning capability of our FCN-
based models.

The performance of our proposed method is quantitatively compared with two
state-of-the-art approaches by Fu et al. [23] and Yuan et al. [27]. Their methods were
based on hand-engineered techniques and are capable of segmentation of hemorrhage
regions. We implemented their methods on the same training and test sets to perform
a direct evaluation. Experimental results on the test sets with active bleeding and
inactive bleeding are reported in Table 11.2. We also evaluated the performance of a
unified FCN model (called FCN-unified), which is trained without the classification
step, therefore on an unseparated dataset containing both active and inactive bleeding
samples. This strategy performs comparably to the latest methods for active bleeding
detection, while bringing a minor improvement of mean IU to 0.7441. However, the
FCN-unified provides little benefit on inactive bleeding detection, perhaps due to
the large differences in color, morphology, and/or size between the two categories of
bleeding. Therefore, the classification step is necessary, and separately training two
FCN models shows the most accurate result in bleeding segmentation tasks.

Fig. 11.10 Segmentation result after 10, 000, 50, 000, and 100, 000 training iterations [11]. a
Segmentation of on-going bleeding regions via FCN-active. b Segmentation of small blood-based
abnormalities via FCN-inactive
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Table 11.2 Comparison of hemorrhage segmentation approaches. Boldface indicates the best per-
formance [11]

Method Active bleeding Inactive bleeding

Mean IU F.w. IU Mean
acc.

Pixel
acc.

Mean IU F.w. IU Mean
acc.

Pixel
acc.

Fu et al.
[23]

0.6973 0.7048 0.8348 0.8244 0.6770 0.9805 0.7079 0.9895

Yuan et
al. [27]

0.7211 0.7327 0.8365 0.8448 0.6403 0.9706 0.7853 0.9805

FCN-
unified

0.7441 0.7532 0.8580 0.8577 0.6620 0.9751 0.7736 0.9845

FCN-
active

0.7750 0.7854 0.8691 0.8796 – – – –

FCN-
inactive

– – – – 0.7524 0.9848 0.8030 0.9917

Table 11.2 illustrates that our method achieves an increase in the four metrics,
especially in terms of mean IU. The FCN-active improves the segmentation score of
active bleeding from 0.7211 mean IU to 0.7750 mean IU. For the segmentation task
of inactive bleeding, the FCN-inactive scores 0.7524 mean IU for an improvement
of more than 7% points. This result demonstrates the advantages of an end-to-end,
deep-learning-based strategy in WCE diagnostic applications.

11.4 Case Study II: Colorectal Polyp Recognition in
Colonoscopy Images

11.4.1 Background of the Application

Colorectal cancer (CRC) is the third most common cancer and the third-leading
cause of cancer deaths among both men and women in the United States [28]. Fortu-
nately, screening can preventCRC through the detection and removal of precancerous
polyps, as well as diagnose cancer at an early stage, when treatment is usually less
extensive and more successful.

Colonoscopy is the recommended and gold standard screening method for CRC,
allowingdirect visual examinationof the entire colon and rectum.CRCusually begins
as an adenomatous polyp, therefore, accurate recognition of polyps in colonoscopy
images is crucial for early CRC diagnosis and treatment [29]. Despite techni-
cal advances, current manual reviews of colonoscopies are laborious and time-
consuming, requiring the undivided concentration of the endoscopist. In this regard,
the development of computational support systems for automatic detection is highly
desirable.
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Fig. 11.11 Example of the technical challenges for automatic polyp recognition. From top to
bottom: large intra-class variation of polyps and low inter-class variation between polyps and folds;
obscure polyp boundaries with low contrast to the background; the presence of artifacts. In each
image, the green line indicates the polyp contour. A dashed blue line highlights the presence of
intestinal folds in the first row, while in the third row, it circles the intestinal content, specular
highlights, and the overexposed region, respectively

Automatic recognition of polyps in colonoscopy images is, however, a very chal-
lenging task. The intra-class variation of polyps is large in terms of morphology, size,
and location, while there is limited inter-class variation between polyps and other
elements of the scene (folds, vessels), making it difficult to discriminate polyps from
colonic mucosa. Polyps with a flat morphology or at their early stages show obscure
boundaries and low contrast to the background, thus increasing the challenge. Arti-
facts generated due to the occurrence of intestinal content (bubbles, fecal particles),
as well as the presence of specular highlights and overexposed regions, may further
aggravate the situation. Figure 11.11 shows examples of these challenges.

To tackle these challenges, several approaches have been proposed to model dis-
criminatory features and improve the accuracy of recognition. The majority of early
studies were based on hand-engineered methods, which exploited the low-level fea-
tures to obtain candidate polyps. For instance, Silva et al. [30] integrated texture and
shape features, and Bernal et al. [31] proposed a method based on intensity valleys
to boost detection accuracy. Despite sustained improvements, these hand-engineered
methods are far from sufficient to represent the complex appearance of polyps.

Some of the most recent methods apply convolutional neural networks (CNNs)
to polyp detection, taking advantage of their hierarchical feature learning and dis-
criminatory capabilities. A pioneering study in this field constructed a 7-layer CNN
model (with three convolutional layers) to extract features of polyps [32]. Faster R-
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CNN [15], a Region-based CNN detector, has been applied to automatically detect
polyps [33]. A 3-dimensional CNN framework has been used to localize polyps
in colonoscopy videos [34]. Fully convolutional network (FCN) architectures were
introduced [35, 36] for pixel-accurate detection of polyps and segmentation. These
methods were extended by restructuring FCN with different convolutional back-
bone architectures (e.g., AlexNet, VGG-16, and ResNet), and their performance was
assesed on publicly available datasets [37]. CNN architectures, DeepLab [38] and
SegNet [39], were used to achieve pixel-wise segmentation of polyps [40, 41].

However, these developments are still incapable of routine diagnosis and require
further improvement. Existing methods with shallow CNN architectures are limited
in their ability to precisely characterize polyp lesions from the complex colonic
mucosal surface and have been constrained by the relatively limited training data
available for medical applications, while the efficiency of advanced deep models
needs to be improved to have lower computational costs.

11.4.2 Improved Learning Strategy

The depth of feature representation is of crucial importance [42], and many effective
recognition methods have benefited from very deep networks. The development of a
very deep network architecture may obtain higher-level representations leading to an
accurate recognition of polyps. Another consideration is the scale of representation
as polyps show great variation in their morphology and size, which is a fundamental
challenge. Multi-scale feature extraction that has richer semantics at all levels could
give excellent gains in accuracy [43], which is the basis of our work.

We present a new approach using a very deep CNN architecture for polyp
recognition, which gains accuracy from deeper and richer representations. The
method, called PLPNet (“PLP” stands for “polyp”), can effectively detect polyps
in colonoscopy images and generate high-quality segmentation masks in a pixel-
to-pixel manner. An overview of the PLPNet model shows its two stages: polyp
proposal and polyp segmentation (Fig. 11.12). The learning process would be hin-
dered by the complex colonic wall if pixel-wise training was performed directly
on the CNN model. Therefore, the two-stage framework uses the polyp proposal
stage as a region-level polyp detector that can guide pixel-level learning in the polyp
segmentation stage to accurately segment the area the polyp occupies in the image.
The very deep ResNet-50 and pyramid components were applied to seek deeper and
richer semantics from each frame. Feature sharing and skip schemes were developed
to perform multi-scale transfer learning between stages I and II.

11.4.2.1 Multi-Level Feature Learning via Very Deep ResNet

To mask each polyp accurately, multi-level and discriminative features must be
obtained from raw data. Residual Networks (ResNets) [42] are deep convolutional
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neural networks that use a series of residual blocks Res i_(·) and shortcut connections
bypassing Res i_(·), where each residual block comprises several stacked convolu-
tional layers. This residual representation addresses the degradation problem caused
by a deeper network architecture and allows gains in accuracy from the considerably
increased depth.

With xl as the input, the residual block can be formulated in the general form:

xl+1 = xl + F(xl , {Wl}), (11.12)

where F(xl , {Wl}) represents the residual mapping function to be learned in the resid-
ual block. When xl and F have the same dimension, an identity shortcut connection
and element-wise addition are used to perform the “+” operation in Eq. (11.12). If
this is not the case (e.g., dimension changes after downsampling), a linear projection
Ws (performed by a 1 × 1 convolutional layer) is employed to match the dimensions
between the input and output:

xl+1 = Wsxl + F(xl , {Wl}). (11.13)

We can then construct a very deep architecture by simply stacking the Res i_(·)
without degradation in training. Figure 11.12a illustrates the architecture of ResNet-
50, which serves as the backbone of the PLPNet model. The feature activation output
by each residual stage’s last block, i.e., {Res 2_(c), Res 3_(d), Res 4_(f), Res 5_(c)},
is connected to the pyramid components to perform multi-scale feature learning.

Fig. 11.12 An overview of the proposed PLPNet for accurate polyp recognition [13]. a Illustration
of ResNet-50. The network consists of a 7 × 7 convolutional layer, a 3 × 3 max-pooling layer,
and four residual stages {Res 2_(a-c), Res 3_(a-d), Res 4_(a-f), Res 5_(a-c)}. b Architecture of
the Feature Pyramid Net. The set of feature maps in the pyramid layers is called {P2, P3, P4,
P5}, corresponding to the output of the last residual blocks in each stage, i.e., {Res 2_(c), Res
3_(d), Res 4_(f), Res 5_(c)}, that are of the same spatial sizes, respectively. c Illustration of stage
I for polyp proposal. RPN components and RoI layers are adopted to perform classification and
bounding box regression. d Stage II is built as a fully convolutional network (FCN) for pixel-wise
polyp segmentation. Semantic information in stage II is transferred from stage I via feature sharing
and skip schemes
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11.4.2.2 Multi-scale Feature Representation via FPNet

To recognize polyps of various sizes and morphologies, detecting objects at vastly
different scales is beneficial. Here an effective, pyramidal architecture is utilized
to extract strong semantics at all feature scales. Feature Pyramid Network (FPNet)
[43] can construct feature pyramids from a single-scale input image using a top-
down pathway and lateral connections. We build four pyramid levels referring to the
number of residual stages (see Fig. 11.12b). The output set of feature maps in the
pyramid layers is called {P2, P3, P4, P5} and forms the basic pyramid components
in the PLPNet model to recognize polyps at different scales. The output widths
and heights of {P2, P3, P4, P5} are {1/4, 1/8, 1/16, 1/32} of the input image size,
corresponding to the scales of {Res 2, Res 3, Res 4, Res 5}.

We constructed the polyp proposal stage as an extension of Faster R-CNN to
serve as a polyp detector that identifies the area of each lesion as a whole region-level
prediction (Fig. 11.12c). We adapted the network by attaching the RPN block to each
level of the pyramid components {P2, P3, P4, P5} and obtained multi-scale proposal
regions. On the basis of the pyramid levels, RoI layers of different spatial scales are
assigned to the corresponding RPN output. The feature maps (RoIs) resulting from
pyramid components P2 to P5 can be directly concatenated and fed into a sequence
of fully connected (fc) layers to extract feature vectors. The detection output of stage
I is referred to as polyp proposals that highlight the bounding box of areas with the
proposed presence of polyps.

11.4.2.3 Stage II: Pixel-Wise Polyp Segmentation

The segmentation task encodes the object’s spatial layout in the input image. Thus,
we adapt FCNs to our two-stage framework by designing skip schemes for each
pyramid level and initializing the network by feature sharing from polyp proposals.
Stage II, with a fully convolutional architecture, can seek richer and deeper semantics
while requiring a lower training cost, leading to better accuracy and faster speed. The
segmentation stage is built using the same backbone architecture as stage I, which
makes feature sharing between the two tasks possible (Fig. 11.12d).

Figure 11.13 shows the detailed architecture inside stage II, which can be seen as
an inverse top-down pathway of the backbone network. We built four FCN pathways
referring to the pyramid components {P2, P3, P4, P5}, where the deepest/coarsest
level (P5) passes through four upsampling steps to reach the final score map.

11.4.3 Dataset

Two publicly available datasets were used in the context of the validation study of
polyp recognition, CVC-ColonDB and CVC-ClinicDB. CVC-ColonDB [31], also
known as CVC-300, contains 300 Standard Definition (SD) frames with a resolution
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Fig. 11.13 Illustration of the fully convolutional pathway architecture in stage II [13]. The score
map with 2 channel dimensions is generated for each pyramid component. The output score map
is the same size as the input image

of 500 × 574 pixels that were obtained from 13 polyp video sequences acquired from
13 patients. CVC-ClinicDB [35], also known as CVC-612, contains 612 SD frames
at 384 × 288 pixel resolution obtained from 31 different sequences of 23 patients.
Both datasets were built to cover as many varieties of polyps as possible, such as
having differences in morphology, size, location, and illumination.While each frame
contains at least one polyp, some may have more than one: 30 frames in CVC-612
have two or three polyps and thus increase the complexity of detection. Images
were annotated by expert video-endoscopists, and a binary mask was generated to
represent the actual polyp area within each image.

To implement the polypproposal stage, a ground truth setting, consistingof a polyp
bounding box, was generated based on the image binary mask to fit the contour of
the polyp in a sufficiently tight way.

Ourmodel was trained using theCVC-300 database, following the dataset settings
of theGIANA 2017 Challenge on Automatic Polyp Segmentation,1 and CVC-612was
used during the testing stage. This imposed the constraint that one patient’s records
cannot be in different phases, and allowed validation of the system’s effectiveness
and generality.

11.4.4 Evaluation Metrics

The performance of polyp recognition was measured quantitatively by reporting four
pixel-basedmetrics that are commonlyused inmedical image segmentation tasks [35]
(Table 11.3, left panel). A pixel within a polyp is considered a True Positive (TP) if

1 https://endovissub2017-giana.grand-challenge.org/polypsegmentation/.

https://endovissub2017-giana.grand-challenge.org/polypsegmentation/
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Table 11.3 Definition of performance measures

Metrics for polyp segmentation Metrics for polyp localization

Prec = T P
T P+FP Prec = T P

T P+FP

Rec = T P
T P+FN Rec = T P

T P+FN

J = |PRcl∩GTcl ||PRcl∪GTcl | F1 = 2×Prec×Rec
Prec+Rec

Dice = 2|PRcl∩GTcl ||PRcl |+|GTcl | F2 = 5×Prec×Rec
4×Prec+Rec

its prediction is polyp; otherwise, it is regarded as a False Negative (FN). A pixel that
falls outside the polyp is said to be aFalsePositive (FP) if its prediction is polyp.High
precision (Prec) indicates a method can return substantially more relevant instances
than irrelevant ones, while high recall (Rec) means a method can output most of the
relevant instances. The Jaccard index (J, also known as the Intersection over Union)
and Sørensen-Dice coefficient (Dice) are statistics for comparing the similarity of
the sample sets, where PRcl and GTcl , respectively, denote the prediction set and the
ground truth of one class.∩ represents the set intersection and∪ represents set union.
TheMean Jaccard index andDice similarity score alongwith their standard deviation
were used as the performance metrics in the GIANA 2017 Challenge on Automatic
Polyp Segmentation, and the same metrics were used to evaluate the recognition
performance of our method.

To assess the performance of polyp proposal in stage I, the frame-based metrics
for polyp localization of the GIANA Challenge [44] (Table 11.3, right panel), where
precision and recall are defined as above, were used. Metrics for polyp localization
were measured at the frame level: if the detection output is within the polyp, the
method is said to be providing aTP, andonly oneTPwill be considered per polyp.Any
detection that falls outside the polyp is considered an FP. The absence of detection
in a frame is considered an FN, counting one per polyp not recognized in the frame.
F1 and F2 are the F1-score and F2-score that measure a test’s accuracy. Higher F1
and F2 indicate a method has a better balance between the true and false predictions.
In our implementation, the geometric center of each detection box was regarded as
the prediction output of a polyp’s location.

11.4.5 Experimental Results

11.4.5.1 Performance of Polyp Region Proposal

The effects of network depth and feature scales on polyp recognition on the CVC-612
test set with various backbones, where boldface indicates the best performance in
each of themetrics, are shown in Table 11.4. The proposal stage output was evaluated
by the performance of polyp localization using the frame-based metrics defined in
Table 11.3.
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Table 11.4 Comparison of polyp proposal performance on CVC-612 with different backbone
architectures [13]

Backbone TP FP FN Prec (%) Rec (%) F1 (%) F2 (%)

ZF 524 116 122 81.9 81.1 81.5 81.3

VGG-16* 535 96 111 84.8 82.8 83.8 83.2

ResNet-50 549 239 97 69.7 85.0 76.6 81.4

ResNet-
101

557 3608 89 13.4 86.2 23.2 41.3

ResNet-
50+FPNet

595 107 51 84.8 92.1 88.3 90.5

*Original form of Faster R-CNN

The effect of network depth can be observed by the gradually increasing recall,
with over 5 points growth fromZF (AlexNet), VGG-16, ResNet-50, andResNet-101,
demonstrating that enriching feature depth can effectively improve the performance
of detecting true polyps. However, the number of FP proposals tends to grow as
the network depth increases—while ResNet-101 performs best in TP and recall,
its large number of FPs worsens its performance on other metrics. One possible
reason is difficulties with optimization caused by the deeper architecture, as ResNet-
101 has about twice the parameters as ResNet-50, and so requires even greater
computing resources and larger training sets. To achieve accurate recognition, it
was desired to generate as many proposals as true polyp regions while keeping a
relatively small FP count, which will benefit the learning process of stage II. We
therefore instantiated PLPNet with ResNet-50 and explored FPNet as the backbone
architecture. The performance of ResNet-50+FPNet exceeded other schemes with
gains in most metrics—only FP was slightly larger than that of VGG-16 (107 versus
96).ResNet-50+FPNet improved recall by about 7 points overResNet-50, and similar
improvements in precision, F1, and F2 were also observed. As this difference is due
solely to the benefits of the pyramid components, this highlighted that multi-scale
feature representation is one key to enhance the discrimination capability of our
model. Hence, we applied PLPNet with a ResNet-50+FPNet backbone and used the
same backbone network for both stages to make feature sharing possible.

As a further interpretation, we applied class activation maps (CAMs) [45] to pro-
vide insights into the network’s properties and visualize the internal representations
learned by PLPNet. Given that CAMs can highlight the most discriminatory regions
used by networks to identify objects of a specific class, we generated polyp-specific
CAMs for the pyramid components by computing the weighted sum of their feature
maps. Example CAM outputs of P2 and P5 on the CVC-612 test set and the corre-
sponding polyp proposal results are shown in Fig. 11.14. PLPNet accurately located
the polyp regions with high prediction confidence, and the detection box was very
close to the ground truth (Fig. 11.14d). This validated the performance and discrim-
inatory ability of the polyp proposal scheme. Semantic information extracted from
P2 and P5 appears differently for the density and range of the highlighted areas, but
they all correctly indicate RoIs with a true presence of a polyp. Features learned
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Fig. 11.14 Examples of polyp proposal results on the CVC-612 test set [13]. From left to right:
a original images, b class activation maps (CAMs) generated from P2 and c P5 layers of PLPNet
model, d polyp proposal output using PLPNet: stage I. The ground truth is in green and the detection
output is in blue. Each output box is shown with a polyp class label and an associated prediction
score in [0, 1]. A confidence threshold of 0.990 is used to display the results

from different pyramid levels should be complementary and capable of guiding the
learning process in the segmentation stage.

11.4.5.2 Performance of Pixel-Wise Polyp Segmentation

Next, we investigated PLPNet for polyp segmentation and evaluated the performance
by pixel-based metrics and compared it to a variant of PLPNet without the sharing of
features from the polyp proposal stage. The segmentation performance on the CVC-
612 test set is reported in Table 11.5. Removing the polyp proposal stage significantly
degrades the accuracy of the segmentation by 6.7 points by J and 5.8 points by Dice,
suggesting that a per-pixel learning schemewithout feature sharingwill be challenged
by the fundamental difficulty of polyp recognition. This highlights the role of polyp
proposal, where features transferred from stage I can lead to enhanced results in
polyp segmentation.

We then compared PLPNet to state-of-the-art methods in polyp segmentation
on the CVC-612 test set and reported the results in Table 11.6. PLPNet shows a

Table 11.5 Comparison of feature learning schemes [13]

Learning scheme J (%) Dice (%)

Mean Std Mean Std

W/o polyp
proposal stage

68.0 25.5 78.1 18.5

With polyp
proposal stage

74.7 20.5 83.9 13.6
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Table 11.6 Comparison of polyp segmentation performance on CVC-612 with different methods
[13]

Method Rec (%) Prec (%) J (%) Dice (%)

Mean Std Mean Std

VGG-16-FCN [35] 25.0 67.6 57.1 34.7 66.1 29.6

VGG-16-FCN+ [36] 36.1 64.0 61.0 31.0 71.0 24.8

ResNet-50-FCN [37] 43.4 79.3 66.2 27.2 76.4 20.2

PSPNet [46]* 45.1 81.6 68.0 26.8 78.0 20.1

DeepLab v3+ [47]* 48.7 85.8 70.4 24.3 80.2 18.2

PLPNet 59.4 85.9 74.7 20.5 83.9 13.6

*We simply revised PSPNet and DeepLab v3+ using the ResNet-50 backbone and fitted the polyp
segmentation task

large improvement over the state-of-the-art models. ResNet-50-FCN [37] gives bet-
ter results (mean J = 66.2) than the challenge’s benchmarks VGG-16-FCN [35]
(mean J = 57.1) and VGG-16-FCN+ [36] (mean J = 61.0), showing the gains in
accuracy from increased network depth. PSPNet [46] and DeepLab v3+ [47] use the
ResNet-50 backbone and improve the results, with mean J values of 68.0 and 70.4,
respectively, suggesting gains in accuracy from exploiting multi-scale information.
PLPNet showed significant increases in accuracy for all metrics, achieving a mean
J of 74.7 on the test, which is a ∼6%, ∼10%, and ∼13% relative improvement over
DeepLab v3+, PSPNet, and ResNet-50-FCN, respectively. The gains of PLPNet over
[37, 46, 47] come from adding the proposal stage, using two-stage pyramid feature
sharing, and the skip schemes. Compared to the challenge’s benchmark [35], PLPNet
improved mean J by 17.6 points (over 30% relative improvement) and mean Dice
by 17.8 points, precision by 18.3 points, and doubled the accuracy on recall. This
improvement can be attributed to the learning strengths of a much deeper and richer
representational framework.

The output of PLPNet, ResNet-50-FCN [37], and DeepLab v3+ [47] on some
challenging cases from CVC-612 are shown in Fig. 11.15. This comparison covers
cases with multi-scale polyp lesion areas (Fig. 11.15a–c), obscure or low contrast
polyp boundaries (Fig. 11.15a–c), overexposed regions (Fig. 11.15d), specular high-
lights (Fig. 11.15e), presence of intestinal folds (Fig. 11.15d–f), and a case withmore
than one lesion (Fig. 11.15f).

Both ResNet-50-FCN and DeepLab v3+ produced no activation in Fig. 11.15a,
indicating a difficulty in recognizing small, obscure polyps. ResNet-50-FCN, the
baseline method, may miss abnormalities and create spurious edges in cases with
obscure lesion boundaries (Fig. 11.15a–c) and tended to provide a higher number of
FPs (Fig. 11.15d–f). A fully convolutional architecture with an increased network
depth may not be sufficient for polyp segmentation, and it might be influenced by the
presence of overexposed regions, specular highlights, and intestinal folds. DeepLab
v3+ improved the performance on segmentation (Fig. 11.15b, c) by applying an atrous
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Fig. 11.15 Examples of polyp segmentation results on CVC-612 test images [13]. ResNet-50-FCN
[37] (top), DeepLab v3+ [47] (middle), and PLPNet (bottom). ResNet-50-FCN exhibits errors in
the inference of (a) small lesion objects, (a–c) obscure polyp boundaries, (d) overexposed regions,
(e) specular highlights, and (e, f) intestinal folds. DeepLab v3+ shows errors in the inference of (a)
small lesion objects, (d) overexposed regions, and (e, f) polyps of low contrast with the intestinal
folds. Green outlines denote the ground truth of polyp boundaries and the segmentation output is
shown by blue outlines and masks

convolution [38] to extract multi-scale, denser feature maps but had less favorable
results when encountering overexposed regions and intestinal folds (Fig. 11.15d–f).

PLPNet showed no such errors and achieved results that were very close to the
experts’ annotations in these challenging cases. This indicates that the PLPNet frame-
work enables accurate polyp segmentation across a large range of scales by using the
pyramid components and skip schemes. It highlights the key effect of the feature shar-
ing strategy, where parameters transferred from the proposal stage allow the model
to recognize the lesion area as a whole, and thus eliminate regional discontinuities
in the segmentation masks.

PLPNet is superior to baseline and advanced semantic segmentation frameworks
for pixel-accurate polyp recognition.
Running Time PLPNet has an inference time of ∼166 ms per input image on a
single NVIDIA GeForce GTX TITAN Xp. As a reference, the challenge’s benchmark
VGG-16-FCN [35] takes ∼85 ms. PLPNet increases inference time due to the com-
putational cost generated by its deeper network backbone and extra pyramid layers,
but gives clear gains in accuracy. The baseline model, ResNet-50-FCN [37], takes
∼280 ms and is slower than PLPNet due to the lighter-weighted FCN heads in PLP-
Net and despite the extra costs of pyramid layers. The PSPNet and DeepLab v3+
models took ∼370 ms and ∼310 ms per image, respectively.
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11.5 Conclusion and Future Perspectives

In this chapter, we focused on addressing the problem of automated recognition
of lesions in endoscopic images by developing effective deep learning strategies
for computer-aided diagnosis. Deep learning-driven methods were applied on two
representative tasks in endoscopic image analysis, recognizing gastrointestinal hem-
orrhages in wireless capsule endoscopy images and recognizing colorectal polyps in
colonoscopy images. Extensive experiments demonstrated superior performance of
the proposed methods relative to current practice.

Deep learning-based methods are leading to improved diagnostic accuracy in
medical image analysis. In the majority of tasks presented in this chapter, deep
learning models were shown to be extremely effective for automated screening of
diseases, in this case recognizing lesions in endoscopic images.We suggest three key
issues for the further development of deep learning models to analyze endoscopic
images.

Weakly Supervised Learning for a Constantly Growing Dataset Weakly super-
vised detection is the problem of learning object detectors using only image-level
labels. Every endoscopy procedure results in large quantities of data, which are
time-consuming to annotate manually. Learning complex concepts using only light
supervision would significantly reduce the cost of data annotation for computer-
ized lesion detection tasks. Weakly supervised networks [48] could ease the training
of deep learning models to recognize lesions in the constantly growing datasets of
endoscopic images.

Incorporation of Temporal Information for Sequence Recognition Recurrent
Neural Networks (RNNs), particularly the Long Short TermMemory (LSTM) RNNs
[49], have been used to extract temporal dependencies in the analysis of surgical
videos [50]. The incorporation of spatial and temporal information considerably
improved performance, and a similar benefit might apply if LSTM-based CNNmod-
els were applied to endoscopy videos.

System Integration and Optimization for Real-Time Diagnosis The requirement
for computational efficiency in diagnostic software increases due to the real-time
constraints posed by clinical workflows. Deep learning models could be used for
online processing of endoscopy images if performance could be boosted. Work on
system integration and optimization, e.g., (a) video pre-processing to remove frame
redundancy and enhance visual quality, (b) video-based localization, to facilitate
diagnosis and follow-up examinations, (c) extension of deep models to multi-lesion
recognition tasks [51, 52], and (d) clinical trials on various patient cohorts, are
likely to be beneficial. An integrated system would be expected to perform real-time
diagnosis and detection with high accuracy and efficiency.
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Chapter 12
A Dynamic Evaluation Mechanism
of Human Upper Limb Muscle Forces

Qing Tao, Zhaobo Li, Quanbao Lai, Shoudong Wang, Lili Liu,
and Jinsheng Kang

Abstract Dynamic evaluation mechanisms of the human upper limb are of great
value for research and applications in upper limb rehabilitation, especially for the
development of robotic upper limb rehabilitation systems. This paper proposes a
muscle force prediction method based on the Hill muscle model. The proposed
approach, which combines sEMG signals and kinematic data, provides a deep under-
standing of the dynamic motion mechanisms and parameters that characterize the
upper limbs of the human body. The study provides a theoretical benchmark for the
evaluation of rehabilitation training practices and for improved designs of upper limb
rehabilitation robots that are used for upper limb neuro-rehabilitation. Specifically,
the system collected motion data and sEMG signals from the upper limbs of the
human body through a high-speed infrared motion capture system and skin sEMG
sensors. By applying human kinematics and dynamics theories, real-time joint angle
and torque information was obtained and imported into OpenSim. This platform can
simulate the real-timemuscle force values produced by the upper limbs duringmove-
ments. Themyoelectric signals were first filtered to remove noise, and an exponential
model was then used to obtain the muscle activation. These data were then entered
into the Hill-type predictionmodel to determine an individual’s muscle forces. In this
paper, grasping movements commonly used in everyday situations were taken as a
testing case. The results of the experiments showed that an individual’s muscle forces
can be predicted using a Hill-type model. The results are consistent with those from
simulated muscle force models and can reflect the real forces experienced during
upper limb exercises.
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12.1 Introduction

Cardio-cerebrovascular disease, more commonly referred to as a stroke or heart
attack, is the second most common cause of death and the eighth most common
cause of severe disability in the elderly population worldwide [1, 2]. One of the
most serious symptoms of stroke is hemiparesis. It usually leads to the loss of motor
function in the upper limb, which is important for activities of daily living, such as
eating, bathing, and getting dressed independently. Studies have shown that rehabil-
itation robots can effectively improve the motor function of stroke patients because
the device is designed to have multiple DOFs to mimic various limb movements
and accommodate all types of exercises [3]. Rehabilitation machines are becoming
increasingly important for stroke rehabilitation, and they have many potential advan-
tages over traditional rehabilitation therapies in treating motor dysfunction in stroke
patients [4].

At present, upper limb rehabilitation robots can be divided into three main types
based on their structure [5–8]. The first type of robots is called rehabilitation robots
with end-guided structures. The subject’s body is placed on a separate structure,
while a separate robotic mechanism guides the movement of the forearm or the
hand to train and rehabilitate the affected limb [9–11]. The second type of robots is
called exoskeleton rehabilitation robots, where the robotic arms closely follow the
form and function of the affected limb and can consequently achieve a variety of
rehabilitation training actions [12–15]. The third type of robots is called compound
rehabilitation training robots, which have a combination of features from the first two
types of rehabilitation robots and are used to complete rehabilitation training [16–
21]. Regardless of the type of upper limb rehabilitation robot used, it is necessary to
conduct a quantitative evaluation of the patient’s upper limb impairment and provide
personalized rehabilitation treatment. Since the mechanism of human upper limb
movement is very complicated and the range of functional movements achievable is
wide, the sports medicine field has not developed a standard for assessing upper limb
movement patterns. Currently, the most immediate challenge is to develop objective
indicators that are related to upper limb motion and can be applied to assess upper
limb function under everyday conditions.

To address the challenges mentioned above, a model simulating the output force
from muscle fibers was established, and predictive models of muscle forces for
individuals with different demographics were obtained in this paper. We combined
the musculoskeletal model of an upper extremity with the movement and EMG-
assisted method to estimate the individual muscle forces of the musculoskeletal
structure. The EMG signals were considered inputs to the musculoskeletal model
to estimate the muscle activation information. A simulation tool commonly used in
biomechanical analyses, OpenSim, was used to analyze the agreement in muscle



12 A Dynamic Evaluation Mechanism of Human Upper Limb Muscle Forces 305

force estimations. Through our method, therapists can more accurately describe the
power of stroke patients’ upper limbs during daily activities and can design better
rehabilitation techniques. In addition, the research can also be useful for controlling
an upper limb exoskeleton.

The rest of this paper is organized as follows. Section 12.2 presents the related
works and muscle estimation growing trend. Section 12.3 describes experiment
details and data procession and muscle estimation model. Section 12.4 compares the
estimated muscle force by our NMS (Neuromuscular Subjective) model with force
simulated in OpenSim. Section 12.5 evaluates the performances of NMS model and
discusses. Section 12.6 summarizes this article.

12.2 Related Work

Three main approaches including clinical scales, movement evaluations, and surface
electromyography (sEMG) analyses, are widely applied in objective evaluations of
the upper extremities [22, 23]. Clinical scales are inherently subjective due to their
reliance on a physician’s visual assessment of amovement and generally. It is difficult
to summarize a movement with a single score, especially when several aspects, such
as the speed and amplitude of the movement, have to be taken into account in the
evaluation of functional tasks [24]. Movement evaluation methods mainly include
motion capture systems, which represent the gold standard in humanmovement anal-
ysis [25–27]. Motion capture systems can accurately assess the kinematics of upper
limb movements during daily activities in stroke patients [28]. However, although
they can overcome the limitations of clinical scales, which lack the ability to monitor
a patient’s movements, motion capture systems cannot assess the internal features of
a patient’s muscles.

Surface electromyography (sEMG) is a popular research tool that is used exten-
sively in sports medicine and rehabilitation sciences. Based on sEMG analysis,
researchers have attempted to draw conclusions concerning the neuro and electro-
physiological mechanisms of force production and make hypotheses about potential
muscular force adaptation rates and hypertrophy [29]. sEMG signal decomposition
algorithms can be roughly divided into two categories. The first type of sEMG signal
decomposition involveswaveformdetection andpattern recognition. The second type
involves a blind source separation method or system identification so that the sEMG
signal can be described and interpreted. Recent experiments have suggested that
the central nervous system can spontaneously follow certain optimization criteria to
overcome the motion uncertainty caused by kinematic mechanism positional redun-
dancy [30, 31]. Although sEMG signal analysis has value in certain applications in
upper limb function evaluations, quantitative evaluations cannot be conducted due to
the lack of deep muscle activation information. Surface EMG signals can be easily
obtained, but the activations of deep muscles cannot be measured by non-invasive
methods [32–34]. The identification of force profiles of individual muscles during
upper limb movements may help provide a better understanding of the functional
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roles of these muscles as well as the neuro-musculoskeletal impairments, leading to
a better understanding of how these factors affect movement [35, 36].

Hill-type or Hill-type modified models are vastly used in muscle estimation. All
the models take sEMG as the only one input parameter in order to simplify compute
procession. Muscle forces are calculated just like a black box. But it involves non-
linear relationships in the expressions like muscle fiber length verse muscle force
curve or muscle contraction velocity verse muscle force curve, which makes the
computational process very complex. In order to acquire universality, the relationship
between muscle contraction velocity and fiber length verse muscle force must be
scaled [35, 39, 41]. In contrast toHill-typemodel computemuscle force using sEMG,
there is another method called inverse dynamics. The inverse dynamics method takes
position, velocity, and acceleration as input parameters to calculate the jet moment.
Then static or dynamic optimization is used to obtain individual muscle force. This
method greatly simplifies the calculation procession but suffers from the problem of
imprecision.

12.3 Materials and Methods

The experimental goal for this paper was to simultaneously capture data about a
human subject’s upper limb motion and about his or her limb surface EMG signals.
These data were then analyzed and processed using optimizing calculations to obtain
accurate values predicting muscle forces during exercise. The human upper limb
musculoskeletal model was established by OpenSim, and then the kinematic data
gathered by motion capture were used to simulate the muscle forces during the upper
limb movements. The surface EMG signal data were then imported into a Hill-type
model. By adjusting the parametric coefficients to achieve model predictive values
close to the simulated muscle force values, we established a method of predicting
muscle force directly from the surface EMG signal data (Fig. 12.1).

12.3.1 Data Collection and Preprocessing

Four healthy male subjects (age: 23.5 ± 1.2 years old, height: 171.3 ± 3.5 cm,
weight: 72 ± 6.5 kg) volunteered to participate in the experiment and were included
in the study after they signed written informed consent forms. The research project
was pre-approved by the Research Ethics Committee of Xinjiang University. While
the subjects sat in a chair, they autonomously moved their arm from the natural
relaxed state to grasp a raised ball that was suspended directly in front of them
at head height, released the ball and put their arm down. The body motion data
from the subjects were collected using a VICON optical motion capture system, and
the surface electromyography data from the relevant muscles of the upper limbs of
the subjects were collected using a Neuracle 16 channel electromyography signal



12 A Dynamic Evaluation Mechanism of Human Upper Limb Muscle Forces 307

Fig. 12.1 The flowchart of our muscle force prediction method

acquisition system. The signals from 7 muscles were recorded: the short head of
the biceps brachii (BICshort), long head of the biceps brachii (BIClong), brachialis
(BRA), long head of the triceps brachii (TRIlong), lateral head of the triceps brachii
(TRIlat), medial head of the triceps brachii (TRImed), and anconeus (ANC). The
electrodeswere placed longitudinally along themuscles in the direction of themuscle
fibers and on the relevant part of each muscle according to the recommendations of
the SENIAM (surface electromyography for the non-invasive assessment ofmuscles)
project. A ground electrode was placed on the elbow joint (Fig. 12.2).

Fig. 12.2 Experimental setup. a Experimental setup for the actual tests, bDiagram from themotion
capture system interface, c OpenSim skeletal model, d Raw EMG Signal
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12.3.2 Joint Angle Estimation

There are specific challenges concerning the collection of point data of humanmotion
in an experiment. Although a human’s limbs rotate around a single point within
the skeletal structure, it is relatively difficult to maintain the joint at the zero-point
throughout the testing process. To compensate for displacement of the joint, the space
vector methodwas used to calculate the relative position in space and relative angular
difference between two dependent point-lines. A space vector is a relative coordinate
system, and the variation of the zero-point position can therefore be ignored. The
human body parts were simplified to form a stickmodel and calculate the angle of the
joint. A unique 3D coordinate positional system was established, and the value for
n points for volunteer m at time t was collected. One vector segment was defined by
two points in space, and the angle was obtained by measuring the relative positions
of the two vector line segments (Fig. 12.3).

The angle of the left shoulder joint (SAl), the angle of the left elbow joint (EAl),
and the angle of the left wrist joint (WAl) are shown in this diagram.

Suppose that a, b, c are three points in space; then, ∠abc represents the angle
of joint b, and two vectors ending at a, and c are defined, which correspond to two
marker points on volunteer m. The solution to the angle is as follows:

cos θ = M̄ml(a − b) × M̄ml(c − b)
∣
∣M̄ml(a − b)

∣
∣ ∗ ∣

∣M̄ml(c − b)
∣
∣

(12.1)

Fig. 12.3 Upper limb joint
angle calculation definition
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Fig. 12.4 Human upper
limb musculoskeletal model
generated in OpenSim

⇒ θ = ar cos θ.

12.3.3 OpenSim Simulation

OpenSim [37] skeletal muscle simulation software was used to generate a dynamic
simulation. An OpenSim upper limb musculoskeletal model [38] developed by Saul
et al. consisting of 7 body segments and 32 muscles was used to generate a simu-
lation relative to the kinematic data, and muscle kinematics parameters, such as the
musculotendon unit (MTU) lengths and moment arms, were obtained. This upper
limb musculoskeletal model is shown in Fig. 12.4. First, scaling was carried out to
calibrate the model to the subject according to the subject’s anthropometric parame-
ters. Inverse kinematics was then used to reconcile the differences in values between
the actual 3D coordinates and the simulated virtual marker points. This process
was achieved by a weighted least-squares method, which reduced the values to
the minimum values possible. Last, dynamic optimization was carried out on the
muscle forces in the main muscle group during the upper limb movement, which
was performed in the simulation.

12.3.4 Muscle Activation Dynamics

(1) Data preprocessing
First, the original sEMG signal was preprocessed. The preprocessing phase
mainly included three steps: (a) 50 Hz notch filtering to remove power
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Fig. 12.5 Preprocessing phase for an sEMG signal

frequency interference; (b) 30 Hz zero-phase high-pass filtering to remove
motion artefacts; and (c) full-wave rectification, which involves taking the
absolute value of the signal (Fig. 12.5).

(2) Low-pass filter
The low-pass filter used was a 5 Hz zero-phase low-pass filter, which is a
low-pass filter commonly used to smooth muscle signals.

(3) Normalization
The same method (data preprocessing → low-pass filter) was used to process
the sEMG signal at maximal voluntary contraction (MVC) and identify the
maximum value of the sEMG signal at MVC, which was considered 100% of
the magnitude of the muscle activation signal. The normalized signal e(t) was
obtained by dividing the processed myoelectric signal (data preprocessing →
low-pass filter) recorded during normal motion by the maximum value.

(4) Neural activation model
EMG is a measure of the electrical activity that spreads across the muscle,
causing it to activate. This process results in the production of a muscle force.
However, it takes time for the force to be generated—it does not happen instan-
taneously. Thus, we adopted a second-order discrete linearmodel [39] tomodel
the neural activation from muscle excitation obtained through preprocessing
in the form of a recursive filter:

u(t) = αe(t − d) − (c1 + c2)u(t − 1) − c1c2u(t − 2), (12.2)

where e(t) is the muscle excitation at time t, u (t) is the neural activation, α is the
muscle gain, c1 and c2 are recursive coefficients, and d is the electromechanical delay.

(5) Muscle activation model

The neural activations were then adjusted to account for either a linear or non-
liasdnear EMG-force relationship [40]:

a(t) = eAut (t) − 1

eA − 1
, (12.3)

where a(t) is themuscle activation, u(t) is the neural activation, andA is the non-linear
shape factor.

After obtaining the muscle activation a(t), we computed the muscle force by
integrating aHill-typemusclemodel consistingof twoelements: a contractile element
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Fig. 12.6 Analysis of the
Hill-type model mechanics

producing the active muscle force Fm
A and a parallel elastic element producing the

passive force Fm
P . As shown in Fig. 12.6 [41], lm is the muscle fiber length, lt is the

total length of the tendons, and ϕ is the pennation angle. Thus, the musculotendon
length lmt can be expressed as follows.

The muscle-tendon force (Fmt ) is calculated as

Fmt = (

f A(l) · fv(v) · a(t) + f p(l)
) · Fm

o cos(φ), (12.4)

where l = lm/ lmo ,v = vm/vm
o , a(t) is the muscle activation, Fm

o is the maximum
isometric muscle force, lmo represents the optimal fiber length, vm

o is the maximum
muscle contraction velocity, l is the normalized muscle fiber length, and v is the
normalized muscle fiber velocity. f A(l), fV (v), and fP(l) define the normalized
active force-length relationship, force-velocity relationship, and the normalized
passive elastic force-length relationship, respectively.

12.4 Results

Using the above formula, we can calculate the relative values of the extension angles
between the wrist, elbow, and shoulder joints when the upper limb of the human
body performs the exercise. The joint angle data and point data were imported into
OpenSim, the steps and parameters of the model described in the previous section
were followed, and the upper limb model was run to simulate the motion and the
changes inmuscle forces in the short head of the biceps brachii (BICshort), long head
of the biceps brachii (BIClong), brachialis (BRA), long head of the triceps brachii
(TRIlong), lateral head of the triceps brachii (TRIlat), medial head of the triceps
brachii (TRImed), and anconeus (ANC) (Fig. 12.7).

A surface electromyography signal acquisition device was used, and the sampling
frequency was 1000 Hz. The surface electromyography signals of the seven muscles
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Fig. 12.7 Human upper limb muscle forces simulation generated by OpenSim

(the short head of the biceps brachii (BICshort), long head of the biceps brachii
(BIClong), brachialis (BRA), long head of the triceps brachii (TRIlong), lateral
head of the triceps brachii (TRIlat), medial head of the triceps brachii (TRImed),
and anconeus (ANC)) involved in the movement of the upper arm of the human
body were collected. The original signals were preprocessed and substituted into
the muscle activation values obtained by formula (12.3), the muscle force predictive
values were obtained by substituting the muscle activations into formula (12.4),
and the above data were calculated with MATLAB R2014b. Figure 12.8 shows the
changes in the muscle force of the brachialis.

We compared the force of the same muscles with the predicted values calculated
by OpenSim and sEMG, and the curves were very close, as shown in Fig. 12.9.
With a statistical analysis, the muscle force values of the other six muscles were
also compared, showing a strong correlation (P < 0.05). The comparative trial in this
paper also verified the feasibility of predicting muscle forces by sEMG.

12.5 Discussion

Calculating joint angles and muscle forces from motion capture data is a simple
process. There are many formulas and simulation software available, but the short-
comings of motion capture experiments are that the space required for experiments
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Fig. 12.8 Muscle force of the brachialis according to the sEMG prediction

Fig. 12.9 Comparison of the muscle force values obtained from OpenSim and sEMG
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is too large and the experimental process is cumbersome. Motion capture data can be
used for offline scientific experiments but are unreliable when used to generate real-
time or online active control signals, such as those applied to an upper limb robotic
exoskeleton. The advantages of surface EMG include the facts that the acquisi-
tion process is simple, the associated experimental equipment is small and portable,
and real-time signals can be acquired and generated for control, but EMG signals
are weak, and the process of calculating and processing the signals is complicated.
Therefore, an experiment for the synchronous acquisition of motion capture data and
sEMG signals was carried out to verify the sEMG signal calculation results obtained
by using the calculatedmotion capture data. The final verification results also suggest
the feasibility of using EMG signals to calculate muscle forces.

As upper extremity robotic exoskeletons and rehabilitation robots continue to
develop, pattern recognition, which is an offline control method, does not meet the
needs of practical applications. A control source signal requires real-time acquisi-
tion control, which requires the acquisition process to be simple and easy to perform
and the signal to be stable and continuous. sEMG signals can meet these demands.
This paper studies the dynamic evaluation mechanism of human upper limb move-
ment, which was designed to convert offline motion capture calculations to online
electromyography calculations. Real-time calculations of muscle force can provide
more accurate control of robotic exoskeletons and real-time evaluations of upper
limb motion states. In the future, sEMG signal changes and upper limb joint angles
should be analyzed more deeply to detect changes in the joint through the surface
EMG signal; then, robotic exoskeletons or rehabilitation robots can be controlled in
real time by surface EMG signals.

Several limitations should be noted. First, uncertain noises in EMG signals still
existed, even if we tried to avoid it, such as cross-talk from other muscles, baseline
noise, and artifact. Due to difference of individual physiologic and electrode posi-
tions, the outputs will be a little bit different. But it can still serve as a reference in
rehabilitation.

12.6 Conclusions

Multi-parameter human–computer interaction technology is an important new devel-
opment in the field of human physics and neuro-rehabilitation. This study proposes
a set of upper limb kinematic analysis methods, which include muscle force predic-
tion methods. In addition, this work can provide reference values for the evaluation
of upper limb motor function and the auxiliary control of upper limb rehabilita-
tion robots. Accurate muscle force prediction methods can be used to assess an
individual’s ability to generate limb movements, which can promote a deeper under-
standing of the condition of the patient’s nervous system. This knowledge can be
used to guide the selection of rehabilitative treatments and to design better rehabil-
itation robots that can assist people with upper extremity dyskinesia during upper
limb tasks.
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Chapter 13
Resting-State EEG Sex Classification
Using Selected Brain Connectivity
Representation

Jean Li, Jeremiah D. Deng, Divya Adhia, and Dirk De Ridder

13.1 Introduction

Electroencephalography (EEG) is a widely used non-invasive technique to measure
multi-channel potentials that reflect the electrical activity of the brain. Over the last
few decades, EEG analysis has been an intensively explored research topic due to its
potentials in being applied to the diagnosis of neurological diseases, such as epilepsy,
brain tumors, head injury, sleep disorders, and dementia [19]. Despitemany advances
made in recent years, EEG signal analysis remains a challenging task. In addition to
being non-stationary, EEG signals often have high noise-to-information ratios, and
they can be significantly affected by various artifacts, demonstrating characteristics
that differ from signals generated by activities in the brain [21]. Common artifacts
include eye movements, jaw tension, and muscle contractions. To make effective
signal analysis even more challenging, EEG signals are highly individual-specific,
and cross-subject pattern identification can be elusive.

In a more proactive approach, EEG can also be applied to biofeedback training
as an operant conditioning technique to reinforce or inhibit specific forms of EEG
activities. It has been used in anxiety and addiction treatment, also employed for
attentional, cognitive, andpsychosocial functioning improvement [17]. It is noted that
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popular EEG biofeedback treatment is largely based on sex-neutral protocols [17].
Our proposition is that if there are innate sex differences found in EEG signals, then
it is possible for new sex-differentiated EEG biofeedback protocols to be developed
to potentially enhance many neurological treatments.

This study focuses on using machine learning techniques to explore the evidence
of sex effects on EEG signals. Rather than just examining the between-sex statistic
differences, we attempt to construct an effective classification model to predict the
sex of a subject through their EEG signals.

This chapter is organized as follows. In Sect. 13.2, we review related work and
discuss some common approaches to represent EEG signals. Section 13.3 introduces
the dataset used in this study, and the data preprocessing procedures, feature extrac-
tion and selection, and the classification methods. Then in Sect. 13.4, we present the
results of sex classification. We conclude the chapter in Sect. 13.5.

13.2 Related Work

Within the neuroscience literature, there has been an ongoing interest in sex effects in
cognitive performance and the underlying neural mechanisms [7]. While a number
of studies failed to find sex differences in cognitive performance and hemispheric
asymmetry [2, 16], some evidence of the sex effects on EEG has been found.

In [4], the EEG signals of 80 individuals between the ages of 8 and 12 years were
analyzed. Differences between sexwere found in this study group, withmales having
less theta but more alpha frequency components than females. Females were also
found to have a developmental lag in the EEG compared tomales. An earlier work [5]
also reported sex differences in EEG asymmetry during self-generated cognitive and
affective tasks.However, both of these studies did not validate the findings on external
test individuals, therefore, the generality of the findings may be limited.

The study in [3] investigated the effects of age and sex on sleepEEGpower spectral
density of individuals of age ranging 20–60 years. The average power density within
the 4-sec epochs was calculated. It was found that females show significantly higher
spectral power density in some power bands than males. Though significant effects
of age on sleep EEG spectral power density were found, the study did not find any
interaction between age and sex. This study performed robust statistical analysis for
longitudinal data.However, no external data validationwas performed to demonstrate
the generalization ability on new subjects.

Although EEG signal classification has been widely explored for different pur-
poses, there have been few studies that investigate sex differences in EEG and attempt
EEG-based sex classification [11]. For classification purposes in general, the EEG
signals are typically preprocessed by band-pass filters and spatial filters for feature
extraction. Most commonly, frequency band power features and time-point features
are employed to represent EEG signals. Band power features represent the aver-
age energy level of EEG signals within a certain frequency range over a given time
window called an “epoch”. Band power features need to be extracted, respectively,
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in each channel. Time-point features are a concatenation of EEG signals from all
channels, and they are typically used for event-related potential classifications [12].
To cope with the non-stationarity of EEG signals, band power features are usually
extracted from a reasonably short epoch. For example, in [3], epochs are extracted
using a sliding window with a length of 2 s.

Spatial filters were also applied in other studies for EEG feature extraction. These
can be obtained in a supervisedmanner, such asCommonSpatial Patterns (CSP).CSP
projects the signals into another matrix space that maximizes the distance between 2
classes. Reference [12] discusses the effectiveness of this approach and has proven
it to be useful. Spatial filters can also be obtained through an unsupervised way such
as Independent Component Analysis (ICA). In addition to the above, other EEG
representing methods are also studied, which include sparse representation and deep
learning. The sparse representation-based classification (SRC) method has shown a
robust classification performance [18]. In deep learning, the features and the classifier
are jointly learned directly from the EEG signals. The convolutional neural networks
and restricted Boltzmann machines are the two most popular deep learning methods
for EEG-based Brain-Computer Interface (BCI) studies [12].

Correlation between EEG channels, also known as coherence, was evaluated in
time domain to analyze the connectivity patterns in dystonia patients [1]. Coher-
ences have the advantage of yielding the possibility to recognize motor-imagery-
related activation even without typical activation observed, often giving small
standard deviations [13]. To better handle non-stationarity, connectivity has been
modeled by coherence obtained from spectral features obtained fromFFT [8, 13–15].
Connectivity based on spectral coherence is also found to be an effective biometric
feature [10].

More recently, [20] utilized deep learning to predict sex through EEG signals.
With a large data size (1000 adults) and deep convolutional nets, an accuracy of 81%
was achieved. It shows that the beta band provides the most important features in
predicting sex. Another deep-learning-based study [22] assesses gender differences
in emotion processing EEG data and reports a classification accuracy as high as 95%
using gamma-band features. The dataset contains however only 60 subjects.

13.3 Data and Methods

13.3.1 Dataset Description

The dataset used for this study is part of the data collected for a previous work [21],
containing a raw resting-state EEG stream set of 241 healthy individuals only. The
raw EEG signal was collected through a standard Mitsar amplifier with 19 channels
(Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2)
with a sampling rate of 250 Hz. The studied population consists of 150 females and
91 males aged between 17 and 89 years. The distribution regarding the age and sex
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Table 13.1 Age and sex distribution of the sample set

Age (years) Females Males

17–25 35 20

26–35 17 9

36–45 36 19

46–55 34 21

56–65 16 15

66–75 8 5

76–89 4 2

Sum 150 91

of the population can be found in Table 13.1. Note that there is a notable imbalance
between the two sexes across several age groups.

13.3.2 Preprocessing

Since EEG signals cannot be segmented into physiologically relevant units, the con-
ventional approach of segmenting the EEG streams into epochs according to a time
interval is adopted in this study. In this study, we segmented the raw EEG streams
into 2-s epochs. The first 5 s of every EEG recording were discarded to avoid possible
noise.

13.3.3 Signal Representation

In this study, the raw EEG signals of each subject are represented by the spectral
connectivity between channel pairs. The MNE package1 was applied to compute the
frequency-domain connectivity measures. In particular, for every pair of channels,
the coherence across all epochs in each frequency was computed, as in Eq. 13.1:

C = |E[Sxy]|√
E[Sxx ] × E[Syy]

(13.1)

where Sxy is the cross-spectral density between x and y, and E[] denotes average
over epochs.

To shorten the feature vector length, the mean value of the connectivity within 5
major brain wavebands is adopted. These frequency bands are 0–4 Hz (delta), 4–8

1 Available from https://mne.tools/stable/generated/mne.connectivity.spectral_connectivity.html.

https://mne.tools/stable/generated/mne.connectivity.spectral_connectivity.html
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Hz (theta), 8–13 Hz (alpha), 13–30 Hz (beta), and 30–45 Hz (gamma). This gives us
a feature vector of length 855 (171 channel pairs × 5 bands).

13.3.4 Feature Analysis

Compared with the relatively small sample size of 241, the feature vector of length
855 may cause a potential overfitting problem. To further shorten the connectivity
representation, training subject splitting and feature selection were adopted.

For each training subject, we split the subject’s entire EEG recordings into several
30 s long (15 epochs) sections, and use each section as an independent training
sample. Considering the imbalance of the dataset, we take 5 s from each female and
8 from each male to form a more balanced training set. This approach results in a
training set with a 5 to 8 times larger sample size.

Feature selection is carried out using XGBoost [6]. In each of the 50 trials, we
randomly selected 90% of the subjects, split the recordings as described above, and
fit these data points into an XGBoost binary classifier. We then rank all 855 features
according to the feature importances given by XGBoost and stack the ranks from
the 50 trials together. Since the feature importance ranking varies across trials, we
generate our own feature importances through the 855× 50 matrix. We iterate from
the most to least important XGBoost ranks, the earlier a feature appears in all 50
trials, the more important it is marked.We then select the top 34 connectivity features
according to our ranking as the final representation. Details of the feature selection
outcome will be demonstrated in Sect. 13.4.1.

13.3.5 Classification

Four different classifiers are applied separately using the chosen representation.
They are XGBoost classifier (XGB), multi-layer perceptron (MLP), support vec-
tor machine (SVM), and the random forest classifier (RF).

Validation scores were generated by running 50 trials. In each of the 50 trials,
we randomly select 90% of the subjects and split these recordings as described in
Sect. 13.3.4 to form a reasonably balanced training set. The other 10% of subjects
are used for validation. For the subjects in the validation set, EEG streams are not
split (i.e. no repeated validation subjects). To increase the stability, we take a longer
recording length of 3min (90 epochs) to compute the connectivity and choose the
34 features we selected as the final representations of the validation subjects.

For binary classification, depending on the classification algorithm, a crisp classi-
fication decision is made (such as in decision trees) or a 0.5 threshold value is used,
e.g. in the output node of an MLP. We use a unified probabilistic framework here, by
estimating the probability of a classification outcome, and using a relaxed threshold
value to decide the classification outcome c:
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c =
{
1, if y > θ

0, otherwise
, (13.2)

where y is the predicted probability, and θ is the probability threshold which can be
optimized through cross-validation.

13.4 Results

13.4.1 Feature Selection

Figure 13.1 demonstrates the 50 trial validation result from a binary XGBoost classi-
fier using different numbers of features. The classifier reached the best performance
when using the top 34 features. As shown in the figure, the mean score displays an
increasing trend until the number of features reaches 34.

The chosen 34 features are illustrated in topographical maps in Fig. 13.2. The
brain connectivity in beta and gamma bands seems more prominent than those in
other bands when performing sex classification tasks, as more connectivity pairs in
these two bands are marked as important features. The gamma-band connectivity
between channels Fp1 and Fz is ranked as the most important feature. The connec-
tivity between channels F7 and F8 in the beta band is the sixth important feature.
These two important pairs are in agreement with a previous neuroscience study [9],

Fig. 13.1 Validation result of XGBoost using increasing numbers of chosen features
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Fig. 13.2 Chosen connectivity features in five frequency bands. Thicker lines between the channels
suggest that the connectivity values between these channel pairs are more important features

Fig. 13.3 Box plots of some top connectivity features display promising separability of the two
sex classes

in that females have more latero-lateral interhemispheric connectivity (F7–F8) and
males more antero-posterior intrahemispheric (Fp1–Fz) connectivity. The connec-
tivity between channels Fz and C4 appears to be important in three different bands:
beta (ranked 2nd), delta (ranked 3rd), and gamma (ranked 13th). We speculate that
the Fz–C4 connectivity in beta could be related to the known sex differences in the
anterior cingulate cortex (Fz) and sensorimotor area (C4). Figure 13.3 shows that
some of the top connectivity features display promising separability of the two sex
classes.
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Fig. 13.4 Validation accuracy versus the threshold ranged in (0, 1). Shaded areas indicate the
accuracy values within 1 stdev of the corresponding mean score

13.4.2 Validation Results

Figure13.4 illustrates the 50 trial validation scores across increasing thresholds when
using XGB, MLP, SVM, and RF to predict the probability of the female class. The
connectivity scores are generated using the chosen 34 connectivity features. The band
power scores are generated by using 31 band power features which are selected in a
similar way to the connectivity features. All classifiers demonstrate that using con-
nectivity features outperforms using band power features. When using the selected
connectivity features, all four classifiers reach their best performances when the
threshold of the probability is set around 0.4–0.5. XGB gives the highest accuracy
score of 0.848 using a threshold of 0.39.

Themean area under the curve (AUC) ofXGBusing selected connectivity features
across 50 trials is 0.89 (±0.07), as shown in Fig. 13.5. The mean AUCs of other
classifiers are SVM—0.88 (±0.07), MLP—0.86 (±0.08), and RF—0.88 (±0.08).
The high AUCs from classifiers suggest the generally good quality of the chosen
features.
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Fig. 13.5 Average ROC curves obtained through cross-validations of XGB

13.4.3 Test Results

An independent set comprised of 40 subjects (25 females and 15 males) was used
for testing. The test scores across increasing thresholds are shown in Fig. 13.6. MLP
has the best score of 0.825 using a threshold of 0.47, and the best scores of XGB,
SVM, and RF are all 0.8.

13.5 Conclusions

We have conducted a preliminary study on the potential sex differences in resting-
state EEG signals using a machine learning approach. Instead of using a data-driven
deep learning method which demands more subject data to avoid overfitting, we
chose to focus on assessing the effects of band power and connectivity features in sex
classification using classifier ensembles and feature analysis methods. In particular,
it is found that female and male groups show different brain connectivity patterns
which are most prominent in beta and gamma bands. The connectivity between
channels Fp1 and Fz in the gamma band shows the greatest sex discrepancy. The
connectivity between channels Fz and C4 appears to be different between sexes in the
delta, beta, and gamma bands. The initial band power features are not included in the
classification models because they are found to be collectively less important than
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Fig. 13.6 Test accuracy versus the threshold ranged in (0,1). Best accuracy positions indicated by
colored dots

connectivity features, even though they may contribute positively to the discriminant
analysis on sexes.

Due to limited data availability, we have concentrated on examining healthy sub-
jects’ EEG signals. For future work, we would like to investigate sex differences
on EEG connectivity with signals obtained under different pathological settings and
explore its possible application in biofeedback therapy.
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Chapter 14
Augmented Medicine: Changing Clinical
Practice with Artificial Intelligence

Giovanni Briganti

Abstract Smart medical technologies are augmenting clinical practice by offering
the patient an increased autonomy and the clinician more advanced tools to predict,
detect, monitor, and treat diseases. Augmented Medicine, a new framework of tech-
niques that extends to clinical practice from the applied medical research aiming to
introduce and improve tools, is rapidly gaining popularity. In this chapter, we will
outline the principles of Augmented Medicine and its main applications in clinical
practice, as well as future directions of this promising field.

14.1 Introduction

Artificial Intelligence (AI) has revolutionized medical technologies and can be com-
monly understood as the part of computer science that is able to deal with complex
problems with many applications in areas with huge amount of data but little theory.
AI is defined as perceiving, reasoning, and acting computation: in medicine, the two
most commonly popular domains of AI are machine learning and deep learning.
Machine learning can be defined as a computation that can improve from experience
and is divided into supervised learning, when the data input for prediction is labeled,
and unsupervised learning when the data input is unlabeled [1]. The two techniques
that stem from machine learning and are common in medicine are random forests,
understood as decision trees, and Artificial Neural Networks (ANN), understood as
network with hidden layers and n neurons per layer, each assigned with a specific
role. Deep learning stems from machine learning but requires much lower compu-
tational resources as the number n of neurons per layer decreases. Deep learning is
optimized for big and temporal data sets.

There is a manifold of differences between the AI framework and themore widely
known traditional statistical techniques. Statistics is mostly based on theory and
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hypothesis testing, and is often employed with low-dimensional data sets as input
(that is, the number of subjects exceeds by far the number of variables). On the other
hand,AI ismostly based on data and predictability of variables, and is often employed
with high-dimensional data sets (that is, the number of variables exceeds the number
of subjects) and requires very big data sets. An example of high-dimensional data is
input stemming from genome analyses, where thousands of genes stem from only
one individual.

Medical technologies are defined as tools that can enable physicians to perform
early diagnosis, reduce complications, optimize treatment and/or provide less inva-
sive options, and reduce the length of hospitalization. Before the mobile era, medical
technologies were mainly known as classic medical devices (e.g. prosthetics, stents,
and implants), although in the last decade, the emergence of smartphones, wearables,
sensors, and communication systems has revolutionizedmedicine with the capability
of containing AI-powered tools (such as applications) in very small sizes [2]: these
new tools can be customarily defined as smart medical technologies. Smart medical
technologies enjoy increasing success and can be easily adopted by patients, since
they increase their autonomy in various domains, such as keeping electronic personal
records, monitoring vital functionswith biosensors, and reaching optimal therapeutic
compliance.

The development of intelligent medical technologies is enabling the rise of a
new field in medicine: Augmented Medicine (AM), i.e. the use of new medical
technologies to improve different aspects of clinical practice. The origins of AM can
be traced back to the start of a series of approval by the Food andDrugAdministration
(FDA) of several AI-based technologies, although smart technologies that do not
necessarily employ AI are also understood as a part of AM [3]: two examples of
such technologies are surgical navigation systems for computer-assisted surgery [4]
and virtuality-reality continuum tools for surgery, pain management, and psychiatric
disorders [5–7].

Although patients seem to be interested in AM, a certain physician resistance
arose against it: this can be traced back to four main reasons. First, most practising
physicians around the world did not have appropriate education on AM [8], since
it is very recent: even currently, medical students are not thinking about it, even
though several AM courses around the world are proposed as alternative medical
curricula. Second, AM is naturally related to the field of medical informatics, which
in the past two decades has dealt with the early digitization process in health care,
including the shift to electronic health records (EHR): the administrative burden that
came with this shift [9] is nowadays recognized as an important cause of physician
burnout [10]. Third, physicians are worried about losing the battle against AI when
it comes to compared performance: this is secondary to the fact that most medical
literature on AI is focused on comparing performances between the human and the
machine: this has been one of the main pitfalls of AI literature to this day, with
consequences on physicians’ perception that are difficult to assess and overthrow.
Fourth, the current worldwide lack of a legal framework [11] that defines the concept
of liability in the case of adoption or rejection of algorithm recommendations leaves
the physician exposed to potential legal outcomes when using AI. One of the only
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proposed concepts that can be applied in clinical practice is the French attitude
of garantie humaine (human warranty), that is, there must always be a physician
supervising the AM framework.

The important physician resistance to AM is one of the reasons why current med-
ical literature on AI tools in clinical practice involves little to no medical expertise:
such tools are often developed by private companies without important partnerships
within the hospital framework, to the exception of widely known tech companies.
This translates to poor reliability of the study designs that have emerged in a meta-
analysis of deep learning tools in the field of medical imaging [12].

This chapter serves as an introduction to the practising physician or the medical
technologist interested in what the main applications of AM are that can be easily
integrated into clinical practice, and provides the main problems to overcome in its
current state as well as potential solutions.

14.2 Implementation of Augmented Medicine in Clinical
Practice: An Overview

AM has different domains of application: we will hereby overview some of the
popular ones.

14.2.1 Monitoring with Wearable Technology

The domain of parameter monitoring is certainly the most widely used application
belonging toAM.There has always been a knowledge gap ofwhat happens to patients
between contacts with a healthcare professional (for instance, you can go an entire
year without consulting a general practitioner or a specialist for a given disease): that
is why physicians hospitalize patients when they want to closely monitor their status.
However, in selected cases, monitoring can now be outsourced with the appropriate
medical technologies. Several critiques of wearable and portable ECG technologies
have been addressed [13], highlighting limitations to their use, such as the false
positive rate that originates from movement artifacts, and barriers in the adoption
of wearable technology in elderly patients that are more likely to suffer from atrial
fibrillation.On the other hand, several studies have reported the benefits of outsourced
monitoring. To illustrate such benefits, let us review three use cases: the monitoring
of atrial fibrillation, diabetes, and epilepsy.

Patients with an abnormal heart rhythm can suffer from complicationswhere rapid
medical intervention is crucial for survival. The early detection of atrial fibrillation
(abnormal heart rhythm characterized by an irregular beating of the atria) was one
of the first applications of AI in medicine. The recent REHEARSE-AF study [14]
showed that remote ECGmonitoring in ambulatory patients is more likely to identify
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atrial fibrillation than routine care. On a more general basis, wearable technology
can allow for the remote monitoring of heart rhythm.

People living with diabetes (high glucose levels over a prolonged period of time)
and treated with anti-diabetic drugs are affected with hypoglycemic episodes (that
is, the glucose levels are too strongly corrected) presenting as loss of consciousness,
confusion, or seizures. Continuous glucose monitoring (CGM) enables patients with
diabetes to view real-time interstitial glucose readings and provides information on
the direction and rate of change of blood glucose levels [15]: wearable technology
focused on CGM is able to prevent hypoglycemic episodes based on a repeated
measurement that can ideally be shared with clinicians. CGM can enable patients
to optimize their blood glucose control and reduce the stigma associated with hypo-
glycemic episodes; however, a study focusing on patient experience with glucose
monitoring reported that participants, while expressing confidence in the notifica-
tions, also declared feelings of personal failure to regulate glucose level [15]. How-
ever, thanks to CGM technology, patients can now be more aware while in social
gatherings or other occasions, which is a clear benefit to the quality of life.

Children and adults with epilepsy can experience unexpected seizures, which can
lead to a significant decrease in quality of life and can seriously complicate learning
and leading a professional life as well as being included in social activities.

Intelligent seizure detection devices are promising technologies that have the
potential to improve seizure management through permanent ambulatory monitor-
ing.Wearables associated with electrodermal captors can detect generalized epilepsy
seizures and report to a mobile application that is able to alert close relatives and
trusted healthcare providers with complementary information about patient local-
ization [16]. A report focused on patient experience revealed that, in contrast to
heart monitoring wearables, patients suffering from epilepsy had no barriers in the
adoption of seizure detection devices, and reported high interest in wearable usage
[17].

14.2.2 AI for Diagnosis

Far from being the most widely known application of AM by patients, diagnostic AI
applications are however widely known by medical professionals.

Diagnostic AI ranges in a variety of specialties in the medical field. Input data not
only can be body parameters (such as heart rhythm, ECG, glucose levels, and blood
pressure) but can also be pictures from medical imaging (such as radiographies,
CT-scans, and MRI), a video input from an endoscopy procedure, or histopathology
slides.

Recentmedical technologies also allow for a smart and outsourcedmedical history
taking, that is, the patient inputs the symptoms directly on a smartphone, while the
systems keeps providing new questions related to the symptoms at hand to achieve
a differential diagnosis or simply to order the history information for the clinician to
export into the electronic medical record and analyze.



14 Augmented Medicine: Changing Clinical Practice with Artificial Intelligence 337

The workflow of two specialties of medicine are revolutionized with AI:
histopathology and diagnostic radiology, since they are two specialties where most
of the workflow is focused on diagnosis. For instance, deep learning algorithms have
been proven to be at least as good as trained radiologists in a recent meta-analysis
[12] that covered most papers published on the topic.

The domain of deep learning for diagnostics is young but counts already a solid
number of publications in the literature (over 1 million publications found in Google
Scholar): however, several issues exist in this domain that need to be addressed in
the coming decade to greatly improve the clinical benefit of diagnostic AI; we will
hereby describe three of them.

The first issue is the lack of clinical validation of the core concepts and tools
of diagnostic AI: this is mainly due to a lack of primary replication, that is, once
algorithms are trained and tested (on a respective training and testing set), they are
seldom applied to other data sets from the same population, and even more rarely
applied to samples from other populations [3]. A solution to this first issue is moving
toward open data and science settings for the development of algorithms.

The second issue is the problem of overfitting: when applied to other data sets,
algorithms do not perform as good as with training and testing data sets, because
often the algorithm is built so as to closely fit the source data and therefore does not
replicate. This is a potentially crucial barrier for the adoption of diagnostic AI in
clinical practice: it would be a great problem if a given hospital adopted an algorithm
and that poorly performs on the population because it overfits its source data. There
are two possible ways forward for the issue of overfitting: to reevaluate and recali-
brate the performance of algorithms after institutional adoption, and to develop from
scratch algorithms that fit larger communities while taking into account subgroups.

The third issue is the study the performance of diagnostic AI in comparison with
physicians’ performance: such studies constitute the vast majority of the rationale
for diagnostic AI works (so as to prove a software’s worth), but are however not
optimized for the settings in which such diagnostic AI will be deployed (that is, with
a physician’s supervision). The clear solution for this issue is publishing studies that
analyze the combined force of AI and physicians. This solution not only solves the
issue of performance but is also a good way for discovering how practising AM
revolutionizes the workflow in selected specialties and therefore the way we treat
patients.

14.2.3 Machine Learning for Prediction

Electronic medical records (EMR) are a precious source of information. Such infor-
mation can now be transformed into actionable data with medical informatics lan-
guages such as SNOMED-CT, which associates each medical term with a specific
code, if it is either directly input by the practitioner while filling the EMR or if there
is an underlying Natural Language Processing software that analyzes the EMR.
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This way, machine learning (ML) applications are able to predict a given event
(such as a failure or a given complication) based on the EMR. This has been proven
useful in the field of internal medicine. For instance, ML has been proven useful for
the prediction of cardiovascular risk [18], the prediction of the decline of glomerular
filtration rate in patients with polycystic kidney disease [19], and several gastroin-
testinal disorders [3].

The adoption of such ML prediction, should they become more performant and
with high replicability, could be straightforward for hospitals: integrated with the
EMR, they could constitute a risk dashboard that could at all times alert physicians
of possible complications and constitute a great clinical decision support system
personalized for any given patients.

14.3 Conclusions

This chapter aimed at describing the main applications of artificial intelligence in
medicine which leads to augmented medicine. The implementation of artificial intel-
ligence in clinical practice is a promising area of development that rapidly evolves
together with the other modern fields such as precision medicine, genomics, and
teleconsultation. While scientific progress should remain rigorous and transparent in
developing new solutions to improve modern health care, health policies should now
be focused on tackling the ethical andfinancial issues associatedwith this cornerstone
of the evolution of medicine.
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Chapter 15
Environmental Assessment Based on
Health Information Using Artificial
Intelligence

Jannik Fleßner, Johannes Hurka, and Melina Frenken

Abstract A holistic care system which enables extensive medical care even outside
the hospital brings significant benefits for health care. The application of novel com-
munication and computation technologies is essential in order to accomplish such
a system. In the presented chapter, a conceptual system is described which links
environmental parameters measured by building automation and control systems
with data from electronic health records. The system’s purpose is to provide medical
personnel with interpreted data about possible adverse health effects of the indoor
environment with respect to the patient’s health condition. Additionally, the patient
receives real-time feedback about the environmental parameters and their potential
health effects. The purpose of this feedback is to inspire behavior changes in the
patient, which results in a more health-friendly environment. A special focus of the
chapter lies on the analysis of possibly applicable artificial intelligence approaches
for the estimation of the individual environmental risk factor. These are necessary
because the system combines knowledge about the adverse health effect of environ-
mental parameters and knowledge about health parameters for the environmental
assessment. This knowledge is often incomplete, ambiguous, and is linked to uncer-
tainty, whichmakes the interpretation of the rawdata non-trivial andwould overstrain
the occupant as well as the medical personnel.

15.1 Introduction

Digitization is already part of many applications and business processes today. Tech-
nological progress enables new approaches to support and improve activities in var-
ious areas of daily life. One of these areas is health care. In particular, one goal is to
establish a holistic care system that enables comprehensive medical care outside of
the hospital.
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During the last years, several scientific papers have been focused on the develop-
ment of telemedical applications in order to provide medical care within the home
environment. A common approach is the use of building automation and control sys-
tems (BACS) technologies to build telemedical systems [41]. In general, the commu-
nication technologies developed for BACS are often used to connect various medical
devices and sensors. A usual application is emergency detection within the home
environment. The data is transmitted to healthcare personnel who are monitoring it
in hospitals or service centers.

In this context, the centralized storage of patient information and to enable instant
access for authorized users are the purposes of electronic health records (EHRs).
Therefore, the development and integration of EHRs offer the possibility of collecting
more comprehensive data on the course of various diseases of patients treated with
different methods in different hospitals. Accordingly, the analysis of EHR data must
meet high standards of data protection and data security, but has the potential to
determine the most efficient treatment for certain diseases. Moreover, EHRs enable
the combination of information obtained from hospital treatment with data recorded
by telemedical applications in the home environment. However, today EHRs are
not widely implemented within medical institutions and the development of EHR
platforms like openEHR [48] still continues.

A quite unnoticed opportunity of the recent technological developments is the
provision of information about environmental parameters within the home envi-
ronment for healthcare applications. Parameters like air temperature, humidity, air
pollution, and illumination significantly affect the well-being of the occupant and
may also affect the progression of specific diseases. In this context, Fong and Fong
[19] designed a wireless telemedical network to monitor indoor air pollution, which
is associated with chronic respiratory diseases. Such efforts focused on the relation
of indoor environmental parameters, and diseases are rather rare. Nevertheless, there
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is extensive scientific evidence that indoor as well as outdoor environmental parame-
ters influence the mortality, morbidity, and prevalence of specific disease symptoms.
Consequently, the medical treatment may benefit from the inclusion of measured
indoor environmental parameters with relevance for the particular disease.

However, the additional data needs to be interpreted before transmission to the
EHR in order to facilitate their handling. Therefore, approaches to estimate the envi-
ronmental risk based on knowledge about the health effect of environmental param-
eters and knowledge about the patient’s health data are required. In addition, it is of
importance to provide the patient with adequate feedback about the environmental
condition based on the estimation outcomes. An intuitive human-system interface
improves the acceptability of the system and may lead to behavior change with the
purpose of improving the current environmental condition.

In Sect. 15.2, an overview of the effects of environmental parameters on various
disease symptoms is given. Afterwards, a system concept for the environmental risk
estimation based on BACS and EHR data is presented in Sect. 15.3. In this context,
a closer look at the requirements and possible approaches for the environmental risk
estimation using artificial intelligence is given in Sect. 15.4.

15.2 Environmental Parameters and Health

In the past years, a lot of effort was made investigating the effects of indoor envi-
ronmental parameters on occupants’ health. As one outcome, the sick building syn-
drome was defined, which associates different symptoms like headache, tiredness,
and breathlessness with environmental parameters.

Particularly, there is scientific evidence regarding the effects of environmen-
tal parameters on pulmonary and cardiovascular diseases. Cardiovascular and pul-
monary diseases are among the most common causes of death and are therefore
scientific topics of particular interest. Thus, an overview of studies investigating the
effect of environmental parameters on the pulmonary and cardiovascular systems
is given in the following. The purpose of the overview is to underline the available
knowledge, which possibly can be used for estimating the environmental health risk.

The available scientific studies are subject to certain limitations due to the com-
plexity of the parameter interactions. A higher temperature, for example, may
enhance the occurrence of harmful air particles, while a certain relative air humidity
may lower their occurrence at the same time. In order to measure all these possible
interactions, an expensive and time-consuming study design is required, which is not
possible at any time.

A brief excerpt of scientific findings starting with the effects of air pollutants
is given in the following. The effects of weather-related parameters are described
afterwards. In the end, the effect of illumination and some implications for health-
related BACS applications are presented.
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15.2.1 Air Pollution

Without any doubt, air pollution affects the health of the population negatively.WHO
is aware of these adverse health effects and suggests standards for selected air pollu-
tants [70, 71]. However, these standards might not be sufficient for occupants with
higher sensitivity caused by particular diseases. In fact, air pollution is seen as amajor
cause of several diseases, especially concerning the pulmonary and cardiovascular
systems.

Air pollution is caused by various gases, particulate matter (PM), and volatile
organic compounds (VOC), which are emitted into the environment by different
sources. In general, higher concentrations of these particles lower the air quality and
lead to a higher risk of disease symptom occurrence.

Argacha et al. [4] give a comprehensive overviewof studies investigating the effect
of different air components with a negative effect on the cardiovascular system. A
large part of the presented studies investigates the effect of PM on the cardiovascular
system. PM is classified in particles with a diameter between 2.5 and 10µm (PM10)
and particles with a diameter of 2.5µm or less (PM2.5). In addition, particles with a
size of less than 0.1µm are defined as ultrafine particles. PM10 and PM2.5 are both
linked with higher risk of cardiovascular mortality and occurrence of cardiovascular
disease symptoms [52]. However, Franck et al. [20] concluded in their work that the
negative effect of ultrafine particles is even higher in comparison to PM10 and PM2.5.

Yode et al. [75] investigated the effect of short-term exposure to PM on the pul-
monary system of healthy adolescents. They found a strong relation between the
decrease of pulmonary function and the concentration of PM. Especially, PM2.5

seems to have an adverse health effect concerning the pulmonary system. The adverse
health effect of PM2.5 was confirmed by Haberzettl et al. [24]. Their experiments
showed that a short-term exposure leads to vascular insulin resistance and inflam-
mation in mice caused among others by pulmonary oxidative stress.

In recent years, the association among diseases of the pulmonary system like
asthma, chronic obstructive pulmonary disease (COPD), and respiratory infections
was focused on by several scientific workgroups. Kurt et al. [38] give an overview
about the health effect of common air pollutants on these diseases. Heinrich and
Schikowski [25] concluded in their systematic review about the vulnerability of
COPD patients toward air pollution that they are more vulnerable to gaseous pollu-
tants and PM compared to healthy people. In this context, To et al. [65] concluded in
their work that the exposure to higher concentrations of PM2.5 and O3 increases the
risk to develop the asthma-chronic obstructive pulmonary disease overlap syndrome.
However, such reviews addressing the vulnerability of patients with certain diseases
are rare but of high importance for the establishment of a holistic care system. The
adverse health effect of short-term exposure of COPD patients to air pollution was
confirmed by Gao et al. [21]. Their results show that COPD patients are even more
vulnerable to gaseous pollutants like NO2 and SO2 compared with PM.

These gaseous pollutants and their health effects were the object of several sci-
entific investigations as well. Hong et al. [29] conducted an epidemiological study
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about the association of gaseous pollutants like SO2, CO, NO2, O3, and PM10 with a
reduced pulmonary function. Their results suggest that there exists an adverse health
effect of gaseous pollutants on the pulmonary system, especially for SO2, CO, and
O3. In addition, Smith et al. [62] focused their research on the effect of air pollution
on the occurrence of pulmonary tuberculosis. They found an elevated occurrence of
pulmonary tuberculosis when exposed to higher concentrations of CO and NO2.

Besides PM and gaseous pollutants, VOC concentrations often are related to
disease symptoms. A recent scientific effort is spent on the detection of cancer based
on the VOC composition in exhaled breath [9]. However, it was shown that the
concentrations of these air pollutants are often higher in the indoor air than outdoors.
Therefore, it is of importance to know how VOC may affect the occupants’ health,
even though the exact biological reasons remain unclear to some extent. The study of
Cakmak et al. [8] suggests that the inhalation of VOCwithin the indoor environment
has an adverse health effect. Their investigation showed that an increase in VOC
leads to a significant decrease in measures of lung function. Rumchev et al. [55,
56] confirm the adverse effect of elevated VOC concentrations on the pulmonary
system. Accordingly, the works of Boenisch et al. [6] and Wang et al. [69] show
that exposure to VOC leads to increased airway inflammation in mice. The effect
of VOC exposure on the pulmonary function of elderly people was investigated by
Yoon et al. [76]. Their results suggest that VOC exposure leads to oxidative stress and
a reduced pulmonary function in elderly people. Furthermore, the relation between
long-term exposure to ambient VOC and mortality was investigated by Villeneuve
et al. [68]. The results suggest that VOC concentration is positively associated with
cancer mortality.

15.2.2 Weather-Related Parameters

Besides air pollution, the air temperature is a highly regarded parameter which is
associated with the occurrence of disease symptoms. Specifically, cardiovascular
disease symptoms seem to be affected by the ambient air temperature.

The air temperature as well as the diurnal temperature range is associated with
cardiovascular diseases [35]. Especially, low temperatures and elevated diurnal tem-
perature ranges are linkedwith adverse health effects. The finding of a negative health
effect of the short-term exposure to air temperatures below an optimum was con-
firmed by Dahlquist et al. [15]. Additionally, the works of Shiue et al. [59] and Chen
et al. [12] suggest a U-shaped relationship between temperature and cardiovascular
diseases. Accordingly, extremes in temperature lead to stress of the cardiovascular
system causing the occurrence of disease symptoms. The relationship of the physi-
ologically equivalent temperature, which is determined using the temperature, wind
speed, humidity, sky cover, and solar radiation, among others, and specific disease
symptoms was investigated by Shiue et al. [60, 61]. They found slightly varying
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temperature ranges with the highest adverse health effect on particular diseases. An
epidemiological study by Hensel et al. [26] found an adverse effect of cold temper-
ature, low humidity, and high airspeed on the occurrence of heart diseases.

15.2.3 Illumination

Illumination is affected by natural light and artificial light sources controlled by
the occupant. An important aspect of exposure to light is its effect on the circadian
rhythm. The natural light-dark cycle is a major trigger of the inner clock [53]. Fur-
thermore, it was shown that even single body functions and organic systems have
their own circadian rhythm. In this context, several studies show that a disturbance
of the circadian rhythm is associated with adverse health effects. A comprehensive
review about the negative effects of the disturbance of the circadian rhythm is given
by Khaper et al. [34].

15.2.4 Implications for Health-Related BACS

As shown before, there is plenty of evidence about the potentially adverse health
effects of environmental parameters. These can be regulated by BACS with the
purpose to create health-friendly environments. Consequently, a BACS needs to
be built which is able to measure various air pollutants like SO2, CO, NO2, O3,
VOC, PM2.5, and PM10. Moreover, environmental parameters like air temperature,
humidity, and illumination should be observed by the BACS as well.

It was shown that specific health conditions lead to a higher sensitivity to certain
environmental parameters. Consequently, a systemwhich brings together the regula-
tion of the environmental parameters and the medical information about the patient
would be an important step toward a holistic care approach.

Such a system should provide information about possibly harmful conditions
within the patient’s home environment for the medical personnel. Based on these
information, the medical personnel are able to suggest adequate behavior to mitigate
potential risk factors.

Additionally, real-time feedback within the home environment can be used to
inform the patient about probable health risks originating from the current conditions.
The purpose of the feedback is to change the occupant’s behavior in favor of a
healthier indoor environment.



15 Environmental Assessment Based on Health … 347

15.3 System Concept for Health based Environmental
Assessment

The systemconcept and feedback systems as themain part of the systemare described
in the following section. The feedback systems are basically expert systems provid-
ing information about the home environment for the occupants and the medical
personnel. These feedback systems retrieve data from BACS and EHR to deter-
mine feedback signals. Accordingly, the feedback systems combine knowledge about
the environmental parameters to estimate possible environmental health effects and
knowledge about health parameters to estimate the occupant’s sensitivity. The com-
bination of the possible environmental health effects and the occupant’s sensitivity
is used to estimate an individual environmental health risk. As stated before, inter-
preting the raw data on the background of compiled knowledge requires artificial
intelligence approaches because it would overstrain the occupant as well as the med-
ical personnel.

In the following, the general concept of the whole system (Sect. 15.3.1) and
some specifications of the feedback signals for the medical personnel (Sect. 15.3.2)
and the occupants (Sect. 15.3.3) are described. A short description of the challenging
communicationbetweenBACSandEHRis given inSect. 15.3.4. InSect. 15.4, special
attention is paid to possible artificial intelligence approaches for the implementation
of the feedback systems.

15.3.1 System Components and Their Interactions

The general concept of the system and the relations between system components and
persons are depicted in Fig. 15.1. The medical personnel perform medical checkups
with the patient in order to gain information about the patient’s health condition and
document the results in theEHR.Especially,medical scores are a relevant information
format because these scores already contain medical knowledge about the severity
of a particular health condition [47]. Nevertheless, also measured parameters like
heart rates and vital capacity are useful data to model the patient’s sensitivity.

These data are transmitted to the feedback systems, which receive information
about the measured environmental parameters from the BACS as well. The BACS
observes and potentially regulates the environmental parameters which the occupant
is exposed to. As summarized before, exposure to these environmental parameters
may affect the occupant’s health positively or negatively. The occupant perceives the
environmental condition and compares the perception with her or his preferences.
Based on the result of this inner process, the occupant interacts with the BACS
and changes its configuration or tries to manipulate the environmental condition
manually.

One purpose of the feedback systems is to present the environmental condition
within the home environment with respect to the health condition of the occupant.
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Fig. 15.1 An abstract overview of the general concept and the interactions between the involved
persons and systems. The red marked objects on the left side are the environment-related system
components. The blue marked components at the top are related to medical information. The black
marked symbols in the middle describe the interactions between the occupant and other persons
and systems

This feedback aims to influence the occupant’s behavior positively without taking
their self-determination.

Another purpose is to inform the medical personnel about the possibly adverse
health effects of the environment inwhich the patient is living. Themedical personnel
are able to define suggestions based on these information and may draw conclusions
concerning the development of the patient’s health.

A closer look at the data procession steps within the feedback systems is given in
Fig. 15.2. The assessment of the environment for a chosen period of timewill be done
based on the data retrieved from the BACS, the EHR, and a knowledge base about
the health effects of environmental parameters. The information reduction process
filters the needless information with respect to the health condition of the particular
patient. With the filtered information, the desired feedback format such as scores or
classes will be determined and transmitted to the medical personnel via the EHR or
visualized for the occupant via an interface. Both types of feedback are described in
more detail in the following.
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Fig. 15.2 The process to determine feedback based on measured environmental parameters and
health information about the occupant. An algorithm assesses the situation based on measured
environmental parameters, health information about the occupant, and information retrieved from a
knowledge base. Afterwards, only the important information is used to generate a feedback signal

15.3.2 Data Interpretation for Medical Staff

An important aspect of feedback systems linking medical information and measured
environmental parameters is to provide themedical personnel with information about
the patient’s indoor environment. As an example, a patient suffering from COPD
might complain about a more frequent occurrence of disease symptoms. In conse-
quence, the medical personnel check the relevant physiological parameters. If there
are no physiological anomalies, the medical personnel might have a closer look at
the provided environmental information and give advice to reduce the concentrations
of PM and gaseous air pollutants within the home environment. However, in order
to be able to quickly decide whether the environmental condition might be a cause
of the frequent occurrence of disease symptoms, a data interpretation is necessary to
support the decision-making.

Several expert systems supporting the medical personnel during the search for the
correct diagnosis or treatment of different diseases were developed in recent years
[1]. A lot of these systems use algorithms which belong to the artificial intelligence
research like fuzzy logic or artificial neural networks.

A similar approach seems to be suitable for an expert system interpreting the envi-
ronmental condition considering the health status of the occupant. The complexity
resulting from different effects of different environmental parameters at the same
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time leads to a more complex set of rules, which have to be defined in order to take
into account all possible combinations. Therefore, the application of artificial intel-
ligence approaches will be necessary. Moreover, the available data about the health
effects of environmental parameters is quite heterogeneous and sometimes ambigu-
ous. The ambiguity is partly caused by differences in study design or by varying
analysis methods. Consequently, one challenge for the development of an expert
system will be to determine reliable feedback information based on the data. The
system needs to be able to determine appropriate feedback even though the amount
of data is quite limited. Today, there are not enough data available to rely on a big
database. However, since feedback about the possible health effects of environmental
conditions is an additional information, which might be useful but not crucial for
medical personnel, accuracy requirements might be lower compared to other medical
applications like finding the right diagnosis or suggesting the optimal treatment.

Another aspect which needs to be addressed during the development of the feed-
back systems is the reduction of information in an adequate manner. Not every
information recorded might be important for the medical personnel. Consequently,
decisions have to be made which information is transmitted according to the partic-
ular situations. A possible solution is a representation using nested data: a superior
information reflects the probable overall effect of the environmental condition on the
patients’ health, whereas the data about the environmental condition is presented in
more detail on the secondary level. These more detailed data contain the statistically
analyzed concentrations of the different environmental parameters and time series
of the concentrations. Using such a nested representation enables the medical per-
sonnel to decide on the basis of the superior information whether a closer look into
the data is needed. Another possibility commonly applied for medical checkups is
to determine a score. In order to find the most useful way of presenting the results,
more investigation is needed.

15.3.3 Feedback Systems for Patients

The feedback systems for patients are in general quite similar to the ones for medical
personnel. However, the biggest difference is the need for a specific interface to
represent the probable harmfulness of the current environmental condition.

Moreover, the feedback for patients should reflect only the current environmental
condition and its short-term changes. Consequently, there is even more reduction of
information to keep it as simple as possible.

The feedback needs to be simple and requires to be interpreted intuitively. The
purpose of the device is to influence the patient’s behavior without drawing too much
attention to the interface. It needs to be integrated unobtrusively into the patient’s
indoor environment. A device which is not perceived as a medical device increases
the acceptability and avoids the stigmatization of the occupant. A possible solution is
the development of an application for mobile devices, which informs the patient and
sends a notification if the environmental condition worsens. However, this solution
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requires that the mobile device be in reach for the patient at any time. In addition, an
activity by the user is required to receive the desired information. Another possibility
is the development of a decorative device, which represents the feedback via a color-
coded signal [18].

15.3.4 Communication Between BACS and EHR

A challenging aspect of the system development is the establishment of the com-
munication between BACS and EHRs. Fortunately, the transfer between different
medical institutions and the storage of healthcare data were topics of recent scien-
tific efforts. Therefore, communication standards and frameworks like HL7 FHIR
[28] and openEHR [48] were developed to provide opportunities to share, organize,
and store relevant data. Based on their developer-friendly architecture, these tools
might be appropriate for the described purpose.

Nevertheless, a connection between the BACS network and the openEHR or
FHIR server needs to be achieved. Therefore, a gateway is required, which receives
themeasured environmental parameters and transmits them to the openEHR or FHIR
server. In order to minimize the amount of system components, the gateway should
also be enabled to execute data procession steps.

15.4 Approaches for Environmental Assessment

In this chapter, possible approaches of artificial intelligence for the environmental
risk assessment are described in detail. However, the organization of data retrieved
from the previously described studies has to be done before the approaches are
implemented. Therefore, the organization of data and derived constraints for the
feedback system implementation are described firstly. Afterwards, the approaches
for the design of expert systems, also known as knowledge-based systems, for the
assessment of the environment with respect to the occupant’s health condition are
discussed.

15.4.1 Data Organization

The data published in epidemiological studies differ in form and scope. Therefore,
it is necessary to organize the data adequately in order to reveal incompleteness,
ambiguity, and uncertainty. The following structure for database entries is suggested
in order to organize the data appropriately (Table 15.1). Using such a structure facil-
itates the search for specific information and gives a clear overview of the collected
information.
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Table 15.1 Suggested structure for the organization of collected information. At first, the particular
environmental parameter is defined for every entry. Afterwards, the form of the results and the
results itself are listed. These information are followed by the health status of the subjects. At last,
the possibility to add some comments is included

Environmental
parameter

Result type Results Health status Comments

Temperature Optimal range 18 ◦C–22 ◦C Healthy Short-term
exposure

PM10 Percentage value 12 % per
10µg/m3

Cardiovascular
symptoms

None

VOC Odds ratio 1.45 COPD patients Long-term
exposure

The study results contain statements for optimal conditions (e.g. a risk minimum
at a temperature between 18 ◦C and 22 ◦C), percentage values for risk increase
or decrease caused by changes of conditions (e.g. a 10µg/m3 increase in PM10
increases health events by 12 %), and odds ratios (e.g. the odds ratio for COPD
symptoms and VOC exposure is 1.45). All these information are useful for designing
an expert system. However, a direct comparison of these different types of study
results is obviously impossible. Therefore, methods for the design of the expert
system require to be able to handle different forms of data or need to be able to
generalize the different forms.

However, the available database leads to some constraints for the implementation
of the feedback systems, which are described in the following.

15.4.2 Derived Constraints

The described data are quite different from data usually used for the development
of expert systems and medical decision support systems. In general, data contain a
command variable like correct diagnoses, which can be compared to predictions of
the model. The outcome of the comparison is used to make a statement about the
accuracy and analyze the need for model adaptions. However, the purpose of the
models in our case is the estimation of the individual environmental risk based on
the environmental condition and the occupant’s health information. Such an individ-
ual environmental risk factor is not content of the data, which complicates issuing a
statement about the accuracy of the model. This leads to the assumption that super-
vised machine learning approaches, which adapt the model based on the difference
between command variable and model prediction, are not suitable without further
adjustments.

Another limiting factor is the small amount of available data. In consequence,
methods need to be chosen which enable the environmental assessment based on a
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smaller batch of data. According to this, deep learningmethods seem to be inapplica-
ble at first glance. However, the creation of synthetic data based on the characteristics
of the available data might be an approach capable of enabling deep learning algo-
rithms. Nevertheless, such deep learning approaches are often considered as black
box solutions, which are hardly comprehensible for the user and should therefore
preferably not be applied for the design of decision support systems or feedback
systems.

In the next section, applicable methods which meet the requirements will be
discussed in further detail.Moreover, the positive and negative aspects of the different
methods will be described.

15.4.3 Appropriate Methods for Environmental Risk
Estimation

In general, expert systems like the described feedback systems contain a knowledge
base usually in the form of if ... then rules, which are derived from expert knowledge.
However, in cases involving a large amount of components and relationships, the
definition of a complete rule set is quite complex. Therefore, a visualization of all
components and relations represented by a finite state machine might facilitate the
knowledge base creation [17]. In addition, visualization using finite state machines
provides an overview of the knowledge base, alleviating the search for possible
mistakes and the system adaption.

The other component of an expert system is the inference machine, which defines
the system behavior when the if-condition of a particular rule is fulfilled. The infer-
ence machine defines how the activated rules are handled and is dependent on the
desired outcome of the system. In our case, the outcome might be a score or a
color-coded signal representing the probable health risk. Accordingly, the inference
machine needs to determine one of these outputs.

However, the determination of simple if ... then rules will not be appropriate to
represent the ambiguity and uncertainty of the available information. Accordingly,
the applicablemethods are limited to those able to reflect the data characteristics. This
leads to the assumption that an approach using methods of the artificial intelligence
range might be the solution. Consequently, approaches using a belief rule base,
fuzzy rule base, fuzzy cognitive maps, and Bayesian networks are presented in the
following.

15.4.3.1 Belief Rule Base Systems

The extension of simple if ... then rules with so-called belief factors is a possibility
often used to represent additional information within an expert system. These belief
rule bases enable the inclusion of knowledge about uncertainty. In general, a belief
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rule base can be designed using qualitative and/or quantitative data. Consequently,
the approach can be applied for many different applications. It was shown that a
belief rule base can be designed for several different applications like classification
[11], disease diagnosis [30–32, 45, 50, 77], and risk assessment [36]. Moreover, the
approach of belief rule bases was used for activity recognition with BACS sensors
as well [10].

An often applied approach is the generic rule-base inference methodology using
evidential reasoning (RIMER). A belief rule base system following the RIMER
approach contains k rules of the form [73]:

Rk : i f Ak
1 ∧ Ak

2 ∧ · · · ∧ Ak
Tk ,

then{(D1, β1k), . . . , (DN , βNk)},( N∑
i=1

β ik ≤ 1

) (15.1)

where Ak
i represents the referential values of antecedent attributes and Dn represents

the consequent with the particular degree of belief βn,k . As an example, a derived
rule might be

Rk : i f temperature is hot ∧
VOC is slightly high ∧
heart rate is high,

then health risk is {(harmless, 0), (slightly harmful, 0),
(harmful, 0.2), (harmful, 0.8)} .

(15.2)

The addition of weighting factors δki for the antecedent attributes and weighting
factors θk for particular rules enables more possibilities to represent knowledge and
give certain attributes more importance than others. Therefore, different grades of
sensitivity caused by particular health conditions can be modeled.

Furthermore, the RIMER approach can be extended using the belief structure for
the possible antecedent terms as well [43]. Accordingly, the above example might
be extended like this:

Rk : i f temperature is {(cold, 0), (medium, 0.3)(hot, 0.7)} ∧
VOC is {(low, 0), (slightly low, 0), (medium, 0),

(slightly high, 0.6), (high, 0.4)} ∧
heart rate is {(low, 0), (medium, 0), (high, 1)}

then health risk is {(harmless, 0), (slightly harmful, 0),
(harmful, 0.2), (harmful, 0.8)} .

(15.3)
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Fig. 15.3 General approach for the environmental assessment using a belief rule base. The process
starts with the input data transformation in order to relate the input value with the referential values
of the antecedent attributes and a particular belief factor. These transformed input data lead to
different activation values for each rule in the belief rule base. The rule activation values are used
within the inference engine to calculate the resulting belief values for each referential value of the
consequent

The process from the measurement of environmental parameters and the request of
health information from the EHR to the determination of an output value using the
belief rule base approach is depicted in Fig. 15.3.

The transformation of measured environmental parameters and the health infor-
mation into referential values of the antecedents with assigned degrees of belief is
done in the first step. Information and thresholds from relevant international stan-
dards and fromWHOmight be used as a starting point for the determination of belief
degrees for the environmental parameters. Information about the effect of environ-
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mental parameters on human health from the knowledge base are useful to adapt
the belief degrees. Moreover, the information from EHRs are transformed into the
referential values of the antecedents and assigned degrees of belief as well.

Afterwards, the transformed information is processed by the belief rule base.
The belief rule base consists of rules similar to (15.3) and represents the complex
relations between the different parameters. The uncertainty and ambiguity of the data
are represented by the degrees of belief. Each rule produces an activation value based
on the input data, the rule weight, and the attribute weights. These rule activation
values are processed by an inference engine, which, e.g. uses the evidential reasoning
method to determine the degrees of belief for each referential value of the consequent.

In summary, the different approaches for the design of belief rule bases provide
various opportunities to represent the characteristics of available data. For example,
uncertainty of whether a certain air pollutant concentration should be classified rather
as medium or high can be represented by particular belief factors of the antecedent
attributes. Similarly, uncertainty about the probable health risk caused by a specific
condition of environmental parameters can be represented by the belief degrees of
the consequent.

15.4.3.2 Fuzzy Rule Base Systems

Another opportunity to model expert systems is to make use of the fuzzy logic con-
cept. The usage of fuzzy logic is beneficial in cases when the assignment of an
input parameter to an output parameter is not possible by implication. The basic
concept of fuzzy logic is the linkage of input values to linguistic variables. The lin-
guistic variables represent every attribute the input parameter might be assigned
to. Therefore, a membership value within the interval [0 − 1] for each linguis-
tic variable is assigned to the input value. For example, an input temperature of
17 ◦C might be assigned to the attributes cold, neutral, or hot with the membership
values (0.3, 0.7, 0.0). Input membership functions are defined for the membership
assignment. These functions are usually triangular or trapezoidal functions but may
have every imaginable form. The transformation of input values into membership
values for each linguistic variable is called fuzzification.

The results of fuzzification are afterwards processed within a rule base. The rule
base represents knowledge about the application and defines relations between input
linguistic variables and output linguistic variables. Each rule has a different amount
of effect on the outcome based on the membership values. According to the example,
a rule containing the linguistic variable neutral has the highest effect on the outcome.

The last part of the process is called defuzzification. Outputmembership functions
for each output linguistic variable are used to determine a crisp output value. Usually,
the output membership functions are truncated based on the particular membership
values. Based on the example, the y-coordinates of an output membership function
which is related to the neutral input membership value does not exceed the value 0.7.
This is done for each output membership function. Afterwards, there are different
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approaches to calculate the output value with the modified output membership func-
tions. One possibility is to use the center of gravity of the merged output membership
functions. However, the usage of the position of maxima or minima of the merged
output membership functions is a possible solution as well.

Fuzzy logic is the basis of several different medical decision support systems. An
overview of the application of fuzzy logic for the development of medical support
systems is given by Gorgulu and Akilli [23]. Samuel et al. [57] used a web-based
approach to develop amedical decision support systemwith fuzzy logic. The purpose
of their system is to support the diagnosis of typhoid fever and the estimation of the
severity of the illness. An example of how fuzzy logic can be applied to implement an
early warning system for the identification of patients in need of urgent medical care
is given in Al-Dmour et al. [2]. In their work, mobile devices are used to observe
the systolic blood pressure, heart rate, oxygen saturation, body temperature, and
blood sugar. A fuzzy rule base was developed to determine one of 15 possible risk
groups based on the input parameter. The comparison with the usually usedModified
EarlyWarning Scoring (MEWS) shows that the fuzzy rule base system leads to quite
similar results.

These examples show that the usage of fuzzy logic for the development of medical
expert systems is a promising approach. Accordingly, a fuzzy rule base system for
the assessment of the environmental condition with respect to the health informa-
tion of the occupant might be an appropriate approach. The general process for the
environmental risk and occupant’s sensitivity assessment is depicted in Fig. 15.4.

The approach contains two more or less independent fuzzy rule bases for the
BACS parameters and the EHR parameters. Adequate linguistic variables and input
membership functions need to be created based on the available knowledge in order
to transform the input values into degrees of membership.

Two sets of fuzzy rules are generated based on the available knowledge as well.
Hence, rule activation values for the environmental risk caused by environmen-
tal parameters and for the occupant’s sensitivity are calculated independently from
each other. This separation leads to shorter rules and facilitates a clear arrangement.
Moreover, adjustments concerning only the BACS or EHR part can be done without
consequences for the other part.

The defuzzification process leads to crisp values for the general environmental
risk and the occupant’s sensitivity. The question about which method is the most
useful for the defuzzification in this case needs to be investigated further. However,
results for the environmental risk and the occupant’s sensitivity might be combined
afterwards to yield an estimation of the environmental risk for the occupant’s specific
health condition.

In summary, fuzzy rule bases provide several opportunities to model uncertain
and ambiguous data. The membership functions enable the modeling of uncertain
knowledge about the input parameters, the probable environmental risk, and the
occupant’s sensitivity. Furthermore, the definition of rules and the choice of the
defuzzification method offer additional possibilities to model knowledge and adapt
the system behavior.
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Fig. 15.4 Suggested process for environmental risk estimation based on a fuzzy rule base system.
The approach starts with the fuzzification of the input parameters retrieved from the BACS and EHR
interfaces. The input membership functions used for the fuzzification are the first part representing
the knowledge about the health effect of environmental parameters. Afterwards, the resulting mem-
bership degrees lead to the activation of rules from the fuzzy rule base. The fuzzy rule base is the
second part of the knowledge representation. Crisp values for the environmental health risk and the
occupant’s sensitivity are determined during the defuzzification. The choice of the defuzzification
method and output membership function is the last part of the knowledge representation
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15.4.3.3 Fuzzy Cognitive Maps

Another approach for the modeling of expert systems is the application of fuzzy
cognitivemaps (FCM). In general, FCMare graph-basedmodels, which represent the
relationships between the different system components [37]. These models consist
of nodes, so called concepts, for each system component and weighted edges for
each causal relationship between the concepts. The concepts are associated with
values from the interval [0, 1] which represent the current activation or relevance.
Consequently, the concepts and edges are used to represent the knowledge about the
effect of a particular system component toward other components, and the strength
of the effect is defined via the weighted edges. Thus, the fuzzy logic approach of
using linguistic variables to represent uncertainty for the definition of the weights is
suggested. Accordingly, three general steps are needed to develop a FCM [49]. First,
identify all relevant concepts and assign a state value Ai for each concept based on
the knowledge about the application. Second, identify the relationships among the
concepts. Third, assign weights wi j to the resulting edges in order to estimate the
strength of the relationships.

All states and weights can be represented by a state vector A and a weight matrix
W , respectively. New state values Ak of the concepts are incrementally calculated
based on the initial state values Ak−1 of each concept and the weights wi j of the
edges. The states of the concepts are determined by the following formula:

Ak = f (Ak−1 +
∑

Ak−1 · W ). (15.4)

The function f is used to transform the results of the calculation into the interval
[0 − 1]. One possibility is to use the sigmoid threshold function:

f = 1

1 + e−λAi
. (15.5)

The usability of FCM for the development of medical decision support systems
is proved by several scientific works. Stylios and Georgopoulos [64] successfully
applied the FCM approach to design a model to distinguish between the diagnosis of
Specific Language Impairment and Dyslexia based on multiple different symptoms.
Moreover, Anninou et al. [3] modeled a FCM for the determination of specific knee
injuries based on different symptoms. Papageorgiou [49] shows the possibility to
combine FCM and data mining approaches for the data-driven adaption of the edge
weights.

An example of how FCM can be used for the environmental assessment with
respect to the occupant’s sensitivity is depicted in Fig. 15.5. The presented FCM
contains two kinds of concepts: EHR-based concepts and BACS-based concepts.
The EHR-based ones represent the patient’s sensitivity based on the data retrieved
from the EHR. The other ones stand for the observed parameters by the BACS. The
graph-based representation gives a clear overview of the relations between the par-
ticular concepts. Increased sensitivities of the patient toward specific environmental
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parameters can be modeled via edges between EHR concepts and BACS concepts.
As an example, an increase in heart rate might possibly affect the sensitivity of the
patient toward air temperature and a decreased vital capacity might be related to a
higher sensitivity toward the VOC concentration and the air temperature as well.
Different intensities of the effects can be modeled by modifying the edge weights.
Accordingly, a decreased vital capacity might have a more intense effect on the sen-
sitivity toward the VOC concentration compared to the air temperature, which can
be modeled by different weight values.

In general, the information from the EHR and the BACS are used to define initial
values for the concepts. The system behavior is highly dependent on the initial values
of the edge weights. Consequently, an approach has to be applied which transforms
the information from the knowledge base into adequate weight values.

However, several questions need to be answered before the start of the implemen-
tation:

• What is the most appropriate method to determine the initial state values of the
concepts?

• Which methods can be applied to determine the edge weights?

Fig. 15.5 Example of a FCM for health risk assessment based on data from BACS and EHR. The
data is used to determine the initial values for particular concepts. In this example, initial values for
the forced expiratory pressure in 1 s (AFEV 1), the heart rate (AHR), and the vital capacity (AVC ) are
used as parameters retrieved from the EHR. The VOC concentration (AVOC ) and the temperature
(ATemp) represent BACS parameters
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• Howmany calculation increments are needed to get an adequate assessment result?

The estimation of initial state values for the concepts considering the environ-
mental parameters is based on the actual values of the observed parameters. The
comparison results of the measured values with data retrieved from scientific stud-
ies and suggestions within relevant standards could be supportive for a reasonable
estimation. In consequence, these initial states are independent of patients’ health
status.

The initial state values of the EHR-related concepts are estimated based on the
interpretation of the observations made by medical checkups. Therefore, available
knowledge retrieved from scientific studies and interviewed medical experts might
be needed to find reasonable values for the initial state values.

Similar to this, the estimation of edge weights might profit from additional expert
knowledge. Nevertheless, data about the effect of environmental parameters toward
health can be used as a basis for the definition of the edge weights. An approach to do
so is to calculate the ratios between comparable data. As an example, the results of
different studies investigating the effect of VOC concentration and air temperature
toward the vital capacity might be used to calculate a ratio. This ratio is afterwards
used to define the edge weights. However, studies often are designed differently in
different aspects, so additional expert knowledge might be needed to refine the edge
weights.

The computations using (15.4) and (15.5) lead to changes of the BACS-based
concept state values based on the initial state values and edge weights estimated
before. Therefore, the patient’s sensitivity which is represented by the initial state of
the EHR-based concepts has a major influence on the system outcomes.

A threshold for the difference between the previous state values and the actual
state values can be used to limit the number of calculation cycles. Consequently, if the
calculated state value for the health risk does not change significantly, the calculation
process might be stopped. Another option is to set a maximum calculation time in
order to provide nearly real-time feedback.

15.4.3.4 Bayesian Networks

In a Bayesian network [51], a set of variables xi described by a joint probability dis-
tribution P(x1, x,2 , . . . , xn) is organized in a directed acyclic graphwhere each node
stands for a variable xi and the links from parent nodes xp to xi represent the parent’s
influence on the conditional probability distribution of the child P(xi |xp1 , xp2 , . . . )
or P(xi |Si ) where Si denotes the set of direct parents of xi . Nodes not directly
connected are understood as not influencing each other (Markov condition). Thus,
the joint probability distribution can be factorized over a set of lower-dimensional
conditional probabilities:

P(x1, x2, . . . , xn) =
n∏

i=1

P(xi |Si )
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which are generally easier to compute.
Nodes without parents can be considered as input nodes, being frequently updated

by measurements, or containing fixed probability distributions. Changes in the input
nodes will then be propagated through their descendants, sequentially updating the
network.

A thorough introduction into Bayesian networks and their use in medical context
are given in [44]. Regarding air quality, work has been published ranging from global
assessment [58] to mobile indoor sensing systems [33] and utilizing smart environ-
ments [16], and connecting air pollution with health risks [22]. Several examples use
data from electronic patient records: [5, 27, 54].

Bayesiannetworks canbe constructed automatically fromdata. Search and scoring
algorithms [7, 14, 39, 40, 66, 72] are suitable for structure learning,whichdetermines
the optimal layout of the network, and parameter learning, optimizing the actual
conditional probability distributions. These algorithms evaluate different structures
with the goal to optimize a score which determines the feasibility of the network for
the given data.

For structure learning, constraint-based algorithms [13, 46, 63, 67, 74] can be
used as well. These apply conditional independence tests on any two nodes and
determine where edges are required.

Networks can also be constructed manually, representing established or assumed
causal relationships. Thus, it is possible to apply the logic of Bayesian networks
in situations where there is no large base of consistent and reliable training data.
A hypothetical network for the risk estimation based on environmental parameters
and health information is given in Fig. 15.6. An example of how such a Bayesian
network can be constructed on the basis of a limited dataset containing mortality and
morbidity rates is presented by Liu et al. [42]. However, in our case, their approach
needs to be adapted to include and estimate the patient’s sensitivity.

Generally, the input parameters of theBACSand theEHRare transformed into dis-
crete values. Therefore, the value range of each parameter is classified into a desired
number of classes. Afterwards each class of each parameter is associated with a
probability value representing the possibility of the occurrence of disease symptoms
which is derived from the available epidemiological data. In case of missing required
data, Experts should be involved to estimate adequate values. This is done to deter-
mine probabilities of the patient’s sensitivity and general environmental risk. The
specific health risk for the patient is calculated with the sensitivity probability and
the environmental risk probability in the final step.

15.5 Conclusion and Discussion

In this work a system concept combining measurable environmental parameters and
health information for environmental assessment was described. Firstly, the system
components and the interactions between the system and its user were described.
Afterwards, the specifications and requirements of the feedback systems were dis-
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Fig. 15.6 Example of a simple Bayesian network with eight nodes. Comparable to Fig. 15.5, the
input data consist of the forced expiratory pressure in 1 s (FEV 1), heart rate (HR) and vital capacity
(VC) from the EHR, and of temperature (T emp) and level of volatile organic compounds (V OC)
from the BACS. These nodes each influence the conditional probabilities of the environmental risk
P(Riskenv |T emp, V OC) and the occupant’s sensitivity P(Sens|HR, VC, FEV 1), respectively,
indicated by arrows (edges). The probability of health risk P(Riskhealth |Riskenv, Sens) in turn is
influenced by both the sensitivity and the environmental risk, and could be used to trigger feedback
actions depending on its value

cussed. The main focus of this work was set on the analysis of possible approaches
of artificial intelligence to estimate an individual environmental risk factor.

The estimationof an environmental health risk factorwith respect to the occupant’s
health condition is a quite novel research topic. The system is required to combine
knowledge from different disciplines in order to estimate the health risk based on
the measured environmental parameters and the individual health information. This
risk factor estimation differs from usual decision support and classification systems.
In fact, the lack of a measurable target value for the comparison of the predicted
value by the expert system and the actual value complicates the system design and
evaluation.

Nevertheless, every approach described is able to model ambiguous and uncertain
data. The approaches differ in the amount of possibilities to adapt the model on the
basis of available data. Approaches like fuzzy cognitivemaps and Bayesian networks
are quite similar in the structure but are based on different computation methods.
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Modeling the knowledge using belief factors within a belief rule base is a quite
simple way to model the expert system. In consequence, the possibility to model
complex relationships between the parameters is limited using belief rule bases.
Still, the concept behind the approach is easy to understand, allowing for quick
development and adaption after system evaluations.

More options tomodel an expert system are given by the fuzzy rule base approach.
Thereby, knowledge can be modeled by the definition of the input membership func-
tions, the fuzzy rule base, the output membership functions, and the method to cal-
culate crisp output values by defuzzification. The many ways to influence system
behavior complicate the development process and may impede the creation of a rea-
sonable system. Accordingly, a fuzzy rule base might be used in cases when belief
rule bases don’t offer enough design options.

Fuzzy cognitive maps provide a clear graph-based approach for the modeling of
system components and their relations. The knowledge is thereby represented via
state values and edge weights. An interesting research topic is the investigation about
how the initial state values can be estimated from the measured environmental data
and provided health information.
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