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Abstract In semi-supervised classification, class memberships are learnt from a
trustworthy set of units. Despite careful data collection, some labels in the learning
set could be unreliable (label noise). Further, a proportion of observations might
depart from the main structure of the data (outliers) and new groups may appear in
the test set, which were not encountered earlier in the training phase (unobserved
classes). Therefore, we present here a robust and adaptive version of the Discrim-
inant Analysis rule, capable of handling situations in which one or more of the
aforementioned problems occur. The proposed approach is successfully employed
in performing anomaly and novelty detection on geometric features recorded from
X-ray photograms of grain kernels from different varieties.

Keywords Impartial trimming · Label noise · Model-based classification ·
Novelty detection · Anomaly detection · Robust estimation

1 Introduction and Motivation

Thanks to scientific advances, sophisticated techniques likeX-ray, scanningmicroscopy
and laser technology are increasingly employed for automatic imaging collection.
Unfortunately, among the many observations obtained via measurement and record-
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ing, someunreliable unitsmay appear: the percentage of encoding errors in real-world
databases, all fields taken together, is estimated to be approximately five percent [8].
Therefore, there is strong interest in developing methodologies that perform reliable
inference even when standard assumptions are not met, as it happens when deal-
ing with complex contaminated datasets. In discriminant analysis, for example, it is
assumed that a set of outlier-free and correctly labeled units are available for each and
every group within the population of interest. Nevertheless, this may not hold true,
for instance, in image classification, where data quality is influenced by the number
of pixels in each sample and by the variability associated with the labeling task [16].
Moreover, as more and more units are acquired, previously unseen structures may
emerge.

Motivated by a dataset recording geometric parameters of grains, detected using
a soft X-ray technique, we propose a newmethod for anomaly and novelty detection.
Specifically, we introduce a robust model-based approach for adaptive classification:
novelties are assumed to arise from a mixture of multivariate normal densities, while
no distributional assumption is a priori set for the anomalies. Robustness, based on
trimming the least likely observations, copes with training units whose class mem-
berships are unreliable (label noise) and with specimens that are far away from the
main data structure (outliers). On the other hand, groups not previously encountered
within the labeled units (unobserved classes) are easily added in the form of new
mixture components by adaptive learning.

The rest of the paper is organized as follows. In Sect. 2 the notation is introduced
and the main concepts about the model and its inferential aspects are presented.
In Sect. 3 we apply our methodology to discriminate different varieties of wheat
kernels, under adulteration and sample selection bias. Section 4 summarizes the
novel contributions and concludes the manuscript.

2 RAEDDA Model

Let us consider a classification framework with {(x1, l1), . . . , (xN , lN )} identifying
the training set: xn is a p-variate outcome and ln its associated class label, such that
lng = 1 if observation n belongs to group g and 0 otherwise, g = 1, . . . ,G. Cor-
respondingly, let {(y1, z1), . . . , (yM , zM)} be the test set, where it is assumed, dif-
ferently from the standard framework, that the unknown classes zm have dimension
E ≥ G. That is, there may be a number H of “hidden” classes in the test, not previ-
ously observed within the labeled units, such that E = G + H , with H ≥ 0. Both xn ,
n = 1, . . . , N , and ym ,m = 1, . . . , M , are assumed to be independent realizations of
a continuous random vectorX taking values in Rp; while ln and zm are considered
to be realizations of a discrete random vector C taking values in {1, . . . , E}. Notice
that we implicitly suppose here that an unknown sample selection bias mechanism
prevents the learning units to arise from classesG + 1, . . . , E . Assuming a Gaussian
mixture distribution for X , the observed data likelihood reads:
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where τg is the prior probability of observing class g, such that

∑E
g=1 τg = 1, and

φ(·;μg,�g) represents the multivariate Gaussian density with mean vector μg and
covariance matrix �g . Notice that the first term in (1) accounts for the complete
observations (xn, ln); whereas in the second termonly themarginal density of ym con-
tributes to the product, since its associated label zm is unknown. Equation (1) defines
the likelihood of an Adaptive Mixture Discriminant Analysis (AMDA) model, intro-
duced in [2]. By means of impartial trimming [10], patterned covariance matrices
[1, 5] and constrained parameter estimation [11], we extend the original AMDA
method developing a flexible classifier, denoted Robust and Adaptive Eigenvalue
Decomposition Discriminant Analysis (RAEDDA), which performs reliable super-
vised classification when dealing with label noise, outliers and unobserved classes.
RAEDDA parameters are obtained by maximizing the trimmed observed data log-
likelihood:
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where ζ(·) and ϕ(·) are indicator functions that determine whether each observation
contributes or not to the trimmed likelihood. The trimming levels αl and αu are pre-
specified such that only

∑N
n=1 ζ(xn) = �N (1 − αl)� and

∑M
m=1 ϕ(ym) = �M(1 −

αu)� terms are not null in (2). Notice that the total number E of groups is not
established in advance and needs to be estimated: a dedicated penalized likelihood
criterion, based on the one introduced in [6], is developed for model selection. Two
alternative estimation procedures for maximizing (2) are proposed: the transductive
and the inductive learning approaches. Computational details are reported in the next
subsections.

2.1 Transductive Learning

In the transductive approach, the parameters of both known and hidden classes are
concurrently estimated via the joint exploitation of training and test sets. That is,
labeled and unlabeled units mutually partake in the learning procedure: the maxi-
mization of (2) is carried out via an adaptation of the EM algorithm that includes
a Concentration step [14] for enforcing impartial trimming and an eigenvalue-ratio
restriction [9] for protecting the final estimates from spurious local maximizers.
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In detail, each iteration begins with a C-step, in which the �Nαl� and �Mαu�
least likely units (under the currently estimated model) are tentatively discarded
in the training and test sets, respectively. Afterwards, in the E-step the expected
value of the unknown label for each untrimmed unit ym is computed. Then, an M-
step is performed: parameters are updated by determining the set {τ̂g, μ̂g, �̂g}, g =
1, . . . , E , which maximizes the transductive trimmed complete data log-likelihood

�tr imc(τ ,μ,�|X,Y, l, ẑ) =
N∑

n=1

ζ(xn)
G∑

g=1

lng log
(
τgφ(xn;μg,�g)

)+

+
M∑

m=1

ϕ(ym)

E∑

g=1

ẑmg log
(
τgφ(ym;μg,�g)

)
(3)

where the ẑmg have been previously determined in the E-step. Lastly, whenever the
estimated covariance matrices do not satisfy the eigenvalue-ratio restriction [11],
constrained estimation is enforced.

Once convergence is reached, the final output comprises the set of estimated
parameters for the E classes, values for the indicator functions ζ(·) and ϕ(·) that
pinpoint unreliable units, and a posteriori classification for the unlabeled observa-
tions via the maximum a posteriori (MAP) estimate [12]. For a more comprehensive
description of the algorithm, the interested reader is referred to Sect. 3.2 of [4].

2.2 Inductive Learning

In the inductive approach, parameters are determined in a sequential manner: firstly
the training set is employed for robustly estimating the structure of the G known
classes (robust learning phase) and, subsequently, the extra classes are sought in
the test set keeping the structure learnt in the previous step fixed (robust discovery
phase). The first phase consists in the robust fitting of a fully supervised model-based
classifier: the REDDA method introduced in [3]. In the robust discovery phase, we
search for the H = E − G hidden classes in an unsupervised fashion, bymaximizing
the likelihood on the test set via an EMalgorithm. Each iteration beginswith aC-step,
in which the �Mαu� least likely units are tentatively discarded. Notice that both the
current estimates for the parameters of the H hidden classes, as well as the structure
of the G known groups (previously determined in the learning phase) concur in
the determination of the trimming functions. Then, a standard E-step is computed.
Afterwards, an M-step is performed: parameters are updated by determining the set
{τ̂1, . . . , τ̂E , μ̂G+1, . . . , μ̂E , �̂G+1, . . . , �̂E } that maximizes the inductive trimmed
complete data log-likelihood:
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�tr imc(τ ,μ,�|Y, μ̄, �̄, ẑ) =
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where the ẑmg have been determined in the E-step and the parameters for theG known
classes, identified by a bar in the notation, were obtained in the learning phase and
are therefore kept fixed. Notice that the entire vector τ is updated, renormalizing the
mixing proportions for the G known classes according to the estimated sizes of the
H new groups. Once convergence is reached, the output of the discovery phase com-
prises the set of estimated parameters for the H new classes, values for the indicator
function ϕ(·) that pinpoint unreliable test units, and a posteriori classification for the
unlabeled observations via the MAP rule. For a more comprehensive description of
the algorithm, the interested reader is referred to Sect. 3.3.2 of [4].

3 Anomaly and Novelty Detection in X-Ray Images of
Wheat Kernels

The methodology presented in the previous section is employed to perform adaptive
classification and anomaly detection in a dataset comprised of 210 grains belonging
to three different varieties of wheat. For every sample (70 units for each variety),
seven geometric parameters are recorded from postprocessing X-ray photograms of
the kernel [7]. The seeds dataset is publicly available in the University of California,
Irvine Machine Learning data repository.

The considered experiment involves the random selection of 98 training units from
the first two cultivars, and a test set of 102 samples, including 60 grains from the third
variety (data are displayed in Fig. 1). The remaining 10 units from the third group are
appended to the training set and their associated labels are altered, as to pretend they
come from thefirst variety.Besides, for 7 randomly chosen training units thelength
variable is manually modified to be three times larger than its original value. The
aim of the experiment is, therefore, to determine whether the RAEDDA method is
capable of recovering the unobserved class in the test set while copingwith both class
and attribute noise in the training set. The study is repeated B = 100 times: for each
recurrence, model results for RAEDDA and for the original AMDAmodel (denoting
by RAEDDAt, AMDAt and RAEDDAi, AMDAi their transductive and inductive
versions) and for two popular novelty detection methodologies, namely Classifier
Instability (QDA-ND) [17] and Support VectorMachine for novelty detection (SVM-
ND) [15] are collected.

In Table 1, we report two metrics for evaluating the correct classification rate and
the recovery of the true test partition. The RAEDDAmodel shows a remarkably good
classification accuracy: the unseen class is correctly discovered via both transductive
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Fig. 1 Learning scenario for the considered experiment, seeds dataset. Plots below the main diag-
onal represent the training set, in which the first two wheat varieties are displayed with hollow
diamonds and solid squares, respectively. Solid diamonds denote the 10 units from the third variety
with altered labels. Plots above the main diagonal represent the test set

and inductive inference with the underlying test partition effectively retrieved, as
demonstrated by the high average value of the Adjusted Rand Index (ARI) [13].
The AMDAmethod instead reports a large misclassification error: the outlying units
obscures the separation between the first and the third wheat variety.

It is interesting to notice, however, that the test partition is adequately well recov-
ered by AMDA, since its ARI metric presents comparable values to those obtained
by our proposal. This intriguing result is explained by looking at the number of esti-
mated components for the twomodel-based methods, displayed in the barplot of Fig.
2. In trying to mitigate the bias induced by the noise in the learning phase, the non-
robust methodology tends to overestimate the true number of hidden classes. On the
one hand, this produces a satisfactory clustering in the test set, allowing the model
to correctly identify the patterns that were originally contaminated in the training
set. On the other hand, estimated parameters for the known classes are highly biased
and thus their structure is no longer paired with the (outlier-free) test units: the true
varieties are identified as extra classes in the unlabeled set.
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Table 1 Average misclassification errors and Adjusted Rand Index for AMDA and RAEDDA
classifiers (transductive and inductive inference) and accuracy in separating known and hidden
patterns for QDA-ND and SVM-ND on the test set for B = 100 runs of the considered experiment,
seeds dataset. Standard deviations are reported in parentheses

RAEDDAt RAEDDAi AMDAt AMDAi SVM-ND QDA-ND

Misclassi-
fication error

0.082
(0.021)

0.105
(0.073)

0.521
(0.293)

0.43
(0.324)

0.329
(0.185)

0.34
(0.045)

ARI 0.788
(0.052)

0.735
(0.102)

0.674
(0.155)

0.745
(0.105)

– –
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2 3 4
Selected number of mixture components

Model
AMDAi

AMDAt

RAEDDAi

RAEDDAt

Fig. 2 Percentage of times, out of B = 100 runs of the considered experiment, each model-based
method identifies the final estimated mixture to have 2, 3 or 4 components. The correct value is 3,
as the test set contains the two known classes of wheat, plus the one previously unseen

Low classification accuracy is displayed also by the novelty detection techniques,
where the mislabeled units have a severe impact on the correct separation between
known and hidden patterns. The same does not happen for our robust proposal, and
setting trimming values respectively equal to 0.15 and 0.05 for the training and test
sets prevents the noisy units to jeopardize the learning process. The units with inflated
length (attribute noise) and 7 out of the 10 wrongly labeled units (class noise) are
on average correctly identified to be anomalies, discarding them from the estimation
procedure and so yielding higher classification accuracy. Such a result is noteworthy
as the separation between the third and first wheat variety is not at all apparent by
looking at the pairs plot in Fig. 1.

4 Conclusions

In the present paper,we have introduced amethodology that performs classification in
presence of adulteration and sample selection bias.Wehave employed it in effectively
achieving anomaly and novelty detection in X-ray images of grain kernels, where a
challenging classification framework, including label noise and outliers, along with
one unobserved wheat variety, has been considered.
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Further research directions include the extension of the present methodology to
high-dimensional classification: a robust and adaptive variable selection procedure,
based on theoretical results for Gaussian mixtures, is currently being developed.
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