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Abstract This work introduces a Principal Component Analysis of data given by
the Best Predictor of a multivariate random vector. The mixed linear model frame-
work offers a comprehensive baseline to get a dimensionality reduction of a variety
of random-effects modeled data. Alongside the suitability of using model covariates
and specific covariance structures, the method allows the researcher to assess the
crucial changes of a set of multivariate vectors from the observed data to the Best
Predicted data. The estimation of the parameters is achieved using the extension
to the multivariate case of the distribution-free Variance Least Squares method. An
application to some Well-being Italian indicators shows the changeover from longi-
tudinal data to the subject-specific best prediction by a random-effects multivariate
Analysis of Variance model.

Keywords Best prediction · Linear mixed model · Variance least squares
estimation · Random-effects MANOVA model

1 Introduction

Principal Component Analysis (PCA) is one of the best established methods for
dimension reduction. Principal Components (PCs) lead to a better assessment of the
available information, by summarizing and visualizing data, and at the same time,
minimizing the loss of information [6, 7].
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Given a p-variate centered random vector yi (i = 1, . . . , n) and an n × p matrix
of observed data Y from y, the PCA of y can be obtained by a Singular Value
Decomposition (SVD) of Y into the matrix product Y = PLsQ′ + N = CsQ′ + N,
where: (i) P is the s-reduced rank orthogonal matrix of the first s eigenvectors (the
left singular vectors) of the symmetric matrix YY′ (r = 1, ..., s, ..., p, s � p),
(ii) Ls is the diagonal matrix of the first s singular values, and (iii) Q is the s-
reduced rank matrix of the eigenvectors (the right singular vectors) of the symmetric
covariance matrix Sy = 1

nY
′Y. The n × s matrixCs = PLs gives the first s principal

components, and the n × pmatrixN reports the cross-productminimumnormmatrix
of residuals. Given the s-dimensional subspace representation of the observed data,
we have

∥
∥N′N

∥
∥
2 = tr(N′N) = min (here tr is the trace of a square matrix).

For decades, PCA has undergone many generalizations and adjustments to the
needs of specific research goals. One of them brings into play the role of prediction
by the linear statistical models. Bair et al. [1] provided a supervised PCA to address
the high dimensional issue that arises when the number of predictors, p, far exceeds
the number of observations, n-seeking linear combinations with both high variance
and significant correlation with the outcome.

Tipping and Bishop [13] had already introduced the notion of prediction for the
PCs. They called Probabilistic PCA (probPCA) the model behind the PCA, in which
parameters are estimated by means of the Expectation-Maximization algorithm. The
“noisy” PC model (nPC), proposed by Ulfarsson and Solo (see [13, 14] for details)
has a quite similar formulation respect to the probPC model, providing—in a similar
way—the nPC prediction once the model estimates have been given [2, 10].

Unlike the fixed effects PCs, as the traditional linear regression PCA model
assumes, the probPC (or nPC) are random variables. This condition suggests, on
the one hand, the adoption of the Bayesian approach to handle the estimates for the
probPC linear model and, on the other hand, to predict PCs under its meaning within
the random linear models theory [9].

The Bayesian approach to the estimation requires an expectation of some model
parameters that are random, conditionally to the observed data. Given normal-
ity of the error ε ∼ N (0, σ 2I), for a linear model τ = Bλ + ε—in case of the
vector λ random—the likelihood is based on the conditional distribution λ|τ ∼
N [E(λ|τ), var(λ|τ)]. Moreover, it is known [8, 9, 11] that E(λ|τ) = λ̃ is the Best
Prediction (BP) estimate, with var (̃λ − λ) = Eτ [var(λ|τ)]. This is somewhat dif-
ferent from the standard linear regression model, where the prediction is given by
E(τ |λ). Therefore, given a LinearMixedModel (LMM) for τ , with E(τ |λ)) = λ, the
model parameters become realizations of random variables. The BP of a linear com-
bination of the LMMfixed and random effects (i.e., linear in τ , with E[E(τ |λ)] = 0)
gives the Best Linear Unbiased Prediction (BLUP) estimates [3, 8, 11].

LMM’s are particularly suitable for modeling with covariates (fixed and random)
and for specifying model covariance structures [3]. They allow researchers to take
into account special data, such as hierarchical, time-dependent, correlated, covariance
patterned models. Thus, given the BP estimates of the nPC λ, λ̃ = E(λ|τ), the vector
τ̃ = B̃λ represents the best prediction of the p-variate vector (in the way of the BP).
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In general, it is convenient to employ the LMM’s to assess how the most relevant
parameters affect the linear model assumed for yi : we acknowledge the difficulty
of including in the probPC model some of the typical LMM parameters. For this
reason, this work proposes to reverse the BP estimation typical of the probPCmodel,
in the sense that the data from the p-vector may produce itself the BP estimates ỹi
by a multivariate BLUP. Afterwards, ordinary PCs can be obtained by the matrix of
the n realizations ỹi . Using the predictive variance of (yi − ỹi ), we can configure
a double set of analyses analogous to the Redundancy Analysis [12, 15], the last
based on the eigenvalue-eigenvector decomposition of the multivariate regression
model predictions and errors. Therefore, we have a constrained analysis, based on
the eigenvalue-eigenvector decomposition of cov(̃yi ), and an unconstrained analysis
of the Best Prediction model error covariance, cov(yi − ỹi ).

Themain advantagewith respect to RedundancyAnalysis is that the novel method
may works also without model covariates. This is because the largest part of the mul-
tidimensional variability is due to the covariance of the same random effects among
the components of the multivariate data vectors. We call this analysis a predictive
PCA (predPCA), because the PCs are given by the BP data vectors of the subjects.

The proposed procedure would be particularly worthwhile with typically cor-
related observations, like repeated measures surveys, clustered, longitudinal, and
spatially correlated multivariate data. Although the PCA operates only as a final
step, this type of analysis can be valuable when the reduction of dimensionality aims
to be investigated on data predicted by the sample, rather than the PCA of the sample
data by themselves. Usually, the BLUP estimation of the p-variate random effects
request iterative procedures in case of likelihood-based methods: the larger is the
number of the model parameters, the more computationally expensive is to obtain
the estimates to the normal variate covariance components of the LMM model.

Given that the general BLUP estimator has the same form of the BP under nor-
mality [8, 11], it is proposed to estimate the model covariance parameters, defining
a distribution-free estimator of the BLUP. We introduce a multivariate extension of
the Variance Least Squares (VLS) estimation method [4] for the variance compo-
nents. Because of the specific aspects related to the multivariate case, this method
changes from non-iterative to iterative, depending on alternating the minimization
procedure from knowing, in turn, one of the two covariance matrices involved in the
linear model. For this reason, we obtain an iterative version of the VLS: the Iterative
Variance Least Squares (IVLS) method.

When the linear model for yi is a population model without fixed covariates, the
predPCA is equivalent to a PCA of the n realizations of the p-vector, ỹi . Thus, the
linear mixed model is aMultivariate Analysis of Variance (MANOVA) with variance
components.

The paper is organized as follows: the first part is dedicated to the predPCA
method, together with some explanations about the IVLS estimation. Then, an appli-
cation of the predPCA method to some Well-being Italian indicators is presented.
Two Appendices report some backgrounds and the proof of the Lemma given in the
paper.
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2 Predictive Principal Components Analysis

Given a p-variate random vector yi j , i = 1, ...,m, j = 1, ..., k, consider the case
when y is partitioned inm subjects, each of themwith k individuals (balanced design).
Ifμ′ = (μ1, ..., μp) is the vector of the pmeans, a random-effects MANOVAmodel
is given by

yi j − μ = ai + ei j , (1)

where ai
ind∼ Np(0, �a) is the p-variate random effect and ei j

ind∼ Np(0, �e) is the
model error. Given n = m × k data from y, we write the model (1) in the LMM
standard matrix formY = XB + ZA + E, where Y is the n × p matrix of data from
y, X is a n × l matrix of explanatory variables, B the l × p matrix of the l fixed
effects, Z the n × m design matrix of random effects, A is the m × p matrix of
random effects, E the n × p matrix of errors.

For the random-effects MANOVA model (1), we have that X is a column of ones
(i.e., l = 1), and B the row vector μ′ of sample means:

Y − 1n×1μ
′
1×p = (Im ⊗ 1k) × (a1..., ap)m×p + E, (2)

where ⊗ is the Kronecker product, Z = (Im ⊗ 1k), A = (a1, ..., ar , ..., ap). Further-
more, the data Y and the error matrices have the structure

Ymk×p = (y11, y12, ..., y1k, ..., ym1, ym2, ..., ymk)
′

Emk×p = (e11, e12, ..., e1k, ..., em1, em2, ..., emk)
′.

Bycentering the dataY,withY − 1n×1μ
′
1×p = Y∗, and remembering that E(μ) =

μ, the p-vector population model (1) becomes y∗
i j = ai + ei j . The BP estimation of

the p-vector ai in the LMM is given by [3, 8, 11]

ãi = E(ai |y∗
i ) = cov(ar , y∗

i )[var(y∗
i )]−1[y∗

i − E(y∗
i )] (3)

Reducing the LMM to the random-effects MANOVA model, we have by the
Eq. (2): E(yi ) = B′xi = μ. It is well-known [8] that the variance of the LMM
model is cov[vec(Y)] = V = D + U, with D = Z × cov[vec(A)] × Z′ and U =
cov[vec(E)]. The variance matrix V allows to define a variety of typical linear mod-
els, by setting the parameters vector θ = (θ1, ..., θq) inside the components D and
U. The estimation of these parameters is done by standard methods (e.g., Maxi-
mum Likelihood, Restricted Maximum Likelihood, Moment Estimator). Given the
parameters estimate θ̂ , and then the variance V̂ = V(θ̂), the fixed effects estimate
is given by the General Least Squares estimate B̂ = B̂GLS = (X′V−1X)−1X ′V−1Y∗.
The random effects (3) estimate Ã = (̃a1..., ãr , ..., ãp), ãr = col(̃ari ), r = 1, ..., p,
completes the so-called Empirical BLUP (EBLUP) Ỹ∗ = XB̂ + ZÃ. We assume for
the model (2) the more simple structure, with a single random effect by the i-th
subject. Furthermore, an equicorrelation between these random effects is employed.
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Some further computational details for the specification of the model (2) are given
in Appendix 1.

We introduce an iterative multivariate variance least squares estimation (IVLS)
for the estimation of the vector of parameters θ . The objective function to min-
imize is V LS = trace(� − U − D)2, with �|mkp×mkp the empirical model covari-
ancematrix. The algorithm is based on alternating least squares in a two-step iterative
optimization process. At every iteration, the IVLS procedure first fixes U and the
solves for D, and then it fixes D and solves for U. Since the LS solution is unique, at
each step the VLS function can either decrease or stay unchanged but never increase.
Alternating between the two steps iteratively guarantees convergence only to a local
minimum, because it ultimately depends on the initial values for U. Being � the
matrix of the multivariate OLS cross-products of residuals, the V LS iterations are
given by the following steps: (a) starting from the separate subject (group)-specific
empirical covariance matrices Uri , first minimize V LS to obtain the estimate of the
random-effects covariance D, then (b), given the matrix B̂GLS%, minimize V LS,
setting the same error covariance matrix among the subjects, and (c), iterate (a) and
(b), until convergence to the minimum. The number of iterations may vary, depend-
ing on the choice of the specific model variance structure for the random effects and
error covariance matrices.

Applications of the predPCA may be related to different types of available data,
and then may accommodate a variety of patterned covariance matrices. Further,
groups can be dependent or independent, even in space, time, and space-time corre-
lated data.

The IVLS estimator at each step is unbiased, as discussed in the followingLemma:

Lemma (Unbiasedness of the IVLS estimator) Under the balanced p -variate
variance components MANOVA model Y∗ = ZA + E, with Z the design matrix
of random effects, E the matrix of errors, and covariance matrix D + U, D =
(I ⊗ Z)cov[vec(A)](I ⊗ Z′), U = cov[vec(E)], and known matrix U, for the IVLS
estimator of the parameters θ in D we have E[D = D(θ̂I V LS)] = D(θ).

The proof is given in Appendix 2.
Finally, a SVD of the matrix Ỹ from the p-dimensional ỹ vector is obtained, in

order to give a PCdecomposition of the subject data involved by the linearmodel. The
predPC are generated by the eigenvalue-eigenvector decomposition of the covariance
matrix of the predicted data, i.e., (Ỹ − XB(θ̂))′(Ỹ − XB(θ̂)).

3 An Application to Some Well-Being Indicators

The introduced predPCA is applied here for the analysis of some Equitable and
Sustainable Well-being indicators (BES), annually provided by the Italian Statistical
Institute [16].

The discussed IVLS estimation procedure is adopted.
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Table 1 IVLS fixed effects estimates of the random-effect MANOVA model (centered data)

vec(β̂OLS) vec(β̂GLS)

Education and training –1.26E-15 –0.008118

Job satisfaction –2.44E-16 0.0082529

GDP 5.468E-16 0.0024191

Lack of safety 1.062E-16 –0.01079

Research and innovation –9.35E-16 –0.00471

Table 2 Iterative variance least squares estimates of the random-effects MANOVA model

IVLS estimates

σ̂ 2
a 0.374155

ρ̂a –0.147169

σ̂ 2
e 0.242975

ρ̂e 0.328184

ρ̂t 0.266346

According to recent law reforms, these indicators should contribute to define
the economic policies which largely affect some fundamental dimensions of the
quality of life. In this case study, we present an application of predPCA to 5 of
the 12 BES indicators available in the years 2013–2016, collected at the level of
NUTS2 (Nomenclature of Territorial Units for Statistics). We use the random-effect
MANOVA model, where the random multivariate vector Y includes the repeated
observations of all the Italian regions in the 4 time instants (X). We do not consider
model covariates, allowing predictors to be derived only by the covariance structure.
We assume equicorrelation both of themultivariate random effects and of the residual
covariance (seeAppendix 1 for details). The random-effectsMANOVAmodel is then
given by a balanced design, with an AR(1) error structure.

The fixed effects estimates, obtained through both the OLS and GLS estimators,
are provided inTable 1.Wehave that theGLSestimates outperform theOLSestimates
in terms of coefficient’s interpretability. The GLS estimate of the variable “Lack of
Safety” highlights the greater change in value respect to the OLSmean estimate. This
means that this indicator plays the most important role in highlighting the adjustment
provided by the model prediction with respect to the observed data. Furthermore,
this implies that the Lack of Safety will be the most influential indicator in terms
of shifting the statistical units (i.e., the administrative Regions) from their observed
position in the factorial plane.

Table 2 shows the IVLS estimation results of the mixed MANOVAmodel param-
eters, reporting the estimated variance and correlation among indicators (σa , ρa) and
regression errors (σe, ρe), in the�a and�e matrices, respectively. We find a negative
covariance between the BES indicators, together with a positive covariance between
the regression errors among indicators. Finally, the time autocorrelation between
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Fig. 1 Multiple Factor Analysis (MFA), observed factor loadings and scores per year (dashed
lines); predicted loadings and scores (plain lines) in the space of the MFA

units is estimated as slightly positive, independently from the nature of the BES
indicator.

Finally, in order to visualize simultaneously the first factorial axes of the four
years on a common factorial plane, for both observed and predicted variables, we
performed a Multiple Factor Analysis (MFA) on a matrix obtained by juxtaposing
the BES indicators with their IVLS prediction. Figure 1 shows the MFA biplot,
where observed factor loadings and scores for each year (dashed lines) and predicted
loadings and scores (plain lines) for each indicator are jointly represented with the
observed and predicted (in rectangles) regions.

On this plan, it is possible to see how the axes change over years (among groups),
and at the same time, to foresee how they could change in a new situation (in this
example on a new year), comparing the position of the observed variable with their
IVLS prediction.

Looking at the biplot, the horizontal axis clearly represents the well-being, being
positively correlated with the variables GDP, Education and training (E&T), Job sat-
isfaction and Investment in research and development (R&I), and having the variable
Lack of Safety always a high negative coordinate. As expected, the Southern Italian
regions are concentrated on the left side of the plane.

What is interesting to see is that most of the Southern regions, e.g., Puglia, Cam-
pania, Sicily, show a general improvement in terms of predicted values along this
axis: the coordinates generally move towards the origin, foreseeing a decrease in the
Lack of Safety, (i.e., an increase in their Well-being).
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4 Conclusions and Perspectives

This paper introduces PCA of a multivariate predictor to perform an exploratory
survey of sample data. The predPCA provides a new tool for interpreting a factorial
plan, by enriching the factorial solution with the projection of the trends included in
the observations. Given amultivariate vectorwith independent groups, and a random-
effects population model, the predPCA relies on the assumption that the linear model
itself is able to predict accurately specific subjects or group representatives, even in
time and spatial dependent data. The use of the PCA is given afterward when the
model has provided data predictions. Substantially, predPCA is a model-based PCA
where the data are supplied by the model best predictors.

The advantage in using the predPCA, with respect to the PC-based models, is
given by accommodating more easily a variety of structured data by the linear model
itself. After using a linear mixed model, the PredPCA explores predicted data that
originates in part from the regressive process and in part from the observed ones to
understand the contribution of the observed to predictions.

We note that this approach is able to work out simultaneously the issues related to
the use of model covariates and specific patterned covariance matrices. The impact
of choosing the model structure is easily recognizable when we investigate changes
in the factor data description. The reduction of dimensionality of the Best Prediction
of a variety of linear models, some of them designed for grouped and correlated data,
represents an important issue.

A forthcoming careful consideration will be made against Common Principal
Components [5], as a comparative study in terms of a simultaneous representation
of different data submatrices. Future studies can accommodate spatial and spatio-
temporal data, bringing out the predictive ability of the general linear mixed models,
by pivoting on specific covariance structures of the data.

Appendix 1

To accommodate a variety of random effects and error covariance matrices, it is
appropriate to refer to the general LMM, as the generalization of the MANOVA
variance components model given by Eq. (1):

Y = X̃B + Z̃A + E.

We use the vector operator vec(S), that converts the matrix S in a column vector.
Then we have y = vec(Y) = Xβ + Za + e, ymkp×1 = vec(Ymk×p), X̃mk×1 = 1′

p ⊗
1mk,B1×p = (β01, ..., β0p),Xmkp×p = Ip ⊗ X = Ip ⊗ 1mk, β = vec(B1×p),

Z̃mk×pm = 1′
p ⊗ Zr ,Zi = 1k,Zr = Im ⊗ Zi = Im ⊗ 1k,Zp(mk×m) = diag(Z1, ...,

Zp),Amp×p = diag(a1, ..., ap), ar = col(ar1, ..., arm), apm×1 = col(col(ar1, ...,
arm)), and Emk×p = (e1, ..., ep), e = col(e1, ..., ep) = col(col(col(erm1, ..., ermk))).
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The BLUP for the j-th group (subject) and r -th response variable is given by
ãri = E(ari |yri ) = cov(ari , yri )[var(yri )]−1[yri − E(yri )], with Uri the covarince
matrix of the residual errors for the i-th group and the r -th variable (r = 1, ..., p). The
fixed effects estimates are given by the matrix B̂GLS = (X′V−1X)−1X′V−1Y, where
V is the model covariance. In the case the variance components MANOVA model
(1), ifG is the p × p covariance matrix of random effects, withD = ZGZ′

mkp×mkp =
G ⊗ ZrZ′

r , Uri = σ 2
ri Ik , Ur = diag(Ur1, ...,Urm), Umkp×mkp = diag(U1, ...,Up),

and the model covariance matrixVmkp×mkp = cov(vecY) = cov(y) = ZGZ′ + U =
D + U, we get a “constrained” PCA by the predictors, as the SVD of the esti-
mates Y − 1μ̂′

GLS = (Im ⊗ 1k) × (̃a1, ..., ãp). Further, an “unconstrained” analy-
sis by the scores of the model conditional residuals Y − Ỹ = Y − 1μ̂′

GLS − (Im ⊗
1k) × (̃a1, ..., ãp) is done. To get the BLUP estimates ãri , we must know the param-
eters of the MANOVAmodel inside the covariance matrix D = Z × cov(vec(A)) ×
Z′
mkp×mkp, that is equal to:

D = �a ⊗ (Im ⊗ 1k)(Im ⊗ 1′
k) = �a ⊗ (Im ⊗ 1k1′

k).

Then: vec(Y) = (Ip ⊗ 1mt )vec(B) + (Ip ⊗ Z)vec(A) + vec(E) ; y∗ = vec(Y),

X∗ = (Ip ⊗ X) = (Ip ⊗ 1mt ), β∗ = vec(B), Z∗a∗ = (Ip ⊗ Z)vec(A).
Further, given the IVLS estimates θ̂ , we have cov[(y∗(θ̂))] = (Ip ⊗ Im ⊗ 1k)

(�a(θ̂) ⊗ Im)(Ip ⊗ Im ⊗ 1′
k)+cov(vec(E))=�a(θ̂) ⊗ (Im ⊗ 1k1′

k)+(�e(θ̂) ⊗ In) ⊗

(θ̂). Finally, after the iterative VLS estimation, the predictor is given by ỹ∗(θ̂) =
X∗β̂∗

GLS + Z∗̃a∗ = �y∗(θ̂) + (I − �)X∗β̂∗
GLS , � = (�a(θ̂) ⊗ ZZ′)cov

[(y∗(θ̂))]−1. Note that the matrix � specifies both the contribution of the regres-
sion model and the observed data to the prediction.

We assume equicorrelation both of themultivariate randomeffects and the residual
covariance, together with the AR(1) structure of the error:

�a = σ 2
a ×

⎡

⎢
⎢
⎢
⎣

1 ρa · · · ρa

ρa 1 · · · ρa
... · · · . . .

...

ρa ρa · · · 1

⎤

⎥
⎥
⎥
⎦

5×5

�e = σ 2
e ×

⎡

⎢
⎢
⎢
⎣

1 ρe · · · ρe

ρe 1 · · · ρe
... · · · . . .

...

ρe ρe · · · 1

⎤

⎥
⎥
⎥
⎦

5×5


 = 1

1 − ρ2
t

⎛

⎜
⎜
⎝

1 ρt ρ2
t ρ3

t
ρt 1 ρt ρ2

t
ρ2
t ρt 1 ρt

ρ3
t ρ2

t ρt 1

⎞

⎟
⎟
⎠

4×4

Appendix 2

Lemma (Unbiasedness of the IVLS estimator) Under the balanced p -variate
variance components MANOVA model Y∗ = ZA + E, with Z the design matrix
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of random effects, E the matrix of errors, and covariance matrix D + U, D =
(I ⊗ Z)cov[vec(A)](I ⊗ Z′), with known matrix U = cov[vec(E)], for the IVLS
estimator of the vector of parameters θ in D we have E[D = D(θ̂I V LS)] = D(θ).

Proof With m groups (i = 1, ...,m), each of k individuals ( j = 1, ..., k), for the
multivariate mixed model we have the vector representation y = X∗β + Z∗a +
e, with y = vec(Y), X∗ = (I ⊗ X), β = vec(B), Z∗ = (I ⊗ Z), a = vec(A), e =
vec(E), and η = Z∗a + e, B̂ = B̂OLS . Defining ε̂ = y − X∗β̂ = X∗β + η − X∗β̂ =
η − X∗(β̂ − β), by standard results on multivariate regression we write β̂ − β =
{

I ⊗ (X′X)−1X′} y − β = C × (X∗β + η) − β. Thus: X∗(β̂ − β) = X∗CX∗β
+ X∗Cη − X∗β, and noticing thatCX∗ = {

I ⊗ (X′X)−1X′}X∗ = {

I ⊗ (X′X)−1X′}

(I ⊗ X) = I ⊗ (X′X)−1X′X = I, we get: X∗(β̂ − β) = X∗β + X∗Cη − X∗β = X∗
Cη, and ε̂ = y − X∗β̂ = η − X∗Cη.

Setting for the MANOVA model Y∗ = Y − XB, X = 1mk×1, B = μ′
1×p, to stack

matrices by ordering subjects (groups), assume y∗∗ = vec(Y∗′) = (Z ⊗ I)vec(A) +
vec(E′) = Z∗a + e = η, with Z∗ the design matrix of the multivariate random
effects. Given ε̂ = vec(Y′ − B̂′X′) = ŷ∗∗, B̂ = B̂OLS = μ′, the VLS estimator finds
the minimum of V LS(θ) = tr(T2) = tr

{

ε̂̂ε′ − cov(vec(η)
}2 = �T2

i j . Now denot-
ing cov(a) = G = G(θ), g∗ = vec(G), u∗ = vec(U), and differentiating the VLS
function with respect to G, we have the following derivatives:

∂

∂G
V LS(θ) = Z∗′̂ε̂ε′Z∗ − Z∗′Z∗GZ′Z − Z∗′UZ∗ = 0

(Z∗′Z∗ ⊗ Z∗′Z∗)g∗ + (Z∗′ ⊗ Z∗′)u∗ = (Z∗′̂ε) ⊗ (Z∗′̂ε).

Then: ĝ∗ = g∗(θ̂) = (Z∗′Z∗ ⊗ Z∗′Z∗)−1
{

(Z∗′̂ε) ⊗ (Z∗′̂ε) − (Z∗′ ⊗ Z∗′)u∗}.
Remembering that (Z∗′̂ε) ⊗ (Z∗′̂ε) = (Z∗′η) ⊗ (Z∗′η), cov(a, e) = 0, and taking

the expectation of η ⊗ η:

E(η ⊗ η) = E(vec(ηη′)) = E(vec
{

(Z∗a + e)(Z∗a + e)′
}

)

= E
{

(Z∗ ⊗ Z∗)vec(aa′) + (e ⊗ Z∗)a + (Z∗ ⊗ e)a + vec(ee′)
}

= (Z∗ ⊗ Z∗)g∗ + 0 + 0 + u∗.

Since (Z∗′η) ⊗ (Z∗′η) = (Z∗′ ⊗ Z∗′)(η ⊗ η), the expectation become:

E
{

(Z∗′̂ε) ⊗ (Z∗′̂ε)
}

= E
{

(Z∗′η) ⊗ (Z∗′η)
} = (Z∗′ ⊗ Z∗′)E(η ⊗ η)

= (Z∗′ ⊗ Z∗′)(Z∗ ⊗ Z∗)g∗ + (Z∗′ ⊗ Z∗′)u∗

= (Z∗′Z∗ ⊗ Z∗′Z∗)g∗ + vec(Z∗′UZ∗).

Hence: E[g∗(θ̂I V LS)]=(Z∗′Z∗ ⊗ Z∗′Z∗)−1
{

E
[

(Z∗′̂ε) ⊗ (Z∗′̂ε)
] −(Z∗′ ⊗ Z∗′)u∗} =

(Z∗′Z∗ ⊗ Z∗′Z∗)−1
{

(Z∗′Z∗ ⊗ Z∗′Z∗)g∗ + vec(Z∗′UZ∗) − (Z∗′ ⊗ Z∗′)u∗} = g∗(θ).
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