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Abstract Unlike the Box-Cox transformation, that of Yeo and Johnson for the
response of a linear model can be applied when the observations are not constrained
to be positive. We study the extended Yeo–Johnson transformation in which posi-
tive and negative observations can be transformed with different parameter values.
The procedure is illustrated for data with many outliers. The data are cleaned with a
robust method, the forward search, and the obtained transformations compared with
the results from twononparametric transformationmethods based on data smoothing.
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1 Introduction

The widely used parametric family of power transformations introduced by [3] is
only applicable to positive observations. Yeo and Johnson [7] spliced together two
Box-Cox transformations to provide a one-parameter family of transformations for
data that can be positive or negative. Atkinson et al. [2] extended the Yeo–Johnson
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transformation to allow different parameter values for the transformation of positive
and negative observations; they illustrate the usefulness of this procedure through
the analysis of two sets of data.

Nonparametric transformations provide an alternative to such families of para-
metric transformations. The purpose of this short paper is to compare parametric and
nonparametric transformations for a set of data that contain outliers, to illustrate a
robust method for cleaning the data of outliers and to compare transformations on
the cleaned data.

2 Extended Parametric Transformations

The purpose of these parametric transformations is to achieve a response which is
approximately normally distributed with errors of constant variance and a linear
model of simple form. For comparisons of estimates of parameters for different
values of λ, many authors, starting with [3], stress the importance of working with a
normalized transformation allowing for the change of scale of the observations with
transformation. For the Box-Cox transformation, the normalized transformation is

z(λ) = (yλ − 1)(zλ − 1)/(λẏλ−1) (λ �= 0); ẏ log y (λ = 0), (1)

where ẏ is the geometric mean of y and J , the Jacobian of the transformation is
given by log J = n(λ − 1) log ẏ. The linear model to be fitted is z(λ) = Xβ(λ) + ε,

where X is n × p, β is a p × 1 vector of unknown parameters and the variance of ε

is σ 2.
The normalized transformation for the two-parameter extended Yeo–Johnson

(EYJ) transformation is given by [2]. There are now four regions of y, rather than
two, with distinct forms of z(λ) and the Jacobian is now amore complicated function
of the observations.

3 Robustness and the Fan Plot

We use a robust procedure, the Forward Search [1] to order the data by closeness to
the fitted model. The procedure starts from a carefully chosen subset of m0 = p + 1
observations and moves forward increasing the subset size m by introducing the
observation, not used in fitting, that is closest to the fittedmodel, until all observations
have been fitted. Outliers, if any, enter at the end of the search.

Outliers in one value of λmay not be so for some other values.We, therefore, need
to repeat the forward search for a grid of values of λ. For each resultant ordering of the
data, we monitor evidence for the correctness of the transformation as m increases.
We include the constructed variable w(λ) = ∂z(λ)/∂λ in the linear model for the
EYJ transformation. The approximate score statistic for the value λ0 is the t-test
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for the significance of w(λ0) in the regression. The plot of trajectories of the score
statistic against subset size for a set of values of λ is called a fan plot.

Constructed variables for the one-parameter Yeo–Johnson transformation are
given by [2]. They further derive constructed variables for testing whether posi-
tive and negative observations require the same transformation. These come from
the extended transformation in which one kind of response has the parameter λ + α

and the other λ. The test is for α = 0.

4 Augmented Investment Fund Data

As our example, we analyze data on the relationship between the medium term
performance of 309 investment funds and two indicators. Of these funds, 99 have
negative performance. To examine the properties of transformation procedures in the
presence of outliers, we augmented the data with 40 outliers, to produce a data set
in which the outliers are evident after transformation, but not before. The analysis of
the uncontaminated data [2] concludes that the negative observations need transfor-
mation with parameter λN = 0, which for the EYJ is not the log transformation. The
positive observations need no transformation (λP = 1). The data are well behaved,
with no evidence of any outliers.

The fan plot for the augmented data indicates that themajority of the outliers enters
the subset at the end of the search; the structure of the plot changes form > 310. The
extended fan plot with separate trajectories for positive and negative observations
shows that different transformations are required for the two parts of the data. The
best values are λN = 0 and λP = 1 when the trajectories of the score statistics for
positive and negative observations are similar to those for the overall data until m is
around 320. This is the transformation found for the uncontaminated data.

5 Robust Analysis

We now identify the outlying observations by a forward search analysis of the data
with the recommended transformation λP = 1 and λN = 0.

The left-hand panel of Fig. 1 shows a forward plot of all 349 scaled residuals
of the augmented data for a wide range of values of m. There is an upper band of
residuals, in blue in the online version of the paper, separated from a lower band of
37 residuals, shown in red. What is remarkable is the stability of this pattern, until
m = 310, indicative of a set of data without outliers and with normally distributed
errors and the second group of observations, not included in the subsets used for
fitting.

The highlighted, red, residuals were identified by brushing the plot. That is, we
selected all the trajectories that lie within the brush in the centre of the figure. The
right-hand panel of the figure shows a linked forward plot of minimumMahalanobis
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Fig. 1 Augmented investment fund data; brushing linked plots from the forward search when
λP = 1 and λN = 0. Left-hand panel, trajectories of residuals from the forward search with the
residuals from 37 observations highlighted by brushing. Right-hand panel, linked forward plot of
minimum deletion residuals during the search with the 37 brushed values shown in red

distances, with the trajectory of the 37 brushed observations shown in red. These are
indeed the last observations to enter the search. Our automatic procedure for outlier
detection [5] in fact identifies 35 outliers.

6 Nonparametric Transformations

It is clear from the results of the previous sections that the contaminated data need
both cleaning and transformation. The purpose of this section is to determine what
information nonparametric transformations provide on the presence of outliers, the
transformation of the data and whether the parametric extended Yeo–Johnson trans-
formation can be improved by further transformation. The parametric transforma-
tions produce a smooth relationship between z(λ) and the original y. A nonparametric
alternative is to use smoothing to estimate this relationship. We use two such meth-
ods, ACE—Alternating Conditional Expectations—[4] and AVAS [6] in which the
transformation for the response is intended to yield additivity and variance stabi-
lization. We consider only response transformation, comparing models through the
value of unadjusted R2.

We start with the extended Yeo–Johnson transformation, using the parameter
estimates λP = 1 and λN = 0 for all comparisons. First we look at the contaminated
data before and after cleaning. The left-hand panel of Fig. 2 shows the QQ plot of
the residuals of all 349 observations from regression with the original response. The
sigmoid shape of this plot indicates that the observations are not normally distributed.
The right-hand panel is the QQ plot for residuals of the transformed cleaned data.
The distribution of residuals is much closer to normality, although the centre of the
curve indicates that many small residuals are slightly too large in absolute value.
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Fig. 2 Comparison of normal QQ plots of residuals. Left-hand panel, untransformed contaminated
data. Right-hand panel, transformed cleaned data

Table 1 Investment fund data: summary properties of regression for parametric and nonparametric
transformations of contaminated and cleaned data

Contaminated Cleaned and transformed

Untransformed 0.399 –

EYJ 0.356 0.783

AVAS 0.241 0.778

ACE 0.421 0.806

ACE (monotonic) 0.417 0.805

The value of R2 for regression on the untransformed contaminated data is 0.399.
For the cleaned transformed data it is 0.783 and for the uncontaminated data 0.816.
The left-hand column of Table 1 lists the values of R2 achieved by regression on
parametric and nonparametric transformations of the contaminated data. The largest
value is 0.421 for unconstrained ACE. The monotonicity constraint on ACE comes
from isotonic regression on the unconstrained transformation and yields a slightly
reduced value of 0.417. AVAS produces a value of 0.241, less than that for EYJ.
Figure 3 provides plots of transformed against untransformed response for these
four transformations.

The top left-hand panel of the figure shows that the EYJ transformation for y > 0
is linear (no transformation), whereas for negative y, the transformation is concave,
transforming the more negative observations to be more extreme. AVAS, in the top
right-hand panel, provides a more smooth concave curve, which not only makes
the more negative values more extreme but makes the more positive values less
extreme. Unconstrained ACE is virtually linear for y > 12, but shrinks in the most
negative observations, some of which are outliers. Constrained ACE is formed by
isotonic regression on the unconstrained version, and as the figure shows, is similar in
structure to ACE. Both transformations show several points of inflection for y < 12,
especially just above zero.

If the errors are approximately normally distributed and the model is correct, the
plot of residuals against fitted values should be without any features, apart from those
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Fig. 3 Contaminated data: transformed responses against untransformed responses. Top row, EYJ
and AVAS. Bottom row, ACE, constrained and unconstrained
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Fig. 4 Contaminated data; residuals against fitted values. Left-hand panel, constrainedACE. Right-
hand panel AVAS (note the scale of these residuals)

from the distribution of fitted values. The left-hand panel of Fig. 4 shows such a plot
of residuals from constrained ACE. The plot is wedge shaped, with a sharp lower
diagonal bound. The other panel, for AVAS, also has some structure, in this case,
a cloud of large negative residuals for fitted values around 0.5; the nonparametric
transformations indicate faults in the model or data.

We now look at the transformation of the cleaned data after it has been subjected
to the extended Yeo–Johnson transformation to check whether the properties can be
improved by a further nonparametric transformation. Values of R2 for such trans-
formations are in the right-hand column of Table 1. The value for EYJ is 0.783.
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Fig. 5 Nonparametric transformations of cleaned transformed data against EYJ. Left-hand panel,
constrained ACE, right-hand panel, AVAS
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Fig. 6 Residuals against fitted values from nonparametric transformations of cleaned transformed
data. Left-hand panel, constrained ACE, right-hand panel, AVAS

AVAS is slightly less than this at 0.778, whereas constrained ACE is 0.805, with the
unconstrained version giving a value of 0.806.

The left-hand panel of Fig. 5 shows the plot of transformed y from constrained
ACE against the values from EYJ. Some of the points of inflection shown in Fig. 3
remain and correspond to original values of y that were just positive. The indication is
that the two-parameter EYJ transformationwith one transition point can be improved
by using a distinct transformation for the observations just above zero, leading to a
slight increase in R2. The right-hand panel for AVAS shows a virtually straight line
and the transformation is very close to that for EYJ.

The plots in Fig. 6 are of residuals against fitted values for the two transformations
featured in Fig. 5; both indicate the presence of three groups of funds, which are also
surprisinglywell transformedby the two-parameterEYJprocedure.Although the two
plots are similar, some of the details of the central group are different, which is where
the two transformations diverge. TheQQplots for the nonparametric transformations
are close to that for EYJ shown in Fig. 2.

The results of this section indicate that the nonparametric transformations do
not provide a robust procedure. But they can provide insight when used to check a
suggested parametric transformation. For the EYJ it is possible that the two trans-
formation regions may not separate at zero, but at some value to be determined. A
second aspect is whether two regions of transformation are enough. It may be that
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for some data structures the flexibility of the nonparametric transformation will lead
to improved data modelling.
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