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Abstract In this paper, we compare through a simulation study two approaches
to cluster mixed-type data, where some variables are continuous and some others
ordinal. The first is model-based, according to which the variables are assumed
to follow a Gaussian mixture model, where, as regards the ordinal variables, it is
only partially observed. In order to overcome computational issues, the parameter
estimation is carried out through an EM-like algorithmmaximizing a composite log-
likelihood based on low-dimensional margins. In the second approach, the Gower
distance matrix is computed, then the PAM algorithm is used for clustering.

Keywords Mixture models · Composite likelihood · EM algorithm · Mixed-type
data · Gower’s distance · PAM algorithm

1 Introduction

The aim of cluster analysis is to partition the data into meaningful homogeneous
groups which should differ considerably from each other. The problem is made more
difficult by the presence of mixed-type data: ordinal and continuous variables. In
order to find a solution, mainly two different approaches exist, based on a model
describing the data generation process or a distance able to capture the dissimilarity
between two entities. Before to summarize the main features of the two approaches,
let us specify that when we use the word categorical data, we are still referring
to the ordinal variables. Following the definition given in [1], ordinal variables are
categorical variables with ordered categories.

As regards the model-based approach, the literature on clustering for continuous
data is rich and wide; the most commonly clustering model-based used is the finite
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mixture of Gaussians [17]). Differently, that one developed for categorical data is
still limited. In the Underlying Response Variable (URV), mainly developed in the
SEM framework (see, e.g., [11, 14, 20] approach, the ordinal variables are seen as a
discretization of continuous latent variables jointly distributed as a finite mixture (see
[5, 16, 23]. However, this makes the maximum likelihood estimation rather complex
because it requires the computation ofmany high-dimensional integrals. The problem
is usually solved by approximating the likelihood function by a surrogate one. In this
regardwemention some useful surrogate functions, such as the variational likelihood
[7] or the composite likelihood [21, 23, 24]. The problem arises when we consider
the joint distribution between continuous and ordinal variables. By assuming the
local independence assumption, the issue can be easily solved by factorizing the
joint density into the product of univariate marginals. However, this assumption is
unrealistic and too restrictive.

Following the URV approach, [5, 23] proposed a model according to which the
variables follow a Gaussian mixture model, where some variables, the ordinal ones,
are only partially observed through their discretization. As a side note, at this stage,
nominal variables cannot be included in themodel, since there is no type of proximity
among the unordered categories.

Besides these methods, there are others based on the Gower’s distance [8]. This is
computed as the average of partial dissimilarities across subjects (or entities), where
the type of partial dissimilarity used depends on the specific type of the variable. To
cluster the data then a k-medoids algorithm can be used (PAM algorithm, [13, 25]).
However, these clustering methods are not the only ones existing in literature. Indeed
there are many techniques for mixed-type data and many reviews. See, for example,
[2, 6, 10]. Comparing clustering techniques is extremely useful and benchmarking
in cluster analysis has been increasing. A good discussion on it can be found in [18].

The paper aims at exploring and comparing the behavior of the mixture model for
mixed-type data with the distance-based methods, and some more naive approaches,
according to which ordinal data are treated as metric.

The plan of the paper is as follows. In Sect. 2, we describe the model-based
approach to cluster mixed-type data. The Gower distance method followed by the
PAM algorithm is described in Sect. 3. In Sect. 4, we compare these clustering tech-
niques through a simulation study. In the last section, some concluding remarks are
pointed out.

2 The Model-Based Approach

Let x = [x1, . . . , xO ]′ and yŌ = [yO+1, . . . , yP ]′ be O ordinal and Ō = P − O con-
tinuous variables, respectively. The associated categories for each ordinal variable
are denoted by ci = 1, 2, . . . ,Ci with i = 1, 2, . . . , O .

Following the Underlying Response Variable (URV) approach, the ordinal vari-
ables x are considered as a categorization of a continuous multivariate latent variable
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yO = [y1, . . . , yO ]′. The latent relationship between x and yO is explained by the
threshold model,

xi = ci ⇔ γ
(i)
ci−1 ≤ yi < γ (i)

ci ,

where −∞ = γ
(i)
0 < γ

(i)
1 < . . . < γ

(i)
Ci−1 < γ

(i)
Ci

= +∞ are the thresholds defining
the Ci categories collected in a set Γ . To accommodate both cluster structure and
dependencewithin the groups,we assume thaty = [yO′, yŌ′]′ follows aheteroscedas-
tic Gaussianmixture, f (y) = ∑G

g=1 τgφp
(
y;μg,Σ g

)
, where the τg’s are the mixing

weights and φp
(
y;μg,Σ g

)
is the density of a P-variate normal distribution with

mean vector μg and covariance matrix Σ g .
Let us set ψ = {

τ1, . . . , τG,μ1, . . . ,μG,Σ1, . . . ,ΣG,Γ
} ∈ �, where � is the

parameter space. For a random i.i.d. sample of size N : (x1, yŌ1 ), . . . , (xN , yŌN ), the
log-likelihood is

�(ψ) =
N∑

n=1

log

⎡

⎣
G∑

g=1

τgφŌ(yŌn ;μŌ
g ,Σ Ō Ō

g )πn

(
μ

O|Ō
n;g ,ΣO|Ō

g ,Γ
)
⎤

⎦ , (1)

where with obvious notation

πn

(
μ

O|Ō
n;g ,ΣO|Ō

g ,Γ
)

=
∫ γ

(1)
c1

γ
(1)
c1−1

· · ·
∫ γ

(O)
cO

γ
(O)
cO−1

φO(u;μ
O|Ō
n;g ,ΣO|Ō

g )du

μ
O|Ō
n;g = μO

g + ΣOŌ
g (Σ Ō Ō

g )−1(yŌn − μŌ
g ),

ΣO|Ō
g = ΣOO

g − ΣOŌ
g (Σ Ō Ō

g )−1Σ ŌO
g .

πn

(
μ

O|Ō
n;g ,ΣO|Ō

g ,Γ
)
is the conditional joint probability of response pattern xn =

(c1;n, . . . , cO;n) given the cluster g and the values yŌn for the continuous variables.
Finally, τg is the probability of belonging to group g subject to τg > 0 and

∑G
g=1 τg =

1.
The presence of multidimensional integrals makes the maximum likelihood esti-

mation computationally demanding and infeasible as the number of ordinal variables
increases. To overcome this, a composite likelihood approach is adopted [15]. It
allows us to simplify the problem by replacing the full likelihood with a surrogate
function. As suggested in [21, 23, 24] within a similar context, the full log-likelihood
could be replaced by O(O − 1)/2 marginal distributions each of them composed of
a pair of ordinal variables and the Ō continuous variables. In this way, the compu-
tational complexity is greatly decreased because the evaluation of the new function
requires the calculation of bivariate, rather than O-variate, integrals. This leads to
the following surrogate function
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c�(ψ) =
N∑

n=1

O−1∑

i=1

O∑

j=i+1

Ci∑

ci=1

C j∑

c j=1

δ(i j)
nci c j log

[ G∑

g=1

τgφŌ(yŌn ;μŌ
g ,Σ Ō Ō

g )π(i j |Ō)
ci c j

(μ
(i j |Ō)

n;g ,Σ(i j |Ō)
g ,Γ (i j))

]

,

where δ
(i j)
nci c j is a dummy variable assuming 1 if the nth observation presents

the combination of categories ci and c j for variables xi and x j , respectively, 0

otherwise; π
(i j |Ō)
ci c j (μ

(i j |Ō)

n;g ,Σ
(i j |Ō)
g ,Γ (i j)) is the conditional probability of the pair

(xi = ci , x j = c j ) obtained by integrating the density of a bivariate normal distribu-

tion with parameters (μ
(i j |Ō)

n;g ,Σ (i j |Ō)
g ) between the corresponding threshold param-

eters contained in the set Γ (i j). The parameter estimates are carried out through an
EM-like algorithm that works in the same manner as the standard EM. Likewise, it
suffers from the problem of local optima.

In the simulation study, the partition has been initialized randomly. The output of
a mixture model for continuous data has been considered as a good rational starting
point for the component parameters. On the other hand, the initial values for the
thresholds have been computed as follows: for each variable, we have considered
the empirical relative frequency of each category and then we have minimized the
quadratic difference between this frequency and the corresponding quantile of the
mixture.

2.1 Classification, Model Selection, and Identifiability

The classification is obtained by assigning the observations to the component with
the maximum scaled composite fit, i.e., the CMAP criterion [23, 24]. As regards
model selection, the best model is chosen by minimizing the composite version
of penalized likelihood selection criteria like BIC or CLC (see [22] and references
therein). Finally, as regards identifiability, adopting a composite likelihood approach,
the sufficient condition should be reformulated by investigating the Godambe infor-
mation matrix, that is, the analogous of the information matrix. However, as far as
we know, such modification has not been formally investigated yet. About the nec-
essary condition, we note that the number of essential parameters in the block of
ordinal variables equals the number of parameters of a log-linear model with only
two-factor interaction terms. Thus, it means that we can estimate a lower number of
parameters compared to a full maximum likelihood approach. Furthermore, under
the underlying response variable approach, the means and the variances of the latent
variables are set to 0 and 1, respectively, because they are not identified. This iden-
tification constraint individualizes uniquely the mixture components (ignoring the
label switching problem), as well described in [19]. This is sufficient to estimate
both thresholds and component parameters if all the observed variables have three



A Comparison Between Methods to Cluster Mixed-Type … 167

categories at least and when groups are known. Given the particular structure of the
mean vectors and covariance matrices, it is preferable to adopt an alternative, but
equivalent, parametrization. This is analogous to that one used by [12]; it consists in
setting the first two thresholds to 0 and 1, respectively, without constraining means
and variances. This means that there is a one-to-one correspondence between the two
sets of parameters. If there is a binary variable, then the variance of the corresponding
latent variable is set equal to 1 (while its mean should be still kept free).

3 The Gower Distance Method

Gower distance is computed as the average of partial dissimilarities across obser-
vations (subjects or objects), where the computation of the partial dissimilarities
depends on the specific type of the variable. For the continuous variables, a range-
normalizedManhattan distance is used; for the ordinal variables, they are first ranked,
then Manhattan distance is used with a special adjustment for ties. Then, a weighted
sum is calculated to create the final distance matrix. However, it is important to note
that as the sample size increases, its storage becomes infeasible.

One of the popular partitioning algorithms formixed-type data is k-medoids (PAM
algorithm [13, 25]), which is based on the Gower’s distance. The k-means and the
PAM algorithm are briefly described in Sects. 3.1 and 3.2. Both suffer from reaching
local optima; indeed different initializations can lead to different partitions. Finally,
the choice of the number of cluster can be made based on different criteria; the most
commonly used is choosing the number of clusters corresponding to an elbow of the
scree plot of the within deviance versus the number of clusters.

3.1 k-means

By letting X = {xn : n = 1, . . . , N } be the sample of P-dimensional observations,
k-means is based on the minimization of the loss function

�km (ψ,Z;X) =
N∑

n=1

G∑

g=1

zngd
2(xn,µg), (2)

where d2(xn,µg) is the squared distance, usually the classical unweighted Euclidean
between xn and µg , Z = [zng] is a binary membership matrix, with rows that sum
to 1, such that zng = 1 if observation n belongs to cluster g and 0 otherwise, and
ψ = {μ1, . . . , μG} is the set of cluster centroids.
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3.2 k-medoids

The PAM algorithm is an iterative algorithm composed of the following steps:

1. choose k random entities to become the medoids;
2. assign every entity to its closest medoid using the distance matrix computed;
3. for each cluster, the observation with the lowest average distance is re-assigned

as the medoid;
4. if at least one medoid has changed, repeat steps 2–4, otherwise the algorithm

reaches convergence.

Both k-means and k-medoids are partitioning algorithms and both attempt to
minimize the distance between points labeled to be in a cluster and a point desig-
nated as the center of that cluster. However, k-means has cluster centers defined by
Euclidean distance (i.e., centroids), while cluster centers for PAM are restricted to be
the observations themselves (i.e., medoids). Furthermore, k-medoids can be based
on an arbitrary dissimilarity matrix. As a consequence, k-medoids is more robust
because it minimizes a sum of dissimilarities instead of a sum of squared Euclidean
distances.

4 Simulation Study

To evaluate empirically the performance of the different clustering methods, a sim-
ulation study has been conducted. We compare: a mixture of Gaussians treating all
variables as continuous (Naive), a mixture model for mixed-type data (Mixed), PAM
algorithm, and k-means, treating all variables as continuous. The performance has
been evaluated in terms of recovering the true cluster structure using the Adjusted
Rand Index (ARI) [9] between the true hard partition matrix and the estimated one.
The ARI counts the pairs of entities that are assigned to the same or different clusters
under both partition matrices. The index has expected value zero for independent
clusterings and maximum value 1 for identical clusterings.

We simulated 250 samples from a latent mixture of Gaussians with three compo-
nents. We considered 8 scenarios given by three different experimental factors: the
sample size (N = 100, 500), the separation between clusters (well separated or not),
and number of ordinal variables (3 ordinal and 5 continuous variables or the other
way around).

In order to have approximately the same computational time for each method, the
model-based approaches (Naive and Mixed) were initialized using only one good
rational starting point described in Sect. 2, while for the remaining ones, 10 different
random starting points were used.

Data were generated from a three-component mixture model partially observed
with 3 or 5 ordinal variables (5 categories) and 5 or 3 continuous variables. In
Table1, we report the true values that are used to generate the data. The overlap
between groups ismeasured by the Bhattacharyya distance [3, 4]. The Bhattacharyya
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Table 1 True values of the observed/latent three-component mixture model and thresholds under
different scenarios

Common parameters

Mixture
weights

p1 = 0.25

p2 = 0.35

p3 = 0.40

Coviariance
matrixes

Σ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.50 0.60 1.50 0.50 0.20 0.70 0.40 0.40

0.60 1.00 0.40 0.40 0.65 0.40 0.50 0.20

1.50 0.40 2.00 0.30 0.25 0.50 0.4 0.30

0.50 0.40 0.30 1.00 1.00 0.40 0.25 0.50

0.20 0.65 0.25 1.00 2.00 0.70 0.65 0.20

0.70 0.40 0.50 0.40 0.70 1.50 0.30 0.40

0.40 0.50 0.40 0.25 0.65 0.30 1.75 0.25

0.40 0.20 0.30 0.50 0.20 0.40 0.25 1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Σ2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.875 0.450 1.125 0.375 0.150 0.5250 0.375 0.300

0.450 0.750 0.300 0.300 0.4875 0.300 0.300 1.125

1.125 0.300 1.500 0.225 0.1875 0.375 0.450 0.750

0.375 0.300 0.225 0.750 0.750 0.300 0.5250 0.150

0.150 0.4875 0.1875 0.750 1.500 0.525 0.375 0.225

0.525 0.300 0.375 0.300 0.525 1.125 0.750 0.1875

0.375 0.300 0.450 0.525 0.375 0.750 1.000 0.500

0.300 1.125 0.750 0.150 0.225 0.1875 0.500 1.75

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Σ3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thresholds [0, 1, 2, 3]
Separated groups

Mean Vectors μ1 = [−1, 3.5, 1.5, 0,−2, 3, 3, 5]
μ2 = [2, 0, 4.5, 5, 3, 7,−2, 0]
μ3 = [0,−2,−1,−2, 5,−3, 0,−3]

Non-separated groups

Mean Vectors μ1 = [−1, 3.5, 1.5, 0,−2, 3, 0, 5]
μ2 = [2, 1, 3, 1.5, 0, 2,−2, 2]
μ3 = [0,−1, 0,−0.5, 2,−1, 1.5,−1]
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Table 2 Simulation results: ARI values for different clustering methods across the eight scenarios
with N = 100, 500, groups with high (H) or low (L) level of separation and number of ordinal
variables equal to 3 or 5 with G = 3. The Gower distance methods, Gower + PAM (G-PAM) and
k-means were initialized using 10 (10) random starting points

3 Ordinal Variable and 5 Continuous Variables

N = 100 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.7997 0.2310 0.5966 0.6566

Median 0.7684 0.1886 0.5947 0.6539

Std 0.1235 0.2209 0.0091 0.0085

N = 500 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.9444 0.2618 0.5962 0.6538

Median 0.9663 0.2925 0.5967 0.6544

Std 0.0517 0.1917 0.0064 0.0092

N = 100 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.6322 0.1456 0.5824 0.6501

Median 0.6202 0.1066 0.5865 0.6532

Std 0.1096 0.1164 0.0280 0.0121

N = 500 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.8953 0.2235 0.5957 0.6543

Median 0.8957 0.1046 0.5962 0.6550

Std 0.0832 0.2416 0.0064 0.0090

5 Ordinal Variable & 3 Continuous Variables

N = 100 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.6895 0.2223 0.5921 0.6125

Median 0.6354 0.1437 0.5891 0.6095

Std 0.1547 0.2271 0.0124 0.0124

N = 500 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.8181 0.3725 0.5898 0.6124

Median 0.8435 0.3511 0.5882 0.6089

Std 0.1096 0.2735 0.0088 0.0151

N = 100 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.6073 0.1080 0.5545 0.6458

Median 0.5634 0.0113 0.5553 0.6438

Std 0.1321 0.1877 0.0254 0.0120

N = 500 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.8069 0.2027 0.5454 0.6432

Median 0.8150 0.1255 0.5413 0.6423

Std 0.1442 0.2342 0.0130 0.0080
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distance is equal to: 19.00 considering g = 1, 2, 26.27 considering g = 1, 3and34.27
considering g = 2, 3 when the groups are well separated; 5.96 considering g = 1, 2,
12.98 considering g = 1, 3 and 11.24 considering g = 2, 3 when the groups are not
well separated. In the simulation study, the number of groups is kept fixed. Indeed,
the purpose of the study is to assess the ability of the algorithm to capture the cluster
structure. In Table2 we report the simulation results.

Analyzing the results in Table2, we note that all clustering methods improve their
performances as N increases and the level of separation between groups is higher,
as expected. In almost all scenarios, the mixture model for mixed-type data seems
to behave better than others. Indeed, we note that in terms of mean or median the
mixture model for mixed-type data is the best, followed by the k-means and PAM
based on the Gower distance matrix. The poorest performances are shown by the
naive approach. In terms of mean or median, the mixture model for mixed-type
data is not always the best compared to the non-model-based approaches. More
specifically, when N = 100 and the groups are not well separated, it seems that
it is more affected by the issue of local maxima. Furthermore, we note that when
there are more ordinal variables than continuous variables, ARI values decrease,
although when N increases the worsening is not significant. This is expected, since
more ordinal variables we have, more information is losing about the cluster structure
underlying the data. Finally, although it is still common to treat ordinal data asmetric,
we have shown that it can lead to wrong results, especially when the groups are not
well separated.

5 Concluding Remarks

In this paper, we compared the model-based approach and Gower distance methods
to cluster mixed-type data. From the simulation study, it is possible to conclude
that when the groups are less separated, the clustering performances of the Gower
distance methods seem to be more affected by the choice of the random starting
points. The model-based for mixed type of data as N increases becomes the best
one both in terms of means and median. However, it is important to note that larger
sample sizes could cause some computational problems. On one hand, for larger N
it is possible to compute the Gower matrix, but its storage may become infeasible.
On the other hand, this leads to a higher number of bivariate integrals involved in the
composite likelihood. However, this increase remains linear, and thus still feasible.

References

1. Agresti, A.: Analysis of Ordinal Categorical Data, vol. 656. Wiley (2010)
2. Ahmad, A., Khan, S.S.: Survey of state-of-the-art mixed data clustering algorithms. IEEE

Access 7, 31883–31902 (2019)



172 M. Ranalli and R. Rocci

3. Bagnato, L., Greselin, F., Punzo, A.: On the spectral decomposition in normal discriminant
analysis. Commun. Stat. - Simul. Comput. 43(6), 1471–1489 (2014)

4. Bhattacharyya,A.:Onameasure of divergencebetween twomultinomial populations. Sankhya:
Ind. J. Stat. (1933-1960) 7(4), 401–406 (1946)

5. Everitt, B.: A finite mixture model for the clustering of mixed-mode data. Stat. Prob. Lett. 6(5),
305–309 (1988)

6. Foss, A.H., Markatou, M., Ray, B.: Distance metrics and clustering methods for mixed-type
data. Int. Stat. Rev. 87(1), 80–109 (2019)

7. Gollini, I.,Murphy,T.:Mixture of latent trait analyzers formodel-based clusteringof categorical
data. Stat. Comput. 24(4), 569–588 (2014)

8. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27(4),
857–871 (1971)

9. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
10. Hunt, L., Jorgensen, M.: Clustering mixed data. WIREs DataMin. Knowl. Disc. 1(4), 352–361

(2011)
11. Jöreskog, K.G.: New developments in lisrel: analysis of ordinal variables using polychoric

correlations and weighted least squares. Quality and Quantity 24(4), 387–404 (1990)
12. Jöreskog, K.G., Sörbom, D.: LISREL 8: User’s Reference Guide. Scientific Software (1996)
13. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids (1987)
14. Lee, S.Y., Poon, W.Y., Bentler, P.: Full maximum likelihood analysis of structural equation

models with polytomous variables. Stat. Prob. Lett. 9(1), 91–97 (1990)
15. Lindsay, B.: Composite likelihood methods. Contemp. Math. 80, 221–239 (1988)
16. Lubke, G., Neale, M.: Distinguishing between latent classes and continuous factors with cate-

gorical outcomes: Class invariance of parameters of factor mixturemodels.Multivariate Behav.
Res. 43(4), 592–620 (2008)

17. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley (2000)
18. Mechelen, I., Boulesteix, A., Dangl, R., Dean, N., Guyon, I., Hennig, C., Leisch, F., Steinley,

D.: Benchmarking in cluster analysis: A white paper. arXiv: Other Statistics (2018)
19. Millsap, R.E., Yun-Tein, J.: Assessing factorial invariance in ordered-categorical measures.

Multivariate Behav. Res. 39(3), 479–515 (2004)
20. Muthén, B.: A general structural equation model with dichotomous, ordered categorical, and

continuous latent variable indicators. Psychometrika 49(1), 115–132 (1984)
21. Ranalli, M., Rocci, R.: Mixture models for ordinal data: a pairwise likelihood approach. Stat.

Comput. 1–19 (2016). https://doi.org/10.1007/s11222-014-9543-4
22. Ranalli, M., Rocci, R.: Standard and novel model selection criteria in the pairwise likelihood

estimation of a mixture model for ordinal data. In: Adalbert, F.X., Hans, W., Kestler, A. (eds.)
Analysis of Large and Complex Data. Studies in Classification,Data Analysis and Knowledge
Organization (2016). https://doi.org/10.1007/978-3-319-25226-1

23. Ranalli, M., Rocci, R.: Mixture models for mixed-type data through a composite likelihood
approach. Comput. Stat. Data Anal. 110(C), 87–102 (2017). https://doi.org/10.1016/j.csda.
2016.12.01

24. Ranalli, M., Rocci, R.: A model-based approach to simultaneous clustering and dimensional
reduction of ordinal data. Psychometrika (2017). http://orcid.org/10.1007/s11336-017-9578-
5

25. Steinley, D.: Handbook of Cluster Analysis, chap. K -Medoids and Other Criteria for Crisp
Clustering. Chapman and Hall/CRC, New York (2016)

http://arxiv.org/abs/Other
https://doi.org/10.1007/s11222-014-9543-4
https://doi.org/10.1007/978-3-319-25226-1
https://doi.org/10.1016/j.csda.2016.12.01
https://doi.org/10.1016/j.csda.2016.12.01
http://orcid.org/10.1007/s11336-017-9578-5
http://orcid.org/10.1007/s11336-017-9578-5

	 A Comparison Between Methods to Cluster Mixed-Type Data: Gaussian Mixtures Versus Gower Distance
	1 Introduction
	2 The Model-Based Approach
	2.1 Classification, Model Selection, and Identifiability

	3 The Gower Distance Method
	3.1 k-means
	3.2 k-medoids

	4 Simulation Study
	5 Concluding Remarks
	References




