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Abstract Leverage and Cook’s distance are some of the most important tools in
influence analysis, where the main target is to identify observations that might deter-
mine the character of model estimates and predictors. In the small area estimation
setup, applied statisticians are interested in tools to identify observations that might
influence the variance component and the regression parameter estimates, the empiri-
cal best linear unbiased predictor and itsmean squared error estimate. For this reason,
this paper discusses the leverage matrix, the influence on the mean squared error of
the empirical predictor, and a Cook’s Distance of the empirical predictor for the Fay–
Herriot model, when the area-random effect variance is estimated by the restricted
maximum likelihood method. Further, the validity of this approach is illustrated by
means of an application to poverty data.
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1 Introduction

In themodel-based approach to small area estimation, data is assumed to be generated
according to a specific model and the whole inferential process depends on this
assumption. Therefore, it is quite important to check if some data points or groups
of cases are particularly influential on the analysis. For this reason, diagnostics tools
are needed to ensure that model parameters are properly estimated.

In classical linear models, this examination has been traditionally carried out
by residual analysis and detection of influential cases. Many articles and books deal
with influential observations and outliers. Some of them are [3, 5, 21], and important
papers have been written by Chatterjee and Hadi [8], and Cook [6, 7]. Two main
types of influence analysis for linear models have been developed. Within the first,
the calculation of leverage and standardized residuals plays a key role (the leverage
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is the diagonal element of the hat matrix). The second one is based on measuring
the effect on the estimates of deleting observations from the whole dataset, and it is
called case deletion diagnostics. A third approach, less considered in applications,
is based on the maximum curvature of log-likelihood displacement and it is called
local influence (see [2, 7]).

In the context of mixed models, many contributions are available as well. Without
this list being exhaustive, the followingmay bementioned: Lesaffre andVerbeke [17]
applied the local influence approach to linear mixed-effects models; Fung et al. [14]
considered both case and subject deletion influence diagnostics for semi-parametric
mixed models; Demidenko and Stukel [11] generalized common measures of influ-
ence for the fixed effects parameters of the linear mixed-effects models; Zewotir and
Galpin [29] extended the ordinary linear regression influence diagnostics approach
to linear mixed models; Nobre and Singer [22] covered a decomposition of the gen-
eralized leverage matrix for the linear mixed models; Pan et al. [23] proposed a case
deletion approach to identify influential subjects and influential observations in linear
mixed models.

A specific application of mixed models is small area estimation. Small area esti-
mation refers to estimates over domains for which direct estimates are produced with
unacceptably large standard errors due to the sample sizes available. Standard survey
designs are typically carried out in order to achieve reliable estimates on planned
domains (subpopulations) of the reference population. Direct estimates are those
based only on the domain-specific sampling data. On the other hand, small area esti-
mation produces indirect estimates for topic of interest on unplanned domains with
too small or even zero sample sizes. Indirect estimators based on explicit linking
models are called model-based estimators. They “borrow strength” by using values
of the variables of interest from related small areas through supplementary informa-
tion (auxiliary variables), such as data from other related areas or covariates from
other sources.

Within this setting, case diagnostics requires special attention. Therefore, diag-
nostics for mixed models are an incomplete answer to diagnostics in small area esti-
mation, because of the different population parameters of interest. This motivates
our interest in diagnostics methods for area level linear mixed models appearing in
small area estimation problems. In other words, the goal of small area estimation
methods is to determine Empirical Best Linear Unbiased Predictor (EBLUP) for the
mean or the total of the variable of interest and to minimize the Mean Squared Error
(MSE) of the empirical predictor. Furthermore, case deletion diagnostics cannot be
applied whenever there are few units for certain domain of interest.

However, while Battese, Harter, and Fuller [1] applied diagnostics methods for
validating the small area estimation model, checking the normality of the error terms
and the transformed residuals of the EBLUP, we found only a short note [20] on
specific diagnostic measures for the Fay–Herriot model.

For these reasons, this paper has two main aims. On the one hand, it revises and
makes it available to a larger audience the results in [20]. On the other, it shows the
potential of such an approach by presenting an application of case diagnostics for the
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Fay–Herriot model when the goal was to estimate poverty levels across small areas
in Spain.

Fay–Herriot model is an area level linear mixed model, with random-area effects.
It was first proposed by Fay and Herriot in 1979 [12] to estimate average per capita
income in small places of the United States. Since then, the Fay–Herriot model
has been widely used because of its flexibility in combining different sources of
information with different error structures. It has been largely studied in small area
estimation (e.g. [4, 9, 15, 18, 24]), and used to study poverty ([19, 25]) and other
related socio-demographic variables [16].

The rest of the paper is organized as follows. Section2 recalls the fundamentals of
the area level Fay–Herriotmodelwhenwe dealwithRestrictedMaximumLikelihood
(REML) of the random-area effect variance estimator. Section3 presents diagnostics
for the Fay–Herriot model. More specifically Sect. 3.1 gives the leverage matrix on
the fixed effects and the leverage matrix on the random-area effects; Sect. 3.2 shows
the influence analysis on the first two terms of the estimated mean squared error of
the EBLUP; Sect. 3.3 considers some case deletion diagnostics. Section4 provides
the application where diagnostics tools are tested on a model aiming at estimating
small area poverty proportions in Spain, while Sect. 5 draws the conclusions. Lastly,
an Appendix is provided with detailed formulas.

2 The Fay–Herriot Model

The Fay–Herriot model is a special case of a linear mixed model. We have

ŷi = x′
iβ + bivi + ei , vi

iid∼ (0, σ 2
v ), ei

ind∼ (0, ψi ), i = 1, ...,m (1)

where the ŷi ’s are the direct estimates of the indicator of interest y for the i-th area,
xi is a vector containing the aggregated (population) values of p auxiliary variables
with β regression coefficients, the random effects vi and the sampling errors ei are
assumed to be independent with zero mean and known sampling variances ψi and
unknown σ 2

v , respectively.
For our purposes, we rewrite the model in the general matrix form

ŷ = Xβ + B1/2v + e, (2)

where nowB = diag(b2i ) and the covariancematrix has a diagonal structure var(y) =
V = diag(Vi ) = diag(ψi + σ 2

v b
2
i ). The vector of theBest LinearUnbiased Predictors

(BLUPs) is given by

ŷH = X̂β+B1/2v̂ = X̂β+B1/2σ 2
v B

1/2V−1(̂y − X̂β) = X̂β + Γ (̂y − X̂β),
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with Γ = diag(γi ) = diag(σ 2
v b

2
i /(ψi + σ 2

v b
2
i )). The generalized least squares esti-

mator of β is
̂β = ̂βGLS = (X′V−1X)−1(X′V−1ŷ).

By using the relation

V−1 = (Ψ + σ 2
v B)−1 = Ψ −1 − Ψ −1(Ψ −1 + (σ 2

v )−1B−1)−1Ψ −1 = Ψ −1(I − Γ )

where Ψ = diag(ψi ) and I is the identity matrix. Denoting with ŷ∗ = Ψ −1/2̂y and
X∗ = Ψ −1/2X, for this estimator the result is

̂βGLS = (X′V−1X)−1(X′V−1ŷ)

= (X′Ψ −1X − X′Ψ −1ΓX)−1(X′Ψ −1ŷ − X′Ψ −1Γ ŷ) (3)

= (X∗′X∗ − X∗′ΓX∗)−1(X∗′̂y∗ − X∗′Γ ŷ∗).

An Empirical Best Linear Unbiased Predictor (EBLUP) estimator is obtained from
the BLUP by substituting suitable estimators of the variance and covariance param-
eters. Finally, the Restricted Maximum Likelihood (REML) estimator of σ 2

v is (see
[27] for more details)

σ̂ 2
v,REML = a

c∗

∑

(ŷ∗
i − ŷ

∗
)2 − (m − 1)

∑

(ŷ∗
i − ŷ

∗
)2

. (4)

With reference to the error in the EBLUP estimator, Prasad andRao in 1990 [24] gave
an approximation to the mean squared error of the EBLUP under the Fay–Herriot
model, which estimator includes three terms

mse(ŷHi ) = g1(σ̂
2
v ) + g2(σ̂

2
v ) + 2g3(σ̂

2
v ). (5)

It is worth noting that the terms g2 and g3, due to estimating β and σv, are of lower
order than the leading term g1.

The expressions (3), (4), and (5) will be used in next Section to derive the leverage
matrix of the fixed and random effects, the influence on the MSE and a case deletion
diagnostics for the empirical predictor.

3 Diagnostics for the Fay–Herriot Model

The main aim of a case diagnostics analysis is to identify observations or groups of
observations that might determine the character of model estimates and predictors.
In small area estimation, this means to identify the areas among the many that mostly
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affect the results of the estimates. In order to pursue that aim, after [20], we discuss
three diagnostics measures: the leverage, the influential areas that affect the mean
squared error estimates, and a Cook-type distance for the empirical predictor.

3.1 The Leverage Matrix

The aim is to investigate the influence of the domains (small areas) on the outcome
of the analysis. We are therefore interested in the assessment of the effects of small
perturbations in the data on the resulting BLUP estimates ŷH . For this reason, the
leverage, that is the partial derivative of the predicted value with respect to the
corresponding dependent variable, is considered here. In the framework of small
area estimation under area level models, leverage is thus the partial derivative of the
BLUP with reference to the corresponding direct estimator.

In order to obtain the leverage matrix of fixed and random effects, some useful
results are provided below (more details are available within the Appendix). The
leverage matrix for the traditional mixed model is given by definition as

L(̂β, v̂) = ∂ ŷ
∂y

.

Assuming fixed V, the leverage matrix L(̂β, v̂) can be seen as sum of two com-
ponents:

L(̂β, v̂) = L(̂β) + L (̂v)

= H1 + H2

= X(X′
̂V−1X)−1X′

̂V−1 + σ̂ 2
v,REMLB̂P,

where the first component is the hat matrixH1 = X(X′
̂V−1X)−1X′

̂V−1, also denom-
inated generalized marginal leverage matrix, while the second component is given
by H2 = σ̂ 2

v,REMLB̂V−1(Im − H1), the leverage matrix for the random component,
with

̂P = ̂V−1 − ̂V−1X(X′
̂V−1X)−1X′

̂V−1.

Under model (2), it is appropriate to evaluate the effect of each area level direct
estimate on the final predictor ŷH . The explicit form of the joint leverage matrix that
we denote as L∗ can be thus decomposed in terms of sampled observations as follows

L∗(̂β, v̂) = ∂ ŷH

∂ ŷ
= ∂(X̂β)

∂ ŷ
+∂(B1/2̂v)

∂ ŷ
= L∗(̂β) + L∗(̂v).

Based on the derivative
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∂H1

∂ ŷ
=

[

∂(X′
̂V−1X)−1

∂ ŷ
(X′⊗X′)

]

(̂V−1 ⊗ Im) + ∂̂V−1

∂ ŷ
(Im ⊗ [X(X′

̂V−1X)−1X′]),

the leverage matrix for the fixed effects is given by [20]

L∗(̂β) = ∂(X̂β)

∂ ŷ
= ∂

∂ ŷ
[X(X′

̂V−1X)−1X′
̂V−1ŷ]

=
(

∂H1

∂ ŷ

)

(̂y ⊗ Im) + H′
1 = H∗

1 + H′
1. (6)

While the leverage associated with the estimated random effects is

L∗(̂v) = ∂(B1/2v̂)
∂ ŷ

= ∂

∂ ŷ
[B1/2σ̂ 2

v,REMLB
1/2

̂V−1(̂y − X̂β)]

= [(B ⊗ σ 2
∂ )(̂V−1 ⊗ Im) + (

∂̂V−1

∂ ŷ
)(Im ⊗ σ̂ 2

v,REMLB)][(̂y − X̂β) ⊗ Im ] (7)

+[Im − L∗(̂β)](̂σ 2
v,REMLB̂V−1).

For the marginal leverageH1, as threshold value, it is suggested to use 2p/m (see
[10]). Using h∗

1,i i to indicate the diagonal elements of the matrix H∗
1 (6) for the i-th

area, and considering that tr(H′
1) = p, by analogy with [22], in our case influential

observations that affect the fixed effects estimates can be verified comparing the
quantity (h∗

1,i i − 1
m tr(H

∗
1)) with [L∗(̂β)i i − 1

m tr(L
∗(̂β))], more directly through the

estimation of the model variance.
In practice, high-leverage observations are also identified by visual examination of

the plot of the diagonal values of the leverage matrix. When we assess the potentially
influential values, this is very useful in analyzing the contribution to the leverage of
the single observation (small area) in estimating the model variance, with reference
to the marginal leverage H1.

3.2 Influence on the MSE of the EBLUP

The final purpose in small area estimation is to determine EBLUP estimates for the
mean or the total of the variable of interest and to minimize the mean squared error
of the empirical predictor. Because of that, the influence of some small areas on
the estimation of the MSE plays a central role in the analysis. Once an influential
observation has been identified, it could therefore be removed by the researcher in
order to improve the precision of the estimates.

With regard to the first component of the mean squared error estimate of the
EBLUP, we have the following term as matrix form
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G1 = diag(g1i ) = Γ Ψ (8)

so that influential area estimates can be detected by the following derivative

∂G1

∂ ŷ
= ∂

∂ ŷ
(Γ Ψ ) = ∂

∂ ŷ
(̂σ 2

v,REMLB̂V−1Ψ )

= (B ⊗ σ 2
∂ )(

̂V−1Ψ ⊗ Im) + [∂̂V−1

∂ ŷ
(Ψ ⊗ Im)](Im ⊗ σ̂ 2

v,REMLB). (9)

With reference to the second component, related to the variation of the fixed effects,
that is

G2 = (Im − Γ )X(X′
̂V−1X)−1X′(Im − Γ )(Im − Γ )U(Im − Γ )],

after [20] we have the following influence measure

∂G2

∂ ŷ
= ∂(Im − Γ )

∂ ŷ
([U(Im − Γ )] ⊗ Im) + ∂[U(Im − Γ )]

∂ ŷ
[Im ⊗ (Im − Γ )], (10)

where

∂(Im − Γ )

∂ ŷ
= −(B ⊗ σ 2

∂ )(
̂V−1 ⊗ Im) + (

∂̂V−1

∂ ŷ
Im2)(Im ⊗ σ̂ 2

v,REMLB),

∂[U(Im − Γ )]
∂ ŷ

= [∂(X′
̂V−1X)−1

∂ ŷ
(X′⊗X′)][(Im − Γ ) ⊗ Im] + ∂(Im − Γ )

∂ ŷ
(Im ⊗ U).

These derivatives are important as they measure the increase (positive value) or
the decrease (negative value) of the MSE of a small area, with reference to the direct
estimate of another small area. For such an influential measure, no threshold values
are available. Consequently, our suggestion is to first visualize the results for each
area of interest (by column vector) from the m × m resulting matrix of (9) and (10)
and then, for each column vector, investigate if there is any area showing particularly
higher values.

3.3 Case Deletion Diagnostics and Cook’s Distance

Here, we define Cook’s distances for the REML estimate of σ̂ 2
v and for the EBLUP

ŷHi .
After [20], Cook’s distance for σ̂ 2

v is given by

dv
	 = (σ̂ 2

v − σ̂ 2
v(	))

2

v̂ar(σ̂ 2
v )

,
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where v̂ar(σ̂ 2
v ) is the asymptotic variance of σ̂ 2

v that is obtained from the inverse of the
REML Fisher information matrix, and the subscript (	) is used for those estimators
that are calculated after deleting case 	.

The proposed Cook-type distance for the EBLUP ŷHi is

d eblup
	 = (ŷHi − ŷHi(	))

2

mse(ŷHi )

where ŷHi(	) is the EBLUP with case 	 deleted and mse(ŷHi ) is the Prasad-Rao [24]
MSE estimator.

Cook’s distance assesses the effects of a global change by removing an entire data
point. It follows that large values of d eblup

	 will point out that the corresponding area
may affect the EBLUP estimate of the related deleted area.

4 An Application to Poverty Data

In order to design and implement poverty reduction policies and funding programs,
there has been an increasing demand for poverty and living condition estimates at
aggregate and local levels. Within such a framework, case diagnostics may have a
very important role.

For this reason, this Section illustrates how the diagnostic tools introduced before
can be exploited within a real data analysis performed on the official Spanish Living
Condition Survey of the European Statistics on Income and Living Conditions (EU-
SILC). The latter is a cross-sectional and longitudinal sample survey, coordinated by
Eurostat, based on data from the European Union member states. It provides data on
income, poverty, social exclusion, and living conditions in the European Union.

The analysis aims at estimating poverty levels in small area domains by the use
of a Fay–Herriot area level model (1).

The dataset refers to the years 2004–2006 and contains 104 observations (areas
in our context) obtained by crossing 52 Spanish provinces with 2 sex (men and
women). The target variable is the direct estimate of the poverty indicator proposed
by Foster et al. [13] (poverty incidence or proportion) at domain level (province ×
sex). Estimates of the domainmeans are used as responses in the area levelmodel. The
considered auxiliary variables are the knowndomainmeans of the category indicators
of the following variables: age, education, citizenship, and labor. Finally, only 3
statistically significant variables that have a relevant meaning in a socio-economic
sense are selected. They are age group 50–65, secondary education completed, and
unemployment condition. The analysis was conductedwith the open-source software
R.

As discussed in Sect. 3.1, we start our influential analysis by computing the lever-
age values. We estimated the REML random-area effect variance, and we calculated
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Fig. 1 The diagonal values of the leverage matrix for the fixed effects L∗(̂β) plotted for all the
Spanish provinces, separately for men (left) and women (right)

the derivatives for the construction of the leverage matrix of the fixed effects as
described in Eq. (6).

Results referring to the diagonal values of the leverage matrix for the fixed effects
L∗(̂β) are presented in the scatter plot appearing in Fig. 1 for men and women,
comparedwith a critical value of 2

(∑m
i=1 L

∗
i i (

̂β)/m
)

. By looking at themagnitude of
the leverage values we conclude that the highest influential values are the provinces
of Barcelona (8) and Madrid (28), for both sex categories, where the number in
brackets indicates the corresponding numerical label on the abscissa axis of each
plot. Differences also appear when focusing on to the three years taken into account.
The leverage values tend to decrease from 2004 to 2006.

The relation between L∗(̂β) and the direct estimates of the poverty proportions
along the three years 2004–2006 is shown in Fig. 2. The plot shows that the direct esti-
mates with lower values generally correspond to higher level of leverage. Therefore,
lower direct estimates of poverty proportion can be considered to be more influential
than the higher ones. The values which stand out as the most influential are again the
provinces of Barcelona (8) and Madrid (28).

Results of the influence analysis on theMSEof the EBLUP estimates, in particular
that of the calculations of the derivative ofG1 inducedby the direct estimates (Eq. (9)),
are illustrated in Fig. 3. By way of an example, according to their sample sizes
(respectively small, large, andmedium), the results for three provinces are presented:
Alicante, Barcelona and Granada, for men and women, respectively, and for the year
2004. Similar results were also obtained for the years 2005 and 2006: for the sake
of brevity they are not reported here. In this case, we observe a difference between
men and women among the cases that are more influent on the MSE of the poverty
level estimates. Among the three selected provinces, the most influential province
for men is Granada, while for women it is Alicante. They are highlighted in the plots
with dotted and dashed lines, respectively, which consistently dominate the others.

The derivative ofG1 captures the influence that each small area can have on each
other in terms of the power for increasing or decreasing the MSE of the EBLUP.
The province of Granada suffers thus the increase of its MSE by the provinces of
Badajoz (6), Barcelona (8), Madrid (28), Murcia (30), Sevilla (41), and Valencia
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Fig. 2 The diagonal values of the leverage matrix for the fixed effects L∗(̂β) plotted against all the
Spanish provinces direct estimates
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Fig. 3 Derivative of G1 for the provinces of Alicante (dashed line), Barcelona (dotdashed line),
and Granada (dotted line) plotted against all the Spanish provinces in the year 2004, separately for
men (left) and women (right)

(46). On the other side, the decrease of its MSE is caused by the provinces of Alava
(1) and Gerona (17) (Fig. 3, left). As for the women (Fig. 3, right), the first part of
the MSE of Alicante is affected by a positive influence by the same provinces that
affect the plot of the men: Badajoz (6), Barcelona (8), Madrid (28), Murcia (30),
Sevilla (41), and Valencia (46); the decrease instead is due to Alava (1), Gerona (17),
Guipuzcoa (20), and Teruel (44).

Cook’s Distance for the EBLUP as calculated in Sect. 3.3 are presented in Fig. 4.
As done before, only the results of three provinces are presented: Alicante, Barcelona
and Granada, for men and women, respectively, and for the year 2004. In the graph,
three lines of Cook’s distance are reported, which correspond to the deleted provinces
of Alicante, Barcelona, and Granada. The peaks of Cook’s distance represent the
most influential values on the EBLUP estimates of the related deleted provinces. In
particular, when looking at the results for men (Fig. 4, left), the lines of Alicante and
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Fig. 4 Cook’s Distance for the EBLUP ŷHi performed deleting the provinces of Alicante (dashed
line), Barcelona (dotdashed line), andGranada (dotted line) plotted against all the Spanish provinces
in the year 2004, separately for men (left) and women (right)

Barcelona show more peaks, and the deletion of these provinces shows that Alava
(1), Cuenca (16), and Soria (42) are the provinces more influential for them. For
women (Fig. 4, right), it shows that removing the province of Granada produces a
high value of Cook’s distance in correspondence with the province of Soria (42).

5 Concluding Remarks

A review of recent developments on diagnostic tools for the Fay–Herriot small area
model when dealing with the restricted maximum likelihood estimate is proposed.
Detailed formulae on fixed and random effects leverage matrices are reached in case
of fixed V. Tools for an influence analysis on the Mean Squared Error (MSE) of the
Empirical Best Linear Unbiased Predictor (EBLUP) and a Cook’s distance for the
empirical predictor are considered.

The problem of the leverage of observed values on predicted values by the EBLUP
was observed when we consider that, even though we make use of convenient esti-
mates, the latter depends on the same influential values. Therefore, the leverage
matrix of the model can be affected by influential observations through the estimates
of the model variance. On the other hand, influence analysis on MSE estimates is
based on m × m2-order matrices, which can be very useful in assessing the contri-
bution of single observations (the small area direct estimates) in the evaluation of
the MSE of all areas.

An application to real data is offered to the reader. The case of the estimation
of poverty proportions for the Spanish provinces is exploited to illustrate the ben-
efits of using specific diagnostic tools in the context of small area estimation. This
methodology is useful because once the influential areas have been identified through
visual examination, the researcher can eliminate them to improve the accuracy of the
estimates.

Results in this paper are intended to be extended by the author to some other
small area models, in particular to models that borrow strength from time or spatial
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correlations. It is thought that this research line might be of great interest to applied
statisticians.

Acknowledgements The author thanks the Spanish National Statistics Institute for supplying the
data.

Appendix

Details on how Eqs. (6), (7), (9) and (10) are derived are provided below.
For Eq. (6), let us first define the matrix A as

A =
∑

(ŷ∗
i −̂y)2 = ŷ∗′̂y∗ − 1

m
(̂y∗′1m)2

where 1m denote the unitary vector all of whose components are unity. Following
[20], we have then

∂A

∂ ŷ
= ∂

∂ ŷ

∑

(ŷ∗
i −̂y)2 = ∂

∂ ŷ

[

ŷ∗′̂y∗ − 1

m
(̂y∗′1m)2

]

= 2̂y′Ψ −1 − 2

m
(̂y′1Ψ

m )(1Ψ
m )′, where 1Ψ

m = Ψ −1/21m .

For the Eqs. (7), (9), and (10), the derivative of the REML variance estimate is
defined as follows:

∂σ̂ 2
v,REML

∂ ŷ
= ∂

∂ ŷ

[

a

c∗
A − (m − 1)

A

]

= a

c∗ A
−2

[

2̂y′Ψ −1 − 2

m
(̂y′1Ψ

m )(1Ψ
m )′

]

= σ 2
∂ .

For the derivative of ̂V and its inverse, appearing in Eqs. (7) and (9), we have the
following:

∂̂V
∂ ŷ

= ∂

∂ ŷ
diag(ψi + σ̂ 2

v,REMLb
2
i )

= ∂

∂ ŷ
(Ψ + B1/2σ̂ 2

v,REMLB
1/2) = B ⊗ σ 2

∂ ,

∂̂V−1

∂ ŷ
= −(̂V−1B̂V

−1
) ⊗ σ 2

∂ .

Finally, the derivative of (X′
̂V−1X)−1 which refers to Eq. (10) is
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∂(X′
̂V−1X)−1

∂ ŷ
= −∂(X′

̂V−1X)

∂ ŷ
[(X′

̂V−1X) ⊗ (X′
̂V−1X)]

= [(̂V−1B̂V
−1

) ⊗ σ 2
∂ ](X ⊗ X)[(X′

̂V−1X) ⊗ (X′
̂V−1X)].
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