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Abstract Several approaches exist to avoid singular and spurious solutions in maxi-
mum likelihood (ML) estimation of clusterwise linear regressionmodels.Wepropose
to solve the degeneracy problemby using a penalized approach: this is done by adding
a penalty term to the log-likelihood function which increasingly penalizes smaller
values of the scale parameters, and the tuning of the penalty term is done based on the
data. Another traditional solution to degeneracy consists in imposing constraints on
the variances of the regression error terms (constrained approach). We will compare
the penalized approach to the constrained approach in a simulation study, providing
practical guidelines on which approach to use under different circumstances.
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1 Introduction

Let y1, . . . , yn be a sample of independent observations drawn from the response
randomvariableYi , each observed alongsidewith a vector of J explanatory variables
x1, . . . , xn . Let us assumeYi |xi to bedistributed as afinitemixture of linear regression
models, that is
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where G is the number of clusters and pg, βββg, and σ 2

g are the mixing proportion,
the vector of J + 1 regression coefficients that includes an intercept, and the vari-
ance term for the gth cluster. The set of all model parameters is given by ψψψ =
{(p1, . . . , pG;βββ1, . . . ,βββG; σ 2

1 , . . . , σ 2
G) ∈ R

(G−1)+(J+1)G+G : p1 + · · · + pG = 1,
pg > 0, σ 2

g > 0, for g = 1, . . . ,G}.
The likelihood function can be specified as
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which we maximize to estimate ψψψ either by means of direct maximization or with
the perhaps more popular EM algorithm [5]. However, there is a well-known compli-
cation in ML estimation of this class of models: the likelihood function of mixtures
of (conditional) normals with cluster-specific variances is unbounded [4, 11].

A traditional solution to the problem of unboundedness is based on the seminal
work of [7] which, for univariate mixtures of normals, suggested imposing a lower
bound to the ratios of the scale parameters in the maximization step. The method
is equivariant under linear affine transformations of the data. That is, if the data
are linearly transformed, the estimated posterior probabilities do not change and the
clustering remains unaltered. Recently, in the multivariate case, [12] incorporated
constraints on the eigenvalues of the component covariances matrices of Gaussian
mixtures that are tuned on the data based on a cross-validation strategy. These con-
straints are built upon [9]’s reformulation and are an equivariant sufficient condition
for Hathaway’s constraints. Estimation is done in a familiar ML environment [10],
with a data-driven selection of the scale balance. Di Mari et al. [6] adapted [12]’s
method to clusterwise linear regression, further investigating its properties.

Another possible approach for handling unboundedness is to modify the log-
likelihood function by adding a penalty term, in which smaller values of
the scale parameters are increasingly penalized. Representative examples can be
found in [1–3].

In this work, we review the constrained approach of [6] and develop a data-driven
equivariant penalized approach for ML estimation. In Sect. 2, we sketch the bulk of
the methodologies; in Sect. 3 we report the results from the simulation study and then
draw some conclusions (Sect. 4).
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2 The Methodology

2.1 The Constrained Approach

Di Mari et al. [6] proposed relative constraints on the group conditional variances
σ 2
g of the kind

√
c ≤ σ 2

g

σ̄ 2
≤ 1√

c
, (3)

or equivalently

σ̄ 2√c ≤ σ 2
g ≤ σ̄ 2 1√

c
. (4)

The above constraints are equivariant and have the effect of shrinking the variances
to a suitably chosen σ̄ 2, the target variance term, and the level of shrinkage is given by
the value of c. These constraints are easily implementable within the EM algorithm
[9, 10], which is fully available in closed form, and the selection of c is based on the
data.

2.2 The Penalized Approach

An alternative to the constrained estimator is the penalized approach, in which a
penalty sn(σ 2

1 , . . . , σ 2
G) is put on the component variances and it is added to the log-

likelihood. Under certain conditions on the penalty function, the penalized estimator
is know to be consistent [1]. A function sn that satisfies these conditions is

sn(σ
2
1 , . . . , σ 2

G) = −λ

G∑

g=1

(
σ̄ 2

σ 2
g

+ log(σ 2
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)
, (5)

where σ̄ 2, the target variance, can be seen as our prior information on the scale
structure and λ is the penalizing constant that is selected based on the data. Thus, the
penalized log-likelihood can be written as

p�(ψψψ) = �(ψψψ) + sn(σ
2
1 , . . . , σ 2

G) (6)

and the set of unknown parameters is found byMLwith computation done by means
of anEMalgorithm that is available in closed form.Besides the constrained approach,
the penalized approach is equivariant with respect to linear transformation in the
response.
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2.3 Selection of the Tuning Parameter

Both approaches require selection of the tuning parameter—c and λ, respectively, for
the constrained and penalized estimators. The tuning constants can be pre-specified
by the user if any prior knowledge on the scale structure of the cluster is available. If
this is not the case, the tuning can be based on the data. We propose two alternative
approaches to select the tuning constant that can be used for both constrained and
penalized methods.

2.3.1 Cross-Validation

The first tuning approach is based on a cross-validation strategy that looks for a
tuning parameter such that the cross-validated likelihood is maximized. For a given
c or λ, this is done as follows:

1. Temporary estimates for the model parameters are obtained from the entire sam-
ple, and these are used as starting values to initialize the cross-validation proce-
dure.

2. The data set is partitioned into training and test sets.
3. Parameters are estimated on the training set and the contribution to the log-

likelihood of the test set is computed.
4. Steps 2–3 are repeated M times and the M contributions to the log-likelihood of

the test set are summed for different values of c/λ.

2.3.2 k-Deleted Method

The second tuning approach is based on the modification of the k-deleted method
[13, 14] that looks for a tuning parameter such that the (modified) k-deleted log-
likelihood1 is maximized.

For a given c or λ, this is done as follows:

1. Temporary estimates for the model parameters are obtained from the entire sam-
ple, and these are used as starting values to initialize the procedure.

2. For a given c/λ, the model parameters are estimated.
3. The (modified) k-deleted log-likelihood is computed.
4. Steps 2–3 are repeated for different values of c/λ.

1For some estimates of the model parameters, this is computed by taking out the k units with the
largest log-likelihood.
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3 Simulation Study

A simulation study has been conducted to compare the quality of the parameter
estimates and the ability to recover the clusters structure of the constrained and
the penalized approaches. Both tuning strategies—cross-validation based and k-
deleted method—were considered for the constrained and penalized approaches—
respectively conC, conCk, penC, and penCk—and the unconstrained estimator with
common (homoscedastic) component-scales (hom) and the unconstrained estima-
tor with different (heretoscedastic) component-scales (het) were also included for
comparison.

The target measures used for the comparisons were average Mean Squared Errors
(MSE) of the regression coefficients (averaged across regressors and groups) and the
adjusted Rand index [8].

We generated the data from a 3-group clusterwise linear regression model with
3 regressors and an intercept term. The group mixing weights were set equal to 0.1,
0.3, and 0.6. The regressors were generated from 3 independent standard normal
distributions; regression coefficients were randomly generated from Uniform distri-
butions U(−1.5, 1.5), and the group-specific intercepts were set equal to 4, 9, and
16.
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(a) 2 = (0.1,0.8,0.1) (b) 2 = (0.2,0.6,0.2) (c) 0.5,0.5,0.5

Fig. 1 (average) MSE of the regression coefficients for all approaches, for the three scale scenarios
and n = 100
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Fig. 2 Adjusted Rand Index (ARI) for all approaches, for the three scale scenarios and n = 100
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We considered 6 crossed simulation conditions of sample size—n = 100, 200—
and scale scenarios—σσσ 2 = (0.1, 0.8, 0.1)′ (heteroscedasticity),σσσ 2 = (0.2, 0.6, 0.2)′
(mild heteroscedasticity), and σσσ 2 = (0.5, 0.5, 0.5)′ (homoscedasticity)

For each simulation condition, we generated 250 samples and, for each approach,
we selected the best solution (highest likelihood) out of 10 random starts. We report
only the results for n = 100 as those for n = 200 were qualitatively the same (Figs. 1
and 2).

We observe that the penalized and constrained approaches overcome their uncon-
strained rivals (hom and het) both in terms of quality of regression parameter esti-
mates and cluster recovery. It seems that while with a tuning based on the more
time-consuming cross-validation strategy conC does slightly better than penC, with
the more efficient k-deleted tuning the penalized approach penCk does better than
conCk. Overall, penCk delivers the best performance.

4 Concluding Remarks

In this work, we have proposed a new penalized estimator for clusterwise linear
regressionmodels in which penalties are put on the component scales. This penalized
estimator is equivariant under changes in the scale of the response.We have compared
it with the constrained approach of [6] and illustrated two alternative tuning strategies
for bothmethodologies. The constrained and penalized estimators performuniformly
better than unconstrained ones. Whenever the computing time of tuning strategies
is not an issue, both approaches serve well the scope of fitting clusterwise linear
regression models. For quicker—and perhaps less-refined selection strategies—like
the k-deleted method, the penalized approach seems to be preferable.
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