
Complex Event Processing in
Sensor-Based Environments: Edge
Computing Frameworks and Techniques

A. Dhillon, S. Majumdar, M. St-Hilaire, and A. El-Haraki

Abstract By performing latency-sensitive computations at the edge and the
remaining computations on a backend server, edge computing systems can
effectively handle the processing of data in a timely manner. This chapter focuses
on an edge computing framework that partitions the processing of sensor data at
a mobile node placed at the edge and backend computations at a powerful server.
The primary application of the framework is in the area of processing of complex
events each of which may correspond to the simultaneous occurrence of multiple
raw events generated by sensors that are monitoring the phenomena of interest.
Application of such complex event processing techniques spans smart buildings,
smart machinery as well as smart healthcare systems. This chapter focuses on using
the proposed framework and techniques to a smart phone based remote patient
monitoring system and by using prototyping and measurement presents a rigorous
performance analysis of the system.

Keywords Mobile complex event processing · Remote patient monitoring
system · Internet of things · Smart healthcare

1 Introduction

Data acquisition and the processing of the acquired data are two components
of various computing applications. Traditionally, they have been performed by
two separate system components. The data handling components that perform
inputting/outputting of data send the data to another processing node that runs
the data processing component and sends the results back to the data handling

A. Dhillon · S. Majumdar · M. St-Hilaire (�)
Carleton University, Ottawa, ON, Canada
e-mail: amarjitdhillon@sce.carleton.ca; majumdar@sce.carleton.ca; marc_st_hilaire@carleton.ca

A. El-Haraki
TELUS, Ottawa, ON, Canada
e-mail: ali.el-haraki@telus.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_20

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_20&domain=pdf
mailto:amarjitdhillon@sce.carleton.ca
mailto:majumdar@sce.carleton.ca
mailto:marc_st_hilaire@carleton.ca
mailto:ali.el-haraki@telus.com
https://doi.org/10.1007/978-3-030-69893-5_20

502 A. Dhillon et al.

components. Examples include systems that use sensors (actuators) for data han-
dling and a backend server for analyzing the sensor data. The intercommunication
with the backend server is often achieved with the help of an inter-communication
network which can introduce significant inter-communication delays. This model
in which data handling and data processing are done by two separate components
is adequate for delay tolerant systems for which the latency of data processing
is not a concern. It fails, however, for delay sensitive systems where the results
of processing sensor data must become available within a short period of time.
Examples include sensor-based remote patient monitoring systems, various types
of industrial controllers and aerospace systems that must quickly react to the sensor
data crossing a particular threshold. Using a multi-tiered edge computing system in
which a part of the data processing is performed at the edge near the data handling
device and the remaining processing on the backend server is crucial for producing
the results in a timely manner and achieving the latency goals of the system. The
availability of inexpensive sensing devices as well as small computing systems is
fuelling the rapidly increasing deployment of such edge computing systems.

This book chapter focuses on a mobile edge computing framework that is
applicable to various smart systems that are described in the next paragraph. The
application of the framework and associated techniques for a real-time remote
patient monitoring system that includes a mobile edge computing device connected
to sensors and a backend server is described. The system uses mobile edge comput-
ing and Internet of Things (IoT) technologies to perform complex event processing
for detecting an oncoming health problem for the patient being monitored.

Complex Event Processing (CEP) is the technique used to find the patterns in real
time data streams. This chapter compares two CEP architectural frameworks: Server
CEP (SCEP) and Mobile CEP (MCEP). The SCEP framework uses the mobile
device as a gateway to forward data streams from sensors to a remote IoT server
where complex events are detected. A drawback of this existing methodology is
that the mobile phone always needs to remain connected to the back-end server.
Also, the mobile device’s network consumption is increased while transferring
large volumes of sensor data streams leading to an increase in the user cost.
Additionally, it leads to an increase in the workload at the back-end server that
serves multiple users. In the MCEP framework, as briefly introduced in [10], the
detection of complex events is performed on an edge device (such as a smart
phone) that receives data from sensors. Only the detected complex events are sent
to a back-end IoT server for further processing. The edge-based technique can
be used in various cases such as smart home, smart building and Remote Patient
Monitoring (RPM). In this chapter, a RPM use case is considered to validate
and compare the two frameworks. A thorough performance analysis is performed
using a synthetic workload which provides insights into system scalability and the
relationship between system/workload parameters and performance. This technique
can be adapted to handle various different use cases as well.

CEP in Sensor-Based Environments 503

1.1 Overview of the Chapter

This section provides a short overview of the material presented in this chapter.
Section 2 describes a representative set of related work and Sect. 3 discusses the
system architecture for the server CEP system. Then, the architecture of the mobile
CEP system is discussed in Sect. 4. Implementation details for the proof of concept
prototype are discussed in Sect. 5. Section 6 presents a performance analysis of the
system followed by experimental results in Sect. 7. Finally, Sect. 8 provides our
conclusions and Sect. 9 outlines possible directions for future work.

2 Related Work

A representative set of works on CEP and smart healthcare systems is presented. A
more detailed literature survey is available from [9].

In 2016, Higashino proposed the idea of CEP-as-a-Service (CEPaaS) in his
Ph.D. dissertation [18]. The goal is to leverage the advantages of Software-as-a-
Service (SaaS) to provide Complex Event Processing as-a-Service (CEPaaS) so that
there is no upfront charges and maintenance cost is low. He proposed Attributed
Graph Rewriting for Complex Event Processing (AGeCEP) as a language agnostic
technique to model the Continuous Query Language (CQL) queries. To support his
proposition for CEPaaS, Higashino designed a simulator called CEPSim that runs on
top of the CloudSim simulator [5, 6]. CloudSim is a popular cloud simulator written
in Java which can effectively model a public, private or hybrid cloud. It allows the
users to create a data-center, cloudlet, and broker in addition to defining different
policies. The CEPSim module creates a query model and supports the operator
placement and the operator scheduling for performing the CEP simulation. It also
provides the mechanism to compute various CEP specific metrics for performance
evaluation. A major limitation of CEPSim is that it does not have single and multiple
query optimization mechanisms and assumes that a submitted query is already
optimized. Another limitation is that it only supports the scenarios in which the
query does not fail at runtime. It is important to mention that our work compares the
performance of the edge-based mobile CEP with state-of-the-art CEPaaS system
considered as a baseline system.

Another work reported in [25] describes a pulse monitoring system which also
used the Android application as an edge gateway and sends data to a web portal for
analysis and visualization. A similar approach is described in [31] which uses an
Android device as a gateway agent. Another research in [11] and [26] employed
an IoT-based approach to process the health sensor data streams on the cloud.
The authors have used an Intel Galileo Gen 2 IoT agent to collect the sensor
data streams from the mobile device and forward these to an IoT server deployed
on the cloud. However, the authors have not used any real-time analytics system
as the computation is done by a batch processing-based Hadoop system. Further,

504 A. Dhillon et al.

no performance analysis is done in any of these two papers to demonstrate the
effectiveness of the technique.

Woodbridge et al. have proposed an RPM system for congestive heart failure
named as WANDA [30]. WANDA has a three-tier architecture in which the first
tier consists of various health sensors that transmit the health sensor data streams
to the second tier consisting of a web server. The third tier uses database servers
to persist the health sensor data streams and perform the analysis using linear
regression. Further, this system is not a real-time system and does not involve any
CEP engine. However, as the authors are predicting a heart stroke, performing batch
analysis seems to be appropriate. In 2017, Naddeo et al. [22] have proposed a real-
time m-health monitoring system. Their system consists of an Android application
which receives various physiological sensor data using the Zephyr Bioharness BH3
sensors and performs noise filtering using various high-pass and low-pass filters.
This filtered data is sent by an Android application to a remote Personal Health
Record (PHR) server for analysis and visualization. A major shortcoming of this
paper is that it does not describe the real-time analysis technique required for this
system. Another similar work is reported in [23] where the authors proposed to
integrate the CEP engine and the IoT server for smart healthcare. This paper is
primarily focused on the key benefits of using CEP on the cloud. However, no actual
system is designed and no performance analysis is done.

More recently, several survey papers such as [17], are bridging the concepts of
edge computing and healthcare. The paper by Abdellatif et al. [1] is of particular
interest as it reviews the opportunities and challenges for enabling smart healthcare
(s-health). They mention that edge-computing capabilities and next-generation
wireless networking technologies will be the enablers to achieve this goal. One
of the interesting functionalities that their architecture provides is called “edge-
based feature extraction for event detection”. Our work is one step in this direction.
By performing latency sensitive computations at the edge and the remaining
computations on a backend server, we can ensure fast response time for critical
applications such as remote patient monitoring.

Table 1 shows a summary of the various techniques presented in this section
along with the two proposed techniques (SCEP/MCEP) described in this chapter.
The comparison is based on the following parameters:

1. Simulation/Prototype/Concept/Review: This parameter indicates the methodol-
ogy that was used in the papers. Four options are possible: ‘Simulation’ means
that the performance of the model was evaluated through simulation. Similarly,
‘prototype’ means that a proof of concept was implemented and evaluated.
‘Concept’ denotes a paper where only a high-level description of the concept
is presented and ‘review’ designates a review paper where multiple techniques
are reviewed.

2. Edge/back-end: This parameter shows whether the complex event processing is
done on the edge mobile device or on a back-end server.

3. Gateway/Filter: This parameter shows the technique used to forward the health
data to the back-end server. ‘Gateway’ signifies that the mobile device is used as

CEP in Sensor-Based Environments 505

Table 1 Comparison of various techniques based on different parameters

Technique/paper

Simulation/
prototype/
concept/
review

Edge/
back-end

Gateway/
filter Security Cost

Performance
analysis

SCEP Prototype Back-end Filtering Yes Yes Yes

MCEP Prototype Edge Filtering Yes Yes Yes

ARM7 [25] Prototype Back-end Gateway Yes No No

eHealthNet [22] Prototype Back-end Gateway No No Yes

WANDA [30] Prototype Back-end Gateway Yes No Yes

[31] Prototype Back-end Gateway No No No

[11] Prototype Back-end Gateway Yes No No

[26] Prototype Back-end Gateway Yes No Yes

[1] Prototype Back-end Filtering Yes No Yes

AGeCEP [18] Simulation Back-end Gateway No No Yes

[23] Concept Back-end Gateway Yes No No

[17] Review n/a n/a n/a n/a n/a

a gateway to forward all the sensor data whereas ‘Filter’ signifies that data has
been reduced (filtered) by the mobile device to reduce user cost and data transfer
latency.

4. Security: This parameter is ‘yes’ if various security related issues have been
considered in the paper.

5. Cost: This parameter is ‘yes’ if a cost related analysis is provided in the paper.
6. Performance analysis: This parameter shows whether a rigorous performance

analysis is provided.

From the comparison provided in Table 1, we can see that unlike other method-
ologies which perform the CEP analysis on the back-end IoT server, our proposed
techniques (MCEP and SCEP) can process data on the edge and on the back-
end server respectively. It is worth mentioning that authors in [1] have done data
compression and edge-based feature extraction on the edge device. However, in our
work, we have done complete complex event detection on the device itself. Also,
various security features have been implemented in our proof of concept prototype
to help insure integrity and safety of patient health data. As compared to most of the
other papers, some of which are missing performance analysis, cost analysis and
security features, the proposed techniques consider these factors into account.

3 Server CEP System

In this chapter, we have considered the remote patient monitoring use case. As
shown in Fig. 1, the Server Complex Event Processing (SCEP) system architecture

506 A. Dhillon et al.

Sensors

Patient

MD IHS

Sensor data
streams

Sensor data
streams

Broker

Core

Analytics
 (CEPaaS)

Dashboard

SCEPA

WSO2
Agent

Agent-IHS
communication

Fig. 1 Server CEP system architecture

is three-tiered consisting of multiple sensors, a Mobile Device (MD), and an IoT
Hospital Server (IHS).

The mobile device along with the sensors comprise the edge system that
communicates with the centralized back-end server. Multiple bluetooth and WiFi
enabled wireless sensors can be used by the sensor-based system which can forward
the sensor data to an Android or iOS device. For example, in a remote patient
monitoring system, the sensors can be wearable health sensors worn by the patient.
Such cheap and efficient sensors are provided by Cooking Hacks for example
[7]. Some other commercial health monitoring sensors that can be used include
the Zeo Sleep Monitor [13], which monitors sleep disorders, and ViSiMobile [29]
which can measure Electrocardiogram (ECG), Heart Rate (HR), Arterial Oxygen
Saturation (SpO2), skin temperature, etc. As shown in Fig. 1, the multiple sensors
send the sensor data streams to a mobile device which consists of a Server Complex
Event Processing Application (SCEPA) and a WSO2 agent gateway application. The
WSO2 agent is used to register the mobile device with the IoTs server. The server
complex event processing application forwards the health sensor data streams to
the IHS. Communication between the sensors and the mobile device is done using
bluetooth or WiFi whereas data transmission between the mobile device and the IHS
is performed using either a cellular or a WiFi connection. The architecture shown
in Fig. 1 can be used in other use cases such as smart buildings and smart homes
as well. In the smart building use case, the wearable health sensors can be replaced
by wired/wireless sensors deployed in a smart building such as room temperature
sensors and light intensity sensors. In such a case, the mobile device can be replaced
by a local server or a Raspberry-Pi board depending upon the workload.

CEP in Sensor-Based Environments 507

Socket

Thread-safe
queue

Worker 1 Worker 2
MQTT Service

Sensor data streams
to IoT Server

Sensor data
streams

A B C

Fig. 2 Various components of the SCEP application

3.1 Components of the SCEP Application

Figure 2 shows the components of SCEPA which is used to forward the raw sensor
data streams from the mobile device to the IoT server.

The various components that are stacked over one another represent multiple
parallel instances of that component and a solid line represents multiple parallel
sensor data streams. The various data streams are received by the Transmission
Control Protocol (TCP) socket objects (one socket for each sensor) and appended to
a thread-safe linked-blocking queue by a producer thread (Worker 1). A dedicated
thread-safe queue is used for each sensor data stream. Further, the dequeue worker
(Worker 2) retrieves the sensor data stream from a queue and sends it to the IHS
using the Message Queuing Telemetry Transport (MQTT) service running on the
mobile device. The MQTT protocol is used here as it is made specifically for
low power devices such as sensors and mobile devices [20]. This MQTT service
forwards the sensor data streams to the back-end IoT server as per the selected
Quality of Service (QoS). Please note that the MQTT service also has its own queues
for enabling the persistent session, and if the QoS ≥ 1 is selected, the sensor data
stream tuples are temporarily persisted in case the back-end server goes offline.

3.2 Components of CEP-as-a-Service

This section discusses the various components of the CEPaaS module which is
running on the IoT server.

As indicated earlier, a solid line represents multiple parallel sensor data streams
whereas a dashed line represents a single sensor data stream. Each component which
is shown as a box in Fig. 3 receives an input data stream and emits an output data
stream as a result of the operation performed by that component. Thus, various
output streams must be defined before starting the service such that an output stream
contains all the attributes which have been emitted by its predecessor component.
When an attribute is added or removed from an input data stream (RE.v.1 for
example) as a result of an operation done by a component (MQTT receiver in this
case), then the output stream can be referred to as a stream having a different version
(RE.v.2 in this case). As shown in Fig. 3, a raw stream has 9 versions (RE.v.1

508 A. Dhillon et al.

 MQTT
Receiver

ActiveMQ

RE streams

Sink Mapper Statistics ComputerMQTT Publisher CE Stream

A
 Arrival

Time-stamping

B

 Ingestion
Time-stamping

M L K

I

 Source
 Mapper

J

 ActiveMQ
Publisher

C

D

 ActiveMQ
Receiver

EFG

Apache Thrift Server Apache Thrift ServerWSO2 CEP Engine

H

RE.v.1 RE.v.2

RE.v.9

RE.v.3

RE.v.4

RE.v.8

RE.v.5RE.v.6RE.v.7

CE.v.3CE.v.4

CE.v.2

CE.v.1

CE.v.5

Fig. 3 Components of the CEPaaS module

to RE.v.9) whereas a complex event stream has 5 versions (CE.v.1 to CE.v.5). A
brief discussion of each component is provided next in the order of the processing
performed.

(A) MQTT Receiver: It receives a raw sensor stream on a particular topic after
validating the content using the default/custom content validator. Multiple
instances of the MQTT receivers (one for each sensor stream) receive raw
sensor data streams in parallel.

(B) Arrival time-stamping: Multiple arrival time-stamping components run in
parallel. Each component receives a particular stream and appends a system
generated nanosecond precision time-stamps to indicate the arrival time.

(C) ActiveMQ publisher: An ActiveMQ [28] is used as a Java Message Service
(JMS) queue [16]. The ActiveMQ publisher is responsible for sending the
messages to a particular brokered-queue managed by an ActiveMQ broker.
ActiveMQ supports both topics and brokered-queues to transfer messages, but
we are using the brokered-queue in this case. For setting a JMS publisher,
the various adapter properties such as JMS destination type, JMS destination
name, JMS factory name, JMS provider Uniform Resource Locator (URL),
JMS Connection Factory name, Java Naming and Directory Interface (JNDI)
name, a username and a password need to be defined as per ActiveMQ server
configurations which is running on the IoT server.

(D) ActiveMQ: ApacheMQ provides support for Advanced Message Queuing
Protocol (AMQP), Streaming Text Oriented Message Protocol (STOMP),
MQTT, OpenWire [2] and other protocols. The size of each ActiveMQ queue
size is set to a maximum of 2 GB (restrained by the maximum value of an
integer). A web-based Graphical User Interface (GUI) can be used to view the

CEP in Sensor-Based Environments 509

list of all ActiveMQ queues, topics and the number of messages enqueued/de-
queued in each of the queue/topic.

(E) ActiveMQ subscriber: It is used to receive the sensor data stream events from a
particular ActiveMQ queue. A subscriber subscribes to a particular queue using
a unique queue name identifier and then forwards the received sensor tuples as
an output sensor data stream (RE.v.6 in this case).

(F) Ingestion time-stamping: This module is used to append the CEP engine
ingestion time-stamps using a nanosecond precision system clock, before
sending the sensor data streams to the CEP engine. Multiple ingestion time
components work in parallel to time-stamp each sensor stream.

(G) Source mapper: A CEP system supports various event formats such as eXtensi-
ble Markup Language (XML), JavaScript Object Notation (JSON), key-value
pairs and Health Level-7 (HL7). The role of the source mapper is to convert the
type of the sensor data stream event to the format required by the CEP engine.

(H) Apache thrift server: It is the binary communication protocol originally
developed by Facebook [27]. It provides a Remote Procedure Call (RPC)
framework to build the cross-platform services written in different frameworks
and languages [12]. WSO2 Data Analytics Server (DAS) running inside the
analytics tier provides real-time, batch and predictive analytics by using the
other services such as the CEP engine and Apache Spark. Thus, the Apache
thrift acts as a mediator to perform RPC on the CEP engine using the data
bridge agent.

(I) CEP engine: It receives multiple sensor data streams and finds the complex
events according to the CQL query which has been deployed. A single complex
event stream, as shown by a dashed line, is sent to the sink mapper. The
complex event detection time-stamping is done in the CEP engine.

(J) Apache thrift server: The detected complex events are sent back to the thrift
server which sends them back to the data analytics server for further processing.

(K) Sink mapper: The sink mapper converts the data type of the events in CEP
stream to the type required by the event publisher.

(L) Statistics computer: It computes various CEP specific metrics such as the
average CEP latency by using the time-stamps taken by the IoT server.

(M) MQTT publisher: The MQTT broker component publishes the various streams
to the event listener such as a dashboard, email, or a database.

4 Mobile CEP System

The mobile CEP system prototype has been designed to perform complex event
detection on the edge device using an embedded CEP engine that forwards the
complex events to an IHS. Although the following discussion refers to the RPM
use case, the MCEP architecture can be used in the context of other use cases as
well. As shown in Fig. 4, similar to the SCEP architecture, the MCEP architecture
also consists of three components.

510 A. Dhillon et al.

Sensors

Patient

MD IHS

Sensor data
streams

CE stream

Broker

Core

Analytics
(ELS)

Dashboard

MCEPA

WSO2
Agent

 Agent-IHS
communication

Fig. 4 Mobile CEP system architecture

1. Sensors: For the RPM use case, various wearable health sensors such as an Apple
watch, Glucometer sensor, and Pulse-oximeter are used.

2. Mobile device: The mobile device uses Apache Siddhi CEP engine embedded
with the mobile CEP application to perform complex event detection and sends
the detected complex events to the back-end hospital server.

3. IHS: An Event Listening Service (ELS) running on the analytics tier receives the
complex event alerts which are then sent to a DataDog dashboard [8] to notify
the hospital staff.

The main difference between the Mobile Complex Event Processing (MCEP)
system and the SCEP system is that in the mobile CEP system all the complex
events are detected on the mobile device instead of processing them on a centralized
IoT server. Unlike the SCEP system, which has a CEP running on the IHS, the
MCEP system has an event listening service (ELS) running on the hospital server
which is subscribed to listen to the complex events sent by the Mobile Complex
Event Processing Application (MCEPA) running inside the mobile device.

5 Experimental Setup

The experimental setup used for analyzing the performance of both the MCEP and
SCEP systems is discussed in this section. As shown in Fig. 5, the setup for both
the server CEP and mobile CEP systems consist of five components: a timekeeper,
a Sensor Simulator (SS), an IoT hospital server, a mobile device, and a wireless
router.

Note that the timekeeper used in the experimental setup for performance
measurement is not needed in a production system in which sensor simulator is
replaced by the actual senor devices. The timekeeper is used to perform global time-

CEP in Sensor-Based Environments 511

MD

RE streams

IHSTimekeeper

SS

RE/ CE streamCE stream
Router

RE streams

TCP TCP

MQTTMQTT

Fig. 5 System prototype setup

stamping to compute the end-to-end latency. This module is required as various
components (with different un-synchronized clocks) contribute to the computing
of the end-to-end latency. Therefore, a timekeeper is required to provide a global
time-stamping for raw event streams (coming from the sensor simulator) and the
complex event stream (from IHS) using a single clock. The various components
which are stacked over one another inside the sensor simulator and the timekeeper
represent multiple instances of the respective component running in parallel. The
solid line represents multiple parallel data streams while a dashed line represents
a single sensor data stream. As shown in Fig. 5, the data streams generated by the
sensor simulator are sent in parallel to both the mobile device and the timekeeper
(for global generation of time-stamping). In the SCEP system, raw event streams
are sent from the mobile device to the IoT server whereas only a complex event
stream is sent from the mobile device to the IoT server for the MCEP system.
For both architectures, a single complex event stream is sent from the IHS to the
timekeeper for global notification time-stamping. The system configuration for the
aforementioned components is provided next.

1. Timekeeper: The timekeeper module is written in Java and deployed on a
computer workstation having 16 GigaByte (GB) of RAM, a 2.8 GHz Intel Core
i7 processor and a 1 TB Hard Drive (HD) running on Ubuntu 14.04 Long Term
Support (LTS).

2. Sensor Simulator: The Java-based sensor simulator program is running on a
workstation equipped with 8 GB of RAM, a 2.8 GHz Intel Core i7 processor
and a 1 TB HD using Ubuntu 14.04 LTS. A multi-threaded sensor simulator
program is used to simulate multiple sensors generating data at a given input rate.
A nanosecond sleep time is used to generate a constant inter-arrival time for each
sensor. As shown in Fig. 5, the data streams generated by the sensor simulator are
sent simultaneously to the mobile device and the timekeeper using TCP sockets.
All the sensor simulator daemons send data streams concurrently on separate
threads, where each thread generates a stream of JSON tuples. A JSON tuple
consists of both metadata and payload data. The metadata includes information
such as patient id, sensor id and tuple id whereas the payload data includes the
respective sensor value(s) and an event generation time-stamp (T g). In certain

512 A. Dhillon et al.

cases, the sensor data stream tuple may consist of an array of data values instead
of a single value, but in our experimentation, a single value is used. Patientid
is required at the IHS in order to uniquely identify a patient when multiple
patients are enrolled with the RPM service. Also, a combination of Patientid ,
Sensorid , and Tupleid can be used to uniquely identify an event received at
the IHS when multiple patients are enrolled. The sensor simulator can generate
both synthetic and real data using synthetic and real datasets respectively. For
simulating the real data, the sensor simulator uses sensor data available at the
slp01a/slpdb dataset from the MIT-BIH polysomnographic database [14]. This
dataset consists of 2-h duration data of 4 health signals recorded at 250 Hz. In a
synthetic dataset, the tuple values are uniformly distributed integers ranging from
1 to 100. The real dataset was used to test the functional correctness of the proof
of concept prototype, whereas all the other experiments were performed using a
synthetic dataset. For performance analysis, a synthetic dataset is preferred over
a real dataset because of the ability to control the various workload parameters
including tuple values and tuple inter-arrival times.

3. IHS: An IoT server is deployed on a workstation having 16 GB of RAM,
a 3.5 GHz Intel Core i7 Processor and a 1 TeraByte (TB) Solid State Drive
(SSD) running under High Sierra MacOS. The MQTT broker and the MQTT
subscriber are deployed on the broker and the analytics tiers of the IoT server
respectively. The Java Virtual Machine (JVM) configurations for the broker, core,
and analytics components of IHS used in the prototype are given in Table 2.
Setting the configurations helps to dedicate the CPU resources to each component
such as broker, core and analytics. Here, −Xmx represents the maximum size of
the JVM heap (4 GB in this case) which can be allocated to the respective tier.

4. Mobile Device: A Google Pixel smart-phone [32] having 4 GB of RAM, 32 GB
of storage, and an AArch64 quad-core processor (1.6 GHz) running Android
Nougat is used as the mobile device. WSO2 IoT server version 3.0 is deployed
on IHS along with its compatible Android agent version 3.1.27 running on the
mobile device. Both the mobile CEP and server CEP applications that are written
using Java are built on Android Studio 3.0.1 IDE using Gradle build tools version
26.0.2 [21]. For the mobile CEP application, due to the large size of the Siddhi
CEP libraries, the multidex feature has to be enabled to overcome the 64K limit of
the Android Dalvik compiler. Relevant Internet, WiFi, and network permissions
must be enabled for the MCEP and the SCEP applications. The MQTT publisher
is deployed on the mobile device.

5. Router: A 5 GHz AC1750 Tp-Link dual-band wireless router with a maximum
bandwidth of 1350 Mbps is used to transfer data between the various compo-
nents.

Table 2 Java memory
configurations

Parameter Broker Core Analytics

−Xmx 4096 MB 4096 MB 4096 MB

CEP in Sensor-Based Environments 513

6 Performance Analysis

6.1 The Complex Event Use Case Modeling

A survey conducted by World Health Organization (WHO) reported that the
occurrence of fall is common among elderly people and seems to increase with
age and frailty level. In accordance to this survey, each year approximately 28–
35% people more than 65 years of age fall whereas this number reaches to 32–42%
for 70 years old [24]. Falls lead to 20–30% of mild to severe injuries and are the
underlying cause of 10–15% of all emergency department visits [24]. However, if a
fall is notified to hospital staff as soon as possible, further loss can be circumvented.
Fall detection can be monitored remotely using a combination of mobile sensors
and physiological sensors. Mobile sensors used for fall detection include a mobile
camera, accelerometer sensor, gyroscope sensor and Global Positioning System
(GPS) sensor. The various physiological sensors include heart rate and respiration
rate sensors [15]. In a simpler case, a fall can be identified with more certainty, if
events happen in certain order for example, a fall event followed by an increase in
heart rate event followed by a reduction in body movement event. Detecting the
occurrence of the fall event can be done using the gyroscopic sensor as well as
phone camera whereas patient’s reduction in body movement can be detected by
a combination of an accelerometer sensor and a Global Positioning System (GPS)
sensor. Another event that indicates that the person has not responded to a call from
the hospital staff within specific time can confirm the fall event.

6.2 Workload and System Parameters

The various workload and system parameters used in analyzing the performance of
the SCEP and MCEP prototypes are described next.

• Average raw event arrival rate (λRE): It is the average rate of the raw events
generated by the sensor simulator.

• Threshold for sensor stream x (T hx): The value of the threshold parameter is
used by the selection predicate (π) to filter the sensor data streams tuples which
are greater than T hx .

• Countx : Count is used to specify the number of times a particular event has to
occur. An exact number of occurrences can also be specified through the count
parameter. We have used the

〈
min:max

〉
specifier for Countx where

〈
min:

〉
means

that an event has to happen at-least min times while no upper bound is specified.
In other words, the notation

〈
min:max

〉
means that the event should happen at

least min times but less than max times.
• Time window (Twin): The time window specifies the maximum time for which

event A will wait for event B to occur. Please note that this time will be different
for each instance of the state machine. The time window starts as soon as event

514 A. Dhillon et al.

Table 3 Workload and
system parameters

Parameter Description Units

λRE 200, 300, 500, 1000, 2000 Events/second

T hx 10, 30, 50, 70, 90, 99 –

Countx 1, 5, 10 –

Twin 0.005, 0.035, 0.06, 0.1, 0.2, 10 Seconds

Trun 5, 60 Minutes

A arrives at the CEP system. Then a separate instance of the state machine is
started and it waits for event B for a time less than Twin.

• Simulation runtime in minutes (Trun): It is the length of the simulation runtime
in minutes.

The various values for the workload and system parameters used in the exper-
iments are presented in Table 3. Factor-at-a-time experiments were performed on
the system in which one parameter was varied in a given experiment while others
were held at their default values. The value in bold for each parameter presented in
Table 3 corresponds to the default value of the parameter.

6.3 Performance Metrics

The CEP specific performance metrics used in the analysis are the average
CEP latency (L) and the average complex event End-to-End (E2E) latency (E).
Application specific metrics are average CPU utilization and average network usage.
An application profiler such as Trepn, PowerTutor or Intel Performance Viewer [3]
can be used to perform system level and application level performance profiling.
However, the accuracy of these applications is a concern, thus various application
metrics have been calculated using a bash script which reads dumpsys information
using Android Debug Bridge (ADB) shell. This script reads various application and
system specific metrics and parses this information using a combination of various
grep commands, regular expressions, awk scripts and sed expressions.

Let T x
a and T x

i be the arrival time and ingestion time respectively for the earliest
arriving event, among all the events from the different sensor data streams that led to
the complex event. Let T x

g and T x
gg be the generation time and global generation time

respectively for the earliest arriving events that corresponded to the complex event.
Also, let T x

d , T x
n and T x

gn represent the complex event detection time, complex event
notification time and complex event global notification time respectively. Below, we
discuss how the various metrics are computed.

• Average CEP latency (L): A complex event is generated when a CQL pattern
match occurs by ingesting data from multiple sensor data streams. The latency
of a complex event processing is measured from the time of ingestion (Ti) for
the first event (from any sensor data stream) that leads to the complex event
to the time at which the complex event gets detected (Td). If the total number

CEP in Sensor-Based Environments 515

of complex events detected during an experiment is N , then the average CEP
latency is given by Eq. (1).

L =

N∑

x=1
T x

d − T x
i

N
(1)

The average CEP latencies for the MCEP and SCEP systems are represented
by LMCEP , and LSCEP respectively.

• Average complex event E2E latency (E): It is the average time taken by an event
(which corresponds to the earliest raw event leading to a complex event) from
the time it is generated by the sensor simulator (Tg) to the time it is notified at
the IoT server (Tn). However, as discussed earlier, Tg and Tn are time-stamped
in the sensor simulator and the IoT server respectively using clocks that are not
synchronized with one another. Thus, E is computed using Tgg and Tgn (instead
of Tg and Tn) both of which are time-stamped on the timekeeper module. E

is computed using Eq. (2), where T x
gg and T x

gn represent the global generation
time for the xth raw event that corresponds to a complex event and the global
notification time for the xth complex event, both time-stamped at the timekeeper.

E =

N∑

x=1
T x

gn − T x
gg

N
(2)

The average E2E latency for the MCEP and SCEP systems is represented by
EMCEP and ESCEP respectively. A diagram showing the relationship among
CEP specific metrics L, Q (complex event queuing delay), and E is presented in
Fig. 6. In this figure, the multiple instances of input sensor data streams (one for
each sensor) are shown in parallel such that tuples in the nth sensor data stream
(where n ∈ 1 . . . y) are denoted by T n

a and T n
i as arrival time and ingestion

time respectively. However, as the complex event is generated from a pattern
which ingests multiple sensor data events, only one complex event is shown on
the right-hand side of Fig. 6.

E

CEP Engine

~

Fig. 6 CEP specific metrics

516 A. Dhillon et al.

• Average CPU utilization (CU): It is the average CPU utilization by the mobile
application during an experiment. CUSCEPA and CUMCEPA represent the aver-
age CPU utilization for the SCEP application and MCEP application respectively.
The application is un-installed and installed again for each experiment.

• Average CPU utilization by IHS (CUIHS): CUIHS represents the average CPU
utilization of the IoT server. CUIHS−SCEP and CUIHS−MCEP represent the
average CPU utilization by the IHS for the SCEP system and MCEP system
respectively.

• User cost (UC): The UC is the average cost (in $/hour) by the user for using the
CEP service. UCSCEP and UCMCEP represent the UC for using SCEP service
and MCEP service respectively. Assuming that a user (patient) is using bluetooth
or WiFi for connecting the sensors with the mobile device, T X can be used to
compute the user cost. Here, we assume that a patient is using the mobile network
for the transfer of data between the mobile device and the back-end IoT server.
The user cost can be computed by as:

User Cost ($/hour) = T X ∗ cost per MB ∗ 3600 (3)

• Remaining Battery Life (RBL): It is the amount of remaining battery power (in
%) by the application running on the mobile device during an experiment. It is
an important metric representing the power consumption of an application. The
different types of RBL used in the experimentation are provided next.

– The RBLSCEPA−FG and RBLMCEPA−FG represent the battery usage for the
server CEP and mobile CEP applications respectively when these applications
are running in the foreground fn the mobile device and no other service is
running on the background.

– The RBLSCEPA−BG and RBLMCEPA−BG represent the battery usage for the
server CEP and mobile CEP applications respectively when these applications
are running in the background of the mobile device and no other application
is running on the foreground.

7 Experimental Results

In this section, the performance comparison between the MCEP and SCEP systems
is presented.

7.1 Comparison of Battery Usage

The impact of Trun on the power consumption of the MCEP and SCEP applications
is presented in Fig. 7.

CEP in Sensor-Based Environments 517

0 10 20 30 40 50 60
Trun (minutes)

70%

75%

80%

85%

90%

95%

100%

R
B

L
(%

)

SCEPA-FG
SCEPA-BG
MCEPA-FG
MCEPA-BG

Fig. 7 Impact of runtime on battery usage

The experiment was performed for 60 min with an initial battery level of 100%.
During the experiment, the values of the battery level on the mobile device were
noted every 20-min interval, as shown by Trun in Fig. 7. Recall that scenario
1 corresponds to SCEP/MCEP application running in the Foreground (FG) and
no other application running in the background. In scenario 2, the SCEP/MCEP
application is running in the Background (BG) with no other application running
in FG on the mobile device. It is found that the battery usage of an application
for a scenario 1 is always lower in comparison to scenario 2. Also, for a given
scenario the battery usage for the MCEP application is lower than that for the SCEP
application. This is due to the fact that only complex events are transferred to the
IoT server when the MCEP application is used. On the other hand, all the raw events
(from multiple sensors) are forwarded to IoT server when the SCEP application is
used, causing an increase in the battery consumption. The energy consumption due
to data transfer is higher in comparison to the energy consumption due to running
the CEP engine on the mobile device. This experiment shows that the proposed
MCEP system provides approximately 2% power savings (both in background and
foreground), in comparison to the SCEP system.

7.2 Comparison of Average CEP Latency

As shown in Fig. 8, for a particular λRE , the average CEP latency for the SCEP
system is much higher than the average CEP latency for the MCEP system. For

518 A. Dhillon et al.

0 200 400 600 800 1000
λRE (events/sec)

0

200

400

600

800

1000

1200

L
(m

ill
is

ec
on

ds
)

LSCEP

LMCEP

Fig. 8 Impact of the arrival rate of raw events on average CEP latency

both MCEP and SCEP systems, the average CEP latency decreases with an increase
in the average raw event arrival rate. This is because, with an increase in λRE , the
inter-arrival time of the event B is reduced. This led to a decrease in the waiting
time of the A events in the CEP engine, resulting in the lower values of LSCEP . In
the case of server CEP, the data analytics server uses Apache thrift as a middle-ware
to send the requests to the CEP engine using remote method invocations, causing
the additional delays. This results in a higher CEP latency for SCEP in comparison
to the MCEP system which does not use a middleware system. This leads to the
important conclusion that there is a trade-off between security and latency for the
SCEP system. Although enabling additional features in the IoT server provides more
security, it also leads to a significant increase in CEP processing latency.

7.3 Comparison of Average End-to-End Latency

The end-to-end latency depends upon various factors such as the sum of various
transmission times, queuing delays and event processing latencies. As shown in
Fig. 9, as λRE is increased, more complex events are detected per unit time for both
MCEP and SCEP systems.

This seems to increase the resource contention resulting in an increase in the
transmission delay (as more complex events will be sent to the timekeeper) and
the queuing delay (see [9] for an analysis on the queuing latency) leading to an
increase in the average end-to-end delay. For a given λRE , the end-to-end delay for
the SCEP system is higher than that for the MCEP system. Forwarding all the raw

CEP in Sensor-Based Environments 519

0 200 400 600 800 1000
λRE (events/sec)

0

10000

20000

30000

40000

50000

E
(m

ill
is

ec
on

ds
)

ESCEP
EMCEP

Fig. 9 Impact of the arrival rate of raw events on average end-to-end latency

sensors streams to the IoT server results in larger transmission delays that seem to
lead to a higher E for the SCEP system. From Fig. 9, we can conclude that, in spite
of using the large time window of 10 s (default time window) that leads to additional
queuing delays on the memory constrained mobile device, EMCEP achieved on the
MCEP system with a given λRE is less than ESCEP achieved on the SCEP system.

7.4 Comparison of IoT Server CPU Utilization

Figure 10 shows the impact of λRE on the CPU utilization of the IoT server in
for the MCEP system (CUIHS−MCEP) and SCEP system (CUIHS−SCEP). For a
given λRE , CUIHS−MCEP is lower than CUIHS−SCEP . This is because of the
difference in the amount of computation performed by the CPUs. In case of the
SCEP system, all the raw sensor data streams are received, parsed, type converted,
enqueued, dequeued and processed in the IoT server and then complex events are
forwarded to the timekeeper by using the MQTT broker and metrics are sent to the
DataDog dashboard by the Java Management eXtensions (JMX) agent. However, in
case of the MCEP system, only CEP alerts are received by the IoT server and no
further processing has to be done. The lower processing performed in case of the
MCEP system leads to a lower CPU utilization. From this graph, we can conclude
that the MCEP system leads to a smaller load on the IoT server, which is one of the
advantages of the MCEP system.

520 A. Dhillon et al.

0 200 400 600 800 1000
λRE (events/second)

0

10

20

30

40

C
U

 (%
)

CUIHS-SCEP
CUIHS-MCEP

Fig. 10 Impact of the arrival rate of raw events on the IHS CPU utilization

0 200 400 600 800 1000
λRE (events/second)

26

28

30

32

34

36

38

40

42

44

46

C
U

 (%
)

CUSCEPA
CUMCEPA

Fig. 11 Impact of the arrival rate of raw events on mobile device CPU utilization

7.5 Comparison of Mobile Device CPU Utilization

Figure 11 shows the CPU utilization observed for the MCEP application and the
SCEP gateway application.

CEP in Sensor-Based Environments 521

For the MCEP application, CUMCEPA seems to increase steadily with the
increase of λRE as more processing is done inside the CEP engine for the higher
raw event arrival rates. Also, it is interesting to note that for any given value of
λRE , the CPU utilization of the MCEP application is lower than the one for the
server CEP application. For example, the CUMCEPA is 41.01% when 2 sensors are
sending data streams at 1000 Hz, which is lower in comparison to the 45.40% CPU
utilization reported in the case of the SCEP application.

7.6 Comparison of User Cost

As shown in Fig. 12, for any value of raw event arrival rate, the amount of data
transferred per second (T X) is more for the server CEP in comparison to the mobile
CEP. This is because the SCEP application forwards all the raw events to IoT
server. Equation (3) (discussed in Sect. 6.3) is used to compute the data transfer cost
incurred by the user for using the MCEP and SCEP systems. The rate of $0.05/MB
offered by Bell (a major telecommunication company in Canada) is used [4]. For any
given λRE , a significantly lower data transfer cost is observed for the MCEP system
in comparison to the SCEP system as in case of MCEP system only the complex
events are sent while in case of the SCEP application the entire raw event streams
are forwarded. It is interesting to note that at an arrival rate of 1000 events/second,
the MCEP system provides a significant savings of $12.74/h ($13.32/h–$0.58/h).

0 200 400 600 800 1000
λRE (events/second)

$0.00

$2.00

$4.00

$6.00

$8.00

$10.00

$12.00

$14.00

U
C

 ($
/h

r)

UCMCEP

UCSCEP

Fig. 12 Impact of the arrival rate of raw events on user cost

522 A. Dhillon et al.

8 Conclusions

The availability of mobile devices and sensors at a reasonable price is rapidly
increasing the use of mobile edge computing systems that are deployed in various
applications that include smart homes, smart industrial machinery and smart
healthcare systems. This chapter presents an edge computing framework and
complex event processing technique for such systems. It includes a description of an
application of these to real-time remote health monitoring that leverages both mobile
system technology and edge computing techniques for the detection of complex
events which typically indicate the potential occurrence of a health problem for the
person being monitored.

One of the goals of this chapter was to compare two different architectural frame-
works for performing complex event processing in sensor-based systems: SCEP
(centralized server-based approach) and MCEP (edge device-based approach).
Unlike the high-level simulation-based SCEP approach provided in [19], we have
described an SCEP architecture and implementation of its prototype (in Sect. 3) that
also has more features. However, such an SCEP system has some disadvantages
including the necessity of a persistent network connectivity, high data transfer cost
for the user, and a larger mobile device power consumption as shown in Sect. 7.1. On
the other hand, the MCEP system can effectively handle the network unavailability
problem by performing CEP on the edge device instead of processing the sensor
data streams on a remote cloud. This system has been realized by successfully
embedding a CEP engine on the mobile device to perform the complete complex
event detection on the edge device and send various complex events (alerts) to a
remote back-end server to notify the concerned personnel. The proof of concept
prototype for the proposed technique has been built successfully and tested using
a synthetic workload on a Google Pixel mobile device running Android Nougat.
As discussed in Sect. 7.6, the MCEP system leads to a reduction in the user cost
and the mobile device energy consumption and improves the overall latency of the
system. A thorough experimental investigation based on measurements made on the
prototype has led to a number of insights into the impact of system and workload
parameters on performance. The key insights are summarized.

• Network connectivity requirement: The MCEP system does not mandate a
persistent Internet connection with the back-end IoT server. Thus, if the network
is not available temporarily, the user can still receive local alarms generated by
the mobile device.

• User cost: As shown in Fig. 12, the user cost for the MCEP system is significantly
lower compared to the cost of the centralized server CEP system. For the typical
pricing data available at [4], the MCEP system provides savings of approximately
$13/h, over the central server-based SCEP system. This is because the data
transfer is reduced in the MCEP system, as only complex events are sent to the
IoT server.

• Security and data privacy: As the mobile CEP system processes the sensor data
streams locally, the user has better data privacy in comparison to the SCEP

CEP in Sensor-Based Environments 523

system. In order to ensure the data privacy and security for the SCEP system,
various authentication and authorization methods have to be employed on the IoT
server which can lead to additional delays. Ensuring data privacy and security of
a centralized server comes at the expense of processing latency. Thus, the MCEP
system has an advantage over the SCEP system as it requires relatively lesser
security mechanisms to be imposed on the system for ensuring data privacy.

• Out-of-order message delivery: As the SCEP gateway application forwards all
the sensor data streams, this can lead to synchronization issues among various
sensor streams at the back-end server. This issue is less evident in the MCEP
system as the sensor devices are locally connected to the edge device using Wi-
Fi or bluetooth connections.

These characteristics lead to the conclusion that the MCEP system has a
significant number of benefits over the SCEP system. However, the SCEP system
also has a few benefits over the MCEP system as described next.

1. Predictive analytics: In the MCEP system, only the complex events are sent to
the IoT server. This means that the historical data of the patient is not retained.
However, in the case of the SCEP system, the historical data can be further
used by various predictive analytics algorithms using machine learning to predict
future alerts.

2. Easier to deploy security mechanisms: The IoT server comes with off-the-shelf
authentication and authorization features which are easily configured. However,
in the case of mobile CEP, such features have to be manually added and
customized.

9 Future Work

Directions for further research include the following:

• The MCEP system can be extended to form a hybrid CEP system such that real-
time analytics is performed on the mobile device and the predictive analytics is
being performed on the IoT server using the stored historical data. Investigation
of such a system forms an important direction for future research.

• The performance of the current system can be analyzed when multiple devices
(one device per user) are enrolled with the IoT server. This would test the
scalability of the system as the number of users using sensor-based systems is
expected to grow.

• MCEP leads to a lower battery usage in comparison to SCEP. Irrespective of the
system type, a mobile device based remote health monitoring can be performed
only for a number of hours after which the device needs to be recharged. This
is acceptable for a number of different situations. Using multiple mobile devices
with one serving as the primary device and the other(s) serving as backups may
be helpful when the system is continuously used without an opportunity for
recharging the battery of the mobile device. The secondary device can replace

524 A. Dhillon et al.

the primary device when it runs out of battery power for a duration during which
the primary device can get charged. The investigation of such a system focusing
on how to perform an effective hand-off from one device to the other devices
forms an interesting direction for future research.

Acknowledgments We are grateful to TELUS and Natural Sciences and Engineering Research
Council of Canada (NSERC) for providing financial support for this research.

References

1. Abdellatif, A.A., Mohamed, A., Chiasserini, C.F., Tlili, M., Erbad, A.: Edge computing for
smart health: Context-aware approaches, opportunities, and challenges. IEEE Network 33(3),
196–203 (2019)

2. Apache Software Foundation: OpenWire Protocol. [Online available at]: http://activemq.
apache.org/apollo/documentation/openwire-manual.html, [Accessed: 13-Jan-2019]

3. Bakker, A.: Comparing energy profilers for android. In: 21st Twente Student Conference on
IT, vol. 21 (2014)

4. Bell Canada: Bell pay per use rates. [Online available at]: https://support.bell.ca/Mobility/
Rate_plans_features/What-are-Bell-Mobilitys-current-pay-per-use-rates, [Accessed: 12-Jan-
2019]

5. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable Cloud computing
environments and the CloudSim toolkit: Challenges and opportunities. In: International
Conference on High Performance Computing Simulation, pp. 1–11 (2009). https://doi.org/
10.1109/HPCSIM.2009.5192685

6. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A Toolkit
for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms. Journal of Software—Practice & Experience 41(1), 23–50 (2011).
https://doi.org/10.1002/spe.995

7. Cooking Hacks: MySignals changes the future of medical and eHealth applications. [Online
available at]: http://www.my-signals.com/, [Accessed: 13-Jan-2019]

8. DataDog: Modern monitoring and analytics. [Online available at]: https://www.datadoghq.
com/, [Accessed: 13-Jan-2019]

9. Dhillon, A.: An Edge Computing-based Complex Event Processing Technique for Sensor-
based Systems. Master’s thesis, Carleton University, Ottawa, ON, Canada (2018)

10. Dhillon, A., Majumdar, S., St-Hilaire, M., Haraki, A.E.: MCEP: a Mobile device based
Complex Event Processing System for Remote Healthcare. In: the International Conference
on Internet of Things (iThings), pp. 203–210 (2018)

11. Dineshkumar, P., SenthilKumar, R., Sujatha, K., Ponmagal, R.S., Rajavarman, V.N.: Big data
analytics of IoT based Healthcare Monitoring System. In: 2016 IEEE Uttar Pradesh Section
International Conference on Electrical, Computer and Electronics Engineering (UPCON), pp.
55–60 (2016). https://doi.org/10.1109/UPCON.2016.7894624

12. Foundation, A.S.: Apache thrift™. [Online available at]: https://thrift.apache.org/. [Accessed:
13-Jan-2019]

13. Gibson Research Corporation: Zeo Sleep Manager Pro. [Online available at]: https://www.grc.
com/zeo.htm, [Accessed: 14-Jan-2019]

14. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus,
J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals. Circulation Journal
101(23), e215–e220 (2000)

http://activemq.apache.org/apollo/documentation/openwire-manual.html
http://activemq.apache.org/apollo/documentation/openwire-manual.html
https://support.bell.ca/Mobility/Rate_plans_features/What-are-Bell-Mobilitys-current-pay-per-use-rates
https://support.bell.ca/Mobility/Rate_plans_features/What-are-Bell-Mobilitys-current-pay-per-use-rates
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1002/spe.995
http://www.my-signals.com/
https://www.datadoghq.com/
https://www.datadoghq.com/
https://doi.org/10.1109/UPCON.2016.7894624
https://thrift.apache.org/
https://www.grc.com/zeo.htm
https://www.grc.com/zeo.htm

CEP in Sensor-Based Environments 525

15. Habib, M.A., Mohktar, M.S., Kamaruzzaman, S.B., Lim, K.S., Pin, T.M., Ibrahim, F.:
Smartphone-based solutions for fall detection and prevention: challenges and open issues.
Sensors Journal 14(4), 7181–7208 (2014)

16. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java™ Message Service API Tutorial
and Reference: Messaging for the J2EE™ Platform. Addison-Wesley Professional (2002)

17. Hartmann, M., Hashmi, U.S., Imran, A.: Edge computing in smart health care systems:
Review, challenges, and research directions. Transactions on Emerging Telecommunications
Technologies n/a(n/a), e3710. https://doi.org/10.1002/ett.3710

18. Higashino, W.A.: Complex Event Processing as a Service in Multi-Cloud Environments. Ph.D.
thesis, Department of Electrical and Computer Engineering at University of Western Ontario
(UWO) (2016). URL [Online available at]: https://ir.lib.uwo.ca/etd/4016

19. Higashino, W.A., Capretz, M.A.M., Bittencourt, L.F.: CEPaaS: Complex Event Processing as
a Service. In: IEEE International Congress on Big Data (BigData Congress), pp. 169–176
(2017). https://doi.org/10.1109/BigDataCongress.2017.31

20. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S – A publish/subscribe protocol for
Wireless Sensor Networks. In: 3rd International Conference on Communication Systems
Software and Middleware and Workshops (COMSWARE ’08), pp. 791–798 (2008). https://
doi.org/10.1109/COMSWA.2008.4554519

21. Kousen, K.: Gradle Recipes for Android: Master the New Build System for Android. “O’Reilly
Media, Inc.” (2016)

22. Naddeo, S., Verde, L., Forastiere, M., De Pietro, G., Sannino, G.: A Real-time m-Health
Monitoring System: An Integrated Solution Combining the Use of Several Wearable Sensors
and Mobile Devices. In: International Conference on Health Informatics (HEALTHINF), pp.
545–552 (2017)

23. Naqishbandi, T., Imthyaz Sheriff, C., Qazi, S.: Big data, CEP and IoT: redefining holistic
healthcare information systems and analytics. International Conference on Advances Research
in Engineering and Technology 4(1), 1–6 (2015)

24. Organization, W.H.: WHO Global Report on Falls Prevention in Older Age. [Online avail-
able at]: http://www.who.int/ageing/publications/Falls_prevention7March.pdf, [Accessed: 8-
March-2018]

25. Reza, T., Shoilee, S.B.A., Akhand, S.M., Khan, M.M.: Development of Android based
Pulse Monitoring System. In: Second International Conference on Electrical, Computer and
Communication Technologies (ICECCT), pp. 1–7 (2017). https://doi.org/10.1109/ICECCT.
2017.8118045

26. Senthilkumar, R., Ponmagal, R., Sujatha, K.: Efficient Health Care Monitoring and Emergency
Management System using IoT. International Journal of Control Theory and Applications 9(4),
137–145 (2016)

27. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable cross-language services implemen-
tation. Facebook White Paper Journal 5(8) (2007)

28. Snyder, B., Bosnanac, D., Davies, R.: ActiveMQ in Action. Manning Publications (2011)
29. Sotera Wireless: About Visi Mobile. [Online available at]: https://www.soterawireless.com/

visi-mobile/, [Accessed: 13-Jan-2019]
30. Suh, M., Chen, C., Woodbridge, J., Tu, M.K., Kim, J.I., Nahapetian, A., Evangelista, L.S.,

Sarrafzadeh, M.: A Remote Patient Monitoring System for Congestive Heart Failure. Journal
of medical systems 35(5), 1165–1179 (2011)

31. Wahane, V., Ingole, P.: An Android based wireless ECG Monitoring System for Cardiac
Arrhythmia. In: Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT),
pp. 183–187 (2016)

32. Wikipedia: Google Pixel. [Online available at]: https://en.wikipedia.org/wiki/Google_Pixel,
[Accessed: 13-Jan-2019]

https://doi.org/10.1002/ett.3710
https://ir.lib.uwo.ca/etd/4016
https://doi.org/10.1109/BigDataCongress.2017.31
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1109/COMSWA.2008.4554519
http://www.who.int/ageing/publications/Falls_prevention7March.pdf
https://doi.org/10.1109/ICECCT.2017.8118045
https://doi.org/10.1109/ICECCT.2017.8118045
https://www.soterawireless.com/visi-mobile/
https://www.soterawireless.com/visi-mobile/
https://en.wikipedia.org/wiki/Google_Pixel

	Complex Event Processing in Sensor-Based Environments: Edge Computing Frameworks and Techniques
	1 Introduction
	1.1 Overview of the Chapter

	2 Related Work
	3 Server CEP System
	3.1 Components of the SCEP Application
	3.2 Components of CEP-as-a-Service

	4 Mobile CEP System
	5 Experimental Setup
	6 Performance Analysis
	6.1 The Complex Event Use Case Modeling
	6.2 Workload and System Parameters
	6.3 Performance Metrics

	7 Experimental Results
	7.1 Comparison of Battery Usage
	7.2 Comparison of Average CEP Latency
	7.3 Comparison of Average End-to-End Latency
	7.4 Comparison of IoT Server CPU Utilization
	7.5 Comparison of Mobile Device CPU Utilization
	7.6 Comparison of User Cost

	8 Conclusions
	9 Future Work
	References

