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Abstract The pervasiveness of mobile devices is a common phenomenon nowa-
days, and with the emergence of the Internet of Things (IoT), an increasing
number of connected devices are being deployed. In Smart Cities, data collection,
processing, and distribution play critical roles in everyday quality of life and city
planning and development. The use of Cloud computing to support massive amounts
of data generated and consumed in Smart Cities has some limitations, such as
increased latency and substantial network traffic, hampering support for a variety of
applications that need low response times. In this chapter, we introduce and discuss
aspects of distributed multi-tiered Mobile Edge Computing (MEC) architectures,
which offer data storage and processing capabilities closer to data sources and
data consumers, taking into account how mobility impacts the management of such
infrastructure. The main goal is to address topics on how such infrastructure can
be used to support content distribution from and to mobile users, how to optimize
the resource allocation in such infrastructure, as well as how an intelligent layer
can be added to the MEC/Fog infrastructure. Furthermore, a multifaceted literature
review is given, as well as the open issues and challenging aspects of resource and
application management will also be discussed in this chapter.
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1 Introduction

The evolution of wireless communication networks has changed our interaction as
a ubiquitously connected society. This was driven by the number of mobile devices,
their ever-increasing hardware capabilities, and systematic cost reductions. To put
this into perspective, mobile devices are nowadays prevalent and present an annual
growth rate of around 25%. Literature reports such an increase to reach the expected
amount of 80 billion mobile devices by 2030 [13]. On top of that, the number
of bandwidth-hungry applications is also gaining apace, with the estimated global
monthly mobile data traffic expected to raise 3.7 exabytes per month in 2015 to
30.6 exabytes in 2020 [15]. Moreover, these new devices are also expanding their
ability to produce data. This leads to a broad collection of information ranging from
weather-related data to social behavior, which can be stored, transferred, processed,
and analyzed in several distinct ways. This new dynamic reflects on how the devices
use the available networks, putting forward stringent resource demands.

At the same time, it is important to notice that the network transformations
are continually evolving. In a related manner, the diffusion of the Internet of
Things (IoT) will have a central role in this renewal [38]. This technology envisaged
that, in essence, all objects would have some type of communications capabilities.
This will lead to an unprecedented amount of data that will flood the access networks
daily. The integration of both mobile and IoT devices with the Cloud allows
alleviating some of these stringent requirements as it provides resource elasticity on-
demand, reduces compatibility issues, and provides high availability [16]. However,
in doing that, it also introduces new entanglements such as higher latency and core
network surcharge as well as security and privacy concerns.

To improve on the aforementioned challenges while increasing the location
awareness, Fog and Edge computing can be used. The main idea of both is to provide
Cloud-like features (e.g., resource elasticity and virtualization) closer to the end-
user. To put in another way, they aim to bring a snippet of the processing power
from the Cloud to where the data source and/or devices are [42]. It is worth noticing
that this does not mean relinquishing Cloud structures but instead putting it together
with Fog and Edge technologies to enable a multi-tier computing hierarchy [7].
This arrangement yields a number of advantages, for example, reduced delays
and network traffic as the data can be stored and processed closely [6], which
is imperative for delay-sensitive applications. Security and privacy may also be
impacted as, in this case, only summarized can be transferred to the Cloud.

The convergence of Cloud, Fog, and Edge computing provides several benefits;
on the other hand, it also imposes brand-new constraints and challenges [7]. For
example, this architecture needs to be able to handle heterogeneous devices with
distinct communication capabilities, uneven processing power, and limited energy-
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capabilities. Incidentally, the advent of the fifth and sixth generation of wireless
systems (5G and 6G) will help furnish this resource-demanding upsurge and better
accommodate both network and device heterogeneity. This builds an ecosystem of
technologies and value chains aiming to cater to the swift and flexible deployment
of innovative services and applications. The 5G systems are designed to provide
high bandwidth capacity, low latency, support for dense networks, and improved
seamless mobility. In order to enable these highly-desired features, 5G will heavily
depend on Mobile (or Multi-access) Edge Computing (MEC), which is standardized
by the European Telecommunications Standards Institute (ETSI) and was formally
known as Mobile Edge Computing. This adjustment is an attempt to adopt a
broader posture regarding which network access technologies will be sanctioned
under the proposed framework [7, 29]. This paved a new direction on accepting a
comprehensive set of wired and wireless communication technologies and not only
carrier-grade cellular equipment.

It is expected that MEC will play a pivotal role in 5G systems by address-
ing a range of use cases. In order to do that, it aims to bring together the
telecommunication-capabilities and the Cloud service environment within the radio
access networks (RAN), in the close vicinity to the end-users, and being able to
attend applications on a localized basis [50]. Moreover, it can cost-effectively enable
high-performance computing on-demand to support a growing number of services
and applications at the network’s edge. To do that, it will be able to host compute-
intensive applications/services and process large chunks of data before sending it to
the Cloud. This leads to low latency connectivity and also the possibility to deploy
localized content caching.

This chapter brings an overview of problems that have to be addressed to achieve
efficient content distribution when mobility is expected to play an important role in
the resource management of distributed infrastructures. In Sect. 2, a general view of
a multi-tiered Edge computing infrastructure is presented, and the ETSI reference
architecture is briefly presented to match requirements. A literature review is
presented in Sect. 3. Additionally, Sect. 4 provides details about content distribution
and mobility in a MEC scenario. After that, the open challenges are described in
Sect. 5, while Sect. 6 brings remarks and concludes the chapter.

2 Multi-Tiered Architecture: Concepts and Definitions

This section introduces the concepts and definitions of MEC and its variations. First,
a general view of multi-tiered computing infrastructure for Edge computing and IoT
in Smart Cities is presented. Then, it is discussed how this infrastructure can be
managed using current standardization efforts.
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2.1 Edge and Fog Computing in Smart Cities

Nowadays, Cloud computing has been established as the computing infrastructure
to provide computing services to many applications. More recently, Edge and Fog
computing [7] are being developed to, in conjunction with the Cloud, improve com-
puting capabilities to fulfill application demands with stricter delay requirements as
well as to reduce network traffic by distributing computing capacity closer to the
users.

Figure 1 illustrates a scenario where users connect to their access points while
traveling in smart cities. Those access points provide cloudlets (fog nodes, or
microdata centers) as a first-mile distributed computing capacity, providing lower
response times and reducing network traffic to the Cloud by aggregating data and/or
fulfilling application computing needs at the Edge. These fog nodes can be arranged
in a hierarchy, forming a multi-tiered distributed computing infrastructure from the
edge to the cloud.

As users move, for example, in a smart city, their computation should, ideally, be
kept as close as possible, i.e., at the cloudlet available in the access point the user is
currently connected. Therefore, to manage applications and data from mobile users,
management entities distributed in this hierarchy must act to optimize the overall
system performance (e.g., response times, utilization, cost, energy consumption).

Urban Mobile Industry

Fig. 1 Overview of a multi-tiered edge computing infrastructure (from [7])
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Management and resource allocation in the Edge computing distributed infras-
tructure brings many challenges, and standardization and specification efforts are
under development. One of these efforts is discussed in the next section.

2.2 Mobile Edge Computing Specification

The ETSI Mobile Edge Computing Industry Specification Group (MEC ISG)
published a reference architecture for Mobile Edge Computing [18]. The reference
architecture is divided into three layers: System Layer, Host Layer, and Network
Layer, as illustrated in Fig. 2.

The groups of reference points are divided into (Mp), related to MEC platform
functions, (Mm), linked to management; and (Mx), working as external elements
connections. The (Mp) group includes (Mp1,Mp2,Mp3) reference points. The
Mp1 reference point connects the MEC platform to Applications, providing registra-
tion and discovery services. The Mp2 reference point manages applications routing
between the MEC platform and the Virtualization Infrastructure’s Data Plane.
The Mp3 controls the communication between MEC platforms. The (Mm) group
includes (Mm1,Mm2, . . . ,Mm9) reference points. Mm1 is used to instantiate

Applications ME ServicesMobile Edge Platform

Other Mobile Edge Platform Other Mobile Edge Host

Traffic Rules Control

DNS Handling

Service Registry
Service

Mobile Edge Host

Virtualization Infrastructure

Data Plane

Host-Level ManagementMobile Edge Platform Manager

ME App Lifecycle Management

ME App. Rules and Requirem. Management

ME Element Management

Virtualization Infrastructure Manager

Host Layer

System-Level Management

App LCM 
Proxy

Mobile Edge 
Orchestrator

Operations 
Support System

System Layer
CFS Portal User App

Mp1

Mp3

Mp2

Mm7
Mm5

Mm6

Mm4

Mm3

Mm2

Mm8

Mm9

Mx2Mx1

Mm1

Net Layer
3GPP Net Local Net External Net

Fig. 2 Mobile edge computing reference architecture [18]
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and terminate MEC applications between Operations Support System (OSS) and
Orchestrator in the System Layer. Mm2 is responsible for the configuration and
performance management between OSS and MEC Platform Manager in the Host
Layer. Mm3 manages the lifecycle, application rules, and requirements service
between Orchestrator and MEC Platform Manager. Mm4 connects Orchestrator to
the Virtualization Infrastructure Manager, and it is used to manage the virtualized
resources. Mm5 is for the configuration of applications and services between
MEC Platform Manager and MEC Platform in the Host Layer. Mm6 manages
the virtualized resources related to the application lifecycle, which is linking the
MEC Platform Manager and Virtualization Infrastructure Manager. Mm7 is used
to manage the virtualization infrastructure between Virtualization Infrastructure
Manager from Host-Level Management and Virtualization Infrastructure from MEC
Host. Mm8 connects Orchestrator to App LCM Proxy, and it handles the requests
for running applications in the System Layer. Mm9 links Orchestrator to App LCM
Proxy, and it is used for MEC application management. The (Mx) group includes
(Mx1,Mx2) reference points. Mx1 connects OSS to CFS Portal and deals with
third-parties’ requests for running applications in the System Layer. Mx2 connects
APP LCM Proxy to User App and is used by a device application to request and run
an application in the System Layer.

System Layer The upmost layer is the System Layer, composed of Customer-
Facing Service (CFS)/Applications and the System-Level Management, which
is necessary to run mobile edge applications within an operator network, thus
providing system-wide management functions.

The User Application is a mobile edge application running an application
requested by a user in the mobile edge system, and the User Application Lifecycle
Management Proxy (App LCM Proxy) is the component that deals with the
instantiation and termination of the applications. The Customer-Facing Service
Portal (CFS) is the first step for providing applications. CFS handles the operations
with third-party customers, providing information for instantiation of a set of mobile
edge applications that meet specific needs and the termination of these MEC
applications. An Mx1 reference point is used to connect CFS to the OSS. OSS
manages the operators’ network services, which receives and decides on granting
requests from the CFS portal and ME Applications. The granted requests are
forwarded to the Mobile Edge Orchestrator (MEO) for further processing. MEO
has the System Layer’s primary function due to wide visibility over the entire
mobile network’s resources and functionalities. MEO is responsible for maintaining
information of all available applications and following their requirements to perform
the deploying into mobile edge host [11, 18, 48].

Host Layer At the Host Layer, the Mobile Edge Platform Manager, Mobile Edge
Platform, Mobile Edge Host, and the Virtualization Infrastructure are used to
execute the user applications.

Mobile Edge Platform Manager (MEPM) is an entity that is further divided into
Mobile Edge Element Management, Mobile Edge Application Rules, Requirements
Management functions, and Mobile Edge Application Lifecycle Management. Mm3
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reference point connecting the MEPM to MEO provides support for the application
and services in the System Layer. Mm2 reference point linking MEPM and OSS is
used for fault reports, configuration, and performance measurements received from
the Virtual Infrastructure Manager via Mm6 reference point. Meanwhile, VIM is
responsible for allocating, managing, and releasing the virtualized resources, such
as compute, storage, and network, to the mobile edge applications [18, 48].

The Mobile Edge Platform (MEP) is responsible for offering services such as
discovering and advertising to the mobile edge applications. MEP is also used
to manage the networking environment by handling the service registry, DNS
configuration, and the traffic rules control accordingly [18].

The Virtualization Infrastructure is located in or close to the network edge,
e.g., the Network Functions Virtualization Infrastructure (NFVI), which offers
virtualized resources to mobile edge applications. Moreover, the virtualization
infrastructure brings a Data Plane that runs traffic rules from MEP and manages
the traffic among services, applications, DNS, 3GPP, and other local and external
networks [18].

Network Layer The Network Layer is further related to the connectivity to cellular
networks (3GPP), Local and External networks such as the Internet. The Host
Layer consists of Mobile Edge Host and the Host-Level Management. However,
to include the benefits of heterogeneous access technologies to the MEC, e.g., 4G,
5G, and WiFi, ETSI ISG changed the name of Mobile Edge Computing (MEC)
to Multi-access Edge Computing in 2017 [29], maintaining the acronym MEC.
In this chapter, we use the general term MEC to refer to this architecture’s latest
developments. From this expansion, Fig. 3, the intelligence is moved to the, bringing
communication functionalities as well as computation, caching, and additional
control services. The overall layering organization remains similar to the previous
one, but the network layer has been modified to consider multiple different access
technologies.

The integration of MEC and 5G is shown in Fig. 3. In addition to Radio Access
Network (RAN) and User Equipment (UE), the main 3GPP 5G network functions
are briefly summarized below.

– User Plane Function (UPF): controls the plane operations and may even be part
of the MEC Layer in some specific deployments.

– Authentication Server Function (AUSF): acts as an authentication server.
– Session Management Function (SMF): performs the session management func-

tions.
– Access and Mobility Management Function (AMF): handle the procedures

related to mobility and deals with the RAN control plane.
– Network Slice Selection Function (NSSF): selects the network slice resources

and AMF for users.
– Network Repository Function (NRF): maintains the network functions and their

supported services.
– Unified Data Management (UDM): deals with users and subscription services.
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Fig. 3 MEC and 5G architecture [29]

– Policy Control Function (PCF): handles network policies and rules in the 5G
control plane.

– Network Exposure Function (NEF): acts as a service that manages all access
requests outside the system.

The ETSI reference architecture brings an overview of the management needs
to support application mobility at the network’s edge. Several algorithms and
mechanisms need to be incorporated into the architecture to provide reduced delays
and improved Quality of Service (QoS). The remainder of this chapter discusses
a few problems that, when addressed, can provide better support for mobile
applications in smart city scenarios.

3 Literature Review

MEC’s main idea is to offer processing and storage services at the Edge of
the network, increasing computing services proximity to users. Recently, MEC
architecture is a topic that has been gaining attention from industry and academic
researchers: several surveys analyze the state of the art, discuss definitions, and
identify the main challenges to be overcome. In [59], Wang et al. surveyed
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caching, communication, and computing issues at the Edge of the network. Mach
et al. [36] surveyed existing MEC concepts, functionalities, mobility awareness,
and computing offloading. In [21], Habibi et al. surveyed architectural distinctions
between existing Edge computing models and analyzes the different aspects of the
practical implementation of Fog computing, such as security, computing resource
management, networks, and systems design. Furthermore, Abbas et al. [2] surveyed
architectures, application areas, and highlights futures directions related to MEC.

Although Edge and Cloud infrastructure composition is a topic that has been
extensively investigated, mobility management is one of the biggest challenges to
be yet overcome in MEC. For example, in [27] the authors analyze the impact of
mobility on the caching process at the Edge of the network. In specific scenarios, the
characteristics and properties of users’ mobility are unknown. Some research [35,
39] proposed strategies to predict user’s mobility. The information obtained through
prediction allows the content management process’s actions to offer a higher Quality
of Experience (QoE) for users.

Due to the importance of ensuring continuity of access to content and services
during users’ movement, migration also emerges as one of the core research issues
in the context of MEC. In [32], a decision policy is proposed to determine when
the VM migration process should start—after each handoff performed by the user, a
decision is made based on the trade-off between the gain and cost of migration. The
authors modeled the decision policy using the Continuous-Time Markov Decision
Process (CTMDP). Moreover, the Follow-me Cloud [51] concept proposes that
users’ content should be migrated, on-demand, to the cloudlet closest to the user,
reducing latency and improving the QoS offered.

Mobility management in MEC can impact several types of applications, among
which video delivery is a trendy one. MEC architectures for video delivery offers an
environment characterized by high bandwidth and low latency. In [25, 47, 54, 62],
the authors focus on decreasing the traffic overload in the network core and
improving the QoE aided by MEC. Yang et al. [62] explore machine learning
models to incorporate into the MEC node for decision-making on storing popular
videos. Experimental results suggest good performance for mobile video streaming
services. Furthermore, Petrangeli et al. [41] proposed an advanced architecture
in which additional intelligent components are placed to support video delivery.
Instead of considering low-level network performance parameters, the designed
network components focus on optimizing the QoE parameters that directly affect
users’ experience.

Rectal and Benkacem et al. [5, 46] propose a content delivery network as a
service (CDNaaS), where content providers can create a CDN slice that includes
cache, transcoder, and streamers for several videos for their users. The objective is
to find an efficient cost for creating a slicing following requirements of the network
administrator in terms of QoE and the cost of setting up the Cloud infrastructure.

MEC enables data collected at the Edge to be processed at the Edge. Associating
the high amount of data from IoT with the MEC architecture [66], it is possible to
explore new applications and services at the Edge when data collection is allied
with Artificial Intelligence (AI). Large data sets generated at the Edge of the
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network along with benefits brought by MEC urges for distributed intelligence to
be supported close to the end-users.

In [60, 66], the authors explore the feasibility of Deep Learning (DL) in terms
of applications and how to improve networking aspects to make it possible to
deploy DL at the Edge. From this perspective, the work of [33] refers to the use
of Federated Learning (FL), a method that executes DL at the Edge of the network
using distributed local user data, requiring the transmission of only the learning
model in the aggregation period.

Valério et al. [55] focuses on energy usage by choosing to go a layer upwards
and do more work in Fog, distributing the learning through the cloudlets. This way,
it is possible to have energy gains using short-range technologies with little loss of
precision. Their work discusses that the type of wireless technology cannot directly
impact intelligence, but how energy and traffic must be well aligned with the chosen
wireless technology.

Park et al. [40] also considers wireless networks, but with a focus on modeling
methods for both learning and its algorithms to fit the principle of providing the
most learning at the most extreme point possible. Zhang et al. [65] follow this line
of learning to model but explores MEC in vehicles. Offloading and edge caching is
essential for good management of aspects of the network, with the use of storage
resources and extra resources.

This book chapter aims to congregate the discussion on how mobility manage-
ment in MEC can impact the applications and the Edge-Cloud infrastructure.

4 Content Distribution and Mobility

Significative growth in mobile connectivity is expected in the next few years.
The addition of mobile users will undeniably change the dynamics of MEC
environments. Introducing mobility support in a multi-tier MEC translates some
traditional resource management problems, such as service placement and routing
path calculation, into a more complex and dynamic case. Aiming to deal with
such a scenario, the MEC infrastructure requires new approaches to orchestrate this
environment. For example, the adoption of static or dynamic service allocation and
content migration can result in distinct levels of QoE delivered to the users and
different resource usage in the MEC infrastructure.

Figure 4 illustrates this situation where the user’s latency is affected when
the application is static or dynamically allocated. It is important to notice that if
the offloaded data/processing is migrated along with the user in his/her path, the
application delays can be kept at lower levels. In a scenario where there is no
migration (illustrated by the blue line), as the user moves away from the cloudlet
where his/her content is allocated, the delay increases, degrading the QoS. On the
other hand, the red line represents the scenario where content is constantly migrated
to the cloudlet that is closest to the user at a given time, keeping latencies as low as
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Fig. 4 Latency provided by the Fog in scenarios with and without VM migrations

possibly supported by the Fog architecture. The interested reader can find detailed
results and different mobility scenarios in [44].

In such a dynamic environment, the MEC architecture needs to deal with user
mobility to deliver the required content. In this scenario, the content distribution
needs to take advantage of MEC architecture not only for caching data but also using
MEC’s processing capacities to, for instance, perform real-time video transcoding
in a faster way, also to avoid data transfer into the core network towards the Cloud.
Such dynamism in the density of the network increases the complexity of the content
distribution problems.

This section discusses the impact of mobility support in the orchestration of
MEC infrastructures and the role of content distribution and processing in such an
environment. Additionally, it is shown several typical management and optimization
problems related to data collection, distribution, and processing in scenarios with
user mobility. Several uses cases are going to be addressed, such as the migration
of mobile users data/applications throughout the multi-tiered infrastructure, the
support for high-definition video streaming for mobile users, and the use of machine
learning in an intelligent edge layer for vehicular traffic and safety.

4.1 Mobility and Content Migration

Similar to the Cloud paradigm, MEC can provide its resources in the form of
virtualized environments, such as containers or virtual machines (VMs), providing
an isolated environment that contains all the resources required by the user.

The constant movement of devices is one of the biggest challenges for MEC
architecture as it needs to be able to reduce the latency between the user and
his/her content. According to Yan et al. [61], the study of human mobility shows
that people tend to visit specific places at constant time intervals, setting standards.
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In the literature, it is possible to find several mobility models that identify human
movement characteristics in different scenarios [17, 58].

The study of mobility is important to identify movement patterns, allowing the
process of content migration (e.g., VM or container migration) to occur according to
each user’s movement’s particularities. Mobility models also provide the possibility
of a proactive migration approach; that is, the content can be migrated in advance to
locations that the user is likely to move to [19].

To guarantee the quality of the mobile user experience, it is necessary to decrease
the physical distance between content and users. In the literature, there are several
strategies [31, 51, 64] for content management at the network’s edge. In general, they
propose user’s content should be dynamically allocated according to their current
position. In such scenarios, whenever a mobile user changes him/her position, the
relevant application/contents should be moved from a host server to another one in
closer proximity to the current user position.

Recently, proactive content management strategies have been gaining attention
from the scientific community. Proactive strategies [4, 19] aim to predict when and
where users will need their content/applications in order to perform management
decisions efficiently, ensuring the quality of the users’ experience and highly
improving the QoS for delay-sensitive applications.

In this context, maintaining the application (geographically or logically) as
close as possible to the user is a great challenge [43], mainly due to a trade-
off in the migration process. Frequent migrations will allow greater proximity
between user and content, resulting in lower latency. However, migrating too often
between cloudlets may enlarge the application downtime, which is not desirable.
Furthermore, in scenarios with a large number of users, frequent migrations will
congest the network, compromising its stability and reducing the QoS offered by
the infrastructure. On the other hand, insufficient migrations may keep applications
away from their users, resulting in increased latency. Both scenarios can impair
mobile users’ QoS. Therefore, MEC architecture’s content management strategies
must offer solutions to improve user experience quality without compromising the
network operation.

The problem of content migration at the Edge of the network with mobile users
has been a focus of researchers’ attention, with several different approaches being
proposed at this time. Several metrics and criteria can be used to define when and
whether the user’s content should be migrated, such as latency and throughput
requirements, load balancing, user speed, or application priority [44]. Further
discussion on this can be found in the following section. Once the mobile users
change their locations, the MEC node serving them may not fulfill their application
requirements (e.g., latency) anymore. Other objectives, such as load balancing or
energy-saving, can also lead to migrations in the architecture.

Figure 5 depicts a hierarchical MEC architecture. A number of different combi-
nations of origin and destination nodes can be found in the migration process. The
user content can be moved in both horizontal and vertical directions in terms of the
MEC nodes’ hierarchical organizations. Horizontal migrations occur between MEC
nodes at the same hierarchical level, as illustrated as the type 1 migration. Once the
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1
2

3Internet

Fig. 5 VM migration scenarios in a fog computing architecture

MEC nodes, at the same level, usually have similar computing power, that kind of
migration tends to keep, in a stable range, the levels of QoS offered to the users.
Furthermore, vertical migrations may also be needed if, for example, the users’
requirements or the MEC’s resources availability change dynamically over time.
If the user increases their requests for computing power, for instance, the resources
demand on the current MEC node may surpass its capability. A resource richer
MEC node, used to be closer to the network’s core, should fulfill the new user’s
requirement (illustrated as the type 2 migration). Similarly, if the user decreases
him/her computing and storage requirements or the required latency should be
improved, the user content can be migrated to a MEC node closer to the Edge of
the network (type 3 migration). Moreover, fog nodes at higher levels can be used to
reduce the number of migrations (and, consequently, downtime) when, for example,
high-speed users are moving at the Edge.

User access to content can also be performed in different ways based on the user’s
location and his/her content. Access can be direct if the content is one hop away
from the user, which provides the lowest possible latency. However, if necessary,
multiple hops may be traversed when user contents are not placed in the closest fog
node.

Therefore, one main concern of models like MEC is the proximity between
mobile users and their contents, as well as reducing network congestion while
maintaining QoS for mobile users [14]. However, the development of strategies to
realize this management is far from trivial. In the light of that, it is necessary to
develop solutions that orchestrate content migration considering several aspects,
such as user mobility patterns, characteristics of applications, migration costs,
networking utilization and congestion, and so on.
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4.2 Resource Allocation and Optimization

One of the main questions that arise in the MEC architecture is how to distribute
heterogeneous services and their data throughout the MEC hierarchy such that
application requirements are obeyed, even in a constrained infrastructure. For
example, latency is one of the utmost importance requirements for many interactive
edge applications. Scheduler decision making heavily relies on such requirements to
model an optimization problem that outputs the resource allocation that determines
where applications and their components should run.

Furthermore, the possibility of mobile users continuously requesting resources
from the MEC infrastructure has a considerable effect on the environment which
needs to be managed. In a static scenario, once the resources were allocated to a
user, it will be reserved until the tasks are finished. In this case, changes in the
resources demand will only occur when the number of active users increases or
decreases. On the other hand, in the mobility scenario, this change of resource
demand in the infrastructure also happens when a relevant number of users move
to a specific area. Figure 6 illustrates a scenario where a large number of mobile
users can be temporally concentrated in a reduced part of the map. The red circle
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illustrates such an area. In this case, MEC allocation approaches need to deal with
such a dynamic environment. Circles represent base-stations/access points antenna
range, where each of these access points has a cloudlet offered to the mobile
users. Illustrative routes from these users are illustrated in blue, purple, orange, and
green. When mobile users reach a certain position, which can be pre-defined or
calculated in real-time, a decision-making algorithm should run to choose the best
new location (cloudlet) for his/her VM, based on current mobility (e.g., prediction
of next position) and also on current load of cloudlets in the user’s path. Based on
that, good resource management approaches are a goal for both users, which then
experience a better QoE, and MEC resource providers, which can improve profit
metrics as energy or network usage by better allocating resources.

The resource allocation imposes challenging problems in distributed systems. In
other to alleviate these issues, one prominent component of the MEC infrastructure
is the scheduler. This component is responsible for allocating resources from the
distributed infrastructure to users’ applications. The decision-making on which
applications should run where is taken by following an optimization model. In
general, it takes information about the application requirements and infrastructure
characteristics as input. The scheduler defines one or more objective functions,
whose output maximizes or minimizes single or multiple objectives.

Considering that, one important aspect of MEC architectures is related to users’
mobility along the infrastructure edge. In MEC, optimization modeling should
consider user mobility as a determining factor of future allocation needs. How to
model this problem in a hierarchical infrastructure will impact which optimization
technique is more appropriate: when a larger scope is considered, faster optimization
is needed. When mobility is added, the environment’s dynamics brings the need
for faster optimization techniques to be developed for this computing model. The
scheduler should then run an optimization algorithm to find the best allocation
possible for applications considering requirements and resources capacity.

In general, the scheduling problem, which involves finding the optimal solution
among a universe of exponential possibilities, is considered a hard problem to solve
among computer problems. Most of these problems are classified into classes of
problems named as NP-Complete and NP-Hard [28]. One of the most classical
problems is known as Knapsack Problem (KP) [30]. This problem consists of, based
on a set of items with different sizes and a knapsack with a defined capacity, finding
the optimal set of items that maximize the use of the knapsack capacity.

To exemplify the KP in the MEC architecture context, consider a system with five
cloudlets and 100 VMs. The basic version of the scheduler just needs to find a valid
solution for the allocation of the VMs in the cloudlets, considering the needs of each
VM (e.g., processing power, memory) and the capacities of each cloudlet. This can
be expanded to consider multiple cloudlets at the same level, multiple levels, and
also include the Cloud. As users move, the problem becomes dynamic in nature,
and the modeling should be adapted to be able to find solutions in a reasonable
time. Different optimization algorithms and techniques can be applied to behave
according to the current dynamicity observed in the system.
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Many different types of algorithms can be used to solve optimization problems,
such as the classic KP problem and its variations. The most basic is an exhaustive
search (or Brute force) that will test for each possible valid solution and find the
best one. In practice, this algorithm can be used only in very small search space
sizes because it has an exponential execution time. However, if the search space
size is small enough, it always guarantees the global optima (best solution). In the
VM placement problem for MEC, the search space can vary in size: from a single
cloudlet to the whole hierarchy. Brute force may be a choice for local optimization
in a single cloudlet when a few users are currently at that location.

Another class of algorithms used to solve optimization problems, including
the KP problem, is Dynamic Programming. The Branch and Bound algorithm
focus on solving combinatorial optimization problems. Basically, in combinatorial
optimization, the choices to be made are discrete (i.e., where to allocate each VM),
and in continuous optimization, the choices to be made are based on continuous
values (i.e., real numbers). Dynamic programming can speedup the scheduler
solution to be applicable in larger scenarios, e.g., considering multiple fog nodes
and hierarchical levels.

Other optimization techniques include heuristics and meta-heuristics, where
solution quality is not guaranteed, but the algorithms running times are reduced.
For example, artificial intelligence has also been used to solve KP problems. Some
examples are Genetic Algorithms (GA), Ant Colony Optimization (ACO), as well
as hybridizations combining two or more techniques. Heuristics and meta-heuristics
are suitable for larger and more dynamic scenarios, where multiple runs of the
optimization are needed to keep the objective functions optimized. This is clearly
the case in MEC, for example, in rush hours when a great percentage of users move
around and need to have their VMs/containers properly placed to improve QoS and
obey requirements.

4.3 Streaming Services

Combining Edge and Cloud computing environments bring to streaming services
attractive improvements in terms of bandwidth usage and reduced latency. End-
users can expect high-quality video applications to work anywhere and on a variety
of heterogeneous devices, including mobile ones. In Video-on-Demand (VoD)
services, the edge resources of Internet Service Providers can be utilized to
host video contents in the proximity of end-users, thereby reducing latency and
mitigating load on core networks and data centers. This is especially helpful for
live streaming scenarios that require low latency [24, 47]. Moreover, pre-processing
can be done in multiple streaming flows deployed at the Edge. Consequently,
reducing the download traffic needed from the Cloud. An edge architecture for video
streaming delivery has the following purposes: (1) Improving the users QoE, serving
the requested edge content as close as possible to the user; (2) Reduce congestion at
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Fig. 7 Illustration of collaborative video delivery on a MEC network

the core of the network; (3) Efficiently deal with the amount of data that needs to be
processed and extract meaningful data to create more intelligence.

Figure 7 depicts a network service scenario that uses intelligent video streaming
in a MEC architecture. A MEC server (i.e., an fog node) is connected to base
stations to perform data storage and processing. A MEC client can access video
streaming services being run in the infrastructure [62]. This video service can
cache videos and run analytics to extract knowledge about video content and
video service performance, such as estimating QoE from throughput for different
users. This can assist network-level decisions to adjust the data rate accordingly
to the available downlink bandwidth, presenting real-time network information and
context in addition to reduced latency.

To provide cache services in a MEC architecture, it is important to effectively
deliver the video content through smart caching mechanisms. Such mechanisms can
be based, for example, on content popularity and geographical location/distribution
of mobile devices. With this strategy, it is possible to efficiently use VoD and live
broadcast services to a wide range of heterogeneous devices. In order to improve
this, a good idea is to distribute the service closer to the region with more bandwidth
consumption. This approach is similar to the existing overlay cache that is applied
to services with lower latency indexes due to edge utilization. This can lead to the
improvement of the QoE for the majority of users. In other words, smart caching
available on the fog nodes enable popular videos to be available closer to the user,
thus reducing traffic load and delay [54].

Besides promoting caching, a MEC architecture can also perform data processing
at the Edge. Figure 7 gives another example, the deployment of a transcoding service
closer to the end-users can improve the QoE in dense networks with heterogeneous
resolutions being requested. For instance, transcoding of cached videos can be run
in a MEC server when a user requests a different version. This task can be run in
the MEC server that stores the original video (data provider node) or the MEC node
serving the video (delivery node). For example, a video with a 5 Mbps (720p) bit
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rate could be transcoded from a cached copy presenting a bit rate of 8 Mbps (1080p).
In doing that, the fog node uses the bandwidth available to serve as many users as
possible. Moreover, the content provider does not waste bandwidth, sending high
bit rate video through the core network.

MEC infrastructures can be utilized to store and process video closer to the
user, performing real-time transcoding, caching for reduced bandwidth use, video
analytics, augmented reality, and so on.

4.4 Intelligence at the Edge

Edge devices produce large amounts of data nowadays, enabling the so-called
Smart Environments, also as a consequence of the current pervasiveness of personal
mobile and IoT devices [56]. The massive data source has considerably changed in
this scenario, moving from Cloud data centers to end devices. Bringing Artificial
Intelligence (AI) and Machine Learning (ML) to be run at the Edge of the network
is seen as a possibility to enable the full potential of Big Data processing in MEC
infrastructures.

In the standard Big Data scenario, data is generated at the Edge of the network
and must be transported to data centers, which contains a very high processing and
storage capacity. Then, AI is applied to generate knowledge about those data and
keep it in a central location. Data centers are often geographically far from end-
users, which implies in transferring a large volume of data across links, resulting in
increased latency and congestion. In MEC, AI can be applied at the Edge as well,
processing local data to generate knowledge about specific regions, but can also
aggregate and send data to the Cloud for additional processing to generalize the
knowledge with a wider view from the data gathered at the Edge.

Machine Learning provides the most prominent set of tools currently to achieve
the mentioned AI objectives, to gain insights, perform classifications and predictions
through training with data obtained at the Edge in a process with feed-forward and
backpropagation [49]. Among ML methods, Deep Learning (DL) stands out for its
unique performance in many tasks. DL is a variation of Neural Networks (NN),
which can then be called Deep Neural Networks (DNN). DNNs can learn high-level
resources by providing highly accurate inferences on tasks. As shown in Fig. 8,
DL works with several neurons in the entrance, called Input Layer, which receives
raw data. It is connected to middle layers, known as the hidden layer, that they are
going to perform complex operations of learning, sending their results to the output
layer. The hidden layer gives more complexity than a Simple Neural Network, which
requires more computational power; however, it gives better work results in learning
tasks.

Run the DNN models on edge devices requires large computing capacity for
DNN algorithms. Therefore, actual intelligence at the Edge depends on architectures
and mechanisms able to maintain accuracy by running learning algorithms collab-
oratively at the Edge in a distributed way, and, complementary, using the synergy
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Fig. 8 Deep learning structure

Fig. 9 Three architectures for DNN training: (a) Cloud to devices (b) Devices keep training DNN
models and (c) Cloud to Edge Infrastructure, then, to devices

between the Cloud and the Edge in the considered MEC computing hierarchy. In
this scenario, the AI model’s training can be carried out in the Cloud data centers,
which then makes the trained model available to the edge devices at synchronization
rounds. Also, Edge computing can use data center resources when necessary to
optimize DNN training since transmitting DNN models through the network is less
expensive than transferring all raw data to the Cloud.

According to Zhou et al. [66], there are three ways to architect DNN training:
centralized, decentralized, and hybrid (Fig. 9):

(a) Centralized: the most common, carried out in data centers;
(b) Decentralized: aims to train models directly on the edge devices, updating the

models from time to time;
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(c) Hybrid: combines the two above, training of DNN models in data centers and
making them available at the Edge.

The first (a) is the classic one, carried out in data centers. The second (b) aims
to train the models directly on the edge devices, updating the models from time to
time. Finally, the hybrid (c) that combines the two with the training of DNN models
in data centers and making them available at the Edge.

Items b and c involve edge mobile devices running learning models, but c still
uses the Cloud infrastructure as a form of support. The learning model is massively
trained in the Cloud and then forwarded to the Edge infrastructure and then to the
devices. Here, end devices will not have the task of training the model but only
applying it in accordance with the current application. Adjustments and updates to
the model are made with the help of the Edge infrastructure.

Item b, on the other hand, covers the entire process of constituting the model,
from training the model to its applicability, going through model updates, without
the support of other infrastructures. The details of this process are at the discretion
of the chosen harvesting method. What matters in this context is that it is all done
on mobile devices.

Computationally, learning methods require a lot of resources, so applying them
to mobile devices is not straightforward. To avoid significant changes in the
architecture of mobile devices (memory, processing, and storage capacity), the
way forward would be to optimize the models in order to make them as light as
possible [10].

An interesting method is compressing the models [45]. This method generalizes
a learning structure by removing weights or operations that are less useful for
predictions and divides a large model into smaller models, each focused on a specific
application scenario. This improves processing performance as fewer operations are
done to achieve similar results.

Some care with the use of computational resources must be taken into account.
Bonawitz et al. [8] makes some recommendations in this regard. A new function
when learning on the mobile device is the use of a local data repository for training
and model evaluation. It is recommended to use simple and small databases like
SQLite, and its available storage size is small and non-negotiable, in addition to
establishing an expiration date for the data.

As for the user experience and battery life, it is preferred to invoke the learning
method only when the device is idle and with a sufficient battery is remaining or
when it is connected to the charger. Finally, a cleaning of temporary resources must
be scheduled as soon as their execution is complete.

Technologies dedicated to working with distributed DNN at the edge are cur-
rently under development, such as Federated Learning [12], Aggregation Frequency
Control [22], Gradient Compression [34], DNN Splitting [37], Knowledge Transfer
Learning [57], and Gossip Training [9]. Many of these methods work with local data
on the device, which increases data privacy.

The availability of high-quality intelligent services is a combination of the chosen
AI method with computing performance and network data transfer. Some metrics
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are adopted to describe the QoS of the Edge computing model inference, such
as latency, precision (DNN model), energy efficiency, data privacy, and commu-
nication overhead. Introducing mobility with MEC gives rise to new challenges
in intelligence at the Edge, where now, more dynamic evaluation of distributed
learning models is necessary. For example, in smart cities, traffic management can
be performed mostly at the Edge with data from users/vehicles. A more precise
estimate of traffic can be performed in real-time with low latency at the Edge,
while relevant data are still sent to the Cloud for model training and to produce
a wider view of the current traffic landscape. Therefore, in this scenario, the MEC
architecture acts to reduce data transmission to the Cloud as well as to produce faster
and more precise results in this mobility scenario.

5 Challenges

Since the MEC paradigm is an architecture that extends the Cloud computing
concept, it can share some common solutions of other distributed systems. However,
the MEC architecture’s unique characteristics make it seek new approaches to
manage its environment properly. Many approaches have been proposed over the
last years, however, many problems still have no definitive solutions. This section
introduces some of the open problems present in MEC’s development that still are
challenging the area.

5.1 Resource Management

In order for users to take advantage of the new possibilities offered by the MEC
architecture, storage and computing resources are distributed across the edge of
the network, ensuring access to infrastructure for any users who wish to use MEC
services. Identifying strategies to define where physical servers with computational
resources should be allocated is a significant challenge. To allow resources to
be used efficiently, physical servers must be allocated based on users’ expected
demand, ensuring that users’ QoE and QoS requirements are met.

The development of routines capable of managing computational resources is
another challenge to ensure MEC’s proper functioning. For the resources contained
in the MEC infrastructure to be orchestrated efficiently, it is necessary to define
signaling messages capable of transmitting information about the status of the
resources, such as capacity, availability, and workload. However, signaling messages
must not occur so frequently as not to compromise the performance of the MEC
infrastructure, and at the same time, they cannot be rare enough so that resource
information becomes outdated. The multi-tiered layout in a MEC architecture can
help resource management to be performed more efficiently, but proper mechanisms
should be designed to work in this computing hierarchy.
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5.2 Mobility Management

Besides the requirements of MEC users in terms of computing, storage, and network
resources, the MEC infrastructure also needs to manage their different mobility
patterns. For example, when moving by foot, bicycle, car, bus, or train, each
one of them presenting a specific route and speed. That characteristic of mobile
users introduces several challenges for the MEC infrastructure in terms of service
availability. Such a dynamic scenario affects different MEC’s resource management
processes such as load balance, service placement and migration, packet routing,
and handoff.

Different researches have been made to increase the capability of MEC infras-
tructures to support mobile users. However, the impact of user mobility is not
completely understood in these infrastructures. More accurate algorithms for pre-
dictive mobility patterns can help some processes to plan their future demand in a
specific area. Based on such information, the infrastructure can prepare the required
resources to serve that increasing demand. This process can prepare MEC to scale
up or scale down or even triggers a load balance, service migration, or caching data.

Furthermore, in this context, technologies like Software Defined Networks
(SDN), Network Function Virtualization (NFV) [63], and network slicing [3] have
been introduced to increase the flexibility of these infrastructures. Besides the
capability of network slicing to dynamically reallocate MEC resources to serve
these mobile users [20], further studies on that context need to be made to evaluate
the computing overhead of that resource reallocation.

5.3 Data Transmission

Although the allocation of computing and storage resources is a key point in the
impact of QoE guarantees, the management of network resources can either perform
several improvements or impair the user experience. Due to the close relationship
between IoT, MEC, and big data, a colossal amount of data is transferred between
different architecture points. To properly serve delay-sensitive applications, placing
data and computing close to the users is not enough if the MEC architecture cannot
deliver the users’ requests within the required deadline. Based on that, transmission
techniques need to be optimized enough to provide a good connection among the
MEC nodes and their users. Moreover, in MEC, it is expected that different wireless
and wired technologies work together and seamlessly. Inter-operation and seamless
connection maintenance among a variety of protocols is a challenge yet to be
overcome.

In this scenario, both wireless technologies and routing protocols must be
optimized to provide a faster and more stable connection to the users. One of the
main challenges of developing these protocols is dealing with the trade-off between
energy efficiency, latency, reliability, and throughput. Predictive offloading [1] and
transmission protocols that avoid wireless package collision and improve latency
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and throughput are some candidate solutions. End-to-end network slicing has also
been rising as a promising solution.

5.4 QoS and QoE Guarantees

MEC servers can help guarantee QoS for latency-sensitive applications from mobile
users using a resource reservation method. Whereas for static latency-tolerant
users, the MEC management system can perform on-demand provisioning to
allocate computational resources and provide reliable computing services. However,
provisioning schemes that have to take into account high-mobility users is a complex
task. Therefore, novel hybrid MEC server schemes must be developed to enable
increased MEC providers’ revenue through serving a maximum number of users
with guarantees on their QoS requirements.

Research studies in QoE show that the changing conditions of best-effort
networks introduce numerous problems. In traditional video streaming, each client
typically streams a video that is available in a single bitrate on the server-side [23,
26]. A MEC architecture should exploit users’ context information to optimize
content management and video delivery, which may result in better utilization of
network resources and QoE.

5.5 Intelligence at the Edge

Introducing intelligence techniques at the Edge comes with new challenges that
must be faced. When considering a MEC learning network, the data can be
distributed to be processed on more than one node. In this situation, the development
of a tool that offers an automatic and efficient partitioning is both a challenge and
an opportunity in this scenario. It is also interesting to note that offloading a training
model from the Cloud to the edge nodes can incur high communication costs,
especially when considering applications that require persistent training models.

Studying the trade-offs between transferring data to the Cloud and implementing
adaptive learning models at the edge, as well as designing adaptation mechanisms
for model distribution, is a current challenge. It is important to note that distributed
learning also comes with the challenge of privacy-preserving mechanisms, which
should also be developed for sensitive data (e.g., medical applications).

Mobility within MEC gives rise to additional challenges for proper implemen-
tation of intelligence at the Edge, where a more dynamic evaluation of distributed
learning models is necessary. For example, in smart cities, traffic management can
be performed mostly at the Edge with real-time data from users/vehicles. A more
precise estimate of traffic can be performed in real-time with low latency at the Edge,
while relevant data are still uploaded to the Cloud for model training and to produce
a wider view of the current traffic landscape. Other mobile application scenarios can
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present the same characteristics, where a dynamic composition of data from edge
devices is crucial for the learning model to provide relevant results.

5.6 Green MEC

Energy consumption has gained attraction from researchers in different areas of
computing, such as embedded systems and resource management in Cloud comput-
ing and networking. For example, to manage the increase in energy consumption,
the InterSCity project1 has different approaches to this challenge. In a CF-RAN
architecture proposed in [52, 53], they introduce local nodes closer to the users
where they perform part of the processing tasks. The cloud-level nodes manage
the workloads sent to the fog on demand to process the surplus traffic from the
front-haul.

The computation on fog nodes is performed through virtualized network func-
tions, where they are activated or deactivated in real-time depending on the network
demand. In [55], IoT data are collected at the Edge by nodes called gateways.
Communication between The IoT devices and gateways is done using wireless
cellular technology. Then, they are used to train a distributed machine learning
solution model. Both energy consumption and training performance are evaluated
with different configurations and compared to the centralized cloud model. Such a
distributed solution significantly mitigates the traffic sent to the Cloud. On the other
hand, a reduction in distributed learning precision training has to be made. With the
network’s edge addition, the energy consumption shows savings of over 90% in data
transmission and 2% in precision loss when compared to the centralized cloud-level.
Further studies in energy management with mobility and Edge computing are still
needed to tackle heterogeneous devices’ complexities in a Smart City and mobility.

Each MEC node can use considerably less power than a conventional large Cloud
data centers. At the same time, it has lower processing power, requiring a higher
number of active locations. Because of that, the increase of new small-scale MEC
servers being created becomes a big concern for energy consumption. This way, it is
unquestionable to develop innovative techniques for achieving power energy saving.
At the same time, computational resources need to be manageable to guarantee
satisfactory computational performance.

The small area serviced by each MEC server impacts resource allocation and
service management, especially when considering user mobility. The consequence
of this architecture is a highly dynamic workload, with a fast change in load
patterns. More advanced prediction techniques could be developed to enable
optimized resource utilization, focusing on load distribution and reduced power
consumption. Moreover, management services for dynamic scaling workloads that
require significant computational resources need to be developed. Also, note that

1www.interscity.org.

www.interscity.org
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as MEC systems grow over a region, a green load balancing solution needs to be
optimized in the best way using further available renewable energy.

6 Conclusion

We have presented in this chapter a distributed, multi-tiered Mobile Edge Comput-
ing (MEC) architecture. MEC was introduced by the ETSI Mobile Edge Computing
Industry Specification Group (MEC ISG) as a means of offering data storage and
processing closer to data sources and data consumers, taking into account the
mobility aspects impact on infrastructure management.

We have covered topics on the benefits of using the MEC architecture, such as
support for content distribution to mobile users, optimization of resource allocation,
video delivery, and intelligence at the Edge. Besides, we have pointed out that MEC
was designed to offer low latency connectivity for delay-sensitive applications due
to users’ proximity at the network’s edge.

It becomes clear that many research challenges are still essential to be carried out
to properly manage data and resources in MEC architectures, especially with the
high heterogeneity in application requirements and into the future. We discussed
some directions, providing insights on interesting potential problems for further
research.
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