
Anwesha Mukherjee
Debashis De · Soumya K. Ghosh
Rajkumar Buyya Editors

Mobile Edge
Computing

Mobile Edge Computing

Anwesha Mukherjee • Debashis De
Soumya K. Ghosh • Rajkumar Buyya
Editors

Mobile Edge Computing

Editors
Anwesha Mukherjee
Department of Computer Science
Mahishadal Raj College
Mahishadal, West Bengal, India

Debashis De
Centre of Mobile Cloud Computing
Department of Computer Science
and Engineering
Maulana Abul Kalam Azad
University of Technology
Kolkata, West Bengal, India

Soumya K. Ghosh
Department of Computer Science
and Engineering
Indian Institute of Technology
(IIT) Kharagpur
Kharagpur, West Bengal, India

Rajkumar Buyya
Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of
Computing and Information Systems
The University of Melbourne
Melbourne, VIC, Australia

ISBN 978-3-030-69892-8 ISBN 978-3-030-69893-5 (eBook)
https://doi.org/10.1007/978-3-030-69893-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-69893-5

Preface

Mobile edge computing (MEC) provides cloud computing services at the edge of
mobile network, which facilitates developers, service providers as well as users.
For low latency and high bandwidth services, edge computing–assisted IoT has
become the pillar for the development of smart homes, smart health, smart traffic
management, smart cities, etc. This book will discuss the overview of mobile edge
computing along with its real time applications. The book is organized into three
parts: Part I, Part II and Part III.

Part I contains seven chapters focusing on the architecture and working model of
MEC. In chapter “Introduction to Mobile Edge Computing”, an overview of MEC
has been given, where the authors have discussed the architecture, applications
and challenges of MEC. In chapter “Performance Analysis of Mobile, Edge and
Cloud Computing Platforms for Distributed Applications”, a comparative analysis
of mobile, edge and cloud computing platforms has been provided for distributed
applications. Chapter “Performance Analysis of Mobile, Edge and Cloud Com-
puting Platforms for Distributed Applications” provides an experimental work on
how to select the best mobile-aware computing environment based on parameters
including application type, data size and network bandwidth quality. A comprehen-
sive analysis has been provided that highlights the experiment results and provides
recommendations for scheduling the execution of data-intensive applications on
mobile-aware computation systems. In chapter “Geospatial Edge-Fog Computing:
A Systematic Review, Taxonomy, and Future Directions”, geospatial edge-fog
computing has been discussed along with future research directions. Chapter “Study
of Power Efficient 5G Mobile Edge Computing” has focused on the use of edge
computing in the field of fifth generation mobile network. This chapter gives an
all-encompassing outline of MEC, its energy-efficient innovation, potentials, needs
and applications. Further, the authors have focused on energy-efficient resource
allocation and task offloading. The future directions of 5G MEC have been also
explored in chapter “Study of Power Efficient 5G Mobile Edge Computing”. Sensor
mobile edge computing, its architecture and its applications along with future
research directions have been demonstrated in chapter “SMEC: Sensor Mobile
Edge Computing”. The integration of MEC with the Internet of Things (IoT) has

v

http://dx.doi.org/10.1007/978-3-030-69893-5_1
http://dx.doi.org/10.1007/978-3-030-69893-5_2
http://dx.doi.org/10.1007/978-3-030-69893-5_2
http://dx.doi.org/10.1007/978-3-030-69893-5_3
http://dx.doi.org/10.1007/978-3-030-69893-5_4
http://dx.doi.org/10.1007/978-3-030-69893-5_4
http://dx.doi.org/10.1007/978-3-030-69893-5_5

vi Preface

been discussed in chapter “IoT Integration with MEC”. Chapter “Green-aware
Mobile Edge Computing for IoT: Challenges, Solutions and Future Directions”
has illustrated a green-aware framework for MEC to address the energy-related
challenges and provides a generic model formulation for the green MEC. Few
state-of-the-art workloads offloading approaches to achieve green IoT have also
been discussed and compared in comprehensive perspectives. Few future research
directions related to energy efficiency in MEC have been also explored in this
chapter.

Part II contains eight chapters focusing on the systems, platforms, services
and issues of MEC. In chapter “Prescriptive Maintenance Using Markov Deci-
sion Process and GPU-accelerated Edge Computing”, the authors have discussed
the GPU-accelerated edge computing for predictive maintenance. A prescriptive
maintenance method has been presented in this chapter for a distributed factory
environment using the partially observable Markov decision process (POMDP)
framework. In chapter “Software-Defined Multi-domain Tactical Networks: Foun-
dations and Future Directions”, the authors have discussed the software-defined
multi-domain tactical networks. In this chapter, the authors have explicitly anal-
ysed the challenges and reviewed the current research initiatives in SDN-enabled
tactical networks. Mobility is a vital factor in MEC, which has been the focus
of chapters “Mobility Driven Cloud-Fog-Edge Framework for Location-aware
Services: A Comprehensive Review” and “Mobility-Based Resource Allocation
and Provisioning in Fog and Edge Computing Paradigms: Review, Challenges,
and Future Directions”. Chapter “Mobility Driven Cloud-Fog-Edge Framework for
Location-aware Services: A Comprehensive Review” has discussed the concerns
and challenges associated with mobility-driven cloud-fog-edge-based framework
to provide several location-aware services to the endusers efficiently. Chapter
“Mobility-Based Resource Allocation and Provisioning in Fog and Edge Computing
Paradigms: Review, Challenges, and Future Directions” has discussed the current
state –of the art of the methods and technologies used to manage the resources to
support mobility in fog and edge environments. Chapter “Mobility-Based Resource
Allocation and Provisioning in Fog and Edge Computing Paradigms: Review,
Challenges, and Future Directions” has also explored future research directions
to efficiently deliver smart services in real-time environments. Service migration
and security are also important issues in MEC. Optimal migration decisions
are challenging because they depend on the cloud environment, or edge nodes
belong to different orchestrators, and security issues in the migration process
must also be resolved in order to prevent unreliable requests. In chapter “Cross
Border Service Continuity with 5G Mobile Edge”, different approaches have been
discussed to address these challenges by identifying the security implications
of migration methods based on the blockchain integration. Chapter “Security in
Critical Communication for Mobile Edge Computing based IoE Applications” has
discussed the different security protocols in communications for the architectures
which can be designed for MEC based Internet of Everything (IoE) applications.
In chapter “Blockchain for Mobile Edge Computing: Consensus Mechanisms and
Scalability”, existing consensus protocols and scalability techniques in both well-

http://dx.doi.org/10.1007/978-3-030-69893-5_6
http://dx.doi.org/10.1007/978-3-030-69893-5_7
http://dx.doi.org/10.1007/978-3-030-69893-5_8
http://dx.doi.org/10.1007/978-3-030-69893-5_9
http://dx.doi.org/10.1007/978-3-030-69893-5_10
http://dx.doi.org/10.1007/978-3-030-69893-5_11
http://dx.doi.org/10.1007/978-3-030-69893-5_10
http://dx.doi.org/10.1007/978-3-030-69893-5_11
http://dx.doi.org/10.1007/978-3-030-69893-5_11
http://dx.doi.org/10.1007/978-3-030-69893-5_12
http://dx.doi.org/10.1007/978-3-030-69893-5_13
http://dx.doi.org/10.1007/978-3-030-69893-5_14

Preface vii

established and next-generation blockchain architectures have been discussed, and
from that the authors have evaluated the most suitable solutions for managing MEC
services and discussed the benefits and drawbacks of the available alternatives. In
chapter “Evaluation of Collaborative Intrusion Detection System Architectures in
Mobile Edge Computing”, the authors have outlined some of the characteristics
relevant for evaluating collaborative intrusion detection systems (CIDS) deployment
models and surveyed existing CIDS architectures in the context of MEC.

Part III contains seven chapters illustrating various applications of MEC. In
chapter “Edge Computing based Conceptual Framework for Smart Health Care
Applications Using Z-Wave and Homebased Wireless Sensor Network”, the authors
have studied the concepts of wireless biomedical image monitoring systems along
with their features. The use of MEC in the field of agriculture has been discussed
in chapter “Mobile Edge Computing Based Internet of Agricultural Things: A
Systematic Review and Future Directions”. In chapter “Deep learning in Computer
Vision Through Mobile Edge Computing for IoT”, the authors have described
how deep convolutional neural network (CNN) through MEC can be a potential
technique for IoT-based solutions. In chapter “Mobile Edge Computing for Content
Distribution and Mobility Support in Smart Cities”, the authors have discussed the
aspects of distributed multi-tiered mobile edge computing (MEC) architectures,
which offer data storage and processing capabilities closer to data sources and
data consumers, taking into account how mobility impacts the management of such
infrastructure. Chapter “Complex Event Processing in Sensor-Based Environments:
Edge Computing Frameworks and Techniques” has focused on an edge computing
framework that partitions the processing of sensor data at a mobile node placed at
the edge and backend computations at a powerful server. The primary application
of the framework is in the area of processing of complex events, each of which
may correspond to the simultaneous occurrence of multiple raw events generated
by sensors that are monitoring the phenomena of interest. Application of such
complex event processing techniques spans smart buildings, smart machinery as
well as smart healthcare systems. Chapter “Complex Event Processing in Sensor-
Based Environments: Edge Computing Frameworks and Techniques” has focused
on using the framework and techniques to a smartphone-based remote patient
monitoring system and by using prototyping and measurement presents a rigorous
performance analysis of the system. The application design and service provisioning
for multi-access edge cloud has been discussed in chapter “Application Design and
Service Provisioning for Multi-Access Edge Cloud (MEC)”. Finally, in chapter
“Simulating Fog Computing Applications Using iFogSim Toolkit” the simulation
of fog computing applications has been demonstrated.

Mahishadal, West Bengal, India Anwesha Mukherjee

Kolkata, West Bengal, India Debashis De

Kharagpur, West Bengal, India Soumya K. Ghosh

Melbourne, VIC, Australia Rajkumar Buyya

http://dx.doi.org/10.1007/978-3-030-69893-5_15
http://dx.doi.org/10.1007/978-3-030-69893-5_16
http://dx.doi.org/10.1007/978-3-030-69893-5_17
http://dx.doi.org/10.1007/978-3-030-69893-5_18
http://dx.doi.org/10.1007/978-3-030-69893-5_19
http://dx.doi.org/10.1007/978-3-030-69893-5_20
http://dx.doi.org/10.1007/978-3-030-69893-5_20
http://dx.doi.org/10.1007/978-3-030-69893-5_21
http://dx.doi.org/10.1007/978-3-030-69893-5_22

Contents

Part I Foundations and Architectural Elements

Introduction to Mobile Edge Computing . 3
Anwesha Mukherjee, Debashis De, Soumya K. Ghosh,
and Rajkumar Buyya

Performance Analysis of Mobile, Edge and Cloud Computing
Platforms for Distributed Applications . 21
Mohammad Alkhalaileh, Rodrigo N. Calheiros, Quang Vinh Nguyen,
and Bahman Javadi

Geospatial Edge-Fog Computing: A Systematic Review,
Taxonomy, and Future Directions . 47
Jaydeep Das, Soumya K. Ghosh, and Rajkumar Buyya

Study of Power Efficient 5G Mobile Edge Computing . 71
Priti Deb, Mohammad S. Obaidat, and Debashis De

SMEC: Sensor Mobile Edge Computing . 89
Anindita Raychaudhuri, Anwesha Mukherjee, and Debashis De

IoT Integration with MEC . 111
AmirHossein Jafari Pozveh and Hadi Shahriar Shahhoseini

Green-Aware Mobile Edge Computing for IoT: Challenges,
Solutions and Future Directions . 145
Minxian Xu, Chengxi Gao, Shashikant Ilager, Huaming Wu,
Chengzhong Xu, and Rajkumar Buyya

Part II Systems, Platforms and Services

Prescriptive Maintenance Using Markov Decision Process and
GPU-Accelerated Edge Computing . 167
Chen-Khong Tham and Naman Sharma

ix

x Contents

Software-Defined Multi-domain Tactical Networks: Foundations
and Future Directions . 183
Redowan Mahmud, Adel N. Toosi, Maria Alejandra Rodriguez, Sharat
Chandra Madanapalli, Vijay Sivaraman, Len Sciacca, Christos Sioutis,
and Rajkumar Buyya

Mobility driven Cloud-Fog-Edge Framework for Location-Aware
Services: A Comprehensive Review . 229
Shreya Ghosh and Soumya K. Ghosh

Mobility-Based Resource Allocation and Provisioning in Fog and
Edge Computing Paradigms: Review, Challenges, and Future
Directions . 251
Sudheer Kumar Battula, Ranesh Kumar Naha, Ujjwal KC, Khizar Hameed,
Saurabh Garg, and Muhammad Bilal Amin

Cross Border Service Continuity with 5G Mobile Edge . 281
Hamid R. Barzegar, Nabil El Ioini, Van Thanh Le, and Claus Pahl

Security in Critical Communication for Mobile Edge Computing
Based IoE Applications . 315
Tanmoy Maitra, Debasis Giri, and Arup Sarkar

Blockchain for Mobile Edge Computing: Consensus Mechanisms
and Scalability . 333
Jorge Peña Queralta and Tomi Westerlund

Evaluation of Collaborative Intrusion Detection System
Architectures in Mobile Edge Computing . 359
Rahul Sharma, Chien Aun Chan, and Christopher Leckie

Part III Applications

Edge Computing Based Conceptual Framework for Smart
Health Care Applications Using Z-Wave and Homebased
Wireless Sensor Network . 387
Shouvik Chakraborty, Kalyani Mali, and Sankhadeep Chatterjee

Mobile Edge Computing Based Internet of Agricultural Things:
A Systematic Review and Future Directions . 415
Anirbit Sengupta, Sukhpal Singh Gill, Abhijit Das, and Debashis De

Deep Learning in Computer Vision through Mobile Edge
Computing for IoT . 443
Abu Sufian, Ekram Alam, Anirudha Ghosh, Farhana Sultana, Debashis De,
and Mianxiong Dong

Contents xi

Mobile Edge Computing for Content Distribution and Mobility
Support in Smart Cities . 473
Pedro F. do Prado, Maycon L. M. Peixoto, Marcelo C. Araújo,
Eduardo S. Gama, Diogo M. Gonçalves, Matteus V. S. Silva, Roger
Immich, Edmundo R. M. Madeira, and Luiz F. Bittencourt

Complex Event Processing in Sensor-Based Environments: Edge
Computing Frameworks and Techniques . 501
A. Dhillon, S. Majumdar, M. St-Hilaire, and A. El-Haraki

Application Design and Service Provisioning for Multi-access
Edge Cloud (MEC) . 527
Muhammad Jaseemuddin, Hager Ghouma, Maysam Fazeli,
Ameera Al-Karkhi, Mohamad Eldakroury, and Uvaiz Ahmed

Simulating Fog Computing Applications Using iFogSim Toolkit 565
Kamran Sattar Awaisi, Assad Abbas, Samee U. Khan, Redowan Mahmud,
and Rajkumar Buyya

Index . 591

Part I
Foundations and Architectural Elements

Introduction to Mobile Edge Computing

Anwesha Mukherjee, Debashis De, Soumya K. Ghosh,
and Rajkumar Buyya

Abstract Fifth generation mobile networks aim to use multi-tier heterogeneous
cellular networks integrated with cloud computing to provide users with low
latency and energy-aware service. However, for high bandwidth and low latency
services, edge/fog computing comes into the scenario. In edge/fog computing,
the intermediate devices between end users and cloud participate in processing
and storage of data as well as execution of applications. Mobile edge computing
provides cloud computing services at the edge of mobile network, which facilitates
the developers, service providers as well as the users. Internet of Things (IoT) has
become a principle component to design smart technological solutions for our daily
life. For low latency and high bandwidth services, edge computing assisted IoT
has become the pillar for the development of smart home, smart health etc. This
chapter will discuss the overview of mobile edge computing along with its real time
applications.

Keywords Mobile edge computing · IoT · Power · Latency

A. Mukherjee (�)
Department of Computer Science, Mahishadal Raj College, Mahishadal, West Bengal, India
e-mail: anweshamukherjee@ieee.org

D. De (�)
Centre of Mobile Cloud Computing, Department of Computer Science and Engineering,
Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
e-mail: dr.debashis.de@ieee.org

S. K. Ghosh
Department of Computer Science and Engineering, Indian Institute of Technology (IIT)
Kharagpur, Kharagpur, West Bengal, India
e-mail: skg@cse.iitkgp.ac.in

R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing
and Information Systems, The University of Melbourne, Melbourne, VIC, Australia
e-mail: rbuyya@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_1&domain=pdf
mailto:anweshamukherjee@ieee.org
mailto:dr.debashis.de@ieee.org
mailto:skg@cse.iitkgp.ac.in
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1007/978-3-030-69893-5_1

4 A. Mukherjee et al.

1 Introduction

Mobile phones have become essential commodity in our daily life. With the
advancement in wireless network, the number of mobile phone users have increased
drastically. Moreover mobile phone usage is not limited within voice call and
SMS service, but also has become a most popular equipment of accessing Inter-
net anytime anywhere. Different mobile apps are nowadays available for online
shopping, health monitoring, playing game, watching video etc. Fifth generation
mobile network aims to use multi-tier heterogeneous cellular network integrated
with cloud computing to provide users latency and energy-aware service [1, 2].
However, for high bandwidth and very low latency services, edge/fog computing
comes into the scenario. In edge/fog computing the intermediate devices between
end users and cloud participate in processing and storage of data as well as execution
of applications [3–8]. Multi-Access Edge Computing which is formerly known as
Mobile edge computing (MEC) [3] provides the cloud computing services at the
edge of mobile network, which facilitates the developers, service providers as well
as the users. In MEC the operators can open their Radio Access Network edge
to the authorized third parties in order to provide rapid and flexible deployment
of interactive services and applications for the users. Computations are performed
usually at the local network edge in edge computing instead of putting it to the
remote cloud, that in turn reduces the latency. The network providers meet the
customers’ demand of good coverage and high bandwidth through the help of MEC.
MEC enables Information Technology (IT) and Cloud Computing facilities at the
edge of the network. The objective of MEC is to minimize the congestion, reduce
latency, and provides better Quality of Service (QoS) by accomplishing the related
processing tasks closer to the end user. MEC can be implemented as cellular base
stations which in turn can offer rapid application deployment. In [4] the authors have
defined MEC as:

MEC is a new network paradigm that provides information technology services and cloud
computing capabilities within the mobile access network of mobile users and has become a
technology.

MEC is a principle component for fifth generation (5G) network [4, 9]. As MEC
is located close to the mobile users and within the Radio Access Network (RAN),
low latency and high bandwidth access can be provided [4]. Hence, the QoS is
improved. Moreover, service deployment and caching at the edge of the network
helps to efficiently handle user requests and minimize congestion. In mobile edge
computing computations are performed at the edge of the network, which helps to
minimize the latency.

The MEC can be partitioned into three management systems (MS) [10]: (i)
hosting infrastructure, (ii) application platform, and (iii) application. The first one
contains a virtualization manager and virtualization layer. The second one offers
traffic control, service registry, communication services and RAN information
services. The third one serves as a virtualized machine for applications. Before

Introduction to Mobile Edge Computing 5

getting deeper into the architecture of MEC, we will discuss few models closely
related to MEC.

• Mobile cloud computing: Mobile devices usually have resource limitation, for
which they may not be able to store huge volume of data or perform exhaustive
computation. To solve the shortcomings, MCC has been developed. Mobile
Cloud Computing (MCC) is a paradigm where the computations and storage take
place inside the cloud instead of the mobile device [4, 11–15]. The user accesses
the data from the cloud whenever required. Similarly when a computation has to
be executed, that also is performed inside the cloud and the user gets the result.
However, long distant cloud servers may increase the latency and the mobile
device’s power consumption, which may be crucial for real time application with
hard deadline. In such situation it can be fruitful to bring the computation and
storage facilities at the edge of the network.

• Fog computing: In case of the fog computing, the intermediate devices between
end node and cloud servers, for example switch, router etc. takes part in data
processing [8, 16–21]. These devices are known as fog devices. Edge devices
in this case serve as a connecting devices with the end nodes. Fog computing
is very much related to IoT nowadays. The data collected using IoT devices
are preliminarily processed inside the fog device before being forwarded to the
cloud. This in turn helps to reduce latency and improve the QoS subsequently.

• Cloudlet: A computer or a cluster of computers which offers the cloud services
to the users by acting as an agent, is referred as cloudlet [22–27]. The cloudlet
contains cache copies of the data stored inside the cloud. When a user requests
to access to the data, the cloudlet meets the requirement. As a result the latency
is reduced and the QoS is enhanced. However, cloudlet is mainly popular with
wireless access environment.

The concept of MEC is much broader which makes it applicable for Wi-Fi as
well as mobile network. Here, we will discuss on the use of cloudlet as well as
cellular base station with edge server to depict the scenario of MEC.

2 Architecture of MEC

Mobile edge computing architecture contains the following components [4]:

• Mobile device
• Cellular base station (in case of cellular network)
• Cloudlet (in case of Wi-Fi)
• Edge Server
• Core network
• Cloud

In case of cellular network cellular base station is used along with an edge server.
In this case it has to be noted that small cell with storage and computational ability

6 A. Mukherjee et al.

Fig. 1 Architecture of mobile edge computing

has been studied in few existing works [19, 21, 28–32]. In case of Wi-Fi i.e. Wireless
Local Area Network (WLAN) or Wireless Metropolitan Area Network (WMAN),
cloudlet is used. As cloudlet itself offers the storage and computation facilities, it can
act as edge server. The MEC architecture is presented in Fig. 1. As observed from
the figure, the mobile devices are connected with the base station (cellular network)
or cloudlet (WMAN/WLAN). The base station is connected with edge server. The
edge server is connected with the cloud through the core network.

The mobile device users or mobile users and edge server are the key components
of MEC, on basis of which two categories of services come [4]:

• Mobile user oriented service
• Edge server oriented service

For the first category, mobile users request for offloading data and/or computa-
tion. For the second category, resource management is crucial. Mobile user oriented
service mainly deal with offloading. Offloading is of two types [4]:

• Data offloading: User requests for storing data.
• Computation offloading: User requests for execution of a computation.

Introduction to Mobile Edge Computing 7

Edge server oriented service mainly deal with resource allocation and manage-
ment. Load balancing is a vital issue when multiple users generate request. In such
situations, efficient resource management is required.

2.1 Edge Server Placement

For cellular network, it is assumed that the edge servers of MEC are placed in
the location of the base station [4]. For WLAN/WMAN, the edge servers are the
cloudlets [4]. In WLAN, the number of mobile users is relatively less due to the
small network coverage, whereas in WMAN has large number of mobile users
due to its large network coverage. Hence, multiple cloudlets are to be placed at
different locations. The mobile device access the cloudlet through an access point.
If a cloudlet is co-located with an access point, the mobile users under that AP can
get minimum cloudlet access delay. Otherwise, the mobile user under that access
point if sends some request that will be relayed to nearby cloudlets, which can cause
cumulative delay for multi-hop relays. Hence, the cloudlet placement is promising
when a number of access points are present. This leads to two optimization problems
[4]: cache placement [33] and server placement [34], both of which can be dealt with
through a direct reduction to the capacitated K-median problem [35]. Nevertheless,
this problem differs; here the assumption is that either there is no limitation in
capacity of caches/servers or all the caches/servers have identical capacities though
the capacity of each cloudlet may differ and different user requests also may need
different resources for computation. This problem has been described as a new
capacity cloudlet placement problem in [36]. Here, the objective is to put the
cloudlets in such a way that the average access delay between the users and cloudlets
can be minimized. To address this issue an effective heuristic solution with good
scalability has been proposed in [36]. Another method for cloudlet placement and
user allocation under them has been discussed in [24]. The selection of cloudlet
while multiple cloudlets are available has been studied in [25, 26]. A location-
aware service deployment method has been proposed in [37], where K-means is
used. Here, the mobile users are divided into multiple clusters depending on their
geographic location and the service instances are deployed to edge servers nearest
to the mobile user clusters. The problem of access point ranking has been addressed
in [38]. An adaptive integrated access point ordering scheme has been proposed in
[38], where the connection features of the access point are analysed.

2.2 Resource Allocation

For the cellular base station based MEC framework, resource allocation and
computation offloading both are considered. In MCC, the computation is executed
inside the cloud and result is sent back to the mobile device. In MEC the offloading

8 A. Mukherjee et al.

takes place usually inside the edge servers. In [39] the trade-off between latency and
reliability in case of task offloading has been studied. A mobile user divides a task
into subtasks and offloads those subtasks to multiple edge servers to reduce latency
and offloading failure probability. For multi-user environment energy-efficient
resource allocation has been discussed in [40], where the authors have considered
computation-efficient models for negligible and non-negligible base station execu-
tion durations. A total weighting and energy consumption minimization problem has
been developed for each model through optimal allocation of communication and
computing resources. Computation offloading and interference management have
been simultaneously taken into account in [41]. In this work physical resource block
allocation, offloading decision and computation resource allocation are considered
as optimization problems. Multi-access feature of 5G network has been considered
in [42] to develop an energy-efficient computation offloading strategy, which can
reduce energy consumption under delay constraint through the integration of radio
resource allocation and optimized offloading. In [43] optimal resource allocation has
been discussed to reduce the total energy consumption of multi-antenna access point
under the respective computation latency constraint. In [44] a wireless network has
been considered where each cellular base station is equipped with an edge server,
which can assist the mobile user in performing computationally intensive tasks by
offloading. The task offloading and resource allocation can be considered jointly
in problem formulation to maximize the offloading profit for the user by reducing
delay and energy consumption.

In cloudlet based MEC system the allocation of mobile user tasks is a promising
issue while multiple cloudlets are present. In [45] a mixed integer linear program-
ming optimization model has been discussed, where two types of cloudlets is used:
local and global. When a mobile user asks for a service and the local cloudlets are
unable to provide the service, then global cloudlet is used to handle this. In [46]
the deployment of server by maintaining QoS and low cost has been highlighted.
To solve this problem a low-complexity heuristic algorithm has been proposed. For
low-latency and energy-efficiency, a joint optimization method has been proposed
in [47]. In this work the bandwidth and resource allocation model are formulated
as a Stackelberg game and an iterative algorithm has been used to get Stackelberg
equilibrium [47]. Virtual machine (VM) migration is also a prime issue as the user is
mobile. In [48] the mobile users get services from a cloudlet as an intermediate node.
In [49] the authors have focused on reducing on-grid power consumption of cloudlet
using migration. In [50] user mobility based VM migration has been performed
between cloudlets. In [51] the VM migration problem has been considered as one-
to-one contract game and a learning-based price control scheme has been proposed
for better resource management. Two dynamic proxy VM migration schemes have
been discussed in [52] to reduce the latency and energy consumption. The problem
of dynamic service migration has been considered in [53], where a sequential
decision making problem has been formulated based on Markov Decision Process.

Introduction to Mobile Edge Computing 9

3 Latency in MEC

In MEC, the storage and computation execution takes place inside the edge device.
To calculate the latency the data transmission, propagation, computation execution
and queuing latencies are calculated. During offloading the user device’s power
consumption is also calculated.

The data transmission latency in MEC is given as [25],

Lt =
h∑

i=1

(
1 + Uf i

) Dtui

Rui

+
k∑

j=1

(
1 + Dfj

) Dtdj

Rdj

, (1)

where Ufi is the failure rate in uplink, Dtui is the data amount transmitted in uplink,
Rui is the data transmission rate in uplink, between the communicating devices for
hop i, Dfj is the failure rate in downlink, Dtdj is the data amount transmitted in
downlink, Rdj is the data transmission rate in downlink, between the communicating
devices for hop j, h is the number of hops in uplink and k is the number of hops in
downlink.

The computation execution latency is given as [25],

Lc = I

S
, (2)

where I is the number of instructions to be executed for the computation and S is
the instruction execution speed of the computing device (Edge server/cloudlet).

The propagation latency is given as [25],

Lp = Dp

Sp

, (3)

where Dp is the distance covered between the requesting and serving node, and Sp
is the propagation speed.

If the queuing latency is denoted by Lq, the total latency is given as [25],

L = Lt + Lc + Lp + Lq. (4)

The user device’s power consumption during data transmission is given as [25],

Pt = Pa ·
((

1 + Uf i

)
Dtu1
Ru1

)
+ Pi ·

(
h∑

i=2

(
1 + Uf i

)
Dtui

Rui

)

+ Pi ·
(

k−1∑
j=1

(
1 + Dfj

) Dtdj

Rdj

)
+ Pa ·

((
1 + Df k

)
Dtdk

Rdk

)
,

(5)

10 A. Mukherjee et al.

where Pa and Pi represents the mobile device’s power consumption in active and
idle modes respectively. For the first hop the communication takes place from the
user to the next node in case of uplink. Hence, in this case the mobile device’s power
consumption in active mode is considered. Similarly, in case of downlink in case of
the last hop (kth hope) the result is received by the mobile device. Thus, in this case
the mobile device’s power consumption in active mode is considered. In rest cases
the mobile device’s power consumption in idle mode is considered.

The user device’s power consumption during computation is given as [25],

Pc = Pi · Lc. (6)

As the computation takes place inside the edge device, the power consumption
of the mobile device in idle mode is considered.

The user device’s power consumption during propagation is given as [25],

Pp = Pi · Lp. (7)

The user device’s power consumption during queuing period is given as [25],

Pq = Pi · Lq. (8)

The total power consumption of the mobile device i.e. user device is then given
as [25],

P = Pt + Pc + Pp + Pq. (9)

In Fig. 2a and 2b the latency in computation offloading and user device’s power
consumption during that period, while using MEC and MCC are compared. This
is observed that by bringing the computation at the network edge the latency is
delivering the result to the mobile user has been reduced by ~45% and power
consumption of the user device by ~35% than the mobile cloud computing
framework.

In Table 1 three codes have been considered which are offloaded using MEC
and MCC. The latency and user device’s power consumption during that period are
shown. From the experimental results it is observed that MEC reduces the latency
by ~40% and user device’s power consumption by ~30% with respect to MCC.

From the theoretical and experimental results we observe that MEC reduces the
latency and power consumption of the user device than MCC in case of computation
offloading.

4 Applications of MEC

There are several applications of MEC discussed as follows.

Introduction to Mobile Edge Computing 11

Fig. 2a Latency in MEC and MCC

Fig. 2b Power consumption in MEC and MCC

12 A. Mukherjee et al.

Table 1 Latency and power consumption in code offloading

Latency (sec) Power consumption (W)
Device details Code MEC MCC MEC MCC

(i) User device: Asus ZenFone 5,
RAM: 2 GB, storage: 16 GB,
processor: Intel Atom Z2560
1.6 GHz.
(ii) Edge server/cloudlet: Intel(R)
Xeon(R) CPU E5-2667 0 @
2.90GHz (Octa Core).
(iii) Cloud server: Intel(R) Xeon(R)
CPU ES-2667 0 @ 2.90 GHz (Hexa
Core)

Matrix
multiplication of
order 100 × 100

2.7 4.5 0.15 0.22

Creation of text
file

5.01 8.35 0.25 0.36

8-Queens puzzle 2.5 4.17 0.12 0.17

• MEC in IoT: IoT is an emerging research field nowadays. Use of MEC in IoT
can enhance the QoS by bringing computation resources nearby the network
edges [4]. It will offer scalable IoT framework for time critical applications.
In IoT-MEC, the data collected using IoT devices get partially processed inside
the edge devices, which makes the system faster, energy-efficient and reduces
the network operation cost [4, 20]. A mobile edge IoT framework has been
proposed in [52], where computing and storage resources are pushed nearby the
IoT devices. Another approach EdgeIoT has been proposed in [54], where the
data streams has been identified at the mobile edge.

• MEC in video streaming: To improve the Quality of Experience (QoE) of video
streaming in smart cities a method has been proposed in [55], where users’
mobility pattern have been followed and “Follow Me Edge” concept has been
implemented. This method reduces the network traffic as well as the delay.

• MEC in computation offloading: Computation offloading between the wearable
devices and cloud has been analysed in [56]. The convergence of cloud comput-
ing and mobile computing depends on high bandwidth edge to edge network.
Edge and fog device based computation offloading has been discussed in [19]. It
has been shown in [19] that the use of edge and fog computing has reduced the
delay and power consumption with respect to the cloud based system.

• MEC in UAV: The use of UAV (Unmanned Aerial Vehicle) can strengthen
the coverage of relay services for the mobile users in limited infrastructure
wireless systems [4]. Based on UAV a MCC framework has been considered
in [57], where the mobile UAVs have computing ability to offer computation
offloading facilities to the mobile users. This in turn reduces energy consumption
meeting the QoS requirements. Here, offloading has been done through uplink
and downlink communications between the UAV and the mobile users. This
has solved the problem of joint optimization of the bit allocation in uplink and
downlink communications. An edge computing based RAN framework has been
proposed in [58], where the fronthaul and backhaul links are mounted on the
UAVs, which provides faster response time and flexible deployment.

Introduction to Mobile Edge Computing 13

• MEC in smart healthcare: In smart health care health sensor devices capture
the health status, and the sensor data are stored and processed inside the cloud
servers. After processing the data, the health status of the user can be detected. In
[59–62], use of fog computing for health care has been discussed. In [20] the use
of edge/fog framework in time-critical applications has been shown, where health
care has been considered as a case study. By bringing the processing facility
closer to the network edge, the delay which is a vital parameter for health care,
can be reduced.

• MEC in smart home: In [32] the use of fog computing in smart home has
been demonstrated. By bringing the computing and storage resources nearby the
network edge, the delay, jitter, and energy consumption of the user device can be
reduced.

• MEC in retail: In [31] a retail application has been discussed based on fog
computing, which reduces the delay and energy consumption. The MEC can be
used in retail which can improve the energy-efficiency and reduce the delay by
pushing the computing and storage resources nearby the network edge.

• MEC in agriculture: In [63] the use of edge computing in agriculture has
been discussed. The use of MEC in water monitoring system in case of
agricultural domain has been explored in [64]. Edge computing can have various
prospects like safety traceability of products, identification of pest, unmanned
agricultural machinery etc. The use of edge computing in agricultural IoT has
been demonstrated in [65].

5 Challenges in MEC

Though the use of MEC has provided various advantages like low latency, low
power consumption etc., still several challenges remain. The selection of edge
device to meet different service requirements of multiple mobile users is a key
factor, for which novel strategy is required. Moreover, edge devices have lim-
ited resources. Therefore, low-complexity edge device placement and scheduling
become vital when large numbers of mobile users are present. Furthermore, the
request of mobile user variable, therefore dynamic strategy is required which will
deal with user requirements. Instead of these challenges, there are several other
issues discussed as follows.

• Security: The security threats and challenges in the edge-cloud computing
framework has been studied in [66]. In [67] the authors have proposed a fog
based storage framework to deal with cyber threat. As a large number of mobile
users are present, then privacy is another important issue. Here, the assessment
of each mobile node is also very important [68] along with the assessment of
invulnerability [69]. In [70] an intrusion detection system has been discussed
based on decision tree. A pre-processing algorithm has been designed in [70] to

14 A. Mukherjee et al.

digitize strings in a given dataset and after that the whole data is normalized. Then
a decision tree based scheme has been used for the intrusion detection system.

• Resource management: Resource allocation and management is another major
factor in MEC. Though several schemes have been proposed for deployment of
cloudlets for optimal service provisioning, still resource management is a vital
challenge in MEC. As multiple users are present and their requirements are also
different and most importantly the users have mobility, the resource allocation,
release, VM migration, delivery of required service with minimal latency are key
challenges.

• Energy consumption: In few existing works [19–21] it has been shown that
the use of edge/fog based framework has reduced the power consumption of the
user device. However, the energy consumption of the overall paradigm is also
crucial. Another factor is decision making regarding offloading to edge/fog or
cloud; whether partial offloading will be done or multi-level full offloading will
be done that is also important to reduce the total energy consumption of the
paradigm.

• Mobility based service provisioning: The service provisioning becomes a
challenge when the customer is mobile. Here the devices have mobility and
frequently change their locations in many cases. In such a scenario, tracking the
mobility of the user is very important to deliver the required service. The use
of artificial intelligence can play a vital role in this case. Several approaches on
trajectory analysis exist [71–77]. The integration of these methods with service
provisioning can open a new era in MEC.

• User allocation based edge-cloud placement: In order to improve the service
quality and reduce the cost simultaneously, edge-cloud placement is an important
factor. To deal with this challenge, user location can be considered and based on
the location mobile users can be allocated to the edge-clouds [78]. This can be
treated as a multi-objective optimization problem where the aim is load balancing
and reduce the communication delay of the users.

• Edge-based smart wearable system for maintenance in communication
network: The shortcomings of existing communication system are shortage of
real time operation and data interaction maintenance. The decision making and
execution process might suffer from inconvenient information interaction and
shortage of field links. Use of edge computing can provide a smart wearable
maintenance system for communication network [79]. An edge computing based
IoT platform can provide real time guidance that can help to enhance the efficacy
and quality of on-site maintenance.

Not only the issues discussed above, there are other challenges also like billing,
simulation tool designing etc. For cloud computing simulation tools are already
available in MATLAB, Python etc. Cloudsim [80, 81] is a popular simulator for
cloud computing. EdgeCloudSim [82] has been built on Cloudsim to provide
necessary functionalities for edge computing. For fog computing, iFogSim [83,
84] simulator is present. Resource allocation in fog computing considering user
mobility has been studied in [85], where MyiFogSim has been built as an extension

Introduction to Mobile Edge Computing 15

of iFogSim. To effectively promote MEC development and standardization of
experimental design, a simulator is required that will provide the computation,
storage and networking facilities at the edge to the mobile users.

6 Summary

This chapter has discussed the architecture and working model of mobile edge com-
puting. The use of edge computing provides lower latency and power consumption
of the user device with respect to the cloud only system in case of computation
offloading, which we have shown in theoretical and experimental results. The
applications and challenges of mobile edge computing are also discussed.

References

1. Zhang, Ke, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng, Li Pan, Sabita
Maharjan, and Yan Zhang. “Energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks.” IEEE access 4 (2016): 5896–5907.

2. Di Taranto, Rocco, Srikar Muppirisetty, Ronald Raulefs, Dirk Slock, Tommy Svensson,
and Henk Wymeersch. “Location-aware communications for 5G networks: How location
information can improve scalability, latency, and robustness of 5G.” IEEE Signal Processing
Magazine 31, no. 6 (2014): 102–112.

3. Mao, Yuyi, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief. “A survey on
mobile edge computing: The communication perspective.” IEEE Communications Surveys &
Tutorials 19, no. 4 (2017): 2322–2358.

4. Peng, Kai, Victor Leung, Xiaolong Xu, Lixin Zheng, Jiabin Wang, and Qingjia Huang. “A
survey on mobile edge computing: focusing on service adoption and provision.” Wireless
Communications and Mobile Computing 2018 (2018).

5. Abbas, Nasir, Yan Zhang, Amir Taherkordi, and Tor Skeie. “Mobile edge computing: A
survey.” IEEE Internet of Things Journal 5, no. 1 (2017): 450–465.

6. Mach, Pavel, and Zdenek Becvar. “Mobile edge computing: A survey on architecture and
computation offloading.” IEEE Communications Surveys & Tutorials 19, no. 3 (2017): 1628–
1656.

7. Taleb, Tarik, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and Dario
Sabella. “On multi-access edge computing: A survey of the emerging 5G network edge cloud
architecture and orchestration.” IEEE Communications Surveys & Tutorials 19, no. 3 (2017):
1657–1681.

8. Yi, Shanhe, Cheng Li, and Qun Li. “A survey of fog computing: concepts, applications and
issues.” In Proceedings of the 2015 workshop on mobile big data, pp. 37–42. 2015.

9. Hu, Yun Chao, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. “Mobile edge
computing—A key technology towards 5G.” ETSI white paper 11, no. 11 (2015): 1–16.

10. https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-
_Introductory_Technical_White_Paper_V1%2018-09-14.pdf

11. Fernando, Niroshinie, Seng W. Loke, and Wenny Rahayu. “Mobile cloud computing: A
survey.” Future generation computer systems 29, no. 1 (2013): 84–106.

12. Dinh, Hoang T., Chonho Lee, Dusit Niyato, and Ping Wang. “A survey of mobile cloud
computing: architecture, applications, and approaches.” Wireless communications and mobile
computing 13, no. 18 (2013): 1587–1611.

https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf

16 A. Mukherjee et al.

13. Othman, Mazliza, Sajjad Ahmad Madani, and Samee Ullah Khan. “A survey of mobile cloud
computing application models.” IEEE communications surveys & tutorials 16, no. 1 (2013):
393–413.

14. Huang, Dijiang. “Mobile cloud computing.” IEEE COMSOC Multimedia Communications
Technical Committee (MMTC) E-Letter 6, no. 10 (2011): 27–31.

15. De, Debashis. Mobile cloud computing: architectures, algorithms and applications. CRC
Press, 2016.

16. Bonomi, Flavio, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. “Fog computing and its
role in the internet of things.” In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, pp. 13–16. 2012.

17. Vaquero, Luis M., and Luis Rodero-Merino. “Finding your way in the fog: Towards a
comprehensive definition of fog computing.” ACM SIGCOMM Computer Communication
Review 44, no. 5 (2014): 27–32.

18. Mahmud, Redowan, Ramamohanarao Kotagiri, and Rajkumar Buyya. “Fog computing: A
taxonomy, survey and future directions.” In Internet of everything, pp. 103–130. Springer,
Singapore, 2018.

19. Mukherjee, Anwesha, Priti Deb, Debashis De, and Rajkumar Buyya. “C2OF2N: a low
power cooperative code offloading method for femtolet-based fog network.” The Journal of
Supercomputing 74, no. 6 (2018): 2412–2448.

20. Ghosh, Shreya, Anwesha Mukherjee, Soumya K. Ghosh, and Rajkumar Buyya. “Mobi-IoST:
mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications.”
IEEE Transactions on Network Science and Engineering (2019).

21. Mukherjee, Anwesha, Priti Deb, Debashis De, and Rajkumar Buyya. “IoT-F2N: An energy-
efficient architectural model for IoT using Femtolet-based fog network.” The Journal of
Supercomputing 75, no. 11 (2019): 7125–7146.

22. Satyanarayanan, Mahadev, Paramvir Bahl, Ramón Caceres, and Nigel Davies. “The case for
vm-based cloudlets in mobile computing.” IEEE pervasive Computing 8, no. 4 (2009): 14–23.

23. Gai, Keke, Meikang Qiu, Hui Zhao, Lixin Tao, and Ziliang Zong. “Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing.” Journal of Network and
Computer Applications 59 (2016): 46–54.

24. Jia, Mike, Jiannong Cao, and Weifa Liang. “Optimal cloudlet placement and user to cloudlet
allocation in wireless metropolitan area networks.” IEEE Transactions on Cloud Computing
5.4 (2015): 725–737.

25. Mukherjee, Anwesha, Debashis De, and Deepsubhra Guha Roy. “A power and latency aware
cloudlet selection strategy for multi-cloudlet environment.” IEEE Transactions on Cloud
Computing 7.1 (2016): 141–154.

26. Roy, Deepsubhra Guha, Debashis De, Anwesha Mukherjee, and Rajkumar Buyya.
“Application-aware cloudlet selection for computation offloading in multi-cloudlet environ-
ment.” The Journal of Supercomputing 73, no. 4 (2017): 1672–1690.

27. Jararweh, Yaser, Fadi Ababneh Lo’ai Tawalbeh, Fadi Ababneh, Abdallah Khreishah, and Fahd
Dosari. “Scalable cloudlet-based mobile computing model.” In FNC/MobiSPC, pp. 434–441.
2014.

28. Barbarossa, Sergio, Stefania Sardellitti, and Paolo Di Lorenzo. “Joint allocation of computation
and communication resources in multiuser mobile cloud computing.” 2013 IEEE 14th
workshop on signal processing advances in wireless communications (SPAWC). IEEE, 2013.

29. Yu, Shuai, and Rami Langar. “Collaborative Computation Offloading for Multi-access Edge
Computing.” 2019 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). IEEE, 2019.

30. Mukherjee, Anwesha, and Debashis De. “Femtolet: A novel fifth generation network device for
green mobile cloud computing.” Simulation Modelling Practice and Theory 62 (2016): 68–87.

31. Mukherjee, Anwesha, Debashis De, and Rajkumar Buyya. “E2R-F2N: Energy-efficient retail-
ing using a femtolet-based fog network.” Software: Practice and Experience 49, no. 3 (2019):
498–523.

Introduction to Mobile Edge Computing 17

32. Deb, Priti, Anwesha Mukherjee, and Debashis De. “Design of Green Smart Room Using Fifth
Generation Network Device Femtolet.” Wireless Personal Communications 104, no. 3 (2019):
1037–1064.

33. Qiu, Lili, Venkata N. Padmanabhan, and Geoffrey M. Voelker. “On the placement of web server
replicas.” Proceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat.
No. 01CH37213). Vol. 3. IEEE, 2001.

34. Yin, Hao, Xu Zhang, Tongyu Zhan, Ying Zhang, Geyong Min, and Dapeng Oliver Wu.
“NetClust: A framework for scalable and pareto-optimal media server placement.” IEEE
Transactions on Multimedia 15, no. 8 (2013): 2114–2124.

35. Charikar, Moses, Sudipto Guha, Éva Tardos, and David B. Shmoys. “A constant-factor
approximation algorithm for the k-median problem.” Journal of Computer and System Sciences
65, no. 1 (2002): 129–149.

36. Xu, Zichuan, Weifa Liang, Wenzheng Xu, Mike Jia, and Song Guo. “Efficient algorithms for
capacitated cloudlet placements.” IEEE Transactions on Parallel and Distributed Systems 27,
no. 10 (2015): 2866–2880.

37. Liang, Tyng-Yeu, and You-Jie Li. “A location-aware service deployment algorithm based on
k-means for cloudlets.” Mobile Information Systems 2017 (2017).

38. Yang, Guoyu, Qibo Sun, Ao Zhou, Shangguang Wang, and Jinglin Li. “Access point ranking
for cloudlet placement in edge computing environment.” In 2016 IEEE/ACM Symposium on
Edge Computing (SEC), pp. 85–86. IEEE, 2016.

39. Liu, Jianhui, and Qi Zhang. “Offloading schemes in mobile edge computing for ultra-reliable
low latency communications.” IEEE Access 6 (2018): 12825–12837.

40. Guo, Junfeng, Zhaozhe Song, Ying Cui, Zhi Liu, and Yusheng Ji. “Energy-efficient resource
allocation for multi-user mobile edge computing.” In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pp. 1–7. IEEE, 2017.

41. Wang, Chenmeng, F. Richard Yu, Chengchao Liang, Qianbin Chen, and Lun Tang. “Joint
computation offloading and interference management in wireless cellular networks with mobile
edge computing.” IEEE Transactions on Vehicular Technology 66, no. 8 (2017): 7432–7445.

42. Zhang, Ke, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng, Li Pan, Sabita
Maharjan, and Yan Zhang. “Energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks.” IEEE access 4 (2016): 5896-5907.

43. Wang, Feng, Jie Xu, Xin Wang, and Shuguang Cui. “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems.” IEEE Transactions on
Wireless Communications 17, no. 3 (2017): 1784–1797.

44. Tran, Tuyen X., and Dario Pompili. “Joint task offloading and resource allocation for multi-
server mobile-edge computing networks.” IEEE Transactions on Vehicular Technology 68.1
(2018): 856–868.

45. Al-Quraan, Muneera, Mahmoud Al-Ayyoub, Yaser Jararweh, Lo’ai Tawalbeh, and Elhadj
Benkhelifa. “Power optimization of large scale mobile cloud system using cooperative
cloudlets.” In 2016 IEEE 4th International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW), pp. 34–38. IEEE, 2016.

46. Yao, Hong, Changmin Bai, Muzhou Xiong, Deze Zeng, and Zhangjie Fu. “Heterogeneous
cloudlet deployment and user-cloudlet association toward cost effective fog computing.”
Concurrency and Computation: Practice and Experience 29, no. 16 (2017): e3975.

47. Meng, Sachula, Ying Wang, Zhongyu Miao, and Kai Sun. “Joint optimization of wireless
bandwidth and computing resource in cloudlet-based mobile cloud computing environment.”
Peer-to-Peer Networking and Applications 11, no. 3 (2018): 462–472.

48. Raei, Hassan, Nasser Yazdani, and Reza Shojaee. “Modeling and performance analysis of
cloudlet in Mobile Cloud Computing.” Performance Evaluation 107 (2017): 34–53.

49. Sun, Xiang, and Nirwan Ansari. “Green cloudlet network: A sustainable platform for mobile
cloud computing.” IEEE Transactions on Cloud Computing (2017).

50. Mukherjee, Anwesha, Deepsubhra Guha Roy, and Debashis De. “Mobility-aware task dele-
gation model in mobile cloud computing.” The Journal of Supercomputing 75, no. 1 (2019):
314–339.

18 A. Mukherjee et al.

51. Kim, Sungwook. “One-on-one contract game–based dynamic virtual machine migration
scheme for Mobile Edge Computing.” Transactions on Emerging Telecommunications Tech-
nologies 29, no. 1 (2018): e3204.

52. Ansari, Nirwan, and Xiang Sun. “Mobile edge computing empowers internet of things.” IEICE
Transactions on Communications 101, no. 3 (2018): 604–619.

53. Wang, Shiqiang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan, and Kin K. Leung.
“Dynamic service migration in mobile edge-clouds.” In 2015 IFIP Networking Conference
(IFIP Networking), pp. 1–9. IEEE, 2015.

54. Sun, Xiang, and Nirwan Ansari. “EdgeIoT: Mobile edge computing for the Internet of Things.”
IEEE Communications Magazine 54, no. 12 (2016): 22–29.

55. Taleb, Tarik, Sunny Dutta, Adlen Ksentini, Muddesar Iqbal, and Hannu Flinck. “Mobile edge
computing potential in making cities smarter.” IEEE Communications Magazine 55, no. 3
(2017): 38–43.

56. Ragona, Claudio, Fabrizio Granelli, Claudio Fiandrino, Dzmitry Kliazovich, and Pascal
Bouvry. “Energy-efficient computation offloading for wearable devices and smartphones in
mobile cloud computing.” In 2015 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6. IEEE, 2015.

57. Jeong, Seongah, Osvaldo Simeone, and Joonhyuk Kang. “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning.” IEEE Transactions on
Vehicular Technology 67, no. 3 (2017): 2049–2063.

58. Dong, Yanjie, Md Zoheb Hassan, Julian Cheng, Md Jahangir Hossain, and Victor CM Leung.
“An edge computing empowered radio access network with UAV-mounted FSO fronthaul and
backhaul: Key challenges and approaches.” IEEE Wireless Communications 25, no. 3 (2018):
154–160.

59. Mukherjee, Anwesha, Debashis De, and Soumya K. Ghosh. “FogIoHT: A Weighted Majority
Game Theory based Energy-Efficient Delay-Sensitive Fog Network for Internet of Health
Things.” Internet of Things (2020): 100181.

60. Ahmad, Mahmood, Muhammad Bilal Amin, Shujaat Hussain, Byeong Ho Kang, Taechoong
Cheong, and Sungyoung Lee. “Health fog: a novel framework for health and wellness
applications.” The Journal of Supercomputing 72, no. 10 (2016): 3677–3695.

61. Tuli, Shreshth, Nipam Basumatary, Sukhpal Singh Gill, Mohsen Kahani, Rajesh Chand Arya,
Gurpreet Singh Wander, and Rajkumar Buyya. “Healthfog: An ensemble deep learning based
smart healthcare system for automatic diagnosis of heart diseases in integrated iot and fog
computing environments.” Future Generation Computer Systems 104 (2020): 187–200.

62. Aazam, Mohammad, Sherali Zeadally, and Khaled A. Harras. “Health Fog for Smart Health-
care.” IEEE Consumer Electronics Magazine 9, no. 2 (2020): 96–102.

63. O’Grady, M. J., D. Langton, and G. M. P. O’Hare. “Edge computing: A tractable model for
smart agriculture?.” Artificial Intelligence in Agriculture 3 (2019): 42–51.

64. Fan, D. H., and S. Gao. “The application of mobile edge computing in agricultural water
monitoring system.” In IOP Conference Series: Earth and Environmental Science, IOP
Publishing 191.1 (2018): 012015.

65. Zhang, Xihai, Zhanyuan Cao, and Wenbin Dong. “Overview of Edge Computing in the
Agricultural Internet of Things: Key Technologies, Applications, Challenges.” IEEE Access
8 (2020): 141748–141761.

66. Roman, Rodrigo, Javier Lopez, and Masahiro Mambo. “Mobile edge computing, fog et al.: A
survey and analysis of security threats and challenges.” Future Generation Computer Systems
78 (2018): 680–698.

67. Wang, Tian, Jiyuan Zhou, Minzhe Huang, MD Zakirul Alam Bhuiyan, Anfeng Liu, Wenzheng
Xu, and Mande Xie. “Fog-based storage technology to fight with cyber threat.” Future
Generation Computer Systems 83 (2018): 208–218.

68. Peng, Kai, Rongheng Lin, Binbin Huang, Hua Zou, and Fangchun Yang. “Node importance of
data center network based on contribution matrix of information entropy.” Journal of Networks
8, no. 6 (2013): 1248.

Introduction to Mobile Edge Computing 19

69. Peng, Kai, and Binbin Huang. “The invulnerability studies on data center network.” Interna-
tional Journal of Security and Its Applications 9, no. 11 (2015): 167–186.

70. Peng, Kai, Victor Leung, Lixin Zheng, Shangguang Wang, Chao Huang, and Tao Lin.
“Intrusion detection system based on decision tree over big data in fog environment.” Wireless
Communications and Mobile Computing 2018 (2018).

71. Ghosh, Shreya, and Soumya K. Ghosh. “Thump: Semantic analysis on trajectory traces
to explore human movement pattern.” Proceedings of the 25th International Conference
Companion on World Wide Web. 2016.

72. Gabrielli, Lorenzo, Salvatore Rinzivillo, Francesco Ronzano, and Daniel Villatoro. “From
tweets to semantic trajectories: mining anomalous urban mobility patterns.” In International
Workshop on Citizen in Sensor Networks, pp. 26–35. Springer, Cham, 2013.

73. Siła-Nowicka, Katarzyna, Jan Vandrol, Taylor Oshan, Jed A. Long, Urška Demšar, and
A. Stewart Fotheringham. “Analysis of human mobility patterns from GPS trajectories and
contextual information.” International Journal of Geographical Information Science 30, no. 5
(2016): 881–906.

74. Wagner, Ricardo, José Antonio Fernandes de Macedo, Alessandra Raffaetà, Chiara Renso,
Alessandro Roncato, and Roberto Trasarti. “Mob-warehouse: A semantic approach for mobil-
ity analysis with a trajectory data warehouse.” In International Conference on Conceptual
Modeling, pp. 127–136. Springer, Cham, 2013.

75. Zheng, Zhong, Soora Rasouli, and Harry Timmermans. “Two-regime Pattern in Human
Mobility: Evidence from GPS Taxi Trajectory Data.” Geographical Analysis 48, no. 2 (2016):
157–175.

76. Li, T., T. Pei, Y. C. Yuan, C. Song, W. Wang, and G. Yang. “A review on the classification,
patterns and applied research of human mobility trajectory.” Progress in Geography 33, no. 7
(2014): 938–948.

77. Ghosh, Shreya, and Soumya K. Ghosh. “Exploring the association between mobility
behaviours and academic performances of students: a context-aware traj-graph (CTG) anal-
ysis.” Progress in Artificial Intelligence 7, no. 4 (2018): 307–326.

78. Guo, Yan, Shangguang Wang, Ao Zhou, Jinliang Xu, Jie Yuan, and Ching-Hsien Hsu. “User
allocation-aware edge cloud placement in mobile edge computing.” Software: Practice and
Experience 50, no. 5 (2020): 489–502.

79. Rui, Lanlan, Yabin Qin, Biyao Li, Ying Wang, and Haoqiu Huang. “SEWMS: An edge-
based smart wearable maintenance system in communication network.” Software: Practice
and Experience 50, no. 5 (2020): 611–629.

80. Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N. Calheiros. “Modeling and simulation of scal-
able Cloud computing environments and the CloudSim toolkit: Challenges and opportunities.”
2009 International Conference on High Performance Computing and Simulation. IEEE, 2009.

81. Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar
Buyya. “CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms.” Software: Practice and experience 41, no.
1 (2011): 23–50.

82. Sonmez, Cagatay, Atay Ozgovde, and Cem Ersoy. “Edgecloudsim: An environment for perfor-
mance evaluation of edge computing systems.” Transactions on Emerging Telecommunications
Technologies 29, no. 11 (2018): e3493.

83. Gupta, Harshit, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya. “iFogSim:
A toolkit for modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments.” Software: Practice and Experience 47, no. 9
(2017): 1275–1296.

84. Mahmud, Redowan, and Rajkumar Buyya. “Modelling and simulation of fog and edge
computing environments using iFogSim toolkit.” Fog and edge computing: Principles and
paradigms (2019): 1–35.

85. Lopes, Márcio Moraes, Wilson A. Higashino, Miriam AM Capretz, and Luiz Fernando
Bittencourt. “Myifogsim: A simulator for virtual machine migration in fog computing.” In
Companion Proceedings of the10th International Conference on Utility and Cloud Computing,
pp. 47–52. 2017.

Performance Analysis of Mobile, Edge
and Cloud Computing Platforms
for Distributed Applications

Mohammad Alkhalaileh, Rodrigo N. Calheiros, Quang Vinh Nguyen,
and Bahman Javadi

Abstract Mobile devices and their corresponding services have become ubiquitous
and vital components of almost every aspect of social and business life. Mobile
services enhance collaboration, communication, monitoring, tracking, streaming,
and many other applications. This intense and continuous engagement presents
significant challenges due to mobile devices’ limited computation power, depen-
dence on batteries, and sensitivity to transmission network capacity and availability.
A common technique for resolving mobile shortcomings is to migrate (offload)
complex computations to more powerful resources such as edges, clouds, mobile
clouds or integration. However, the huge variety in mobile applications compli-
cates alignment of the unique characteristics and user quality of service (QoS)
requirements for each application to a convenient offloading plan. The availability of
powerful resources at different computing layers is another challenge for offloading
techniques. This chapter was designed to generate insights into ways the mobile
communications industry could realise cost savings and high-quality data-aware
offloading solutions by adopting new technologies such as edge computing and
region-based local networks. To demonstrate these insights, this chapter provides an
experimental work on how to select the best mobile-aware computing environment
based on parameters including application type, data size and network bandwidth
quality. Moreover, this chapter provides a comprehensive analysis that highlights
the experiment results and provides recommendations for scheduling the execution
of data-intensive applications on mobile-aware computation systems.

Keywords Hybrid mobile cloud · Mobile edge-cloud · Data-intensive
applications modelling · Computation offloading · Mobile application
scheduling · Offloading performance analysis

M. Alkhalaileh · R. N. Calheiros · Q. V. Nguyen · B. Javadi (�)
School of Computer, Data and Mathematical Sciences, Western Sydney University,
Sydney, NSW, Australia
e-mail: mohammad.nour@westernsydney.edu.au; r.calheiros@westernsydney.edu.au;
q.nguyen@westernsydney.edu.au; b.javadi@westernsydney.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_2&domain=pdf
mailto:mohammad.nour@westernsydney.edu.au
mailto:r.calheiros@westernsydney.edu.au
mailto:q.nguyen@westernsydney.edu.au
mailto:b.javadi@westernsydney.edu.au
https://doi.org/10.1007/978-3-030-69893-5_2

22 M. Alkhalaileh et al.

1 Introduction

The exponential growth of the mobile telecommunications industry and networking
systems has motivated the development of a new generation of mobile applications
to provide services for a wide range of industrial and social communication
applications, smart systems, and collaboration tools. Mobile computing (MC) has
struggled to cope with the huge and growing number of mobile application users,
as well as the complexity of some applications, due to limitations on processing
capabilities and short battery life [24]. A wide range of computing solutions
emerged to overcome these MC challenges by migrating complex workloads to
more powerful resources, a process known as mobile offloading [16]. Such resources
are located on central clouds and network edges.

Cloud computing offers scalable, reliable and on-demand services which can
augment mobile devices to reduce their shortcomings of limited computation and
storage. This computing model is known by Mobile cloud computing (MCC) and
it’s the dominating model employed to run a high percentage of today’s mobile
applications. However, with the emergence of new application models for Internet
of things (IoT) and data streaming, MCC experiences high communication latency
while offloading data to remote servers due to large distances between them and
the high number of routing devices involved [1]. Thus, researchers have turned
their attention towards incorporating approximate resources such as cloudlets [26]
and edges [27]. Mobile edge computing (MEC) [20] saves device energy through
reducing the time needed to transfer large data files to the cloud. The majority
of research work on offloading optimisation with MEC has focused on proposing
latency-based workload distribution polices and techniques which consider the
capability of edge resources and network performance. However, in data-intensive
applications like data analytics, natural language processing and face recognition,
computation complexity must also considered to minimise economic cost and
energy consumption and achieve the required QoS achievement [21, 36]. The
integration between edge and cloud resources provide benefits from the availability
access of the edge resources and the high capability of cloud resources. The
collaborative computation model between MCC and MEC is referenced to mobile
edge cloud computing (MECC) [25].

Cloud-based resource allocation for mobile data-intensive applications is chal-
lenging. Simultaneously minimising monetary costs and enhancing customers’
QoE requires an efficient cost-optimisation model [11]. Kang et al. [14] proposed
a data-centric offloading framework called Neurosurgeon, which differs from a
control-centric framework because it produces execution plans or partition decisions
according to the structure of data topology and data dependency between application
tasks. Zhou et al. [41] proposed a cost-aware offloading middleware on MCC
system. Their optimisation model considered the data size parameter at small-
scale which is limited to align the challenges of data-intensive tasks scheduling.
Patel et al. [23] studied the efficiency of adopting edge-based computing models
for data-intensive applications. The work showed a significant reduction on data

Performance Analysis of Mobile Edge Computing 23

transfer latency to capture real-time context information. However, multi-user
data-intensive applications on edge computing systems bring additional offloading
complexity for fair edge resources distribution and computation load balancing.
Enzai et al. [10] applied a heuristic algorithm for multi-user offloading scheduling
in MECC system. The multi-objective optimisations adopting a weighting model
to prioritize scheduling based on heuristics. Vu et al. [33] worked on the multi-
user offloading optimisation and adopted a mixed integer nonlinear programming
(MINLP) technique on joint MECCC systems. The literature includes many studies
of ways to meet the requirements of computation offloading. Some of these focus
on techniques to coordinate computing resources, while others pay more attention to
offloading optimisation techniques and algorithms. However, few researchers have
attempted to map data-intensive offloading challenges and proposed data-centric
offloading and scheduling frameworks and techniques.

The size of application data, the quality of the communication network, and
the application structure are crucial dimensions of the offloading optimisation
process. This chapter presents a comprehensive analysis which culminates in
recommendations for offloading data-intensive mobile applications on mobile-
aware computation systems. Specifically, this chapter provides a deep analysis of
how variables like application data size and network quality affect an application
scheduler’s selection of a mobile-aware computation environment, i.e., MC, MCC
or MECC.

The variation in mobile usage in many application contexts imposes the necessity
of handling different types of application models. In this chapter, we consider the
features of three models: bag of tasks (BoT), workflows and IoT. These features
determine the dependency between application tasks in terms of computation and
sharing data. Thus, application complexity and structure need to be considered while
planning for offloading to a mobile-aware computing environment.

Each computing model has its own unique characteristics and is appropriate for
specific types of mobile applications. For example, MC is reduces computation
cost, MEC highly recommended for time-sensitive applications, MCC can support
computation-intensive and data-intensive applications with powerful computation
capacity, and MECC integrates MEC and MCC to resolve the emergent direction
scope of data analytics and IoT-based applications. Furthermore, user QoS require-
ments are varied, ranging from saving mobile energy, reducing computation cost,
and minimising application execution delay. The question is how a user can select
a mobile-aware computing paradigm for a specific application such that it satisfies
QoS requirements and considers the application structure and contextual execution
environment. Moreover, this chapter was designed to generate insights into ways the
mobile communications industry could realise cost savings and high-quality data-
aware offloading solutions by adopting new technologies such as edge computing
and region-based local networks.

This chapter is structured as follows. Section 2 outlines mobile-aware computing
environments. Section 3 describes the system architecture. Section 4 describes the
system model, offloading technique and cost models, while experimental work is

24 M. Alkhalaileh et al.

presented in Sect. 5. Results, discussion and recommendations are provided in
Sect. 6. Lastly, Sect. 7 illustrates the main findings and provide suggestions for
future work.

2 Overview of Cloud, Edge and Mobile Environments

This section describes the adopted MECC architecture. Figure 1 shows three levels
of computation environment. At each level, different types of resources are inte-
grated to process mobile application tasks. It is assumed that data can be generated
from fixed data storage (local edge or cloud), or from IoT devices like sensors. IoT
data are included to study the impact of data transfer on the offloading optimisation
decision. Mobile devices are the core computing units for mobile-aware computing
models and are assumed for their capability to execute low-intensive application
tasks. In MC, all the computation for an application, including task processing and
data transfer, is handled by mobile resources, which may encounter deficiencies
in delivering high-performance computation for complex functions at the lowest
possible energy level. However, mobile device input/output processing and network
communications are energy-hungry components, and even though the mobile
industry has evolved rapidly, intensive computing remains a major challenge.

Cloud resources are integrated with mobile devices to avoid these shortcomings
of computation and storage. Cloud computing is a service-based computing model
which delivers computation, storage and communication resources, usually as a

Mobile

Cloud

Sensor

Mobile compu�ng Mobile cloud compu�ngMobile-edge cloud compu�ng

Edge and local storage

Fig. 1 Mobile edge cloud computing architecture

Performance Analysis of Mobile Edge Computing 25

scalable service and under the “pay-as-you-go” business model [5, 12, 31, 39]. It
represents the highest level of computation power in the MCC model. It receives
offloading requests, either indirectly forwarded from edges or directly forwarded by
mobile devices. Satyanarayanan et al. [26] discussed the cloud computing model
and confirmed its preferability as a solution for augmenting the capacities of mobile
devices. Integration of cloud computing is promising to mitigate the problems of
MC model, for many reasons. First, cloud computing can extend mobile device
battery life by migrating complex processing to powerful servers, thus minimising
the total execution time on mobile devices. Second, cloud computing providers
enable storing and accessing data stores via wireless communication protocols.
For instance, cloud computing supports mobile users with image exchange and
processing services, which is high considerable for saving energy and storage space.
Third, cloud resources can be scaled to meet unpredictable mobile application
development demands. Lastly, the availability of multiple cloud service providers
makes it feasible to integrate different cloud services to satisfy users’ demands.

In MCC architecture, a mobile device can benefit from cloud computation
capabilities to reduce the overhead of running heavy workloads locally in the user’s
mobile device. One limitation of MCC is the high latency of migrating large datasets
to a distant data centre. Edge computing can resolve the latency issue by strategic
allocation for edge resources closer to users in the access network, which allows
high data and service accessibility for network information in real time [34].

Mobile edge computing is not an appropriate computing model for handling
large-scale applications, which involve migrating high computation and data work-
loads. To overcome the physical limitations of edge resources, The collaborative
computation model, mobile edge-cloud computing (MECC) is proposed to exploit
the availability of huge computation resources in the cloud layer, and moving
computation power at the network edge and closer to data sources to reduce the
network latency and achieve a cost-efficient execution model [25].

3 System Architecture

Figure 2 presents the MECC offloading framework and corresponding resource
layers. The cloud layer provides powerful and scalable resources for computation,
storage and networking services. The edge layer includes all computation devices on
the path to cloud. Edge devices are accessible via a range of network communication
interfaces, including WiFi and cellular networks. The application layer represents
the user interaction layer needed to perform local processing and communicate with
external resources.

The optimisation engine provides the core services for offloading decision-
making; these include context-ware profiling, cost estimation and decision-making.
The engine components are explained as follows.

26 M. Alkhalaileh et al.

Edge Layer

Applica�on Layer

Cloud Layer

Local Storage Servers

Resource Handler

Applica�on Profiler

Cost Es�mator

Queuing Es�mator

Task Manager

Decision Maker

Op�miza�on Engine hosted in an Edge Server

Edge - Server Edge - ServerEdge - Server

Fig. 2 Mobile-edge cloud computing (MECC) framework

– Application Profiler: The profiler records data about the optimisation decision
in the context of the current status of the computing environment, and includes
energy consumption (for computation and data transfer), network performance
(latency and bandwidth) and application execution (offloading decision and, total
time and cost).

– Resource Handler: Its mission is collecting data about system resources to check
their capabilities and availability with regard to computation, storage, energy,
and bandwidth. Collected data are sent to the profiling component. Moreover,
the resource handler is liable for managing task execution on target computation
environment according to the task allocation plan.

– Queuing Estimator: Responsible for predicting the task waiting time for exe-
cution on cloud and edge servers. The estimate is subject to the distribution of
received tasks at the computation server and the capacity of the server itself.

– Cost Estimator: The cost estimator calculates the optimisation values of exe-
cution time, cost and energy, based on profiling data, to produce an accurate
optimisation decision.

– Task Manager: The task manager executes the offloading plan by sending
application tasks to the resource handler, and then updates profiling data.

– Decision-Maker: The decision-maker’s mission is to generate and evaluate an
alternative application allocation plan. It communicates with the profiler and the
queuing estimator to evaluate an offloading plan. The best solution is passed to
the resource handler for execution.

The next section describes the proposed system model.

Performance Analysis of Mobile Edge Computing 27

4 System Model

The MECC system is a collaboration between a cloud, M edge devices and
N mobiles. Table 1 presents the mathematical symbols used in modelling the
application, as well as the cost models. The modelling of a mobile device Pm is
represented as follows.

Pm = {β, βcost , dm, em,wm} (1)

A mobile device can communicate with remote resources at cloud and edge layers
over WiFi and cellular networks. We assumed static provisioning for edge and cloud
resources, and that the allocation process is based on heuristics, which are provided
by the profiling process. However, with static provisioning, unpredictable workloads
can be challenging. To reduce the impact of workload uncertainty, a queuing system
is implemented at remote servers to manage the execution of application tasks in
case servers become overloaded. The modelling of a remote server Pr is represented
as follows:

Pr = {β, βcost , p,wr } (2)

4.1 Application Model

An application model represents the internal structure of the application tasks and
how they are related in terms of computation and data dependency. In this chapter,
we present work on three types of application models: BoT, workflow and IoT.

Table 1 Problem modelling
notation

Symbol Definition

ti Application task i

Li Data input location

si Data size

Ii Task complexity in MIPS

∂i Task deadline

β Available network bandwidth

βcost Data transfer cost with bandwidth β

wi Processor speed in MIPS

dm Available storage on mobile (MB)

em Available energy (J)

p Remote processing cost ($/hour)

ωi task ti data sensitivity factor

l The network latency

28 M. Alkhalaileh et al.

Fig. 3 Application models abstraction. (a) BoT. (b) Workflow. (c) IoT

Figure 3 shows an abstraction of these models. Figure 3a shows the BoT, which is
a task-independent application model in which tasks are fully isolated in their input
data and computation logic [9]. This model is expected to have additional overheads
in terms of data transfer time and cost. The independence of tasks increases the
ability to transfer and process large amount of data.

In contrast, in the workflow model, tasks are dependent; they transfer their
processing outcomes to corresponding tasks based on the workflow structure. The
dependent structure of a workflow model has a significant impact on optimising
application execution, because it determines the data flow and the amount of
data to be passed between tasks. It is convenient to construct workflow execution
schedules that reduce the time and cost overheads of transferring data between
dependent tasks. A workflow is a common application model representation for
many application domains like scientific domains, stream processing and data
analysis [2]. Lastly, IoT applications, in which data is collected from IoT devices
(such as sensors) either in online or offline mode, are common in application
domains like data analytics and real-time monitoring [8]. This chapter describes
an investigation of the contribution of the IoT data collection stage to application
offloading optimisation. It is assumed that an IoT application is a combination of
BoT and workflow models.

The application modelling includes high-level task modelling to reflect the three
applications models (BoT, workflow and IoT). A data-intensive mobile application
A represents the execution of a dependent or independent set of tasks, which is
modelled as:

A = {t1, t2, . . . , tn} (3)

where n is the number of tasks. A task ti is modelled as:

ti = {Li, si, wi, ∂i} (4)

The data size and location are incorporated in the task modelling to reflect
the challenges of data-intensive application offloading and demonstrate how it

Performance Analysis of Mobile Edge Computing 29

differs from problems like computation-intrusive and latency-sensitive offloading
optimisation. To reduce the impact of data distribution over resource layers, we
assumed that for an application task, the input data file is centrally allocated in a
single file location. Moreover, we assumed that only intermediate data processing
is stored at the edge layer, and long-term storage is only available in the cloud
system. Intermediate data storage is applied in a range of data-aware applications
such as smart homes, autonomous cars, real time monitoring and social sensing.
This assumption is highlighted in the resource architecture shown in Fig. 2. In the
rest of this section we present and discuss of the cost estimation models used in the
offloading optimisation process.

4.2 Task Execution Time Model

The execution time for a task ti includes the computation time DP
i , data communi-

cation time DC
i , and average task waiting time DW

i for execution outside the mobile
device. However, task complexity, which is measured by number of instructions
Ii , and processing power for the destination machine processor wtarget , are used
in computing the task execution time, as shown in Eq. 6. In the same Equation,
the data sensitivity factor ωi is included to apply the contribution of si to the task
processing time. A profiling process is conducted to compute the sensitivity factor
with consideration of task complexity and estimation stability.

Di = DP
i + DC

i + DW
i (5)

DP
i = Ii

wtarget

+ (si .ωi) (6)

DC
i = si

β
+ l (7)

As mentioned earlier, a queuing system is adopted to estimate the task waiting
time DW

i . Each remote server is modelled as a G/G/1 queuing system, in which, the
task arrival rate and task service time follow a general distribution [28]. The task
waiting time DW

i is estimated by using Little’s rule [19] as follows:

DW
i = Lq

λ
(8)

where Lq is the queue length, and λ is the inter-arrival rate for the incoming tasks
at a given server.

30 M. Alkhalaileh et al.

4.3 Mobile Device Energy Model

Device energy consumption Ei for running a task ti expresses the cumulative energy
usage for running a task locally EP

i , sending and receiving data EC
i , and waiting for

remote execution EW
i . Energy consumption is modelled as follows.

Ei = EP
i + EC

i + EW
i (9)

Ei
P = Di

P .εi
P (10)

EC
i = Di

C.εC (11)

EW
i = Di

W .εW (12)

Where εi
P , εW , εC are energy indicators which measure the energy consumption

for task ti in secondly basis for local task processing, waiting for remote execution,
and data transfer, respectively. These energy indicators are profiled through experi-
mental application execution on various data size and network conditions [4].

4.4 Monetary Cost Model

The monetary cost is the total amount of money needed to execute a task ti in a
target computation server Pr . This involves two types of cost: task execution cost
CP

i , which is estimated based on execution time Di , and the communication cost CC
i

of migrating data, which is estimated based on the data size si and communication
bandwidth βcost quality.

Ci = CP
i + CC

i (13)

Ci
P = Di

P .pi (14)

CC
i = si .βcost (15)

4.5 Overview of the Optimisation Technique

The offloading optimising process aims to produce a resource allocation plan to
schedule application tasks in the MECC environment in which the minima of
execution cost C and time T are achieved. The allocation plan is represented as
2-dimensional array in which each position refers to a task allocation decision in
a computing environment (cloud, edge or mobile). Mixed-integer Linear Program-

Performance Analysis of Mobile Edge Computing 31

ming (MILP) is utilised to perform the search for an optimised allocation plan [32].
The application of MILP enforces the linearity in objective functions and model
constraints [13]. The Branch and Bound (BB) algorithm is a common approach
to solve linear Programming (LP) optimisation problems, and works by relaxing
the LP model constraints in integer boundaries [7]. Its iteratively generates optimal
value bounds through partitioning the feasible region into convex sets.

The BB algorithm applies a search tree optimisation technique. Each tree node
performs the problem (at upper level) partitioning to a subproblem which applies
the non-integer constraints and bounds of the original problem [17]. The objective
function is formulated as follows.

P̃0 : min(E ∗ C) (16)

subject to R0 and :

(C3) : xl
i +

M∑

j=1

x
f
ij + xc

i = 1

xl
i , x

f
ij , x

c
i ∈ [0, 1],∀(i, j) ∈ NxM

where constraints of deadline Dti < ∂i and user mobile device energy E < e should
be satisfied.

Algorithm 1 describes the BB search optimisation process as follows.

1. The searching process launches with an initial subproblem P0.
2. callSolObjectiveV alue function, Lines 11–12, evaluates the function value of

the subproblem at stack top toCheckSol. Based on the solution toCheckSol,
optimisation parameters, that is, execution time Di , consumed energy Ei and
monetary cost Ci , are calculated via callSolObjectiveV alue. The function
provides cost models to evaluate offloading solution values.

3. Branch on toCheckSol to generate new solutions (tree nodes), Line 20. The
branching step applies certain rules to partition a problem into subproblems
toAddSubP roblems through updating one decision variable xi . Technically, a
subproblem represents a candidate offloading decision.

4. The function checkIntegerConstraints is applied to verify each subproblem to
match problem constraint boundaries. The process refers to solution bounding,
Line 22.

5 Experiment for Data-Intensive Application Offloading

The main motivation for the work outlined in this chapter was to produce insights
that would support mobile users to select a cost-efficient offloading plan to run their
applications in multiple computing environments. To achieve this, we designed and

32 M. Alkhalaileh et al.

Algorithm 1: Find optimal application tasks schedule
1: Inputs:
2: Application tasks A = {ti , . . . , tn}
3: Computation resources R = {rl , (r

f

1 , . . . , r
f
m), rc

1 }
4: Output:
5: initial subproblem P0
6: Initialise:
7: optV al = ∞
8: bestSol = {}
9: subP = {P0}

10: while Len(subP > 0) do
11: toChecksol = subP [0]
12: solObjV alue = callSolObjectiveV alue(A,R, toChecksol)

13: if solObjV alue > optV al then
14: subP.removeAt(0)

15: else
16: if solObjV alue < optV al then
17: bestSol = toChecksol

18: optV al = solObjV alue

19: else
20: toAddSubP roblems = Branch(subP [0])
21: for i = 1 to Len(toAddSubP roblems) do
22: if checkIntegerConstraints(toAddSubP roblems[i]) == T rue then
23: subP.insertAt (0, toAddSubP roblems[i])
24: end if
25: end for
26: end if
27: end if
28: end while
29: RETURN s, optV al

implemented an experiment to provide insights on how an offloading decision can be
obtained based on application model, data size, context parameters and computing
environment. The experiment examined the optimisation decision with respect to the
variation on the aforementioned parameters. In addition, we aimed to evaluate the
performance of various types of mobile application models in nominated mobile-
aware computing environments. The rest of this section provides details about
the evaluation metric, experiment configuration, and the main insights from the
experimental results.

5.1 Evaluation Metrics

The optimisation technique aims to construct an offloading plan to map application
tasks on environment resources and thereby minimise energy consumption and
monetary cost. Both optimisation parameters are affected by the processing time

Performance Analysis of Mobile Edge Computing 33

parameter, which includes task processing and data communication. The processing
time is an optimisation constraint handled at task level and accordingly at applica-
tion level.

Conserving energy is a critical aspect of mobile application optimisation where
losing device energy is a single point of failure. In this chapter, three energy
consumption operations are considered: task processing, data transfer and device
waiting (or idle) for remote execution. The contribution of each process is subject
to many parameters, including data size, network bandwidth and application
complexity.

The second offloading optimisation objective is monetary cost, which involves
data transfer and processing cost. For data-intensive applications, data commu-
nication cost is not trivial, particularly when a cellular network is utilised. The
optimisation algorithm is designed to handle the transfer of large data files to reduce
the use of mobile network bandwidth. In addition, this work considers the impact
of large data files on the task processing cost. The cost estimation depends on task
complexity and how it responds to the change in data size. Here, energy and cost
parameters are considered equally in the optimisation decision.

5.2 Experimental Setup

This section outlines the setup used to run data-intensive applications on multiple
computing models. To recap, we investigated the role of mobile application structure
on offloading optimisation decisions because it defines the computation and data
dependency among application tasks. Offloading optimisation is examined for
BoT, workflow and IoT. In BoT, tasks are independent on computation and data.
The BoT is convenient for studying offloading optimisation for data-intensive
applications with data source distribution between local, edge and cloud storage
units. The workflow model involves transferring data between tasks. Thus, the task
computation target plays the role of data source to dependent tasks. In the IoT
model, a combination of BoT and workflow models is assumed, and the impact
of collecting data from IoT devices is studied. The data collection can be handled
by the mobile device or by edge node.

5.2.1 Computing Resources

The experiment was designed to investigate the efficiency of the computing model
on the optimisation decision. Three models were studied: MC, MCC and MECC.
Table 2 provides details about the resources configuration. We assumed a small
fraction of cost for running a task on a mobile device. We assumed the processing
cost on edge was 40% of the cost on cloud.

34 M. Alkhalaileh et al.

Table 2 Experiment
resources configuration

Resource name #Cores Computation cost ($/hour)

Mobile device 4 0.001

Edge node 16 0.0742

Cloud server 32 0.3712

Fig. 4 Montage workflow

5.2.2 Workload Model

We adopted different workload models for BoT, workflow and IOT applications.
This section provides the details of workload and data models used in this
experiment.

For the workflow model, we employed the Montage workload model provided
by Bharathi et al. [6]. A Montage-like workflow is generated to handle sky image
processing. The workflow includes a set of tasks to import images, find differences,
fit and concatenate, and finally create the mosaic. Figure 4 shows example of
Montage workflow structure. In the workflow model, the computation complexity
depends on the number of images and the level of overlap between images. For
the purpose of offloading optimisation, the attributes of data sensitivity must be
set for each application task. The data sensitivity factor relates the data size to the
computation time.

The provided profiling data was used to extract the parameters of data sensitivity
and generated output sensitivity. Table 3 shows the data and output sensitivity
values for workflow task types. Moreover, to have variation in data size for the
purpose of studying data change contribution, a uniform distribution for image size
and number of input images was adopted. Table 4 provides the details of the data
workload model. The data distributions were selected to enable determination of the
contribution of data size to the offloading optimisation decision.

For the BoT model, a task workload model considering computation complexity,
central processing unit (CPU) load and data sensitivity was developed. The task
complexity is determined by the number of million instructions per second (MIPS)
and the percentage of CPU usage for processing. The data sensitivity measures

Performance Analysis of Mobile Edge Computing 35

Table 3 Workflow
sensitivity factors

Task Data sensitivity Output sensitivity

mProjectPP 0.725 8.955

mDiffFit 0.095 0.054

mConcatFit 2.250 1

mBgModel 1.808 0

mBackground 0.288 1

mImgTbl 0.287 1

mAdd 0.815 0.926

mShrink 0.356 0.020

mJPEG 15.894 0.048

Table 4 Data size
distributions

Number of images [min, max] Data size [min, max] (MB)

[1, 10] [5,50]

[10, 20] [50,100]

[20, 100] [100,500]

[100, 200] [500,100]

[200, 400] [1000,2000]

[400, 600] [2000, 3000]

[600, 800] [3000, 4000]

Image size distribution [3.9, 5.2]

Table 5 Task complexity
models

Task complexity (MIPS) Low: [20–100] High: [200–700]

CPU load (%) [0.1–0.9]

Data sensitivity (%) [0.2–0.8]

the contribution of data change to task complexity or execution time. The data
size distribution provided in Table 4 was used. Table 5 shows two task complexity
models for low and high-computation applications.

For the IoT model, the workflow and BoT workload models were integrated. An
IoT application was designed as mini-batches of workflows and a BoT application.

5.2.3 Network Model

For data-intensive applications, the quality of mobile network has a significant
influence on the transfer time. Three types of networks, WiFi, 4G and 3G, were
tested. Table 6 presents the network model applied in this experiment. Based
on profiling (which provides a distribution of data transfer latency) from our
previous work [3, 4], the minimum and maximum bandwidth values of each network
were set. Moreover, profiling provides distribution for data transfer latency. The
network profiling considered the user mobility which reflects the correspondence
between the quality of network bandwidth and user position. Lee et al. [18]

36 M. Alkhalaileh et al.

Table 6 Network interface bandwidth

Network type Bandwidth (MB/s) [Min, Max] Cost ($/GB)

3G [2,5] 1.0

4G [8,12] 1.0

WiFi [25,30] 0.05

Latency Min. latency (s) Max. latency (s)

0.85 6.5

proposed a mobility-based offloading decision making. Their experimental showed
the significant of considering user mobility to reduce response time and energy
consumption. In our work, we simulated the user mobility through applying a
uniform distribution to express the variation on user mobile network bandwidth and
latency.

5.3 Performance Evaluation

In this section we discuss the results of running the offloading optimiser with the
experiment setup. For each application model, the impact of variation in data size
and bandwidth values is highlighted.

5.3.1 BoT Application Model

A BoT application execution involves running tasks in a separate mode in which
tasks are independent in terms of data and computation. In the context of data-
intensive applications, this behaviour determines the requirements for transferring
large files over the mobile network.

Figure 5 shows the result of running the BoT application over a 4G network.
With 4G, the optimiser will try to find an optimised offloading decision to meet
the task deadline and reduce the incurred cost of data transfer over the cellular data
network. MCC and MECC demonstrate similar behaviour for application execution
time along all data size variation intervals. With MECC, the optimiser reduces the
consumed energy and cost compared to MCC, particularly with medium and large
input files. This is due to the ability to offload data-heavy tasks to nearby edges, and
thus reduce the energy consumption for local processing and device waiting.

Moreover, with a 4G network, the optimiser tends to perform more computation
using cloud resources to benefit from their high capability, as well as low waiting
time compared to edge resources. This opportunity is also applicable in the case
of WiFi network availability. Figure 6 provides the result for the WiFi network
case. The three computation environments offer convenient BoT cost optimisation
and reduce MECC costs with large data files. Even though the results confirm the

Performance Analysis of Mobile Edge Computing 37

Fig. 5 BoT application model: 4G network. (a) Execution time. (b) Mobile energy. (c) Monetary
cost

Fig. 6 BoT application model: WiFi network. (a) Execution time. (b) Mobile energy. (c) Monetary
cost

limitations of MC due to energy shortage, the adoption of an external mobile energy
source would be an effective enabler of local execution for data-intensive mobile
applications. Figures 5 and 6 show that the mobile device is capable of running BoT
applications even with medium data size on high-bandwidth networks.

5.3.2 Workflow Application Model

A workflow application is a computation model in which application tasks are
dependent. In workflow execution, the data location for the first task has a significant
impact on the overall optimisation process. Here, the experiment was run with
randomisation for the first task to obtain a convenient and stable offloading
decision. This section details an analysis of running a workflow application and an
investigation of the impact of mobile network and task input data size on evaluation
parameters.

38 M. Alkhalaileh et al.

Fig. 7 Workflow application model: 4G network. (a) Execution time. (b) Mobile energy.
(c) Monetary cost

Fig. 8 Workflow application model: WiFi network. (a) Execution time. (b) Mobile energy. (c)
Monetary cost

Figures 7 and 8 show the result of running the workflow application with 4G and
WiFi networks, respectively. An interesting result is the advantage of MCC over
MECC in minimising the workflow execution time, even though the results show
that MECC offers a substantial energy saving compared to MCC and MC. With
deadline-relaxed workflow applications, the optimiser works effectively to reduce
energy and cost by executing tasks with high data dependency at the edge layer. In
addition, with the cellular data network 4G in Fig. 7, the incurred cost gap between
MECC and MCC reduces as the data sized increases. To overcome the cost overhead
of the 4G network for transferring large data sizes, an efficient joint computation
between edge and cloud resources is adopted. In the case of the WiFi network,
Fig. 8 shows that MCC provides greater savings than MEC. This is due to the
efficient usage of the high bandwidth and low-cost Wifi network in mobile-cloud
data transfer. This behaviour supports the conclusions on previous section about
running the BoT with a WiFi network.

Performance Analysis of Mobile Edge Computing 39

5.3.3 IoT Application Model

As explained earlier, IoT applications are common data analysis applications in
which data is collected from IoT devices (such as sensors) either in online or offline
mode. An IoT application was modelled as a combination of BoT and workflow
sub-applications. In addition, for IoT offloading optimisation, the contribution of
data collection stage was studied. Application data is collected by the user’s mobile
or by a stationary edge device. This section provides an analysis of the execution of
an IoT application based on various network bandwidth and data size conditions in
the three computing environments.

Figures 9, 10 and 11 present the experimental results of IoT application execution
when the user’s mobile device is the data collection instrument. Results show that
for all network types, the three computing paradigms provide similar results for
application execution time. With the 3G network, in Fig. 9, MC demonstrates high

Fig. 9 IoT application with mobile data collection: 3G network. (a) Execution time. (b) Mobile
energy. (c) Monetary cost

Fig. 10 IoT application with mobile data collection: 4G network. (a) Execution time. (b) Mobile
energy. (c) Monetary cost

40 M. Alkhalaileh et al.

Fig. 11 IoT application with mobile data collection: WiFi network. (a) Execution time. (b) Mobile
energy. (c) Monetary cost

Fig. 12 IoT application with edge data collection: 3G network. (a) Execution time. (b) Mobile
energy. (c) Monetary cost

ability to optimise consumed energy and monetary cost. Thus, local processing is
a preferred option when data is collected locally and a low-bandwidth network is
used. For MC, the processing energy is the only factor considered, because no
data transfer is required. For MECC and MCC, the low bandwidth increases the
data transfer time, and hence the data transfer energy. On the other hand, with the
4G network (Fig. 10), the high bandwidth allows energy saving by sending some
IoT application tasks to nearby edge nodes and reducing the energy consumption
overhead of the local execution. In addition, as shown in Fig. 11, the availability of
a WiFi connection is a huge incentive to run an IoT application locally in a user’s
device because the WiFi connection potentially provides a reduction in data transfer
energy and cost when data is collected from sensors.

Figures 12, 13 and 14 show the experimental results of an IoT application
execution when IoT data is collected at the edge layer. The high performance of
running the application in an MECC environment was expected. The optimiser was
able to find an optimised solution by running the workflow at the edge layer. This
scenario is promising when the mobile network is unstable or unpredictable. In

Performance Analysis of Mobile Edge Computing 41

Fig. 13 IoT application with edge data collection: 4G network. (a) Execution time. (b) Mobile
energy. (c) Monetary cost

Fig. 14 IoT application with edge data collection: WiFi network. (a) Execution time. (b) Mobile
energy. (c) Monetary cost

addition, Figs. 13 and 14 show that the application can be run in MECC and MCC
with large data files without violating the energy constraint.

6 Discussion and Recommendations

This section presents the main insights from the experimental results. The results
demonstrate the contributions of the studied parameters, namely, application type,
network quality and data size, on the offloading optimisation decision. The main
insights are represented as follow.

1. Selection of a computing environment to reduce consumed energy and monetary
cost is highly dependent on the size of data to be transferred over the commu-
nication network. This factor is critical for applications that require heavy data
communication with distributed data storage. For example, in BoT applications,
edge resources can be effective, particularly with low network quality.

42 M. Alkhalaileh et al.

2. There is promising potential for use of edge resources with on-edge data
collection. IoT applications involve collecting data from a large number of
sensors. For low capability MC, the process of collecting data and acting as a
data source is not energy efficient, and costly with cellular data usage. Thus,
the availability of edge nodes which can communicate with IoT sensors for data
collection is allows offloading optimisation to reduce data transfer time and cost.

3. The data dependency between application tasks plays a significant role in
resources allocation planning. For example, in workflow applications, the
increase in data communication overhead to transfer large data files motivates
the optimiser to adopt an in-place allocation strategy. This means moving
the computation close to the data location. This strategy demonstrates viable
optimisation results because the allocation targets the closest and highest-
capability computation resources.

Based on these insights, the following recommendations for execution of data-
intensive mobile applications can be made.

– Data-intensive mobile applications should be handled using MECC. This is the
most efficient architecture, particularly for loosely coupled applications, such as
BoT, in which data and computation dependencies are low. MECC allows an opti-
mised computation distribution over edge and cloud resources. However, MCC
also reduces BoT execution time substantially with high-bandwidth networks.

– For workflow applications, MECC provides valuable capability for energy-
sensitive scenarios. As data transfer between workflow tasks increases, results
show that the optimal strategy is to perform computation with cloud-only or
edge-only resources. The availability and quality of the mobile network are the
determinants for strategy selection.

– For IoT applications, the ability of users’ devices to collect data from IoT sensors
is critical for selecting the best computation environment. With low-bandwidth
networks, local processing is the preferred option when data is stored in local
devices.

7 Conclusion and Future Work

Rapid and profound advances in the mobile telecommunications industry have
created the need for mobile-aware computing models that can benefit from the
capabilities of resources at different computation layers, such as the cloud, cloudlet
and edge. Moreover, integration between computing models supports the broad
engagement of mobile devices in many application domains for academia and
industry, which enforces the work with a variety of application models, such as
BoT, workflow and IoT.

This chapter describes the variation in computing and application models and
how this can impact the offloading decision, that is, how application tasks can
be allocated to resources. For data-intensive mobile applications, we included a

Performance Analysis of Mobile Edge Computing 43

set of parameters to determine optimisation decision viability for each computing
model, including application data size and maximum execution time, network
quality and device energy. The results demonstrate the ability to optimise data-
intensive application execution while considering the target computing environment
and problem constraints such as data size and network bandwidth. Chapter findings
highlight the ability to produce potential offloading techniques which can work
effectively with cutting-edge technologies to reduce the cost and consumed energy
in a variety of application domains. This motivates the direction for localised and
region-based mobile computing for more secure, private and cost-efficient mobile
applications.

For future work, we suggest the following directions:

– The advancement in mobile research toward workload-based applications in
domains like streaming services [30], content delivery applications, social
sensing [15] and privacy-awareness enabled applications, motivates the develop-
ment of sophisticated and intelligent data-intensive offloading mechanisms that
depend on application-specific modelling strategies and sophisticated optimisa-
tion techniques at large-scale with machine learning and artificial intelligence
technologies [29, 37].

– With respect to data-intensive applications, offloading planning is sensitive to
context information like network quality and resource availability. For example,
in streaming applications, network quality plays a vital role in offloading
performance and accordingly application service quality. For such applications,
applying dynamic offloading schemes can be more beneficial. Thus, there is
considerable scope for research into dynamic offloading with respect to sensitive
context aware applications and with the support of cutting-edge technologies like
edge computing, 5G and software-defined networking (SDN) [35, 40].

– The vast majority of computation offloading techniques have sought to provide
optimisation solutions for latency-sensitive and energy-aware offloading prob-
lems. An offloading process is subject to failure for many reasons, including
resource unavailability and inadequate network conditions [22]. Therefore, it
is critical for offloading systems to guarantee reliable offloading execution,
which refers to continuous and successful processing cycles for the desired
application. For some applications, reliability is a critical factor. For instance,
in Internet of Vehicles (IoV) applications like autonomous driving, interruptions
of communication links and processing node failure are inevitable [38].

References

1. Abolfazli, S., Sanaei, Z., Alizadeh, M., Gani, A., Xia, F.: An experimental analysis on cloud-
based mobile augmentation in mobile cloud computing. IEEE Transactions on Consumer
Electronics 60(1), 146–154 (2014)

2. Adhikari, M., Amgoth, T., Srirama, S.N.: A survey on scheduling strategies for workflows in
cloud environment and emerging trends. ACM Computing Surveys (CSUR) 52(4), 1–36 (2019)

44 M. Alkhalaileh et al.

3. Alkhalaileh, M., Calheiros, R.N., Nguyen, Q.V., Javadi, B.: Dynamic resource allocation in
hybrid mobile cloud computing for data-intensive applications. In: International Conference
on Green, Pervasive, and Cloud Computing. pp. 176–191. Springer (2019)

4. Alkhalaileh, M., Calheiros, R.N., Nguyen, Q.V., Javadi, B.: Data-intensive application schedul-
ing on mobile edge cloud computing. Journal of Network and Computer Applications p.
102735 (2020)

5. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Communications of the ACM
53(4), 50–58 (2010)

6. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Characterization of
scientific workflows. In: 2008 third workshop on workflows in support of large-scale science.
pp. 1–10. IEEE (2008)

7. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press (2004)
8. Cheng, C.T., Ganganath, N., Fok, K.Y.: Concurrent data collection trees for iot applications.

IEEE Transactions on Industrial Informatics 13(2), 793–799 (2016)
9. Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E., Brasileiro, F., Sauve, J., Silva, F.A., Barros,

C.O., Silveira, C.: Running bag-of-tasks applications on computational grids: The mygrid
approach. In: Parallel Processing, 2003. Proceedings. 2003 International Conference on. pp.
407–416. IEEE (2003)

10. Enzai, N.I.M., Tang, M.: A heuristic algorithm for multi-site computation offloading in mobile
cloud computing. Procedia Computer Science 80, 1232–1241 (2016)

11. Feijóo, C., Gómez-Barroso, J.L., Ramos, S.: Implications of data-intensive applications for
next generation mobile networks (2014)

12. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: 2008 Grid Computing Environments Workshop. pp. 1–10. Ieee (2008)

13. Jain, V., Grossmann, I.E.: Algorithms for hybrid milp/cp models for a class of optimization
problems. INFORMS Journal on computing 13(4), 258–276 (2001)

14. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.: Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer
Architecture News 45(1), 615–629 (2017)

15. Kong, P.Y.: Computation and sensor offloading for cloud-based infrastructure-assisted
autonomous vehicles. IEEE Systems Journal (2020)

16. Kumar, K., Liu, J., Lu, Y.H., Bhargava, B.: A survey of computation offloading for mobile
systems. Mobile Networks and Applications 18(1), 129–140 (2013)

17. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Operations research 14(4),
699–719 (1966)

18. Lee, K., Shin, I.: User mobility model based computation offloading decision for mobile cloud.
Journal of Computing Science and Engineering 9(3), 155–162 (2015)

19. Little, J.D.: A proof for the queuing formula: L= λ w. Operations research 9(3), 383–387 (1961)
20. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation

offloading. IEEE Communications Surveys & Tutorials 19(3), 1628–1656 (2017)
21. Nan, X., He, Y., Guan, L.: Optimal resource allocation for multimedia cloud based on queuing

model. In: Multimedia signal processing (MMSP), 2011 IEEE 13th international workshop on.
pp. 1–6. IEEE (2011)

22. Nguyen, Q.H., Dressler, F.: A smartphone perspective on computation offloading–a survey.
Computer Communications (2020)

23. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A., et al.: Mobile-edge
computing introductory technical white paper. White paper, mobile-edge computing (MEC)
industry initiative pp. 1089–7801 (2014)

24. Qi, H., Gani, A.: Research on mobile cloud computing: Review, trend and perspectives. In:
2012 Second International Conference on Digital Information and Communication Technology
and it’s Applications (DICTAP). pp. 195–202. IEEE (2012)

25. Ren, J., Yu, G., He, Y., Li, G.Y.: Collaborative cloud and edge computing for latency
minimization. IEEE Transactions on Vehicular Technology 68(5), 5031–5044 (2019)

Performance Analysis of Mobile Edge Computing 45

26. Satyanarayanan, M., Bahl, V., Caceres, R., Davies, N.: The case for vm-based cloudlets in
mobile computing. IEEE pervasive Computing (2009)

27. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges. IEEE
Internet of Things Journal 3(5), 637–646 (2016)

28. Shore, J.E.: Information theoretic approximations for m/g/1 and g/g/1 queuing systems. Acta
Informatica 17(1), 43–61 (1982)

29. Shuja, J., Bilal, K., Alanazi, E., Alasmary, W., Alashaikh, A.: Applying machine learn-
ing techniques for caching in edge networks: A comprehensive survey. arXiv preprint
arXiv:2006.16864 (2020)

30. Toma, A., Chen, J.J.: Computation offloading for real-time systems. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing. pp. 1650–1651 (2013)

31. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a
cloud definition. ACM New York, NY, USA (2008)

32. Vielma, J.P.: Mixed integer linear programming formulation techniques. Siam Review 57(1),
3–57 (2015)

33. Vu, T.T., Nguyen, D.N., Hoang, D.T., Dutkiewicz, E.: Optimal task offloading and resource
allocation for fog computing. arXiv preprint arXiv:1906.03567 (2019)

34. Wang, P., Yao, C., Zheng, Z., Sun, G., Song, L.: Joint task assignment, transmission, and
computing resource allocation in multilayer mobile edge computing systems. IEEE Internet
of Things Journal 6(2), 2872–2884 (2018)

35. Wang, T., Liang, Y., Zhang, Y., Arif, M., Wang, J., Jin, Q., et al.: An intelligent dynamic
offloading from cloud to edge for smart iot systems with big data. IEEE Transactions on
Network Science and Engineering (2020)

36. Wang, Y., Chen, R., Wang, D.C.: A survey of mobile cloud computing applications: perspec-
tives and challenges. Wireless Personal Communications 80(4), 1607–1623 (2015)

37. Yang, B., Cao, X., Bassey, J., Li, X., Qian, L.: Computation offloading in multi-access edge
computing: A multi-task learning approach. IEEE Transactions on Mobile Computing (2020)

38. Yang, S.: A task offloading solution for internet of vehicles using combination auction
matching model based on mobile edge computing. IEEE Access 8, 53261–53273 (2020)

39. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges.
Journal of Internet Services and Applications 1(1), 7–18 (2010)

40. Zhang, Q., Gui, L., Hou, F., Chen, J., Zhu, S., Tian, F.: Dynamic task offloading and resource
allocation for mobile-edge computing in dense cloud ran. IEEE Internet of Things Journal 7(4),
3282–3299 (2020)

41. Zhou, B., Dastjerdi, A.V., Calheiros, R.N., Srirama, S.N., Buyya, R.: mcloud: A context-
aware offloading framework for heterogeneous mobile cloud. IEEE Transactions on Services
Computing 10(5), 797–810 (2015)

Geospatial Edge-Fog Computing: A
Systematic Review, Taxonomy, and
Future Directions

Jaydeep Das, Soumya K. Ghosh, and Rajkumar Buyya

Abstract Real-time geospatial applications are ever-increasing with modern Infor-
mation and Communication Technology. Latency and Quality of Service-aware
these applications are required to process at the edge of the networks, not at the
central cloud servers. Edge and fog nodes of the networks are capable enough
for caching the frequently accessed small volume geospatial data, processing with
lightweight tools and libraries. Finally, display the image of the processed geospatial
data at the edge devices according to the user’s Point of Interest. Several kinds
of research are going on edge and fog computing, especially in the geospatial
aspects. Health monitoring, weather prediction, emergency communication, disaster
management, disease expansion are examples of geospatial real-time applications.
In this chapter, we have investigated the existing work in the edge and fog computing
with the geospatial paradigm. We propose a taxonomy on related works. At the end
of this chapter, we discuss the limitations and future direction of the geospatial edge
and fog computing.

Keywords Edge computing · Fog computing · Geospatial applications ·
Geographical information system (GIS) · Survey · Taxonomy

J. Das (�)
Advanced Technology Development Centre, Indian Institute of Technology Kharagpur,
Kharagpur, West Bengal, India
e-mail: jaydeep@iitkgp.ac.in

S. K. Ghosh
Department of Computer Science and Engineering, Indian Institute of Technology (IIT)
Kharagpur, Kharagpur, West Bengal, India
e-mail: skg@cse.iitkgp.ac.in

R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing
and Information Systems, The University of Melbourne, Melbourne, VIC, Australia
e-mail: rbuyya@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_3&domain=pdf
mailto:jaydeep@iitkgp.ac.in
mailto:skg@cse.iitkgp.ac.in
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1007/978-3-030-69893-5_3

48 J. Das et al.

1 Introduction

With the proliferation usage of smartphone and IoT devices, generating, accessing,
and analyzing geospatial data becomes a regular activity. To access and analyze
these geospatial data, computing and processing resources are required [1]. The
provision of resources is varied based on applications. For the large computation,
a huge infrastructure is needed for processing a large amount of geospatial data.
In such cases, the central cloud computing infrastructure is the only solution. IoT
devices have not enough capacity to do so [2]. However, for the small amount
of geospatial data processing, analyzing, and decision making, edge, and fog
computing is a promising technology [3].

A pictorial view of the cloud, fog, and edge computing with geospatial appli-
cations is presented in Fig. 1. Cloud is the core layer where high-end computing
servers and databases are present. Users receive virtualized computing instances

Fig. 1 Geospatial cloud-fog-edge computing layers

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 49

with different configurations for their geospatial applications. Moreover, Cloud is
present multi-hop distance from geospatial applications.

In fog computing layer, the computation is done in any of the fog nodes i.e.,
switches, routers, gateways, access points, base stations [4]. These fog nodes are
present in between the edge devices, i.e., mobile phone, laptop, tab, and the central
cloud server. These fog nodes are capable to compute and analyze the small amount
of geospatial data. After processing and analysis of the geospatial data, these fog
nodes generate a quick decision to the edge devices. Fog computing is effective in
terms of service delay, energy efficiency, network congestion, etc.

Edge computing layer is constructed by the inter-connectivity among nearby
edge devices like mobile phones. As edge computing is very near to the edge
devices, it facilitates high network bandwidth, ultra-low latency, and real-time
response [5, 6] to the geospatial applications like sending alert to the fire station,
change the color of traffic signal lights and its timespan, sending a message to the
medical person about his/her patient’s condition, spread awareness to the fisherman
before the tsunami, make attentive to the workers of the gas station about the leakage
of methane gas from pipeline [7].

Edge and fog computing (EFC), enriches the computing paradigm for real-time
geospatial applications like health monitoring [8–10] systems, sort-term weather
prediction, disaster recovery [11, 12], crop diseases monitoring [13]. In all these
cases, a quick decision has to be taken depending upon the analysis of captured
geospatial data by edge nodes [14]. The response time is a major concern in all of the
above situations. Fast decisions can be obtained from a geospatial EFC system than a
central geospatial cloud system. Geospatial fog computing helps in the computation
of geospatial data, analyzing the data. Return results or alert to the users within a
stipulated time duration by the edge nodes. A layered architecture has been proposed
in [15]. EFC system has an inner, middle, and outer edge layer. Different edge and
fog devices are present in these three layers.

In summary, motivations move towards the Edge-Fog than cloud-centric comput-
ing paradigm are low latency or response-time, less network bandwidth utilization,
uninterrupted service due to minimum distance from edge devices, resource-
constraint at the individual edge devices affects cloud performance, and security
of the edge devices is not controllable by cloud from distance [16].

In this chapter, we present a taxonomy based on a survey of Geospatial based
Edge-Fog computing. There are many surveys exist in edge and fog computing
domain [2, 17–37], but none of them address geospatial aspects. In Sect. 2, we
have discussed the geospatial related researches in Cloud, Cloudlet, Mist computing
environment. A taxonomy on existing research work in geospatial edge and fog
computing has been structured in Sects. 3 and 4 makes a summary of these works
in a tabular form for better understanding. Section 5 expresses the limitations in the
geospatial edge-fog computing domain. Future scopes of geospatial edge and fog
computing is explored in Sect. 6. The conclusion of this chapter has been done in
the last section.

50 J. Das et al.

2 Existing Computing Paradigms

In this section, we focus on ongoing researches on cloud computing, cloudlet, mist
computing with geospatial features.

2.1 Geospatial Cloud Computing

Currently, there are many computing strategies are available. Cloud computing [38]
is the core of all these computing, where a large number of servers, databases are
available. While huge computing is required for a geospatial application, then cloud
is the only option for processing it. As the cloud servers reside multi-hop distance
from the geospatial application nodes, it increases the overall communication delay
which is sometimes critical for real-time geospatial applications like methane gas
leakage monitoring, fire alarming, health monitoring [10]. The characteristics of the
Cloud-GIS has been mentioned in [39], which are the extensible geospatial version
of the cloud characteristics. These are—(i) elasticity of geospatial resources, (ii)
on-demand geospatial services, (iii) measurable and pay-as-you-go for geospatial
resources, i.e. geospatial data, geospatial tools, (iv) accessing diversity, (v) trans-
parency, (vi) service based geospatial applications, and (vii) hardware and resource
extendable. The geospatial based Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) are discussed in [40]. Along with
these geospatial Data as a Service (DaaS) is also a major concern. Some geospatial
services on the cloud are also mentioned in [41]. OGC compliant geospatial service
orchestrations in the cloud have been done in [42] for geospatial query resolution.
Cloud-based GIS architecture models have been discussed in [43–45]. Geospatial
data indexing [46, 47] is performed for better data management in the cloud.
Geospatial data interpolation [40, 48] is performed in the cloud for determining the
missing geospatial data in the public dataset. Geospatial data mining [49, 50] and
data processing [51–53] are performed for the getting results of the geospatial data
query [54–56]. All these geospatial data mechanisms have been done for getting the
results from the geospatial applications running over the cloud computing platform.

2.2 Geospatial Cloudlet

Cloudlet is introduced to improve the latency of the cloud by caching the copies of
data while users access the mobile applications [57]. It brings the performance of
the cloud closer to mobile users. Cloudlets are computationally less powerful than
the central cloud system [58]. Mobile phone, Laptop, an Access point can be used as
a cloudlet. If many cloudlets are connected with each other, then the single point of
failure can be avoided. Cloudlet supports mobility. The mobile device offloads the

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 51

codes to the cloudlet and the code is migrated to another nearby cloudlet. While the
mobile device reaches under the coverage of the second cloudlet, it starts getting the
executed results from the second cloudlet [59]. Location-based service discovery is
done by the distributed cloudlets [60] and it generates less traffic in the network than
a cloud-based approach. Geospatial query resolution using a cloudlet is performed
in [61]. This approach reduces delay and power consumption than remote cloud
access for geospatial data analysis.

2.3 Geospatial Mist Computing

According to [62], Mist computing is a computing layer between fog and cloudlets.
Sensor and actuator devices are involved in the processing of data, which pushed
the computing towards the edge node of the network [63] where edge devices
are present. This reduces the communication latency within edge devices in
milliseconds. Mist computing enhances the self-awareness among the edge devices
in such a way that edge devices perform their operations with unstable Internet
connections [15]. A Mist-GIS framework has been developed for clustering and
overlying the geospatial data of the Ganga river basin [64] and malaria disease
spread in the state of Maharastra, India [65].

2.4 Discussion

The changes of different parameters like distance from applications, computational
capacity, cost, energy savings, real-time responses, etc. with respect to computing
paradigms are represented in Fig. 2. However, communication delay, computational
capacity, the infrastructural cost is more in a cloud environment than the other
computing paradigms. Moreover, energy efficiency, closeness to the applications,
and real-time response are promising in the edge, fog, and mist computing.

Cloud Computing

Fog Computing

Cloudlet

Edge Computing

Mist Computing

O
ve

ra
ll

E
ne

rg
y

E
ffi

ci
en

cy

C
om

putation C
apability

C
om

m
unication D

elay

R
ea

l-T
im

e
R

es
po

ns
e

C
lo

se
ne

ss
 to

 Io
T

 A
pp

lic
at

io
n

Low

High

High

Low

R
eliable C

onnectivity
G

eo
gr

ap
hi

ca
l D

is
tr

ib
ut

io
n

M
ob

ili
ty

 S
up

po
rt

D
ata Longevity

C
om

putation C
ost

Fig. 2 Different computing layers with parameters

52 J. Das et al.

3 Taxonomy

We have represented a taxonomy on geospatial Edge-Fog computing in Fig. 3.
This taxonomy is based on the existing works in the geospatial domain where the
computation has been done in Edge and Fog computing environment. We have
categories the works into four parts. These are-

• Geospatial Computing: We focus on service and resource management in edge-
fog environments. Resource management is sub-categories in power, delay, cost,
and geospatial data management. Whereas, service management is broken into
four parts, i.e., network, application, geospatial data service, and quality of
service management.

• Geospatial Data: The geospatial data which used for the applications running on
the Edge-Fog computing are mentioned.

• Geospatial Analysis Procedures: The methods or procedures applied to the
geospatial data, which help to identify the emergency or severity of the situations
through the geospatial applications.

• Geospatial Applications: Different types of geospatial applications which run on
the edge and fog computing environment.

In the following subsections (Sects. 3.1–3.4), we elaborate existing related works
that fall into the four categories mentioned above.

3.1 Geospatial Computing

In this section, we discuss about the overall edge and fog computing management.
It includes resource management, and service management.

3.1.1 Resource Management

Resource provisioning has been done depending upon the power, delay, cost by the
edge, and fog nodes. Also, keep in mind about the amount of geospatial data can be
processed and stored by the edge or fog nodes [19].

PowerManagement Edge and Fog computing paradigm are introduced to efficient
power management of the overall network system. In [3, 66–68], the processing of
geospatial data is done at the edge and fog devices of local region. Data processing
at local devices reduces the data transfer to the remote cloud server. This leads to
low power consumption in the overall system.

Delay Management Delay in communication or in service is crucial for applica-
tions. Sometimes, an application loses its relevancy due to the delay. This is one
of the major concerns that introduce Edge and Fog computing instead of Cloud

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 53

D
is

as
te

r
M

on
ito

rin
g

G
eo

sp
at

ia
l E

dg
e-

F
og

 C
om

pu
tin

g

Tr
an

sp
or

ta
tio

n
M

on
ito

rin
g

H
ea

lth
 &

 D
is

ea
se

M
on

ito
rin

g

To
ur

is
m

 M
on

ito
rin

g

A
gr

ic
ul

tu
re

M
on

ito
rin

g

E
nv

iro
nm

en
t

M
on

ito
rin

g

B
as

ic
 G

eo
sp

at
ia

l
O

pe
ra

tio
ns

G
eo

sp
at

ia
l

A
na

ly
tic

al
 M

et
ho

ds

N
et

w
or

k
A

na
ly

si
s

G
eo

m
et

ric
M

ea
su

re
m

en
t

D
at

a
M

in
in

g

G
eo

st
at

is
tic

s

G
eo

sp
at

ia
l A

na
ly

si
s

G
eo

sp
at

ia
l A

pp
lic

at
io

ns
G

eo
sp

at
ia

l D
at

a R
as

te
r

D
at

a

V
ec

to
r

D
at

a

P
oi

nt
 C

lo
ud

D
at

a

Te
xt

ua
l D

at
a

G
eo

sp
at

ia
l C

om
pu

tin
g

S
er

vi
ce

M
an

ag
em

en
t

R
es

ou
rc

e
M

an
ag

em
en

t

Q
oS

M
an

ag
em

en
t

N
et

w
or

k
M

an
ag

em
en

t

A
pp

lic
at

io
n

M
an

ag
em

en
t

G
eo

sp
at

ia
l

D
at

a
S

er
vi

ce
M

an
ag

em
en

t

P
ow

er
M

an
ag

em
en

t

C
os

t
M

an
ag

em
en

t

G
eo

sp
at

ia
l

D
at

a
M

an
ag

em
en

t

D
el

ay
M

an
ag

em
en

t

C
os

t

R
el

ia
bi

lit
y

S
ec

ur
ity

La
te

nc
y

E
ne

rg
y

Fig. 3 Taxonomy of geospatial edge-fog computing

54 J. Das et al.

computing. In [66], geospatial queries are resolved within nearby Fog devices if
concern data is available that fog devices. Otherwise, fog devices communicate
to the cloud server for processing. They achieved 47–83% improvement in delay
than the only-cloud environment. The shortest path within the critical zone has been
determined in case of emergency situation [68] within nearby fog devices. They
come by 9–11% better in average delay than the cloud platform. In time-critical
applications [67], achieve improvement in delay on user devices as the processing
of information done in nearby fog devices.

Cost Management The cost management includes infrastructure deployment cost,
networking, or communication cost, and application execution cost [24]. Data
offloading cost, process migration cost are also considered for this category.

Geospatial Data Management GIS applications are running based on geospatial
data. These data are large in volume [69]. Only pre-processing of data can be done
in edge and fog nodes because the infrastructure like memory, processor, storage
capacity is small. Pre-processed data forward to the cloud for further processing.
Sometimes, frequency used data are only cached in the edge and fog nodes, which
helps to reply quickly to the user query. Various methods for matching geospatial
vector data are mention in [70].

3.1.2 Service Management

We discuss network management, application management, geospatial data service
management, and quality of service(QoS) management as overall service manage-
ment of the Edge-Fog computing environment.

Network Management Networks are managed in the EFC paradigm through
congestion control, seamless connectivity, and network virtualization. Congestion
in the network can be avoided by minimizing the communication with the cloud
server from the EFC network. Geospatial application requests are coming from
any edge devices, and its resolution performed nearby edge or fog nodes. It
leads to minimizing network traffic. Seamless connectivity helps to connect edge
devices with cloud or fog servers without any latency. Seamless connectivity is
possible with handover technology in future vehicular networks [71, 72]. Network
virtualization has been done by the software-defined network (SDN). Network
function virtualization (NVF) helps to virtualize the traditional network functions.
SDN based work in fog computing done in [73, 74].

Application Management Real-time geospatial applications are road traffic mon-
itoring, weather prediction, a spatial query against any point of interest (POI),
emergency health monitoring. In all these cases, a cluster of reliable edge-fog
nodes, low latency, and dedicated computing resources are required. Augmented
reality (AR), real-time video streaming, content caching technique, bigdata analysis
discussed in [75]. Using offloading technique [76], one nearby edge/fog nodes
can forward computational tasks to its adjacent edge/fog node which has better

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 55

computing resources. Scaling is another aspect that helps to run the application
smoothly. Always the processing of geospatial data amounts is not the same. When
it increases, the computation power needs to increase. This leads to a challenge for
edge/fog nodes. In the case of scalability, cloud is still a promising technology.

Geospatial Data Service Geospatial data are integrated from various sources
through OGC compliant web services [77]. There are five types of web services
available. These are Web Feature Service (WFS), Web Processing Service (WPS),
Web Coverage Service (WCS), Web Map Service (WMS), and Catalogue Service
for Web (CSW). WFS helps to extract the features according to queries. WPS
applies different spatial operations over geospatial data. WMS displays the maps
according to user demands. CSW prepares the registry of the available data sources.

QoS Management Best quality of service is achieved in EFC through energy-
efficient computation, low latency in communication, overall minimal cost, reliable,
and secure connection.

• Energy: In the EFC paradigm, energy is consume minimize through energy-
aware computation offloading, mobility management federation of constrained
devices [35]. In [21], the overall edge computing system will be energy efficient
through edge hardware design, computing architecture, operating system, and
middleware.

• Latency: Computation latency and communication latency are considered for
overall service latency management. Computation latency depends upon the con-
figuration (Processor, RAM) of the edge and fog nodes. Whereas, communication
latency relies on network bandwidth. It can be considered as within edge nodes,
edge node to Fog node, and within fog nodes connectivity.

• Cost: It is the summation of the computational cost, deployment cost, and
networking cost. Network bandwidth is responsible for the networking cost [78].
Whereas, computing devices like processing unit, RAM, virtual machine cost
are considered as computational cost. Deployment of edge-fog nodes and their
communication elements expenses come under the deployment cost.

• Reliability: It is also the main concern while an application is running on
reliable edge or fog nodes. The availability of such computing nodes should be
guaranteed. In [35], mentioned to make a fog service reliable the replication
of required functions is required, but it may not possible due to the limited
computing resources available to the fog devices. So, it is a challenge to make a
service reliable and available which is running in edge and fog devices.

• Security: Heterogeneous and geographically distributed edge and fog nodes have
a major concern about the security. Rogue fog node identification, authentication,
strengthen the network, and data storage security are ways to constitute a security
in the edge-fog environment [79]. There are various security attacks, like Man-
in-the-middle, Distributed Denial-of-Service (DDoS), ripple effects, Injection
attacks [33, 80] can be done through unauthorized access of user [81, 82].
Before deployment of any geospatial applications in the EFC system, the four
basic security requirements, i.e., availability, authenticity, confidentiality, and
data integrity should be verified.

56 J. Das et al.

3.2 Geospatial Data

Geospatial data has its geographic location (latitude/longitude) attached to it. These
data are captured from different types of sensors. It is also captured by the high-
resolution cameras from the satellites. Raster and vector data are primary data
format [83], but in [69] types of geospatial data are extended with Point Cloud data
and Textual data along with prior two categories.

Raster Data It is made up of a grid of pixels and each pixel has an individual value.
All kind of aerial photography and satellite imagery comes into this category. It
includes thematic cartographic maps, topographical maps, orthophotos, time series
of satellite images.

Vector Data It is made up of the point, polyline, polygon. It has a shape
feature, which contains the (x, y) coordinates. The shape contains latitude, polyline
longitude information instead of (x,y) while the representation is done on earth
surface with 2D view.

Point Cloud Data This kind of data helps to visualize the 3D model of the terrain.
Terrestrial Mobile Mapping System (MMS) data [84], LiDAR data are examples of
point cloud data [85].

Textual Data Text data are generated from several applications with location-
tagged [86]. Social media data like Twitter, Facebook data, online blogs are coming
into this category. These help to generate data-driven geospatial semantics.

3.3 Geospatial Analysis Procedures

Geospatial analysis [87, 88] is required for visualization of the geospatial data by
using software and tools. The geospatial analysis methods are described below.

Basic Geospatial Operations Buffer creation, nearest neighbor searching, overlay
analysis are the basic GIS analysis tools. Overlay of the several geospatial layers has
been done based on user queries. It reduces the overload of the computer memory
displaying selected data layers instead of all layers. The clip, Intersect, Union are
the basic overlay tools. Whereas, the buffering technique is used to identify the
affected areas in flood [89], forest fire [90], earthquakes [91], tsunami [92], or
disease outbreak like malaria, dengue fever [93], corona etc.

Geospatial Analytical Methods It includes the clustering of the similar point
patterns, generation of the heat map, analysis of points density. These methods help
to identifying city traffic flow [94], air quality determination [95], monitoring of
greenhouse gas emissions from factories, households, livestock agriculture [96].

Network Analysis This type of geospatial analysis is based on graph analysis,
where the connection between edges and nodes are defined. Transportation prob-

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 57

lems can be solved by finding the shortest path between two cities connected by a
road network, or rail network, or a combination of both networks. This shortest-path
generation helps in healthcare facility [97], tourism facility [98]. Human movement
pattern identification after analyzing the trajectories in the road network has been
done in [99, 100].

Geometric Measurement Distance and proximity between one point to another
point is the basic geometric measurement which is vastly used in the GIS appli-
cations. This measurement helps in tourism facility recommendations [101] like
nearby hotels, restaurants, visiting places, ATM. It also helps to find nearby hospi-
tals, medical shops in heath-care applications [67, 102]. In disaster management,
transfer the victims to the nearby shelters, or reach to the victims with relief
[103, 104].

Data Mining A large number of geo-tagged data generate from sensor nodes,
drone images, mobile devices, crowdsourcing, etc. Data mining is a technique to
generate information after analyzing such unstructured geospatial data. It helps to
identify human movement pattern [100], urban growth over a time period [105],
smarter traffic light control during time zones [106], wildlife monitoring [107].

Geo-statistics Spatial interpolation is a geo-statistics technique [108] to analyse
the surface. This technique estimates the value of an unknown point with the knowl-
edge of nearby known point’s value. Kriging [109], Inverse Distance Weighting
(IDW), Regression are well known geospatial interpolation techniques. Using these
techniques, many geospatial related work like malaria-prone zone identification
[110], heavy metal, i.e. zinc, soil contamination [111], recognize area of irrigation
water [112] for agriculture had been done.

3.4 Geospatial Applications

Here, we have discussed some geospatial applications which are run on the edge-fog
environment or run on the cloud environment with the support of EFC.

Disaster Monitoring Disaster prediction data are stored in telephone central
offices (TCOs). These data are important for disaster monitoring. To prevent data
loss, a data distribution technique among nearby edge devices has been proposed
in [11]. They have used Japan Tsunami prediction data. In [113], identify the
missing people in the disaster recognizing by face. To save the energy and network
bandwidth only significant facial images are sent to the cloud server. Identifying
the disaster-prone area after analyzing geospatial videos and satellite images in fog-
cloud environment [12].

Transportation Monitoring A traffic management system [114] is developed
where RSU and vehicles (both parked and moving) act as fog nodes according to the

58 J. Das et al.

queueing theory. They scheduled traffic flow among fog nodes and tried to minimize
the response time to make it real-time traffic management.

A mobility pattern of moving agents predicted after applying a machine learning
algorithm on spatio-temporal mobility data [67, 115]. It helps to predict the
next location of the moving agents, which added advantage for Time-Critical
Applications.

A prediction model [94] is generated after analyzing of Bing Maps traffic jam
information, and manage traffic flow in the Chicago city.

A smart traffic lighting system is proposed in [106], which is to optimize the
management process. The lighting time changes according to the traffic conditions
of the roads. It reduces human errors in signaling.

Health and Diseases Monitoring Indoor, outdoor patient’s continuous health
monitoring is necessary. Mukherjee et al. [116] proposed a cloud-Fog based solution
for health monitoring with mobility data of patients while he/she is an outdoor
location. Any small health data analysis has been done by fog devices, but any
critical data analysis and mobility data analysis has been done in the cloud server.

A heart disease identifying, HealthFog [117], architecture has been developed
with deep learning technology. They used FogBus for real-time data analysis by
integrating the IoT-Edge-Cloud environment with delay and energy efficiency.
Malaria [65, 110], dengue fever [93] prone zone identification with geospatial map
and taking action accordingly are some aspects in this category.

Tourism Monitoring Geo-tagged Flickr images are mining to detect the accurate
tourist destination in [118]. RHadoop platform helps to organize such big spatial
tourism data in the Cloud platform. A mobile-based tourist recommendation system
has been developed in [101]. A tourist guide application for Cyprus is discussed in
[98].

Agriculture Monitoring Vatsavai et al. [119] synthetically generates images of
crop fields. With the anomaly detection, feature extraction, and unsupervised
technique, they identified the Weeds and crop diseases. Omran et al. [112] proposed
an irrigation water quality evaluation method for agriculture in the Darb El-Arbaein
area. They classified water quality depending on the salinity of the water. The
computed index value determines the quality of the water. High index (above 70)
is good for irrigation, where the lower index (below 40) is bad for irrigation. A
livestock agriculture analysis has been done by [96]. They analyze the dataset of
biodiversity, climate, water, land, people, farms, and animals using the cloud server.

Environment Monitoring The presence of excessive Carbon Monoxide (CO) gas
in the air is a cause of environmental pollution. Monitoring of CO level increment
in pollution-prone areas is developed an application of Fog computing [120]. They
used krigging methods to identify the distance among CO emission areas, calculated
and plotted on Google map using lat/lon information. Air quality also have been
checked at low concentration levels in [95] using AirSensEUR.

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 59

Various mineral resources of India are determined after data mining of spatial big
data and displayed resources using overlay analysis in the QGIS tool [121]. They
also have done Ganga river management using mist Computing.

4 Existing Work on Geospatial Edge-Fog Computing: A
Glance

We have summarised the existing geospatial applications on the edge and fog
computing domain in Table 1. Here, we pointed out the existing papers in the first
column. Second column is said about the edge and/or fog nodes used in their work.
Other computing paradigm, devices applied in different works are presented in the
third column. Fourth column describes the used data in works. In the last column,
the geospatial applications had applied in the corresponding research work.

A large number of applications are associated with Geospatial Edge-Fog domain.
Methane gas leakage monitoring [7] has been done with collected sensor data
by wireless sensor network (WSN) and IoT devices. The data are processed in
Raspberry Pi devices and identified the abnormal sensor data from gas leakage
areas. In other work on CO gas level monitoring [120], gas sensor data are collected
through Mikrokontroller ESP 8266, Access point, MiFi, and data analysis has been
done and stored in the Cloud server.

Healthcare applications in EFC has been proposed in [116]. They used health
data of various aged group students using Internet of Health Things (IoHT) and
stored data in Cloud. Raspberry Pi is used for primary health data analysis. Tuli et
al. [117] used patients’ heart data for identifying health disease. They used FogBus
tool for analysis heart data.

Trajectory data collection for various IoT applications has been elaborated in
[122]. They used taxi trajectory data for analysis. The data collection and analysis
have been done through edge nodes and fog servers respectively. Real-time traffic
management has been proposed by Wang et al. [114]. Road side units(RSU) collects
the real-time data of the roads and analysis in nearby cloudlet. The final data are
stored in the Cloud.

Time-critical application [67] and mission-critical application [68] has been
proposed in EFC domain. Mobility data is analysed to predict the location of the
user in a critical time. So that the facility can be provided to the user easily. They
used mobile devices for tracking the user location and stored in Cloud. On the other
hand, simulated data, and nodes are used for critical mission applications. They used
K* heuristic search algorithm for determining the shortest path to reach the critical
location for the defense sector.

Different types of image data are analysed in EFC for several applications like
disaster situational awareness [12], nanosatellite constellations [123], metropolitan
intelligent surveillance [124]. Satellite image data are used for first two applications.

Table 1 Existing work in geospatial edge-fog computing

Work Edge/fog nodes
Associated
computing Considered data Applications

Klein et al. [7] Raspberry Pi WSN, IoT Sensor data Methane gas leaks
monitoring

Nugroho et al.
[120]

Mikrokontroller
ESP 8266, Access
point, MiFi

Gas sensor,
Cloud server

CO gas sensors
data

CO gas level
monitoring

Mukherjee et al.
[116]

Raspberry Pi Cloud, IoHT Student health
data

Personalized
healthcare

Tuli et al. [117] FogBus Cloud, IoT Heart patient
data

Heart diseases
monitoring

Cao et al. [122] Simulated edge
nodes

Fog server Taxi-trajectory
data

Trajectory data
collection for IoT
applications

Wang et al. [114] RSU Cloud,
Cloudlet

Taxi-trajectory
datasets

Traffic management
system

Ghosh et al. [67] Mobile device Cloud, IoT Mobility data Time-critical
application

Mishra et al. [68] Simulation node WSN, Cloud Simulated data Mission critical
applications

Chemodanov et al.
[12]

Not mentioned Cloud Video and
satellite image
data

Disaster situational
awareness

Denby et al. [123] Jetson TX2 Image sensor Satellite image
data

Nanosatellite
constellations

Dautov et al. [124] Raspberry Pi 3 Cloud CCTV image
data

Metropolitan
intelligent surveillance
system

Barik et al. [121] Raspberry Pi Cloud Mineral
resources data

Mineral resources
information
management

Vatsavai et al. [119] Lenovo
ThinkStation P320
with GPU

Not mentioned Synthetically
generated
image

Weeds and crop
diseases identification

Armstrong et al.
[125]

Clusters of sensors IoT sensors,
Cloud

Safecast data Ionizing radiation risk
detecting

Richardson et al.
[126]

Raspberry Pi-2B,
Pi camera

Single board
computer

Raster data Solar forecasting

Tsubaki et al. [11] Telephone central
offices(TCO)

Not mentioned Japan tsunami
prediction data

Data loss prevention in
natural disasters.

Barik et al. [127] Intel Edison GIS Cloud Global map
data

Different compression
techniques over GIS
data

Das et al. [66] Mobile, Laptop Cloud (GCP) Road network,
rail track, forest
data

Geospatial query
resolution

Higashino et al.
[128]

Cyber physical
systems

IoT, Laser
range scanner

Not mentioned Safety management,
and vehicle speeds
prediction

Liu et al. [113] Edge server Cloud, IoT
device

Face image
data

Missing people search

Liu et al. [129] Performance
oriented edge
computing (POEC)

IoT Not mentioned Multi-scale 3D scenery
processing

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 61

Whereas, CCTV image data is used for the intelligent surveillance application.
Jetson TX2 and image sensors are used for nanosatellite constellations.

Mineral resources data are captured and analysed in Raspberry Pi and Cloud for
providing mineral resources information management [121]. For weeds and crop
disease identification [119], Lenovo ThinkStation P320 with GPU has been used to
process various high definition synthetic crop images. Safecast data processed for
ionizing radiation risk detection [125] and Japan tsunami prediction data analysed
for data loss prevention in natural disasters [11]. Solar forecasting [126] has been
done with the analysis of raster data in Raspberry Pi-2B and single-board computers.
Raster data captured through Pi camera.

Geospatial query processing [66], and different compression techniques [127]
over GIS data are done using EFC. Several geospatial queries are done over road
network, rail track, forest data. Delay and power consumption has been calculated
for different types of geospatial queries. For the compression technique, global map
data has been utilized.

5 Limitations in Geospatial Edge-Fog Computing

Every domain has its limitations. We will discuss here the drawbacks of geospatial
edge-fog computing.

• Geospatial data are large in volume. It is difficult to store and process it in small
computing infrastructure, i.e., EFC. Whereas, the cloud has the advantage of a
large data store.

• Large computation is required for geospatial prediction and analysis. Sometimes
this cannot be fulfilled by EFC.

• Small number of simulation tool, like iFogSim [130, 131], FogBus [132] for EFC
is available.

6 Future Directions

In this section of the chapter, we discuss the future directions of the geospatial
EFC research work. Though many explorations have been done in the edge and
fog computing, very little progress happened with the geospatial domain. Still, we
can think about the following aspects of geospatial Edge-Fog Computing in the
future.

• Investigation of pricing policies is required individually for geospatial data
providers and Edge-Fog computing service providers.

• Geospatial data management in the EFC environment is a challenge. Keeping a
small amount of data within the edge and fog nodes of a distributed manner and
synchronize them.

62 J. Das et al.

• Geospatial application management, EFC resource provisioning, with artificial
intelligence and machine learning technique can be a future trend.

• Every geospatial application, i.e., weather prediction, health-care, crop analysis,
etc. has its own requirements that are different from each other. Application
relevant policies are required for proper management in the EFC environment.

• Automatic orchestration of different geospatial web services to resolve any
geospatial query in the EFC domain can be future aspects.

7 Summary

In this chapter, we have discussed the existing works on the Geospatial Edge-
Fog computing domain in detail. We provide a taxonomy over geospatial EFC
which considered about the different types of geospatial computing management,
geospatial data types, geospatial analysis methods, and geospatial applications. We
provide a brief of geospatial EFC existing work in a tabular form. After that, we
have discussed the limitations of the geospatial EFC. We ended our discussion with
future possibilities of geospatial EFC.

References

1. C. Yang and Q. Huang, Spatial cloud computing: a practical approach. CRC Press, 2013.
2. M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for iot: Review,

enabling technologies, and research opportunities,” Future Generation Computer Systems,
vol. 87, pp. 278–289, 2018.

3. H. Das, R. K. Barik, H. Dubey, and D. S. Roy, Cloud Computing for Geospatial Big Data
Analytics: Intelligent Edge, Fog and Mist Computing. Springer, 2018, vol. 49.

4. A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, “Fog computing:
Principles, architectures, and applications,” in Internet of things. Elsevier, 2016, pp. 61–75.

5. Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low latency in
collaborative edge computing,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3512–3524,
2018.

6. W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey,”
Future Generation Computer Systems, vol. 97, pp. 219–235, 2019.

7. L. Klein, “Geospatial internet of things: Framework for fugitive methane gas leaks monitor-
ing,” in International Conference on GIScience Short Paper Proceedings, vol. 1, no. 1, 2016.

8. R. Barik, H. Dubey, S. Sasane, C. Misra, N. Constant, and K. Mankodiya, “Fog2fog:
augmenting scalability in fog computing for health gis systems,” in 2017 IEEE/ACM
International Conference on Connected Health: Applications, Systems and Engineering
Technologies (CHASE). IEEE, 2017, pp. 241–242.

9. R. K. Barik, H. Dubey, and K. Mankodiya, “SOA-FOG: secure service-oriented edge
computing architecture for smart health big data analytics,” in 2017 IEEE Global Conference
on Signal and Information Processing (GlobalSIP). IEEE, 2017, pp. 477–481.

10. T. N. Gia and M. Jiang, “Exploiting fog computing in health monitoring,” Fog and Edge
Computing: Principles and Paradigms, pp. 291–318, 2019.

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 63

11. T. Tsubaki, R. Ishibashi, T. Kuwahara, and Y. Okazaki, “Effective disaster recovery for
edge computing against large-scale natural disasters,” in 2020 IEEE 17th Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 2020, pp. 1–2.

12. D. Chemodanov, P. Calyam, and K. Palaniappan, “Fog computing to enable geospatial video
analytics for disaster-incident situational awareness,” Fog Computing: Theory and Practice,
pp. 473–503, 2020.

13. M. A. Zamora-Izquierdo, J. Santa, J. A. Martínez, V. Martínez, and A. F. Skarmeta, “Smart
farming iot platform based on edge and cloud computing,” Biosystems engineering, vol. 177,
pp. 4–17, 2019.

14. P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos,
P. Felber, and E. Riviere, “Edge-centric computing: Vision and challenges,” 2015.

15. C. Chang, S. N. Srirama, and R. Buyya, “Internet of things (iot) and new computing
paradigms,” Fog and edge computing: principles and paradigms, pp. 1–23, 2019.

16. M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,” IEEE Internet
of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

17. E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy, “Fog of
everything: Energy-efficient networked computing architectures, research challenges, and a
case study,” IEEE access, vol. 5, pp. 9882–9910, 2017.

18. M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource management approaches in
fog computing: a comprehensive review,” Journal of Grid Computing, pp. 1–42, 2019.

19. C.-H. Hong and B. Varghese, “Resource management in fog/edge computing: a survey on
architectures, infrastructure, and algorithms,” ACM Computing Surveys (CSUR), vol. 52,
no. 5, pp. 1–37, 2019.

20. P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key
technologies, applications and open issues,” Journal of network and computer applications,
vol. 98, pp. 27–42, 2017.

21. P. Jiang, T. Fana, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy aware edge
computing: A survey,” Computer Communications, vol. 151, pp. 556–580, 2020.

22. F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, “Fog computing in healthcare–a
review and discussion,” IEEE Access, vol. 5, pp. 9206–9222, 2017.

23. C. Li, Y. Xue, J. Wang, W. Zhang, and T. Li, “Edge-oriented computing paradigms: A survey
on architecture design and system management,” ACM Computing Surveys (CSUR), vol. 51,
no. 2, pp. 1–34, 2018.

24. R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey and future
directions,” in Internet of everything. Springer, 2018, pp. 103–130.

25. R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application management in fog computing
environments: A taxonomy, review and future directions,” ACM Computing Surveys, 2020.

26. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A
comprehensive survey on fog computing: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 416–464, 2017.

27. M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing: Fundamental, network
applications, and research challenges,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 1826–1857, 2018.

28. R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, and R. Ranjan,
“Fog computing: Survey of trends, architectures, requirements, and research directions,” IEEE
access, vol. 6, pp. 47 980–48 009, 2018.

29. S. B. Nath, H. Gupta, S. Chakraborty, and S. K. Ghosh, “A survey of fog computing and
communication: current researches and future directions,” arXiv preprint arXiv:1804.04365,
2018.

30. O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.-K. R. Choo, and M. Dlodlo, “From cloud to fog
computing: A review and a conceptual live vm migration framework,” IEEE Access, vol. 5,
pp. 8284–8300, 2017.

31. C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog computing for the internet
of things: A survey,” ACM Transactions on Internet Technology (TOIT), vol. 19, no. 2, pp. 1–
41, 2019.

64 J. Das et al.

32. C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos, “Fog computing
for sustainable smart cities: A survey,” ACM Computing Surveys (CSUR), vol. 50, no. 3, pp.
1–43, 2017.

33. R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey and
analysis of security threats and challenges,” Future Generation Computer Systems, vol. 78,
pp. 680–698, 2018.

34. S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The extended cloud: Review and
analysis of mobile edge computing and fog from a security and resilience perspective,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2586–2595, 2017.

35. A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, and J. P.
Jue, “All one needs to know about fog computing and related edge computing paradigms: A
complete survey,” Journal of Systems Architecture, vol. 98, pp. 289–330, 2019.

36. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE
internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

37. P. Zhang, M. Zhou, and G. Fortino, “Security and trust issues in fog computing: A survey,”
Future Generation Computer Systems, vol. 88, pp. 16–27, 2018.

38. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility,”
Future Generation computer systems, vol. 25, no. 6, pp. 599–616, 2009.

39. Z. Liu, “Typical characteristics of cloud gis and several key issues of cloud spatial decision
support system,” in 2013 IEEE 4th International Conference on Software Engineering and
Service Science. IEEE, 2013, pp. 668–671.

40. A. Rezgui, Z. Malik, and C. Yang, “High-resolution spatial interpolation on cloud platforms,”
in Proceedings of the 28th Annual ACM Symposium on Applied Computing, 2013, pp. 377–
382.

41. K. Evangelidis, K. Ntouros, S. Makridis, and C. Papatheodorou, “Geospatial services in the
cloud,” Computers & Geosciences, vol. 63, pp. 116–122, 2014.

42. J. Das, A. Dasgupta, S. K. Ghosh, and R. Buyya, “A geospatial orchestration framework
on cloud for processing user queries,” in 2016 IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM). IEEE, 2016, pp. 1–8.

43. Z. Li, C. Yang, Q. Huang, K. Liu, M. Sun, and J. Xia, “Building model as a service to support
geosciences,” Computers, Environment and Urban Systems, vol. 61, pp. 141–152, 2017.

44. T. Xing, S. Zhang, and L. Tao, “Cloud-based spatial information service architecture within
lbs,” Positioning, vol. 2014, 2014.

45. Y. Shi and F. Bian, “The design and application of the gloud gis,” in International Conference
on Geo-Informatics in Resource Management and Sustainable Ecosystem. Springer, 2014,
pp. 56–67.

46. Y. Wang, S. Wang, and D. Zhou, “Retrieving and indexing spatial data in the cloud computing
environment,” in IEEE International Conference on Cloud Computing. Springer, 2009, pp.
322–331.

47. L.-Y. Wei, Y.-T. Hsu, W.-C. Peng, and W.-C. Lee, “Indexing spatial data in cloud data
managements,” Pervasive and Mobile Computing, vol. 15, pp. 48–61, 2014.

48. V. Siládi, L. Huraj, N. Polčák, and E. Vesel, “A parallel processing of spatial data interpolation
on computing cloud,” in Proceedings of the Fifth Balkan Conference in Informatics, 2012, pp.
193–198.

49. R. C. Mateus, T. L. L. Siqueira, V. C. Times, R. R. Ciferri, and C. D. de Aguiar Ciferri,
“Spatial data warehouses and spatial olap come towards the cloud: design and performance,”
Distributed and parallel databases, vol. 34, no. 3, pp. 425–461, 2016.

50. S. J. Park and J. S. Yoo, “Leveraging cloud computing for spatial association mining,” in 2014
IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2014, pp.
4152–4153.

51. Y. Zhong, J. Han, T. Zhang, and J. Fang, “A distributed geospatial data storage and processing
framework for large-scale webgis,” in 2012 20th International Conference on Geoinformatics.
IEEE, 2012, pp. 1–7.

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 65

52. R. Sugumaran, J. Burnett, and A. Blinkmann, “Big 3D spatial data processing using cloud
computing environment,” in Proceedings of the 1st ACM SIGSPATIAL international workshop
on analytics for big geospatial data, 2012, pp. 20–22.

53. G. Zhang, Q. Huang, A.-X. Zhu, and J. H. Keel, “Enabling point pattern analysis on spatial big
data using cloud computing: optimizing and accelerating ripley’s k function,” International
Journal of Geographical Information Science, vol. 30, no. 11, pp. 2230–2252, 2016.

54. S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query processing in cloud,” in
2015 31st IEEE International Conference on Data Engineering Workshops. IEEE, 2015, pp.
34–41.

55. S. You, J. Zhang, and L. Gruenwald, “Spatial join query processing in cloud: Analyzing
design choices and performance comparisons,” in 2015 44th International Conference on
Parallel Processing Workshops. IEEE, 2015, pp. 90–97.

56. J. Das, A. Dasgupta, S. K. Ghosh, and R. Buyya, “A learning technique for vm allocation
to resolve geospatial queries,” in Recent Findings in Intelligent Computing Techniques.
Springer, 2019, pp. 577–584.

57. V. Prokhorenko and M. A. Babar, “Architectural resilience in cloud, fog and edge systems: A
survey,” IEEE Access, vol. 8, pp. 28 078–28 095, 2020.

58. M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation offloading at ad hoc
cloudlet: architecture and service modes,” IEEE Communications Magazine, vol. 53, no. 6,
pp. 18–24, 2015.

59. A. Mukherjee, D. G. Roy, and D. De, “Mobility-aware task delegation model in mobile cloud
computing,” The Journal of Supercomputing, vol. 75, no. 1, pp. 314–339, 2019.

60. J. Michel and C. Julien, “A cloudlet-based proximal discovery service for machine-to-
machine applications,” in International Conference on Mobile Computing, Applications, and
Services. Springer, 2013, pp. 215–232.

61. J. Das, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Geo-cloudlet: Time and power efficient
geospatial query resolution using cloudlet,” in 2019 11th International Conference on
Advanced Computing (ICoAC). IEEE, 2019, pp. 180–187.

62. M. Uehara, “Mist computing: Linking cloudlet to fogs,” in International Conference on
Computational Science/Intelligence & Applied Informatics. Springer, 2017, pp. 201–213.

63. J. S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, and E. Calis, “The benefits of
self-awareness and attention in fog and mist computing,” Computer, vol. 48, no. 7, pp. 37–45,
2015.

64. R. K. Barik, A. Tripathi, H. Dubey, R. K. Lenka, T. Pratik, S. Sharma, K. Mankodiya,
V. Kumar, and H. Das, “MistGIS: Optimizing geospatial data analysis using mist computing,”
in Progress in Computing, Analytics and Networking. Springer, 2018, pp. 733–742.

65. R. K. Barik, A. C. Dubey, A. Tripathi, T. Pratik, S. Sasane, R. K. Lenka, H. Dubey,
K. Mankodiya, and V. Kumar, “Mist data: leveraging mist computing for secure and scalable
architecture for smart and connected health,” Procedia Computer Science, vol. 125, pp. 647–
653, 2018.

66. J. Das, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Spatio-fog: A green and timeliness-
oriented fog computing model for geospatial query resolution,” Simulation Modelling
Practice and Theory, vol. 100, article no. 102043, 2020.

67. S. Ghosh, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Mobi-IoST: mobility-aware cloud-
fog-edge-iot collaborative framework for time-critical applications,” IEEE Transactions on
Network Science and Engineering, 2019.

68. M. Mishra, S. K. Roy, A. Mukherjee, D. De, S. K. Ghosh, and R. Buyya, “An energy-
aware multi-sensor geo-fog paradigm for mission critical applications,” Journal of Ambient
Intelligence and Humanized Computing, pp. 1–19, 2019.

69. A. Olasz and B. Nguyen Thai, “Geospatial big data processing in an open source distributed
computing environment,” PeerJ Preprints, vol. 4, p. e2226v1, 2016.

70. E. M. Xavier, F. J. Ariza-López, and M. A. Ureña-Cámara, “A survey of measures and
methods for matching geospatial vector datasets,” ACM Computing Surveys (CSUR), vol. 49,
no. 2, pp. 1–34, 2016.

66 J. Das et al.

71. M. R. Palattella, R. Soua, A. Khelil, and T. Engel, “Fog computing as the key for seamless
connectivity handover in future vehicular networks,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019, pp. 1996–2000.

72. X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog computing: A viewpoint
of vehicles as the infrastructures,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6,
pp. 3860–3873, 2016.

73. N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined networking-based
vehicular adhoc network with fog computing,” in 2015 IFIP/IEEE International Symposium
on Integrated Network Management (IM). IEEE, 2015, pp. 1202–1207.

74. M. Arif, G. Wang, V. E. Balas, O. Geman, A. Castiglione, and J. Chen, “Sdn based
communications privacy-preserving architecture for vanets using fog computing,” Vehicular
Communications, p. 100265, 2020.

75. S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and issues,” in
Proceedings of the 2015 workshop on mobile big data, 2015, pp. 37–42.

76. P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation
offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

77. B. Wu, X. Wu, and J. Huang, “Geospatial data services within cloud computing environment,”
in 2010 International Conference on Audio, Language and Image Processing. IEEE, 2010,
pp. 1577–1584.

78. L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient resource management in
fog computing supported medical cyber-physical system,” IEEE Transactions on Emerging
Topics in Computing, vol. 5, no. 1, pp. 108–119, 2015.

79. S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A survey,” in
International conference on wireless algorithms, systems, and applications. Springer, 2015,
pp. 685–695.

80. P. Bhattacharya, S. Tanwar, R. Shah, and A. Ladha, “Mobile edge computing-enabled
blockchain framework—a survey,” in Proceedings of ICRIC 2019. Springer, 2020, pp. 797–
809.

81. Q. Li, S. Meng, S. Zhang, J. Hou, and L. Qi, “Complex attack linkage decision-making in
edge computing networks,” IEEE Access, vol. 7, pp. 12 058–12 072, 2019.

82. T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A secure iot service architecture
with an efficient balance dynamics based on cloud and edge computing,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4831–4843, 2018.

83. S. Shekhar and S. Chawla, A tour of spatial databases. Prentice Hall Upper Saddle River,
2003.

84. K. Hammoudi, F. Dornaika, B. Soheilian, and N. Paparoditis, “Extracting wire-frame models
of street facades from 3d point clouds and the corresponding cadastral map,” IAPRS, vol. 38,
no. Part 3A, pp. 91–96, 2010.

85. P. K. Agarwal, L. Arge, and A. Danner, “From point cloud to grid dem: A scalable approach,”
in Progress in Spatial Data Handling. Springer, 2006, pp. 771–788.

86. Y. Hu, “Geo-text data and data-driven geospatial semantics,” Geography Compass, vol. 12,
no. 11, p. e12404, 2018.

87. M. J. De Smith, M. F. Goodchild, and P. Longley, Geospatial analysis: a comprehensive guide
to principles, techniques and software tools. Troubador publishing ltd, 2007.

88. A. Kamilaris and F. O. Ostermann, “Geospatial analysis and the internet of things,” ISPRS
international journal of geo-information, vol. 7, no. 7, p. 269, 2018.

89. O. Chakraborty, J. Das, A. Dasgupta, P. Mitra, and S. K. Ghosh, “A geospatial service
oriented framework for disaster risk zone identification,” in International Conference on
Computational Science and Its Applications. Springer, 2016, pp. 44–56.

90. K. Puri, G. Areendran, K. Raj, S. Mazumdar, and P. Joshi, “Forest fire risk assessment in parts
of northeast india using geospatial tools,” Journal of forestry research, vol. 22, no. 4, p. 641,
2011.

91. M. Sharifikia, “Vulnerability assessment and earthquake risk mapping in part of north iran
using geospatial techniques,” Journal of the Indian Society of Remote Sensing, pp. 708–716,
2010.

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 67

92. N. Wood, J. Jones, J. Schelling, and M. Schmidtlein, “Tsunami vertical-evacuation planning
in the us pacific northwest as a geospatial, multi-criteria decision problem,” International
journal of disaster risk reduction, vol. 9, pp. 68–83, 2014.

93. E. M. Delmelle, H. Zhu, W. Tang, and I. Casas, “A web-based geospatial toolkit for the
monitoring of dengue fever,” Applied Geography, vol. 52, pp. 144–152, 2014.

94. A. I. J. Tostes, F. de LP Duarte-Figueiredo, R. Assunção, J. Salles, and A. A. Loureiro,
“From data to knowledge: city-wide traffic flows analysis and prediction using bing maps,” in
Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, 2013,
pp. 1–8.

95. A. Kotsev, S. Schade, M. Craglia, M. Gerboles, L. Spinelle, and M. Signorini, “Next
generation air quality platform: Openness and interoperability for the internet of things,”
Sensors, vol. 16, no. 3, p. 403, 2016.

96. A. Kamilaris, A. Assumpcio, A. B. Blasi, M. Torrellas, and F. X. Prenafeta-Boldú, “Estimat-
ing the environmental impact of agriculture by means of geospatial and big data analysis: The
case of catalonia,” in From Science to Society. Springer, 2018, pp. 39–48.

97. I. A. Jalil, A. R. A. Rasam, N. A. Adnan, N. M. Saraf, and A. N. Idris, “Geospatial
network analysis for healthcare facilities accessibility in semi-urban areas,” in 2018 IEEE
14th International Colloquium on Signal Processing & Its Applications (CSPA). IEEE,
2018, pp. 255–260.

98. A. Kamilaris and A. Pitsillides, “A web-based tourist guide mobile application,” in Proceed-
ings of the International Conference on Sustainability, Technology and Education (STE),
Kuala Lumpur, Malaysia, vol. 29, 2013.

99. S. Ghosh, A. Chowdhury, and S. K. Ghosh, “A machine learning approach to find the optimal
routes through analysis of gps traces of mobile city traffic,” in Recent Findings in Intelligent
Computing Techniques. Springer, 2018, pp. 59–67.

100. S. Ghosh and S. K. Ghosh, “Thump: Semantic analysis on trajectory traces to explore human
movement pattern,” in Proceedings of the 25th International Conference Companion onWorld
Wide Web, 2016, pp. 35–36.

101. M. Van Setten, S. Pokraev, and J. Koolwaaij, “Context-aware recommendations in the mobile
tourist application compass,” in International Conference on Adaptive Hypermedia and
Adaptive Web-Based Systems. Springer, 2004, pp. 235–244.

102. J. S. Brownstein, C. C. Freifeld, B. Y. Reis, and K. D. Mandl, “Surveillance sans frontieres:
Internet-based emerging infectious disease intelligence and the healthmap project,” PLoS
medicine, vol. 5, no. 7, 2008.

103. O. Chakraborty, A. Das, A. Dasgupta, P. Mitra, S. K. Ghosh, and T. Mazumder, “A multi-
objective framework for analysis of road network vulnerability for relief facility location
during flood hazards: A case study of relief location analysis in bankura district, india,”
Transactions in GIS, vol. 22, no. 5, pp. 1064–1082, 2018.

104. A. Dasgupta, S. K. Ghosh, and P. Mitra, “A technique for assessing the quality of volun-
teered geographic information for disaster decision making,” in International Conference on
Computational Science and Its Applications. Springer, 2018, pp. 589–597.

105. S. Pal and S. K. Ghosh, “Rule based end-to-end learning framework for urban growth
prediction,” arXiv preprint arXiv:1711.10801, 2017.

106. V. Miz and V. Hahanov, “Smart traffic light in terms of the cognitive road traffic management
system (ctms) based on the internet of things,” in Proceedings of IEEE East-West Design &
Test Symposium (EWDTS 2014). IEEE, 2014, pp. 1–5.

107. E. D. Ayele, K. Das, N. Meratnia, and P. J. Havinga, “Leveraging ble and lora in iot network
for wildlife monitoring system (wms),” in 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT). IEEE, 2018, pp. 342–348.

108. N. Cressie, Statistics for spatial data. John Wiley & Sons, 2015.
109. S. Bhattacharjee, P. Mitra, and S. K. Ghosh, “Spatial interpolation to predict missing attributes

in gis using semantic kriging,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 52, no. 8, pp. 4771–4780, 2013.

68 J. Das et al.

110. A. C. Clements, H. L. Reid, G. C. Kelly, and S. I. Hay, “Further shrinking the malaria
map: how can geospatial science help to achieve malaria elimination?” The Lancet infectious
diseases, vol. 13, no. 8, pp. 709–718, 2013.

111. K. Forsythe, K. Paudel, and C. Marvin, “Geospatial analysis of zinc contamination in lake
ontario sediments,” Journal of Environmental Informatics, vol. 16, no. 1, pp. 1–10, 2010.

112. E.-S. E. Omran, “A proposed model to assess and map irrigation water well suitability using
geospatial analysis,” Water, vol. 4, no. 3, pp. 545–567, 2012.

113. F. Liu, Y. Guo, Z. Cai, N. Xiao, and Z. Zhao, “Edge-enabled disaster rescue: a case study
of searching for missing people,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 10, no. 6, pp. 1–21, 2019.

114. X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A fog-enabled real-time
traffic management system,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp.
4568–4578, 2018.

115. S. Ghosh, J. Das, and S. K. Ghosh, “Locator: A cloud-fog-enabled framework for facilitating
efficient location based services,” in 2020 International Conference on COMmunication
Systems & NETworkS (COMSNETS). IEEE, 2020, pp. 87–92.

116. A. Mukherjee, S. Ghosh, A. Behere, S. K. Ghosh, and R. Buyya, “Internet of health things
(ioht) for personalized health care using integrated edge-fog-cloud network,” Journal of
Ambient Intelligence and Humanized Computing, 2020.

117. S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya, G. S. Wander, and R. Buyya,
“Healthfog: An ensemble deep learning based smart healthcare system for automatic diagno-
sis of heart diseases in integrated iot and fog computing environments,” Future Generation
Computer Systems, vol. 104, pp. 187–200, 2020.

118. X. Zhou, C. Xu, and B. Kimmons, “Detecting tourism destinations using scalable geospatial
analysis based on cloud computing platform,” Computers, Environment and Urban Systems,
vol. 54, pp. 144–153, 2015.

119. R. R. Vatsavai, B. Ramachandra, Z. Chen, and J. Jernigan, “geoEdge: a real-time analytics
framework for geospatial applications,” in Proceedings of the 8th ACM SIGSPATIAL Interna-
tional Workshop on Analytics for Big Geospatial Data, 2019, pp. 1–4.

120. F. W. Nugroho, S. Suryono, and J. E. Suseno, “Fog computing for monitoring of various
area mapping pollution carbon monoxide (co) with ordinary kriging method,” in 2019 Fourth
International Conference on Informatics and Computing (ICIC). IEEE, 2019, pp. 1–6.

121. R. K. Barik, R. K. Lenka, N. Simha, H. Dubey, and K. Mankodiya, “Fog computing based
sdi framework for mineral resources information infrastructure management in india,” arXiv
preprint arXiv:1712.09282, 2017.

122. X. Cao and S. Madria, “Efficient geospatial data collection in iot networks for mobile
edge computing,” in 2019 IEEE 18th International Symposium on Network Computing and
Applications (NCA). IEEE, 2019, pp. 1–10.

123. B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite constellations as a new
class of computer system,” in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, 2020, pp. 939–
954.

124. R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, A. Puliafito, and R. Buyya,
“Metropolitan intelligent surveillance systems for urban areas by harnessing iot and edge
computing paradigms,” Software: Practice and Experience, vol. 48, no. 8, pp. 1475–1492,
2018.

125. M. P. Armstrong, S. Wang, and Z. Zhang, “The internet of things and fast data streams:
prospects for geospatial data science in emerging information ecosystems,” Cartography and
Geographic Information Science, vol. 46, no. 1, pp. 39–56, 2019.

126. W. Richardson, H. Krishnaswami, R. Vega, and M. Cervantes, “A low cost, edge computing,
all-sky imager for cloud tracking and intra-hour irradiance forecasting,” Sustainability, vol. 9,
no. 4, p. 482, 2017.

127. R. K. Barik, H. Dubey, A. B. Samaddar, R. D. Gupta, and P. K. Ray, “FogGIS: Fog computing
for geospatial big data analytics,” in 2016 IEEE Uttar Pradesh Section International

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy and Future. . . 69

Conference on Electrical, Computer and Electronics Engineering (UPCON). IEEE, 2016,
pp. 613–618.

128. T. Higashino, “Edge computing for cooperative real-time controls using geospatial big data,”
in Smart Sensors and Systems. Springer, 2017, pp. 441–466.

129. S. Liu, X. Chen, B. Qi, and L. Zherr, “Performace oriented edge computing of geospatial
information with 3d scenery,” in 2018 IEEE 3rd Advanced Information Technology, Electronic
and Automation Control Conference (IAEAC). IEEE, 2018, pp. 853–858.

130. H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for modeling
and simulation of resource management techniques in the internet of things, edge and fog
computing environments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,
2017.

131. R. Mahmud and R. Buyya, “Modelling and simulation of fog and edge computing environ-
ments using ifogsim toolkit,” Fog and edge computing: Principles and paradigms, pp. 1–35,
2019.

132. S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A blockchain-based lightweight
framework for edge and fog computing,” Journal of Systems and Software, vol. 154, pp. 22–
36, 2019.

Study of Power Efficient 5G Mobile Edge
Computing

Priti Deb, Mohammad S. Obaidat, and Debashis De

Abstract Recently, there has been a lot of innovative work on cloud-based mobile
networks. While distributed computing gives immense chances, it likewise forces
a few difficulties. One of the difficulties that current information system admin-
istrators and future Fifth Generation (5G) wireless communication are predicting
is a gigantic increment in data traffic. It is anticipated based on the vision of
Internet of Things (IoT) that the growing 5G wireless communication will meet an
extraordinary increment in congestion of calculating and processing of data as IoT
incorporated exaggerated applications. A fundamental innovation in the escalating
age of 5G is Mobile Edge Computing (MEC). Before sending the data to the
cloud server, MEC can upgrade mobile devices by facilitating inventory intensified
applications, process huge information and give the distributed computing platform
within the radio access network (RAN). Hence, MEC empowers a wide range of
utilizations. Without a doubt, the worldview is moving to the future generation
network which could turn into a reality with the coming of new mechanical
ideas. The actual response of MEC is still in its early stages and requests for
steady endeavors from both scholarly and industry networks. With the ever-
developing energy utilization for data and wireless communication innovation, the
communication nodes and infrastructure undertake a significant job in worldwide
greenhouse substance releases. Thus, the improvement of green 5G has become a
significant task for the structure and execution of future remote communication. As
MEC is a key segment of 5G, the energy efficiency has become a standard worry
for the construction of the MEC component. In this chapter, we initially give an
all-encompassing outline of MEC, its energy efficient innovation, potentials, needs,

P. Deb (�) · D. De
Centre of Mobile Cloud Computing, Department of Computer Science and Engineering, Maulana
Abul Kalam Azad University of Technology, Kolkata, West Bengal, India

M. S. Obaidat
College of Computing and Informatics, University of Sharjah, Sharjah, UAE

University of Jordan, Amman, Jordan

University of Science and Technology Beijing, Beijing, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-69893-5_4

72 P. Deb et al.

and applications. We further sum up exercises gained from energy efficient resource
allocation and task offloading. We also talk about difficulties and expected future
headings for MEC research.

Keywords 5G · Mobile Edge computing · Power Efficient · Resource
Allocation · NOMA

1 Introduction

These days, with the fast improvement of remote innovation and the Internet of
things (IoT), an ever-increasing number of smart cell phones, wearable gadgets,
have diverse remote systems that get to prerequisites for data transfer capacity and
calculation [1, 2]. Later on, cell phones will turn out to be more perceptive, and
applications conveyed on them will require broad processing power and tireless
information to get to [3]. Be that as it may, the advancement of these new
applications and services is restricted by the limited registering force and battery
life of these mobile devices [4]. If information eager and computing-intensive
jobs can be offloaded to the cloud to execute, it can beat the inadequacies of
the absence of processing intensity of the cell phones [5]. Nonetheless, when cell
phones are associated with the cloud through a remote system, a moderately long
deferral happens, which isn’t appropriate for delay-sensitive jobs [6]. In the area of
mobile communication, power efficiency [7] and spectral efficiency [8] are leading
issues for fifth-generation (5G) wireless networks [9]. 5G mobile network is going
through some serious challenges such as the need of one million connections per
kilometer square area, and user connectivity in the Gbps data rate to meet the need
of the end-users [10]. Due to the limited battery life and dynamic movement of
the devices proper network model is very much essential. It is predicted that in
2020 approximately 11.8 billion mobile devices would be connected to the Internet
through a 5G wireless network, and more than 8.2% devices will be low power
generated smart devices [11]. The communication between mobile devices and edge
or cloud system endures with massive transmission power consumption and lack
of spectral efficiency problem, especially when using 4G/LTE-A connections are
concerned [12, 13]. To reduce the energy consumption, Mobile Edge Computing
(MEC) comes into the scenario [14].

MEC provides the Mobile Cloud Computing (MCC) [15, 16] services at the edge
of mobile network. MCC is a platform where the computations and storage take
place inside the cloud server instead of mobile device. However, long distance cloud
server increases the delay and power consumption of the mobile device. Cloudlet is
a computer or a cluster of computers. It acts as an agent between cloud servers
and users [17]. In case of fog computing [18], the immediate devices between
end uses and cloud server take part in data processing. MCC is a combination of
mobile computing and cloud computing [19]. It causes problem to the real time
applications. To solve this problem, MEC comes into the scenario by processing

Study of Power Efficient 5G Mobile Edge Computing 73

computation and storage part at the edge of the network. To perform a job given
by a mobile device within RAN in the users’ close proximity, MEC has a role in
this regard [20]. MEC can be called as the complement of Cloud-RAN technology.
Requirements of mobile edge computing in the field of wireless communication are
as follows [21]:

• Development of high-bandwidth for quick data transfer
• Delay-aware applications
• Aggregating extensiveness of IoT devices
• Energy-efficient networks.

Figure 1 demonstrates the MEC architecture. MEC applications run closure to
mobile devices than cloud computing, which reduces delay and power consumption
of the network.

Different researches are going on to find the importance and technical char-
acteristics of mobile edge computing in the era of 5G. A MEC survey for the
5G network is performed in [21, 22–24]. In a communication viewpoint, another
study is proposed in [25]. A comparative study with cloudlet and fog computing is
discussed in [26] while implementing mobile edge computing. Task caching and
task offloading models are summarized in [27, 28]. Various resource allocation
based on mobile edge computing platforms is illustrated in [29, 30]. In [31–33],

Fig. 1 The mobile edge computing architecture

74 P. Deb et al.

Energy efficient framework for MEC is conducted. Table 1 summarizes existing
research works on mobile edge computing.

As indicated in [34], MEC can be portrayed by certain properties, challenges,
use cases, and applications. Figure 2 demonstrates different challenges, properties,
and use cases of MEC.

1.1 Properties of MEC

The typical properties of mobile edge computing are discussed as follows:

1.1.1 On-Premises Isolation

Unlike remote cloud servers, Edge is being deployed locally, implying that it can
run disengaged from the remainder of the system while approaching nearby assets.
This turns out to be especially significant for Machine-to-Machine situations, for
instance when managing security or wellbeing frameworks that need high levels of
strength.

Table 1 Summary of research works performed on MEC

Subjects Contributions

Key technologies, architectures, State-of-art,
communication

Study of key technologies in the direction of
5G [22]
Review of architecture for MEC [23]
Survey on MEC based on communication
viewpoint [25]
State-of-art of multi-access edge computing
[21]

Comparative study Compared MEC with cloudlet and fog
computing [26]

Task offloading MEC based task offloading for ultra-dense
mobile network [27]
Joint task offloading in multi-server MEC [28]

Resource allocation Resource allocation model for power-efficient
MEC [29]
Time minimization strategy-based resource
allocation model [30]

Power-efficient framework Power-efficient scheduling framework for
MEC-enabled Internet of vehicles [31]
NOMA based power-efficient framework for
MEC [32, 33]
Power-efficient caching for 5G based MEC
[34]

Study of Power Efficient 5G Mobile Edge Computing 75

Fig. 2 Summary of MEC: Challenges, properties, and applications

1.1.2 Proximity

In MEC, Edge servers are deployed at the edge of the network close to the IoT
devices. It can be used to process the key data generated by the IoT devices with
shorter processing time. Being near to the source of data, Edge Computing is
especially valuable to catch key data for investigation and big data. Edge computing
may likewise have direct access to the IoT devices, which can without much of a
stretch be utilized by business explicit applications.

1.1.3 Low-Latency

As Edge computing runs near IoT devices, it extensively lessens delay of the
network. This can be used to respond quicker, to improve client experience, or to
decrease blockage in other portions of the network. With the help of MEC, it is
possible to support real-time IoT applications.

76 P. Deb et al.

1.1.4 Location-Awareness

At the point when a Network Edge is a piece of a remote system, regardless
of whether it is Wi-Fi or Cell, a neighborhood administration can use low-level
flagging data to decide the area of each associated gadget. This brings forth a whole
group of business-arranged use cases, counting Location-Based Services, Analytics,
and some more.

1.1.5 Network Context Information

Constant system information, (for example, radio conditions, arrange insights,
and so on.) can be utilized by applications and administrations to offer to set
related administrations that can separate the versatile broadband experience and
be adapted. New applications can be created (which will profit by this continuous
system information) to associate versatile supporters with nearby focal points,
organizations, and occasions.

Figure 3 pictorially explains the properties of MEC.

Fig. 3 Properties of MEC

Study of Power Efficient 5G Mobile Edge Computing 77

Although a few capabilities and chances, numerous challenges should be concen-
trated to make a MEC system provides benefits to the end-users. Among the main
challenges, we have the ones shown below.

1.2 Challenges of Mobile Edge Computing

1.2.1 Reliability and Mobility

In 5G mobile network, densification management is a crucial feature. The main
challenge of MEC is reliability. MEC decreases delay, improves bandwidth in
information concentrated applications, and increases responsiveness by handling
sensory data locally [35].

1.2.2 Resource Allocation

Wireless channels get bottlenecked with a huge requirement of resources for users.
As resources are limited, but mobile traffic increases in an exponential way [36].
Resource scarcity occurs among users. For the effective implementation of MEC
proper resource allocation is a great challenge.

1.2.3 Task Offloading

As we have already mentioned that computational resources are limited in edge
servers, the distribution of these computing resources for executing task is also
challenging. With the small knowledge about wireless communication, clients
offload tasks. To control a job offloading, conferring to the remaining battery limit
of cell phone and wireless networks is a challenging factor of MEC [37, 38].

1.2.4 Power Efficiency

Power optimization is the most challenging issue. Proper resource allocation and
efficient tasks offloading strategies reduce the power consumption of MEC. In 5G
wireless communication, NOMA performs a significant role to optimize the power
consumption.

1.2.5 Security and Privacy

MEC executes its tasks with the help of different heterogeneous network compo-
nents, thus security and privacy are a major concern. Though compared to mobile

78 P. Deb et al.

cloud computing MEC has better privacy and security policy, task offloading with
proper security is also a challenging issue in MEC.

MEC has several applications and use cases based on customer-oriented services
and operator oriented services. They are graphical applications and gaming, low
latency applications, big data, location tracking, video analytics, etc.

Business transformation and industry collaboration are the market drivers of
MEC.

MEC has been esteemed as a promising innovation for future generation mobile
computing for the fast development of wireless technology, because of that it can
increase the processing power of clients applications, such as Augmented Reality
(AR) [39]. In MEC platform users can offload the applications to the MEC server
that are situated at the edge of any network. Coordination with MEC can provide
low inertness and low energy utilization [40, 41]. The fundamental thought of
MEC is to use the incredible registering offices inside the radio access network,
for example, the MEC server synchronized with the nearby mobile base station.
Users get advantages from offloading the computationally escalated data to the
MEC server. There are two activity modes for MEC, i.e., incomplete and parallel
calculation offloading. In the first one, the calculation undertakings can be separated
into different parts, where one section is privately performed and the other part
is sent to the MEC data center [42, 43]. In twofold calculation offloading, the
calculation errands are either privately executed or on the other hand, offloaded to
the MEC.

Based on the above challenges, in this chapter different power-efficient network
models for mobile edge computing are discussed. To make the network power-
efficient we have emphasized on NOMA (Non-Orthogonal Multiple Access) [44]
technology for 5G mobile edge computing.

The main contributions of the proposed chapter are:

• The need for energy-efficient MEC framework is discussed
• Different power-efficient models for resource allocations, tasks offloading are

illustrated here for mobile edge computing
• NOMA based power efficient model of 5G MEC is explained.
• Future research directions are also elaborated.

Rest of the chapter is organized as follows:
Section 2 explains the factors of the power-efficient mobile edge computing

paradigm. Power-efficient models for resource allocation and task offloading are
discussed in Sect. 3. Section 3 also includes the discussion of NOMA-enabled MEC.
Section 4 gives an overview of the future research directions and Sect. 5 concludes
the chapter.

Study of Power Efficient 5G Mobile Edge Computing 79

2 Factors of Power Efficient MEC Framework

Power-efficient resource allocation and offloading strategy are most significant to
support the usefulness of MEC. While ensuring the delay, it can adequately and
efficiently allocate resources. The requirement of power-efficient MEC is as follows:

Heterogeneous edge server: Both the mobile devices and edge servers have a
heterogeneous network. The selection of a proper edge server is a crucial issue.
Some of the edge servers are suitable for compute-intensive tasks while others
are with adequate resources. The selection of offloading strategies depending on
the requirement of the user to make the network green is the main factor.

Hierarchical architectures of edge servers: The progressive structure of edge
cloud empowers accumulation of the pinnacle loads across various levels of edge
server to boost the measure of portable remaining tasks at hand, which are being
served [45]. This reduces the power consumption of the network. Figure 4 shows
the hierarchical scenario of edge servers.

Communication Cost: The communication and coordination between mobile
devices may consume extra energy and incur additional delay. This coordination

Fig. 4 The Hierarchical architectures of edge servers

80 P. Deb et al.

Table 2 Summary of research work performed for energy-efficient task offloading

Approach Environment Contributions

The mixed-integer non-linear
program approach is
considered [27]

Heterogeneous network MEC based task offloading
for ultra-dense mobile
network

Mixed Integer Linear
Program (MILP) approach is
considered to get an optimal
solution [28]

Multi-cell network Joint task offloading in
multi-server MEC

A location based task
offloading approach is
considered [48]

Heterogeneous network Efficient task offloading
schemes for vehicular edge
computing paradigm

A deep Q-learning approach
is considered [49]

Multi-cell network Energy-efficient task
offloading for MEC in an
urban area

between devices is a challenging factor to minimize the energy consumption of
the network.

3 Power Efficient Models for Mobile Edge Computing

Power-efficient MEC aims to reduce power consumption and communication delay
of the network [46]. One of the most significant roles of the 5G mobile network is to
reduce energy consumption and delay by incorporating proper resource allocation,
task scheduling, and task offloading models. In this regard, different energy-
efficient task offloading, and resource allocation models will be discussed. Table 2
summarizes different power-efficient task offloading strategies.

3.1 Power Efficient Task Offloading Model for Mobile Edge
Computing

The mobile edge computing paradigm is considered to offload tasks where numer-
ous cell phones are incorporated with an edge cloud.

3.1.1 Tasks Model

In [47] Task Caching and Offloading (TCO) strategy is considered to minimize
power consumption. The edge computing paradigm is considered in [48], which
comprises various mobile devices and an edge server.

Study of Power Efficient 5G Mobile Edge Computing 81

3.1.2 Local Computation Model

For local task computing, assume C1 as a CPU computing cability of mobile devices
N. Local execution time to execute the task E n, k. Where, E n, k is the computing
task. It has three parameters E n, k = (Pk, Bk, Dn).

Pk is the total number of CPU cycles required to execute the task. Bk defines as
the data size of the total executable task and Dn the deadline that is given by mobile
user n to complete the task.

The local completion time for the task E n, k is given below.

TN,k = Pk/C1
N

Where K is the computation task.
Power consumption in local computing per CPU computing cycle is denoted by

σ, where σ = �C2, and thus the energy cost of local computation for the computing
task can be explained as:

PowN,k = Ω
(
C1

N

)2
Pk

Where � is the energy coefficient.

3.1.3 Edge Computation Model

Compared to the local computing model if task E n, k is offloaded to the nearby edge
server, the total duration will be divvied in two segments: (a) time taken to offload
the task from the mobile device and it is denoted by Etra

n, k. and (b) time taken
when performing the task on edge server and it is denoted by Epro

n, k. Hence the
total duration is as follows:

T e
N,k = Etra

N,k + E
pro
N,K = Bk/rN + Pk/C1

N

Where rN is the uplink data rate.
Transmission power cost to offload the task to edge server is represented as:

Powe
N,k = PtransE

tra
N,k = Ptrans .Bk/rN

Where Ptrans is the transmission power of mobile devices.

82 P. Deb et al.

3.2 Power Efficient Resource Allocation Strategy for MEC

In the MEC paradigm, multiple mobile users at the same time use the same
edge server to offload their tasks. In such a scenario, resources have to be shared
among mobile devices. Hence, proper resource allocation and reduction of power
consumption is very essential for mobile edge computing [29]. Here, we will
discuss the Multiple-Access model and NOMA-enabled model for efficient resource
allocation.

3.2.1 Multiple-Access Model

Time Division Multiple Access (TDMA) and Orthogonal Frequency-Division
Multiple Access (OFDMA) are considered in the multiple-access model for resource
allocation.

As the TDMA scheme is considered, time is distributed into equal duration
slots. Suppose each slot has a time duration of t seconds. Based on the user-delay
requisite slot t is selected. Every time slot t incorporates two consecutive parts: (a)
local computing or local offloading and (b) edge computing. Edge computing has a
minimum delay. This part consumes a small amount of mobile energy and moreover
is much faster than other offloading as reduced size computation is performed. The
second part of the above-mentioned scheme is supposed to have an insignificant
duration compared to the first part so it is not measured in resource allocation.
Total bandwidth is segmented into multiple orthogonal sub-channels in the OFDMA
scheme and every sub-channel is allocated to at most one user.

Considering a random slot in TDMA/OFDMA scheme based resource allocation,
a base station plans a subset of users for offloading. The offloading can be partial or
complete offloading.

3.2.2 NOMA-Enabled Model

Energy consumption in the wireless industry is increasing rapidly [48]. The 5G
NOMA is a prime concept in developing an undefined structure of the future
network. Non-orthogonal multiple access [50] is an emerging air interface technique
of 5G. In comparison with the traditional orthogonal multiple access technologies
(OMA), NOMA on a similar spectrum can serve several users [51, 52]. SIC is
implemented in NOMA at the receiver’s end to retrieve the desired data from
the multiplexed signals [53, 54] and Multiuser Superposition Coding (MSC) is
adopted in transmitters end. By this technique, 5G NOMA can increase the spectral
efficiency of the network. NOMA enabled mobile edge computing meets the QoS
of the network by decreasing power consumption.

Study of Power Efficient 5G Mobile Edge Computing 83

In a NOMA-enabled MEC network, one base station that is the gateway of an
edge server is considered [32, 33]. Here, 2n number of users are divided into n
groups with two users in each group.

The set of all groups is denoted as n = {1, 2, · · · n}. In every group, those
two users concurrently transfer the data to the base station consuming the same
frequency by using NOMA technology. TDMA strategy is considered here for users
in various groups. For offloading the task completely or partially, base stations
schedule the users accordingly. The users with complete or partial offloading
respectively offload a fragment or total task to the mobile base station, however
the users with partial or no task to offload compute a portion or total task with the
help of local central processing unit. Let the channel be assumed to be recurrently
at one level. The mobile base stations have the information of the channels, local
computation abilities, and task sizes of different users. With the help of this
information, the mobile base station controls the power consumption, the offloaded
task, and the segment of offloading time.

4 Research Directions

There are a lot of research works going on, but several research challenges should
be further explored to make mobile edge computing more suitable and reliable. This
section illustrates some future research outlines for MEC.

Power Supply: To work ideally, the edge server must have the option to work at
anyplace. Sadly, every spot on the world might not have a similar kind of intensity
gracefully in order to run the servers required for this activity.

Energy Optimization: Recent works emphasize the management of energy con-
sumption from the edge server. Network energy consumption is also important.
An efficient optimization technique has to be incorporated for network energy
reduction.

Green Energy Usage: The availability of green energy changes with time. How to
take advantage of renewable energy to support mobile devices can be further
explored. Machine learning can be used to predict the availability of green
energy.

Protocol Standardization: Protocol Standardization provides an open platform for
researchers to work in a single approved environment. MEC is a latest technology
that has not been applied accurately. Thus, a consistent open platform is required
to that will permit continuous and competently incorporation of applications
through the MEC platforms. This Standardization will also enhance the prompt
improvement of mobile edge applications through the industry and academia.
Standard protocols are necessary to implement standard features of MEC.

Effective Deployment: Diminishing the delay through best utilization of spectrum
may be accomplished with proficient deployment of MEC, while, it is chal-

84 P. Deb et al.

lenging to enhance the bandwidth usage with dependence on complex system
modules.

User mobility: In the MEC paradigm organization of continuous services to
an often “on-the-move” user is another research issue with straightforward
procedure relocation and heterogeneity.

Heterogeneity: Utilization of diverse access in the paradigm of edge devices
heterogeneity ought to be provided in the smooth working of MEC activities.
This further requires the arrangement of adaptability for various stages with
changing the number of clients

Security: The security is the important aspect demanding solutions across the
computing and network stack. Providing security to the user data and continuous
streaming data are challenging issues. The accessibility of resources is for
the most part subordinate upon server limit and remote access mechanism for
guaranteeing steady service conveyance. Along with accessibility, the security
of information and applications from any gatecrasher ought to be provided with
physical measures.

5 Summary and Conclusions

Mobile Edge Computing empowers inventive assistance situations that can guaran-
tee upgraded individual experience and streamlined system activity, just as opening
up a new business. Efficient spectrum utilization with optimized power consumption
is an emerging criterion for 5G based Mobile network. Delay incurred by task
offloading degrades the Quality of Services (QoS) of a network. To reduce energy
consumption, delay, and increase spectral efficiency, MEC comes into the scenario.
The multimedia applications are the most common mobile application whereas these
applications need extensive power consumption and more computing resources.
MEC performs the tasks given by the mobile devices within user proximity and
sends the results to the device with very low latency. MEC decreases the power
consumption of the devices as well as to the network.

In this chapter, we have discussed a power-efficient mobile edge computing
framework. Related challenges to achieve the power-efficient MEC is also illustrated
here. The energy-efficient tasks model and resource allocation model are explained
theoretically and mathematically. NOMA-enabled MEC for power optimization is
demonstrated here. Finally, we provide a future research direction to establish more
validated research work in the field of power-efficient mobile edge computing.

Acknowledgment The authors are thankful to the Department of Science and Technology (DST)
-FIST for SR/FST/ETI-296/2011 and TEQIP-III.

Study of Power Efficient 5G Mobile Edge Computing 85

References

1. Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J., and Puschmann, A.,
2017. Latency critical IoT applications in 5G: Perspective on the design of radio interface and
network architecture. IEEE Communications Magazine, 55(2), pp. 70–78.

2. Shit, R. C., Sharma, S., Obaidat, M. S., and Puthal, D., 2020. Adaptive Software Defined Node
Deployment for Green Internet of Things. In ICC 2020-2020 IEEE International Conference
on Communications (ICC) (pp. 1–6). IEEE.

3. Amtrup, J. W., Ma, J., Thompson, S. M., Shustorovich, A., Thrasher, C. W., and Macciola, A.,
2017. U.S. Patent Application No. 15/396,306.

4. Yang, T. J., Chen, Y. H., & Sze, V., 2017, June. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 5687–5695), IEEE.

5. Gai, K., Qiu, M., & Zhao, H., 2018. Energy-aware task assignment for mobile cyber-
enabled applications in heterogeneous cloud computing. Journal of Parallel and Distributed
Computing, 111, pp. 126–135.

6. Nan, Y., Li, W., Bao, W., Delicato, F. C., Pires, P. F., & Zomaya, A. Y., 2018. A dynamic
tradeoff data processing framework for delay-sensitive applications in cloud of things systems.
Journal of Parallel and Distributed Computing, 112, pp. 53–66.

7. Ghosh, S., De, D., Deb, P., & Mukherjee, A., 2020. 5G-ZOOM-Game: Small cell zooming
using weighted majority cooperative game for energy efficient 5G mobile network. Wireless
Networks, 26(1), pp. 349–372.

8. Jia, M., Yin, Z., Guo, Q., Liu, G., & Gu, X., 2017. Downlink design for spectrum efficient IoT
network. IEEE Internet of Things Journal, 5(5), pp. 3397–3404.

9. Yu, H., Lee, H., & Jeon, H., 2017. What is 5G? Emerging 5G mobile services and network
requirements. Sustainability, 9(10), pp. 1848.

10. Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., and Wunder, G.,
2017. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE
journal on selected areas in communications, 35(6), pp. 1201–1221.

11. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M., 2015. Internet of
things: A survey on enabling technologies, protocols, and applications. IEEE communications
surveys & tutorials, 17(4), pp. 2347–2376.

12. Sheikh, J. A., Parah, S. A., & Bhat, G. M., 2017. Towards green capacity in massive Mimo
based 4G-LTE a cell using beam-forming vector based sectored relay planning. Wireless
Personal Communications, 97(4), pp. 5767–5781.

13. Mukherjee, A., De, D., & Deb, P., 2016. Interference management in macro-femtocell and
micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET
Communications, 10(5), pp. 468–478.

14. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T., 2017. Mobile edge computing: A survey.
IEEE Internet of Things Journal, 5(1), pp. 450–465.

15. De, D., 2016. Mobile cloud computing: architectures, algorithms and applications. CRC Press.
16. Noor, T. H., Zeadally, S., Alfazi, A., & Sheng, Q. Z., 2018. Mobile cloud computing:

Challenges and future research directions. Journal of Network and Computer Applications,
115, pp. 70–85.

17. Mukherjee, A., De, D., & Roy, D. G., 2016. A power and latency aware cloudlet selection
strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), pp.
141–154.

18. Mukherjee, A., Deb, P., De, D., & Buyya, R., 2019. IoT-F2N: An energy-efficient architectural
model for IoT using Femtolet-based fog network. The Journal of Supercomputing, 75(11), pp.
7125–7146.

19. Ahmed, E., Gani, A., Khan, M. K., Buyya, R., & Khan, S. U., 2015. Seamless application
execution in mobile cloud computing: Motivation, taxonomy, and open challenges. Journal of
Network and Computer Applications, 52, pp. 154–172.

86 P. Deb et al.

20. Tran, T. X., Hajisami, A., Pandey, P., & Pompili, D., 2017. Collaborative mobile edge
computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Communications
Magazine, 55(4), pp. 54–61.

21. Pham, Q. V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., and Ding, Z., 2020. A survey
of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and
state-of-the-art. IEEE Access, 8, pp. 116974–117017.

22. Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V., 2015. Mobile edge computing—A
key technology towards 5G. ETSI white paper, 11(11), pp. 1–16.

23. Mach, P., & Becvar, Z., 2017. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys & Tutorials, 19(3), pp. 1628–1656.

24. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B., 2017. A survey on mobile edge
computing: The communication perspective. IEEE Communications Surveys & Tutorials,
19(4), pp. 2322–2358.

25. Beck, M. T., Werner, M., Feld, S., & Schimper, S., 2014, November. Mobile edge computing:
A taxonomy. In Proc. of the Sixth International Conference on Advances in Future Internet
(pp. 48–55). Citeseer.

26. Dolui, K., & Datta, S. K., 2017, June. Comparison of edge computing implementations: Fog
computing, cloudlet and mobile edge computing. In 2017 Global Internet of Things Summit
(GIoTS) (pp. 1–6). IEEE.

27. Chen, M., & Hao, Y., 2018. Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3), pp. 587–597.

28. Tran, T. X., & Pompili, D., 2018. Joint task offloading and resource allocation for multi-
server mobile-edge computing networks. IEEE Transactions on Vehicular Technology, 68(1),
pp. 856–868.

29. You, C., Huang, K., Chae, H., & Kim, B. H., 2016. Energy-efficient resource allocation for
mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3),
pp. 1397–1411.

30. Le, H. Q., Al-Shatri, H., & Klein, A., 2017, June. Efficient resource allocation in mobile-
edge computation offloading: Completion time minimization. In 2017 IEEE International
Symposium on Information Theory (ISIT) (pp. 2513–2517). IEEE.

31. Ning, Z., Huang, J., Wang, X., Rodrigues, J. J., & Guo, L., 2019. Mobile edge computing-
enabled Internet of vehicles: Toward energy-efficient scheduling. IEEE Network, 33(5), pp.
198–205.

32. Yang, Z., Hou, J., & Shikh-Bahaei, M., 2018, December. Energy efficient resource allocation
for mobile-edge computation networks with NOMA. In 2018 IEEE Globecom Workshops (GC
Wkshps) (pp. 1–7). IEEE.

33. Yang, Z., Pan, C., Hou, J., & Shikh-Bahaei, M., 2019. Efficient resource allocation for mobile-
edge computing networks with NOMA: Completion time and energy minimization. IEEE
Transactions on Communications, 67(11), pp. 7771–7784.

34. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., & Neal, A., 2014. Mobile-edge
computing introductory technical white paper. White paper, mobile-edge computing (MEC)
industry initiative, pp. 1089–7801.

35. Sung, N. W., Pham, N. T., Huynh, T., & Hwang, W. J., 2013. Predictive association control for
frequent handover avoidance in femtocell networks. IEEE communications letters, 17(5), pp.
924–927.

36. Pham, Q. V., & Hwang, W. J., 2016. Resource allocation for heterogeneous traffic in complex
communication networks. IEEE Transactions on Circuits and Systems II: Express Briefs,
63(10), pp. 959–963.

37. Liu, C. F., Bennis, M., & Poor, H. V., 2017, December. Latency and reliability-aware task
offloading and resource allocation for mobile edge computing. In 2017 IEEE Globecom
Workshops (GC Wkshps) (pp. 1–7). IEEE.

38. Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., & Shen, X. S., 2019. TOFFEE: Task
offloading and frequency scaling for energy efficiency of mobile devices in mobile edge
computing. IEEE Transactions on Cloud Computing.

Study of Power Efficient 5G Mobile Edge Computing 87

39. Ren, J., He, Y., Huang, G., Yu, G., Cai, Y., & Zhang, Z., 2019. An edge-computing based
architecture for mobile augmented reality. IEEE Network, 33(4), pp. 162–169.

40. Chen, X., Pu, L., Gao, L., Wu, W., & Wu, D., 2017. Exploiting massive D2D collaboration for
energy-efficient mobile edge computing. IEEE Wireless communications, 24(4), pp. 64–71.

41. Li, M., Yu, F. R., Si, P., Yao, H., Sun, E., & Zhang, Y., 2017, May. Energy-efficient M2M
communications with mobile edge computing in virtualized cellular networks. In 2017 IEEE
International Conference on Communications (ICC) (pp. 1–6). IEEE.

42. Ning, Z., Dong, P., Kong, X., & Xia, F., 2018. A cooperative partial computation offloading
scheme for mobile edge computing enabled Internet of Things. IEEE Internet of Things
Journal, 6(3), pp. 4804–4814.

43. Dai, Y., Xu, D., Maharjan, S., & Zhang, Y., 2018. Joint computation offloading and user
association in multi-task mobile edge computing. IEEE Transactions on Vehicular Technology,
67(12), pp. 12313–12325.

44. Kiani, A., & Ansari, N., 2018. Edge computing aware NOMA for 5G networks. IEEE Internet
of Things Journal, 5(2), pp. 1299–1306.

45. Tong, L., Li, Y., & Gao, W., 2016, April. A hierarchical edge cloud architecture for mobile
computing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications (pp. 1–9). IEEE.

46. Ji, L., & Guo, S., 2018. Energy-efficient cooperative resource allocation in wireless powered
mobile edge computing. IEEE Internet of Things Journal, 6(3), pp. 4744–4754.

47. Hao, Y., Chen, M., Hu, L., Hossain, M. S., & Ghoneim, A., 2018. Energy efficient task caching
and offloading for mobile edge computing. IEEE Access, 6, pp. 11365–11373.

48. Yang, C., Liu, Y., Chen, X., Zhong, W., & Xie, S., 2019. Efficient mobility-aware task
offloading for vehicular edge computing networks. IEEE Access, 7, pp. 26652–26664.

49. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., & Zhang, Y., 2019. Deep learning
empowered task offloading for mobile edge computing in urban informatics. IEEE Internet
of Things Journal, 6(5), pp. 7635–7647.

50. Mukherjee, A., Deb, P., De, D., & Obaidat, M. S., 2019. WmA-MiFN: A weighted majority and
auction game based green ultra-dense micro-femtocell network system. IEEE Systems Journal,
14(1), pp. 353–362.

51. Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., & Obaidat, M. S., 2020. URJA: Usage Jammer
as a Resource Allocation for Secure Transmission in a CR-NOMA-Based 5G Femtocell
System. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.2999474

52. Ha, D. T., Boukhatem, L., Kaneko, M., Nguyen-Thanh, N., & Martin, S., 2019. Adaptive
beamforming and user association in heterogeneous cloud radio access networks: A mobility-
aware performance-cost trade-off. Computer Networks, 160, pp. 130–143.

53. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V., 2017. Appli-
cation of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications
Magazine, 55(2), pp. 185–191.

54. He, S., & Wang, W., 2019. Multimedia upstreaming cournot game in non-orthogonal multiple
access Internet of Things. IEEE Transactions on Network Science and Engineering, 7(1), pp.
398–408.

http://dx.doi.org/10.1109/JSYST.2020.2999474

SMEC: Sensor Mobile Edge Computing

Anindita Raychaudhuri, Anwesha Mukherjee, and Debashis De

Abstract The development of mobile user equipment progresses cooperatively
with the advancement of the latest mobile applications. Still, the limited battery
capacity prevents users from running computationally intensive applications on their
gadgets. This one stimulated the evolution of Mobile cloud computing (MCC).
Instead of its ample data storage and processing capability, MCC suffers from high
latency. To deal with the latency problem a novel promising concept known as
mobile edge computing has been introduced. Mobile edge computing (MEC) and
wireless sensor networks (WSN) are two ever-promising research domains of the
wireless network. The integration of MEC with WSN has given birth to Sensor
Mobile Edge Computing (SMEC). However, sensor mobile edge computing is an
emerging field, and energy-efficiency is one of the major challenges of this field.
In MEC, services are provided at the edge of the mobile network for reducing
the latency that in turn can improve the quality of user experience. Previously
MEC focused on the use of base stations for offloading computations from mobile
devices. However, after the arrival of fog computing, the definition of edge devices
becomes broader. SMEC is a fusion of mobile edge computing and wireless sensor
network. SMEC is an architecture where the sensor nodes capture the status of
environmental objects and the collected data are sent to the cloud through the edge
devices which participate in data processing also. This chapter discusses sensor
mobile edge computing, its architecture, and its applications. The future scopes and
challenges of SMEC are also addressed in this chapter.

A. Raychaudhuri (�)
Department of Computer Science, Sarojini Naidu College for Women, Kolkata,
West Bengal, India
e-mail: anindita.raychaudhuri@sncwgs.ac.in

A. Mukherjee (�)
Department of Computer Science, Mahishadal Raj College, Mahishadal, West Bengal, India
e-mail: anweshamukherjee@ieee.org

D. De
Centre of Mobile Cloud Computing, Department of Computer Science and Engineering, Maulana
Abul Kalam Azad University of Technology, Kolkata, West Bengal, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_5&domain=pdf
mailto:anindita.raychaudhuri@sncwgs.ac.in
mailto:anweshamukherjee@ieee.org
https://doi.org/10.1007/978-3-030-69893-5_5

90 A. Raychaudhuri et al.

Keywords Cloud Computing (CC) · Internet of Things (IoT) · Mobile Edge
Computing (MEC) · Wireless Sensor Network (WSN)

1 Introduction

A Wireless Sensor Network is a group of low powered tiny sensor nodes intended
for monitoring and recording some physical or environmental conditions at different
locations [1]. WSNs can be used in forest fire detection, industrial process monitor-
ing, air pollution measurement, different medical applications, and many more such
different areas. Cloud computing (CC) is the delivery of computation, software,
and storage as service to the users in a virtualized and isolated environment. In the
past decade, Mobile Cloud Computing (MCC) has emerged as a new archetype of
computing due to the popularity of mobile devices and the epidemic rise of mobile
applications [2, 3]. MCC overcomes the computational and storage limitations of
today’s smart mobile devices. Although an intrinsic drawback of MCC still exists
that is propagation delay. The growing computing capacities present on smart
devices call for the decentralization of Cloud computing services to avoid latency
issues and fully utilize handy computing abilities at the network edges [4].

Driven by the vision of the Internet of Things (IoT), Mobile Edge Computing
(MEC) is becoming a new trend in computing that addresses the issue of propagation
delay and can provide latency-critical mobile applications [5–11]. For the period of
the last four decades, the development of wireless communication networks took
place based on the requirements of applications and transformed every facet of our
lives [11]. A summary of Wireless Communication evolution is shown in Fig. 1.

Edge computing introduces technologies that allow computation to be performed
at the network edge. Therefore computing is possible near data sources also. Before
going to the discussion on the integration of WSN with MCC and MEC, we define
mobile cloud computing, fog computing, and mobile edge computing.

Definition 1: Mobile Cloud Computing
MCC is a paradigm where the storage as well as the processing of data happens
outside the mobile device. The applications of MCC have moved away from the data
storage and computational power from mobile phones and into the cloud, which in
turn brings mobile computing and applications not just to smartphone users but to a
huge number of mobile subscribers (Mobile Cloud Computing Forum (MCC-forum,
2011)).

Definition 2: Fog Computing
Fog Computing is an infrastructure where the devices present between the end node
and cloud servers take participation in the processing of the data, which in turn
reduces the latency.

Definition 3: Mobile Edge Computing
MEC is a new technology that offers cloud computing capabilities and information
technology services within the mobile access network of mobile users.

SMEC: Sensor Mobile Edge Computing 91

Fig. 1 Evolution of Wireless Communication during the last four decades [11]

1.1 WSN with MCC

Mobile cloud computing is a technology that offers unlimited functionality, mobil-
ity, and huge storage capacity through heterogeneous network connectivity. The
integration of WSN and MCC draws significant attention from researchers due
to its data gathering, storage, and processing capability in a single integrated
infrastructure. The main advantage of WSN-MCC integration is the utilization of
effective cloud computing infrastructure for storing and processing a huge amount
of sensory data and ultimately offering processed data to the end-users [12–17].

1.2 WSN with Mobile Edge Computing (MEC)

Most of the time MEC gets along with cloud computing for supporting and
enhancing the end devices’ performance. It is possible by pushing cloud resources
such as to measure, set of connections, and storage space to the edge of the mobile
network. An edge device can be any device that has the computational power and

92 A. Raychaudhuri et al.

ability to network between data sources and cloud-based data centers, for example,
a smartphone can be an edge device which is present between the cloud and body
sensors. MEC directly connects the user with the nearest edge network able to
provide cloud services [11]. According to recent research, the basic motivation
of MEC is to offer computationally intensive applications using resource-limited
mobile devices. As a result, it will be able to fulfill the end-users requirements which
are latency-sensitive and involve high computation. Among the key characteristics
of mobile edge computing proximity and lower latency are the most important
characteristics to be mentioned [3–6].

The comparison of MCC with edge computing is provided in Table 1. As
observed from the table the deployment in MCC is centralized wherein EC the
deployment is distributed. The distance of user equipment from the cloud is higher
than the edge device, which results in higher propagation latency while using the
cloud. However, in the case of the cloud the storage and computational power is
high in comparison with the edge device.

1.3 Research Motivation

The integration of WSN with MCC provides lots of advantages but faced some
critical issues which should be taken care of seriously. In [12] authors identified
some critical issues regarding WSN-MCC integration which are as follows:

• Over-burdened intermediary sensor node: In WSN sensor nodes are generally
equipped with a non-rechargeable battery. It follows multi-hop data communi-
cation from source nodes to gateway nodes via intermediary nodes. As a result,
intermediary nodes become overburdened. Therefore energy efficiency is a prime
concern to make the sensor network operative.

Table 1 Comparison of MCC and Edge Computing [4]

SMEC: Sensor Mobile Edge Computing 93

Challenges of MEC

Deployment of MEC
Systems

Cache-Enabled
MEC

Mobility
management

for MEC

Energy
op�miza�on

for Green
MEC

Security and
privacy issues in

MEC

Fig. 2 Challenges of MEC

• The bottleneck of traffic and bandwidth: With the dramatic increase in the
number of mobile and cloud users the bandwidth of wireless networks may turn
into a bottleneck situation. Besides, high bandwidth is required for multimedia
data transmission. Therefore optimization of traffic and bandwidth demand is
also an important issue.

• Delay of processing: In WSN the data collected from sensors are offered to
end-users based on the need of the applications or users. In that case for some
applications, the delay is unavoidable which affects the network performance.
Therefore it is desirable to make use of the processing capability of the cloud to
empower the WSN for tackling this type of issue.

The primary motivation of MEC is the decentralization of cloud computing
services to make it available at the network edges and avoid latency issues. To
accomplish this lot of challenges are being faced which are shown in Fig. 2.

As observed from the figure, there are several challenges in MEC such as
deployment issue, cache-enabling, mobility management, energy optimization,
security, and privacy, etc.

2 Related Work

In this section, we will focus on the existing works in IoT, cloud computing, fog
computing, and edge computing applications of the sensor network.

94 A. Raychaudhuri et al.

2.1 IoT Applications

The emergence of IoT also termed as Internet of Everything enables the global
network of people, processes, data, and things worldwide. WSN is an important
part of IoT, and it is mainly accountable for collecting and reporting data. WSNs
bring IoT applications more effectiveness and makes it more competence [18, 19].
A large amount of sensory data and its real-time processing is a big challenge for
the practical implementation of large scale IoT systems. Edge computing is one
of the promising solutions in this respect. But the deployment of an edge node
is a fundamental problem. To address this issue authors proposed a deployment
approach for edge servers intended for large-scale IoT [20]. They have shown that
their proposed approach can significantly reduce the number of edge nodes and
improves throughput. Day by day MEC is becoming a key enabler of consumer-
centric IoT applications and services that demand real-time operations [21]. As IoT
performance mainly depends on the lifetime and coverage area of WSN, designing
an efficient method that conserves nodes’ energy and reduces the number of dead
nodes becomes important issues [22, 23]. Therefore clustering is one of the efficient
methods to solve these problems in WSN [24, 25].

With the evolution of IoT, a massive number of sensor-based applications are
going to be materialized. Therefore, the deployment of sensors and their mobility is
a big concern to fulfill their job competently. In this respect, authors have presented
an exhaustive review of existing mobile sinks that support sensors’ mobility in the
context of IoT applications [26]. The concept of the Green Internet of Things (G-
IoT) is considered to play an extremely important role in providing smarter and
sustainable cities [27].

2.2 Cloud Computing Applications

In recent days, cloud computing frameworks have become increasingly popular in
both academia and industry. At the same time, a significant increase in the usage
of smartphone platforms has been noticed worldwide. Therefore Mobile Cloud
Computing emerges as a current state of the art technology providing unlimited
functionalities in many useful applications [28]. The two closely related emerging
technologies IoT and Big Data have matured convincingly to allow smart cities
to materialize [29]. Due to the fast increase in the number of smart cities, their
sustainability needs to be achieved through transformational urban systems design
which may vary from system to system. Big data and Cloud computing play an
important role in this perspective [30]. In [31] authors presented a new concept
and its technologies that are related to the integration of MCC and context-
aware applications. They have introduced CAOS, an android-based framework to
illustrate how context-aware apps may be improved with MCC features like data and
computing offloading. In [32] authors introduced a new medical big data clustering

SMEC: Sensor Mobile Edge Computing 95

algorithm in a cloud computing environment. With the help of cloud computing
technologies, the need for ubiquitous healthcare services is becoming possible day
by day. Besides, big data analysis technologies have shown great possibilities for
improving the quality of healthcare services. In [33] authors proposed a medical
primary diagnosis framework that is outsourced to the cloud server in an encrypted
manner. As a result, it can preserve confidential medical data from an unauthorized
user.

2.3 Fog Computing Applications

Traditional cloud computing is facing severe network challenges like network
bottlenecks high latency to meet the massive requirements of IoT applications. The
circumstances where traditional cloud-based solutions are not appropriate, edge and
fog computing is considered the key enabling archetype which brings the cloud
resources to the edge of the network [34]. Recently fog computing has emerged
as a platform that handles massive data caused by IoT environments and provides
networking services between IoT devices and traditional cloud computing [35]. Fog
computing has come out as a new paradigm for a large group of applications that
are delay-sensitive including smart city, healthcare service, intelligent transporta-
tion system, the personalized recommendation of banking products, Block-chain
enabled applications, and many more [36–44]. Fog computing provides innovative
solutions by bringing resources closer to the user and offer low latency solutions for
data processing. Authors proposed a new framework called HealthFog intended for
automatic Heart Disease analysis by integrating deep learning concepts with Fog
computing [36]. HealthFog delivers healthcare as a fog service using IoT devices
and capably manages the health data.

In urban areas, smart cities are already a reality and therefore have attracted the
attention of many researchers. In [37] authors presented a hybrid edge-fog-cloud
computing architecture for monitoring environmental parameters and traffic flow
in a city with very limited infrastructure. In [38] authors presented a comprehensive
literature review of the existing work already been done in the area of fog computing
applications in smart cities.

2.4 Mobile Edge Computing Applications

According to recent research, the main objective of Mobile Edge Computing is
to provide computationally intensive applications using resource-limited mobile
devices. MEC servers are small-scale data centers; therefore it is very important
to develop innovative approaches for obtaining green MEC. Several approaches are
already there for designing green MEC [45–56]. MEC is a furnishing solution to

96 A. Raychaudhuri et al.

Table 2 Major contributions of existing publications on MEC

Serial no. Major contributions Reference

1 Architecture &Computation offloading [5–11, 62–64, 67–69, 77–80]
2 Resource allocation [57–63]
3 Green MEC [45–56]
4 Mobility management [26, 65, 85]
5 MEC for IoT applications [66, 72–77, 81–89]
6 Security & Privacy issues [75–76, 79, 111–116]
7 MEC with 5G Technologies [11, 70, 89]

facilitate augmented reality (AR) applications on mobile devices [57, 58], video
stream analysis service [59], Cloud-based vehicular networks [60].

For full utilization of the MEC paradigm, few key points should be based
on application-oriented which are (1) decision on computation offloading; (2)
allocation of computing resources within the MEC, and (3) mobility management.
Several researchers have tried to focus on these above mentioned key points
along with the other key points like the architecture and model of MEC, its
mathematical frameworks, energy efficiency for a better solution [61–69]. MEC
facilitates numerous mobile applications like video stream analysis, augmented
reality, Vehicular network, gaming and IoT applications [70–89].

The major contributions of existing publications on mobile edge computing are
summarized in Table 2. The comparison between Cloud, Fog, and Edge computing
concerning processing response is shown in Fig. 3.

3 The Architecture of Sensor Mobile Edge Computing
(SMEC)

Sensor Mobile Edge Computing (SMEC) is an integration of a sensor network with
mobile edge computing. The four-layer architecture of SMEC is presented in Fig. 4.

SMEC architecture contains the following components:

• Sensor nodes
• Mobile device
• Cellular base station with edge server (in case of the cellular network)
• Cloudlet (in case of Wi-Fi)
• Cloud

The sensor nodes after collecting the object status send the collected data to
the mobile device. The mobile device is connected with the base station (cellular
network) or cloudlet (WMAN/WLAN). In the case of a cellular network, a cellular
base station is used along with an edge server. The edge server is connected with the
cloud. In the case of Wi-Fi i.e. Wireless Local Area Network (WLAN) or Wireless

SMEC: Sensor Mobile Edge Computing 97

Fig. 3 Comparison between Cloud, Fog and Edge computing

Metropolitan Area Network (WMAN), cloudlet is used. Here, cloudlet offers the
storage and computation facilities. The cloudlet is connected with the cloud. In
SMEC the mobile device after receiving the sensor data performs preliminary
processing on the data and sends them to the edge server through the base station,
or to the cloudlet. The data is processed inside the edge server/cloudlet, and then
according to the necessity, the data is forwarded to the cloud.

3.1 Advantages of SMEC over SMCC

The advantages of SMEC over SMCC are listed in Table 3.
As observed from the table due to the use of MCC the deployment is centralized

in SMCC, where the deployment in SMEC is distributed as edge computing is used.
In the case of SMEC, the latency is lower than the SMCC as the distance of the
end node from the remote cloud is higher than the edge device. The computational

98 A. Raychaudhuri et al.

Fig. 4 Four-layer Architecture of SMEC

Table 3 Comparison between SMCC and SMEC

SMEC: Sensor Mobile Edge Computing 99

power and storage of the cloud are higher than the edge device, the computational
power and storage are higher in SMCC than SMEC.

3.1.1 Definition of SMEC

Sensor mobile edge computing is defined as an integrated architecture which is
the combination of mobile edge computing and wireless sensor network where the
sensor nodes capture the status of environmental objects and the collected data are
sent to the cloud through the edge devices. MEC connects the user directly to the
nearest cloud service enabled edge network which provides high computation, low
latency, and avoid bottleneck situation.

3.2 Latency in SMEC

In SMEC, the storage and computation execution related to the sensor data takes
place inside the edge device. To calculate the latency the data transmission,
propagation, computation execution, and queuing latencies are calculated.

The data transmission latency in SMEC is given as [78],

Lst =
h∑

i=1

(
1 + Uf i

) Stui

Rui

+
k∑

j=1

(
1 + Dfj

) Stdj

Rdj

, (1)

Where Ufi is the failure rate in the uplink, Stui is the sensor data amount transmitted
in the uplink, Rui is the sensor data transmission rate in the uplink, between the
communicating devices for hop i, Dfj is the failure rate in the downlink, Stdj is the
sensor data amount transmitted in the downlink, Rdj is the sensor data transmission
rate in the downlink, between the communicating devices for hop j, h is the number
of hops in uplink and k is the number of hops in the downlink.

The computation execution latency is given as [78],

Lsc = I

Ic

, (2)

Where, I is the number of instructions to be executed for the computation and Ic is
the instruction execution speed of the computing device.

The propagation latency is given as [78],

Lsp = Dp

Sp

, (3)

100 A. Raychaudhuri et al.

Fig. 5 Latency in SMEC and SMCC

Where, Drs is the distance covered between the requesting and serving node, and
Dp is the propagation speed.

If the queuing latency is denoted by Lsq, the total latency is given as [78],

Lsmec = Lst + Lsc + Lsp + Lsq. (4)

In Fig. 5 the latency in SMEC and SMCC are compared. This is observed that
by bringing the computation at the network edge the latency has been reduced by
~40% than the cloud-based SMCC framework.

In the next section, we have focused on the applications of SMEC.

4 Application of SMEC

Different applications of SMEC are discussed as follows.

4.1 Vehicular Network

In Vehicular Adhoc Network (VANET) the use of edge computing has been
highlighted in [79]. It has been shown that by using edge nodes as an intermediary
interface amid vehicle and cloud, the latency has been reduced. A Software Defined
Network (SDN) with MEC has been presented in [80] which are intended for
establishing the VANET routing path for paired vehicles. In [80] it has been
demonstrated that this method provides better throughput.

SMEC: Sensor Mobile Edge Computing 101

4.2 Augmented Reality Service

Augmented Reality (AR) presents a virtual environment through which the users
observe the real world with virtual objects composited with the real world [81, 82].
With AR a user will be able to work with real 3D objects with their information
acknowledged visually from a mobile device. For example, a civil engineer wishes
to develop a children’s house inside a playground. AR allows him to select the
correct place to build the house inside the playground with the help of his mobile
device camera. The sensor plays an important role in AR. In SMEC with the help of
sensors, virtual reality can be provided to the user to view the real world with virtual
objects superimposed with the real world.

4.3 Home Monitoring

A smart room generally contains a computer system with huge storage and
processing power to control the activities of the devices within the room. This is
expensive as well as introduces overhead to a single device. If SMCC based smart
home, the activities can be controlled by the server itself with a cloud environment.
In [83] the use of fog computing in the smart home has been demonstrated. In SMEC
the computing and storage resources are placed close to the network edge and the
delay, jitter, and energy consumption of the user device can be reduced. Recently
several researchers have presented IoT based solutions for smart home monitoring
[84, 85].

4.4 Healthcare

In smart health care, health sensor devices capture the health status, and the sensor
data are stored and processed inside the cloud servers. After processing the data, the
health status of the user can be detected [86–89]. In [86], the use of an edge-based
framework in time-critical applications has been shown, where health care has been
considered as a case study. By bringing the processing facility closer to the network
edge, the delay which is a vital parameter for health care can be reduced. In [87],
mobility data analytics has been integrated with health care service, for advising
users regarding nearby health center.

102 A. Raychaudhuri et al.

5 Future Scope

5.1 Bio-inspired SMEC

Bio-inspired computation has started a new era towards the solution of different
energy aware, time-critical computational problems in wireless sensor networks.
Sensor mobile edge computing is an emerging field that can provide high-quality
solutions using resource-limited mobile devices. Mobile edge computing addresses
the issues of latency, the limited battery power of mobile devices and security, etc.
In recent days Bio-inspired algorithms are getting much attention for providing
the best solution in different areas specially WSN, IoT, Fog computing, and Cloud
computing [90–107].

In [90] authors presented a hybrid routing algorithm combining ACO and FSOA
which addresses one significant issue namely energy consumption of WSN and
extends network lifetime. So the concept of applying a hybrid bio-inspired algorithm
can also be useful for green SMEC. In [91], a hybrid algorithm has been presented
combining improved Bat algorithm and LEACH. In this paper, it was shown that the
improved BA has stronger optimization ability that can reduce energy consumption
and is able to enhance the lifetime of WSN considerably. In [92] authors presented a
cat swarm optimization-based approach which optimizes the energy distribution for
the WSNs in real-time. In [93] authors proposed a Chicken Swarm Optimization
Algorithm (CSOA) based cluster Size Load Balancing technique for IoT-based
sensor networks. In this paper, it has shown significant improvement in terms of
network lifetime, overall energy consumption. One GSO-based energy-efficient
sensor movement approach is presented in [94] which attempts to optimize both the
energy and coverage of mobile WSN at a time. Therefore it will also be effective
if it is applied for implanting green SMEC. In [95], the authors presented the MFO
based energy-efficient clustering protocol which extends the stability period of the
network and optimizes energy consumption. Hence this algorithm can also be useful
for green SMEC. Recently bio-inspired algorithms are showing good results in
energy optimization in diverse areas specially WSN and IoT which are summarized
in Table 4.

5.2 Big Data Analytics in SMEC

Big data analytics in SMEC is another major challenge. SMEC has various
application areas like VANET, healthcare, where a large amount of data generation
takes place and the analysis of the huge amount of data is required. In [108] big
data reinforcement learning method has been proposed along with an integrated
paradigm for better performance in smart city applications. In [109] big data
analytics in health care has been focused. An edge computing paradigm has
been proposed for big data processing and an optimized model for estimating

SMEC: Sensor Mobile Edge Computing 103

Table 4 Contributions of bio-inspired algorithms in energy optimization

epileptogenic network [109]. In [110] a MEC based system has been used alongside
a big data-driven scheduling method to achieve communication efficiency.

5.3 Security and Privacy Issues of SMEC

While integrating WSN with MEC then security becomes a major challenge. The
security threats in the edge-cloud computing framework have been studied in [111].
In [112] the authors have proposed a fog-based storage framework to deal with the
cyber threat. As a large number of mobile users are present, then privacy is another
issue. Here, the assessment of each mobile node is also very important [113] along
with the assessment of invulnerability [114]. In [115] an intrusion detection system
has been discussed based on a decision tree. Security and privacy issues of MEC for
heterogeneous IoT are the most promising future research areas [116].

104 A. Raychaudhuri et al.

5.4 Dew Computing Based Context-Aware Local Computing

In [117, 118] authors introduced dew computing architecture intended for real-
time context-aware service framework. It has been observed that the end-users can
get advantage from this framework through data sensing, computing in the IoT
environment [118].

5.5 Resource Management

Resource allocation in mobile cloud computing is a major challenge [119]. Sim-
ilarly, in MEC also resource allocation and management are major factors. In
SMEC the deployment of edge servers for optimal service provisioning as well
as resource management is a vital challenge. As multiple users are present and
their requirements are also different and most importantly the users have mobility,
the resource allocation, release, VM migration, delivery of required service with
minimal latency are key challenges.

6 Conclusion

This chapter provides a discussion on the architecture and working model of
sensor mobile edge computing. The use of edge computing provides lower latency
concerning the cloud-only system, which we have shown in theoretical results.
The applications of sensor mobile edge computing in health care, smart home
management, vehicular network, augmented reality have been discussed. The future
research directions of sensor mobile edge computing have been also illustrated
where resource management, big data analytics, security, bio-inspired sensor mobile
edge computing have been considered.

References

1. Zhu, C., Shu, L., Hara, T., Wang, L., Nishio, S., and Yang, L.T., 2014. A survey on commu-
nication and data management issues in mobile sensor networks. Wireless Communications
and Mobile Computing, 14(1), pp. 19–36.

2. Gill, S.S., Garraghan, P., Stankovski, V., Casale, G., Thulasiram, R.K., Ghosh, S.K.,
Ramamohanarao, K. and Buyya, R., 2019. Holistic resource management for sustainable and
reliable cloud computing: An innovative solution to global challenge. Journal of Systems and
Software.

3. Gill, S.S. and Buyya, R., 2019. Sustainable Cloud Computing Realization for Different
Applications: A Manifesto. In Digital Business (pp. 95–117). Springer, Cham.

SMEC: Sensor Mobile Edge Computing 105

4. Ferrer, A.J., Marquès, J.M. and Jorba, J., 2019. Towards the decentralised cloud: Survey on
approaches and challenges for mobile, ad hoc, and edge computing. ACM Computing Surveys
(CSUR), 51(6), pp. 1-36.

5. Mao, Y., You, C., Zhang, J., Huang, K. and Letaief, K.B., 2017. A survey on mobile edge
computing: The communication perspective. IEEE Communications Surveys & Tutorials,
19(4), pp. 2322–2358.

6. Mach, P. and Becvar, Z., 2017. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys & Tutorials, 19(3), pp. 1628–1656.

7. Peng, K., Leung, V., Xu, X., Zheng, L., Wang, J. and Huang, Q., 2018. A survey on mobile
edge computing: Focusing on service adoption and provision. Wireless Communications and
Mobile Computing, 2018.

8. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S. and Neal, A., 2014. Mobile-edge
computing introductory technical white paper. White paper, mobile-edge computing (MEC)
industry initiative, pp. 1089–7801.

9. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I. and Ahmed, A., 2019. Edge computing: A
survey. Future Generation Computer Systems, 97, pp. 219–235.

10. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X. and Chen, X., 2020. Convergence of
edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys
& Tutorials.

11. Pham, Q.V., Fang, F., Ha, V.N., Piran, M.J., Le, M., Le, L.B., Hwang, W.J. and Ding, Z.,
2020. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology
integration, and state-of-the-art. IEEE Access, 8, pp. 116974–117017.

12. Zhu, C., Wang, H., Liu, X., Shu, L., Yang, L.T. and Leung, V.C., 2014. A novel sensory data
processing framework to integrate sensor networks with mobile cloud. IEEE Systems Journal,
10(3), pp. 1125–1136.

13. De, D., Mukherjee, A., Ray, A., Roy, D.G. and Mukherjee, S., 2016. Architecture of green
sensor mobile cloud computing. IET Wireless Sensor Systems, 6(4), pp. 109–120.

14. Wang, W., Lee, K. and Murray, D., 2012, September. Integrating sensors with the cloud
using dynamic proxies. In 2012 IEEE 23rd International Symposium on Personal, Indoor
and Mobile Radio Communications-(PIMRC) (pp. 1466–1471). IEEE.

15. Lounis, A., Hadjidj, A., Bouabdallah, A. and Challal, Y., 2016. Healing on the cloud:
Secure cloud architecture for medical wireless sensor networks. Future Generation Computer
Systems, 55, pp. 266–277.

16. Malik, A. and Om, H., 2018. Cloud computing and internet of things integration: Architecture,
applications, issues, and challenges. In Sustainable cloud and energy services (pp. 1–24).
Springer, Cham.

17. Dattatraya, P.Y., Agarkhed, J. and Patil, S., 2016, March. Cloud assisted performance
enhancement of smart applications in Wireless Sensor Networks. In 2016 International
Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)
(pp. 347–351). IEEE.

18. Lee, I. and Lee, K., 2015. The Internet of Things (IoT): Applications, investments, and
challenges for enterprises. Business Horizons, 58(4), pp. 431–440.

19. Lazarescu, M.T., 2013. Design of a WSN platform for long-term environmental monitoring
for IoT applications. IEEE Journal on emerging and selected topics in circuits and systems,
3(1), pp. 45–54.

20. Zhao, Z., Min, G., Gao, W., Wu, Y., Duan, H. and Ni, Q., 2018. Deploying edge computing
nodes for large-scale IoT: A diversity aware approach. IEEE Internet of Things Journal, 5(5),
pp. 3606–3614.

21. Corcoran, P. and Datta, S.K., 2016. Mobile-edge computing and the Internet of Things
for consumers: Extending cloud computing and services to the edge of the network. IEEE
Consumer Electronics Magazine, 5(4), pp. 73–74.

22. Alam, S., De, D. and Ray, A., 2015, May. Analysis of energy consumption for IARP, RIP
and STAR routing protocols in wireless sensor networks. In 2015 Second International
Conference on Advances in Computing and Communication Engineering (pp. 11–16). IEEE.

106 A. Raychaudhuri et al.

23. Ray, A. and De, D., 2014. Level wise initial energy assignment in wireless sensor network for
better network lifetime. In Advanced Computing, Networking and Informatics-Volume 2 (pp.
67–74). Springer, Cham.

24. Ray, A. and De, D., 2012. P-eechs: Parametric energy efficient cluster head selection protocol
for wireless sensor network. International Journal of Advanced Computer Engineering &
Architecture, 2(2).

25. Ray, A. and De, D., 2013. Energy efficient clustering algorithm for multi-hop green wireless
sensor network using gateway node. Advanced Science, Engineering and Medicine, 5(11), pp.
1199–1204

26. Hamidouche, R., Aliouat, Z., Gueroui, A.M., Ari, A.A.A. and Louail, L., 2018. Classical
and bio-inspired mobility in sensor networks for IoT applications. Journal of Network and
Computer Applications, 121, pp. 70–88.

27. Maksimovic, M., 2017. The role of green internet of things (G-IoT) and big data in making
cities smarter, safer and more sustainable. International Journal of Computing and Digital
Systems, 6(04), pp. 175–184.

28. Rahimi, M.R., Ren, J., Liu, C.H., Vasilakos, A.V. and Venkatasubramanian, N., 2014.
Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and
Applications, 19(2), pp. 133–143.

29. Mohanty, S.P., Choppali, U. and Kougianos, E., 2016. Everything you wanted to know about
smart cities: The internet of things is the backbone. IEEE Consumer Electronics Magazine,
5(3), pp. 60–70.

30. Yamagata, Y., Yang, P.P., Chang, S., Tobey, M.B., Binder, R.B., Fourie, P.J., Jittrapirom, P.,
Kobashi, T., Yoshida, T. and Aleksejeva, J., 2020. Urban systems and the role of big data. In
Urban Systems Design (pp. 23–58). Elsevier.

31. Trinta, F., Rego, P.A., Gomes, F., Rocha, L., Viana, W. and de Souza, J.N., 2020. Using Mobile
Cloud Computing for Developing Context-Aware Multimedia Applications. In Special Topics
in Multimedia, IoT and Web Technologies (pp. 51–89). Springer, Cham.

32. Yu, J., Li, H. and Liu, D., 2020. Modified Immune Evolutionary Algorithm for Medical
Data Clustering and Feature Extraction under Cloud Computing Environment. Journal of
Healthcare Engineering, 2020.

33. Hua, J., Shi, G., Zhu, H., Wang, F., Liu, X. and Li, H., 2020. CAMPS: Efficient and privacy-
preserving medical primary diagnosis over outsourced cloud. Information Sciences, 527, pp.
560–575.

34. Naha, R.K., Garg, S., Georgakopoulos, D., Jayaraman, P.P., Gao, L., Xiang, Y. and Ranjan, R.,
2018. Fog Computing: Survey of trends, architectures, requirements, and research directions.
IEEE access, 6, pp. 47980–48009.

35. Avasalcai, C., Murturi, I. and Dustdar, S., 2020. Edge and fog: A survey, use cases, and future
challenges. Fog Computing: Theory and Practice, pp. 43–65.

36. Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya, R.C., Wander, G.S. and Buyya, R.,
2020. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic
Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future
Generation Computer Systems, 104, pp. 187–200.

37. Gia, T.N., Queralta, J.P. and Westerlund, T., 2020. Exploiting LoRa, edge, and fog computing
for traffic monitoring in smart cities. In LPWAN Technologies for IoT and M2M Applications
(pp. 347–371). Academic Press.

38. Javadzadeh, G. and Rahmani, A.M., 2020. Fog computing applications in smart cities: A
systematic survey. Wireless Networks, 26(2), pp. 1433–1457.

39. Giang, N.K., Lea, R. and Leung, V.C., 2020. Developing applications in large scale, dynamic
fog computing: A case study. Software: Practice and Experience, 50(5), pp. 519–532.

40. Rehan, M.M. and Rehmani, M., 2020. Blockchain-enabled Fog and Edge Computing:
Concepts, Architectures and Applications: Concepts, Architectures and Applications.

41. Hernandez-Nieves, E., Hernández, G., Gil-González, A.B., Rodríguez-González, S. and
Corchado, J.M., 2020. Fog computing architecture for personalized recommendation of
banking products. Expert Systems with Applications, 140, p. 112900.

SMEC: Sensor Mobile Edge Computing 107

42. Shen, X., Zhu, L., Xu, C., Sharif, K. and Lu, R., 2020. A privacy-preserving data aggregation
scheme for dynamic groups in fog computing. Information Sciences, 514, pp. 118–130.

43. Kumar, K.V.R., Kumar, K.D., Poluru, R.K., Basha, S.M. and Reddy, M.P.K., 2020. Internet
of Things and Fog Computing Applications in Intelligent Transportation Systems. In Archi-
tecture and Security Issues in Fog Computing Applications (pp. 131–150). IGI Global.

44. Sarkar, S. and Misra, S., 2016. Theoretical modelling of fog computing: a green computing
paradigm to support IoT applications. Iet Networks, 5(2), pp. 23–29.

45. Zhang, K., Leng, S., He, Y., Maharjan, S. and Zhang, Y., 2018. Mobile edge computing and
networking for green and low-latency Internet of Things. IEEE Communications Magazine,
56(5), pp. 39–45.

46. Jin, X., Zhang, F., Vasilakos, A.V. and Liu, Z., 2016. Green data centers: A survey,
perspectives, and future directions. arXiv preprint arXiv:1608.00687.

47. Sun, X. and Ansari, N., 2017. Green cloudlet network: A distributed green mobile cloud
network. IEEE Network, 31(1), pp. 64–70.

48. Malla, S. and Christensen, K., 2020. The effect of server energy proportionality on data center
power oversubscription. Future Generation Computer Systems, 104, pp. 119–130.

49. Lin, M., Wierman, A., Andrew, L.L. and Thereska, E., 2012. Dynamic right-sizing for power-
proportional data centers. IEEE/ACM Transactions on Networking, 21(5), pp. 1378–1391.

50. Lin, M., Liu, Z., Wierman, A. and Andrew, L.L., 2012, June. Online algorithms for
geographical load balancing. In 2012 international green computing conference (IGCC) (pp.
1–10). IEEE.

51. Xu, H., Feng, C. and Li, B., 2014. Temperature aware workload managementin geo-
distributed data centers. IEEE Transactions on Parallel and Distributed Systems, 26(6), pp.
1743–1753.

52. Toosi, A.N., Qu, C., de Assunção, M.D. and Buyya, R., 2017. Renewable-aware geographical
load balancing of web applications for sustainable data centers. Journal of Network and
Computer Applications, 83, pp. 155–168.

53. Gong, J., Zhou, S. and Niu, Z., 2013. Optimal power allocation for energy harvesting and
power grid coexisting wireless communication systems. IEEE Transactions on Communica-
tions, 61(7), pp. 3040–3049.

54. Mao, Y., Zhang, J. and Letaief, K.B., 2016. Grid energy consumption and QoS tradeoff in
hybrid energy supply wireless networks. IEEE Transactions on Wireless Communications,
15(5), pp. 3573–3586.

55. Huang, K. and Lau, V.K., 2014. Enabling wireless power transfer in cellular networks:
Architecture, modeling and deployment. IEEE Transactions on Wireless Communications,
13(2), pp. 902–912.

56. Ju, H. and Zhang, R., 2013. Throughput maximization in wireless powered communication
networks. IEEE Transactions on Wireless Communications, 13(1), pp. 418–428.

57. Al-Shuwaili, A. and Simeone, O., 2017. Energy-efficient resource allocation for mobile edge
computing-based augmented reality applications. IEEE Wireless Communications Letters,
6(3), pp. 398–401.

58. Schneider, M., Rambach, J. and Stricker, D., 2017, March. Augmented reality based on edge
computing using the example of remote live support. In 2017 IEEE International Conference
on Industrial Technology (ICIT) (pp. 1277–1282). IEEE.

59. Anjum, A., Abdullah, T., Tariq, M., Baltaci, Y. and Antonopoulos, N., 2016. Video stream
analysis in clouds: An object detection and classification framework for high performance
video analytics. IEEE Transactions on Cloud Computing.

60. Zhang, K., Mao, Y., Leng, S., He, Y. and Zhang, Y., 2017. Mobile-edge computing for
vehicular networks: A promising network paradigm with predictive off-loading. IEEE
Vehicular Technology Magazine, 12(2), pp. 36–44.

61. Kabir, M.T. and Masouros, C., 2019. A Scalable Energy vs. Latency Trade-Off in Full-Duplex
Mobile Edge Computing Systems. IEEE Transactions on Communications, 67(8), pp. 5848–
5861.

108 A. Raychaudhuri et al.

62. Dinh, T.Q., La, Q.D., Quek, T.Q. and Shin, H., 2018. Learning for computation offloading in
mobile edge computing. IEEE Transactions on Communications, 66(12), pp. 6353–6367.

63. Ji, L. and Guo, S., 2018. Energy-efficient cooperative resource allocation in wireless powered
mobile edge computing. IEEE Internet of Things Journal, 6(3), pp. 4744–4754.

64. Huang, L., Bi, S. and Zhang, Y.J., 2019. Deep reinforcement learning for online computation
offloading in wireless powered mobile-edge computing networks. IEEE Transactions on
Mobile Computing.

65. Sun, Y., Zhou, S. and Xu, J., 2017. EMM: Energy-aware mobility management for mobile
edge computing in ultra dense networks. IEEE Journal on Selected Areas in Communications,
35(11), pp. 2637–2646.

66. Sun, X. and Ansari, N., 2016. EdgeIoT: Mobile edge computing for the Internet of Things.
IEEE Communications Magazine, 54(12), pp. 22–29.

67. Jiang, C., Cheng, X., Gao, H., Zhou, X. and Wan, J., 2019. Toward computation offloading in
edge computing: A survey. IEEE Access, 7, pp. 131543–131558.

68. Abbas, N., Zhang, Y., Taherkordi, A. and Skeie, T., 2017. Mobile edge computing: A survey.
IEEE Internet of Things Journal, 5(1), pp. 450–465.

69. Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., De Foy, X. and Zhang, Y., 2017. Mobile edge
cloud system: Architectures, challenges, and approaches. IEEE Systems Journal, 12(3), pp.
2495–2508.

70. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S. and Sabella, D., 2017. On multi-
access edge computing: A survey of the emerging 5G network edge cloud architecture and
orchestration. IEEE Communications Surveys & Tutorials, 19(3), pp. 1657–1681.

71. Moura, J. and Hutchison, D., 2018. Game theory for multi-access edge computing: Survey,
use cases, and future trends. IEEE Communications Surveys & Tutorials, 21(1), pp. 260–288.

72. Ai, Y., Peng, M. and Zhang, K., 2018. Edge computing technologies for Internet of Things: a
primer. Digital Communications and Networks, 4(2), pp. 77–86.

73. Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M. and Taleb, T., 2018. Survey on multi-
access edge computing for internet of things realization. IEEE Communications Surveys &
Tutorials, 20(4), pp. 2961–2991.

74. Premsankar, G., Di Francesco, M. and Taleb, T., 2018. Edge computing for the Internet of
Things: A case study. IEEE Internet of Things Journal, 5(2), pp. 1275–1284.

75. Mäkitalo, N., Ometov, A., Kannisto, J., Andreev, S., Koucheryavy, Y. and Mikkonen, T., 2018.
Safe and secure execution at the network edge: a framework for coordinating cloud, fog, and
edge. IEEE Softw, 35(1), pp. 30–37.

76. Shirazi, S.N., Gouglidis, A., Farshad, A. and Hutchison, D., 2017. The extended cloud:
Review and analysis of mobile edge computing and fog from a security and resilience
perspective. IEEE Journal on Selected Areas in Communications, 35(11), pp. 2586–2595.

77. Beck, M.T., Werner, M., Feld, S. and Schimper, S., 2014, November. Mobile edge computing:
A taxonomy. In Proc. of the Sixth International Conference on Advances in Future Internet
(pp. 48–55). Citeseer.

78. Mukherjee, A., De, D., and Guha Roy D, 2016. A power and latency aware cloudlet selection
strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), pp.
141–154.

79. Garg, S., Singh, A., Kaur, K., Aujla, G. S., Batra, S., Kumar, N., &Obaidat, M. S. (2019).
Edge computing-based security framework for big data analytics in VANETs. IEEE Network,
33(2), 72–81.

80. Huang, C. M., Chiang, M. S., Dao, D. T., Su, W. L., Xu, S., & Zhou, H. (2018). V2V data
offloading for cellular network based on the software defined network (SDN) inside mobile
edge computing (MEC) architecture. IEEE Access, 6, 17741–17755.

81. Van Krevelen, D. W. F., &Poelman, R. (2010). A survey of augmented reality technologies,
applications and limitations. International journal of virtual reality, 9(2), 1–20.

82. Chen, D., Xie, L.J., Kim, B., Wang, L., Hong, C.S., Wang, L.C. and Han, Z., 2020, February.
Federated Learning Based Mobile Edge Computing for Augmented Reality Applications. In
2020 International Conference on Computing, Networking and Communications (ICNC) (pp.
767–773). IEEE.

SMEC: Sensor Mobile Edge Computing 109

83. Deb, P., Mukherjee, A., & De, D. (2019). Design of Green Smart Room Using Fifth
Generation Network Device Femtolet. Wireless Personal Communications, 104(3), 1037–
1064.

84. Ray, A. and De, D., 2017. Performance evaluation of tree based data aggregation for real time
indoor environment monitoring using wireless sensor network. Microsystem Technologies,
23(9), pp. 4307–4318.

85. Maswadi, K., Ghani, N.B.A. and Hamid, S.B., 2020. Systematic Literature Review of Smart
Home Monitoring Technologies Based on IoT for the Elderly. IEEE Access, 8, pp. 92244–
92261.

86. Ghosh, S., Mukherjee, A., Ghosh, S. K., &Buyya, R. (2019). Mobi-IoST: mobility-aware
cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Transactions
on Network Science and Engineering.

87. Greco, L., Percannella, G., Ritrovato, P., Tortorella, F. and Vento, M., 2020. Trends in IoT
based solutions for health care: moving AI to the Edge. Pattern Recognition Letters.

88. Tamilselvi, V., Sribalaji, S., Vigneshwaran, P., Vinu, P. and GeethaRamani, J., 2020, March.
IoT based health monitoring system. In 2020 6th International Conference on Advanced
Computing and Communication Systems (ICACCS) (pp. 386–389). IEEE.

89. Shafique, K., Khawaja, B.A., Sabir, F., Qazi, S. and Mustaqim, M., 2020. Internet of things
(IoT) for next-generation smart systems: A review of current challenges, future trends and
prospects for emerging 5G-IoT scenarios. IEEE Access, 8, pp. 23022–23040.

90. Sun, Y.; Dong, W.; Chen, Y. An improved routing algorithm based on ant colony optimization
in wireless sensor networks. IEEE Commun. Lett. 2017, 21, 1317–1320.

91. Cui, Z., Cao, Y., Cai, X., Cai, J. and Chen, J. (2018) Optimal LEACH protocol with modified
bat algorithm for big data sensing systems in Internet of Things. Journal of Parallel and
Distributed Computing.

92. Chandirasekaran, D. and Jayabarathi, T., 2019. Cat swarm algorithm in wireless sensor
networks for optimized cluster head selection: a real time approach. Cluster Computing,
22(5), pp. 11351–11361.

93. Aziz, A., Singh, K., Osamy, W. and Khedr, A.M., 2019. Effective algorithm for optimizing
compressive sensing in IoT and periodic monitoring applications. Journal of Network and
Computer Applications, 126, pp. 12–28.

94. Ray, A. and De, D., 2016. An energy efficient sensor movement approach using multi-
parameter reverse glowworm swarm optimization algorithm in mobile wireless sensor
network. Simulation Modelling Practice and Theory, 62, pp. 117–136.

95. Mittal, N., 2019. Moth Flame Optimization Based Energy Efficient Stable Clustered Routing
Approach for Wireless Sensor Networks. Wireless Personal Communications, 104(2), pp.
677–694.

96. Tabibi, S. and Ghaffari, A., 2019. Energy-efficient routing mechanism for mobile sink in
wireless sensor networks using particle swarm optimization algorithm. Wireless Personal
Communications, 104(1), pp. 199–216.

97. Li, Y., Soleimani, H. and Zohal, M., 2019. An improved ant colony optimization algorithm
for the multi-depot green vehicle routing problem with multiple objectives. Journal of Cleaner
Production.

98. Wang, J., Cao, J., Sherratt, R.S. and Park, J.H., 2018. An improved ant colony optimization-
based approach with mobile sink for wireless sensor networks. The Journal of Supercomput-
ing, 74(12), pp. 6633–6645.

99. Osaba, E., Yang, X.S., Fister Jr, I., Del Ser, J., Lopez-Garcia, P. and Vazquez-Pardavila,
A.J., (2019) A discrete and improved bat algorithm for solving a medical goods distribution
problem with pharmacological waste collection. Swarm and evolutionary computation,
44:273–286.

100. Ng, C.K., Wu, C.H., Ip, W.H. and Yung, K.L. (2018) A smart bat algorithm for wireless sensor
network deployment in 3-D environment. IEEE Communications Letters, 22(10):2120–2123.

101. Kong, L., Chen, C.M., Shih, H.C., Lin, C.W., He, B.Z. and Pan, J.S., 2014. An energy-aware
routing protocol using cat swarm optimization for wireless sensor networks. In Advanced

110 A. Raychaudhuri et al.

Technologies, Embedded and Multimedia for Human-Centric Computing (pp. 311–318).
Springer, Dordrecht.

102. Kong, L., Pan, J.S., Tsai, P.W., Vaclav, S. and Ho, J.H., 2015. A balanced power consumption
algorithm based on enhanced parallel cat swarm optimization for wireless sensor network.
International Journal of Distributed Sensor Networks, 11(3), p. 729680.

103. Li, X., Keegan, B. and Mtenzi, F., 2018. Energy Efficient Hybrid Routing Protocol Based
on the Artificial Fish Swarm Algorithm and Ant Colony Optimisation for WSNs. Sensors,
18(10), p. 3351.

104. Khan, M.F., Aadil, F., Maqsood, M., Bukhari, S.H.R., Hussain, M. and Nam, Y., 2019. Moth
Flame Clustering Algorithm for Internet of Vehicle (MFCA-IoV). IEEE Access, 7, pp. 11613–
11629.

105. Ray, A. and De, D., 2016. Energy efficient clustering protocol based on K-means (EECPK-
means)-midpoint algorithm for enhanced network lifetime in wireless sensor network. IET
Wireless Sensor Systems, 6(6), pp. 181–191.

106. Raychaudhuri, A. and De, D., 2020. Bio-inspired Algorithm for Multi-objective Optimization
in Wireless Sensor Network. In Nature Inspired Computing for Wireless Sensor Networks
(pp. 279–301). Springer, Singapore.

107. Hamrioui, S. and Lorenz, P., 2017. Bio inspired routing algorithm and efficient communica-
tions within IoT. IEEE Network, 31(5), pp. 74–79.

108. He, Y., Yu, F. R., Zhao, N., Leung, V. C., & Yin, H. (2017). Software-defined networks with
mobile edge computing and caching for smart cities: A big data deep reinforcement learning
approach. IEEE Communications Magazine, 55(12), 31–37.

109. Hosseini, M. P., Tran, T. X., Pompili, D., Elisevich, K., & Soltanian-Zadeh, H. (2017, July).
Deep learning with edge computing for localization of epileptogenicity using multimodal rs-
fMRI and EEG big data. In 2017 IEEE International Conference on Autonomic Computing
(ICAC) (pp. 83–92). IEEE.

110. Cao, Y., Song, H., Kaiwartya, O., Zhou, B., Zhuang, Y., Cao, Y., & Zhang, X. (2018). Mobile
edge computing for big-data-enabled electric vehicle charging. IEEE Communications Mag-
azine, 56(3), 150–156.

111. Roman, R., Lopez, J., & Mambo, M. (2018). Mobile edge computing, fog et al.: A survey
and analysis of security threats and challenges. Future Generation Computer Systems, 78,
680–698.

112. Wang, T., Zhou, J., Huang, M., Bhuiyan, M. Z. A., Liu, A., Xu, W., &Xie, M. (2018). Fog-
based storage technology to fight with cyber threat. Future Generation Computer Systems,
83, 208–218.

113. Peng, K., Lin, R., Huang, B., Zou, H., & Yang, F. (2013). Node importance of data center
network based on contribution matrix of information entropy. Journal of Networks, 8(6),
1248.

114. Peng, K., & Huang, B. (2015). The invulnerability studies on data center network. Interna-
tional Journal of Security and Its Applications, 9(11), 167–186.

115. Peng, K., Leung, V., Zheng, L., Wang, S., Huang, C., & Lin, T. (2018). Intrusion detection
system based on decision tree over big data in fog environment. Wireless Communications
and Mobile Computing, 2018.

116. Du, M., Wang, K., Chen, Y., Wang, X. and Sun, Y., 2018. Big data privacy preserving in
multi-access edge computing for heterogeneous Internet of Things. IEEE Communications
Magazine, 56(8), pp. 62–67.

117. Ray, P.P., Dash, D. and De, D., 2019. Internet of things-based real-time model study on e-
healthcare: Device, message service and dew computing. Computer Networks, 149, pp. 226–
239.

118. Roy, S., Sarkar, D. and De, D., 2020. DewMusic: crowdsourcing-based internet of music
things in dew computing paradigm. Journal of Ambient Intelligence and Humanized Comput-
ing, pp. 1–17.

119. De, Debashis. Mobile cloud computing: architectures, algorithms and applications. CRC
Press, 2016.

IoT Integration with MEC

AmirHossein Jafari Pozveh and Hadi Shahriar Shahhoseini

Abstract Internet of Things (IoT) as a backbone of future customer value enables
ubiquitously available digital services. However, providing smart digital services in
an IoT ecosystem that billions of devices are connected to the network, needs high
processing power and high capacity as well as low latency communications. In this
regard, the emergence of MultiAccess Edge Computing (MEC) technology offers
cloud computing capabilities to the network edge to meet IoT-based application
requirements by providing real-time, high-bandwidth, low-latency access to the net-
work resources. In this chapter, the most important topics related to IoT integrated
with MEC have been presented. After introduction, the role of MEC in providing
IoT services by using real-time analysis, caching and computing mechanisms are
explained. By considering the importance of the integration in service delivery
and platform in the next-generation networks (e.g. 5G), the MEC API section is
presented. It discusses about the interaction of devices, third-parties and service
providers with MEC platform through API as a common language. Then, the
mobility management in IoT ecosystem related to service delivery and QoS using
MEC has been studied. Finally, after presenting a benchmark for deployed IoT use
cases by famous operators, challenges and future direction have been surveyed.

Keywords MEC platform · IoT · Offloading · Local caching · Mobility
management

1 Introduction

Emerging new communication technologies and developing next-generation net-
works like 5G, have enabled billions of devices to connect to the network from
different domains and provide various advanced services. This massive connection

A. J. Pozveh (�) · H. S. Shahhoseini
School of Electrical Engineering, Iran University of science and Technology (IUST), Tehran, Iran
e-mail: amirafari@iust.ac.ir; shahhoseini@iust.ac.ir

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_6

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_6&domain=pdf
mailto:amirafari@iust.ac.ir
mailto:shahhoseini@iust.ac.ir
https://doi.org/10.1007/978-3-030-69893-5_6

112 A. J. Pozveh and H. S. Shahhoseini

of things to the Internet has led to a new concept called Internet of Things (IoT).
The basic concept of IoT is that anything can be connected to the network at any
time through the communication infrastructure [1]. IoT plays an important role
in addressing the challenges facing the world and enhances the quality of life in
terms of healthcare, productivity, and entertainment. The IoT has great potential for
developing smart applications and as a key provider activates new business models
emerged due to using IoT based services such as any of the smart home, smart
healthcare, smart transportation. The deployed IoT applications can be classified
into four groups. These 4 types are monitoring (control devices, environmental sta-
tus, notifications, alerts), control (control of device functions), optimization (device
performance, diagnostics, repair, etc.), and autonomy (autonomous operations).
Of course, in the implementation and development of IoT applications the key
issues of availability, management, reliability, interoperability, scalability (large-
scale expansion and integration), security, and privacy should be considered [2].

Potential IoT applications can be provided regarding service category defined
by the International Telecommunication Union (ITU) in 5G era in terms of
ultra-reliable low latency communications (URLLC), enhanced Mobile Broadband
(eMBB), massive machine-type communications (mMTC) [3] as shown in Table 1.

In Table 2, recent research works regarding URLLC, eMBB, and mMTC service
types for IoT use cases have been presented. As seen, in eMBB service category,
there are three types of IoT applications, including Media/Entertainment, Content
Sharing/Caching and High bit rate Video Streaming.

The most important examples in the Media/Entertainment are gaming, Virtual
reality (VR)/Augmented Reality (AR)/Mixed reality (MR), and distance educa-
tion. It should say that gaming, mobile VR, MR, and AR applications are use
case-specific, and sit at the crossroads between eMBB and URLLC. Content
Sharing/Caching applications in eMBB service category such as Local Office data
sharing are related to cases that a high bite rate is required. The last one in eMBB
service category is the video Streaming use cases that need a High bit rate e.g.,
the Ultra-high-definition (3D/UHD) video service is a clear example of this IoT
application.

Table 1 Based features for the service category [3]

Category Basic features Application

eMBB Higher data rate (large
payload, massive internet
connectivity)

Cloud office/gaming,
virtual/augmented reality
(VR/AR) and
ultra-high-definition
(3D/UHD) video.

URLLC Ultra-responsive connection
with ultra-low latency. Not
very high data rate

Industrial automation,
autonomous driving,
mission-critical applications,
and remote medical assistance

mMTC Massive connectivity of IoT
devices

Low power devices in a
massive quantity

IoT Integration with MEC 113

Table 2 Recent studies for IoT applications in ITU’s Service category

Service category IoT application Example Research works

eMBB Media/Entertainment Gaming, VR/AR,
distance education

[4–6]

Content Sharing/ Caching Local Office data
sharing

[7, 8]

High bit rate Video Streaming Ultra-high-definition
(3D/UHD) video

[9, 10]

URLLC Manufacturing Industrial and
Automation

[11–13]

Healthcare Remote medical
assistance

[14–16]

Transport sectors Automation,
autonomous driving

[17–20]

Entertainment Gaming, VR/AR [21–23]
mMTC Manufacturing and industry Monitoring for

manufacturing
equipment, e.g.,
machine tools,
robotic arms, feeding
machine)

[24, 25]

Healthcare Monitoring (Smart
Watches, Fitness
Trackers, Wearables
and “Hearables”)

[26–28]

Smart Cities, Energy, and
Logistics

Smart home, smart
parking, smart
transport system

[29–35]

Farming and agriculture Smart agriculture [36–39]

In URLLC service category, manufacturing (e.g., Industrial and Automation),
healthcare (e.g., Remote medical assistance), transport sectors (e.g., V2X and
autonomous driving), and Entertainment use cases (e.g., gaming, VR/AR) are the
most important IoT applications.

mMTC service category embraces Manufacturing and Industry (e.g., monitor-
ing for manufacturing equipment such as machine tools, robotic arms, feeding
machine), Healthcare Monitoring (e.g., Smart Watches, Fitness Trackers, Wearables
and “Hearables”), Smart Cities, Energy, and Logistics (e.g., Smart home, smart
parking, smart transport system) and Farming and Agriculture IoT applications (e.g.,
Smart agriculture). All the applications require a massive number of devices such as
sensors that typically transmit and receive an only small amount of data sporadically.

Basic three-layer architecture for IoT has been proposed in Fig. 1a [40]. It
includes perception, network and application layers. In the first layer, i.e., the
perception layer, the sensors collect information from the physical environment.
Each device has a specific identity (e.g., ID, IP) and may use various technologies,
including cellular and non-cellular networks such as NB-IoT, LTE-M, Lora, Sigfox.

114 A. J. Pozveh and H. S. Shahhoseini

Fig. 1 Three-layer IoT architecture with MEC as Middle layer

The second layer, i.e. the network layer, transmits the gathered raw data to the
application layer (IoT platform) for processing and analysis. The third layer, i.e.
the application layer, manages and analyzes the raw collected data from layer 1.

This layer provides a high-level intelligent solution for IoT based services. To
clarify further, consider the healthcare application. The information collected from
the perception layer is transmitted to the health platform in layer 3 through the
network layer to be analyzed and monitored on the healthcare platform and in a
critical situation, alarms will sent to the medical center.

IoT-based services have different service requirements. To meet these service
requirements in IoT environment, the service delivery’s limitations should be
addressed. For example, in remote surgery via a remote robot, low latency and
reliability are important. If the operation information is transferred with latency, the
cancer operation by the robot may be corrupted. For this purpose, the Middleware
layer as Multiple Access Edge Computing (MEC) is placed between the network
layer 2 and application layer 3 in IoT architecture as shown in Fig. 1b.

MEC is a good solution technology that sits between layers 1 and 3 and
provides specific distributed computing for faster data processing and response
time. Unlike traditional computing methods such as cluster computing [41], MEC
can be deployed in a distributed manner and various scheduling algorithms [42]
can be used for resource management. Meanwhile, MEC is an enabler for 5G. It

IoT Integration with MEC 115

facilitates the data processing and analysis of the massive connection of a large
number of things for new services that emerged in 5G environment. MEC, in the IoT
ecosystem, acts as a gateway that in addition to collecting data from heterogeneous
sources with different protocols and sensors equipped by different technologies,
also provides special edge functions. In this regard, ETSI [43] mentioned in the
technical reports that MEC can have an important role in IoT ecosystem in providing
service. MEC started in 2014 with a group of 6 vendors and operators (Huawei,
IBM, Intel, Huawei, NTT, Vodafone) that presented a vision for MEC in the form of
a technical white paper and studied a particular group at ETSI. ETSI MEC industry
specification group that now has more than 60 members and participants.

In this regard, MEC-based solutions can be implemented in different tiers in the
network architecture such as eNB/gNB, Multi-RAT aggregate point and local data
centers according to applications and according to service providers’ (SPs) and the
operators’ network architecture [44]. For example, for stadiums, shopping malls,
airports or car factories, the MEC platform can be placed at the customer’s location.
SPs and operators can build edge computing “cloudlet” by utilizing MEC and run
various ecosystems of applications within their network. In other words, by using
MEC solution, a golden opportunity is obtained for SPs to make the most of the
services they create in the IoT environment and gain more market share. In addition,
by utilizing network function virtualization (NFV) and software defined network
(SDN) technologies combined with the low latency of 5G network, operators will be
able to provide flexible, scalable, with agility advanced services and deliver various
contents and applications, and services that could not be provided before.

Edge Cloud can be implemented as public/private/hybrid based on service type
and operator requirements and link communication. Table 3 shows edge cloud
implementation types based on the network used [45].

In private edge cloud/private network case, the edge service provider has a
completely isolated edge infrastructure whose inputs, outputs, data processing and
even data storage are private due to private edge and the QoS of the communication
is provided according to the dedicated network. In the private edge cloud/public
network case, the edge service provider uses a completely private isolated edge
infrastructure. So, data input and output, processing and even data storage are
isolated. Moreover, the cloud resources are controlled completely locally, which
is costly. In this case, the communication network is public and the service provider
has no dedicated communication link and uses the public network.

In public edge cloud/public network case, public edge agents and infrastructure
are used to support computing on shared/dedicated resources provided by the public
network operator and data can be stored and accessed publicly. In public edge
cloud/private network case, the service provider has a dedicated communication
network meeting QoS provisioning and uses the shared edge cloud. For Hybrid
cases, a hybrid model is created for edge cloud and/or network that allows flexibility
dedicated network/edge cloud resources when they are required and data control and
access are focused.

116 A. J. Pozveh and H. S. Shahhoseini

Table 3 Edge Cloud Type vs Network Type

Edge Cloud
Network Private Public Hybrid

Private Isolated edge resources
with data privacy,
Local control, QoS
support for
Communication Costly

Using shared resources
for Data processing
and storage, QoS
support for
Communication

Local and isolated/shared
cloud resources (computing,
storage), QoS support for
Communication

Public Isolated edge resources
with data privacy,
Local control
Private Network is not
feasible or costly

Using shared resources
for Data processing
and storage, Private
Network is not feasible
or costly

Local and isolated/shared
cloud resources (computing,
storage), Private Network is
not feasible or costly

Hybrid Isolated system with
data privacy, Local
control
Private communication
according to
requirements, Trade off
between cost,
feasibility and use case

Using shared resources
for Data processing
and storage, Private
communication
according to
requirements, Trade off
between cost,
feasibility and use case

Local and isolated/shared
cloud resources (computing,
storage), Private
communication according to
requirements, Trade off
between cost, feasibility and
use case, Flexible and least
costly

Table 4 Recent studies in field of IoT integration with MEC

Focus area Sub-topic Research works

Framework and architecture End to end [46–48]
Use case [49, 50]
Service optimization [51–54]

Survey Deployment and integration [55, 56]
Use case [57–59]
Trend [60–62]

Resource management Slicing [63, 64]
Resource utilization/Computational cost [65–68]
Service quality [69–72]
Energy management [73, 74]

Security Security framework and architecture [75–77]
Survey and trend [78–82]
Privacy and data integrity [83–86]
Attacks & threats & defense solution [87–91]

Orchestration Service orchestration [92, 93]
Network orchestration [94, 95]

Functionality Real time data analysis [96–98]
Local content/caching [99, 96, 100–102]
Computing [103–107]

Mobility management Service quality [108, 109]
Security [110]
Trend and analysis [111, 112]

IoT Integration with MEC 117

In the recent years, various works have been studied in area of integration of
IoT with MEC to increase performance, energy efficiency, new use case and ease
of implementation. Integration means various IoT applications can be run on the
MEC platform by combining computing resources to create integrated services. In
Table 4, recent studies have been presented regarding framework and Architecture,
survey, resource Management, security, orchestration, functionality and mobility
Management. In each topic, based on the research works, the most important sub
topics have been presented.

2 Chapter Organization

This chapter discusses the most important topics related to IoT integrated with
MEC. In this regard, in part 1, MEC functionalities that can help in provisioning
of IoT applications are discussed for various use cases. After that MEC API is
examined for the cases that third-parties as an owner of the IoT applications can
use from MEC platform. The next section addresses mobility issues of IoT devices
related to service delivery and QoS in the MEC based network architecture. After
that, the famous operators that during recent years they have deployed IoT use cases
based on MEC architecture have been presented. Finally, challenges and future
direction have been given.

3 MEC Functionalities for IoT Services

In the digital transformation of vertical industries, a massive amount of data is
generated in a massive IoT ecosystem, which requires edge computing services
close to devices to achieve the reliable local offload and backend cloud integration
for real-time data processing and content localization. MEC edge computing as a
platform can have an important role in this environment. In this regard, three main
functionalities that MEC can provide are.

• Real-time analysis and low latency
• Local content/caching
• Computing

This section studies these functionalities from the viewpoint of IoT-based
services. A discussion is provided for each function in terms of architecture, service
scenarios, and applications.

118 A. J. Pozveh and H. S. Shahhoseini

3.1 Real-Time Analysis and Low Latency Functionality

The main question to be answered in this section is how MEC can help provide Real-
Time Data (RTD) analysis services for the IoT ecosystem. RTD services fall into the
URLLC service category presented in Table 1. In the traditional cellular networks,
which are deployed in a centralized manner, data from IoT devices is transferred for
analysis to the IoT application located in the core network or Internet through the
RAN section as well as Backhaul network (as shown in Fig. 2). In this case, Round
Trip Time (RTT) from IoT devices to IoT platform used for processing is too high.
This latency is not proper for URLLC services.

However, thanks to MEC, it makes possible delivering the required resources
for IoT applications close to the edge of the network. MEC provides an effective
solution to minimize response time for ultra-responsive connection with ultra-low
latency and not very large data. as shown in Fig.3, MEC is placed between the access
network and core network [43] and the IoT gateway application (IoT GWApp) is
placed on MEC servers. Data from things is sent to MEC servers for local analysis
at the edge in the IoT GWApp. So, RTD processing as well as actuators triggering
can be performed within a fraction of seconds. The architecture allows the cloud
provider, IoT gateways and end devices to be integrated and support end-to-end
mission-critical services [55].

Application Case
By using MEC-enabled architecture, low latency and reliable required services fall
under the URLLC category and many applications in this category can be deployed.
The service types are classified into four groups, including medical and health care,

Mobile Operator Network Internet/
Other Networks

IoT Application
Server

Fig. 2 Architecture of the traditional Cellular Networks

Fig. 3 MEC-enabled architecture for real-time analysis

IoT Integration with MEC 119

Table 5 URLLC service categories and industrial/user requirements

Application field Application

Medical and Health Care Remote surgery or remote patient’s diagnosis
Media/Entertainment/Business Live reporting of an event, live sports events, online gaming,

cloud-based entertainment (VR/AR).
Transport Drone-based delivery, remote driving, self-driven cars, traffic

management, sub-station management (system
synchronization, traffic management)

Industrial Automation Control systems, automated assembly lines with
robots, machine status reports, process surveillance, power
grid management.

media/entertainment/business, transportation and industrial applications as shown
in Table 5 [113]. Here, for each service category, the role of MEC in the service is
presented.

In medical and healthcare applications, remote surgery is a use case that requires
a reliable and a low latency connection. Robot-based operations using tactile
Internet makes better quality care alongside experienced doctors in terms of high-
precision diagnosis and treatment. Using the MEC system can increase data transfer
reliability and reduce delay to 1–10 milliseconds so that the instructions given to
the robot by the therapist will be very reliable with a slight delay. This is not a
case with current technologies, as losing packets and delays of 100 milliseconds
can significantly reduce reliability.

For Media/Entertainment/Business applications, VR/AR and gaming are the
most general application cases. In the VR service, the user needs to experience
the “touch-sensitive virtual environment”. However, it requires a low-latency
connectivity of about a few milliseconds to give users a real sense for their
actions. Today’s networks have a long delay in establishing stable communication
for highly sensitive interactions. The MEC system supports a real-time visualized
environment in interaction with users in order of milliseconds. For the AR case
(e.g. engineering, museum guides and assistance systems), additional information
is added to the user’s vision by utilizing IoT devices such as glasses. In this
case, real time connectivity is required to avoid latency while interacting with real
world. However, the current networks are limited and, therefore, unable to support
these requirements. MEC can address this issue in terms of providing a real-time
connection. In the gaming application cases, since the next generation games deal
with not only entertainment but also education and problem solving, the low latency
interaction between the players and game processors is an important challenge that
can affect the verisimilitude of the game. They can be addressed by placing game
servers near the edge on the MEC platform.

In transportation applications, e.g., self-driving cars, drone-based delivery,
remote driving, and traffic management, providing the service requires a quick
response to the controllers and actuators in milliseconds. The MEC solution sup-
ports sending alarms and commands in a real-time manner by bringing computation

120 A. J. Pozveh and H. S. Shahhoseini

Fig. 4 MEC-enabled real-time V2V analysis application case

at the network edge close to the device. One example of the V2V application has
been shown in Fig. 4. As presented in the figure, it is necessary for the vehicle
to exchange the messages (e.g. location, speed update) through the road-side units
(RSU) along the road. In the case of high-speed mobility, a low latency packet
delay communication is required. It cannot be expected that the required latency
is provided by running a V2V application on the cloud core far from the edge since
its response time from the core to the vehicle may suffer from a large latency.

In the industrial application, (e.g., automation control systems, automated
assembly lines with robot and power grid management), humans are replaced by
robots or algorithms in the control process such as car assembly process. This
architecture requires RTD analysis with minimum latency. Because if any delay
is occurred in the system, e.g. during the assembly process, it may cause damage to
the production line. However, MEC supports RTD analysis for automation control
that meets the strict requirements of latency for industrial applications.

3.2 Local Content/Caching Functionality

In a IoT ecosystem, delivering services in eMBB and mMTC categories, require
high bandwidth such as such as video streaming, broadcasting and tourist guide.
This traffic is divided into two types, namely: large/multimedia data (e.g., such as
video/audio files in Ultra-HD video service) and IoT data (e.g., sensors’ data in
metering case). Generally, the same interesting videos may be requested in many
times by users and on the other hand huge IoT data are generated by low-rate
monitoring and measurement applications running on billions of devices. In the

IoT Integration with MEC 121

Fig. 5 MEC role for caching data in eMBB

5G network, the required resources can be supported for both data types in access
networks. Supporting high data rate in radio access network (RAN) is provided
by using various techniques such as mmWave spectrum, multi input multi output
(MIMO) and dual connectivity (DC). However, there are limitations in providing the
required capacity for transmission networks (XHaul) as well as supporting latency
requirements to transfer the generated data to the core of the mobile operator.

Caching the content/data locally as a functionality of MEC system is a proper
solution to address this issue by decreasing required bandwidth in the backhaul up
to 35% [114]. So, the users’ quality of experience (QoE) would be improved and
less bandwidth is required in backhaul infrastructure.

In Fig. 5, the general MEC caching system has been shown. As seen, an
MEC server has been placed near the user in access edge and BSs regarding to
geographical area to cache the data based on predefined strategies such as the
probability of reuse in the future. Here, two popular concepts are discussed. The
first concept is the fact that caching saves a huge amount of data generated by things
(e.g. cameras) on the MEC server. In this case, when a user/customer/system (e.g.
automation system) requests the saved data, the requested data are provided by MEC
server without transmitting through the entire network (i.e. backhaul and core). The
second concept is sharing the popular/interested contents (e.g. video streams) with
a group of users. In this regard, the content data have been saved in MEC server and
delivered when they are requested. As a result, content delivery would be improved
and bandwidth is effectively utilized.

The caching process is managed by an authorized caching application placed
on the MEC platform. As an example, consider the video-broadcasting services
utilizing caching mechanism. The video-broadcasting based caching application
uses a transcoder function run in the MEC server to send users the different
video qualities with various bit-rates according to device capabilities [115]. In the
tourist guide example, tourists want to visit a historic place or museum and use
complementary technologies such as AR to experience a better feeling. Information

122 A. J. Pozveh and H. S. Shahhoseini

about the historic site or museum is already cached on the MEC platform close to
the visitor and gives him/her a real-time, high-quality service with the ability to omit
communication overhead from the core network.

3.3 Computing Functionality

This section discusses the Computing Functionality of MEC. This functionality
helps reduce the radio resource consumption (i.e., 12%), shortening the reaction
time (i.e. 10%), lessening the system latency (i.e., 14%), and diminishing the overall
energy consumption (i.e.,12.35%) [31, 116] in the IoT ecosystem and is divided into
two categories:

• Offloading
• Data analysis

The goal of offline processing is the reduction of computational operation from
IoT devices to increase energy efficiency and QoE. However, data analysis function
in MEC is used for analyzing or pre-process aggregated data in the IoT ecosystem
to improve the quality of service delivery.

3.3.1 Offloading

Offloading is appealing to emerging IoT cloud-based applications. Because, the
computing capabilities of end devices, such as mobile devices, sensors and actu-
ators, are still constrained for executing smart and autonomic tasks such as many
services related to the smart city by the fundamental challenges, such as memory
size, battery life, and computation power. For delivering many of smart services,
MEC as a extra entity is a good platform to perform tasks on behalf of the user’s
device and return the outcome. In other words, offloading is a procedure that
migrates resource-intensive computations from a device to the resource-rich nearby
infrastructure [117]. If the offloading is performed near the user’s device at the edge
of the network, computational requirements of an IoT application, load balancing,
energy management and latency management would be provided more effectively.

MEC solution architecture for offloading at the edge of networks has been
presented in Fig. 6 [118]. As shown, the compute intensive functions of IoT
applications are executed on the MEC platform sit on the RAN (e.g., eNB, RNC)
with the high computation power instead of execution on the device. In [119], a
MEC solution offloading has been proposed by providing computing services at
the edge of network to minimize energy consumption by considering the device’s
limitations and latency constraints. Authors in [120] have presented an offloading
algorithm in which the memory objects delivered by various IoT devices to edge
cloud are placed on the LTE nodes. It decreases latency and offloading cost. For
communication services, such as video call, MEC solution also can be used. In

IoT Integration with MEC 123

Fig. 6 Application computation offloading using MEC

[121], the video encoding process for a video call has been proposed to be offloaded
to the MEC edge server. It used a communication protocol for negotiating the
offloading strategy, which reduces energy consumption of mobile devices during
video call service.

The decision about what to offload and how to offload it depends on three factors
[122]. The first factor is whether the process can be offloaded or not? The second
factor is how much data should be processed. This is specifically important because
when the network can’t estimate the number of input data (such as stream data), it is
difficult to determine the amount of processes to be offloaded. The third factor is data
dependency and what parts have to be offloaded. In this regard, various optimization
schemes in the MEC area for computation offloading in 5G heterogeneous networks
have been studied to minimize energy consumption in both the network and the
device as well as optimizing allocated resources. Their goals are to provide an
optimal solution to minimize energy consumption in the connected things, taking
the acceptable delay and computation performance. Moreover, there are limited
computing resources in an MEC platform located in the base station and edge data
centers in comparison with the cloud core and not all application types with different
computing requirements can be processed on the MEC platform for the IoT based
service. Therefore, an interplay for joint resource management for running the IoT
application and meeting service requirements is needed between the MEC platform
at the edge and cloud core tier [123]. Various researches have been presented for
orchestration mechanisms and resource allocation in a MEC-enabled network with
cloud core for IoT applications, referred to the references [124].

Offloading Levels
Offloading can be done at different levels, as shown in Fig. 7. Authors in [125] have
classified these levels into three categories: full computation, task/component, and
method/thread offloading.

• Full computation offloading
If offloading is full, all computation is performed by the IoT application

on MEC platform, and the device (sensor, actuator or mobile phone) is only
responsible for UI, input/output and data gathering. A common example is web-
app [126], in which thin clients only get user input and browse the results.

• Task/Component offloading

124 A. J. Pozveh and H. S. Shahhoseini

Fig. 7 Computation offloading types

Offloading at this level is based on dividing the application into separate
tasks and components and placing high-processing components at the edge of
the network for processing. To do this, first, the workflow execution should
be specified. Then the task with high computation requirement is partitioned
for offloading. Different methods for partitioning the applications have been
proposed in the researches [127–129]. AR service is an example that can clear
the concept. To provide AR service, it is required to be divided into four tasks
including capturing photo/video, object tracking, rendering and display. Since
object tracking and rendering are the tasks with high processing requirements,
these parts are offloaded in the MEC platform and others are run on the device.

• Method offloading
In general, an application is composed of many methods that can be parti-

tioned and the selected methods are offloaded based on computation limitation.
In the recent years, many methods have been proposed for partitioning in the
method level presented in [130]. Methods of OCR in an AR application are an
example related to IoT integration with MEC. They can be offloaded on MEC
platform and then the other parts of AR service are run on the device.

3.3.2 Data Analytics

In the IoT ecosystem, a massive amount of raw data is generated by billions of IoT
devices. Authors in [43] mentioned that 15 petabytes would be generated by IoT
devices in a month that should be transferred from devices through core network
to the cloud servers and the IoT platform. It results in high latency and increases
backhaul traffic.

Data analytics as a computing function of MEC in the IoT ecosystem discusses
the analysis gathered raw data at the network edge that is received from of a large
number of various IoT devices, embedded with sensors and actuators, connected
with various technologies such as LTE, GSM, Wi-Fi using different protocols,
packet sizes and encryption algorithms.

Processing near the edge results in avoiding transmission of large amounts of data
from end devices through backhaul and core network [43]. Deploying MEC solution

IoT Integration with MEC 125

Fig. 8 Data analysis functionality of MEC for IoT based services

as a good candidate to perform all the analytic tasks, decreases the traffic of the core
network, optimizes bandwidth utilization, reduces the demand of computational
resources in the central data centers [55, 131], and therefore addresses the main
challenges in IoT ecosystem management of the large-scale data collected over a
time period at a IoT platform located beyond the core network. So, MEC has a
critical role in service provision by operators in smart city applications and rollout
5G [132].

In Fig. 8, a high-level architecture for Data analysis functionality in MEC has
been shown. An IoT GW application is located on the MEC platform, in the
middle layer between the IoT device and the network core. It collects, integrates
and analyzes the raw packets received from the IoT devices and performs analytic
functions before sending data to the core or delivering to the IoT platform. To clearly
understand the data analysis at the network edge, two service scenarios which are
video analysis and metering are discussed. In video analytics, two application cases
of intelligent video acceleration and video stream analysis service are popular [43].

In intelligent video acceleration use case, a radio analytic program is placed at
ME Host near users between the radio and the core network to analyze the user’s
information and radio link status. The use case has been shown in Fig. 9. The result
of analysis is sent to the video server as a signal. Video server uses this information
to select the suitable video coding method and adjust the data rate for the users.
Moreover, in the cases that video content server uses the TCP protocol, the radio
link information, that obtained from RAN analytic application on the MEC server,
helps TCP protocol distinguish congestion or low-quality wireless link and so the
TCP congestion window based on the appropriate condition is adjusted.

Another application in the context of smart city is video based monitoring
system, [117] which consists of many cameras in a region. The captured pictures
from cameras are analyzed by video analytics applications placed on MEC platform
as shown in Fig. 10. The MEC provides more resources for analyzing the received
camera data (e.g. Video rendering). After analysis, if required (an anomaly is
detected), the application sends some information (such as trigger alerts for different
events) to video service platform in the core network. In fact, the use of MEC and

126 A. J. Pozveh and H. S. Shahhoseini

Fig. 9 Video Acceleration using radio information status

Fig. 10 Video stream analysis

the application placed on it, increases the flexibility of the analysis and decreases
the volume of data that should be sent to the core [133].

In the metering example, as a general application of IoT in smart city, the
information is received via sensors and gathered in a gateway. The received data
are analyzed and appropriate action is performed. For example, consider smart
agriculture, in which sensors gather humidity, temperature and minerals. After the
analysis, decision making is done about water, humidity and fertilizers management
through actuators.

In the cases where the received data from sensors act as big data and a high-power
computation resource is required, the best way to analyze the data can be placing
an intelligent or smart agricultural application on MEC platform near the sensor
location. This leads to a reduction in the volume of raw data transmitted through the
backhaul and core and analysis is performed quickly at the edge.

Data analytics can be performed in a hieratical manner according to resource
requirements and application type. In the cases that low capacity resources are
required, analysis is performed in the MEC platform. If the MEC platform has
no resource to perform data processing, other resources in the network (e.g. core
resources) are allocated.

For example, consider authentication-based face recognition used to identify
the employees of an organization. The purpose of this application is to identify

IoT Integration with MEC 127

Fig. 11 Authentication based Face recognition

the person who enters the organization. Identification is based on the analysis of
people’s faces and the comparison with the pre-created database. To get employees’
information quickly, the light data base (DB VNF) and face recognition application
(Face recognition VNF) are placed at the edge of the network. Figure 11 demon-
strates this service. If the employee is identified through the company’s data center,
the authentication process ends. Otherwise, the face recognition request will be sent
to the cloud core to perform heavier calculations on the larger database.

4 MEC API

MEC API helps third parties interact their executed applications on the MEC
platform by using application programming interface (API) and so they can provide
customized IoT services. In this regard, ETSI Group has provided a set of standards
related to open MEC and the use of API to provide various services in an open
environment. This helps integrate different services in IoT ecosystem for a variety of
verticals and applications. In this case authorized developers and content providers
can deploy versatile and uninterrupted applications.

IoT applications implemented on the MEC platform intract with different
service providers, third parties and devices (e.g. sensors and actuators), for sending
configuration sets and receiving the gathered data for analysis. In legacy, each
vendor or service provider has its protocol to communicate with IoT applications.
Operators can open the edge devices of RANs to third-party partners by utilizing
open API architecture. It allows operators to rapidly deploy innovative applications
and content toward mobile subscribers, enterprises, and other vertical segments
[134, 135]. Meanwhile, in recent years, by introducing the integration in service

128 A. J. Pozveh and H. S. Shahhoseini

delivery and open platforms, the API has been proposed as a common language for
the MEC system. Therefore, third parties, things and service providers can use the
API to interact with the IoT application run on the MEC platform. It enables the IoT
application to communicate with things without knowing how to they implemented
it. For better clarification, consider the auto-config robot example. In this case,
commands are sent to the robot from the IoT application, and after completing
assigned tasks, the robot sends the result to the application and receives the new
configuration via the API. Here, API has been used to read environmental data
from sensors inside the robot and write to the actuators (e.g. motor movement).
In this case, an agent is installed on the robot and uses API to communicate with
the IoT application for registration, authentication, data analysis, and management
functions.

Regarding API usage in MEC, ETSI have presented four API types including
Bandwidth manager service (BWMS) API, Radio network information (RNI) API,
UE identity API and Location API. IoT applications can use these APIs to obtain
user information, required resources to provide services, and get radio information
for better service delivery. The UE identity API has been defined to allow UEs to use
specific traffic rules in the ME system. Based on this API, the MEC platform handles
traffic rules and applies them to the UE’s service. Moreover, UE uses the API to
access the list of Applications registered on the MEC platform. IoT application also
uses this API to manage access control and the integrity of user content.

The second API is the Bandwidth manager (BWM) API on the MEC platform
which allows a fair distribution of bandwidth resources shared between various IoT
applications. It is useful in the cases that a set of IoT applications run on the MEC
platform and compete to get at least the required throughput and priority.

The third API on the MEC platform is Location API that is related to the
user information. This API provides location information for the authorized IoT
application. The most important information that can be obtained from Location
API is: Location information of all UEs that are connected in a specific region, list
of services that are located in a particular region and the information of all radio
nodes that are connected to the MEC platform.

The last API, the RNI API, is used in cases that IoT applications need knowledge
about the radio network conditions to improve service delivery. IoT applications use
RNI API to get the low-level information in accordance with 3GPP. Figure 12 shows
an example of employing this API for a video streaming application. As shown in
the figure, the Video application sends UE the requested video with the appropriate
bitrate and throughput according to the received radio information.

5 Mobility Management

In a MEC-based architecture where connected devices have mobility, there are
significant challenges regarding to service quality. For IoT applications, seamless
service provisioning is required. Recent research works have been proposed as listed

IoT Integration with MEC 129

Fig. 12 Video optimization aware of using RNI API [28]

in Table 4. However, in a MEC-based architecture where connected devices have
mobility, there are significant challenges regarding to service quality.

In MEC system that IoT applications services to the mobile customers, two
scenarios can occur. In the first cases, if the device is receiving a service and moves
to the coverage of another radio access networks in the same MEC domain, the
new connection to new access point (AP) may have lower quality. This issue can
cause an interruption in receiving URLLC or eMBB services due to the limitation in
providing real-time, reliability or bandwidth requirements. This scenario has been
shown in Fig. 13a. In another case, if the device hands over to another AP and
MEC domain is changed, the new MEC domain may not be able to meet the service
requirements (Bandwidth, processing power, reliability, etc.) as well as the old one.
So the devices may be disconnected completely from the MEC system with a sharp
drop in service quality. This case has been shown in Fig. 13b. Therefore, in the IoT
ecosystem with mobile devices integrated with MEC, the following topics should be
considered for designing the service relocation policies to have continuous service
provisioning

• Location management: it is important because providing service requires knowl-
edge about location of the device for resource allocation and traffic routing

• Connectivity and quality: by moving devices to a new location, access technolo-
gies providing service may be changed (e.g. from WiFi to cellular network). In
this case, connection quality and connectivity status may change and quality of
service experience may decrease. So, in mobility management context, connec-
tion management and successful handover between different access technologies
as a hot topic should be studied.

• Load balancing for MEC domains: In the MEC based architecture, device
mobility may cause service migration between MEC domains. In the case, the

130 A. J. Pozveh and H. S. Shahhoseini

Fig. 13 Mobility Scenario between MEC Domains

application run on MEC to provide IoT based service, may not be supported in
New MEC domain.

On the other hand, due device mobility, load of MEC servers in different
locations are changing. So, resource management methods should be considered
for VNF migration, offloading to cloud core, and task scheduling.

6 Benchmark

Besides theoretical research studies, many vendors and companies have launched
MEC solution for IoT service scenarios. In 2014, Nokia Networks introduced a
real-world MEC platform using VM hypervisor to deploy virtual [136]. In [137],
an adaptive operation platform (AOP) has been proposed for a fog computing
environment by considering the operational requirements of industrial IoT. The
authors in [138] deployed the M2M fog platform and evaluated the legacy architec-
ture, Device-to-Device (D2D) and small cell-based deployment. However, the most
famous operators that implement MEC based services are going to commercialize
IoT based MEC. Therefore, in this study the proposed and implemented MEC
platforms from most famous operators/institutes are discussed including China
Mobile, AT&T, SKT, Deutsche Telekom and 5GPPP.

IoT Integration with MEC 131

6.1 China Mobile

China Mobile tested the cloud game on the edge with the help of ZTE and cloud
game provider Tencent on a 5G pilot network in Guangzhou in 2019 [139]. The
architecture includes 5G Core UPF (User Plane Function) in the local MEC for
cloud gaming traffic loading, MEP (Multi-access Edge Platform) for cloud-based
gaming exposure, and RAN-aware capability exposure, including RNIS (Radio
Network Information) Service, TCPO service (TCP optimization) and VO (video
optimization) service.

In this architecture, cloud-based game providers offer gaming services at the edge
of the network by using the Edge Cloud Game Connector in MEP PaaS for seamless
cloud service. It results in a cloud game service with faster image rendering speed
for users with higher rate. Because directly rendered media stream as an offloading
computation is performed in the local MEC and delivered to the user at a faster
speed. It saves network bandwidth and reduces the delay in providing game service
to users.

6.2 AT&T

AT&T provides an enterprise grade solution for the next generation of opportunities.
AT&T MEC provides edge-based services for stadiums, retail, manufacturing and
healthcare [140]. In stadiums, as an area with massive interconnected devices during
events, the solution speeds up customer transactions. It provides some data for
visitors such as seat locations, queue times, and customized promotions through
smartphones. In retail, AT&T MEC decreases the required bandwidth for inventory
robot used in remote operation of today’s retail leaders. Inventory robot sends
data, high-resolution images, as a real-time data to the small cell. The small cell
relays data to the aggregation point where AT&T MEC is installed. The data is
processed as AT&T MEC and saved in the local data center. When an end-point
retail leader requests the inventory data, AT&T MEC service can route cellular
processed data through the small cell from local data center. This solution is also
used in manufacturing by offloading the analysis of high-resolution video from
camera for decision, production process, advanced detection and error identification.
AT&T MEC helps businesses to improve the processing of the traffic for low-latency
and in a secure manner.

6.3 SKT

SK Telecom (SKT) designed a scalable, visualized and reliable 5G MEC platform
based on the ETSI reference architecture [141]. The MEC architecture for 5G

132 A. J. Pozveh and H. S. Shahhoseini

SK Telecom, is based on 3GPP and ETSI MEC standards. This platform helps
provide a variety of 5G services with low latency requirements and security features.
It is designed based on network functions (NFV) to have flexibility in resource
management and service delivery. The implemented SK Telecom MEC platform
includes an edge routing function, a MEC service enabler consisting of an API
port, and the MEC service and MEC platform management (MECPM) system. The
role of the Edge Routing Function is to categorize user’s traffic and send it to the
relevant application running on the MEC platform. MEC Service Enabler is also a
key element of SK Telecom’s MEC platform that can be used in the development
of MEC applications. Its main functions are MEC service discovery, routing,
authentication, licensing, and MEC service level agreement (SLA) management.
The MEC Platform Manager (MEPM), hosted by the MEC, enables MEC Platform
software and MEC applications to work on the MEC host. MEPM features include
MEC Orchestrator, MEC Platform Manager, and key elements of the infrastructure
manager Virtualization is defined in the ETSI MEC standard. SKT MEC minimized
the transport latency and enabling the 5G network by bringing the cloud server
closer to the user to provide ultra-low latency services and provide 5G network with
very low latency.

6.4 Deutsche Telekom

Deutsche telekom completes World’s First Public Mobile Edge Network, Powered
By MobiledgeX Edge-Cloud R1.0 to deploy the backend applications close to
mobile users on the Telekom Deutschland network in Germany in a live test for
augmented reality (AR) and mixed reality (MR) applications [142]. The platform
helps make edge infrastructure available to third parties. Moreover, for developers,
MobiledgeX Edge-Cloud R1.0 enables application containers to be deployed with
the same simplicity as over-the-top datacenter-based cloud providers. In this
solution, by using cloud containers near end devices, the service requirements could
be met in the next generation networks regarding the following cases:

• Automatic applications deployment based on verified location and identities near
users for the purpose of serving massive multi-user tasks such as multiplayer
games, robotics and AR.

• Support low latency connection and processing
• Guarantees Local Privacy Regulations for video and Image Processing

6.5 5GPPP

5GCITY [143] was introduced as one of the 5GPPP projects with the aim of
maximizing return of investment in digital market chain (user, service provider,

IoT Integration with MEC 133

cloud provider, telecom provider and infrastructure provider). It was planned
to design an open platform with multi-tenant support that transfers cloud-based
application from core datacenter to the edge of the network in such a way that the
caching and computing is performed in an integrated MEC.

5GCity architecture is based on “neutral hosting” that helps media service
providers to collaboratively implement innovative applications offloaded on a
neutral host platform and improve the user service experience. It is composed of
3 Tiers based on geographical area. The first tier includes far-edge area (small cell,
WiFi) with macro computing resources, the second tier, i.e. edge area, includes street
cabinets with constrained computing resources and in the third level at Central/Core
of network, powerful computing resources are included.

In 5GCITY architecture from a vertical viewpoint, three main layers including
application layer, orchestration layer and infrastructure layer have been designed.
The application layer provides the tools for service implementation by operators
and third parties. The orchestration layer as the service entry point is responsible for
managing the platform and infrastructure resources (WAN, VIM, SDN Controller).
The third layer is the infrastructure layer that provides the necessary resources in
virtual computing and radio infrastructure.

7 Challenges and Issues

Despite development in MEC, there are still bottlenecks in implementation and
commercialization. These challenges are discussed in five categories including
security, technology maturity, resource management, openness, service continuity
and interoperability.

Security
Security issues are topics that may often cause cost to communication networks
[144]. In this regard, different algorithms have been proposed to defend attacks in
different network layers and various network protocols [145, 42]. Meanwhile, MEC-
enabled IoT systems that use network resources have security challenges that have
been discussed from different aspects [117]. The first one is privacy. MEC platform
is placed between two layers of perception (1) and application in an IoT reference
architecture. Therefore, the information received from devices, things and sensors
is transmitted through it. If unauthorized applications on the MEC platform have
access to this information, privacy can be compromised. For example, for various
services in the IoT ecosystem, information such as employment, family service
status, user location, and intelligent data are passed to the MEC platform for data
mining and data integration. If this information leaks for any reason, it can cause
financial and non-financial losses due to revealing important and classified business
secrets and users’ data. The next issue is the security challenges related to new
technologies.

134 A. J. Pozveh and H. S. Shahhoseini

MEC-enabled IoT ecosystem uses new multiple technologies such as SDN, NFV
simultaneously to provide IoT based services in different protocol layers [146,
147]. These technologies are new and so they have potential multi-layer security
concerns that are not yet known. Moreover, security challenges can be originated
from openness in MEC platform. In recent years, the issue of openness has moved
towards open platform and programmability for MEC, which allows a number of
third parties and hardware and software vendors to participate in its development.
Risk management is this open system including multi-vendor developed system
must be considered. On the other hand, different IoT applications are running on
the same MEC platform. If the shared traffic and data access aren’t isolated, data
and gathered information might be leaked. The last security issue is related to MEC
architecture. Legacy network architecture is centralized, and these authentication
protocols may not be compatible with next generation systems i.e. distributed MEC
systems. Therefore, availability of new distributed authorization and authentication
algorithms for distributed MEC systems is a challenge that should be addressed.

Resource Management/Placement
Resource management of different domains distributed at the edge as well as
orchestration plays an important role in the success of the MEC as a platform
for implementing IoT applications in the IoT ecosystem and the related challenges
should be addressed [63, 148, 74, 149]. The first challenge is fair resource sharing
and load balancing for edge resources shared between IoT applications. To prevent
computation offloading congestion, optimal, practical and simple models should be
used to build, design and implement appropriate resource management algorithms.
Another challenge is determining the appropriate location for deploying cloud
infrastructure. It is an open question in which eNB, central office or local data
centers are optimal to implement the MEC Platform. It depends on different
factors. For example, for VR or autonomous cars, the latency is very critical, and
the proximity of VR/autonomous-driving applications to devices is an important
requirement. For VR, the base station is a good place to deploy MEC platform.
However, for autonomous driving, the MEC node may be inside the Vehicle [150].
For cases where latency is not important, e.g. caching, the MEC platform can be
located at the aggregation point or central office.

Openness
Lack of openness is a challenge that can increase market monopolies and reduce the
possibility of various services growing. The main reason for lack of openness is that
large companies tend to define customized protocols to lock the market with their
products. In this environment, costumers are forced to use specific infrastructure,
and changing the operator or service provider can cause a high cost for them. If the
edge computing architecture is not built based on the concept of openness, various
implementation scenarios for IoT based services will be created and so integration
of these services is an issue that should be addressed. This is a bold challenge
since stakeholders have no incentive to cooperate and do not provide open and clear
interface software and hardware.

IoT Integration with MEC 135

Integration
Currently, the IoT ecosystem has not yet matured in terms of technology and
application. It is in the early stages of deployment and different applications
for different services have been developed. Moreover, devices and things use
heterogeneous technologies such as LTE, NR-IoT, NB-IoT, and different encrypted
messages. The variety causes a challenge for integration of IoT applications from
different vendors.

Service Continuity
IoT devices (i.e. user equipment, sensors) have limited computing power. Edge
computing is used to compensate this limitation and offload required computation
for service delivery. The challenge appears in the cases that provision of continuous
service is required for the things that have movement and periodic connection (e.g.
devices in V2X and drones) because load balancing and/or resource migration (VNF
migration), in which IoT applications are run on the MEC platform as the VNFs,
may be required due to device movement. This may result in an interruption in the
service during migration and therefore the service suffers from latency.

8 Future Research Direction

By developing new communication technologies, business models and customer
requirements, many improvements would be performed in deployment and inte-
gration of IoT with MEC. In this regard, future direction section discusses about
resource management and orchestration, mobility management, slicing, optimiza-
tion algorithms and business models.

The first topic that can be interested is resource management for IoT-based
services. Because with the development of the network and communications and the
maturity of the IoT ecosystem, a large number of things in a specific geographical
area are connected to the network, and to handle this volume of traffic and data
processing a lot of resources are required on the edge. In this regard, resource
sharing (like tower sharing) is an interesting topic that can be effective in reducing
the costs of CAPEX and OPEX. Because the nature of MEC is its distribution, if
an operator wants to provide the necessary resources for all services in all areas, it
needs high investment. The most important issues that can be researched are: the
level of operator investment for computing power at the edge, interoperability and
security for different domains that operators have invested, how to handle the high
computing volume for a collaboration between the nodes distributed in the network,
and finally, how much computing is done at the edge and in the cloud core if different
cloud tiers are used?

Another interesting topic is resource orchestration. Orchestration is defined as
the method used to provide end-to-end service by managing cloud resources in
different domains and in association with other technologies, such as software
defined network and virtualized technologies. Here, to provide IoT based services

136 A. J. Pozveh and H. S. Shahhoseini

in an enabled MEC network, it is necessary to orchestrate resources from various
technologies, including NFV and SDN, which are simultaneously used in a network.
Current orchestration deployments for edge cloud IoT applications, whether open
source or commercial, are simple and rule based. With the development of networks
and more complexity in the use of MEC based service in IoT ecosystem, dynamic
and automated orchestration methods are needed for routing traffic to specific
network parts, load balancing, resource optimizing and service provisioning.

Moreover, artificial intelligence and machine learning algorithms are hot topics
that have been used for different applications [151]. AL/ML can also be applied
for processing data collected from the IoT environment as well as load balancing
and performance optimization of edge computing resources. Applying the artificial
intelligence in the MEC enabled IoT ecosystem helps provide smart services based
on the optimal use of existing network edge resources and the capabilities of things.

In the 5G network, which the service should be provided for mobile users/de-
vices, a mobility management system is needed to support service migration and
operates based on application relocation policies. The system should manage edge
resource resources, device mobility and applications run on MEC platform by taking
into account the service requirement, network conditions and device connection
technology (e.g. WiFi, Bluetooth, cellular, etc.). In this regard, the most important
research works that can be performed are 1) management of the resources for
the moving device hand over to another MEC domain according to the service
application on new MEC domain, (2) coordination between the two MEC platforms
in the two different domains to provide a continuous service for executing service
application, (3) using AI bases methods to provide the cached content placed in
the old MEC domain for the user in the new MEC domain, and finally providing
solution for the cases that new device connection has not met required QoS for the
inter domain mobility between different MEC domains.

Providing different logical networks with dedicated resources for each IoT appli-
cation can be obtained by network slicing techniques. It allows to allocate specific
resources to predefined users or applications over a shared physical infrastructure.
Slicing can be deployed in a end to end manner including core, transport and radio
access network. In the Context of MEC, different slicing frameworks is presented
for IoT services in 5G era by considering the flexible and dynamic placement
of edge resources, guarantee Quality of Service (QoS), and make available great
scalability in terms of number of connected end-devices and application services.

In addition to technical aspects in of MEC, business models in providing MEC
based services should be taken according to the costs of deployment and value added
obtained from service delivery. For example consider two IoT use cases, the first one
such as V2X need a real-time infrastructure with high coverage in geographical area
of the service delivery. On the other hand, some others such as metering applications
(energy, water metering) only need an infrastructure supports a huge number of
devices. The infrastructure requirements of each use case is different to another, and
based on business model of the operator, investment as well as economic aspect of
delivered services should be planned. For example when a mobile operator is new,

IoT Integration with MEC 137

an initial step for providing the edge based service is the local use cases that only
specified areas are equipped for edge based services (e.g. local airport).

9 Summary

Connecting millions of things from different domains opened up a new concept
called the Internet of Things (IoT). This massive connection needs high capacity
transport network as well as low latency communication and high processing power.
MEC as a middleware layer can be placed between the network layer and application
layer of IoT architecture to address the service requirements in terms of processing
power and low latency response for different service categories (eMBB, URLLC
and mMTC). MEC plays an important role through the main functionalities, as
host of application execution of the IoT based services, including Real-time data
Analysis, local caching and computing. Meanwhile, in recent years, by introducing
the integration in service delivery and platform, the API has been proposed as a
common language for the MEC system in a way that third parties, things and service
providers can use the API to interact with the IoT application. Despite development
in MEC, there are still challenges such as cost modeling, commercialization, and
technology maturity that need to be considered.

Acknowledgments The authors would like to thank Ahmad Mosayyebi and Shakiba Shahbande-
gan for their careful reading and editing the text of the manuscript.

References

1. Kafle VP, Fukushima Y, Harai H (2016) Internet of things standardization in ITU and
prospective networking technologies. IEEE Communications Magazine 54 (9):43–49

2. Čolaković A, Hadžialić M (2018) Internet of Things (IoT): A review of enabling technologies,
challenges, and open research issues. Computer Networks 144:17–39

3. Popovski P, Trillingsgaard KF, Simeone O, Durisi G (2018) 5G wireless network slicing for
eMBB, URLLC, and mMTC: A communication-theoretic view. Ieee Access 6:55765–55779

4. Qiao X, Ren P, Dustdar S, Chen J (2018) A new era for web AR with mobile edge computing.
IEEE Internet Computing 22 (4):46–55

5. Tun YK, Alsenwi M, Tran NH, Han Z, Hong CS (2020) Energy Efficient Communication and
Computation Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond. IEEE
Access 8:136024–136035

6. Tang J, Shim B, Quek TQ (2019) Service multiplexing and revenue maximization in sliced
C-RAN incorporated with URLLC and multicast eMBB. IEEE Journal on Selected Areas in
Communications 37 (4):881–895

7. Wang K, Ji W, Li J, Wang H, Cao T Wireless Content Caching in Sliced Cellular Networks
with Multicast Beamforming. In: 2019 11th International Conference on Wireless Communi-
cations and Signal Processing (WCSP), 2019. IEEE, pp 1–6

8. Chen W-E, Fan X-Y, Chen L-X A CNN-based Packet Classification of eMBB, mMTC and
URLLC Applications for 5G. In: 2019 International Conference on Intelligent Computing
and its Emerging Applications (ICEA). IEEE, pp 140–145

138 A. J. Pozveh and H. S. Shahhoseini

9. Comşa I-S, Muntean G-M, Trestian R (2020) An Innovative Machine-Learning-Based
Scheduling Solution for Improving Live UHD Video Streaming Quality in Highly Dynamic
Network Environments. IEEE Transactions on Broadcasting

10. Gomez-Barquero D, Li W, Fuentes M, Xiong J, Araniti G, Akamine C, Wang J (2019) IEEE
Transactions on Broadcasting special issue on: 5G for broadband multimedia systems and
broadcasting. IEEE Transactions on Broadcasting 65 (2):351–355

11. Cheng J, Chen W, Tao F, Lin C-L (2018) Industrial IoT in 5G environment towards smart
manufacturing. Journal of Industrial Information Integration 10:10–19

12. Khoshnevisan M, Joseph V, Gupta P, Meshkati F, Prakash R, Tinnakornsrisuphap P (2019)
5G industrial networks with CoMP for URLLC and time sensitive network architecture. IEEE
Journal on Selected Areas in Communications 37 (4):947–959

13. Fitzgerald E, Pióro M Efficient pilot allocation for urllc traffic in 5g industrial iot networks.
In: 2019 11th International Workshop on Resilient Networks Design and Modeling (RNDM),
2019. IEEE, pp 1–7

14. Gupta R, Tanwar S, Tyagi S, Kumar N (2019) Tactile-internet-based telesurgery system for
healthcare 4.0: An architecture, research challenges, and future directions. IEEE Network 33
(6):22–29

15. Alliance N (2019) Verticals URLLC Use Cases and Requirements. NGMN Alliance
16. Vergutz A, Noubir G, Nogueira M (2020) Reliability for Smart Healthcare: A Network Slicing

Perspective. IEEE Network 34 (4):91–97
17. Feng L, Li W, Lin Y, Zhu L, Guo S, Zhen Z (2020) Joint Computation Offloading and URLLC

Resource Allocation for Collaborative MEC Assisted Cellular-V2X Networks. IEEE Access
8:24914–24926

18. van Dam J-F, Bißmeyer N, Zimmermann C, Eckert K (2019) Security in hybrid vehicular
communication based on its g5, lte-v, and mobile edge computing. In: Fahrerassistenzsysteme
2018. Springer, pp 80–91

19. Hochstetler J, Padidela R, Chen Q, Yang Q, Fu S Embedded deep learning for vehicular edge
computing. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), 2018. IEEE, pp
341–343

20. Zhao J, Wang L, Wong K-K, Tao M, Mahmoodi T (2018) Energy and latency control for edge
computing in dense V2X networks. arXiv preprint arXiv:180702311

21. Liu Y, Ling J, Shou G, Seah HS, Hu Y Augmented reality based on the integration of mobile
edge computing and fiber-wireless access networks. In: International Workshop on Advanced
Image Technology (IWAIT) 2019, 2019. International Society for Optics and Photonics, p
110490M

22. Draxinger W, Miura Y, Grill C, Pfeiffer T, Huber R A real-time video-rate 4D MHz-
OCT microscope with high definition and low latency virtual reality display. In: European
Conference on Biomedical Optics, 2019. Optical Society of America, p 11078_11071

23. Chakareski J, Gupta S Multi-Connectivity and Edge Computing for Ultra-Low-Latency
Lifelike Virtual Reality. In: 2020 IEEE International Conference on Multimedia and Expo
(ICME), 2020. IEEE, pp 1–6

24. Varga P, Peto J, Franko A, Balla D, Haja D, Janky F, Soos G, Ficzere D, Maliosz M, Toka
L (2020) 5g support for industrial iot applications–challenges, solutions, and research gaps.
Sensors 20 (3):828

25. Horsmanheimo S, Säe J, Jokela T, Tuomimäki L, Nigussie E, Hjelt A, Huilla S, Dönmez T, Le
Bail N, Valkama M Remote Monitoring of IoT Sensors and Communication Link Quality in
Multisite mMTC Testbed. In: 2019 IEEE 30th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2019. IEEE, pp 1–7

26. Ananth S, Sathya P, Mohan PM Smart Health Monitoring System through IOT. In: 2019
International Conference on Communication and Signal Processing (ICCSP), 2019. IEEE, pp
0968–0970

27. De Michele R, Furini M Iot healthcare: Benefits, issues and challenges. In: Proceedings of the
5th EAI International Conference on Smart Objects and Technologies for Social Good, 2019.
pp 160–164

IoT Integration with MEC 139

28. Alam MM, Malik H, Khan MI, Pardy T, Kuusik A, Le Moullec Y (2018) A survey on the
roles of communication technologies in IoT-based personalized healthcare applications. IEEE
Access 6:36611–36631

29. Ahmed S, Rahman MS, Rahaman MS A blockchain-based architecture for integrated smart
parking systems. In: 2019 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2019. IEEE, pp 177–182

30. Sicari S, Rizzardi A, Coen-Porisini A (2019) Smart transport and logistics: A Node-RED
implementation. Internet Technology Letters 2 (2):e88

31. Gill SS, Garraghan P, Buyya R (2019) ROUTER: Fog enabled cloud based intelligent
resource management approach for smart home IoT devices. Journal of Systems and Software
154:125–138

32. Yassine A, Singh S, Hossain MS, Muhammad G (2019) IoT big data analytics for smart
homes with fog and cloud computing. Future Generation Computer Systems 91:563–573

33. Liu Y, Yang C, Jiang L, Xie S, Zhang Y (2019) Intelligent edge computing for IoT-based
energy management in smart cities. IEEE Network 33 (2):111–117

34. Mochamad Rifki Ulil A, Sukaridhoto S, Tjahjono A, Kurnia Basuki D (2019) The vehicle as
a mobile sensor network base iot and big data for pothole detection caused by flood disaster.
E&ES 239 (1):012034

35. Rahman MA, Rashid MM, Hossain MS, Hassanain E, Alhamid MF, Guizani M (2019)
Blockchain and IoT-based cognitive edge framework for sharing economy services in a smart
city. IEEE Access 7:18611–18621

36. Fan D, Gao S The application of mobile edge computing in agricultural water monitoring
system. In: IOP Conference Series: Earth and Environmental Science, 2018. vol 1. IOP
Publishing, p 012015

37. Trilles S, Torres-Sospedra J, Belmonte Ó, Zarazaga-Soria FJ, González-Pérez A, Huerta
J (2019) Development of an open sensorized platform in a smart agriculture context: A
vineyard support system for monitoring mildew disease. Sustainable Computing: Informatics
and Systems

38. Miles B, Bourennane E-B, Boucherkha S, Chikhi S (2020) A study of LoRaWAN protocol
performance for IoT applications in smart agriculture. Computer Communications

39. Awan SH, Ahmed S, Nawaz A, Sulaiman S, Zaman K, Ali M, Najam Z, Imran S (2020)
BlockChain with IoT, an emergent routing scheme for smart agriculture. Int J Adv Comput
Sci Appl 11:420–429

40. Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W (2017) A survey on internet of things:
Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of
Things Journal 4 (5):1125–1142

41. Shahhoseini H, Naderi M, Buyya R Shared memory multistage clustering structure, an effi-
cient structure for massively parallel processing systems. In: Proceedings Fourth International
Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, 2000.
IEEE, pp 22–27

42. Saeed M, Shahhoseini HS APPMA-An anti-phishing protocol with mutual authentication. In:
The IEEE symposium on Computers and Communications, 2010. IEEE, pp 308–313

43. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—A key
technology towards 5G. ETSI white paper 11 (11):1–16

44. Roman R, Lopez J, Mambo M (2018) Mobile edge computing, fog et al.: A survey and
analysis of security threats and challenges. Future Generation Computer Systems 78:680–
698

45. GSMA (October 2020) 5G IoT Private & Dedicated Networks for Industry 4.0.
46. Zanzi L, Cirillo F, Sciancalepore V, Giust F, Costa-Perez X, Mangiante S, Klas G (2019)

Evolving Multi-Access Edge Computing to Support Enhanced IoT Deployments. IEEE
Communications Standards Magazine 3 (2):26–34

47. Rahimi H, Zibaeenejad A, Safavi AA A novel IoT architecture based on 5G-IoT and next
generation technologies. In: 2018 IEEE 9th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), 2018. IEEE, pp 81–88

140 A. J. Pozveh and H. S. Shahhoseini

48. Qiu T, Chi J, Zhou X, Ning Z, Atiquzzaman M, Wu DO (2020) Edge Computing in Industrial
Internet of Things: Architecture, Advances and Challenges. IEEE Communications Surveys
& Tutorials

49. Shah VS (2018) Multi-agent cognitive architecture-enabled IoT applications of mobile edge
computing. Annals of Telecommunications 73 (7–8):487–497

50. Balasubramanian V, Kouvelas N, Chandra K, Prasad RV, Voyiatzis AG, Liu W A unified
architecture for integrating energy harvesting IoT devices with the mobile edge cloud. In:
2018 IEEE 4th World Forum on Internet of Things (WF-IoT), 2018. IEEE, pp 13–18

51. Deng S, Xiang Z, Yin J, Taheri J, Zomaya AY (2018) Composition-driven IoT service
provisioning in distributed edges. IEEE Access 6:54258–54269

52. Redondi AE, Arcia-Moret A, Manzoni P Towards a scaled IoT pub/sub architecture for 5G
networks: The case of multiaccess edge computing. In: 2019 IEEE 5th World Forum on
Internet of Things (WF-IoT), 2019. IEEE, pp 436–441

53. Marjanović M, Antonić A, Žarko IP (2018) Edge computing architecture for mobile
crowdsensing. IEEE Access 6:10662–10674

54. Ejaz M, Kumar T, Ylianttila M, Harjula E Performance and Efficiency Optimization of Multi-
layer IoT Edge Architecture. In: 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020. IEEE,
pp 1–5

55. Porambage P, Okwuibe J, Liyanage M, Ylianttila M, Taleb T (2018) Survey on multi-access
edge computing for internet of things realization. IEEE Communications Surveys & Tutorials
20 (4):2961–2991

56. Guardo EL (2018) Edge Computing: challenges, solutions and architectures arising from the
integration of Cloud Computing with Internet of Things.

57. Ksentini A, Frangoudis PA (2020) On extending ETSI MEC to support LoRa for efficient IoT
application deployment at the edge. IEEE Communications Standards Magazine 4 (2):57–63

58. Trakadas P, Nomikos N, Michailidis ET, Zahariadis T, Facca FM, Breitgand D, Rizou S,
Masip X, Gkonis P (2019) Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an
overview, key issues and relevant architecture. Sensors 19 (16):3591

59. Khan UY, Soomro TR Applications of IoT: Mobile Edge Computing Perspectives. In: 2018
12th International Conference on Mathematics, Actuarial Science, Computer Science and
Statistics (MACS), 2018. IEEE, pp 1–7

60. Liu Y, Peng M, Shou G, Chen Y, Chen S (2020) Toward Edge Intelligence: Multiaccess Edge
Computing for 5G and Internet of Things. IEEE Internet of Things Journal 7 (8):6722–6747

61. Sekaran R, Patan R, Raveendran A, Al-Turjman F, Ramachandran M, Mostarda L (2020) Sur-
vival Study on Blockchain Based 6G-Enabled Mobile Edge Computation for IoT Automation.
IEEE Access 8:143453–143463

62. Zhu R, Liu L, Song H, Ma M (2020) Multi-access edge computing enabled internet of things:
advances and novel applications. Springer,

63. Husain S, Kunz A, Prasad A, Samdanis K, Song J Mobile edge computing with network
resource slicing for Internet-of-Things. In: 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), 2018. IEEE, pp 1–6

64. Dighriri M, Otebolaku A, Alfoudi A, Lee GM (2020) Slice Allocation Management Model
in 5G Networks for IoT Services with Reliable Low Latency.

65. Pham T-M (2020) Optimization of Resource Management for NFV-Enabled IoT Systems in
Edge Cloud Computing. IEEE Access 8:178217–178229

66. Zhou Z, Yu S, Chen W, Chen X (2020) CE-IoT: Cost-Effective Cloud-Edge Resource
Provisioning for Heterogeneous IoT Applications. IEEE Internet of Things Journal

67. Xiong X, Zheng K, Lei L, Hou L (2020) Resource Allocation Based on Deep Reinforcement
Learning in IoT Edge Computing. IEEE Journal on Selected Areas in Communications 38
(6):1133–1146

68. Zhang Y, Liu J-H, Wang C-Y, Wei H-Y (2020) Decomposable Intelligence on Cloud-Edge
IoT Framework for Live Video Analytics. IEEE Internet of Things Journal

69. Lei L, Xu H, Xiong X, Zheng K, Xiang W (2019) Joint computation offloading and multiuser
scheduling using approximate dynamic programming in NB-IoT edge computing system.
IEEE Internet of Things Journal 6 (3):5345–5362

IoT Integration with MEC 141

70. Huang J, Li S, Chen Y (2020) Revenue-optimal task scheduling and resource management for
IoT batch jobs in mobile edge computing. Peer-to-Peer Networking and Applications:1–12

71. Lee J, Kim DJ, Niyato D (2020) Market Analysis of Distributed Learning Resource
Management for Internet of Things: A Game Theoretic Approach. IEEE Internet of Things
Journal

72. Qian LP, Feng A, Huang Y, Wu Y, Ji B, Shi Z (2018) Optimal SIC ordering and computation
resource allocation in MEC-aware NOMA NB-IoT networks. IEEE Internet of Things Journal
6 (2):2806–2816

73. Du Y, Wang K, Yang K, Zhang G Energy-efficient resource allocation in UAV based MEC
system for IoT devices. In: 2018 IEEE Global Communications Conference (GLOBECOM),
2018. IEEE, pp 1–6

74. Liu B, Liu C, Peng M (2020) Resource Allocation for Energy-Efficient MEC in NOMA-
Enabled Massive IoT Networks. IEEE Journal on Selected Areas in Communications

75. Zarca AM, Bernabe JB, Trapero R, Rivera D, Villalobos J, Skarmeta A, Bianchi S,
Zafeiropoulos A, Gouvas P (2019) Security management architecture for NFV/SDN-aware
IoT systems. IEEE Internet of Things Journal 6 (5):8005–8020

76. Almajali S, Salameh HB, Ayyash M, Elgala H A framework for efficient and secured mobility
of IoT devices in mobile edge computing. In: 2018 third international conference on fog and
mobile edge computing (FMEC), 2018. IEEE, pp 58–62

77. Li C-Y, Lin Y-D, Lai Y-C, Chien H-T, Huang Y-S, Huang P-H, Liu H-Y (2020) Transparent
AAA Security Design for Low-Latency MEC-Integrated Cellular Networks. IEEE Transac-
tions on Vehicular Technology 69 (3):3231–3243

78. Ding AY (2019) MEC and Cloud Security. Wiley 5G Ref: The Essential 5G Reference
Online:1–16

79. Durresi M, Subashi A, Durresi A, Barolli L, Uchida K (2019) Secure communication
architecture for internet of things using smartphones and multi-access edge computing in
environment monitoring. Journal of Ambient Intelligence and Humanized Computing 10
(4):1631–1640

80. He D, Chan S, Guizani M (2018) Security in the Internet of Things supported by mobile edge
computing. IEEE Communications Magazine 56 (8):56–61

81. Ranaweera P, Jurcut AD, Liyanage M Realizing multi-access edge computing feasibility:
Security perspective. In: 2019 IEEE Conference on Standards for Communications and
Networking (CSCN), 2019. IEEE, pp 1–7

82. Ni J, Lin X, Shen XS (2019) Toward edge-assisted Internet of Things: From security and
efficiency perspectives. IEEE Network 33 (2):50–57

83. Hewa T, Braeken A, Ylianttila M, Liyanage M Multi-Access Edge Computing and
Blockchain-based Secure Telehealth System Connected with 5G and IoT.

84. Du M, Wang K, Chen Y, Wang X, Sun Y (2018) Big data privacy preserving in multi-access
edge computing for heterogeneous Internet of Things. IEEE Communications Magazine 56
(8):62–67

85. Li X, Liu S, Wu F, Kumari S, Rodrigues JJ (2018) Privacy preserving data aggregation scheme
for mobile edge computing assisted IoT applications. IEEE Internet of Things Journal 6
(3):4755–4763

86. He X, Jin R, Dai H (2018) Deep PDS-learning for privacy-aware offloading in MEC-enabled
IoT. IEEE Internet of Things Journal 6 (3):4547–4555

87. Tan X, Li H, Wang L, Xu Z Global Orchestration of Cooperative Defense against DDoS
Attacks for MEC. In: 2019 IEEE Wireless Communications and Networking Conference
(WCNC), 2019. IEEE, pp 1–6

88. Ge S, Lu B, Xiao L, Gong J, Chen X, Liu Y (2020) Mobile Edge Computing Against
Smart Attacks with Deep Reinforcement Learning in Cognitive MIMO IoT Systems. Mobile
Networks and Applications 25 (5):1851–1862

89. Singh J, Bello Y, Refaey A, Erbad A, Mohamed A (2020) Hierarchical Security Paradigm for
IoT Multi-access Edge Computing. IEEE Internet of Things Journal

142 A. J. Pozveh and H. S. Shahhoseini

90. Krishnan P, Duttagupta S, Achuthan K (2019) SDNFV Based Threat Monitoring and
Security Framework for Multi-Access Edge Computing Infrastructure. Mobile Networks and
Applications 24 (6):1896–1923

91. ALshukri D, Sumesh E, Krishnan P Intelligent Border Security Intrusion Detection using IoT
and Embedded systems. In: 2019 4th MEC International Conference on Big Data and Smart
City (ICBDSC), 2019. IEEE, pp 1–3

92. Huang M, Liu W, Wang T, Liu A, Zhang S (2019) A cloud-MEC collaborative task offloading
scheme with service orchestration. IEEE Internet of Things Journal

93. Wu Y (2020) Cloud-Edge Orchestration for the Internet-of-Things: Architecture and AI-
Powered Data Processing. IEEE Internet of Things Journal

94. He W, Guo S, Liang Y, Qiu X (2019) Markov approximation method for optimal service
orchestration in IoT network. IEEE Access 7:49538–49548

95. Muñoz R, Vilalta R, Casellas R, Martínez R, Yoshikane N, Tsuritani T, Morita I Orchestration
of Optical Networks and Cloud/Edge Computing for IoT Services. In: 2019 24th Opto-
Electronics and Communications Conference (OECC) and 2019 International Conference on
Photonics in Switching and Computing (PSC), 2019. IEEE, pp 1–3

96. Nguyen T-D, Huh E-N, Jo M (2018) Decentralized and revised content-centric networking-
based service deployment and discovery platform in mobile edge computing for IoT devices.
IEEE Internet of Things Journal 6 (3):4162–4175

97. Alameddine HA, Sharafeddine S, Sebbah S, Ayoubi S, Assi C (2019) Dynamic task offloading
and scheduling for low-latency IoT services in multi-access edge computing. IEEE Journal
on Selected Areas in Communications 37 (3):668–682

98. Liu J, Zhang Q (2020) Using Imperfect Transmission in MEC Offloading to Improve Service
Reliability of Time-Critical Computer Vision Applications. Ieee Access 8:107364–107372

99. Zahed MIA, Ahmad I, Habibi D, Phung QV (2020) Green and Secure Computation
Offloading for Cache-Enabled IoT Networks. IEEE Access 8:63840–63855

100. Chen M, Wang L, Chen J, Wei X, Lei L (2019) A computing and content delivery network in
the smart city: Scenario, framework, and analysis. IEEE Network 33 (2):89–95

101. Yuan Q, Zhou H, Li J, Liu Z, Yang F, Shen XS (2018) Toward efficient content delivery for
automated driving services: An edge computing solution. IEEE Network 32 (1):80–86

102. Prerna D, Tekchandani R, Kumar N, Tanwar S (2020) An Energy-Efficient Cache Local-
ization Technique for D2D Communication in IoT Environment. IEEE Internet of Things
Journal

103. Almajali S, Dhiah el Diehn I, Salameh HB, Ayyash M, Elgala H (2019) A distributed multi-
layer MEC-cloud architecture for processing large scale IoT-based multimedia applications.
Multimedia Tools and Applications 78 (17):24617–24638

104. Elgendy IA, Zhang W-Z, Zeng Y, He H, Tian Y-C, Yang Y (2020) Efficient and Secure
Multi-User Multi-Task Computation Offloading for Mobile-Edge Computing in Mobile IoT
Networks. IEEE Transactions on Network and Service Management

105. Papathanail G, Fotoglou I, Demertzis C, Pentelas A, Sgouromitis K, Papadimitriou P,
Spatharakis D, Dimolitsas I, Dechouniotis D, Papavassiliou S COSMOS: An Orchestration
Framework for Smart Computation Offloading in Edge Clouds. In: NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium, 2020. IEEE, pp 1–6

106. Min M, Xiao L, Chen Y, Cheng P, Wu D, Zhuang W (2019) Learning-based computation
offloading for IoT devices with energy harvesting. IEEE Transactions on Vehicular Technol-
ogy 68 (2):1930–1941

107. Hsu C-W, Hsu Y-L, Wei H-Y Energy-Efficient and Reliable MEC Offloading for Het-
erogeneous Industrial IoT Networks. In: 2019 European Conference on Networks and
Communications (EuCNC), 2019. IEEE, pp 384–388

108. Wang D, Tian X, Cui H, Liu Z (2020) Reinforcement learning-based joint task offloading and
migration schemes optimization in mobility-aware MEC network. China Communications 17
(8):31–44

109. Shah SDA, Gregory MA, Li S, Fontes RDR (2020) SDN Enhanced Multi-Access Edge
Computing (MEC) for E2E Mobility and QoS Management. IEEE Access 8:77459–77469

IoT Integration with MEC 143

110. Dhanvijay MM, Patil SC (2020) Optimized mobility management protocol for the IoT based
WBAN with an enhanced security. Wireless Networks:1–19

111. Aljeri N, Boukerche A (2020) Mobility Management in 5G-enabled Vehicular Networks:
Models, Protocols, and Classification. ACM Computing Surveys (CSUR) 53 (5):1–35

112. Leppanen T, Savaglio C, Lovén L, Jarvenpaa T, Ehsani R, Peltonen E, Fortino G, Riekki J
Edge-based Microservices Architecture for Internet of Things: Mobility Analysis Case Study.
In: 2019 IEEE Global Communications Conference (GLOBECOM), 2019. IEEE, pp 1–7

113. Pantović V Enabling Technology in Three Primary 5G Services. In: Sinteza 2019-
International Scientific Conference on Information Technology and Data Related Research,
2019. Singidunum University, pp 301–306

114. Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A (2014) Mobile-edge computing
introductory technical white paper. White paper, mobile-edge computing (MEC) industry
initiative:1089–7801

115. Tran TX, Hajisami A, Pandey P, Pompili D (2017) Collaborative mobile edge computing in
5G networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine
55 (4):54–61

116. Pham Q-V, Fang F, Ha VN, Piran MJ, Le M, Le LB, Hwang W-J, Ding Z (2020) A survey of
multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and
state-of-the-art. IEEE Access 8:116974–117017

117. Ai Y, Peng M, Zhang K (2018) Edge computing technologies for Internet of Things: a primer.
Digital Communications and Networks 4 (2):77–86

118. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing:
The communication perspective. IEEE Communications Surveys & Tutorials 19 (4):2322–
2358

119. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y (2016) Energy-
efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE access
4:5896–5907

120. Ding Z, Xu J, Dobre OA, Poor HV (2019) Joint power and time allocation for NOMA–MEC
offloading. IEEE Transactions on Vehicular Technology 68 (6):6207–6211

121. Beck MT, Feld S, Fichtner A, Linnhoff-Popien C, Schimper T ME-VoLTE: Network functions
for energy-efficient video transcoding at the mobile edge. In: 2015 18th International
Conference on Intelligence in Next Generation Networks, 2015. IEEE, pp 38–44

122. Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture and computation
offloading. IEEE Communications Surveys & Tutorials 19 (3):1628–1656

123. Sarrigiannis I, Ramantas K, Kartsakli E, Mekikis P-V, Antonopoulos A, Verikoukis C (2019)
Online VNF Lifecycle Management in an MEC-Enabled 5G IoT Architecture. IEEE Internet
of Things Journal 7 (5):4183–4194

124. Toosi AN, Mahmud R, Chi Q, Buyya R (2019) Management and Orchestration of Network
Slices in 5G, Fog, Edge and Clouds. Fog and Edge Computing 10

125. Lin L, Liao X, Jin H, Li P (2019) Computation offloading toward edge computing.
Proceedings of the IEEE 107 (8):1584–1607

126. Yang F, Gupta N, Gerner N, Qi X, Demers A, Gehrke J, Shanmugasundaram J A unified
platform for data driven web applications with automatic client-server partitioning. In:
Proceedings of the 16th international conference on World Wide Web, 2007. pp 341–350

127. Wu H, Knottenbelt WJ, Wolter K (2019) An efficient application partitioning algorithm in
mobile environments. IEEE Transactions on Parallel and Distributed Systems 30 (7):1464–
1480

128. Mohtavipour SM, Shahhoseini HS A Low-Cost Distributed Mapping for Large-Scale
Applications of Reconfigurable Computing Systems. In: 2020 25th International Computer
Conference, Computer Society of Iran (CSICC), 2020. IEEE, pp 1–6

129. Aali SN, Shahhosseini HS, Bagherzadeh N Divisible load scheduling of image processing
applications on the heterogeneous star network using a new genetic algorithm. In: 2018 26th
Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP), 2018. IEEE, pp 77–84

144 A. J. Pozveh and H. S. Shahhoseini

130. Liu J, Zhang Q (2019) Code-partitioning offloading schemes in mobile edge computing for
augmented reality. IEEE Access 7:11222–11236

131. Tu Y, Ruan Y, Wang S, Wagle S, Brinton CG, Joe-Wang C (2020) Network-Aware
Optimization of Distributed Learning for Fog Computing. arXiv preprint arXiv:200408488

132. Taheribakhsh M, Jafari A, Peiro MM, Kazemifard N 5G Implementation: Major Issues and
Challenges. In: 2020 25th International Computer Conference, Computer Society of Iran
(CSICC), 2020. IEEE, pp 1–5

133. ETSI G 004, Mobile Edge Computing (MEC) Service Scenarios V1. 1.1,(2015).
134. Reznik A, Arora R, Cannon M, Cominardi L, Featherstone W, Frazao R, Giust F, Kekki S,

Li A, Sabella D (2017) Developing software for multi-access edge computing. ETSI White
Paper 20

135. Datta SK, Bonnet C MEC and IoT Based Automatic Agent Reconfiguration in Industry 4.0.
In: 2018 IEEE International Conference on Advanced Networks and Telecommunications
Systems (ANTS), 2018. IEEE, pp 1–5

136. Nokia I (2013) Increasing Mobile Operators Value Proposition With Edge Computing.
Technical Brief

137. Gazis V, Leonardi A, Mathioudakis K, Sasloglou K, Kikiras P, Sudhaakar R Components
of fog computing in an industrial internet of things context. In: 2015 12th Annual IEEE
International Conference on Sensing, Communication, and Networking-Workshops (SECON
Workshops), 2015. IEEE, pp 1–6

138. Vallati C, Virdis A, Mingozzi E, Stea G Exploiting LTE D2D communications in M2M Fog
platforms: Deployment and practical issues. In: 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), 2015. IEEE, pp 585–590

139. Mobile C (2020) 5G MEC-Based Cloud Game Innovation Practice
140. AT&T AT&T Multi-Access Edge Computing https://www.business.att.com/products/multi-

access-edge-computing.html.
141. Dongkee L, SK Telecom, et al. (2019) Case Study of Scaled-Up SKT* 5G MEC Reference

Architecture.
142. Deutsche Telekom Completes World’s First Public Mobile Edge Network. (2019).
143. Kaloxylos A, Gavras, Anastasius, & De Peppe, Raffaele (2020) Empowering Vertical

Industries through 5G Networks - Current Status and Future Trends. Zenodo,
144. Shahhoseini HS, Jafari AH, Afhamisisi K (2015) An MDP Approach for Defending Against

Fraud Attack in Cognitive Radio Networks. IETE Journal of Research 61 (5):492–499
145. Saeed M, Shahhoseini HS, Mackvandi A An improved two-party Password Authenticated

Key Exchange protocol without server’s public key. In: 2011 IEEE 3rd International
Conference on Communication Software and Networks, 2011. IEEE, pp 90–95

146. Naderi H, Shahhoseini H, Jafari A Availability-Based Routing Algorithm Using AHP Method
in IP/MPLS Networks. In: 2012 International Conference on Computer Science and Service
System, 2012. IEEE, pp 605–609

147. Monge AS, Szarkowicz KG (2015) MPLS in the SDN Era: Interoperable Scenarios to Make
Networks Scale to New Services. “ O’Reilly Media, Inc.”,

148. SHAHHOSEİNİ HS, JAFARİ AH (2015) Reputation Based Cooperation Between Network
Operators in the Heterogeneous Wireless Environments. Cumhuriyet Üniversitesi Fen-
Edebiyat Fakültesi Fen Bilimleri Dergisi 36 (3):1326–1331

149. Mohammadkhani S, Pozveh AHJ, Karagiannidis GK (2020) Robust Tomlinson-Harashima
Precoding for Two-Way Relaying. Wireless Personal Communications:1–13

150. Zamzam M, Elshabrawy T, Ashour M Resource Management using Machine Learning in
Mobile Edge Computing: A Survey. In: 2019 Ninth International Conference on Intelligent
Computing and Information Systems (ICICIS), 2019. IEEE, pp 112–117

151. Jafari AH, Shahhoseini HS (2015) A Reinforcement Routing Algorithm with Access
Selection in the Multi–Hop Multi–Interface Networks. Journal of Electrical Engineering 66
(2):70–78

https://www.business.att.com/products/multi-access-edge-computing.html

Green-Aware Mobile Edge Computing
for IoT: Challenges, Solutions and Future
Directions

Minxian Xu, Chengxi Gao, Shashikant Ilager, Huaming Wu, Chengzhong Xu,
and Rajkumar Buyya

Abstract The development of Internet of Things (IoT) technology enables the
rapid growth of connected smart devices and mobile applications. However, due to
the constrained resources and limited battery capacity, there are bottlenecks when
utilizing the smart devices. Mobile edge computing (MEC) offers an attractive
paradigm to handle this challenge. In this work, we concentrate on the MEC
application for IoT and deal with the energy saving objective via offloading
workloads between cloud and edge. In this regard, we firstly identify the energy-
related challenges in MEC. Then we present a green-aware framework for MEC
to address the energy-related challenges, and provide a generic model formulation
for the green MEC. We also discuss some state-of-the-art workloads offloading
approaches to achieve green IoT and compare them in comprehensive perspectives.
Finally, some future research directions related to energy efficiency in MEC are
given.

Keywords Mobile edge computing · Smart devices · Energy efficiency · Low
latency · Workloads offloading

M. Xu (�) · C. Gao
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
e-mail: mx.xu@siat.ac.cn; chengxi.gao@siat.ac.cn

S. Ilager · R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and
Information Systems, The University of Melbourne, Melbourne, VIC, Australia
e-mail: silager@student.unimelb.edu.au; rbuyya@unimelb.edu.au

H. Wu
Center for applied mathematics, Tianjin University, Tianjin, China
e-mail: whming@tju.edu.cn

C. Xu
State Key Lab of IOTSC, University of Macau, China
e-mail: czxu@um.edu.mo

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_7&domain=pdf
mailto:mx.xu@siat.ac.cn
mailto:chengxi.gao@siat.ac.cn
mailto:silager@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
mailto:whming@tju.edu.cn
mailto:czxu@um.edu.mo
https://doi.org/10.1007/978-3-030-69893-5_7

146 M. Xu et al.

1 Introduction

The concept of the IoT has evolved remarkably based on the evolution of wireless
communication and mobile technologies [1]. IoT has been regarded as a global
network consisting of connected smart devices, which contributes to the arising and
evolving of various novel mobile applications. Furthermore, with fast development,
IoT has the potential to promote many more possible applications and scenarios,
such as smart cities, smart home, smart health-care, smart agriculture, and so on.
However, since IoT devices have the inherent features, including constrained power
capacity, low computation capacity, and storage, provisioning limited resources for
a great amount of computation-intensive applications on devices is a significant
challenge [2–5].

To handle the fast increase of mobile applications and ensure the performance
of applications on IoT devices, application tasks are offloaded to cloud that
gathers adequate computation resources from remote servers [6]. This motivates
the paradigm named mobile cloud computing (MCC) [7]. In MCC, mobile devices
can utilize the computing and storage resources from remote clouds, which can be
accessed via a core network. The MCC paradigm can extend battery life, enhance
mobile devices’ capacity to handle complex tasks, provide larger storage space.
However, communication cost and service delay are two significant issues that can
undermine the user experience, due to increased load on the core network.

To address the above limitation of MCC, Mobile Edge Computing (MEC)
paradigm was proposed that enables efficient execution of applications requiring
low latency with constrained energy [8]. MEC is a type of computing paradigm
that enables capabilities of cloud computing to be extended at the edge of network
[9]. However, ensuring low latency as required is still quite challenging, especially
when “Internet of Everything” has evolved as a reality based on the recent IoT
technologies, and amidst IoT devices are more diverse in their capabilities and
requirements. Moreover, energy efficiency has become an extremely important
factor in designing MEC solutions as IoT devices have limited energy and battery
life. Therefore, without proper coordination among the resource constrained smart
IoT devices and offloading necessary tasks to MEC may lead to higher energy costs
and latency.

Another way to relieve the energy constraint of MEC enabled IoT system is by
utilizing green energy (e.g. solar, wind, etc.) [10]. Using green energy as the energy
sources rather than coal-based brown energy alone can reduce the carbon emission
efficiently. Besides, the outdoor IoT devices powered by green energy can also
extend their battery life. Enabling the edge servers and IoT devices to be supported
by green energy reduces the dependency on coal-based energy sources. There have
been some proposed green-aware approaches for MEC enabled IoTs [11, 12]. To
some extent, the availability of green energy is intermittent and unpredictable,
therefore, it is required to design a hybrid power supply of both green energy and
brown energy to fully assure the stability and availability of services.

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 147

1.1 MEC Characteristics

To support the sustainable development of IoT technology, MEC has been applied
to many IoT scenarios. The MEC provides the following useful characteristics:

Proximity Unlike remote clouds, in MEC, edge servers are deployed at the network
edge close to the IoT devices. It can be used to process the key data generated by
the IoT devices with shorter processing time as edge servers are generally more
powerful than IoT devices.

Low Delay Offloading data from IoT devices to edge servers can achieve low delay
(e.g. data transmission time, task processing time), improve user experience, and
reduce potential core-network congestion. It is also possible to support real-time
applications for time-critical emergency IoT applications.

High Bandwidth The communications between IoT devices and MEC servers can
fully utilize the available bandwidth and gain high transmission rate, which can
improve the system performance of MEC-enabled IoT.

Location andMobility Awareness With real-time location data received from IoT
devices, the application can estimate the status of the whole system. In addition,
in case of mobile devices that move dynamically, tasks can be offloaded to a set
of proximal MEC servers. There is a requirement for continuous task offloading
service that is seamlessly integrated with platforms.

Flexible Deployment MEC is able to host critical missions with IoT applications.
These applications can be deployed by the network managers or third-party
developers rather than only from cloud service providers.

Heterogeneous Resource Collaboration To handle the large number of comput-
ing workloads, the services require to utilize resources both from cloud computing
and edge computing together. Furthermore, coordinating heterogeneous resources
is also required to meet the different requirements of various applications.

Figure 1 shows the MEC enabled IoT scenario. Based on the above features,
MEC has been applied to many areas and consists of different types of IoT
applications, e.g. transportation, smart grid, agriculture, and healthcare. These IoT
applications along with their IoT devices can be placed at the edge of the network.
To be more specific, the edge devices can be deployed at the network gateway, base
stations, or local area network, which can connect the IoT devices via 5G or WiFi.
As for the cloud resources they work as a central manager and monitor the status of
edge devices. They can also act as remote repositories to store the data and perform
off-line batch processing tasks.

148 M. Xu et al.

Fig. 1 MEC for typical IoT applications

1.2 Need for Sustainable IoT Application Management
in MEC

According to the above discussions, an efficient offloading policy is quite important
to support the effectiveness of MEC for IoT, as it can adequately allocate resources
in an energy-efficient manner while satisfying the latency requirements. To develop
efficient offloading policies of MEC enabled IoT, the following challenges should
be addressed:

Heterogeneity of Edge Servers and IoT Devices Both the mobile devices and
edge servers have heterogeneous network, computing and storage resources, which
makes the selection of offloading devices a challenge. For instance, some of
the edge servers are suitable for processing compute-intensive tasks while some
others are with adequate storage resources. When designing offloading policies, the
heterogeneity of resources should be considered to take full advantage of resources.

Offloading Trigger When to trigger the offloading process should be carefully
investigated. Always offloading tasks without context-awareness to edge servers can
lead to higher delay, if the communication cost is much higher than the processing
cost on edge servers in some particular situations, e.g. network congestion, can lead
to degraded performance. Therefore, an efficient trigger mechanism is essential.

Coordination Costs The communication cost exists among devices to coordinate
tasks, e.g. mobile games. Thus, coordination among devices may consume extra
energy and incurs additional latency because of communication overhead. Further-
more, the costs grow exponentially with the increased amount of devices, thus the
bottleneck exists when scaling the number of IoT devices to a large scale.

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 149

Partial Task Offloading Apart from full task offloading, tasks can be partitioned
into different parts. Thus, how to select the appropriate parts to offload to ensure the
latency and energy requirement is another challenge, especially for the cases when
there is a data dependency between different parts.

Security Guarantee In the IoT network, MEC servers can encounter security
attacks like the masquerade attacks. Privacy information can also be revealed in the
offloading process. Protecting privacy information while maintaining operational
efficiency is a critical challenge.

In summary, when designing efficient workloads offloading policy in MEC
enabled IoT, and to address the above challenges, some key research questions
should be considered, including:

• When to offload the task to edge servers?
• Partial offloading or full offloading of application tasks?
• Which edge server should be selected to process the offloaded tasks?

In this work, to address the aforementioned challenges, we present a green-
aware framework for MEC. We focus on the problem modeling for the workloads
offloading in MEC for IoT. In addition, we review some state-of-the-art green-aware
offloading approaches.

The main contributions of this work are as follows:

• We propose a green-aware framework to support the MEC enabled IoT by taking
advantage of green energy to reduce the power consumption and service latency.

• We model the task offloading approach in a general way by considering the local
processing model and edge processing model to achieve an energy-efficient and
QoS-aware objective.

• We review state-of-the-art green-aware workloads offloading approaches of
MEC-enabled IoT to identify the advantages and limitations of current solutions.

• We outline the future research directions in the related area to help the researchers
to investigate the future possible trends.

To help the readers to follow the contents easily, the abbreviation notations used
in this work are summarized in Table 1.

The rest of this paper is organized as follows: we start by presenting the general
green-aware framework for MEC enabled IoT in Sect. 2, where we highlight the
latest advances and trends in green-aware MEC. In Sect. 3, we formulate the general
problem modeling and the offloading approaches in green-aware MEC enabled IoT.
Then we discuss state-of-the-art green-aware approaches for MEC enabled IoT by
identifying their merits and limitations in Sect. 4. Afterward, we present a number
of future research directions in Sect. 5. And final, we conclude the work in Sect. 6.

150 M. Xu et al.

Table 1 Summary of abbreviation notations used in this work

Abbreviations Meaning

MEC Mobile Edge Computing
IoT Internet of Things
MCC Mobile Cloud Computing
GS-MEC Green and Sustainable Mobile Edge Computing approach
LSTM Long Short-Term Memory
LSDQN Long Short-Term Memory enhanced Deep Q-Network approach
DQN Deep Q-Network
LETOC Lyapunov-based algorithm for online optimization
GOLL Green Offloading with Low Latency
SOMEC A Selective Offloading in Mobile Edge Computing approach
GreenEdge Approach leveraging device-to-device communication and energy harvesting

2 Green-Aware Framework for MEC

Green-aware MEC for IoT aims at reducing energy consumption and communica-
tion delay, which plays a crucial role in the IoT paradigm by taking advantage of
green energy. In the IoT scenario, it is more important to consider the limited energy
capacity of IoT devices. Extending the active time of IoT devices can enhance the
lifetime, which makes the task offloading necessary to save the power consumption
of IoT devices. The battery status of IoT devices can be obtained in a real-time
manner and then reserved in an energy buffer when the IoT devices interact with
surroundings. However, it is challenging to achieve the energy efficiency goal
via task offloading. In this regard, we propose a framework of green-aware MEC
enabled IoT. Figure 2 shows our proposed framework and detailed components are
introduced as follows:

The major components in the framework can be divided into two parts including
IoT devices and edge servers. The main components in the IoT devices part are:
Energy Manager, QoS Manager, Offloading Scheduler, and Synchronizer.

Energy Manager It is responsible for managing the energy usage of IoT devices.
Based on energy usage, it can also trigger the offloading operations.

QoS Manager It monitors the QoS information of IoT devices and applications,
such as communication latency. It also determines the service requirements and
anticipated latency for executing the tasks.

Offloading Scheduler It decides whether to offload the tasks or not as well as
which part of tasks should be offloaded. It also partitions the tasks and selects the
target edge server to send the offloaded task.

Synchronizer It is responsible for handling the communications and synchronizing
the data when offloading the tasks, e.g. full or partial offloading. For instance,
some data should be processed locally and the processed data in edge servers

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 151

Fig. 2 Framework of Green-aware MEC for IoT

should be synchronized when data are sent back. It interacts with the corresponding
Synchronizer component in the edge server part, and it also ensures data integrity.

In our proposed framework, the edge servers can be powered by both brown
energy and green energy. The green energy is produced via renewable sources, like
solar and wind. The major components in edge servers part include System Monitor,
Green Energy Manager, Resource Scheduler, and Synchronizer.

System Monitor It monitors the status of edge servers, including CPU usage and
storage usage. It can also alert the anomaly of the system.

Green Energy Manager It controls the green energy usage for edge servers in
terms of the availability of green energy to maximize the utilization of green energy.
It can also include the green energy prediction module.

Resource Scheduler It manages the resources in MEC devices to support the
process of offloaded tasks to reduce the processing time by allocating resources
to corresponding tasks.

Synchronizer it is responsible for synchronizing the data with IoT devices. It
receives the tasks and sends the data back to IoT devices and ensures them to be
consistent.

3 Problem Modelling: Green-Aware Offloading

Based on our proposed framework, our target problem of MEC for IoT can be
modeled in the following way, which contains the task model, green energy model,
local processing model, and edge processing model.

152 M. Xu et al.

3.1 Task Model

In the whole system, we assume that there are M edge severs, the processing
capacity of the servers can be represented as f max

k , where k = 1, 2, . . . , M. These
edge servers are deployed independently in M base stations located in different
areas. Considering there are N IoT devices and N(t) active IoT devices in the system
at time interval t among the whole scheduling period T. Each device has a compute-
intensive task, while can be denoted as Ti = {si, ci, di}, where i = 1, 2, . . . , N,
si is denoted as the data amount of the input task, ci is the required computation
resources, e.g. millions of instructions. di is the deadline constraint of this task. For
Ti, it can be consist of three parts: xl

i (t), xe
i (t), and xd

i (t). The xl
i (t), xe

i (t) denote
the percentage (should be a real value between 0 and 1) of tasks processed on IoT
devices locally or tasks executed on edge servers respectively. The xd

i (t) denotes the
admission control by dropping tasks, which is either 0 or 1, representing whether
the task is dropped or not. These three parameters should conform to the following
constraint:

xl
i (t) + xe

i (t) + xd
i (t) = 1,∀t ∈ T ,∀i ∈ N (1)

xl
i (t), x

e
i (t) ∈ [0, 1] , xd

i (t) ∈ {0, 1} ,∀t ∈ T ,∀i ∈ N (2)

3.2 Green Energy Provisioning Model

The availability of green energy can vary significantly in different locations with
varied weather conditions [13]. For example, in some locations with the summer
time, the solar power is adequate, while in some other places with the winter time,
the wind can be the main green energy sources. In addition, the availability is heavily
dependent on the weather conditions, therefore, can vary significantly in different
time zones. In our model, the green energy has a higher priority to be used, which
means the green energy will be used firstly until it lasts and the coal-based brown
energy will be used as the complementary.

We consider that the edge servers are powered by both brown energy and green
energy. At time interval t, the amount of green energy is Rk(t), which is tightly
coupled with the available amount of renewable energy, for instance, the solar power
is 0 at night while it can reach the peak at noontime in a sunny day. And k denotes the
location that offers green energy. To make the system extensible, we also consider
that there is a set of cloud servers behind edge servers as backups.

3.3 Local Processing Model

In the local processing model, the tasks are processed locally, thus xl
i (t) = 1,

xe
i (t) = 0 and xd

i (t) = 0. Assuming the local IoT device processing capacity is

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 153

fi(t) at time interval t, which is constrained by the maximum processing capacity
f max

i as fi(t) ≤ f max
i . Then the task processing delay Di for executing Ti is as

follows:

Di = ci

fi(t)
, ∀t ∈ T ,∀i ∈ N (3)

Let P l
i (t) represent the energy consumption of processing the tasks locally.

Derived from [14], the energy consumed for the task by local processing can be
expressed as:

P l
i (t) = k • (fi(t))

2 • Di, ∀t ∈ T (4)

where k is the energy factor depends on the hardware architecture.

3.4 Edge Processing Model

In contrast to the local processing choice if the task Ti is offloaded to edge server k,
the total processing time will be constituted with 3 parts, including the running time
for device to access edge server k, the task communication time and the processing
time. In this way, xl

i (t) = 0, xe
i (t) = 1 and xd

i (t) = 0. Therefore, the time delay
Di, k of processing the task Ti on the edge server k can be represented as:

Di,k = di

rk
+ cj

fi,k(t)
+ Ck (5)

where rk is the device transmission rate to access base station k, based on Shannon-
Hartley formula, the transmission rate from the IoT device to edge server can be

calculated as rk = wlog2

(
1 + s•p(t)

σ

)
, where w and σ are the channel bandwidth

and noise power, s is the transmission power of IoT device, and p(t) is the channel
gain from the device to the server. fi, k(t) is amount of the communication resources
allocated by MEC server k at time interval t for offloading Ti. Ck is the running
time for device to connect the MEC server k, which can be a value in a range, e.g.
5–50 ms.

Let P e
i (t) denote the power consumption of executing the tasks on the edge

servers. Therefore, the energy used for processing the tasks on the edge servers
can be represented as:

P e
i (t) = pi • Di,k, ∀t ∈ T (6)

where pi is the transmission power scheduled for IoT device i.

154 M. Xu et al.

3.5 Optimal Green-Aware Offloading

Let us denote Ri as the reward of device i gains by offloading the task Ti to the MEC
server k. The Ri is correlated with the delay reduction and energy consumption
improvement. We assume that the scheduler in IoT devices can make efficient
decisions, thus the system can maximize their reward by selecting the offloading
choices.

max
Ti,k,fi,k

Ri =
∑M

k=1
Ti,k

(
λ

(
Di,0 − Di,k

) + ε
(
Pi,0 − Pi,k

))
(7)

s.t.
∑M

k=1
Ti,k • Di,k ≤ di (8)

∑M

k=1
Ti,kfi,k ≤ fk + f b

k (9)

constraints (1), (2) (10)

where Di, 0 and Pi, 0 are the time and energy consumption to locally process the task
on IoT devices. Pi, k is the energy cost for offloading task Ti to MEC server k. The
λ and ε are coefficients. The f b

k represents the computing resource used from the
backup server MEC server k. Some system constraints should also comply like the
maximum green energy usage should be more than the capacity of green equipment.
The offloaded tasks should not surpass the maximum allowed tasks. The choices are
two-folded: offloaded or not. The CPU utilization of offloaded tasks should not be
more than the maximum resource utilization.

Once the tasks are offloaded, MEC servers optimize their resource usage by
taking advantage of green energy. Since renewable energy availability heavily
dependent on the many factors related to weather, using green energy is one of the
motivated policies of the MEC servers. Therefore, for the offloading process, in the
non-cooperative game between the MEC servers, the possible decisions of server
k can be denoted as

(
xk, f

b
k

)
. For edge server k, then the optimization problem is

formulated as:

max
xi ,f

b
k

Rs
k = xk

∑N

i=1
fi,k − βk • min

(∑N

i=1
fi,k, f

max
k

)
− y • f b

k (11)

s.t. xk, f
b
k ≥ 0 (12)

where βk is the changing rate/transformation rate of green energy at location k that
can be computed based on the green energy model in Sect. 3.2, and y is the ratio of
resources bought from backup servers.

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 155

Since the computation capacity of each MEC server is limited, there is compe-
tition among offloaded tasks to utilize the resources, which makes the decisions to
be a non-cooperative game. The task offloading process among devices is a concave
multiple-player game, thus a Nash equilibrium can exist [15]. As the reward function
Rs

k continues in terms of xk and f b
k , it can be easily solved by integer programming,

Lyapunov optimization, game theory, or other approaches.

Scalability Discussion The scalability of the proposed work depends on the
methods that solve the above problem. For example, Lyapunov optimization based
algorithms can be more time-consuming than heuristic algorithms when the number
of devices in the system increases largely, while Lyapunov optimization based
algorithms can achieve better optimized results. Therefore, there are trade-offs
between the performance and scalability that can be determined by the service
providers according to their focus.

4 State-of-the-Art Offloading Approaches

In the following, we provide an overview of existing approaches to green-aware
MEC enabled IoT to identify their advantages and limitations. We also present
a comparison among the investigated approaches from multiple perspectives.
Although there are numerous research works addressing offloading in MEC, we
focus on essential works that directly address the green-aware offloading problem.

4.1 GS-MEC

Green and Sustainable Mobile Edge Computing (GS-MEC) [11] is a framework
to support IoT devices to be self-powered by taking advantage of green energy
for the IoT scenario. Its optimization objective is to improve energy efficiency
and system sustainability. Compare with the traditional communication framework
for the Cloud enabled IoT environment, GS-MEC adopts a parallel offloading
strategy in MEC. GS-MEC considers packet losses to ensure the reliability of
the framework. Energy Harvesting Technologies are applied to take full usage of
green energy supporting the IoT system in a smart home, which is equipped with
a set of IoT devices. To power the devices with green energy, the IoT devices
are consist of energy-harvesting components that can convert green energy into
electrical energy. Based on the models including computing model, energy model,
task cost, the optimization problem is formulated as a minimization problem of
latency and maximization task admission rate under the constraint of energy. An
offloading algorithm based on Lyapunov optimization [16] is also proposed in
GS-MEC to solve the optimization problem. Lyapunov optimization is used to
decompose the formulated problem into subproblems that can be solved easier and

156 M. Xu et al.

apply the variable substitution optimization technique to decompose variables. In
the proposed algorithm, the energy consumption of IoT devices, transmission power,
CPU frequency of IoT devices, and the offloading decision would be obtained in
each time interval. And it can offer sufficient power for IoT devices by controlling
both the CPU frequencies and transmission power by managing energy.

Both theoretic analysis and simulation results have demonstrated the proposed
approach can reduce latency efficiently. The advantage of the framework is that it
considers the parallel offloading. However, the proposed algorithm is only compared
with some simple baselines.

4.2 LSDQN

LSDQN [12] is an approach based on Long Short-Term Memory (LSTM) enhanced
Deep Q-Network for dynamic task management problem in MEC. Its objective is to
improve the average uplink transmission rate while reducing the power consumption
of the IoT network. LSDQN considers that IoT devices can be supported by
the power from a rechargeable battery via harvesting energy from the nearby
environment. In the proposed approach, LSTM is applied to estimate the battery
status to provide information for IoT devices to make access control based on
Deep Q-Network (DQN). LSTM is a widely used network structure of recurrent
neural networks to solve the gradient disappearance problem via storing historical
information in memory, and DQN is a machine learning method that can learn the
optimal policy as per optimization function. To achieve the objective, the uplink
rate and energy optimization problem is modelled as a Markov decision process
without the knowledge of system dynamics. A MEC access control management
policy is also proposed. In the policy, the dynamics of energy and network status
are considered to support the decision for the tasks about which MEC server to
offload the tasks to. The proposed approach can be applied to the scenario with
limited information about future energy supply by taking advantage of LSTM to
reduce the prediction loss. In each time interval, the IoT device chooses the most
suitable MEC server to transfer data based on the device state and battery status.
A software-defined network manager is also applied to capture all the system
status. Experiments based on simulations have demonstrated the effectiveness of
the proposed approach.

4.3 LETOC

LETOC [17] is a Lyapunov-based algorithm for online optimization on energy
cost and time to address the energy-aware computation offloading in MEC for
IoT. The objective of LETOC is to minimize the long-term cost of system while
ensuring the user experience in terms of quality of service. LETOC is a near-

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 157

optimal policy for deciding control actions on application offloading by balancing
the trade-offs between cost and response time. It also considers taking advantage of
green energy, thus reducing the usage of brown energy. LETOC incorporates green
energy sources to ensure the IoT devices are running well and manages energy-
efficient data offloading. The optimization problem is converted into a constrained
stochastic optimization problem and then solved based on Lyapunov optimization.
LETOC can distribute incoming tasks to the corresponding servers without prior
knowledge of user and system status. LETOC also takes into account the cost
related to fees paid for grid power. A discrete time-model is considered in the
scheduling process. Optimality analysis is also provided for LETOC, which proves
the proposed approach can achieve the average response to be close to the theoretical
optimum. Simulation evaluations have validated the performance of the proposed
approach, which achieves better performance than the baselines.

4.4 GreenEdge

GreenEdge [18] is an approach leveraging device-to-device communication and
energy harvesting techniques to support task execution in a sustainable and col-
laborative manner. Device to device communication is defined as the direct commu-
nication between two wireless devices in proximity by passing information through
the base station. GreenEdge aims to reduce the power demand of IoT devices via
offloading more workloads to devices that support energy harvesting, especially for
the situation when IoT devices have insufficient energy supply. Tasks in GreenEdge
can be executed in three ways: local execution, device to device offloaded execution,
and edge offloaded execution. The discrete time-slotted model is adopted to capture
the system dynamics like in Sect. 4.3. According to current task characteristics
and renewable energy availability, in each time interval, the resource scheduler in
GreenEdge dynamically optimizes the execution mode for each task to optimize
the energy efficiency of edge devices. The optimization problem is formulated
as a minimizing problem of the long-term brown energy usage by managing the
rechargeable battery usage at each time interval. Then the optimization problem is
solved by the Lyapunov-based online optimization framework. The optimization can
also make trade-offs between brown energy and battery energy usage. The proposed
approach has shown the possibility to be applied to some IoT applications, e.g. smart
street lighting and smart bike-sharing.

4.5 GOLL

Green Offloading with Low Latency (GOLL) [19] is a mobility-aware and layered
MEC framework to support low-latency and green IoT. It aims to exploit MEC for
mobile devices to support multiple layer computing resources to be shared among

158 M. Xu et al.

edge servers. During the task offloading process, the task offloading policy selected
by the smart devices is determined based on the computing price of edge servers.
GOLL considers that edge servers can be indirectly connected according to their
offered resource prices during the service bidding process, in which the edge server
with the lowest resource price can be offloaded with tasks. Therefore, the price is
considered as the link to two non-cooperative games among the smart devices and
MEC servers. In this work, a Stackelberg game [20] is also applied to handle the
offloading problem in the proposed framework, which is a solution for the optimal
offloading problem. In the proposed framework, the utilization of MEC servers can
be improved while the energy consumption and service latency can be reduced. An
iterative-based heuristic algorithm is utilized to achieve the corresponding results.
In each iteration, the smart device can respond as per the prices announced by
edge servers, and the edge servers can make the optimal decision according to the
obtained response of the devices. When the strategy is not updating anymore, the
iteration process stops. The efficiency of the proposed schemes is validated through
numerical results, which shows better performance than baselines.

4.6 SOMEC

A selective offloading in mobile edge computing (SOMEC) is proposed in [21]
for green Internet of Things, which is included in a lightweight framework to deal
with the scalability problem. The approach does not need the coordination among
devices and can operate at the IoT device and edge servers separately by integrating
latency constraints in requests. The objective of the SOMEC is minimizing the
power consumption of devices. The communication overheads can also be reduced
by device self-nomination for tasks processing or self-denial for tasks. The proposed
framework is lightweight concerning communication overheads. The devices can
independently send offloading requests and the servers can make decisions on
whether to admit requests or not. The working process of the proposed framework
mainly contains three steps. Firstly, each mobile device will dispatch an offloading
request to the selected edge server including the resource and QoS requirements.
Thereafter, servers receive the offloading requests, and they would only admit some
of the selected users or workloads for offloading. In this step, the corresponding
resources should be allocated to meet the requirements. Finally, the mobile devices
can offload the tasks based on the admission results.

4.7 Discussions of the Investigated Work

To compare the differences among the investigated papers, we compare these works
from multiple perspectives as shown in Table 2. The different perspectives include:

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 159
Ta

bl
e
2

C
om

pa
ri

so
n

of
st

at
e-

of
-t

he
-a

rt
ap

pr
oa

ch
es

A
pp

ro
ac

h
E

nv
ir

on
m

en
t

O
pt

im
iz

at
io

n
O

bj
ec

tiv
e

E
ne

rg
y-

sa
vi

ng
C

om
po

ne
nt

G
re

en
E

ne
rg

y
So

ur
ce

s

W
or

kl
oa

ds
E

xp
er

im
en

ts
Pl

at
fo

rm
M

er
its

D
em

er
its

G
S-

M
E

C
[1

1]
H

et
er

og
en

eo
us

To
m

in
im

iz
e

re
sp

on
se

tim
e

an
d

pa
ck

et
lo

ss
un

de
r

en
er

gy
lim

ita
tio

n

Io
T

de
vi

ce
s

E
ne

rg
y

ha
rv

es
te

r
Im

ag
es

co
m

pr
es

si
on

ap
pl

ic
at

io
n

Si
m

ul
at

io
n

R
ed

uc
ed

co
m

pl
et

io
n

tim
e,

ta
sk

co
st

,
an

d
ra

tio
of

dr
op

pe
d

ta
sk

Pe
rf

or
m

an
ce

un
de

r
he

te
ro

ge
ne

ou
s

en
vi

ro
nm

en
t

ca
n

be
fu

rt
he

r
in

ve
st

ig
at

ed
L

SD
Q

N
[1

2]
H

et
er

og
en

eo
us

To
im

pr
ov

e
up

lin
k

tr
an

sm
is

si
on

ra
te

w
hi

le
m

in
im

iz
in

g
tr

an
sm

is
si

on
en

er
gy

Io
T

ne
tw

or
k

R
ec

ha
rg

ea
bl

e
ba

tte
ry

Sy
nt

he
tic

Si
m

ul
at

io
n

Im
pr

ov
ed

up
lin

k
ra

te
an

d
re

du
ce

d
en

er
gy

co
ns

um
pt

io
n

To
ev

al
ua

te
th

e
sc

al
ab

ili
ty

of
th

e
pr

op
os

ed
fr

am
ew

or
k

L
E

T
O

C
[1

7]
H

om
og

en
eo

us
To

ba
la

nc
e

re
sp

on
se

tim
e

an
d

en
er

gy
co

st
Io

T
de

vi
ce

s
So

la
r

en
er

gy
Po

is
so

n
di

st
ri

bu
tio

n
se

rv
ic

e
ra

te

Si
m

ul
at

io
n

N
ea

r
op

tim
al

so
lu

tio
n

fo
r

ba
la

nc
in

g
re

sp
on

se
tim

e
an

d
en

er
gy

co
st

W
ea

th
er

fo
re

ca
st

in
g

ap
pr

oa
ch

ca
n

be
im

pr
ov

ed

G
re

en
E

dg
e

[1
8]

H
et

er
og

en
eo

us
To

m
in

im
iz

e
fo

ss
il

en
er

gy
co

ns
um

pt
io

n
w

hi
le

en
su

ri
ng

ta
sk

pe
rf

or
m

an
ce

E
dg

e
da

ta
ce

nt
er

s
E

ne
rg

y
ha

rv
es

te
r

C
om

m
er

ci
al

Io
T

ap
pl

ic
at

io
ns

T
he

or
et

ic
al

an
al

ys
is

D
ev

ic
e

to
de

vi
ce

co
m

m
un

ic
at

io
n

is
co

ns
id

er
ed

Pe
rf

or
m

an
ce

ev
al

ua
tio

ns
sh

ou
ld

be
co

nd
uc

te
d

G
O

L
L

[1
9]

H
et

er
og

en
eo

us
To

m
ax

im
iz

e
se

rv
ic

e
pr

ov
id

er
ut

ili
tie

s
w

hi
le

re
du

ci
ng

de
vi

ce
en

er
gy

co
ns

um
pt

io
n

Io
T

de
vi

ce
s

So
la

r,
w

in
d

Sy
nt

he
tic

N
um

er
ic

al
an

al
ys

is
R

ed
uc

ed
la

te
nc

y
an

d
en

er
gy

M
or

e
pa

ra
m

et
er

s
ca

n
be

ev
al

ua
te

d
in

ex
pe

ri
m

en
ts

,
e.

g.
va

ri
ed

ve
hi

cl
e

sp
ee

d
SO

M
E

C
[2

1]
H

et
er

og
en

eo
us

To
m

in
im

iz
e

en
er

gy
co

ns
um

pt
io

n
an

d
re

du
ce

co
m

m
un

ic
at

io
n

ov
er

he
ad

s

Io
T

de
vi

ce
s

So
la

r,
w

in
d

Fa
ce

re
co

gn
iti

on
ap

pl
ic

at
io

n
N

um
er

ic
al

an
al

ys
is

Im
pr

ov
ed

sy
st

em
sc

al
ab

ili
ty

G
re

en
us

ag
e

ca
n

be
ad

de
d

in
to

th
e

de
ci

si
on

en
gi

ne
co

m
po

ne
nt

160 M. Xu et al.

Environment It represents the environment that the proposed approach can be
applied, including a heterogeneous or homogeneous environment, which man-
ages heterogeneous or homogeneous resources and devices. In the investigated
approaches, most of them are targeting for the heterogeneous environment except
for LETOC, which is applied for the homogeneous environment.

Optimization Objective It is the primary objective that the investigated paper aims
to achieve. As green-aware scheduling is one of the focus of these works, energy-
related optimization is the objective shared by all investigated papers. However,
these papers have some differences in other optimization objectives. For instance,
GS-MEC focuses on minimizing response time and packet loss, while LSDQN
pays more attention to transmission rate optimization. LETOC aims to balance the
response time and energy cost, and GreenEdge targets to minimize fossil energy
usage while ensuring task performance. GOLL focuses on maximizing service
provider utilities, while SOMEC spends more effort on reducing communication
overheads.

Energy-Saving Component It represents the component that will optimize energy
by the investigated approaches. The energy consumption optimization of IoT
devices is managed by GS-MEC, LETOC, GOLL, and SOMEC. As for GreenEdge,
it provides a holistic energy optimization for edge data centers. LSDQN focuses on
optimizing the energy of the IoT network.

Green Energy Sources It is the energy sources that provide green energy to
support the green-aware scheduling of the system. GS-MEC and GreenEdge utilize
energy harvester, LSDQN uses a rechargeable battery, LETOC considers solar
energy, GOLL and SOMEC consider green energy from both solar and wind.

Workloads It compares the workloads used in different approaches for per-
formance evaluations. Synthetic workloads are used in LSDQN, LETOC, and
GOLL. GS-MEC evaluates performance with image compression application, and
SOMEC analyzes with face recognition applications. As for GreenEdge, it applies
commercial IoT application workloads.

Experiments Platform It represents the experimental approach for evaluating
the performance as well as the platform for conducting experiments. GS-MEC,
LSDQN, and LETOC are using simulations, GreenEdge applies theoretic analysis,
GOLL and SOMEC conduct numerical analysis.

Merits and Demerits It summarizes the advantages and disadvantages of investi-
gated papers. For example, MS-MEC can reduce completion time, task cost, and
the ratio of the dropped task, however, the performance under a heterogeneous
environment should be further investigated.

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 161

5 Future Research Directions

As discussed in the previous sections, the green-aware offloading for MEC enabled
IoT has attracted attention and achieved significant progress in recent years benefit-
ing from its ability to reduce energy while ensuring system performance. However,
there are some research challenges that should be further explored to make MEC
more efficient and reliable. This section discusses several future research directions
outlining the different avenues.

Energy Consumption Optimization Current works mostly focus on the manage-
ment of the energy consumption from edge servers. More energy consuming parts,
e.g. network energy consumption can be further explored.

Evaluations with Real Testbed The experiments of current research are mostly
based on simulations or numerical analysis. There is a lack of a real testbed or
prototype system that can evaluate the performance of proposed approaches.

Benchmarks Presently, no standard benchmarks for performance evaluation of
green-aware offloading approaches are provided. A benchmark is demanded to
evaluate the energy efficiency performance of novel algorithms and compare them
with other approaches aiming for similar objectives.

Collaboration with MCC MEC has been validated as an effective way to reduce
the latency of services and improve user experiences. However, it is still promising
to take the heterogeneity of both mobile cloud computing and mobile edge comput-
ing together to build a hybrid environment for selecting task offloading destinations.
Furthermore, considering distributed cloud data centers can also improve the usage
of green energy.

Green Energy Usage Maximization The availability of green energy keeps
changing along with time. How to take advantage of green energy to support
IoT devices can be further investigated, e.g. machine learning or deep learning
approaches to predict the availability of green energy and resource usage.

Varied QoS Satisfactory Some of the current research has considered the trade-
offs between energy consumption and quality of service. This can be further
investigated by considering the optimal way to physically allocate the resources
according to expected users with varied QoS requirements rather than a single QoS
requirement.

Managing the Mobility of IoT Devices Most of the research propose the offload-
ing decision that assumes strictly static scenarios rather than dynamic scenarios, i.e.
the IoT devices do not move during the offloading time. However, the transmission
rate can be significantly influenced if channel quality drops during the movement.
This can lead to more energy consumption or higher delay. Therefore, a more
advanced model considering the movement of IoT devices should be proposed.
Predictions techniques for movement can be explored.

162 M. Xu et al.

Joint Data Management Current research focuses on offloaded data while
neglecting the conventional data that is not offloaded to the MEC, e.g. HTTP,
FTP that has to be transmitted over backhaul links and radio in parallel to the
offloaded data. Therefore, it is required to schedule communication resources for
the management of conventional data (e.g. the data not exploiting MEC). Therefore,
the joint data management approach for both offloading and conventional data is
required.

Multi-tenancy Management The MEC computing infrastructure is shared envi-
ronment and different user’s applications will be hosted on MEC servers. Hence,
solving the inference issues and providing the performance isolation for applications
to guarantee the required SLAs is crucial.

Security Management The security is an important aspect requiring solutions
across the computing and network stack. In specific to MEC, it is more challenging
to provide the privacy for user data due to shared resources and continuous
streaming data that flows between IoTs and MEC servers [22]. Considering the
resource capabilities in IoTs and MECs, light weight security solutions need to be
incorporated to manage the privacy and confidentiality of the user’s or application’s
data.

6 Summary and Conclusions

In this work, we present a discussion on green-aware mobile edge computing for
IoT. Specially, we discuss the related challenges about how to apply MEC for IoT to
achieve the energy efficiency objective. Moreover, we propose a general framework
including the necessary entities to support the green-aware resource scheduling in
the MEC scenario. Thereafter, we present a green-aware model for offloading tasks
from IoT devices to edge servers to achieve the efficient management of energy
and latency. Then we investigate several state-of-the-art approaches in the related
area and compare them from comprehensive perspectives. Finally, we provide a
set of future research directions, where we hope to attract researchers’ attention to
establish more validated research in the green-aware MEC enabled IoT area, e.g.
collaborating the MEC with MCC together to take advantage of the heterogeneity
of them for task offloading.

Acknowledgements This work is supported by Key-Area Research and Development Program of
Guangdong Province (NO. 2020B010164003), and SIAT Innovation Program for Excellent Young
Researchers, National Natural Science Foundation of China (NO. 62102408).

Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions. . . 163

References

1. Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog Computing: A
Taxonomy, Survey and Future Directions, pages 103–130. Springer Singapore, Singapore,
2018.

2. Nirwan Ansari and Xiang Sun. Mobile edge computing empowers internet of things. IEICE
Transactions on Communications, 101(3):604–619, 2018.

3. Yi Liu, Chao Yang, Li Jiang, Shengli Xie, and Yan Zhang. Intelligent edge computing for
iot-based energy management in smart cities. IEEE Network, 33(2):111–117, 2019.

4. Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys & Tutorials, 19(3):1628–1656, 2017.

5. Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer
Networks, 54(15):2787–2805, 2010.

6. Minxian Xu, Rajkumar Buyya. BrownoutCon: A software system based on brownout and
containers for energy-efficient cloud computing. Journal of Systems and Software, 155:91–
103, 2019.

7. Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud computing: A survey.
Future generation computer systems, 29(1):84–106, 2013.

8. H. Wu, W. J. Knottenbelt, and K. Wolter. An efficient application partitioning algorithm in
mobile environments. IEEE Transactions on Parallel and Distributed Systems, 30(7):1464–
1480, July 2019.

9. Shinan Song Zhanyang Zhang Chengxi Gao Shuhui Chu, Zhiyi Fang and Chengzhong Xu.
Efficient Multi-Channel Computation Offloading for Mobile Edge Computing: A Game-
Theoretic Approach. IEEE Transactions on Cloud Computing, pages 1–12, 2020.

10. Minxian Xu, Adel N. Toosi, Behrooz Bahrani, Reza Razzaghi, and Martin Singh. Optimized
renewable energy use in green cloud data centers. In Sami Yangui, Ismael Bouassida
Rodriguez, Khalil Drira, and Zahir Tari, editors, Service-Oriented Computing, pages 314–330,
Cham, 2019. Springer International Publishing.

11. Yiqin Deng, Zhigang Chen, Xin Yao, Shahzad Hassan, and Ali MA Ibrahim. Parallel offloading
in green and sustainable mobile edge computing for delay-constrained iot system. IEEE
Transactions on Vehicular Technology, 68(12):12202–12214, 2019.

12. Lijuan Xu, Meng Qin, Qinghai Yang, and KyungSup Kwak. Deep reinforcement learning
for dynamic access control with battery prediction for mobile-edge computing in green iot
networks. In 2019 11th International Conference on Wireless Communications and Signal
Processing (WCSP), pages 1–6. IEEE, 2019.

13. Minxian Xu and Rajkumar Buyya. Managing renewable energy and carbon footprint in multi-
cloud computing environments. Journal of Parallel and Distributed Computing, 135:191–202,
2020.

14. Nikzad Babaii Rizvandi, Javid Taheri, and Albert Y. Zomaya. Some observations on optimal
frequency selection in dvfs-based energy consumption minimization. Journal of Parallel and
Distributed Computing, 71(8):1154–1164, 2011.

15. Robert Aumann and Adam Brandenburger. Epistemic conditions for nash equilibrium. Econo-
metrica, 63(5):1161–1180, 1995.

16. Lei Zheng and Lin Cai. A distributed demand response control strategy using Lyapunov
optimization. IEEE Transactions on Smart Grid, 5(4):2075–2083, 2014.

17. Yucen Nan, Wei Li, Wei Bao, Flavia C Delicato, Paulo F Pires, Yong Dou, and Albert Y
Zomaya. Adaptive energy-aware computation offloading for cloud of things systems. IEEE
Access, 5:23947–23957, 2017.

18. Zhi Zhou. Greenedge: Greening edge datacenters with energy-harvesting iot devices. In 2019
IEEE 27th International Conference on Network Protocols (ICNP), pages 1–6. IEEE, 2019.

19. Ke Zhang, Supeng Leng, Yejun He, Sabita Maharjan, and Yan Zhang. Mobile edge computing
and networking for green and low-latency internet of things. IEEE Communications Magazine,
56(5):39–45, 2018.

164 M. Xu et al.

20. Jin Zhang and Qian Zhang. Stackelberg game for utility-based cooperative cognitive radio
networks. In Proceedings of the tenth ACM international symposium on Mobile ad hoc
networking and computing, pages 23–32, 2009.

21. Xinchen Lyu, Hui Tian, Li Jiang, Alexey Vinel, Sabita Maharjan, Stein Gjessing, and Yan
Zhang. Selective offloading in mobile edge computing for the green internet of things. IEEE
Network, 32(1):54–60, 2018.

22. Pardis Emami Naeini, Sruti Bhagavatula, Hana Habib, Martin Degeling, Lujo Bauer, Lorrie
Faith Cranor, and Norman Sadeh. Privacy expectations and preferences in an iot world. In
Thirteenth Symposium on Usable Privacy and Security (SOUPS 2017), pages 399–412, 2017.

Part II
Systems, Platforms and Services

Prescriptive Maintenance Using
Markov Decision Process and
GPU-Accelerated Edge Computing

Chen-Khong Tham and Naman Sharma

Abstract Developments in the Industrial Internet of Things (IIoT) have enabled
large-scale sensing and data collection, leading to predictive maintenance and the
Industry 4.0 revolution. Predictive maintenance minimizes machine maintenance
downtime, while simultaneously minimizing the risk of failures. Prescriptive main-
tenance aims to improve on that by directly optimizing the maintenance decisions.
We present a prescriptive maintenance method for a distributed factory environment
using the Partially Observable Markov Decision Process (POMDP) framework. To
allow for continual learning, a particle filter algorithm enables online estimation
of POMDP models, allowing unique adaptation to each machine. Performance
evaluations of the POMDP model with respect to several other models show
significant improvements in revenue and reduced downtime. The POMDP and
particle filter computations are implemented on GPU-accelerated edge computing
devices which achieve speed-ups of 4 to 20 times compared to the CPU-only
versions.

Keywords Prescriptive maintenance · Industrial IoT · Partially observable
MDP · Particle filter · GPU

1 Introduction

Over the past decade, there have been significant efforts to enable better mainte-
nance scheduling using the power of big data analytics. This area has evolved into
three primary types of analytics: descriptive, predictive and prescriptive.

Descriptive maintenance only aims to provide insights into the past operating
conditions of the machine, enabling us to understand what happened and why.
Predictive maintenance goes a step further and uses machine health data collected

C.-K. Tham (�) · N. Sharma
Department of ECE, National University of Singapore, Singapore, Singapore
e-mail: eletck@nus.edu.sg; naman.sharma@u.nus.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_8

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_8&domain=pdf
mailto:eletck@nus.edu.sg
mailto:naman.sharma@u.nus.edu
https://doi.org/10.1007/978-3-030-69893-5_8

168 C.-K. Tham and N. Sharma

for each machine individually to predict its health. Finally, prescriptive maintenance
not only aims to predict the health of a machine, but also suggest how we
can respond to future events. The aim of prescriptive maintenance is to provide
“Just-in-Time” maintenance: the ideal trade-off between performing maintenance
too frequently, which is inefficient and uneconomical, vs. too rarely which risks
equipment failure and downtime costs.

Predictive maintenance often involves the estimation of metrics such as the
Health Index (HI) or the Time-to-Failure for a given machine. Based on these
estimated metrics, decisions can then be made by either humans or rule-based
systems to improve the usage and efficiency of a machine. A McKinsey report [1]
predicts that in 2025, a predictive maintenance manufacturers’ savings could be
between $240 and $630 billion. Prescriptive maintenance (RxM) is considered to
be superior to predictive maintenance (PdM) because it leverages the power of big
data to optimize this decision-making process.

Further aiding the development of data analytics for machine maintenance are
advancements in the area of edge computing. Edge computing is the paradigm in
which computation-capable devices are used in conjunction with data-gathering
devices. In the case of manufacturing, edge computing corresponds to having
compute-capable devices near the manufacturing machines from which data is being
continuously collected. A typical factory floor setup is shown in Fig. 1, consisting
of several Industrial Edge Analytics Hubs (IEAHs) connected to several machines.
These IEAHs collaborate through a common server which also connects the cluster
to the cloud.

In this chapter, we present four areas of work:

1. development of a framework that can be used to perform prescriptive mainte-
nance in a distributed scenario as depicted in Fig. 1,

2. use of the Partially Observable Markov Decision Process (POMDP) method for
maintenance decision-making,

3. continual learning by using a methodology to adapt the model for each machine
individually in an online manner, and

Fig. 1 Schematic of a
factory floor equipped with
edge computing nodes for
predictive and prescriptive
maintenance

Prescriptive Maintenance Using POMDP and GPU Edge Computing 169

4. analysis of resource utilization when using GPU-enabled edge devices to allow
for a highly parallelized solving of the POMDP.

This chapter is organized as follows: Sect. 2 describes earlier work that have
been done in the area of predictive and prescriptive maintenance. In Sect. 3, we
present the POMDP model used in this work, as well as the complete framework.
Performance evaluations with different edge computing nodes are described in
Sect. 4, and detailed results are presented in Sect. 5.

2 Related Work

2.1 Predictive Maintenance

A number of previous works have focused on using predictive maintenance to
create Machine Health Monitoring Systems (MHMS). Utilizing Markov models
for optimizing maintenance is not new: Dawid et al. [2] perform a survey of
Markov models used in maintenance in the context of offshore wind. They provide
a thorough review on the various Markov models commonly used: Markov chain,
Markov Decision Process (MDP), Hidden Markov Model (HMM) and Partially
Observable MDP (POMDP) [3].

Markov processes have been used to simulate the deterioration of electrical
substation components [4]. Similarly, Besnard and Bertling [5] applied Markov
chains to model the deterioration of wind turbines, where they compared the
condition monitoring approach to that of inspection and concluded that the former
was more effective. In both approaches, the Markov chain model was only used
to predict the availability of the machines in the future. The decision to perform
maintenance is then taken based on these availability measures.

Hidden Markov Models (HMMs) have also been used in literature to monitor
the health of machines [6, 7]. HMMs were shown to provide better performance for
machine health monitoring than other methods. Although HMMs allow the state of
the machine to be inferred from observations, the model does not allow any decision
making, requiring a separate model.

Yao et al. [8] proposed a two layer model to perform maintenance scheduling.
The MDP model acts as the higher-level model and provides “maintenance win-
dows” in which maintenance tasks should be performed, by looking at the failure
dynamics of the tool and the long-term demand pattern. The lower-level decision is
taken by a linear programming model that considers current demands and decides
exactly when to perform the maintenance task inside the window provided by the
MDP model. This approach allows them to solve the PdM problem faster, since
solving a large MDP can take time and quickly become intractable due to the “curse
of dimensionality”.

Chan and Asgarpoor [9] provide a Markov process model that can be used to
model the deterioration of a machine over different stages. This model allows the

170 C.-K. Tham and N. Sharma

machine to go into maintenance states or failure states. We extend this model in two
ways. First, we incorporate ‘maintenance’ and ‘no maintenance’ actions and convert
it into an MDP. Second, we extend the model to allow for sensor values to be used
as observations, which is more realistic, but introduces uncertainty in the states. In
order to model these aspects, a POMDP is required. However, solving a POMDP
is more computationally expensive than solving an MDP. In this paper, we propose
schemes to speed-up the computation for solving POMDPs.

2.2 Prescriptive Maintenance

Despite having a definite advantage over predictive maintenance, there are few
works on building prescriptive maintenance decision making models. The broader
category of prescriptive maintenance, i.e., prescriptive analytics, has seen a rise in
academic interest over the past years. Lepenioti et al. [10] provide a comprehensive
review of works on prescriptive analytics.

Most works done in the area of prescriptive maintenance have been conceptual.
A generalized prescriptive maintenance system was proposed in PriMa [11],
describing how a predictive analytics toolbox works with the data warehouse using
semantic based learning to provide recommendations and decision support to a
human maintenance manager. Building on the work on PriMa, [12] conceptualizes
how a Dynamic Bayesian Network (DBN) can be used to reduce the complexity
of multi-modal data and integrate temporal distribution of events to perform the
semantic-based learning and reasoning aspect of PriMa.

The challenges which prevent the adoption of prescriptive maintenance include
the difficulty in quantifying their benefits over their predictive maintenance coun-
terparts. A RxM model requires decisions to be made and followed by the machine.
This requires either a real-life machine to show improvement or a very well-
implemented simulation that responds to the decisions made by the model. The
latter is becoming increasing common with the advent of the ‘digital twin’ made
possible by IoT.

Most prescriptive maintenance models have the following common aspects
[13]:

1. Information extraction: automating the collection of machine data to be fed into
the model.

2. Data-driven module: anomaly detection analysis to allow for knowledge extrac-
tion from the machine data.

3. Integration module: acts as the connector between the output of the data-driven
module and the input to the decision making optimization module.

4. Optimization module: prioritizes asset management interventions, to allow for
maximum efficiency.

Until now, knowledge extraction and decision optimization have been two distinct
stages. Therefore, an integration module is required to connect the two.

Prescriptive Maintenance Using POMDP and GPU Edge Computing 171

In this work, we implement a prescriptive maintenance model that does not
require such an integration module, but combines the data-driven module and the
optimization module to learn the optimal decisions directly from historical and real-
time data collected at the machines.

3 System Design and Modelling

3.1 POMDP Model

The health of a machine with maintenance decisions can be modelled using a
MDP. We extend the model proposed in [9] and the complete model is depicted
in Fig. 2. The model differentiates between failures due to deterioration, state F1,
and random unforeseen failure, state F0. The deterioration of the machine is split
into k discrete states Dk , where a higher k refers to a larger degree of deterioration.
The time spent in state Dk is exponentially distributed with a mean of 1/λ1.
Maintenance tasks occur as a Poisson process with parameter λm. The duration
of these maintenance tasks is exponentially distributed with a mean of 1/μm. It
is assumed that a maintenance task at state Dk improves the state of the machine
only partially, bringing it back to state Dk−1. The random failures that occur are
distributed as a Poisson process with parameter λ0. The transitions between the

Fig. 2 MDP model of the health of a machine, with maintenance decisions indicated in rectangles

172 C.-K. Tham and N. Sharma

different states are dependent on the actions performed by the machine at any given
time. The decisions available to the agent are: a = 0 (do nothing), and a = 1 (do
maintenance).

Subsequently, under the POMDP framework, the state of the machine is not
known to the agent. Therefore, it can only infer the state of the machine from
observations such as the sensor measurements coming from the machine.

3.2 Model Estimation and Decision Algorithm

Model estimation comprises two stages: offline model estimation and online model
re-estimation, depicted in Fig. 3. The offline model estimation uses available
historical sensor data from the machine to define the deterioration states Dk . This is
done by training a Support Vector Machine (SVM) to predict failure based on the
sensor information available from the machines. Once these states have been defined
based on offline data, the parameters θ = {λ0, λ1, μ0, μ1, μm} of the machine can
be calculated using the Maximum Likelihood Estimate (MLE) equations for Poisson
parameters.

This offline estimate of the model can be utilized for the second stage of online
model re-estimation. The aim of this second stage is to make good decisions about
scheduling maintenance while adjusting the model to the current machine in a
continual manner. This involves re-estimating the parameter θ for the machine. A
particle filter based approach is incorporated for this purpose. The particle filter
is a recursive algorithm based on the Monte Carlo method of solving the filtering
problem [14].

The high level algorithm followed at every time step is shown in Algorithm 1.
The updateParameters() function implements the particle filter, which

Fig. 3 Model estimation process

Prescriptive Maintenance Using POMDP and GPU Edge Computing 173

Algorithm 1: Prescriptive maintenance using POMDP
Global: Action performed at previous time step, a

Global: Current belief estimate, B̂(s)

Global: Current POMDP model, Θ̂

Global: Current optimal policy, π̂(s)

Global: Convergence threshold, τ

Input: Observation zt+1
Output: Action at+1

1: Procedure decisionStep(zt+1):
2: # Estimate current state

3: B̂(s) ← updateBelief(zt+1, a)
4: # Update POMDP parameters
5: Θ ′ ← updateParameters(zt+1, a)
6:
7: # Selection next action

8: if !Converged(Θ̂,Θ ′) then
9: Θ̂ ← Θ ′

10: π̂(s) ← solvePOMDP(Θ̂)

11: a ← π̂(B̂(s))

12: return a

Input: Previous parameter estimates Θold

Input: New parameter estimates Θnew

Output: Boolean indicating if parameters have converged.
13: Function Converged(Θold ,Θnew):
14: for θold ∈ Θold , θnew ∈ Θnew do
15: if |θold−θnew |

θold
> τ then

16: return false

17: return true

Fig. 4 Model estimation and prescriptive maintenance (RxM) framework

is in between the updateBelief() and solvePOMDP() functions. The
updateBelief() function takes the previous belief vector as input and updates
it based on the previous action and the current observation. At every iteration,
the action selected by the algorithm is based on the optimal policy achieved after
solving the POMDP using the solvePOMDP() function.

The complete model estimation and prescriptive maintenance framework is
shown in Fig. 4.

174 C.-K. Tham and N. Sharma

4 Performance Evaluations

The offline model obtained in the first stage described in Sect. 3.2 will be created
using the machine telemetry data available from the Microsoft machine dataset
[15]. Once the offline model has been created, a machine can be emulated as an
agent following the MDP process in Fig. 2. Using the Microsoft machine dataset, a
separate Gaussian Mixture Model (GMM) is then trained to estimate the distribution
of the sensor values in different deterioration states. The observations can then be
extracted based on the state of the machine from the corresponding GMM model.
The framework involves using the sensor values to estimate the state of the machine,
adjusting its estimates of the machine parameters and then providing the user with
the decision to perform maintenance or not.

We evaluate the system performance on two different edge computing systems:

• EPC: An embedded PC with an Intel i7-6700 CPU @ 3.40 GHz with 4 cores.
It also includes a NVIDIA GTX 1060 6 GB GDDR5 graphics card with 1280
CUDA cores.

• TX2: A NVIDIA Jetson TX2 which is a GPU-enabled edge device. It includes a
hexa-core ARMv8 64-bit CPU. The TX2 has an integrated NVIDIA Pascal GPU
with 256 CUDA cores.

The EPC represents the computational capabilities of a powerful edge node with
a GPU, whereas the low-power TX2 acts as a lower-end edge device with GPU
capabilities.

Another aspect that can affect the run time is Tu, the period at which the
POMDP is solved by the decision maker using the updated machine parameters.
Consequently, our results will focus on the comparison between:

• POMDP vs. POMDP-PF: comparison of the POMDP with particle filter
approach to online parameter estimation (POMDP-PF) with a POMDP approach
that does not do re-estimation (POMDP).

• EPC vs. TX2: comparing the time taken to solve the POMDP on the embedded
PC and the TX2.

• Convergence check (CC) vs. No convergence check: the convergence check
only solves the POMDP if a sufficiently large change is seen in the machine
parameters from the last time the POMDP was solved. In the absence of this
check, the POMDP is solved at every Tu = 100 iterations.

• CPU vs. GPU: comparing the benefits of using a GPU implementation of the
POMDP solving algorithm with a CPU-only implementation.

5 Evaluation Results

In this section, we will look at performance evaluation results from two key aspects:
application performance and system performance. Application performance will
focus on the cumulative reward and downtime of the emulated machines. System

Prescriptive Maintenance Using POMDP and GPU Edge Computing 175

performance will look at the time complexity when the algorithms are executed on
different edge computing platforms.

5.1 Application Performance

The performance of the PdM application will be analyzed on three characteristics:
the cumulative reward and downtime, the accuracy of state estimation and the
accuracy of parameter estimation. Machine uptime enable useful production with
positive rewards, whereas downtime due to maintenance and failures incur costs.
Figure 5 shows the cumulative reward that the three algorithms were able to achieve
over 10,000 iterations. The 95% confidence intervals of the results are also shown.
The particle filter based POMDP-PF algorithm is able to outperform the vanilla
POMDP algorithm that does not use particle filters. The POMDP algorithm is seen
to provide increasingly negative rewards. This behavior can be analyzed using Fig. 6
which shows the online estimates of the machine parameters over time. We see that
the POMDP-PF algorithm is better able to track the real parameter values of the
machine. The negative gradient of the cumulative reward for the POMDP algorithm
is caused because it overestimates the value of λ1, which is the rate of deterioration
of the machine. The POMDP algorithm believes that the machine deteriorates faster
than it actually does, and hence it decides to perform maintenance more frequently.
This maintenance action carries with it a negative reward, leading to the downward
curve.

Using the convergence check with the POMDP-PF (POMDP-PF-CC) allows the
POMDP to be solved less often. Here, we see that the decision maker performs
worse at the beginning. This is because the POMDP is not being solved as frequently
as before and may lead to some non-optimal decisions being taken at the beginning.

Fig. 5 Cumulative reward and downtime over 10,000 iterations

176 C.-K. Tham and N. Sharma

Fig. 6 Machine parameter estimates over 10,000 iterations

However, as the POMDP solution becomes closer to the optimal, the POMDP-
PF-CC algorithm is able to achieve a performance level closer to that of the
POMDP-PF algorithm. The POMDP-PF-CC graph then becomes a horizontally
displaced version of the POMDP-PF graph due to the negative rewards collected
at the start of the emulations. This is confirmed when we observe the movement of
the Mean Absolute Percentage Error (MAPE) of the estimated parameters in Fig. 7.
The MAPE for the POMDP-PF-CC algorithm is initially much higher with a higher
variation between executions. Over time, it then achieves a MAPE as good as or
even better than the POMDP-PF algorithm. Given that the number of POMDPs
solved reduces drastically, this initial drop in performance may be potentially worth
the reduction in time taken to solve the POMDPs. An interesting observation is that
the confidence intervals of the estimated parameters in Fig. 6 for the POMDP-PF-
CC algorithm is larger than the others for the first 4,000 iterations. This shows that
the variation in the expected results can also be larger if the POMDP is solved less
frequently.

The POMDP-PF algorithm provides a state estimation accuracy of 64.26%, as
compared to 44.96% for the vanilla POMDP algorithm. This is due to its ability
to get more information from a single observation. The vanilla POMDP algorithm
is not very successful in distinguishing between the deterioration states Dk . This
difficulty in distinguishing between the Dk states translates into the difficulty of
differentiating between the maintenance states. As a result, the machine following
the vanilla POMDP algorithm undergoes deterioration failure more often.

Prescriptive Maintenance Using POMDP and GPU Edge Computing 177

Fig. 7 MAPE over 10,000 iterations

5.2 System Performance

Performing a convergence check before executing the POMDP-PF algorithm with
the updated parameters can affect the application performance of the machine.
However, the relative trade-off between quality of solution and the run time of
the algorithm can be controlled by a threshold parameter. It is important to find
a threshold which allows us to solve a smaller number of POMDPs without
compromising too much on the performance of the machine. Solving the machine
POMDP model can be expensive depending on the size of the action space and the
observation space. The emulated machine has 257 possible observations. Reducing
the number of times the POMDP is solved in this case can be very beneficial.
Figure 8 shows the average number of POMDPs solved over 10,000 iterations for
each algorithm. For algorithms not performing the convergence check, this number
is equal to
 10000

Tu
�. However, the use of a convergence check can reduce this number

by 20%–70%.
For such large POMDPs, solving them on the CPU quickly becomes impractical.

A powerful GPU may be required if this problem is to be solved within an acceptable
time limit. Figure 9 compares the run time for different algorithms. As the POMDP
becomes large, the speed-up achieved by using a GPU accelerated implementation
can be quite significant. Table 1 tabulates this speed-up by comparing the run time
of each algorithm to the run time of the CPU implementation. A speed-up of 21.75
time for the EPC-GPU case implies that the EPC-CPU run time was 21.75 times

178 C.-K. Tham and N. Sharma

Fig. 8 Number of POMDPs solved vs. number of particles

larger than the EPC-GPU run time. In time sensitive cases, where some decrease
in the quality of the solution is acceptable, this run time can be further reduced by
more than half by using the convergence check. We observe that even for the fastest
‘GPU-CC’ case, the proportion of time spent on the particle filter computation is
minimal. This can also be seen from the fact that the total run time does not show a
trend based on the number of particles used. In such cases, parallelizing the particle
filter algorithm will not be very useful to reduce the overall run time. However, in
cases where the POMDP model used is less complex, the time taken to solve the
POMDP to obtain the optimal solution may become comparable to the time taken
for the particle filter update. In such case, parallelizing the particle filter on a GPU
may be beneficial.

Comparing the two results in Figs. 9a and b, we observe that the EPC is much
more powerful than the TX2, which is expected. However, the run time results on
the TX2 show that the framework can be applied on an edge device located near the
machines, provided that the edge device is GPU-capable. The TX2-GPU-C run time
is within 2,000 seconds for 10,000 iterations. Given that each iteration corresponds
to an equivalent of 6 hours in the Microsoft machine dataset, the TX2 is able to
provide near real-time solutions allowing optimal decisions to be made without
sending the sensor data to be processed at a more powerful server.

Prescriptive Maintenance Using POMDP and GPU Edge Computing 179

Fig. 9 Run time results for each algorithm vs. number of particles on the different edge computing
platforms. (a) EPC. (b) TX2

Table 1 Speed-up of
POMDP solve time on the
different platforms

CPU CPU-CC GPU GPU-CC

EPC 1 2.27 21.75 55.85

TX2 1 1.51 4.34 11.63

180 C.-K. Tham and N. Sharma

6 Conclusion

In this chapter, we have presented an approach for prescriptive maintenance in a
factory environment. The Partially Observable Markov Decision Process (POMDP)
combined with particle filter approach was used to model the machine characteris-
tics over time and provide the optimal maintenance decision to be taken at every
time step.

The particle filter algorithm enables the POMDP model to re-estimate the param-
eters of the machine, and allows for continual learning based on real-time sensor
measurements. This algorithm was shown to outperform the standard POMDP
algorithm in terms of cumulative reward, and state estimation and parameter
estimation accuracy, while being able to adapt to changing operating conditions.
Finally, we evaluated the time complexity of the algorithms and showed that a
GPU implementation of the POMDP solver at edge computing nodes can achieve
significant speed-up and reduce the overall time taken by the algorithm.

Our future work in this area will look into enhancing the POMDP model used
in the framework and developing edge computing nodes which are connected
wirelessly using, for example, Wi-Fi 6 or 5G. This more advanced model considers
a connected network of machines on a particular shop floor of the factory and
requires the status of one machine to be taken into account by other machines in
order for better system-wide decisions to be made. Building such a model is more
complex as it also needs to be flexible to handle different configurations of machines
to accommodate different production workflows.

References

1. J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and D. Aharon, “Unlocking
the potential of the Internet of Things,” McKinsey & Company, Tech. Rep., 2015. [Online].
Available: https://www.mckinsey.com/

2. R. Dawid, D. McMillan, and M. Revie, “Review of Markov models for maintenance optimiza-
tion in the context of offshore wind,” in Annual Conference of the Prognostics and Health
Management Society 2015, 2015, pp. 1–11.

3. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially
observable stochastic domains,” Artificial Intelligence, vol. 101, no. 4, pp. 99–134, 1998.

4. F. Yang, C. M. Kwan, and C. S. Chang, “Multiobjective evolutionary optimization of substation
maintenance using decision-varying Markov model,” IEEE Transactions on Power Systems,
vol. 23, no. 3, pp. 1328–1335, 2008.

5. F. Besnard and L. Bertling, “An approach for condition-based maintenance optimization
applied to wind turbine blades,” IEEE Transactions on Sustainable Energy, vol. 1, no. 2, pp.
77–83, 2010.

6. O. Geramifard, J. X. Xu, T. Sicong, J. H. Zhou, and X. Li, “A multi-modal hidden Markov
model based approach for continuous health assessment in machinery systems,” in IEEE
IECON (Industrial Electronics Conference) Proceedings, 2011.

7. O. Geramifard, J. X. Xu, J. H. Zhou, and X. Li, “A physically segmented hidden Markov
model approach for continuous tool condition monitoring: diagnostics and prognostics,” IEEE
Transactions on Industrial Informatics, vol. 8, no. 4, pp. 964–973, 2012.

https://www.mckinsey.com/

Prescriptive Maintenance Using POMDP and GPU Edge Computing 181

8. X. Yao, M. Fu, S. I. Marcus, and E. Fernandez-Gaucherand, “Optimization of preventive main-
tenance scheduling for semiconductor manufacturing systems: Models and implementation,”
in IEEE Conference on Control Applications, 2001, pp. 407–411.

9. G. K. Chan and S. Asgarpoor, “Optimum maintenance policy with Markov processes,” Electric
Power Systems Research, vol. 76, no. 6–7, pp. 452–456, 2006.

10. K. Lepenioti, A. Bousdekis, D. Apostolou, and G. Mentzas, “Prescriptive analytics: literature
review and research challenges,” 2020.

11. F. Ansari, R. Glawar, and T. Nemeth, “PriMa: a prescriptive maintenance model for cyber-
physical production systems,” International Journal of Computer Integrated Manufacturing,
vol. 32, pp. 482–503, 2019.

12. F. Ansari, R. Glawar, and W. Sihn, “Prescriptive Maintenance of CPPS by Integrating
Multimodal Data with Dynamic Bayesian Networks,” in Machine Learning for Cyber Physical
Systems. Springer Verlag, 2020, vol. 11, pp. 1–8.

13. A. Consilvio, P. Sanetti, D. Anguita, C. Crovetto, C. Dambra, L. Oneto, F. Papa, and N. Sacco,
“Prescriptive maintenance of railway infrastructure: from data analytics to decision support,”
in MT-ITS 2019 - 6th International Conference on Models and Technologies for Intelligent
Transportation Systems, 2019.

14. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing,
vol. 50, no. 2, pp. 174–188, 2002.

15. Microsoft, “Predictive maintenance dataset,” 2016. [Online]. Available: https://github.com/
Microsoft/SQL-Server-R-Services-Samples/

https://github.com/Microsoft/SQL-Server-R-Services-Samples/
https://github.com/Microsoft/SQL-Server-R-Services-Samples/

Software-Defined Multi-domain Tactical
Networks: Foundations and Future
Directions

Redowan Mahmud, Adel N. Toosi, Maria Alejandra Rodriguez,
Sharat Chandra Madanapalli, Vijay Sivaraman, Len Sciacca,
Christos Sioutis, and Rajkumar Buyya

Abstract Software Defined Networking (SDN) has emerged as a programmable
approach for provisioning and managing network resources by defining a clear
separation between the control and data forwarding planes. Nowadays SDN has
gained significant attention in the military domain. Its use in the battlefield
communication facilitates the end-to-end interactions and assists the exploitation of
edge computing resources for processing data in the proximity. However, there are
still various challenges related to the security and interoperability among several
heterogeneous, dynamic, intermittent, and data packet technologies like multi-
bearer network (MBN) that need to be addressed to leverage the benefits of SDN
in tactical environments. In this chapter, we explicitly analyse these challenges
and review the current research initiatives in SDN-enabled tactical networks. We
also present a taxonomy on SDN-based tactical network orchestration according
to the identified challenges and map the existing works to the taxonomy aiming at
determining the research gaps and suggesting future directions.

R. Mahmud (�) · M. A. Rodriguez · L. Sciacca · R. Buyya
School of Computing and Information Systems, The University of Melbourne,
Melbourne, VIC, Australia
e-mail: mahmudm@student.unimelb.edu.au; maria.rodriguez@unimelb.edu.au;
len.sciacca@unimelb.edu.au; rbuyya@unimelb.edu.au

A. N. Toosi
Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
e-mail: adel.n.toosi@monash.edu

S. C. Madanapalli · V. Sivaraman
School of Electrical Engineering and Telecommunications, The University of New South Wales,
Sydney, NSW, Australia
e-mail: sharat.madanapalli@unsw.edu.au; vijay@unsw.edu.au

C. Sioutis
Department of Defence, Defence Science and Technology, Melbourne, VIC, Australia
e-mail: Christos.Sioutis@dst.defence.gov.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_9

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_9&domain=pdf
mailto:mahmudm@student.unimelb.edu.au
mailto:maria.rodriguez@unimelb.edu.au
mailto:len.sciacca@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
mailto:adel.n.toosi@monash.edu
mailto:sharat.madanapalli@unsw.edu.au
mailto:vijay@unsw.edu.au
mailto:Christos.Sioutis@dst.defence.gov.au
https://doi.org/10.1007/978-3-030-69893-5_9

184 R. Mahmud et al.

Keywords Software defined networking · Tactical environment · Battlefield
communication · Multi-bearer network

1 Introduction

Networking and communication technologies, especially for competitive and
resource constrained environments like battlefields, are continuously evolving [1].
Similarly, the sensitivity to latency varies significantly between different military
applications. For example, the data packet delivery deadline for an application
assisting unmanned aerial vehicle (UAV) navigation is quite stringent compared to
that of a slow speed on-ground military vehicle. On the other hand, the lifetime and
the amount of data handled by a sense-process-actuate cycle-based application is
quite shorter than an application broadcasting wartime video stream [2]. Moreover,
military applications require a variety of networking support such as narrowband,
broadband, and mobile services to operate. For example, the applications serving
tactical wallet Radio Frequency Identification (RFID) and military vehicle Remote
Keyless Entry (RKE) harness narrowband services to meet their instantaneous
demands. Conversely, the application sharing satellite images need broadband
services for higher transmission capacity. If the underlying network is unable to
satisfy such diverse requirements of a military application, its QoS (e.g., throughput,
response time, and packet loss rate) is expected to degrade and the consequences
of QoS degradation for any military application can be devastating during military
operations [3]. Therefore, the satisfaction of QoS for military applications is crucial
in tactical environments. It also urges the network infrastructure to be adaptive so
that any change in the application’s QoS requirements can be handled [4].

Existing data packet technologies, for example multi-bearer network (MBN)can
address these requirements to some extent [5]. MBN possesses the capability of
carrying data packets via alternative bearer channels as per their QoS requirements.
It is complemented by Differentiated Services (DiffServ) that classifies and manages
different types of IP traffic (e.g. voice, video, text) flowing over a given network
(Fig. 1). Nevertheless, communication among multiple nodes within and beyond
the battlefields are no longer simply point-to-point. It can be point-to-multipoint
and multipoint-to-multipoint as well. In such cases, the realization of MBN incurs
additional operational expenses. Moreover, the lack of fair distribution of network
resources among the bearer channels can result in severe resource underutilization
which is unacceptable for both network operators and military application users
[6]. Additionally, the sole advancement of the underlying network is not sufficient
to ensure robustness within the multi-domain military operations. It also requires
systematic and unified coordination with the computing systems such as fog, mobile
edge and cloud infrastructure [7]. Therefore, to address these issues and limitations,
it is preferable to extend the concept of SDN in tactical networks. Figure 2 depicts
a prospective structure of SDN in military communications.

Software-Defined Multi-domain Tactical Networks 185

Fig. 1 Multi-bearer network with differentiated services

Fig. 2 A prospective SDN-enabled multi bearer network

SDN promotes dynamic provisioning and reconfiguration of network resources
by separating the control plane from the data plane [8]. The control plane consists
of a logically centralized entity called the SDN controller, which has a global
view of the network and makes decisions about how the data packets should flow
through the network. Conversely, the data plane consists of network nodes such
as routers/switches that actually move packets from one place to another. SDN
facilitates virtualization on top of the physical network so that users can implement
end-to-end overlays and segment the network traffic. Such logical partitioning also

186 R. Mahmud et al.

assists the service providers and network operators to provision a separate virtual
network with specific policies which consequently complements the objective of
MBN and edge computation.

1.1 Research Questions and Challenges

In the context of battlefields and tactical applications, the integration of SDN
and MBN is subjected to various heterogeneous, intermittent, and ad-hoc commu-
nications with diverse traffic patterns and security requirements. These inherent
constraints trigger the following research questions that should be addressed to
exploit the combined benefits of SDN and MBN.

1. How can SDN-based solutions be extended to MBN, including wireless net-
works?

Most of the existing SDN-based solutions are applicable to wired networks
[9]. On the other hand, SDN operations in wireless networks is complicated
due to the presence of a large number of unsettled access points. There is also
a high possibility of data packet collisions sent by the mutually out-of-range
access points. Moreover, the dependency on centralized network controllers
is not feasible for latency-sensitive military applications and can expose the
whole system to single point of failure problem.

2. How can SDN be employed for securely and dynamically managing traffic of
multiple security classifications, to handle traffic of different sensitivities and
access policies, in an environment that includes legacy applications?

There are 5 types of classified information including official, protected, secret
and top secret that can be transferred during any military communications
[10]. However, the security class of information can change dynamically
according to the context of the physical environment. For example, the
mobilization plan of a fleet can turn from protected to top secret during
wartimes. To handle the traffic of such classified information with compatible
security features and access flexibility, a consistent inspection of the data
packets and environmental context is required. Nevertheless, this approach
can expose sensitive traffic data to various untrusted SDN controllers. On the
other hand, there exist numerous legacy military applications that still follow
the traditional monolithic architecture and provide limited scope to implement
SDN-based approaches and resist the secured traffic management and packet
inspection.

3. How can time-sensitive traffic be managed by a multi-bearer SDN, particularly
when the on-demand time-sensitive channels are required?

Sensitivity to latency varies between military applications. In such cases, the
proactive quantification of QoS requirements and their efficient allocation to

Software-Defined Multi-domain Tactical Networks 187

the network resources without allowing over and under provisioning are very
important [11]. However, due to less reaction time and variations of resource
demands, such SDN-assisted support is difficult to ensure in the battlefields.

4. How might distributed applications be enhanced with network awareness and
control, potentially through coupling to SDN, to make warfighting functions more
resilient to degraded network conditions or resource limitations?

Unlike single-process applications, the components of distributed applications
run on multiple hosts simultaneously and process a given task in a collabora-
tive manner [12]. This consequently helps in attaining scalability and fault
tolerance. However, the physical distribution of the components makes the
use of networking resources essential in enabling communication and coordi-
nation between components. This communication overhead can greatly hinder
real-time, latency-sensitive interactions [13]. The ability to have fine-grained
control that facilitates the dynamic reconfiguration of network resources to
suit distributed applications’ needs can greatly improve their resilience and
performance. The distributed management of applications is also complex as
it requires a fine-grained control over the execution of application components
deployed in heterogeneous computing and networking domains [14].

5. What middleware technologies are suitable for the interoperability of services
(distributed application software) in this environment, and why?

SDN middleware encapsulates third-party services including databases and
application programming interfaces (APIs) that help bridging multiple SDN-
enabled systems by going beyond their communication and architectural
heterogeneity. Middleware also assists the control plane in interacting with the
data plane to perceive the traffic and topology information in a compatible for-
mat [15]. However, in the battlefield context, the attainment of interoperability
through middleware is complicated because of the involvement a large number
of entities seeking consistent protocol translation and resource discovery
support from the middleware. They also increase the management overhead
of middleware. Therefore, it is important to select appropriate interoperable
technology based on the application requirements and underlying protocols
so that the responsiveness and performance of the middleware do not degrade.

In literature, there exists a notable number of works that focus on addressing
these challenges through efficient SDN orchestration. This paper aims at categoriz-
ing and reviewing them in a systematic manner. It also exploits the detailed scope
for further research in this direction by exploiting the current research gaps. The
major contributions of this paper are listed below.

• Proposes a system model and a taxonomy for SDN orchestration, especially from
the perspective of tactical networks.

• Reviews the existing literature on SDN-enabled tactical networks and identifies
their pros and cons.

188 R. Mahmud et al.

• Investigates the current research gaps in augmenting SDN with tactical networks
and offers future directions for further improvement in this domain.

The rest of the paper is organized as follows: Sect. 2 highlights the proposed
taxonomy. The literature review is presented in Sects. 3 to 7. Section 8 discusses
the research gaps and future directions. Finally, Sect. 9 concludes the paper.

2 System Model and Taxonomy

To simplify the synthesis of different military devices, tactical network and applica-
tions, we propose a layered SDN framework as depicted in Fig. 3. The framework
is composed of four planes: application, control, forwarding, and orchestration.
Applications with varying QoS and security requirements lie in the application
plane. These can be SDN-aware applications communicating directly with an SDN

Fig. 3 SDN layers for MBN-based military applications

Software-Defined Multi-domain Tactical Networks 189

controller, or legacy applications simply sending data through the network. The
control plane is composed of multiple, specialized SDN controllers that have the
ability to communicate, either in a peer-to-peer fashion or through an orchestrating
controller with a global, multi-network view. The forwarding plane consists of
networking nodes that have the ability of forwarding packets based on the routing
policies implemented by the SDN controllers. Finally, the orchestration plane spans
across all layers and is responsible for monitoring and aggregating data to be used
in a meaningful way to support efficient network orchestration in terms of controller
management, service resiliency, interoperability, and policy enforcement.

According to the proposed system model, the policy-driven management of
orchestration plane is very essential to enhance the competency of SDN-enabled
tactical networks in supporting diverse physical and logical networking components
and military applications. In existing literature, accrediting this necessity various
SDN orchestration policies has been developed. Figure 4 depicts a taxonomy on
different aspects of SDN orchestration, especially from the perspective of tactical
network. In the following Sects. 3–7, the detailed description of the taxonomy and
its mapping to the existing literature are provided.

3 Multi-controller Management

The implementation of SDN with single controller is unsuitable to deal with
the increasing rate of traffic transmission in the battlefields. Moreover, in the
tactical context, two military devices such as a submarine and a drone interacting
with each other may not be located at the same network domain. In such cases,
the implementation of SDN with multiple controllers can play a vital role. The
coexistence and collaboration of multi-controllers solve the problems encountered
by a single controller and help in cross-domain interactions. However, the operations
of multiple SDN controllers in military oriented MBN is subjected to consistency
and load balancing-related issues. Three types of controller management approaches
(as shown in Fig. 5) are widely used to deal with these issues in SDN.

3.1 Bootstrapping

In bootstrapping, a rendezvous node deploys multiple SDN controllers between the
application and the data plane. The bootstrapping node notifies the network con-
figuration information to the controllers, sets their initial topology, and determines
the coordination mechanism. To build the topology model for the SDN controllers,
the bootstrapping node transmits Link Layer Discovery Protocol (LLDP) packets
to various networking nodes including switches and gateways, and substrates the
network based on their responses. The bootstrapping node also installs default
flow-rules for the data plane so that the network can remain functional even after

190 R. Mahmud et al.

F
ig
.4

A
ta

xo
no

m
y

on
SD

N
or

ch
es

tr
at

io
n

Software-Defined Multi-domain Tactical Networks 191

Fig. 5 Different controller management approaches

the failure of the controllers. Moreover, it is capable of increasing or decreasing
the number of controllers dynamically according to the requirements of SDN
operations.

To simplify the initialization phase of the SDN network, a bootstrapping
approach named InitSDN is proposed in [16]. InitSDN helps in modularizing the
network applications and facilitates controller migration by only updating their
topology. In [17], another bootstrapping approach is proposed that assists tactical
networks to transmit the control commands and the data traffic using the same
underlay network. It enables a data plane node to (i) identify and register with any of
the available SDN controllers, (ii) parse the corresponding data flow rules through
intermediate switches, (iii) initiate a secure control channel with the controller, and
(iv) interact with the topology database.

Bootstrapping is supportive for dynamic network extension and legacy routing,
and can effectively handle uncertain failures within the control and data plane
[18]. A bootstrapping networking device can also serve the purpose of a edge
computing node. However, for bootstrapping, the controllers and data plane nodes
are required to be explicitly accessible, which is not recommended for military
use cases. Moreover, bootstrapping a wireless SDN is a challenging task as the
controllers and data plane nodes only share local connectivity information and resist
the attainment of global bootstrapping convergence instantly.

192 R. Mahmud et al.

3.2 Network Partitioning

In network partitioning, the data plane is divided into multiple domains, and for
each domain a local SDN controller is assigned. The interactions between the
controllers are made through either a hierarchical or a flat structure. In a hierarchical
structure, a group of controllers residing at the upper layer explicitly manage
the controllers in the immediate underneath layer. The number of these logical
layers is set by the network operator based on the network topology size, the
traffic load, and the network resource availability. Moreover, in this setup, the
controllers in the same layer do not communicate with each other directly. Their
internal communication happens via the upper layer controllers. Conversely, in the
flat structure, the controllers of various data plane domains spontaneously interact
with each other using east and west bound APIs to maintain a global view of the
underlying network. Among the celebrated SDN controllers, ONIX, HyperFlow and
OpenDayLight use the flat structure whereas, Kandoo, Orion and D-SDN follow the
hierarchical structure [19].

Nevertheless, network partitioning becomes vigorous when the traffic load is
evenly distributed among the controller. By exploiting the k-means clustering
algorithm and the cooperative game theory, a load management policy for multi-
controllers is proposed in [20]. The policy enables a data plane node to form
coalitions with other nodes and balance the topology size for each controller in
partitioned SDN. Internet 2 OS3E and Internet Topology Zoo is used to evaluate the
performance of the policy. On the other hand, in [21], a Louvain heuristic algorithm
is developed to limit the number of data plane nodes managed by a controller so that
the controllers do not get overloaded.

Network partitioning is supportive to wireless networking because of its localized
characteristics and inherently complements the realization of edge computing. How-
ever, the interaction of two controllers in partitioned networks is time consuming as
it requires the assistance of multiple intermediate controllers. The impact of such
delays in tactical scenarios is evaluated in [22]. Moreover, in partitioned networks, a
significant amount of resources is consumed only to synchronize controllers, which
is not suitable for resource constrained environments like battlefields.

3.3 Networked Operating System (NOS)

In this approach, a physically distributed but logically centralized network operating
system runs across multiple controllers. The network applications within the
operating system support the controllers to handle the traffic flow and maintain a
global view of the network [23]. Additionally, these applications can enable any
data plane node to connect with different controllers but allow only one controller
to manage that node at a time. If the controller fails, another controller is set as the
node manager based on a consensus-based leader selection algorithm. Moreover,

Software-Defined Multi-domain Tactical Networks 193

the operating system supports the dynamic updates of the applications without
interrupting the traffic flow. SDN frameworks including Open Network Operating
System (ONOS), Switch Light, Open Network Linux (ONL), DENT and Coriant
predominantly follow the concepts of a networked operating system in their control
plane implementation [24].

Apart from the benchmarks, there exist several customized implementation of
network operating system for SDN controllers. For example, in [25], a network
operating system named MNOS is developed that augments the cyberspace to mimic
defence technique and protects the controllers from data alteration. It also creates the
functional equivalent variants of the controllers using dissimilar redundancy design
principles to overcome their device-level heterogeneity. In [26], another network
operating system named NOSArmor is proposed that augments security blocks to
the controllers. The blocks are responsible for role-based authorization, location
tracking, link verification, rule-based negotiation, protocol verification, system call
checking and resource management. Moreover, there are some extensions of net-
work operating system that either protect the control plane from the compromised
controllers by exploiting the packet trajectory information [27] or apply lightweight
virtualization techniques such as containers for resource constrained controllers
[28].

Network operating systems are modular and fault tolerant. Additionally, the
expansion and consolidation of network operating system-based control planes are
comparatively easier and less time consuming. However, such control planes are
required to be deployed locally for synchronization, which may not be feasible for
military use cases requiring cross-network domain communications. They also lack
support for channel-level management of MBN [5].

4 Middleware and Interoperability

To ensure efficient tactical interactions, SDN middleware requires to support
interoperability between the control and the data plane nodes. The overall inter-
operability of any system can be discussed from two perspectives, syntactic
and semantic. Table 1 illustrates the differences between syntactic and semantic
interoperability. In the literature, there are different techniques that help in enabling
syntactic and semantic interoperability in SDN. However, these interoperability
techniques have their own pros and cons in dealing with the dynamics of battlefield
communications and diverse traffic priorities.

Table 1 Differences between syntactic and semantic interoperability

Facts Syntactic interoperability Semantic interoperability

Targets Data exchange Data interpretation

Deals with Format of data Contents and attributes of data

Enablers Communication protocol Information model

194 R. Mahmud et al.

4.1 Syntactic

Syntactic interoperability is responsible for the synergies of the data packets and
their formats transmitted and packaged by the heterogeneous control and data plane
nodes. It is also regarded as the prerequisite for attaining semantic interoperability in
SDN. Syntactic interoperability explicitly depends on the communication protocols
offered by the middleware and the characteristics of the overlays that logically
connects the nodes with the middleware. Different communication protocols and
overlay mechanisms associated with the syntactic interoperability are discussed
below.

4.1.1 Communication Protocols

Most of the existing SDN middleware systems have a message-oriented architecture
that allows them to handle uncertain communication delays during interactions
with different control and data plane nodes. Additionally, the functionalities of
a message-oriented middleware are highly scalable compared to that of a remote
procedure call-based middleware [29]. Two types of communication protocols such
as Publish-Subscribe (PubSub) and Request-Response (RR) are widely used in
message-oriented systems.

i. Publish-Subscribe: PubSub communication protocols assist the control plane
node in publishing the commands to the middleware and enable data plane nodes
to get the respective commands from the middleware. The opposite happens
when data is transferred from the data plane to the control plane. PubSub
protocols support event-driven interactions between the communicating entities.
Message Queuing Telemetry Transport (MQTT), Data Distribution Service
(DDS) and Advanced Message Queuing Protocol (AMPQ) are among the most
used PubSub communication protocols.

• Message Queuing Telemetry Transport (MQTT): MQTT protocol defines a
MQTT broker at the middleware and a set of logical clients over the control
and data plane to publish and subscribe information. MQTT sorts information
in topics and allow nodes to subscribe multiple topics and receive all infor-
mation published under each topic. For example, in [30], an MQTT enabled
SDN framework for UAV swarms is proposed that creates different MQTT
information topics for exchanging network conditions, security policies, QoS
requirements, electronic state and controller commands.

Usually MQTT depends on TCP for data transmission. There is a variant
of MQTT for sensor networks, named MQTT-SN that uses either UDP or
Bluetooth for transmitting data. MQTT is also used to create multicast trees
between the publishers and the subscribers for minimizing data transfer delay
[31]. In another work, MQTT has been exploited in multi layers to offer
network interoperability for the controllers deployed in hierarchical structure
[32].

Software-Defined Multi-domain Tactical Networks 195

MQTT is considered highly feasible for Internet of Things-driven interac-
tions because of its lightweight structure and minimized data packets [33].
Nevertheless, MQTT often experiences serious traffic congestion problem at
the broker side and requires Transport Layer Security (TLS) support. More-
over, MQTT is less resilient to the mobility of subscribing and publishing
nodes, and prone to single point failure. These limitations can resist the real
timeliness of the system and increase overhead of the middleware [34].

• Data Distribution Service (DDS): DDS allows asynchronous data exchange
among communicating entities without implementing any logical broker.
Unlike MQTT, DDS incorporates a built-in discovery mechanism that assists
subscribers in finding the available publishers for interactions. The default
transport layer protocol for DDS is UDP, although it can be easily integrated
with TCP. The header length of DDS is 16 bytes which is 8 times higher than
that of MQTT and possesses 20 more QoS levels for controlling volatility,
resource utilization, availability, delivery, reliability, ownership, duplication,
and latency tolerance of the data. Therefore, a DDS middleware requires
to extract the data-centric information of the packets for their QoS-satisfied
distribution to the subscribers [35].

In SDN, the concept of DDS middleware has been widely used to
manage the distributed control plane. For example, in [36], a DDS-based
hierarchical controller plane structure is modelled that distributes time-critical
synchronization and system breakdown information among the controllers
by publishing their type in proactive manner to achieve better performance.
Another SDN control mechanism is developed in [37] for dynamically
configuring network based on the importance of shared data among the
digital twins. The mechanism set this data importance in terms of the latency
sensitivity attribute of the packets defined by the DDS QoS level. Moreover,
in [38], a DDS-based SDN middleware is considered that supports on-demand
access to UAV-aided services from authorized entities at the ground. It also
facilitates distributed DDS orchestration to enhance interoperation and meet
mobility constraints of UAVs.

DDS supports security plugin models and offers vendor level interoper-
ability using RTPS (Real Time Publish Subscribe) protocol. Due to built-in
QoS maintenance mechanism, DDS also performs better in low latency
communication. However, DSS is heavyweight for resource constrained
battlefield networking nodes and consumes more bandwidth than MQTT.

• Advanced Message Queuing Protocol (AMQP): In AMQP broker, the
published messages received by the exchange component are organized in
multiple queues based on a set of certain rules called bindings. The published
messages contain various meta-data that help the broker to retrieve context
and priority of the packets without exploiting the payload directly. Similar to
MQTT, AMQP exploits TCP for data transmission and provides three QoS
levels namely, i. at most once, ii. exactly once and iii. at least once. However,
the header length of AMQP is 8 bytes higher than that of MQTT.

196 R. Mahmud et al.

AMQP-based SDN middleware systems are often used to build distributed
control plane. In [40], such a middleware has been considered that augments
RabbitMQ and ActiveMQ with AMQP for supporting reliable message
communication among the controllers. Similarly, in [41], another AMQP
middleware is modelled to exchange information regarding network band-
width, network topologies and inter-connected nodes among the distributed
controllers.

Nevertheless, AMQP helps in enhancing communication flexibility by
providing a scope to dynamically integrate different network standards and
protocols. Additionally, the AMQP packet size is negotiable that makes it
suitable for transferring large number of payloads. On the contrary, AMQP
does not facilitate automatic resource discovery like DDS and lacks explicit
support to enable Last-Value-Queues update. AMQP can also create a
large backlog of messages when there is a poor availability of network
resources and resists real-time battlefield communications by increasing the
network delay [42]. Additionally, Fig. 6 illustrates the differences of MQTT,
DDS and AMQP from the perspective of CPU, memory and latency-driven
performances.

ii. Request-Response: In RR communication protocols, when a data plane node
needs any command from the control plane, it sends a request to the corre-
sponding controller through middleware. In response, the controllers transfer
necessary instructions to the data plane node. The opposite happens when the
control plane seeks state information from the data plane. RR issues both request
and response packets in a synchronous manner. In Table 2, a summary com-
parison between PubSub and RR has been illustrated. Constrained Application
Protocol (CoAP) is one of the most celebrated RR protocols that deals with IoT
communications in resource constrained networking environments [43].

• Constrained Application Protocol (CoAP): CoAP relies on both UDP and
RESTful protocol that makes it more compatible for resource constrained IoT
devices. Moreover, CoAP offers reduced implementation and communication
complexities compared to other RR protocols like HTTP. As a means of
reliability. CoAP also incorporates an exponential back-off feature-based
retransmission mechanism. CoAP supports two different levels of QoS
functionalities, namely (1) Confirmable, (2) Non-Confirmable. Its header
length is 4 bytes and can be easily augmented with cellular networks.

In the literature, there exist several researches studies where CoAP has
been used to model communications among distributed control plane entities.
For example, in [44], a control plane structure for software defined wireless
network is developed that exploits CoAP for exchanging topology discovery
and flow control information among the controllers. In another work [45],
CoAP has been used to allow controllers for managing flow tables, modifying
node routing characteristics, and obtaining data plane information with
respect to link quality, geographical location and energy level. Moreover,
in [46], a real-world SDN middleware named Ride has been developed that

Software-Defined Multi-domain Tactical Networks 197

Fig. 6 Comparison between
MQTT, DSS and AMQP
[39]. (a) CPU usage. (b)
Memory usage. (c) Latency

198 R. Mahmud et al.

Table 2 Comparison between PubSub and RR

Facts PubSub RR

Suitable for Competitive, unreliable network Robust, reliable network

Traffic load High Low

Interaction driver Report-by-exception (RBE) Polling at regular interval

Dynamic scaling Adaptive Inflexible

Security augmentation Complicated Easy

exchanges CoAP packets for managing a workflow consisting various tasks
including host registration, network configuration, on-demand network state
analysis, fault detection and recovery. CoAP offers faster wake up times and
extended sleepy states that consequently improves energy consumptions of
control and data plane nodes. However, CoAP has limitations in communi-
cating devices using Network Address Translation (NAT) technique.

4.1.2 Tunneling and Non-tunneling

Tunneling allows private communications to exchange data packets across a public
network using encapsulation. By default, it supports encryption and helps in
establishing secure and remote connections among the networks. These features
make tunneling highly feasible to use in virtual networks. There exist different
tunneling protocols such as Virtual Extensible LAN (VXLAN), GPRS Tunneling
Protocol (GTP), Network Virtualization using Generic Encapsulation (NVGRE),
stateless transport tunneling (STT) and Network Virtualization Overlays 3 (NVO3)
that simplifies the realization of virtual networks [47]. Moreover, in SDN, tunneling
is often used to manage connection among the data plane nodes, especially during
the uncertain mobility of packet destinations [48]. In such cases, tunnels are created
dynamically to handover data packets from the previous serving switch to the
current serving switch of the destination node. On the other hand, in [49], an
SDN-enabled dynamic multipath forwarding technique has been developed that can
merge traffics of multiple tunnels at any data plane node based on source-destination
address with a view to minimizing the number of flow entries within the system.

Moreover, there exist other initiatives that focus on improving tunneling mech-
anisms in SDN. For example, in [50] a Match-Action Table (MAT) programming
model-based IP tunnel mechanism, named MAT tunnel is developed that allows
controllers to set flow table entries with both encapsulation and decapsulation
specifications of the corresponding tunnel. It consequently reduces the overhead
of manually configuring the tunnel interface at the data plane. Similarly, in [51],
another tunneling mechanism is developed that detects multiple shorter repair paths
when a single link failure happens in SDN. This feature helps in faster fault recovery.

However, the packet drop rate in tunneling increases unevenly when mixed
traffic (voice and video) are transferred. Forward error correction in this case incurs

Software-Defined Multi-domain Tactical Networks 199

additional bandwidth overhead and wastes network capacity. The repackaging
feature of tunneling reduces the effective size of data packets and affects the transfer
delay. It consequently increases packet fragmentation that consumes additional
memory and processing power at the destination node for merging. Because of these
limitations, tunneling is often discouraged while transferring large amounts of data
to resource constrained destinations. Therefore, non-tunneling communications for
virtual networking is gradually getting attention in both research and industry. In
[52], a non-tunneling protocol named FlowLAN is developed that adopts Network
Prefix Translation technique to augment both the physical and logical addresses
of packet destination nodes and tags them in the flow field of the packet header
with respect to the corresponding network identifier. It helps realizing the virtual
networks as a distributed system that can communicate without encapsulation or
decapsulation. To support the movement of cells in LTE network, another non-
tunneling approach named MocLis is developed in [53]. MocLis adopts Locator/ID
split approach while dealing with the mobility of cells and their nested user equip-
ment. Nevertheless, non-tunneling approaches lack standardization that makes them
less compatible to apply in highly heterogeneous communication environments like
battlefield.

4.2 Semantic

In SDN, a middleware needs to support semantic interoperability to ensure the
unambiguous interpretation of command and status information that is exchanged
between the controllers and data plane nodes. It simplifies the knowledge dis-
covery between these two planes. Semantic interoperability acts as a function
of semantic interoperability and fails drastically if the data packets are distorted
during transmission from source to destination. There exist different techniques
including protocol translation, protocol oblivious forwarding and semantic ontology
that enable semantic interoperability in SDN.

4.2.1 Protocol Translation

Protocol translation converts the data, commands and time synchronization infor-
mation issued by the control plane into the compatible format of the data plane
nodes in which they are navigating. It also enables the data plane nodes to interact
with controllers despite of the differences in their native protocol stacks. To perform
this operation, a Protocol Converter software installed on the middleware removes
the protocol headers of the sender completely and wrap the payload with the target
protocol header [54]. There are different technical companies like Cisco and Valin
corporation that develop software solutions for protocol translation. Figure 7 depicts
the internal architecture of a conceptual protocol converter software.

200 R. Mahmud et al.

Fig. 7 Architecture of a protocol converter

In [55], the operations of a protocol translating middleware named TableVisor
is discussed. TableVisor uses the match-action architecture to match the intents
of the exchanged data packets to the existing flow table entries, action space
and target header fields. The expressiveness of TableVisor is translating protocols
is defined by the intersections of possible command attributes from both source
and target protocol. The protocol translation mechanism discussed in [56] shows
almost the similar functionalities like TableVisor. However, for [56], the translation
rules are defined by the controllers, not by the middleware. Conversely, in [57],
the middleware translates the source data and protocol commands into multiple
segments as per the primitive network requirements with respect to latency, packet
collision and packet delivery rate so that the destination nodes can easily parse the
segments with their default protocol stack and set the rank for each requirement.

Although protocol translation helps in alleviating protocol and data format-wise
heterogeneity of control and data plane nodes, it limits the scope of simultaneous
interactions. It requires an in-depth understanding of the packets that urge to deploy
trusted middleware systems across the network. However, such facilities are not
often possible to ensure in constrained communication environments like battlefield.

4.2.2 Protocol Oblivious Forwarding

Protocol oblivious forwarding makes the format of a packet transparent to the data
plane nodes. In this case, the data plane nodes extract and assemble key features
from the packet header to conduct flow table lookups based on the controller
instructions. It enables data plane to support any new protocols and forwarding
requirements in a flexible manner. To perform this operation, packet meta-data
are augmented with generic information including flow logic and life span. The
difference between protocol translation and oblivious forwarding is illustrated in
Table 3.

A protocol-oblivious forwarding-based routing mechanism is proposed in [58]
that can redirect a packet to multiple destination addresses in a multi-homing sce-
nario. It completements the SDN ability of switching transmission path dynamically
and enables the destinations to adjust packet receiving rate as per the status of
network resources. Moreover, to assist protocol oblivious forwarding in perceiving
device-level context, a State Parameter Field is augmented to its generic structure

Software-Defined Multi-domain Tactical Networks 201

Table 3 Differences between protocol translation and oblivious forwarding

Protocol translation Protocol oblivious forwarding

Requires protocol specific knowledge Protocol specific knowledge is oblivious

Parsing packet data for target protocol is
difficult in real-time

Extraction of meta data from packet is easier

Conversion or translation support for user-
defined or newly introduced protocols are
not always available

Data plane can adopt any protocols

in [59]. It also incorporates a direct entry matching policy for flow table lookup
that enables protocol oblivious forwarding to check device status in time optimized
manner. Moreover, in [60], the concept of protocol oblivious forwarding has been
extended to offer protocol independent interactions among the controllers arranged
in a hierarchical structure. It enhances the flexibility in distributed controller
operations.

Despite having certain advantages over protocol translation, protocol oblivious
forwarding is considered infeasible to sensitive communications as it lacks explicit
security measures. Therefore, to protect the protocol oblivious forwarding opera-
tions from diverse attacks, a proactive security framework for SDN is proposed
in [61]. Moreover, protocol oblivious forwarding depends on a set of stateful
information which makes it less resilient to failure or alteration of the networking
system.

4.2.3 Semantic Ontology

A significant amount of control data is exchanged between control and data plane
nodes while transferring network packets from a place to another. The existing
Network Operating System (NOS)-based control data modelling techniques such
as type checking and code templating perform well when the flow rules are static.
To parse the non-deterministic behaviors of applications and networks in the flow
rules and modelling the control data accordingly, semantic ontology is often used.
Semantic ontology incorporates various reasoning rules and integrity constraints
that helps in automating state inference across the SDN layers. Additionally, it
simplifies the remote configurations of data plane nodes and allow controllers to
define complex data relationships [62]. An illustration of semantic ontology-based
operations in SDN domain is depicted in Fig. 8.

Based on the concept of semantic ontology, an autonomous fault management
agent for SDN is developed in [63]. It compares network status with semantic
models using Bayesian reasoning as inference method for determining the category
of a fault. In another work [64], sematic ontology has been applied to automate the
creation of virtual network functions (VNFs). It also fosters the synthesis of VNFs
with user requirements and enabled controllers to recommend similar services based
on network service description (NSD). Moreover, in [65], another semantic-based

202 R. Mahmud et al.

Fig. 8 Semantic ontology-based operations in SDN layers [66]

framework for distributed control plane is proposed that incorporates local ontology
from each controller and forwards them to the master controller for ensuring overall
semantic interoperability within the network.

However, the scope of applying semantic ontology is constrained as it depends
on specific format of data and all entities within the network should have in-depth
understanding of that format. Moreover, semantic ontology can expose data to
security threats for the sake of reasoning which is not acceptable during battlefield
communications.

5 Network Component Management

Conceptually, network components are classified into two categories, network
infrastructure and network services. Network infrastructure incorporates the topol-
ogy and the data forwarding paths. From the perspective of SDN, network slices can
also be considered as a virtualized infrastructure for the network. Conversely, net-
work services provide support for caching, network address translation, encryption,
and intrusion detection. Recently network services are set to be decoupled from
proprietary hardware to virtualized software platforms using Network Function
Virtualization (NFV) techniques. Although it is not a must to implement SDN and
NFV together, both technologies can complement each other in enhancing network
automation. For example, the implementation of SDN without virtualizing network
functions results in hardware dependency which is conflicting with the instinct of
SDN that focuses on performing network control through software. In this part of
the report, existing approaches to manage network components are discussed in an
integrated manner. Sections 5.1–5.3 discuss the approaches from the perspective
of network infrastructure whereas Sects. 5.4–5.5 focus on the approaches based on
network service.

Software-Defined Multi-domain Tactical Networks 203

5.1 Topology Awareness

As noted, tactical operations often take place in inaccessible locations where the
arrangement of infrastructure network is difficult. In such cases, on-demand network
services can be offered by creating MANET. MANET enables the participating
nodes to interact with each other with the goal of completing their assigned tasks.
Moreover, MANET provides a scope to integrate the concept of SDN for efficiently
coordinating the communicating nodes in pursuing their collective goal. An SDN-
enabled MANET structure for battlefield communication is depicted in Fig. 9.
However, the network topology in MANET embraces complex configurations and
can change very frequently. Therefore, from the perspective of tactical operations
relying on Mobile Ad-hoc Network (MANET), topology awareness is very impor-
tant. Topology awareness refers to the complete understanding of various dynamics
related to the communicating entities and their underlying network while making
any network management decision. It consequently helps in optimizing the packet
routing path, consolidating the number of redundant networking nodes, scaling-up
the network, and deploying edge computing nodes.

In literature, there exists a notable number of works that address the topology
awareness in SDN-enabled MANET. For example, a distributed SDN controller
placement problem for MANET is formulated in [68]. This work explicitly con-
siders the topology of the network in terms of controller’s accessibility from the
data plane nodes and minimizes the cost of circulating synchronization messages
among the controllers within the topology. In another work [69], the communication
and topology-driven incompatibility between SDN (inherently centralized and
structured) and MANET (inherently distributed and dynamic) is discussed. It also
develops a protocol for localized data plane nodes that dynamically adapts the
packet routing path according to the changes in network topology without solely
relying on the centralized SDN controllers. The performance of the developed

Fig. 9 SDN-enabled MANET for battlefield communication [67]

204 R. Mahmud et al.

protocol is validated using a real-world dataset mentioned in [70]. Furthermore,
a multi-path transmission control protocol for decreasing network handover delay
and improving transmission throughput in SDN-enabled naval battlefield network is
proposed in [71]. The ad-hoc network model also incorporates a connectable relay
point to maintain the communications during uncertain topology changes. On the
other hand, to ensure security in SDN-enabled MANET during topology alteration,
a distributed firewall system is developed in [72]. It relies on ONOS control platform
and control the access of unreliable ad-hoc nodes by distributing filter rules across
the network. Similarly, in [73], a flow-based framework for tactical mobile ad-hoc
network is proposed that exploits both machine learning-based classification and
SDN concepts for anomaly detection within the network topology. However, these
topology-aware solutions are very less-adaptive and scalable to deal unpredictable
growth of packets in different bearer channels of tactical ad-hoc network.

5.2 Adaptive Load and Path Management

Battlefield communication network requires consistent adjustment of loads and
routing paths while transferring video streams or performing surveillance operations
using limited bandwidth of uneven availability. For example, in [74], the dynamic
optimization of end-to-end paths between the source and the destination is exploited
for adaptive video streaming in the battlefield network. The path selection algorithm
applied adopted in [74] is depicted in Fig. 10. Additionally, in [75], an adaptive link
sensing approach for an aerial battlefield network is proposed that exploits back-up
routing path in case of sudden network congestion. The implications of adaptive
routing for mobile military devices are also discussed in [76]. It aims at virtualizing
the network functions at the granular level to enhance network survivability.

Apart from them, in [77], an adaptive tactical data collection system is developed
that selects the data sourcing node according to the link availability and traffic
characteristics in terms of packet rate and flow distribution. When the network
resources are limited, the system autonomously reduces the rate of data transmis-
sion. It also helps to reduce the amount of duplicate data and improves the accuracy
of data analysis. Moreover, to balance the load among distributed controllers, a self-
adaptive technique is proposed in [78]. It dynamically migrates switches from one
controller to another considering the geographical boundary and variation of loads.
The scheme triggers based on a threshold of packet arrival rate to the controllers
which can also be adjusted as per the context of the network resources. However,
these existing adaptive solutions are highly suitable for the applications which have
already been customized to run in SDN. For legacy applications, they provide a very
narrow scope for further service enhancement.

Software-Defined Multi-domain Tactical Networks 205

Fig. 10 Path selection algorithm [74]

5.3 Network Slicing

Through network slicing, operators can create unique but logical partitions of
a physical network infrastructure and simplify their multiplexing for end-to-
end communications. Network slices can be expanded across different network
domains such as access, core, and transport, and can be exploited to meet diverse
requirements of a particular application [79]. It harnesses both SDN and NFV
concepts to increase service flexibility within the network. Since network slices are
isolated, they inherently avoid the control plane congestion of one slice to affect
the other slices. Moreover, every network slice maintains a set of resource and
network function management policies to address speed, capacity, connectivity, and
coverage-driven issues. Unlike virtual private network (VPN), network slicing does
not solely rely on tunneling. It also differs from Differentiated Services (DiffServ)
as noted in Table 4.

206 R. Mahmud et al.

Table 4 Differences between network slicing and differentiated service

Network slicing Differentiated service

Allows multiple logical networks to run on
top of a shared physical network

Controls and classifies network traffic to set
their flow precedence

Simultaneously deals with the networking,
computation, and storage aspects of the
underlying resources

Only deals with the networking aspect of the
underlying resources

Can isolate traffic of one tenant from others
and supports optimum grouping of the traffic

Cannot discriminate the same type of traffic
coming from different tenants

Different SDN-enabled frameworks harness the concept of network slicing for
offering better services. For example, in [80], an end-to-end network slicing frame-
work incorporating a virtual resource manager is proposed that places network slices
over physical resources based on the data traffic pattern, user connectivity demands
and channel bandwidth. The resource manager can also deal with the sudden surges
in resource demand and offers scope for integrating real-time decision-making
policies. In another work [81], a data-driven resource management framework
for network slices is proposed. The resource cognitive engine of the framework
collects the resource usage data and incorporate a machine learning technique for
their uniform scheduling. Conversely, the service cognitive engine analyses the
user’s requirements and interact with the global cognitive engine for improving the
resource utilization and user’s quality of experience. Similarly, in [82], a machine
learning-based network slicing framework is proposed that divides each logical slice
into a set of virtualized sub-slices and orchestrate them with different prioritized
resources as per the application requirements. The framework also engages separate
sub-slices to handle spectral efficiency, low latency service delivery, and power
consumption, and uses the Support Vector Machine (SVM) algorithm to extract
the features of assigned applications. Nevertheless, in literature, very few research
initiatives have been found that focus on augmenting network slicing with military
applications. To address this gap, a set of military services including push-to-
talk, cellular convergence, prioritized on-demand access, satellite backhaul for
redundancy and signal jamming are identified in [6] where network slicing can
be easily adopted for improved performance, security and availability. However,
the explicit isolation of network slices makes the coordination of security policies
difficult and can lead to a breach of confidentiality in battlefield communication
[83].

5.4 Service Function Chaining (SFC)

Service function chaining refers to a complete suite of connected virtual network
services such as firewalls, VoIP, directory service, deep packet inspection, load
balancer and time service that allows traffic to use any combination of them as per
the requirements in terms of security, lower latency and enhanced service quality. It

Software-Defined Multi-domain Tactical Networks 207

Fig. 11 Service function chaining in battlefield communication

also enables SDN controllers to customize a chain and apply them to different traffic
flows depending on the source, destination, or type of traffic. Figure 11 provides an
abstract representation of service function chaining for battlefield communication.

In the literature, there has been notable initiatives that focus on improving
virtual network function placement in SFC. For example, a Mixed Integer Linear
Programming (MILP) model to minimize the intra-communication delay between
different network function instances is proposed in [84]. It meets diverse carrier-
grade requirements such as latency and resource availability for an application
requesting to access the service chain. In [85], another MILP model for optimizing
energy consumption across multiple network domains is proposed. It considers the
order of accessing the chain as a constraint and sets a domain-level function graph to
orchestrate the incoming network service requests. The SDN-based resource man-
agement architecture developed in [86] also aims at optimizing energy usage while
placing different network functions over the computing instances and defining their
routing path. As supplements, some other works are developing SFC-constrained
shortest path service access mechanisms for SDN. In [87], such a mechanism is
proposed that transforms the basic network graph to an SFC-constrained network
graph. Moreover, it applies a pruning algorithm based on service dependency for
reducing the size of newly generated network graph so that the shortest path can
be calculated in timely manner. In another work [88], simple breadth-first search
algorithm has been adopted to determine the shortest path. There also exists a
performance evaluation framework named SFCPerf [89] to check the compatibility
of these approaches in real-world test bed. However, the existing solutions have
significant configuration complexity that make them infeasible to deal with the
instant demands of battlefield communications.

5.5 Unikernel Network Functions

Besides virtual machines and containers, unikernels are also increasing in popularity
as a virtualized software platform for implementing NFV. Unikernels refer to single-

208 R. Mahmud et al.

Fig. 12 Architecture of virtual machines, containers and unikernels

address-space machine images that can run on standard hypervisors by exploiting
only kernel space libraries. The structure of unikernels is considerably lightweight
compared to that of VMs, and containers, thus they can boot faster. Moreover, a
unikernel can execute a single process at a time, which consequently results in
less management and processing overhead. Figure 12 illustrates the architectural
differences between VMs, containers and unikernels. Because of the low memory
footprint and initiation time, unikernels are considered more well-suited for network
function virtualization than VMs and containers, especially when they are used to
complement any SDN-enabled system.

The concept of unikernel is relatively new and its standards are still evolving. In
[90], an SDN-enabled framework is developed that can create unikernels dynam-
ically. It enhances system reliability with respect to anomaly or security attacks
and helps in recovering the system functionalities within minimal time. Similarly,
in [91], the Topology and Orchestration Specification for Cloud Applications
(TOSCA)-language has been extended to support the creation and orchestration
of unikernels with security constraints. It also enables the unikernels to offer on-
demand network services to the users. In another work [92], the initiation time of
different unikernel-based network services is optimized by consistently modifying
their schedulers according to the service requirements. Although unikernels outper-
form VMs and containers in various aspects, the packet loss rate with unikernels
is higher than others. This limitation of unikernels can affect any battlefield
communication requiring high throughput.

6 Traffic Management

Quality-of-Service (QoS) and Quality-of-Experience (QoE) related traffic man-
agement has been studied for many years, and a significant amount of research
has been devoted to understanding, measuring, and modelling QoS/QoE for a
variety of network services [93]. Considering different network segments, disparate

Software-Defined Multi-domain Tactical Networks 209

application needs, and multiple transmission bearers involved in the end-to-end
service delivery chain, it is challenging to identify the root causes of service quality
impairments. It also increases the complexities in finding effective solutions for
meeting the end users’ requirements and expectations in terms of service quality.
We briefly survey state-of-the-art findings and present emerging concepts and
challenges related to managing service quality for networked services, especially
in the context of the move towards softwarised networks, the exploitation of big
data analytics and machine learning, and the steady rise of new application services
(e.g. multimedia, augmented and virtual reality). We address the implications of
such paradigm shifts in terms of new approaches in QoS modelling and the need for
novel monitoring and management infrastructures.

Traditionally, QoS-driven application management has primarily addressed con-
trol and adaptation on the end-user and application host/cloud level, often studied
from an application provider perspective in the context of optimizing the quality of
Over-The-Top (OTT) applications and services. As an example, applications such as
HTTP-based adaptive video streaming dynamically adapt to varying network con-
ditions to maintain a high level of QoS. Such a mechanism represents an application
control loop that is often independent of network management mechanisms. On
the other hand, network providers generally rely on performance and traffic mon-
itoring solutions deployed within their access/core network to obtain insight into
impairments perceived by end users. QoS-driven network management mechanisms
have thus focused on the network provider point of view and considered control
mechanisms, such as optimized network resource allocation, admission control,
QoS-driven routing, and so on. Such control thus aims to facilitate efficient network
operations and maintain high QoS, without directly managing the applications.

SDN serves as a technology for decoupling hardware resources from software
and functionality, enabling programmability of the networking infrastructure. The
programmable and flexible resource allocation, coupled with softwarisation, enable
the network and application to engage in a “conversation” using software APIs.
While this explicit negotiation approach offers clear opportunities, there are many
challenges that need to be addressed (as shown in Fig. 13), including encryp-
tion of traffic, virtualization of resources, contextualization of application data,
measurement of service quality, fairness, business arrangements, and federation
across networks. In what follows we briefly review the evolution of QoS traffic
management and recent directions enabled by SDN.

6.1 Service Level Agreement (SLA)-Aware Traffic
Management

The notion of using service level agreements (SLAs) for QoS dates back to the
IETF IntServ and DiffServ frameworks [95], whereby the application specifies its
requirements in the form of a FlowSpec, which includes both its traffic profile

210 R. Mahmud et al.

Fig. 13 Emerging concepts and challenges in QoS management [94]

Fig. 14 Mechanisms for implementing SLA-based QoS [95]

(rate and burstiness) and requirements profile (in terms of guaranteed bandwidth
and latency)—once accepted by the network (via some form of admission control),
this forms an agreement (SLA) that then needs to be respected by both parties. The
realization of this framework (as shown in Fig. 14) requires admission control (often
via a bandwidth broker), traffic classification (using packet header fields), packet
marking (typically as a DiffServ Code Point or DSCP), traffic policing (via a token
bucket), and priority or weighted fair scheduling to ensure network resources are
shared in order to meet the pre-negotiated SLAs.

While conceptually elegant, the major challenges with this approach relate to
the large amount of state information along with the complex policing/scheduling
mechanisms needed for managing the per-flow SLA, as well as limitations in being

Software-Defined Multi-domain Tactical Networks 211

able to map application-level QoE to network-level QoS parameters—these aspects
are explored in depth in [96], which also develops a new method called SFQP (SLA-
aware Fine-grained QoS Provisioning) to perform the mapping and bandwidth
enforcement using SDN principles. Other works including [3] have also explored
the application of QoS methods enabled by SDN protocols (OpenFlow in particular)
to support the classification, prioritization, and shaping of application flows with a
view towards enabling dynamic QoS control.

In networks where the applications are not enabled with capabilities to explicitly
negotiate SLAs, the application behavior as well as requirements may need to be
inferred. The work in [97] develops an application-aware traffic engineering system
that cooperates with deep packet inspection (DPI) services to apply SDN based
prioritization and route selection to application flows. A specific application of this
concept to VoIP and M2M communication in developed and demonstrated in [98],
whereby it is shown that SDN can be used to proactively manage UDP/RTP media
streams to enhance their service quality.

6.2 Intent-Based Traffic Management

Intent-based networking (IBN) is a relatively new concept in SDN for managing
a network, end-to-end, through the use of DevOps and high-level “intents”. The
term IBN was first coined by Gartner in 2017, though components of intent-
based networking began well before and continue to be developed by networking
enterprises. Traditional networking relied on command line interface (CLI) to
manually set up policies for all vendors’ networking devices individually. The
intent-based networking approach changes this to operate it as a Network-as-a-
Service (NaaS), meaning it is end-to-end networking that seamlessly manages all
devices on one interface. While similar to the principles of SDN, IBN differs
by integrating DevOps into the process. This makes networking management a
lifecycle process that, according to Cisco, “bridges the gap between business and
IT.”

As a simple example of IBN, consider an Intent whereby the network operator
wants to ensure that the command and control (C&C) communications in the
region receive uninterrupted service levels during combat (as shown in Fig. 15).
The Translation of this would build a policy which guarantees that C&C users
and applications are placed on a secure segment that receives the highest priority
service. The Activation of this intent may apply priority-service levels between all
users and applications on the C&C bearer segment across all network elements. The
Assurance module will use telemetry to monitor and analyze the network against
this desired outcome, to remediate, optimize, and correct as appropriate. In order
for intent-based networking to achieve its full potential, these functions are applied
across all networking domains and build on a programmable network infrastructure.

Intent-based networking is being incorporated into many of the emerging SDN
platforms. Both the Open Networking Operating System (ONOS) and the Open-

212 R. Mahmud et al.

Fig. 15 Elements of intent-based networking (source: Cisco)

Fig. 16 Intent-based
networking supporting
multiple applications

DayLight (ODL) SDN controllers incorporate “intents”. An example framework for
intents is specified by Group Based policy (GBP), which has the concept of end-
point groups (EPGs) so that policies can be applied to groups of entities based on
their labels, and the policies themselves are contracts with “qualities” and “clauses”.

One of the significant benefits of using high-level intents rather than low-level
network configuration is that human errors are reduced. The high-level intents
are automatically “compiled” by a policy compiler that translates the intents into
network device configuration, which is pushed down to each network element.
Further, multiple applications can co-exist without conflict; as shown in Fig. 16,

Software-Defined Multi-domain Tactical Networks 213

application policies are taken through a policy funnel into a compiler that flags, and
potentially automatically resolves, any conflicts in their policies. Apstra reports in
[99] that IBN can be applied in a vendor- and technology-independent way, yielding
a saving of seven cents per dollar revenue.

6.3 Context-Aware Traffic Management

Context-aware traffic management is emerging as an approach to address some
of the gaps in SLA and intent-based methods. The SLA-aware method requires
applications to specify their requirements, which can be very challenging especially
when they are adaptive themselves. The intent-based methods also need to be
aware of context, such as whether the network is operating in a friendly or
hostile environment. The context-aware approach considers the “experience” of the
application, couples that with the context, and takes reactive actions to rectify the
problem.

This thinking is leading to the concept of a “self-driving network” [100] as
depicted in Fig. 17, whereby the network is continually monitored using fine-grained
telemetry, the collected data is analyzed in real-time, and appropriate intervention is
done via programmable network interfaces to take an appropriate control action.
Research work in [101] develops a framework for adjusting network behavior
dynamically to adapt to application behavior and validates it via implementation
on multiple SDN switches in [102]. Conceptually, both Self-driving networking and
Intent-based networking aims at autonomic management of the network. However,
intent-based networking consistently tunes the networking environment as per
the user’s feedback whereas, self-driving networking monitors the differences of
the current and the desired network state and tunes the networking environment
accordingly.

Google has demonstrated that it is able to adapt its traffic management across
data centres [103], within a data centre [104, 105], and throughout its peering

Fig. 17 Self-driving network with monitor-analyse-control loop [100]

214 R. Mahmud et al.

locations [106] using dynamic application level measurements and fine-grained
SDN control. Network operators are stymied in this effort due to lack of visibility
into application performance, compounded by the increasing encryption of packets
by application – however, new methods are being developed by a research team
that use machine learning-based methods to identify applications [107] and infer
experience [108], and further take corrective action reactively when application
experience shows symptoms of degradation [109]. Moreover, QoS-aware traffic
management is progressing towards this virtuous cycle of a self-aware network that
constantly monitors application experience, makes inferences based on operator-
supplied intents combines with contextual information, and then enforces control
into the programmable network substrate in an automated manner.

7 Policy Evaluation

There are different ways to evaluate the efficiency of SDN-based policies such as
empirical, emulation and simulation. Empirical analysis refers to an evidence-based
approach that relies on real-world implementation and results. From the perspective
of SDN, empirical analysis is an essential. However, since an SDN environment
incorporates numerous entities interacting with each other across control, data and
application plane, the real-world implementation of SDN for research is costly.
Moreover, modification of any entity in real-world implementation is tedious. In this
case, emulation or simulation can be adopted for approximate imitation of SDN-
based operations. Emulation duplicates the behavior of the real system whereas
simulation mimics the behavior but does not offer the exact matching. In the
following subsections, the recent practices on empirical, emulation and simulation-
based analysis of SDN operations are discussed.

7.1 Empirical

There has been a notable initiative in SDN that focuses on empirical evaluation
of policies. For example, in [110], a small-scale software defined cloud datacenter
named CLOUDS-Pi is developed. To enable Raspberry Pi devices as network
switches, CLOUDS-Pi augments Open vSwitch (OVS) with each of them and
uses OpenDaylight (ODL) as the SDN controllers. Through use case study, it has
also been illustrated that CLOUDS-Pi is capable of evaluating the performances
of any SDN-based virtual machine management and flow scheduling policies.
In another work [111], the performance of seven SDN switches (as noted in
Table 5) are benchmarked in terms of throughput, priority queuing, flow tables
and packet buffers. It has also been observed that the processing time of the
switches is predictable and is aligned with the line rate. Moreover, in [112],
a publicly available bug repository for OpenDaylight SDN controller is mined

Software-Defined Multi-domain Tactical Networks 215

Table 5 Specifications of the investigated switches [111]

Switch ASIC CPU Firmware (release date)

HP E3800 HPE
ProVision

Freescale P2020 KA.16.04.0016 (2018-06-22)

HP 2920 HPE
ProVision

Tri Core ARM1176 WB.16.08.0001 (2018-11-28)

Dell S3048-ON Broadcom
StrataXGS

undisclosed DellOS 9.14 (2018-07-13)

Dell S4048-ON undisclosed undisclosed DellOS 9.14 (2018-07-13)

Pica8 P3290 Broadcom
Firebolt 3

Freescale MPC8541CDS PicOS 2.10.2 (2018-01-19)

Pica8 P3297 Broadcom
Triumph 2

Freescale P2020 PicOS 2.11.19 (2019-02-27)

NEC PF5240 Undisclosed Undisclosed OS-F3PA6.0.0.0 (2014-06)

to localize the most problematic software components and model the stochastic
behavior of bug manifestation. Later, the information is applied to improve the
dependability of different components such as core controller functions, embedded
applications, plug-ins, and drivers in the control plane. Furthermore, the effect of
strong and eventual consistency constraints on scalability and correctness of control
plane is investigated in [113]. It has also evaluated an adaptive consistency model
that improves the request handling throughput and response time of controllers.
However, because of large-scale and sophisticated deployment of SDN components,
the arrangement of empirical analysis in battlefield communication is often regarded
as infeasible.

7.2 Emulation

As noted, military tactical networks require to support mission-critical opera-
tions in the austere environment by going beyond the mobility, intermittent link
state, and variable bandwidth-related issues. In real-world SDN environments, the
manifestation of such dynamic configurations for research purpose is extremely
challenging. Therefore, it is widely adopted to imitate military tactical networks
using different emulation tools such as Emane [114], Mininet [115] and Core [116].
An emulator simultaneously captures the characteristics of tactical communications
and integrates SDN methodologies to assess different control and management
policies over an imitated military tactical network [117]. Figure 18 depicts how
emulators can be augmented in node-to-node communications.

Among the SDN emulators, Mininet is the most popular. In the literature, Mininet
has been adopted to evaluate policies for deploying SDN controllers [68], enhancing
controller’s adaptivity [69], automating distributed firewalls [72], managing data
flow [73], augmenting Named Data Networking (NDN) [118] and creating inte-

216 R. Mahmud et al.

Fig. 18 Node to node communication within an emulated tactical SDN [117]

grated SDN environments [119] in tactical networks. Mininet is lightweight, boots
faster and offers higher scalability. However, it is difficult to employ Mininet for
dealing with non-Linux-compatible OpenFlow switches or applications.

Extendable Mobile Ad-hoc Network Emulator (Emane) is another celebrated
emulator for tactical networks which has been used in [120–122] and [123] to
evaluate various policies for group-based communications, latency-aware queuing
control, situation-aware publish subscribe model and mission-centric content shar-
ing respectively. Emane incorporates more detailed radio models that simplify the
emulation of MANET, although it lacks an accurate interference model based on
Signal-to-Interference-and-Noise-Ratio (SINR) and extensive libraries for imitating
complex scenarios in SDN environments.

There exists another emulator named Common Open Research Emulator
(CORE) that has been used in evaluating policies for delay tolerant routing
[124], data and control plane security management [125], and disruption-tolerant
networking [126]. CORE offers highly customizable programming interfaces that
simplifies its augmentation with other emulators including Emane. However, it
lacks facilities for distributed emulation. Apart from Emane, Mininet and Core,
there exists another emulator named Containernet which has been used in [127] for
hybrid service function chaining.

7.3 Simulation

The existing emulators for SDN mainly focus on network resources management
and provide a very limited scope to apply application and computing resource-level
management techniques such as service placement and resource consolidation. To
address this issue, different simulators such as OPNET, NetSim and CloudSim-SDN
are used in SDN-based policy evaluation. Among them, OPNET is used in [128] for
simulating data distribution in a tactical network. In [129] and [130], OPNET is also

Software-Defined Multi-domain Tactical Networks 217

Fig. 19 Overview of CloudSim-SDN

adopted to evaluate a cooperative trust scheme and QoS-aware routing policy for
military communications respectively. Although OPNET provides a set of extensive
libraries for detailed networking models, it lacks support for customization.

Like OPNET, NetSim is used in simulating different network and application
management scenarios. For example, in [131], a hybrid routing policy for MANET
and in [132], an intrusion detection framework for military communication is
evaluated through NetSim. One of the main advantages of NetSim is that it can
simulate the functions of a wide range of networking devices. On the other hand,
the operations of NetSim are handled by a single event queue that often resists
the modeling of complex scenarios. Similar to NetSim, CloudSim-SDN is another
discrete event simulator [8]. It has been developed by the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory, University of Melbourne. As
noted in Fig. 19, CloudSim-SDN runs on top the basic CloudSim simulator [133]
that allows users to model both physical and virtual topology, and application
scenarios [134]. Using this feature of CloudSim, different simulators for other
computing paradigms for example iFogSim [135] and MR-CloudSim [136] have
also been developed. However, using CloudSim-SDN, a user can either utilize
built-in resource management and scheduling policies or can develop their own by
extending the abstract interfaces. As a means of policy evaluator, CloudSim-SDN
has been used in [137] that focuses on latency-aware network function provisioning.
It has also been adopted for simulating elastic service function chaining [138] and
energy-efficient network optimization [139] policies. However, the current version
of CloudSim-SDN lacks supports for handling the dynamics of tactical network but
there is always a potential scope to augment them in CloudSim-SDN.

218 R. Mahmud et al.

8 Gap Analysis and Future Directions

The lessons learned and the gaps identified from the literature study can be
summarized as follows:

1. In battlefield communication or tactical networks, MANET is highly adopted
because of its flexibility, ease of mobility and lower capital or operational
expenses. However, the convergence of multi-bearer networking, MANET and
SDN, specially for military operations, has been barely explored in the literature.

2. The device-level interactions and connectivity at the data plane of SDN-enabled
tactical networks is unpredictable and unreliable. Military devices also have lim-
ited energy supply to operate [140]. In such cases, dynamic network partitioning
and fault tolerance techniques can be useful in supporting the vulnerable military
devices losing connections with the controllers. However, these aspects have
been addressed by very few research initiatives in the literature. Additionally,
there is a significant lack for emulation and simulation tools to imitate such
scenarios specifically for military use cases.

3. Inherently, the controller is a single point of failure for the entire SDN archi-
tecture. To deal with this issue, the concept of multi controllers in SDN has
been developed. However, the existing East–West communication mechanisms
between the controllers still follow the traditional centralized architecture and
cannot ensure robust spanning of network through flat controller orientation.
Moreover, the Northbound and Southbound interfaces for multi-controller SDN
architectures are currently poorly defined and hinder the real-time integration
of the management systems and the peer-level networks. These constraints
affect the multi-domain communications, slice management and intent-based
networking in tactical environments, especially when one ground military device
sends information to an aerial or submerged military device. To address such
scenarios, efficient multi-controller orchestration policies must be developed
according to the requirements of battlefield communications.

4. The subordinates of a tactical network are hierarchically arranged. At lower
levels, line-of-sight connectivity is operated by distributed wireless mesh
(MANETs). Multiple MANETs can also coexist at this level with thin Inter-
MANET connectivity. At the mid hierarchical levels, satellite communication
techniques are harnessed, whereas a mix of terrestrial wireless, SATCOM and
wireline connectivity is exploited at the higher levels of the tactical network.
Most of the mechanisms are well suited for legacy network and provide a narrow
scope to integrate SDN functionalities. In the literature, there is also a significant
lack in building interoperability among MANET, terrestrial wireless, and satellite
communication techniques, especially through SDN middleware.

5. A wide range of traffic from real-time (e.g. situation and location-aware dis-
semination) to elastic (e.g. audio or video files) is generated during battlefield
communication. This traffic can be both unidirectional and bidirectional between
mobile (e.g. tanks and submarine) and fixed entities (e.g. ground stations). To
meet QoS requirements under such diverse circumstances, different sophisticated

Software-Defined Multi-domain Tactical Networks 219

and adaptive traffic management schemes are required for tactical networks.
These schemes should also support the analysis of ingress/egress packets and the
appropriate selection of differentiated services and network slices. On the other
hand, the efficiency of these schemes is highly subjected to the QoS requirements
of the SDN-enabled applications and the security concerns of the battlefield
communications. However, in the literature, the quantification of QoS parameters
and security classifications with respect to tactical networks and the management
of traffic in accordance are narrowly explored.

6. As noted, intent-based networking allows users and operators to define their
service expectations from the network and simultaneously creates the desired
networking state for meeting those expectations. The ultimate goal of intent-
based networking is to reduce the complexities of enforcing various network
management policies. However, the augmentation of intent-based networking
with traditional SDN architecture requires a comprehensive synthesis of artificial
intelligence (AI), network automation and machine learning (ML). On the
other hand, autonomic network management depends on four different aspects:
(i) Self-configuration: configures the network components (e.g. nodes and
bandwidth), (ii) Self-healing: treats the faults and adapts with the dynamics,
(iii) Self-optimization: enhances performance of the networking components,
(iv) Self-protection: protects from the security attack. Nevertheless, in the
literature, these essential aspects of intent-based networking have not been fully
investigated with respect to tactical networks.

9 Summary

The concept of SDN is gradually attracting attention in military use cases. However,
the adoption of SDN in tactical network is subjected to diverse challenges with
respect to interoperability, distributed application, unpredictable service demand,
security constraints and edge computation. Although there exist a notable number
of works on the literature aiming at addressing these challenges, they have certain
limitations and compatibility issues with existing tactical communication standards
such as MBN and MANET. In this work, we reviewed such research initiatives
that primarily focus on the SDN-based network orchestration problem in the
tactical environments. We proposed a taxonomy to categorize the existing solutions
systematically and determined the research gaps for further improvement in this
domain.

Acknowledgments This work was supported by the Next Generation Technologies Fund, man-
aged by the Defence Science and Technology Group, the Department of Defence, Australian
Government. The authors would also like to thank Shashikant Ilager and Muhammed Tawfiqul
Islam for discussions and comments on improving the paper.

220 R. Mahmud et al.

References

1. Afrin, M., Razzaque, M., Anjum, I., Hassan, M.M., Alamri, A., et al.: Tradeoff between
user quality-of-experience and service provider profit in 5g cloud radio access network.
Sustainability 9(11) (2017) 2127

2. Mahmud, R., Ramamohanarao, K., Buyya, R.: Edge affinity-based management of applica-
tions in fog computing environments. In: Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing. UCC ’19, New York, NY, USA, ACM (2019)
1–10

3. Adedayo, A.O., Twala, B.: Qos functionality in software defined network. In: 2017
International Conference on Information and Communication Technology Convergence
(ICTC), IEEE (2017) 693–699

4. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application module manage-
ment for fog computing environments. ACM Trans. Internet Technol. 19(1) (November 2018)
9:1–9:21

5. Thottan, M., Di Martino, C., Kim, Y.J., Atkinson, G., Choi, N., Mohanasamy, N., Jagadeesan,
L., Mendiratta, V., Simsarian, J.E., Kozicki, B.: The network os: Carrier-grade sdn control of
multi-domain, multi-layer networks. Bell Labs Technical Journal 24 (2019) 1–26

6. Grønsund, P., Gonzalez, A., Mahmood, K., Nomeland, K., Pitter, J., Dimitriadis, A., Berg,
T.K., Gelardi, S.: 5g service and slice implementation for a military use case. In: 2020 IEEE
International Conference on Communications Workshops (ICC Workshops), IEEE (2020) 1–
6

7. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Profit-aware application
placement for integrated fog–cloud computing environments. Journal of Parallel and
Distributed Computing 135 (2020) 177–190

8. Son, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., Buyya, R.: Cloudsimsdn: Modeling
and simulation of software-defined cloud data centers. In: 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, IEEE (2015) 475–484

9. Afrin, M., Mahmud, R.: Software defined network-based scalable resource discovery for
internet of things. EAI Endorsed Transactions on Scalable Information Systems 4(14) (2017)

10. Gkioulos, V., Gunleifsen, H., Weldehawaryat, G.K.: A systematic literature review on military
software defined networks. Future Internet 10(9) (2018) 88

11. Mahmud, R., Toosi, A.N., Ramamohanarao, K., Buyya, R.: Context-aware placement of
industry 4.0 applications in fog computing environments. IEEE Transactions on Industrial
Informatics 16(11) (2020) 7004–7013

12. Mahmud, R., Ramamohanarao, K., Buyya, R.: Application management in fog computing
environments: A taxonomy, review and future directions. ACM Comput. Surv. 53(4) (July
2020)

13. Afrin, M., Mahmud, M.R., Razzaque, M.A.: Real time detection of speed breakers and
warning system for on-road drivers. In: 2015 IEEE International WIE Conference on
Electrical and Computer Engineering (WIECON-ECE). (Dec 2015) 495–498

14. Afrin, M., Jin, J., Rahman, A., Tian, Y.C., Kulkarni, A.: Multi-objective resource allocation
for edge cloud based robotic workflow in smart factory. Future Generation Computer Systems
97 (2019) 119–130

15. Mahmud, R., Koch, F.L., Buyya, R.: Cloud-fog interoperability in iot-enabled healthcare
solutions. In: Proceedings of the 19th International Conference on Distributed Computing
and Networking. ICDCN ’18, New York, NY, USA, ACM (2018) 32:1–32:10

16. Patil, P., Gokhale, A., Hakiri, A.: Bootstrapping software defined network for flexible and
dynamic control plane management. In: Proceedings of the 2015 1st IEEE Conference on
Network Softwarization (NetSoft), IEEE (2015) 1–5

17. Bentstuen, O.I., Flathagen, J.: On bootstrapping in-band control channels in software defined
networks. In: 2018 IEEE International Conference on Communications Workshops (ICC
Workshops), IEEE (2018) 1–6

Software-Defined Multi-domain Tactical Networks 221

18. Sakic, E., Avdic, M., Van Bemten, A., Kellerer, W.: Automated bootstrapping of a fault-
resilient in-band control plane. In: Proceedings of the Symposium on SDN Research. (2020)
1–13

19. Bannour, F., Souihi, S., Mellouk, A.: Distributed sdn control: Survey, taxonomy, and
challenges. IEEE Communications Surveys & Tutorials 20(1) (2018) 333–354

20. Killi, B.P.R., Reddy, E.A., Rao, S.V.: Cooperative game theory based network partitioning
for controller placement in sdn. In: 2018 10th International Conference on Communication
Systems & Networks (COMSNETS), IEEE (2018) 105–112

21. Chen, W., Chen, C., Jiang, X., Liu, L.: Multi-controller placement towards sdn based on
louvain heuristic algorithm. IEEE Access 6 (2018) 49486–49497

22. Tran, J.A., Ramachandran, G.S., Danilov, C.B., Krishnamachari, B.: An evaluation of
consensus latency in partitioning networks. In: MILCOM 2019-2019 IEEE Military
Communications Conference (MILCOM), IEEE (2019) 853–858

23. Anadiotis, A.C.G., Milardo, S., Morabito, G., Palazzo, S.: Toward unified control of networks
of switches and sensors through a network operating system. IEEE Internet of Things Journal
5(2) (2018) 895–904

24. Giorgetti, A., Sgambelluri, A., Casellas, R., Morro, R., Campanella, A., Castoldi, P.: Control
of open and disaggregated transport networks using the open network operating system
(onos). IEEE/OSA Journal of Optical Communications and Networking 12(2) (2019) A171–
A181

25. Hu, H., Wang, Z., Cheng, G., Wu, J.: Mnos: a mimic network operating system for software
defined networks. IET Information Security 11(6) (2017) 345–355

26. Jo, H., Nam, J., Shin, S.: Nosarmor: Building a secure network operating system. Security
and Communication Networks 2018 (2018)

27. Shaghaghi, A., Kanhere, S.S., Kaafar, M.A., Jha, S.: Gwardar: Towards protecting a software-
defined network from malicious network operating systems. In: 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA), IEEE (2018) 1–5

28. Riggio, R., Khan, S.N., Subramanya, T., Yahia, I.G.B., Lopez, D.: Lightmano: Converging nfv
and sdn at the edges of the network. In: NOMS 2018-2018 IEEE/IFIP Network Operations
and Management Symposium, IEEE (2018) 1–9

29. Sunyaev, A.: Middleware. In: Internet Computing. Springer (2020) 125–154
30. Xiong, F., Li, A., Wang, H., Tang, L.: An sdn-mqtt based communication system for

battlefield uav swarms. IEEE Communications Magazine 57(8) (2019) 41–47
31. Park, J.H., Kim, H.S., Kim, W.T.: Dm-mqtt: An efficient mqtt based on sdn multicast for

massive iot communications. Sensors 18(9) (2018) 3071
32. Tamri, R., Rakrak, S.: The efficient network interoperability in iot through distributed

software-defined network with mqtt. In: International Conference Europe Middle East &
North Africa Information Systems and Technologies to Support Learning, Springer (2019)
286–291

33. Shieh, C.S., Yan, J.Y., Gu, H.X.: Sdn-based management framework for iot. International
Journal of Computer Theory and Engineering 11(1) (2019)

34. Dinculeană, D., Cheng, X.: Vulnerabilities and limitations of mqtt protocol used between iot
devices. Applied Sciences 9(5) (2019) 848

35. Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A survey of communication protocols
for internet of things and related challenges of fog and cloud computing integration. ACM
Computing Surveys (CSUR) 51(6) (2019) 1–29

36. Llorens-Carrodeguas, A., Cervello-Pastor, C., Leyva-Pupo, I.: A data distribution service in
a hierarchical sdn architecture: Implementation and evaluation. In: 2019 28th International
Conference on Computer Communication and Networks (ICCCN), IEEE (2019) 1–9

37. Yun, S., Park, J.h., Kim, H.s., Kim, W.T.: Importance-aware sdn control mechanism for
real-time data distribution services. In: 2018 International Conference on Information and
Communication Technology Convergence (ICTC), IEEE (2018) 1113–1118

222 R. Mahmud et al.

38. Vidal, I., Bellavista, P., Sanchez-Aguero, V., Garcia-Reinoso, J., Valera, F., Nogales, B.,
Azcorra, A.: Enabling multi-mission interoperable uas using data-centric communications.
Sensors 18(10) (2018) 3421

39. Talaminos-Barroso, A., Estudillo-Valderrama, M.A., Roa, L.M., Reina-Tosina, J., Ortega-
Ruiz, F.: A machine-to-machine protocol benchmark for ehealth applications–use case:
Respiratory rehabilitation. Computer methods and programs in biomedicine 129 (2016) 1–11

40. Moon, J.H., Shine, Y.T.: A study of distributed sdn controller based on apache kafka. In:
2020 IEEE International Conference on Big Data and Smart Computing (BigComp), IEEE
(2020) 44–47

41. Al Awadi, A.H.R.: Dual-layer sdn model for deploying and securing network forensic in
distributed data center. Current Journal of Applied Science and Technology (2017) 1–11

42. Bloebaum, T.H., Johnsen, F.T.: Evaluating publish/subscribe approaches for use in tactical
broadband networks. In: MILCOM 2015-2015 IEEE Military Communications Conference,
IEEE (2015) 605–610

43. Yánez, W., Mahmud, R., Bahsoon, R., Zhang, Y., Buyya, R.: Data allocation mechanism
for internet-of-things systems with blockchain. IEEE Internet of Things Journal 7(4) (2020)
3509–3522

44. Miguel, M.L., Penna, M.C., Jamhour, E., Pellenz, M.E.: A coap based control plane for
software defined wireless sensor networks. Journal of Communications and Networks 19(6)
(2017) 555–562

45. Miguel, M.L., Jamhour, E., Pellenz, M.E., Penna, M.C.: Sdn architecture for 6lowpan wireless
sensor networks. Sensors 18(11) (2018) 3738

46. Benson, K.E., Wang, G., Venkatasubramanian, N., Kim, Y.J.: Ride: A resilient iot data
exchange middleware leveraging sdn and edge cloud resources. In: 2018 IEEE/ACM Third
International Conference on Internet-of-Things Design and Implementation (IoTDI), IEEE
(2018) 72–83

47. Jahan, S., Rahman, M.S., Saha, S.: Application specific tunneling protocol selection for
virtual private networks. In: 2017 International Conference on Networking, Systems and
Security (NSysS), IEEE (2017) 39–44

48. Nguyen, T.T., Bonnet, C., Harri, J.: Sdn-based distributed mobility management for 5g
networks. In: 2016 IEEE Wireless Communications and Networking Conference, IEEE
(2016) 1–7

49. Wang, Y.C., Lin, Y.D., Chang, G.Y.: Sdn-based dynamic multipath forwarding for inter–data
center networking. International Journal of Communication Systems 32(1) (2019) e3843

50. Zhang, K., Bi, J., Wang, Y., Zhou, Y., Liu, Z.: Tunneling over ip based on match-action table
in software defined networks. In: Proceedings of the 13th International Conference on Future
Internet Technologies. (2018) 1–4

51. Yang, Z., Yeung, K.L.: Sdn candidate selection in hybrid ip/sdn networks for single link
failure protection. IEEE/ACM Transactions on Networking 28(1) (2020) 312–321

52. Yi, B., Congxiao, B., Xing, L.: Flowlan: A non-tunneling distributed virtual network based
on ipv6. In: 2016 IEEE Information Technology, Networking, Electronic and Automation
Control Conference, IEEE (2016) 229–234

53. Ochiai, T., Matsueda, K., Kondo, T., Takano, H., Kimura, R., Sawai, R., Teraoka, F.: Moclis:
A non-tunneling moving cell support protocol based on locator/id split for 5g system. In:
2018 IEEE International Conference on Communications (ICC), IEEE (2018) 1–7

54. Chen, J., Ye, Q., Quan, W., Yan, S., Do, P.T., Zhuang, W., Shen, X.S., Li, X., Rao, J.: Sdatp:
An sdn-based adaptive transmission protocol for time-critical services. IEEE Network 34(3)
(2019) 154–162

55. Geissler, S., Herrnleben, S., Bauer, R., Grigorjew, A., Zinner, T., Jarschel, M.: The power of
composition: Abstracting a multi-device sdn data path through a single api. IEEE Transactions
on Network and Service Management 17(2) (2019) 722–735

56. Conti, M., Kaliyar, P., Lal, C.: Censor: Cloud-enabled secure iot architecture over sdn
paradigm. Concurrency and Computation: Practice and Experience 31(8) (2019) e4978

Software-Defined Multi-domain Tactical Networks 223

57. Municio, E., Balemans, N., Latré, S., Marquez-Barjal, J.: Leveraging distributed protocols
for full end-to-end softwarization in iot networks. In: 2020 IEEE 17th Annual Consumer
Communications & Networking Conference (CCNC), IEEE (2020) 1–6

58. Ma, P., You, J., Wang, J.: An efficient multipath routing schema in multi-homing scenario
based on protocol-oblivious forwarding. Frontiers of Computer Science 14(4) (2020) 1–12

59. Jia, Z., Wang, J., Chen, X., Kang, L.: Enable device-aware flow control with enhanced
protocol-oblivious forwarding (pof). In: 2019 IEEE 9th International Conference on
Electronics Information and Emergency Communication (ICEIEC), IEEE (2019) 5–8

60. Li, M., Wang, X., Tong, H., Liu, T., Tian, Y.: Sparc: Towards a scalable distributed
control plane architecture for protocol-oblivious sdn networks. In: 2019 28th International
Conference on Computer Communication and Networks (ICCCN), IEEE (2019) 1–9

61. Mei, L., Tong, H., Liu, T., Tian, Y.: Psa: An architecture for proactively securing protocol-
oblivious sdn networks. In: 2019 IEEE 9th International Conference on Electronics
Information and Emergency Communication (ICEIEC), IEEE (2019) 1–6

62. Rotsos, C., Farshad, A., King, D., Hutchison, D., Zhou, Q., Gray, A.J., Wang, C.X.,
McLaughlin, S.: Reasonet: Inferring network policies using ontologies. In: 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft), IEEE (2018) 159–167

63. Benayas, F., Carrera, Á., García-Amado, M., Iglesias, C.A.: A semantic data lake framework
for autonomous fault management in sdn environments. Transactions on Emerging Telecom-
munications Technologies 30(9) (2019) e3629

64. Kim, S.I., Kim, H.S.: Semantic ontology-based nfv service modeling. In: 2018 Tenth
International Conference on Ubiquitous and Future Networks (ICUFN), IEEE (2018) 674–
678

65. Atoui, W.S., Yahia, I.G.B., Gaaloul, W.: Semantic-based global network view construction
in software defined networks with multiple controllers. In: 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft), IEEE (2018) 252–256

66. Tao, M., Ota, K., Dong, M.: Ontology-based data semantic management and application in
iot-and cloud-enabled smart homes. Future generation computer systems 76 (2017) 528–539

67. Poularakis, K., Iosifidis, G., Tassiulas, L.: Sdn-enabled tactical ad hoc networks: Extending
programmable control to the edge. IEEE Communications Magazine 56(7) (2018) 132–138

68. Liu, W., Hu, X., Yan, X.: Controller deployments based on qos guarantees in sdn-enabled
tactical ad hoc networks. In: 2020 12th International Conference on Communication Software
and Networks (ICCSN), IEEE (2020) 73–78

69. Poularakis, K., Qin, Q., Nahum, E.M., Rio, M., Tassiulas, L.: Flexible sdn control in tactical
ad hoc networks. Ad Hoc Networks 85 (2019) 71–80

70. Suri, N., Hansson, A., Nilsson, J., Lubkowski, P., Marcus, K., Hauge, M., Lee, K., Buchin,
B., Mısırhoğlu, L., Peuhkuri, M.: A realistic military scenario and emulation environment
for experimenting with tactical communications and heterogeneous networks. In: 2016
International Conference on Military Communications and Information Systems (ICMCIS),
IEEE (2016) 1–8

71. Zhao, Q., Du, P., Gerla, M., Brown, A.J., Kim, J.H.: Software defined multi-path tcp
solution for mobile wireless tactical networks. In: MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM), IEEE (2018) 1–9

72. Logan, B.E., Xie, G.G.: Automating distributed firewalls: A case for software defined tactical
networks. In: MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM),
IEEE (2019) 1–6

73. Zwane, S., Tarwireyi, P., Adigun, M.: A flow-based ids for sdn-enabled tactical networks. In:
2019 International Multidisciplinary Information Technology and Engineering Conference
(IMITEC), IEEE (2019) 1–6

74. Zacarias, I., Schwarzrock, J., Gaspary, L.P., Kohl, A., Fernandes, R.Q., Stocchero, J.M.,
de Freitas, E.P.: Enhancing mobile military surveillance based on video streaming by
employing software defined networks. Wireless Communications and Mobile Computing
2018 (2018)

224 R. Mahmud et al.

75. Chen, K., Lv, N., Zhao, S., Wang, X., Zhao, J.: A scheme for improving the communications
efficiency between the control plane and data plane of the sdn-enabled airborne tactical
network. IEEE Access 6 (2018) 37286–37301

76. Śliwa, J.: Sdn and nvf in support for making military networks more survivable. In: 2019
International Conference on Military Communications and Information Systems (ICMCIS),
IEEE (2019) 1–6

77. Zhou, D., Yan, Z., Liu, G., Atiquzzaman, M.: An adaptive network data collection system in
sdn. IEEE Transactions on Cognitive Communications and Networking 6(2) (2019) 562–574

78. Priyadarsini, M., Mukherjee, J.C., Bera, P., Kumar, S., Jakaria, A., Rahman, M.A.: An adap-
tive load balancing scheme for software-defined network controllers. Computer Networks
164 (2019) 106918

79. Toosi, A.N., Mahmud, R., Chi, Q., Buyya, R.: 4. In: Management and Orchestration of
Network Slices in 5G, Fog, Edge, and Clouds. John Wiley & Sons, Ltd (2019) 79–101

80. Marinova, S., Rakovic, V., Denkovski, D., Lin, T., Atanasovski, V., Bannazadeh, H.,
Gavrilovska, L., Leon-Garcia, A.: End-to-end network slicing for flash crowds. IEEE
Communications Magazine 58(4) (2020) 31–37

81. Hao, Y., Jiang, Y., Hossain, M.S., Ghoneim, A., Yang, J., Humar, I.: Data-driven resource
management in a 5g wearable network using network slicing technology. IEEE Sensors
Journal 19(19) (2018) 8379–8386

82. Singh, S.K., Salim, M.M., Cha, J., Pan, Y., Park, J.H.: Machine learning-based network sub-
slicing framework in a sustainable 5g environment. Sustainability 12(15) (2020) 6250

83. Cunha, V.A., da Silva, E., de Carvalho, M.B., Corujo, D., Barraca, J.P., Gomes, D., Granville,
L.Z., Aguiar, R.L.: Network slicing security: Challenges and directions. Internet Technology
Letters 2(5) (2019) e125

84. Hawilo, H., Jammal, M., Shami, A.: Network function virtualization-aware orchestrator
for service function chaining placement in the cloud. IEEE Journal on Selected Areas in
Communications 37(3) (2019) 643–655

85. Sun, G., Li, Y., Yu, H., Vasilakos, A.V., Du, X., Guizani, M.: Energy-efficient and traffic-
aware service function chaining orchestration in multi-domain networks. Future Generation
Computer Systems 91 (2019) 347–360

86. Tajiki, M.M., Salsano, S., Chiaraviglio, L., Shojafar, M., Akbari, B.: Joint energy efficient and
qos-aware path allocation and vnf placement for service function chaining. IEEE Transactions
on Network and Service Management 16(1) (2018) 374–388

87. Sallam, G., Gupta, G.R., Li, B., Ji, B.: Shortest path and maximum flow problems under
service function chaining constraints. In: IEEE INFOCOM 2018-IEEE Conference on
Computer Communications, IEEE (2018) 2132–2140

88. Sun, G., Xu, Z., Yu, H., Chen, X., Chang, V., Vasilakos, A.V.: Low-latency and resource-
efficient service function chaining orchestration in network function virtualization. IEEE
Internet of Things Journal (2019)

89. Sanz, I.J., Mattos, D.M.F., Duarte, O.C.M.B.: Sfcperf: An automatic performance evaluation
framework for service function chaining. In: NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium, IEEE (2018) 1–9

90. Compastié, M., Badonnel, R., Festor, O., He, R., Kassi-Lahlou, M.: Unikernel-based
approach for software-defined security in cloud infrastructures. In: NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium, IEEE (2018) 1–7

91. Compastié, M., Badonnel, R., Festor, O., He, R.: A tosca-oriented software-defined security
approach for unikernel-based protected clouds. In: 2019 IEEE Conference on Network
Softwarization (NetSoft), IEEE (2019) 151–159

92. Ventre, P.L., Lungaroni, P., Siracusano, G., Pisa, C., Schmidt, F., Lombardo, F., Salsano,
S.: On the fly orchestration of unikernels: Tuning and performance evaluation of virtual
infrastructure managers. IEEE Transactions on Cloud Computing (2018)

93. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of experience (qoe)-
aware placement of applications in fog computing environments. Journal of Parallel and
Distributed Computing 132 (2019) 190 – 203

Software-Defined Multi-domain Tactical Networks 225

94. Skorin-Kapov, L., Varela, M., Hoßfeld, T., Chen, K.T.: A survey of emerging concepts and
challenges for qoe management of multimedia services. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM) 14(2s) (2018) 1–29

95. Mirashe, S.P., Kalyankar, N.: Quality of service with bandwidth. arXiv preprint
arXiv:1003.4073 (2010)

96. Li, G., Wu, J., Li, J., Zhou, Z., Guo, L.: Sla-aware fine-grained qos provisioning for multi-
tenant software-defined networks. IEEE access 6 (2017) 159–170

97. Jeong, S., Lee, D., Hyun, J., Li, J., Hong, J.W.K.: Application-aware traffic engineering in
software-defined network. In: 2017 19th Asia-Pacific Network Operations and Management
Symposium (APNOMS), IEEE (2017) 315–318

98. Ohms, J., Gebauer, O., Kotelnikova, N., Wermser, D.: Qos in software-defined networking-
concepts and experiences. Mobilkommunikation: Technologien und Anwendungen

99. Ratkovic, A.L., Thambidurai, J., Kulkin, M.: Intent-based analytics (August 25 2020) US
Patent 10,756,983.

100. Feamster, N., Gupta, A., Rexford, J., Willinger, W.: Nsf workshop on measurements for self-
driving networks. In: Workshop on Measurements for Self-Driving Networks was held at
Princeton University on April. Volume 4. (2019) 5

101. Zinner, T., Jarschel, M., Blenk, A., Wamser, F., Kellerer, W.: Dynamic application-aware
resource management using software-defined networking: Implementation prospects and
challenges. In: 2014 IEEE Network Operations and Management Symposium (NOMS), IEEE
(2014) 1–6

102. Durner, R., Blenk, A., Kellerer, W.: Performance study of dynamic qos management for
openflow-enabled sdn switches. In: 2015 IEEE 23rd International Symposium on Quality of
Service (IWQoS), IEEE (2015) 177–182

103. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer,
J., Zhou, J., Zhu, M., et al.: B4: Experience with a globally-deployed software defined wan.
ACM SIGCOMM Computer Communication Review 43(4) (2013) 3–14

104. Moshref, M., Yu, M., Govindan, R., Vahdat, A.: Dream: dynamic resource allocation for
software-defined measurement. In: Proceedings of the 2014 ACM conference on SIGCOMM.
(2014) 419–430

105. Kumar, A., Jain, S., Naik, U., Raghuraman, A., Kasinadhuni, N., Zermeno, E.C., Gunn,
C.S., Ai, J., Carlin, B., Amarandei-Stavila, M., et al.: Bwe: Flexible, hierarchical bandwidth
allocation for wan distributed computing. In: Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication. (2015) 1–14

106. Yap, K.K., Motiwala, M., Rahe, J., Padgett, S., Holliman, M., Baldus, G., Hines, M., Kim,
T., Narayanan, A., Jain, A., et al.: Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering. In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. (2017) 432–445

107. Gharakheili, H.H., Lyu, M., Wang, Y., Kumar, H., Sivaraman, V.: itelescope: Softwarized
network middle-box for real-time video telemetry and classification. IEEE Transactions on
Network and Service Management 16(3) (2019) 1071–1085

108. Madanapalli, S.C., Gharakhieli, H.H., Sivaraman, V.: Inferring netflix user experience from
broadband network measurement. In: 2019 Network Traffic Measurement and Analysis
Conference (TMA), IEEE (2019) 41–48

109. Madanapalli, S.C., Gharakheili, H.H., Sivaraman, V.: Assisting delay and bandwidth sensitive
applications in a self-driving network. In: Proceedings of the 2019 Workshop on Network
Meets AI & ML. (2019) 64–69

110. Toosi, A.N., Son, J., Buyya, R.: Clouds-pi: A low-cost raspberry-pi based micro data center
for software-defined cloud computing. IEEE Cloud Computing 5(5) (2018) 81–91

111. Van Bemten, A., Ðerić, N., Varasteh, A., Blenk, A., Schmid, S., Kellerer, W.: Empirical
predictability study of sdn switches. In: 2019 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), IEEE (2019) 1–13

226 R. Mahmud et al.

112. Vizarreta, P., Sakic, E., Kellerer, W., Machuca, C.M.: Mining software repositories for
predictive modelling of defects in sdn controller. In: 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), IEEE (2019) 80–88

113. Sakic, E., Kellerer, W.: Impact of adaptive consistency on distributed sdn applications: An
empirical study. IEEE Journal on Selected Areas in Communications 36(12) (2018) 2702–
2715

114. United States Naval Research Laboratory: Extendable mobile ad-hoc network emulator
(emane) (https://www.nrl.navy.mil/itd/ncs/products/emane (accessed October 6, 2020))

115. Foundation, O.N.: Mininet (https://www.opennetworking.org/mininet/ (accessed October 6,
2020))

116. United States Naval Research Laboratory: Common open research emulator (core) (https://
www.nrl.navy.mil/itd/ncs/products/core (accessed October 6, 2020))

117. Marcus, K.M., Chan, K.S., Hardy, R.L., Paul, L.Y.: An environment for tactical sdn
experimentation. In: MILCOM 2018-2018 IEEE Military Communications Conference
(MILCOM), IEEE (2018) 1–9

118. Campioni, L., Hauge, M., Landmark, L., Suri, N., Tortonesi, M.: Considerations on the
adoption of named data networking (ndn) in tactical environments. In: 2019 International
Conference on Military Communications and Information Systems (ICMCIS), IEEE (2019)
1–8

119. Zhao, Q., Brown, A.J., Kim, J.H., Gerla, M.: An integrated software-defined battlefield
network testbed for tactical scenario emulation. In: MILCOM 2019-2019 IEEE Military
Communications Conference (MILCOM), IEEE (2019) 373–378

120. Suri, N., Breedy, M.R., Marcus, K.M., Fronteddu, R., Cramer, E., Morelli, A., Campioni,
L., Provosty, M., Enders, C., Tortonesi, M., et al.: Experimental evaluation of group
communications protocols for data dissemination at the tactical edge. In: 2019 International
Conference on Military Communications and Information Systems (ICMCIS), IEEE (2019)
1–8

121. Li, S.: Low latency queuing control in extendable mobile ad-hoc network emulator (emane).
Master’s Thesis (2019)

122. Johnsen, F.T., Bloebaum, T.H., Jansen, N., Bovet, G., Manso, M., Toth, A., Chan, K.:
Evaluating publish/subscribe standards for situational awareness using realistic radio models
and emulated testbed. International Command and Control Research and Technology
Symposium (ICCRTS) proceedings (2019)

123. Strayer, T., Ramanathan, R., Coffin, D., Nelson, S., Atighetchi, M., Adler, A., Blais,
S., Thapa, B., Tetteh, W., Shurbanov, V., et al.: Mission-centric content sharing across
heterogeneous networks. In: 2019 International Conference on Computing, Networking and
Communications (ICNC), IEEE (2019) 1034–1038

124. Dudukovich, R., Clark, G., Papachristou, C.: Evaluation of classifier complexity for
delay tolerant network routing. In: 2019 IEEE Cognitive Communications for Aerospace
Applications Workshop (CCAAW), IEEE (2019) 1–7

125. Singh, P.K., Kar, K.: Countering data and control plane attack on olsr using passive neighbor
policing and inconsistency identification. In: Proceedings of the 15th ACM International
Symposium on QoS and Security for Wireless and Mobile Networks. (2019) 19–28

126. Penning, A., Baumgärtner, L., Höchst, J., Sterz, A., Mezini, M., Freisleben, B.: Dtn7:
An open-source disruption-tolerant networking implementation of bundle protocol 7. In:
International Conference on Ad-Hoc Networks and Wireless, Springer (2019) 196–209

127. Peuster, M., Kampmeyer, J., Karl, H.: Containernet 2.0: A rapid prototyping platform for
hybrid service function chains. In: 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), IEEE (2018) 335–337

128. Miletić, S., Ðord̄ević, B., Rand̄ić, S., Vasić, A.: Impact hardware raid solutions at the data
distribution on tactical integrated telecommunication and computer network. In: 2019 27th
Telecommunications Forum (TELFOR), IEEE (2019) 1–4

https://www.nrl.navy.mil/itd/ncs/products/emane
https://www.opennetworking.org/mininet/
https://www.nrl.navy.mil/itd/ncs/products/core
https://www.nrl.navy.mil/itd/ncs/products/core

Software-Defined Multi-domain Tactical Networks 227

129. Lim, J., Keum, D., Ko, Y.B.: A cooperative trust evaluation scheme for tactical wireless sensor
networks. In: Proceedings of the 3rd International Conference on Software Engineering and
Information Management. (2020) 183–187

130. Keum, D., Lim, J., Ko, Y.B.: Trust based multipath qos routing protocol for mission-critical
data transmission in tactical ad-hoc networks. Sensors 20(11) (2020) 3330

131. Bodra, S.P., et al.: Performance analysis of hybrid routing in manet with group mobility
for search and rescue applications. In: Proceedings of International Conference on Wireless
Communication, Springer (2020) 353–361

132. Rath, M., Pattanayak, B.K.: Prevention of replay attack using intrusion detection system
framework. In: Progress in Advanced Computing and Intelligent Engineering. Springer
(2019) 349–357

133. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience 41(1) (2011) 23–50

134. Mahmud, M.R., Afrin, M., Razzaque, M.A., Hassan, M.M., Alelaiwi, A., Alrubaian, M.:
Maximizing quality of experience through context-aware mobile application scheduling in
cloudlet infrastructure. Software: Practice and Experience 46(11) (2016) 1525–1545

135. Mahmud, R., Buyya, R.: 17. In: Modeling and Simulation of Fog and Edge Computing
Environments Using iFogSim Toolkit. John Wiley & Sons, Ltd (2019) 433–465

136. Jung, J., Kim, H.: Mr-cloudsim: Designing and implementing mapreduce computing model
on cloudsim. In: 2012 International Conference on ICT Convergence (ICTC), IEEE (2012)
504–509

137. Son, J., Buyya, R.: Latency-aware virtualized network function provisioning for distributed
edge clouds. Journal of Systems and Software 152 (2019) 24–31

138. Toosi, A.N., Son, J., Chi, Q., Buyya, R.: Elasticsfc: Auto-scaling techniques for elastic service
function chaining in network functions virtualization-based clouds. Journal of Systems and
Software 152 (2019) 108–119

139. Jayanetti, A., Buyya, R.: J-opt: A joint host and network optimization algorithm for energy-
efficient workflow scheduling in cloud data centers. In: Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing. (2019) 199–208

140. Afrin, M., Jin, J., Rahman, A.: Energy-delay co-optimization of resource allocation for
robotic services in cloudlet infrastructure. In: International Conference on Service-Oriented
Computing, Springer (2018) 295–303

Mobility driven Cloud-Fog-Edge
Framework for Location-Aware Services:
A Comprehensive Review

Shreya Ghosh and Soumya K. Ghosh

Abstract With the pervasiveness of IoT devices, smart-phones and improvement of
location-tracking technologies, huge volume of heterogeneous geo-tagged (location
specific) data is generated facilitating several location-aware services. The analytics
with this spatio-temporal (having location and time dimensions) datasets provide
varied important services such as, smart transportation, emergency services (health-
care, national defence or urban planning). While cloud paradigm is suitable
for the capability of storage and computation, the major bottleneck is network
connectivity loss. In time-critical application, where real-time response is required
for emergency service-provisioning, such connectivity issues increases the latency
and thus affects the overall quality of system (QoS). To overcome the issue,
fog/edge topology is emerged, where partial computation is carried out in the
edge of the network to reduce the delay in communication. Such fog/edge based
system complements the cloud technology and extends the features of the system.
This chapter discusses cloud-fog-edge based hierarchical collaborative framework,
where several components are deployed to improve the QoS. On the other side
mobility is another critical factor to enhance the efficacy of such location-aware
service provisioning. Therefore, this chapter discusses the concerns and challenges
associated with mobility-driven cloud-fog-edge based framework to provide several
location-aware services to the end-users efficiently.

Keywords Mobility · Location-aware service · Cloud computing · Edge
computing · Trajectory data analytics

S. Ghosh (�) · S. K. Ghosh
Department of Computer Science and Engineering, Indian Institute of Technology (IIT)
Kharagpur, Kharagpur, West Bengal, India
e-mail: shreya.cst@gmail.com; skg@cse.iitkgp.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_10

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_10&domain=pdf
mailto:shreya.cst@gmail.com
mailto:skg@cse.iitkgp.ac.in
https://doi.org/10.1007/978-3-030-69893-5_10

230 S. Ghosh and S. K. Ghosh

1 Introduction

With the rapid development of sensor and communication technologies, GPS
equipped devices and Internet of Things (IoT), varied objects such as people,
resources, vehicles are interconnected and intertwined in anywhere at any time.
Alongside, with the proliferation of mobile phone users and deployment of GPS
enabled smart-devices, a huge amount of GPS traces of different geographical
regions are easily available. This massive amount of GPS traces has fostered
various research directions namely human movement behavior or activity learning
[1–3] traffic analysis, improved route planning [4, 5] and resource allocation [6]—
which subsequently lead to smart-living of people. While IoT provides seamless
connectivity to correlate people and objects, cloud paradigm offers distributed
platform to efficiently carry out the compute-intensive tasks. Furthermore, with the
latest technology, smart mobile devices are emerging as varied application enablers
for customized users’ recommendation systems, e-health apps and intelligent
route planner. Mobile cloud computing (MCC) promotes innovative solutions and
approaches to leverage the computational and storage power of cloud computing
and extend the applications and services to mobile phone users on demand basis.
In recent times, IoST (Internet of Spatial Things) [7] has been emerged, which
integrates IoT and spatio-temporal data. The analysis of spatio-temporal traces such
as movement information, traffic data, weather information, help to incorporate
context, and thus adds more intelligence in the processing.

In this direction, this chapter focuses on several aspects of mobility-aware cloud-
fog-edge computing and we put forward the future research avenues and open
challenges in this research domain. Figure 1 illustrates the overall architecture of the
mobility-aware cloud-fog-edge network. As depicted, there are several applications,
namely smart transportation system, smart mobility services, smart home etc. It

Fig. 1 Overall architecture of the mobility-aware cloud-fog-edge network

Review of Mobility driven Cloud-Fog-Edge Framework 231

may be noted that when the user is in move, the seamless connectivity becomes
a challenging issue which in turn increases the delay/service-provisioning time and
affects the QoS. The subsequent increase in delay of delivering result may be fatal in
case of emergency services such as ambulance or fire extinguisher car. On the other
hand, mobility related information plays an important role [8]. If the optimal route
(less congestion and distance) can be extracted a priori, then the service provisioning
time can be reduced further. In this direction, the framework has three layers. In the
bottom layer, the end-users are present. In the top-most layer, the compute-intensive
tasks such as mobility-analysis, sensor-data mining and health-data analysis are
carried out in distant cloud servers. The intermediate layers (Fog and edge layer)
are used to cache processed information and communicate with the agents for fast
delivery of the service. This chapter aims to provide a systematic survey focusing
on different research aspects and existing works in all these layers (cloud-fog-edge).
Furthermore, the chapter also highlights the challenging and interesting applications
using this cloud/fog/edge networks. The major contributions of this chapter are
summarized as follows:

1. A novel taxonomy based on the existing approaches and algorithms to provide
mobility-aware services in the cloud-fog-edge hierarchical network is presented.

2. The data processing and machine learning techniques at fog/edge and cloud
servers are systemically discussed.

3. A topology of varied applications and services provisioned by the hierarchical
network is presented.

4. The open research challenges and issues are discussed to provision intelligent
and efficient location-based services.

This survey will be beneficial for researchers, policymakers and can act as the
foundation of mobility-driven cloud-fog-edge network.

2 Motivations and Related Computing Paradigms

In this section, we explain the motivation or utility of mobility-aware cloud-fog-
edge framework, and briefly describe the definitions of cloud, fog, edge nodes and
mobility-modelling. We also refer few use-cases where mobility-driven framework
is necessary.

Owing to the huge amount of data generated from varied IoT devices, it is
crucial to store, manage and analyse for extracting meaningful information from
the datasets. Few examples of the datasets are movement data from vehicles,
people; climatology parameters from the sensor nodes; or data collected from smart-
home system. Cloud computing is the on-demand availability of computer system
resources, and facilitates services over the Internet. It may be noted that most of the
tech giants host cloud services and provides public cloud platforms, such as, Google
Cloud Platform (GCP), Amazon EC2, Microsoft Azure, IBM Bluemix etc. In
summary, this technology is beneficial for its flexibility, efficiency and on-demand

232 S. Ghosh and S. K. Ghosh

service. The cloud servers or data-centers help to store this huge amount of historical
records to analyse and find patterns. This in turn helps to facilitate applications
such as smart and effective transportation, intelligent defence techniques or weather
prediction. In addition, most of the times the accumulated data from the IoT or
sensors are unstructured, and partial computation is required near the source of the
data. Again, the IoT devices or sensors span a large geographical area, and sending
data to distant cloud servers frequently affects the efficacy of the system as a whole.
This gap is managed by the fog/edge computing. The fog/edge computing brings
down the computing closer to the end-user or the devices where data has been
collected, unlike carrying out all computations in the cloud data-centers. The users
can get the storage or computing services at the edge of the network using this
cloud-fog-edge collaborative framework.

Any network device with the capability of storage, computing, and connectivity
can be used as fog/edge nodes. For instance, the routers, switches, video surveillance
cameras etc. deployed at any location with a network connection. These nodes
accumulate data and can partially compute, if required. The data processing is
performed at the edge network [9], which consists of end devices, such as, mobile
phone, border routers, bridges, set-top boxes, base stations, wireless access points
etc. It may be noted that these must have necessary capabilities for supporting
edge computation. In summary, edge computing provides faster responses, and also
reduces the need of sending bulk data to the cloud datacenters. Integrating the edge
and cloud paradigms, several new research topics have been emerged. Mobile Edge
computing (MEC) and Mobile Cloud computing (MCC) are two prominent research
areas in this domain. MEC is one of the key enablers of smart cellular base stations.
It combines the capability of edge servers along with the cellular base stations
[10]. The connection with the distant cloud server is optional in MEC. Moreover,
researchers are working such that MEC can support 5G communication. In short,
mobile edge computing aims to provide faster cellular services for the customers
and thus, enhances network efficiency. On the other hand, now-a-days people tend
to execute necessary tasks/application in their handheld devices. But these handheld
devices are resource-hungry and have limited storage and computation capability.
Hence, it is better to perform or offload compute intensive tasks outside the handheld
devices. In such scenarios, mobile cloud computing plays an important role. The
light-weight cloud servers cloudlet [11] are placed at the edge network. Like MEC,
MCC combines the capability and features of cloud computing, mobile computing
and wireless communication for better Quality of Experience (QoE) of the end-
users.

However, there are few challenges in this collaborative framework. Firstly, how
we can manage the fog/edge computing infrastructure and what resource allocation
scheme can be adapted. Since, these fog/edge nodes have limited resources, proper
resource management should be adapted when large number of service-requests are
made at a particular instance. Moreover, several factors such as service availability,
power or energy consumption [12], latency or delay should be considered while
developing such framework. Therefore, the mapping of cloud/fog/edge nodes to
several applications remains a challenging issue. Another critical part is security

Review of Mobility driven Cloud-Fog-Edge Framework 233

and privacy issues such as, trust management, access control etc. A proper security
model based on the sensitivity of the datasets and requirements of the application is
much needed in such cloud/fog/edge infrastructure.

There are several use-cases which utilize such cloud-fog-edge collaborative
framework [13, 14]. The work Mobi-IoST (Mobility-aware Internet of Spatial
Things) [8] illustrates an example of time-critical application, where latency or
delay is very important and can be fatal. For instance, in an ambulance, continuous
monitoring of patient’s vital health parameters such as blood-pressure, pulse-rate,
body-temperature etc. is required. These data are collected by IoT devices and the
accumulated health data is sent to the nearby fog device through a client application.
In this work, authors have used Road Side Units (RSU) as fog device, while the
moving agent is the edge device. The preliminary checking of the health data
is carried out in RSUs and in case any abnormality is detected, the data is sent
to the cloud server. The cloud datacenter extracts the location of the ambulance,
and redirects it towards the nearest health center. In the paper, authors have also
emphasized the present state of the traffic is important, since the ambulance or any
vehicle with patient needs to travel the roads with minimum congestion. Another
work, named Locator [15], develops a hierarchical framework with cloud, edge, fog
nodes to provide food delivery services in minimum delay. There are also several
sub-domains of IoT, such as, Internet of Multimedia Things (IoMT), Internet of
Health Things (IoHT) [16], Internet of Vehicles (IoV) etc. [7]. The work focusing
on Internet of Health Thing using delay-aware fog network is mentioned in [17]. It
may be noted that mobility or continuous change of locations of users or agents is
a challenging, since connectivity may be lost. Therefore, analysing the movement
patterns of users is important to enhance the quality of service. Mobility analytics is
an integral part of developing an effective and delay-aware solution for any mission-
critical or time-critical application.

In brief, after analysing the features of cloud-fog-edge computing, the challenges
in this domain can be listed as follows.

• Resource Management: Since the fog and edge nodes have limited resources,
it is difficult to assign large scale analytics in resource constrained nodes.
Therefore, proper resource management modules should be developed to avoid
this bottleneck. One aspect is adapting distributed fog/edge environment to
cope up with the growing data amount. Also there must be specific policies to
assign computational tasks and services among edge, fog and cloud nodes. Data
visualization through web-interfaces are also not easy task through edge or fog
nodes.

• Mobility Sensitive: Seamless connectivity due to the mobility of IoT devices is
a critical concern for time-critical applications. The connection interruption and
consequently the increase in delay affects the QoS. With the rapid use of mobile
(smart) devices, the framework must be able to accommodate mobility data. How
to analyse the huge amount of movement information and extract useful patterns
are challenging tasks. Moreover, predicting next location-sequences of agents
is also crucial, since it may help to take decision or offload task in the nearby

234 S. Ghosh and S. K. Ghosh

fog nodes. However, there are several factors such as, present traffic condition,
users’ own preferences and time of the movement etc. These external contexts
make the location prediction task more difficult. On the other hand, mobility data
is sensitive, and proper measures must be taken to secure the whereabouts of the
users.

• Security Aspect: Fog or edge nodes are highly vulnerable to security attacks.
Since these nodes handle and manage sensitive data (health related or mission
critical, like Defence application), proper security measurements are must.
Access control schemes, including, authenticated access to services and nodes,
security algorithms are required in distributed paradigm like edge/Fog computing
are hard to ensure. Again, strict implementation or methods of security mecha-
nisms affect the quality of service of edge and fog computing.

• Infrastructure or Organizational structure: As mentioned, the framework has
different types of components, like cloud servers, edge and fog nodes. Several
objects like routers, access points can act as potential edge and fog computing
infrastructure. Therefore, the processors of these components are quite different.
Implement an end-to-end framework using different components is a really
difficult task. It is absolutely necessary to select suitable devices based on
operational requirements and execution environment. The resource configuration
and location of the deployment are also two major factors to provide better
service.

In the next part, we will discuss the taxonomy in varied aspects and briefly describe
the existing literature in each of the aspects systematically.

3 Taxonomy: Cloud-Fog-Edge System

In this section, we discuss the taxonomy of Cloud-fog-edge collaborative system.
For this taxonomy, we explore the system aspect and the associated challenges
in this domain. Figure 2 shows the cloud-fog-edge system taxonomy, where we
observe four broad aspects, such as, infrastructure protocol, seamless connectivity,
security issues and resource provisioning.

3.1 Infrastructure Protocol

The cloud-fog-edge collaborative system has different challenges. Amongst them,
few challenges are identified and discussed here.

As mentioned earlier, varied devices based on the requirement of the system
can act as fog/edge nodes. In general, the fog/edge nodes are geographically-
distributed. These are deployed at varied places, such as, shopping malls, roads,
airport-terminals etc. These nodes are virtualized and have network connectivity

Review of Mobility driven Cloud-Fog-Edge Framework 235

Fig. 2 Taxonomy of cloud-fog-edge system

along with storage and computation capabilities. Some of the works classify the
nodes as micro/macro/nano-servers based on their physical size [18]. Zeng et al.
[19] utilize fog server as computational and storage servers in a software-defined
embedded system. In [8], authors use RSU as fog-device to communicate between
end-user and cloud-data center, since the user is in move. Cloud-based services
are extended using cloudlets [11, 20]. The authors present a methodology for user-
cloudlet association to reduce the cost in fog computing [20]. The conventional base
stations are used for data signal processing and connectivity [21]. Small cell base
stations are also used as fog nodes.

The communication or collaboration among the nodes is an important aspect
as well. Fog nodes can form a cluster and collaborate among them for execution
of a task [22, 23]. These clusters are formed either the types of the nodes
(homogeneity) or the location of the deployed nodes. Computational load balancing
and functional sub-system development have the higher priority while forming the
cluster. Although, this cluster based technique is effective for some cases, the static
clusters become the bottleneck in scalability of the system. In summary, based on
the requirement (computation, storage and cost) of the application, proper node
selection is very important. Peer to Peer (P2P) collaboration among the nodes is
another technique, which can be either hierarchical or flat order [24]. There are
several types based on proximity, such as home, local, non-local. Anyway, reliability
and access control are the issues associated with P2P. Master-slave is another
technique in this node-collaboration [25].

Load balancing amongst these nodes are a challenging issue to prevent overload-
ing of any particular node. A novel load balancing technique for edge data centers is
presented in [26]. The authors in [27] propose dynamic edge selection to balance the

236 S. Ghosh and S. K. Ghosh

loading of the nodes. Another work [28] explores the dynamic resource allocation
and come up with an adaptive resource allocation scheme. The proposed method
integrates utilization of bandwidth, computation resources by using dynamic load
balancing. Oueis et al. [23] propose another dynamic load balancing technique by
analysing the data flow in real-time.

In task-placement there is a trade-off between high capability infrastructure
(cloud data centers) and connectivity issues. Several researchers have explored the
cloud-edge topology [29], fog-to-cloud [30] or combined fog-cloud [31] system.
The cloud-edge hybrid system for learning techniques has been proposed in [32].
The authors claim that the load variations in a neural network also should be
considered for better efficacy. Each of the integrated system has its own advantages
and disadvantages. It may be note that cloud servers have more computation and
storage capabilities however, they are vulnerable to network connectivity lost issue.
In such case, fog/edge nodes exhibit less network communication cost and better
latency. Therefore, the time-critical applications such as, emergency services or
defence applications should adapt such system, where real-time response can be
made.

3.2 Connectivity

Seamless connectivity is a critical issue in enhancing the quality of service (QoS).
Latency management consists of managing the service delivery time by an accepted
temporal threshold. The temporal threshold is measured by the maximum latency
of a service request or the requirement regarding QoS. Some researchers have
emphasized on efficient collaboration technique such that execution can be made
faster [23]. Zeng et al. [19] minimizes the computation and communication latency
by task distribution. A low-latency Fog network has been presented in [33] for
better latency management. The aim of all these works to select the node capable to
provide service in minimum delay.

3.3 Security Issues

Security is a major concern as there are several communication between underlying
network and cloud data-centers [34, 35].

Users authentication is one of the major aspect in fog/edge based systems.
Here, the components follow “pay as you go” model, therefore, there is restricted
access. There are various methods, like, user authentication, device authentication,
data migration authentication and instance authentication [36]. Since the data are
collected from end-users in most of the cases, proper privacy assurance is required
[22].

Review of Mobility driven Cloud-Fog-Edge Framework 237

The encryption in the fog/edge nodes is also required, since the data is send
to cloud datacenters from fog/edge devices. Aazam et al. [37] has appended a data
encryption layer in their system architecture for encryption. As fog/edge nodes have
limited resources, it is difficult to manage large concurrent service-requests. Here,
Denial-of-Service (DoS) is critical since it affects the system throughput at a large
margin. Intrusion detection method is required to prevent such DoS attack. A work
[38] propose a cloudlet mesh based security framework to detect such intrusion on
cloud and any intermediate communication. Access control is a reliable method
to preserve the security and privacy of user. A fine-grained data access control
scheme on attribute-based encryption (ABE) is presented in [39]. Another Work
[40] proposes a policy-based resource access control in fog computing for secure
interoperability.

Integrity is another important part of privacy. A Lightweight Privacy-preserving
Data Aggregation (LPDA) scheme is proposed in [41] where it can aggregate
the data of hybrid IoT devices, and prevent any false data injection. It has
also outperformed other existing approaches in terms of computational costs and
communication overhead. A differential privacy-based query model is presented in
[42] for sustainable fog computing, where Laplacian mechanism is utilized. This
method has better efficiency and reduced energy consumption compared to existing
methods. Huo et al. [43] present a location difference-based proximity detection
(LoDPD) protocol, where Paillier encryption algorithm and decision-tree theory is
used.

Authentication is not sufficient because the devices itself are vulnerable to
malicious attacks. Trust is important factor here, where fog nodes verify the requests
from the end-users or IoT devices, as well as, the end-users verify the services
received from trusted fog/edge nodes [44]. In other words, system needs to confirm
whether the fog/edge nodes are secured, thus, a robust trust model is required.
There are several issues like how to measure trust in the fog/edge nodes and which
attributes should be included in the trust model. The conventional trust models in
cloud computing are not useful due to lack of centralized management and mobility
issues.

However, there are unsolved challenges like how to implement intrusion detec-
tion in geo-distributed, large-scale, high-mobility fog computing system to satisfy
latency requirement. Further studies need to investigate how fog computing can be
beneficial for intrusion detection on both client side and the centralized cloud side.

3.4 Resource Provisioning

Another challenge is to efficiently allocate cloud/fog/edge computing infrastructure
to different services. At each time-instance, IoT device or end-users can request
huge number of service-request, but each fog/edge device is resource-constraint.
Therefore, the components (edge and fog device/node) should be efficiently man-
aged. The resource management among fog/edge nodes is another aspect here. This

238 S. Ghosh and S. K. Ghosh

should be considered based on service-requirements and service-availability, energy
consumption. In summary, the mapping of the resources to fog/edge service nodes
is compelling issue.

Since the fog/edge nodes have limited computing and storing resources, it is not
possible always to satisfy all service-requests. To resolve this, satisfaction function
is formulated to measure the allocated resources to execute the service-request. The
satisfaction function is defined as [45]:

f (res) =
{

log(res + 1) 0 ≤ res ≤ resmin

log(resmax + 1) res ≥ resmax
(1)

where f is the satisfaction function, the allocated resource and maximum resource
are denoted by res and resmax respectively. The objective is to maximize the overall
f (res) for all end-users is defined as:

Objective max fAll (2)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

fAll = ∑U
u=1{pru × fu(resu)}

res1 + res2 + · · · + resu ≤ RES

pr1 + pr2 + · · · + pru = 1
res1, res2, . . . , resu ≥ 0

(3)

where the priority value, user and total resource are defined as pr , u and RES

respectively [45].
A simulation toolkit for measuring the efficacy of any fog-based framework is

presented in [46]. A LP-based two-phase heuristic algorithm resource management
framework is proposed in [47] in fog-based medical cyber-physical system.

4 Taxonomy: Mobility Management

With the advancement of Global Position Systems (GPS) and location acquisition
technology, there is a growing need to analyse the huge amount of accumulated GPS
log. The time-stamp location traces (latitude, longitude) is defined as trajectory.
Several researches have been carried out in this domain. After carefully studying the
existing literature, we come up with the taxonomy (refer Fig. 3) of mobility-aware
system where mobility data storage, pattern mining, mobility knowledge extraction
and privacy issues are highlighted.

Trajectory database size is huge due to its dynamic nature. There are several
works on efficient trajectory data storage technique. This includes mobility data
segmentation, mobility data indexing and trajectory data optimization.

There are varied trajectory indexing techniques. In [48], a multi-version structure,
named HR+, is proposed, where a node can store different time-stamp entries.

Review of Mobility driven Cloud-Fog-Edge Framework 239

Fig. 3 Taxonomy of mobility-aware system

Thus it reduces the space complexity. A two-level index structure is proposed in
[49], where the index of spatial and temporal information is decoupled. Ghosh et
al. propose a k-level temporal hash-based scheme [50], where a hash function is
used to store the movement data efficiently. Another work, named Trajstore [51]
dynamically co-locates and compresses data on same disk by creating an optimal
index. Zhou et al. [52] presents a grid-based index. Here, the study area/region is
segregated into different rectangular cells of fixed size. In each such segment, the
information of the mobility information is stored separately. Another work Mobi-
IoST [8] presents an unique grid-based trajectory information segmentation, where
in each segment a fog node is present and the fog node stores such information.

Pattern mining is another major aspect of trajectory data analysis. The objective
is to find the intent behind any move [1], and making sense of the trajectory log
[53]. In this context, semantic trajectory is defined, where raw trajectory log is
complemented with additional information such as, point-of-interests (POI) of the
path followed, stay-points and duration, speed, transportation mode etc. The process
of appending such semantic information is defined as semantic enrichment. Differ-
ent works have proposed several methods to semantically enrich the movement log
based on the requirements of the application. In Traj-cloud [54], the authors describe
the process of geo-tagging the trajectory points using reverse geo-coding. Google
place API is used to extract the POI-information. Another work, named STMaker
[55] presents a system, where raw GPS log is segmented based on the behavioral
features of the moving agent. Then, each such segment is identified by a short textual
description. Furthermore, short textual messages from social networking sites also
append semantic information about the movement. Based on this idea, TOPTRAC
[56] detects latent topic in trajectory dataset. It also extracts mobility patterns among
different semantically connected regions. A clustering-based approach to find out
the semantic regions is proposed in [57].

240 S. Ghosh and S. K. Ghosh

Clustering and classification are another important aspects of mobility pattern
mining. Trajectory data is presented as sequences of stop and move along with a
temporal scale. Clustering is beneficial for grouping the similar type of movements.
Thus, trajectory clustering techniques are presented by a number of works. Amongst
varied distance-based clustering, EDR (Edit Distance on Real sequence), DTW
(Dynamic Time Warping) and LCSS (Longest Common Subsequences) are popular.
A partition-and-group based method is presented in [58] to extract common
trajectory segments. This TRACLUS framework use the minimum description
length (MDL) and a density-based line-segment clustering method. Representative
Trajectory Tree is proposed in [59] for temporal-constrained sub-trajectory cluster-
ing. A novel trajectory clustering approach using deep representation learning is
presented in [60], where a sequence to sequence auto-encoder is utilized. TULER
presents a RNN based model to extract the dependency of checking [61]. The work
MovCloud [62] proposed a mobility-clustering algorithm based on the semantic
behaviour of the users and the clustering algorithm is deployed in the cloud servers
for fast execution. Classification of trajectories aim to train the model and use it for
prediction. A work [63] augments duration information to enhance the prediction
accuracy, along with spatial distribution and shape of the trajectories as features of
the classification algorithm. Another work by Ghosh et al. [64] categorizes users
based on their regular movement pattern. The study has been carried out in an
academic campus, and the algorithm can classify users as professor, student, staff
categories effectively.

To retrieve information from a dataset, query processing is important. There are
varied types of queries, namely, point query, range query, trajectory query etc. The
range or R-query (RangeQ(S, T)) finds all trajectory segments which intersects the
given spatial (S) and temporal (T) extent.

RangeQ(S, T) → T raj

where T raj is the set of trajectory segments within S spatial and T temporal extent.
The T-Query or trajectory-based query finds all trajectory segments of a moving
agent (a) within the temporal interval (T).

T rajectoryQ(a, T) → T raj

Here, T raj is the output trajectory of the query. Several researchers have deployed
novel methods to resolve queries effectively. A location based searching is proposed
in [65], where different locations are assigned different importance or priority.
For instance, location with geo-tagged information (such as, photograph) is more
important than others. It finds the k-most important connected trajectories. Range
queries are studied in [66, 67]. Vieira et al. [68] defines pattern query where
trajectory segments with specific movement features are extracted. Aggregated
queries [69] produces an aggregate measure. There are also other context-based or
application-based queries [70, 71]. Mobility association rule defines the interrelation
of two or more mobility events in temporal scale [50, 72, 73].

Review of Mobility driven Cloud-Fog-Edge Framework 241

5 Taxonomy: Location-Aware Services

Location-aware services utilize the geographical location information to provide
services to the end-users. Figure 4 illustrates different types of location-based
services, namely, personalized service, urban planning, time-critical applications
and defence applications.

Personalized service includes the notification or recommendation sent to the user
based on her location. For instance, user’s location is nearest to a new shopping mall,
which is providing discounts on specific items. The system can provide alert to the
user regarding this. Again, the system can predict probable congestion on a road-
segment and notifies the user a priori to avoid the road-segment. Urban planning
consists of sustainable solution in terms of energy and power consumption and smart
transportation. Location-based services can also benefit to time-critical applications,
where real-time response is required. Defence application can also get support from
location-data analytics.

There are huge number of works where several challenging applications are
mentioned and mobility analytics or location-based data mining supports these
applications. Table 1 depicts few of these applications and the approaches followed
in those works. The work by Han Su et al. [74] explores how to make the route
description more customized and intuitive depending on the user. The authors
present the problem of extracting optimal partition of a given route that maximizes
the familiarity of user and generates proper sequence. The visited POI-assignment
task is carried out in [75] where authors formulate the problem using 0-1 ILP
formulation. It may be noted that characteristics and attributes of geographical
locations are important for location recommendation. Zhao et al. [76] proposes
a novel method of personalized location recommendation by sentimental–spatial
POI mining (SPM). The incomplete or sparse data is a major problem in predicting
next location sequences efficiently. The authors in [77] propose a novel layered and

Fig. 4 Taxonomy of location-aware services

242 S. Ghosh and S. K. Ghosh

Table 1 Classification of location-based applications and approaches

Type of
service Author and year Application Approach

Personalized
service

Han Su et al. [74] Personalized route
description system

User knowledge
measurement and route
summarization

Jun Suzuki et al. [75] Assign personalized
visited points

Visited POI selection
based and 0-1 ILP
formulation

Zhao et al. [76] Personalized location
recommendation

Sentimental-spatial POI
mining

Ghosh et al. [77] Location prediction from
sparse trajectory data

Hierarchical and layered
Hidden Markov model
(HMM) construction

Tarik Taleb et al. [78] Network slicing for
personalized 5G mobile
telecommunication

Mobile network
personalization service
orchestrator (MNP-SO)
and the mobile service
personalization service

Ghosh et al. [3] Activity-based user
profiling

Allens’ temporal calculus
based activity data
analysis

Han Zou et al. [79] Inferring user identity and
mobility

WiFi-enabled
nonintrusive device and
user association scheme

Fei Wu et al. [80] Personalized annotation
of mobility records

Markov random field to
maximize the consistency

Urban
planning

Kong X et al. [81] Recommendation of
services to taxi drivers

TLR model based on
Gaussian process
regression and statistical
approaches

Boting Qu et al. [82] Profitable taxi travel route
recommendation

Probabilistic network
model and Kalman
filtering

Gang Pan et al. [83] land-use classification
from taxi trajectory data

Support Vector Machine
(SVM) classifier with
features extracted

Hua Cai et al. [84] Environmental benefits of
taxi ride-sharing

Quantifies the
environmental benefits of
taxi ride sharing

Tingting Li et al. [85] Emission pattern mining
for pollution detection

Spatial and temporal
dynamic emission
patterns in varied traffic
zones

Gong et al. [86] Inferring trip-purposes
from taxi trajectory data

Spatio-temporal analysis
and probability modelling
by Bayes’ rules

M Ota et al. [87] Simulation of taxi
ride-sharing

Linear optimization
algorithm and efficient
indexing scheme

(continued)

Review of Mobility driven Cloud-Fog-Edge Framework 243

Table 1 (continued)

Type of
service Author and year Application Approach

SP Chuah et al. [88] Designing and
optimization bus-routes

Clustering of taxi-rides
and optimization
problem to design
bus-routes

Time-
critical
applications

Ghosh et al. [8] Recommending optimal
path for and actuating
signals for emergency
services (say,
health-care)

Probabilistic graphical
model and k-order
Markov chain

Mukherjee et al. [89] IoHT for personalized
health monitoring and
recommendation

Generative adversarial
networks based analysis

Defence
applications

Du Bowen et al. [90, 91] Identifying pickpocket
suspects from check-in
data

Two-step framework of
regular passenger
filtering and suspect
detection from
movement traces

hierarchical HMM with other contextual data. The authors in [80] aim to annotate
the mobility records by their semantics (what the user is doing at that location). The
work does not assume the availability of training data. Similarly there are works on
sustainable polices like reducing carbon footprint by ride-sharing system [84, 85].
Another interesting application is presented in [91] and [90], where the authors find
out pickpocket suspects from large scale transit data.

6 Conclusions and Future Research Directions

With the proliferation of GPS-enabled devices and smart hand-held devices, huge
volume of data is generated. This huge amount of data can be beneficial for mining
behavioural patterns of users and thus fostering challenging applications in our
daily life. However, analysing such big amount of data is not possible for resource-
constraint devices. Therefore, cloud technology is important. But, communication
with distant cloud servers may affect the latency of the service-response and reduces
the QoS. Therefore, partial computation must be carried out at the edge of the
network, and thus, fog/edge nodes are incorporated. In this book chapter, we provide
a brief summarization of issues and challenges in a mobility-driven cloud-fog-edge
based framework for facilitating location-based services. We have presented three
taxonomies of existing works in system aspect, mobility management and several
types of location-based services. Further, a tabular representation of few prominent
applications have been highlighted. Although there are huge amount of works in this

244 S. Ghosh and S. K. Ghosh

domain, we have identified few challenges and opportunities which can be explored
in the future.

• Heterogeneity of the layers: There is a big challenge in the heterogeneous
nature of the components at fog/edge layers. The system should be able to orches-
trate several different types of devices with heterogeneous cores. Significant
architectural advancements should be made both from hardware and deployment
of such system.

• Security: Although there are few works in security mechanism, but the cross-
layer security or privacy policies are still un-explored and a big threat to both
system and end-users.

• Sustainable mobility: Increasing power and energy consumption and thus
increasing carbon footprint are big issues in present times. Although there are
few works on ride-sharing to reduce the carbon footprints, considering budget
and deadline [92], in reality this is still a big issue. The proper mechanism to
deploy such initiatives is yet to be done. There is also concern of user-security
while sharing rides with unknown people.

• Sharing data with people: Sharing data (transportation, urban planning, health-
care facilities etc.) with citizen is absolutely necessary. This not only brings
transparency, people can make proper decision if they know the available
resources. While few developed countries have systematic data sharing policies,
developing countries like India, is still far behind. A significant progress can
be made if the research community can come up with appropriate data sharing
policies and modules for such cases.

We believe that the book-chapter will provide a brief but comprehensive review
of cloud-fog-edge collaborative framework to the readers.

Acknowledgment This work is partially supported by TCS PhD (https://www.tcs.com/research-
scholarship-program-computer-science-phds-india) research fellowship.

References

1. Shreya Ghosh and Soumya K Ghosh. Thump: Semantic analysis on trajectory traces to explore
human movement pattern. In Proceedings of the 25th International Conference on World Wide
Web, pages 35–36, 2016.

2. Shreya Ghosh and Soumya K Ghosh. Exploring the association between mobility behaviours
and academic performances of students: a context-aware traj-graph (CTG) analysis. Progress
in Artificial Intelligence, 7(4):307–326, 2018.

3. Shreya Ghosh, Soumya K Ghosh, Rahul Deb Das, and Stephan Winter. Activity-based mobility
profiling: A purely temporal modeling approach. In Proceedings of the Web Conference 2018,
pages 409–416, 2018.

4. Shreya Ghosh, Abhisek Chowdhury, and Soumya K Ghosh. A machine learning approach to
find the optimal routes through analysis of GPS traces of mobile city traffic. In Recent Findings
in Intelligent Computing Techniques, pages 59–67. Springer, 2018.

https://www.tcs.com/research-scholarship-program-computer-science-phds-india
https://www.tcs.com/research-scholarship-program-computer-science-phds-india

Review of Mobility driven Cloud-Fog-Edge Framework 245

5. Sayan Sinha, Mehul Kumar Nirala, Shreya Ghosh, and Soumya K Ghosh. Hybrid path planner
for efficient navigation in urban road networks through analysis of trajectory traces. In 2018
24th International Conference on Pattern Recognition (ICPR), pages 3250–3255. IEEE, 2018.

6. Yu Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and
Technology (TIST), 6(3):1–41, 2015.

7. Khalid A Eldrandaly, Mohamed Abdel-Basset, and Laila A Shawky. Internet of spatial things:
A new reference model with insight analysis. IEEE Access, 7:19653–19669, 2019.

8. Shreya Ghosh, Anwesha Mukherjee, Soumya K Ghosh, and Rajkumar Buyya. Mobi-IoST:
mobility-aware cloud-fog-edge-IoT collaborative framework for time-critical applications.
IEEE Transactions on Network Science and Engineering, 2019.

9. Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dimitrios S Nikolopou-
los. Challenges and opportunities in edge computing. In 2016 IEEE International Conference
on Smart Cloud (SmartCloud), pages 20–26. IEEE, 2016.

10. Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Rajkumar Buyya. Heterogeneity in mobile
cloud computing: taxonomy and open challenges. IEEE Communications Surveys & Tutorials,
16(1):369–392, 2013.

11. Mahadev Satyanarayanan, Grace Lewis, Edwin Morris, Soumya Simanta, Jeff Boleng, and
Kiryong Ha. The role of cloudlets in hostile environments. IEEE Pervasive Computing,
12(4):40–49, 2013.

12. JAYDEEP DAS, SHREYA GHOSH, SOUMYA K GHOSH, and RAJKUMAR BUYYA. Res-
cue: Green healthcare services using integrated IoT-edge-fog-cloud computing environments.
2018.

13. Shreya Ghosh and Soumya K Ghosh. Exploring mobility behaviours of moving agents
from trajectory traces in cloud-fog-edge collaborative framework. In 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID), pages 893–
897. IEEE, 2020.

14. Shreya Ghosh, Jaydeep Das, Soumya K Ghosh, and Rajkumar Buyya. Clawer: Context-aware
cloud-fog based workflow management framework for health emergency services. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID),
pages 810–817. IEEE, 2020.

15. Shreya Ghosh, Jaydeep Das, and Soumya K Ghosh. Locator: A cloud-fog-enabled framework
for facilitating efficient location based services. In 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS), pages 87–92. IEEE, 2020.

16. Randa M Abdelmoneem, Abderrahim Benslimane, and Eman Shaaban. Mobility-aware task
scheduling in cloud-fog IoT-based healthcare architectures. Computer Networks, page 107348,
2020.

17. Anwesha Mukherjee, Debashis De, and Soumya K Ghosh. FogIoHT: A weighted majority
game theory based energy-efficient delay-sensitive fog network for internet of health things.
Internet of Things, page 100181, 2020.

18. Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S Tucker. Fog
computing may help to save energy in cloud computing. IEEE Journal on Selected Areas
in Communications, 34(5):1728–1739, 2016.

19. Deze Zeng, Lin Gu, Song Guo, Zixue Cheng, and Shui Yu. Joint optimization of task
scheduling and image placement in fog computing supported software-defined embedded
system. IEEE Transactions on Computers, 65(12):3702–3712, 2016.

20. Hong Yao, Changmin Bai, Muzhou Xiong, Deze Zeng, and Zhangjie Fu. Heterogeneous
cloudlet deployment and user-cloudlet association toward cost effective fog computing.
Concurrency and Computation: Practice and Experience, 29(16):e3975, 2017.

21. Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. Cost efficient resource
management in fog computing supported medical cyber-physical system. IEEE Transactions
on Emerging Topics in Computing, 5(1):108–119, 2015.

22. Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen. Vehicular fog
computing: A viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular
Technology, 65(6):3860–3873, 2016.

246 S. Ghosh and S. K. Ghosh

23. Jessica Oueis, Emilio Calvanese Strinati, and Sergio Barbarossa. The fog balancing: Load
distribution for small cell cloud computing. In 2015 IEEE 81st vehicular technology conference
(VTC spring), pages 1–6. IEEE, 2015.

24. Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and Boris
Koldehofe. Mobile fog: A programming model for large-scale applications on the internet of
things. In Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing,
pages 15–20, 2013.

25. Wangbong Lee, Kidong Nam, Hak-Gyun Roh, and Sang-Ha Kim. A gateway based fog
computing architecture for wireless sensors and actuator networks. In 2016 18th International
Conference on Advanced Communication Technology (ICACT), pages 210–213. IEEE, 2016.

26. Deepak Puthal, Mohammad S Obaidat, Priyadarsi Nanda, Mukesh Prasad, Saraju P Mohanty,
and Albert Y Zomaya. Secure and sustainable load balancing of edge data centers in fog
computing. IEEE Communications Magazine, 56(5):60–65, 2018.

27. Chin-Feng Lai, Dong-Yu Song, Ren-Hung Hwang, and Ying-Xun Lai. A QoS-aware streaming
service over fog computing infrastructures. In 2016 Digital Media Industry & Academic Forum
(DMIAF), pages 94–98. IEEE, 2016.

28. Apostolos Destounis, Georgios S Paschos, and Iordanis Koutsopoulos. Streaming big data
meets backpressure in distributed network computation. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications, pages 1–9. IEEE, 2016.

29. Badrish Chandramouli, Joris Claessens, Suman Nath, Ivo Santos, and Wenchao Zhou. Race:
Real-time applications over cloud-edge. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 625–628, 2012.

30. Vitor Barbosa C Souza, Wilson Ramírez, Xavier Masip-Bruin, Eva Marín-Tordera, G Ren, and
Ghazal Tashakor. Handling service allocation in combined fog-cloud scenarios. In 2016 IEEE
international conference on communications (ICC), pages 1–5. IEEE, 2016.

31. Vitor Barbosa C Souza, Wilson Ramírez, Xavier Masip-Bruin, Eva Marín-Tordera, G Ren, and
Ghazal Tashakor. Handling service allocation in combined fog-cloud scenarios. In 2016 IEEE
international conference on communications (ICC), pages 1–5. IEEE, 2016.

32. Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and
Lingjia Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge.
ACM SIGARCH Computer Architecture News, 45(1):615–629, 2017.

33. Krittin Intharawijitr, Katsuyoshi Iida, and Hiroyuki Koga. Analysis of fog model considering
computing and communication latency in 5g cellular networks. In 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (PerCom Workshops),
pages 1–4. IEEE, 2016.

34. Mithun Mukherjee, Rakesh Matam, Lei Shu, Leandros Maglaras, Mohamed Amine Ferrag,
Nikumani Choudhury, and Vikas Kumar. Security and privacy in fog computing: Challenges.
IEEE Access, 5:19293–19304, 2017.

35. Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog computing: A survey.
In International conference on wireless algorithms, systems, and applications, pages 685–695.
Springer, 2015.

36. Clinton Dsouza, Gail-Joon Ahn, and Marthony Taguinod. Policy-driven security management
for fog computing: Preliminary framework and a case study. In Proceedings of the 2014 IEEE
15th international conference on information reuse and integration (IEEE IRI 2014), pages
16–23. IEEE, 2014.

37. Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway based communica-
tion for cloud of things. In 2014 International Conference on Future Internet of Things and
Cloud, pages 464–470. IEEE, 2014.

38. Yue Shi, Sampatoor Abhilash, and Kai Hwang. Cloudlet mesh for securing mobile clouds from
intrusions and network attacks. In 2015 3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, pages 109–118. IEEE, 2015.

39. Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure, scalable, and fine-
grained data access control in cloud computing. In 2010 Proceedings IEEE INFOCOM, pages
1–9. IEEE, 2010.

Review of Mobility driven Cloud-Fog-Edge Framework 247

40. Clinton Dsouza, Gail-Joon Ahn, and Marthony Taguinod. Policy-driven security management
for fog computing: Preliminary framework and a case study. In Proceedings of the 2014 IEEE
15th international conference on information reuse and integration (IEEE IRI 2014), pages
16–23. IEEE, 2014.

41. Rongxing Lu, Kevin Heung, Arash Habibi Lashkari, and Ali A Ghorbani. A lightweight
privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access,
5:3302–3312, 2017.

42. Tian Wang, Jiandian Zeng, Md Zakirul Alam Bhuiyan, Hui Tian, Yiqiao Cai, Yonghong Chen,
and Bineng Zhong. Trajectory privacy preservation based on a fog structure for cloud location
services. IEEE Access, 5:7692–7701, 2017.

43. Yan Huo, Chunqiang Hu, Xiaowei Qi, and Tao Jing. LoDPD: a location difference-based
proximity detection protocol for fog computing. IEEE Internet of Things Journal, 4(5):1117–
1124, 2017.

44. Ryan KL Ko, Peter Jagadpramana, Miranda Mowbray, Siani Pearson, Markus Kirchberg,
Qianhui Liang, and Bu Sung Lee. Trustcloud: A framework for accountability and trust in
cloud computing. In 2011 IEEE World Congress on Services, pages 584–588. IEEE, 2011.

45. Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey on internet
of things: Architecture, enabling technologies, security and privacy, and applications. IEEE
Internet of Things Journal, 4(5):1125–1142, 2017.

46. Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya. ifogsim:
A toolkit for modeling and simulation of resource management techniques in the internet
of things, edge and fog computing environments. Software: Practice and Experience,
47(9):1275–1296, 2017.

47. Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. Cost efficient resource
management in fog computing supported medical cyber-physical system. IEEE Transactions
on Emerging Topics in Computing, 5(1):108–119, 2015.

48. Ke Deng, Kexin Xie, Kevin Zheng, and Xiaofang Zhou. Trajectory indexing and retrieval. In
Computing with spatial trajectories, pages 35–60. Springer, 2011.

49. V Prasad Chakka, Adam Everspaugh, Jignesh M Patel, et al. Indexing large trajectory data sets
with SETI. In CIDR, volume 75, page 76. Citeseer, 2003.

50. Shreya Ghosh, Soumya K Ghosh, and Rajkumar Buyya. Mario: A spatio-temporal data mining
framework on google cloud to explore mobility dynamics from taxi trajectories. Journal of
Network and Computer Applications, page 102692, 2020.

51. Philippe Cudre-Mauroux, Eugene Wu, and Samuel Madden. Trajstore: An adaptive storage
system for very large trajectory data sets. In Proceedings of the 26th International Conference
on Data Engineering (ICDE 2010), pages 109–120. IEEE, 2010.

52. Jingbo Zhou, Anthony KH Tung, Wei Wu, and Wee Siong Ng. R2-d2: a system to support
probabilistic path prediction in dynamic environments via semi-lazy learning. Proceedings of
the VLDB Endowment, 6(12):1366–1369, 2013.

53. Han Su, Kai Zheng, Kai Zeng, Jiamin Huang, Shazia Sadiq, Nicholas Jing Yuan, and Xiaofang
Zhou. Making sense of trajectory data: A partition-and-summarization approach. In 2015
IEEE 31st International Conference on Data Engineering, pages 963–974. IEEE, 2015.

54. Shreya Ghosh and Soumya K Ghosh. Traj-cloud: a trajectory cloud for enabling efficient
mobility services. In 2019 11th International Conference on Communication Systems &
Networks (COMSNETS), pages 765–770. IEEE, 2019.

55. Han Su, Kai Zheng, Kai Zeng, Jiamin Huang, and Xiaofang Zhou. Stmaker: a system to make
sense of trajectory data. Proceedings of the VLDB Endowment, 7(13):1701–1704, 2014.

56. Younghoon Kim, Jiawei Han, and Cangzhou Yuan. Toptrac: Topical trajectory pattern mining.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 587–596, 2015.

57. Mingqi Lv, Ling Chen, and Gencai Chen. Discovering personally semantic places from gps
trajectories. In Proceedings of the 21st ACM international conference on Information and
knowledge management, pages 1552–1556, 2012.

248 S. Ghosh and S. K. Ghosh

58. Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-and-
group framework. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 593–604, 2007.

59. Nikos Pelekis, Panagiotis Tampakis, Marios Vodas, Christos Doulkeridis, and Yannis Theodor-
idis. On temporal-constrained sub-trajectory cluster analysis. Data Mining and Knowledge
Discovery, 31(5):1294–1330, 2017.

60. Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. Trajectory clustering
via deep representation learning. In 2017 international joint conference on neural networks
(IJCNN), pages 3880–3887. IEEE, 2017.

61. Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and Fengli Zhang.
Identifying human mobility via trajectory embeddings. In IJCAI, volume 17, pages 1689–
1695, 2017.

62. Shreya Ghosh, Soumya K Ghosh, and Rajkumar Buyya. Movcloud: A cloud-enabled
framework to analyse movement behaviors. In CloudCom, pages 239–246, 2019.

63. Dhaval Patel, Chang Sheng, Wynne Hsu, and Mong Li Lee. Incorporating duration information
for trajectory classification. In 2012 IEEE 28th International Conference on Data Engineering,
pages 1132–1143. IEEE, 2012.

64. Shreya Ghosh and Soumya K Ghosh. Modeling of human movement behavioral knowledge
from gps traces for categorizing mobile users. In Proceedings of the 26th International
Conference on World Wide Web, pages 51–58, 2017.

65. Da Yan, James Cheng, Zhou Zhao, and Wilfred Ng. Efficient location-based search of
trajectories with location importance. Knowledge and Information Systems, 45(1):215–245,
2015.

66. Kai Zheng, Goce Trajcevski, Xiaofang Zhou, and Peter Scheuermann. Probabilistic range
queries for uncertain trajectories on road networks. In Proceedings of the 14th International
Conference on Extending Database Technology, pages 283–294, 2011.

67. Liming Zhan, Ying Zhang, Wenjie Zhang, Xiaoyang Wang, and Xuemin Lin. Range search
on uncertain trajectories. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pages 921–930, 2015.

68. Marcos R Vieira, Petko Bakalov, and Vassilis J Tsotras. Querying trajectories using flexible
patterns. In Proceedings of the 13th International Conference on Extending Database
Technology, pages 406–417, 2010.

69. Yanhua Li, Chi-Yin Chow, Ke Deng, Mingxuan Yuan, Jia Zeng, Jia-Dong Zhang, Qiang Yang,
and Zhi-Li Zhang. Sampling big trajectory data. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pages 941–950, 2015.

70. Bolong Zheng, Nicholas Jing Yuan, Kai Zheng, Xing Xie, Shazia Sadiq, and Xiaofang Zhou.
Approximate keyword search in semantic trajectory database. In 2015 IEEE 31st International
Conference on Data Engineering, pages 975–986. IEEE, 2015.

71. Kai Zheng, Shuo Shang, Nicholas Jing Yuan, and Yi Yang. Towards efficient search for activity
trajectories. In 2013 IEEE 29Th international conference on data engineering (ICDE), pages
230–241. IEEE, 2013.

72. Shreya Ghosh and Soumya K Ghosh. Exploring human movement behaviour based on mobility
association rule mining of trajectory traces. In International Conference on Intelligent Systems
Design and Applications, pages 451–463. Springer, 2017.

73. Shreya Ghosh and Soumya K Ghosh. Exploring human movement behaviour based on mobility
association rule mining of trajectory traces. In International Conference on Intelligent Systems
Design and Applications, pages 451–463. Springer, 2017.

74. Han Su, Guanglin Cong, Wei Chen, Bolong Zheng, and Kai Zheng. Personalized route
description based on historical trajectories. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 79–88, 2019.

75. Jun Suzuki, Yoshihiko Suhara, Hiroyuki Toda, and Kyosuke Nishida. Personalized visited-poi
assignment to individual raw gps trajectories. ACM Transactions on Spatial Algorithms and
Systems (TSAS), 5(3):1–28, 2019.

Review of Mobility driven Cloud-Fog-Edge Framework 249

76. Guoshuai Zhao, Peiliang Lou, Xueming Qian, and Xingsong Hou. Personalized location
recommendation by fusing sentimental and spatial context. Knowledge-Based Systems, page
105849, 2020.

77. Soumya K Ghosh and Shreya Ghosh. Modeling individual’s movement patterns to infer next
location from sparse trajectory traces. In 2018 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 693–698. IEEE, 2018.

78. Tarik Taleb, Badr Mada, Marius-Iulian Corici, Akihiro Nakao, and Hannu Flinck. Permit:
Network slicing for personalized 5g mobile telecommunications. IEEE Communications
Magazine, 55(5):88–93, 2017.

79. Han Zou, Yuxun Zhou, Jianfei Yang, and Costas J Spanos. Unsupervised WiFi-enabled IoT
device-user association for personalized location-based service. IEEE Internet of Things
Journal, 6(1):1238–1245, 2018.

80. Fei Wu and Zhenhui Li. Where did you go: Personalized annotation of mobility records. In
Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management, pages 589–598, 2016.

81. Xiangjie Kong, Feng Xia, Jinzhong Wang, Azizur Rahim, and Sajal K Das. Time-
location-relationship combined service recommendation based on taxi trajectory data. IEEE
Transactions on Industrial Informatics, 13(3):1202–1212, 2017.

82. Boting Qu, Wenxin Yang, Ge Cui, and Xin Wang. Profitable taxi travel route recommendation
based on big taxi trajectory data. IEEE Transactions on Intelligent Transportation Systems,
21(2):653–668, 2019.

83. Gang Pan, Guande Qi, Zhaohui Wu, Daqing Zhang, and Shijian Li. Land-use classification
using taxi gps traces. IEEE Transactions on Intelligent Transportation Systems, 14(1):113–
123, 2012.

84. Hua Cai, Xi Wang, Peter Adriaens, and Ming Xu. Environmental benefits of taxi ride sharing
in Beijing. Energy, 174:503–508, 2019.

85. Tingting Li, Jianping Wu, Anrong Dang, Lyuchao Liao, and Ming Xu. Emission pattern mining
based on taxi trajectory data in Beijing. Journal of Cleaner Production, 206:688–700, 2019.

86. Li Gong, Xi Liu, Lun Wu, and Yu Liu. Inferring trip purposes and uncovering travel patterns
from taxi trajectory data. Cartography and Geographic Information Science, 43(2):103–114,
2016.

87. Masayo Ota, Huy Vo, Claudio Silva, and Juliana Freire. Stars: Simulating taxi ride sharing at
scale. IEEE Transactions on Big Data, 3(3):349–361, 2016.

88. Seong Ping Chuah, Huayu Wu, Yu Lu, Liang Yu, and Stephane Bressan. Bus routes design
and optimization via taxi data analytics. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages 2417–2420, 2016.

89. Anwesha Mukherjee, Shreya Ghosh, Aabhash Behere, Soumya K Ghosh, and Rajkumar
Buyya. Internet of health things (ioht) for personalized health care using integrated edge-
fog-cloud network. Journal of Ambient Intelligence and Humanized Computing.

90. Bowen Du, Chuanren Liu, Wenjun Zhou, Zhenshan Hou, and Hui Xiong. Catch me if you can:
Detecting pickpocket suspects from large-scale transit records. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
87–96. ACM, 2016.

91. Bowen Du, Chuanren Liu, Wenjun Zhou, Zhenshan Hou, and Hui Xiong. Catch me if you can:
Detecting pickpocket suspects from large-scale transit records. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
87–96. ACM, 2016.

92. Jaydeep Das, Shreya Ghosh, Soumya K. Ghosh, and Rajkumar Buyya. LYRIC: Deadline
and budget aware spatio-temporal query processing in cloud. IEEE Transactions on Services
Computing (2021). https://doi.org/10.1109/TSC.2021.3073006

https://doi.org/10.1109/TSC.2021.3073006

Mobility-Based Resource Allocation and
Provisioning in Fog and Edge Computing
Paradigms: Review, Challenges, and
Future Directions

Sudheer Kumar Battula, Ranesh Kumar Naha, Ujjwal KC, Khizar Hameed,
Saurabh Garg, and Muhammad Bilal Amin

Abstract Fog and Edge related computing paradigms promise to deliver exciting
services in the Internet of Things (IoT) networks. The devices in such paradigms
are highly dynamic and mobile, which presents several challenges to ensure service
delivery with the utmost level of quality and guarantee. Achieving effective resource
allocation and provisioning in such computing environments is a difficult task.
Resource allocation and provisioning are one of the well-studied domains in the
Cloud and other distributed paradigms. Lately, there have been several studies that
have tried to explore the mobility of end devices in-depth and address the associated
challenges in Fog and Edge related computing paradigms. But, the research domain
is yet to be explored in detail. As such, this chapter reflects the current state-of-
the-art of the methods and technologies used to manage the resources to support
mobility in Fog and Edge environments. The chapter also highlights future research
directions to efficiently deliver smart services in real-time environments.

Keywords Internet of things · Mobility · Resource allocation · Fog computing
and Edge computing

1 Introduction

In recent years, there has been a rapid rise in the Internet of Things (IoT) devices
and applications, and the range of the services offered by them. The services
include smart transportation [1], disaster-related services [2], smart cities [3] and
so on. These devices and applications provide services in a Cloud-like manner

S. K. Battula (�) · R. K. Naha · U. KC · K. Hameed · S. Garg · M. B. Amin
School of Information and Communication Technology, College of Sciences and Engineering,
University of Tasmania, Hobart, TAS, Australia
e-mail: sudheerkumar.battula@utas.edu.au; raneshkumar.naha@utas.edu.au;
ujjwal.kc@utas.edu.au; hameed.khizar@utas.edu.au; saurabh.garg@utas.edu.au;
bilal.amin@utas.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_11

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_11&domain=pdf
mailto:sudheerkumar.battula@utas.edu.au
mailto:raneshkumar.naha@utas.edu.au
mailto:ujjwal.kc@utas.edu.au
mailto:hameed.khizar@utas.edu.au
mailto:saurabh.garg@utas.edu.au
mailto:bilal.amin@utas.edu.au
https://doi.org/10.1007/978-3-030-69893-5_11

252 S. K. Battula et al.

close to users with the help of end devices [4, 5]. Accordingly, new computing
paradigms, such as Fog and Edge have evolved. Fog computing provides users
with a decentralized environment where computational resources are brought to
the Edge of the network so that they can perform real-time computational work
on data without compromising bandwidth and latency issues in Cloud networks.
In Fog computing, computational resources, including applications, services, and
data, are placed between data and the Cloud. In Edge Computing, several endpoints
(powerful IoT devices) are placed near the edges of the network to perform
computations on data sources where data is generated, without having to be
transferred elsewhere [6, 7].

In paradigms like Edge and Fog, not only the end devices but the users also, are
mobile. The allocation and provisioning of the resources should be done in real-time
within strict time constraints, even without any prior knowledge on future dynamics
of the user mobility to offer and deliver seamless services without any interruption
[8]. Additionally, such real-time capabilities also require resources (or a pool of
resources) that are capable of completing the task or the application within a given
time window. Consequently, Mobile Computing (MC) environments need to choose
and provision adequate resources in an optimal manner, which can be non-trivial.
For both requirements of effective resource allocation and provisioning, the mobile
nature of the Fog, Edge, and end devices invites a number of challenges that can
interrupt the execution of the tasks. On top of the mobility, various hardware and
OS capabilities of the devices add more complexities to resource management [9].
For example, due to Fog device versatility, hardware and software of a new Fog
device that is meant to replace a failed one, may not be compatible or match with
the failed device while attempting to migrate the application to a nearby device in
a Fog environment and consequently, the execution of the application fails. Due to
different operating systems installed on each Fog device and frequent updates to
the operating system, the devices can be vulnerable to several kinds of attacks and
errors arising from incompatible versions of the devices [10].

In Mobile Edge Computing (MEC) paradigms, it is desirable to have an effective
resource management mechanism that achieves efficiency and high performance for
both systems and networks, while ensuring the fast and efficient distribution and
delivery of resources to users and their processes. To ensure efficiency and high
performance, some essential factors such as cost-efficient computation, bandwidth
utilization, minimum delays, and energy consumption of the mobile devices are
important milestones that have drawn researchers’ attention to suggesting key
resource management techniques in the MC environment [11]. In cost-efficient
computation, Mobile Edge devices first meet user process requirements and then
define appropriate procedures for managing available and allocated resources to
maximize overall system profitability. The quality of services is also an important
factor to consider while providing and allocating mobile resources, which neces-
sitates a dynamic need for the resources available to the process to improve the
overall quality of service within the network. Moreover, processing IoT applications
intermediate computing devices often leads to several other difficulties in device
managing systems [12]. For example, inadequate security protocols and frequent

Mobility-Based Resource Allocation 253

joining and leaving devices can lead to various security attacks and, in some cases,
can cause data leakage. On the other hand, due to the limited energy and power
of Fog, Edge, or end devices, the framework needs to be designed with a view to
energy-saving capabilities as well [13]. Additionally, most of the applications are
time-sensitive, and executing the applications within strict deadlines can be difficult
[14].

On the other hand, the mobility of the end devices is entirely different from
other computing paradigms as it does not follow any single random distribution.
The mobility of the devices is direction-oriented as well as it depends on the
source and destination of the devices. As a result, modeling the real environment
is also a challenging task. Nonetheless, it is undeniable that when it comes down to
effective resource allocation and provisioning in MC paradigms, such as Fog and
Edge, the mobility of the end devices should be considered along with different
other requirements. Several works [15, 16] have already conducted comprehensive
sweeps of existing techniques in resource management in Fog and Edge computing
paradigms. But, given the fact that the mobility of the end devices in such paradigms
are now being explored in depth in several dimensions, a survey that reflects the
current state-of-the-art of all the existing techniques, primarily centered around the
mobility, is still missing. As such, with all these aspects in hindsight, this chapter
first discusses in detail the different requirements and challenges in each layer of
Fog, Edge, or other intermediate computing devices to achieving an effective MEC
environment. The chapter then provides a comprehensive picture of the current
works carried out to handle mobility in the Fog and Edge environment to put light
on the future directions where future works can be directed to deliver high-quality
IoT services in a computer paradigm characterized by mobility and dynamicity. The
specific contributions of the chapter are as follows.

1. A summary of the requirements and challenges in each layer of MC paradigms
to effective resource management

2. A comprehensive sketch of existing resource allocation and provisioning mech-
anisms in Fog and Edge computing centered around the mobility of the end
devices

3. A reflection of the techniques used to model the mobility in MC paradigms
4. A summary of the existing mathematical models used for resource allocation in

Fog and Edge computing
5. An overview of how future research works should address the challenges,

including the mobility-related ones to ensure effective resource allocation in
MEC

The work is organized as follows. Section 2 sheds light on the existing mobile-
based resource provisioning and allocation mechanisms in Edge computing, while
Sect. 3 follows the same summary for Fog computing. Section 4 explains in detail
the existing modeling techniques used to add/support mobility in Fog and Edge
computing environment. Section 5 briefly discusses several mathematical models
considered in mobility-based resource allocation, while Sect. 6 presents various case
studies with applications and use cases. Section 7 highlights the future direction

254 S. K. Battula et al.

for the research on mobility-based resource allocation and provisioning in MC
paradigms, while Sect. 8 concludes the work.

2 Existing Mobile Based Resource Provisioning
and Allocation Mechanisms in Edge

Through the age of IoT, Fog/Edge computing is the exciting option to meet the
latency requirements of IoT applications by shifting the service delivery from the
Cloud to the Edges. This also allows lightweight IoT devices to improve their scal-
ability and energy consumption, provides contextual information processing, and
mitigates the backbone network traffic burden [17]. Computation offloading is an
important feature for Edge level processing where application offloads to the mobile
devices that are resource-constrained to meet process requirements with moderate
computation demands. The mobility feature of such an environment makes resource
allocation and provisioning a challenging task. This section discusses resource
allocation and provisioning in Mobile Edge related computing environments.

Zhang et al. [18] implemented a network-slicing 5G system conceptual architec-
ture and proposed convergence management mechanisms between separate access
networks and shared power/subchannel allocation schemes in two-tier network
slicing-based spectrum sharing structures. In their proposed method, conflict with
the co-interference, and cross-tier interference are taken into account. The core
network is developed into a historically distributed architecture to decrease mon-
itoring and data transfer delays by control plane separation from the user plane.
The core Cloud offers some essential control features such as virtualized resource
management, mobility management, and intrusion management. In the Edge Cloud,
which is a centralized body of virtualized services, we can find servers and
other applications in the radio access network. The Edge Cloud conducts data
transfer primarily, and control functions including the encoding of the basebands.
To optimize uplink efficiency on each subchannel, research modeled the uplink
resource assignment issue for small cells considering the four limitations. First
and foremost, each small cell consumer transmits its full power. Secondly, each
user of ultra-Reliable and Low Latency Communication (uRLLC) is required to
have the minimum data rate requirement. Thirdly, the minimum interference level is
obtained from small cell users by the macrocell. Finally, in one transmission cycle,
a subchannel can be assigned to a maximum of one consumer in each small cells.
Computer simulations were used to show the promising performance of network-
based 5G networks.

Ren et al. [17] explored the implementation of Edge computing to construct
transparent IoT systems by implementing an IoT architecture focused on computing
in transparency. Edge Computing architecture attempts to solve two big IoT
applications issues—the first being how to manage data processing requests in real-
time and context, and the second being how can IoT tools, the core component
of transparent calculation, be distributed on-demand applications/services dynami-

Mobility-Based Resource Allocation 255

cally. The work also identified benefits and related challenges for the architecture.
The architecture provides a scalable IoT platform to deliver intended services for
lightweight IoT devices on time, to respond to changing user needs. The IoT
architecture, based on transparent computing, can also offer several advantages:
(1) reduced response delay (2) enhanced functional scalability (3) centralized
resource management (4) on-demand and cross-platform service provisioning and
(5) context-aware service support. The projects still face several challenges to their
execution, which remarkably hamper the development of associated applications
even though the architecture could utilize the advantage of transparent computing
for the construction of IoT platforms with scalability. These challenges are: (1)
unified resource management platform for heterogeneous IoT devices (2) provision
service dynamically on lightweight IoT devices and (3) allocation of computation
between the Edge and end devices.

In the Edge network Tasiopoulos et al. [19] built an auction-based allocation
and resource provision which maps the application instances known as Edge-MAP.
Edge-MAP takes account of the versatility and restricted computing resources
available in the Edge micro clouds for the allocation of resources for device bidding
applications. The provision of geo-distributed cloudlet services to low latency
applications differs in that the allocation of resources must bear in mind the effect
of network conditions, such as latency between end-users and Cloud presence
points, on the QoS applications. Besides, for the mobile users, as users switch
the connectivity to another base station, the latency to an assigned VM changes.
Even ideal VM allocations for user requests are thus redundant over time, i.e. user
mobility/handoffs are accompanied by VM reassignments if necessary. When a
fixed number of VM’s are allocated for a long time to an application, VM handoffs
lead to available VM’s that can be utilized by the users of other apps instead. In
this context, to prevent the misuse of VMs, we argue about the need to include low-
latency on-demand applications, in which a VM would be instanced on application
request for the period of the engagement of the end-user. The provision of VMs
takes place through periodical/discrete operation of the auction mechanisms, where
the minimum length of the auction and VM configuration for each length/time slice
is limited by the added overhead. However, the work did not demonstrate how
the provisioning method will work in a complex heterogeneous IoT and edge/Fog
environment.

Liu et al. [20] proposed a blockchain platform for MEC video sharing with
the adaptive block size. First of all, they developed an incentive system for
the partnership between producers of content, video transcoders, and consumers.
Besides, the work revealed a block-size video-streaming adjustment system. Also,
the work considered two offload modes to avoid the risk of overloading MEC
nodes. These modes are—transfer to neighboring MEC nodes and transfer to a
device-to-device (D2D) user group. The work then formulated the concerns of
resource assignment, download schedule, and adaptive block size as an optimization
problem. The problem distribution of the work was done using a low complexity
alternating direction method in the algorithm based on multipliers. They showed
that the optimum policy for maximum average transcoding profit is not uniform

256 S. K. Battula et al.

amongst different small cells or transcoders. They did not take account of a
variety of factors such as the holding interest, communication, reputation value,
and computation ability. The work also failed to demonstrate the intelligent contract
as the Alternating Direction Method of Multipliers (ADMM) coordinator, a means
of efficiently facilitating distributed optimization among non-trusting nodes.

Naha et al. [14] suggested the allocation and provisioning of resources through
the use of hybrid and hierarchical resource rankings and provisioning algorithms for
the Fog-Cloud computing paradigm. The resource allocation method assigns Fog-
Cloud resources by rating the resources based on the number of resource constraints
within Fog devices. The resource provisioning approach offers a hierarchical
and flexible mechanism to meet the complex requirements of the users. The
work achieves resource distribution and scheduling in the Fog-Cloud environment
with three separate measures to reach the deadline by considering complex user
requirements. In the first phase, Fog resources are identified to comply with the
deadline requirements from the available devices in the Fog environment. The
algorithm allocates jobs in Fog devices because the Cloud response time is high
relative to the Fog. The second step is to try to accomplish this task using Fog
servers and Cloud resources if available resources are not adequate in the Fog. Here
it considers computing response time, bandwidth, and power for these resources
when selecting Cloud resources. Thirdly, it investigates whether or not services in
the Fog environment are unavailable. In such a case, the system would attempt to
complete the work with Cloud resources before the resource unavailability message
is generated. Dynamic changes of resources and failure to handling, such as resource
and communication failures in a Fog computing paradigm, were not considered. The
work also did not consider designing a simulation of a complex Fog environment
with a bigdata IoT application.

A low-complex heuristic algorithm was introduced by Liao et al. [21] by
providing a near-optimal low-time solution. The goal is to maximize the number
of battery charged UE tasks successfully offloaded while maintaining a reasonable
level of network efficiency. A low complexity heuristic algorithm was developed to
resolve the formulated nonlinear mixed-integer programming problem. The work
looked at the interference between all of the EU and used hyper graphic approaches
in the pre-allocation of channels. Task offload was then evaluated following the
estimation and allocation of contact resources. The work assumes the duality uplink
and downlink to be accomplished with optimum transmitting capacity. UEs adjust
to the discharge assignments upon receiving the feedback from MEC to increase the
network performance, and bandwidth will be reassigned. A detailed investigation
was carried out to find the relationship between the number of tasks successfully
discharged and the number of UEs under different MEC computing tools. However,
the research did not concentrate much on the latest communication framework for
joint optimization, smart coded caching, and computation in the MEC networks and
their unprecedented applications. The use of large-scale enhancement learning for
the competitive pricing policy, which can equalize mobile operator cost and UEs’
economic impact, has not been considered.

Table 1 provides a detailed comparison of existing techniques for mobile-
based resource provisioning and allocation mechanism in Fog/Edge computing

Mobility-Based Resource Allocation 257

Ta
bl
e
1

C
om

pa
ri

so
n

of
ex

is
tin

g
m

ob
ile

ba
se

d
re

so
ur

ce
pr

ov
is

io
ni

ng
an

d
al

lo
ca

tio
n

m
ec

ha
ni

sm
s

to
su

pp
or

tm
ob

ili
ty

na
tu

re
ed

ge

R
ef

Pr
ob

le
m

ad
dr

es
se

d
Te

ch
ni

qu
es

us
ed

Pe
rf

or
m

an
ce

ch
al

le
ng

es
U

se
ca

se
s

E
xp

er
im

en
ta

ls
et

up
E

va
lu

at
io

n
cr

ite
ri

a
D

at
as

et
us

ed

[1
8]

H
an

do
ve

r
an

d
ne

tw
or

k
sl

ic
in

g
is

su
es

in
5G

ne
tw

or
ks

Jo
in

tp
ow

er
an

d
su

b
ch

an
ne

l
al

lo
ca

tio
n

sc
he

m
e

Q
ua

lit
y

of
se

rv
ic

e
N

ot
de

fin
ed

N
ot

de
fin

ed
C

ap
ac

ity
of

sl
ic

e,
T

ra
ns

m
it

po
w

er
,

L
at

en
cy

N
ot

de
fin

ed

[1
7]

T
ra

ns
pa

re
nt

an
d

se
rv

ic
e

pr
ov

is
io

ni
ng

is
su

es

N
ot

de
fin

ed
L

ig
ht

w
ei

gh
t

co
m

pu
tin

g,
T

ra
ns

pa
re

nc
y,

Sc
al

ab
ili

ty

T
ra

ns
pa

re
nt

co
m

pu
tin

g
ba

se
d

w
ea

ra
bl

es

T
C

w
at

ch
an

d
Sm

ar
tw

at
ch

A
pp

si
ze

,L
at

en
cy

,
E

ne
rg

y
co

ns
um

pt
io

n

Sm
ar

tW
ea

ra
bl

e
da

ta

[1
9]

E
dg

e
re

so
ur

ce
pr

ov
is

io
ni

ng
an

d
la

te
nc

y

A
uc

tio
n

ba
se

d
re

so
ur

ce
al

lo
ca

tio
n

an
d

pr
ov

is
io

ni
ng

m
ec

ha
ni

sm

M
ob

ili
ty

,Q
ua

lit
y

of
se

rv
ic

e
V

eh
ic

le
as

a
m

ob
ile

us
er

s
in

ce
llu

la
r

ar
ea

s

C
el

lu
la

r
in

fr
as

tr
uc

tu
re

(1
km

ra
di

us
)

R
eq

ue
st

s
G

en
er

at
io

n,
E

xe
cu

tio
n

tim
e,

It
er

at
io

ns
co

m
pa

ri
so

n,
Pr

ic
e,

Q
ua

lit
y

of
se

rv
ic

e

M
ob

ili
ty

da
ta

se
t5

(T
A

PA
SC

ol
og

ne
pr

oj
ec

t)

[2
0]

R
es

ou
rc

e
al

lo
ca

tio
n,

an
d

sc
he

du
lin

g
is

su
es

In
ce

nt
iv

e
m

ec
ha

ni
sm

,
L

ow
-c

om
pl

ex
ity

al
te

rn
at

in
g

di
re

ct
io

n
m

et
ho

d

Q
ua

lit
y

of
se

rv
ic

e,
E

ffi
ci

en
cy

,V
id

eo
Q

ua
lit

y

N
ot

de
fin

ed
N

et
w

or
k

co
ve

ra
ge

ra
di

us
of

th
e

M
B

S
as

10
00

m

T
ra

ns
co

di
ng

re
ve

nu
e,

B
an

dw
id

th
co

ns
um

pt
io

n,
to

le
ra

nc
e

N
ot

de
fin

ed

[1
4]

D
yn

am
ic

ch
an

ge
s

in
th

e
pa

ra
m

et
er

s
of

us
er

re
qu

ir
em

en
ts

H
yb

ri
d

an
d

hi
er

ar
ch

ic
al

ba
se

d
re

so
ur

ce
ra

nk
in

g
an

d
pr

ov
is

io
ni

ng
al

go
ri

th
m

s

Q
ua

lit
y

of
se

rv
ic

e
N

ot
de

fin
ed

C
lo

ud
Si

m
to

ol
ki

t
Pr

oc
es

si
ng

tim
e,

In
st

an
ce

co
st

,
N

et
w

or
k

de
la

y

N
ot

de
fin

ed

[2
1]

N
et

w
or

k
re

so
ur

ce
sc

he
du

lin
g

is
su

e
in

us
er

eq
ui

pm
en

t’s

C
en

tr
al

iz
ed

de
ci

si
on

an
d

re
so

ur
ce

al
lo

ca
tio

n
al

go
ri

th
m

,

E
ne

rg
y

co
ns

um
pt

io
n,

Q
ua

lit
y

of
se

rv
ic

e

N
ot

de
fin

ed
M

at
la

b
O

pt
im

al
tr

an
sm

is
si

on
po

w
er

,
co

m
pu

ta
tio

n,
D

is
ta

nc
e

N
ot

de
fin

ed

258 S. K. Battula et al.

environments. Following parameters such as problem addressed, techniques used,
performance challenges, use cases, experimental setup, evaluation criteria, and data
set, are used for comparison purposes.

3 Existing Mobile Based Resource Provisioning
and Allocation Mechanisms in Fog

Fog environment offers a wide range of interesting services with its highly mobile
end devices. With mobility comes several factors that have to be considered
while managing the resources during provisioning and allocation. In this section,
we describe the existing works to reflect the current state-of-the-art of resource
management in mobility management in the Fog environment.

Waqas et al. [22] pointed mobility as an inseparable entity of Fog computing
that enables a wide range of interesting services to improve the user experience.
In a mobility-aware Fog environment, the user information is constantly updated at
Fog servers and nodes to increase the effectiveness of the services on offer. Such
constant information updates can invite several challenges, such as prediction of
user behaviors, resource constraints, geographical limitations, and so on. Developed
as an extension to Cloud computing, Fog computing is agile, highly mobile, and
has low latency. While offering different computing services, Fog servers and
devices can be mobile and such mobility should be handled properly to ensure
low latency for the services offered. Mobility management should consider not just
mobile devices, but also resource management including allocation and scheduling
mechanisms. In this section, we present the works that have introduced innovative
measures to tackle mobility while provisioning and allocating resources in the Fog
environment.

Gosh et al. [23] proposed a mobility and delay-aware framework called LOCA-
TOR that offers efficient location-based resource provisioning in an intelligent
transportation system. The framework uses an optimal matching algorithm of
the MapReduce paradigm to minimize the time required for service-provisioning
and service waiting. LOCATOR was implemented on Google Cloud Platform
using different realistic datasets that characterize mobility and shown to offer less
execution time than that of the baseline methods.

Babu et al. [24] proposed architecture for Fog-based node-to-node commu-
nication in 5G network. The node-to-node communication is enabled by Fog
servers and data analytics unit. In the proposed architecture, the authors proposed a
robust mobility management scheme for mobile users to make such communication
possible. Mobility management comprises location management and calls delivery
procedures. The location management procedure updates the most recent location
information, while the call delivery procedure delivers the call to the target node
to enable node-to-node communication. The work offers several advantages of low
overhead database update cost, data loss, signal exchange, easier update, and high

Mobility-Based Resource Allocation 259

security compared to similar networks. The authors also highlighted costly real-
time implementation, poor results with a 3G network, limited privacy, and data
replication as the major limitations of the proposed work.

Xie et al. [25] proposed a method for offloading tasks in vehicular Fog computing
based on the mobility of vehicle nodes to minimize the service time. The mechanism
used vehicle-to-vehicle (V2V) links to offload a task decomposed into subtasks
in any proportion from user to service-vehicle in parallel. The mechanism used a
hidden Markov model to predict V2V links state based on the mobility information
of the vehicles collected. A rule was then set to choose the target service-vehicles
and the proportion of decomposition of a task into subtasks, based on the predicted
results. The mechanism was shown to have a better performance on service time
and total finished tasks when compared to single-point and random task offloading.

The authors in [26] proposed URMILA (Ubiquitous Resource Management
for Interference and Latency-Aware services) to switch between Fog and Edge
resources for IoT services ensuring the latency of those services are met. The
authors proposed a novel algorithm to find and choose the most suitable Fog node to
serve IoT applications remotely when the application could be served with the Fog
resource. The devised method considers the interference caused due to co-located
and competing IoT services on multiple Fog nodes and controls the application
executions such that the SLOs are met with low latency. The capabilities of the
algorithm were tested with the real-world context on an emulated yet realistic IoT
testbed.

Wang et al. [27] considered architecture for three-layered Fog computing
networks (FCN) and characterized the user equipment mobility with sojourn time
in each coverage of FCN. The user formulated the reduction of the probability of
migration as a mixed non-linear programming problem that would maximize the
revenue of user equipment. In the mixed-integer problem, the first part is task off-
loading, while the second part is resource allocation. The task-offloading problem
was solved by using Gini coefficient-based FCNs selection algorithm (GCFSA)
that gave a sub-optimal strategy. The resource allocation problem was solved by
a genetic algorithm based distributed resource optimization algorithm (ROAGA).
In the proposed approach, the probability of migration was significantly reduced
even when the mobility of the user equipment was well-handled. Simulation results
proved the supremacy of the approach over baseline algorithms in terms of quasi-
optimal revenue.

Starting with an argument that presents the migration of user application modules
among Fog nodes as one of the solutions to mitigate the mobility issue in the Fog
environment, Martin et al. [28] proposed an autonomic framework called MAMF
that handles the container migration while adhering to QoS requirements. The
proposed framework borrows the concepts of MAPE loop and Genetic algorithm
to suitably decide the container migration in Fog within the deadlines for each
application. Under this approach, a predetermined value of use location is used
for the next time instant to initiate the migration of containers. The re-allocation
problem was modeled as an Integer Linear Programming problem within the
framework. The experiments were conducted in iFogSim toolkit, which showed

260 S. K. Battula et al.

improvement in execution cost, network usage, and request execution delay with
the framework when compared to other methods.

Two different analytical models are proposed in [29] to address the issue arisen
when the communication with the remote Cloud fails due to mobile devices in the
Fog environment and the user does not get the requested service outputs. In the
first model, remote Cloud servers were used to execute the task and the results
were delivered to the mobile devices through push notification when the mobile
was reconnected with the network after the mobile device lost the connection with
the Cloud instance in the first place because of the mobility. In the second model, the
virtual machine live migration was proposed whenever the mobile device changed
the location. The present state of the instance was transferred to a new Cloudlet
where the execution was resumed after the offloading. The experimental results
showed a decrease in power consumption by 30–78% with the proposed models
when compared to existing approaches.

Gosh et al. [30] proposed a collaborative real-time framework named Mobi-IoST
that includes Cloud, Fog, Edge, and IoT layers to handle the mobility dynamics
of any agent within the framework. In the framework, the spatiotemporal GPS
logs along with other situational information are analyzed and fed into a machine
learning algorithm that ultimately predicts the location of the moving agents in
real-time. A probabilistic graphical model was used to model the mobility of the
agent. The model enabled the prediction of the next location of the agent where
the processed information was to be delivered. The tasks were delegated among the
service nodes based on the mobility model. The framework was proven to provide
better QoS in real-time applications and minimize delay and power consumption.

To fulfill the strictest requirements of enormous traffic demands and low
latency, Santos et al. [31] proposed Kubernetes-based Fog architecture, which is
an open-source orchestration platform on container-level. The authors implemented
a network and mobility-aware scheduling approach in a smart city deployment
scenario as an extension to existing scheduling mechanisms in Kubernetes. The
authors validated the formulation of optimization of IoT services problem using
the same approach to prove the applicability of such theoretical approaches in real-
life practical deployments. The experimental results highlighted the reduction in
network latency by 70% when compared to existing default scheduling mechanisms.

The authors in [32] highlighted the mobility of devices in Fog computing as
one of the key factors to influence the application performance. The work then
emphasizes the consideration of not just the mobility but the combination of
distributed capacity and types of user application also for resource management
in Fog computing to deal with the issues created by the mobile devices. The authors
compared three different scheduling policies—delay priority, concurrent, and first
come first serve (FCFS) and to understand the influence of mobility in resource
management and improve the application execution based on their characteristics.

The authors in [27] integrated the Fog architecture with information-centric Inter-
net of Vehicles (IoV) to provide support for the mobility of vehicle nodes through
different schemas that consider data characteristics. In the proposed mechanism,
the authors also considered the computation, storage, and location information of

Mobility-Based Resource Allocation 261

Fog nodes for the exchange of information. The feature of IoV was also taken into
consideration for communication in a mobile environment.

In a nutshell, various methods such as task offloading, live migration, and task
delegation have been well-studied and implemented with demonstrated improve-
ments when it comes to managing mobility in a computing environment regarding
resource allocation and provisioning. Fast forward to the future, where all the
end devices would offer seamless services to the users without any interruptions
and guaranteed quality of service, the novel resource provisioning, and allocation
algorithms should combine all those methods to handle the trade-offs within
resource management in better ways.

4 Modelling Techniques to Support Mobility to Enhance
the QoS of the Applications

Fog computing and its associated Edge-computing paradigms have been introduced
to meet the demands of those complex nature applications that need efficiency,
performance, reliability, mobility, and scalability at their top priority. The Fog
computing approach provides the user with access through local data processing
and data output rather than storing and maintaining information in extensively
extracted Cloud storage facilities. Compared to Cloud computing that is often based
on centralized architectures and provides the computation and storage service at
fixed locations, Fog computing, and Edge computing are decentralized, distributed,
and hierarchical, and their service locations are close to the end-user [7, 33].

Mobility of Fog computing is a critical challenge for most Fog computing-based
real-time IoT applications because mobility requires keeping a network connection
alive between sensor nodes and gateways, which are often referred to as Fog nodes.
After all, network disruption often leads to unavailability of system services and,
in some cases, high latency between network components. Moreover, the rapid
advancements in the mobile communication technologies such as 5G wireless, it
allows mobile users to off-load their computational processes to nearby deployed
servers to reduce the consumption of resource-constrained devices with limited
battery, memory, and processing power [34, 35].

To facilitate the application mobility function across Fog nodes, Martin et al.
[28] proposed the mobility architecture to address the issue of moving containers
corresponding to the user application modules. The transfer of containers is carried
out in an automated mobile manner employing an automatic control loop called
the Monitor–Analyze–Plan–Execute (MAPE) loop and Genetic Algorithm. The pro-
posed structure incorporates agents who are responsible for gathering information
on the environmental context to describe the implementation plan in a well-defined
manner. To measure the movement of user devices to the Fog environment to which
they are currently attached, the Monitoring mechanism senses a change between the
user device and the distributed Fog nodes. The approach uses the pre-defined value

262 S. K. Battula et al.

of the user location to launch the migration process to improve service quality for
Fog nodes.

QoS management consists of various methods used to delegate essentially
distributed resources to Fog-user applications, selecting an acceptable way to
allocate virtual resources to the physical resource. Therefore, a Fog-based resource
allocation model was introduced in [36], with the main goal of addressing the
issues of the mobility of nodes, assigning tasks, and also presenting virtual machine
problems in a single Fog computing context. The purpose of the proposed approach
is also defined by efficient resource allocation and mobility algorithm, which
focuses primarily on optimizing the distribution of resources and reducing the
number of users interacting with Fog nodes for different tasks.

To resolve the problem of mobility and increased latency in the vehicle Cloud
computing environment, a directional model of vehicle mobility has been proposed
[37] to achieve a guaranteed level of road vehicle service. In the proposed model,
the entire network is divided into three sub-models based on their movement
and rotation around the network. Within each model, vehicles are responsible for
communicating with others via roadside units. The purpose of the proposed model
is to reduce the latency and response time of the vehicle tasks. Also, various
algorithms, such as greedy search algorithms, bipartite matching algorithms are used
to solve optimization and cost flow issues.

Chen et al. [38] presented the Edge cognitive computing architecture to enable
dynamic service migration based on the behavioral patterns of mobile users.
Advanced cognitive services based on various artificial intelligence methods are
used at the Edge of the network in the proposed architecture. The benefit of inducing
these services to the Edge computing model is that it can achieve higher energy effi-
ciency and service quality relative to current Edge computing paradigms. Besides,
the simulation analysis highlights the importance of the proposed architecture in
terms of low latency, dynamic user interface, high system resource usage that
eventually achieves overall service quality at both user and system level.

The locality of Fog computing has made it a challenge to maintain consistency as
mobile users are moving through different access networks. To deal with the locality
problem of Fog users, Bi et al. [39] suggested the software-defined networking
(SDN) architecture that divides system features into two modules. One module
is responsible for managing the mobility of users across the network, while the
other module serves as a router and only handles data routing functions. Besides,
to demonstrate the flexibility of the proposed model, an effective route optimization
algorithm is also proposed that overcomes the problems of network performance
overhead as well as delays in data communication. Efficient signaling operations are
also advocated to provide mobile users with transparency and usability assistance
in Fog computing. The simulation results of the proposed model illustrate the
assurance of service continuity for mobile users and increased the efficiency of data
transmission when re-registering users on other access networks.

Providing seamless connectivity to mobile users in Fog computing-mobile
networks is a major challenge since it requires adequate load balancing mechanisms
to offload computing to mobile users and a consistent channel to communicate with

Mobility-Based Resource Allocation 263

others. To take this concept into account, Ghosh et al. [30] suggested Mobi-IoST—a
collaborative system consisting of multiple components offering efficient delivery of
various types of services to consumers, regardless of their mobile locations. Also,
the proposed system is capable of providing users with an appropriate decision-
making process on the knowledge and data they provide. The Cloud portion is
responsible for analyzing the location data of IoT devices obtained from Fog nodes
based on their mobility patterns. The mobility prediction module predominantly
stores the model information and location logs of mobile users in different settings
and utilizes the Markov model to make decisions on location logs to detect their
locations efficiently.

High latency is also a major challenge in the Fog computing world, where mobile
devices are faced with issues of proper access and control of Cloud resources by
moving users around the network. To fix this problem, Zhang et al. [40] introduced
an effective mobility-based method to transfer virtual machines between Edge
Cloud data centers to mitigate network overhead. To meet the migration criteria of
virtual machines, two algorithms (M-Edge and M-All) are used to identify machines
based on mobile users in the network. Further, weight-based and predictive-based
algorithms are used to support user mobility. The strength of the proposed approach
is that it greatly decreases the network overhead and latency of the migration of
virtual machines in the MEC environment.

Lee et al. [41] presented a Mobility Management System based on the Multi-
Access Edge Computing (MEC) model that incorporates the idea of a protected
access region called zones where mobile users can access server resources effi-
ciently and monitor contents when traveling. The benefit of having the zone is that
mobile users are still able to link and communicate with other mobile users within
the specified boundary. In specified zones, mobile users must first register with the
nearest zone and transmit their information and then access the network resources
identified by the access control list.

Another mobility management issue in a high-density Fog computing environ-
ment is discussed by Rejiba et al. [42] where a user-centric mechanism is used
to select Fog nodes to perform various tasks. The objective of the proposed work
is to allow mobile users to learn and connect to a Fog node using a multi-armed
bandit algorithm. In the learning method, an epoch model is used where the total
number of Fog nodes is almost equal to the number of specifications (processes) to
be completed. As a consequence, the quality of service is achieved by using a limited
number of Fog nodes to execute the operation with the best possible capacity. Real-
time user data and location patterns are used for simulation purposes.

In MEC environments, users with a mobility orientation frequently change their
positions at various periods, so it is very hard to switch between different servers
to provide them with the resources they need to maintain the quality of service. To
overcome this issue, Peng et al. [43] proposed mobility intelligence and migration
enables an online decision-making framework called MobMig to solve the Edge
user allocation problem in an efficient and real-time manner. The proposed system
completely automates current static location-aware systems that have resulted in
system inefficiency and time delay invariant. Proper service selection and allocation

264 S. K. Battula et al.

to the right users in the MC system is a major challenge due to resource constraints
and the restricted functionality of mobile devices. To overcome these challenges,
Wu et al. [44] suggested a heuristic approach by integrating genetic and annealing
algorithms to accommodate multiple service requests from mobile users. The benefit
of the proposed approach is that it can substantially reduce the response time in the
selection and delivery of the service over the MEC network.

A user-centric mobility approach in the Fog computing environment, with the
cooperation of user interface and resource allocation scenarios, is introduced by
Tong et al. [47] to resolve issues of inappropriate resource allocation and lack
of user experience in the context of unpredictable Fog scenarios. In the proposed
approach, mix-integer non-linear programming is resolved using a novel algorithm
called UCAA—low complexity two-step interactive optimal algorithm. For user
experience, two decision-based algorithms, such as semi-definite programming and
Kuhn-Munkres are proposed and used in the proposed scenario. Also, to fix the
problem of resource allocation, the overall scenario is divided into two phases:
transmission power selection and resource allocation, and each phase is individually
addressed. The analysis of the proposed approach achieves substantial overall
performance in the allocation of server resources and enhanced user experience in
Fog computing environments.

With end-user mobility, the migration of services between different mobile users
is a challenging task to ensure the quality of service and operating costs of the
overall network. To resolve these challenges, Ouyang et al. [48] introduced a
dynamic mobility-aware service model to balance the efficiency and cost of the
computing infrastructure for end-users. To overcome the unpredictable mobility
of users, the Lyapunov optimization technique is used to divide the long-term
optimization problem into a set of real-time optimization problems solely based on
the NP-hard problem. Also, the proposed method uses the Markov approximation
algorithm to find the optimization of such real-time problems. The advantage of the
proposed system is that it can substantially reduce the time complexity for large-
scale end-user applications.

Optimal task scheduling and off-loading tasks in MEC are both critical chal-
lenges due to vehicle mobility, moving patterns, and varying traffic loads. To
resolve these problems, the energy-efficient dynamic decision-based approach is
introduced by Huang et al. [49] where a transmission system called uplink is
implemented to allow traffic from vehicles to roadside units. A dynamic process
(or task) offloading mechanism is used to reduce latency, energy consumption,
and packet rate. Moreover, a resource allocation method is also proposed to
tackle the different complexity of each vehicle and its waiting pattern for resource
accessibility. For dynamic task offloading and efficient allocation of resources, a
Lyapunov mechanism is proposed to ensure the efficiency of the system.

Table 2 provides a detailed comparison of existing techniques for modeling
the mobility used to improve the quality of service (QoS) of the applications.
Following parameters such as problem addressed, techniques used, performance
challenges, use cases, experimental setup, evaluation criteria, and data set, are used
for comparison purposes.

Mobility-Based Resource Allocation 265

Ta
bl
e
2

C
om

pa
ri

so
n

of
ex

is
tin

g
te

ch
ni

qu
es

fo
r

m
od

el
lin

g
th

e
m

ob
ili

ty
us

ed
to

im
pr

ov
e

th
e

Q
ua

lit
y

of
Se

rv
ic

e
(Q

oS
)

of
th

e
ap

pl
ic

at
io

ns

R
ef

Pr
ob

le
m

ad
dr

es
se

d
Te

ch
ni

qu
es

us
ed

Pe
rf

or
m

an
ce

ch
al

le
ng

es
U

se
ca

se
s

E
xp

er
im

en
ta

ls
et

up
E

va
lu

at
io

n
cr

ite
ri

a
D

at
as

et
us

ed

[2
8]

M
ig

ra
tio

ns
of

co
nt

ai
ne

rs
or

ap
pl

ic
at

io
ns

M
A

PE
lo

op
an

d
ge

ne
tic

al
go

ri
th

m
Q

ua
lit

y
of

se
rv

ic
e

N
ot

de
fin

ed
iF

og
Si

m
To

ol
ki

t
N

et
w

or
k

us
ag

e,
de

la
y

(E
xe

cu
tio

n
an

d
R

eq
ue

st
)

M
on

et
ar

y
co

st

V
eh

ic
ul

ar
da

ta
se

t,
(G

en
er

al
D

ep
ar

tm
en

ta
l

C
ou

nc
il

of
V

al
de

M
ar

ne
)

[3
6]

M
ig

ra
tio

n
of

ap
pl

ic
at

io
ns

,
R

es
ou

rc
e

al
lo

ca
tio

n
is

su
es

N
ot

de
fin

ed
Q

ua
lit

y
of

se
rv

ic
e

N
ot

de
fin

ed
C

lo
ud

Si
m

to
ol

ki
t

Pr
oc

es
si

ng
tim

e
N

ot
de

fin
ed

[3
8]

Se
rv

ic
e

m
ig

ra
tio

n
is

su
e

E
dg

e
co

gn
iti

ve
co

m
pu

tin
g

E
ne

rg
y

ef
fic

ie
nc

y,
Q

ua
lit

y
of

se
rv

ic
e

N
ot

de
fin

ed
A

nd
ro

id
ap

pl
ic

at
io

n
pr

og
ra

m

L
at

en
cy

,S
er

vi
ce

re
so

lu
tio

n,
U

se
r

E
xp

er
ie

nc
e

N
ot

de
fin

ed

[3
9]

M
ob

ili
ty

su
pp

or
tt

o
m

ob
ile

us
er

s
A

n
ef

fic
ie

nt
ro

ut
e

op
tim

iz
at

io
n

al
go

ri
th

m

Q
ua

lit
y

of
ex

pe
ri

en
ce

N
ot

de
fin

ed
M

in
in

et
-W

iF
i

pa
ck

ag
e

Sy
st

em
co

st
,

H
an

do
ve

r
la

te
nc

y
N

ot
de

fin
ed

[3
0]

M
ob

ili
ty

dy
na

m
ic

s
of

th
e

m
ov

in
g

ag
en

t

M
ac

hi
ne

le
ar

ni
ng

ap
pr

oa
ch

es
,

pr
ob

ab
ili

st
ic

gr
ap

hi
ca

lm
od

el

E
ne

rg
y

ef
fic

ie
nc

y
Q

ua
lit

y
of

se
rv

ic
e

N
ot

de
fin

ed
M

at
la

b
D

el
ay

,P
ow

er
co

ns
um

pt
io

n,
A

cc
ur

ac
y,

R
ec

al
l

F-
m

ea
su

re

M
ob

ili
ty

da
ta

se
t

ge
ne

ra
te

d
fr

om
10

0
sm

ar
tp

ho
ne

s

[4
5]

C
om

m
un

ic
at

io
n

in
ef

fic
ie

nc
y

an
d

se
cu

ri
ty

of
da

ta

N
ot

de
fin

ed
Se

cu
ri

ty
R

el
ia

bi
lit

y
E

ffi
ci

en
cy

Sm
ar

tg
ri

d
Io

T
pl

at
fo

rm
T

hi
ng

Sp
ea

k,
M

at
la

b,
IE

E
E

13
-b

us
te

st
gr

id

D
if

fe
re

nt
Si

m
ul

at
io

n
T

im
es

(I
ni

tia
liz

at
io

n,
ex

ec
ut

io
n,

te
rm

in
at

io
n)

,
en

er
gy

co
m

pu
ta

tio
n

N
ot

de
fin

ed (c
on

tin
ue

d)

266 S. K. Battula et al.

Ta
bl
e
2

(c
on

tin
ue

d)

R
ef

Pr
ob

le
m

ad
dr

es
se

d
Te

ch
ni

qu
es

us
ed

Pe
rf

or
m

an
ce

ch
al

le
ng

es
U

se
ca

se
s

E
xp

er
im

en
ta

ls
et

up
E

va
lu

at
io

n
cr

ite
ri

a
D

at
as

et
us

ed

[4
0]

N
et

w
or

k
ov

er
he

ad
is

su
e

be
ca

us
e

of
m

ig
ra

tio
n

of
vi

rt
ua

l
m

ac
hi

ne
s

N
aï

ve
m

ig
ra

tio
n

al
go

ri
th

m
s

(M
-A

ll
an

d
M

-E
dg

e)

Q
ua

lit
y

of
se

rv
ic

e
N

ot
de

fin
ed

N
ot

de
fin

ed
T

ra
je

ct
or

y,
O

ve
rh

ea
d

an
al

ys
is

,
Pe

rf
or

m
an

ce
an

al
ys

is

M
ic

ro
so

ft
G

eo
lif

e
T

ra
je

ct
or

ie
s

1.
3

[4
1]

A
cc

es
s

to
M

E
C

A
rc

hi
te

ct
ur

e,
U

nn
ec

es
sa

ry
de

la
ys

in
re

qu
es

t
pr

oc
es

si
ng

Z
on

e
ba

se
d

ac
ce

ss
Q

ua
lit

y
of

se
rv

ic
e

N
ot

de
fin

ed
C

lo
ud

Si
m

an
d

E
dg

e
C

lo
ud

Si
m

U
se

r
m

ob
ili

ty
m

od
el

,N
um

be
r

of
m

ob
ile

us
er

s,
av

er
ag

e
ta

sk
si

ze
,

W
L

A
N

ba
nd

w
id

th
,

V
M

pr
oc

es
so

r
sp

ee
d,

N
ot

de
fin

ed

[4
2]

M
ob

ili
ty

is
su

e
in

us
er

pa
tte

rn
s

B
an

di
tl

ea
rn

in
g

m
od

el
Q

ua
lit

y
of

se
rv

ic
e

N
ot

de
fin

ed
N

ot
de

fin
ed

M
ed

iu
m

an
d

hi
gh

Fo
g

no
de

s
de

ns
ity

A
nd

ro
id

m
ob

ile
da

ta
co

lle
ct

ed
at

do
w

nt
ow

n
st

re
et

in
V

ila
no

va
I

L
a

G
el

tr
u

[4
3]

E
dg

e
us

er
re

so
ur

ce
al

lo
ca

tio
n

is
su

e
R

an
do

m
w

ay
po

in
t

(R
W

P)
m

ob
ili

ty
m

od
el

O
PT

,F
FP

,
an

d
G

re
ed

y
A

pp
ro

ac
h

Q
ua

lit
y

of
se

rv
ic

e
C

en
tr

al
bu

si
ne

ss
di

st
ri

ct
in

M
el

bo
ur

ne
,

A
us

tr
al

ia

N
ot

de
fin

ed
U

se
r

co
ve

ra
ge

ra
te

an
d

ca
pa

ci
ty

G
oo

gl
e

m
ap

[4
6]

R
el

ia
bi

lit
y

of
sm

ar
t

m
ob

ili
ty

ap
pl

ic
at

io
ns

N
ot

de
fin

ed
Q

ua
lit

y
of

se
rv

ic
e

V
eh

ic
ul

ar
ne

tw
or

k
Py

th
on

ba
se

d
m

od
ul

es
H

ig
h

de
ns

ity
vs

lo
w

de
ns

ity
R

ea
lV

A
N

E
T

ca
lle

d
B

us
N

et

Mobility-Based Resource Allocation 267

[4
4]

Se
rv

ic
e

co
m

po
si

tio
n

in
m

ob
ile

us
er

s
an

d
co

m
m

un
iti

es

K
ri

ll-
H

er
d

al
go

ri
th

m
Se

rv
ic

e
of

Q
ua

lit
y

M
ob

ile
w

eb
se

rv
ic

e
B

ui
ld

on
si

m
ul

at
io

n
to

ol
us

in
g

.N
et

pl
at

fo
rm

Po
pu

la
tio

n
si

ze
,

m
ax

im
um

ite
ra

tio
ns

,
se

ar
ch

in
g

co
ns

ta
nt

N
ot

de
fin

ed

[4
7]

L
ac

k
of

m
ob

ili
ty

su
pp

or
ta

nd
hi

gh
de

la
y

se
m

i-
de

fin
ite

pr
og

ra
m

m
in

g
ba

se
d

al
go

ri
th

m
,

K
uh

n-
M

un
kr

es
al

go
ri

th
m

us
er

ex
pe

ri
en

ce
,

sy
st

em
pe

rf
or

m
an

ce

II
oT

H
ea

lth
ca

re
sm

ar
tg

ri
d

sm
ar

t
tr

af
fic

M
at

la
b

U
se

r-
ce

nt
ri

c
ut

ili
ty

N
ot

de
fin

ed

[4
8]

Se
rv

ic
e

m
ig

ra
tio

n
ac

ro
ss

m
ob

ile
us

er
s

Ly
ap

un
ov

op
tim

iz
at

io
n,

M
ar

ko
v

ap
pr

ox
im

at
io

n

Pe
rf

or
m

an
ce

T
im

e
co

m
pl

ex
ity

N
ot

de
fin

ed
O

N
E

si
m

ul
at

or
A

ve
ra

ge
pe

rc
ei

ve
d

la
te

nc
y,

lo
ng

te
rm

co
st

V
id

eo
st

re
am

in
g

da
ta

[4
9]

op
tim

al
ta

sk
of

flo
ad

in
g

de
ci

si
on

s

Ly
ap

un
ov

op
tim

iz
at

io
n

E
ne

rg
y

co
ns

um
pt

io
n,

Q
ua

lit
y

of
E

xp
er

ie
nc

e

V
eh

ic
ul

ar
N

et
w

or
ks

N
ot

de
fin

ed
T

ra
ns

m
is

si
on

po
w

er
,N

oi
se

po
w

er
,C

ha
nn

el
ba

nd
w

id
th

,C
PU

fr
eq

ue
nc

y,
Pa

ck
et

dr
op

ra
te

,E
ne

rg
y

co
ns

um
pt

io
n

N
ot

de
fin

ed

[5
0]

M
ob

ili
ty

-A
w

ar
e

Ta
sk

O
ffl

oa
di

ng
is

su
e

in
ve

hi
cu

la
r

ne
tw

or
ks

N
ot

de
fin

ed
Pe

rf
or

m
an

ce
Se

rv
ic

e
Q

ua
lit

y
N

ot
de

fin
ed

V
eh

ic
ul

ar
ne

tw
or

k
Sy

st
em

co
st

,
L

at
en

cy
th

re
sh

ol
d,

N
ot

de
fin

ed

[5
1]

D
el

ay
an

d
en

er
gy

co
ns

um
pt

io
n

du
ri

ng
se

nd
in

g
an

d
re

ce
iv

in
g

re
qu

es
t

fr
om

se
rv

er

W
ei

gh
te

d
m

aj
or

ity
ga

m
e

th
eo

ry
L

at
en

cy
E

ne
rg

y
ef

fic
ie

nc
y

H
ea

lth
ca

re
Te

st
be

d
is

cr
ea

te
d

to
ga

th
er

he
ar

tr
at

e,
R

as
pb

er
ry

Pi

D
at

a
tr

an
sm

is
si

on
,

de
la

y,
en

er
gy

R
ea

l-
tim

e
pa

tie
nt

da
ta

(h
ea

rt
ra

te
)

268 S. K. Battula et al.

5 Mathematical Models for Mobility Based Resource
Allocation

This section discusses various existing mathematical models that have been used to
solve the mobility challenges in dynamic resource allocations.

Aazam et al. [52] proposed a mathematical model for the dynamic allocation of
resources in fog computing and, in particular, in the industrial internet, to achieve
both qualities of experience and quality of services. The net promoter score is
used in the proposed model to calculate the user’s input from a given scale with
total scores of 0–10, divided into three parts, i.e. negative (0–6), neutral (7–8), and
positive (9–10). By calculating these scores from the user’s historic net promoter
score, the user is assigned dynamic resources with different cases ranging from the
default, smaller, and higher scores. Lu et al. [53] proposed an efficient mechanism
to achieve a dynamic allocation of resources in the Fog-based high-speed train setup
and to improve communication performance in the mobility environment. Also, to
maximize the energy efficiency of the proposed mechanism, a mathematical model
is proposed to solve the problem of rapid convergence using iterative algorithms.
In the mathematical model, the following scenarios related to resource allocation
problems are considered, such as subcarrier allocation, transmitting power, and
antenna allocation. Also, each scenario is then resolved by decoupling the cases
from the others in iterative ways.

Lee et al. [54] presented a mathematical model to solve resource problems in
the Fog computing-based industrial internet of things. The purpose of presenting
the mathematical model is to explain the relationship between computing cost
and service popularity to solve the problem of constructing utilities for shared
dynamic resources used in Fog computing. Babu and Biswash [55] presented
a mathematical model for a mobility-based management technique designed to
achieve node-to-node communication in Fog computing-based 5G networks. The
following scenarios, including energy consumption, communication latency, robust-
ness, signaling costs, delay, and latency, are considered in this model. Hui et al. [56]
proposed an idea to build a resource allocation mechanism for the Edge-computing
environment based on mobility to achieve better stability and secure system data
operations. To formulate their proposed idea, a differential mathematical model is
presented to define the relationship between the resources allocated to the intrusion
detection system (IDS) and the users. To enhance the applicability of their model,
the quantitative analysis is also combined with the proposed differential model. By
having this integrated model, the system is better able to maintain scalability and
security.

Xiang et al. [57] presented a mathematical model called JSNC for efficient slicing
of mobile and Edge computing resources in the Fog-based Cloud computing envi-
ronment. This mathematical modeling aims to analyze the problems for minimizing
the latency or delay between the transmission of resources, performing operations
on user traffic gather from multiple traffic classes, and applying the constraints
on different capacities network. The proposed mathematical model is integrated

Mobility-Based Resource Allocation 269

with a mixed-integer nonlinear spatial modulation to effectively evaluate the two
heuristic approaches, including sequential fixing and greedy approaches. Oueida
et al. [58] presented mathematical modeling using the Petri net framework for the
validation of non-consumable resources in Cloud computing and Edge computing.
This mathematical framework provides for the validation of the known framework
used in the medical field called the Emergency Department (ED). For validation
of the proposed model, the following parameters, such as patient length of stay,
patient waiting time, and resource utilization rate, are used as basic performance
measurement criteria. Zhang et al. [59] presented a mathematical model for the
Joint Optimization Framework to optimize the content cache and resource allocation
issues in MEC. The presented model is integrated with the policy gradient and value
integration methods for determining the performance of communication links with
two scenarios such as vehicle to infrastructure and vehicle to vehicle. At the top of
that, the mathematical model is also given for the content of the cache scenario in
MEC.

Huang et al. [60] proposed an energy-efficient, enhanced learning algorithm
for task offloading and resource allocation in a Fog-based vehicular network.
To validate the proposed algorithm, a mathematical model is then presented
covering the different delay aspects, for instance, delay of task execution. Lin et
al. [61] proposed a task offloading and resource allocation model based on a new
multi-objective resource constraint mechanism for smart devices in a Fog-based
Cloud environment. The proposed model is enhanced by a regression algorithm
to make user requests without repeating the sequence. To validate their proof, a
mathematical model is presented for the resolution of tasks related to offloading
and resource allocation issues, taking into account different evaluation parameters,
including processing time of virtual machines, tasks, completion time, and energy
consumption.

The comparison of these models are presented in Table 3.

6 Application Use Cases

Fog computing is fully accessible to a wide variety of potential IoT applications,
covering a significant proportion of many industries and businesses. It offers
various advantages to those applications where real-time connectivity, streaming,
fast processing, delay less communication, and low latency are the most and the top
priority requirements. Figure 1 illustrates the taxonomy of mobility-based use cases
and applications in the Fog/Edge environments.

6.1 Vehicular Networks

As part of the innovative IoT technologies, Vehicular Ad-hoc Networks (VANETs)
offers an opportunity for the modern world by introducing new ways of linking

270 S. K. Battula et al.

Table 3 Comparison of mobility-based resource allocation mathematical models

Ref Application domain
Problems
formulated

Model/technique
used

Evaluation
parameters
considered

[52] Industrial Internet
of Things

Dynamic resource
allocation

Net promoter score Quality of service,
Quality of
experience

[53] High-speed trains Dynamic resource
allocation,
Communication
performance

Mixed integer
programming

Subcarrier
allocation Transmit
power Antenna
allocation

[54] Industrial Internet
of Things

Resource portioning Not defined Quality of service,
Quality of
experience

[55] 5G networks Mobility
management

Net promoter score Energy
consumption,
Communication
delay, Robustness,
Signalling cost,
Delay, Latency

[56] Intrusion detection
system

Resource allocation Differential
Equation Model

Scalability

[57] 5G networks Efficient slicing of
resources

Not defined Scalability

[58] Smart Healthcare Resource allocation Petri net framework Patient length stay,
Patient waiting
time, Resource
utilization rate

[59] Internet of Vehicles Content cache and
resource allocation

Markov decision
process model

Scalability

[60] Vehicular Networks Task offloading and
resource allocation

Deep
Reinforcement
Learning

Task execution
delay, Energy
consumption,
Offloading
execution time,
Local execution
time

[61] Smart Healthcare Task offloading and
resource allocation

Fruit Fly
Optimization

Processing time of
virtual machines,
Completion time,
Energy
consumption, Data
center cost

on-road vehicles and passengers and offering new driving paradigms such as
intelligent auxiliary driving and automatic driving [46]. Further, it enhance the
existing transportation system with the new intelligent features including navigation,
city traffic anomaly detection, bus stop arrival time estimation, and path finding
along with the planning as well [62]. It also can detect and respond in real-time

Mobility-Based Resource Allocation 271

Fig. 1 Taxonomy of fog/edge mobility supported applications

to unforeseen incidents where traditional concepts such as Cloud computing are
unable to perform immediate actions. Fog Computing considers VANETs to be
a further prerequisite for the technological challenge, bringing computer tools,
applications, and services closer to their users and enabling mobile applications
and services to be delivered with a minimum of delay. To address the mobility
challenges of smart applications in the VANET context, Pereira et al. [46] proposed
a simplified architecture that uses proof-of-concept technologies to provide Fog
computing mobility services across VANET safely and efficiently. The architecture
tested on a smaller traffic dataset where the achieved results show the reliability and
quality of the information broadcast over a short period.

In another study, Yang et al. [50] suggested a mobility-aware task offloading
scheme to tackle the issues of computing, time selection, communication, high
latency, and efficient resource allocation in VANETs. The proposed scheme uses
the concept of MEC where each MEC server works independently or in conjunction
with access points to efficiently perform mobility aware off-loading tasks. Besides,
MEC servers also use the location-based off-loading system to unload tasks to
adjacent mobility access points by moving vehicles. The benefit of the proposed
scheme is that mobility vehicles based on initial locations may either select a local
computing access point or reload their processing tasks to the next access points to
achieve the quality of service and balance latency and network computation costs at
an optimal stage.

6.2 Smart Healthcare

Smart healthcare is one of the most ambitious applications that combines current
computing paradigms such as IoT, Fog, and Cloud to provide patients with an

272 S. K. Battula et al.

enhanced and futuristic range of services. In smart healthcare, patient-related data
is collected by different sensors, such as smartwatches, wrist bands, thermometers,
and processed by different intermediate nodes, such as Fog, and further shared with
Cloud servers, to take specific health-related actions. The network used for this form
of application is called the body area network, where users (patients, doctors) can
access their health data using various mobile devices and have separate control
over data stored in the Cloud. To reduce the impact of energy consumption and
processing delays of various Cloud servers in the smart healthcare environment,
Fog computing has been proposed where various intermediate nodes called Fog
nodes serve the processing and storage of patient data. To explain this scenario,
Mukherjee et al. [63] suggested a Fog-based smart healthcare infrastructure where
different indoor and outdoor sensors in the body area network gather patient data
and send it to Fog nodes. Each Fog node used the concept of game theory called
weighted majority to minimize the average latency, jitters, and energy consumption
of the overall Fog computing-based health-care system.

6.3 Smart Grid

Smart grid is also a potential application of Fog-based IoT that combines the
benefits of various ICT technologies to provide reliable, secure, and high-quality
power services to consumers in an effective and specified manner. Smart grids
are designed to monitor the power consumption of each household and to build
a secure communication channel between users and different energy providers.
Current solutions used by smart grid networks are solely focused on single or
consolidated Cloud paradigms where Cloud providers are responsible for collecting
and storing energy usage data and maintaining the profile of each household user.
However, with an increasing number of smart devices connected to smart grid
architectures, Cloud-based approaches often fail to provide real-time services on
user data measurement and sometimes cause more delays in the network. In order
to overcome these issues, Fog-based smart grid frameworks are introduced where
Fog nodes are able to perform different computing services on user data rather than
sending and storing Cloud parties [45].

6.4 Others

The scope of Fog and Edge computing paradigms is not limited to a few applications
but provides a wide range of applications used in human daily life. For example,
vision and hearing for mobility-impaired users, video surveillance, augmented
reality, and mostly for gaming frameworks. One advantage of these Fog-based
applications is that they require very low latency for communication between
stations and Clouds [32].

Mobility-Based Resource Allocation 273

7 Future Direction of Mobility-Based Resource Allocation
and Provisioning in Fog and Edge related Computing
Paradigms

This section concludes several future directions from the potential challenges of
existing mobility-based resource allocation and provisioning frameworks for Fog
and Edge-related computing paradigms. These challenges provide guidelines for
researchers to develop efficient solutions for mobility-based resource allocation in
Fog/Edge computing.

7.1 Mobility-Based Resource Allocation and Provisioning

Achieving the efficiency of Fog resources using different security enhancement
policies is a difficult challenge, as each policy has its limitations, and therefore a
multi-dimensional enhancement platform to support a variety of policies should be
proposed to maximize profit and efficiency. In a mobility-based Fog computing
environment, the energy consumption of mobile IoT devices is a challenging
problem as most devices spend their energy and execution time connecting to
different Fog devices in different regions, and therefore energy-efficient solutions
for the placement and location of devices need to be considered as part of future
work. The distribution of computational tasks on different Fog nodes in a resource-
restricted environment is a difficult task, as Fog nodes must be aware of the
computational capabilities of the IoT nodes deployed and their remaining use
capacity. Also, the migration of services or applications from the Cloud to Fog nodes
is a challenging issue that needs to be considered for efficient delivery and proper
use to achieve QoS. Moreover, the available resources of Fog/Edge nodes should
be properly managed through virtualization and efficiently allocate the resources
because of limited resource nodes. To this end, efficient allocation, provisioning of
resources, and scheduling algorithms should be developed to improve QoS in the
Fog and Edge-based environment.

7.2 Security and Privacy

Despite offering a large number of benefits to users in terms of distributed
processing, minimizes latency, mobility support, and position awareness, etc., the
security and privacy of users and their data stored and exchanged by various
Fog computing nodes is becoming a critical challenge. While a range of security
solutions have been put forward to ensure the authentication, authorization, access
control, and availability of Fog services, as well as the confidentiality, integrity, and
reliability of data stored on Cloud servers. Nevertheless, due to a significant increase

274 S. K. Battula et al.

in data volume and processing nodes, more robust and secure solutions based on
quantum cryptography and blockchain could also be used to build a trustworthy
relationship between Fog computing nodes.

7.3 Power Utilization and Management

Fog nodes have to manage a large number of concurrent requests from computers,
users, and other Fog nodes simultaneously. Researchers have suggested various
approaches to solve this situation, such as adding more Fog nodes and increase the
resource vector that will ultimately accommodate multiple requests to some extent.
However, on the other hand, these approaches contribute to the extra power usage
of the overall network, which greatly reduces the energy and efficiency of restricted
mobile devices. For the power utilization and management of both Fog and Edge
nodes, this problem must be tackled to achieve the QoS of the underlying network
and to maximize the efficiency of Fog nodes during the migration of services and
tasks among other nodes.

7.4 Fault Tolerance

Fault tolerance is an essential challenge in the Fog computing environment that
ensures the continuous delivery of services and operations to mobile nodes regard-
less of location and network processing efforts. This also ensures that every node
completes their task in an event of breakdown with little to no human interference.
To achieve fault tolerance of MC nodes, a range of failover and redundancy
solutions such as RAID models, backup of user data, upgrade of security patches,
constant power supply, etc. However, these solutions require extra hardware but
instead provide Fog nodes services at fixed locations, so there is a need to improve
capabilities and design low power fault tolerance techniques for the mobile nature
of Fog nodes.

7.5 Support For Application Placements Strategies

Application placement strategies in Fog and Edge computing offer a way to meet
the challenging needs of complex resources for an increasing number of IoT devices
in time-critical scenarios. Since IoT devices operate constantly in the deployed
environments for the sensing and computation of data, many Cloud/Fog resources
are required to perform tasks in time. Current application placement approaches

Mobility-Based Resource Allocation 275

often fail to satisfy the resource needs of a growing number of devices and only
applicable to IoT applications that do not always change their locations, such
as parking sensors. It is, therefore, a challenging task to develop an application
placement strategy that needs support for the mobility and heterogeneous design
of IoT devices and takes less time to perform parallel tasks.

7.6 Support Interoperability

The design model of Fog and Edge-based computing environments consists of het-
erogeneous nature of devices distributed at remote locations, connected via various
data centers, and using a wide variety of protocols such as wireless, Bluetooth,
4G, and 5G. With the abundance of various types of technical components with
specific design models and capacities, it is also difficult to work seamlessly and
share resources among others. A proper interoperability framework is thus required
that can manage the dynamic nature of devices and protocols, as well as fulfill the
need for a common remote resource sharing platform to improve efficiency and
transparency at a significant level.

7.7 Unified and Dynamic Resource Management
and Provisioning

A crucial and difficult issue is to develop a single resource management framework,
which is similar to personal computer Meta OS, to provide on-demand and
cross-domain services for heterogeneous IoT devices. The platform should be a
centralized IoT-based management framework that distinguishes hardware and soft-
ware logically from devices and ensures that all software and hardware resources,
including commodity OSes and their applications, are managed uniformly and that
versatile services are provided via heterogeneous IoT devices. Required services
can be configured on the IoT devices and performed dynamically according to
the request. If the instance OS on the IoT device cannot support the requested
service, the server-side will load a compatible instance OS for the service. So it
is a crucial challenge in this regard to get dynamic OS boots and service loading on
lightweight IoT devices from the Edge servers. While using the computing resources
of Edge servers, IoT-based computing infrastructure will be capable of using a
more powerful computing paradigm. The main challenge is how machine tasks
are distributed between terminals and Edge servers. The development of various
techniques for partitioning a task has been accelerated by evolving distributed
computing environments to allow for simultaneous partitioned tasks at several
geographic locations [17, 64].

276 S. K. Battula et al.

8 Conclusion

Near-to-the-Edge services have now started delivering exciting services in every
field with the help of nodes and devices in paradigms such as Fog and Edge. These
nodes are highly dynamic and mobile, which pose several challenges in resource
management including provisioning and allocation while serving the users for
different applications. As such, in this chapter, we presented a comprehensive list of
challenges for a MEC paradigm that can deliver seamless services, irrespective of its
highly mobile nodes and devices. We also presented a true reflection of the current-
state-of-the-art of the works done, centered around the mobility of the end devices,
to address the challenges while managing the resource. Based on our analyses,
we also highlighted the need for such a mobile environment to be integrated with
emerging technologies like 5G and SDN along with other future research directions
for MEC.

References

1. Sneha Tammishetty, T Ragunathan, Sudheer Kumar Battula, B Varsha Rani, P RaviBabu,
RaghuRamReddy Nagireddy, Vedika Jorika, and V Maheshwar Reddy. Iot-based traffic signal
control technique for helping emergency vehicles. In Proceedings of the First International
Conference on Computational Intelligence and Informatics, pages 433–440. Springer, 2017.

2. KC Ujjwal, Saurabh Garg, James Hilton, Jagannath Aryal, and Nicholas Forbes-Smith. Cloud
computing in natural hazard modeling systems: Current research trends and future directions.
International Journal of Disaster Risk Reduction, page 101188, 2019.

3. Hamidreza Arasteh, Vahid Hosseinnezhad, Vincenzo Loia, Aurelio Tommasetti, Orlando
Troisi, Miadreza Shafie-khah, and Pierluigi Siano. Iot-based smart cities: a survey. In 2016
IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC),
pages 1–6. IEEE, 2016.

4. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role
in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, pages 13–16, 2012.

5. Sudheer Kumar Battula, Saurabh Garg, James Montgomery, and Byeong Ho Kang. An efficient
resource monitoring service for fog computing environments. IEEE Transactions on Services
Computing, 2019.

6. Jürgo S Preden, Kalle Tammemäe, Axel Jantsch, Mairo Leier, Andri Riid, and Emine Calis.
The benefits of self-awareness and attention in fog and mist computing. Computer, 48(7):37–
45, 2015.

7. Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash Jayaraman,
Longxiang Gao, Yong Xiang, and Rajiv Ranjan. Fog computing: Survey of trends, architec-
tures, requirements, and research directions. IEEE access, 6:47980–48009, 2018.

8. Sonia Shahzadi, Muddesar Iqbal, Tasos Dagiuklas, and Zia Ul Qayyum. Multi-access edge
computing: open issues, challenges and future perspectives. Journal of Cloud Computing,
6(1):30, 2017.

9. Minh-Quang Tran, Duy Tai Nguyen, Van An Le, Duc Hai Nguyen, and Tran Vu Pham.
Task placement on fog computing made efficient for iot application provision. Wireless
Communications and Mobile Computing, 2019, 2019.

10. Maurizio Capra, Riccardo Peloso, Guido Masera, Massimo Ruo Roch, and Maurizio Martina.
Edge computing: A survey on the hardware requirements in the internet of things world. Future
Internet, 11(4):100, 2019.

Mobility-Based Resource Allocation 277

11. Hasan Ali Khattak, Hafsa Arshad, Saif ul Islam, Ghufran Ahmed, Sohail Jabbar, Abdul-
lahi Mohamud Sharif, and Shehzad Khalid. Utilization and load balancing in fog servers
for health applications. EURASIP Journal on Wireless Communications and Networking,
2019(1):91, 2019.

12. Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys & Tutorials, 19(3):1628–1656, 2017.

13. Yonal Kirsal, Glenford Mapp, and Fragkiskos Sardis. Using advanced handover and
localization techniques for maintaining quality-of-service of mobile users in heterogeneous
cloud-based environment. Journal of Network and Systems Management, 27(4):972–997,
2019.

14. Ranesh Kumar Naha, Saurabh Garg, Andrew Chan, and Sudheer Kumar Battula. Deadline-
based dynamic resource allocation and provisioning algorithms in fog-cloud environment.
Future Generation Computer Systems, 104:131–141, 2020.

15. Cheol-Ho Hong and Blesson Varghese. Resource management in fog/edge computing: a survey
on architectures, infrastructure, and algorithms. ACMComputing Surveys (CSUR), 52(5):1–37,
2019.

16. Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. Resource management
approaches in fog computing: A comprehensive review. Journal of Grid Computing, pages
1–42, 2019.

17. Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. Serving at the edge: A scalable iot
architecture based on transparent computing. IEEE Network, 31(5):96–105, 2017.

18. Haijun Zhang, Na Liu, Xiaoli Chu, Keping Long, Abdol-Hamid Aghvami, and Victor CM
Leung. Network slicing based 5g and future mobile networks: mobility, resource management,
and challenges. IEEE communications magazine, 55(8):138–145, 2017.

19. Argyrios G Tasiopoulos, Onur Ascigil, Ioannis Psaras, and George Pavlou. Edge-map: Auction
markets for edge resource provisioning. In 2018 IEEE 19th International Symposium on" A
World of Wireless, Mobile and Multimedia Networks"(WoWMoM), pages 14–22. IEEE, 2018.

20. Mengting Liu, F Richard Yu, Yinglei Teng, Victor CM Leung, and Mei Song. Distributed
resource allocation in blockchain-based video streaming systems with mobile edge computing.
IEEE Transactions on Wireless Communications, 18(1):695–708, 2018.

21. Yangzhe Liao, Liqing Shou, Quan Yu, Qingsong Ai, and Quan Liu. Joint offloading
decision and resource allocation for mobile edge computing enabled networks. Computer
Communications, 2020.

22. Muhammad Waqas, Yong Niu, Manzoor Ahmed, Yong Li, Depeng Jin, and Zhu Han. Mobility-
aware fog computing in dynamic environments: Understandings and implementation. IEEE
Access, 7:38867–38879, 2018.

23. Shreya Ghosh, Jaydeep Das, and Soumya K Ghosh. Locator: A cloud-fog-enabled framework
for facilitating efficient location based services. In 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS), pages 87–92. IEEE, 2020.

24. S Babu and Sanjay Kumar Biswash. Fog computing–based node-to-node communication and
mobility management technique for 5g networks. Transactions on Emerging Telecommunica-
tions Technologies, 30(10):e3738, 2019.

25. Jindou Xie, Yunjian Jia, Zhengchuan Chen, and Liang Liang. Mobility-aware task parallel
offloading for vehicle fog computing. In International Conference on Artificial Intelligence for
Communications and Networks, pages 367–379. Springer, 2019.

26. Shashank Shekhar, Ajay Chhokra, Hongyang Sun, Aniruddha Gokhale, Abhishek Dubey,
Xenofon Koutsoukos, and Gabor Karsai. Urmila: Dynamically trading-off fog and edge
resources for performance and mobility-aware iot services. Journal of Systems Architecture,
page 101710, 2020.

27. Dongyu Wang, Zhaolin Liu, Xiaoxiang Wang, and Yanwen Lan. Mobility-aware task
offloading and migration schemes in fog computing networks. IEEE Access, 7:43356–43368,
2019.

28. John Paul Martin, A Kandasamy, and K Chandrasekaran. Mobility aware autonomic approach
for the migration of application modules in fog computing environment. Journal of Ambient
Intelligence and Humanized Computing, pages 1–20, 2020.

278 S. K. Battula et al.

29. Anwesha Mukherjee, Deepsubhra Guha Roy, and Debashis De. Mobility-aware task delegation
model in mobile cloud computing. The Journal of Supercomputing, 75(1):314–339, 2019.

30. Shreya Ghosh, Anwesha Mukherjee, Soumya K Ghosh, and Rajkumar Buyya. Mobi-
iost: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications.
IEEE Transactions on Network Science and Engineering, 2019.

31. José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. Resource provisioning in fog
computing: From theory to practice. Sensors, 19(10):2238, 2019.

32. Luiz F Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F Rana, and Manish Parashar.
Mobility-aware application scheduling in fog computing. IEEE Cloud Computing, 4(2):26–35,
2017.

33. Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and Dario
Sabella. On multi-access edge computing: A survey of the emerging 5g network edge cloud
architecture and orchestration. IEEE Communications Surveys & Tutorials, 19(3):1657–1681,
2017.

34. Jianbing Ni, Kuan Zhang, Xiaodong Lin, and Xuemin Sherman Shen. Securing fog computing
for internet of things applications: Challenges and solutions. IEEE Communications Surveys
& Tutorials, 20(1):601–628, 2017.

35. Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge computing, fog et al.: A
survey and analysis of security threats and challenges. Future Generation Computer Systems,
78:680–698, 2018.

36. Sathish Kumar Mani and Iyapparaja Meenakshisundaram. Improving quality-of-service in fog
computing through efficient resource allocation. Computational Intelligence, 2020.

37. Yalan Wu, Jigang Wu, Long Chen, Gangqiang Zhou, and Jiaquan Yan. Fog computing
model and efficient algorithms for directional vehicle mobility in vehicular network. IEEE
Transactions on Intelligent Transportation Systems, 2020.

38. Min Chen, Wei Li, Giancarlo Fortino, Yixue Hao, Long Hu, and Iztok Humar. A dynamic
service migration mechanism in edge cognitive computing. ACM Transactions on Internet
Technology (TOIT), 19(2):1–15, 2019.

39. Yuanguo Bi, Guangjie Han, Chuan Lin, Qingxu Deng, Lei Guo, and Fuliang Li. Mobility
support for fog computing: An sdn approach. IEEE Communications Magazine, 56(5):53–59,
2018.

40. Fei Zhang, Guangming Liu, Bo Zhao, Xiaoming Fu, and Ramin Yahyapour. Reducing
the network overhead of user mobility–induced virtual machine migration in mobile edge
computing. Software: Practice and Experience, 49(4):673–693, 2019.

41. Juyong Lee, Daeyoub Kim, and Jihoon Lee. Zone-based multi-access edge computing scheme
for user device mobility management. Applied Sciences, 9(11):2308, 2019.

42. Zeineb Rejiba, Xavier Masip-Bruin, and Eva Marin-Tordera. A user-centric mobility man-
agement scheme for high-density fog computing deployments. In 2019 28th International
Conference on Computer Communication and Networks (ICCCN), pages 1–8. IEEE, 2019.

43. Qinglan Peng, Yunni Xia, Zeng Feng, Jia Lee, Chunrong Wu, Xin Luo, Wanbo Zheng, Hui Liu,
Yidan Qin, and Peng Chen. Mobility-aware and migration-enabled online edge user allocation
in mobile edge computing. In 2019 IEEE International Conference on Web Services (ICWS),
pages 91–98. IEEE, 2019.

44. Hongyue Wu, Shuiguang Deng, Wei Li, Jianwei Yin, Xiaohong Li, Zhiyong Feng, and Albert Y
Zomaya. Mobility-aware service selection in mobile edge computing systems. In 2019 IEEE
International Conference on Web Services (ICWS), pages 201–208. IEEE, 2019.

45. Miodrag Forcan and Mirjana Maksimović. Cloud-fog-based approach for smart grid monitor-
ing. Simulation Modelling Practice and Theory, 101:101988, 2020.

46. Jorge Pereira, Leandro Ricardo, Miguel Luís, Carlos Senna, and Susana Sargento. Assessing
the reliability of fog computing for smart mobility applications in vanets. Future Generation
Computer Systems, 94:317–332, 2019.

47. Shiyuan Tong, Yun Liu, Mohamed Cheriet, Michel Kadoch, and Bo Shen. Ucaa: User-centric
user association and resource allocation in fog computing networks. IEEE Access, 8:10671–
10685, 2020.

Mobility-Based Resource Allocation 279

48. Tao Ouyang, Zhi Zhou, and Xu Chen. Follow me at the edge: Mobility-aware dynamic service
placement for mobile edge computing. IEEE Journal on Selected Areas in Communications,
36(10):2333–2345, 2018.

49. Xiaoge Huang, Ke Xu, Chenbin Lai, Qianbin Chen, and Jie Zhang. Energy-efficient offloading
decision-making for mobile edge computing in vehicular networks. EURASIP Journal on
Wireless Communications and Networking, 2020(1):35, 2020.

50. Chao Yang, Yi Liu, Xin Chen, Weifeng Zhong, and Shengli Xie. Efficient mobility-aware task
offloading for vehicular edge computing networks. IEEE Access, 7:26652–26664, 2019.

51. Anwesha Mukherjee, Debashis De, and Soumya K Ghosh. Fogioht: A weighted majority game
theory based energy-efficient delay-sensitive fog network for internet of health things. Internet
of Things, page 100181, 2020.

52. Mohammad Aazam, Khaled A Harras, and Sherali Zeadally. Fog computing for 5g tactile
industrial internet of things: Qoe-aware resource allocation model. IEEE Transactions on
Industrial Informatics, 15(5):3085–3092, 2019.

53. Lingyun Lu, Tian Wang, Wei Ni, Kai Li, and Bo Gao. Fog computing-assisted energy-efficient
resource allocation for high-mobility mimo-ofdma networks. Wireless Communications and
Mobile Computing, 2018, 2018.

54. Gaolei Li, Jun Wu, Jianhua Li, Kuan Wang, and Tianpeng Ye. Service popularity-based
smart resources partitioning for fog computing-enabled industrial internet of things. IEEE
Transactions on Industrial Informatics, 14(10):4702–4711, 2018.

55. S Babu and Sanjay Kumar Biswash. Fog computing–based node-to-node communication and
mobility management technique for 5g networks. Transactions on Emerging Telecommunica-
tions Technologies, 30(10):e3738, 2019.

56. Hongwen Hui, Chengcheng Zhou, Xingshuo An, and Fuhong Lin. A new resource allocation
mechanism for security of mobile edge computing system. IEEE Access, 7:116886–116899,
2019.

57. Bin Xiang, Jocelyne Elias, Fabio Martignon, and Elisabetta Di Nitto. Joint network slicing and
mobile edge computing in 5g networks. In ICC 2019-2019 IEEE International Conference on
Communications (ICC), pages 1–7. IEEE, 2019.

58. Soraia Oueida, Yehia Kotb, Moayad Aloqaily, Yaser Jararweh, and Thar Baker. An edge
computing based smart healthcare framework for resource management. Sensors, 18(12):4307,
2018.

59. Mu Zhang, Song Wang, and Qing Gao. A joint optimization scheme of content caching
and resource allocation for internet of vehicles in mobile edge computing. Journal of Cloud
Computing, 9(1):1–12, 2020.

60. Xinyu Huang, Lijun He, and Wanyue Zhang. Vehicle speed aware computing task offloading
and resource allocation based on multi-agent reinforcement learning in a vehicular edge
computing network. arXiv preprint arXiv:2008.06641, 2020.

61. Kai Lin, Sameer Pankaj, and Di Wang. Task offloading and resource allocation for edge-of-
things computing on smart healthcare systems. Computers & Electrical Engineering, 72:348–
360, 2018.

62. Quan Yuan, Haibo Zhou, Jinglin Li, Zhihan Liu, Fangchun Yang, and Xuemin Sherman Shen.
Toward efficient content delivery for automated driving services: An edge computing solution.
IEEE Network, 32(1):80–86, 2018.

63. Anwesha Mukherjee, Debashis De, and Soumya K Ghosh. Fogioht: A weighted majority game
theory based energy-efficient delay-sensitive fog network for internet of health things. Internet
of Things, page 100181, 2020.

64. Yaoxue Zhang, Ju Ren, Jiagang Liu, Chugui Xu, Hui Guo, and Yaping Liu. A survey on
emerging computing paradigms for big data. Chinese Journal of Electronics, 26(1):1–12, 2017.

Cross Border Service Continuity with 5G
Mobile Edge

Hamid R. Barzegar, Nabil El Ioini, Van Thanh Le, and Claus Pahl

Abstract One of the core elements for the upcoming generation of wireless cellular
networks is the availability of network service access continuity in addition to
high-speed internet and low latency. The forthcoming fifth generation (5G) greatly
improves users’ demand in terms of faster download rates, exceptional system
availability, superb end to end coverage with exceptionally low latency and ultra
reliability. One of the solutions to provide end to end low latency is the utilization
of Mobile Edge Computing (MEC) in the network. MEC provides cloud advantages
to users by setting up a small cloud server in the edge node (i.e. close to the
end-user), which decreases the amount of latency in network connections, in this
regard, service migration has required as users migrate to the new location. Optimal
migration decisions are challenging because they depend on the cloud environment,
or edge nodes belong to different orchestrators, and security issues in the migration
process must also be resolved in order to prevent unreliable requests. This study
provides different approaches to address these challenges by identifying the security
implications of migration methods based on the blockchain integration.

Keywords Service continuity · Edge computing · Mobile edge · Video
streaming · 5G

1 Introduction

Mobile Edge Computing (MEC) has cloud benefits to network consumers by
setting up a small computing node very close to the end-user which, respectively,
reducing latency in user connections and required bandwidth. However, as services
and network infrastructures are deployed at the edge of the network, every time
that users change location, services need to move as well to guarantee seamless

H. R. Barzegar (�) · N. El Ioini · V. T. Le · C. Pahl
Faculty of Computer Science, Free University of Bolzano/Bozen, Bolzano, Italy
e-mail: hamidreza.barzegar@unibz.it; Nabil.ElIoini@unibz.it; VanThanh.Le@unibz.it;
Claus.Pahl@unibz.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_12

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_12&domain=pdf
mailto:hamidreza.barzegar@unibz.it
mailto:Nabil.ElIoini@unibz.it
mailto:VanThanh.Le@unibz.it
mailto:Claus.Pahl@unibz.it
https://doi.org/10.1007/978-3-030-69893-5_12

282 H. R. Barzegar et al.

service continuity. In cross border scenarios, service continuity becomes even more
challenging since it adds the burden to the network re-selection between two
adjacent Mobile Network Operators (MNO) with different network configuration in
terms of cloud-settings, or edge nodes belong to separate orchestrators and various
policies. Additionally, security issues in the migration process also needed to be
addressed to protect the network from cyber-attacks. MEC in combination with the
expected high-performance New Radio (NR)/5G has a great potential to push back
many limitations of the previous wireless cellular networks. Since the utilization of
various types of smart equipment in vehicles has become so common, therefore,
vehicles are already considered as connected devices. Nonetheless, very shortly,
they will also communicate directly with each other (Vehicle to Vehicle (V2V) com-
munication) and communicate with the road infrastructure (Vehicle to Infrastructure
(V2I)) or in general, Vehicle to everything (V2X). This interaction requires a
Cooperative, Connected, Automated and Autonomous Mobility (CCAM)1 platform.
The European Union (EU) supports projects in this context such as 5G-CARMEN2

[1], 5G-CROCO,3 and 5G-MOBIX4 which aim to develop a new MEC-centric
platform that encourages greener, safer, and more intelligent transport infrastructure
through European countries.

The goal of these projects is to ensure Service Continuity (SC) in the cross border
scenarios [2]. However, providing a seamless link/connection while users cross
boundaries is a major challenge that goes beyond basic techniques such as network
re-selection between various MNOs. It requires MEC-coordinated support as well.
The main goal is to provide large scale SC for cross organizational boundaries
to maximize the level of service availability and reliability with the highest level
of transparency to the user. Recent developments in cloud and edge computing in
tandem with 5G will bring about a dramatic shift by having the proper infrastructure
to provide the required SC structures. In this chapter, we will present the current
status of 5G-enabled MEC and our proposed solution for SC. It also highlights the
key transparent problems that need to be resolved in the coming years. We show that
in order to provide a solution, an ultra-Reliability and Low Latency Communication
(uRLLC) MEC is a suitable platform direction. The architecture is based on the
European Telecommunications Standards Institute (ETSI) MEC standards, which
enables applications through a distributed multi-edge platform built from a range
of nodes close to the next generation NodeB (gNB). This study investigates the
advantages and disadvantages of migration strategies based on measuring metrics
for both views of end-users and service providers, and evaluates our implementation
with benchmark running to review blockchain overhead in the verification process.

This chapter book organized as following; Sect. 2 reviews background tech-
nologies and literature review of 5G service continuity. Section 3 introduces and

1https://ec.europa.eu/transport/themes/its/c-its_en.
2https://5gcarmen.eu/.
3https://5gcroco.eu/.
4https://www.5g-mobix.com/.

https://ec.europa.eu/transport/themes/its/c-its_en
https://5gcarmen.eu/
https://5gcroco.eu/
https://www.5g-mobix.com/

Cross Border Service Continuity with 5G Mobile Edge 283

discuss security management for service continuity. 5G-CARMEN architecture and
different use-cases of that describes in Sect. 4. Video streaming as a selected use-
case of 5G-CARMEN for development and implementation describes in Sect. 5.
Section 6 provides our future research directions. Finally, Sect. 7 presents our
conclusion.

2 Background and Related Work

This section reviews the background techniques, technologies which provides
service continuity for cellular networks and literature review.

2.1 Cloud Computing

Cloud computing has been one of the hottest key technical subjects in the last
decade. This phenomena has had many wide-ranging implications across digital
engineering, data storage, and information technology (IT) [3]. Cloud computing
is a sharing of computational power, storage, server and other IT services over the
Internet on the basis of users’ demand, which has the ability to be easily created and
released with limited management intervention or participation of service providers
[4]. In other words, cloud computing is a kind of technique that provides resources
with higher efficiency to the end-user through the virtualization techniques. The key
features of cloud computing are availability, scalability remote manageability. The
main elements in this technique are the services and data that are spread across the
network. As a result, it increases availability and reliability, but it is also not close
enough to the end-user to minimize the delay. Cloud infrastructure and IoT merging
allows a vast range of technology scenarios [5] as one of the potential solutions.

2.2 Edge Computing

The concept of edge computing is primarily to drive services to the edge of
the network. In this regard, computation as well as the required storage cloud
has located really next to the end user as close as possible. Multi-Access Edge
Networking is one of the core cornerstones of 5G broadband networks [6]. The
edge cloud is a distributed virtualized services architecture [7, 8]. This offers
infrastructure as services in a layered way to create a complete technology stack,
including digital systems or software, hardware platforms and applications [9, 10].
With the MEC, all data generated by IoT devices will be stored, analyzed and
processed one stage before being moved to the cloud. In certain instances of use
such as autonomous driving, vehicle to vehicle communication which they need to

284 H. R. Barzegar et al.

have low latency, this may be significantly Improving the efficiency of facilities such
as the lightweight edge [11] a lightweight virtualization platform for cooperative,
connected and integrated mobility focused on industry-standard innovations such
as Message Queuing Telemetry Transport (MQTT) protocol for communication,
Prometheus for tracking and Docker swarm for the application of containerized
services in combination with openFaas [12].

Aforementioned a MEC is a form of distributed computing that moves compu-
tations and data storage away from the centralized cloud center and get closer to
users [13]. The main benefit for this architecture from the user point of view is
to receive the same service but in the lowest latency and context-aware services
which, should be listed as one of the key uses of the 5G network. In the event of
a lack of the MEC architecture, the mobile Internet of Things (IoT) devices should
send all captured data to the cloud-side for analysis and processing. However, these
edge devices are suffering from low computing performance, therefore in the MEC
architecture scenario, first of all, the data can be pre-processed and then passed to the
cloud side. Another advantage is the collected data can be used for local decision-
making or retained for future use. This is the way, MEC provides many advantages
and generates situations that optimize interaction among consumer devices and the
network, as like as; reducing the use of bandwidth through allowing local decisions.

In the traditional cloud network, to access services, applications have to request
to a static host from anywhere, it puts a burden on the main cloud to address several
thousand requests per second, and users have to suffer the high response time, so
MEC could contribute in the scope by setting up a small server to process user
requests with low latency. The MEC node can cover a wide range of mobile network,
in order to keep user’s applications always online, we need to cover all possible
geographic areas for user activities.

2.3 Service Continuity

Service continuity (SC) should be defined as a continuous service delivery from
the end-users point of view while they are moving [14] from one point to another
point. The SC process can be addressed at different layers such as network, devices
and domains [15], from the network view, SC is called handover or handoff which
transfers user sessions to the next Road Site Unit (RSU). In terms of devices, MECs
have to communicate to exchange user service data, and the domain layer is related
to internet service providers, telecom operators and other parties that participate into
the SC process. Figure 1 illustrates the SC concept when users moves from edge
node in one country to another edge node in adjacent country. SC is a challenging
activity, subject to various variables and over several dimensions. The heterogeneity
of the supporting edge cloud, communications infrastructures and the variability in
the different cross-domain scenarios call for a reliable architecture.

Service migration is a part of the SC concept that presents for the movements in
the application layer of MEC, which facilitate the migration of responding services

Cross Border Service Continuity with 5G Mobile Edge 285

Fig. 1 Illustration of service continuity

from the current connected MEC to the next one. The two main techniques in this
regard are live migration and cold migration [16]. While live migration presents
a process of transferring a running service to another host transparently, cold
migration has to pause the service and then resume it after this movement. Three
cutting-edge researches on service migration are Follow-Me Cloud (FMC) [17],
Markov Decision Process (MDP) [18] also Time Window [19]. These three-studies
support the migration process by tracking user behaviors to estimate the service
movement. FMC optimizes the migration based on geographical distance, workload
or operator policies. MDP calculates the next reaching node probability based on
Markov model, the solution is genetic to cover any direction of UE moving, other
related attributes as distance, migration cost and duration are also obtained. Time
Window searches the optimal service placement to reduce the total service down
time, the searching problem can be turned to a concern with the shortest path, it is
more dynamic for MDP and can be applied in other scenarios.

As the handover process is the key concern in the radio component of the
wireless cellular networks, it draws the attention of many researchers. SC for the
optimization of the handover has been investigated in [20, 21]. In [22] SC has been
deployed as the primary driver of 5G in heterogeneous environments. Seamless
SC by moving facilities closer to the user equipment (UE), i.e. near to eNodeB
as a potential alternative [2] and studied precisely in [23]. Various traditional and
non-conventional methods, as well as protocols for the sake of full SC through in-
advance bandwidth reservations, have also been presented in [24], to avoid dropping
calls during the active session. The follow-me edge-cloud has been proposed in

286 H. R. Barzegar et al.

[25]. The concept is based on the architecture of MEC Mobility Services. End-to-
end delay has been defended which considers computations and applied into the
changing edge nodes scenario.

2.4 SC for MEC

It is valid that MEC decreases network loads dramatically and improves Quality of
service (QoS) for mobile users by deploying services as close as possible to the edge
of the network but, The downside to this approach is the constraint of resources and
network coverage, and it is also difficult to stabilize SC with the appropriate QoS
for given specifications [26]. Today, most of the networking services deployed are
built on top of the Transmission Control Protocol (TCP) protocol, that provides
reliable and inter-operable services over a non reliable and non cross platform
communication transport connectivity mediums.

Authors in [27] come up with a Follow Me edge cloud (FMEC) definition based
on mobility design for MEC, which in their proposed model end-to-end latency
computations specified and applied to what they were called it as an evolving
edge nodes scenario. Their study has demonstrated detailed migration strategies
and is similar to our mobility simulation. Nevertheless, their research focuses only
on improvements to the access point without any concrete implementation, which
contributes to the security problem as discussed above, and our analysis may show
possible scenarios when new systems have introduced.

Authors in [28] discussion of a container oriented model for the MEC framework,
model which has been proposed is included of two proactive and reactive migration
approaches for stateless applications. In this scenario when the user begins moving
out of the node field, the first method is to deploy a new container to the next
node and transfer all the volume data before switching the user traffic and turn off
the original server. The second one demands all neighbor nodes to create replica
services in advance, so when the handover event begins, the user just has to pick
the nearest one and we can skip all migration time since the service has already
begun. However, the second case leads to a resource problem since the replicated
services are not used for a long time until they are used, so it is not easy to scale up
the models because we have multiple users of different services, these problems are
overcome in [29] of optimization techniques for both migration scenarios.

Considering the orchestrator strategy for control containers in [30] the container
orchestrator model for auto scaling telecommunications services have been tested.
Docker Swarm, Marathon and Kubernetes are selected, only Kubernetes has an
incorporated self-scaling mechanism called Horizontal Pod Autoscaling, combined
with a Kube-controller. However, the authors argued that such orchestrators often
generate inadequate outcomes and that the solutions are not sufficient for real-
time telecommunications services. Their research is based on auto-scaling with the
already deployed container, but we have to pull the necessary image before we use
it in our simulation, so it takes more time to ask the neighbor to pull the images

Cross Border Service Continuity with 5G Mobile Edge 287

in advance has provided a boost to the migration process, particularly with the
orchestrator, when we do not have to test the car ID when the services are restarted.

2.5 Emerging 5G as an Enabling Technology

The coming generation of the cellular network (5G) projects to significantly boost
consumer appetite in terms of excellent user coverage, superb end to end connection
with low latency, ultra reliability, and higher data rates. While current methods,
such as handover and roaming procedures, have already been adopted as potential
alternatives in previous generations, mobile users also experience delays during
network switching in cross-border scenarios.

In fact, cellular mobile communications have undergone four generations of
evolution. The first generation (1G) roll-out has introduced the first version of a
wireless service, which has transformed the way mobile phones are used. Almost
10 years later, the second generation (2G) was introduced to meet and resolve the
demands of faster and more stable networking. The third generation (3G) arrived to
further boost connectivity speed and efficiency by adding broadband connectivity.
Often trying to increase the connectivity rates, the fourth generation (4G) came
up with a new challenge related to network bandwidth. Alongside the speed of
connection, a variety of other characteristics have been researched and developed
from generation to generation [31].

Based on the formal definition of 3GPP, 5G is based on New Radio (NR). NR is
expected to improve performance to LTE in terms of connection density (mMTC),
spectral efficiency (eMBB), latency and reliability of the network (uRLLC), termi-
nal/network energy consumption, data rate, for various application scenarios [32].
Figure 2 depicted three major 5G use cases with descriptions of based services and
applications. According to the third Generation Partnership Project (3GPP) plan,
future wireless cellular networks are required to handle at least 10 times more
traffic while maintaining ultra-low latency and high reliability. Compared with 4G
network, coming 5G utilize virtualization techniques that provide system scaling
and fast deployment. Figure 3 illustrates architecture of 5G System Service-based.

Requirements of the 5G have been finalized in International Telecommunication
Union (ITU) [33] and 3GPP [32]. The technology must be assisted by the 5G in the
three major use cases. The key use case of the 5G is as follows:

• enhanced Mobile BroadBand (eMBB): refers to extensible reliance on the
Conventional Mobile BroadBand (MBB) via enhanced peak/average/cell-edge
data, power and coverage. 10 to 100 times improvement over 4G.

• ultra-Reliable Low Latency Communications (URLLC): focuses on critical
technologies in terms of Round-Trip Time (RTT) safety and reliability, such as
tactical wireless communication, autonomous driving, and tele surgery around
1 ms end to end latency.

288 H. R. Barzegar et al.

Fig. 2 Three key scenarios of 5G use with examples of related applications

• massive Machine Type Communications (mMTC): Requirements for evolving
5G IoT contexts with a very large range of embedded devices, such as individual
sensors which they can be connected to 5G network via various network access
to provides about thousands x bandwidth per area per device [33].

The 5G 3GPP system consists primarily of three components; firstly User
Equipment (UE) secondly Access Network(AN), and thirdly Core Network(CN).
In addition to these three divisions of network, Data Network (DN) or the Internet
is the most important element of current networks either cellular or non-cellular
wireless as well as fixed networks. Figure 3 illustrates this network division.

As universal access and pervasive communication across large scale areas has
already been provided to smartphone users by the previous generation of cellular
networks, connectivity with high speed and movement across roads, highways, rail
and so on in vehicular network with a stationary access-point is also difficult to
provide a smooth SC.

In this regards several techniques related to network management have been
considered for 5G-CARMEN. Authors in [34] come with the possibility of MAN-
agement and Orchestration (MANO) system of physical and virtualized resources.
Utilization of MEC very close to the RSU to improves the reliability and low-

Cross Border Service Continuity with 5G Mobile Edge 289

Fig. 3 5G system service-based network architecture

latency-aware results a management platform for Virtual Network Function (VNF)
placement and service migration [35]. In the [36] assessment of V2V networks
and 5G when the network cannot reach the whole path then should boost network
signalling has been analyzed. Authors in [37] have introduced a controlling design
that provides both physical and virtual infrastructure to track the network location
and current state of remote and virtualized service functions. New architecture
for the 5G network integrating the MEC and the network slicing for autonomous
and connected vehicles discussed in [38]. Studies on various groups of genome
processing services result in a new approach that leverages network replacements
caching and thus makes service implementation scalable for all optimization
techniques [39]. Sciancalepore et al. in [40] proposed a network management and
orchestration architecture supporting network slicing for services and tenants. By
providing multi-domain provider collaboration, the framework enables the service
deployment over multiple domains and an efficient sharing of resources across
network slices. The main corresponding two components in the framework are an
inter-slice resource broker which allocates resources over the network based on
policies, user demands and service level agreement (SLA), an orchestrator receives
requests from tenants to decide the network slice resource.

Considering service controller in 5G-CARMEN, Gand et al. in [11] designed an
architecture for server-less container cluster which could be setup in light weight
edge node as Raspberry Pi (RPi). OpenFaas deploys on the top of Docker Swarm,
If a service is requested, openFaas will distribute it among the available worker
RPi. All metric services as CPU or energy controls by Prometheus which triggers
auto-scaling and load balancing in the cluster. The paper [41] proposed a MEC-

290 H. R. Barzegar et al.

based collision-avoidance system that is used in the mobility environment. Each
vehicle has equipped by an OBU (On-Board Unit) device to report the vehicle
status as location, speed via basic safety message (BSM) and sends alerts in
emergency situations. All BSM sent to the connected MEC to analyse and decide
whether we need a notification for collision or not. The main idea is to understand
which brute force all received data from the vehicle, but their experiments show
good performances in preventing collision without impacting MEC effectiveness or
network latency.

3 Security Management for SC

This section has the aim to explain the different technologies which put on together
to provide trust and security on the top of service migration from one MNO to
adjacent MNO.

3.1 Underlying Technologies

Within this section, we provide an overview of the technologies underpinning our
design, these techniques will be combined to create our trust migration framework.

3.1.1 Distributed Ledger Technologies

Distributed Ledger Technologies (DLTs) is a repository for storing transactions,
managed in a decentralized peer-to-peer network, without any centralized control.
Since the launch of the blockchain, which is considered to be the first implemen-
tation of the DLT, numerous other implementations have been introduced. Each of
them focuses on specific features or addresses previous limitations. El Ioini et al.
compare three major DLT implementations in [42]. The three DTLs mentioned are
blockchain, tangle, and hash-graph. The main aim of these DLTs is to create a secure
environment without a trusted third party. In our context, we have chosen to explore
blockchain because it is more advanced and offers a lot more functionality than
others (e.g. smart contracts).

3.1.2 Blockchain

Blockchain is indeed an array of records, called blocks, that are connected and
secured by cryptography, where each block header contains a hash pointer to the
previous block. Also, consensus between maintaining nodes enhances blockchain
and prevents tampering. Generally, blockchain platform has divided in to three

Cross Border Service Continuity with 5G Mobile Edge 291

different kinds of blockchain networks which are; permission-less, permissioned
and last one private platform. Although private blockchain is operated by one
organization, the permissioned blockchain is managed by multiple organizations
along with the level of controls. Permission-less blockchain instead, operates as a
transparent and open network, where anyone can send transactions and is managed
by miners. In addition, there are mechanisms within the blockchain that make it
secure [43].

The proposed scenario in this study explains authentication and trust activities
between various parties and can come from different nations, for instance of Europe,
making use of the security system as Hyperledger is a viable solution.

4 5G-CARMEN

The 5G-CARMEN stands for “5G for Connected and Automated Road Mobility
in the European unioN”. The project is a part of Horizon 2020 that is the biggest
EU Research and Innovation program. 5G-CARMEN’s objective is to develop a 5G
network from Bologna, Italy to Munich, Germany to incorporate various scenarios
that improve the use of 5G in cross-border mobility, such as situation awareness,
cooperative maneuvering, video streaming, and green driving. 5G gives a boost to
the entire telecommunication network with low latency for applications and services
that keeps their connections with cloud servers.

4.1 Architecture

SC is a challenging operation, susceptible to different variables and over several
dimensions. The heterogeneity of support infrastructures and the uncertainty of the
various handover situations call for a simplified and more stable architecture. The
launch of the 5G certainly has an important part to play. However, questions still
need to be adequately resolved in order to have a consistent ending to final solutions.
The first issue involves the awareness of placement services, that is, the ability
to deliver services in the best places to ensure a high degree of coverage. Here,
we are discussing situations in which services literally pursue moving vehicles by
deploying them to the nearest MEC nodes. This field needs to be more explored,
in particular in connection with the launch of 5G. The second concern involves
cross organizational boundary awareness, that is, the ability to deliver facilities
separately from the underlying provider or technologies used. Conversely, the idea
of rooming service continuity has to be decoupled from the mobile operator or
the telecommunications operator. The aim is to establish an abstract model that
isolates the services rendered by all the parties concerned. Figure 4 depicts the
system migration architecture of mobile edge computing in cross boarder scenario
as users are faced with network re-selection. For edge clouds, application and

292 H. R. Barzegar et al.

Fig. 4 The system architecture of service migration in MEC between two countries

service orchestration may help control and orchestrate systems via containers [13]
determine requirements, review technologies and architecture of MEC in 5G-
enabled CCAM platforms.

Figure 4 demonstrates the migration of networks in MEC as connected wireless
users use ongoing call and/or data contact with a cellular network within the
borders of two adjacent countries. In the presence of international roaming (network
reselection), the problem is the migration of session/service between two separate
MNOs/networks, that are regulated by two distinct authorities.

4.2 SC in 5G-CARMEN

The proposed architecture is made up of a collection of edge and cloud computing
services deployed at the top of the 5G network. This facilitates the creation of a
distributed network of non federated large scale MEC networks, able to satisfy
the demands of various situations. In this system every MEC node could support
a car inside its radius. MEC nodes function independently or cooperation can be
formed between MEC nodes belonging to separate providers (clusters). When cars
are on the move, the services required will be accompanied by the transfer of
resources from one MEC node to the next one. Migration management can vary
based on a variety of parameters. Figure 5 presents this message flow for 5G-

Cross Border Service Continuity with 5G Mobile Edge 293

Fig. 5 5G-CARMEN message flow through Lo-Lo interface

CARMEN through Lo-Lo interface while the vehicle is moving from country A
to the adjacent country (B). In this scenario, the orchestrator is in charge of data
migration among different MEC nodes. When the vehicle reaches the border, the
country B orchestrator will be aware of the operating services of this specific vehicle
in advance and will set up its services to provide smooth operation. Therefore,
instead of passing the whole flow of migration to the core of the system and making
a network re-selection (local breakout) process that takes more time, this approach
to service conversion can be implemented with less time and very close to the end
user. In this project (5G-CARMEN) several techniques have been considered such
as a MANagement and Orchestration (MANO) system for physical and virtualized
resources [34], utilization of mobile (also called multi-access) edge clouds close to
the roadside [35], evaluation of V2V infrastructure [36], and blockchain based SC
in MEC [44, 45] to reduce latency.

4.3 5G-CARMEN Use Cases

For the intent of investigating MEC-oriented SC from different perspectives, four
major use-cases shall be considered (which we derive from the 5G-CARMEN
project) as following:

4.3.1 Cooperative Maneuvering

Intelligent tactics in circumstances such as shifting directions, overtaking, enter-
ing/exiting highways, maximizing traffic movement and minimizing traffic con-
gestion, must be used to ensure secure and effective navigation between various
automobiles. Therefore, if this action could take place on the basis of vehicle

294 H. R. Barzegar et al.

data gained, decision-making would be very secure and successful. Cooperative
maneuvering, except cooperative lane merging, for V2V connectivity [46].

4.3.2 Situation Awareness

Both cases of human drivers and autonomous vehicles are constrained in their ability
to ensure safe and effective travel by their understanding of the road traffic situation.
In this respect, the use of local sensors for human drives and autonomous vehicles
is very essential, e.g. cameras, accelerators, radars, etc. Unfortunately, in most
situations, such points of risk remain concealed until the very last second, like road
objects, traffic queues, other cars or vulnerable road users, such as motorcyclists
or pedestrians. In addition, any other abrupt changes in road conditions or weather
conditions such as heavy fog, snow, rain will raise the likelihood of an accident if
the driver or Artificial Intelligence (AI) behind the autonomous vehicle has not been
aware of all these kinds of details. This project would also present the alternatives
for this usage in the event that the vehicles are presented with the above-mentioned
condition. The two main circumstances for situations awareness are; (1) Vehicle
sensors and state sharing (2) Back situation awareness of an emergency vehicle
arrival. Back situation awareness, with special emphasis on emergency situations in
which an emergency car is entering to the road, and all drivers are advised to leave
the lane for Vehicle to Network (V2N) communication.

4.3.3 Green Driving

In addition to safety and traffic performance, European road operators and author-
ities have applied their control skills to air quality and air pollution, which may
use signalling to limit speed in highly polluted areas. However, 5G-CARMEN has
options to facilitate greener driving.

4.3.4 Video Streaming

On-demand broadcasting of content, live streams and high definition (HD) videos
is one of the passenger’s requirements for an autonomous vehicle that improves
the quality of experience (QoE) anywhere it might be. The two most critical
considerations, on the one hand, are the estimation of the predicted QoS network
and on the other hand, the constructive adaptation of streaming software in order to
prevent interruptions in the infrastructure wherever possible. It is essential to ensure
high quality delivery of service, including in cross country border circumstances
and inter operator circumstances. This use case aims to provide consumers with a
seamless presentation of video content even in difficult situations, such as cross-
border and network re-selections.

Cross Border Service Continuity with 5G Mobile Edge 295

5 Video Streaming SC Use Case Deployment

In order to demonstrate the accomplishment of 5G-CARMEN we have chosen video
streaming use case to present seamless SC. In this regard we have developed a
new simulator environment based on two different environments which provide the
roaming scenario. As a first try, we have implemented video streaming SC based
on Omnet++ simulator,5 and the second approach is the implementation of the
same requirements on the top of the NS3 simulator. Deployment of SC simulator
based on Omnet++ has its advantages but, the main drawback is the SimuLTE6

since the developers of this project do not release any update, therefore, the system
is not compatible with the new version of Omnte++ and Operating System (OS)
respectively. Furthermore, after we investigate more issues based on Omnet++ we
have considered to model SC on the top of the NS3.7

The second contribution is, propose a new method for prediction algorithm which
consequence on the latency reduction with minimum delay or without any delay
but just has an impact on the QoS. The third contribution is about exploiting data
protection for SC which here possibility of blockchain has been kept to account. The
fourth contribution in this stage of the project is, investigate and setup a laboratory
environment sandbox based on the Raspberry Pi8 IV to indicate new methods and
proposed algorithms.

5.1 Software Deployment

In this section mainly we describe how is the software architecture could be applied
to support video streaming SC use cases. We have investigated different architecture
to find the most adaptable solution. To be specific, Omnet++ and NS3 based solu-
tions are our target since they enable mobility simulator for network communication
use cases. Simulator environment is essential to boost the experiment result of
building on-top modules.

5.1.1 Omnet++ Software Architecture

Figure 6 illustrates service management architecture, on-car service makes a request
for video streaming, the request should be forwarded from eNodeB, PGW and then
to service provider cloud. The provider has to verify the user validity before offering

5https://omnetpp.org/.
6https://simulte.com/.
7https://www.nsnam.org/.
8https://www.raspberrypi.org/.

https://omnetpp.org/
https://simulte.com/
https://www.nsnam.org/
https://www.raspberrypi.org/

296 H. R. Barzegar et al.

Fig. 6 Video streaming management system architecture

a streaming server, in case of acceptance, the nearest physical MEC will be chosen to
deploy a server and response the video casting link to the user application. When the
user vehicle gets far from the current connected MEC, the application and mobile
user will disconnect with the MEC and reconnect with the next nearest one, a new
streaming server will be deployed and continued data streaming.

Figure 7 shows in detail our architecture components, orchestrator is built in
Nodejs9 to control Docker container which is used to simulate servers in MEC.
Omnet++ takes a responsibility to build a simulation environment, SIMULTE
provides LTE components as eNodeB and Packet Data Network Gateway (PGW), it
connects with SUMO simulator10 for mobility via Veins.11 Requests and signals are
forwarded and propagated by protocols in INET framework.12 We used curl requests
and Restful service to make communications between the Omnet++ components
and the orchestrator.

Implementation of Omnetpp++ Based Simulator

In this implementation car/UE in Fig. 6, gathers radio messages from the current
connected eNodeB, then convert them to understandable messages applications at
high level in term of data processing, for example, in-car multi-media applications.
In this simulator, a python-based reader has been developed to receive requests from

9https://nodejs.org.
10https://www.eclipse.org/sumo/.
11https://veins.car2x.org/.
12https://inet.omnetpp.org/.

https://nodejs.org
https://www.eclipse.org/sumo/
https://veins.car2x.org/
https://inet.omnetpp.org/

Cross Border Service Continuity with 5G Mobile Edge 297

Fig. 7 Video streaming simulation system architecture for service migration in mobile edge
computing

the car and responses from servers to show into the car screen. To simplify the
model, we only set up a simple server to response its current time stamp and then
send it to the UEs. For the handover event, the UE will compute the signal power
received from eNodeB to activate the migration procedure to the next eNodeB when
the UE get far from the current one.

Figure 7 is about the component design, the simulator is composed by many sub-
modules to communicate with others, and also communicate with the orchestrator
to control real applications, all parts here is built on Ubuntu 16.04 LTS.

5.1.2 NS3 Software Architecture

The second implementation is based on NS3 simulator which is an architecture for
crossing domain scenario, the simulator has been published in [47], in the scope of
this paper, we only present general concepts and initial results. The main idea of the
simulator is to build two LTE networks and facilitate them to communicate via the
roaming channel (with interfaces S6d and S8) as the general design in Fig. 8.

Originally, NS3 only provides a single LTE-EPC (Long Term Evolution-Evolved
Packet Core) which also means that we only have a single LTE network to work
with, besides this, all IP configuration in the LTE network is fixed and not flexible.
Figure 9 illustrates additional modules. Therefore, we will try to re-configure the
model, build more components to fit our design with two LTEs as following:

298 H. R. Barzegar et al.

Fig. 8 NS3 simulator general design

Fig. 9 Additional modules

• EPC Group: Server, PGW, SGW and eNodeB will be separated from the original
LTE-EPC code pack, each region will keep an EPC group and it could configure
its IP address range independently.

• EPC Global: has and control many EPC group along with the right to control
the roaming procedure and assign IP address for that. We also configure the tap
devices here to make the system consistency even when the UE leaves the current
LTE, it is still in the EPC Global.

• APP Controller: only used for simulated application in NS3 like ping, TCP and
UDP messages or even video streaming.

• UE Controller: control all UE behaviors as moving velocity and direction, it also
supports triggering the migration process by listening the signal changes.

Cross Border Service Continuity with 5G Mobile Edge 299

Implementation of NS3 Based Simulator

To enable the flexibility of the host machine, we packed the entire simulator
environment (only NS3 work) in a single Docker container, other parts as MEC
servers also packed in its Docker container respectively. Based on the configuration,
we could deploy the simulator in different host environment to check the efficiency.
Our NS3 simulator is stored in the Docker Registry.13 Based on the architecture of
the simulator based environments, we would build other modules on top of it and
show preliminary results.

5.2 Security Mechanisms

Security and integrity are important since in multiple parties could join into the
process as LTE providers, infrastructure providers, and they will do verification in
each step so we need an adaptable system to boost the process while still maintains
the provider agreements. MEC is setup in constraint devices with limited resources,
MECs are independent, and migrating services to the unknown MEC could lead to
security issues in user data, so we need a mechanism to verify incoming requests
from UE, check the next MEC status and protect user data in running services.
Details of this implementation are explained in [44].

The MEC trust migration, mainly focused on MEC and describes migratory
techniques and manages security issues when vehicles change access points within
MEC. The architecture proposed in this study provides on-road vehicles to support
online connections to servers by maintaining the advantages of operating services
close to users when the car starts to keeps distance from the edge node, while the
next closest node will trigger a new connection and service to continue the current
on-car application. The migration time must be extremely low, especially for real-
time services such as mapping, video streaming, but it leads to a security issue
that a node can handle unknown requests instead of a re-connecting one from a
trusted vehicle. This study also analyzes the overhead of verification in the migration
process, to be specific, we evaluate the application of blockchain in checking un-
trusted behaviors.

5.3 Proposed Prediction Algorithm Methods for SC

Crossing national borders could take place in a tunnel or in a poor GPS signal
covered area, therefore, we go for different approaches; in this study, we use the
UE’s received radio signals to determine the movement. The radio signal is in our

13https://hub.docker.com/repository/docker/levanthanh3005/ns3.

https://hub.docker.com/repository/docker/levanthanh3005/ns3

300 H. R. Barzegar et al.

Fig. 10 Prediction method based on the base-station signal level and 120◦ cell sectoring

opinion the only reliable way to determine whether a UE is covered or not. The
radio signal threshold determines the exact network migration [48] instant, while the
position can change depending on many other factors such as UE’s sensitivity, gain,
weather conditions and many others [49]. In this review, two types of methods were
suggested with different upsides and downsides based on two different technologies.
The first is based on the frequency of the eNodeB signal and cell sectoring. The
second approach is the based on GPS utilization for the prediction algorithm to
reduce the time of migration and improve the QoE.

gNB/eNodeB Based Prediction Method
This solution is based on the signal strength of UE and signal strength plus correct
cell sectoring of gNB/eNodeB. This algorithm relies on allocated resources of base
station [50] i.e. in addition to measure the signal level we should detect the location
of mobile users. Two thresholds have been considered in this approach. Figure 10
shows this process. When the vehicle/UE reaches the first threshold, migration of
apps, running service or resources will be activated and notification will send to
the system. Depending on the location of the user (i.e. road way, highway or rail
way) we define the user sector used in conjunction with the relevant region (e.g.,
−80 dBm) to be known until the first and second thresholds are met. Once the
second threshold has been passed, a transition phase to migration of services or
apps is started to deploy the operation on the adjacent network.

GPS Based Prediction Method
Because at the beginning of the journey the majority of drivers use the built-in GPS
of the car to find the optimum route in terms of traffic, road maintenance, and so on,

Cross Border Service Continuity with 5G Mobile Edge 301

Fig. 11 Prediction method based on the GPS and network information

therefore, from the beginning of the journey system can use this information and
has a rough approximation of the cross-border moment. The network is then in a
position to calculate when the car reaches the border and the network has enough
time to assess the requirement for the other side of the border. Figure 11 illustrates
this prediction method. At the first point after the distance has been chosen, the
car’s GPS warning will be sent to the home network and the visiting network will
be informed by the orchestrator.

5.4 Develop and Setup a Lab Environment

To test the proposed algorithm, we setup a cluster of Raspberry Pi as a testbed.
Figure 12 presents the current design of cluster of raspberry pi III.

The new design is under developing and proposed architecture is represented in
Fig. 13. This version of edge development is including of 60 raspberry Pi IV which
Table 1 presents the main specifications of this new single board computer.

302 H. R. Barzegar et al.

Fig. 12 The cluster of 8 Raspberry Pis III

Fig. 13 Cluster of 60 Raspberry Pis IV

Table 1 Specification of the
Raspberry Pi IV

Parameter Value

Architecture Cortex-A72 quad-core (ARM v8)

SoC BCM2711 64-bit

CPU 1.5 GHz

Memory 4G RAM LPDDR4-2400 SDRAM

Storage 16G SD card

WiFi 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless

Ethernet Gigabit

Cross Border Service Continuity with 5G Mobile Edge 303

5.5 Assessment

This study has been experimentally tested the efficiency and overhead of the usage
of blockchain in the Hyperledger fabric system in terms of blockchain security
based. Tables 2 and 3 present the configuration of this experiment. In order to
make a reliable test result with Docker images, we set up two separate Ubuntu
machines to make sure that pulling Docker images does not have any advantage
over the previously drawn Docker packs, for example, if we need to pull a python-
based image and our machine already has a python-based image, the pulling time
will be faster than the one that does not have python. The testing strategy which
considers in this study includes the analysis of migration processes and blockchain.
The blockchain application will be applied for both simulators, since it is outside
of the scope of simulator environment so in the study just we present the result of
evaluating timing aspects effected to total migration time.

5.5.1 Omnet++ Simulation Evaluation

The environment settings for Omnet++ are described with Fig. 6 (video streaming).
Only the two eNodeBs connect the others to activate the handover/network re-
selection requests. Each time the car receives signals from eNodeB and then
calculates the strongest signal to choose the next closer eNodeB when it gets far
away from the current connection. Omnet++ offers three simulation times of normal,
fast and express. In the normal mode, it runs slowly, and we can debug and see all
logs, the signal streams are clearly previewed in the mode. Fast mode speeds up the

Table 2 Configuration for
mobility simulator

Table 3 Configuration
for Omnet++
Edge node
environment

304 H. R. Barzegar et al.

normal mode but with lower time waiting and the express mode skips all logs and
runs extremely fast. Omnet++ runs based on simulation time (simTime) and this
is a discreet event simulator, so running events don’t function at a normal time but
have an event list and run events one by one. We activate simulators to communicate
with REST servers, so these timelines are different, and in Omnet++ they are too
slow compared to real time stamps on REST servers. Therefore, we select the fast
mode to drive the simulation process that is closest to the real-time flow. In our
experiment, for three cases, we only consider the handover case, and it takes around
3000 ms to adjust the eNodeB. The simulator will become the basic module for our
next evaluation.

Performance of Resource Allocation

The Omnet++ based environment has showed the execution time during the
migration process with stateless applications, the migration procedure starts with
the blockchain authentification, and then pull the Docker images from Docker
registry after deploying the required service at MEC. Testing was carried out on two
computer systems or machine which introduced for two MEC devices, depending
on MEC models, we have different configurations, for example, in case of MEC-
Swarm, another machine will join and work on behalf of an orchestrator. There are
several time metrics during the handover process [26].

Communication channels and mobility simulator configuration are defined in
Tables 2 and 3. In order to test the Docker images, we prepared a simple web service
packed in an Docker image based Python core and response the current time-stamp
via port 3000. It only takes 354 MB in size disk and in deployment, the pulling
time is 47,080 ms (PIT). Obviously, a heavier image takes more time in pulling, for
instance, a 5.3 Gb Docker image (Jupiter notebook) could take up to 5 min only to
download from Docker Hub while a super light image as NodeJs with 55 MB just
takes 3 s. The network stability and connection will affect to the PIT value so the
revolution of 5G could support here to boost that.

Considering Orchestrator Arrangement Time (OAT), it is always zero for all
cases, in Single-MEC, nodes are orchestrated by themselves, as the conventional
model, for MEC-Cluster, as nodes already knew others, and find the next node at
the first request time, the last technique is also identical, so we can save OAT time
in that case.

For the blockchain verification part, smart contract based on the Hyperledger
with different functions has been developed, we also have a log function to track all
service deployment and user activities why using the services at MEC.

Figure 14 demonstrates the execution time changes for the three selected
simulation scenarios i.e. Migration overhead, the key issue is the drawing of the
model, while in this scenario, our designed image should be taken into account to be
a standard size model, the time investment is around 46,980 ms. It worth to mention
that observed the launch time of the container would be shorter if we could have a
time interval after pulling, in Single-MEC, it recommended to starts the service right

Cross Border Service Continuity with 5G Mobile Edge 305

Fig. 14 Migration overhead

after pulling all sub-parts of images that could take more around 3.1 s, however, with
MEC-Cluster and MEC-Swarm, the Deployment Time (DT) is only 1.6 s (a half of
that). Besides that, in MEC-Swarm, the verification process of blockchain is already
underway in the previous node, so it can save a huge amount of time, for next-step
users could be interrupted for about 2 or 3 s in the other strategies. High-security and
user-experiment is the trade-off of the network because though the chain is getting
longer, we can spend more time on it.

5.5.2 NS3 Simulation Evaluation

In NS3 simulator setup, we first defined the experiment settings and then deploy it
before evaluate the real applications.

Experiment Setting

Figure 8 presented the topology design of our simulator and Fig. 15 illustrates
roaming and service migration flow. We have two LTE-EPCs and they connects with
others via roaming procedure. In order to run the real applications via the simulator,
we applied tap device of NS3 and built bridges to the real world. The tap device will
connect with Docker containers and then forward requests through it.

The experiment setting of the simulator only is showed in Table 4, the UE speed
here is 10.8 m/s corresponding with 39 km/h as the normal car speed in the road
which is reported by the survey [51].

306 H. R. Barzegar et al.

Fig. 15 Roaming and service migration flow

The edge node configuration is demonstrated in Table 5, as we investigated
from,14 the average distance among eNodeBs is around 200 m so in our simulator
environment, all eNodeBs will be in the same road with the same distances among
each pair of them. Followed by the technical document15 with the LTE delay as

14www.cellmapper.net.
15https://www.cisco.com/c/dam/global/en_ae/assets/expo2011/saudiarabia/pdfs/lte-design-and-
deployment-strategies-zeljko-savic.pdf.

www.cellmapper.net
https://www.cisco.com/c/dam/global/en_ae/assets/expo2011/saudiarabia/pdfs/lte-design-and-deployment-strategies-zeljko-savic.pdf
https://www.cisco.com/c/dam/global/en_ae/assets/expo2011/saudiarabia/pdfs/lte-design-and-deployment-strategies-zeljko-savic.pdf

Cross Border Service Continuity with 5G Mobile Edge 307

Table 4 Configuration for
NS3 mobility simulator

Table 5 Configuration for
NS3 host environment

smaller than 100 ms, so all LTE socket delay will be set as 100 ms while the
roaming socket (S8) is configured by the propagation delay that is reflected by the
distance between the two LTE networks. The roaming and service migration flow
are presented in Fig. 15.

Measurement

Concerning SC downtime, we also experiment the similar results as Omnet++ in
Fig. 14. Besides that, the total latency during the migration process and response
time in both roaming and non-roaming situations will be examined with two
applications as ping and video streaming, they both run in real Docker services.

Ping

The two Figs. 16 and 17 presented the signal and latency changes in cases of domain
changes. The current time-stamp is in the X axis while the Y2 axis is for the current
distance and Y2 axis is about RSRP values and the latency. For the first case in
Fig. 16, the average time of response in ping is 18 ms while the maximum one
is 24 ms, video streaming service and gaming can run without any issues in this
network capacity. In contrast, the ping response average is more than 30 ms in the
roaming case and the maximum one is 54 ms, that makes a bit lag for some heavy
games and live video streaming. In addition, if we increase the distance between
the two LTEs, the S8 delay will be escalated dramatically. Besides that, in case of
local server, changing LTE also means modifying the IP address of the user which
makes the video streaming of user get a bit pause while updating the IP and make it
inconvenient as non-continuous service.

308 H. R. Barzegar et al.

Fig. 16 Roaming server requests

Fig. 17 Local server requests

Video Streaming Result

The video streaming application will show clearly how the migration process affects
user experiment by checking the video frames. We pulled a Firefox browser based
on Docker Image to work as a UE screen while a Mist server16 will run on other
Docker containers and stream video frames. The Mist server takes only 310 MB in
size disk that is really light weight but support many different types of streaming
protocols.

However, in term of statistic, the Mist server does not have many options to check
the quality of service, the memory usage, CPU and network bandwidth are the only
metrics we could get as Fig. 18. In the graph, the connection becomes unstable,
especially in the handover event, at the same time, the CPU is released a bit because
it does not have to do streaming.

16https://www.mistserver.org.

https://www.mistserver.org

Cross Border Service Continuity with 5G Mobile Edge 309

Fig. 18 Metric statistic in Mist server

5.5.3 Simulator Evaluation Overview

Generally, the both simulator enable a comprehensive environment, nevertheless,
from telecommunication networking perspective and reference scenarios, NS3 has
more advantages by supporting roaming procedure, while Omnet++ only perform
a normal handover. Besides that, based on NS3, we could get a better result in real
time service and signal changes during user moving with the graph 16 and 17 that
we cannot collect the data in Omnet++. Therefore, NS3 will be our choice for further
researches.

6 Future Research Directions

SC is a challenging undertaking, susceptible to different variables and over several
dimensions. The heterogeneity of the supporting infrastructures especially in 5G
which is based on different technology to deliver high speed and more reliable
network connection on the other hand the variability of the various handover
situations among these different technologies calls for a simplified and more robust
architecture. The launch of 5G certainly plays an important part, but problems
do need to be adequately handled in order to provide a stable end to end-to-end
solutions. The first issue involves the awareness of placement programs, that is,
the ability to deliver services in the best places to ensure a high degree of network
coverage. Here we are discussing scenarios like the one outlined in [52], which
services basically pursue moving vehicles by installing them at the nearest MEC
nodes. This field needs to be more explored, in particular in connection with the

310 H. R. Barzegar et al.

launch of 5G. The second issue involves cross-organizational boundary recognition,
that is, the necessary to produce facilities separately from the underlying provider or
technologies used. Conversely, the idea of rooming SC has to be kept separate from
the mobile operator or the telecommunications sector. The aim is to establish an
abstraction layer that segregates the services rendered from all the parties concerned.

7 Conclusions

In order to allow broad scale SC to cross organizational and cross-border borders,
a combination of technology and techniques needs to be implemented and tuned to
satisfy precise functional and quality criteria. The primary aim is to optimize the
availability of resources with the maximum degree of transparency for the client.
Mobile operators have approached this problem over the past few decades using
various methods, most of which have been thwarted by the underlying technologies.
However, recent developments in cloud and edge computing in tandem with 5G
could bring about a dramatic transition by having the proper networks to provide
the channels required for seamless continuity of service.

Acknowledgments The study was carried out within the scope of the EU Horizon 2020 initiative
5G-CARMEN co-funded by the EU under grant agreement No. 825012. The viewpoints expressed
are those of the authors and do not necessarily represent the project. The Commission shall not be
responsible for any usage that may be made of any of the information contained therein.

References

1. Hamid R Barzegar, Nabil El Ioini, Van Thanh Le, and Claus Pahl. 5g-carmen: Service
continuity in 5g-enabled edge clouds. In 8th European Conference On Service-Oriented And
Cloud Computing, 2020.

2. H. Assasa, S. V. Yadhav, and L. Westberg. Service mobility in mobile networks. In 2015 IEEE
8th International Conference on Cloud Computing, pages 397–404, 2015.

3. Raheleh Kooshesh, Mahdi Mollahasani, and Hamid Reza Barzegar. Implement e-government
based approach on cloud computing. Journal of Basic and Applied Scientific Research,
3(11):488–493, 2013.

4. Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.
5. Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. Integration of cloud

computing and internet of things: a survey. Future generation computer systems, 56:684–700,
2016.

6. Jude Okwuibe, Juuso Haavisto, Erkki Harjula, Ijaz Ahmad, and Mika Ylianttila. Orchestrating
service migration for low power mec-enabled iot devices. arXiv preprint arXiv:1905.12959,
2019.

7. Remo Scolati, Ilenia Fronza, Nabil El Ioini, Areeg Samir, and Claus Pahl. A containerized big
data streaming architecture for edge cloud computing on clustered single-board devices. 05
2019.

8. Remo Scolati, Ilenia Fronza, Nabil El Ioini, Areeg Samir, Hamid R. Barzegar, and Claus Pahl.
A Containerized Edge Cloud Architecture for Data Stream Processing. 05 2020.

Cross Border Service Continuity with 5G Mobile Edge 311

9. Claus Pahl, Ilenia Fronza, Nabil El Ioini, and Hamid R. Barzegar. A review of architectural
principles and patterns for distributed mobile information systems. In 15th International
Conference on Web Information Systems and Technologies - WEBIST, 09 2019.

10. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos. A
comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE
Communications Surveys Tutorials, 20(1):416–464, 2018.

11. Fabian Gand, Ilenia Fronza, Nabil El Ioini, Hamid R. Barzegar, and Claus Pahl. Serverless
container cluster management for lightweight edge clouds. In The 10th International
Conference on Cloud Computing and Services Science, CLOSER 2020, 02 2020.

12. Fabian Gand, Ilenia Fronza, Nabil El Ioini, Hamid R. Barzegar, and Claus Pahl. A lightweight
virtualisation platform for cooperative, connected and automated mobility. In 6th International
Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), 02 2020.

13. Claus Pahl and Brian Lee. Containers and clusters for edge cloud architectures–a technology
review. In 2015 3rd international conference on future internet of things and cloud, pages
379–386. IEEE, 2015.

14. Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode. Migratory tcp: Connection
migration for service continuity in the internet. pages 469–470, 01 2002.

15. I. Jorstad, Do Van Thanh, and S. Dustdar. An analysis of service continuity in mobile
services. In 13th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 121–126, 2004.

16. H. Abdah, J. P. Barraca, and R. L. Aguiar. Qos-aware service continuity in the virtualized edge.
IEEE Access, 7:51570–51588, 2019.

17. T. Taleb, P. Hasselmeyer, and F. G. Mir. Follow-me cloud: An openflow-based implementation.
In 2013 IEEE International Conference on Green Computing and Communications and IEEE
Internet of Things and IEEE Cyber, Physical and Social Computing, pages 240–245, 2013.

18. A. Ksentini, T. Taleb, and M. Chen. A Markov decision process-based service migration
procedure for follow me cloud. In 2014 IEEE International Conference on Communications
(ICC), pages 1350–1354, 2014.

19. Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer, and Kin K. Leung.
Dynamic Service Placement for Mobile Micro-Clouds with Predicted Future Costs. IEEE
Transactions on Parallel and Distributed Systems, 28(4):1002–1016, 2017.

20. Peppino Fazio, Mauro Tropea, Floriano De Rango, and Miroslav Voznak. Pattern prediction
and passive bandwidth management for hand-over optimization in qos cellular networks with
vehicular mobility. IEEE Transactions on Mobile Computing, 15(11):2809–2824, 2016.

21. Xiaorong Zhu, Mengrong Li, Wenchao Xia, and Hongbo Zhu. A novel handoff algorithm for
hierarchical cellular networks. China Communications, 13(8):136–147, 2016.

22. Josef Noll and Mohammad MR Chowdhury. 5g: Service continuity in heterogeneous
environments. Wireless Personal Communications, 57(3):413–429, 2011.

23. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A survey on mobile edge computing:
The communication perspective. IEEE Communications Surveys Tutorials, 19(4):2322–2358,
2017.

24. Peppino Fazio, Floriano De Rango, and Mauro Tropea. Prediction and qos enhancement
in new generation cellular networks with mobile hosts: A survey on different protocols
and conventional/unconventional approaches. IEEE Communications Surveys & Tutorials,
19(3):1822–1841, 2017.

25. Tarik Taleb, Adlen Ksentini, and Pantelis Frangoudis. Follow-me cloud: When cloud services
follow mobile users. IEEE Transactions on Cloud Computing, 2016.

26. S. Wang, J. Xu, N. Zhang, and Y. Liu. A survey on service migration in mobile edge computing.
IEEE Access, 6:23511–23528, 2018.

27. Abdelkader Aissioui, Adlen Ksentini, Abdelhak Mourad Gueroui, and Tarik Taleb. On
enabling 5g automotive systems using follow me edge-cloud concept. IEEE Transactions on
Vehicular Technology, 67(6):5302–5316, 2018.

312 H. R. Barzegar et al.

28. Ivan Farris, Tarik Taleb, Antonio Iera, and Hannu Flinck. Lightweight service replication
for ultra-short latency applications in mobile edge networks. In 2017 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2017.

29. Ivan Farris, Tarik Taleb, Miloud Bagaa, and Hannu Flick. Optimizing service replication
for mobile delay-sensitive applications in 5g edge network. In 2017 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2017.

30. D. Luong, H. Thieu, A. Outtagarts, and Y. Ghamri-Doudane. Cloudification and autoscaling
orchestration for container-based mobile networks toward 5g: Experimentation, challenges and
perspectives. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pages 1–7,
2018.

31. H.R. Barzegar, V.T. Le, C. Pahl, and N. E. Ioini. Wireless network evolution towards service
continuity in 5g enabled mobile edge computing. In International Conference on Fog and
Mobile Edge Computing (FMEC), 2020.

32. 3GPP_TR_38.913. Study on scenarios and requirements for next generation access technolo-
gies. 2016.

33. Oumer Teyeb, Gustav Wikstrom, Magnus Stattin, Thomas Cheng, Sebastian Faxer, and Hieu
Do. Evolving lte to fit the 5g future, ericsson technology review, 2017.

34. F. Z. Yousaf, V. Sciancalepore, M. Liebsch, and X. Costa-Perez. Manoaas: A multi-tenant nfv
mano for 5g network slices. IEEE Communications Magazine, 57(5):103–109, 2019.

35. N. Slamnik, H. C. Carvalho, C. Donato, S. Latré, R. Riggio, and J. Marquez. Leveraging
mobile edge computing to improve vehicular communications. In 2020 IEEE 17th Annual
Consumer Communications Networking Conference (CCNC), pages 1–4, 2020.

36. G. Elia, M. Bargis, M. P. Galante, N. P. Magnani, L. Santilli, G. Romano, and G. Zaffiro. Con-
nected transports, v2x and 5g: Standard, services and the tim - telecom Italia experiences. In
2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive
(AEIT AUTOMOTIVE), pages 1–6, 2019.

37. Mauro Femminella and Gianluca Reali. Gossip-based monitoring of virtualized resources
in 5g networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 378–384. IEEE, 2019.

38. Estefanía Coronado, Gabriel Cebrián-Márquez, Giovanni Baggio, and Roberto Riggio.
Addressing bitrate and latency requirements for connected and autonomous vehicles. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 961–962. IEEE, 2019.

39. Gianluca Reali, Mauro Femminella, Luca Felicetti, and Matteo Pergolesi. Orchestration of
cloud genomic services. In 2019 Eleventh International Conference on Ubiquitous and Future
Networks (ICUFN), pages 494–499. IEEE, 2019.

40. Christian Sciancalepore, Vincenzo and, Faqir Zarrar Yousaf, Pablo Serrano, Marco Gramaglia,
Julie Bradford, and Ignacio Labrador Pavón. A future-proof architecture for management and
orchestration of multi-domain nextgen networks. IEEE Access, 7:79216–79232, 2019.

41. Marco Malinverno, Giuseppe Avino, Claudio Casetti, Carla Fabiana Chiasserini, Francesco
Malandrino, and Salvatore Scarpina. Mec-based collision avoidance for vehicles and vulnera-
ble users. arXiv preprint arXiv:1911.05299, 2019.

42. Nabil El Ioini and Claus Pahl. A review of distributed ledger technologies. In OTM 2018
Conferences - Cloud and Trusted Computing (C&TC 2018), 10 2018.

43. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder.
Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University
Press, 2016.

44. V.T. Le, C. Pahl, and N. E. Ioini. Blockchain based service continuity in mobile edge comput-
ing. In 2019 Sixth International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), pages 136–141, 2019.

45. H.R. Barzegar, V.T. Le, C. Pahl, and N. E. Ioini. Service continuity for ccam platform in
5g-carmen,. In 16th international wireless communications and mobile computing conference
(iwcmc 2020), 2020.

Cross Border Service Continuity with 5G Mobile Edge 313

46. Patrick Pirri, Claus Pahl, Nabil El Ioini, and Hamid R. Barzegar. Towards cooperative
maneuvering simulation: Tools and architecture. In IEEE Consumer Communications &
Networking Conference (CCNC), 2021.

47. Van Thanh Le, Nabil El Ioini, Hamid R. Barzegar, and Claus Pahl. A multi-domain network
simulator based on ns-3. In 10th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, 2020.

48. Marco Pomalo, Van Thanh Le, Nabil El Ioini, Claus Pahl, and Hamid R. Barzegar. A data
generator for cloud-edge vehicle communication in multi domain cellular networks. In 7th
International Conference on Internet of Things: Systems, Management and Security (IOTSMS),
2020.

49. Marco Pomalo, Van Thanh Le, Nabil El Ioini, Claus Pahl, and Hamid R. Barzegar. Service
migration in multi-domain cellular networks based on machine learning approaches. In 7th
International Conference on Internet of Things: Systems, Management and Security (IOTSMS),
2020.

50. Marco Schito, Hamid R Barzegar, and Luca Reggiani. Resource allocation with interference
information sharing in multi-carrier networks. In 2016 IEEE 27th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 1–6.
IEEE, 2016.

51. Research department. Free speed survey, 2012. URL: https://www.rsa.ie/Documents/Road
%20Safety/Speed/Speed_survey_2011.pdf [accessed: 2020-25-04].

52. T. Ouyang, Z. Zhou, and X. Chen. Follow me at the edge: Mobility-aware dynamic service
placement for mobile edge computing. IEEE Journal on Selected Areas in Communications,
36(10):2333–2345, 2018.

https://www.rsa.ie/Documents/Road%20Safety/Speed/Speed_survey_2011.pdf
https://www.rsa.ie/Documents/Road%20Safety/Speed/Speed_survey_2011.pdf

Security in Critical Communication for
Mobile Edge Computing Based IoE
Applications

Tanmoy Maitra, Debasis Giri, and Arup Sarkar

Abstract The new era of the Internet of Everything (IoE) applications demands
low latency along with security into the networks. The cloud-based architecture
alone cannot provide low response time to the users or mobile devices (like phone,
laptop, sensors device, etc.). Therefore between mobile devices and cloud, edge
devices (known as Fog device) are introduced as middleware device. From the
edge devices, users can get information from local devices without interacting
with the cloud via the Internet or radio. In such complicated networks, security
preservation in communications becomes a challenging task. The security protocols
for critical communication in such applications (e-medical, e-banking) are based
on the architecture of the networks which can be centralized or distributed or
hybrid (a mixture of centralized and distributed). This book chapter discusses the
different security protocols in communications for the aforementioned architectures
which can be designed for Mobile Edge Computing (MEC) based IoE applications.
Moreover, this chapter covers (a) architectures and their security threats, (b)
necessity of security model in such applications, (c) different secure communication
protocols for those applications, (d) challenges to design security protocols to reduce
response time, and latency (e) the future direction of this research domain which can
be explored more.

Keywords Internet of Everything (IoE) · Edge device · Security ·
Communication protocol · Privacy

T. Maitra (�) · A. Sarkar
School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha, India
e-mail: tanmoy.maitrafcs@kiit.ac.in; arup.sarkarfcs@kiit.ac.in

D. Giri
Department of Information Technology, Maulana Abul Kalam Azad University of Technology,
Nadia, West Bengal, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_13

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_13&domain=pdf
mailto:tanmoy.maitrafcs@kiit.ac.in
mailto:arup.sarkarfcs@kiit.ac.in
https://doi.org/10.1007/978-3-030-69893-5_13

316 T. Maitra et al.

1 Introduction

According to Gartner [1], in 2015, the Internet of Everything (IoE) was recorded as
one of the lid trends. IoE can be defined as it “is bringing together people, process,
data, and things to make networked connections more relevant and valuable than
ever before-turning information into actions that create new capabilities, richer
experiences, and unprecedented economic opportunity for businesses, individuals,
and countries” (Cisco, 2013).

The Internet of Everything (IoE) expresses a world where billions of objects
along with sensors to determine and evaluate their location; connected to public or
private networks using all standard and proprietary protocols. Edge computing is
changing the way we manage, process, and distribute data from millions of devices
worldwide. The tremendous growth of Internet-connected devices in IoE, along with
new applications that need simultaneous computing power, continues to drive edge-
computing systems. Accelerated networking technologies, such as 5G wireless,
artificial intelligence, auto-driving cars, allow video processing and analytics, and
robotics to accelerate the design or hold up of real-time applications to edge and
computing systems, to name a few. Due to the growth of IoE-generated data, the
initial aim of edge computing was to address bandwidth costs for long-distance
travel data, with the emergence of real-time applications advancing the need for
processing technology [2].

Edge computing defined by Gartner as “data processing as part of a distributed
computing topology located near the edge – where things and people produce or
receive that information” [2]. In its early stages, edge computing did not depend on
any central location thousands of miles away but rather brings computing and data
storage closer to assembling devices. This is done in such a way that data, especially
real-time data, does not suffer from delayed issues that can affect the performance of
an application. Besides, companies can preserve money by completing processing
locally, reducing the amount of processing required either centrally or in cloud-
based locations.

Edge computing was created because of the significant extension of IoE devices,
which are wirelessly connected through the Internet to fetch data from the cloud or
return data to the cloud. Many IoE devices produce large amounts of data during
their activities. Also, edge computing may provide new functionality that was not
previously available. For example, an organization can use an edge computer to
analyze their data on the edge, which makes it possible in real-time. Typically, the
major benefits of edge computing are low latency, low bandwidth usage and low
associated costs, and low use of resources in the server.

A drawback of edge computing is that it can increase attack vectors. As the
devices are connected to each other wirelessly, authentication is the key factor
in communication for such cloud-edge infrastructure. In [3], it has been reported
that edge computing has increased dramatically in recent years which is targeting
aging. Among all the security attacks, the most remarkable attacks occurring in the
practical world is the Mirai virus [3]. Mirai virus captures more than 65000 IoE

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 317

devices within the first 20 h after its deliverance in August 2016. A few days later,
these compromised devices shut down over 178 000 domains and turned to Botnet
to run Distribution Denial Services (DDoS) attacks against edge servers. Within a
short period, a variety of Mirai, such as the IORPitter and Hazim, were captured, and
they are believed to infect 3 million IoE devices in 2017 [4]. Since the discovery of
the first Mirai botnet in 2016, the IoE botnet attacks were disclosed to have caused
more than $100 million in damage as of September 2018 [4]. It is noted that these
numbers only indicate attacks and property damage that were officially pointed out
and enlisted, but the total amount of unauthorized attacks/damage may be very high.

The arrangement of this chapter is maintained as follows. Section 2 discusses
some mobile edge computing-based IoE based applications and their security.
Section 3 demonstrates the different architecture used in MEC. Section 4 discusses
possible attacks on communication in MEC and list out the cryptographic solution.
Section 5 illustrates a secure communication protocol in an edge-cloud environment
that can be applied to the healthcare system. The brief discussion on some other
related existing secure communication protocols is given in Sect. 6. In Sect. 7, the
security challenges of MEC discuss. At the end, the conclusion is given.

2 Applications and Security

Edge computing applications, data, and services can be used to push the logical end
of a network away from central computing. This enables additional data sources to
be in the age of analysis and data. Edge encompasses a wide range of computing
technologies, such as remote sensing systems, filling traditional data stocks, and
augmented reality.

It is easy to search clarifications for what edge computing is and how it
works. Most companies need to know how it can affect their business. Internet of
Everything (IoE) gadgets is now available on the market in large numbers. Thus,
agencies require seeing how new evolutions in edge computing practice can be made
more convenient for them. Figure 1 shows some mobile edge computing-based IoE
applications.

Here, some of the most novel applications in the mobile edge computing are
addressed:

Manufacturing: By putting data storage and registering in industrial equipment,
manufacturers can collect data that will consider better perception and adequacy
of redundancy, while reducing costs and requirements while maintaining better
stability and remunerative time. Common manufacturing frameworks guided by
consistent data diversity and will help more companies make changes to the order
created to meet prospects for operational requirements.

Smart Cities: The edge computing architecture responds to real-time changes on
behalf of devices that control utilities and other public administrations. With the
increasing number of autonomous e-devices and the ever-increasing IoE, smart

318 T. Maitra et al.

Fig. 1 The layered architecture of mobile edge computing-based IoE

cities [5] can change how people survive and benefit from urban environments.
Since all end computing applications rely on gadgets to collect data to perform
basic processing tasks, they will have the ability to react rapidly with the
changing circumstances occurring in the future city.

Healthcare: IoE gadgets are perfect for providing a vast array of patient-borne
health information (PGHD) [6, 7], allowing healthcare providers to access
essential data about their patients rather than interface with intermediate and frag-
mented databases. Treatment devices can be similarly determined to determine
and collect information about the entire treatment. Regulatory requirements for
the exchange and risk of medical data make it challenging to implement any edge
solution.

Augmented Reality: Wearable augmented reality (AR) gadgets such as smart eye-
glasses and headsets are sometimes used to create this effect; however, most
customers have run into AR via their mobile displays. Anyone who has made
a noise like Pokémon Go or used a channel on Snapchat or Instagram has
used AR. The innovation behind AR is that devices expect to process visual
information and are incorporated into pre-rendered visual elements. Without an
edge computing design, this visual information will be distributed back to a

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 319

centralized cloud server where digital components can be added before being
sent back to the gadget. This course of sequence inevitably leads to significant
delays.

AI Virtual Assistant: By incorporating edge systematization into the systems,
organizations can completely improve performance and reduce inactivity. Instead
of sending AI virtual assistants to a focused server and sending data requests, they
can locally spread weights between edge data centers playing some processing
capabilities. It can be said that the multiplication of localized data servers for
both cloud and edge computing has made it easier than ever for the association
to be in a position to expand its network and maximize the benefits of its data
resources.

Smart Transport: Smart transport [8] is the future of the world transportation
system. With comparison to before, today we have more and better transportation
options, and we have new ideas to enhance, invest, and consume transportation
services. To reduce traffic congestion and improve living standards, the city
government aims to promote green, efficient transportation systems. With the
help of IoE, cloud and edge computing makes it easier.

Smart Building: Adaptability is crucial in smart building [9] because, it interacts
with the systems, people, and exterior elements around them with the help of
IoE devices then stores in the cloud. Data are collected through Edge computing
devices. Edge devices have learned from past experience and real-time input. It
enhances comfort, efficiency, flexibility, and security to facilitate the needs of
people and trade between them. Here is the use of Edge Computing.

Smart Industry: The world of industry is turning into a trend that goes by various
names including Industry 4.0, Industrial Internet of Things (IoT), and Smart
Power Grid [10]. It is a safer, more experimental, more environmentally friendly
design of smart industrial factories and functions. With factories accounting for
40% of the world’s energy consumption, reducing their energy consumption will
play a significant role in bringing the planet on a more sustainable path. Machines
are evolving to be aware of the people around them and provide new interfaces
such as smart interfaces, augmented reality, touchless interfaces for easy and
secure communication. The devices are being integrated inside the factory and
with the cloud, enabling optimal planning and flexibility for production and
maintenance. Here Edge computing can help in a better way.

Autonomous Vehicles: The choice to stop or not for a pedestrian crossing in front
of an autonomous vehicle [11] should be taken instantly. In that case, it is not
appropriate to rely on a remote server to handle this decision. However, the
vehicles that use edge computing can interconnect more systematically because
they first communicate with each other to prevent accidents by sending data on
the first trip to a remote server. Edge computing can be used here to overcome
the said problem in autonomous vehicles applications.

Surveillance: Security systems can detect possible threats and then can notify
users to abnormal activities in real-time. Responding to a threat within seconds,
the security monitoring systems can also be benefited by incorporating edge
computing mechanism.

320 T. Maitra et al.

Retail Advertising: Targeted advertisements for retailers and data fields are based
on key parameters such as the population data set on the device. In this case, the
edge computing can help to preserve user privacy. It can keep the source instead
of encrypting the data and not sending secure information to the cloud.

Smart Speakers: Speakers with smart sensors can gain the potential to interpret
voice commands locally. Adjust the thermostat settings on or off or even if the
Internet connection fails. Edge technology is rapidly used in such an application.

Video Conferencing: Delay in audio, poor video quality, a slow link to the icy
screen-cloud video conferencing can produce a lot of frustration. By keeping
the server-side of the video conferencing software to the contributors, quality
problems can be minimized. While edge computing is in many cases a wise
alternative to cloud computing, there is always room for enhancement. But,
according to [12], the existing IoE security protocols need to be enhanced so
that it can be used in practical scenarios.

In the above-mentioned applications, the security in communication for edge
technology is a primary concern. Besides, a possible solution to further secure IoE-
generated data is an IoE management component known as a security agent. This
new piece will use routers and other near-edge boxes that cannot accommodate IoE
devices. As well as being more secure, it will also make it easier to manage the key.
The security agent box can operate a large number of sensors that are difficult to
use. The researchers said that IoE applications would fail if the required verification
was not done quickly.

3 Architecture for MEC

In this section, the layered architecture of edge computing will be described.
According to the communication, architecture can be divided into three layers, (a)
layer for edge devices, (b) layer for computation, and (c) cloud layer. Figure 1 shows
the layered architecture of mobile edge computing-based IoE applications.

a. Layer for edge devices: In this layer, edge devices like mobile, sensors, and
laptop are connected to each other. These devices may use short communication
interfaces like Bluetooth, ZigBee depending upon application and availability of
the connection. For this purpose, a personal area network (PAN) can be used. The
edge devices transmit data to the local edge server for processing (see Fig. 1).

b. Layer for computation: After collecting data from edge devices, in this layer,
the edge server like fog server processes the data. The edge server periodically
collects data from the edge devices. Sometimes, depending on the application, if
any person wants to access fresh and real-time data, then after proper verification,
he/she can get data from this layer. However, this is the local data as the edge
server is connected to the edge devices locally. After processing data, the edge
servers send the data to the cloud so that users can access data globally (see Fig.
1). For this purpose, the edge server uses the Internet for communication.

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 321

c. Cloud layer: After getting data from each edge server, in this layer, the cloud
server stores the data in a secure way so that users can get data whenever they
want via the Internet. However, the data in this layer may not be fresh because
the edge servers do not send data periodically to the cloud.

All the communications are done in public channels like Bluetooth and the
Internet; therefore, an attacker alters the messages and hampers the communications
(see Fig. 1). Even the adversary may try to extract the secret information of edge
devices, servers. Not only that, but the attacker may also try to access data from the
cloud and edge server. Thus, the protection of unauthorized access is a key term in
such critical communications. However, later, this chapter will discuss the security
challenges and issues for mobile edge computing-based IoE applications.

3.1 Network Model

To design a secure communication protocol based on edge-cloud architecture, the
network model plays an important role by which the flow of data and authentication
can be achieved. For this purpose, researchers generally use two types of network
model (a) single server environment, and (b) multi-server environment. The details
are described as follows:

a. Single server environment: Edge devices are connected to the local edge server
and each local edge server connected to a global cloud server. In this regard,
the global cloud server controls all the communications and edge servers and
edge devices. The global server serves all the requests and services to the users
globally. Figure 2a shows the single server environment.

Fig. 2 Network model: (a) server environment, and (b) multi-server environment

322 T. Maitra et al.

b. Multi-server environment: Edge devices are connected to the local edge server
and each local edge server connected to the corresponding global cloud server
depending on the service provider. In this regard, the cloud servers distribute
their tasks depending upon the availability of the resources. Figure 2b shows the
single server environment.

c. Hybrid: In such an environment, edge servers and cloud servers are de-
centralized. One registration center (maybe part of the governing body) controls
the total networks. The networks are divided into several sub-networks as a
company based and provides several services.

4 Possible Attacks and Cryptographic Solution

This section discusses the possible attacks on Mobile Edge Computing (MEC) dur-
ing communication. Then a brief cryptographic solution is given on that direction.
The possible attacks during communication in MEC listed below:

1. DDoS attacks: The goal of a DDOS attack is to connect all available resources
and bandwidth to the target, and prevents malicious users from using the
compromised system. The attacker constantly sends a large number of packets to
the target (also known as ‘flooding’), ensuring that all of the target’s resources are
exhausted to handle the corrupted packet, and therefore the actual requests cannot
be processed. Such attacks are more important on edge computing paradigms
because they are comparatively less powerful (compared to cloud servers), and
therefore cannot run robust defenses.

2. Malware attacks: The inability to install a complete firewall on resource-limited
edge devices makes them vulnerable to malware injection attacks, allowing an
attacker to secretly install malicious programs on a target system.

3. Authorization attacks: Authentication processes in Edge computing systems can
also be vulnerable to attacks. These types of attacks can be categorized into
four different categories: dictionary attacks, attacks targeting vulnerabilities in
authentication systems, attacks that exploit sensitivity to authorization protocols,
and extra-privileged attacks.

4. Side channel attacks: Common examples of such attacks include capturing
contact signals (such as packets or wave signals) to get user’s personal data,
monitoring the power consumption of edge devices to disclose usage patterns,
and targeting end devices on file system and sensors like microphones, and
cameras.

Cryptographic protocols used to protect privacy on secret information as well as
to eliminate the possible attacks. The protocols used in MEC is categorized into (a)
public key based, (b) secret key based, (c) only one-way hash function based, and
(d) public plus secret key based (see Fig. 3). Depending on applications in MEC,
public plus secret key based cryptosystem is used. For an example, an application
where, wireless sensor devices are used in communication, in that case public key

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 323

Fig. 3 Different cryptographic protocols used in MEC

cryptography cannot be used due to high computation cost. It results more energy
consumption in sensor device during communication among IoE devices and edge
server. In such case, secret key based protocol is used and in the higher level
(i.e., edge to cloud communication), public key cryptography is used to provide
more security during communication. This is because, edge and cloud servers have
unlimited power as well can they can do the high computation operations.

In the next section, an Elliptic curve (ECC) based secure protocol [13] for
communication in MEC environment has been discussed. This chapter picks ECC
because; it can produce same security level with smaller key size. This work refers
article [14] to know more about ECC. Moreover, in the protocol [13], sensor
to edge server secure communication and vice versa has been done using secret
key cryptography to reduce energy consumption of sensor devices. The remaining
communication (edge to cloud and vice versa) has been done using ECC.

5 Secure Communication Protocol

This section discusses an edge-cloud based security protocol [13] which is applica-
ble in the healthcare system. The protocol used in [13] is based on the elliptic curve
cryptosystem [14].

5.1 Architecture

Before going to discuss the protocol [13] in detail, this section will discuss the
architecture of the protocol (see Fig. 4). Sensors (the layer for edge devices)
send messages periodically to the local edge server. The edge server forwards the
message to the cloud server for authentication. After, correct verification, the cloud

324 T. Maitra et al.

Fig. 4 Network structure of the existing secure protocol [13]

server replies back to the edge server. Upon getting a reply back from the cloud
server, the edge server, checks the message and if the message is correct, then it
forwards to the sensors. Finally, a secure session will be established between the
edge server and the sensor (i.e., patient) for secure data transmission. However,
in this protocol, how the other users like, doctors, nurses will get data from edge
server is not demonstrated. But, they can get access to data from the edge server
after proper authentication procedure.

5.2 Protocol in Details

The protocol [13] has four phases: (a) startup phase, (b) enrollment phase, (c)
verification phase, and (d) data transmission phase.

a. Startup phase: A cloud server (CS) picks a long prime number y and makes an
elliptic curve on a finite field of order m with a base point X. CS randomly selects
a secret key k∈R[1,m − 1] and computes the corresponding public key P = [k]X.
CS selects three cryptographic hash functions: hf1(.) : {0, 1}∗ → {0, 1}n for a fixed
n bits, hf2(.) : Gy → {0, 1}n1 for a fixed n1 bits and hf3(.) : Gy → {0, 1}n. Then
CS announces 〈X,m, p, hf1(.), hf2(.), hf3(.)〉 and k has been kept as a secret.

b. Enrollment phase: In this phase, CS supplies the information regarding registra-
tion to the edge servers as well as the healthcare sensors.

Enrollment of edge servers: An edge server ESi selects its unique identity
EIDi and sends it to CS. After getting EIDi, CS selects a random number
ai∈R[1,m − 1] which is a secret key of ESi and calculates a public key
EPKi = [ai]X. CS then sends 〈ai〉 to ESi through secure channel and
announces {EIDi, EPKi} publicly. Upon getting ai, ESi stores it securely.

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 325

Enrollment of sensors: Before going to place a healthcare sensor Si on the
patient’s body, CS chooses an unique identity S_IDi for Si and calculates its
key Keyi as hf2(ei || S_IDi), where ei is a random number chosen by CS. CS
again calculates a pseudo identity PS_IDi as hf2(S_IDi || k) for Si and stores in
its database as Sensor_DB = {PS_IDi, ENC[S_IDi || Keyi]k}, where ENC[.]k
means encrypted using a secret key k. Then CS burns 〈PS _ IDi, S _ IDi,Keyi〉
into the memory of Si as temper resist.

c. Verification phase: If a healthcare sensor Si has data to send, it sends a request
to send message as 〈EIDi,PS _ IDi,Vi,Wi〉 to ESi after calculating Vi =
ENC[zi ‖SIDi‖ EIDi]Keyi

and Wi = hf1(zi‖S _ IDi‖Vi) where, zi is a random
number chosen by Si.

After receiving 〈EIDi,PS _ IDi,Vi,Wi〉, ESi forwards the message as
〈EIDi,Ai,Ci,Qi〉to CS through the Internet after calculating Ai = [li]X, Bi = [li]P,
Ci = (PS_IDi || Vi || Wi || EIDi) ⊕hf2(Bi) and Qi = [hf1(Ci)]X+[ai]P, where li
is a random number chosen by ESi.

After receiving 〈EIDi,Ai,Ci,Qi〉 from ESi, CS calculates B#
i = [k] Ai ,

PSID#
i

∥∥ V#
i

∥∥ W#
i

∥∥∥ EID#
i = Ci ⊕ hf2

(
B#

i

)
and extracts S_IDi || Keyi

from its Sensor_DB by decrypting ENC[S_IDi || Keyi]k using its secret key
k corresponding to PSID#

i if it exists into the database. CS then decrypts V#
i

using Keyi to extract z#
i

∥∥SID#
i

∥∥ EID##
i as DEC

[
V #

i

]
Keyi

and, checks extracted

SID#
i ? SIDi and EID##

i ? EID#
i ? EIDi . For the equality, CS calculates

W ##
i = hf 1

(
z#
i ‖SIDi‖ V #

i

)
and Q#

i = [
hf 1 (Ci)

]
X + [k] EPKi . CS then

further checks W ##
i ? W #

i andQ#
i ? Qi . For the equality, CS transmits a reply

message 〈CS1,CS2,CS3〉 to ESi via the Internet after calculating CS1 = [ui]X,
CS2 = z#

i ⊕ hf 3 ([ui] EPKi) and CS3 = [z#
i] X+[k]EPKi, where ui is a random

number chosen by CS.
After receiving 〈CS1,CS2,CS3〉, ESi calculates z∗

i = CS2 ⊕ hf3([ai]CS1) and
checks CS3?

[
z∗
i

]
X + [ai] P . For the equality, ESi transmits a clear to transmit

message 〈Yi,Hi〉to Si after computing Sessionk = hf1(z∗
i || ti), Yi = ti⊕z∗

i and
Hi = hf1(Sessionk || Yi) where, ti is a random number chosen by ESi.

After receiving〈Yi,Hi〉, Si calculates ti as Yi⊕zi, Sessionk = hf1(zi || ti) and

verifies the received Hi? hf 1

(
Sessionk

∥∥∥Yi

)
. For the equality, Si agrees on the

common secret session key Sessionk in data transmission phase.
d. Data transmission phase: After agreement on Sessionk, Si transmits its sensed

data as a cipher CIPHER_DATA = ENC[DATA]Sessionk to ESi. After receiving
CIPHER_DATA, ESi de-cipher it by using the same session key Sessionk as
DATA = DEC [CIPHER_DATA]Sessionk and analyzes the data. ESi stores the
data as cipher form using its secret key ai corresponding to PS_IDi as {PS_IDi,
ENC[DATA]ai} for future reference to the users like doctors and nurses.

A flow chart of verification and data transmission phases of the proposed scheme
in [13] is given in Fig. 5.

326 T. Maitra et al.

Fig. 5 Flow chart for authentication and data transmission phases [13]

6 Other Security Protocols: A Comparison

This section demonstrates the existing security protocols for a cloud-edge envi-
ronment. This section also compares the related existing security schemes. By
decreasing end-to-end delay and enhanced position perception with mobile facil-
ities, Mobile Edge Computing (MEC) furnishes smooth services. Since MEC
progressed from cloud computing, it has subsequently inherited many security and

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 327

privacy issues. Besides, decentralized testing and diversified installation environ-
ments on MEC platforms exacerbate the problem; the research causes great concern
for the community. So, in 2019, Kaur et al. [15] have proposed an efficient and
lightweight mutual verification protocol for the environment of MEC; based on
cryptography based on elliptic curves (ECC), cryptographic hash function and work
with content. The designed protocol also presents the advantages of counteracting
individual computational Diffie-Helman, logarithm problems, random numbers and
time-stamps, multi-attack-resistant attacks, replay attacks, and man-in-the-middle
attacks. The work in [15] claims that it is suitable for acquiring resource hindrance
MEC environments. Omala et al. [16], Cheng et al. [17] and He et al. [18] introduced
their security protocols that can enable a patient to securely transmit their data
directly to application servers (mainly cloud servers) using their mobile application.
However, such a situation is not always possible, as no patient may be able to
manage his mobile application in his critical situation. So, an automated system
is needed to handle this problem, where sensors can send their data securely from
time to time. Recently, Maitra and Roy [19] suggested a secure communication
scheme for patient monitoring system, known as SecPMS. In the approach [19], the
end users such as doctors and nurses get patients’ information securely from a local
server (i.e., edge server) after performing authentication procedure.

On the other hand, IP-based communication is a serious security threat for
MEC. Thus, secure information sharing between diverse communication agents has
become an important concern in smart grid environments. In particular, to enable
secure communication among smart meters and utilities, managing the key before
authentication is the most important task. Mehmood et al. [20] proposed an identity-
based signature to represent an anonymous key agreement protocol for smart grid
infrastructure. The protocol [20] enables smart meters to be interconnected to
anonymous utility controls for the services they provide. Smart meters recognize
this purpose with a secret key in the absence of reliable authority, where the trusted
officers are only intricate in the enrollment phase.

On the Internet of Thing (IoT) systems, large amounts of data are accumulated
at any given time, which can capture human privacy, mostly when the system
is used in medical or everyday environments. Privacy protection is an important
issue and high privacy claims usually demand a weak identification. The earlier
researches have stated that well built security demands strong identification, par-
ticularly in authentication processes. Therefore, defining a better business between
privacy and security remains a challenging issue. Wang [21] introduced a security,
accountability, privacy-protection, efficiency, and dynamic removal necessity for
weakly identified IoT end-of-device authentication frameworks. For this purpose,
the author in [21] used Shamir’s secret sharing project [22] for a basic installation
and distribution project for secure communication between the end device and the
end device. A small-group signature scheme [22] has then been used to make a
privacy-preserving and accountable verification protocol for weakly identified IoT
end-devices.

Not only secure communication but secure database access also important in
MEC. In this regard, Pang and Tan [23] have proposed an edge that creates a

328 T. Maitra et al.

Table 1 Existing security protocols for MEC: A comparison

Purpose Protocols Computational cost Latency Security Network model

Secure Communica-
tion + Authentication

[15] high high medium single server

[16] high medium high single server
[20] high high medium multi server
[21] medium medium medium single server

Authentication + Secure
Data Store

[13] medium low medium single server

Secure database access [23] - - - hybrid

validation object (VO) to verify the integrity of the result of each query generated by
an edge server – the results of which do not tamper with the values; even though any
attacker enthusiasts add fake tuples. The primary advantage of the proposed system
[23] is that it is unique compared to the size of the VO database and those relevant
activities can still be performed by the edge server. The said mechanism turns down
the communication load and processing complexity at the client end.

Table 1 gives a summary of the aforementioned existing secure protocols, where,
latency is considered with respect to the number of bits transmitted.

7 Issues and Challenges to Design Security Protocols

This section discusses the challenges to design a security protocol for the edge-cloud
environment.

IoE Vulnerabilities at the Edge: Edge computing fixes a variety of IoE networking
traffic issues; however, it often introduces new weaknesses that contribute to
an overall wider attack surface, that is, the total number of access points for a
network that can be used by an adversary. Networks become more vulnerable
at ends and edges due to the condition of existing platforms. Some attacks may
occur as end-users generally don’t change their default passwords. This creates
a path for malicious people to have access to the user’s end devices, as they are
now exposed to attack.

Internet resources that are not secure can be found easily and are accessible. In a
2017 “botnet barrage” bots were introduced to check for devices running default
passwords at university campus. In the year 2013, an application was released
that could scan for unsecured IoE devices around the world. Around 5,000 IoT
devices have been hacked by 5,000 individual systems because these devices had
default or weak passwords.

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 329

The above attacks have been carried out due to the weakness present at the end
points, nonetheless edge computing complicates things by exposing new attack
surfaces. IoE devices that link to the public Internet violate protection protocols
at the edge of the network. This is partially attributed to the existing state
of edge computing in which full-stack systems like sensors, applications and
protected components are not common. Many of the approaches used to protect
IoT networks at the edge can be ineffective. LPWAN protocols can become
unstable if encryption keys are stolen. VPNs are vulnerable to man-in-the-
medium attacks.

Physical Tampering: Edge computing being distributive in nature often leads to
opening up of new, unexpected frontier of physical risks. Although servers
and computers that drive conventional networks are typically located in large,
sometimes extremely protected warehouses, the very tiny data centers that render
edge computing such a massive leap forward may often be a security nightmare.

Instead of keeping in data centers, such micro-centers are mostly installed in an
area that, as we think about IoE edge, may be a corporate office, a garden, and
everything in between. An intruder who physically tampers with an edge system
may bring down a network, or even damage one of its operators. Securing these
systems is also far from straightforward – as they need to be protected against
physical threats, it is often a tradeoff between reliability, expense, and ease of
updating and maintaining edge data centers. Device manufacturers need to be
aware of the threats to ensure the systems can be conveniently monitored to
trigger remote and local alerts at any indication of interference.

Lacking Reflection of Secure Design: The primary aim of edge computing is to
furnish a more powerful and lightweight computing environment for evolving
technologies such as IoE and smart cities [3]. While building designs, device
designers prefer to rely more on efficiency than on the security part, when build-
ing the application-specific edge computing architecture. Such a lackadaisical
attitude towards security explicitly uncovers the edge computing infrastructures
to larger attack sides.

Non-migratability of Security Frameworks: The security framework for general-
purpose computer systems have been widely researched for a long time and
are known to be capable of offering good security assurances in the defense
against numerous threats [3]. Nonetheless, such security architectures cannot
be explicitly transferred to edge computing platforms due to a variety of
irresolvable differences, such as competing processing resources, diverse OSs
and applications, specific network architectures, and incompatible protocols.
Also, security frameworks outlined for an edge computing application may not
be directly transferred to another scenario such as diversity of edge devices as
well as diversity in intelligent transmission protocols.

Coarse-Grained and Fragmented Access Control: Current access management
frameworks for edge computing are inconsistent and coarse-grained [3]. They
are fragmented since various edge computing contexts can follow specific
access management models that may be configured in a fully distinct way for
segregating, granting, and obtaining permissions. This condition hinders the

330 T. Maitra et al.

creation of a coherent and functional access control platform for different edge
computing systems. Recent access control mechanisms for edge computing are
also coarse-grained because, with compare to coarse-grained, permissions in
fine-grained are largely complex and underexplored.

8 Conclusion and Future Direction

Based on the basic computing reasons, the status queues, and the magnificent
challenges of achieving edge computing systems, this chapter can conclude that
research on the security domain in edge computing technology is far from the
delighted result. Future research focuses should lie in the grand challenges and
should overcome the existing weaknesses. For such edge-based applications, more
robust defense solutions are needed to reduce personal attacks, especially preventive
measures; on the other hand, new architectures are needed that can integrate
the entire system and can incorporate security measures to protect the secure
information from an outsider when online communication will be done. Most
significantly, the philosophy of safety by design should be widely adopted and
always returned. Inspired from the article [3], below, this chapter outlines a basic
concept that seeks to secure edge computing systems with integrated structure and
current future directions along this line of research. The structure consists of three
layers: (a) a fine-grained outer access control layer, (a) a medium-security function
layer, and (c) an internal hardware-isolated OS layer.

The outer layer focuses on fine granular access control, which acts as a gate
to prevent intruders from entering. If properly designed and strictly implemented,
such fine access control systems can potentially reduce protocol-level design errors,
implementation-level errors, and attacks generated by weak access control. It can
carry flood-based DDoS, controllable side channels, malware injection attacks, and
attacks in the verification process.

There are plans to implement medium level full security measures. This chapter
proposes the adoption of software-defined networking (SDN) and network function
virtualization (NFV) at the edge server level, where SDN is adopted to filter out
malicious traffic on a per-packet basis. In contrast, NFV adopts more advanced
algorithms such as intensive learning to detect malicious behaviors in autonomous
and self-developed methods. SDN and NFV-enabled edge servers can prevent
packet-based attacks such as DDoS, attacks arising from connected data (requiring
learning-based detection), and poor access control (which can lead to attacks such
as malware injection).

The inner layer notices unnecessary code-level vulnerabilities. Moreover, the
IT and telecommunications worlds have experienced real ideological changes over
the years. The concept of mobile edge computing has recently been published,
applying fog computing (edge-on-cloud) to mobile network domains. However,
edge technology will have a real impact on the way new services are installed as
they will benefit from a combination of SDN plus NFV. Either way, IoT, which is

Security in Critical Communication for Mobile Edge Computing Based IoE. . . 331

highly connected with mobile networks, will benefit by expanding the concept of
mobile edge agent computers to other areas such as VANET and WSN.

This chapter has first described some edge technology-based applications that are
recently under consideration in the research domain. Then the system architectures
have been discussed concerning the design of edge-based applications. Then one
secure communication protocol has been highlighted for a cloud-edge based health-
care system. After that brief overview of recent secure communication protocols for
edge-based applications has been compared. The designing issues and challenges
have been enlisted then. Lastly, future direction and probable solutions have been
discussed in this section. After enlightening all the things, and then also this chapter
can say that the developing research in edge computing security is still under
construction and there have so many scopes to re-design the security protocols.
Inspired by emerging applications and advances in modern cryptography, innovative
design, and applications to secure edge computing systems will be enriched in the
distant future.

References

1. Bradley, J., Barbier, J., Handler, D.: Embracing the Internet of Everything To Capture Your
Share of $14.4 Trillion. published by cisco (2013). https://www.cisco.com/c/dam/en_us/about/
ac79/docs/innov/IoE_Economy.pdf

2. Cisco IoT. http://www.cisco.com/web/solutions/trends/iot/overview.html
3. Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., Lv, W.: Edge Computing Security: State of the Art

and Challenges. in Proceedings of the IEEE. vol. 107. no. 8 (2019) 1608–1631.
4. Antonakakis et al.: Understanding the Mirai botnet. in Proc. of 26th USENIX Secur. Symp.

Vancouver, BC, Canada: USENIX Association (2017) 1093–1110.
5. Dutta, J., Roy, S., C. Chowdhury, C.: Unified framework for IoT and smartphone based

different smart city related applications. Microsyst Technol. Vol. 25. (2019) 83–96.
6. Maitra, T., Giri, D.,: An Efficient Biometric and Password-Based Remote User Authentication

using Smart Card for Telecare Medical Information Systems in Multi-Server Environment.
Journal of Medical Systems. Vol. 38. no. 12, article no. 142, (2014) 1–19.

7. Giri, D., Maitra, T., Amin, R., Srivastava, P. D.: An Efficient and Robust RSA-Based Remote
User Authentication for Telecare Medical Information Systems. Journal of Medical Systems.
Vol. 39. article no. 145, 2015.

8. Hu, L., Ni, Q.: IoT-Driven Automated Object Detection Algorithm for Urban Surveillance
Systems in Smart Cities. IEEE Internet of Things Journal. Vol. 5, no. 2, (2018) 747–754.

9. Dutta, J., Wang, Y., Maitra, T., Islam, SK. H., Rawal, B. S., Giri, D.: ES3B: Enhanced Security
System for Smart Building using IoT. in Proc. of The 3rd IEEE International Conference on
Smart Cloud (SmartCloud 2018). New York, USA, (2018) 158–165.

10. Ou, Q., Zhen, Y., Li, X., Zhang, Y., Zeng, L.: Application of Internet of Things in Smart Grid
Power Transmission. in the proc. of 2012 Third FTRA International Conference on Mobile,
Ubiquitous, and Intelligent Computing. Vancouver, BC, (2012) 96–100.

11. Kong, L., Khan, M. K., Wu, F., Chen, G., Zeng, P.: Millimeter-Wave Wireless Communications
for IoT-Cloud Supported Autonomous Vehicles: Overview, Design, and Challenges. IEEE
Communications Magazine. Vol. 55. no. 1. (2017) 62–68.

12. Hsu, R., Lee, J., Quek, T. Q. S., Chen, J.: Reconfigurable Security: Edge-Computing-Based
Framework for IoT, IEEE Network. Vol. 32. no. 5. (2018) 92–99.

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoE_Economy.pdf
http://www.cisco.com/web/solutions/trends/iot/overview.html

332 T. Maitra et al.

13. Giri, D., Obaidat, M. S., Maitra, T.: SecHealth: An Efficient Fog based Sender Initiated
Secure Data Transmission of Healthcare Sensors for e-Medical System. in Proc. of IEEE
GLOBECOM 2017. Singapore, (2017) 1–6.

14. Maitra, T., Obaidat, M. S., Islam, SK, H., Giri, D., Amin, R.: Security analysis and design of an
efficient ecc-based two-factor password authentication scheme. Security and Communication
Networks. Vol. 9. no. 17. (2016) 4166–4181.

15. Kaur, K., Garg, S., Kaddoum, G., Guizani, M., Jayakody, D. N. K.: A Lightweight and
Privacy-Preserving Authentication Protocol for Mobile Edge Computing. in Proc. of IEEE
GLOBECOM 2019. Waikoloa, HI, USA, (2019) 1–6.

16. Omala, A.A, Kibiwott, K.P., Li, F.: An efficient remote authentication scheme for wireless
body area network. Journal of Medical Systems. Vol. 41. no. 2. (2016) 1–9.

17. Cheng, Q., Zhang, X., and Ma, J.: Icasme: An improved cloud-based authentication scheme
for medical environment. Journal of Medical Systems, Vol. 41. no. 3 (2017) 1–14.

18. He, D., Zeadally, S., Kumar, N., Lee, J.H.: Anonymous authentication for wireless body area
networks with provable security. IEEE Systems Journal, Vol. 11. no. 4, (2016) 1–12.

19. Maitra, T., Roy, S.: Secpms: An efficient and secure communication protocol for continuous
patient monitoring system using body sensors. in proc. of 9th International Conference on
Communication Systems and Networks (COMSNETS 2017), Bangalore, India, (2017) 322–
329.

20. Mahmood, K., Li, X., Chaudhry, S.A., Naqvi, H., Kumari, S., Sangaiah, A.K., Rodrigues,
J.J.P.C.: Pairing based anonymous and secure key agreement protocol for smart grid edge
computing infrastructure. Future Generation Computer Systems. Vol. 88. (2018) 491–500.

21. Wang, Z.: A privacy-preserving and accountable authentication protocol for IoT end-devices
with weaker identity. Future Generation Computer Systems, Vol. 82. (2018) 342–348.

22. Shamir, A.: How to Share a Secret. Com. ACM, Vol. 22. no. 11. (1979) 612–613.
23. Pang, H.H., and K. Tan, K.: Authenticating query results in edge computing. in proc. of 20th

International Conference on Data Engineering. Boston, MA, USA, (2004) 560–571.

Blockchain for Mobile Edge Computing:
Consensus Mechanisms and Scalability

Jorge Peña Queralta and Tomi Westerlund

Abstract Mobile edge computing (MEC) and next-generation mobile networks are
set to disrupt the way intelligent and autonomous systems are interconnected. This
will have an effect on a wide range of domains, from the Internet of Things to
autonomous mobile robots. The integration of such a variety of MEC services in an
inherently distributed architecture requires a robust system for managing hardware
resources, balancing the network load and securing the distributed applications.
Blockchain technology has emerged a solution for managing MEC services, with
consensus protocols and data integrity checks that enable transparent and efficient
distributed decision-making. In addition to transparency, the benefits from a security
point of view are evident. Nonetheless, blockchain technology faces significant
challenges in terms of scalability. In this chapter, we review existing consensus
protocols and scalability techniques in both well-established and next-generation
blockchain architectures. From this, we evaluate the most suitable solutions for
managing MEC services and discuss the benefits and drawbacks of the available
alternatives.

Keywords Edge computing · Blockchain · Distributed ledger technology ·
Mobile edge computing · Multi-access edge computing · Scalability · Distributed
consensus · Internet of things (IoT)

1 Introduction

The scope of the Internet of Things (IoT) has been growing over the past decade,
encompassing an ever larger ecosystem that spans multiple domains. Some of
the most prominent research directions are smart cities [1, 2], vehicular technol-
ogy [3, 4], or smart healthcare systems [5–7]. In all these domains, a common

J. Peña Queralta (�) · T. Westerlund
Turku Intelligent Embedded and Robotic Systems Lab, University of Turku, Turku, Finland
e-mail: jopequ@utu.fi; tovewe@utu.fi

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_14

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_14&domain=pdf
mailto:jopequ@utu.fi
mailto:tovewe@utu.fi
https://doi.org/10.1007/978-3-030-69893-5_14

334 J. Peña Queralta and T. Westerlund

factor is that IoT systems are evolving towards more distributed architectures [8].
This shift from more traditional cloud-centric architectures has crystallized in
the edge computing paradigm [9–11]. At the same time, novel technologies are
increasingly designed with decentralization in mind from their inception. Among
these, blockchain technology is set to be one of the key drivers behind the
disruption of the technological landscape in the near future [12, 13]. Decentralized
technologies are also the cornerstone behind the Internet 3.0 and Industry 4.0
revolutions that are undergoing [14].

Blockchain technology is already a driver behind decentralized and distributed
IoT systems, providing security [15], trust [16, 17], data management [18], peer-to-
peer transactions [19], and fault-tolerand middlewares [20]. Blockchain platforms
can be divided in two main types depending on how they manage user credentials,
which have a direct impact on their applicability: (1) permissionless, or public,
and (2) permissioned, private, or consortium, blockchains. They differentiate in that
public blockchains are based on anonymous nodes with equivalent status, while con-
sortium or private blockchains introduce different types of nodes and permissions,
some of which require authentication in order perform certain actions. While trust in
permissionless blockchains is shared and distributed, in permissioned blockchains
there is a series of validator nodes that represented trusted authorities [21].

One of the main issues stopping a wider adoption of blockchain in IoT systems
is scalability, an inherent problem to Bitcoin’s architecture that multiple researchers
have been addressing [22, 23]. While smart contracts have great potential in
the IoT and distributed systems in general, their scalability and performance is
closely tied to the overall performance of blockchain systems [24]. Nonetheless,
multiple advances in recent years have demonstrated that novel technologies can
bring significantly higher degrees of scalability and performance to next-generation
blockchain systems. Among these, Elastico provided the first implementation of
a sharding protocol in a permissionless blockchain [25]. Sharding is a technique
that enables the distribution of nodes in a blockchain into subchains for performing
parallel validation, thus increasing throughput and reducing latency. A more recent
scalable blockchain is OmniLedger [26], which reports better scalability than
Elastico and promises VISA-level latency and throughout if enough nodes form
up the network.

Owing to the distributed nature of blockchain systems, and distributed ledger
technology (DLT) in general, IoT systems integrating them must already have a
distributed architecture by themselves. Therefore, it is only natural that blockchain is
integrated at the edge layer in most occasions, which represents the most distributed
and interconnected layer of a typical IoT system. While sensors and actuators
could be considered more distributed, they are not necessarily capable of node-to-
node communication. Through this chapter, we utilize the terms blockchain and
distributed ledger equivalently. However, distributed ledger technology (DLT) is
often utilized to include more general systems that do not implement blockchains
per se, but instead rely on some other type of network or data management
architecture. An example of this is IOTA, which utilizes acyclic directed graphs

Blockchain for MEC: Consensus Mechanisms and Scalability 335

representing more general data structures. The rest of this introduction delves into
more details behind the nature of mobile edge computing and its integration with
blockchain/DLT technology.

1.1 MEC and Network Slicing

The European Telecommunications Standards Institute (ETSI) has promoted the
standardization of Multi-Access Edge Computing (MEC) [27], which shares the
acronym with Mobile Edge Computing (MEC). The “multi-access” term puts
an emphasis on the multi-tenant infrastructure and better reflects non-cellular
operators [27, 28]. In this chapter, we do not make distinctions between the two
terms as our focus lays on the role of blockchain with edge computing. MEC
standardization has been led by the MEC Industry Specification Group (ISG) since
the end of 2014. One of the main objectives of the ETSI MEC ISG is to define
the base technologies for distributed and multi-tenant clouds that are meant to be
deployed at the edge of the radio access network (RAN) [9]. By deploying data
aggregation and processing tasks directly at the edge of the network, MEC services
can provide better reliability, lower latency and higher-throughput [7, 29, 30]. We
will specifically discuss throughout this paper how blockchain technology can play
a key role in terms of security and robustness for the resource management needed
in a multi-tenant edge infrastructure, as well as enhance the services that MEC
applications can provide [31–34].

One of the key architectural cornerstones enabling multi-tenancy and co-existing
verticals at the MEC layer is network slicing [35]. Network slicing provides the base
for interfacing blockchain with other MEC services for a wide array of application
scenarios [36]. Network slicing refers to the co-existence of multiple software
defined systems and networks (slices) sharing a common hardware infrastructure.
Each of the slices can be thus designed independently and optimized for a
particular application or business vertical [37]. In particular, slicing for vehicular
communication and offloading, together with 5G-and-beyond connectivity, are set
to define the mobility of the future [38].

1.2 Integration of Blockchain and MEC

The integration of blockchain within the MEC layer has been object of extensive
research over the past few years. Systems integrating blockchain and edge comput-
ing can be roughly divided among those in which edge services are part of a larger
blockchain system [39–41], and those in which blockchain is one of the services
enhancing edge services [31, 33, 34, 42–44]. In this chapter, we are particularly
interested in the latter type, as blockchain can provide a key piece in enabling
truly distributed, secure and efficient edge computing. With monetization of MEC
being a central topic of discussion since its early proposal [29], multiple works have

336 J. Peña Queralta and T. Westerlund

focused towards either enhancing security or utilizing blockchain as a marketplace
framework for users to access different applications at the edge [32, 34, 43].
More recently, other works have also delved into the potential of blockchain as a
framework for managing edge resources [44–47], as well as supporting autonomy
in distributed robotic systems [36].

From the security point of view, the integration of blockchain technology
brings evident benefits to edge computing. Among the main threats identified in
a recent report from the European Union Agency for Cybersecurity (ENISA) on
5G networks and edge infrastructure [48], blockchain and DLT technologies can
help address multiple remaining challenges. For instance, permissioned DLTs with
built-in identity management naturally provide an extra layer of resilience against
malicious diversion of network traffic, manipulation of traffic, or authentication
traffic spikes. When blockchain technology is applied to resource management, it
can serve as a framework to mitigate risks in terms of abuse of third party hosted net-
work functions, manipulation of the network resources orchestrator, or opportunistic
and fraudulent usages of shared resources, among others. Moreover, safety-critical
applications can benefit from the enhanced security that blockchains and other
DLTs provide. These include the automotive sector with vehicle to everything
communication routed at the edge [49, 50], and the healthcare sector [34, 51, 52].

1.3 Related Works

Multiple surveys and review papers have recently been published on the conver-
gence of blockchain and mobile edge computing [53–56]. Other surveys in either
the blockchain or edge computing domains also mention the potential for integrating
one with another [57–60]. In these and other works, scalability is often identified
as one of the key aspects limiting the adoption of blockchain in edge computing.
Nonetheless, these works describe the scalability problem either as a systemic
blockchain problem [53], or from a system point of view [55]. Most works also focus
on a specific blockchain, Ethereum being the most widely researched blockchain
for IoT [54]. In a blockchain, consensus algorithms are the main bottleneck in terms
of scalability, i.e., the mechanisms enabling all nodes in the blockchain network to
validate transaction and stay synced. Depending on the type of consensus algorithm,
the scalability of the system might be limited by either the computational complexity
of the algorithm, or its communication complexity. We believe there is a gap in the
literature describing how the consensus algorithms affect the scalability from these
two points of view. Our objective is to bring further insight in this area, providing a
literature review and a discussion on the topic.

In this chapter, we introduce the main consensus algorithms that form the
backbone of different blockchain solutions, including newer generation distributed
ledgers that do not follow many of the paradigms defined within the Bitcoin
and successive blockchains. We then describe what can be the role of edge
computing when it integrates blockchain/DLT systems. In particular, we discuss

Blockchain for MEC: Consensus Mechanisms and Scalability 337

the potential for the different solutions in the IoT, from the point of view of
scalability but also discussing the different applications that are most suitable for
different blockchain/DLT solutions. We do this from the point of view of consensus
algorithms and their computational and communication complexity. Compared to
previous works surveying the integration of blockchain and edge computing [53],
we provide a novel classification of current research directions from an architectural
point of view (Sect. 3), while giving more insight into how the different consensus
algorithms affect the integration of blockchain/DLT and edge computing (Sect. 4).

1.4 Chapter Structure

The rest of this chapter is organized as follows. In Sect. 2, we introduce the main
consensus algorithms in blockchain systems and other DLTs, together with the most
prominent results in highly-scalable and low-latency blockchains. Section 3 then
reviews specific applications of blockchain at the MEC layer, and discusses how
the different consensus protocols integrate at the edge. In Sect. 4, we discuss on the
best blockchain/DLT solutions for different applications in the IoT, and how next-
generation systems that are currently under development might change the IoT and
MEC landscape. Finally, Sect. 5 concludes this work.

2 Blockchain Technology: An Evolving Paradigm

In this section we start with the basics of blockchain technology and move into how
the field is evolving towards lower-latency, higher-throughput, and new concepts
aimed at increasing flexibility and scalability, such as sharding. We provide a
historical point of view on the different consensus algorithms that have been
proposed for blockchains and other distributed ledgers, and include an overview
of the most prominent so-called third-generation blockchains. The main concepts,
consensus protocols and applications are summarized in Fig. 1.

Consensus mechanisms are one of the key aspects within the design of decentral-
ized networked systems or distributed computing systems. Consensus mechanisms
are those algorithms that enable multiple independent agents to reach an agreement
on a certain value, operation, transaction, or other types of data. In a distributed and
decentralized system, different agents, or nodes, need to be able to trust each other.
Consensus mechanisms are the enablers of trust among agents. The most popular
consensus mechanisms to date in blockchain systems, according to a survey from
Li et al. [61], are proof of work (PoW), proof of stake (PoS) practical byzantine
fault tolerance (PBFT) and delegated proof of stake (DPoS), with other significant
approaches including proof of authority (PoA), proof of elapsed time (PoET) or
proof of bandwidth (PoB). Apart from some of the more traditional consensus
algorithms listed above (e.g. PoW utilized in Bitcoin or Ethereum, and PoS being

338 J. Peña Queralta and T. Westerlund

Smart Cities

Smart Healthcare

Smart Grids

Agricultural IoT

Vehicular IoT

Unmanned Vehicles

Applications

Distributed Ledger
Technologies

Ethereum and other PoW-based Blockchains

Hyperledger: Fabric, Sawtooth, Indy, Burrow, and Iroha

Third-Generation DLTs:IOTA

Distributed
Consensus
Protocols

Proof of Work /
Useful Proof of Work

Practical Byzantine
Fault Tolerance

Proof-of-Authority

Proof of Stake /
Delegated Proof of Stake

Fast Probabilistic
Consensus

Paxos/ Raft

Fig. 1 Blockchain/DLT consensus protocols, systems, and applications in integration with the
internet of things

part of Ethereum 2.0 plans), in this document we also review consensus protocols
utilized in third- and fourth-generation distributed ledger systems such as the fast
probabilistic consensus (FPC), and the cellular consensus (CC). We also put an
emphasis on defining the key technologies behind IOTA, a DLT designed for the
IoT and an ideal candidate for integrating DLTs with edge computing.

2.1 Proof of Work

Nakamoto’s proof of work designed for Bitcoin [62] has heavily influenced the
development of new solutions for newer-generation blockchain systems. The PoW
implementation in Bitcoin was a new application for an old algorithm. Originally

Blockchain for MEC: Consensus Mechanisms and Scalability 339

proposed by [63] as a solution to deter spam activity from email senders, the main
idea behind PoW systems has remained unchanged: to request to all networked
agents to solve computationally intensive cryptographic problems in order to
validate their activity, their identity, or those of another agent. In general terms,
a PoW algorithm is, at its most fundamental level, an algorithm that solves a
cryptographic problem with a solution that is, in relative terms, hard to find and
easy to validate. The computational complexity of the validation of a PoW solution
is therefore considerably smaller than the complexity of finding such solution.

Ethereum, the second most popular blockchain system after Bitcoin, also relies
on PoW-based consensus to validate new blocks in the blockchain. A block can
be roughly defined as each of the entries in the distributed ledger that blockchains
implement. A block does not include a single transaction, but often a set of
transactions that are near in time. These transactions represent the block’s body,
where transactions are defined in a generic manner and do not represent only
the exchange of cryptocurrencies. Transactions in PoW-based blockchains are not
validated individually, but instead all the transactions in a block get validated when
the block containing them is validated itself. A block is validated, or mined, by
solving a PoW puzzle. The original and most widely used puzzle in blockchains
can be summarized as follows: the PoW algorithm must find a block header, which
is the result of applying a cryptographic hash function to the content of the block
body, satisfying some predefined condition. However, for a fixed hash function and
a fixed block body, the resulting hash will always be the same. In order to meet this
condition (e.g., finding a hash smaller than a certain value), the algorithm must then
find some other value, called a nonce, to be added to the current block body. Finding
a nonce is the process often called mining. Once a block is mined, it is added to the
blockchain and all other agents in the network can validate the solution. In Bitcoin
and other blockchain systems, the miner of a block gets a reward in the form of new
cryptocurrency, thus motivating nodes to participate in the transaction validation
process.

One of the problems of PoW-based blockchains is that two agents could solve a
PoW puzzle at virtually the same time, for the same or different nonces. This can
create two branches, or forks, in the blockchain. Nodes are situated in the branch of
the solution that they received first. In Bitcoin, a built-in policy establishes that if one
fork is longer than the other (or it accumulates more cryptographic complexity), then
all agents in the network judge it as the authentic one. This is a practical solution as
it is highly improbable that two consecutive blocks will be solved simultaneously
by two pairs of nodes. In any case, even if two or more blocks are solved at the
same time, at some point one of the forks will become longer. This defines the so-
called 51% or double spending attack, as malicious nodes would need to control
at least 51% of the network’s computing power in order to be able to introduce a
faulty transaction in a block, validate it, and keep validating consecutive nodes in
the corresponding fork so that it is accepted as the canonical fork by the network.
When the size of the network and the number of miners increases, the probability of
such attack is reduced, thus giving the blockchain its immutability and data integrity
properties.

340 J. Peña Queralta and T. Westerlund

The benefit of having an expensive PoW solution in terms of hardware, energy
consumption and time is that it is equally expensive for malicious nodes to attack
the network. Part of the security of PoW thus comes from disincentivizing attackers
because of the large a priori investment required in order to be able to attack and gain
control of the network, which would not pay off even if the attack is successful [64].

2.2 Proof of Useful Work

Part of the research community has argued that taking into account the humongous
amount of computational resources and electric energy put into mining to solve
PoW puzzles, at least these could be defined in a way that the solutions found would
help research in other fields. As an example, King et al. proposed the definition of
PoW puzzles that would find long chains of primes [65]. Solving these PoW would
be then dedicated to solve a mathematical problem which consists on finding the
distribution of the Cunningham prime chain. In this case, the Fermat Primality Test
would be used to validate the PoW solutions.

A different research approach is the definition of simpler PoW requiring less
computational resources in order to reduce the entry barrier and provide a more
uniform distribution of mined currency. Pagh et al. introduced the concept of
Cuckoo hashing, in which the PoW difficulty would remain constant over time [66].

2.3 Proof of Stake

The basis for security and robustness in a PoW system comes from the amount
of computational resources needed in order to gain control over the network.
Nonetheless, this computational complexity also brings limitations. First, it limits
the probability for news nodes to be able to mine new cryptocurrency by themselves
if they join a large network. Second, it also limits the number of transactions that
can be validated within a certain time interval. For instance, in Bitcoin, it takes an
average time of 10 min to validate a block and all the transactions it includes [67].
A different consensus approach that does not rely on computational complexity
and that has gained momentum in recent years is Proof of Stake (PoS). One of
the main objective of PoS systems, which is being introduced, for instance, as
part of Ethereum 2.0, is to reduce transaction validation latency. One of the first
implementations of PoS in a blockchain system, which showed clear benefits in this
direction, was demonstrated with Nxtcoin [68, 69]. The idea behind PoS is to value
the cryptocurrency that validating nodes put at stake, instead of their computational
power. PoS mechanisms elect validators with a probability proportional to the size
of their stake, which is often closely related to the amount of cryptocurrency that
the node, or miner, owns. Nodes can lose the total value of their stake if they incur
in fraudulent validations. In [70], a similar PoS system was proposed where the

Blockchain for MEC: Consensus Mechanisms and Scalability 341

probability of selection of the nodes validating transactions was calculated based on
both the pure stake and the state of the block being validated in the blockchain.

The 51% attack discussed in the PoW consensus mechanism is still a potential
attack vector in a PoS system. However, while in the PoW case attackers need
to obtain control over 51% of the network’s computing power, which becomes
increasingly easy as larger pools monopolizing the mining process are created, in a
PoS system an attacker needs control over 51% of the cryptocurrency’s total supply.
This is, in theory, a more difficult problem than gathering enough computing power.

Owing to the significant reduction of the computational complexity of the
consensus algorithms with PoS when compared to PoW, the energy consumption
footprint is also reduced. PoS thus provides a more energy-friendly alternative
which in turn enables nodes with lower computational capabilities to participate
in the blockchain as equals to all others. Multiple authors, such as [71] or [72],
have studied the sustainability of Bitcoin’s growth and its energy footprint, which
researchers estimate to be the equivalent, on a yearly basis, to non-renewable energy
resources consumed by entire nations of the size of Czech Republic or Jordan.
Nevertheless, this also means that because miners do not need to dedicate large
amounts of computational resources to mining, it is easier to perform Sybil attacks
spawning multiple identities within a single malicious node.

In general terms, a PoS system relies on a validator or a set of validators which are
eligible after depositing part of their stake. In other words, as described by Buterin
et al. [73], nodes earn the right to propose a block only after locking part of the
coins they own on the blockchain. This is an extended definition over the pure PoS
system firstly implemented in [74] as part of PPCoin, in which the total miner’s
stake is directly considered.

2.4 Practical Byzantine Fault Tolerance

The Practical Byzantine Fault Tolerance (PBFT) consensus algorithm was first
proposed by Castro et al. in 1999 [75]. PBFT was the first algorithm with the ability
to operate in large asynchronous networks such as the Internet, while providing
over one order of magnitude in processing power improvement over previous
methods, allowing for high-performance Byzantine state machine replication, and
demonstrating thousands of requests per second. Byzantine fault tolerance can
be described as the capacity of a system to maintain proper operation when
multiple errors or unexpected behaviour occur within part of the system, but not
its totality [76]. In a distributed network and considering the consensus problem,
this is equivalent to the ability of the network to provide a robust consensus even in
an scenario where a subset of nodes act maliciously, failing to forward valid data or
sending invalid information.

In a PBFT system, nodes are distinguished between validating and not-validating
peers [77]. The validating nodes run the consensus algorithm, in which they
replicate a state machine and evaluate its result. A client makes a request that

342 J. Peña Queralta and T. Westerlund

is transmitted over the peer-to-peer network through the non-validating nodes,
which act as proxies between clients and validators. Non-validating nodes do not
participate in the consensus mechanism, but are able to confirm the results. The
PBFT algorithm is able to provide consensus across the network when at most one
third of the nodes behave arbitrarily or maliciously. Because the validator nodes
need to arrive to the same results regarding the client request, the state machine that
is replicated must be deterministic.

In comparison with PoW and PoS systems, in PBFT individual transactions can
be confirmed without the need to wait for a block including several transactions
to be added to the blockchain. In terms of energy efficiency, PBFT requires less
computational resources than a PoW consensus, but increases the probability of a
Sybil attack, where a malicious node would create multiple instances pretending
to be a large number of parties. In practice, PBFT is often combined with a PoW
that must be solved in order to join the network and within certain time intervals to
ensure that every node in the network is dedicating some minimum computational
resources to the collective validation effort. An important benefit of PBFT over PoW
and PoS is the low reward variance, as every node can be incentivized. This lowers
the reward variance across miners. Nonetheless, the scalability of PBFT is an issue
due to the large number of peer-to-peer communication exchanges required.

2.5 Third-Generation DLTs: Beyond Blockchain

Excluding Bitcoin and Ethereum, which represent the majority of the cryptocur-
rency market capitalization, one of the most successful blockchains within the
IoT and industrial domains has been Hyperledger [78]. Launched in 2016 by the
Linux Foundation, the Hyperledger project is divided in five main subprojects
where blockchain frameworks for different aims are being developed: Fabric,
Sawtooth, Indy, Burrow, and Iroha [79]. Among these, Hyperledger Fabric is the
most popular, an enterprise-level and production-ready permissioned distributed
ledger framework that has already been applied across various industrial fields [80].
The aims behind the project include open-source and cross-industry development
of an scalable framework for smart contracts. Through the rest of this chapter, we
utilize Hyperledger to refer to Hyperledger Fabric unless otherwise specified.

The consensus mechanism utilized in Hyperledger vary depending on the sub-
project. For instance, Hyperledger Fabric relies on RAFT [81], while Hyperledger
Indy utilizes Plenum, based on Redundant Byzantine Fault Tolerance (RBFT) [82].
Different blockchains following the hyperledger design ideas rely on PBFT or
adapted BFT approaches.

In recent years, blockchain technology has evolved towards a wider range of
network definitions that do not keep the original structure of a blockchain in
terms of how to store data within a distributed ledger. Among these, one of the
most prominent distributed open ledgers under development is IOTA [83]. IOTA’s
backbone is a directed acyclic graph that defines the tangle. The tangle is the

Blockchain for MEC: Consensus Mechanisms and Scalability 343

underlying network upon which IOTA is built. While Bitcoin was born mainly as
a distributed cryptocurrency, Ethereum evolved from it into a platform for smart
contracts, and Hyperledger is intended for industrial use, IOTA was specifically
designed with the IoT in mind [84]. In IOTA, there are no miner or validator nodes
confirming transactions, but instead each user must participate in the validation of
two transactions before being able to issue a new one on its own. This approach,
together with the tangle’s structure, makes IOTA highly scalable and free to use.
IOTA’s development is open-source and led by the IOTA foundation.

IOTA’s consensus protocol is defined within the Concordice system [85]. The
main differentiating aspect of IOTA’s tangle is the fact that multiple disconnected
subnetworks can coexist for certain periods of time. This means, for instance,
that while a blockchain cannot contain two conflicting transactions in committed
blocks, the tangle might temporarily contain two such transactions. IOTA deals
with this, however, in a similar manner as Bitcoin does: the fact that a transaction
is included in the blockchain does not automatically mean it is valid, as two forks
of the chain might exist until one is deemed longer and this valid. Therefore, in
both cases there is only information about the probability of a transaction being
valid, which increases as the blockchain, or the tangle, grow after that given
transaction. In order to make a decision on two conflicting transactions in IOTA
and reach a consensus across the network, Concordice proposes two consensus
protocols: the fast probabilistic consensus (FPC) and the cellular consensus (CC).
FPC, introduced in [86], is a leaderless probabilistic binary consensus protocol.
FPC has low complexity from the communication point pf view, and is robust in a
Byzantine infrastructure. As with PBFT, the basic idea behind FPC is voting. In any
case, IOTA is still under development and is not production-ready. More detailed
information on IOTA’s consensus and CC is available in [87] and [88].

Other DLT solutions claiming to be third-generation blockchain are Nano [89],
with its underlying block lattice, and Skycoin [90], aimed at powering the Web 3.0.
While Nano and IOTA are recent technologies, Skycoin has been under development
for several years and was born out of a series of external audits into Bitcoin, which
revealed the different flaws in the PoW consensus protocol.

2.6 Smart Contracts

Second-generation blockchain systems, largely represented by the Ethereum
blockchain, were defined as those introducing the ability of executing distributed
programs within the blockchain itself, therefore extending their applicability
beyond cryptocurrency transactions and into the validation of more general types
of transactions. These programs that can be executed within a blockchain are called
smart contracts, with one of the most notorious implementations being part of
the Ethereum Virtual Machine and its corresponding stack [91], which provides a
Turing complete language as part of its framework [92]. Ethereum also introduced a
new programming language to be dedicated to the development and implementation

344 J. Peña Queralta and T. Westerlund

of smart contracts: Solidity [93]. Smart contracts as defined with Solidity code can
be seen as a set of instructions defining transitions between states of the program,
with both the data representing the different states and the code defining the
transitions being stored at specific addresses within the Ethereum blockchain.

In Ethereum, smart contracts are part of the Ethereum Virtual Machine
(EVM) [94]. The EVM is based on the existence of contract accounts in the
blockchain, which extend the functionality of external accounts, those controlled
by a human or network node through a public-private key pair. Contract accounts
operate in an automated way as a function of the code stored within the account.
While external accounts are defined based on their key pair, with an address
determined based on the public key being assigned to each node joining the network,
contract accounts have addresses that are determined when the contract is created.
In Ethereum, the address space is shared among both types of accounts. Contract
accounts are created through transactions that have a null or empty recipient. Those
transactions must contain code that outputs the smart contract’s code, which is
then generated when the transaction’s code is executed within the EVM. In general
terms, transactions including a payload and Ether (Ethereum’s cryptocurrency)
between external accounts in Ethereum are extended so that when a transaction’s
target account is a contract account containing a set of code instructions, these
are executed given the payload in the transaction. A key concept in Ethereum is
gas. Upon creation, transactions are assigned a definite quantity of gas. The gas
is a measure of the processing power that will be dedicated to that transaction.
In other words, the gas is the transaction fee. The gas is initially charged into the
transaction, and its reserve gradually decreases as a function of a set of predefined
rules when the EVM executes the different transaction instructions. The gas that
is left is refunded to the transaction creator. The gas price, which is paid upfront,
is decided by the creator node. Miners, which obtain the gas price as a reward,
decide which transactions to mine based on the amount of gas included. Therefore,
the gas price is decided based on the market and the desired priority for a specific
transaction.

2.7 Sharding and Scalability

While second-generation blockchains introduced new functionality and improve-
ments over Bitcoin-based blockchains at different levels, one of the main challenges
in blockchain systems remained: scalability [95]. This is mostly due to the large
and increasing amount of computational resources required for mining. From the
communication point of view, Bitcoin and other similar blockchains only require
one broadcast per block, and therefore the main bottleneck comes from computation
(which cannot be directly decreased while maintaining security). In PBFT-based
systems, multicast messages are required for validation, and thus the main scala-
bility problem is the communication cost [22] (which cannot be directly reduced
either without compromising security and robustness of the consensus mechanism).
Multiple research efforts have been directed towards the realization of more scalable

Blockchain for MEC: Consensus Mechanisms and Scalability 345

systems, with new blockchains based on PoS and PBFT showing promising results.
Elastico, introduced in [25], was one of the first scalable blockchains that introduced
the concept of sharding: to divide the network in subnetworks, or shards, that
would validate transactions in parallel. Elastico was the first blockchain system to
provide a full implementation of a sharding scheme for a permisionless blockchain.
A different early sharding proposal was presented in [96], where Merklix trees
are utilized to merge the state of the different shards into the global blockchain
state [97, 98].

Another blockchain system aimed at scalability that has had an important impact
on subsequent research is OmniLedger [26]. Omniledger scales linearly with the
number of nodes in the blockchain, and reports transaction times able to match
credit card standards if the size of the network arrives to a certain threshold. The
key difference with Elastico in terms of scalability is that in Elastico the network
performance scales with the computational power in a linear fashion, while in
Omniledger it does so with the number of validator nodes. In Hyperledger, the
scalability of the network has seen significant improvements since the release of
Fabric 1.1.0 [99]. Moreover, the number of channels can be scaled with little to no
impact on performance according to the same report.

Perhaps the biggest effort that is currently being put into the development of
a truly decentralized, permissionless and scalable yet secure blockchain is the
design and development of Ethereum 2.0 [100], where huge amounts of computing
resources will be no longer required for mining [101]. The Ethereum Foundation
and other developers behind Ethereum 2.0 have embraced Proof of Stake as
the main consensus mechanism, while still utilizing PoW to secure the network,
and the concept of sharding towards scalability. The consensus is based on the
Casper protocol [102], which incentives for mining have been described in [73].
The impact that shards have on transaction scalability is relatively clear, with
a much larger throughput being possible in terms of transactions validated per
second. Nonetheless, it is not straightforward to extend the implementation of smart
contracts with sharding. As smart contracts have associated a series of data states
corresponding to their code, each state change can be though of as a transaction.
Contracts can be executed within a single shard, or a cross-shard synchronization
mechanism must exist to allow for data to flow between shards. In [26], the authors
introduced introduced Atomix, a client-driven lock/unlock protocol, to ensure that
a single transaction can be committed across multiple shards, while enabling the
possibility of unlocking rejected transaction proofs in specific shards. The original
Atomix state machine can be extended to accommodate the execution of smart
contracts across shards.

3 Blockchain Technology for Mobile Edge Computing

This section reviews and classifies the existing research in the integration of
blockchain and MEC from an architectural point of view. We classify the different
approaches on three main categories, illustrated in Fig. 2. The first category

346 J. Peña Queralta and T. Westerlund

UC1: Blockchain for Edge Resource Orchestra�on

Pool of So�ware-Defined
Edge Services

Tenant 1 … Tenant N

Applica�on 1 Applica�on 1

… …

Applica�on M1 Applica�on MN

Pool of Edge Resources

Ac�ve Edge Services

. . .

End-Users

Blockchain-Managed Resource Alloca�on and Service Provision

UC2: Blockchain Marketplace at the Edge

Applica�on 1

Blockchain-Powered Marketplace

Applica�on 2 Applica�on N. . .

UC3: Blockchain-Enhanced Edge Services (Privacy, Security, Iden�ty Management)

Applica�on 1 Applica�on 2 Applica�on N

. . .Blockchain Blockchain Blockchain

End-Users

Fig. 2 Main use cases for blockchain within edge computing systems. (UC1) Blockchain-powered
resource allocation and service provision; (UC2) Blockchain-powered marketplace for interfacing
users and services; (UC3) Blockchain-enhanced individual edge services relying on blockchain
technology for security, privacy, data management and audits or identity management, among
others

encompasses works providing a system-level integration where a blockchain is one
of the key pieces at the heart of the edge infrastructure, managing services and
resources. The second category includes approaches that utilize blockchain as a
middleware between the edge infrastructure (hardware and software) and the third-
party services being provided through MEC. Finally, the last category comprises

Blockchain for MEC: Consensus Mechanisms and Scalability 347

those works where the blockchain is part of individual applications, for aspects such
as security or identity management.

In general terms, Ethereum is the most widely applied blockchain platform in
the IoT, owing to the maturity of its smart contracts framework enabling complex
interactions between data producers and consumers [103, 104]. In the same area,
Hyperledger has potential to disrupt the IoT with more scalable solutions and
the ability to run distributed programs as chaincode [105]. In all these cases,
nonetheless, the blockchain runs in embedded edge gateways providing stable
connectivity, and where enough power and computational resources is available.
With the potential to reach embedded devices at the sensor layer, and being
developed specifically for the IoT, IOTA is set to play an increasingly important role.
Owing to its low inherent computational requirements and being highly scalable,
IOTA is the ideal candidate for edge computing systems and hardware.

3.1 MEC Resource and Service Orchestration with Blockchain

One of the most critical points at the edge is resource orchestration [29]. In order to
enable a wide variety of use cases, multi-tenant applications, and ad-hoc deployment
of different modules, MEC infrastructure needs to be able to manage its resources
in real time, while also orchestrating how the network is being utilized. This
includes processes from allocating hardware resources for the different virtualized
applications to managing the spectrum or the bandwidth that might be in use for
computational offloading by different service providers.

Blockchain technology can provide multiple advantages to orchestration at
the edge: enhanced security and identity management, together with distributed
consensus algorithms to implement the resource allocation decision processes. In
this area, EdgeChain was introduced by Zhu et al. as a middleware platform to
deploy third-party applications across the MEC layer [31]. In [33], the authors
introduce a blockchain framework that relies on smart contracts for managing
network bandwidth and resource allocation in a distributed and collaborative
computational offloading framework. In [36], a similar idea is extended towards
managing network infrastructure and the available computational resources focused
at enhancing autonomy of self-driving cars and other autonomous robots forming
distributed robotic systems. In this paper, the blockchain MEC slice was the key
slice managing the deployment of applications across other MEC slices supporting
different verticals within the automotive sector. Further adoption of blockchain
for computational offloading will require, however, higher-bandwidth and lower-
latency blockchain frameworks enabling real-time sensor data to be streamed for
applications such as autonomous mobile robots [30, 106].

Resource orchestration processes have underlying optimization algorithms that
can be implemented either in a more traditional deterministic manner, or relying
on machine learning models. Several authors have proposed the utilization of deep
reinforcement learning for computational offloading in blockchain-powered edge

348 J. Peña Queralta and T. Westerlund

computing. In [107], the authors demonstrate an approach that is able to improve
long-term performance in a computational offloading scheme, with an adaptive
genetic algorithm to improve the exploration processes while learning. In [43],
the authors describe different situations in which blockchain can support resource
management at the edge with deep reinforcement learning: spectrum sharing,
vehicle-to-vehicle energy trading, computational offloading, or device-to-device
content caching.

3.2 Blockchain for a MEC Services Marketplace

DLT can also provide a platform for building a marketplace between end-users
and third-party edge application through either a transparent, secure and auditable
monetization framework or as a middleware for sharing data securely between pro-
ducers and consumers. In the former direction, Xiong et al. deployed a blockchain
at the edge to enable resource-constrained devices producing data to sell it to
third-party applications [32]. The pricing scheme introduced in the paper models
the interactions within the IoT as market activities and the blockchain represented
the framework for regulation of such activities. Distributed marketplaces based on
blockchain for MEC services often utilize Ethereum as a base and the InterPlanetary
File System (IPFS) for data storage. Examples are available in [108] or [109]. A
study describing the different challenges and opportunities is available in [110].

3.3 Blockchain-Powered MEC Services

In [49], the authors describe how blockchain can play a key enabled role in
interconnected vehicles from the security point of view. In particular, blockchain is
exploited for data management, but also for energy management in electric vehicles,
with the authors proposing blockchain inspired data coins and energy coins. An edge
computing security scheme is proposed including these two interaction aspects. An
approach more related to the nature of blockchain as a cryptocurrency framework
was proposed by Liu et al. in [41], where the authors present an offloading
framework not for data but for the blockchain itself and related mining operations.
In general, blockchain can support edge services by providing enhanced privacy and
security [40], decentralized data management [18], or identity management [111].

4 Performance and Scalability of DLTs at the Edge

In this section we describe the benefits and drawbacks of the different consensus
protocols and DLT solutions for each of the three main use cases defined in

Blockchain for MEC: Consensus Mechanisms and Scalability 349

Table 1 Comparison of consensus protocols in terms of their applicability within resource-
constrained devices in the IoT

PoW PoS/DPoS PBFT Concordice

Computationally-constrained devices ✗ ✓ ✗ ✓

Communication-constrained devices – ✗ ✗ ✓

Intermittent connectivity ✗ ✗ ✗ ✓

Independent subnetworks ✗ ✗a ✓b ✓c

Production-ready platform ✓ ✓ ✓ ✗

a Recent proposals implementing sharding might be considered subnetworks, however here we
refer to the ability of specifically creating a subnetwork from a given set of nodes

b Channels in Hyperledger enable data separation but need to remain connected to the main net
c The tangle in IOTA enables sets of nodes to be disconnected for certain periods of time and rejoin

the network later on

the previous section and illustrated in Fig. 2, as well as for edge computing in
the industrial internet of things. A basic classification of some of the protocols
introduced in the previous section from the point of view of the capabilities of
embedded IoT systems is given in Table 1.

4.1 Blockchain Technology in Resource-Constrained Devices

Consensus protocols in the different DLTs are the key performance indicators, and
they are directly related to the minimum capabilities that nodes in the network
must meet. In PoW-based blockchains, including Bitcoin and Ethereum, resource-
constrained devices in the IoT that are potentially battery powered do not have
the ability to participate as full nodes in the network. In Ethereum, nonetheless,
the blockchain has adapted to some extent towards embedded IoT devices. For
instance, the Zerynth Ethereum library provides basic capability to embedded
microcontrollers running MicroPython [112]. It enables sensor nodes to create
signed transactions and execute contract calls.

Hyperledger Fabric and IOTA, designed with scalability in mind, do not have
such strong computational requirements. The consensus protocols at the hearth of
Hyperledger, however, have high communication complexity and therefore require
nodes to be able to communicate frequently and with low-latency. Hyperledger can
therefore run in embedded IoT edge gateways with wired internet connection but its
extendability to wireless and potentially battery-powered sensor nodes is limited.
In this area, IOTA has a comparative advantage. In particular, STMicroelectronics
has collaborated with the IOTA foundation in the development of X-CUBE-
IOTA [113], a complete middleware that enables IoT sensor nodes based on STM32
microcontrollers to build IOTA applications and access the IOTA distributed ledger
directly.

350 J. Peña Queralta and T. Westerlund

In terms of communication-constrained devices, low-power wide area networks
(LPWANs) have emerged in recent years as a solution for extending the range
of applications, with LoRa and LoRaWAN being the most prominent radio and
network technologies [7, 114]. Edge computing is a natural paradigm to be inte-
grated with LPWAN networks owing to the low-bandwidth available and thus the
need to preprocess large amounts of raw data [115–117]. However, the integration
of blockchain into LPWAN networks is not direct [118]. Current efforts deploy
the blockchain either at the LPWAN gateways, which often have wired internet
connection, or at the back-end servers [119, 120]. More interesting use cases will be
possible when the blockchain nodes can be interconnected via low-bandwidth and
high-latency LPWAN links, which might be soon possible with IOTA and STM.

4.2 Application Scenarios

From the point of view of edge computing as a system encompassing multiple
independent applications, the simplest use case is such in which blockchains are
managed by each application independently. This allows for the same orchestration
algorithms to remain in place, as well as co-existence of blockchain-based and
other applications running at the edge. Depending on the nature of each of the
applications, all of the DLT solutions presented in this chapter might be applied.
For general IoT systems where data is gathered from sensor nodes and transactions
between either the user or the sensors and the application back-end (which may
or may not be deployed entirely at the edge) are relatively simple, then IOTA
stands out by providing free transactions. This can be a key differentiating point
in applications where data is routinely gathered and does not have specific value.
Because IOTA’s consensus is built in a way that all nodes need to take the validator
role before being able to commit transactions, nodes do no need an additional
incentive to validate and therefore there is no need for a transaction fee as with
other blockchain platforms. If more complex transactions are required, with either
real-time interaction between users or a user and sensor data being processed, then
smart contracts might be needed. Ethereum is by far the most extended and used
blockchain platform for smart contracts, and therefore it would be natural to rely on
it. This will be an even better solution when Ethereum 2.0 is available. Nonetheless,
relying on Ethereum or similar solutions involves an extra transaction cost, due to
the need for mining new cryptocurrency to compensate nodes participating in the
validation process. Alternatively, private Ethereum networks can be deployed and
infrastructure managed by the application developers. This is specially important
in PoW-based systems, but also in PoS systems as otherwise nodes would have no
incentives on putting their stakes at risk.

When blockchain is utilized to power a marketplace of services at the edge,
the cryptocurrency that blockchains build upon might play a more important
role with the introduction of monetization. In this sense, monetization does not
necessarily refer only to paying for services, but can also encompass the edge

Blockchain for MEC: Consensus Mechanisms and Scalability 351

resources that services rely on [29]. Similar to the previous case, the choice of
DLT framework has a significant dependence on the type of data management and
processing that needs to be done. For simple applications in which services and
end-users are predefined and communicate independently, then IOTA can provide
a fast and scalable framework, while Hyperledger could be an alternative if there
is enough infrastructure set to sustain the blockchain and validate transactions.
These applications can cover a wide variety of scenarios: paying a highway toll,
exchange of information for coordination between autonomous cars, track-and-trace
in the logistics sector, or providing digital identity to citizens in a smart city. In all
these cases, a common denominator is that the transfers of value, or information,
are small and frequent in time, and therefore there is not enough incentive to
utilize other blockchain platforms such as Ethereum where transactions involve a
fee. Hyperledger, nonetheless, is only a viable option if either public or private
infrastructure supports its use without an impact on the end-user. For more complex
applications, both Hyperledger and Ethereum provide extensive support for smart
contracts and execution of distributed applications.

The last of the use cases presented in the previous section, and involving the most
complex system-level integration of DLT technology at the edge layer is resource
allocation and service provision. In this case, different optimization algorithms
in which the resource orchestrator relies need to be implemented on top of the
blockchain for transparent management of resources. The processes involved in
dynamic resource allocation and service provision are complex and therefore require
blockchains able of running smart contracts. Ethereum provides a suitable platform
from the functionality point of view, but lacks the ability to scale and the low
control over latency would significantly affect the real-time allocation of resources.
Moreover, the computational power needed to validate transactions would reduce
the availability of edge resources. Until Ethereum 2.0 or a more scalable solution is
available, Hyperledger has multiple competitive advantages in this area.

A different application scenario that has not been directly covered in the previous
section is the industrial IoT. Industrial scenarios often differentiate in that they
operate on private networks. Moreover, safety-critical applications require more
control over the network parameters as well as over the data management itself.
In these directions, Hyperledger Fabric stands out, with design decisions targeting
industrial use cases since its inception. Not only does a permissioned Hyperledger
blockchain provide a secure framework for management of identities and network
control, but it is the ability to separate data across channels that can provide wider
adoption in privacy-critical and safety-critical use cases.

5 Conclusion and Future Work

We have reviewed the most important consensus protocols in traditional blockchains
and novel distributed ledger technologies, together with the different applications
and use cases resulting of the integration of blockchain and edge computing. In

352 J. Peña Queralta and T. Westerlund

particular, we have described how the underlying consensus protocols affect the
applicability of the different DLT systems for edge computing, with an emphasis on
the current research trends in terms of scalability and performance. We have outlined
the main benefits and drawbacks of Ethereum, Hyperledger and IOTA in four main
use cases: (1) orchestration of edge resources and services, (2) implementation
of a marketplace of edge services, (3) enhancing security, privacy or identity
management of individual edge services, and (4) providing a framework for data
management in the industrial Internet of Things.

Acknowledgments This work was supported by the Academy of Finland’s AutoSOS project with
grant number 328755.

References

1. Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey. IEEE
Transactions on industrial informatics, 10(4):2233–2243, 2014.

2. Ola Salman, Imad Elhajj, Ali Chehab, and Ayman Kayssi. Iot survey: An sdn and fog
computing perspective. Computer Networks, 143:221–246, 2018.

3. Celimuge Wu, Zhi Liu, Di Zhang, Tsutomu Yoshinaga, and Yusheng Ji. Spatial intelligence
toward trustworthy vehicular iot. IEEE Communications Magazine, 56(10):22–27, 2018.

4. Jorge Peña Queralta, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund. Collabora-
tive mapping with ioe-based heterogeneous vehicles for enhanced situational awareness. In
2019 IEEE Sensors Applications Symposium (SAS), pages 1–6. IEEE, 2019.

5. Charalampos Doukas and Ilias Maglogiannis. Bringing iot and cloud computing towards
pervasive healthcare. In 2012 Sixth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pages 922–926. IEEE, 2012.

6. Ammar Awad Mutlag, Mohd Khanapi Abd Ghani, Net al Arunkumar, Mazin Abed
Mohammed, and Othman Mohd. Enabling technologies for fog computing in healthcare iot
systems. Future Generation Computer Systems, 90:62–78, 2019.

7. Jorge Peña Queralta, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund. Edge-AI
in LoRa based healthcare monitoring: A case study on fall detection system with LSTM
Recurrent Neural Networks. In 2019 42nd International Conference on Telecommunications,
Signal Processing (TSP), 2019.

8. Sam Edwards and Ioannis Profetis. Hajime: Analysis of a decentralized internet worm for iot
devices. Rapidity Networks, 16, 2016.

9. Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. Mobile edge
computing—a key technology towards 5g. ETSI white paper, 11(11):1–16, 2015.

10. Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing: Vision and
challenges. IEEE internet of things journal, 3(5):637–646, 2016.

11. L. Qingqing, F. Yuhong, J. Peña Queralta, T. N. Gia, Z. Zou, H. Tenhunen, T. Westerlund.
Edge Computing for Mobile Robots: Multi-Robot Feature-Based Lidar Odometry with
FPGAs. In 12th ICMU. IEEE, 2019.

12. Melanie Swan. Blockchain: Blueprint for a new economy. “ O’Reilly Media, Inc.”, 2015.
13. Sarah Underwood. Blockchain beyond bitcoin, 2016.
14. Yang Lu. Industry 4.0: A survey on technologies, applications and open research issues.

Journal of Industrial Information Integration, 6:1–10, 2017.
15. Yongfeng Qian, Yingying Jiang, Jing Chen, Yu Zhang, Jeungeun Song, Ming Zhou, and

Matevž Pustišek. Towards decentralized iot security enhancement: A blockchain approach.
Computers & Electrical Engineering, 72:266–273, 2018.

Blockchain for MEC: Consensus Mechanisms and Scalability 353

16. Juah C Song, Mevlut A Demir, John J Prevost, and Paul Rad. Blockchain design for
trusted decentralized iot networks. In 2018 13th Annual Conference on System of Systems
Engineering (SoSE), pages 169–174. IEEE, 2018.

17. Mohamed Tahar Hammi, Badis Hammi, Patrick Bellot, and Ahmed Serhrouchni. Bubbles of
trust: A decentralized blockchain-based authentication system for iot. Computers & Security,
78:126–142, 2018.

18. Gbadebo Ayoade, Vishal Karande, Latifur Khan, and Kevin Hamlen. Decentralized iot
data management using blockchain and trusted execution environment. In 2018 IEEE
International Conference on Information Reuse and Integration (IRI), pages 15–22. IEEE,
2018.

19. Jollen Chen. Devify: Decentralized internet of things software framework for a peer-to-peer
and interoperable iot device. ACM SIGBED Review, 15(2):31–36, 2018.

20. Penn H Su, Chi-Sheng Shih, Jane Yung-Jen Hsu, Kwei-Jay Lin, and Yu-Chung Wang.
Decentralized fault tolerance mechanism for intelligent iot/m2m middleware. In 2014 IEEE
World Forum on Internet of Things (WF-IoT), pages 45–50. IEEE, 2014.

21. Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An
overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE
international congress on big data (BigData congress), pages 557–564. IEEE, 2017.

22. Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft replication.
In International workshop on open problems in network security. Springer, 2015.

23. Ghassan Karame. On the security and scalability of bitcoin’s blockchain. In Proceedings of
the 2016 ACM SIGSAC conference on computer and communications security, pages 1861–
1862, 2016.

24. Mattias Scherer. Performance and scalability of blockchain networks and smart contracts,
2017.

25. Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 17–30, 2016.

26. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018
IEEE Symposium on Security and Privacy (SP), pages 583–598. IEEE, 2018.

27. Sami Kekki, Walter Featherstone, Yonggang Fang, Pekka Kuure, Alice Li, Anurag Ranjan,
Debashish Purkayastha, Feng Jiangping, Danny Frydman, Gianluca Verin, et al. Mec in 5g
networks. ETSI white paper, 28:1–28, 2018.

28. Sonia Shahzadi, Muddesar Iqbal, Tasos Dagiuklas, and Zia Ul Qayyum. Multi-access edge
computing: open issues, challenges and future perspectives. Journal of Cloud Computing,
6(1):30, 2017.

29. Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and Dario
Sabella. On multi-access edge computing: A survey of the emerging 5g network edge cloud
architecture and orchestration. IEEE Communications Surveys & Tutorials, 19(3), 2017.

30. L. Qingqing, J. Peña Queralta, T. N. Gia, Z. Zou, H. Tenhunen, T. Westerlund. Visual
Odometry Offloading in Internet of Vehicles with Compression at the Edge of the Network.
In 12th International Conference on Mobile Computing and Ubiquitous Networking, 2019.

31. He Zhu, Changcheng Huang, and Jiayu Zhou. Edgechain: Blockchain-based multi-vendor
mobile edge application placement. In 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), pages 222–226. IEEE, 2018.

32. Zehui Xiong, Yang Zhang, Dusit Niyato, Ping Wang, and Zhu Han. When mobile blockchain
meets edge computing. IEEE Communications Magazine, 56(8):33–39, 2018.

33. Jorge Peña Queralta and Tomi Westerlund. Blockchain-powered collaboration in heteroge-
neous swarms of robots. Frontiers in Robotics and AI (to appear), 2020. Presented at the
Symposium on Blockchain for Robotic and AI Systems, MIT Media Lab.

34. MD Abdur Rahman, M Shamim Hossain, George Loukas, Elham Hassanain, Syed Sadiqur
Rahman, Mohammed F Alhamid, and Mohsen Guizani. Blockchain-based mobile edge
computing framework for secure therapy applications. IEEE Access, 6:72469–72478, 2018.

354 J. Peña Queralta and T. Westerlund

35. 3GPP. Study on architecture for next-generation system rel. 14. Technical Report, 2016.
36. Jorge Peña Queralta, Li Qingqing, Zhuo Zou, and Tomi Westerlund. Enhancing autonomy

with blockchain and multi-access edge computing in distributed robotic systems. In The Fifth
International Conference on Fog and Mobile Edge Computing (FMEC). IEEE, 2020.

37. N. Alliance. Description of network slicing concept. NGMN 5G P, 1:1, 2016.
38. Fabio Giust, Vincenzo Sciancalepore, Dario Sabella, Miltiades C Filippou, Simone Man-

giante, Walter Featherstone, and Daniele Munaretto. Multi-access edge computing: The driver
behind the wheel of 5g-connected cars. IEEE Communications Standards Magazine, 2(3):66–
73, 2018.

39. Roberto Casado-Vara, Fernando de la Prieta, Javier Prieto, and Juan M Corchado. Blockchain
framework for iot data quality via edge computing. In Proceedings of the 1st Workshop on
Blockchain-enabled Networked Sensor Systems, pages 19–24, 2018.

40. A. Nawaz, J. Peña Queralta, T. N. Gia, H. Kan, T. Westerlund. Edge AI and Blockchain for
Privacy-Critical and Data-Sensitive Applications. In The 12th International Conference on
Mobile Computing and Ubiquitous Networking (ICMU), 2019.

41. Mengting Liu, F Richard Yu, Yinglei Teng, Victor CM Leung, and Mei Song. Joint
computation offloading and content caching for wireless blockchain networks. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 517–522. IEEE, 2018.

42. Jorge Peña Queralta, Li Qingqing, Tuan Nguyen Gia, Hong-Linh Truong, and Tomi Wester-
lund. End-to-end design for self-reconfigurable heterogeneous robotic swarms. In The 16th
International Conference on Distributed Computing in Sensor Systems. IEEE, 2020.

43. Yueyue Dai, Du Xu, Sabita Maharjan, Zhuang Chen, Qian He, and Yan Zhang. Blockchain
and deep reinforcement learning empowered intelligent 5g beyond. IEEE Network, 33, 2019.

44. Nguyen Cong Luong, Zehui Xiong, Ping Wang, and Dusit Niyato. Optimal auction for edge
computing resource management in mobile blockchain networks: A deep learning approach.
In 2018 IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2018.

45. Mayra Samaniego and Ralph Deters. Hosting virtual iot resources on edge-hosts with
blockchain. In 2016 IEEE International Conference on Computer and Information Tech-
nology (CIT), pages 116–119. IEEE, 2016.

46. Mayra Samaniego and Ralph Deters. Using blockchain to push software-defined iot
components onto edge hosts. In Proceedings of the International Conference on Big Data
and Advanced Wireless Technologies, pages 1–9, 2016.

47. Mayra Samaniego and Ralph Deters. Virtual resources & blockchain for configuration
management in iot. Journal of Ubiquitous Systems & Pervasive Networks, 9(2):1–13, 2017.

48. The European Union Agency for Cybersecurity. Threat assessment for the fifth generation of
mobile telecommunications networks (5g). ENISA, 2019.

49. Hong Liu, Yan Zhang, and Tao Yang. Blockchain-enabled security in electric vehicles cloud
and edge computing. IEEE Network, 32(3):78–83, 2018.

50. Jiawen Kang, Rong Yu, Xumin Huang, Maoqiang Wu, Sabita Maharjan, Shengli Xie, and
Yan Zhang. Blockchain for secure and efficient data sharing in vehicular edge computing and
networks. IEEE Internet of Things Journal, 6(3):4660–4670, 2018.

51. T. N. Gia, A. Nawaz, J. Peña Queralta, T. Westerlund. Artificial Intelligence at the Edge
in the Blockchain of Things. In 8th EAI International Conference on Wireless Mobile
Communication and Healthcare, 2019.

52. Eduardo Castelló Ferrer, Ognjen Rudovic, Thomas Hardjono, and Alex Pentland.
Robochain: A secure data-sharing framework for human-robot interaction. arXiv preprint
arXiv:1802.04480, 2018.

53. Ruizhe Yang, F Richard Yu, Pengbo Si, Zhaoxin Yang, and Yanhua Zhang. Integrated
blockchain and edge computing systems: A survey, some research issues and challenges.
IEEE Communications Surveys & Tutorials, 21(2):1508–1532, 2019.

54. Pietro Danzi, Anders E Kalør, Čedomir Stefanović, and Petar Popovski. Delay and
communication tradeoffs for blockchain systems with lightweight iot clients. IEEE Internet
of Things Journal, 6(2):2354–2365, 2019.

Blockchain for MEC: Consensus Mechanisms and Scalability 355

55. Seyednima Khezr, Md Moniruzzaman, Abdulsalam Yassine, and Rachid Benlamri.
Blockchain technology in healthcare: A comprehensive review and directions for future
research. Applied Sciences, 9(9):1736, 2019.

56. Dinh C Nguyen, Pubudu N Pathirana, Ming Ding, and Aruna Seneviratne. Blockchain for
5g and beyond networks: A state of the art survey. Journal of Network and Computer
Applications, page 102693, 2020.

57. Weichao Gao, William G Hatcher, and Wei Yu. A survey of blockchain: techniques, applica-
tions, and challenges. In 2018 27th International Conference on Computer Communication
and Networks (ICCCN), pages 1–11. IEEE, 2018.

58. Archana Prashanth Joshi, Meng Han, and Yan Wang. A survey on security and privacy issues
of blockchain technology. Mathematical Foundations of Computing, 1(2):121–147, 2018.

59. Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed. Edge
computing: A survey. Future Generation Computer Systems, 97:219–235, 2019.

60. Jose Moura and David Hutchison. Fog computing systems: State of the art, research issues
and future trends. arXiv preprint arXiv:1908.05077 [v2], pages 1–32, 2020.

61. Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. A survey on the security of
blockchain systems. Future Generation Computer Systems, 2017.

62. Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.
63. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Annual

International Cryptology Conference, pages 139–147. Springer, 1992.
64. Giang-Truong Nguyen and Kyungbaek Kim. A survey about consensus algorithms used in

blockchain. Journal of Information processing systems, 14(1), 2018.
65. Sunny King. Primecoin: Cryptocurrency with prime number proof-of-work. 1:6, 2013.
66. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,

51(2):122–144, 2004.
67. Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better—how to make

bitcoin a better currency. In Financial Cryptography and Data Security. Springer, 2012.
68. Serguei Popov. A probabilistic analysis of the nxt forging algorithm. Ledger, 1:69–83, 2016.
69. Nxt Wiki. Whitepaper: Nxt. Nxtwiki. org [online] https://nxtwiki.org, 2018.
70. Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work. In

International Conference on Financial Cryptography and Data Security. Springer, 2016.
71. Karl J O’Dwyer and David Malone. Bitcoin mining and its energy footprint. IET, 2014.
72. Alex De Vries. Bitcoin’s growing energy problem. Joule, 2(5):801–805, 2018.
73. Vitalik Buterin, Daniel Reijsbergen, Stefanos Leonardos, and Georgios Piliouras. Incentives

in ethereum’s hybrid casper protocol. arXiv preprint arXiv:1903.04205, 2019.
74. Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-

published paper, August, 19, 2012.
75. Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,

pages 173–186, 1999.
76. RM Keichafer, Chris J. Walter, Alan M. Finn, and Philip M. Thambidurai. The maft

architecture for distributed fault tolerance. IEEE Transactions on Computers, 37(4), 1988.
77. Joao Sousa, Alysson Bessani, and Marko Vukolic. A byzantine fault-tolerant ordering service

for the hyperledger fabric blockchain platform. In 48th DSN, pages 51–58. IEEE, 2018.
78. C. Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on distributed

cryptocurrencies and consensus ledgers, volume 310, page 4, 2016.
79. Chinmay Saraf and Siddharth Sabadra. Blockchain platforms: A compendium. In 2018

IEEE International Conference on Innovative Research and Development (ICIRD), pages 1–
6. IEEE, 2018.

80. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Proceedings of the Thirteenth EuroSys Conference, pages 1–15, 2018.

81. Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), pages 305–319, 2014.

https://nxtwiki.org

356 J. Peña Queralta and T. Westerlund

82. Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. Rbft: Redundant byzantine fault
tolerance. In 2013 IEEE 33rd International Conference on Distributed Computing Systems,
pages 297–306. IEEE, 2013.

83. S Popov. The tangle, iota whitepaper. Technical report, IOTA, Tech. Rep.[Online]. Available:
https://iota.org/IOTA_Whitepaper.pdf, 2018.

84. M Divya and Nagaveni B Biradar. Iota-next generation block chain. International Journal Of
Engineering And Computer Science, 7(04):23823–23826, 2018.

85. Serguei Popov, Hans Moog, Darcy Camargo, Angelo Capossele, Vassil Dimitrov, Alon
Gal, Andrew Greve, Bartosz Kusmierz, Sebastian Mueller, Andreas Penzkofer, et al. The
coordicide, 2020.

86. Serguei Popov and William J Buchanan. Fpc-bi: Fast probabilistic consensus within byzantine
infrastructures. arXiv preprint arXiv:1905.10895, 2019.

87. Daniel Ramos and Gabriel Zanko. Review of iota foundation as a moving force for massive
blockchain adoption in different industry sectors.

88. KENRIC NELSON and ANDRÉ VILELA. Majority vote dynamics for iota transaction
consensus. 2020.

89. Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. Nano [Online
resource]. URL: https://nano.org/en/whitepaper (date of access: 24.03. 2018), 2018.

90. Skycoin.com. Skycoin whitepaper v1.2. Technical report, [Online]. Available: https://
downloads.skycoin.com/whitepapers/Skycoin-Whitepaper-v1.2.pdf, 2020.

91. Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

92. Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian,
Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, et al. Kevm:
A complete formal semantics of the ethereum virtual machine. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 204–217. IEEE, 2018.

93. Ethereum Revision 7709ece9. Solidity Documentation. Solidity Read The Docs [online]
https://solidity.readthedocs.io/en/v0.5.12/., 2016–2019.

94. Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017.
95. Dejan Vujičić, Dijana Jagodić, and Siniša Randić. Blockchain technology, bitcoin, and

ethereum: A brief overview. In 17th INFOTEH-JAHORINA, pages 1–6. IEEE, 2018.
96. Deadalnix’s den. Using Merklix tree to shard block validation. [online] https://deadalnix.me/

2016/11/06/, 2016.
97. Deadalnix’s den. Introducing Merklix tree as an unordered Merkle tree on steroid. Accessed

October 2019 [online] https://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-
an-unordered-merkle-tree-on-steroid/, 2016.

98. Bo Qin, Jikun Huang, Qin Wang, Xizhao Luo, Bin Liang, and Wenchang Shi. Cecoin: A
decentralized pki mitigating mitm attacks. Future Generation Computer Systems, 2017.

99. C. Ferris. “does hyperledger fabric perform at scale? Blockchain Pulse: IBM Blockchain
Blog, 2, 2019.

100. Vitalik Buterin et al. A next-generation smart contract and decentralized application platform.
white paper, 3:37, 2014.

101. Serenity Ethereum Foundation et al. Ethereum 2.0 Specifications. [online] https://github.com/
ethereum/eth2.0-specs, 2018.

102. Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

103. Seyoung Huh, Sangrae Cho, and Soohyung Kim. Managing iot devices using blockchain
platform. In 19th ICACT, pages 464–467. IEEE, 2017.

104. Matevž Pustišek and Andrej Kos. Approaches to front-end iot application development for
the ethereum blockchain. Procedia Computer Science, 129:410–419, 2018.

105. Martin Valenta and Philipp Sandner. Comparison of ethereum, hyperledger fabric and corda.
no. June, pages 1–8, 2017.

https://iota.org/IOTA_Whitepaper.pdf
https://nano.org/en/whitepaper
https://downloads.skycoin.com/whitepapers/Skycoin-Whitepaper-v1.2.pdf
https://downloads.skycoin.com/whitepapers/Skycoin-Whitepaper-v1.2.pdf
https://solidity.readthedocs.io/en/v0.5.12/
https://deadalnix.me/2016/11/06/
https://deadalnix.me/2016/11/06/
https://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-steroid/
https://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-steroid/
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs

Blockchain for MEC: Consensus Mechanisms and Scalability 357

106. Li Qingqing, Jorge Peña Queralta, Tuan Nguyen Gia, and Tomi Westerlund. Offloading
Monocular Visual Odometry with Edge Computing: Optimizing Image Compression Ratios
in Multi-Robot Systems. In The 5th International Conference on Systems, Control and
Communications (ICSCC), 2019.

107. Xiaoyu Qiu, Luobin Liu, Wuhui Chen, Zicong Hong, and Zibin Zheng. Online deep
reinforcement learning for computation offloading in blockchain-empowered mobile edge
computing. IEEE Transactions on Vehicular Technology, 68(8):8050–8062, 2019.

108. Kazim Rifat Özyilmaz, Mehmet Doğan, and Arda Yurdakul. Idmob: Iot data marketplace on
blockchain. In Crypto Valley Conference on Blockchain Technology (CVCBT). IEEE, 2018.

109. Vishnu Prasad Ranganthan, Ram Dantu, Aditya Paul, Paula Mears, and Kirill Morozov.
A decentralized marketplace application on the ethereum blockchain. In 4th International
Conference on Collaboration and Internet Computing (CIC). IEEE, 2018.

110. Blesson Varghese, Massimo Villari, Omer Rana, Philip James, Tejal Shah, Maria Fazio, and
Rajiv Ranjan. Realizing edge marketplaces: challenges and opportunities. IEEE Cloud
Computing, 5(6):9–20, 2018.

111. Yongjun Ren, Fujian Zhu, Jian Qi, Jin Wang, and Arun Kumar Sangaiah. Identity
management and access control based on blockchain under edge computing for the industrial
internet of things. Applied Sciences, 9(10):2058, 2019.

112. Zerynth Docs r2.5.2. Ethereum modules. Technical report, [Online]. Available: https://docs.
zerynth.com/latest/official/lib.blockchain.ethereum/docs/index.html, 2020.

113. IOTA Distributed Ledger Technology software expansion for STM32Cube. X-cube-iota1.
Technical report, [Online]. Available: https://www.st.com/en/embedded-software/x-cube-
iota1.html, 2020.

114. Jorge Peña Queralta, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund. Comparative
study of LPWAN technologies on unlicensed bands for M2M communication in the IoT:
beyond LoRa and LoRaWAN. Procedia Computer Science, 2019.

115. V. K. Sarker, J. Peña Queralta, T. N. Gia, H. Tenhunen, T. Westerlund. A survey on lora for
iot: Integrating edge computing. In SLICE- FMEC, 2019.

116. T. N. Gia, L. Qingqing, J. Peña Queralta, H. Tenhunen, T. Westerlund. Edge AI in Smart
Farming IoT: CNNs at the Edge and Fog Computing with LoRa. In IEEE AFRICON, 2019.

117. T. N. Gia, J. Peña Queralta, T. Westerlund. Exploiting LoRa, Edge and Fog Computing for
Traffic Monitoring in Smart Cities. In Book Chapter: LPWAN Technologies for IoT and M2M
Applications. Elsevier, 2020.

118. Kazım Rıfat Özyılmaz and Arda Yurdakul. Work-in-progress: integrating low-power iot
devices to a blockchain-based infrastructure. In 2017 International Conference on Embedded
Software (EMSOFT), pages 1–2. IEEE, 2017.

119. Jun Lin, Zhiqi Shen, Chunyan Miao, and Siyuan Liu. Using blockchain to build trusted
lorawan sharing server. International Journal of Crowd Science, 2017.

120. Arnaud Durand, Pascal Gremaud, and Jacques Pasquier. Resilient, crowd-sourced lpwan
infrastructure using blockchain. In CryBlock, pages 25–29, 2018.

https://docs.zerynth.com/latest/official/lib.blockchain.ethereum/docs/index.html
https://docs.zerynth.com/latest/official/lib.blockchain.ethereum/docs/index.html
https://www.st.com/en/embedded-software/x-cube-iota1.html
https://www.st.com/en/embedded-software/x-cube-iota1.html

Evaluation of Collaborative Intrusion
Detection System Architectures in Mobile
Edge Computing

Rahul Sharma, Chien Aun Chan, and Christopher Leckie

Abstract With the advent of 5th Generation (5G) of mobile networks, a diverse
range of new computer networking technologies are being devised to meet the
stringent demands of applications that require ultra-low latency, high bandwidth
and geolocation-based services. Mobile Edge Computing (MEC) is a prominent
example of such an emerging technology, which provides cloud computing services
at the edge of the network using mobile base stations. This architectural shift of
services from centralised cloud data centers to the network edge, helps reduce
bandwidth usage and improve response time, meeting the ultra-low latency require-
ments laid out for 5G. However, MEC also inherits some of the vulnerabilities
affecting traditional networks and cloud computing, such as coordinated attacks.
Previous works have proposed the use of Intrusion Detection Systems (IDS),
specifically Collaborative Intrusion Detection Systems (CIDS), which have proven
to be effective in identifying distributed attacks. However, identifying the right
CIDS model is not straightforward due to the tradeoff between different factors
such as detection accuracy, network overhead, computation and memory overhead.
In this chapter, we outline some of the characteristics relevant for evaluating CIDS
deployment models and survey existing CIDS architectures in the context of MEC,
while presenting novel strategies and architectures of our own.

Keywords Mobile edge computing · Intrusion detection · Cybersecurity · 5G

R. Sharma (�) · C. Leckie
School of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia
e-mail: sharma1@student.unimelb.edu.au

C. A. Chan
Department of Electrical and Electronic Engineering, The University of Melbourne,
Melbourne, Australia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_15

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_15&domain=pdf
mailto:sharma1@student.unimelb.edu.au
https://doi.org/10.1007/978-3-030-69893-5_15

360 R. Sharma et al.

1 Introduction

The rapid adoption of the Internet of Things (IoT) and mobile devices has prompted
the need for additional compute and storage resources to handle the resulting
influx of generated data. Cloud computing, which provides a seamlessly scalable
infrastructure seems like an ideal candidate to manage these needs, but is not suit-
able for latency sensitive applications that require geographical proximity for fast
response time. These use-cases have driven the need for evolutionary architecture
patterns and technologies to meet these ultra-low latency requirements, motivating
the introduction of Mobile Edge Computing (MEC). MEC provides computational
and storage services at the edge of the network, closer to end users/devices where
the data is being generated.

Edge computing classifies a broad range of techniques, designed to move
compute and storage capabilities from centralized data centers (public and/or
private) to the edge of the mobile network [1, 2]. This architecture facilitates data
processing closer to end users, which significantly improves the response time by
leveraging a heterogeneous set of resource constrained servers at the network edge.
However, edge computing also inherits the underlying vulnerabilities of cloud data
centers to cyber-attacks such as Denial of Service (DoS) and Distributed Denial of
Service (DDoS) [3–12]. This is reflected in the dramatic increase of attacks on these
edge computing infrastructures in recent years. For instance, the Mirai botnet attack
gained control of more than 65,000 IoT devices within the first 20 h of its release in
August 2016 [3]. These compromised devices were used to form a botnet to launch
DDoS attacks on edge servers, affecting more than 178,000 domains [4]. Following
this incident, variations of Mirai such as IoTReaper and Hajime were identified,
which reportedly affected more than 378 million devices in 2017 [3].

To safeguard MEC nodes against such attacks, we require mechanisms capable
of identifying these attacks in near-real time. Hence, [5–7] have recommended
the use of Intrusion Detection Systems (IDS). However, the majority of existing
IDS solutions are deployed on individual hosts and/or the core backbone network,
with edge-focused solutions still being new [13]. These early IDSs act as isolated
instances monitoring traffic across a single host/network, with no interaction
taking place between peers. This works well if one is trying to protect a single
system or network against known attacks. However, it performs poorly in detecting
sophisticated coordinated attacks due to the limited context shared between nodes.
Hence, looking at the complex attack surface present in MEC, some solutions [6, 7]
have proposed the use of an IDS capable of identifying trends between malicious
activities occurring at multiple locations at scale, like a Collaborative Intrusion
Detection System (CIDS). Even then, there are different classifications of CIDS
architectures, so finding the right fit is not straightforward. For instance, some of
the edge-based CIDS solutions proposed [14, 15] use a Centralised CIDS approach
with a cloud-based backend for processing compute intensive workloads. While this
approach works well for workload optimisation, it fares poorly in response latency
and network overhead due to the dependency on centralised data centers. Similarly,

Evaluation of Collaborative Intrusion Detection System Architectures. . . 361

Sharma et al. [16] evaluated the use of a Distributed CIDS architecture in MEC and
outlined the trade-off in detection accuracy for fault tolerance and lower network
overhead.

In this chapter, we survey some of the proposed CIDS architectures in an
MEC context and discuss their performance using parameters such as detection
accuracy as well as computational and network overhead. We also present possible
improvements and new research avenues in some of these solutions to detect attacks
at scale in near-real time. Our chapter is organised as follows: Sect. 2 discusses the
different parameters to consider when choosing CIDS architectures and presents
a literature review of the current state of the art CIDS solutions in traditional
networking and its progression towards MEC. Section 3 presents a discussion on
different types of CIDS architectures and their operation. Section 4 summarises the
advantages and disadvantages of the solutions proposed previously, and we conclude
in Sect. 5 with a discussion on possible future research avenues.

2 Related Work

In this section, we review some of the different classifications of CIDS and the
various measures used to evaluate their performance.

2.1 CIDS Classification and Requirements

While traditional IDSs are limited to the scope of their own network, CIDS leverage
a global view across networks by scaling and sharing context between peers. Thus,
they can extend their detection range, enabling them to make better decisions. There
are different classifications of CIDS based on their communication architecture [16–
18], as follows:

• Centralised CIDS: These comprise multiple monitoring nodes analysing traffic
flowing through their underlying host/network and sharing their findings with
a central analysis unit. This central analysis unit applies alert correlation and
anomaly detection algorithms on the incoming data to identify attacks. This
architecture gains a better perspective of the underlying hosts/networks by
scaling the number of monitoring nodes to obtain more information. However,
despite the scalability of the monitoring nodes, the processing capability of
the central analysis node remains the same, acting as a potential processing
bottleneck. Also, if the central analysis unit goes offline, then the system is
rendered useless, presenting a single point of failure.

• Hierarchical CIDS: These comprise a multi-layered architecture of monitoring
nodes, filtering alerts based on specific rulesets and transmitting relevant data
only to the layer above. The filtered data keeps moving up the hierarchy until it

362 R. Sharma et al.

reaches a central processing unit for aggregation. This works well for reducing
the volume of data being forwarded to the central node, thus reducing the
processing bottleneck. However, it still presents a single point of failure as the
central processing unit needs to remain online.

• Distributed CIDS: The data filtering, detection and processing tasks are shared
between all peers in a decentralised manner using Peer to Peer (P2P) communi-
cation. This enables each node to analyze their local networks while retaining a
global view of all networks through data sharing and computational offloading.
It addresses the issue of a single point of failure present in Centralised and
Hierarchical CIDS as whenever a node malfunctions, it can be removed/replaced
from the communication channel without breaking the entire system. However,
the data maintained and processed by the faulty node may be lost if not replicated.
Also, the data shared between peers may increase the data transmission overhead
depending on the type or volume of data being shared.

Each of these architectures presents their own strengths and weaknesses based
on the risk-sensitivity of the underlying use-case. While some would prefer having
high detection accuracy over fault tolerance and reliability, others would focus
on ensuring the system is reliable with failover properties at the cost of lower
detection accuracy. To evaluate the performance of these architectures further,
Vasilomanolakis et al. [17] outlined the following requirements needed for CIDS
to protect large networks/IT systems.

• Accuracy: For a CIDS to be accurate, it needs to increase the percentage of
successfully identified attacks and reduce the percentage of attacks that are
undetected. In addition to these metrics, the number of falsely detected alerts
needs to be decreased for measuring accuracy of a CIDS.

• Minimal Overhead: The overhead associated with computational and communi-
cation tasks in the CIDS system need to be as low as possible for the system to use
the underlying resources efficiently. Given that MEC uses a set of heterogenous
resources with varying degrees of compute and storage capabilities, having a low
resource footprint is beneficial for it to function properly.

• Scalability: This property states that the performance of the CIDS increases
linearly with increases in resources introduced into the network. This helps in
coping with varying network sizes and needs.

• Resilience: Failures in hardware and software components of the system during
attacks from both external and internal entities/systems should not affect the
availability of the CIDS. This also focuses on addressing single points of failure
to avoid bringing down the entire system abruptly.

• Privacy: In a CIDS, data shared between peers may contain sensitive information
that needs to be protected from some/all components of the CIDS system.
This aspect becomes crucial when data is shared between peers across differ-
ent domains/namespaces that are governed by privacy principles and security
regulations posed by users, organizations and network providers.

• Self-Configuration: The ability to adjust the settings of the CIDS automatically
based on different factors without manual intervention is important to reduce

Evaluation of Collaborative Intrusion Detection System Architectures. . . 363

errors in the system. Most attackers use a variety of attack patterns so the CIDS
needs to be able to dynamically fine-tune itself to detect these varying attacks.

• Interoperability: This property states that the CIDS systems need to be able
to collaborate with a variety of networks and other CIDS implementations.
Hence, establishing a common interface and data communication format for
heterogenous CIDS systems to collaborate is important.

Using these requirements as a base, we focus on Accuracy and Minimal
Overheads in terms of the computation and network as our evaluation measures
to assess different CIDS architectures. These help in ensuring strong security
patterns without degrading networking performance in MEC to fulfil the stringent
requirements laid out for 5G.

2.2 Traditional CIDS Solutions

CIDS have been an active area of research for identifying coordinated attacks
across multiple hosts/networks. The earliest known CIDS solution was the Dis-
tributed Intrusion Detection System (DIDS) introduced by [19], which followed
a Distributed monitoring approach while analysing data centrally. They used host
and network monitoring nodes that recorded the underlying network activities and
aggregated data before forwarding them to a central analysis unit. This central
analysis unit used a rule-based expert system to aggregate and analyse the data
to identify attacks. DIDS only applied simplistic detection techniques so it can be
evaded easily by sophisticated adversaries, resulting in poor accuracy. Similarly,
as the amount of data being captured and forwarded by the monitoring nodes to
the central analysis unit increases, the communication and computation overhead
increases, degrading response latency. Also, the central analysis unit is a single point
of failure as the system becomes unusable if this unit ever goes offline.

In 2007, [20] proposed Large Scale Intrusion Detection (LarSID), a Distributed
CIDS using a P2P publish-subscribe model. They used a modified Pastry Distributed
Hash Table (DHT) called Bamboo [21, 22] to share alerts in a single dimensional
<Key, Value> format with peers, with the source IP address as the Key. Here, each
node maintains a watch list corresponding to its local subnetwork, analysing traffic
and inserting data that is suspected to be malicious, into a global DHT network.
Peers who identify the same data to be suspicious, subscribe to those source IP
addresses and update their watchlist accordingly. When more than a set number
of nodes flag the same source IP address as suspicious, a notification is generated
to every node using a callback functionality of the DHT, thus, communicating the
validation of the malicious source IP address. The distributed nature of LarSID
allows it to scale well and monitor independently, but certain nodes can be
overloaded when a large number of attacks originate from the same source IP
address, thus storing the metadata on the same node. One of the main disadvantages
of LarSID is that it can only detect attacks involving a common source or destination

364 R. Sharma et al.

IP address. Focused attacks on one node may be flagged in the local watchlist of
one/few node(s) but the Source IP address might not receive a consensus from peers
regarding its suspicious behaviour since it is not visible to a majority of the nodes.

Blaise et al. [18] proposed an anomaly detection method called Split-and-Merge,
using a Centralised CIDS deployment method. It uses multiple local detection
modules across different subnetworks, detecting anomalies based on variations
in port centric traffic. These changes are tracked using multiple features such as
percentage of unique source addresses, unique destination addresses, unique source
ports, mean packet size, standard deviation of packet sizes, percentage of SYN
packets, and number of packets. They evaluate changes in these parameters using a
modified Z-score, which uses the median and the median of the standard deviation of
the individual field being analysed, creating a baseline that is outlier resistant [23].
Any traffic deviating from this baseline is forwarded to a central correlation module,
which aggregates and analyses changes on ports using multiple local modules. An
anomaly score is allocated for each feature deviating from the baseline, where the
higher the score, the higher the concern for this type of traffic affecting the network.
Evaluation of its performance with a real-world dataset displayed high accuracy
with a smaller number of false positives. However, it needs to train on datasets
representing normal traffic prior to analyzing live traffic. Hence, it is not suitable for
real-time anomaly detection [18]. Also, it uses a characterisation of attacks based on
the aforementioned features, meaning any attack deviating from these norms may
not be easy to identify, thus decreasing accuracy.

2.3 Edge-Based CIDS Solutions

The majority of the research in this space was focused on Mobile Cloud Computing
[6], where centralised data centers are leveraged for their storage and compute
capabilities. However, Intrusion Detection in MEC has started to attract attention
in recent years, with a majority of the work focusing on an algorithmic and process
perspective with less focus on the design decisions for architecture deployments.
These solutions leverage a hybrid layered architecture with cloud data centers to
offload computationally heavy workloads, which works well due to the elastic
nature of the cloud. However, this approach introduces response latency and
communication overhead, which might not be suitable for real-time intrusion
detection.

Lin et al. [5] proposed a six-layered edge computing Intrusion Detection model,
where each layer performs a specific role in the overall architecture. One of the
layers in their solution uses detection modules in the edge network, which are
responsible for monitoring the underlying state of their host and identify attacks.
The logs and metrics generated by these detection modules are forwarded to
servers in the cloud layer to analyse and generate reports. The cloud layer derives
insights and orchestrates the edge nodes to perform intrusion forensic investigation.
This setup works well in coordinating data sharing and segregating functionalities

Evaluation of Collaborative Intrusion Detection System Architectures. . . 365

between the two layers but introduces latency in coordinating between the edge
nodes and the cloud data center.

In 2018, [15] proposed a framework to evaluate intrusion detection accuracy
using edge nodes. They leveraged a three-layered model containing an additional
component called the Edge manager working as the core of the solution. This
component is responsible for picking different machine learning models dynami-
cally based on the data being processed, thus improving detection accuracy. It also
manages the pre-filtering of data locally at different IDS while coordinating data
sharing between them. The global sharing of data outlined improvement in detection
accuracy by enabling different models to gain a complete view of the network.
The authors highlighted that pre-processing the data and coordinating data sharing
between peers in the edge layer, limited data transmission to the centralised data
center. This displayed significant improvement in data transmission overhead and
the latency involved. The authors did not delve into the percentage of improvement
in detection accuracy gained from this deployment. However, their experiment did
identify that coordinating data sharing between edge servers could assist in reducing
the overall overhead (network and computation) involved as outlined in similar
works looking at resource utilization in MEC [5, 24, 25].

Observing these different security architecture patterns in use for MEC currently,
most IDS solutions leverage the vast compute and storage capabilities of cloud data
centers for compute intensive/coordination tasks. However, there is a gradual shift
towards managing the data processing tasks across multiple edge nodes to remove
the dependency on cloud data centers [16], thus, reducing the response latency
and overhead (compute and network). As part of this chapter, we explore some
of these proposed solutions across the different classifications of CIDS as outlined
previously.

3 CIDS Architectures in MEC

In this section, we discuss the working of some representative CIDS architectures
and how they function in an MEC environment.

3.1 Centralised CIDS

This architecture has multiple monitoring nodes scattered across networks,
analysing data flowing through the underlying hosts/networks and forwarding them
to a central analysis unit. This central analysis unit applies alert detection/correlation
algorithms on the overall data to identify attacks. These systems seemingly improve
the detection accuracy as all the data is analysed centrally in one place but they
do not scale well and present a single point of failure as the absence of the central
analysis unit will bring the system to a halt.

366 R. Sharma et al.

Sharma et al. [16] evaluated the performance of a Centralised CIDS architecture
in an MEC environment by using multiple MEC nodes as Local Filtering (LFi)
nodes, scattered across different subnets as seen in Fig. 1. These LFi nodes analyse
incoming traffic and filter packets (pkti) containing TCP traffic with the SYN flag
set, i.e., traffic to initiate a connection using the TCP 3-way handshake. These
filtered packets are forwarded to an MEC node working as a Central Processing
Node (CP) for aggregation and analysis using different threshold values to detect
malicious traffic. The CP maintains a local watch list to track analyzed source IP
addresses (src_ipi) and maintain a count of its occurrence. After a set time frame of
10 mins, this watch list is refreshed, reducing the overall memory requirements of
this architecture. They performed their experiment using a real-world worm dataset
called “Three Days of Conficker” [26] made available by the Center for Applied
Internet Data Analysis (CAIDA). Their architecture’s performance was evaluated
based on the Data Transmission Overhead, Accuracy Model, and the CPU and
Memory Requirements needed to perform Intrusion Detection.

Their results demonstrated that a Centralised CIDS displayed higher detection
accuracy as all the alerts identified by the multiple LFi nodes were aggregated and
analysed at a single location. This meant that the CP node had a comprehensive
view of the complete traffic context across all monitored subnets. However, this

Fig. 1 Centralised CIDS Architecture in MEC [16]

Evaluation of Collaborative Intrusion Detection System Architectures. . . 367

also presented a bottleneck in terms of scalability, as the number of LFi nodes could
be increased but the computation, memory and storage capabilities of the CP node
remained the same. Although the amount of data being processed in their experiment
was not enough to overwhelm the CP node, they discussed that increasing the
amount of data being forwarded centrally could cause delays in processing. This
would not be ideal for achieving near-real time detection of attacks. The CPU and
memory requirements outlined in their experiment displayed low CPU utilisation,
and a stable memory utilisation, but they noted that increases in data could impact
these metrics.

Algorithm 1: Centralised CIDS Processing

1: // Local Filtering Module
2: while Incoming Network Traffic do
3: pkti ← next packet from incoming network traffic
4: if pkti.hasTCP && pkti.flags == “SYN” then
5: filtered_data ← pkti
6: send_data(filtered_data)
7: end
8: end
9:
10: // Central Processing Module
11: while Incoming Filtered Data do
12: Queue ← filtered_data
13: end
14:
15: // Aggregation Logic Running In Separate Thread
16: Function data_aggregator():
17: pkt ← Poll(Queue)
18: if pkti.src_ip != watch_list {src_ipi} then
19: watch_list {src_ip} = 1
20: else if pkti.src_ip == watch_list {src_ipi} then
21: watch_list {src_ip} += 1
22: end
23: if watch_list {src_ip} % threshold == 0 then
24: Log ← pkti.src_ip
25: end
26: End Function

Since all the filtered data from the LFi nodes are being forwarded to the CP
node, the Centralised CIDS has a high network transmission overhead. However,
this data sharing segment of the architecture helped increase the detection accuracy,
presenting a tradeoff between bandwidth usage and detection accuracy. Some
organisations would place detection accuracy as a priority over network overhead,
making this architecture more suitable to such use-cases. However, in a public
shared network context like MEC, where third party organisations can deploy their
applications to an Internet Service Provider’s (ISP) infrastructure, there is a strong
need for a balance between network overhead and detection accuracy.

368 R. Sharma et al.

3.2 Hierarchical CIDS

A Hierarchical CIDS architecture uses multiple monitoring nodes arranged in
a hierarchical tree-like structure with a central analysis unit at the root of the
hierarchy. Each layer of the hierarchy filters, aggregates and correlates data,
forwarding only the results of this processing to the layer above. This process
continues until it reaches the central processing unit at the top of the hierarchy to
aggregate and apply alert correlation algorithms/mechanisms for detecting attacks.
This architecture works well in terms of scaling and covering multiple subnets to
identify the underlying trends. However, the filtering at each layer can cause loss
of valuable network context. This may result in being unable to detect coordinated
and/or sophisticated distributed attacks across multiple networks.

To the best of our knowledge, there has been little research in evaluating the
performance of a Hierarchical CIDS in an MEC environment. However, there has
been research to evaluate the resource consumption and orchestration of workloads
across multiple MEC nodes in a hierarchical manner [24, 27–29]. In this chapter, we
propose a novel Hierarchical CIDS architecture for MEC using the same principle
of data processing and workload orchestration as these works. Here, we discuss the
working of this architecture and the potential strengths and weaknesses.

In this architecture, we arrange our MEC nodes in a hierarchical tree-like manner
with each hierarchy composed of multiple Hierarchical Nodes (HN) filtering traffic
present at that layer, and a central analysis unit at the root of the hierarchy. As
seen in Fig. 2, starting at the bottom most layer we have multiple MEC nodes
monitoring traffic flowing through the underlying network at different geo-locations.
Each of these edge devices filter traffic based on certain parameters and protocols.
For instance, if we follow the same process as [16] we will filter TCP traffic
containing the SYN flag, indicating the start of the TCP 3-way handshake. These
packets will be aggregated based on the source IP address, using a watch list over
fixed timeframes and compared against a threshold value indicating the number of
connection requests allowed within a given timeframe. This threshold is based on
the resource being accessed, as a rate limiting policy introduced for monitoring and
controlling access across our edge devices.

Packets originating from the same source IP address matching a multiple of
the defined threshold will be forwarded to the layer above this hierarchy. The
same process will be followed across all MEC nodes at the bottom most layer,
forwarding data to the layer above. The second layer will receive this aggregated
data from multiple subnetworks and combine it to provide better coverage. Traffic
incoming at this layer is further aggregated based on the source IP address over
fixed timeframes against a set threshold. Packets originating from the same source
IP address exceeding this threshold are forwarded to the layer above, with each layer
performing similar aggregations over fixed time frames based on a set threshold.
This process continues until the data reaches the central analysis unit at the root
of this architecture, where we apply alert correlation algorithms to aggregate and
detect malicious traffic.

Evaluation of Collaborative Intrusion Detection System Architectures. . . 369

Fig. 2 Hierarchical CIDS in MEC

Algorithm 2: Hierarchical CIDS Processing

1: // Local Filtering Module At Bottom-most Layer
2: while Incoming Network Traffic do
3: pkti ← next packet from incoming network traffic
4: if pkti.hasTCP && pkti.flags == “SYN” then
5: Queue ← pkti
6: end
7: end
8:
9: // Aggregation Logic Running In Separate Thread
10: Function data_aggregator():
11: pkti ← Poll(Queue)
12: if pkti.src_ip != watch_list {src_ipi} then
13: watch_list {src_ip} = 1
14: else if pkti.src_ip == watch_list {src_ipi} then
15: watch_list {src_ip} += 1
16: end
17: if watch_list {src_ip} % threshold == 0 then
18: send_data(pkt.src_ip)
19: end
20: End Function

This architecture can span multiple subnets and trust domains managed by
different ISPs, filtering and aggregating data, and forwarding network context to
the layer above. Through this process, it enables us to gather network context

370 R. Sharma et al.

across different subnets for analysis of the underlying trends, making it easier
to scale the solution further. Since this architecture can reduce the computational
and network load across our edge nodes by forwarding focused data only, we can
leverage a heterogenous set of MEC nodes across our layers to perform analysis.
However, if the architecture continues scaling horizontally, for example - increasing
the number of MEC nodes being used at the bottom most layer for analysing
network traffic across our subnets, without increasing the number of nodes across
the layers vertically can cause a processing bottleneck in the higher layers. To avoid
this potential issue, scaling needs to be balanced not just within one layer alone but
across all layers to evenly balance the increase in load. Cloud computing addresses
this issue well through load balancing and elasticity by deploying more resources
as and when needed. However, it is not easy to replicate this aspect in an MEC
context. Since MEC nodes are dependent on the underlying hardware of the ISPs,
their availability across multiple geo-locations may not always be guaranteed due to
potential resource constraints and geo-proximity of the workload.

Also, this architecture is prone to a single point of failure as the central analysis
unit at the root of the hierarchy is responsible for the final attack detection and
reporting. Hence, scaling of MEC nodes horizontally and vertically might increase
detection coverage but if this central analysis unit goes offline, then the entire
system loses its main processing node for attack detection. This results in network
correlation being locked down to localized hierarchies, increasing the risk profile of
our security measures.

3.3 Distributed CIDS

This architecture deploys multiple self-contained nodes across different subnets
where each node processes and analyses data flowing through their subnets locally.
They aggregate and use alert correlation algorithms on their local data and share the
results of their network context between peers using P2P communication. This setup
enables nodes to gain a global view of the network while being decoupled such that
failures are isolated without bringing down the entire system.

Sharma et al. [16] proposed a Distributed CIDS architecture for MEC using a
Kademlia [30] based Distributed Hash Table (DHT) called OpenDHT [31]. The
authors deployed their DHT instances across multiple MEC nodes in different
subnets, communicating with one another using P2P communication as seen in Fig.
3. Each node monitors the traffic flowing through their local subnet and filters TCP
traffic having the SYN flag set. The local DHT nodes aggregate and analyse the
filtered traffic locally using set thresholds as their baseline to identify suspicious
traffic. The packets flagged as suspicious are added to a local watch list and inserted
(PUT) into the global DHT network in a single dimensional <Key, Value> format,
with the Key represented as the source IP address indicated in the packet.

These single dimensional queries are stored in one of the DHT nodes across the
network based on the hash computation of the data to be inserted. The data insertion
invocation is followed by a callback (LISTEN) being set on the query Key, such that

Evaluation of Collaborative Intrusion Detection System Architectures. . . 371

Fig. 3 Distributed CIDS Architecture in MEC [16]

any and all updates to the value of this key are notified to the subscriber, similar to a
publish-subscribe model. If multiple nodes above a threshold detect a particular/set
of source IP address(es) as suspicious, then the source IP address is considered to be
malicious and a notification is shared with all subscribed peers. This model works
well from a consensus-based approach to validate and detect malicious behavior
through a decentralised analysis of network traffic.

The authors experiment used Data Transmission Overhead, Accuracy Model,
and the CPU and Memory Requirements as their performance metrics for intrusion
detection using a real-world worm dataset called – “Three Days of Conficker”
[26]. Their results outlined that a Distributed CIDS requires far less data transfer,
as data is only transmitted when it is inserted into the DHT network or upon a
callback invocation. Since it follows a publish-subscribe model, only subscribed
nodes would receive a callback notification, which reduces the need for transferring
large volumes of data through the network. The authors also outlined that this
architecture works well in scenarios where the attacks are spread out across multiple
nodes, enabling a consensus to be reached. However, when attacks are focused on
one or a few nodes only, this architecture will be unable to detect these attacks since
the DHT nodes will not reach a consensus, resulting in reduced detection accuracy.

The DHT nodes also present an initial steep increase in CPU and Memory
utilization across all nodes before reaching a saturation point. Since each DHT node
is responsible for filtering, aggregating and publishing network data into the DHT

372 R. Sharma et al.

network, the computational requirements fluctuate before reaching a stable usage
pattern. For memory usage however, since the data inserted into the DHT network
is stored on the DHT node whose address hash matches the hash of the inserted
data, incoming alerts originating from the same source IP address will be stored on
the same DHT node. This can also cause significant storage issues for the chosen
DHT node if there is a heavy influx of data arriving from the same source IP address
or if there are multiple packets whose hash computation matches the hash address
of the same DHT node. This is particularly important in MEC, where nodes may
have a heterogeneous set of resources allocated where some nodes may have fewer
available resources.

Algorithm 3: Distributed CIDS Processing

1: // Local DHT Node Entry Point
2: while Incoming Network Traffic do
3: pkti ← next packet from incoming network traffic
4: if pkti.hasTCP && pkti.flags == “SYN” then
5: Queue ← pkti
6: end
7: end
8:
9: // Aggregation Logic Running In Separate Thread
10: Function data_aggregator():
11: while true do
12: pkti ← Poll(Queue)
13: if pkti.src_ip != watch_list {src_ipi} then
14: watch_list {src_ip} = 1
15: DHT ← PUT(pkti.src_ip, {Msg})
16: LISTEN(src_ip)
17: else if pkti.src_ip == watch_list {src_ipi} then
18: watch_list {src_ip} += 1
19: end
20: if watch_list {src_ip} % threshold == 0 then
21: DHT ← PUT(pkti.src_ip, {Msg})
22: end
23: end
24: End Function
25:
26: // Track Consensus Using Callback
27: Function listen_callback():
28: while true do:
29: pi ← callback_response
30: if “expired” != pi.status then
31: if node != pi.current_node then
32: if pi.src_ip != peers[src_ip] then
33: if len(peers) >= threshold then
34: Notify(peers[src_ip])
35: end
36: end
47: end
48: end
49: end
50: End Function

Evaluation of Collaborative Intrusion Detection System Architectures. . . 373

This Distributed CIDS architecture displays a promising approach to create
a fault tolerant system, which can overcome the single point of failure present
in the Centralised CIDS architecture. However, this fault tolerance is only from
an infrastructure perspective rather than the detection process. This means that
whenever a node goes offline due to faults, all the data stored on that node will
be lost. Although the DHT network will re-arrange itself to restore the current state
of the network, the network context in the offline node will not be recovered.

3.4 Load Balancing Distributed CIDS

This architecture is proposed as a novel variation of the Distributed CIDS [16] seen
previously, with an additional capability of performing load balancing of data to
avoid overwhelming the storage capacity of the DHT nodes. As seen in Fig. 4, we
have a cluster of DHT instances running on MEC nodes spread across multiple
subnets and/or trust domains, connected with each other using P2P communication.
All of these instances are connected to a central node acting as an orchestrator
referred to as the Global Notification Node (GNN) using P2P communication.

The GNN periodically retrieves node status metadata, such as CPU and Memory
utilization statistics from each of the DHT nodes and compiles a list of nodes that
are reaching their resource threshold for computation and/or storage. For nodes that

Fig. 4 Load Balancing Distributed CIDS Architecture in MEC

374 R. Sharma et al.

cross their resource capacity threshold, the GNN creates a blacklist of hash ranges
to avoid storing data at those nodes and shares this blacklist with every DHT node
in its trusted network.

Algorithm 4: Load Balancing Distributed CIDS Processing GNN

1: // GNN Health Check
2: while true do
3: for node in DHT_nodes:
4: health_status ← GET(node(CPU, Mem))
5: end
6: if health_status[node(CPU, Mem)] < threshold(CPU, Mem)

&& node != blacklisted_nodes then
7: Notify(DHT_nodes[blacklist_hashrange])
8: else if node == blacklisted_nodes && health_status

[node(CPU, Mem)] > threshold(CPU, Mem) then
9: Notify(DHT_nodes[remove_blacklistrange])
10: end
11: end
12:
13: // Track New Hash Functions Used
14: Function new_hash_mappings():
15: while true do
16: hash_mappings {hash, src_ip} ← receive_new_mapping

(hash_function, src_ip)
17: Notify(original_DHT) ← new_mapping(hash, src_ip)
18: end
19: End Function

The DHT nodes use the blacklist notification shared by the GNN to verify that the
hash of the data to be inserted into the DHT network does not fall in that blacklisted
range. If the computed hash of the data falls in that range, the DHT uses a new
hash function to recompute the hash of the data until the resulting hash is outside
the blacklisted range. Consequently, the data is inserted into the DHT network on
a new node to avoid overwhelming the resource capability of a single or few DHT
nodes. This blacklist is computed by the GNN periodically to check the health of
the DHT network and re-enable healthy nodes whose hash ranges were previously
blacklisted.

Algorithm 5: Load Balancing Distributed CIDS Processing DHT Nodes

1: // Local DHT Node Entry Point
2: while Incoming Network Traffic do
3: if pkti.hasTCP && pkti.flags == “SYN” then
4: pkti ← next packet from incoming network traffic

Evaluation of Collaborative Intrusion Detection System Architectures. . . 375

5: Queue ← pkti
6: end
7: end
8:
9: // Aggregation Logic Running In Separate Thread
10: Function data_filter():
11: while true do
12: pkti ← Poll(Queue)
13: if pkti.src_ip != watch_list {src_ipi} then
14: watch_list {src_ip} = 1
15: DHT ← PUT(pkti.src_ip, {Msg})
16: LISTEN(src_ip)
17: else if pkti.src_ip == watch_list {src_ipi} then
18: watch_list {src_ip} += 1
19: end
20: if watch_list {src_ip} % threshold == 0 then
21: if hash(src_ip) == blacklist_hashrange
22: while recomputed_hash == blacklist_hashrange

&& new_hash[src_ip].isEmpty() do
23: new_hash(src_ip)
24: end
25: end
26: DHT(new_hash) ← PUT(pkti.src_ip, {Msg})
27: Notify(GNN(new_hash, src_ip))
28: end
29: end
30: End Function
31:
32: // Track Consensus Using Callback
33: Function listen_callback():
34: while true do:
35: pi ← callback_response
36: if “expired” != pi.status then
37: if node != pi.current_node then
38: if pi.src_ip != peers[src_ip] then
39: if len(peers) >= threshold then
40: Notify(peers[src_ip])
41: end
42: end
43: end
44: end
45: end
46: End Function

This process will initiate re-balancing of the data generated from the same source
IP address as the Key, since the new function stores the data on a different node,
which may cause drifts in the lookup. To reconcile the different hash computations
of the same Key stored on different nodes, the GNN will retain a mapping of new
functions used against Keys as a lookup and share that mapping with the DHT
node storing the original <Key, Value> pairs. This enables callback invocations on
a particular Key to register the new location of that Key based on the updated hash
function used, hence, ensuring that data is being load balanced without affecting the

376 R. Sharma et al.

publish-subscribe mechanism of the DHT. However, this also means that different
DHT nodes inserting data related to the same source IP address into the DHT
network can have different hash functions for recomputing their hash. This would
result in the GNN retaining all of those mappings in-memory till the black listed
DHT node recovers and is usable again. At which point, the DHT node will retain
the mappings to alternate sources of the same Key for a set period of time for expiry
of the data and will refresh its list of Key mappings to alternate nodes. Similarly, the
GNN will also refresh its list of mappings after a set period of time to remove stale
mappings.

This setup works well in ensuring that the resource utilization of all DHT
nodes are balanced without affecting their availability in the global network,
especially since MEC nodes can have a heterogeneous set of resources. However,
it also increases data transmission overhead due to the periodic health checks and
notifications sent to all MEC nodes in the DHT network. Also, the load balancing
aspect of the solution can introduce delays associated with reconciling the lookup
mapping of source IP addresses. For instance, when a DHT node subscribes to a
source IP address which may be load balanced across multiple nodes, the callback
invoked on the original storage location will push the notification for data stored on
itself immediately. However, there might be delays associated with the GNN able to
map the new location on the original storage node, to link the load balanced alternate
storage node for the same Key, leading to loss of context and/or delays in pushing
all notifications associated with that Key.

The GNN could potentially act as a bottleneck as new DHT nodes are added and
the network size increases, which can potentially introduce processing delays in the
network. To avoid turning it into a single point of failure, it would require replication
to facilitate a failover strategy in case the original node starts to display issues, which
may introduce the additional complexity of process migration between multiple
GNNs. Also, given the distributed nature of the CIDS following the same processing
and detection pattern, some of the disadvantages associated with Distributed CIDS,
such as the inability to detect focused attacks, would be prevalent in this architecture
as well. The process to re-compute the hash for data to be inserted into the DHT
network and then validate it against the blacklist hash ranges will require additional
computation and may potentially introduce delays, which will affect the response
latency and resource utilization at MEC nodes.

Looking at some of the tradeoffs associated with the above architecture, it
becomes evident that applying fault tolerance strategies to infrastructure and data
can increase latency and network overhead. These factors could significantly affect
the Quality of Service (QoS) associated with 5G as the network scales and more
MEC nodes and applications are deployed. To prevent some of these issues,
researchers can use a hybrid model [14, 15] leveraging a cloud-based backend to
offload heavy processing. However, that architecture leads to an increase in response
latency as well.

Evaluation of Collaborative Intrusion Detection System Architectures. . . 377

4 Comparison of CIDS Approaches

In this section we give an overall summary of the different CIDS architectures
discussed in this chapter. Table 1 provides an overview of the performance as well as
the pros and cons of these architectures based on requirements such as the Detection
Accuracy, CPU and Memory utilisation, and Data Transmission Overhead.

We can observe that a Centralised CIDS, albeit having a single point of
failure, maintains the highest Detection Accuracy due to the centralized processing
capability of this architecture. However, this feature becomes overshadowed by the
potential increase in response latency due to all the network data flowing to the same
location, which can become a processing bottleneck. A Distributed CIDS alleviates
this drawback by distributing the computational tasks across multiple nodes but at
the cost of Detection Accuracy, CPU and Memory utilization. Since each node in
the Distributed architecture filters, aggregates, and performs attack detection on its
own local subnet, using shared findings from its peers - the overall detection process
is spread across the network avoiding a single point of failure. However, whenever
a DHT node goes offline, all the data stored on that node is lost. Although the DHT
network will recover from an infrastructure service perspective by removing the
offline node from the routing table of all the DHT nodes, it will be unable to recover
the lost network context.

Since the Distributed CIDS architecture discussed in this chapter relies on
consensus from a set number of DHT nodes to validate attacks, focused attacks
on one or a few nodes may be missed, leading to lower Detection Accuracy. Also,
if all nodes keep observing alerts originating from the same source IP address, they
will compute the same hash based on the source IP address as the single dimensional
correlation query. This will result in all of those alerts being stored on the same DHT
node. Since MEC nodes have a heterogenous set of compute and storage resources,
if the DHT node where all of those incoming alerts are stored has less available
storage, the insertion process will eventually overwhelm that node bringing it offline
if not addressed promptly.

The Hierarchical CIDS combines aspects of both Centralised and Distributed
CIDS by having multiple layers of monitoring nodes feeding focused data to a
central analysis unit. This setup allows it to monitor multiple subnets across different
trust domains, while maintaining a central processing unit for attack detection and
reporting. There are multiple issues present in this architecture, like low Detection
Accuracy due to the filtering undertaken across layers. Although the filtering process
is efficient in reducing noise across layers it can also reduce the amount of valuable
network context shared across layers, thus reducing Detection Accuracy. Also,
scaling horizontally is viable but it can cause strain in processing at the higher layers
if scaling is not carried out across all the layers. For instance, scaling in one layer
only, like the bottom-most layer, can help increase the geographical view of the
CIDS system. However, it also adds additional processing strain on the layers above
to manage and analyze the incoming data rapidly to meet the stringent needs of
applications requiring real-time detection.

378 R. Sharma et al.

Ta
bl
e
1

Su
m

m
ar

y
of

th
e

di
ff

er
en

tC
ID

S
so

lu
tio

ns
di

sc
us

se
d

in
th

is
ch

ap
te

r

Pr
op

er
tie

s
C

en
tr

al
is

ed
C

ID
S

H
ie

ra
rc

hi
ca

lC
ID

S
D

is
tr

ib
ut

ed
C

ID
S

L
oa

d
B

al
an

ci
ng

D
is

tr
ib

ut
ed

C
ID

S

D
et

ec
tio

n
A

cc
ur

ac
y

H
ig
h

P
ro
s:

•
H

ig
h

de
te

ct
io

n
ac

cu
ra

cy
du

e
to

ce
nt

ra
lis

ed
ag

gr
eg

at
io

n.
•

C
ap

tu
re

s
gl

ob
al

ne
tw

or
k

co
nt

ex
t.

•
G

oo
d

fo
r

id
en

tif
yi

ng
co

nc
en

tr
at

ed
at

ta
ck

s.
C
on

s:
•

Si
ng

le
po

in
to

f
fa

ilu
re

.

H
ig
h
-
m
ed

iu
m

P
ro
s:

•
D

at
a

sh
ar

in
g

be
tw

ee
n

la
ye

rs
.

•
C

ap
tu

re
s

gl
ob

al
ne

tw
or

k
co

nt
ex

t.
C
on

s:
•

Po
ss

ib
le

lo
ss

of
va

lu
ab

le
in

fo
rm

at
io

n
ac

ro
ss

la
ye

rs
.

•
H

or
iz

on
ta

ls
ca

la
bi

lit
y

at
lo

w
er

la
ye

rs
al

on
e

ca
n

ca
us

e
bo

ttl
en

ec
ks

at
hi

gh
er

la
ye

rs
.

•
Si

ng
le

po
in

to
f

fa
ilu

re
.

H
ig
h
-
m
ed

iu
m

P
ro
s:

•
H

ig
h

ac
cu

ra
cy

fo
r

di
st

ri
bu

te
d

at
ta

ck
s.

•
C

ap
tu

re
s

gl
ob

al
ne

tw
or

k
co

nt
ex

t.
C
on

s:
•

L
ow

ac
cu

ra
cy

fo
r

co
nc

en
tr

at
ed

at
ta

ck
s.

•
D

at
a

re
pl

ic
at

io
n/

re
co

ve
ry

in
ca

se
of

fa
ilu

re
s

no
ty

et
su

pp
or

te
d.

H
ig
h-
m
ed

iu
m

P
ro
s:

•
H

ig
h

ac
cu

ra
cy

fo
r

di
st

ri
bu

te
d

at
ta

ck
s.

•
C

ap
tu

re
s

gl
ob

al
ne

tw
or

k
co

nt
ex

t.
•

E
ns

ur
es

in
di

vi
du

al
no

de
s

ar
e

no
t

ov
er

w
he

lm
ed

by
lo

ad
ba

la
nc

in
g

da
ta

st
or

ag
e

an
d

ro
ut

e
re

qu
es

ts
.

C
on

s:
•

Si
gn

ifi
ca

nt
ly

lo
w

ac
cu

ra
cy

fo
r

co
nc

en
tr

at
ed

at
ta

ck
s.

•
D

at
a

re
pl

ic
at

io
n

to
co

un
te

r
no

de
fa

ilu
re

s
is

no
ts

up
po

rt
ed

.

C
PU

an
d

M
em

or
y

U
sa

ge

St
ab

le
P
ro
s:

•
C

on
si

st
en

tu
sa

ge
of

C
PU

an
d

M
em

or
y.

C
on

s:
•

In
cr

ea
se

d
de

la
y

in
re

ac
tio

n
tim

e.
•

R
es

ou
rc

e
ut

ili
sa

tio
n

ca
n

in
cr

ea
se

if
nu

m
be

r
of

m
on

ito
ri

ng
no

de
s

in
cr

ea
se

.

F
lu
ct
ua

te
s

P
ro
s:

•
U

sa
ge

at
lo

w
er

la
ye

rs
m

ay
be

hi
gh

bu
tl

es
se

r
ut

ili
sa

tio
n

at
hi

gh
er

la
ye

rs
.

•
A

llo
w

s
di

ff
er

en
tl

ay
er

s
to

m
an

ag
e

us
in

g
he

te
ro

ge
no

us
se

to
f

re
so

ur
ce

s.
C
on

s:
•

H
or

iz
on

ta
ls

ca
lin

g
at

lo
w

er
la

ye
rs

al
on

e
m

ay
ad

d
ad

di
tio

na
ls

tr
es

s
on

us
ag

e.

F
lu
ct
ua

te
s
th
en

st
ab

ili
se

P
ro
s:

•
Im

pr
ov

ed
re

ac
tio

n
tim

e
du

e
to

of
flo

ad
in

g
pr

oc
es

si
ng

ac
ro

ss
pe

er
s.

C
on

s:
•

C
PU

an
d

M
em

or
y

ut
ili

sa
tio

n
flu

ct
ua

te
ba

se
d

on
D

H
T

re
qu

ir
em

en
ts

fo
r

da
ta

st
or

ag
e

an
d

pr
oc

es
si

ng
.

St
ab

le
an

d
co
nt
ro
lle
d

P
ro
s:

•
C

PU
an

d
M

em
or

y
U

til
is

at
io

n
w

ill
be

ac
tiv

el
y

m
on

ito
re

d
an

d
co

nt
ro

lle
d

th
ro

ug
h

lo
ad

ba
la

nc
in

g.
C
on

s:
•

V
al

id
at

in
g

co
m

pu
te

d
ha

sh
of

da
ta

ag
ai

ns
tb

la
ck

lis
te

d
ra

ng
es

an
d

re
-h

as
hi

ng
ca

n
in

cr
ea

se
co

m
pu

ta
tio

na
l

ov
er

he
ad

.

(c
on

tin
ue

d)

Evaluation of Collaborative Intrusion Detection System Architectures. . . 379

D
at

a
T

ra
ns

m
is

si
on

O
ve

rh
ea

d

H
ig
h

P
ro
s:

•
Pr

e-
fil

te
ri

ng
en

su
re

s
fo

cu
se

d
da

ta
on

ly
is

fo
rw

ar
de

d
to

ce
nt

ra
ln

od
e.

C
on

s:
•

N
ee

ds
m

or
e

da
ta

tr
an

sm
is

si
on

ov
er

he
ad

to
tr

an
sf

er
da

ta
to

th
e

ce
nt

ra
ln

od
e.

H
ig
h

P
ro
s:

•
Pr

e-
fil

te
ri

ng
en

su
re

s
th

at
on

ly
fo

cu
se

d
da

ta
is

fo
rw

ar
de

d
to

th
e

la
ye

r
ab

ov
e.

C
on

s:
•

M
ul

tip
le

la
ye

rs
eq

ua
te

to
m

or
e

tr
an

sm
is

si
on

s
an

d
he

nc
e

in
cr

ea
se

in
ba

nd
w

id
th

us
ag

e
an

d
po

te
nt

ia
lly

re
sp

on
se

tim
e

de
la

y.

L
es
s

P
ro
s:

•
R

eq
ui

re
s

le
ss

da
ta

tr
an

sm
is

si
on

ov
er

he
ad

du
e

to
pu

bl
is

h-
su

bs
cr

ib
e

m
od

el
.

C
on

s:
•

D
H

T
op

er
at

io
ns

al
so

re
qu

ir
e

ne
tw

or
k

tr
an

sf
er

ov
er

he
ad

,w
hi

ch
in

tr
od

uc
es

re
sp

on
se

tim
e

de
la

y.

M
ed
iu
m

P
ro
s:

•
D

et
ec

tio
n

pr
oc

es
s

w
ou

ld
re

qu
ir

e
le

ss
ne

tw
or

k
co

nt
ex

ts
ha

re
d

w
ith

pe
er

s
du

e
to

pu
bl

is
h-

su
bs

cr
ib

e
m

od
el

.
C
on

s:
•

U
se

of
G

N
N

w
ill

re
qu

ir
e

pe
ri

od
ic

he
al

th
ch

ec
ks

an
d

no
tifi

ca
tio

ns
to

D
H

T
s,

in
cr

ea
si

ng
tr

an
sf

er
ov

er
he

ad
an

d
po

te
nt

ia
lly

af
fe

ct
in

g
re

sp
on

se
tim

e
de

la
y.

380 R. Sharma et al.

The Load Balanced Distributed CIDS addresses most of the fault tolerance issues
outlined in the proposed Distributed CIDS by using a central GNN to track resource
utilization across the DHT network. It performs health checks and helps re-direct
traffic from nodes that are reaching their maximum capacity in terms of CPU
and Memory utilisation, thus, alleviating the load on those nodes. However, this
increases the processing needs across the network as nodes need to validate the
output of hash computations of the data prior to inserting into the DHT. If the hash
output of the data is within blacklisted ranges as shared by the GNN, those data
need to be recomputed using a new hash function and the output re-verified against
the blacklisted range. This could potentially increase the response latency of the
solution significantly, which is not ideal for real-time detection. Also, the periodic
health checks and event-based notifications of black list ranges across all nodes in
the DHT network increases the Data Transmission Overhead of this architecture.
This overhead can potentially be equal to or higher than the Data Transmission
Overhead observed for the Centralised CIDS architecture as the GNN needs to
perform health checks periodically on all DHT nodes in the network.

Similar to the Centralised CIDS, both Hierarchical and Load Balanced Dis-
tributed CIDS have a single point of failure in respect to their central analysis unit
and the GNN, which could significantly affect the functioning of these architectures,
especially the GNN, as it manages mappings of source IP addresses to new hash
functions used by different DHT nodes across the network. If this context is lost or
inaccessible, the DHT nodes could still store data for the same source IP address
across different nodes in the network. However, they will be unable to receive a
callback on updates made on that source IP address as the original storage node
will not have access to the mappings for that Key due to loss of connectivity with
the GNN. This will break the publish-subscribe model followed by the Distributed
CIDS, leading to a significant loss of Detection Accuracy and rendering the system
unusable.

Based on the observations outlined in Table 1, it becomes evident that there is no
one ideal solution available for CIDS in MEC. Each approach comes with its own
caveats which need to be considered during deployment to understand the impact it
will have in the overall application use-case.

5 Future Research Directions

Reviewing the working of the different CIDS architectures discussed in this chapter,
we outline some of the potential research directions to explore in this domain as
follows.

• Use of multi-dimensional queries: The authors of [16] used a DHT for their
Distributed CIDS architecture, which leveraged a single dimensional query Key
for storage in their DHT network. It would be interesting to explore the effects on
Detection Accuracy if we increase the scope of network context shared amongst

Evaluation of Collaborative Intrusion Detection System Architectures. . . 381

peers [16]. For instance, including an additional Key such as port information
or trend based information to form a multi-dimensional query. The current state
of the Distributed CIDS is unable to detect attacks that affect fewer nodes than
the number required to form a consensus. Adding another dimension could
potentially address this issue by using additional network context for peers to
look up and validate attack patterns on their local nodes.

• Hybrid architectures: As observed in Table 1, each CIDS architecture discussed
in this chapter has its own strengths and weaknesses. Using a combination
of some of these architectures could help alleviate the bottlenecks present in
individual architecture deployment models, enabling further improvement of
their combined performance [16]. Most hybrid architectures use a MEC hosted
CIDS with a cloud based backend to offload compute intensive processing tasks
[14, 15]. However, it would be useful to understand the performance metrics
and capabilities of a purely edge-deployed hybrid architecture, collaborating and
offloading tasks between peers at the edge of the network.

• Enforce trust between peers across untrusted domains: In modern times,
trust is becoming an increasingly important trait to have for any data processing
system. For CIDS, which is a core security system used in most complex
network setups (perimeter-oriented or otherwise) across organizations, it is vital
to ensure that the interactions between its different components can be trusted.
This factor is especially significant to explore for understanding the complexities
involved in an MEC context [32, 33], with some researchers proposing the
use of technologies like Blockchain [34, 35] for this. Since edge devices are
usually deployed in locations without strict controls and protection capabilities
[36], being able to establish trust domains with authentication and authorisation
solutions at scale is a challenging problem to address.

• Coordinating cross-network mitigation strategies: One of the main benefits
outlined for adopting MEC is support for location aware services and applica-
tions [1]. In Intrusion Detection, we might observe attacks originating from one
or multiple sources across different networks. Some of these sources might be
different but the underlying attack patterns used can be quite consistent based on
the vulnerabilities targeted. To mitigate these attacks, a combination of firewall
rules and request throttling can be used. However, given the wide attack surface
that MEC presents, coordinating the same mitigation strategies across affected
nodes and networks is an interesting problem to tackle.

• Enabling security at scale: With the increasing global community shifting
to an online medium to consume and produce information, work, study, and
perform other day to day activities, providing a more active approach to intrusion
detection is highly important. The use of MEC will enable us to deliver such
solutions at an ultra-low latency response time but will require elasticity and
scalability to manage the vast volumes of incoming data at any point in time [37–
39]. Being able to coordinate and auto-scale our security solutions to manage
these variable volumes of high velocity streaming data will be key in defining
the resilience of our setup. Hence, it is important to understand the different

382 R. Sharma et al.

metrics usable for auto-scaling the Intrusion detection system and its impact on
the performance of the security solution.

• Self-healing mechanisms: Faults are a natural occurrence in any software and
hardware system. Recovering from faults is key to maximising the uptime of our
system components, especially when these elements are our security mechanisms
[1, 37, 39–41]. Given the diverse nature of MEC nodes, it is important to
have fault tolerant architectures which are capable of self-healing to ensure a
consistent level of security coverage at any point in time. Identifying these faults
and triggering self-healing without overloading the other components of our
security architecture are important properties to explore in an MEC context.

6 Conclusion

This chapter gives an overview of some of the current state-of-the-art CIDS
solutions in MEC and proposes two novel solutions. We survey key requirements for
evaluating the performance of CIDS, and out of these use Detection Accuracy, CPU
and Memory Utilisation, and Data Transmission Overhead as our base measures
for comparison. Based on our evaluations, we identify that there is no one CIDS
architecture that covers all the requirements needed for near-real time detection
while providing fault tolerance and an optimised use of bandwidth. Each of these
architectures require a tradeoff between one of these parameters and fault tolerance
to function properly. Hence, it is crucial to understand the underlying needs of the
application use-case carefully prior to deciding on an architecture as there is no “one
size fits all” CIDS architecture that meets all the requirements of the Mobile Edge
Computing paradigm.

References

1. European Telecommunications Standards Institute (2014). Mobile-Edge Computing –
Introductory Technical White Paper. Retrieved from https://portal.etsi.org/Portals/0/TBpages/
MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-
14.pdf.

2. O. Mäkinen, “Streaming at the Edge: Local Service Concepts Utilizing Mobile Edge Comput-
ing,” in 2015 9thInternational Conference on Next Generation Mobile Applications, Services,
and Technologies, 1–6, 2015.

3. M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J.
A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher,
C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai botnet,” in
26thUSENIX Conference on Security Symposium, 1093–1110, 2017.

4. S. Weagle, “Financial Impact of Mirai DDoS Attack on Dyn Revealed in New Data”.
Retrieved from https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-attack-on-
dyn-revealed-in-new-data.html.

https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-attack-on-dyn-revealed-in-new-data.html

Evaluation of Collaborative Intrusion Detection System Architectures. . . 383

5. F. Lin, Y. Zhou, X. An, I. You, and K. R. Choo, “Fair Resource Allocation in an Intrusion-
Detection System for Edge Computing: Ensuring the Security of Internet of Things Devices,”
in IEEE Consumer Electronics Magazine, 45–50, 2018.

6. R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, Fog et al.: A survey and
analysis of security threats and challenges,” in Future Generation Computer Systems, 680–
698, 2018.

7. K. Sha, A. Yang, W. Wei, and S. Davari, “A survey of edge computing based designs for IoT
security,” in Digital Communications and Networks, 2019.

8. A. Mtibaa, K. Harras, H. Alnuweiri, “Friend or Foe? Detecting and Isolating Malicious Nodes
in Mobile Edge Computing Platforms,” in 2015 IEEE 7thInternational Conference on Cloud
Computing Technology and Science, 42–49, 2015.

9. S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The Extended Cloud: Review and
Analysis of Mobile Edge Computing and Fog From a Security and Resilience Perspective,” in
IEEE Journal on Selected Areas in Communications, 35(11), 2586–2595, 2017.

10. S. Raponi, M. Caprolu, and R. D. Pietro, “Intrusion Detection at the Network Edge: Solutions,
Limitations, and Future Directions,” in Zhang, T., Wei., J., Zhang, L. J. (eds) Edge Computing –
EDGE 2019. 59–75, 2019.

11. R. Roman, R. Rios, J. A. Onieva, J. Lopez., “Immune System for the Internet of Things Using
Edge Technologies,” in IEEE Internet of Things Journal, 6(3), 4774–4781, 2019.

12. R. Liao, H. Wen, J. Wu, F. Pan, A. Xu, H. Song, F. Xie, and Y. Jiang, “Security Enhancement for
Mobile Edge Computing Through Physical Layer Authentication,” in IEEE Access, 116390–
116401, 2019.

13. N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge Computing: A Survey,” in
IEEE Internet of Things Journal, 5(1), 450–465, 2018.

14. Y. Wang, L. Xie, W. Li, W. Meng, and J. Li, A Privacy-Preserving Framework for Collaborative
Intrusion Detection Networks Through Fog Computing,” in S. Wen, W. Wu, & A. Castiglione
(Eds.), International Symposium on Cyberspace Safety and Security (pp. 267–279). Springer,
Cham, 2017.

15. W. Meng, Y. Wang, W. Li., Z. Liu, J. Li., and C. W. Probst, “Enhancing Intelligent Alarm
Reduction for Distributed Intrusion Detection Systems via Edge Computing,” in W. Susilo,
G. Yang (Eds.), Australasian Conference on Information Security and Privacy (pp. 759–767).
Springer, Cham, 2018.

16. R. Sharma, C. A. Chan, C. Leckie, “Evaluation of Centralised vs Distributed Collaborative
Intrusion Detection Systems in Multi-Access Edge Computing,” in IFIP Networking 2020,
2020.

17. E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, M. Fischer, “Taxonomy and Survey of
Collaborative Intrusion Detection” in ACM Computing Surveys (CSUR), 47(4), 55, 2015.

18. A. Blaise, M. Bouet, S. Secci, V. Conan, “Split-and-Merge: Detection Unknown Botnets,” in
2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 153–161,
2019.

19. S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlain, C. Ho, K. N. Levitt, B.
Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur, “DIDS (Distributed Intrusion
Detection System) – motivation, architecture, and an early prototype,” in 14thNational
Computer Security Conference, 167–176, 1997.

20. C. V. Zhou, S. Karunasekara, and C. Leckie, “Evaluation of a Decentralised Architecture for
Large Scale Collaborative Intrusion Detection,” in 10thIFIP/IEEE International Symposium on
Integrated Network Management, 80–89, 2007.

21. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” in USENIX
Annual Technical Conference, 10–10, 2004.

22. S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenkar, I. Stoica, and H. Yu,
“OpenDHT: a public DHT service and its uses,” in Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM ‘05), 73–84, 2005.

23. B. Iglewicz, and D. Hoaglin (1993). How to detect and handle outliers The ASQC
Basic References in Quality Control: Statistical Techniques. [Online] Available at: https://
hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11587.pdf

https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11587.pdf

384 R. Sharma et al.

24. M. M. Shurman, and M. K. Aljarah, “Collaborative execution of distributed mobile and
IoT applications running at the edge,” in 2017 International Conference on Electrical and
Computing Technologies and Applications (ICECTA), 1–5, 2017.

25. A. Reiter, B. Prūnster, and T. Zefferer, “Hybrid Mobile Edge Computing: Unleashing the
Full Potential of Edge Computing in Mobile Device Use Cases,” in 2017 17thIEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 935–944, 2017.

26. The CAIDA UCSD “Three Days of Conficker Traffic from the UCSD Network Telescope”
Dataset: http://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml

27. L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile computing,”
in IEEE INFOCOM 2016 – The 35thAnnual IEEE International Conference on Computer
Communications, 1–9, 2016.

28. A. Kiani, and N. Ansari, “Toward Hierarchical Mobile Edge Computing: An Auction-Based
Profit Maximization Approach,” in IEEE Internet of Things Journal, 2082–2091, 2017.

29. C. Song, M. Zhang, Y. Zhan, D. Wang, L. Guan, W. Liu, L. Zhang, and S. Xu, “Hierarchical
edge cloud enabling network slicing for 5G optical fronthaul,” in IEEE/OSA Journal of Optical
Communications and Networking, B60–B70, 2019.

30. P. Maymounkov, and D. Mazieres, “Kademlia: A peer-to-peer information system based on the
xor metric,” in International Workshop on Peer-to-Peer Systems, 53–65, 2002.

31. Savoirfairelinux (2014). savoirfairelinux/opendht. [Online] Available at: https://github.com/
savoirfairelinux/opendht.

32. J. P. Martin, A. Kandasamy, K. Chandrasekaran, and C. T. Joseph, “Elucidating the challenges
for the praxis of fog computing: An aspect-based study,” in International Journal of Commu-
nication Systems, 32(7), p.e3926, 2019.

33. B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulas, “Challenges and
opportunities in edge computing,” in 2016 IEEE International Conference on Smart Cloud
(SmartCloud), 20–26, 2016.

34. H. Yang, Y. Liang, J. Yuan, Q. Yao, A. Yu, and J. Zhang, “Distributed Blockchain-Based
Trusted Multidomain Collaboration for Mobile Edge Computing in 5G and Beyond,” in IEEE
Transactions on Industrial Informatics, 2020.

35. D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Blockchain for 5G and beyond
networks: A state of the art survey,” in Journal of Network and Computer Applications, 102693,
2020.

36. P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key technolo-
gies, applications, and open issues,” in Journal of Network and Computer Applications, 27–42,
2017.

37. A. Samir, and C. Pahl, “Self-Adaptive Healing for Containerized Cluster Architectures with
Hidden Markov Models,” in 2019 Fourth International Conference on Fog and Mobile Edge
Computing (FMEC), 68–73, 2019.

38. B. Magableh, and M. Almiani, “A Self Healing Microservices Architecture: A Case Study in
Docker Swarm Cluster,” in International Conference on Advanced Information Networking
and Applications, 846–858, 2019.

39. A. Samir, N. E. Ioini, I. Fronza, H. R. Barzegar, V. T. Le, and C. Pahl, “Anomaly Detection and
Analysis for Reliability Management in Clustered Container Architectures,” in International
Journal on Advances in Systems and Measurements, 247–264, 2020.

40. V. K. Singh, E. Vaughan, and J. Rivera, “SHARP-Net: Platform for Self-Healing and Attack
Resilient PMU Networks,” in IEEE Power and Energy Society Innovative Smart Grid
Technologies Conference (ISGT), 1–5, 2020.

41. S. Al-Rubaye, J. Rodriguez, A. Al-Dulaimi, S. Mumtaz, and J. J. P. C. Rodrigues, “Enabling
Digital Grid for Industrial Revolution: Self-Healing Cyber Resilient Platform,” in IEEE
Network, 219–225, 2020.

http://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml
https://github.com/savoirfairelinux/opendht

Part III
Applications

Edge Computing Based Conceptual
Framework for Smart Health Care
Applications Using Z-Wave
and Homebased Wireless Sensor Network

Shouvik Chakraborty, Kalyani Mali, and Sankhadeep Chatterjee

Abstract Rapid advancement of the technology makes the system more reliable
and the outcome from the system produces in a timely fashion. In this work,
a conceptual framework for biomedical image analysis is considered which is
based on wireless sensor networks. Here, Z-Wave based wireless biomedical image
analysis system is analyzed that can be implemented to provide a concrete WSN
based health care system. This work can serve as a foundation to the real-life remote
health care system based on Z-Wave. Periodic study of different patients is possible
from their own home which can help the physicians to take appropriate decisions in
stipulated time that will certainly accelerate the physical and mental improvement.
This paper studies the concepts of wireless biomedical image monitoring systems
along with their features. In this context mobile edge computing can play a vital role
because biomedical image monitoring systems needs to deal with huge amount of
data. In general, image data consists of large volume of information. Storage and
processing of such a huge amount of data is really a headache. Technologies based
on mobile edge computing allows us to save valuable resources in the processing
nodes and suitable to handle the resource-hungry applications. Various aspects of
the WSN healthcare systems are analyzed and future directions are reported and
analyzed in a comprehensive way so that this work will be beneficial for the society
and can be extended towards real life implementation.

Keywords Health information management · Wireless sensor networks · Public
healthcare · Biomedical imaging · Biomedical communication

S. Chakraborty · K. Mali
University of Kalyani, Nadia, West Bengal, India

S. Chatterjee (�)
University of Engineering & Management, Kolkata, West Bengal, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_16

387

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-69893-5_16

388 S. Chakraborty et al.

1 Introduction

Biomedical image analysis is one of the most popular and necessary non-invasive
tool for monitoring health and inevitable to make appropriate diagnosis for many
diseases [1–3]. Recent development in the field of medical imaging makes this
domain highly useful and most of the diagnostic systems have high dependency
on the biomedical image processing tools [2, 4–6]. Modern healthcare industry
achieves high reliability based on the advanced medical image diagnostic methods
that can be employed to study various diseases and can be helpful to find a
pathway towards solutions. Several components of the health care industry use
image analysis [7–11] technologies directly or indirectly to enhance the efficiency
of various fields like neuro-medicines, orthopedics, gynecology etc. [12].

Lots of research has been carried out in this domain addressing several issues.
Section 2 describes some of the related works. Different works are focused on
various section of the biomedical image analysis process [13–20]. It includes image
acquisition, enhancement and noise removal [6], segmentation [21] and feature
extraction [22], decision making process etc. [5, 23, 24]. The main target of these
systems is to make the life of the common people easier by bringing the advantages
of the sophisticated technologies in affordable price [25].

Wearable technologies have changed the face of the healthcare automation. It
can help physicians to observe a human body continuously that was not possible
before some decades. It can reveal some precious information about the living body
that can help in further diagnosis [26–28]. Sometimes it is unavoidable and can
save the life of different patients by continuously recording different parameters.
It is a revolution in the field of medical imaging that is changing the life and
improves the impact of the automation. The combined effort of Internet of things
(IoT), Wireless technologies, wearable technologies, artificial intelligence, machine
learning, big data and some other technologies is changing and forwarding the
biomedical imaging industry towards a new direction [29]. Major advancements of
the modern technologies can be observed in various sectors like spacecraft, vehicles,
software and hardware industry. But it is true that biomedical imaging is no lagging
behind. Besides the fact that many thing cannot be explored from the biomedical
imaging but the advantages that can be obtained from it cannot be ignored. In recent
days, researchers are interested about various virtual environments that can make
the task of a physician easier.

Wearable technologies are not very widely used for biomedical imaging and
needs to be improved in different ways. This technology and trend is still in its
inception phase for the domain of biomedical imaging and analysis. There is a
lot of scope in this filed in near future and it can be applied to predict various
diseases in advance and has the power to transform the radiology by boosting the
analysis tools that can enhance conventional treatment [30]. Moreover, high quality
of the acquired data and a platform for its efficient automated analysis is required
to precisely analyze the condition of the patient in real-time [31]. Various tools
[32, 33] have been invented and available in market and for consumers which are

Edge Computing Based Conceptual Framework for Smart Health Care. . . 389

may not be directly adapted for health care applications but can be useful in health
care applications. Some of the research works can be found in literature that uses
these tools directly or indirectly for healthcare applications. For example, these
products are used in neuro-navigation [34], surgical and non-surgical fields [35, 36],
neurology [37] etc. These kinds of wearable devices can be used with association
with the radiological diagnostic tools. In general, most of the available wearable
devices are not directly useful for medical applications. European union uses a
definition for “medical” devices that can be found in [38].

Wearable devices can help physicians to study various conditions with the help
of the augmented reality [39]. In general, biomedical images can be used as an
alternative and effective tool for virtual interventional study where holographic
projection is made by capturing important interest points. Good quality images can
ensure the personalized care and virtual reality can explore several perspectives that
may not be visible by the human eye. Design of remote monitoring systems for
biomedical images is one of the growing research topics and has various prospects.
It is not always possible to move a large clinical device to a remote location and
therefore home-based healthcare and monitoring with the help of conventional
appliances is also a troublesome and sometimes not possible at all. So, some devices
are invented to give the facility and comfort to the user to wear and transmit the
images with the application of wireless sensor networks. It can also be incorporated
with the smart home concept [40] with some modifications that can help in further
advancement. The collected signals are sent to the local hub and then transmitted to
the central server which is generally located in hospital or monitoring station. The
signals can be analyzed centrally or in a distributive environment but the results can
be monitored centrally and more importantly patients can sit in their own home.
Due to the rapid advancement in the field of sensors and medical imaging, it is
possible to build such wireless technologies. Moreover, with the growth in artificial
intelligence and development of various machine learning based tools, it is possible
to generate automated alerts by analyzing real-time data and give some prediction
based on previous history of the patient that can reduce the task of the physicians
and can save some precious life. Personalized care with less cost is one of the major
advantages of these systems.

In this work, Z-Wave is considered for the wireless communication purpose. In
general, zigbee, Z-Wave, Bluetooth etc. are more or less similar. However, in case
of interoperability, Z-Wave outperforms the Zigbee or Bluetooth and proven to be
run smooth [41]. It is because Z-Wave is standardized by private organization and
it is guaranteed that every device can communicate with one another. Some recent
developments made the Bluetooth and zigbee interoperable to some extent. Z-Wave
does not interfere with the other devices and works very fast [42]. Moreover the
signal strength of Z-Wave is higher than Bluetooth [43]. Near about 1.5 k products
are running currently using Z-Wave [42]. Z-Wave is widely used because unlike
zigbee or Bluetooth, Z-Wave alliance [44] makes it certain that all devices follow
some standard set of rules and definitions which makes it interoperable which is
highly desirable in remote health care systems and these property makes Z-Wave
more suitable than zigbee or bluetooth. Z-wave uses very low energy radio waves

390 S. Chakraborty et al.

for communication that in turn reduces the power consumption [45]. This work
is focused to develop remote biomedical image analysis system using wireless
sensor networks with the help of Z-Wave and smart home concept to make the
biomedical image analysis process simpler. Properties and other advantages of using
Z-Wave is illustrated in Sect. 3. Comparison of Z-Wave with some other standard
technologies are given in Table 1. However, Z-wave plus can also be adopted in
place of traditional Z-wave.

Typically, every industry requires sophisticated methods for real-time data
analysis. The availability of important and critical information in real-time is one of
prime importance for almost every industry. It certainly helps in their productivity.
But, when we are talking about the healthcare industry, the availability of critical
information at an appropriate time is highly essential and it can make a difference
between life and death. Typically cloud-based infrastructures process the data at
some particular distance from the location from where data are being collected.
It has some obvious drawbacks like communication de-lay due to congestion in
bandwidth, poor reliability, etc. Although, we are living in an era of 5G still, these
issues persist and can be well understood when every second count. Moreover,
some security and s are also involved. Mobile edge computing can address this
issue by bringing the data processing approaches closer to the data collection points
by reducing the communication-related overheads. It is helpful to take immediate
actions depending on the processing results without depending on the updation
delays.

The rest of the article is organized as follows: Sect. 2 illuminates the concepts
about Z-Wave and its applications in smart home-based health care monitoring.
Section 3 discusses about the wireless biomedical image analysis system using Z-
Wave. Section 4 gives an overview of the various challenges and future direction of
this work. Section 5 concludes the article.

2 Literature Review

The development of remote healthcare systems is very prominent and gained the
attention of many researchers and scientists. A residential health care monitoring
system is developed in [26] to process ECG signals using existing ECG sensors.
This article reports the concepts and future directions to acquire and process ECG
signals using Zigbee communication network. The study reveals the possibility
of developing a real-world system by using residential wireless sensor network.
A distributed system for remote healthcare is developed by the media laboratory
of Massachusetts Institute of Technology (MIT). The system is based on mobile
communication and known as LiveNet [46]. This system has the capability to
process real-time data using a Linux based personal digital assistant and a sensor
hub. To handle data, a three-layered software architecture is developed which is
capable to efficiently process and transmit real-time data. Another wearable sensor
for remote health monitoring is developed and reported in [47]. It is a wrist-worn

Edge Computing Based Conceptual Framework for Smart Health Care. . . 391

Ta
bl
e
1

C
om

pa
ri

so
n

of
di

ff
er

en
ts

ta
nd

ar
d

w
ir

el
es

s
te

ch
no

lo
gi

es

A
ttr

ib
ut

es
Z

ig
be

e
B

lu
et

oo
th

W
i-

Fi
Z

-W
av

e

D
es

ig
n

fo
cu

s
H

om
e

au
to

m
at

io
n,

sm
ar

t
gr

id
,a

nd
re

m
ot

e
co

nt
ro

l
E

xc
ha

ng
in

g
da

ta
ov

er
sh

or
t

di
st

an
ce

s
C

on
ne

ct
io

n
to

W
L

A
N

fo
r

de
vi

ce
s

W
ir

el
es

s
co

m
m

un
ic

at
io

n
fo

r
ho

m
e

au
to

m
at

io
n

an
d

se
cu

ri
ty

IE
E

E
St

an
da

rd
80

2.
15

.4
80

2.
15

.1
80

2.
11

st
an

da
rd

s
80

2.
15

.4
N

et
w

or
k

Ty
pe

M
es

h
M

es
h

St
ar

M
es

h
N

et
w

or
k

Z
ig

B
ee

B
lu

et
oo

th
W

i-
Fi

Z
-W

av
e

D
is

ta
nc

e
A

pp
ro

xi
m

at
el

y
10

–2
0

m
et

er
s

A
pp

ro
xi

m
at

el
y

10
–1

00
m

et
er

s
20

m
et

er
s

10
0

m
et

er
s

w
ith

no
ob

st
ru

ct
io

ns
M

ax
N

od
es

C
on

ne
ct

ed
65

,5
36

7
R

ou
te

r-
de

pe
nd

en
t

23
2

O
pe

ra
tin

g
B

an
d

2.
4

G
hz

,9
15

M
H

z
an

d
86

8
M

H
z

(l
ic

en
se

-f
re

e
IS

M
ba

nd
)

IS
M

ba
nd

,2
.4

–2
.4

85
G

H
z

2.
4

gH
z

U
H

F
an

d
5

gH
z

SH
F

IS
M

ra
di

o
ba

nd
s

91
5

M
H

z
IS

M
ba

nd
an

d
86

8
M

H
z

R
FI

D
ba

nd

Sp
re

ad
Sp

ec
tr

um
D

ir
ec

tS
eq

ue
nc

e
Sp

re
ad

Sp
ec

tr
um

(D
SS

S)
A

da
pt

iv
e

Fr
eq

ue
nc

y-
ho

pp
in

g
sp

re
ad

sp
ec

tr
um

(A
FH

)
D

ir
ec

t-
se

qu
en

ce
sp

re
ad

sp
ec

tr
um

(D
SS

S)
D

ir
ec

ts
eq

ue
nc

e
sp

re
ad

sp
ec

tr
um

(D
SS

S)
T

hr
ou

gh
pu

t
11

0
kb

ps
m

ax
im

um
24

M
bi

t/s
90

0
M

bp
s

40
kb

it/
s

D
at

a
M

on
ito

ri
ng

an
d

co
nt

ro
ld

at
a

E
xc

ha
ng

in
g

da
ta

T
ra

ns
po

rt
in

g
da

ta
M

on
ito

ri
ng

an
d

co
nt

ro
ld

at
a

V
oi

ce
C

ap
ab

le
Y

es
Y

es
Y

es
Y

es
Se

cu
ri

ty
A

E
S

en
cr

yp
tio

n,
ci

ph
er

bl
oc

k
ch

ai
ni

ng
m

es
sa

ge
au

th
en

tic
at

io
n

co
de

C
on

fid
en

tia
lit

y,
au

th
en

tic
at

io
n

an
d

ke
y

de
ri

va
tio

n
W

i-
Fi

Pr
ot

ec
te

d
A

cc
es

s
en

cr
yp

tio
n

(W
PA

2)
A

E
S-

en
cr

yp
te

d

Po
w

er
C

on
su

m
pt

io
n

L
ow

L
ow

H
ig

h
L

ow
M

od
ul

at
io

n
Q

ua
dr

at
ur

e
ph

as
e-

sh
if

t
ke

yi
ng

(O
Q

PS
K

)
G

au
ss

ia
n

Fr
eq

ue
nc

y
Sh

if
t

K
ey

in
g

(G
FS

K
)

Q
ua

dr
at

ur
e

Ph
as

e
Sh

if
t

K
ey

in
g

(Q
PS

K
)

G
au

ss
ia

n
fr

eq
ue

nc
y

sh
if

t
ke

yi
ng

(G
FS

K
)

392 S. Chakraborty et al.

device can measure body temperature, blood pressure, ECG etc. This project is
named as AMON and is sponsored by EU FP5 IST program. A physiological
parameter screening device is proposed in [48] which is based on a wireless
telephone, a GPS device and a biomedical examination device. This device can
monitor several parameters like blood pressure, temperature etc. This device uses
radio frequency which is obsolete and the device is too bulky.

Another remote health care and monitoring system is proposed in [49]. This
system is known as LifeGuard and it is mainly used for space related applications.
This device can measure heart rate, oxygen level etc. and can record different
parameters in data card. It can store data up to 9 h. The collected data are transmitted
via satellites. A cell phone based ECG monitoring system is proposed in [50]. A
mobile based physiological data monitoring system is proposed in [51]. This device
uses Bluetooth sensors to collect data and transmits it using GPRS system. This
wearable system is can detect abnormal patterns from the ECG signal by using
machine learning methods. A new approach is proposed in to track the status
of the brain. It can collect and record various parameters like oxygen level, rate
of respiration etc. and store it on a storage card. The data is transmitted using
a Bluetooth to a home personal computer and then the data is transmitted to a
local medical hub. This device is not very suitable to be worn because of its wired
connectivity between different modules. An another approach for ECH monitoring
is proposed in [52]. In this work ECG signals are processed by a personal digital
assistant. Signals are continuously transmitted by the ECG sensors. This system can
detect arrhythmia symptoms with more than 99% accuracy. A medical hub can be
informed with some significant parameters which are processed and transmitted by
the hand-held device using GPRS so that doctors can take necessary actions.

Several other wearable devices and technologies are available using which
remote health care systems can be established. Smart textiles based frameworks
are proposed in some articles [53–58] where bio-sensors are incorporated with the
garments. A remote health care system can also comprise of some small nodes
with wireless transmission capability (known as motes). Various researches [59–63]
reports the efficiency and application of the mote based wireless sensor networks in
remote healthcare. Motes creates a body area network (BAN) [64] that collects data
about one or more than parameter and transmits it to a central hub. Some other real-
time patient monitoring systems are discussed in [65]. In this work, a comprehensive
collection of IoT based healthcare system is presented. Apart from this article also
discusses about the fog computing based remote healthcare systems. A mobile and
handheld devices based remote health monitoring system is designed in [66]. Four
different parameters i.e. ECG, pulse rate, oxygen saturation, and the temperature of
the body is monitored using a mobile application in IoT environment. In this work,
the Arduino microcontroller is used. A comprehensive study on IoT based smart
health care system is presented in [67, 68]. Different applications of the IoT based
infrastructures in smart healthcare monitoring systems is presented in this work
that is beneficial to understand the recent advancements in this field. A solution for
smart and remote healthcare systems based on mobile edge computing is presented
in [69]. In this work, internet of medical things environment is used to provide

Edge Computing Based Conceptual Framework for Smart Health Care. . . 393

a smart healthcare solution. A multiclass edge computing solution is presented in
[70]. This approach is a solution for the energy efficient smart healthcare systems.
This approach is named as s-health and this approach is efficient enough to adopt
according to specific applications or data. A comprehensive overview of the Z-wave
based smart healthcare infrastructure is presented in [71–74].

In this work, a concept is presented to process biomedical image as a part of
remote healthcare system using Z-Wave. Magnetoencephalography is used as a tool
for demonstrating the concept of the biomedical image analysis framework coupled
with home based wireless sensor network that can be implemented in reality. This
work shows a new dimension to the remote health care industry by providing a
concept of real-time biomedical image processing system.

3 Z-Wave Based Smart Homes and Their Application
in Health Care

Smart home-based health care system is one of the emerging trends and has huge
prospect in future. These types of systems are based on wireless networks and
wearable devices that can take some input from the body. In case of biomedical
imaging devices, it can continuously take images of different organs and sends it to
the central hub or node. It can be beneficial in several situations like, wearable head-
mounted devices can continuously scan the head and send some scanned images
that can be useful to monitor head injuries and can predict different diseases like
strokes and can provide quick response and treatment. Various applications of the
smart home-based systems are found in the literature. In includes energy control and
monitoring [75, 76], home control and automation [77], controlling and monitoring
environmental issues [78], home area networks [40, 79], wireless device control [80,
81], integration and collaboration of different devices [82–86]. Smart home based
frameworks also support some types of robots to perform different jobs [21, 87, 88].

3.1 Architecture and Illustration of the Monitoring System

Wearable biomedical imaging devices can scan different parts of the body but the
most popular type of wearable scanning device is used for cognitive neuroscience.
Several types of applications include MRI, functional neuro-imaging like mag-
netoencephalography etc. To illustrate the system, the magnetoencephalography
based wearable system is considered. It helps in the understanding of the functional
behavior of certain parts of the brain and the relationship with different segments
[89].

394 S. Chakraborty et al.

3.2 Basics of Magnetoencephalography

Magnetoencephalography (abbreviated as MEG) is based on the magnetic fields
those are generated in the brain due to the natural electrical activity of the brain.
There are several applications of the MEG process starting from simple experiments
to detect several abnormalities. It is based on the magneto meter that can sense the
magnetic activity which is occurring in the brain [90].

To understand the MEG signals, we have to start from the basics of magnetism.
Let the electric field E that has been generated due to the charge density ρ and the
magnetic field B is generated by the movement of the charge. The current density is
denoted by J. Now based on these parameters we have four Eqs. (1) to (4) namely
Faraday’s equation, the Ampere’s circuital law including Maxwell’s correction,
Gauss’s general law and Gauss’s law for magnetism respectively.

∇XE = −∂B

∂t
(1)

∇XB = μ0J + μ0ε0
∂E

∂t
(2)

∇ • E = ρ

ε0
(3)

∇ • B = 0 (4)

In the above equations, ε0 denotes the permittivity of the free space and μ0 denotes
the magnetic permeability. These four equations are considered as the fundamental
equations that describes functionality and the generation process of the electric
and the magnetic fields from the charge and current density. The presence of the
time derivatives in the above equations describes the fact that the magnetic field
is generated from the varying electric field and electric field is generated from the
varying magnetic field. These four basic equations can be used to form the equation
that describes the propagation of electric and magnetic fields [91]. The propagation
speed of these waves is similar to light. The electromagnetic wave equation is given
in (5) and (6).

(
v2
phase∇2 − ∂2

∂t2

)
E = 0 (5)

(
v2
phase∇2 − ∂2

∂t2

)
B = 0 (6)

Edge Computing Based Conceptual Framework for Smart Health Care. . . 395

Here the term vphase is the phase velocity which is given (7). It similar to the
speed of light. The symbol ∇2 denotes the Laplace operator.

vphase = 1√
με

(7)

This is the basic concept behind the MEG signals generated due to the elec-
tromagnetic activity in the brain which can be measured from outside of the brain.
These waves are generated from the neuronal sources and propagates with the speed
of light [89]. The wearable devices are helpful in detecting these changes (i.e.
change in magnetic and electric fields) instantly because these devices are placed
close to the head and the speed of these signals are very fast. It is beneficial over
other methods like PET, MRI etc. because these methods depend on the change of
the body fluids or other substances and give indirect response of the neuro-functions.
Hence MEG signals are more prominent and give better results [92].

3.3 Basic Architecture of the Z-Wave

Z-Wave is one of the popular protocols which is generally used for wireless commu-
nication. It is widely applied in home automation systems. Z-Wave architecture is
based on the mesh topology that uses radio waves to communicate among different
appliances inside the home. It uses low energy radio waves and consumes very less
power. It provides wireless control over various devices i.e. different mobile devices
like smart phones, keyfobs (a kind of wireless keypad) and can be used to control
several other devices remotely. It uses a Z-Wave gateway which acts as the central
device that manages the data collected from the internal network and communicate
with the outside world. Different systems support Z-Wave protocol that makes it
suitable for various applications. This technology was developed by Zensys in 2001.
The range of the operational frequency is 800–900 MHz and it uses part 15 ISM
band for communication. It has near about 100 meters operational range.

One of the important features of the Z-Wave protocol is that it uses mesh
topology. One device can communicate to another device directly if the second
device is within the range. If the second device is out of the operational range then
the first device can use one or more than one intermediate node to communicate
with the desired device. Moreover, when a particular device is communicating
with another device, it can send some control signal to other devices because one
particular device is connected directly to all other devices. In 2016, a public version
of the interoperability layer has been published that makes several things easier for
the developers. Z-Wave uses Z/IP technology to transmit Z-Wave signals over IP
network.

The Z-Wave protocol has been modified and a new upgraded protocol called
Z-Wave Plus [93] is published in 2013. Z-Wave provides reliable communication
and functional behavior that makes it suitable for used in several wireless devices

396 S. Chakraborty et al.

and sensor-based communications. The Z-Wave provides a low-latency architecture
that is helpful in wireless data transmission. It can transmit small data packets with
the rate of transmission up to 100 kilo bits/second. IEEE 802.11 architecture (i.e.
WiFi) is used to handle higher data rate. In contrast to that, Z-Wave can effectively
control the communication among sensor-based devices with a throughput of
9.6 kilobits/second. The throughput is improved in new chips and it can be up to
40 kilobits/second. It uses Manchester channel encoding modulation technique and
it has the capability to take four hops between any two nodes. The distance between
two nodes must be within 30 meters. The underlying band (i.e. Part 15 ISM band)
does not interfere with other standard technologies like Bluetooth, WiFi etc. The
physical and media access control layers have been included in the G.9959 standard
[94] by the international telecommunication union. Data rate can be 9600 bits per
second and 40 kilobits per second. The output power can be 1 mW or 0 dBm.

Z-Wave uses source routing i.e. the sending station can partially or completely
specify the route that should be followed by the packet. It is helpful for a certain
node to explore all paths using which it can reach the host. So it uses a mesh network
topology with source routing. It is based on the wireless ad-hoc network architecture
i.e. it does not depend on the predefined network resources like switches or routers
in a wired network. So, here the decision about selecting the node that forwards the
data is made dynamically. It depends on the connectivity and the selection of the
routing method. The advantage of these kind of systems is the robustness and less
cost. There is no need to install huge infrastructure and single point failure can be
recovered. The Z-Wave can transmit a data packet to a distance much greater than
the range of the radio wave using the intermediate hops. But it can introduce some
delay in the overall transmission.

For every Z-Wave network, one network id is assigned. Similarly, for every node,
one node id is assigned. Network id consist of 32 bits and it is same for all nodes in
a logical Z-Wave network. One node is assigned with a node id of length 8 bits and
it must be unique inside a network.

Z-Wave technology tries to optimize the battery power by remaining in the power
saving state. It only consumes the power from the battery when it needs to perform
some function. Nodes in the mesh network exploits the walls of the house to reflect
the signal so that less power is consumed to transmit a signal. The hardware chip
that is used for Z-Wave is based on a microcontroller. The clock frequency of the
internal system is 32 MHz. It uses a GisFSk transceiver for communication purposes
that consumes 23 mA power and requires a power supply of 2.2–3.6 volts. It
also provides AES-128 encryption mechanism and supports simultaneous listening.
Nodes in the Z-Wave network provides efficient power management technologies
that helps to increase the battery life. Z-wave can provide large battery life that can
greatly enhance the performance of the overall system [95].

Edge Computing Based Conceptual Framework for Smart Health Care. . . 397

3.4 Evaluation of Z-Wave Based Biomedical Image Analysis
Framework

Biomedical image analysis is considered as the necessary and sometimes inevitable
step for various medical applications. Wearable devices can send continuous signals
that can help to monitor several parameters. Conventional analog systems are
very difficult to use in some situations where continuous monitoring is necessary.
The major problem related with the conventional analog systems is the sensors
are connected via wires to the analog monitoring devices. These systems are
definitely not suitable for continuous monitoring at home. Analog equipment is
not flexible due to the movement constraint. Moreover, sometimes it is necessary
to communicate the images to the expert immediately so that physicians can take
proper action. Analog systems are not suitable for data communication and storage.
So, wireless networks can open a new dimension in the field of biomedical image
analysis. It removes the barrier of the wires that restricts the home-based continuous
monitoring.

Wireless sensor network provides a flexible solution to this problem. Remote
health care and monitoring is possible by using some processing nodes that monitors
and analyze the data transmitted by the sensor nodes. Wireless biomedical sensor
network can be carried by the patient which facilitates the personalized health
care and provides a scalable solution for the smart home-based biomedical image
analysis. In addition to that, local signal processing methods are used to reduce the
amount of data to be transmitted to the main processing node by selecting some
important features from the captured data. It reduces the overhead of transmitting
a huge amount of data to the central hub. Obviously, there is a tradeoff between
the amount of data to be processed and the power consumed by the sensor node.
Transmission of large amount of data consumes more power. Moreover, processing
at sensor nodes also consumes more power. Hence, the decision is dependent on the
designer and completely subjective.

To construct a wireless health care monitoring system, a network of the sensor
nodes must be created. This type of network is called Wireless Body Area Network
(WBAN) [96]. It is based on the Information and Communication Technologies
that can sense and transmit some early stage data that can be helpful in preventing
several diseases [97, 98]. Each node is used to sense different physiological data
continuously. The major advantage of it is that it reduces the frequent visits to the
doctors and save some precious time. It does not restrict the patient from performing
their daily activities [99]. Intelligent systems can be developed to process and
display accurate results [100] by analysis the collected information. This kind of
monitoring systems have some promising scope in near future to construct efficient
biomedical image analysis frameworks. These types of networks are completely
based on the battery and hence the energy efficient network is desirable.

Z-Wave based wireless systems are emerging as one of the latest wireless
standards that provides low power consumption, installation support for many nodes

398 S. Chakraborty et al.

in a single network, longest open-air operational range that makes the Z-Wave
technology suitable for home based smart health care monitoring systems.

3.5 Function of Sensor Nodes in Z-Wave

Sensor nodes play a vital role in acquiring data from different body parts in WBAN.
Sensor nodes are responsible for capturing and processing different signals and
images of different organs. Sensor nodes can perform some initial processing to
reduce the amount of data by selecting important information and features from
the collected data. Sensor nodes can transmit the reduced data to the central hub
by any four transmission methods. Anycast, broadcast, multicast and unicast are
the four modes of transmission that can be used to perform data transmission from
sensor nodes. In case of unicasting method, data are transmitted to one node from
another. It involves less traffic overhead and faster communication. But sometimes,
unicasting may not be suitable. Then the multicasting or broadcasting methods
can be selected. Broadcasting refers to the one to many communication methods.
Multicasting can be one to many or many to many communications. In case of
anycast communication, data are transmitted from a group of nodes to one of the
nearest nodes.

In Z-Wave based transmission of MEG signals, MEG sensors sense the change
in the magnetic field in the brain and forms the image. The sensors are called
magnetometers and it can measure the very small change in the magnetic field (in
the order of femotesla i.e. 10−15 tesla). The sensors are Superconducting Quantum
Interference Devices. Therefore, it is also known as SQUID Magnetometers. These
sensors are placed within the wearable helmet of the patient. It can continuously
sense and form the images from the changing magnetic field. It is one of the non-
invasive biomedical imaging method and Z-Wave based wireless network can make
it more useful for the patients. Not only for MEGs, other wearable imaging methods
can also take the advantages of smart Z-Wave based wireless sensor networks. One
thing should be noted that in case of MEG, the experiment is performed in the
magnetically shielded room. MEG is considered just for the sake of example and
the assumption is that the experiment is performed in the magnetically shielded
rooms only. Z-Wave based module transmits the signal to the nearest hub by finding
the appropriate route. To find the appropriate route, various routing protocols are
used [101]. Some of the popular methods are flat routing, hierarchical routing,
location-based routing, negotiation-based routing, multipath based routing, query-
based routing, QoS based routing, Coherent based routing etc. Here the first three
methods i.e. flat routing, hierarchical routing and location-based routing depends
on the structure of the network. Rest of the methods depends on the underlying
protocol [101]. Periodic data are collected from the sensor unit and useful data are
transmitted by the Z-Wave enabled node.

Z-Wave based nodes uses Radio Frequency (RF) technology for the communica-
tion purpose. RF technology helps to minimize the cost of installation and increase

Edge Computing Based Conceptual Framework for Smart Health Care. . . 399

Fig. 1 Routed singlecast
frame pattern

the communication flexibility [102]. Z-Wave can efficiently cover the whole room or
area using the mesh topology that can use the walls, floors, and ceiling of the room
to transmit and receive the control commands. Optimal route to the destination can
be determined with the help of intermediate nodes in the mesh network. It can reach
some node which is out of the radio range by using intermediate hops. Z-Wave uses
an internet gateway that can be used to personalize the network and user can control
and get the data from anywhere in the world. The general gateway that is used for
this purpose is known as VERA.

There are two types of frames available in the routing layer. These frames types
are applied when the data transmission is performed [102]. These two frame patterns
are illustrated as follows:

Routed singlecast frame pattern: Here, single destination frame is used. It incor-
porates the acknowledgement packet that contains refined information. It is
illustrated in Fig. 1.

Routed acknowledges frame pattern: In this method, no acknowledgement is
transmitted back to the sending station. Here also, single destination frame is
used.

4 Wireless Biomedical Image Analysis System Using Z-Wave

Modern diagnostic and health care industry is highly dependent on the non-invasive
biomedical image analysis systems. Wireless sensors and constituting network is
very much useful for acquiring data from different body parts. This process is
highly dependent on the sensors that can acquire and effectively perform some initial
processing and transmits it to the nearest hub. Several hospitals and medical research

400 S. Chakraborty et al.

institutes can use these data to analyze and take useful decisions. Biomedical
imaging sensors are equipped with embedded software, processing and transmission
units that helps in initial processing and transmission of the collected information.

4.1 Biomedical Image Sensors

In recent years, wearable sensors gained popularity because these sensors are very
useful in different scenarios and frequently used in many biomedical applications.
Wireless sensors are very useful in constructing portable diagnostic tools. Biomed-
ical images are can be collected from various body parts continuously using these
sensors. In this discussion the MEG i.e. Magnetoencephalography is considered for
the explanation of the concept.

In case of portable MEG sensors, patients can wear it in a helmet like device and
allowed for free or natural movement of the head. For portable MEG image sensing
purpose, quantum sensors are used that captures the magnetic activity of the brain
and records the information. This technology allows imaging of the human brain by
detecting the neural electromagnetic activity. These sensors can sense the signals
and construct the 3-dimensional image of the human brain. Some superconducting
sensors are used to place around the head to capture the weak magnetic fields which
are in the range of femotesla. Optically pumped magneto meters are used as the
magnetic field sensors. Now, the earth’s magnetic field have a major impact on
these sensors. The room is basically magnetically shielded but the residual magnetic
field of the earth has significant impact on the optically pumped sensors. These
sensors are consisting of 3 on-board coils. These coils are used to eliminate the static
magnetic field in the cell. The change in the magnetic field can be detected using
the change in the intensity of the transmitted light. Figure 2 is used to demonstrate
the effect of the external magnetic field on the sensors [103].

The external magnetic field is quite large than the neuro-magnetic fields gener-
ated by the electrical activity in the human brain. To overcome this problem, field
nullifying coils are used. Figure 3 demonstrates the placement of the field nullifying
coils [103]. These coils are helpful in reducing the residual magnetic field of the
earth so that the MEG sensors can accurately records the data. Coils are placed in
both the sides of the object. The MEG contour map pattern is shown in Fig. 4 [104].

4.2 Biomedical Image Communication Using Z-Wave

Z-Wave based protocols can consist of two types of devices, one is controller
and other one is slave. Controller devices send some command to the slaves for
execution. Slave nodes generally does not equip with the routing table. It may
contain a snapshot of the network which is nothing but the information about the
network which serves like a map that helps to transmit the data in the network.

Edge Computing Based Conceptual Framework for Smart Health Care. . . 401

Fig. 2 Effect of the external
magnetic field on the
Optically Pumped
Magnetometers sensors

Fig. 3 Placement of the field
nullifying coils

More than one controller can be used for better security and reliability but
only one central controller takes care about the network topology [105]. So, the

402 S. Chakraborty et al.

Fig. 4 The MEG contour map pattern

controllers can be classified in two ways such as primary and secondary. Primary
controllers act as the administrator of the devices whereas secondary controllers
decide the routing table based on the information obtained from the primary
controllers. These controllers can determine the optimal path from the source to the
destination by using the routing table. It also determines the hops required by a data
packet to reach the destination. In standard Z-Wave network, the hop threshold is 5
and the optimal value of the hop is 2 [106]. Direct transmission is always preferable
by the controllers. If the direct transmission is not possible, then the optimal path is
considered for the transmission. The position of different devices must be optimal
so that the efficiency of the system will be maximum. Optimization can be done
with the help of different metaheuristic [1, 107–114] algorithms. Moreover, the load
distribution should be done using efficient algorithms [115] for optimal results.

Z-Wave architecture is based on four broad layers as shown in Fig. 5 and the
layers are described below in brief.

A. Media Access Control (MAC) Layer: The MAC layer is responsible for the
radio frequency (RF) based communication. RF medium is controlled by the
wireless equipment. Generally, controllers are completely independent of the RF
medium. Figure 6 [116] gives an overview of the Z-Wave data transmission in
different layers. In general, the encoding scheme that is used for the data stream
is the Manchester encoding. Generally, the data stream is consisting of encoded
digits, coherent signals and preamble. In the MAC layer, the data are fragmented
into frames of length 8 bits each. These frames are forwarded in the network by
the MAC layer. These data are coded and transmitted like a unidirectional flow
of the electric charges

Edge Computing Based Conceptual Framework for Smart Health Care. . . 403

Fig. 5 Layered architecture
of Z-Wave Application

Routing

Transfer

MAC

Fig. 6 Data in Z-Wave layers

Fig. 7 Collision avoidance mechanism in Z-Wave

The MAC layer provides a collision avoidance mechanism. It increases the
reliability of the total system by reducing the data loss. Transmission of the data
is initiated only when the channel is vacant and there is no other competing
nodes. It there is any other node(s) which is attempting to send data then, the
data transmission is restrained and delayed for the random amount of time. It also
provides data retransmission mechanism which is optional in nature. Retransmission
method is based on the acknowledgements send by the receiver. One particular node
can be in the receiving mode or in the sending mode. If a particular node is currently
receiving data then there must be some delay before the data transmission by the
same node [36]. The collision avoidance technique is somewhat complex for the
wireless networks. Figure 7 [36] demonstrates the collision avoidance technique.

B. Transfer Layer: This layer acts like an administrator of two sequential nodes.
It monitors retransmission, error detection, connection related issues, acknowl-
edgement services and the error free transmission of the data. This layer contains
four basic formats of the frames. These formats are used to transmit different
commands of the Z-Wave in a wireless network. The four types of frames are: (i)

404 S. Chakraborty et al.

Fig. 8 Z-Wave frame format

Singlecast frame pattern, (ii) Transfer acknowledge frame pattern, (iii) Multicast
frame pattern, (iv) Broadcast frame pattern. Figure 8 [102] shows the basic
frame pattern in this layer.

(i) Singlecast frame pattern: In this case, the frames are transmitted to the
single host only. After receiving a frame, the recipient sends an acknowl-
edgement to the sender. If the acknowledgement is not received by the
sender then the sender retransmit the frame. To avoid the collision, sender
waits for some time and then retransmit the frame again.

(ii) Transfer acknowledge frame pattern: It is one of the singlecast frame
pattern where the frame may not be transmitted with the acknowledgement
service.

(iii) Multicast frame pattern: It is one kind of one-to-many communication.
One device can send a frame to many devices. No acknowledgement is
returned to the sender. Hence it cannot be used for reliable communication.
To achieve reliability, one singlecast frame is transmitted.

(iv) Broadcast frame pattern: In this type of frame pattern, the broadcasted
frame is received by the devices in the home area network (HAN). No
acknowledgement is used in this case and hence, to achieve reliability, we
need to transmit single cast frames following the broadcast frames

C. Routing Layer: The main job of this layer is to forward the frames. It helps in
the communication throughout the Z-Wave based network. It helps to forward
frames from one node to another. Forwarding procedure involves the controller
and slave nodes where these nodes are placed at certain positions.

Edge Computing Based Conceptual Framework for Smart Health Care. . . 405

Routing layer is also responsible for accumulating various information from
different nodes which are used to construct and maintain the routing table at the
primary controller. This information is helpful in determining the optimal path
from source to destination. It is not a very easy task because of the movement
of the nodes. Primary controller takes all the responsibility and route the packet
using the best possible path.

D. Application Layer: This layer provides a mechanism using which the users
and other devices can communicate with the Z-Wave network. It receives and
distributes the payload, decodes and executes different commands using the
received parameters and performs some other tasks. The frame pattern of the
application layer can be visualized from the Fig. 6. Application commands helps
to interact other devices and perform different functions.

4.3 Personalized Healthcare Systems Using Z-Wave Based
WSN

Personalized home-based health monitoring systems are very effective to prevent
different diseases. Personalized health care systems includes ECG monitoring,
blood pressure monitoring, continuous image analysis etc. [117]. Wireless sensor
networks can be very helpful in this context. WSN can communicate data from
one node to another without the help of any wires. Hence, the patients can be
monitored from their homes and need not to be admitted in the hospitals because
of the early signals. Various researches are going on to improve the home based
health monitoring systems [118, 119]. Different technologies are available that can
be used to transmit data in WSN. Some of the popular technologies are Bluetooth,
Z-Wave, Zigbee, Radio-frequency identification (RFID), WiFi etc. Comparison of
Z-Wave with some other standard technologies are given in Table 1.

Z-Wave is one of the major competitors of Zigbee protocol. Z-Wave based
wireless networks have several advantages. Z-Wave based systems are inexpensive,
scalable and battery efficient. It can cover up to 100 meters without any obstruction.
None of the standard wireless methods can reach more than 100 meters. It possesses
low latency which reduces the bottleneck. One of the major drawbacks of using Z-
wave is the number of nodes that can be connected is lower than the zigbee network
which limits the large-scale implementation.

One of the foremost advantages of Z-Wave technology is its backward compat-
ibility. This feature is not there in Zigbee. All of the older versions are compatible
to the newer ones which is a great advantage from the users’ point of view. Z-
Wave is equipped with AES encryption method which provides a secure and reliable
connectivity [120]. Security can also be imposed and evaluated on the image
explicitly [121–128]. Although the Bluetooth technology is energy efficient and
gives better performance in terms of interference than Zigbee, WiFi and Z-Wave.
But it cannot be used in congested areas. Hence it is not applicable in clinical

406 S. Chakraborty et al.

applications. The data rate of the Z-Wave protocol is lesser than the Zigbee. It is
another issue associated with the Z-Wave protocol. But, due to several advantages
(as discussed earlier), Z-Wave is adapted in this work as one of the reliable protocols
for smart wireless image analysis systems.

4.4 Biomedical Image Processing Method

The image processing algorithm is one of the most important part and should be
designed carefully. The image processing algorithm should be optimized in such
a way so that it can take optimum power and provide accurate results in a timely
manner. Some of the recently developed biomedical image analysis algorithms are
[129–131]. Stipulated resources make the scenario harder because complex image
analysis algorithms may not be suitable in these kinds of framework. Moreover, the
image preprocessing, feature extraction, classification and other required modules
of the image analysis framework should be optimized and tested to get better
performance. Medical image analysis algorithm should take care about the modality,
noise present in the image, scale, zoom and other features, otherwise the model
can deliver erroneous results. Therefore, careful investigation is required before
deploying any method for real life implementation otherwise it can produce some
drastic side effects to the health of the patient such as, wrong treatment can lead
to many issues including death. Moreover, it can reduce the faith on the automated
healthcare systems.

5 Challenges and Future Works

There is several healthcare equipment which are available and frequently used with
both wired and wireless technologies. One of the major problems associated with
these devices is the compatibility related issues. Moreover, those devices that uses
cables or some guided media for communication are generally not easily portable.
So, the systems based on the wired connections are not useful in most of the
situations specifically when the home-based smart health care systems are to be
implemented.

Z-Wave provides the advantage of using wireless sensor networks and provides a
feasible way to communicate with different devices that makes the system portable
and helps in establishing a low-power, home based healthcare monitoring system.
It is reliable and can be used for continuous monitoring of different parameters
associated with patients where patients can pursue their regular jobs or can stay
in their comfort zone. Z-Wave based networks can be simply installed and the
devices or nodes can be easily added and removed. Remote control over the network
makes the data collection and analysis easier. This technology provides affordable
solutions for various other healthcare systems. Interoperability is one of the major

Edge Computing Based Conceptual Framework for Smart Health Care. . . 407

advantage of the Z-Wave based systems. Different devices can be connected in IoT
domain using Z-Wave and their computational power can be exploited. Z-Wave uses
AES-128 bits encryption for its security. It requires previous knowledge to prevent
unauthorized access. It works on radio frequency and can be accessed by anyone
from anywhere. Moreover, the number of nodes (i.e. 232) that can be connected are
much lesser than the Zigbee networks. The data transmission speed is also lesser
than the Zigbee network.

The operational band (i.e. 915 MHz ISM band and 868 MHz RFID band) of the
Z-Wave provides a wider range of communication than other competitive protocols.
The use of sub-GHz band improves the reliability and suffers with less interference.
The data rate is not very satisfactory for Z-Wave protocol. Moreover, the spectrum
efficiency is also not up to the mark. It is due to the GFSK modulation technique.
But the latest version of the Z-Wave technology provides a data rate of 100 kbps.
Although the maximum number of nodes that can be connected to the Z-Wave
network is 232 but the different manufacturers recommend to restrict this number
up to 40–50 nodes. This is quite a small number but it can be applied for wireless
home-based biomedical image processing network.

6 Conclusion

This article is illustrating and investigating the huge potential associated with the
home-based health care systems which can provide the affordable health care
solutions to many people at the comfort of their homes. Lots of possibility can be
observed and there is a good scope of research and development in this field. This
field is a part of the smart home-based health care which needs to be investigated
more deeply so that reliable infrastructure can be developed which will help the
whole mankind. Moreover, this concept can be extended to the home-based signal
processing which can be used to process different signal like ECG, EEG etc.
Deployment of different processing nodes and the load distribution is crucial and
should done using efficient algorithms. Cloud based architectures can be used for
faster data storage and processing. Development of the faster, reliable and secure
home-based health care infrastructure is the prime objective of this work. Since this
article is not intended for proposing a new image analysis algorithm, authors give
only the conceptual overview of the system. The proposed Z-Wave based framework
can bring a new paradigm in IoT based health care and will be highly beneficial for
remote biomedical image analysis.

References

1. Roy M, Chakraborty S, Mali K, et al (2017) Biomedical image enhancement based on
modified Cuckoo Search and morphology. In: 2017 8th Annual Industrial Automation and

408 S. Chakraborty et al.

Electromechanical Engineering Conference (IEMECON). IEEE, pp 230–235
2. Hore S, Chakroborty S, Ashour AS, et al (2015) Finding Contours of Hippocampus Brain Cell

Using Microscopic Image Analysis. J Adv Microsc Res 10:93–103. https://doi.org/10.1166/
jamr.2015.1245

3. Chakraborty S, Chatterjee S, Dey N, et al (2017) Modified cuckoo search algorithm in
microscopic image segmentation of hippocampus. Microsc Res Tech 80:. https://doi.org/
10.1002/jemt.22900

4. Chakraborty S, Chatterjee S, Dey N, et al (2017) Gradient approximation in retinal blood
vessel segmentation. In: 2017 4th IEEE Uttar Pradesh Section International Conference on
Electrical, Computer and Electronics (UPCON). IEEE, pp 618–623

5. Chakraborty S, Mali K, Chatterjee S, et al (2017) An integrated method for automated
biomedical image segmentation. In: 2017 4th International Conference on Opto-Electronics
and Applied Optics (Optronix). IEEE, pp 1–5

6. Chakraborty S, Chatterjee S, Ashour AS, et al (2017) Intelligent Computing in Medical
Imaging: A Study. In: Dey N (ed) Advancements in Applied Metaheuristic Computing. IGI
Global, pp 143–163

7. Chakraborty S, Roy M, Hore S (2016) A Study on Different Edge Detection Techniques in
Digital Image Processing. In: Feature Detectors and Motion Detection in Video Processing.
IGI Global, pp 100–122

8. Hore S, Chakraborty S, Chatterjee S, et al (2016) An Integrated Interactive Technique for
Image Segmentation using Stack based Seeded Region Growing and Thresholding. Int J
Electr Comput Eng 6:2773–2780. https://doi.org/10.11591/ijece.v6i6.11801

9. Chakraborty S, Mali K, Banerjee S, et al (2017) Bag-of-features based classification of
dermoscopic images. In: 2017 4th International Conference on Opto-Electronics and Applied
Optics (Optronix). IEEE, pp 1–6

10. Chakraborty S, Raman A, Sen S, et al (2019) Contrast Optimization using Elitist Metaheuris-
tic Optimization and Gradient Approximation for Biomedical Image Enhancement. In: 2019
Amity International Conference on Artificial Intelligence (AICAI). IEEE, pp 712–717

11. Chakraborty S, Chatterjee S, Chatterjee A, et al (2018) Automated Breast Cancer Identifica-
tion by analyzing Histology Slides using Metaheuristic Supported Supervised Classification
coupled with Bag-of-Features. In: 2018 Fourth International Conference on Research in
Computational Intelligence and Communication Networks (ICRCICN). IEEE, pp 81–86

12. Wiemer J, Schubert F, Granzow M, et al (2003) Informatics united: Exemplary studies com-
bining medical informatics, neuroinformatics and bioinformatics. In: Methods of Information
in Medicine. pp 126–133

13. Hore S, Chakraborty S, Chatterjee S, et al (2016) An integrated interactive technique for
image segmentation using stack based seeded region growing and thresholding. Int J Electr
Comput Eng 6:. https://doi.org/10.11591/ijece.v6i6.11801

14. Chakraborty S, Chatterjee S, Dey N, et al (2018) Gradient approximation in retinal blood
vessel segmentation. In: 2017 4th IEEE Uttar Pradesh Section International Conference on
Electrical, Computer and Electronics, UPCON 2017

15. Roy M, Chakraborty S, Mali K, et al (2017) Biomedical image enhancement based on
modified Cuckoo Search and morphology. In: 2017 8th Annual Industrial Automation and
Electromechanical Engineering Conference (IEMECON). IEEE, pp 230–235

16. Chakraborty S, Mali K, Chatterjee S, et al (2017) Detection of skin disease using meta-
heuristic supported artificial neural networks. In: 2017 8th Annual Industrial Automation and
Electromechanical Engineering Conference (IEMECON). IEEE, pp 224–229

17. Chakraborty S, Mali K, Chatterjee S, et al (2017) Image based skin disease detection
using hybrid neural network coupled bag-of-features. In: 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, pp 242–
246

http://dx.doi.org/10.1166/jamr.2015.1245
http://dx.doi.org/10.1002/jemt.22900
http://dx.doi.org/10.11591/ijece.v6i6.11801
http://dx.doi.org/10.11591/ijece.v6i6.11801

Edge Computing Based Conceptual Framework for Smart Health Care. . . 409

18. Roy M, Chakraborty S, Mali K, et al (2017) Cellular image processing using morphological
analysis. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Commu-
nication Conference (UEMCON). IEEE, pp 237–241

19. Roy M, Chakraborty S, Mali K, et al (2017) Biomedical image enhancement based on
modified Cuckoo Search and morphology. In: 2017 8th Industrial Automation and Electrome-
chanical Engineering Conference, IEMECON 2017

20. Chakraborty S, Mali K, Chatterjee S, et al (2018) Bio-medical image enhancement using
hybrid metaheuristic coupled soft computing tools. In: 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference, UEMCON 2017

21. Chakraborty S, Mali K (2018) Application of Multiobjective Optimization Techniques in
Biomedical Image Segmentation – A Study. In: Multi-Objective Optimization. Springer
Singapore, Singapore, pp. 181–194

22. Hore S, Chatterjee S, Chakraborty S, Shaw RK Analysis of Different Feature Description
Algorithm in object Recognition. pp 66–99

23. Chakraborty S, Roy M, Hore S (2018) A study on different edge detection techniques in
digital image processing

24. Chakraborty S, Roy M, Hore S (2016) A study on different edge detection techniques in
digital image processing

25. Ritter F, Boskamp T, Homeyer A, et al (2011) Medical image analysis. IEEE Pulse 2:60–70.
https://doi.org/10.1109/MPUL.2011.942929

26. Dey N, Ashour AS, Shi F, et al (2017) Developing residential wireless sensor networks
for ECG healthcare monitoring. IEEE Trans Consum Electron 63:442–449. https://doi.org/
10.1109/TCE.2017.015063

27. Chakraborty S, Mali K, Chatterjee S, et al (2018) Dermatological effect of UV rays owing to
ozone layer depletion. In: 2017 4th International Conference on Opto-Electronics and Applied
Optics, Optronix 2017

28. Chakraborty S, Mali K, Banerjee S, et al (2018) Bag-of-features based classification of
dermoscopic images. In: 2017 4th International Conference on Opto-Electronics and Applied
Optics, Optronix 2017

29. How Wearable Devices Are Changing the Paradigm of Medical Imaging? – QuEST
Global. https://www.quest-global.com/how-wearable-devices-are-changing-the-paradigm-
of-medical-imaging/. Accessed 27 Apr 2018

30. Rodgers MM, Pai VM, Conroy RS (2015) Recent Advances in Wearable Sensors for Health
Monitoring. IEEE Sens J 15:3119–3126. https://doi.org/10.1109/JSEN.2014.2357257

31. Datta S, Chakraborty S, Mali K, et al (2017) Optimal usage of pessimistic association rules
in cost effective decision making. In: 2017 4th International Conference on Opto-Electronics
and Applied Optics (Optronix). IEEE, pp 1–5

32. Microsoft HoloLens | The leader in mixed reality technology. https://www.microsoft.com/en-
us/hololens. Accessed 27 Apr 2018

33. Glass. https://x.company/glass/. Accessed 27 Apr 2018
34. Frantz T, Jansen B, Duerinck J, Vandemeulebroucke J (2018) Augmenting Microsoft’s

HoloLens with vuforia tracking for neuronavigation. Healthc Technol Lett 5:221–225. https:/
/doi.org/10.1049/htl.2018.5079

35. Wei NJ, Dougherty B, Myers A, Badawy SM (2018) Using Google Glass in Surgical Settings:
Systematic Review. JMIR mHealth uHealth 6:e54. https://doi.org/10.2196/mhealth.9409

36. Dougherty B, Badawy SM (2017) Using Google Glass in Nonsurgical Medical Settings: Sys-
tematic Review. JMIR mHealth uHealth 5:e159. https://doi.org/10.2196/MHEALTH.8671

37. Sahyouni R, Moshtaghi O, Tran D, et al (2017) Assessment of google glass as an adjunct in
neurological surgery. Surg Neurol Int 8:68. https://doi.org/10.4103/sni.sni_277_16

38. REGULATION (EU) 2017/745 OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation
(EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives
90/385/EEC and 93/42/EEC

http://dx.doi.org/10.1109/MPUL.2011.942929
http://dx.doi.org/10.1109/TCE.2017.015063
https://www.quest-global.com/how-wearable-devices-are-changing-the-paradigm-of-medical-imaging/
http://dx.doi.org/10.1109/JSEN.2014.2357257
https://www.microsoft.com/en-us/hololens
https://x.company/glass/
http://dx.doi.org/10.1049/htl.2018.5079
http://dx.doi.org/10.2196/mhealth.9409
http://dx.doi.org/10.2196/MHEALTH.8671
http://dx.doi.org/10.4103/sni.sni_277_16

410 S. Chakraborty et al.

39. Ghamari M, Janko B, Sherratt R, et al (2016) A Survey on Wireless Body Area Networks for
eHealthcare Systems in Residential Environments. Sensors 16:831. https://doi.org/10.3390/
s16060831

40. Hui TKL, Sherratt RS, Sánchez DD (2017) Major requirements for building Smart Homes in
Smart Cities based on Internet of Things technologies. Futur Gener Comput Syst 76:358–369.
https://doi.org/10.1016/j.future.2016.10.026

41. Understanding Zigbee and Z-Wave Standards. https://www.reviews.com/blog/zigbee-vs-z-
wave-guide/. Accessed 14 Jun 2019

42. Z-Wave vs Zigbee vs Bluetooth vs WiFi 2016 | Inovelli. https://inovelli.com/z-wave-vs-
zigbee-vs-bluetooth-vs-wifi-smart-home-technology/. Accessed 3 May 2018

43. What is Z-Wave and How Does it Work? | Safety.com. https://www.safety.com/z-wave/.
Accessed 4 May 2019

44. Z-Wave Alliance. https://z-wavealliance.org/. Accessed 4 May 2019
45. Gomez C, Oller J, Paradells J, et al (2012) Overview and Evaluation of Bluetooth Low

Energy: An Emerging Low-Power Wireless Technology. Sensors 12:11734–11753. https://
doi.org/10.3390/s120911734

46. Sung M, Marci C, Pentland A (2005) Wearable feedback systems for rehabilitation. J
Neuroeng Rehabil 2:17. https://doi.org/10.1186/1743-0003-2-17

47. Anliker U, Ward JA, Lukowicz P, et al (2004) AMON: A Wearable Multiparameter Medical
Monitoring and Alert System. IEEE Trans Inf Technol Biomed 8:415–427. https://doi.org/
10.1109/TITB.2004.837888

48. Lin B-S, Lin B-S, Chou N-K, et al (2006) RTWPMS: A Real-Time Wireless Physiological
Monitoring System. IEEE Trans Inf Technol Biomed 10:647–656. https://doi.org/10.1109/
TITB.2006.874194

49. Mundt CW, Montgomery KN, Udoh UE, et al (2005) A Multiparameter Wearable Physiologic
Monitoring System for Space and Terrestrial Applications. IEEE Trans Inf Technol Biomed
9:382–391. https://doi.org/10.1109/TITB.2005.854509

50. Zhanpeng Jin, Oresko J, Shimeng Huang, Cheng AC (2009) HeartToGo: A Personalized
medicine technology for cardiovascular disease prevention and detection. In: 2009 IEEE/NIH
Life Science Systems and Applications Workshop. IEEE, pp 80–83

51. Moron MJ, Luque JR, Botella AA, et al (2007) J2ME and smart phones as platform for a
Bluetooth Body Area Network for Patient-telemonitoring. In: 2007 29th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 2791–2794

52. Guo L, Chen Z, Zhang D, et al (2020) Age-of-information-constrained Transmission Opti-
mization for ECG-based Body Sensor Networks. IEEE Internet Things J 1–1. https://doi.org/
10.1109/jiot.2020.3025543

53. Habetha J (2006) The myheart project – Fighting cardiovascular diseases by prevention and
early diagnosis. In: 2006 International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE, pp 6746–6749

54. Luprano J, Sola J, Dasen S, et al (2006) Combination of Body Sensor Networks and On-Body
Signal Processing Algorithms: the practical case of MyHeart project

55. Pacelli M, Loriga G, Taccini N, Paradiso R (2006) Sensing Fabrics for Monitoring Physiolog-
ical and Biomechanical Variables: E-textile solutions. In: 2006 3rd IEEE/EMBS International
Summer School on Medical Devices and Biosensors. IEEE, pp 1–4

56. Lymberis A, Paradiso R (2008) Smart fabrics and interactive textile enabling wearable
personal applications: R&D state of the art and future challenges. In: 2008 30th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE,
pp 5270–5273

http://dx.doi.org/10.3390/s16060831
http://dx.doi.org/10.1016/j.future.2016.10.026
https://www.reviews.com/blog/zigbee-vs-z-wave-guide/
https://inovelli.com/z-wave-vs-zigbee-vs-bluetooth-vs-wifi-smart-home-technology/
http://safety.com
https://www.safety.com/z-wave/
https://z-wavealliance.org/
http://dx.doi.org/10.3390/s120911734
http://dx.doi.org/10.1186/1743-0003-2-17
http://dx.doi.org/10.1109/TITB.2004.837888
http://dx.doi.org/10.1109/TITB.2006.874194
http://dx.doi.org/10.1109/TITB.2005.854509
http://dx.doi.org/10.1109/jiot.2020.3025543

Edge Computing Based Conceptual Framework for Smart Health Care. . . 411

57. Scilingo EP, Gemignani A, Paradiso R, et al (2005) Performance Evaluation of Sensing
Fabrics for Monitoring Physiological and Biomechanical Variables. IEEE Trans Inf Technol
Biomed 9:. https://doi.org/10.1109/TITB.2005.854506

58. Pandian PS, Mohanavelu K, Safeer KP, et al (2008) Smart Vest: Wearable multi-parameter
remote physiological monitoring system. Med Eng Phys 30:466–477. https://doi.org/10.1016/
J.MEDENGPHY.2007.05.014

59. Milenković A, Otto C, Jovanov E (2006) Wireless sensor networks for personal health
monitoring: Issues and an implementation. Comput Commun 29:2521–2533. https://doi.org/
10.1016/J.COMCOM.2006.02.011

60. Montón E, Hernandez JF, Blasco JM, et al (2008) Body area network for wireless patient
monitoring. IET Commun 2:215. https://doi.org/10.1049/iet-com:20070046

61. Wan-Young Chung, Young-Dong Lee, Sang-Joong Jung (2008) A wireless sensor network
compatible wearable u-healthcare monitoring system using integrated ECG, accelerometer
and SpO2. In: 2008 30th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE, pp 1529–1532

62. Farella E, Pieracci A, Benini L, et al (2008) Interfacing human and computer with wireless
body area sensor networks: the WiMoCA solution. Multimed Tools Appl 38:337–363. https:/
/doi.org/10.1007/s11042-007-0189-5

63. Loew N, Winzer K-J, Becher G, et al (2007) Medical Sensors of the BASUMA Body
Sensor Network. In: 4th International Workshop on Wearable and Implantable Body Sensor
Networks (BSN 2007). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 171–176

64. Hao Y, Foster R (2008) Wireless body sensor networks for health-monitoring applications.
Physiol Meas 29:R27–R56. https://doi.org/10.1088/0967-3334/29/11/R01

65. Chaudhury S, Roy S, Agarwal I, Ray N (2020) Real-time processing and monitoring in health
care. In: EAI/Springer Innovations in Communication and Computing. Springer Science and
Business Media Deutschland GmbH, pp 99–116

66. Al-Sheikh MA, Ameen IA (2020) Design of Mobile Healthcare Monitoring System Using
IoT Technology and Cloud Computing. In: IOP Conference Series: Materials Science and
Engineering. Institute of Physics Publishing, p 012113

67. Neranjan Thilakarathne N, Krishna Kagita M, Reddy Gadekallu T The Role of the Internet of
Things in Health Care: A Systematic and Comprehensive Study. Int J Eng Manag Res. https:/
/doi.org/10.31033/ijemr.10.4.22

68. Kadhim KT, Alsahlany AM, Wadi SM, Kadhum HT (2020) An Overview of Patient’s
Health Status Monitoring System Based on Internet of Things (IoT). Wirel. Pers. Commun.
114:2235–2262

69. Dong P, Ning Z, Obaidat MS, et al (2020) Edge Computing Based Healthcare Systems:
Enabling Decentralized Health Monitoring in Internet of Medical Things. IEEE Netw 34:254–
261. https://doi.org/10.1109/MNET.011.1900636

70. Abdellatif AA, Mohamed A, Chiasserini CF, et al (2020) Edge computing for energy-efficient
smart health systems. In: Energy Efficiency of Medical Devices and Healthcare Applications.
Elsevier, pp 53–67

71. Pateraki M, Fysarakis K, Sakkalis V, et al (2020) Biosensors and Internet of Things in smart
healthcare applications: challenges and opportunities. In: Wearable and Implantable Medical
Devices. Elsevier, pp 25–53

72. Alhussein M, Muhammad G, Hossain MS, Amin SU (2018) Cognitive IoT-Cloud Integration
for Smart Healthcare: Case Study for Epileptic Seizure Detection and Monitoring. Mob
Networks Appl 23:1624–1635. https://doi.org/10.1007/s11036-018-1113-0

73. Saha HN, Mandal A, Sinha A (2017) Recent trends in the Internet of Things. In: 2017
IEEE 7th Annual Computing and Communication Workshop and Conference, CCWC 2017.
Institute of Electrical and Electronics Engineers Inc.

74. Gardašević G, Katzis K, Bajić D, Berbakov L (2020) Emerging Wireless Sensor Networks
and Internet of Things Technologies – Foundations of Smart Healthcare. Sensors 20:3619.
https://doi.org/10.3390/s20133619

http://dx.doi.org/10.1109/TITB.2005.854506
http://dx.doi.org/10.1016/J.MEDENGPHY.2007.05.014
http://dx.doi.org/10.1016/J.COMCOM.2006.02.011
http://dx.doi.org/10.1049/iet-com:20070046
http://dx.doi.org/10.1007/s11042-007-0189-5
http://dx.doi.org/10.1088/0967-3334/29/11/R01
http://dx.doi.org/10.31033/ijemr.10.4.22
http://dx.doi.org/10.1109/MNET.011.1900636
http://dx.doi.org/10.1007/s11036-018-1113-0
http://dx.doi.org/10.3390/s20133619

412 S. Chakraborty et al.

75. Han J, Choi C, Park W, et al (2014) Smart home energy management system including
renewable energy based on ZigBee and PLC. IEEE Trans Consum Electron 60:198–202.
https://doi.org/10.1109/TCE.2014.6851994

76. Han D-M, Lim J-H (2010) Design and implementation of smart home energy management
systems based on zigbee. IEEE Trans Consum Electron 56:1417–1425. https://doi.org/
10.1109/TCE.2010.5606278

77. Kushiro N, Higuma T, Nakata M, et al (2007) Practical solution for constructing ubiquitous
network in building and home control system. IEEE Trans Consum Electron 53:1387–1392.
https://doi.org/10.1109/TCE.2007.4429228

78. Byun J, Jeon B, Noh J, et al (2012) An intelligent self-adjusting sensor for smart home
services based on ZigBee communications. IEEE Trans Consum Electron 58:794–802. https:/
/doi.org/10.1109/TCE.2012.6311320

79. Costa LCP, Almeida NS, Correa AGD, et al (2013) Accessible display design to control home
area networks. IEEE Trans. Consum. Electron. 59:422–427

80. Zualkernan IA, Al-Ali AR, Jabbar MA, et al (2009) InfoPods: Zigbee-based remote infor-
mation monitoring devices for smart-homes. IEEE Trans Consum Electron 55:1221–1226.
https://doi.org/10.1109/TCE.2009.5277979

81. Sleman A, Moeller R (2011) SOA distributed operating system for managing embedded
devices in home and building automation. IEEE Trans Consum Electron 57:945–952. https://
doi.org/10.1109/TCE.2011.5955244

82. Ramli AR, Leong CY, Perumal T (2011) Interoperability framework for smart home systems.
IEEE Trans Consum Electron 57:1607–1611. https://doi.org/10.1109/TCE.2011.6131132

83. Park H, Lee I, Hwang T, Kim N (2008) Architecture of home gateway for device collaboration
in extended home space. IEEE Trans Consum Electron 54:1692–1697. https://doi.org/
10.1109/TCE.2008.4711222

84. Chakraborty S, Chatterjee S, Mali K (2020) An optimized intelligent dermatologic disease
classification framework based on IoT. In: Advances in Intelligent Systems and Computing.
Springer, pp 131–151

85. Chakraborty S, Mali K (2020) An Overview of Biomedical Image Analysis From the
Deep Learning Perspective. In: Chakraborty S, Mali K (eds) Applications of Advanced
Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and
Opportunities. IGI Global

86. Chakraborty S (2020) An Advanced Approach to Detect Edges of Digital Images for Image
Segmentation. In: Chakraborty S, Mali K (eds) Applications of Advanced Machine Intelli-
gence in Computer Vision and Object Recognition: Emerging Research and Opportunities.
IGI GLobal

87. Kim K, Cha YS, Park JM, et al (2011) Providing services using network-based humanoids in
a home environment. IEEE Trans Consum Electron 57:1628–1636. https://doi.org/10.1109/
TCE.2011.6131135

88. Roy M, Chakraborty S, Mali K (2020) A Robust Image Encryption Method Using Chaotic
Skew-Tent Map. In: Chakraborty S, Mali K (eds) Applications of Advanced Machine Intelli-
gence in Computer Vision and Object Recognition: Emerging Research and Opportunities

89. Hämäläinen M, Hari R, Ilmoniemi RJ, et al (1993) Magnetoencephalography – theory,
instrumentation, and applications to noninvasive studies of the working human brain. Rev
Mod Phys 65:413–497. https://doi.org/10.1103/RevModPhys.65.413

90. Ioannides AA (2009) Magnetoencephalography (MEG). Methods Mol Biol 489:167–188.
https://doi.org/10.1007/978-1-59745-543-5_8

91. Mellinger J, Schalk G, Braun C, et al (2007) An MEG-based brain-computer interface (BCI).
Neuroimage 36:581–593. https://doi.org/10.1016/j.neuroimage.2007.03.019

92. Cichocki A, Sanei S (2007) EEG/MEG signal processing. Comput. Intell. Neurosci. 2007
93. Z-Wave Plus™ Certification – Z-Wave Alliance. https://z-wavealliance.org/z-

wave_plus_certification/. Accessed 5 May 2019

http://dx.doi.org/10.1109/TCE.2014.6851994
http://dx.doi.org/10.1109/TCE.2010.5606278
http://dx.doi.org/10.1109/TCE.2007.4429228
http://dx.doi.org/10.1109/TCE.2012.6311320
http://dx.doi.org/10.1109/TCE.2009.5277979
http://dx.doi.org/10.1109/TCE.2011.5955244
http://dx.doi.org/10.1109/TCE.2011.6131132
http://dx.doi.org/10.1109/TCE.2008.4711222
http://dx.doi.org/10.1109/TCE.2011.6131135
http://dx.doi.org/10.1103/RevModPhys.65.413
http://dx.doi.org/10.1007/978-1-59745-543-5_8
http://dx.doi.org/10.1016/j.neuroimage.2007.03.019
https://z-wavealliance.org/z-wave_plus_certification/

Edge Computing Based Conceptual Framework for Smart Health Care. . . 413

94. G.9959: Short range narrow-band digital radiocommunication transceivers – PHY, MAC,
SAR and LLC layer specifications. https://www.itu.int/rec/T-REC-G.9959. Accessed 5 May
2019

95. Wei C-C, Chen Y-M, Chang C-C, Yu C-H (2015) The Implementation of Smart Electronic
Locking System Based on Z-Wave and Internet. In: 2015 IEEE International Conference on
Systems, Man, and Cybernetics. IEEE, pp 2015–2017

96. Ghamari M, Janko B, Sherratt R, et al (2016) A Survey on Wireless Body Area Networks for
eHealthcare Systems in Residential Environments. Sensors 16:831. https://doi.org/10.3390/
s16060831

97. Fouad H (2014) Continuous Health-monitoring for early Detection of Patient by Web
Telemedicine System. https://doi.org/10.13140/2.1.3495.1041

98. Jara AJ, Zamora-Izquierdo MA, Gomez-Skarmeta AF (2009) An Ambient Assisted Living
System for Telemedicine with Detection of Symptoms. Springer, Berlin, Heidelberg, pp. 75–
84

99. Bradai N, Chaari L, and LK-IJ of E-H, 2011 undefined A comprehensive overview of wireless
body area networks (WBAn). igi-global.com

100. GK R, Engineering KB-P, 2012 undefined A survey on futuristic health care system: WBANs.
Elsevier

101. Al-Karaki J, communications AK-I wireless, 2004 undefined Routing techniques in wireless
sensor networks: a survey. ieeexplore.ieee.org

102. Yassein M, Mardini W, (ICEMIS) AK-E& M, 2016 undefined Smart homes automation using
Z-wave protocol. ieeexplore.ieee.org

103. Boto E, Holmes N, Leggett J, et al (2018) Moving magnetoencephalography towards real-
world applications with a wearable system. Nature 555:657–661. https://doi.org/10.1038/
nature26147

104. Cohen D, Halgren E (2003) Magnetoencephalography (Neuromagnetism). Encycl Neurosci
3rd:1–7

105. Khamayseh Y, Mardini W, . . . SA-IJ of, 2015 undefined Integration of wireless technologies
in Smart University Campus environment: framework architecture. igi-global.com

106. Paetz C (2015) Z-Wave Basics
107. Chakraborty S, Bhowmik S (2013) Job Shop Scheduling using Simulated Annealing. In: First

International Conference on Computation and Communication Advancement. McGrawHill
Publication, pp 69–73

108. Chakraborty S, Bhowmik S (2015) Blending roulette wheel selection with simulated anneal-
ing for job shop scheduling problem. In: Michael Faraday IET International Summit 2015.
Institution of Engineering and Technology, pp 100 (7 .)-100 (7.)

109. Chakraborty S, Mali K, Chatterjee S, et al (2017) Detection of skin disease using meta-
heuristic supported artificial neural networks. In: 2017 8th Industrial Automation and
Electromechanical Engineering Conference, IEMECON 2017. pp. 224–229

110. Chakraborty S, Mali K, Chatterjee S, et al (2017) Image based skin disease detection
using hybrid neural network coupled bag-of-features. In: 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, pp 242–
246

111. Chakraborty S, Mali K, Chatterjee S, et al (2017) Bio-medical image enhancement using
hybrid metaheuristic coupled soft computing tools. In: 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, pp 231–
236

112. Chakraborty S, Seal A, Roy M (2015) An Elitist Model for Obtaining Alignment of
Multiple Sequences using Genetic Algorithm. In: 2nd National Conference NCETAS 2015.
International Journal of Innovative Research in Science, Engineering and Technology, pp 61–
67

113. Chakraborty S, Chatterjee S, Dey N, et al (2017) Modified cuckoo search algorithm in
microscopic image segmentation of hippocampus. Microsc Res Tech 1–22. https://doi.org/
10.1002/jemt.22900

https://www.itu.int/rec/T-REC-G.9959
http://dx.doi.org/10.3390/s16060831
http://dx.doi.org/10.13140/2.1.3495.1041
http://igi-global.com
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://dx.doi.org/10.1038/nature26147
http://igi-global.com
http://dx.doi.org/10.1002/jemt.22900

414 S. Chakraborty et al.

114. Chakraborty S, Bhowmik S (2015) An Efficient Approach to Job Shop Scheduling Problem
using Simulated Annealing. Int J Hybrid Inf Technol 8:273–284. https://doi.org/10.14257/
ijhit.2015.8.11.23

115. Sarddar D, Chakraborty S, Roy M (2015) An Efficient Approach to Calculate Dynamic
Time Quantum in Round Robin Algorithm for Efficient Load Balancing. Int J Comput Appl
123:48–52. https://doi.org/10.5120/ijca2015905701

116. Fouladi B, Ghanoun S (2013) Security Evaluation of the Z-Wave Wireless Protocol. Black
hat 6

117. Hung C, Bai Y, Consumer RT-IT on, 2012 undefined Design of blood pressure measurement
with a health management system for the aged. ieeexplore.ieee.org

118. Kim K, Shin S, Suh J, et al Home healthcare self-monitoring system for chronic diseases.
ieeexplore.ieee.org

119. Tung H, Tsang K, . . . HT-IT on, 2013 undefined The design of dual radio ZigBee homecare
gateway for remote patient monitoring. ieeexplore.ieee.org

120. Knight M (2006) How safe is Z-Wave? [Wireless standards]. Comput Control Eng 17:18–23.
https://doi.org/10.1049/cce:20060601

121. Seal A, Chakraborty S, Mali K (2017) A New and Resilient Image Encryption Technique
Based on Pixel Manipulation, Value Transformation and Visual Transformation Utilizing
Single–Level Haar Wavelet Transform. In: Proceedings of the First International Conference
on Intelligent Computing and Communication. Springer, Singapore, pp. 603–611

122. Mali K, Chakraborty S, Seal A, Roy M (2015) An Efficient Image Cryptographic Algorithm
based on Frequency Domain using Haar Wavelet Transform. Int J Secur Its Appl 9:279–288.
https://doi.org/10.14257/ijsia.2015.9.12.26

123. Chakraborty S, Seal A, Roy M, Mali K (2016) A novel lossless image encryption method
using DNA substitution and chaotic logistic map. Int J Secur its Appl 10:205–216. https://
doi.org/10.14257/ijsia.2016.10.2.19

124. Mali K, Chakraborty S, Roy M (2015) A Study on Statistical Analysis and Security
Evaluation Parameters in Image Encryption. IJSRD-International J Sci Res Dev 3:2321–0613

125. Roy M, Mali K, Chatterjee S, et al (2019) A Study on the Applications of the Biomedical
Image Encryption Methods for Secured Computer Aided Diagnostics. In: 2019 Amity
International Conference on Artificial Intelligence (AICAI). IEEE, pp 881–886

126. Roy M, Chakraborty S, Mali K, et al (2020) Data Security Techniques Based on DNA
Encryption. In: Advances in Intelligent Systems and Computing. Springer, pp 239–249

127. Roy M, Chakraborty S, Mali K, et al (2020) Biomedical Image Security Using Matrix
Manipulation and DNA Encryption. In: Advances in Intelligent Systems and Computing.
Springer, pp 49–60

128. Roy M, Chakraborty S, Mali K, et al (2019) A dual layer image encryption using polymerase
chain reaction amplification and dna encryption. In: 2019 International Conference on
Opto-Electronics and Applied Optics, Optronix 2019. Institute of Electrical and Electronics
Engineers Inc.

129. Chakraborty S, Mali K (2020) SuFMoFPA: A superpixel and meta-heuristic based fuzzy
image segmentation approach to explicate COVID-19 radiological images. Expert Syst Appl
114142. https://doi.org/10.1016/j.eswa.2020.114142

130. Chakraborty S, Mali K (2020) Fuzzy Electromagnetism Optimization (FEMO) and its
application in biomedical image segmentation. Appl Soft Comput 97:106800. https://doi.org/
10.1016/j.asoc.2020.106800

131. Xie Y, Xing F, Kong X, et al (2015) Beyond classification: Structured regression for
robust cell detection using convolutional neural network. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Springer Verlag, pp 358–365

http://dx.doi.org/10.14257/ijhit.2015.8.11.23
http://dx.doi.org/10.5120/ijca2015905701
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://dx.doi.org/10.1049/cce:20060601
http://dx.doi.org/10.14257/ijsia.2015.9.12.26
http://dx.doi.org/10.14257/ijsia.2016.10.2.19
http://dx.doi.org/10.1016/j.eswa.2020.114142
http://dx.doi.org/10.1016/j.asoc.2020.106800

Mobile Edge Computing Based Internet
of Agricultural Things: A Systematic
Review and Future Directions

Anirbit Sengupta, Sukhpal Singh Gill, Abhijit Das, and Debashis De

Abstract In the modern era of Information Technology, a combined solution
framework integrating Wireless Sensor Network (WSN), Internet of Things (IoT),
cloud and edge computing, data analytics, and other related technologies are
explored and the newest proposals for its probable implementation in the arena
of farming is stated in this chapter. Briefing Mobile edge computing (MEC) is
an up-coming framework in which the cloud computing services are stretched
to the boundary of mobile end-nodes. Further, to boost up the productivity of
the crops and working efficacy in the agriculture area, the practice of IoT, edge
computing data analytics, etc., are introduced. In this chapter, we surveyed the
crucial propositions, the contemporary research efforts, the recent innovations in
technologies and research topics, and those explicit edge-cloud integrated IoT
solutions that have direct application to agriculture. We aim to design a complete
image of both enduring research efforts and upcoming research possibilities through
comprehensive and elaborated deliberations. The chapter presents a study of more
than a hundred papers, which constitute the most significant work in the relevant
field along with research challenges and future open issues and which are also
identified and discussed thoroughly.

A. Sengupta
Electronics and Communication Engineering, Dr Sudhir Chandra Sur Institute of Technology and
Sports Complex, Kolkata, West Bengal, India

S. S. Gill
School of Electronic Engineering and Computer Science, Queen Mary University of London,
London, UK
e-mail: s.s.gill@qmul.ac.uk

A. Das (�)
Information Technology, RCC Institute of Information Technology, Kolkata, West Bengal, India

D. De
Centre of Mobile Cloud Computing, Department of Computer Science and Engineering, Maulana
Abul Kalam Azad University of Technology, Kolkata, West Bengal, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_17

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_17&domain=pdf
mailto:s.s.gill@qmul.ac.uk
https://doi.org/10.1007/978-3-030-69893-5_17

416 A. Sengupta et al.

Keywords Precision agriculture · Cloud computing · Mobile edge computing ·
Smart farming · Internet of things · Survey

1 Introduction

Applying Information Technology (IT) into agriculture techniques has been proven
beneficial for more than a decade. Through Precision Agriculture (PA) [1–5],
we get better production and quality of crops, with minimal energy and water
resources, overlooking the environmental influence. Though the widespread of
precision agriculture has been restricted, due to some bottlenecks such as expensive
equipment, troublesome operations, maintenance hazards, and the standardization
problems for sensor networks.

Recently, new technological progress in different segments, especially in embed-
ded systems, Internet technologies like, Internet of Things (IoT), communication
protocols and pervasive computing like Ubiquitous Sensor Networks, facilitate
the development of low power and cost-effective solutions, user-friendly devices,
hassle-free installation and maintenance of the same.Today, technological growth
in Wireless Sensor Networks (WSN) has made the monitoring and control of
greenhouse factors much more effortless and accurate while applying [1, 4, 6–12]
in the precision agriculture domain.

The different crop has different requirement of water [1]. Hence, to have a
uniformity of water distribution on the field, the farmers have to be very alert, as
the regular rainfall is very uneven and unpredictable as well. Every greenhouse
parameter like, weather condition, soil structure, variety of crop cultures, etc.,
requires a detailed analysis to choose an appropriate irrigation method [13].
Improper selection of irrigation methods and incorrect weather predictions often
leads to massive financial damage to the farmers.

Now, the evolution in WSN technologies and IoT devices, makes the farmers
able to monitor the environment and control the parameters of the greenhouse [4]
easily.

This survey work says about precision agriculture (Fig. 1) in general, cloud
and edge computing methods in brief, sensor/actuator network platforms, and the
Internet of Things, integrating machine-to-machine (M2M) and Human-Machine-
Interface (HMI) protocols [14, 15]. A clear picture has been shown with proper
control and monitoring by WSN and mobile edge computing integrated with IoT
archetype. Finally, this study projects a possible combination of mobile edge
computing and IoT to encourage the advancement of Precision Agriculture.

We have prepared this book-chapter in the following way.
Review works on precision agriculture is presented in Sect. 2. The impact of

IT on precision agriculture is also given here. In Sect. 3, general cloud computing
platforms along with different cloud computing circumstances applied to PA are
analyzed. Details of edge computing are also given in this section. Sensor architec-
ture and IoT technologies for the development of agricultural services are discussed

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 417

Fig. 1 Tasks related to precision agriculture

in Sect. 4. Section 5 says about mobile edge computing-based IoT applications in
agriculture scenario. Overall smart farming and various future possibilities are being
discussed in Sects. 6 and 7 respectively. Finally, Sect. 8 concludes the chapter.

2 Precision Agriculture

2.1 General Overview

Generally, we term Precision Agriculture as the combination of information and
control technologies in agriculture procedures [2, 5]. In other words, Precision
Agriculture is giving the right input such as fertilizer, water, pesticides, etc. at the
right location i.e., agricultural farm and at the right time to get the right output in the
form of enhanced quality and production of the crops, by utilizing various sensors
and computing methods [16–28]. To achieve full optimization and maximum profit,
PA engages usual farming techniques to the specific conditions of each point of
the crop. The right application of different technologies like WSNs, micro-electro-
mechanical Systems, computing techniques, and enhanced machinery, guarantees
acceptable results. These technologies can be applied in indoor, outdoor, and
hydroponics crops [16–22]. The management of the above can be divided into three
stages:

418 A. Sengupta et al.

Determination stage:

• Identification of crop category.
• Clustering of areas are done on the basis of their similarity.
• Analyzing characteristics of each area using sensors.

Analysis stage:

• Computer processing of collected data.
• Launches processes to put on respective area.

Implementation:

• Use of cutting-edge technology and machines.

Several approaches [23–42] based on diverse and scalable platforms have been
developed.All of these approaches are now able to acquire, process, accumulate,
and monitor data from different crop farming structures using a mobile pervasive
approach in a much less costly way [7, 16, 20]. Following the abovementioned
three stages, the majority of these approaches are developed with WSNs and
IoT paradigms [26–30]. The agricultural processes treated are based in various
subsystems (Fig. 2): monitoring, assessment, and control models.

2.2 Challenges in PA Work

Precision Agriculture is reactive to inter-field and intra-field unevenness in crops.
In this case, the paybacks are mainly incremented in crop production which in
turn increases profitability. Other than the sustainability of agricultural production,
the improvements can also be visible in proper farming controlling actions such
as cultivation, sowing, fertilization, herbicide application, and reaping [16–20].

Fig. 2 Tasks in precision farming/agriculture

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 419

Devices do exist to measure the grade of soils, such as gamma radiometric soil
sensors, apparent EC sensors, and soil moisture devices, etc. [2, 4]. Thermometer,
hygrometer, etc. are available to record weather information or micro-climate data.
Connectivity between various sensors is made utilizing networks – either wired or
wireless [3]. Despite the paybacks provided by precision agriculture, there may exist
several negative issues to decelerate its assimilation:

• Preliminary potentials and benefits guaranteed remain unsatisfied
• Lack of support from the PA technicians during maintenance/fault
• Lack of confidence of farmers in how to deal with changeability using technology
• Lack of rapport and effort in collaboration of farmers with PA experts
• A complication in technological theories and inconsistency in apparatuses
• Constraints to adapt the technical issues with equipment and software
• Lack of products that bring together industry and agronomics
• Poor integration among these three – data collection, it’s handling, and actuators
• Huge investment cost and also much high maintenance hazards, in turn, draws a

big threat of unsatisfactory RoI

Earlier interview data show that farmers dithered to be acquainted with precision
agriculture technology, mostly due to the enormous costs of the installation and
maintenance of the same.

3 Cloud and Edge Computing

Cloud facilitates a huge amount of storage space through large virtual servers
thatare interconnected [43–45]. Clouds are not only to store data but also to
produce information for decision making where huge amount of data from different
applications are supplied to analyze and manage [120].

Several platforms have been suggested based on four layers mainly, that are
cloud storage layer, network gateway, computing layer, and a physical layer or the
hardware modules. Cloud services can also access several analytical resources along
with web services that are already pre-installed on the cloud or internet. Physical
layer devices or hardware may not be designed in an Internet-friendly way for data
sharing purposes. Hence, local gateways are introduced to act as a bridge between
all sensors and hardware devices and providing added features like security and
controllability [45, 46].

Implementing gateway in the agricultural field or farms actually increases the
capacity of automation control. Now, fog computing [46] is introduced to integrate
the distributed and heterogeneous resources to the distributed cloud services. Fog
computing also minimizes the computational load of cloud and hence guarantees
real-time processing of data. The preliminary aim of fog computing is to control the
urging expandability of resources of cloud which takes into account the benefits
of the combined infrastructure of both edge and cloud modules. Physical layer

420 A. Sengupta et al.

hardware segments can be dispersed in global or local networks [46] and can be
utilized to create services or processes.

As discussed before, cloud computing now plays a vital role for numerous
agricultural needs, encountered upon demand over the network and various exe-
cution processes. The application of cloud and edge computing in agriculture [41,
42] also offers ubiquitous access to remote cloud and edge resources to perform
communications and computations.. Literature have proposed various cloud-based
software solutions that develop information retrieval and other agricultural tasks
in a more efficient manner. In the agricultural arena, the total physical level data
handling is now being solved enabling edge computing methods [47–51]. Edge,
dew, and fog computing are now measured as the backbone of cloud computing to
reach the source of data generation point comprise of sensors, actuators, and many
other embedded systems.

Very rapid evolution in the IoT is growing day by day connecting billions
or sometimes trillions of edge devices. This could potentially produce a massive
amount of high-speed data. Some of the applications may even need very low
latency and response time as well. Because of the centralized network, the small
number of data centers, the distance gap among the edge devices, and remote data
centers – the traditional cloud infrastructure may face numerous problems [52–55].
Edge computing seems to be a promising possibility to handle this challenge. Edge
cloud may offer the resource position closer to the starving edge IoT devices and
substantially can build up a novel IoT environment. In this way, edge computing
signifies the actions of IoT devices at the boundary of the network associated with
the remote Cloud. The most recent literatures [56–58] have revealed that Edge
systems are the ideal answer to the above mentioned challenges like latency, privacy,
and bandwidth costs.

For the practical implementation of cloud structure in agriculture [38, 44], two
more things are very important – fast response time and capability to exchange
information. Several protocols like Representational State Transfer (REST) and
Message Queuing Telemetry Transport (MQTT) supports this.

4 WSN and IoT

Recent technological advances have stimulated the development of autonomous,
wireless communication devices with a smaller size, more power, energy-efficient,
and having the capacity to dispose of themselves at any given location [59]. All
these devices communicate for a common purpose and send the collected data to a
central processing unit. This gives benefits to those network applications, who entail
hundreds or even thousands of wireless sensor nodes, to be deployed in inaccessible
and remote locations. Consequently, apart from a sensing module, a wireless sensor
node has an on-board processing unit, communication features, and also storage
facilities. The new generation sensor nodes [60–62] are now so enhanced that along
with data collection they are also capable of doing Intranet analysis, correlation, and

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 421

routing its sensor data through other sensor nodes. This is how a WSN is formed
when multiple sensors coordinate with each other to monitor significantly large
physical environments. There also exists a centralized control station or base station,
where the sensor nodes connect to broadcast their data and do further processing for
visualization, analysis, and data storing.

4.1 IoT in Precision Agriculture

Several WSN applications have been developed and applied in PA to increase
crop productivity, farm efficiency, and profitability in many agronomic production
systems [63–65], at the same time minimalizing unintentional impacts on domestic
farm animals, wildlife, and the overall nature. The WSN solutions provide the
farmers with information in real-time so that they can change and adjust new
strategies from time to time. As the precision farming approaches are more practical
than only remaining mere theoretical propositions, farmers can recognize the trans-
formations and controls actions accordingly. The amalgamation of WSN along with
intelligent embedded systems becomes much cheaper than its wired counterpart.
Hence, this combination gives rise to the technology of ubiquitous systems and leads
to the design and development of low-cost solutions for agricultural environment
monitoring. Because of their low cost, these solutions are well fitted for developing
countries and to places where physical intervention or access is quite difficult.
Various state of the art solutions [66–69] has been proposed that address different
problem areas. All these solutions are needed to be put together that will combine IT
with other recent technologies to design standard procedures for farming activities
(Fig. 3).

Different literature proposes [70–73] IoT models to be used in PA with three lay-
ers: control, communication, and application cloud layer. Few IoT based solutions
are also available on smartphones which help control crops in farm areas.

Various literature proposes [70–73, 119] some novel services and platforms
where the traditional Internet paradigms like web services are blended with WSN
protocols such as ZigBee, Bluetooth, Z-Wave, etc. to build agricultural applications.

4.2 IoT Limitations in PA

Few early challenges in implementing IoT in agriculture are:

• Use of traditional automated systems on web services
• The application models have yet to be put into execution and tested with a real-

world scenario
• Lack of coordination between agricultural agronomist and solution developer
• Unavailability of low-cost prototypes

422 A. Sengupta et al.

Fig. 3 Modern farming activities in general

• Poor control of turn-around time on an amalgamation of multiple protocols
• Very expensive business and commercial applications do exist, those which are

very costly and incurs high expertise to control and maintain the characteristics
after applying into the agricultural scenario

Keeping in mind the above bottlenecks, cost-effective prototypes could be
designed, developed, simply tested, and adapted by agronomists in practical agricul-
ture scenarios. Human to machine interface (HMI) and machine to machine (M2M)
solutions [59] might be assimilated and reformed towards the requirements of the
end-users and agro-manufacture, making all IoT devices interoperable controlling
the response time of the applications.

5 MEC Based Internet of Agricultural Things (IoAT)
Framework

Previously we have discussed various new technologies, which are intended to
perform within the network boundary, for example, fogs, cloudlet, dew, edge, micro
data-hubs, etc., all of which have developed in the recent past to combat with delay
sensitivity and instant response.

MEC or Mobile Edge Computing [73–75] is a promising architectural design in
which cloud computing functionalities remain stretched out towards the boundary

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 423

or edge of the cloud network, empowering mobile base terminals. We can apply
this technology to any situation stationary or mobile, wired or wireless, placing the
software modules and hardware infrastructures at the boundary of the network and
within the neighborhood or proximity of the users’ end. MEC delivers a continuous
amalgamation of various application service providers and sellers concerning
mobile end users, enterprises, and other stakeholders [76].

Edge computing targets to bring down all the resources and services of cloud to
the network boundary, to offer quick service response with the least delay because of
its “close to you” nature. Two most important objectives [77–80] of edge computing
can be represented as:

(i) Delay in servicing users’ request at distant located cloud data centers is
minimized by servicing the response at the network edge level.

(ii) Minimalize top-down and bottom-up data traffic in the network core.

Reduction of data traffic in the network core naturally boosts up energy efficiency
and in turn reductions in data costs. Our major concern is IoT and sensors monitored
data, which is first filtered and processed in the edge layer and then uploaded to the
cloud, thus minimizing the bottom-up data traffic significantly [80–85].

Pervasive computing permits an N–to–M sensor nodes communication model.
Any sensor node here in the network can query and vice-versa. Besides, the
sinknode or the node acting as the base station is capable of conveying all its
information to the remote cloud data center through a gateway device [78].

5.1 Platform Design

As we have discussed already in Sect. 2, agriculture is an intricate system. Dealing
with several issues become extremely complicated because of the wide range of
environmental parameters. In the maximum of the agricultural systems, there exist
hierarchical levels. If we take an example of a crop irrigation scenario, the previous
level of hierarchy becomes crop, harvesting arrangements, farming, and water
draining schemes. Therefore, all the submodule in any agriculture is built with
IoT edge devices, which can be linked and managed by IoT archetypes and WSN
[74, 76]. The basic IoT platform necessities recognized for precision agriculture
situations are as follows:

• Less costly components for all devices installed
• Power-efficient solutions to improve the establishment and development
• Standard communication protocols to develop open-source applications
• Reusability of the solutions
• User-friendliness to improve its acceptability among nontechnical farming

people
• Easy and cheap maintenance and proper after-sales support
• Modularity and scalability to support the amalgamation of new control modules

424 A. Sengupta et al.

• Interoperability should be ensured when new devices are added
• Nonproprietary hardware and software to minimize dependencies and legal

issues

If we add the platform communication which follows a sequence like, device-
to-gateway, edge computing layer can be introduced. The newly formed platform is
now based on three foundations [76, 80]:

• Internet of Things:
Nowadays trillions of Internet-enabled sensors, devices or things are there

in various agricultural applications, commercial sectors, and industrial scenarios
in a wireless manner. Typically, the solutions in IoT have filtered things and
organized in the locally used data in the edge layer, or connected to gateways
that provide comprehensive functionality. Individual IoT has its sharable data
which is usually shared on the Internet.

• Gateway:
The majority of the present IoT could not share data with the cloud data

centers as they are not intended to have a connection to the Internet. Gateways
act as mediators in between things and the cloud platform, resolves the aforesaid
difficulty, and provides the required connectivity, data privacy, and data manage-
ment operations.

• Cloud Network:
Cloud arrangement comprises multiple numbers of gigantic sized effective

data storage and data servers which are again connected. To produce service
facilities, IoT solutions run specific agricultural applications to organize and
analyze data taken from various sensors and devices. This in turn generates
information to facilitate result-driven decision-making processes to help farming
(Fig. 4).

The communication arrangement from agricultural IoT devices to the local
gateway often can be seen with distributions of smart entities that involve distant
configuration capacities and interfaces of real-time. The local gateway is in that
way presumed to be always linked to the Internet. Nevertheless, this gateway can be
a mobile smart-phone. It is worth mentioning from an interoperability point of view,
that smart-phones, with their refined software update procedures, allow new features
to be updated frequently and sometimes this happens even at the IoAT device as well
[78].

Following platform design model [86–88] in the general IoT-edge-cloud sce-
nario, exclusive PA processes can be established ensuing various phases mentioned
below:

• Analysis: IT specialists and agronomists fix the elementary objectives for any
agricultural project work. Scenario study, requirement analysis are done in this
phase.

• Design requirements: In this phase, requirements related to set up the agronomic
work beinginvestigated. An IoT based strategy is projected by IT specialists
and agronomists along with investigation towards computational and commu-

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 425

Fig. 4 IoAT-edge-mist-fog-cloud-(agro-application)

nicational necessities. All the processes related to things and agriculture are
identified.

• Wireless Sensor Network: IoT sensors and/or actuators and their processing
capacities should be clearly defined in this phase. The communication layer
architecture is also proposed at this time.

• Control Processes: In this phase, agronomists identify agricultural activities
between things with preliminary and most innovative rules. ICT engineers also
come up with middleware to facilitate the effective use of a WSN in any particular
application. The relation between IoT and control regulation is exhibited here.

• Edge services: Generates analytical and logical information base structures at
the data foundation. In this phase, edge computing pushes applications, data and
processes away from embedded nodes integrating M2M protocol, control, data
processing and web services. Edge is the logical extreme of a cloud network
system.

• Cloud services: Using Internet technologies, we store, monitor, handle, and
analyze several services that need to be planned in this stage. The design of
queries and analytical layers are also done here.

• Testing: All the physical devices – things, their control methods, WSN, Internet
communication, and Edge and Cloud services are verified and validated in actual
agricultural field before mass implementation (Fig. 5).

426 A. Sengupta et al.

Fig. 5 Layered view of MEC based IoAT

5.2 Platform Structure

Actions and facilities can be constructed and dispersed in components localized in
different storages – be it mobile or a cloud. Furthermore, IoTs can be implemented
locally in various devices like sensors, actuators or any control device, or can
be installed in mobile systems like smartphones or any embedded devices, etc.
Because of the aforesaid, the projected system architecture is a collection of
dispersed components – where a group of sensor devices, associated procedures,
virtual facilities, storage, analytical power, etc., primarily resides on a four-layered
structure [89–92]: IoT, Edge Computing, Gateway and Cloud Network.

Agronomists along with experts in ICT must resolve the applications for cloud
and procedures for an edge. When cloud services offer data storage, web, and
analytical services, Edge service offers interoperability and real-time answer. Soft-
ware platform comprises data collection, control-communication methods, cloud
facilities, and agronomists’ tools [76, 81].

In the following Fig. 6 shows the rate of growth of IoT and Edge devices in
agriculture, the volume of generated data, and gain in latency in due course of time
[80, 90, 92]. The IoAT device number is in trillions and data volume from farms
is in Tera Bytes. Figure 6 clearly shows the result that we have achieved through
maximizing the use of more IoT devices in agriculture and significant control over
latency is also visible after increasing the use of fog, dew and edge technologies in
between.

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 427

Fig. 6 Growth of IoAT and latency curve by the time

6 Towards Smart Farming

Till now we have discussed various IoT based solutions that have been developed to
maintain and monitor agricultural farms automatically. The current section presents
the key components of IoT based smart farming.

6.1 Smart Farming Components

There are four key components in IoT based smart farming [93, 94]. They are
the physical component, data procurement, data handling component, and data
analytics.

The physical component is the utmost significant element in the case of PA to
evade any unseen, undesirable incident. This component comprises of all the sensors
and devices or things controlled under the system design. A device executes several
agro jobs like sensing the soil, temperature, weather, light, and moisture. Similarly,
hardware devices execute numerous control functions like, node discovery, device
identification, and naming services etc. There is a microcontroller to control all these
devices and sensors. This regulatory operation can be performed by any remote
device or a computer with an Internet connection.

• Data Procurement component can further be categorized into two sub-
components:

428 A. Sengupta et al.

IoT data procurement and regular data procurement.

• Several protocols which are being used in smart farming, are the elements of IoT
data procurement sub-component.

While, ZigBee, WIFI, LoraWan, etc., protocols can be implemented in the
regular data procurement sub-component.

• Data Handling component comprises of various functionalities like, image
and video processing, data storing, decision support system, and data mining.
Simultaneously other services can be served by adding extra functionalities by
the system necessities.

• Data Analytics component comprises of mainly two functionalities – monitoring
and controlling. In monitoring the main three tasks that are involved are –
Stock Checking, Field Checking, and Greenhouse Checking. IoT empowers
agronomists to check for the stock data through various devices and sensors that
are utilized to monitor various animals’ sicknesses such as body temperature,
heart-beat anomaly, indigestion, etc. While applications for field checking
anticipate different conditions of the field like richness of a soil, pH value,
temperature, humidity, gas, air pressure and water pressure, turbidity, and crop
disease monitoring.

Below a picture (Fig. 7) of a smart greenhouse design [95–97] that removes
human intervention and is capable of measuring various climate parameters by smart
IoT devices and sensors according to plants’ necessities.

Fig. 7 Case study – sample greenhouse

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 429

Smart agriculture solutions need to be implemented in a dispersed cloud
environment, rather than putting it within a single, large data-center. Doing this will
necessitate dividing hefty and difficult calculations into minor agro-jobs – irrigation,
weather, images, crop, energy, water, nutrients all of these can be dispersed. These
minor agro-jobs now build interoperable diverse data origins and algorithms to
control processes being part of the edge computing layer [93, 94, 97–99].

Requirements of the tentative platform arealso conveyed to the explicit WSN/IoT
scheme:

• Cost-effective deployment: All devices should be inexpensive. Low-cost tech-
nology to be used to build sensors like temperature, moisture, pH, electrical
conductivity (EC), luminosity, electro-valves, pumps, lamps, etc. Extensive
use devices like controllers, routers should be implanted devices with proper
hardware compatibility.

• Regular network protocols with open source software: To build up data/message
communication services, WSN networks should practice various protocols like
WiFi, Bluetooth, serial bus protocols, etc.

• Ease of access and low maintenance: All IoT devices should be easy to detect,
easy to connect, easy to debug, and also easy to sustain.

• Physical edge computing layer development: Elementary control procedures
function in the native system. Analytical, data stores, and GUIs should be
dispersed in the separate cloud and associated Internet services.

• Support for amalgamation of smart control modules: To program new modules
and for easy integration, support of various web services protocols like REST,
HTTP, MQTT, etc. and open-source hardware-software models is required. IoT
applications should allow interoperability between devices or things.

• Should offer timely support for agronomist use, initial installation, routine
maintenance, and elementary add–on.

• Should analyze agronomist’s feedback (Fig. 8).

7 Future Directions

Use of Data Analytics/Big Data/Blockchain
There is a huge change over from usage of the WSN as a key catalyst of smart
farming to the practice of IoT and Data Analytics [119]. While IoT incorporates
numerous technologies thatare currently available, such as WSN, Radio Frequency
Identification (RFID), cloud computing, middleware methods, and end-user appli-
cations. Several challenges and limitations are also identified and they have been
solved with a joint approach of IoT and Data Analytics, enabling smart agriculture
[100].

Since its inception, IoT has always been influenced by very recent technologies
such as Big Data and cloud computing to overcome its shortcomings [98]. Few

430 A. Sengupta et al.

Fig. 8 Smart farming

researchers propose Blockchain as one of the next ultimate solutions [69, 101–104].
Few works examine limitations in applying blockchain to IoT applications. Further
studies have revealed the most significant works to improve the application of IoT
in precision agriculture using blockchain technology.

Use of AI/ML
The incapability of communicating and computing of the remote cloud gives rise to
edge computing, where the IoT data handling begins at the boundary of the same
network and converts the associated devices from normal to intelligent one. Machine
Learning(ML) here can play the key role to transfer the information flow smoothly
from cloud to things [105].

Fog computing-based solutions generate a huge amount of data. Several
researchers are working on the research of deploying ML to unravel fog computing
glitches. Modern times witnessing a popular trend in implementing Artificial
Intelligence (AI) and ML to improve different applications of fog computing
and provide various fog services, like effective resource management, privacy,
regulating latency and consumption of energy, and traffic modeling while applying
into Smart Agriculture [105–108].

Use of DB
Data generated from the IoAT are categorized by its huge amount, continuity,
and random presentation. Due to the limited handling speed and the substantial

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 431

Fig. 9 UAV based advanced agriculture

storage cost, the current relational database management systems are insufficient to
handle such unstructured data. Therefore several propositions [109–111] of big data
processing technologies, Distributed Database Management systems, distributed
file systems, and parallel processing techniques, have risen as fundamental know-
how to apply PA IoT produced data storehouses. Researchers have also proposed
sensor-integrated RFID data repository-implementation model using MongoDB to
handle the gigantic volume of unstructured data.

Researchers from China have suggested that a combined solution framework
integrating the IoT, cloud computing, data mining, and other information technology
tools can meet up the elementary tasks of the IoT based agricultural monitoring
system [110]. They also have proposed one experimental framework and simulation
design to realize the same. Researchers have enhanced the efficiency and safety of
production and management of agricultural products and also have minimalized the
pollution of the environment from agricultural activities.

Use of Drone/UAV
Modern day’s farmers especially in USA and European countries, are keener to
use Unmanned Aerial Vehicles (UAV) or drones [112–116] to assess their farm
lands as part of an agricultural control system. This type of safer, faster, and cost
effective vehicles surely assist them in precision control over pesticides and fertilizer
application rates and hence can significantly improve the overall profitability.

There is a need of IoT based unmanned aircraft systems to gather the topological
and meteorological data. Further, UAS based agriculture systems can increase the
automation gathering and analyzing of data collected from different sources. The
multi-UAV sub-systems (Fig. 9) can solve the data collection and management
problems together, which can further reduce its cost.

432 A. Sengupta et al.

Fig. 10 Future agricultural standards

The complete prospect of these above-mentioned technologies can integrate
innovative functionalities and enhancements which are yet emergent in real-life
agricultural situations.

Agriculture 4.0
An integration of new technologies such as IoT, 5G and AI into agriculture system is
occurring, which fulfills the demand of modern agriculture. The implementation of
Agriculture 4.0 (Fig. 10) can increase the revenue of agriculture industry. Software-
Defined Industrial Internet of Things in the Context of Industry 4.0 has been
proposed [117] to standardize the IoT devices and protocols all over the world. On a
similar note Agriculture 4.0 [118] has also been designed and the following picture
can give an idea about how it may standardize the agricultural processes with the
help of recent technologies.

Agriculture Intelligence
With the recent developments of new computing paradigms such as Internet of
Agriculture Things (IoAT), the automation in agriculture sector is growing by using
the concept of Artificial Intelligence (AI), which manages the big data efficiently.
AI increases the system’s ability to gather, process and analyze data in an efficient
manner, considered as Agriculture Intelligence. Further, deep learning-based image
processing can be used to solve the problems such as fruit gradingand weed
detection to maximize the production.

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 433

Smart Farming and Climate
Smart farming(land management and precision agriculture) improves the production
of agriculture substantially by utilizing the concept of IoAT but the impact of smart
farming on environment is increasing day by day. There is need to explore and
reduce the impact of agriculture advancements on climate change.

Prediction Models
The prediction models in future agriculture systems can improve using new deep
learning techniques, which approximate the yield improving the production chain
downstream in an efficient manner.

8 Conclusions

The massive flow in the global population is compelling a transferal toward smart
agriculture practices. As a result, the use of technology is in high demand to enhance
operational efficiency and productivity in the agriculture area.

In this chapter, a detailed study on various aspects of using IoT in agriculture has
been stated, which comprises steps of implementation, solution platform design,
architecture and layers, solution framework, etc. Moreover, the association of some
relevant technologies likes, cloud computing, edge computing, and its encouraging
effect on IoT based agricultural systems have also been shown. Furthermore, the
latest technologies in precision agriculture have been emphasized. A framework
of smart farm management with IoT and Mobile Edge Computing has also been
presented. Some open research issues and challenges in IoT agriculture and the
cloud agriculture field have been given as well.

In the end, some very recent technologies and its probable application on
agriculture have been discussed to exploit the advantages of these technologies in
PA installations.

Feedback from the stakeholders – farmer, agronomist, and technologist is an
important issue for a continuous improvement process. We also have tried to analyze
various gaps residing in the theoretical propositions and practical implementations
in brief.

State of the art literature from every corner of recent technologies is incorporated
in this survey work. This elaborated study is to make the new researchers aware of
the current developments and imminent prospects in the domain of Mobile Edge
Computing based Internet of Agricultural Things.

We hope new crops will soon be grown-up with the help of the integration of
fresh ideas and services using the newly invented tools and techniques.

434 A. Sengupta et al.

References

1. KshitijShinghal, Dr. Arti Noor, Dr. Neelam Srivastava, Dr. Raghuvir Singh, “Intelligent
Humidity Sensor for – Wireless Sensor Network Agricultural Application”, International
Journal of Wireless & Mobile Networks (IJWMN), Vol. 3, No. 1, pp. 118–128, February
2011, DOI : https://doi.org/10.5121/ijwmn.2011.3111

2. Kiruthika M, ShwetaTripathi, MritunjayOjha, Kavita S, “Parameter Monitoring for Precision
Agriculture”, IJRSI, Volume II, Issue X, October 2015, ISSN 2321 – 2705

3. Tim Wark, Peter Corke, PavanSikka, Lasse Klingbeil, Ying Guo, Chris Crossman, Phil Valen-
cia, Dave Swain, and Greg Bishop-Hurley, “Transforming Agriculture through Pervasive
Wireless Sensor Networks”, IEEE Pervasive Computing Magazine, April-June 2007, pp. 50–
57

4. Awati J.S., Patil V.S. and Awati S.B., “Application of Wireless Sensor Networks for
Agriculture Parameters”, International Journal of Agriculture Sciences, ISSN: 0975-3710 &
E-ISSN: 0975-9107, Volume 4, Issue 3, 2012, pp-213–215

5. AnjumAwasthi and S.R.N Reddy, “Monitoring for Precision Agriculture using Wireless
Sensor Network-A Review”, Global Journal of Computer Science and Technology Network,
Web & Security, Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print
ISSN: 0975-4350, Volume 13, Issue 7, Version 1.0, Year 2013

6. Jenna Burrell, Tim Brooke, and Richard Beckwith, “Vineyard Computing: Sensor Networks
in Agricultural Production”, IEEE Pervasive Computing Magazine, Jan-March 2004, pp. 38–
45

7. Herman Sahota, Ratnesh Kumar, Ahmed Kamal and Jing Huang, “An Energy-efficient
Wireless Sensor Network for Precision Agriculture”, White Paper – under the grants
supported in part by the National Science Foundation CNS-0626822, NSF-ECS-0601570,
NSF-ECCS-0801763, NSFCCF-081141, and NSF-ECCS-0926029

8. D.D. Chaudhary, S.P. Nayse, L.M. Waghmare, “Application of Wireless Sensor Networks for
Greenhouse Parameter Control in Precision Agriculture”, International Journal of Wireless &
Mobile Networks (IJWMN) Vol. 3, No. 1, February 2011, pp. 140–149, DOI : https://doi.org/
10.5121/ijwmn.2011.3113

9. Lianjie Zhou, Nengcheng Chen, Zeqiang Chen, and Chenjie Xing “ROSCC: An Efficient
Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture
Mapping” in Precision Agriculture IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, Vol. 9, No. 12, December 2016

10. Spyridon NektariosDaskalakis, George Goussetis, Stylianos D. Assimonis, Manos M.
Tentzeris and ApostolosGeorgiadis “A uW Backscatter-Morse-Leaf Sensor for Low-Power
Agricultural Wireless Sensor Networks”, IEEE Sensors Journal, Vol. 18, No. 19, October 1,
2018

11. Wen-Liang Chen, Yi-Bing Lin , Yun-Wei Lin, Robert Chen, Jyun-Kai Liao, Fung-Ling Ng,
Yuan-Yao Chan, You-Cheng Liu, Chin-Cheng Wang, Cheng-Hsun Chiu, and Tai-Hsiang Yen
“AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation” IEEE Internet of Things
Journal, Vol. 6, No. 3, June 2019

12. Johan J. Estrada-López , Alejandro A. Castillo-Atoche, Javier Vázquez-Castillo , and Edgar
Sánchez-Sinencio, “Smart Soil Parameters Estimation System Using an Autonomous Wire-
less Sensor Network With Dynamic Power Management Strategy” IEEE Sensors Journal, Vol.
18, No. 21, November 1, 2018

13. Joaquín Gutiérrez, Juan Francisco Villa-Medina, Alejandra Nieto-Garibay, and Miguel Ángel
Porta-Gándara, “Automated Irrigation System Using a Wireless Sensor Network and GPRS
Module”, IEEE Transactions on Instrumentation and Measurement, DOI: https://doi.org/
10.1109/TIM.2013.2276487

14. William A. Jury and Henry J. Vaux, Jr., “The Emerging Global Water Crisis: Management
Scarcity and Conflict between Water Users”, Advances in Agronomy, Elsevier, Vol. 95, 2007,
DOI: https://doi.org/10.1016/S0065-2113(07)95001-4

http://dx.doi.org/10.5121/ijwmn.2011.3111
http://dx.doi.org/10.5121/ijwmn.2011.3113
http://dx.doi.org/10.1109/TIM.2013.2276487
http://dx.doi.org/10.1016/S0065-2113(07)95001-4

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 435

15. Guofu Yuan, Yi Luo, Xiaomin Sun, Dengyin Tang, “Evaluation of a crop water stress
index for detecting water stress in winter wheat in the North China Plain”, Agricultural
Water Management, Elsevier, Vol. 64, 2004, pp. 29–40, DOI:https://doi.org/10.1016/S0378-
3774(03)00193-8

16. BrunellaMorandi, Luigi Manfrini, Marco Zibordi, Massimo Noferini, Giovanni Fiori, and
Luca Corelli Grappadelli1 “A Low-cost Device for Accurate and Continuous Measurements
of Fruit Diameter” HORTSCIENCE 42(6):1380–1382. 2007.

17. S.O. Link, M.E. Thiede and M.G. van Bavel “An improved strain-gauge device for continuous
field measurement of stem and fruit diameter” Journal of Experimental Botany, Vol. 49, No.
326, pp. 1583–1587, September 1998

18. Subir Das, ShikhaNayak, Badal Chakraborty, SabyasachiMitra, “Continuous radial growth
rate monitoring of horticultural crops using an optical mouse” Sensors and Actuators A 297
(2019) 111526

19. Martin Thalheimer” A new optoelectronic sensor for monitoring fruit or stem radial growth”,
Computers and Electronics in Agriculture 123 (2016) 149–153

20. P. Dangare, T. Mhizha, E. Mashonjowa “Design, fabrication and testing of a low cost Trunk
Diameter Variation (TDV) measurement system based on an ATmega 328/P microcontroller”
Computers and Electronics in Agriculture 148 (2018) 197–206

21. David M. Drewa, Geoffrey M. Downes “The use of precision dendrometers in research on
daily stem size and wood property variation: A review”, Dendrochronologia 27 (2009) 159–
172

22. Robert G. Evans and E. John Sadler “Methods and technologies to improve efficiency of water
use” WATER RESOURCES RESEARCH, VOL. 44, W00E04, DOI: https://doi.org/10.1029/
2007WR006200, 2008

23. K. H. Higgs and H. G. Jones, “A Microcomputer-Based System for Continuous Measurement
and Recording Fruit Diameter in Relation to Environmental Factors” Journal of Experimental
Botany, Vol. 35, No. 160, pp. 1646–1655, November 1984

24. ALEXANDER LANG “Xylem, Phloem and Transpiration Flows in Developing Apple
Fruits”, Journal of Experimental Botany, Vol. 41, No. 227, pp. 645–651, June 1990

25. Subhanshu Gupta, Ajay Mudgil, AmitaSoni Plant Growth Monitoring System International
Journal of Engineering Research & Technology (IJERT)Vol. 1 Issue 4, June – 2012 ISSN:
2278-0181

26. Slamet W, M Irham N and Sutan M S an “IoT based Growth Monitoring System of Guava
(PsidiumGuajava L.) Fruits” IOP Conf. Series: Earth and Environmental Science 147 (2018)
012048 DOI: https://doi.org/10.1088/1755-1315/147/1/012048

27. Tingzhu Wu, Yue Lin, Lili Zheng, ZiquanGuo, Jianxing Xu, Shijie Liang, Zhuguagn Liu,
Yijun Lu, Tien-Mo Shih, And Zhong Chen, “Analyses of multi-color plant-growth light
sources in achieving maximum photosynthesis efficiencies with enhanced color qualities”
Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4135

28. MohdFauzi Othman, KhairunnisaShazali “Wireless Sensor Network Applications: A Study
in Environment Monitoring System” International Symposium on Robotics and Intelligent
Sensors 2012 (IR IS 2012)

29. AlessioBotta, Walter de Donato, Valerio Persico, Antonio Pescape “Integration of Cloud
Computing and Internet of Things: a Survey” IEEE Pervasive Computing Magazine

30. Cesar Encinas, Erica Ruiz, Joaquin Cortez and Adolfo Espinoza “Design and implementation
of a distributed IoT system for the monitoring of water quality in Aquaculture” 978-1-5090-
3599-1/17/$31.00 2017 IEEE

31. Jing Hu, Lianfeng Shen, Yang Yang, RuichaoLv “Design and Implementation of Wireless
Sensor and Actor Network for Precision Agriculture”, 978-1-4244-5849-3/10/$26.00 ©20 1
0 IEEE

32. Jeonghwan Hwang, Changsun Shin and Hyun Yoe “Study on an Agricultural Environment
Monitoring Server System using Wireless Sensor Networks”, Sensors 2010, 10, 11189–
11211; DOI: https://doi.org/10.3390/s101211189

http://dx.doi.org/10.1016/S0378-3774(03)00193-8
http://dx.doi.org/10.1029/2007WR006200
http://dx.doi.org/10.1088/1755-1315/147/1/012048
http://dx.doi.org/10.3390/s101211189

436 A. Sengupta et al.

33. Jerrin James, Manu Maheshwar P, “Plant growth monitoring system, with dynamic user
interface”, IEEE Magazine

34. Ji-chun Zhao, Jun-feng Zhang, Yu Feng, Jian-xinGuo “The Study and Application of the lOT
Technology in Agriculture” 978-1-4244-5540-9/10/$26.00 ©2010 IEEE

35. NattapolKaewmard, SaiyanSaiyod, “Sensor Data Collection and Irrigation Control on Veg-
etable Crop Using Smart Phone and Wireless sensor Networks for Smart Farm” 2014 IEEE
Conference on Wireless Sensors (ICWISE), October, 26–28 2014, Subang, Malaysia

36. Meonghun Lee, Jeonghwan Hwang, and Hyun Yoe, “Agricultural Production System based
on IoT”, 2013 IEEE 16th International Conference on Computational Science and Engineer-
ing

37. Sang Gyu Lee, Sung Kyeom Kim, HeeJu Lee, Hee Su Lee, JinHyoung Lee “Impact
of moderate and extreme climate change scenarios on growth, morphological features,
photosynthesis, and fruit production of hot pepper”, October 2017, DOI: https://doi.org/
10.1002/ece3.3647

38. Shubo Liu Internet of “Things Monitoring System of Modern Eco-agriculture Based on Cloud
Computing”, DOI https://doi.org/10.1109/ACCESS.2019.2903720, IEEE

39. MahtaMoghaddam, Dara Entekhabi, YuriyGoykhman, Ke Li, Mingyan Liu, Aditya Mahajan,
AshutoshNayyar, David Shuman, and DemosthenisTeneketzis “Wireless Soil Moisture Smart
Sensor Web Using Physics-Based Optimal Control: Concept and Initial Demonstrations”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.
3, No. 4, December 2010

40. David J. Mulla, “Twenty five years of remote sensing in precision agriculture: Key advances
and remaining knowledge gaps”,Biosystem engineering 114 (2013) 358E371

41. ArathiReghukumar, VaidehiVijayakumar “Plant Watering System with Cloud Analysis and
Plant Health Prediction” Procedia Computer Science 165 (2019) 126–135

42. P. Subashini, Abhishek Pandey, Sourav Jaiswal, Anurag Sharma “Real Time Plant Health
Monitoring System using Sensors and Clouds” International Research Journal of Computer
Science (IRJCS) ISSN: 2393–9842 Issue 04, Volume 6 (April 2019)

43. Kashif Bilal, Marc Manzano, Samee U. Khan, EusebiCalle, Keqin Li and Albert Y. Zomaya,
“On the Characterization of the Structural Robustness of Data Center Networks”, IEEE
Transactions On Cloud Computing, Vol. 1, No. 1, January-June 2013

44. Xicheng Tan, Liping Di, Meixia Deng, Aijun Chen, Fang Huang, Chao Peng, Meng Gao,
Yayu Yao, and Zongyao Sha, “Cloud and Agent-Based Geospatial Service Chain: A Case
Study of Submerged Crops Analysis During Flooding of the Yangtze River Basin”, IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 3,
March 2015

45. Wes J. Lloyd, ShrideepPallickara, Olaf David, MazdakArabi, Tyler Wible, Jeffrey Ditty and
Ken Rojas “Demystifying the Clouds: Harnessing Resource Utilization Models for Cost
Effective Infrastructure Alternatives”, IEEE Transactions on Cloud Computing, Vol. 5, No.
4, October-December 2017

46. Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, C’esar A. F. De Rose and Rajkumar-
Buyya, “CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms”, Softw. Pract. Exper. Journal, John Wiley
& Sons, Ltd. 2011; 41:23–50 DOI: https://doi.org/10.1002/spe

47. Pablo Chamoso, Alfonso González-Briones, Sara Rodríguez, and Juan M. Corchado, “Ten-
dencies of Technologies and Platforms in Smart Cities: A State-of-the-Art Review”, Wireless
Communications and Mobile Computing, Wiley Hindawi, Article ID 3086854, 17 pages
https://doi.org/10.1155/2018/3086854

48. Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, PadmanabhanPillaiy, and Mahade-
vSatyanarayanan, “Towards Wearable Cognitive Assistance”, MobiSys’14, June 16–19, 2014,
Bretton Woods, New Hampshire, USA. Copyright 2014 ACM 978-1-4503-2793-0/14/06
...$15.00. https://doi.org/10.1145/2594368.2594383

http://dx.doi.org/10.1002/ece3.3647
http://dx.doi.org/10.1109/ACCESS.2019.2903720
http://dx.doi.org/10.1002/spe
http://dx.doi.org/10.1155/2018/3086854
http://dx.doi.org/10.1145/2594368.2594383

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 437

49. Biljana L. RisteskaStojkoska, Kire V. Trivodaliev, “A review of Internet of Things for smart
home: challenges and solutions”, Journal of Cleaner Production, October 2016, DOI: https://
doi.org/10.1016/j.jclepro.2016.10.006

50. Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash Jayaraman, Dimitrios
Georgakopoulos and Rajiv Ranjan, “IOTSim: a Simulator for Analysing IoT Applications”,
Journal of Systems Architecture, (2016), DOI: https://doi.org/10.1016/j.sysarc.2016.06.008

51. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, Dav id Patterson, Ariel Rabkin, Ion Stoica, and MateiZaharia, “A
View of Cloud Computing”, Communications of the ACM, April 2010, Vol. 53, No. 4,
DOI:https://doi.org/10.1145/1721654.1721672

52. Cisco and/or its affiliates, “Fog Computing and the Internet of Things: Extend the Cloud to
Where the Things Are”, Cisco Public White Paper

53. Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie “Mobile Edge Computing: A
Survey” IEEE Internet of Things Journal, Vol. 5, No. 1, February 2018

54. Kashif Bilal, Osman Khalid, AimanErbad, Samee U. Khan “Potentials, Trends, and Prospects
in Edge Technologies: Fog, Cloudlet, Mobile Edge, and Micro Data Centers” IEEE
Journal of Computer Networks, PII: S1389-1286(17)30377-8, DOI: https://doi.org/10.1016/
j.comnet.2017.10.002

55. Byung-Gon Chun, SunghwanIhm, PetrosManiatis, MayurNaik, Ashwin Patti “Clone Cloud:
Elastic Execution between Mobile Device and Cloud” EuroSys’11, April 10–13, 2011,
Salzburg, Austria. Copyright © 2011 ACM 978-1-4503-0634-8/11/04... $10.00

56. Weisong Shi, SchahramDustdar, “The Promise of Edge Computing”, Computer Published by
the IEEE Computer Society 0018-9162 / 16 /$33.00 © 2016 IEEE

57. Weisong Shi, Jie Cao, QuanZhang,Youhuizi Li, and Lanyu Xu “Edge Computing: Vision and
Challenges” IEEE Internet of Things Journal, Vol. 3, No. 5, October 2016

58. Massimo Villari, Maria Fazio, SchahramDustdar, Omer Rana, Rajiv Ranjan “A New
Paradigm for Edge/Cloud Integration” IEEE Cloud Computing Published By the IEEE
Computer Society 2325-6095/16/$33.00 © 2016 IEEE

59. PallaviSethi and Smruti R. Sarangi “Internet of Things: Architectures, Protocols, and
Applications” Hindawi Journal of Electrical and Computer Engineering Volume 2017, Article
ID 9324035, 25 pageshttps://https://doi.org/10.1155/2017/9324035

60. John A. Stankovic “Research Directions for the Internet of Things” IEEE Internet of Things
Journal, Vol. 1, No. 1, February 2014

61. Jianli Pan, Raj Jain, Subharthi Paul, TamVu, AbusayeedSaifullah and Mo Sha an “Internet
of Things Framework for Smart Energy in Buildings: Designs, Prototype and Experiments”
IEEE Internet of Things Journal, Vol. 2, No. 6, December 2015

62. Mohammad AbdurRazzaque, MarijaMilojevic-Jevric, Andrei Palade, and Siobhán Clarke
“Middleware for Internet of Things: A Survey” IEEE Internet of Things Journal, Vol. 3, No.
1, February 2016

63. Jun Huang, Yu Meng, Xuehong Gong, Yanbing Liu, and QiangDuan, “A Novel Deployment
Scheme for Green Internet of Things”, IEEE Internet of Things Journal, Vol. 1, No. 2, April
2014

64. XiangpingZhai, Xiaoxiao Guan, Chunsheng Zhu, Lei Shu and Jiabin Yuan, “Optimization
Algorithms for Multi access Green Communications in Internet of Things” IEEE Internet of
Things Journal, Vol. 5, No. 3, June 2018

65. Anandarup Mukherjee, SudipMisra, Narendra Singh Raghuwanshi, and SushmitaMitra
“Blind Entity Identification for Agricultural IoT Deployments” IEEE Internet of Things
Journal, Vol. 6, No. 2, April 2019

66. Debasmit Banerjee, Bo Dong, Mahmoud Taghizadeh, and Subir Biswas “Privacy-Preserving
Channel Access for Internet of Things” IEEE Internet of Things Journal, Vol. 1, No. 5,
October 2014

67. Chao Li and BalajiPalanisamy “Privacy in Internet of Things: From Principles to Technolo-
gies” IEEE Internet of Things Journal, Vol. 6, No. 1, February 2019

http://dx.doi.org/10.1016/j.jclepro.2016.10.006
http://dx.doi.org/10.1016/j.sysarc.2016.06.008
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1016/j.comnet.2017.10.002
http://dx.doi.org/10.1155/2017/9324035

438 A. Sengupta et al.

68. Qi Jing, Athanasios V, Vasilakos, Jiafu Wan, JingweiLu ,DechaoQiu “Security of the Internet
of Things: perspectives and challenges”, Wireless Network (2014) 20:2481–2501DOI https:/
/doi.org/10.1007/s11276-014-0761-7

69. Minhaj Ahmad Khan, Khaled Salah “IoT security: Review, blockchain solutions, and open
challenges” Future Generation Computer Systems 82 (2018) 395–411

70. Jie Lin, Wei Yuy, Nan Zhangz, Xinyu Yang, Hanlin Zhang, and Wei Zhao Xi’an Jiao-
tong, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and
Privacy, and Applications”, IEEE Internet of Things Journal, DOI: https://doi.org/10.1109/
JIOT.2017.2683200

71. Mohammad AbdurRazzaque, MarijaMilojevic-Jevric, Andrei Palade, and Siobhán Clarke
“Middleware for Internet of Things: A Survey” IEEE Internet of Things Journal, Vol. 3, No.
1, February 2016

72. C. Stergiou, K.E. Psannis, B.-G. Kim, B. Gupta Secure “Integration of IoT and Cloud
Computing” Future Generation Computer Systems (2016), DOI: https://doi.org/10.1016/
j.future.2016. 11.031

73. Jiale Zhang, Bing Chen, Yanchao Zhao, Xiang Cheng and Feng Hu “Data Security and
Privacy-Preserving in Edge Computing Paradigm: Survey and Open Issues” DOI https://
doi.org/10.1109/ACCESS.2018.2820162, IEEE Access

74. Andreas Kamilaris and Andreas Pitsillides “Mobile Phone Computing and the Internet of
Things: A Survey” IEEE Internet of Things Journal, Vol. 3, No. 6, December 2016

75. WeigangHou, Wenxiao Li, Lei Guo, Yiwei Sun, and XintongCai “Recycling Edge Devices
in Sustainable Internet of Things Networks” IEEE Internet of Things Journal, Vol. 4, No. 5,
October 2017

76. Jianli Pan and James McElhannon “Future Edge Cloud and Edge Computing for Internet
of Things Applications”, IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 1,
FEBRUARY 2018

77. Xiaomin Li, Di Li, Jiafu Wan, Chengliang Liu and Muhammad Imran Adaptive “Transmis-
sion Optimization in SDN-Based Industrial Internet of Things with Edge Computing” IEEE
Internet of Things Journal, Vol. 5, No. 3, June 2018

78. Xiaomin Li, Jiafu Wan, Hong-Ning Dai, Muhammad Imran, Min Xia, and Antonio Celesti,
“A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in
Smart Manufacturing” IEEE Transactions on Industrial Informatics, Vol. 15, No. 7, July 2019
4225

79. Alexander Nelson, Greg Toth, Dennis Linders, Cuong Nguyen, and Sokwoo Rhee “Replica-
tion of Smart-City Internet of Things Assets in a Municipal Deployment” IEEE Internet of
Things Journal, Vol. 6, No. 4, August 2019

80. Inés Sittón-Candanedo, Ricardo S. Alonso, Juan M. Corchado, Sara Rodríguez-González,
Roberto Casado-Vara “A review of edge computing reference architectures and a new global
edge proposal” Future Generation Computer Systems 99 (2019) 278–294

81. Inés Sittón-Candanedo, Ricardo S. Alonso, ÓscarGarcía, Ana B. Gil and Sara Rodríguez-
González” A Review on Edge Computing in Smart Energy by means of a Systematic Mapping
Study”, December 2019

82. ÓscarGarcía, Ricardo S. Alonso, Javier Prieto and Juan M. Corchado Energy “Efficiency in
Public Buildings through Context-Aware Social Computing”, April 2017

83. Antonio Brogi, Stefano Forti “QoS-aware Deployment of IoT Applications through the Fog”
Internet of Things Journal, DOI: https://doi.org/10.1109/JIOT.2017.2701408, IEEE

84. Fernando De la Prieta and Juan Manuel Corchado “Cloud Computing and Multi agent
Systems, a Promising Relationship”, Springer International Publishing Switzerland 2016J.
Kołodziej et al. (eds.), Intelligent Agents in Data-intensive Computing, Studies in Big Data
14, DOI https://doi.org/10.1007/978-3-319-23742-8_7

85. Yun Chao Hu, Milan Patel, Dario Sabella, NuritSprecher and Valerie Young “Mobile Edge
computing a key technology towards 5G” First edition – September 2015 ISBN No. 979-10-
92620-08-5

http://dx.doi.org/10.1007/s11276-014-0761-7
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1016/j.future.2016
http://dx.doi.org/10.1109/ACCESS.2018.2820162
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1007/978-3-319-23742-8_7

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 439

86. Frieder Ganz, Daniel Puschmann, PayamBarnaghi, and Francois Carrez A “Practical Evalua-
tion of Information Processing and Abstraction Techniques for the Internet of Things”, IEEE
Internet of Things Journal, DOI: https://doi.org/10.1109/JIOT.2015.2411227

87. Pedro Garcia Lopez, Alberto Montresor, Dick Epema, AnwitamanDatta, TeruoHigashino,
Adriana Iamnitchi, MarinhoBarcellos, Pascal Felber, Etienne Riviere “Edge-centric Comput-
ing: Vision and Challenges” ACM SIGCOMM Computer Communication Review Volume
45, Number 5, October 2015

88. Harshit Gupta, Amir VahidDastjerdi, Soumya K. Ghosh, RajkumarBuyya “iFogSim: A toolkit
for modelling and simulation of resource management techniques in the Internet of Things,
Edge and Fog computing environments”, May 2017, DOI: https://doi.org/10.1002/spe.2509

89. Najmul Hassan, SairaGillani, Ejaz Ahmed, IbrarYaqoob, and Muhammad Imran “The Role
of Edge Computing in Internet of Things” Digital Object Identifier: https://doi.org/10.1109/
MCOM.2018.1700906

90. Gopika Premsankar, Mario Di Francesco, and Tarik Taleb “Edge Computing for the Internet
of Things: A Case Study”, IEEE Internet of Things Journal, DOI: https://doi.org/10.1109/
JIOT.2018.2805263

91. Tarik Taleb, Konstantinos Samdanis, BadrMada], HannuFlinck, Sunny Dutta, and Dario
Sabella “On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge
Cloud Architecture & Orchestration” IEEE Communications Surveys & Tutorials

92. Wei Yu, Fan Liang, Xiaofei He, William G. Hatcher, Chao Lu, Jie Lin, and Xinyu Yang “A
Survey on the Edge Computing for the Internet of Things” This article has been accepted
for publication in a future issue of this journal, but has not been fully edited. Content
may change prior to final publication. Citation information: DOI https://doi.org/10.1109/
ACCESS.2017.2778504, IEEE Access

93. Muhammad Shoaib Farooq, ShamylaRiaz, Adnan Abid, Kamran Abid, and Muhammad
AzharNaeem “A Survey on the Role of IoT in Agriculture for the Implementation of Smart
Farming” Received October 3, 2019, accepted October 18, 2019, date of publication October
25, 2019, date of current version November 6, 2019.

94. Nurzaman Ahmed, Debashis De and Md. Iftekhar Hussain “Internet of Things (IoT) for Smart
Precision Agriculture and Farming in Rural Areas” IEEE Internet of Things Journal, Vol. 5,
No. 6, December 2018

95. TanmayBaranwal, Nitika, Pushpendra Kumar Pateriya “Development of IoT based Smart
Security and Monitoring Devices for Agriculture” 978-1-4673-8203-8/16/$31.00_c 2016
IEEE

96. Mahammad ShareefMekala, P Viswanathan “CLAY-MIST: IoT-Cloud Enabled CMM index
for Smart Agriculture Monitoring System”, Measurement (2018), DOI: https://doi.org/
10.1016/j.measurement.2018.10.072

97. Mahammad ShareefMekala, Dr P. Viswanathan, “A Survey: Smart Agriculture IoT with
Cloud Computing” 978-1-5386-1716-8/17/$31.00 ©2017 IEEE

98. HemlataChanne, Sukhesh Kothari, Dipali Kadam, “Multidisciplinary Model for Smart
Agriculture using Internet-of-Things (IoT), Sensors, Cloud Computing, Mobile Computing
& Big-Data Analysis” HemlataChanne et al, Int. J. Computer Technology & Applications,
Vol 6 (3),374–382

99. Prathibha S R, AnupamaHongal, Jyothi M P, “IOT based Monitoring System in Smart
Agriculture”, 2017 International Conference on Recent Advances in Electronics and Com-
munication Technology, 978-1-5090-6701-5/17 $31.00 © 2017 IEEE, DOI https://doi.org/
10.1109/ICRAECT.2017.5281

100. Olakunle Elijah, Tharek Abdul Rahman, IgbafeOrikumhi, Chee Yen Leow and MHD
NourHindia “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture:
Benefits and Challenges”, IEEE Internet of Things Journal, Vol. 5, No. 5, October 2018

101. Mandrita Banerjee, Junghee Lee, Kim-Kwang Raymond Choo “A Blockchain Future to
Internet of Things Security: A Position Paper” PII: S2352-8648(17)30290-0DOI: https://
doi.org/10.1016/j.dcan.2017.10.006Reference: DCAN 118

http://dx.doi.org/10.1109/JIOT.2015.2411227
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1109/MCOM.2018.1700906
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1016/j.measurement.2018.10.072
http://dx.doi.org/10.1109/ICRAECT.2017.5281
http://dx.doi.org/10.1016/j.dcan.2017.10.006Reference

440 A. Sengupta et al.

102. Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, Qiaoyan Wen, “A survey on the security of
blockchain systems”, Future Generation Computer Systems Journal

103. Ana Reyna, Cristian Mart’ın, Jaime Chen, Enrique Soler, Manuel D’ıaz, “On blockchain and
its integration with IoT. Challenges and opportunities”, Future Generation Computer Systems,
May 2018 PII: S0167-739X (17) j.future.2018.05.046

104. Mauro Isaja, John K. Soldatos, Volkan Gezer, “Combining Edge Computing and Blockchains
for Flexibility and Performance in Industrial Automation”, UBICOMM 2017: The Eleventh
International Conference on Mobile Ubiquitous Computing, Systems, Services and Technolo-
gies

105. FarzadSamie, Lars Bauer, and Jörg Henkel, “From Cloud Down to Things: An Overview of
Machine Learning in Internet of Things”, IEEE Internet of Things Journal, Vol. 6, No. 3, June
2019

106. Yi-Fan Zhang, Peter J. Thorburn, Wei Xiang and Peter Fitch, “SSIM – A Deep Learning
Approach for Recovering Missing Time Series Sensor Data”, IEEE Internet of Things Journal,
Vol. 6, No. 4, August 2019

107. Karrar Hameed Abdulkareem, Mazin Abed Mohammed, SaraswathyShaminiGunasekaran,
Mohammed Nasser Al-Mhiqani, Ammar AwadMutlag, Salama A. Mostafa, NabeelSalih Ali,
And Dheyaa Ahmed Ibrahim, “A Review of Fog Computing and Machine Learning: Con-
cepts, Applications, Challenges, and Open Issues”, October 2019, Digital Object Identifier
https://doi.org/10.1109/ACCESS.2019.2947542

108. A. Rakotoasimbahoaka, I. Randria, N. R. Razafindrakoto “Malicious URL Detection by
Combining Machine Learning and Deep Learning Models EDMI”, University, BP 1264 –
Campus Universitaired’Andrainjato, Fianarantsoa, 301, Madagascar

109. Yong-Shin Kang, I-Ha Park, Jongtae Rhee, and Yong-Han Lee, “Mongo DB-Based Reposi-
tory Design for IoT-Generated RFID/Sensor Big Data”, IEEE Sensors Journal, Vol. 16, No.
2, January 15, 2016

110. Shubo Liu, LiqingGuo, Heather Webb, Xiao Ya and Xiao Chang, “Internet of Things Mon-
itoring System of Modern Eco-Agriculture Based on Cloud Computing”, IEEE Magazine,
March 2019

111. Fadi Al-Turjman, Enver Ever, Yousaf Bin Zikria, Sung Won Kim and AbdulmalekElmah-
goubiSahci, “Scheduling Approach for Heterogeneous Content-Centric IoT Applications”,
IEEE Access Journal, June 14, 2019, DOI: https://doi.org/10.1109/ACCESS.2019.2923203

112. Charles Malveaux, Steve Hall, Randy R. Price, “Using Drones in Agriculture: Unmanned
Aerial Systems for Agricultural Remote Sensing Applications”, 2014 ASABE – CSBE/SC-
GAB Annual International Meeting Paper, Paper Number: 141911016, Montreal, Quebec
Canada, July 13–16, 2014

113. Rutten et al., “Assessing Agricultural Damage by Wild Boar Using Drones”, Wildlife Society
Bulletin; DOI: https://doi.org/10.1002/wsb.916

114. Frank Veroustraete, “The Rise of the Drones in Agriculture”, EC Agriculture 2.2 (2015):
325–327

115. Per Frankelius, Charlotte Norrman, Knut Johansen, “Agricultural Innovation and the Role of
Institutions: Lessons from the Game of Drones”, Journal of Agriculture Environment Ethics,
Springer, https://doi.org/10.1007/s10806-017-9703-6

116. Marek Kulbacki et al., “Survey of Drones for Agriculture Automation from Planting to Har-
vest”, INES 2018, 22nd IEEE International Conference on Intelligent Engineering Systems,
June 21–23, 2018, Las Palmas de Gran Canaria, Spain, 978-1-5386-1122-7/18/$31.00 ©2018
IEEE

117. Jiafu Wan, Shenglong Tang, Zhaogang Shu, Di Li, ShiyongWang,Muhammad Imran, and
Athanasios V. Vasilakos, “Software-Defined Industrial Internet of Things in the Context of
Industry 4.0”, IEEE Sensors Journal, Vol. 16, No. 20, October 15, 2016

118. Sayan Kumar Roy, and Debashis De, “Genetic Algorithm based Internet of Precision
Agricultural Things (IopaT) for Agriculture 4.0.” Internet of Things (2020): 100201.

http://dx.doi.org/10.1109/ACCESS.2019.2947542
http://dx.doi.org/10.1109/ACCESS.2019.2923203
http://dx.doi.org/10.1002/wsb.916
http://dx.doi.org/10.1007/s10806-017-9703-6

Mobile Edge Computing Based Internet of Agricultural Things: A Systematic. . . 441

119. Sukhpal Singh Gill, Inderveer Chana, and Rajkumar Buyya. “IoT based agriculture as a cloud
and big data service: the beginning of digital India.” Journal of Organizational and End User
Computing (JOEUC), Vol. 29, No. 4: 1–23, 2017.

120. Sukhpal Singh, Inderveer Chana, and Rajkumar Buyya, “Agri-Info: Cloud Based Autonomic
System for Delivering Agriculture as a Service.” Internet of Things, Vol. 9 (2020): 100131.

Deep Learning in Computer Vision
through Mobile Edge Computing for IoT

Abu Sufian, Ekram Alam, Anirudha Ghosh, Farhana Sultana, Debashis De,
and Mianxiong Dong

Abstract The success of Artificial Intelligence (AI) through Deep Learning (DL)
and Computer Vision has inspired many researchers to work on many real-life
and human-centered tasks. These current AI systems are in use to augment the
intelligence of IoT. IoT devices are equipped with very low computing and fewer
storage resources. In the case of visual computing, a massive number of images
or video data are needed to be processed, which seems to be not feasible for
an IoT device. Therefore, those data are needed to transfer to a cloud machine
for computation. However, in this case, bandwidth scarcity is a huge problem.
Real-time computation and security and privacy of data are also very challenging
issues. To handle this problem, Mobile Edge Computing (MEC) is used in IoT
to perform the real-time computation locally. Combining state-of-the-art computer
vision algorithms such as DL, especially Deep Convolutional Neural Network
(CNN) based algorithms and MEC, can be a smart solution for onsite visual
computing. This chapter scholarly discussed how deep CNN through MEC could
be a potential technique for IoT based solutions. It also discuss how a deep transfer
learning procedure can be applied in this method. This chapter proposes how
different layers of deep CNN can be split up among Edge devices, Fog gateway,
and Cloud servers to do visual computing at IoTs. Relevant technical backgrounds,
current state-of-the-art, and future scopes are also emphasized in this chapter.

A. Sufian (�) · A. Ghosh · F. Sultana
Department of Computer Science, University of Gour Banga, Malda, West Bengal, India
e-mail: sufian@ieee.org

E. Alam
Department of Computer Science, Gour Mahavidyalaya, Malda, West Bengal, India

D. De
Centre of Mobile Cloud Computing, Department of Computer Science and Engineering, Maulana
Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
e-mail: dr.debashis.de@ieee.org

M. Dong
Department of Sciences and Informatics, Muroran Institute of Technology, Hokkaido, Japan
e-mail: mx.dong@csse.muroran-it.ac.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_18

443

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_18&domain=pdf
mailto:sufian@ieee.org
mailto:dr.debashis.de@ieee.org
mailto:mx.dong@csse.muroran-it.ac.jp
https://doi.org/10.1007/978-3-030-69893-5_18

444 A. Sufian et al.

Keywords AI in edge · Computer vision · Convolutional neural network · Deep
learning · Embedded systems · IoT · Mobile edge computing

1 Introduction

In the year 2011, the number of interconnected devices had overtaken the number of
people in the world, and it is estimated that this figure has been reached 24 billion
by the end of the year 2020 [1]. The GSMA estimates that there have been 26 smart
connected devices for each person by 2020 [2]. The GSMA also mentioned that in
the year 2018, mobile technologies and its services had added 3.9 trillion dollars of
market value (4.6% of GDP) globally, and that shall reach 4.8 trillion dollars (4.8%
of GDP) by the year 2023. On the other hand, applications of 5G networks are also
gaining momentum [3]. This growing demand for interconnected devices and 5G
networks pushes the revolution of the Internet of Things (IoT) upwards. Researchers
of these areas suggest that the future IoT will be smarter, more automated, fast,
and capable of making an inference based on data at site [4, 5]. To make these
feasible, Artificial Intelligence (AI), especially Machine Learning (ML), as well as
Deep Learning (DL), will play crucial roles. However, the real problem is that IoT
mostly depends on server (cloud) computing. IoT device senses the data and sends
it to a server for processing and making inferences. Therefore, latency, data security
and privacy become challenging issues [6]. Mobile Edge Computing (MEC) can be
exploited to counter these challenges, where most of the computing is done near
to IoT Device. IoT device is sometimes referred to as an edge device, so these two
terms are interchangeably used in this chapter. A hierarchical relationship among
edge devices, fog gateway, and the cloud server has depicted in Fig. 1. Most of
the IoT or edge devices have minimal computing and storage resources. So, to
benefit from deep learning in edge devices, some alternate implementing strategies

Fig. 1 Hierarchy of cloud, fog and edge computing

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 445

are required. Obviously, many works have been proposed so far by researchers
from all over the world [7–9]. However, most of the works suggest some hardware
accelerators, which is not cost-effective and not suited for very lightweight edge
devices. Some works also are suggested to trade-off the accuracy with pruning the
networks, which is also one kind of performance compromising.

This chapter, ‘Deep Learning in Computer Vision through Mobile Edge Comput-
ing for IoT (DCMIoT)’, scholarly discusses these issues. It has been proposed some
of the software accelerated MEC approaches: one is deep transfer learning-based.
Another one is splitting the deep learning model or algorithm among Edge, Fog, and
Cloud servers. It has also suggested a distributed computing among edge devices.
These are explained in the perspective of Computer Vision and Convolutional
Neural Networks (CNN). This chapter also discussed background details for a better
understanding of the topic. A brief chronological survey on recent existing state-of-
the-art is also done in this chapter. Some highlights of the chapter are:

• A study of onsite visual computing through MEC using CNN.
• A survey of the recent state-of-the-art and brief technical background details.
• Proposed three MEC approaches that could exploit Deep Learning at Edge.
• An analysis of proposed models for onsite visual computing.

The rest of the chapter is organized as follows: background details are discussed
in Sect. 2. In Sect. 3, literature review of notable state-of-the-arts. Three software
accelerated MEC approaches are proposed in Sect. 4, whereas Sect. 5 analyses our
proposed technique. Finally, conclusion, and future scope in Sect. 6.

2 Background

The main focus of this chapter is mobile edge computing (MEC) for IoT or Edge
Devices. Here, computing algorithms are based on deep learning, and the target
applied domain is computer vision. Therefore, some technical terms that are related
to this area are briefly discussed in the following subsections.

2.1 IoT or Edge Device

IoT is comprised by the US National Intelligence Council (NIC) in the record of six
“Disruptive Civil Technologies” with significant influence on US national power.1

According to NIC, IoT nodes may use in everyday things: from food packages to
healthcare equipment [6]. Empowered by the latest progress in Communication
and Information Technology, Data Analytics, and Artificial Intelligence, the IoT

1https://fas.org/irp/nic/disruptive.pdf accessed on 11/02/2020.

https://fas.org/irp/nic/disruptive.pdf

446 A. Sufian et al.

has been revolutionized the world. It is opening new opportunities and presenting
unimaginable solutions a few years before [2].

As mentioned in study [1], Kevin Ashton first raised the term Internet of Things
(IoT) in the late 1990s in the context of the supply chain management [2]. Many
definitions of IoT are available in various literature based on their approaches,
backgrounds, and needs. So, it is not easy to have a universal definition of it. The
reason for today’s apparent fuzziness around this term ‘Internet of Things’ itself,
which is consists of two terms; the first one focuses on a network-oriented approach,
whereas the second one drifts the focus on generic ‘objects’ that to be combined into
a common framework [6].

The IoT is highly multidisciplinary because it presents a wide variety of
protocols, technologies, disciplines, and applications concurrently [1, 6]. The
International Telecommunication Union (ITU) defines it as a global infrastructure
that enables advanced services by the interconnection of physical and virtual things
based on existing and evolving compatible technologies [2]. Xia and others define
IoT as a networked interconnection of intelligent objects [10]. In simple words, IoT
is anything that can be a part of a network and can be communicated by driving
different types of sensors [11, 12]. As IoTs are the lowest level equipment, so it may
be called edge devices too.

Functional Architecture of IoT
A typical functional architecture of the IoT has been shown in Fig. 2. There
are five layers in this architecture, namely Perception Layer, Transmission Layer,
Middleware Layer, Application Layer, and Business Layers. Similar architectures
are shown in other proposed works [13, 14]. A brief explanation of the layers of this
architecture is mentioned below.

L1: Perception Layer It can also be called ‘Object Layer’ or ‘Device Layer’.
These objects can be fitted in Mobile Phones, Cars, Drones, Security Cameras,
Trains, Aeroplanes, etc. This is the lowest-level layer where, according to the
requirements, actual data are collected through different types of sensor devices,
actuators, RFID tags, etc. Collected data, which can be about location, vibration,
proximity, humidity, motion, illuminance temperature, etc., are converted to digital
form. This digital data is transferred to the Transmission Layer through secure
channels for further processing.

L2: Transmission Layer It is also called the Network Layer. This layer securely
transfers the data from sensor-enabled devices to the middleware layer. The
transmission medium can be guided or unguided with different technologies [13].
The main communication technologies used here shall be classified as Home Area
Networks (HAN), Field Area Network (FAN), and Wide Area Networks (WAN).
In HAN, available technologies that can be used are RFID, NFC, ZigBee, Wi-Fi,
Bluetooth, Dash7, etc. For FAN, PLC (Power Line Communication) can be used.
Similarly, for WAN, WiMAX and Cellular Technologies (GSM, GPRS, EDGE, 3G,
4G, LTE, 5G) can be used. These technologies can be used depending on the data

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 447

Fig. 2 Typical functional architecture of IoT

rate, coverage range, location, etc. [15]. Some literature also mentioned this layer as
‘The Transport Layer’ [16].

L3: Middle-Ware Layer In some literature, this layer has been mentioned as ‘The
Processing Layer’ [16]. The IoT components implement different types of services,
where each component connects and communicates with a peer component that
enforces the same type of service. This layer is liable for service management, and
it has a link to the database. It takes input from the network layer and stores it in the
database. It also executes processing, ubiquitous computation, cloud computing and
takes decisions based on the results.

L4: Application Layer The application layer presents applications to users based
on the computed data in the middleware layer. Some examples of this layer’s smart
applications are smart houses, smart farming, smart city, smart transport, smart
healthcare, etc. This layer can also act as the interface for users interacting with
a physical device to access the required data.

L5: Business Layer This is the higher-level layer that manages the overall IoT as
a product. Based on the imputed data from the application layer, it can make several

448 A. Sufian et al.

business models. This layer also manages the privacy, security, and authorization,
which are the challenging issues in the development of IoT.

Computing in IoT
Computing is the main backbone for any device or machine, and it is also for IoT.
As shown in Fig. 1, computing in IoT may be Cloud Computing (CC) [17], Fog
Computing (FC) [18], and Edge Computing (EC) [19]. These are briefly mentioned
below.

Cloud Computing Cloud computing has been first introduced in the year 1996 as
a network-based computing archetype. However, it first used in its modern context
was in the year 2006. Cloud computing is basically a parallel and distributed system
that consists of interconnected and virtualized nodes that can be used as one or more
unified computing resources on-demand based on some service-level agreements
between the service provides and consumers [20].

Cloud computing describes the new paradigm in which it provides processing
capabilities and storage in an on-demand manner by relying on high-capacity data
centers that are available through the Internet connection. This arrangement allows
users to retrieve their applications and data from anywhere as long as they are
connected through the Internet [21]. There are two Models of Cloud Computing:
The deployment model and the Service model. Further, the Deployment model can
be classified as (1) Private cloud, (2) Public cloud, (3) Community cloud, and (4)
Hybrid cloud. Whereas Service model can be: (1) Everything as a Service (EaaS),
(2) Infrastructure as a Service (IaaS), (3) Platform as a Service (PaaS), (4) Software
as a Service (SaaS), (5) Hardware as a Service (HaaS), (6) Workspace as a Service
(WaaS), (7) Data as a Service (DaaS) [22].

Fog Computing Fog computing was first mentioned by Bonomi et al. [23] as a
highly virtualized system that gives computing, storage, and networking services
between end devices and traditional cloud computing data centers generally located
at the edge of the network. Fog computing sometimes referred to as ‘cloudlet’, lies
in between two extremes: Cloud Computing and Edge Computing (at Edge or IoT
devices). It places near the edge to make a bridge in computing between cloud and
edge computing [24].

Edge Computing In many pieces of study, the terms ‘Fog computing’ and ‘Edge
computing’ have been used interchangeably. Though both FC and EC try to bring
the cloud resource and services near the edge, the FC edge is the edge of the Internet,
and the EC edge is the edge of edge devices or IoT. The term ‘Edge computing’ was
first presented around the year 2002 [25] but it became popular recently because
of IoT revolutions [2]. EC is motivated by bandwidth scarcities between the edge
device and cloud server, and the need for data security and privacy, improved
performance in computing at edge devices. EC’s main feature is that data can be
computed locally in edge devices rather than being sent as raw to a cloud server for
computing.

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 449

2.2 Mobile Edge Computing

The Mobile Edge Computing (MEC) is an extended Edge Computing technique
where edge devices are mobile [24]. The formal ideas of MEC were first presented
by the “European Telecommunications Standard Institute (ETSI)” in 2014. Accord-
ing to ETSI, MEC has the potential of cloud computing within the Radio Access
Network (RAN) near to mobile subscribers [26]. MEC aims are low latency, reduce
bandwidth scarcity, security, and privacy, implementing 5G, etc. [27]. The MEC
brings computation and storage into the edge of mobile network-enabling devices
virtually and sometimes physically [28] for computing nearby IoT devices. The
MEC may work with the association of FC and CC [29] as they have a hierarchical
relationship as shown in Fig. 1.

Since IoT is the main driver of 5G and other smart Edge-based solutions [30],
so, MEC in IoT becomes an important issue to address. Many works have been
proposed about implementing MEC in IoT [31–33]. Artificial Intelligence (AI),
especially machine learning and deep learning, are used in MEC to make IoT
smarter [8, 34–36]. Therefore, the discussion of MEC using deep learning is one
of the main points of this chapter. To successfully apply deep learning in IoT
through MEC, many approaches could be adopted, as mentioned in Sect. 3. Some
of them are Computational offloading in Cloud-Fog Scenario, Transfer Learning-
based MEC, Splitting layers of deep neural networks into Edge, Fog, and Cloud
for load balancing, and distributed computing among edges. This chapter discussed
three approaches in detail in Sects. 4 and 5 in the perspective of computer vision in
IoT.

2.3 Computer Vision

Humans can easily see and understand the things around us using our eyes and
brains. For example, consider an image, as shown in Fig. 3. In the first image of
this figure, we can easily identify the object inside the image. Here basically, we are
classifying the image, so this is the classification problem. In the second image of
the same figure, the task is to classify the image and locate that particular object in
the image. Here, the task is to draw a bounding box around the object. So, this is
the Classification as well as the Localization task of Computer Vision. There is only
one object in the figure in the first and second images, but in the third image, there
is more than one object in one figure. So, here the task is to classify and localize all
the objects of the image. In computer vision, this task is called Object Detection.
The last image of Fig. 3 split all the object pixels from the background. Here a
different instance of the same class is identified individually. This is called Instance
Segmentation. The Computer vision aims to give the computer the capabilities of
vision like humans [37]. Lots of work has been done in this direction, but still, this
is a challenge to beat or at least have the same Computer Vision cognition as the

450 A. Sufian et al.

Fig. 3 Typical computer vision tasks

Fig. 4 Biological neural network versus artificial neural network

human visual system [38]. Recently deep learning, especially CNN for computer
vision, has achieved huge success [39, 40]. A lot of visual automation can be done
using IoT and Computer Vision [35, 41]. This chapter emphasizes these issues.

2.4 Deep Learning

Deep Learning (DL) is a kind of machine learning algorithm that extracts features
directly from data. Therefore, unlike traditional machine learning, handcrafted
features are not required here. DL is based on Artificial Neural Networks (ANN),
and the main driving force is the backpropagation algorithm [42, 43]. The biological
Neural Network inspires ANN, and the relationship between these two is shown in
Fig. 4. The basic components of a biological neural network are dendrites, cell body
(soma), and axon, as shown in part (a) of Fig. 4. Dendrites receive the inputs and
pass them to the cell body; the cell body process the inputs. Axon receives the
processed signals and transfers them to other neurons through axon terminals. ANN
corresponding to a biological neuron is shown in part (b) of this figure.

Let us consider a single layer perceptron of ANN which is shown in part (b) of
Fig. 4. Here x1, x2, x3, . . . , xn are the inputs (sensors) and w1, w2, w3, . . . , wn are

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 451

Fig. 5 A typical convolutional neural networks

the weights of each inputs. Output (y) is calculated as below where b is the bias
term.

y =
{

1 if
∑n

i=1(wi ∗ xi) + b > 0

0 otherwise

The activation function used here is a step function which is useful for linearly
separable problems. For linearly non-separable problems, we use multi-layer per-
ceptron (MLP) with non-linear activation functions like Sigmoid, Tanh, ReLU, etc.
In the case of visual computing, CNN [44] based architectures are very useful for
the data’s spatial nature. Besides, CNN has a weight sharing feature, which makes it
useful for image or video data. A typical CNN for classification is shown in Fig. 5,
which consists of the following components.

• Convolution Layer
• Activation Layer
• Pooling Layer
• Fully Connected or Dense Layer
• Classification Layer

Convolution Layer An image is represented as a collection of pixel values. For a
binary or gray image, an image is as a 2D array, as shown in Fig. 6. To perform the
convolution operation, we need a filter matrix of the size k × k. The convolution
operation is done by summarizing the element-wise multiplication of the kernel
matrix and input matrix (image) from the first position and shifting by a specific
stride depth. We can notice that the size of the input and output matrix is not the
same. We can add some padding value to the input matrix before the convolution
operation to get the same size. We can also shift the matrix by more than one, i.e.,
we can use stride value as more than one.

452 A. Sufian et al.

Fig. 6 Convolutional layer

Fig. 7 A Max-Pooling
operation

Fig. 8 A typical
fully-connected layer

Activation Layer Activation functions determine the output of a particular neuron.
It decides whether a neuron will fire or not. In CNN, typically ReLU activation
function is used; it changes negative values to zeros as the following calculation:

ReLU(x) = max(0, x)

Pooling Layer Pooling is basically the downsampling or subsampling operation
which reduces the number of parameters of the input layer but retains the important
features. There are different types of pooling operations like Max Pooling, Average
Pooling, Sum Pooling, etc. For example, in Fig. 7, 2×2 maxpooling layer is shown.

Fully-Connected Layer (FC or Dense Layer) In this layer, we flatten the matrix
into a column vector and feed it to a feed-forward fully connected (FC) neural
network. Backpropagation is applied to every iteration of training. A fully connected
layer has full connections to all activation functions in the previous layer. It looks
like a classical ANN as shown in Fig. 8.

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 453

Softmax Softmax function transforms a set of values to its corresponding probabil-
ity values. It is very useful for a classifier. Mathematically Softmax classifier can be
defined as the following expression. Here x1, x2, . . . , x3(xi) are the values (scores)
of the individual classes.

sof tmax(xi) = exp(xi)∑
j exp(xj))

Many deep learning models have come after the success of AlexNet [45]. Some
of these are Recurrent Neural Network (LSTM), Generative Adversarial Networks
(GAN), Endocder-decoder, etc. [43]. In the case of image segmentation or object
detection, some modifications are required such as up-sampling, RoI detection, etc.
[46, 47].

3 Literature Survey

As mentioned before, this chapter focuses on MEC with deep learning algorithms
for IoT or edge devices with special attention to computer vision. Therefore, this
section points out some notable state-of-the-art works on deep learning-based MEC
for IoT (Edge) devices. Although this chapter focuses on applications of visual data,
the idea of similar works on other types of data may be worthy, so this literature
survey is not restricted to works of visual data only. Since MEC became popular in
the last 5 years [24], this brief survey is restricted to the works of the last 5 years in
chronological order.

In study [48], N. D. Lane et al. explain that making inference from raw data
by the classical algorithm is difficult for IoT, smartphones, and wearable devices.
They have investigated how deep learning could be used in such devices. In another
study, F. Alam et al. experimented with eight data mining algorithms, including deep
learning for IoT [49]. They have found that deep learning gives the highest accuracy
on their used datasets, but it was computationally expensive for IoT. DeepX [50],
a deep learning model for low power devices proposed by N. D. Lane et al. They
broke the deep neural networks into unit-blocks and did resource scaling to run on
heterogeneous small devices. In study [51], D. Ravi et al. proposed a deep learning
methodology for wearable devices and smartphones. Here, they used inertial sensor
data along with a set of shallow features. In another study, S. Bhattacharya et al.
proposed SparseSep [52]. In their work, sparsification and separation are done for
FC layers and convolutional kernels to minimize the resource requirements to run
on mobile devices.

MobileNets [53], a low resource deep learning model for embedded vision
applications proposed by A. G. Howard et al. They used depth-wise separable con-
volutions, two global hyper-parameters, to the trade-off between latency, resources,
and accuracy. In a study, J. Tang et al. suggested two methodologies to enable deep
learning for IoT devices in their article [54]. They have suggested an offloading

454 A. Sufian et al.

workload to a cloud server where the model will run. They also have suggested
bringing deep learning frameworks into embedded devices. In another study [55],
H.Y. Kim and J.M. Kim proposed a load balancing strategy. They used deep
learning-based protocol to balance the computing load of IoT. On the other hand, S.
Teerapittayanon et al. proposed deep learning among End device, Edge, and Cloud
[56]. In their object recognition task, they trained the model jointly by the End
device, Edge, and Cloud. They have claimed that it reduces communication cost,
minimizing resource uses at the end device, and maximizes feature extraction for
inference.

DeepThings [57], a framework of CNN for resource-constrained IoT edge pro-
posed by Z Zhao et al. They have used the Fused Tile Partitioning of convolutional
layers to minimize memory uses during parallel processing. They also use a new
scheduling approach to balance workloads to reduce execution latency and inference
time. M. Song et al. proposed ‘In-Situ AI’ [58], an incremental framework of
deep learning for IoT. Here, the author used IoT data diagnosis, incremental and
unsupervised training to tackle big raw sensor data with minimum movement.
They used a two-level weight share to deploy this framework in IoT easily. In
[8], He Li et al. suggested an approach of DL in IoT with edge computing. They
mentioned that edge computing could easily be adopted as deep learning with a
multi-layer structure. They proposed a new offloading strategy to optimized their
works. M. Ali et al. proposed a distributed deep learning-based pipeline between
the edge and cloudlet (fog) [59] for edge computing. They suggested that initial
processing should be done in edge devices with cloudlets before sending it to the
cloud. eSGD [60], a distributed deep learning for edge device, proposed by Z. Tao
and Q. Li. That eSGD first finds an important gradient coordinate and then sends
it to the cloud, which reduces communications cost. It also designs momentum
residual accumulation for tracing idle residual gradient coordinates to turn aside
a low convergence rate.

NoNN [61], a compressed distributed deep learning paradigm for IoT proposed
by K. Bhardwaj et al. Here, they proposed ‘teacher’ and ‘student’ model, where
a large pre-trained neural network at teacher are distributed among students, then
distributed inference are made at edge device. Filter pruning strategy is also
applied to implement deep learning in IoT in works [62]. In a study, J. Zhou et
al. proposed AAIoT [63], where a distributed computing is proposed. Here, each
layer of a large neural network is distributed to several IoT devices, and dynamic
programming is used to reduce computational redundancy. In another study [64],
M. Min et al. presented a deep learning-based MEC model for IoT. They have
applied a reinforcement learning-based offloading technique with energy harvesting
in IoT. Their scheme reduces energy consumption and latency along with increasing
learning speed. Similar kinds of work are also proposed by J. Kang et al. in [65].
S. Tuli et al. proposed deep learning-based object detection frameworks, called
EdgeLens [66]. Here IoT works with Fog and Cloud server for computing. The
authors were used the ‘Aneka platform service’ to deploy and experiment with the
effectiveness of the model in terms of accuracy, response time, power consumption,
etc. Another distributed deep learning model through edge computing is proposed

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 455

by J. Chen et al. [67] for Distributed Intelligent Video Surveillance. They have used
parallel training, model synchronization, and dynamic data migration for balancing
workload. In-Edge AI [68], an integrated Deep Reinforcement Learning as well as
Federated Learning model for mobile edge proposed by X. Wang et al. This work
has tried to utilize the collaboration among devices for the low overhead of learning.

In a study [69], F. Liang et al. mentioned an edge-based deep learning model for
Industrial IoT. They applied a test-bed in Google cloud and deployed it in Industrial
IoT. iSEC [70], a deep learning model on edge computing for image classification
proposed by E. Kristiani et al. For faster training, the authors used hyper-parameter
tuning at the CPU level. They used a model optimizer to train some state-of-the-art
CNN at the edge. In another study, [71], J. Azar et al. proposed data compression
and deep learning for IoT time-series data classification. They mainly have focused
on data compression and used some compression techniques such as ‘Squeeze (SZ).’
They did a trade-off between data quality and compression.

Through the above survey and other literature surveys [72, 73], it could be
concluded that many related works have been proposed for many different tasks.
Some techniques are suggested to trade-off the accuracy with pruning the networks
or model. Some techniques have suggested some hardware accelerators, which is not
cost-effective and not suited for very lightweight edge devices. However, very few
works are dedicated to onsite visual computing using onsite computing techniques,
viz. the edge or fog computing. Therefore, this chapter is proposing three deep
learning-based MEC approaches.

4 Three Deep Learning-Based MEC Approaches

As mentioned in Sect. 2.3, computer vision may be used in many application
areas. Deep learning can be used in computer vision, as mentioned in Sect. 2.4.
On the other hand, IoT has become prime components of many networking based
automation systems, as discussed in Sect. 2.1. IoT or edge device has limited
computing resources and small storage capacity, but deep learning is resource
hungry algorithms. Therefore, deep learning in computer vision is a challenging
task for IoT based applications [41, 74]. Through Mobile Edge Computing (MEC)
for IoT (DCMIoT), Deep Learning in Computer Vision tries to bring AI into vision-
based IoTs such as smartphones, drones, web cameras, etc. Here, MEC concepts are
discussed for IoTs with special attention to visual sensor data (images, videos, etc.).
Although many MEC techniques have been proposed, this chapter is theoretically
proposing three deep learning-based approaches. The first one is the Transfer
Learning Approach, and the other two include Split layers of deep neural networks
among edges, fog gateway, and cloud server. These are described in subsequent
subsections below:

456 A. Sufian et al.

4.1 Transfer Learning Approach in MEC

Transfer Learning or domain adaption is a methodology where an algorithm or
model is trained in one task and applied on another task with required fine-
tuning [75]. Several machine learning-based transfer learning techniques have been
proposed, including instance-based, inductive based, transductive, etc. [76, 77].
Some of them are under the umbrella of classical machine learning-based, and some
of them are under deep learning-based. In deep transfer learning (a deep learning-
based), most of the pre-trained layers of a model can be used in a different task
where dataset scarcity is there [78, 79].

Deep learning became successful because of three main factors: Innovative
Algorithms, Computation Power of Modern Machine, and Availability of Large
Scale Datasets. Nowadays huge size of the dataset are available such as ImageNet
[80], Openimages [81] and many more. However, the dataset from IoTs, especially
IoT based camera sensors, are very rare. So, if we want to get the success of
deep learning in IoT based computer vision, then we have to create many large
size datasets captured by IoT or edge devices-based cameras such as drone, mobile
camera, web camera, etc. Hopefully, such a dataset will be available in near future.
However, for IoT-based device dataset is the problems, but another big problem is
limited computing power. These two problems can be tackled using transfer learning
into IoT or edge devices. Here edge devices will work with cloud computing
through a communication medium. A deep learning model shall be trained using
a benchmark dataset at a cloud server. After that trained model (except for a few
high-level layers (s)) shall be pushed into IoT or edge devices. Required fine-
tuning could be done at edge devices using MEC computing to orient the target
task model. Similarly, CNN, a deep learning approach for computer vision, could
use in edge devices using transfer learning. Here we have discussed a CNN-based
transfer Learning for mobile edge devices for possible onsite visual computing. This
subsection tried to explain how a CNN model can be used in edge devices using
transfer learning.

In this approach, a CNN model has to be trained using some benchmark dataset
at a cloud. Since the lower layer extracts only low-level features like edges, corners,
etc., these layers can be frozen after training and can be used in any other task.
So, after training at a cloud server, lower layers are frozen and transferred to
edge devices. In the edge device, only a few last layers are trained or fine-tuned
using task-oriented data. In this technique, the powerful computing resources such
as the GPU of the cloud is utilized in training and then transferred to the edge.
Edge devices generally have low computing power, so this technique improves the
response time, and real-time application could be feasible.

Figure 9 shows a typical procedure of deep transfer learning in the edge device.
Here, part A: a Cloud Server consisting of GPU enabled large computing devices,
where a CNN can be trained using a large benchmark dataset such as ImageNet or
Open images. After training, the trained model shall be pushed down to part B: an
Edge Device (IoT). In the edge device, pre-trained layers will be frozen except for

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 457

Fig. 9 Transfer learning approach for MEC

the last few layers. The last few layers can be fine-tuned or trained using real images
captured by the edge device to orient the model towards the target task. Therefore,
a small number of total parameters of a deep learning model will be trained at the
edge that has been analyzed in Sect. 5.1. The number of freezing layers will depend
on the trade-off between the accuracy and power of edge devices. It will also depend
on the nature of the target task, dataset availability, and limitation of edge devices’
computing power.

4.2 Splitting Layers of Deep Neural Networks into Edge, Fog
and Cloud

Deep neural networks consist of several layers, which makes it suitable to be
distributed through splitting. An edge device (IoT) has limited computing resources,
so it will be beneficial if it works with Fog and Cloud, and if it uses deep learning, it
becomes more relevant [8, 56, 59, 66]. The lower layers of the deep network extract
low-level features such as edges, dots, color, etc. Middle layers extract high-level
features, whereas higher layers that are few end layers are works for inference or

458 A. Sufian et al.

decision making. On the other hand, the edge or IoT device works with fog and
cloud servers. In general, edge devices sense the data and send it to a could for
processing and making an inference, but latency, bandwidth, security, and privacy
become challenging issues. Therefore, instead of sending whole raw data to a cloud,
if the edge device uses the first few layers of deep neural networks to the nearest Fog
Gateway, then the above-mentioned issues can be reduced. Similarly, Fog Gateway
also shall process those data forwarded by Edge Devices before sending it to its
cloud server. Therefore, the cloud server shall receive almost processed data. So, it
would be easier to process the remaining processing and making an inference. Here,
communications and synchronization among edge, fog, and cloud would be very
crucial.

Consider Fig. 10 where a typical CNN is shown before splitting and after
splitting. Here, this CNN consists of 22 layers, including pooling and FC networks.
Then it is split into three parts A, B, and C, where A for Edge, B for Fog, and C
for Cloud. Part A consists of the first 6 layers, including four convolutions shown
by the color blue and two pooling layers, shown by green color. These layers of
part A are allotted to the edge (IoT) device. After feeding an image into this part, it
will collect some low-level features and reduce features maps before sending it to
the nearest fog server. Part B of CNN consists of 7 layers among 4 convolutions and

Fig. 10 Load balancing

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 459

two pooling; it will extract high-level features and reduce feature maps’ size. Finally,
Part C of the CNN, which are remaining parts, are allotted in the cloud server to do
the remaining processing, including required inference. This distribution describes
a typical scenario of these ideas, and it will vary depending on tasks and systems.
An analysis is of this approach are mentioned in Sect. 5.2.

4.3 Splitting Layers of a Deep Neural Network into Different
Edge Devices

A Deep Neural Network can be executed and trained in a distributed fashion. The
whole network may be split into many small pieces, and those pieces may be
assigned into different small devices to work collectively for a single task [57].
However, unlike in the last Sect. 4.2, here distribution is done among nearby edge
devices [60, 61]. A task scheduling algorithm can be used here for distributing,
balancing loads, and synchronizing. These task scheduling algorithms can be run
at the edge device at ground zero or run a nearby fog server. Therefore, this kind
of MEC computing can use a deep learning model to do a task in an edge or IoT
device.

Consider Fig. 11, where some middle layers of a full CNN are split into four
pieces and assigned into four nearby edge devices. Now processing could be
initiated at the edge device at ground zero where few starting layers are in use.
Then by task scheduling, forwards the rest of the processing to edge device 1. After

Fig. 11 A typical distribution of CNN among edge devices

460 A. Sufian et al.

Fig. 12 Architecture of our CNN

processing at edge device 1, processed data will go to edge device 2, then from
edge device 2 to edge device 3 to edge device 4. Finally, the flow goes back to
the edge at ground zero, where the last few layers are also in use. Therefore, an
inference can be made at this edge device where the task was started. This is a
forward pass description, but the backward pass also follows the same procedure
during training. However, in the reverse analysis of the advantage of proposed
MEC approaches, we have considered a CNN model that may use in mobile edges
for classifying the object in input images or video frames senses by edge devices
or IoT sensors. The architecture of the used CNN model is shown in Fig. 12,
and the structure are divided into 6 blocks, where each of first 5 blocks consist
of . . . → BatchNorm → ReLU → ConV 2d(3 × 3) → BatchNorm →
ReLU → ConV 2d(3 × 3) → Avg.Polling → . . . and the last block consist
of . . . → BatchNorm → ReLU → Max.Polling → Sof tmax. The number of
block-wise trainable parameters in this CNN is shown in Fig. 13. We have used this
CNN model to explain and analyze the advantages of the proposed MEC approaches
direction in the following subsections. Here other neighboring edge devices help
the computing in an ad-hoc manner. Here edge devices could be connected using
ad-hoc networks or any other networks to work jointly. Therefore, a big deep
learning model could be used in an ad-hoc manner where nearby edge devices share
a model’s total parameters. An analysis of this proposed strategy is discussed in
Sect. 5.4.

5 Analysis of Proposed Technique with Case Studies

To analyze the advantage of proposed MEC approaches, we have considered a
typical CNN model that may be used in mobile edges to classify the object in
input images or video frames senses by edge device or IoT sensors. The structure
of the used CNN model is mentioned in Fig. 12, and the structure are divided

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 461

Fig. 13 Block-wise parameters of our CNN

into 6 blocks, where each of first 5 blocks consist of . . . → BatchNorm →
ReLU → ConV 2d(3 × 3) → BatchNorm → ReLU → ConV 2d(3 × 3) →
Avg.Polling → . . . and the last block consist of . . . → BatchNorm → ReLU →
Max.Polling → Sof tmax. The number of block-wise trainable parameters in this
CNN is mentioned in Fig. 13. We have used this CNN model to explain and analyze
the advantages of proposed MEC approaches in the following subsections.

5.1 An Analysis of Transfer Learning Approach in MEC

In this transfer learning-based MEC approach mentioned in Sect. 4.1, we have been
proposing to reuse a pre-trained model to solve another task with required fine-
tuning. As mentioned, this methodology is instrumental when a task has a shortage
of training data and limited computing power in devices like mobile edge or IoT.
Here, only a few parameters of a deep learning model are needed to train for fine-
tuning.

For case studies, we can train the above mentioned CNN model with ImageNet
[80] dataset at a cloud server with high computing resources and then push the
trained model into an edge device. In the edge device, re-train the last few layers of
the model with actual training data using transfer learning procedures with required
fine-tuning. This training process in edge devices includes reducing output classes
from 1000 (output classes of ImageNet) to 3 (our output classes for a study). It
makes a few first layers to be frozen except the last few layers. The number of
freezing layers will depend on the trade-off between edge devices’ accuracy and
computing power. Figure 14 shows the total number of parameters trained in cloud
server as well as in edge device in two different cases:

462 A. Sufian et al.

Fig. 14 Impact of transfer learning in parameter’s training

– Case 1: Block-1 to block-4 of the CNN shown in Fig. 12 are frozen.
– Case 2: Block-1 to block-4 and the first BatchNorm → ReLU →

ConV 2d(3 × 3) layers of block-5 are frozen.

Although the graph is self-explanatory, for more explanation, we can say that only
very few parameters are needed to train in edge for case-1 and case-2 compare to
normal deep learning at the mobile edge. Therefore, the benefit of deep learning
could be used to exploit it in MEC.

5.2 An Analysis of Splitting Layers of Deep Neural Networks
into Edge, Fog, and Cloud

In this MEC approach described in Sect. 4.2, we split the CNN model’s several
layers. We distributed them between the edge, fog, and cloud to reduce the latency,
bandwidth, security, and privacy. Here, we have analyzed bandwidth reductions with
two possible parameter sharing strategies.

Reducing Bandwidth Requirements In the traditional MEC computing approach,
all the sensed data must be processed locally to make an inference or send whole
data to a cloud server for cloud computing. However, the first one seems to be
infeasible, and for the second-case, latency, bandwidth, security, and privacy issues
will arise. Since we use the computational load distribution approach instead of
the traditional MEC approach, the bandwidth requirement is less. In this MEC
approach, the edge device contains a part of the CNN model, which processes the
sensed data locally and reduces the size of sending data by extracting high-level
features. Only these high-level features are needed to be sent in fog. In fog, there

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 463

is also some processing on received data, and therefore, it again reduces the size of
sending data to the cloud. For example, let’s take two cases:

– Case 1: We placed block-1 in edge device, block-2, and block-3 in fog, and
block-4, block-5, and block-6 of the CNN shown in Fig. 12 in a cloud server.

– Case 2: We placed block-1, block-2 in edge device, block-3, and block-4 in fog,
and block-5 and block-6 of the CNN in a cloud server.

The reduction of bandwidth requirement in case 1 is shown in Table 1 and case 2 is
shown in Table 2 with different video frame rates.

5.3 Distribution of Parameters

The CNN model’s parameter distribution includes the computation or resource
distribution among the system, which reduces the dependency on the cloud and
reduces the system’s latency. Figure 15 shows the distribution of the parameters
on CNN in the traditional MEC approach and two different scenarios of load
balancing MEC approach. The formula to find the number of parameters required
by a convolution operation as (n×m×p+1)×k, where n denotes the width of the
filter, m denotes the height of the filter, p denotes the shape of input feature maps, k

denotes the number of filters and (+1) is for the bias of each feature map. Similarly,
only the 1 parameter is required for each feature map in both BatchNorm and
ReLU operation.

Therefore, in case-1, if we only use 23972 and 332149 number of parameters
of total 1223373 parameters of the CNN, as shown in Fig. 12 at edge and fog
respectively, then almost 8.50% bandwidth could be reduced before sending to a
cloud server as calculated in Table 1. Similarly, in case-2, if we use 130284 and
596029 at edge and fog of that CNN, then almost 62.71% bandwidth uses could be
reduced as calculated in Table 2.

5.4 An Analysis of Splitting Layers of a Deep Neural Network
into Different Edge Devices

Here instead of assigning the split blocks of CNN among edge, fog, and cloud, we
assign them into different neighbor edge devices in an ad-hoc manner as described
in Sect. 4.3. It substantially reduces the system’s latency because the whole job
of sense and making an inference is done locally with the assistance of nearby
edge devices. So the distribution of split jobs between edge devices is very much
needed and challenging because each edge device has limited resources with meager
computational power. If we are assigning the whole CNN into a single Edge device,
that device will not run the assigned job. For case studies, we calculate the possible

464 A. Sufian et al.

Ta
bl
e
1

B
an

dw
id

th
ut

ili
za

tio
n

th
ro

ug
h

sp
lit

tin
g

M
E

C
ap

pr
oa

ch
in

ca
se

1

V
id

eo
fr

am
e

pe
r

se
co

nd
T

ra
di

tio
na

le
dg

e-
cl

ou
d

co
m

pu
tin

g
ap

pr
oa

ch
Sp

lit
tin

g
C

N
N

in
M

E
C

ap
pr

oa
ch

B
an

dw
id

th
re

du
ct

io
n

4
fr

am
es

Se
ns

ed
im

ag
e

si
ze

:1
28

×1
28

of
gr

ay
sc

al
e

im
ag

e.
So

th
e

ba
nd

w
id

th
re

qu
ir

ed
fo

r
se

nd
it

fr
om

ed
ge

to
fo

g
is

:
12

8
×

12
8

×
8

×
0.

12
5

=
16

38
4

by
te

s
an

d
fo

r
fo

g
to

cl
ou

d
is

16
38

4
by

te
s.

So
in

to
ta

l,
m

in
im

um
ba

nd
w

id
th

re
qu

ir
em

en
ti

s:
2

×
16

38
4

=
32

76
8

by
te

s
=

32
K

B
fo

r
ea

ch
fr

am
e.

So
,o

ve
ra

ll
12

8
K

B
ba

nd
w

id
th

is
re

qu
ir

ed
pe

r
se

co
nd

fo
r

ea
ch

ed
ge

de
vi

ce
s.

H
er

e
si

nc
e

th
e

ed
ge

co
nt

ai
ns

bl
oc

k-
1

of
C

N
N

,t
he

ed
ge

pr
oc

es
se

d
th

e
se

ns
ed

im
ag

e
an

d
re

du
ce

d
it

to
64

×
64

w
ith

51
de

pt
h.

T
he

ba
nd

w
id

th
re

qu
ir

ed
fo

r
se

nd
in

g
se

ns
ed

im
ag

e
fr

om
ed

ge
to

fo
g

is
:6

4
×

64
×

51
×

0.
12

5
=

26
11

2
by

te
s

an
d

ag
ai

n
in

th
e

fo
g,

re
ce

iv
in

g
da

ta
is

fu
rt

he
r

re
du

ce
d

to
16

×
16

×
12

1
×

0.
12

5
=

38
72

by
te

s
du

e
to

th
e

pr
oc

es
si

ng
of

bl
oc

k-
2

an
d

bl
oc

k-
3,

an
d

th
is

38
72

by
te

s
da

ta
ne

ed
to

se
nd

in
to

th
e

cl
ou

d.
So

in
to

ta
l,

th
e

m
in

im
um

ba
nd

w
id

th
re

qu
ir

em
en

ti
s:

26
11

2
+

38
72

=
29

98
4

by
te

s
=

29
.2

82
K

B
fo

r
ea

ch
fr

am
e.

So
,o

ve
ra

ll
≈1

17
.1

25
K

B
ba

nd
w

id
th

is
re

qu
ir

ed
pe

r
se

co
nd

fo
r

ea
ch

ed
ge

de
vi

ce
.

≈8
.5

0%

8
fr

am
es

O
ve

ra
ll,

25
6

K
B

ba
nd

w
id

th
is

re
qu

ir
ed

pe
r

se
co

nd
fo

r
ea

ch
ed

ge
de

vi
ce

.
≈2

34
.2

6
K

B
ba

nd
w

id
th

is
re

qu
ir

ed
pe

r
se

co
nd

fo
r

ea
ch

ed
ge

de
vi

ce
.

≈8
.5

1
%

16
fr

am
es

O
ve

ra
ll,

51
2

K
B

ba
nd

w
id

th
is

re
qu

ir
ed

pe
r

se
co

nd
fo

r
ea

ch
ed

ge
de

vi
ce

.
≈4

68
.5

12
K

B
ba

nd
w

id
th

is
re

qu
ir

ed
pe

r
se

co
nd

fo
r

ea
ch

ed
ge

de
vi

ce
.

≈8
.5

0
%

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 465

Ta
bl
e
2

B
an

dw
id

th
ut

ili
za

tio
n

th
ro

ug
h

lo
ad

ba
la

nc
in

g
M

E
C

ap
pr

oa
ch

in
ca

se
2

V
id

eo
fr

am
e

pe
r

se
co

nd
T

ra
di

tio
na

le
dg

e-
cl

ou
d

co
m

pu
tin

g
ap

pr
oa

ch
L

oa
d

ba
la

nc
in

g
M

E
C

ap
pr

oa
ch

B
an

dw
id

th
re

du
ct

io
n

4
fr

am
es

Se
ns

ed
im

ag
e

si
ze

:1
28

×
12

8
of

gr
ay

sc
al

e
im

ag
e.

So
th

e
ba

nd
w

id
th

re
qu

ir
ed

fo
r

se
nd

it
fr

om
ed

ge
to

fo
g

is
:

12
8

×
12

8
×

8
×

0.
12

5
=

16
38

4
by

te
s

an
d

fo
r

fo
g

to
cl

ou
d

is
16

38
4

by
te

s.
So

in
to

ta
l,

m
in

im
um

ba
nd

w
id

th
re

qu
ir

em
en

ti
s:

2
×

16
38

4
=

32
76

8
by

te
s

=
32

K
B

fo
r

ea
ch

fr
am

e.
So

,o
ve

ra
ll

12
8

K
B

ba
nd

w
id

th
is

re
qu

ir
ed

pe
r

se
co

nd
fo

r
ea

ch
ed

ge
de

vi
ce

s.

H
er

e
si

nc
e

th
e

ed
ge

co
nt

ai
ns

bl
oc

k-
1

an
d

bl
oc

k-
2

of
C

N
N

,
so

th
e

ed
ge

pr
oc

es
se

d
th

e
se

ns
ed

im
ag

e
an

d
re

du
ce

d
it

to
32

×
32

w
ith

86
de

pt
h,

an
d

th
e

ba
nd

w
id

th
re

qu
ir

ed
fo

r
se

nd
in

g
se

ns
ed

im
ag

e
fr

om
ed

ge
to

fo
g

is
:

32
×

32
×

86
×

0.
12

5
=

11
00

8
by

te
s

an
d

ag
ai

n
in

th
e

fo
g,

re
ce

iv
in

g
da

ta
is

fu
rt

he
r

re
du

ce
d

to
8

×
8

×
15

1
×

0.
12

5
=

12
08

by
te

s
du

e
to

th
e

pr
oc

es
si

ng
of

bl
oc

k-
3

an
d

4
an

d
th

is
12

08
by

te
s

da
ta

ne
ed

to
se

nd
in

to
th

e
cl

ou
d.

So
in

to
ta

l,
th

e
m

in
im

um
ba

nd
w

id
th

re
qu

ir
em

en
ti

s:
11

00
8

+
12

08
=

12
21

6
by

te
s

=
11

.9
3

K
B

fo
r

ea
ch

fr
am

e.
So

,o
ve

ra
ll

≈4
7.

72
K

B
ba

nd
w

id
th

is
re

qu
ir

ed
pe

r
se

co
nd

fo
r

ea
ch

ed
ge

de
vi

ce
.

≈6
2.

71
%

8
fr

am
es

O
ve

ra
ll

25
6

K
B

ba
nd

w
id

th
is

re
qu

ir
ed

pe
r

se
co

nd
fo

r
ea

ch
ed

ge
de

vi
ce

.
≈9

5.
44

K
B

ba
nd

w
id

th
is

re
qu

ir
ed

pe
r

se
co

nd
fo

r
ea

ch
ed

ge
de

vi
ce

s.
≈6

2.
70

%

16
fr

am
es

O
ve

ra
ll

51
2

K
B

ba
nd

w
id

th
is

re
qu

ir
ed

pe
r

se
co

nd
fo

r
ea

ch
ed

ge
de

vi
ce

.
≈1

90
.9

K
B

ba
nd

w
id

th
is

re
qu

ir
ed

pe
r

se
co

nd
fo

r
ea

ch
ed

ge
de

vi
ce

.
≈6

2.
71

%

466 A. Sufian et al.

Fig. 15 Parameters in load balancing MEC approach

parameter distribution of the above mentioned CNN for a task in two different ways
to see the computational load reduction.

– Case 1: We placed block-1, block-2, and block-6 of CNN in edge-1 (ground
zero) and then splitting all the block-3, block-4, and block-5 of CNN into two
equal parts and assigned them into separate edge devices. Each of those splitter
parts contains BatchNorm → ReLU → ConV 2d(3 × 3) layers.

– Case 2: Like case-1, here we also splitting all the block-3, block-4, and block-5
of CNN into two equal parts, and then except the first split part of block-3, we
assigned other split parts into separate edge devices. Finally, blocks-1, blocks-2,
the first split part of block-3, and block-6 of CNN are placed together in edge-1
(ground zero).

The parameter distribution in both cases with the traditional MEC approach (full
CNN is processed in a single edge device) is shown in Fig. 16. From this figure, it
is clear how a load of processing a CNN in a single edge could be reduced to use a
CNN in MEC possibly.

6 Conclusion and Future Scopes

This chapter has been discussed onsite visual computing and proposed deep
learning-based mobile edge computing method. Here, an explanation has been made
from the perspective of a convolutional neural network for computer vision in IoT
or Edge devices. To understand the issues and challenges, the chapter has described

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 467

Fig. 16 Parameters in both cases due to assigning split layers to different edge devices

relevant background details and a survey of state-of-the-arts. Three deep learning-
based mobile edge computing approaches have been theoretically described as
possible solutions to such challenges. Some methodologies have already been
proposed by the other researchers, as mentioned in the literature survey. However,
the approaches discussed in this chapter are slightly different concepts for IoT based
onsite visual computing as a MEC.

A combined model of these three approached could also be designed and
experimented with. The back-propagation algorithms also are needed to be oriented
carefully to train for such models. Cloud and distributed simulation techniques may
be adopted for experimenting. Training and testing with a visual dataset are the one
immediate future scope of the proposed techniques. These are a few of the many
open future scopes and challenges to address.

References

1. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A vision,
architectural elements, and future directions,” Future generation computer systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

2. C. Granell, A. Kamilaris, A. Kotsev, F. O. Ostermann, and S. Trilles, “Internet of things,” in
Manual of Digital Earth. Springer, 2020, pp. 387–423.

3. P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth,
J. Voigt, I. Riedel et al., “Latency critical iot applications in 5g: Perspective on the design of
radio interface and network architecture,” IEEE Communications Magazine, vol. 55, no. 2, pp.
70–78, 2017.

4. M. Youssef and M. Hassan, “Next generation iot: Toward ubiquitous autonomous cost-efficient
iot devices,” IEEE Pervasive Computing, vol. 18, no. 4, pp. 8–11, 2019.

468 A. Sufian et al.

5. B. Afzal, M. Umair, G. A. Shah, and E. Ahmed, “Enabling iot platforms for social iot
applications: vision, feature mapping, and challenges,” Future Generation Computer Systems,
vol. 92, pp. 718–731, 2019.

6. L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks,
vol. 54, no. 15, pp. 2787–2805, 2010.

7. M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learning for iot big data and
streaming analytics: A survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp.
2923–2960, 2018.

8. H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the internet of things
with edge computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, 2018.

9. R. F. Molanes, K. Amarasinghe, J. Rodriguez-Andina, and M. Manic, “Deep learning and
reconfigurable platforms in the internet of things: Challenges and opportunities in algorithms
and hardware,” IEEE industrial electronics magazine, vol. 12, no. 2, pp. 36–49, 2018.

10. F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,” International Journal of
Communication Systems, vol. 25, no. 9, p. 1101, 2012.

11. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things:
A survey on enabling technologies, protocols, and applications,” IEEE communications surveys
& tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

12. L. Atzori, A. Iera, and G. Morabito, “Understanding the internet of things: definition,
potentials, and societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, pp. 122–
140, 2017.

13. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the internet of things
architecture, possible applications and key challenges,” in 2012 10th international conference
on frontiers of information technology. IEEE, 2012, pp. 257–260.

14. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of things:
Architecture, enabling technologies, security and privacy, and applications,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

15. X. Liu, K. Lam, K. Zhu, C. Zheng, X. Li, Y. Du, C. Liu, and P. W. Pong, “Overview of
spintronic sensors, internet of things, and smart living,” arXiv preprint arXiv:1611.00317,
2016.

16. M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the architecture of internet of
things,” in 2010 3rd International Conference on Advanced Computer Theory and Engineering
(ICACTE), vol. 5. IEEE, 2010, pp. V5–484.

17. A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of cloud computing and
internet of things: a survey,” Future generation computer systems, vol. 56, pp. 684–700, 2016.

18. P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and A. Zanni, “A survey on fog
computing for the internet of things,” Pervasive and mobile computing, vol. 52, pp. 71–99,
2019.

19. W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the edge
computing for the internet of things,” IEEE access, vol. 6, pp. 6900–6919, 2017.

20. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future
Generation computer systems, vol. 25, no. 6, pp. 599–616, 2009.

21. Y. Zhao, W. Wang, Y. Li, C. C. Meixner, M. Tornatore, and J. Zhang, “Edge computing and
networking: A survey on infrastructures and applications,” IEEE Access, vol. 7, pp. 101 213–
101 230, 2019.

22. K. Jain and S. Mohapatra, “Taxonomy of edge computing: Challenges, opportunities, and data
reduction methods,” in Edge Computing. Springer, 2019, pp. 51–69.

23. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of
things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing,
2012, pp. 13–16.

24. P. Escamilla-Ambrosio, A. Rodríguez-Mota, E. Aguirre-Anaya, R. Acosta-Bermejo, and
M. Salinas-Rosales, “Distributing computing in the internet of things: cloud, fog and edge
computing overview,” in NEO 2016. Springer, 2018, pp. 87–115.

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 469

25. P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos,
P. Felber, and E. Riviere, “Edge-centric computing: Vision and challenges,” 2015.

26. Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing-a key
technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

27. E. Ahmed and M. H. Rehmani, “Mobile edge computing: opportunities, solutions, and
challenges,” 2017.

28. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing:
The communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2322–2358, 2017.

29. H. Elazhary, “Internet of things (iot), mobile cloud, cloudlet, mobile iot, iot cloud, fog, mobile
edge, and edge emerging computing paradigms: Disambiguation and research directions,”
Journal of Network and Computer Applications, vol. 128, pp. 105–140, 2019.

30. S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers,
vol. 17, no. 2, pp. 243–259, 2015.

31. X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet of things,” IEEE
Communications Magazine, vol. 54, no. 12, pp. 22–29, 2016.

32. D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-edge computing
architecture: The role of mec in the internet of things,” IEEE Consumer Electronics Magazine,
vol. 5, no. 4, pp. 84–91, 2016.

33. N. Ansari and X. Sun, “Mobile edge computing empowers internet of things,” IEICE
Transactions on Communications, vol. 101, no. 3, pp. 604–619, 2018.

34. H. Khelifi, S. Luo, B. Nour, A. Sellami, H. Moungla, S. H. Ahmed, and M. Guizani, “Bringing
deep learning at the edge of information-centric internet of things,” IEEE Communications
Letters, vol. 23, no. 1, pp. 52–55, 2018.

35. B. Blanco-Filgueira, D. García-Lesta, M. Fernández-Sanjurjo, V. M. Brea, and P. López, “Deep
learning-based multiple object visual tracking on embedded system for iot and mobile edge
computing applications,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5423–5431, 2019.

36. A. Sufian, A. Ghosh, A. S. Sadiq, and F. Smarandache, “A survey on deep transfer learning to
edge computing for mitigating the covid-19 pandemic,” Journal of Systems Architecture, vol.
108, p. 101830, 2020.

37. R. Szeliski, Computer vision: algorithms and applications. Springer Science & Business
Media, 2010.

38. M. Nixon and A. Aguado, Feature extraction and image processing for computer vision.
Academic Press, 2019.

39. Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual
understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016.

40. A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for
computer vision: A brief review,” Computational intelligence and neuroscience, vol. 2018,
2018.

41. Y. Shen, T. Han, Q. Yang, X. Yang, Y. Wang, F. Li, and H. Wen, “Cs-cnn: Enabling robust
and efficient convolutional neural networks inference for internet-of-things applications,” IEEE
Access, vol. 6, pp. 13 439–13 448, 2018.

42. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444,
2015.

43. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
44. A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti, and D. De, “Fundamental concepts of

convolutional neural network,” in Recent Trends and Advances in Artificial Intelligence and
Internet of Things. Springer, 2020, pp. 519–567.

45. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, 2012.

46. F. Sultana, A. Sufian, and P. Dutta, “A review of object detection models based on convolutional
neural network,” in Intelligent Computing: Image Processing Based Applications. Springer,
2020, pp. 1–16.

470 A. Sufian et al.

47. F. Sultana, A. Sufian, and P. Dutta, “Evolution of image segmentation using deep convolutional
neural network: A survey,” Knowledge-Based Systems, vol. 201–202, p. 106062, 2020.

48. N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar, “An early resource
characterization of deep learning on wearables, smartphones and internet-of-things devices,”
in Proceedings of the 2015 international workshop on internet of things towards applications,
2015, pp. 7–12.

49. F. Alam, R. Mehmood, I. Katib, and A. Albeshri, “Analysis of eight data mining algorithms for
smarter internet of things (iot),” Procedia Computer Science, vol. 98, pp. 437–442, 2016.

50. N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar,
“Deepx: A software accelerator for low-power deep learning inference on mobile devices,” in
2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN). IEEE, 2016, pp. 1–12.

51. D. Ravi, C. Wong, B. Lo, and G.-Z. Yang, “A deep learning approach to on-node sensor data
analytics for mobile or wearable devices,” IEEE journal of biomedical and health informatics,
vol. 21, no. 1, pp. 56–64, 2016.

52. S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep learning layers for
constrained resource inference on wearables,” in Proceedings of the 14th ACM Conference on
Embedded Network Sensor Systems CD-ROM, 2016, pp. 176–189.

53. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions,” arXiv preprint arXiv:1704.04861, 2017.

54. J. Tang, D. Sun, S. Liu, and J.-L. Gaudiot, “Enabling deep learning on iot devices,” Computer,
vol. 50, no. 10, pp. 92–96, 2017.

55. H.-Y. Kim and J.-M. Kim, “A load balancing scheme based on deep-learning in iot,” Cluster
Computing, vol. 20, no. 1, pp. 873–878, 2017.

56. S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep neural networks over the
cloud, the edge and end devices,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2017, pp. 328–339.

57. Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed adaptive deep learning
inference on resource-constrained iot edge clusters,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

58. M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and T. Li, “In-situ ai: Towards
autonomous and incremental deep learning for iot systems,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 2018, pp. 92–103.

59. M. Ali, A. Anjum, M. U. Yaseen, A. R. Zamani, D. Balouek-Thomert, O. Rana, and
M. Parashar, “Edge enhanced deep learning system for large-scale video stream analytics,”
in 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC). IEEE,
2018, pp. 1–10.

60. Z. Tao and Q. Li, “esgd: Communication efficient distributed deep learning on the edge,” in
{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

61. K. Bhardwaj, C.-Y. Lin, A. Sartor, and R. Marculescu, “Memory-and communication-aware
model compression for distributed deep learning inference on iot,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

62. A. Ashiquzzaman, L. Van Ma, S. Kim, D. Lee, T.-W. Um, and J. Kim, “Compacting deep
neural networks for light weight iot & scada based applications with node pruning,” in
2019 International Conference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2019, pp. 082–085.

63. J. Zhou, Y. Wang, K. Ota, and M. Dong, “Aaiot: Accelerating artificial intelligence in iot
systems,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 825–828, 2019.

64. M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-based computation
offloading for iot devices with energy harvesting,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 2, pp. 1930–1941, 2019.

65. J. Kang and D.-S. Eom, “Offloading and transmission strategies for iot edge devices and
networks,” Sensors, vol. 19, no. 4, p. 835, 2019.

Deep Learning in Computer Vision through Mobile Edge Computing for IoT 471

66. S. Tuli, N. Basumatary, and R. Buyya, “Edgelens: Deep learning based object detection in
integrated iot, fog and cloud computing environments,” arXiv preprint arXiv:1906.11056,
2019.

67. J. Chen, K. Li, Q. Deng, K. Li, and S. Y. Philip, “Distributed deep learning model for
intelligent video surveillance systems with edge computing,” IEEE Transactions on Industrial
Informatics, 2019.

68. X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge ai: Intelligentizing
mobile edge computing, caching and communication by federated learning,” IEEE Network,
vol. 33, no. 5, pp. 156–165, 2019.

69. F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Towards edge-based deep learning in
industrial internet of things,” IEEE Internet of Things Journal, 2020.

70. E. Kristiani, C.-T. Yang, and C.-Y. Huang, “isec: An optimized deep learning model for image
classification on edge computing,” IEEE Access, vol. 8, pp. 27 267–27 276, 2020.

71. J. Azar, A. Makhoul, R. Couturier, and J. Demerjian, “Robust iot time series classification with
data compression and deep learning,” Neurocomputing, 2020.

72. X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Convergence of edge
computing and deep learning: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 2, pp. 869–904, 2020.

73. M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for iot: Review,
enabling technologies, and research opportunities,” Future Generation Computer Systems,
vol. 87, pp. 278–289, 2018.

74. M. Verhelst and B. Moons, “Embedded deep neural network processing: Algorithmic and
processor techniques bring deep learning to iot and edge devices,” IEEE Solid-State Circuits
Magazine, vol. 9, no. 4, pp. 55–65, 2017.

75. S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and
data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

76. K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big
data, vol. 3, no. 1, p. 9, 2016.

77. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive
survey on transfer learning,” Proceedings of the IEEE, 2020.

78. C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,”
in International conference on artificial neural networks. Springer, 2018, pp. 270–279.

79. M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol. 312,
pp. 135–153, 2018.

80. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

81. I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom,
J. Uijlings, S. Popov, A. Veit et al., “Openimages: A public dataset for large-scale multi-label
and multi-class image classification,” Dataset available from https://github.com/openimages,
vol. 2, no. 3, p. 18, 2017.

https://github.com/openimages

Mobile Edge Computing for Content
Distribution and Mobility Support in
Smart Cities

Pedro F. do Prado, Maycon L. M. Peixoto, Marcelo C. Araújo,
Eduardo S. Gama, Diogo M. Gonçalves, Matteus V. S. Silva, Roger Immich,
Edmundo R. M. Madeira, and Luiz F. Bittencourt

Abstract The pervasiveness of mobile devices is a common phenomenon nowa-
days, and with the emergence of the Internet of Things (IoT), an increasing
number of connected devices are being deployed. In Smart Cities, data collection,
processing, and distribution play critical roles in everyday quality of life and city
planning and development. The use of Cloud computing to support massive amounts
of data generated and consumed in Smart Cities has some limitations, such as
increased latency and substantial network traffic, hampering support for a variety of
applications that need low response times. In this chapter, we introduce and discuss
aspects of distributed multi-tiered Mobile Edge Computing (MEC) architectures,
which offer data storage and processing capabilities closer to data sources and
data consumers, taking into account how mobility impacts the management of such
infrastructure. The main goal is to address topics on how such infrastructure can
be used to support content distribution from and to mobile users, how to optimize
the resource allocation in such infrastructure, as well as how an intelligent layer
can be added to the MEC/Fog infrastructure. Furthermore, a multifaceted literature
review is given, as well as the open issues and challenging aspects of resource and
application management will also be discussed in this chapter.

P. F. do Prado · M. C. Araújo · E. S. Gama · D. M. Gonçalves · M. V. S. Silva · E. R. M. Madeira
L. F. Bittencourt (�)
Institute of Computing (IC), University of Campinas (UNICAMP), Campinas, Brazil
e-mail: pfprado@unicamp.br; marcelo.araujo@ic.unicamp.br; eduardogama@lrc.ic.unicamp.br;
diogomg@lrc.ic.unicamp.br; edmundo@ic.unicamp.br; bit@ic.unicamp.br

M. L. M. Peixoto
Departamento de Ciência da Computação, Federal University of Bahia (UFBA), Salvador, Brazil
e-mail: maycon.leone@ufba.br

R. Immich
Metropolis Digital Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal,
Brazil
e-mail: roger@imd.ufrn.br

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_19

473

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_19&domain=pdf
mailto:pfprado@unicamp.br
mailto:marcelo.araujo@ic.unicamp.br
mailto:eduardogama@lrc.ic.unicamp.br
mailto:diogomg@lrc.ic.unicamp.br
mailto:edmundo@ic.unicamp.br
mailto:bit@ic.unicamp.br
mailto:maycon.leone@ufba.br
mailto:roger@imd.ufrn.br
https://doi.org/10.1007/978-3-030-69893-5_19

474 P. F. do Prado et al.

Keywords Mobile edge computing · Multi-access edge computing · Fog
computing · Mobility · Content distribution · Resource allocation · Smart cities

1 Introduction

The evolution of wireless communication networks has changed our interaction as
a ubiquitously connected society. This was driven by the number of mobile devices,
their ever-increasing hardware capabilities, and systematic cost reductions. To put
this into perspective, mobile devices are nowadays prevalent and present an annual
growth rate of around 25%. Literature reports such an increase to reach the expected
amount of 80 billion mobile devices by 2030 [13]. On top of that, the number
of bandwidth-hungry applications is also gaining apace, with the estimated global
monthly mobile data traffic expected to raise 3.7 exabytes per month in 2015 to
30.6 exabytes in 2020 [15]. Moreover, these new devices are also expanding their
ability to produce data. This leads to a broad collection of information ranging from
weather-related data to social behavior, which can be stored, transferred, processed,
and analyzed in several distinct ways. This new dynamic reflects on how the devices
use the available networks, putting forward stringent resource demands.

At the same time, it is important to notice that the network transformations
are continually evolving. In a related manner, the diffusion of the Internet of
Things (IoT) will have a central role in this renewal [38]. This technology envisaged
that, in essence, all objects would have some type of communications capabilities.
This will lead to an unprecedented amount of data that will flood the access networks
daily. The integration of both mobile and IoT devices with the Cloud allows
alleviating some of these stringent requirements as it provides resource elasticity on-
demand, reduces compatibility issues, and provides high availability [16]. However,
in doing that, it also introduces new entanglements such as higher latency and core
network surcharge as well as security and privacy concerns.

To improve on the aforementioned challenges while increasing the location
awareness, Fog and Edge computing can be used. The main idea of both is to provide
Cloud-like features (e.g., resource elasticity and virtualization) closer to the end-
user. To put in another way, they aim to bring a snippet of the processing power
from the Cloud to where the data source and/or devices are [42]. It is worth noticing
that this does not mean relinquishing Cloud structures but instead putting it together
with Fog and Edge technologies to enable a multi-tier computing hierarchy [7].
This arrangement yields a number of advantages, for example, reduced delays
and network traffic as the data can be stored and processed closely [6], which
is imperative for delay-sensitive applications. Security and privacy may also be
impacted as, in this case, only summarized can be transferred to the Cloud.

The convergence of Cloud, Fog, and Edge computing provides several benefits;
on the other hand, it also imposes brand-new constraints and challenges [7]. For
example, this architecture needs to be able to handle heterogeneous devices with
distinct communication capabilities, uneven processing power, and limited energy-

Content Distribution and Mobility in MEC 475

capabilities. Incidentally, the advent of the fifth and sixth generation of wireless
systems (5G and 6G) will help furnish this resource-demanding upsurge and better
accommodate both network and device heterogeneity. This builds an ecosystem of
technologies and value chains aiming to cater to the swift and flexible deployment
of innovative services and applications. The 5G systems are designed to provide
high bandwidth capacity, low latency, support for dense networks, and improved
seamless mobility. In order to enable these highly-desired features, 5G will heavily
depend on Mobile (or Multi-access) Edge Computing (MEC), which is standardized
by the European Telecommunications Standards Institute (ETSI) and was formally
known as Mobile Edge Computing. This adjustment is an attempt to adopt a
broader posture regarding which network access technologies will be sanctioned
under the proposed framework [7, 29]. This paved a new direction on accepting a
comprehensive set of wired and wireless communication technologies and not only
carrier-grade cellular equipment.

It is expected that MEC will play a pivotal role in 5G systems by address-
ing a range of use cases. In order to do that, it aims to bring together the
telecommunication-capabilities and the Cloud service environment within the radio
access networks (RAN), in the close vicinity to the end-users, and being able to
attend applications on a localized basis [50]. Moreover, it can cost-effectively enable
high-performance computing on-demand to support a growing number of services
and applications at the network’s edge. To do that, it will be able to host compute-
intensive applications/services and process large chunks of data before sending it to
the Cloud. This leads to low latency connectivity and also the possibility to deploy
localized content caching.

This chapter brings an overview of problems that have to be addressed to achieve
efficient content distribution when mobility is expected to play an important role in
the resource management of distributed infrastructures. In Sect. 2, a general view of
a multi-tiered Edge computing infrastructure is presented, and the ETSI reference
architecture is briefly presented to match requirements. A literature review is
presented in Sect. 3. Additionally, Sect. 4 provides details about content distribution
and mobility in a MEC scenario. After that, the open challenges are described in
Sect. 5, while Sect. 6 brings remarks and concludes the chapter.

2 Multi-Tiered Architecture: Concepts and Definitions

This section introduces the concepts and definitions of MEC and its variations. First,
a general view of multi-tiered computing infrastructure for Edge computing and IoT
in Smart Cities is presented. Then, it is discussed how this infrastructure can be
managed using current standardization efforts.

476 P. F. do Prado et al.

2.1 Edge and Fog Computing in Smart Cities

Nowadays, Cloud computing has been established as the computing infrastructure
to provide computing services to many applications. More recently, Edge and Fog
computing [7] are being developed to, in conjunction with the Cloud, improve com-
puting capabilities to fulfill application demands with stricter delay requirements as
well as to reduce network traffic by distributing computing capacity closer to the
users.

Figure 1 illustrates a scenario where users connect to their access points while
traveling in smart cities. Those access points provide cloudlets (fog nodes, or
microdata centers) as a first-mile distributed computing capacity, providing lower
response times and reducing network traffic to the Cloud by aggregating data and/or
fulfilling application computing needs at the Edge. These fog nodes can be arranged
in a hierarchy, forming a multi-tiered distributed computing infrastructure from the
edge to the cloud.

As users move, for example, in a smart city, their computation should, ideally, be
kept as close as possible, i.e., at the cloudlet available in the access point the user is
currently connected. Therefore, to manage applications and data from mobile users,
management entities distributed in this hierarchy must act to optimize the overall
system performance (e.g., response times, utilization, cost, energy consumption).

Urban Mobile Industry

Fig. 1 Overview of a multi-tiered edge computing infrastructure (from [7])

Content Distribution and Mobility in MEC 477

Management and resource allocation in the Edge computing distributed infras-
tructure brings many challenges, and standardization and specification efforts are
under development. One of these efforts is discussed in the next section.

2.2 Mobile Edge Computing Specification

The ETSI Mobile Edge Computing Industry Specification Group (MEC ISG)
published a reference architecture for Mobile Edge Computing [18]. The reference
architecture is divided into three layers: System Layer, Host Layer, and Network
Layer, as illustrated in Fig. 2.

The groups of reference points are divided into (Mp), related to MEC platform
functions, (Mm), linked to management; and (Mx), working as external elements
connections. The (Mp) group includes (Mp1,Mp2,Mp3) reference points. The
Mp1 reference point connects the MEC platform to Applications, providing registra-
tion and discovery services. The Mp2 reference point manages applications routing
between the MEC platform and the Virtualization Infrastructure’s Data Plane.
The Mp3 controls the communication between MEC platforms. The (Mm) group
includes (Mm1,Mm2, . . . ,Mm9) reference points. Mm1 is used to instantiate

Applications ME ServicesMobile Edge Platform

Other Mobile Edge Platform Other Mobile Edge Host

Traffic Rules Control

DNS Handling

Service Registry
Service

Mobile Edge Host

Virtualization Infrastructure

Data Plane

Host-Level ManagementMobile Edge Platform Manager

ME App Lifecycle Management

ME App. Rules and Requirem. Management

ME Element Management

Virtualization Infrastructure Manager

Host Layer

System-Level Management

App LCM
Proxy

Mobile Edge
Orchestrator

Operations
Support System

System Layer
CFS Portal User App

Mp1

Mp3

Mp2

Mm7
Mm5

Mm6

Mm4

Mm3

Mm2

Mm8

Mm9

Mx2Mx1

Mm1

Net Layer
3GPP Net Local Net External Net

Fig. 2 Mobile edge computing reference architecture [18]

478 P. F. do Prado et al.

and terminate MEC applications between Operations Support System (OSS) and
Orchestrator in the System Layer. Mm2 is responsible for the configuration and
performance management between OSS and MEC Platform Manager in the Host
Layer. Mm3 manages the lifecycle, application rules, and requirements service
between Orchestrator and MEC Platform Manager. Mm4 connects Orchestrator to
the Virtualization Infrastructure Manager, and it is used to manage the virtualized
resources. Mm5 is for the configuration of applications and services between
MEC Platform Manager and MEC Platform in the Host Layer. Mm6 manages
the virtualized resources related to the application lifecycle, which is linking the
MEC Platform Manager and Virtualization Infrastructure Manager. Mm7 is used
to manage the virtualization infrastructure between Virtualization Infrastructure
Manager from Host-Level Management and Virtualization Infrastructure from MEC
Host. Mm8 connects Orchestrator to App LCM Proxy, and it handles the requests
for running applications in the System Layer. Mm9 links Orchestrator to App LCM
Proxy, and it is used for MEC application management. The (Mx) group includes
(Mx1,Mx2) reference points. Mx1 connects OSS to CFS Portal and deals with
third-parties’ requests for running applications in the System Layer. Mx2 connects
APP LCM Proxy to User App and is used by a device application to request and run
an application in the System Layer.

System Layer The upmost layer is the System Layer, composed of Customer-
Facing Service (CFS)/Applications and the System-Level Management, which
is necessary to run mobile edge applications within an operator network, thus
providing system-wide management functions.

The User Application is a mobile edge application running an application
requested by a user in the mobile edge system, and the User Application Lifecycle
Management Proxy (App LCM Proxy) is the component that deals with the
instantiation and termination of the applications. The Customer-Facing Service
Portal (CFS) is the first step for providing applications. CFS handles the operations
with third-party customers, providing information for instantiation of a set of mobile
edge applications that meet specific needs and the termination of these MEC
applications. An Mx1 reference point is used to connect CFS to the OSS. OSS
manages the operators’ network services, which receives and decides on granting
requests from the CFS portal and ME Applications. The granted requests are
forwarded to the Mobile Edge Orchestrator (MEO) for further processing. MEO
has the System Layer’s primary function due to wide visibility over the entire
mobile network’s resources and functionalities. MEO is responsible for maintaining
information of all available applications and following their requirements to perform
the deploying into mobile edge host [11, 18, 48].

Host Layer At the Host Layer, the Mobile Edge Platform Manager, Mobile Edge
Platform, Mobile Edge Host, and the Virtualization Infrastructure are used to
execute the user applications.

Mobile Edge Platform Manager (MEPM) is an entity that is further divided into
Mobile Edge Element Management, Mobile Edge Application Rules, Requirements
Management functions, and Mobile Edge Application Lifecycle Management. Mm3

Content Distribution and Mobility in MEC 479

reference point connecting the MEPM to MEO provides support for the application
and services in the System Layer. Mm2 reference point linking MEPM and OSS is
used for fault reports, configuration, and performance measurements received from
the Virtual Infrastructure Manager via Mm6 reference point. Meanwhile, VIM is
responsible for allocating, managing, and releasing the virtualized resources, such
as compute, storage, and network, to the mobile edge applications [18, 48].

The Mobile Edge Platform (MEP) is responsible for offering services such as
discovering and advertising to the mobile edge applications. MEP is also used
to manage the networking environment by handling the service registry, DNS
configuration, and the traffic rules control accordingly [18].

The Virtualization Infrastructure is located in or close to the network edge,
e.g., the Network Functions Virtualization Infrastructure (NFVI), which offers
virtualized resources to mobile edge applications. Moreover, the virtualization
infrastructure brings a Data Plane that runs traffic rules from MEP and manages
the traffic among services, applications, DNS, 3GPP, and other local and external
networks [18].

Network Layer The Network Layer is further related to the connectivity to cellular
networks (3GPP), Local and External networks such as the Internet. The Host
Layer consists of Mobile Edge Host and the Host-Level Management. However,
to include the benefits of heterogeneous access technologies to the MEC, e.g., 4G,
5G, and WiFi, ETSI ISG changed the name of Mobile Edge Computing (MEC)
to Multi-access Edge Computing in 2017 [29], maintaining the acronym MEC.
In this chapter, we use the general term MEC to refer to this architecture’s latest
developments. From this expansion, Fig. 3, the intelligence is moved to the, bringing
communication functionalities as well as computation, caching, and additional
control services. The overall layering organization remains similar to the previous
one, but the network layer has been modified to consider multiple different access
technologies.

The integration of MEC and 5G is shown in Fig. 3. In addition to Radio Access
Network (RAN) and User Equipment (UE), the main 3GPP 5G network functions
are briefly summarized below.

– User Plane Function (UPF): controls the plane operations and may even be part
of the MEC Layer in some specific deployments.

– Authentication Server Function (AUSF): acts as an authentication server.
– Session Management Function (SMF): performs the session management func-

tions.
– Access and Mobility Management Function (AMF): handle the procedures

related to mobility and deals with the RAN control plane.
– Network Slice Selection Function (NSSF): selects the network slice resources

and AMF for users.
– Network Repository Function (NRF): maintains the network functions and their

supported services.
– Unified Data Management (UDM): deals with users and subscription services.

480 P. F. do Prado et al.

Applications ME Services

Mobile Edge Platform
Service

Mobile Edge Host

Virtualization Infrastructure

Data Network

Host-Level Management

Mobile Edge Platform Manager Virtualization Infrastructure Manager

Host Layer

Mobile Edge Orchestrator

System Layer

Net Layer
3GPP 5G UPF

SMF

(R) AN UE

AUSF AMF

NSSF PCFUDMNRF NEF

Fig. 3 MEC and 5G architecture [29]

– Policy Control Function (PCF): handles network policies and rules in the 5G
control plane.

– Network Exposure Function (NEF): acts as a service that manages all access
requests outside the system.

The ETSI reference architecture brings an overview of the management needs
to support application mobility at the network’s edge. Several algorithms and
mechanisms need to be incorporated into the architecture to provide reduced delays
and improved Quality of Service (QoS). The remainder of this chapter discusses
a few problems that, when addressed, can provide better support for mobile
applications in smart city scenarios.

3 Literature Review

MEC’s main idea is to offer processing and storage services at the Edge of
the network, increasing computing services proximity to users. Recently, MEC
architecture is a topic that has been gaining attention from industry and academic
researchers: several surveys analyze the state of the art, discuss definitions, and
identify the main challenges to be overcome. In [59], Wang et al. surveyed

Content Distribution and Mobility in MEC 481

caching, communication, and computing issues at the Edge of the network. Mach
et al. [36] surveyed existing MEC concepts, functionalities, mobility awareness,
and computing offloading. In [21], Habibi et al. surveyed architectural distinctions
between existing Edge computing models and analyzes the different aspects of the
practical implementation of Fog computing, such as security, computing resource
management, networks, and systems design. Furthermore, Abbas et al. [2] surveyed
architectures, application areas, and highlights futures directions related to MEC.

Although Edge and Cloud infrastructure composition is a topic that has been
extensively investigated, mobility management is one of the biggest challenges to
be yet overcome in MEC. For example, in [27] the authors analyze the impact of
mobility on the caching process at the Edge of the network. In specific scenarios, the
characteristics and properties of users’ mobility are unknown. Some research [35,
39] proposed strategies to predict user’s mobility. The information obtained through
prediction allows the content management process’s actions to offer a higher Quality
of Experience (QoE) for users.

Due to the importance of ensuring continuity of access to content and services
during users’ movement, migration also emerges as one of the core research issues
in the context of MEC. In [32], a decision policy is proposed to determine when
the VM migration process should start—after each handoff performed by the user, a
decision is made based on the trade-off between the gain and cost of migration. The
authors modeled the decision policy using the Continuous-Time Markov Decision
Process (CTMDP). Moreover, the Follow-me Cloud [51] concept proposes that
users’ content should be migrated, on-demand, to the cloudlet closest to the user,
reducing latency and improving the QoS offered.

Mobility management in MEC can impact several types of applications, among
which video delivery is a trendy one. MEC architectures for video delivery offers an
environment characterized by high bandwidth and low latency. In [25, 47, 54, 62],
the authors focus on decreasing the traffic overload in the network core and
improving the QoE aided by MEC. Yang et al. [62] explore machine learning
models to incorporate into the MEC node for decision-making on storing popular
videos. Experimental results suggest good performance for mobile video streaming
services. Furthermore, Petrangeli et al. [41] proposed an advanced architecture
in which additional intelligent components are placed to support video delivery.
Instead of considering low-level network performance parameters, the designed
network components focus on optimizing the QoE parameters that directly affect
users’ experience.

Rectal and Benkacem et al. [5, 46] propose a content delivery network as a
service (CDNaaS), where content providers can create a CDN slice that includes
cache, transcoder, and streamers for several videos for their users. The objective is
to find an efficient cost for creating a slicing following requirements of the network
administrator in terms of QoE and the cost of setting up the Cloud infrastructure.

MEC enables data collected at the Edge to be processed at the Edge. Associating
the high amount of data from IoT with the MEC architecture [66], it is possible to
explore new applications and services at the Edge when data collection is allied
with Artificial Intelligence (AI). Large data sets generated at the Edge of the

482 P. F. do Prado et al.

network along with benefits brought by MEC urges for distributed intelligence to
be supported close to the end-users.

In [60, 66], the authors explore the feasibility of Deep Learning (DL) in terms
of applications and how to improve networking aspects to make it possible to
deploy DL at the Edge. From this perspective, the work of [33] refers to the use
of Federated Learning (FL), a method that executes DL at the Edge of the network
using distributed local user data, requiring the transmission of only the learning
model in the aggregation period.

Valério et al. [55] focuses on energy usage by choosing to go a layer upwards
and do more work in Fog, distributing the learning through the cloudlets. This way,
it is possible to have energy gains using short-range technologies with little loss of
precision. Their work discusses that the type of wireless technology cannot directly
impact intelligence, but how energy and traffic must be well aligned with the chosen
wireless technology.

Park et al. [40] also considers wireless networks, but with a focus on modeling
methods for both learning and its algorithms to fit the principle of providing the
most learning at the most extreme point possible. Zhang et al. [65] follow this line
of learning to model but explores MEC in vehicles. Offloading and edge caching is
essential for good management of aspects of the network, with the use of storage
resources and extra resources.

This book chapter aims to congregate the discussion on how mobility manage-
ment in MEC can impact the applications and the Edge-Cloud infrastructure.

4 Content Distribution and Mobility

Significative growth in mobile connectivity is expected in the next few years.
The addition of mobile users will undeniably change the dynamics of MEC
environments. Introducing mobility support in a multi-tier MEC translates some
traditional resource management problems, such as service placement and routing
path calculation, into a more complex and dynamic case. Aiming to deal with
such a scenario, the MEC infrastructure requires new approaches to orchestrate this
environment. For example, the adoption of static or dynamic service allocation and
content migration can result in distinct levels of QoE delivered to the users and
different resource usage in the MEC infrastructure.

Figure 4 illustrates this situation where the user’s latency is affected when
the application is static or dynamically allocated. It is important to notice that if
the offloaded data/processing is migrated along with the user in his/her path, the
application delays can be kept at lower levels. In a scenario where there is no
migration (illustrated by the blue line), as the user moves away from the cloudlet
where his/her content is allocated, the delay increases, degrading the QoS. On the
other hand, the red line represents the scenario where content is constantly migrated
to the cloudlet that is closest to the user at a given time, keeping latencies as low as

Content Distribution and Mobility in MEC 483

Packets over time

0e+00

0

50

100

150

200

2e+05 4e+05 6e+05 8e+05 1e+06

La
te

nc
y

Static placement
Service migration

Fig. 4 Latency provided by the Fog in scenarios with and without VM migrations

possibly supported by the Fog architecture. The interested reader can find detailed
results and different mobility scenarios in [44].

In such a dynamic environment, the MEC architecture needs to deal with user
mobility to deliver the required content. In this scenario, the content distribution
needs to take advantage of MEC architecture not only for caching data but also using
MEC’s processing capacities to, for instance, perform real-time video transcoding
in a faster way, also to avoid data transfer into the core network towards the Cloud.
Such dynamism in the density of the network increases the complexity of the content
distribution problems.

This section discusses the impact of mobility support in the orchestration of
MEC infrastructures and the role of content distribution and processing in such an
environment. Additionally, it is shown several typical management and optimization
problems related to data collection, distribution, and processing in scenarios with
user mobility. Several uses cases are going to be addressed, such as the migration
of mobile users data/applications throughout the multi-tiered infrastructure, the
support for high-definition video streaming for mobile users, and the use of machine
learning in an intelligent edge layer for vehicular traffic and safety.

4.1 Mobility and Content Migration

Similar to the Cloud paradigm, MEC can provide its resources in the form of
virtualized environments, such as containers or virtual machines (VMs), providing
an isolated environment that contains all the resources required by the user.

The constant movement of devices is one of the biggest challenges for MEC
architecture as it needs to be able to reduce the latency between the user and
his/her content. According to Yan et al. [61], the study of human mobility shows
that people tend to visit specific places at constant time intervals, setting standards.

484 P. F. do Prado et al.

In the literature, it is possible to find several mobility models that identify human
movement characteristics in different scenarios [17, 58].

The study of mobility is important to identify movement patterns, allowing the
process of content migration (e.g., VM or container migration) to occur according to
each user’s movement’s particularities. Mobility models also provide the possibility
of a proactive migration approach; that is, the content can be migrated in advance to
locations that the user is likely to move to [19].

To guarantee the quality of the mobile user experience, it is necessary to decrease
the physical distance between content and users. In the literature, there are several
strategies [31, 51, 64] for content management at the network’s edge. In general, they
propose user’s content should be dynamically allocated according to their current
position. In such scenarios, whenever a mobile user changes him/her position, the
relevant application/contents should be moved from a host server to another one in
closer proximity to the current user position.

Recently, proactive content management strategies have been gaining attention
from the scientific community. Proactive strategies [4, 19] aim to predict when and
where users will need their content/applications in order to perform management
decisions efficiently, ensuring the quality of the users’ experience and highly
improving the QoS for delay-sensitive applications.

In this context, maintaining the application (geographically or logically) as
close as possible to the user is a great challenge [43], mainly due to a trade-
off in the migration process. Frequent migrations will allow greater proximity
between user and content, resulting in lower latency. However, migrating too often
between cloudlets may enlarge the application downtime, which is not desirable.
Furthermore, in scenarios with a large number of users, frequent migrations will
congest the network, compromising its stability and reducing the QoS offered by
the infrastructure. On the other hand, insufficient migrations may keep applications
away from their users, resulting in increased latency. Both scenarios can impair
mobile users’ QoS. Therefore, MEC architecture’s content management strategies
must offer solutions to improve user experience quality without compromising the
network operation.

The problem of content migration at the Edge of the network with mobile users
has been a focus of researchers’ attention, with several different approaches being
proposed at this time. Several metrics and criteria can be used to define when and
whether the user’s content should be migrated, such as latency and throughput
requirements, load balancing, user speed, or application priority [44]. Further
discussion on this can be found in the following section. Once the mobile users
change their locations, the MEC node serving them may not fulfill their application
requirements (e.g., latency) anymore. Other objectives, such as load balancing or
energy-saving, can also lead to migrations in the architecture.

Figure 5 depicts a hierarchical MEC architecture. A number of different combi-
nations of origin and destination nodes can be found in the migration process. The
user content can be moved in both horizontal and vertical directions in terms of the
MEC nodes’ hierarchical organizations. Horizontal migrations occur between MEC
nodes at the same hierarchical level, as illustrated as the type 1 migration. Once the

Content Distribution and Mobility in MEC 485

1
2

3Internet

Fig. 5 VM migration scenarios in a fog computing architecture

MEC nodes, at the same level, usually have similar computing power, that kind of
migration tends to keep, in a stable range, the levels of QoS offered to the users.
Furthermore, vertical migrations may also be needed if, for example, the users’
requirements or the MEC’s resources availability change dynamically over time.
If the user increases their requests for computing power, for instance, the resources
demand on the current MEC node may surpass its capability. A resource richer
MEC node, used to be closer to the network’s core, should fulfill the new user’s
requirement (illustrated as the type 2 migration). Similarly, if the user decreases
him/her computing and storage requirements or the required latency should be
improved, the user content can be migrated to a MEC node closer to the Edge of
the network (type 3 migration). Moreover, fog nodes at higher levels can be used to
reduce the number of migrations (and, consequently, downtime) when, for example,
high-speed users are moving at the Edge.

User access to content can also be performed in different ways based on the user’s
location and his/her content. Access can be direct if the content is one hop away
from the user, which provides the lowest possible latency. However, if necessary,
multiple hops may be traversed when user contents are not placed in the closest fog
node.

Therefore, one main concern of models like MEC is the proximity between
mobile users and their contents, as well as reducing network congestion while
maintaining QoS for mobile users [14]. However, the development of strategies to
realize this management is far from trivial. In the light of that, it is necessary to
develop solutions that orchestrate content migration considering several aspects,
such as user mobility patterns, characteristics of applications, migration costs,
networking utilization and congestion, and so on.

486 P. F. do Prado et al.

4.2 Resource Allocation and Optimization

One of the main questions that arise in the MEC architecture is how to distribute
heterogeneous services and their data throughout the MEC hierarchy such that
application requirements are obeyed, even in a constrained infrastructure. For
example, latency is one of the utmost importance requirements for many interactive
edge applications. Scheduler decision making heavily relies on such requirements to
model an optimization problem that outputs the resource allocation that determines
where applications and their components should run.

Furthermore, the possibility of mobile users continuously requesting resources
from the MEC infrastructure has a considerable effect on the environment which
needs to be managed. In a static scenario, once the resources were allocated to a
user, it will be reserved until the tasks are finished. In this case, changes in the
resources demand will only occur when the number of active users increases or
decreases. On the other hand, in the mobility scenario, this change of resource
demand in the infrastructure also happens when a relevant number of users move
to a specific area. Figure 6 illustrates a scenario where a large number of mobile
users can be temporally concentrated in a reduced part of the map. The red circle

ll

ll
ll

ll

lll
lll

llllllllllllllllllllllllllllllllll
ll

lllllllllllllllllllllll
lllllllllllll
llllllllll
llllllllll

llllllllll
llllllllllllllllllllllllllll

2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

Longitude

La
tit

ud
e

Users' path
MEC node
MEC node's coverage area
Higher demand area

l
l

Fig. 6 Mobile user converging to a common area resulting in a resource concurrency

Content Distribution and Mobility in MEC 487

illustrates such an area. In this case, MEC allocation approaches need to deal with
such a dynamic environment. Circles represent base-stations/access points antenna
range, where each of these access points has a cloudlet offered to the mobile
users. Illustrative routes from these users are illustrated in blue, purple, orange, and
green. When mobile users reach a certain position, which can be pre-defined or
calculated in real-time, a decision-making algorithm should run to choose the best
new location (cloudlet) for his/her VM, based on current mobility (e.g., prediction
of next position) and also on current load of cloudlets in the user’s path. Based on
that, good resource management approaches are a goal for both users, which then
experience a better QoE, and MEC resource providers, which can improve profit
metrics as energy or network usage by better allocating resources.

The resource allocation imposes challenging problems in distributed systems. In
other to alleviate these issues, one prominent component of the MEC infrastructure
is the scheduler. This component is responsible for allocating resources from the
distributed infrastructure to users’ applications. The decision-making on which
applications should run where is taken by following an optimization model. In
general, it takes information about the application requirements and infrastructure
characteristics as input. The scheduler defines one or more objective functions,
whose output maximizes or minimizes single or multiple objectives.

Considering that, one important aspect of MEC architectures is related to users’
mobility along the infrastructure edge. In MEC, optimization modeling should
consider user mobility as a determining factor of future allocation needs. How to
model this problem in a hierarchical infrastructure will impact which optimization
technique is more appropriate: when a larger scope is considered, faster optimization
is needed. When mobility is added, the environment’s dynamics brings the need
for faster optimization techniques to be developed for this computing model. The
scheduler should then run an optimization algorithm to find the best allocation
possible for applications considering requirements and resources capacity.

In general, the scheduling problem, which involves finding the optimal solution
among a universe of exponential possibilities, is considered a hard problem to solve
among computer problems. Most of these problems are classified into classes of
problems named as NP-Complete and NP-Hard [28]. One of the most classical
problems is known as Knapsack Problem (KP) [30]. This problem consists of, based
on a set of items with different sizes and a knapsack with a defined capacity, finding
the optimal set of items that maximize the use of the knapsack capacity.

To exemplify the KP in the MEC architecture context, consider a system with five
cloudlets and 100 VMs. The basic version of the scheduler just needs to find a valid
solution for the allocation of the VMs in the cloudlets, considering the needs of each
VM (e.g., processing power, memory) and the capacities of each cloudlet. This can
be expanded to consider multiple cloudlets at the same level, multiple levels, and
also include the Cloud. As users move, the problem becomes dynamic in nature,
and the modeling should be adapted to be able to find solutions in a reasonable
time. Different optimization algorithms and techniques can be applied to behave
according to the current dynamicity observed in the system.

488 P. F. do Prado et al.

Many different types of algorithms can be used to solve optimization problems,
such as the classic KP problem and its variations. The most basic is an exhaustive
search (or Brute force) that will test for each possible valid solution and find the
best one. In practice, this algorithm can be used only in very small search space
sizes because it has an exponential execution time. However, if the search space
size is small enough, it always guarantees the global optima (best solution). In the
VM placement problem for MEC, the search space can vary in size: from a single
cloudlet to the whole hierarchy. Brute force may be a choice for local optimization
in a single cloudlet when a few users are currently at that location.

Another class of algorithms used to solve optimization problems, including
the KP problem, is Dynamic Programming. The Branch and Bound algorithm
focus on solving combinatorial optimization problems. Basically, in combinatorial
optimization, the choices to be made are discrete (i.e., where to allocate each VM),
and in continuous optimization, the choices to be made are based on continuous
values (i.e., real numbers). Dynamic programming can speedup the scheduler
solution to be applicable in larger scenarios, e.g., considering multiple fog nodes
and hierarchical levels.

Other optimization techniques include heuristics and meta-heuristics, where
solution quality is not guaranteed, but the algorithms running times are reduced.
For example, artificial intelligence has also been used to solve KP problems. Some
examples are Genetic Algorithms (GA), Ant Colony Optimization (ACO), as well
as hybridizations combining two or more techniques. Heuristics and meta-heuristics
are suitable for larger and more dynamic scenarios, where multiple runs of the
optimization are needed to keep the objective functions optimized. This is clearly
the case in MEC, for example, in rush hours when a great percentage of users move
around and need to have their VMs/containers properly placed to improve QoS and
obey requirements.

4.3 Streaming Services

Combining Edge and Cloud computing environments bring to streaming services
attractive improvements in terms of bandwidth usage and reduced latency. End-
users can expect high-quality video applications to work anywhere and on a variety
of heterogeneous devices, including mobile ones. In Video-on-Demand (VoD)
services, the edge resources of Internet Service Providers can be utilized to
host video contents in the proximity of end-users, thereby reducing latency and
mitigating load on core networks and data centers. This is especially helpful for
live streaming scenarios that require low latency [24, 47]. Moreover, pre-processing
can be done in multiple streaming flows deployed at the Edge. Consequently,
reducing the download traffic needed from the Cloud. An edge architecture for video
streaming delivery has the following purposes: (1) Improving the users QoE, serving
the requested edge content as close as possible to the user; (2) Reduce congestion at

Content Distribution and Mobility in MEC 489

Fig. 7 Illustration of collaborative video delivery on a MEC network

the core of the network; (3) Efficiently deal with the amount of data that needs to be
processed and extract meaningful data to create more intelligence.

Figure 7 depicts a network service scenario that uses intelligent video streaming
in a MEC architecture. A MEC server (i.e., an fog node) is connected to base
stations to perform data storage and processing. A MEC client can access video
streaming services being run in the infrastructure [62]. This video service can
cache videos and run analytics to extract knowledge about video content and
video service performance, such as estimating QoE from throughput for different
users. This can assist network-level decisions to adjust the data rate accordingly
to the available downlink bandwidth, presenting real-time network information and
context in addition to reduced latency.

To provide cache services in a MEC architecture, it is important to effectively
deliver the video content through smart caching mechanisms. Such mechanisms can
be based, for example, on content popularity and geographical location/distribution
of mobile devices. With this strategy, it is possible to efficiently use VoD and live
broadcast services to a wide range of heterogeneous devices. In order to improve
this, a good idea is to distribute the service closer to the region with more bandwidth
consumption. This approach is similar to the existing overlay cache that is applied
to services with lower latency indexes due to edge utilization. This can lead to the
improvement of the QoE for the majority of users. In other words, smart caching
available on the fog nodes enable popular videos to be available closer to the user,
thus reducing traffic load and delay [54].

Besides promoting caching, a MEC architecture can also perform data processing
at the Edge. Figure 7 gives another example, the deployment of a transcoding service
closer to the end-users can improve the QoE in dense networks with heterogeneous
resolutions being requested. For instance, transcoding of cached videos can be run
in a MEC server when a user requests a different version. This task can be run in
the MEC server that stores the original video (data provider node) or the MEC node
serving the video (delivery node). For example, a video with a 5 Mbps (720p) bit

490 P. F. do Prado et al.

rate could be transcoded from a cached copy presenting a bit rate of 8 Mbps (1080p).
In doing that, the fog node uses the bandwidth available to serve as many users as
possible. Moreover, the content provider does not waste bandwidth, sending high
bit rate video through the core network.

MEC infrastructures can be utilized to store and process video closer to the
user, performing real-time transcoding, caching for reduced bandwidth use, video
analytics, augmented reality, and so on.

4.4 Intelligence at the Edge

Edge devices produce large amounts of data nowadays, enabling the so-called
Smart Environments, also as a consequence of the current pervasiveness of personal
mobile and IoT devices [56]. The massive data source has considerably changed in
this scenario, moving from Cloud data centers to end devices. Bringing Artificial
Intelligence (AI) and Machine Learning (ML) to be run at the Edge of the network
is seen as a possibility to enable the full potential of Big Data processing in MEC
infrastructures.

In the standard Big Data scenario, data is generated at the Edge of the network
and must be transported to data centers, which contains a very high processing and
storage capacity. Then, AI is applied to generate knowledge about those data and
keep it in a central location. Data centers are often geographically far from end-
users, which implies in transferring a large volume of data across links, resulting in
increased latency and congestion. In MEC, AI can be applied at the Edge as well,
processing local data to generate knowledge about specific regions, but can also
aggregate and send data to the Cloud for additional processing to generalize the
knowledge with a wider view from the data gathered at the Edge.

Machine Learning provides the most prominent set of tools currently to achieve
the mentioned AI objectives, to gain insights, perform classifications and predictions
through training with data obtained at the Edge in a process with feed-forward and
backpropagation [49]. Among ML methods, Deep Learning (DL) stands out for its
unique performance in many tasks. DL is a variation of Neural Networks (NN),
which can then be called Deep Neural Networks (DNN). DNNs can learn high-level
resources by providing highly accurate inferences on tasks. As shown in Fig. 8,
DL works with several neurons in the entrance, called Input Layer, which receives
raw data. It is connected to middle layers, known as the hidden layer, that they are
going to perform complex operations of learning, sending their results to the output
layer. The hidden layer gives more complexity than a Simple Neural Network, which
requires more computational power; however, it gives better work results in learning
tasks.

Run the DNN models on edge devices requires large computing capacity for
DNN algorithms. Therefore, actual intelligence at the Edge depends on architectures
and mechanisms able to maintain accuracy by running learning algorithms collab-
oratively at the Edge in a distributed way, and, complementary, using the synergy

Content Distribution and Mobility in MEC 491

Input Hidden Output Input

Simple Neural Network Deep Neural Network

Hidden Output

Fig. 8 Deep learning structure

Fig. 9 Three architectures for DNN training: (a) Cloud to devices (b) Devices keep training DNN
models and (c) Cloud to Edge Infrastructure, then, to devices

between the Cloud and the Edge in the considered MEC computing hierarchy. In
this scenario, the AI model’s training can be carried out in the Cloud data centers,
which then makes the trained model available to the edge devices at synchronization
rounds. Also, Edge computing can use data center resources when necessary to
optimize DNN training since transmitting DNN models through the network is less
expensive than transferring all raw data to the Cloud.

According to Zhou et al. [66], there are three ways to architect DNN training:
centralized, decentralized, and hybrid (Fig. 9):

(a) Centralized: the most common, carried out in data centers;
(b) Decentralized: aims to train models directly on the edge devices, updating the

models from time to time;

492 P. F. do Prado et al.

(c) Hybrid: combines the two above, training of DNN models in data centers and
making them available at the Edge.

The first (a) is the classic one, carried out in data centers. The second (b) aims
to train the models directly on the edge devices, updating the models from time to
time. Finally, the hybrid (c) that combines the two with the training of DNN models
in data centers and making them available at the Edge.

Items b and c involve edge mobile devices running learning models, but c still
uses the Cloud infrastructure as a form of support. The learning model is massively
trained in the Cloud and then forwarded to the Edge infrastructure and then to the
devices. Here, end devices will not have the task of training the model but only
applying it in accordance with the current application. Adjustments and updates to
the model are made with the help of the Edge infrastructure.

Item b, on the other hand, covers the entire process of constituting the model,
from training the model to its applicability, going through model updates, without
the support of other infrastructures. The details of this process are at the discretion
of the chosen harvesting method. What matters in this context is that it is all done
on mobile devices.

Computationally, learning methods require a lot of resources, so applying them
to mobile devices is not straightforward. To avoid significant changes in the
architecture of mobile devices (memory, processing, and storage capacity), the
way forward would be to optimize the models in order to make them as light as
possible [10].

An interesting method is compressing the models [45]. This method generalizes
a learning structure by removing weights or operations that are less useful for
predictions and divides a large model into smaller models, each focused on a specific
application scenario. This improves processing performance as fewer operations are
done to achieve similar results.

Some care with the use of computational resources must be taken into account.
Bonawitz et al. [8] makes some recommendations in this regard. A new function
when learning on the mobile device is the use of a local data repository for training
and model evaluation. It is recommended to use simple and small databases like
SQLite, and its available storage size is small and non-negotiable, in addition to
establishing an expiration date for the data.

As for the user experience and battery life, it is preferred to invoke the learning
method only when the device is idle and with a sufficient battery is remaining or
when it is connected to the charger. Finally, a cleaning of temporary resources must
be scheduled as soon as their execution is complete.

Technologies dedicated to working with distributed DNN at the edge are cur-
rently under development, such as Federated Learning [12], Aggregation Frequency
Control [22], Gradient Compression [34], DNN Splitting [37], Knowledge Transfer
Learning [57], and Gossip Training [9]. Many of these methods work with local data
on the device, which increases data privacy.

The availability of high-quality intelligent services is a combination of the chosen
AI method with computing performance and network data transfer. Some metrics

Content Distribution and Mobility in MEC 493

are adopted to describe the QoS of the Edge computing model inference, such
as latency, precision (DNN model), energy efficiency, data privacy, and commu-
nication overhead. Introducing mobility with MEC gives rise to new challenges
in intelligence at the Edge, where now, more dynamic evaluation of distributed
learning models is necessary. For example, in smart cities, traffic management can
be performed mostly at the Edge with data from users/vehicles. A more precise
estimate of traffic can be performed in real-time with low latency at the Edge,
while relevant data are still sent to the Cloud for model training and to produce
a wider view of the current traffic landscape. Therefore, in this scenario, the MEC
architecture acts to reduce data transmission to the Cloud as well as to produce faster
and more precise results in this mobility scenario.

5 Challenges

Since the MEC paradigm is an architecture that extends the Cloud computing
concept, it can share some common solutions of other distributed systems. However,
the MEC architecture’s unique characteristics make it seek new approaches to
manage its environment properly. Many approaches have been proposed over the
last years, however, many problems still have no definitive solutions. This section
introduces some of the open problems present in MEC’s development that still are
challenging the area.

5.1 Resource Management

In order for users to take advantage of the new possibilities offered by the MEC
architecture, storage and computing resources are distributed across the edge of
the network, ensuring access to infrastructure for any users who wish to use MEC
services. Identifying strategies to define where physical servers with computational
resources should be allocated is a significant challenge. To allow resources to
be used efficiently, physical servers must be allocated based on users’ expected
demand, ensuring that users’ QoE and QoS requirements are met.

The development of routines capable of managing computational resources is
another challenge to ensure MEC’s proper functioning. For the resources contained
in the MEC infrastructure to be orchestrated efficiently, it is necessary to define
signaling messages capable of transmitting information about the status of the
resources, such as capacity, availability, and workload. However, signaling messages
must not occur so frequently as not to compromise the performance of the MEC
infrastructure, and at the same time, they cannot be rare enough so that resource
information becomes outdated. The multi-tiered layout in a MEC architecture can
help resource management to be performed more efficiently, but proper mechanisms
should be designed to work in this computing hierarchy.

494 P. F. do Prado et al.

5.2 Mobility Management

Besides the requirements of MEC users in terms of computing, storage, and network
resources, the MEC infrastructure also needs to manage their different mobility
patterns. For example, when moving by foot, bicycle, car, bus, or train, each
one of them presenting a specific route and speed. That characteristic of mobile
users introduces several challenges for the MEC infrastructure in terms of service
availability. Such a dynamic scenario affects different MEC’s resource management
processes such as load balance, service placement and migration, packet routing,
and handoff.

Different researches have been made to increase the capability of MEC infras-
tructures to support mobile users. However, the impact of user mobility is not
completely understood in these infrastructures. More accurate algorithms for pre-
dictive mobility patterns can help some processes to plan their future demand in a
specific area. Based on such information, the infrastructure can prepare the required
resources to serve that increasing demand. This process can prepare MEC to scale
up or scale down or even triggers a load balance, service migration, or caching data.

Furthermore, in this context, technologies like Software Defined Networks
(SDN), Network Function Virtualization (NFV) [63], and network slicing [3] have
been introduced to increase the flexibility of these infrastructures. Besides the
capability of network slicing to dynamically reallocate MEC resources to serve
these mobile users [20], further studies on that context need to be made to evaluate
the computing overhead of that resource reallocation.

5.3 Data Transmission

Although the allocation of computing and storage resources is a key point in the
impact of QoE guarantees, the management of network resources can either perform
several improvements or impair the user experience. Due to the close relationship
between IoT, MEC, and big data, a colossal amount of data is transferred between
different architecture points. To properly serve delay-sensitive applications, placing
data and computing close to the users is not enough if the MEC architecture cannot
deliver the users’ requests within the required deadline. Based on that, transmission
techniques need to be optimized enough to provide a good connection among the
MEC nodes and their users. Moreover, in MEC, it is expected that different wireless
and wired technologies work together and seamlessly. Inter-operation and seamless
connection maintenance among a variety of protocols is a challenge yet to be
overcome.

In this scenario, both wireless technologies and routing protocols must be
optimized to provide a faster and more stable connection to the users. One of the
main challenges of developing these protocols is dealing with the trade-off between
energy efficiency, latency, reliability, and throughput. Predictive offloading [1] and
transmission protocols that avoid wireless package collision and improve latency

Content Distribution and Mobility in MEC 495

and throughput are some candidate solutions. End-to-end network slicing has also
been rising as a promising solution.

5.4 QoS and QoE Guarantees

MEC servers can help guarantee QoS for latency-sensitive applications from mobile
users using a resource reservation method. Whereas for static latency-tolerant
users, the MEC management system can perform on-demand provisioning to
allocate computational resources and provide reliable computing services. However,
provisioning schemes that have to take into account high-mobility users is a complex
task. Therefore, novel hybrid MEC server schemes must be developed to enable
increased MEC providers’ revenue through serving a maximum number of users
with guarantees on their QoS requirements.

Research studies in QoE show that the changing conditions of best-effort
networks introduce numerous problems. In traditional video streaming, each client
typically streams a video that is available in a single bitrate on the server-side [23,
26]. A MEC architecture should exploit users’ context information to optimize
content management and video delivery, which may result in better utilization of
network resources and QoE.

5.5 Intelligence at the Edge

Introducing intelligence techniques at the Edge comes with new challenges that
must be faced. When considering a MEC learning network, the data can be
distributed to be processed on more than one node. In this situation, the development
of a tool that offers an automatic and efficient partitioning is both a challenge and
an opportunity in this scenario. It is also interesting to note that offloading a training
model from the Cloud to the edge nodes can incur high communication costs,
especially when considering applications that require persistent training models.

Studying the trade-offs between transferring data to the Cloud and implementing
adaptive learning models at the edge, as well as designing adaptation mechanisms
for model distribution, is a current challenge. It is important to note that distributed
learning also comes with the challenge of privacy-preserving mechanisms, which
should also be developed for sensitive data (e.g., medical applications).

Mobility within MEC gives rise to additional challenges for proper implemen-
tation of intelligence at the Edge, where a more dynamic evaluation of distributed
learning models is necessary. For example, in smart cities, traffic management can
be performed mostly at the Edge with real-time data from users/vehicles. A more
precise estimate of traffic can be performed in real-time with low latency at the Edge,
while relevant data are still uploaded to the Cloud for model training and to produce
a wider view of the current traffic landscape. Other mobile application scenarios can

496 P. F. do Prado et al.

present the same characteristics, where a dynamic composition of data from edge
devices is crucial for the learning model to provide relevant results.

5.6 Green MEC

Energy consumption has gained attraction from researchers in different areas of
computing, such as embedded systems and resource management in Cloud comput-
ing and networking. For example, to manage the increase in energy consumption,
the InterSCity project1 has different approaches to this challenge. In a CF-RAN
architecture proposed in [52, 53], they introduce local nodes closer to the users
where they perform part of the processing tasks. The cloud-level nodes manage
the workloads sent to the fog on demand to process the surplus traffic from the
front-haul.

The computation on fog nodes is performed through virtualized network func-
tions, where they are activated or deactivated in real-time depending on the network
demand. In [55], IoT data are collected at the Edge by nodes called gateways.
Communication between The IoT devices and gateways is done using wireless
cellular technology. Then, they are used to train a distributed machine learning
solution model. Both energy consumption and training performance are evaluated
with different configurations and compared to the centralized cloud model. Such a
distributed solution significantly mitigates the traffic sent to the Cloud. On the other
hand, a reduction in distributed learning precision training has to be made. With the
network’s edge addition, the energy consumption shows savings of over 90% in data
transmission and 2% in precision loss when compared to the centralized cloud-level.
Further studies in energy management with mobility and Edge computing are still
needed to tackle heterogeneous devices’ complexities in a Smart City and mobility.

Each MEC node can use considerably less power than a conventional large Cloud
data centers. At the same time, it has lower processing power, requiring a higher
number of active locations. Because of that, the increase of new small-scale MEC
servers being created becomes a big concern for energy consumption. This way, it is
unquestionable to develop innovative techniques for achieving power energy saving.
At the same time, computational resources need to be manageable to guarantee
satisfactory computational performance.

The small area serviced by each MEC server impacts resource allocation and
service management, especially when considering user mobility. The consequence
of this architecture is a highly dynamic workload, with a fast change in load
patterns. More advanced prediction techniques could be developed to enable
optimized resource utilization, focusing on load distribution and reduced power
consumption. Moreover, management services for dynamic scaling workloads that
require significant computational resources need to be developed. Also, note that

1www.interscity.org.

www.interscity.org

Content Distribution and Mobility in MEC 497

as MEC systems grow over a region, a green load balancing solution needs to be
optimized in the best way using further available renewable energy.

6 Conclusion

We have presented in this chapter a distributed, multi-tiered Mobile Edge Comput-
ing (MEC) architecture. MEC was introduced by the ETSI Mobile Edge Computing
Industry Specification Group (MEC ISG) as a means of offering data storage and
processing closer to data sources and data consumers, taking into account the
mobility aspects impact on infrastructure management.

We have covered topics on the benefits of using the MEC architecture, such as
support for content distribution to mobile users, optimization of resource allocation,
video delivery, and intelligence at the Edge. Besides, we have pointed out that MEC
was designed to offer low latency connectivity for delay-sensitive applications due
to users’ proximity at the network’s edge.

It becomes clear that many research challenges are still essential to be carried out
to properly manage data and resources in MEC architectures, especially with the
high heterogeneity in application requirements and into the future. We discussed
some directions, providing insights on interesting potential problems for further
research.

References

1. Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for iot: Review, enabling
technologies, and research opportunities. Future Generation Computer Systems 87, 278–289
(2018)

2. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: A survey. IEEE
Internet of Things Journal 5(1), 450–465 (2017)

3. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network Slicing and Softwariza-
tion: A Survey on Principles, Enabling Technologies, and Solutions. IEEE Communications
Surveys Tutorials 20(3), 2429–2453 (thirdquarter 2018). https://doi.org/10.1109/COMST.
2018.2815638

4. Araújo, M.C., Curado, M., Sousa, B.M., Bittencourt, L.F.: Cmfog: Proactive content migration
using Markov chain and madm in fog computing. In: Proceedings of the 13th IEEE/ACM
International Conference on Utility and Cloud Computing (2020)

5. Benkacem, I., Taleb, T., Bagaa, M., Flinck, H.: Optimal vnfs placement in cdn slicing over
multi-cloud environment. IEEE Journal on Selected Areas in Communications 36(3), 616–627
(March 2018). https://doi.org/10.1109/JSAC.2018.2815441

6. Bittencourt, L., Diaz-Montes, J., Buyya, R., Rana, O., Parashar, M.: Mobility-aware application
scheduling in fog computing. IEEE Cloud Computing 4(2), 26–35 (March 2017). https://doi.
org/10.1109/MCC.2017.27

7. Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N., Madeira, E., Curado, M., Villas, L.,
DaSilva, L., Lee, C., Rana, O.: The internet of things, fog and cloud continuum: Integration
and challenges. Internet of Things 3–4, 134 – 155 (2018)

https://doi.org/10.1109/COMST.2018.2815638
https://doi.org/10.1109/COMST.2018.2815638
https://doi.org/10.1109/JSAC.2018.2815441
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1109/MCC.2017.27

498 P. F. do Prado et al.

8. Bonawitz, K.A., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon,
C.M., Konečný, J., Mazzocchi, S., McMahan, B., Overveldt, T.V., Petrou, D., Ramage, D.,
Roselander, J.: Towards federated learning at scale: System design. In: SysML 2019 (2019),
https://arxiv.org/abs/1902.01046, to appear

9. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE transac-
tions on information theory 52(6), 2508–2530 (2006)

10. Caldas, S., Konečný, J., McMahan, B., Talwalkar, A.: Expanding the reach of federated
learning by reducing client resource requirements (2018), https://arxiv.org/abs/1812.07210

11. Carrega, A., Repetto, M., Gouvas, P., Zafeiropoulos, A.: A middleware for mobile edge
computing. IEEE Cloud Computing 4(4), 26–37 (2017)

12. Chen, Q., Zheng, Z., Hu, C., Wang, D., Liu, F.: Data-driven task allocation for multi-task
transfer learning on the edge. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). pp. 1040–1050. IEEE (2019)

13. Chettri, L., Bera, R.: A comprehensive survey on internet of things (iot) toward 5g wireless
systems. IEEE Internet of Things Journal 7(1), 16–32 (2020)

14. Chiang, M., Shi, W.: Nsf workshop report on grand challenges in edge computing. In: Tech.
Rep. (2016)

15. Cisco: Cisco visual networking index: Global mobile data traffic forecast update, 2015–2020.
Tech. Rep. 1 (2016)

16. Curado, M., Madeira, H., da Cunha, P.R., Cabral, B., Abreu, D.P., Barata, J., Roque, L.,
Immich, R.: Internet of Things - Next Generation Cyber-Physical Systems, pp. 381–401.
Springer (2019)

17. Cuttone, A., Lehmann, S., González, M.C.: Understanding predictability and exploration in
human mobility. EPJ Data Science 7(1), 2 (2018)

18. ETSI, M.: Mobile edge computing (mec); framework and reference architecture. ETSI, DGS
MEC 3 (2016)

19. Gonçalves, D., Velasquez, K., Curado, M., Bittencourt, L., Madeira, E.: Proactive virtual
machine migration in fog environments. In: 2018 IEEE Symposium on Computers and
Communications (ISCC). pp. 00742–00745. IEEE (2018)

20. Gonçalves, D., Puliafito, C., Mingozzi, E., Rana, O., Bittencourt, L., Madeira, E.: Dynamic
network slicing in fog computing for mobile users in mobfogsim. In: Proceedings of the 13th
IEEE/ACM International Conference on Utility and Cloud Computing (2020)

21. Habibi, P., Farhoudi, M., Kazemian, S., Khorsandi, S., Leon-Garcia, A.: Fog computing: A
comprehensive architectural survey. IEEE Access (2020)

22. Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger, G.R., Gibbons, P.B., Mutlu,
O.: Gaia: Geo-distributed machine learning approaching {LAN} speeds. In: 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17). pp. 629–647
(2017)

23. Immich, R., Cerqueira, E., Curado, M.: Adaptive qoe-driven video transmission over vehicular
ad-hoc networks. In: IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). pp. 227–232 (April 2015). https://doi.org/10.1109/INFCOMW.2015.7179389

24. Immich, R., Cerqueira, E., Curado, M.: Towards a qoe-driven mechanism for improved h.265
video delivery. In: Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). pp. 1–8
(June 2016). https://doi.org/10.1109/MedHocNet.2016.7528427

25. Immich, R., Villas, L., Bittencourt, L., Madeira, E.: Multi-tier edge-to-cloud architecture for
adaptive video delivery. In: 2019 7th International Conference on Future Internet of Things and
Cloud (FiCloud). pp. 23–30 (Aug 2019). https://doi.org/10.1109/FiCloud.2019.00012

26. Immich, R., Borges, P., Cerqueira, E., Curado, M.: Adaptive motion-aware fec-based mecha-
nism to ensure video transmission. In: IEEE Symposium on Computers and Communication
(ISCC). pp. 1–6 (June 2014). https://doi.org/10.1109/ISCC.2014.6912571

27. Jarray, C., Giovanidis, A.: The effects of mobility on the hit performance of cached d2d
networks. In: 2016 14th international symposium on modeling and optimization in mobile,
ad hoc, and wireless networks (WiOpt). pp. 1–8. IEEE (2016)

https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1812.07210
https://doi.org/10.1109/INFCOMW.2015.7179389
https://doi.org/10.1109/MedHocNet.2016.7528427
https://doi.org/10.1109/FiCloud.2019.00012
https://doi.org/10.1109/ISCC.2014.6912571

Content Distribution and Mobility in MEC 499

28. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer compu-
tations, pp. 85–103. Springer (1972)

29. Kekki, S., Featherstone, W., Fang, Y., Kuure, P., Li, A., Ranjan, A., Purkayastha, D., Jiangping,
F., Frydman, D., Verin, G., et al.: Mec in 5g networks. ETSI white paper 28, 1–28 (2018)

30. Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. In: Knapsack
problems, pp. 235–283. Springer (2004)

31. Kikuchi, J., Wu, C., Ji, Y., Murase, T.: Mobile edge computing based vm migration for qos
improvement. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). pp. 1–
5. IEEE (2017)

32. Ksentini, A., Taleb, T., Chen, M.: A Markov decision process-based service migration
procedure for follow me cloud. In: 2014 IEEE International Conference on Communications
(ICC). pp. 1350–1354. IEEE (2014)

33. Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.C., Yang, Q., Niyato, D., Miao,
C.: Federated learning in mobile edge networks: A comprehensive survey. arXiv preprint
arXiv:1909.11875 (2019)

34. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression: Reducing the
communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887 (2017)

35. Liu, L., Guo, J., Zhang, S., Zhu, J.: Similar user assisted mobility prediction. In: 2019 11th
International Conference on Wireless Communications and Signal Processing (WCSP). pp. 1–
6. IEEE (2019)

36. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation
offloading. IEEE Communications Surveys & Tutorials 19(3), 1628–1656 (2017)

37. Mao, Y., Yi, S., Li, Q., Feng, J., Xu, F., Zhong, S.: A privacy-preserving deep learning approach
for face recognition with edge computing. In: Proc. USENIX Workshop Hot Topics Edge
Comput.(HotEdge). pp. 1–6 (2018)

38. Mckinsey, Company: Mapping the value beyond the hype. Executive Summary pp. 1 – 144
(2015)

39. Nadembega, A., Hafid, A.S., Brisebois, R.: Mobility prediction model-based service migration
procedure for follow me cloud to support qos and qoe. In: 2016 IEEE International Conference
on Communications (ICC). pp. 1–6. IEEE (2016)

40. Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence at the edge.
Proceedings of the IEEE 107(11), 2204–2239 (2019)

41. Petrangeli, S., Wauters, T., Turck, F.D.: Qoe-centric network-assisted delivery of adaptive
video streaming services. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). pp. 683–688 (April 2019)

42. Pisani, F., de Oliveira, F., Gama, E.S., Immich, R., Bittencourt, L.F., Borin, E.: Fog computing
on constrained devices: Paving the way for the future iot. Advances in Edge Computing: Mas-
sive Parallel Processing and Applications 35, 22 (2020). https://doi.org/10.3233/APC200003

43. Puliafito, C., Mingozzi, E., Anastasi, G.: Fog computing for the internet of mobile things:
Issues and challenges. In: 2017 IEEE International Conference on Smart Computing (SMART-
COMP). pp. 1–6 (2017)

44. Puliafito, C., Gonçalves, D.M., Lopes, M.M., Martins, L.L., Madeira, E., Mingozzi, E., Rana,
O., Bittencourt, L.F.: Mobfogsim: Simulation of mobility and migration for fog computing.
Simulation Modelling Practice and Theory 101, 102062 (2020)

45. Ravi, S.: Custom on-device ml models with learn2compress (05 2018), https://ai.googleblog.
com/2018/05/custom-on-device-ml-models.html

46. Retal, S., Bagaa, M., Taleb, T., Flinck, H.: Content delivery network slicing: Qoe and cost
awareness. In: 2017 IEEE International Conference on Communications (ICC). pp. 1–6 (May
2017)

47. S. Gama, E., Immich, R., F. Bittencourt, L.: Towards a multi-tier fog/cloud architecture
for video streaming. In: 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion). pp. 13–14 (2018)

https://doi.org/10.3233/APC200003
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html

500 P. F. do Prado et al.

48. Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., Giust, F.: Mobile-edge computing
architecture: The role of mec in the internet of things. IEEE Consumer Electronics Magazine
5(4), 84–91 (2016)

49. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural
networks. Chemometrics and intelligent laboratory systems 39(1), 43–62 (1997)

50. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge
computing: A survey of the emerging 5g network edge cloud architecture and orchestration.
IEEE Communications Surveys Tutorials 19(3), 1657–1681 (thirdquarter 2017). https://doi.
org/10.1109/COMST.2017.2705720

51. Taleb, T., Ksentini, A.: Follow me cloud: interworking federated clouds and distributed mobile
networks. IEEE Network 27(5), 12–19 (2013)

52. Tinini, R.I., Batista, D.M., Figueiredo, G.B.: Energy-efficient vpon formation and wavelength
dimensioning in cloud-fog ran over twdm-pon. In: 2018 IEEE Symposium on Computers and
Communications (ISCC). pp. 521–526. IEEE (2018)

53. Tinini, R.I., Batista, D.M., Figueiredo, G.B., Tornatore, M., Mukherjee, B.: Low-latency and
energy-efficient bbu placement and vpon formation in virtualized cloud-fog ran. IEEE/OSA
Journal of Optical Communications and Networking 11(4), B37–B48 (2019)

54. Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5g
networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine 55(4),
54–61 (2017)

55. Valerio, L., Conti, M., Passarella, A.: Energy efficient distributed analytics at the edge of the
network for iot environments. Pervasive and Mobile Computing 51, 27–42 (2018)

56. Valerio, L., Passarella, A., Conti, M.: A communication efficient distributed learning frame-
work for smart environments. Pervasive and Mobile Computing 41, 46–68 (2017)

57. Wang, J., Zhang, J., Bao, W., Zhu, X., Cao, B., Yu, P.S.: Not just privacy: Improving
performance of private deep learning in mobile cloud. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2407–2416
(2018)

58. Wang, M., Yang, S., Sun, Y., Gao, J.: Human mobility prediction from region functions with
taxi trajectories. PloS one 12(11), e0188735 (2017)

59. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge
networks: Convergence of computing, caching and communications. IEEE Access 5, 6757–
6779 (2017)

60. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing
and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials
(2020)

61. Yan, X.Y., Wang, W.X., Gao, Z.Y., Lai, Y.C.: Universal model of individual and population
mobility on diverse spatial scales. Nature communications 8(1), 1639 (2017)

62. Yang, S., Tseng, Y., Huang, C., Lin, W.: Multi-access edge computing enhanced video
streaming: Proof-of-concept implementation and prediction/qoe models. IEEE Transactions
on Vehicular Technology 68(2), 1888–1902 (2019)

63. Zaidi, Z., Friderikos, V., Yousaf, Z., Fletcher, S., Dohler, M., Aghvami, H.: Will SDN Be
Part of 5G? IEEE Communications Surveys Tutorials 20(4), 3220–3258 (Fourthquarter 2018).
10.1109/COMST.2018.2836315

64. Zhang, C., Zheng, Z.: Task migration for mobile edge computing using deep reinforcement
learning. Future Generation Computer Systems 96, 111–118 (2019)

65. Zhang, J., Letaief, K.B.: Mobile edge intelligence and computing for the internet of vehicles.
Proceedings of the IEEE (2019)

66. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: Paving the last mile
of artificial intelligence with edge computing. Proceedings of the IEEE 107(8), 1738–1762
(2019)

https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/COMST.2017.2705720

Complex Event Processing in
Sensor-Based Environments: Edge
Computing Frameworks and Techniques

A. Dhillon, S. Majumdar, M. St-Hilaire, and A. El-Haraki

Abstract By performing latency-sensitive computations at the edge and the
remaining computations on a backend server, edge computing systems can
effectively handle the processing of data in a timely manner. This chapter focuses
on an edge computing framework that partitions the processing of sensor data at
a mobile node placed at the edge and backend computations at a powerful server.
The primary application of the framework is in the area of processing of complex
events each of which may correspond to the simultaneous occurrence of multiple
raw events generated by sensors that are monitoring the phenomena of interest.
Application of such complex event processing techniques spans smart buildings,
smart machinery as well as smart healthcare systems. This chapter focuses on using
the proposed framework and techniques to a smart phone based remote patient
monitoring system and by using prototyping and measurement presents a rigorous
performance analysis of the system.

Keywords Mobile complex event processing · Remote patient monitoring
system · Internet of things · Smart healthcare

1 Introduction

Data acquisition and the processing of the acquired data are two components
of various computing applications. Traditionally, they have been performed by
two separate system components. The data handling components that perform
inputting/outputting of data send the data to another processing node that runs
the data processing component and sends the results back to the data handling

A. Dhillon · S. Majumdar · M. St-Hilaire (�)
Carleton University, Ottawa, ON, Canada
e-mail: amarjitdhillon@sce.carleton.ca; majumdar@sce.carleton.ca; marc_st_hilaire@carleton.ca

A. El-Haraki
TELUS, Ottawa, ON, Canada
e-mail: ali.el-haraki@telus.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_20

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_20&domain=pdf
mailto:amarjitdhillon@sce.carleton.ca
mailto:majumdar@sce.carleton.ca
mailto:marc_st_hilaire@carleton.ca
mailto:ali.el-haraki@telus.com
https://doi.org/10.1007/978-3-030-69893-5_20

502 A. Dhillon et al.

components. Examples include systems that use sensors (actuators) for data han-
dling and a backend server for analyzing the sensor data. The intercommunication
with the backend server is often achieved with the help of an inter-communication
network which can introduce significant inter-communication delays. This model
in which data handling and data processing are done by two separate components
is adequate for delay tolerant systems for which the latency of data processing
is not a concern. It fails, however, for delay sensitive systems where the results
of processing sensor data must become available within a short period of time.
Examples include sensor-based remote patient monitoring systems, various types
of industrial controllers and aerospace systems that must quickly react to the sensor
data crossing a particular threshold. Using a multi-tiered edge computing system in
which a part of the data processing is performed at the edge near the data handling
device and the remaining processing on the backend server is crucial for producing
the results in a timely manner and achieving the latency goals of the system. The
availability of inexpensive sensing devices as well as small computing systems is
fuelling the rapidly increasing deployment of such edge computing systems.

This book chapter focuses on a mobile edge computing framework that is
applicable to various smart systems that are described in the next paragraph. The
application of the framework and associated techniques for a real-time remote
patient monitoring system that includes a mobile edge computing device connected
to sensors and a backend server is described. The system uses mobile edge comput-
ing and Internet of Things (IoT) technologies to perform complex event processing
for detecting an oncoming health problem for the patient being monitored.

Complex Event Processing (CEP) is the technique used to find the patterns in real
time data streams. This chapter compares two CEP architectural frameworks: Server
CEP (SCEP) and Mobile CEP (MCEP). The SCEP framework uses the mobile
device as a gateway to forward data streams from sensors to a remote IoT server
where complex events are detected. A drawback of this existing methodology is
that the mobile phone always needs to remain connected to the back-end server.
Also, the mobile device’s network consumption is increased while transferring
large volumes of sensor data streams leading to an increase in the user cost.
Additionally, it leads to an increase in the workload at the back-end server that
serves multiple users. In the MCEP framework, as briefly introduced in [10], the
detection of complex events is performed on an edge device (such as a smart
phone) that receives data from sensors. Only the detected complex events are sent
to a back-end IoT server for further processing. The edge-based technique can
be used in various cases such as smart home, smart building and Remote Patient
Monitoring (RPM). In this chapter, a RPM use case is considered to validate
and compare the two frameworks. A thorough performance analysis is performed
using a synthetic workload which provides insights into system scalability and the
relationship between system/workload parameters and performance. This technique
can be adapted to handle various different use cases as well.

CEP in Sensor-Based Environments 503

1.1 Overview of the Chapter

This section provides a short overview of the material presented in this chapter.
Section 2 describes a representative set of related work and Sect. 3 discusses the
system architecture for the server CEP system. Then, the architecture of the mobile
CEP system is discussed in Sect. 4. Implementation details for the proof of concept
prototype are discussed in Sect. 5. Section 6 presents a performance analysis of the
system followed by experimental results in Sect. 7. Finally, Sect. 8 provides our
conclusions and Sect. 9 outlines possible directions for future work.

2 Related Work

A representative set of works on CEP and smart healthcare systems is presented. A
more detailed literature survey is available from [9].

In 2016, Higashino proposed the idea of CEP-as-a-Service (CEPaaS) in his
Ph.D. dissertation [18]. The goal is to leverage the advantages of Software-as-a-
Service (SaaS) to provide Complex Event Processing as-a-Service (CEPaaS) so that
there is no upfront charges and maintenance cost is low. He proposed Attributed
Graph Rewriting for Complex Event Processing (AGeCEP) as a language agnostic
technique to model the Continuous Query Language (CQL) queries. To support his
proposition for CEPaaS, Higashino designed a simulator called CEPSim that runs on
top of the CloudSim simulator [5, 6]. CloudSim is a popular cloud simulator written
in Java which can effectively model a public, private or hybrid cloud. It allows the
users to create a data-center, cloudlet, and broker in addition to defining different
policies. The CEPSim module creates a query model and supports the operator
placement and the operator scheduling for performing the CEP simulation. It also
provides the mechanism to compute various CEP specific metrics for performance
evaluation. A major limitation of CEPSim is that it does not have single and multiple
query optimization mechanisms and assumes that a submitted query is already
optimized. Another limitation is that it only supports the scenarios in which the
query does not fail at runtime. It is important to mention that our work compares the
performance of the edge-based mobile CEP with state-of-the-art CEPaaS system
considered as a baseline system.

Another work reported in [25] describes a pulse monitoring system which also
used the Android application as an edge gateway and sends data to a web portal for
analysis and visualization. A similar approach is described in [31] which uses an
Android device as a gateway agent. Another research in [11] and [26] employed
an IoT-based approach to process the health sensor data streams on the cloud.
The authors have used an Intel Galileo Gen 2 IoT agent to collect the sensor
data streams from the mobile device and forward these to an IoT server deployed
on the cloud. However, the authors have not used any real-time analytics system
as the computation is done by a batch processing-based Hadoop system. Further,

504 A. Dhillon et al.

no performance analysis is done in any of these two papers to demonstrate the
effectiveness of the technique.

Woodbridge et al. have proposed an RPM system for congestive heart failure
named as WANDA [30]. WANDA has a three-tier architecture in which the first
tier consists of various health sensors that transmit the health sensor data streams
to the second tier consisting of a web server. The third tier uses database servers
to persist the health sensor data streams and perform the analysis using linear
regression. Further, this system is not a real-time system and does not involve any
CEP engine. However, as the authors are predicting a heart stroke, performing batch
analysis seems to be appropriate. In 2017, Naddeo et al. [22] have proposed a real-
time m-health monitoring system. Their system consists of an Android application
which receives various physiological sensor data using the Zephyr Bioharness BH3
sensors and performs noise filtering using various high-pass and low-pass filters.
This filtered data is sent by an Android application to a remote Personal Health
Record (PHR) server for analysis and visualization. A major shortcoming of this
paper is that it does not describe the real-time analysis technique required for this
system. Another similar work is reported in [23] where the authors proposed to
integrate the CEP engine and the IoT server for smart healthcare. This paper is
primarily focused on the key benefits of using CEP on the cloud. However, no actual
system is designed and no performance analysis is done.

More recently, several survey papers such as [17], are bridging the concepts of
edge computing and healthcare. The paper by Abdellatif et al. [1] is of particular
interest as it reviews the opportunities and challenges for enabling smart healthcare
(s-health). They mention that edge-computing capabilities and next-generation
wireless networking technologies will be the enablers to achieve this goal. One
of the interesting functionalities that their architecture provides is called “edge-
based feature extraction for event detection”. Our work is one step in this direction.
By performing latency sensitive computations at the edge and the remaining
computations on a backend server, we can ensure fast response time for critical
applications such as remote patient monitoring.

Table 1 shows a summary of the various techniques presented in this section
along with the two proposed techniques (SCEP/MCEP) described in this chapter.
The comparison is based on the following parameters:

1. Simulation/Prototype/Concept/Review: This parameter indicates the methodol-
ogy that was used in the papers. Four options are possible: ‘Simulation’ means
that the performance of the model was evaluated through simulation. Similarly,
‘prototype’ means that a proof of concept was implemented and evaluated.
‘Concept’ denotes a paper where only a high-level description of the concept
is presented and ‘review’ designates a review paper where multiple techniques
are reviewed.

2. Edge/back-end: This parameter shows whether the complex event processing is
done on the edge mobile device or on a back-end server.

3. Gateway/Filter: This parameter shows the technique used to forward the health
data to the back-end server. ‘Gateway’ signifies that the mobile device is used as

CEP in Sensor-Based Environments 505

Table 1 Comparison of various techniques based on different parameters

Technique/paper

Simulation/
prototype/
concept/
review

Edge/
back-end

Gateway/
filter Security Cost

Performance
analysis

SCEP Prototype Back-end Filtering Yes Yes Yes

MCEP Prototype Edge Filtering Yes Yes Yes

ARM7 [25] Prototype Back-end Gateway Yes No No

eHealthNet [22] Prototype Back-end Gateway No No Yes

WANDA [30] Prototype Back-end Gateway Yes No Yes

[31] Prototype Back-end Gateway No No No

[11] Prototype Back-end Gateway Yes No No

[26] Prototype Back-end Gateway Yes No Yes

[1] Prototype Back-end Filtering Yes No Yes

AGeCEP [18] Simulation Back-end Gateway No No Yes

[23] Concept Back-end Gateway Yes No No

[17] Review n/a n/a n/a n/a n/a

a gateway to forward all the sensor data whereas ‘Filter’ signifies that data has
been reduced (filtered) by the mobile device to reduce user cost and data transfer
latency.

4. Security: This parameter is ‘yes’ if various security related issues have been
considered in the paper.

5. Cost: This parameter is ‘yes’ if a cost related analysis is provided in the paper.
6. Performance analysis: This parameter shows whether a rigorous performance

analysis is provided.

From the comparison provided in Table 1, we can see that unlike other method-
ologies which perform the CEP analysis on the back-end IoT server, our proposed
techniques (MCEP and SCEP) can process data on the edge and on the back-
end server respectively. It is worth mentioning that authors in [1] have done data
compression and edge-based feature extraction on the edge device. However, in our
work, we have done complete complex event detection on the device itself. Also,
various security features have been implemented in our proof of concept prototype
to help insure integrity and safety of patient health data. As compared to most of the
other papers, some of which are missing performance analysis, cost analysis and
security features, the proposed techniques consider these factors into account.

3 Server CEP System

In this chapter, we have considered the remote patient monitoring use case. As
shown in Fig. 1, the Server Complex Event Processing (SCEP) system architecture

506 A. Dhillon et al.

Sensors

Patient

MD IHS

Sensor data
streams

Sensor data
streams

Broker

Core

Analytics
 (CEPaaS)

Dashboard

SCEPA

WSO2
Agent

Agent-IHS
communication

Fig. 1 Server CEP system architecture

is three-tiered consisting of multiple sensors, a Mobile Device (MD), and an IoT
Hospital Server (IHS).

The mobile device along with the sensors comprise the edge system that
communicates with the centralized back-end server. Multiple bluetooth and WiFi
enabled wireless sensors can be used by the sensor-based system which can forward
the sensor data to an Android or iOS device. For example, in a remote patient
monitoring system, the sensors can be wearable health sensors worn by the patient.
Such cheap and efficient sensors are provided by Cooking Hacks for example
[7]. Some other commercial health monitoring sensors that can be used include
the Zeo Sleep Monitor [13], which monitors sleep disorders, and ViSiMobile [29]
which can measure Electrocardiogram (ECG), Heart Rate (HR), Arterial Oxygen
Saturation (SpO2), skin temperature, etc. As shown in Fig. 1, the multiple sensors
send the sensor data streams to a mobile device which consists of a Server Complex
Event Processing Application (SCEPA) and a WSO2 agent gateway application. The
WSO2 agent is used to register the mobile device with the IoTs server. The server
complex event processing application forwards the health sensor data streams to
the IHS. Communication between the sensors and the mobile device is done using
bluetooth or WiFi whereas data transmission between the mobile device and the IHS
is performed using either a cellular or a WiFi connection. The architecture shown
in Fig. 1 can be used in other use cases such as smart buildings and smart homes
as well. In the smart building use case, the wearable health sensors can be replaced
by wired/wireless sensors deployed in a smart building such as room temperature
sensors and light intensity sensors. In such a case, the mobile device can be replaced
by a local server or a Raspberry-Pi board depending upon the workload.

CEP in Sensor-Based Environments 507

Socket

Thread-safe
queue

Worker 1 Worker 2
MQTT Service

Sensor data streams
to IoT Server

Sensor data
streams

A B C

Fig. 2 Various components of the SCEP application

3.1 Components of the SCEP Application

Figure 2 shows the components of SCEPA which is used to forward the raw sensor
data streams from the mobile device to the IoT server.

The various components that are stacked over one another represent multiple
parallel instances of that component and a solid line represents multiple parallel
sensor data streams. The various data streams are received by the Transmission
Control Protocol (TCP) socket objects (one socket for each sensor) and appended to
a thread-safe linked-blocking queue by a producer thread (Worker 1). A dedicated
thread-safe queue is used for each sensor data stream. Further, the dequeue worker
(Worker 2) retrieves the sensor data stream from a queue and sends it to the IHS
using the Message Queuing Telemetry Transport (MQTT) service running on the
mobile device. The MQTT protocol is used here as it is made specifically for
low power devices such as sensors and mobile devices [20]. This MQTT service
forwards the sensor data streams to the back-end IoT server as per the selected
Quality of Service (QoS). Please note that the MQTT service also has its own queues
for enabling the persistent session, and if the QoS ≥ 1 is selected, the sensor data
stream tuples are temporarily persisted in case the back-end server goes offline.

3.2 Components of CEP-as-a-Service

This section discusses the various components of the CEPaaS module which is
running on the IoT server.

As indicated earlier, a solid line represents multiple parallel sensor data streams
whereas a dashed line represents a single sensor data stream. Each component which
is shown as a box in Fig. 3 receives an input data stream and emits an output data
stream as a result of the operation performed by that component. Thus, various
output streams must be defined before starting the service such that an output stream
contains all the attributes which have been emitted by its predecessor component.
When an attribute is added or removed from an input data stream (RE.v.1 for
example) as a result of an operation done by a component (MQTT receiver in this
case), then the output stream can be referred to as a stream having a different version
(RE.v.2 in this case). As shown in Fig. 3, a raw stream has 9 versions (RE.v.1

508 A. Dhillon et al.

 MQTT
Receiver

ActiveMQ

RE streams

Sink Mapper Statistics ComputerMQTT Publisher CE Stream

A
 Arrival

Time-stamping

B

 Ingestion
Time-stamping

M L K

I

 Source
 Mapper

J

 ActiveMQ
Publisher

C

D

 ActiveMQ
Receiver

EFG

Apache Thrift Server Apache Thrift ServerWSO2 CEP Engine

H

RE.v.1 RE.v.2

RE.v.9

RE.v.3

RE.v.4

RE.v.8

RE.v.5RE.v.6RE.v.7

CE.v.3CE.v.4

CE.v.2

CE.v.1

CE.v.5

Fig. 3 Components of the CEPaaS module

to RE.v.9) whereas a complex event stream has 5 versions (CE.v.1 to CE.v.5). A
brief discussion of each component is provided next in the order of the processing
performed.

(A) MQTT Receiver: It receives a raw sensor stream on a particular topic after
validating the content using the default/custom content validator. Multiple
instances of the MQTT receivers (one for each sensor stream) receive raw
sensor data streams in parallel.

(B) Arrival time-stamping: Multiple arrival time-stamping components run in
parallel. Each component receives a particular stream and appends a system
generated nanosecond precision time-stamps to indicate the arrival time.

(C) ActiveMQ publisher: An ActiveMQ [28] is used as a Java Message Service
(JMS) queue [16]. The ActiveMQ publisher is responsible for sending the
messages to a particular brokered-queue managed by an ActiveMQ broker.
ActiveMQ supports both topics and brokered-queues to transfer messages, but
we are using the brokered-queue in this case. For setting a JMS publisher,
the various adapter properties such as JMS destination type, JMS destination
name, JMS factory name, JMS provider Uniform Resource Locator (URL),
JMS Connection Factory name, Java Naming and Directory Interface (JNDI)
name, a username and a password need to be defined as per ActiveMQ server
configurations which is running on the IoT server.

(D) ActiveMQ: ApacheMQ provides support for Advanced Message Queuing
Protocol (AMQP), Streaming Text Oriented Message Protocol (STOMP),
MQTT, OpenWire [2] and other protocols. The size of each ActiveMQ queue
size is set to a maximum of 2 GB (restrained by the maximum value of an
integer). A web-based Graphical User Interface (GUI) can be used to view the

CEP in Sensor-Based Environments 509

list of all ActiveMQ queues, topics and the number of messages enqueued/de-
queued in each of the queue/topic.

(E) ActiveMQ subscriber: It is used to receive the sensor data stream events from a
particular ActiveMQ queue. A subscriber subscribes to a particular queue using
a unique queue name identifier and then forwards the received sensor tuples as
an output sensor data stream (RE.v.6 in this case).

(F) Ingestion time-stamping: This module is used to append the CEP engine
ingestion time-stamps using a nanosecond precision system clock, before
sending the sensor data streams to the CEP engine. Multiple ingestion time
components work in parallel to time-stamp each sensor stream.

(G) Source mapper: A CEP system supports various event formats such as eXtensi-
ble Markup Language (XML), JavaScript Object Notation (JSON), key-value
pairs and Health Level-7 (HL7). The role of the source mapper is to convert the
type of the sensor data stream event to the format required by the CEP engine.

(H) Apache thrift server: It is the binary communication protocol originally
developed by Facebook [27]. It provides a Remote Procedure Call (RPC)
framework to build the cross-platform services written in different frameworks
and languages [12]. WSO2 Data Analytics Server (DAS) running inside the
analytics tier provides real-time, batch and predictive analytics by using the
other services such as the CEP engine and Apache Spark. Thus, the Apache
thrift acts as a mediator to perform RPC on the CEP engine using the data
bridge agent.

(I) CEP engine: It receives multiple sensor data streams and finds the complex
events according to the CQL query which has been deployed. A single complex
event stream, as shown by a dashed line, is sent to the sink mapper. The
complex event detection time-stamping is done in the CEP engine.

(J) Apache thrift server: The detected complex events are sent back to the thrift
server which sends them back to the data analytics server for further processing.

(K) Sink mapper: The sink mapper converts the data type of the events in CEP
stream to the type required by the event publisher.

(L) Statistics computer: It computes various CEP specific metrics such as the
average CEP latency by using the time-stamps taken by the IoT server.

(M) MQTT publisher: The MQTT broker component publishes the various streams
to the event listener such as a dashboard, email, or a database.

4 Mobile CEP System

The mobile CEP system prototype has been designed to perform complex event
detection on the edge device using an embedded CEP engine that forwards the
complex events to an IHS. Although the following discussion refers to the RPM
use case, the MCEP architecture can be used in the context of other use cases as
well. As shown in Fig. 4, similar to the SCEP architecture, the MCEP architecture
also consists of three components.

510 A. Dhillon et al.

Sensors

Patient

MD IHS

Sensor data
streams

CE stream

Broker

Core

Analytics
(ELS)

Dashboard

MCEPA

WSO2
Agent

 Agent-IHS
communication

Fig. 4 Mobile CEP system architecture

1. Sensors: For the RPM use case, various wearable health sensors such as an Apple
watch, Glucometer sensor, and Pulse-oximeter are used.

2. Mobile device: The mobile device uses Apache Siddhi CEP engine embedded
with the mobile CEP application to perform complex event detection and sends
the detected complex events to the back-end hospital server.

3. IHS: An Event Listening Service (ELS) running on the analytics tier receives the
complex event alerts which are then sent to a DataDog dashboard [8] to notify
the hospital staff.

The main difference between the Mobile Complex Event Processing (MCEP)
system and the SCEP system is that in the mobile CEP system all the complex
events are detected on the mobile device instead of processing them on a centralized
IoT server. Unlike the SCEP system, which has a CEP running on the IHS, the
MCEP system has an event listening service (ELS) running on the hospital server
which is subscribed to listen to the complex events sent by the Mobile Complex
Event Processing Application (MCEPA) running inside the mobile device.

5 Experimental Setup

The experimental setup used for analyzing the performance of both the MCEP and
SCEP systems is discussed in this section. As shown in Fig. 5, the setup for both
the server CEP and mobile CEP systems consist of five components: a timekeeper,
a Sensor Simulator (SS), an IoT hospital server, a mobile device, and a wireless
router.

Note that the timekeeper used in the experimental setup for performance
measurement is not needed in a production system in which sensor simulator is
replaced by the actual senor devices. The timekeeper is used to perform global time-

CEP in Sensor-Based Environments 511

MD

RE streams

IHSTimekeeper

SS

RE/ CE streamCE stream
Router

RE streams

TCP TCP

MQTTMQTT

Fig. 5 System prototype setup

stamping to compute the end-to-end latency. This module is required as various
components (with different un-synchronized clocks) contribute to the computing
of the end-to-end latency. Therefore, a timekeeper is required to provide a global
time-stamping for raw event streams (coming from the sensor simulator) and the
complex event stream (from IHS) using a single clock. The various components
which are stacked over one another inside the sensor simulator and the timekeeper
represent multiple instances of the respective component running in parallel. The
solid line represents multiple parallel data streams while a dashed line represents
a single sensor data stream. As shown in Fig. 5, the data streams generated by the
sensor simulator are sent in parallel to both the mobile device and the timekeeper
(for global generation of time-stamping). In the SCEP system, raw event streams
are sent from the mobile device to the IoT server whereas only a complex event
stream is sent from the mobile device to the IoT server for the MCEP system.
For both architectures, a single complex event stream is sent from the IHS to the
timekeeper for global notification time-stamping. The system configuration for the
aforementioned components is provided next.

1. Timekeeper: The timekeeper module is written in Java and deployed on a
computer workstation having 16 GigaByte (GB) of RAM, a 2.8 GHz Intel Core
i7 processor and a 1 TB Hard Drive (HD) running on Ubuntu 14.04 Long Term
Support (LTS).

2. Sensor Simulator: The Java-based sensor simulator program is running on a
workstation equipped with 8 GB of RAM, a 2.8 GHz Intel Core i7 processor
and a 1 TB HD using Ubuntu 14.04 LTS. A multi-threaded sensor simulator
program is used to simulate multiple sensors generating data at a given input rate.
A nanosecond sleep time is used to generate a constant inter-arrival time for each
sensor. As shown in Fig. 5, the data streams generated by the sensor simulator are
sent simultaneously to the mobile device and the timekeeper using TCP sockets.
All the sensor simulator daemons send data streams concurrently on separate
threads, where each thread generates a stream of JSON tuples. A JSON tuple
consists of both metadata and payload data. The metadata includes information
such as patient id, sensor id and tuple id whereas the payload data includes the
respective sensor value(s) and an event generation time-stamp (T g). In certain

512 A. Dhillon et al.

cases, the sensor data stream tuple may consist of an array of data values instead
of a single value, but in our experimentation, a single value is used. Patientid
is required at the IHS in order to uniquely identify a patient when multiple
patients are enrolled with the RPM service. Also, a combination of Patientid ,
Sensorid , and Tupleid can be used to uniquely identify an event received at
the IHS when multiple patients are enrolled. The sensor simulator can generate
both synthetic and real data using synthetic and real datasets respectively. For
simulating the real data, the sensor simulator uses sensor data available at the
slp01a/slpdb dataset from the MIT-BIH polysomnographic database [14]. This
dataset consists of 2-h duration data of 4 health signals recorded at 250 Hz. In a
synthetic dataset, the tuple values are uniformly distributed integers ranging from
1 to 100. The real dataset was used to test the functional correctness of the proof
of concept prototype, whereas all the other experiments were performed using a
synthetic dataset. For performance analysis, a synthetic dataset is preferred over
a real dataset because of the ability to control the various workload parameters
including tuple values and tuple inter-arrival times.

3. IHS: An IoT server is deployed on a workstation having 16 GB of RAM,
a 3.5 GHz Intel Core i7 Processor and a 1 TeraByte (TB) Solid State Drive
(SSD) running under High Sierra MacOS. The MQTT broker and the MQTT
subscriber are deployed on the broker and the analytics tiers of the IoT server
respectively. The Java Virtual Machine (JVM) configurations for the broker, core,
and analytics components of IHS used in the prototype are given in Table 2.
Setting the configurations helps to dedicate the CPU resources to each component
such as broker, core and analytics. Here, −Xmx represents the maximum size of
the JVM heap (4 GB in this case) which can be allocated to the respective tier.

4. Mobile Device: A Google Pixel smart-phone [32] having 4 GB of RAM, 32 GB
of storage, and an AArch64 quad-core processor (1.6 GHz) running Android
Nougat is used as the mobile device. WSO2 IoT server version 3.0 is deployed
on IHS along with its compatible Android agent version 3.1.27 running on the
mobile device. Both the mobile CEP and server CEP applications that are written
using Java are built on Android Studio 3.0.1 IDE using Gradle build tools version
26.0.2 [21]. For the mobile CEP application, due to the large size of the Siddhi
CEP libraries, the multidex feature has to be enabled to overcome the 64K limit of
the Android Dalvik compiler. Relevant Internet, WiFi, and network permissions
must be enabled for the MCEP and the SCEP applications. The MQTT publisher
is deployed on the mobile device.

5. Router: A 5 GHz AC1750 Tp-Link dual-band wireless router with a maximum
bandwidth of 1350 Mbps is used to transfer data between the various compo-
nents.

Table 2 Java memory
configurations

Parameter Broker Core Analytics

−Xmx 4096 MB 4096 MB 4096 MB

CEP in Sensor-Based Environments 513

6 Performance Analysis

6.1 The Complex Event Use Case Modeling

A survey conducted by World Health Organization (WHO) reported that the
occurrence of fall is common among elderly people and seems to increase with
age and frailty level. In accordance to this survey, each year approximately 28–
35% people more than 65 years of age fall whereas this number reaches to 32–42%
for 70 years old [24]. Falls lead to 20–30% of mild to severe injuries and are the
underlying cause of 10–15% of all emergency department visits [24]. However, if a
fall is notified to hospital staff as soon as possible, further loss can be circumvented.
Fall detection can be monitored remotely using a combination of mobile sensors
and physiological sensors. Mobile sensors used for fall detection include a mobile
camera, accelerometer sensor, gyroscope sensor and Global Positioning System
(GPS) sensor. The various physiological sensors include heart rate and respiration
rate sensors [15]. In a simpler case, a fall can be identified with more certainty, if
events happen in certain order for example, a fall event followed by an increase in
heart rate event followed by a reduction in body movement event. Detecting the
occurrence of the fall event can be done using the gyroscopic sensor as well as
phone camera whereas patient’s reduction in body movement can be detected by
a combination of an accelerometer sensor and a Global Positioning System (GPS)
sensor. Another event that indicates that the person has not responded to a call from
the hospital staff within specific time can confirm the fall event.

6.2 Workload and System Parameters

The various workload and system parameters used in analyzing the performance of
the SCEP and MCEP prototypes are described next.

• Average raw event arrival rate (λRE): It is the average rate of the raw events
generated by the sensor simulator.

• Threshold for sensor stream x (T hx): The value of the threshold parameter is
used by the selection predicate (π) to filter the sensor data streams tuples which
are greater than T hx .

• Countx : Count is used to specify the number of times a particular event has to
occur. An exact number of occurrences can also be specified through the count
parameter. We have used the

〈
min:max

〉
specifier for Countx where

〈
min:

〉
means

that an event has to happen at-least min times while no upper bound is specified.
In other words, the notation

〈
min:max

〉
means that the event should happen at

least min times but less than max times.
• Time window (Twin): The time window specifies the maximum time for which

event A will wait for event B to occur. Please note that this time will be different
for each instance of the state machine. The time window starts as soon as event

514 A. Dhillon et al.

Table 3 Workload and
system parameters

Parameter Description Units

λRE 200, 300, 500, 1000, 2000 Events/second

T hx 10, 30, 50, 70, 90, 99 –

Countx 1, 5, 10 –

Twin 0.005, 0.035, 0.06, 0.1, 0.2, 10 Seconds

Trun 5, 60 Minutes

A arrives at the CEP system. Then a separate instance of the state machine is
started and it waits for event B for a time less than Twin.

• Simulation runtime in minutes (Trun): It is the length of the simulation runtime
in minutes.

The various values for the workload and system parameters used in the exper-
iments are presented in Table 3. Factor-at-a-time experiments were performed on
the system in which one parameter was varied in a given experiment while others
were held at their default values. The value in bold for each parameter presented in
Table 3 corresponds to the default value of the parameter.

6.3 Performance Metrics

The CEP specific performance metrics used in the analysis are the average
CEP latency (L) and the average complex event End-to-End (E2E) latency (E).
Application specific metrics are average CPU utilization and average network usage.
An application profiler such as Trepn, PowerTutor or Intel Performance Viewer [3]
can be used to perform system level and application level performance profiling.
However, the accuracy of these applications is a concern, thus various application
metrics have been calculated using a bash script which reads dumpsys information
using Android Debug Bridge (ADB) shell. This script reads various application and
system specific metrics and parses this information using a combination of various
grep commands, regular expressions, awk scripts and sed expressions.

Let T x
a and T x

i be the arrival time and ingestion time respectively for the earliest
arriving event, among all the events from the different sensor data streams that led to
the complex event. Let T x

g and T x
gg be the generation time and global generation time

respectively for the earliest arriving events that corresponded to the complex event.
Also, let T x

d , T x
n and T x

gn represent the complex event detection time, complex event
notification time and complex event global notification time respectively. Below, we
discuss how the various metrics are computed.

• Average CEP latency (L): A complex event is generated when a CQL pattern
match occurs by ingesting data from multiple sensor data streams. The latency
of a complex event processing is measured from the time of ingestion (Ti) for
the first event (from any sensor data stream) that leads to the complex event
to the time at which the complex event gets detected (Td). If the total number

CEP in Sensor-Based Environments 515

of complex events detected during an experiment is N , then the average CEP
latency is given by Eq. (1).

L =

N∑
x=1

T x
d − T x

i

N
(1)

The average CEP latencies for the MCEP and SCEP systems are represented
by LMCEP , and LSCEP respectively.

• Average complex event E2E latency (E): It is the average time taken by an event
(which corresponds to the earliest raw event leading to a complex event) from
the time it is generated by the sensor simulator (Tg) to the time it is notified at
the IoT server (Tn). However, as discussed earlier, Tg and Tn are time-stamped
in the sensor simulator and the IoT server respectively using clocks that are not
synchronized with one another. Thus, E is computed using Tgg and Tgn (instead
of Tg and Tn) both of which are time-stamped on the timekeeper module. E

is computed using Eq. (2), where T x
gg and T x

gn represent the global generation
time for the xth raw event that corresponds to a complex event and the global
notification time for the xth complex event, both time-stamped at the timekeeper.

E =

N∑
x=1

T x
gn − T x

gg

N
(2)

The average E2E latency for the MCEP and SCEP systems is represented by
EMCEP and ESCEP respectively. A diagram showing the relationship among
CEP specific metrics L, Q (complex event queuing delay), and E is presented in
Fig. 6. In this figure, the multiple instances of input sensor data streams (one for
each sensor) are shown in parallel such that tuples in the nth sensor data stream
(where n ∈ 1 . . . y) are denoted by T n

a and T n
i as arrival time and ingestion

time respectively. However, as the complex event is generated from a pattern
which ingests multiple sensor data events, only one complex event is shown on
the right-hand side of Fig. 6.

E

CEP Engine

~

Fig. 6 CEP specific metrics

516 A. Dhillon et al.

• Average CPU utilization (CU): It is the average CPU utilization by the mobile
application during an experiment. CUSCEPA and CUMCEPA represent the aver-
age CPU utilization for the SCEP application and MCEP application respectively.
The application is un-installed and installed again for each experiment.

• Average CPU utilization by IHS (CUIHS): CUIHS represents the average CPU
utilization of the IoT server. CUIHS−SCEP and CUIHS−MCEP represent the
average CPU utilization by the IHS for the SCEP system and MCEP system
respectively.

• User cost (UC): The UC is the average cost (in $/hour) by the user for using the
CEP service. UCSCEP and UCMCEP represent the UC for using SCEP service
and MCEP service respectively. Assuming that a user (patient) is using bluetooth
or WiFi for connecting the sensors with the mobile device, T X can be used to
compute the user cost. Here, we assume that a patient is using the mobile network
for the transfer of data between the mobile device and the back-end IoT server.
The user cost can be computed by as:

User Cost ($/hour) = T X ∗ cost per MB ∗ 3600 (3)

• Remaining Battery Life (RBL): It is the amount of remaining battery power (in
%) by the application running on the mobile device during an experiment. It is
an important metric representing the power consumption of an application. The
different types of RBL used in the experimentation are provided next.

– The RBLSCEPA−FG and RBLMCEPA−FG represent the battery usage for the
server CEP and mobile CEP applications respectively when these applications
are running in the foreground fn the mobile device and no other service is
running on the background.

– The RBLSCEPA−BG and RBLMCEPA−BG represent the battery usage for the
server CEP and mobile CEP applications respectively when these applications
are running in the background of the mobile device and no other application
is running on the foreground.

7 Experimental Results

In this section, the performance comparison between the MCEP and SCEP systems
is presented.

7.1 Comparison of Battery Usage

The impact of Trun on the power consumption of the MCEP and SCEP applications
is presented in Fig. 7.

CEP in Sensor-Based Environments 517

0 10 20 30 40 50 60
Trun (minutes)

70%

75%

80%

85%

90%

95%

100%

R
B

L
(%

)

SCEPA-FG
SCEPA-BG
MCEPA-FG
MCEPA-BG

Fig. 7 Impact of runtime on battery usage

The experiment was performed for 60 min with an initial battery level of 100%.
During the experiment, the values of the battery level on the mobile device were
noted every 20-min interval, as shown by Trun in Fig. 7. Recall that scenario
1 corresponds to SCEP/MCEP application running in the Foreground (FG) and
no other application running in the background. In scenario 2, the SCEP/MCEP
application is running in the Background (BG) with no other application running
in FG on the mobile device. It is found that the battery usage of an application
for a scenario 1 is always lower in comparison to scenario 2. Also, for a given
scenario the battery usage for the MCEP application is lower than that for the SCEP
application. This is due to the fact that only complex events are transferred to the
IoT server when the MCEP application is used. On the other hand, all the raw events
(from multiple sensors) are forwarded to IoT server when the SCEP application is
used, causing an increase in the battery consumption. The energy consumption due
to data transfer is higher in comparison to the energy consumption due to running
the CEP engine on the mobile device. This experiment shows that the proposed
MCEP system provides approximately 2% power savings (both in background and
foreground), in comparison to the SCEP system.

7.2 Comparison of Average CEP Latency

As shown in Fig. 8, for a particular λRE , the average CEP latency for the SCEP
system is much higher than the average CEP latency for the MCEP system. For

518 A. Dhillon et al.

0 200 400 600 800 1000
λRE (events/sec)

0

200

400

600

800

1000

1200

L
(m

ill
is

ec
on

ds
)

LSCEP

LMCEP

Fig. 8 Impact of the arrival rate of raw events on average CEP latency

both MCEP and SCEP systems, the average CEP latency decreases with an increase
in the average raw event arrival rate. This is because, with an increase in λRE , the
inter-arrival time of the event B is reduced. This led to a decrease in the waiting
time of the A events in the CEP engine, resulting in the lower values of LSCEP . In
the case of server CEP, the data analytics server uses Apache thrift as a middle-ware
to send the requests to the CEP engine using remote method invocations, causing
the additional delays. This results in a higher CEP latency for SCEP in comparison
to the MCEP system which does not use a middleware system. This leads to the
important conclusion that there is a trade-off between security and latency for the
SCEP system. Although enabling additional features in the IoT server provides more
security, it also leads to a significant increase in CEP processing latency.

7.3 Comparison of Average End-to-End Latency

The end-to-end latency depends upon various factors such as the sum of various
transmission times, queuing delays and event processing latencies. As shown in
Fig. 9, as λRE is increased, more complex events are detected per unit time for both
MCEP and SCEP systems.

This seems to increase the resource contention resulting in an increase in the
transmission delay (as more complex events will be sent to the timekeeper) and
the queuing delay (see [9] for an analysis on the queuing latency) leading to an
increase in the average end-to-end delay. For a given λRE , the end-to-end delay for
the SCEP system is higher than that for the MCEP system. Forwarding all the raw

CEP in Sensor-Based Environments 519

0 200 400 600 800 1000
λRE (events/sec)

0

10000

20000

30000

40000

50000

E
(m

ill
is

ec
on

ds
)

ESCEP
EMCEP

Fig. 9 Impact of the arrival rate of raw events on average end-to-end latency

sensors streams to the IoT server results in larger transmission delays that seem to
lead to a higher E for the SCEP system. From Fig. 9, we can conclude that, in spite
of using the large time window of 10 s (default time window) that leads to additional
queuing delays on the memory constrained mobile device, EMCEP achieved on the
MCEP system with a given λRE is less than ESCEP achieved on the SCEP system.

7.4 Comparison of IoT Server CPU Utilization

Figure 10 shows the impact of λRE on the CPU utilization of the IoT server in
for the MCEP system (CUIHS−MCEP) and SCEP system (CUIHS−SCEP). For a
given λRE , CUIHS−MCEP is lower than CUIHS−SCEP . This is because of the
difference in the amount of computation performed by the CPUs. In case of the
SCEP system, all the raw sensor data streams are received, parsed, type converted,
enqueued, dequeued and processed in the IoT server and then complex events are
forwarded to the timekeeper by using the MQTT broker and metrics are sent to the
DataDog dashboard by the Java Management eXtensions (JMX) agent. However, in
case of the MCEP system, only CEP alerts are received by the IoT server and no
further processing has to be done. The lower processing performed in case of the
MCEP system leads to a lower CPU utilization. From this graph, we can conclude
that the MCEP system leads to a smaller load on the IoT server, which is one of the
advantages of the MCEP system.

520 A. Dhillon et al.

0 200 400 600 800 1000
λRE (events/second)

0

10

20

30

40

C
U

 (%
)

CUIHS-SCEP
CUIHS-MCEP

Fig. 10 Impact of the arrival rate of raw events on the IHS CPU utilization

0 200 400 600 800 1000
λRE (events/second)

26

28

30

32

34

36

38

40

42

44

46

C
U

 (%
)

CUSCEPA
CUMCEPA

Fig. 11 Impact of the arrival rate of raw events on mobile device CPU utilization

7.5 Comparison of Mobile Device CPU Utilization

Figure 11 shows the CPU utilization observed for the MCEP application and the
SCEP gateway application.

CEP in Sensor-Based Environments 521

For the MCEP application, CUMCEPA seems to increase steadily with the
increase of λRE as more processing is done inside the CEP engine for the higher
raw event arrival rates. Also, it is interesting to note that for any given value of
λRE , the CPU utilization of the MCEP application is lower than the one for the
server CEP application. For example, the CUMCEPA is 41.01% when 2 sensors are
sending data streams at 1000 Hz, which is lower in comparison to the 45.40% CPU
utilization reported in the case of the SCEP application.

7.6 Comparison of User Cost

As shown in Fig. 12, for any value of raw event arrival rate, the amount of data
transferred per second (T X) is more for the server CEP in comparison to the mobile
CEP. This is because the SCEP application forwards all the raw events to IoT
server. Equation (3) (discussed in Sect. 6.3) is used to compute the data transfer cost
incurred by the user for using the MCEP and SCEP systems. The rate of $0.05/MB
offered by Bell (a major telecommunication company in Canada) is used [4]. For any
given λRE , a significantly lower data transfer cost is observed for the MCEP system
in comparison to the SCEP system as in case of MCEP system only the complex
events are sent while in case of the SCEP application the entire raw event streams
are forwarded. It is interesting to note that at an arrival rate of 1000 events/second,
the MCEP system provides a significant savings of $12.74/h ($13.32/h–$0.58/h).

0 200 400 600 800 1000
λRE (events/second)

$0.00

$2.00

$4.00

$6.00

$8.00

$10.00

$12.00

$14.00

U
C

 ($
/h

r)

UCMCEP

UCSCEP

Fig. 12 Impact of the arrival rate of raw events on user cost

522 A. Dhillon et al.

8 Conclusions

The availability of mobile devices and sensors at a reasonable price is rapidly
increasing the use of mobile edge computing systems that are deployed in various
applications that include smart homes, smart industrial machinery and smart
healthcare systems. This chapter presents an edge computing framework and
complex event processing technique for such systems. It includes a description of an
application of these to real-time remote health monitoring that leverages both mobile
system technology and edge computing techniques for the detection of complex
events which typically indicate the potential occurrence of a health problem for the
person being monitored.

One of the goals of this chapter was to compare two different architectural frame-
works for performing complex event processing in sensor-based systems: SCEP
(centralized server-based approach) and MCEP (edge device-based approach).
Unlike the high-level simulation-based SCEP approach provided in [19], we have
described an SCEP architecture and implementation of its prototype (in Sect. 3) that
also has more features. However, such an SCEP system has some disadvantages
including the necessity of a persistent network connectivity, high data transfer cost
for the user, and a larger mobile device power consumption as shown in Sect. 7.1. On
the other hand, the MCEP system can effectively handle the network unavailability
problem by performing CEP on the edge device instead of processing the sensor
data streams on a remote cloud. This system has been realized by successfully
embedding a CEP engine on the mobile device to perform the complete complex
event detection on the edge device and send various complex events (alerts) to a
remote back-end server to notify the concerned personnel. The proof of concept
prototype for the proposed technique has been built successfully and tested using
a synthetic workload on a Google Pixel mobile device running Android Nougat.
As discussed in Sect. 7.6, the MCEP system leads to a reduction in the user cost
and the mobile device energy consumption and improves the overall latency of the
system. A thorough experimental investigation based on measurements made on the
prototype has led to a number of insights into the impact of system and workload
parameters on performance. The key insights are summarized.

• Network connectivity requirement: The MCEP system does not mandate a
persistent Internet connection with the back-end IoT server. Thus, if the network
is not available temporarily, the user can still receive local alarms generated by
the mobile device.

• User cost: As shown in Fig. 12, the user cost for the MCEP system is significantly
lower compared to the cost of the centralized server CEP system. For the typical
pricing data available at [4], the MCEP system provides savings of approximately
$13/h, over the central server-based SCEP system. This is because the data
transfer is reduced in the MCEP system, as only complex events are sent to the
IoT server.

• Security and data privacy: As the mobile CEP system processes the sensor data
streams locally, the user has better data privacy in comparison to the SCEP

CEP in Sensor-Based Environments 523

system. In order to ensure the data privacy and security for the SCEP system,
various authentication and authorization methods have to be employed on the IoT
server which can lead to additional delays. Ensuring data privacy and security of
a centralized server comes at the expense of processing latency. Thus, the MCEP
system has an advantage over the SCEP system as it requires relatively lesser
security mechanisms to be imposed on the system for ensuring data privacy.

• Out-of-order message delivery: As the SCEP gateway application forwards all
the sensor data streams, this can lead to synchronization issues among various
sensor streams at the back-end server. This issue is less evident in the MCEP
system as the sensor devices are locally connected to the edge device using Wi-
Fi or bluetooth connections.

These characteristics lead to the conclusion that the MCEP system has a
significant number of benefits over the SCEP system. However, the SCEP system
also has a few benefits over the MCEP system as described next.

1. Predictive analytics: In the MCEP system, only the complex events are sent to
the IoT server. This means that the historical data of the patient is not retained.
However, in the case of the SCEP system, the historical data can be further
used by various predictive analytics algorithms using machine learning to predict
future alerts.

2. Easier to deploy security mechanisms: The IoT server comes with off-the-shelf
authentication and authorization features which are easily configured. However,
in the case of mobile CEP, such features have to be manually added and
customized.

9 Future Work

Directions for further research include the following:

• The MCEP system can be extended to form a hybrid CEP system such that real-
time analytics is performed on the mobile device and the predictive analytics is
being performed on the IoT server using the stored historical data. Investigation
of such a system forms an important direction for future research.

• The performance of the current system can be analyzed when multiple devices
(one device per user) are enrolled with the IoT server. This would test the
scalability of the system as the number of users using sensor-based systems is
expected to grow.

• MCEP leads to a lower battery usage in comparison to SCEP. Irrespective of the
system type, a mobile device based remote health monitoring can be performed
only for a number of hours after which the device needs to be recharged. This
is acceptable for a number of different situations. Using multiple mobile devices
with one serving as the primary device and the other(s) serving as backups may
be helpful when the system is continuously used without an opportunity for
recharging the battery of the mobile device. The secondary device can replace

524 A. Dhillon et al.

the primary device when it runs out of battery power for a duration during which
the primary device can get charged. The investigation of such a system focusing
on how to perform an effective hand-off from one device to the other devices
forms an interesting direction for future research.

Acknowledgments We are grateful to TELUS and Natural Sciences and Engineering Research
Council of Canada (NSERC) for providing financial support for this research.

References

1. Abdellatif, A.A., Mohamed, A., Chiasserini, C.F., Tlili, M., Erbad, A.: Edge computing for
smart health: Context-aware approaches, opportunities, and challenges. IEEE Network 33(3),
196–203 (2019)

2. Apache Software Foundation: OpenWire Protocol. [Online available at]: http://activemq.
apache.org/apollo/documentation/openwire-manual.html, [Accessed: 13-Jan-2019]

3. Bakker, A.: Comparing energy profilers for android. In: 21st Twente Student Conference on
IT, vol. 21 (2014)

4. Bell Canada: Bell pay per use rates. [Online available at]: https://support.bell.ca/Mobility/
Rate_plans_features/What-are-Bell-Mobilitys-current-pay-per-use-rates, [Accessed: 12-Jan-
2019]

5. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable Cloud computing
environments and the CloudSim toolkit: Challenges and opportunities. In: International
Conference on High Performance Computing Simulation, pp. 1–11 (2009). https://doi.org/
10.1109/HPCSIM.2009.5192685

6. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A Toolkit
for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms. Journal of Software—Practice & Experience 41(1), 23–50 (2011).
https://doi.org/10.1002/spe.995

7. Cooking Hacks: MySignals changes the future of medical and eHealth applications. [Online
available at]: http://www.my-signals.com/, [Accessed: 13-Jan-2019]

8. DataDog: Modern monitoring and analytics. [Online available at]: https://www.datadoghq.
com/, [Accessed: 13-Jan-2019]

9. Dhillon, A.: An Edge Computing-based Complex Event Processing Technique for Sensor-
based Systems. Master’s thesis, Carleton University, Ottawa, ON, Canada (2018)

10. Dhillon, A., Majumdar, S., St-Hilaire, M., Haraki, A.E.: MCEP: a Mobile device based
Complex Event Processing System for Remote Healthcare. In: the International Conference
on Internet of Things (iThings), pp. 203–210 (2018)

11. Dineshkumar, P., SenthilKumar, R., Sujatha, K., Ponmagal, R.S., Rajavarman, V.N.: Big data
analytics of IoT based Healthcare Monitoring System. In: 2016 IEEE Uttar Pradesh Section
International Conference on Electrical, Computer and Electronics Engineering (UPCON), pp.
55–60 (2016). https://doi.org/10.1109/UPCON.2016.7894624

12. Foundation, A.S.: Apache thrift™. [Online available at]: https://thrift.apache.org/. [Accessed:
13-Jan-2019]

13. Gibson Research Corporation: Zeo Sleep Manager Pro. [Online available at]: https://www.grc.
com/zeo.htm, [Accessed: 14-Jan-2019]

14. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus,
J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals. Circulation Journal
101(23), e215–e220 (2000)

http://activemq.apache.org/apollo/documentation/openwire-manual.html
http://activemq.apache.org/apollo/documentation/openwire-manual.html
https://support.bell.ca/Mobility/Rate_plans_features/What-are-Bell-Mobilitys-current-pay-per-use-rates
https://support.bell.ca/Mobility/Rate_plans_features/What-are-Bell-Mobilitys-current-pay-per-use-rates
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1002/spe.995
http://www.my-signals.com/
https://www.datadoghq.com/
https://www.datadoghq.com/
https://doi.org/10.1109/UPCON.2016.7894624
https://thrift.apache.org/
https://www.grc.com/zeo.htm
https://www.grc.com/zeo.htm

CEP in Sensor-Based Environments 525

15. Habib, M.A., Mohktar, M.S., Kamaruzzaman, S.B., Lim, K.S., Pin, T.M., Ibrahim, F.:
Smartphone-based solutions for fall detection and prevention: challenges and open issues.
Sensors Journal 14(4), 7181–7208 (2014)

16. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java™ Message Service API Tutorial
and Reference: Messaging for the J2EE™ Platform. Addison-Wesley Professional (2002)

17. Hartmann, M., Hashmi, U.S., Imran, A.: Edge computing in smart health care systems:
Review, challenges, and research directions. Transactions on Emerging Telecommunications
Technologies n/a(n/a), e3710. https://doi.org/10.1002/ett.3710

18. Higashino, W.A.: Complex Event Processing as a Service in Multi-Cloud Environments. Ph.D.
thesis, Department of Electrical and Computer Engineering at University of Western Ontario
(UWO) (2016). URL [Online available at]: https://ir.lib.uwo.ca/etd/4016

19. Higashino, W.A., Capretz, M.A.M., Bittencourt, L.F.: CEPaaS: Complex Event Processing as
a Service. In: IEEE International Congress on Big Data (BigData Congress), pp. 169–176
(2017). https://doi.org/10.1109/BigDataCongress.2017.31

20. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S – A publish/subscribe protocol for
Wireless Sensor Networks. In: 3rd International Conference on Communication Systems
Software and Middleware and Workshops (COMSWARE ’08), pp. 791–798 (2008). https://
doi.org/10.1109/COMSWA.2008.4554519

21. Kousen, K.: Gradle Recipes for Android: Master the New Build System for Android. “O’Reilly
Media, Inc.” (2016)

22. Naddeo, S., Verde, L., Forastiere, M., De Pietro, G., Sannino, G.: A Real-time m-Health
Monitoring System: An Integrated Solution Combining the Use of Several Wearable Sensors
and Mobile Devices. In: International Conference on Health Informatics (HEALTHINF), pp.
545–552 (2017)

23. Naqishbandi, T., Imthyaz Sheriff, C., Qazi, S.: Big data, CEP and IoT: redefining holistic
healthcare information systems and analytics. International Conference on Advances Research
in Engineering and Technology 4(1), 1–6 (2015)

24. Organization, W.H.: WHO Global Report on Falls Prevention in Older Age. [Online avail-
able at]: http://www.who.int/ageing/publications/Falls_prevention7March.pdf, [Accessed: 8-
March-2018]

25. Reza, T., Shoilee, S.B.A., Akhand, S.M., Khan, M.M.: Development of Android based
Pulse Monitoring System. In: Second International Conference on Electrical, Computer and
Communication Technologies (ICECCT), pp. 1–7 (2017). https://doi.org/10.1109/ICECCT.
2017.8118045

26. Senthilkumar, R., Ponmagal, R., Sujatha, K.: Efficient Health Care Monitoring and Emergency
Management System using IoT. International Journal of Control Theory and Applications 9(4),
137–145 (2016)

27. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable cross-language services implemen-
tation. Facebook White Paper Journal 5(8) (2007)

28. Snyder, B., Bosnanac, D., Davies, R.: ActiveMQ in Action. Manning Publications (2011)
29. Sotera Wireless: About Visi Mobile. [Online available at]: https://www.soterawireless.com/

visi-mobile/, [Accessed: 13-Jan-2019]
30. Suh, M., Chen, C., Woodbridge, J., Tu, M.K., Kim, J.I., Nahapetian, A., Evangelista, L.S.,

Sarrafzadeh, M.: A Remote Patient Monitoring System for Congestive Heart Failure. Journal
of medical systems 35(5), 1165–1179 (2011)

31. Wahane, V., Ingole, P.: An Android based wireless ECG Monitoring System for Cardiac
Arrhythmia. In: Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT),
pp. 183–187 (2016)

32. Wikipedia: Google Pixel. [Online available at]: https://en.wikipedia.org/wiki/Google_Pixel,
[Accessed: 13-Jan-2019]

https://doi.org/10.1002/ett.3710
https://ir.lib.uwo.ca/etd/4016
https://doi.org/10.1109/BigDataCongress.2017.31
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1109/COMSWA.2008.4554519
http://www.who.int/ageing/publications/Falls_prevention7March.pdf
https://doi.org/10.1109/ICECCT.2017.8118045
https://doi.org/10.1109/ICECCT.2017.8118045
https://www.soterawireless.com/visi-mobile/
https://www.soterawireless.com/visi-mobile/
https://en.wikipedia.org/wiki/Google_Pixel

Application Design and Service
Provisioning for Multi-access Edge Cloud
(MEC)

Muhammad Jaseemuddin, Hager Ghouma, Maysam Fazeli,
Ameera Al-Karkhi, Mohamad Eldakroury, and Uvaiz Ahmed

Abstract The edge cloud is attractive to provide low latency services to mobile
users. It overcomes computation, storage, and energy limitations of mobile devices
through computation offloading. It also avoids long delays in migration of big data
from the point of their generation by IoT devices to the centralized data centers.
Context-aware edge cloud design provides mobile users with more personalized
and customized services that improve their over-all experience. It manages the cloud
infrastructure for resource provisioning, scheduling, and load balancing. The latency
constraints of MEC applications need light-weight container service in the edge
cloud. Kubernetes container orchestration is popular in the industry that is supported
by all major edge cloud platforms. Container migration is important for ensuring low
latency to new mobile applications of connected vehicles and drones. In this chapter
we present the current state of research and development in the application design
and service provisioning for edge cloud.

Keywords Edge cloud · Computation offloading · Context · Container ·
Container migration · Container orchestration · Task graph · Kubernetes ·
Docker · Video-analytics

1 Introduction

The original design goal of edge computing was to meet the stringent low latency
requirements of some mobile applications [1]. Recently, commercial applications
emerge in Business Intelligence (BI), Smart Cities, Intelligent Transportation, and

M. Jaseemuddin (�) · H. Ghouma · M. Fazeli · A. Al-Karkhi
Department of Electrical, Computer & Biomedical Engineering, Ryerson University, Toronto,
ON, Canada
e-mail: jaseem@ryerson.ca; maysam.fazeli@ryerson.ca

M. Eldakroury · U. Ahmed
Telus, Toronto, ON, Canada
e-mail: mohamed.eldakroury@telus.com; uvaiz.ahmed@telus.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_21

527

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_21&domain=pdf
mailto:jaseem@ryerson.ca
mailto:maysam.fazeli@ryerson.ca
mailto:mohamed.eldakroury@telus.com
mailto:uvaiz.ahmed@telus.com
https://doi.org/10.1007/978-3-030-69893-5_21

528 M. Jaseemuddin et al.

Industry 4.0 that drive the use of edge computing to deal with scarce bandwidth
and unreliable connections to cloud data centers [2]. The 5G wireless networks
will deploy edge cloud to provide multi-access edge computing for mobile user
applications [3] and to implement common network services as Virtual Network
Functions (VNFs) and Cloud-RAN [4]. The Multi-Access Edge Cloud (MEC)
overcomes computation, storage, and energy limitations of mobile devices through
computation offloading. It allows machine learning computation on big data closer
to IoT devices, thus avoids long delays associated with the migration of big data to
the centralized cloud data centers. The MEC architecture deals with the following
design issues:

• Distributed Architecture: In contrast to central cloud (e.g. public cloud) datacen-
ters, the MEC datacenters are smaller datacenters located at network edges that
are inter-connected to offer edge cloud services.

• Multi-cloud: Distributed edge clouds of diverse administrative domains are inter-
connected.

• Distributed Computing: Highly distributed computing structure for the applica-
tion design.

• Distributed Data: Data is distributed and co-located with computing.
• Lowe latency: Real-time cloud native applications need low latency.
• Reliable Connectivity: Edge clouds are connected through short routing paths

making it easy to deal with bandwidth and reliability constraints.

The MEC is exposed to the challenges arise from the intrinsic and dynamic char-
acteristics of mobile devices such as mobility and device constraints (computation,
storage, and energy). Mobile context information is used to provide the mobile
users with more personalized and customized services that improve their overall
experience. It can also be used by the MEC infrastructure for resource provisioning,
scheduling, and load balancing. Context-aware edge cloud design provides a unified
approach of managing and offering cloud services to mobile users at the edge.
The latency constraints of applications require light-weight virtualization in the
edge cloud that is achieved through container technology. Kubernetes container
orchestration is popular in the industry that is supported by all major edge cloud
platforms. Emerging mobility scenarios for connected vehicles and drones need
support for real-time context transfer and container migration from one edge to
another spanning over a single cloud or multi-cloud systems.

Figure 1 shows the main building blocks of edge cloud and their functional
decomposition. The architecture of edge cloud varies with the business focus of
its providers. Some reference architectures are published such as ETSI’s MEC [3]
and Open Stack’s StarlingX [5].

The applications on edge devices need support of local edge-specific components
to optimize their execution as edge native applications. All such edge supportive
functions are provided by the Edge Enabler building block in the device [6].
For example, many applications perform computation offloading decisions [7]
such as Augmented Reality (AR) and Wearable Cognitive Assistance (WCA)
applications that run some image processing functions in the edge cloud [8]. The

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 529

• Configuration Management
• Node Management
• Host Management
• Fault Alarm and Recovery

Edge Management

Cloud Management
• Image management
• Storage management
• Monitoring
• VM orchestration
• Identity & Authentication
• Network management

Kubernetes
Container • Pods with Docker

Container
• Docket Registry
• Kubernetes Master

(Orchestration)
• Kubernetes Worker

Application
Management

• Configuration
• Image
• Service Discovery
• Resource Provisioning
• Context Management
• Adaptation

Edge Cloud

Application

Edge Enabler

• Context
• Offloading Decision
• Adaptation
• Edge Service

Discovery

User Device

Fig. 1 Functional decomposition of edge cloud infrastructure

WCA applications go through active and passive phases with high to low resource
requirements during those phases, respectively. The passive phase involves human
intervention which requires less sampled video frames; hence sampling rate can
be adapted to reduce resource allocation [8]. Some applications are flexible in
adapting their functionalities with the availability of resources in the edge cloud,
such as a camera manager in a video analytics application can adjust the frame rate,
resolution, and video quality [9]. In this case, the edge enabler coordinates with
the resource management in the edge cloud to perform adaptation of functions. The
offloading and adaptation decisions also need monitoring of user and device context
to optimize their objective functions. For example, device power and locations are
used to optimize energy saving function through offloading and adaptation. All edge
native applications need to discover services in the edge cloud.

530 M. Jaseemuddin et al.

The functions related to edge cloud infrastructure management is broadly
grouped in application, container, cloud, and edge management building blocks.
The application management provides support for optimal execution of edge native
applications, container is the basic virtualization unit for running an application in
edge cloud that needs container management functions such as containerization,
orchestration, and clustering. For some applications, such as connected vehicles,
their containers need migration from one edge cloud to another to meet the latency
requirement. The cloud management deals with orchestration of VMs and allocation
of computation, storage, and networking resources to them. The orchestration
requires image and identity management functions. The physical infrastructure
of the edge requires configuration, management and monitoring of hardware and
software, which are provided by the edge management functions. Wireless operators
employ Network Function Virtualization (NFV) to deploy VNFs and in the edge
cloud. They perform network slicing to support multi-tenant orchestration and
multiple Quality of Service (QoS) requirements [6].

In this chapter we present current state of research and development in the
application design and service provisioning for mobile edge cloud. It first presents
a framework of integrating the role of the context in different components and
functions of the edge cloud system in Sect. 2. Then, the application design presents
workflow model, application partitioning and computation offloading techniques
in Sect. 3. In Sect. 4, the service provisioning presents container and its benefit
for providing low latency, container orchestration and lastly container migration
techniques. Finally, future directions of research in this new and growing area is
discussed.

2 Context Management Framework for Edge Cloud

The most comprehensive and utilizable definition of context is given by Dey and
Abowd [10] as “any information that can be used to characterize the situation of an
entity”. From a mobile user’s perspective, context means things such as activity,
ambient condition (e.g. temperature, lighting etc.), computing and communica-
tion resources (e.g. network connectivity, communications costs, communications
bandwidth, computing power, battery power etc.) and the social situation. The
context in mobile edge cloud computing is mainly divided into four categories:
user context, device context, mobile service context and physical context. The
user context consists of the user’s profile, people nearby, current activity (meeting,
driving), location (GPS or IP address if wifi is connected), time and emotional state.
The device context includes battery level, network connectivity, communication
bandwidth, data rate, and connection type (cellular 3G/wifi). The Radio Network
Information Service (RNIS) in 5G network provides user-specific detailed network-
level information that helps in detecting and making mobility related decisions
such as for service migration (as discussed in Sect. 4.5) and Location Based
Services (LBS) [3]. The service context is information related to services including

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 531

Fig. 2 Context framework for service management in a mobile edge cloud

social network connections, likings etc. The physical context comprises of the
environmental states like the temperature, traffic conditions and noise level.

In edge cloud, service infrastructure resides in the cloud that includes service
provisioning, invocation, runtime, and data subsystems. When context is used in
managing the cloud service, then in addition to context gathering components
at the client side, it introduces service selection and adaptation processes to
service invocation and runtime subsystems in the cloud. Figure 2 shows a context
framework for service management in a mobile edge cloud. The context gathering
and analyzing stages include components in the cloud related to interacting with
the client in collecting and storing the context information, which is later used
for context analysis, reasoning and decision making for service selection and
adaptation. The object of service adaptation varies including service personalization,
location-aware adjustments to QoS and new service discovery, QoS adaptation, and
fault recovery. Some applications can adapt its configuration based on resource
availability such as camera manager in a video analytics application can adjust the
frame rate, resolution, and video quality [8]. The framework also provides support
for context transfer when a user moves from one edge cloud to another.

A typical context-aware mobile edge cloud computing framework performs
service adaptation, service provisioning, and cloud resource management. It imple-
ments four stages: data acquisition, context storage, context management and
intelligent decision making. The data acquisition stage represents the context
collection unit and could include number of heterogeneous and distributed sensors
types such as, sensed context (physical or software sensors), interaction or control
sensors. It offers monitoring, collecting, and processing of user’s context and
environmental data. The context storage comprises of user’s knowledge base
component which includes the user’s context profile and context history. The
context management system performs following key functions: context modelling,
context classification, context aggregation, and context reasoning. Finally, machine
intelligence and optimization techniques are employed for making service and
resource provisioning decisions.

532 M. Jaseemuddin et al.

2.1 Context Modeling

Context modeling can be defined as the process of representing context information
into a format suitable to automated processing. It is achieved using relationships
and dependencies among the sensed information. The context modeling is a two-
step process. The first step defines new context information in terms of attributes,
characteristics, and relationships with past specified context. In the second step, the
context is organized to validate the results of the first step. There are several context
modeling techniques, each with its own strength and weakness. In the following we
present an overview of the most popular context modeling techniques.

1. Key-Value Modeling: It is the simplest data modeling approach that specifies
(model) the context as a list of attributes and their values (key-value pairs) in text
or binary files format. It does not support hierarchal structures and relationships,
making it hard to retrieve modeled data efficiently. It is suitable for less complex
application configurations and user preferences [11].

2. Markup Scheme Modeling (Tagged Encoding): This is an improvement of the
key-value technique. It uses tags to store context within markup tags that allows
efficient data retrieval. It is commonly used in modeling profiles using XML.

3. Graphical Modeling: This technique is better than markup language and key-
value because it allows relationships to be captured into the context model. An
example is unified modelling language (UML) [12].

4. Object based modeling: It is a comprehensive model supports encapsulation
and re-usability in addition to capturing hierarchal relationships [12].

5. Logic based modelling: The context information is represented as facts, expres-
sions, and rules. It provides more expressive richness and allows extracting new
high-level context information using low level context data.

6. Ontology based modelling: It represents the contextual information concepts,
relations, entities, and functions between them. The ontology-based technique
enables sharing and reusing of context knowledge in computational entities
(services and agents) to form a common set of concepts about context and help
context reasoning and interoperability while interacting with one another. The
context is represented by ontology using semantic language.

2.2 Context Reasoning

Context reasoning is an essential component of a context management system.
It defines methods of inferring new knowledge and better understanding of the
current context. It deduces high–level context from a set of low-level context data.
Reasoning models are required to deal with imprecision, erroneity and uncertainty
of raw context data. Context reasoning model has three phases [13]:

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 533

• Context pre-processing involves cleaning, filtering, and removing error from the
collected sensor data that is affected by sensor malfunction.

• Sensor data infusion combines the data from multiple sensors to obtain more
accurate and complete information which could not be achieved by one sensor.

• Context inference involves inferring high-level context from low level context
information.

The reasoning techniques can reduce the complexity of context-aware applica-
tions and improve their maintainability. In addition, as collecting and maintaining
context information is expensive, sharing and re-using this information should be
considered from the beginning in any context –aware application [14]. Important
reasoning techniques are summarized as follows:

• Supervised learning techniques can be applied when the data set is clear
and easy to identify, while the potential outcome is known. Artificial neural
network, Bayesian networks, case-based reasoning, decision tree and support
vector machine are the examples of supervised learning.

• Unsupervised learning techniques are used when the potential outcome is
unknown for example abnormal user behaviour. Examples of these techniques
are clustering and, and K-nearest neighbour.

• Rule-based techniques defined a set of rules that is applied on raw data for
conversion to high-level context, for example using if-then rules or other AI
techniques.

• Logic Programming techniques provide an approximate reasoning instead of a
fixed reasoning. For example, in fuzzy logic, the data values have a range between
0 and 1 that is used to specify partial the truth when the truth is in between true
and false. It is used to handle the uncertainty, but it must be used in combination
with other technique such as the rule-based technique to represent context.

• Probabilistic logic techniques allow the reasoning to be made according to
the probability approach based on the facts associated with the problem. For
example, Hidden Markov Model is used in activity inference.

2.3 Context Monitoring and Storage

A mobile device can acquire context information from many different sensors,
such as accelerometer, microphone, environmental sensors (e.g. light, temperature,
humidity), location information from GPS or indoor positioning system, etc. Some
of these sensors are located outside the device that are used to collect environmental
data, while others are located inside the device that are used to collect device
specific context. The sensors are activated at the behest of an application, which
identifies a set of context information to be monitored and collected by the mobile
device. Figure 3 shows a general context-monitoring framework of the mobile
device, which is largely based on [15]. The sensor manger represents a stage for
creating filtering and aggregation processes to any piece of context information.

534 M. Jaseemuddin et al.

Applica�on
Interface Access Control Context

Transla�on

Applica�on Broker

Preprocessing and
Feature Extrac�on

Change Detec�on

No�fica�on

Query
Transi�on

Context Processor

Resource Manager

Sensor Broker

Sensor Manager Sensor Manager Sensor Manager

Fig. 3 Context monitoring framework of a mobile device

Context processor represents the part of the mobile edge cloud where all the
processes of preprocessing, updating and context extraction are taking place. The
resource manager is responsible on creating various alternative resource schedules
for processing a high-level context from an application. Finally, the application
broker where the adaptation process is occurred, it continuously changes running the
resource schedules to adapt its performance to the dynamic resource system where
the resources and applications needs are changing constantly. Whenever a change
of application request or device (sensor) availability, the system reconfigures and
updates the resources schedules that outcome resource use under the change of the
system conditions. Such system would offer a flexibility of many applications if
possible, in dynamic environment. The framework monitors and senses the mobile
context information from devices, sensors, applications and human interaction
with the surrounding smart and dynamic environments, to make intelligent edge
cloud resource allocation and tasks scheduling decisions. The objective of resource
allocation and scheduling is to reduce the execution cost of a job while meeting the
job deadline of a mobile user and save cost for a user.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 535

2.4 Privacy Challenges of Context

It is vital to develop and create privacy sensitive context framework for MEC
systems to mitigate the privacy breach and relevant risks. Thus, it is important to
provide a mechanism that ensures privacy is always maintained. There are five
characteristics that make such systems very different from the current data collection
systems [16], which are:

1. New coverage of smart environments and objects are presented everywhere in
our life.

2. Data collection are invisible and unnoticeable.
3. The collected data are more intimate than ever before; for example, how do

people feel while doing something.
4. The underlying motivation behind the data collection.
5. The increasing interconnection of smart devices to cooperate for providing a

service to users, which results in a new level of data sharing making unwanted
information flows much more possible.

Developing privacy policies for the exchange of personal information based on
interpreting and abstracting users’ contextual information. Contextual information
may be used to provide insight to the system for deciding which parts of the user
information is needed (for a specific functionality) and hence retrieve the relevant
information without exchanging the irrelevant parts. Research would be needed to
define dynamic policies for this purpose.

Extensions of the anonymity and pseudonymity concepts could be applied to
prevent the leakage of personal information in MEC environments. Such extensions
will protect the users’ privacy and provide them with flexibility by giving the
rights to users to choose whether to distribute and exchange their personal data
or not. One possible extension is to provide multiple levels of anonymity, in
which the users could make informed choice as a trade-off between privacy and
functionality. Also, implementing approaches for investigating and developing new
privacy architectures which can measure how much of user personal information
should be given and determine which bit of the user personal information needs
to be collected by the environment for a particular purpose. These architectures will
provide users in MEC environments with greater control over the way in which their
information is being exchanged. A well-designed pervasive system can eliminate the
need for giving out some items of personal information. For example, schemes based
on “digital pseudonyms” could eliminate the need to give out items of personal
information that are routinely entrusted to the networks today. To build context
aware MEC systems, a consideration to the privacy of individual users must be
highlighted because it is necessary to recognize when people feel their privacy has
been invaded. Current Big Data mining techniques for minimizing privacy risks
such as k-anonymity model that guarantees that a record is indistinguishable from
at least k-1 other records can be utilized for context processing [17].

536 M. Jaseemuddin et al.

3 Application Design

Mobile devices access the edge cloud by using a mobile-cloud application frame-
work. The framework offloads the mobile application to the MEC such that a
part or the whole application is stored and processed in the cloud. Application
offloading could be done by either migrating the whole application, partitioning
the application, and migrating the computation-intensive and/or data-intensive
partitions, or uploading the VM or container image of the application to the MEC.
The offloading decision optimizes one or more of the user’s goal of achieving
application latency or device power efficiency. The decision considers the values
of the parameters gleaned through the context framework.

A computation offloading process first partitions the application to separate the
functionality of mobile applications into different partitions that are independent of
each other. Then, it makes the decision of offloading the partitions using specific
criteria depending on the application and user requirements. Finally, the partitions
that are designated for computational offloading are distributed on edge containers
and/or the cloud to be executed. Different computation offloading frameworks have
been proposed.

The mobile user sends a request in the form of a job (computational activity)
consisting of a set of tasks to be executed in the cloud; a task is an indivisible
minimum computation unit to be run on the resource. The user request also describes
the tasks dependencies, the job processing requirements, the input data, and job
priority. In addition, the job description might also include some constraints such
as application deadline and budget of the user. The user location information
and mobility pattern provide user context in which the task scheduling performs
scheduling decisions. In the next section a workflow of a mobile application is
described as well as the application partitioning process. Section 3.2 describes a
latency-aware offloading mechanism, finally in Sect. 3.3 computation offloading
using machine learning techniques is outlined.

3.1 Location-Aware Workflow and TIG

Mobile application workflow W = (T, E) is modeled as Directed Acyclic Graph
(DAG), where T = {t1, t2, t3, . . . tn} is the set of tasks and E is the set of directed
edges. The tasks are a combination of sequential and concurrent tasks [18]. An
Example of DAG of a sub workflow is shown in Fig. 4, which is based on [45]. If a
data dependency exists between ti and tj, then an edge eij ε E, exists between these
two tasks and ti is said to be a parent of the child tj. Each task ti is associated with
a data output size DSti

out and duration of the intended task execution in the cloud is
defined by STti and ETti. In addition, each workflow is associated with a deadline
called Wd based on the user’s desired QoS [45]. The workflow execution time is

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 537

Fig. 4 Example of a task directed graph of a sub workflow

constrained by Wd. The notation T represents one job to be offloaded and executed
in the edge cloud and the tasks are indexed as i = {1, 2, n}.

Mobility of users is also integrated in modeling mobile application workflows.
Rahimi et al. [21, 22] developed a framework to model the mobile application
as a workflow of tasks. The mobile usage patterns are directly translated from
user mobility patterns. Each pattern captures the trajectory of the mobile user
and is donated by a set tuple of location of the user and duration of time the
user is residing in the location. The workflow is represented as a location time
workflow, LTW; which consists of a sequence of sub-workflows indexed by the
user trajectory tuple (location and duration). In addition, the mobile application
workflow consists of a sequence of logical and precise steps known as functions.
Services that can implement a function are associated with that function. The user
location information and mobility pattern provide user context in which the task
scheduling performs scheduling decisions.

For tasks to be offloaded, the application needs to be partitioned into a set of
tasks. Application partitioning splits the computation structure into a set of tasks that
are either executed locally on the mobile device or remotely on the edge containers.
Full application offloading is achieved when the mobile device is only used for data
input and display without executing any other computation, for example mobile
web browsers [25]. However, some latency sensitive edge native applications that
have high computation demand require partial offloading, which can be achieved
through different partitioning strategies. In this case, some of the application tasks
are offloaded for execution in the edge containers. For example, Augmented Reality
(AR) is composed of four major tasks: video feed from the camera, object tracking,
scene rendering, and display. The object tracking is a compute intensive task that
needs to be offloaded. In another strategy, both object tracking and scene rendering
can be offloaded [25].

The applications are partitioned at many different granularity levels. Partitioning
algorithms model workflows at method or class level [20], functional level [19],
object level, or thread level [26]. In edge computing it is more cost effective to
partition at a task/component level as partitioning at coarser levels is expensive due

538 M. Jaseemuddin et al.

to data and context dependency at those levels [25]. Application design using micro-
service architecture facilitates the migration of applications to cloud by deploying
each service and its dependencies in its own container [28].

Application partitioning can be specified by programmers. The code is ana-
lyzed to identify compute-intensive components or methods and assign them with
bandwidth and compute criteria that needs to be met for the offloading to happen.
Alternatively, programmers could also annotate computation-intensive methods that
need to be offloaded. Automated partitioning subsequently analyzes the code at
runtime using this annotation to make offloading decisions [20]. Program analysis
is usually done by using a graph-based model that represents interactions between
different levels of partition granularities – methods, objects, or tasks [25].

Static partitioning by programmers may not be the optimal solution to use when
offloading the latency-sensitive application components to the edge cloud. The
wireless network parameters such as bandwidth and latency change with time, and
the dynamic partitioning of the application are more effective in meeting these time
dependent constraints.

3.2 Latency-Aware Offloading

The partitions offloaded to the edge cloud are intrinsically latency-sensitive for
edge native applications. This latency can be represented as the turnaround time
of a service request launched from the mobile device [23]. The turnaround time is
defined as the duration from the submission time of the request to the time when the
results are back to the device from the edge cloud. This duration TATR is represented
as:

Turnaround time of Request R:

T AT R =
n∑

i=1

PT ti + T T C
Mob + T T Mob

C

Where:
∑n

i=1PT ti is the total execution time of all the tasks in the container
T T C

Mob is the input data transmission time from the mobile to the container
T T Mob

C is the transmission time of the results back to the mobile device

T T C
Mob = DSout

tj

DR
is the transmission time of the result to the mobile device, DR is

the data rate allocated to the mobile device at the submission of the job to the
container, and tj is the last task executed in the container.

The data rate of a mobile device varies due to mobility and wireless channel
conditions. For example, a mobile device may move from one network type (e.g.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 539

cellular) to another (e.g. WiFi), or it may move from one cell to another within
the same network. When the mobile device is connected through a high data rate
link, the task’s execution could be slowed down without causing major noticeable
change in user experience. This can offer edge cloud providers an opportunity to
reduce its cost by exploiting the elongated deadline. Alternatively, when the data
rate is low, the execution times in the cloud shrinks to make up for the lost time due
the communication delay. This concept is facilitated by introducing the slack time
[24].

3.2.1 Slack Time (Float Time)

The workflow has a deadline Wd that needs to be met when executing the workflow
tasks in the cloud container. The turnaround time of the workflow TAT should be
equal to or less than Wd, TAT ≤ Wd. The difference between Wd and TAT is called
slack time Tslack.

Tslack = Wd − T AT

If the slack time is small, then the workflow needs to be executed closer to the
deadline. Alternatively, if the slack time is large, then the cloud can slow down the
execution to reduce computing and resource usage cost.

Adapting the system to the new slack time: If the slack time increases by a margin
�, then the start time of the task could be delayed. This may release a resource that
can be given to a long-awaited task belonging to another workflow. However, this
arrangement can only work for the workflows that are executed in the same cloud
container.

3.3 Computation Offloading (Machine Learning-Based
Algorithms)

In [27] the computation offloading is modeled as a job shop scheduling problem.
Offloading from a mobile user perspective can be viewed as a Directed Acyclic
Graph as shown in Fig. 5. The user is presented as the root node and the
vertex weights represent costs of energy or latency that are associated with the
vertex. Moreover, the partition/aggregate application structure is adopted where the
aggregate node Ai represents the independent job shop to which a user sends a set
of jobs J that are to be scheduled on the available servers (worker machines) on the
worker nodes W(n,m).

An intelligent computation framework using the concepts of knowledge-Defined
Networking (KDN) is designed in [27]. The KDN uses Network Analytics (NA) and
Software-Defined Network (SDN) to build a Knowledge Plane (KP) and a control

540 M. Jaseemuddin et al.

Fig. 5 Job scheduling problem represented as a multi-tier partition/aggregate application structure
[27]

Fig. 6 Energy and time vs data size relationship for varying bandwidth based on the training data
collected through simulation [27]

plane, respectively. The KP is a high-level model of the network system that builds
a Machine Learning (ML) model using historical data as the training data for the
model and uses ML techniques to perform the offloading decision.

The framework consists of a pre-trained prediction model for estimating network
features, namely energy consumption and transmission time, by varying bandwidth
and transmitted data size. The prediction model was built by first collecting network
data for training. The plots of sample training data in Fig. 6 shows that both features,
energy consumption and transmission time, have a linear relationship with the data
size. The slopes of the energy-data and time-data lines are exponential functions of
bandwidth. Hence, the predicted feature values can be computed using the following
function:

fb (ds) = m (b) ds + c (b)

where m(b) and c(b) are slope and y-intercept respectively that are functions of the
bandwidth b, and the predicted feature, energy and time, is a function of data size
ds. A multi-step regression approach was used to estimate the slope function m(b)
from the historical data set as training data.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 541

The predicted network feature values are laid out in a multi-dimensional
space (e.g. a two-dimensional energy-time space) called a hyper-profile to make
offloading decisions. The hyper-profile is a feature space that consists of points and
dimensions. A single point represents a unique server instance, and each dimension
of the point represents a predicted metric. These metrics are qualitative measures
that indicate how fit each server is with respect to the user device (aggregator),
which is placed in the hyper-profile feature space. The position of the user device is
considered as the origin so that the distance between the user device and the server
can be used as a measure for server selection. The smaller the distance between the
origin and the node (server), the more desirable the node is as a target for offloading.
For this purpose, kNN (k-nearest neighbor) algorithm is used and a kNN query
is performed at the origin to select the optimal destination nodes for computation
offloading for the placement of k jobs (application partitions). The kNN (q) returns
a set of points for a query point q such that p ∈ kNN(q) iff |{j ∈ P: d(j, q) < d(p,
q)}| < k where d is a predefined distance metric.

kNN often uses Euclidean as a distance metric. Using Euclidean distance means

that x2
i + y2

i values are minimal for the points pi = (xi, yi) returned by kNN (
−→
0),

where in this case x is the energy consumption, y is the transmission time, and

points represented by kNN (
−→
0) are the servers that minimize energy consumption

and latency.
The application for edge cloud designed for offloading utilizes platforms for their

deployment in the edge cloud. Container is generally used for their low startup time
and small memory footprint as discussed in the next section.

4 Service Provisioning in Edge Cloud

In contrast to central cloud datacenters, edge clouds need a mechanism to provision
resources for backend services of mission critical applications with stringent low
latency (~10 ms) requirements such as IoT, augmented reality (AR) and autonomous
vehicles etc. The resource provisioning needs an abstraction with the ability
to migrate these services between the heterogeneous computing servers located
in geographically distributed edge clouds. Virtualization technologies including
virtual machines (VMs) and containers provide the abstraction of the execution
environment to run applications inside and allow them to utilize emulated hardware
resources through hypervisors. This supports hardware heterogeneity and facilitates
VM or container migration between physical servers without impacting execution
results. Another important benefit of virtualization is the isolation of an instance
of a VM from other instances of VMs meaning that every single instance gets a
unique environment on the same physical hardware; therefore, any fault or security
breach experienced by one instance does not affect all other VM instances. However,
complete isolation cannot be achieved for containers since they share the same
operating system (OS); hence, they need to be designed in a way that minimizes

542 M. Jaseemuddin et al.

such incidents. Below we will review some of the important advantages and
disadvantages of using VMs and containers and why containers are a better choice
in edge computing environments. We will then review some container orchestration
technologies available and how the edge applications and resources can be managed
with some insights to locality-aware container scheduling methods and state-of-the-
art container migration algorithms to move containers between nodes quickly.

4.1 Container and VM Provisioning

The design consideration for edge clouds is to provide latency, bandwidth con-
straints and reliability to applications, whereas the focus of central cloud (such as
public cloud) design is to meet the scalability requirements. Hence, the edge clouds
are generally smaller in size with a lower pool of resources available as compared
to central clouds. Enterprise edge clouds may have large pool of resources, but they
are fewer than other edge clouds. The virtual machines (VMs) normally have a large
footprint of resources allocated to them mainly the disk storage space managed by
their own dedicated operating systems (OS). Provisioning VMs with large amount of
resources in edge clouds where available resources are limited become unattractive.
Further, the VMs host a limited number of containers. Slow migration of VMs is
another reason why VMs are unattractive virtualization technology for edge clouds.
The migration of VMs (or containers) between edge nodes without noticeable
downtime is a requirement especially for some applications such as connected
vehicles that move between edge clouds. Since a VM runs dedicated OS, its
migration involves transfer of large disk space and memory footprint between edge
clouds that are connected through limited bandwidth over the WAN. Containers
on the other hand are small in size and take a small footprint of resources such
as disk space compared to VMs as they share the underlying OS. The sensitive
data is stored locally at the edge and the passive data is pushed back to the central
cloud networks via NFS or other secure protocols. The containers may have similar
read-only base image layers that may already exist on most of the edge nodes,
which are normally bootstrapped with the large part of the preinstalled daemons
and software templates. The container migration involves dumping and transferring
only the modified part of the memory and writeable image layer(s) that are required
to bring up the container in the destination edge node. Another factor that impacts
migration latency is the VM or container boot time. In the case of a VM, the boot
time of an instance is equal to the time to accomplish boot process of a full-fledged
computer system. In contrast, the container boot time is much lower as it uses the
host OS kernel which is already loaded into the memory of the host. The availability
of shared OS for containers is a major benefit to edge clouds where fast service
provisioning is critical to reduce latency. Management, maintenance, and patching
of a single OS for containers is relatively easy compared to updating isolated VM
OS upgrades and patching. Figure 7 depicts a high-level overview of the VM and
container management systems [29]. The study of an I/O intensive application over

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 543

Fig. 7 Traditional, VM, and container deployment system [29]

VM (using KVM hypervisor) and container shows that the container gives either
equal or better transactions/sec performance as compared to KVM [30]. This shows
that the I/O overhead of hypervisor (KVM) is higher for the VM I/O especially
for short I/Os than the container’s I/O overhead. Overall, containers allow real-time
service provisioning, reduce migration time, and require less resources as compared
to VMs, which make them a preferable virtualization technology for edge clouds.

4.2 Container Orchestration

Containers are generally used as the virtualization technology in edge clouds.
The edge-aware service provisioning utilizes the process and tools developed for
container orchestration on heterogenous hardware resources to achieve application
level quality of service (QoS) management policies, fault tolerance, energy and cost
efficiency and resource utilization. There have been several efforts in academia and
industry to develop service provisioning systems for cloud. The following are more
mature container orchestration and edge cloud technology designed specifically for
edge workloads, some of which are used in practice: Kubernetes [31] KubeEdge
[32], Baidu OpenEdge [33] and StarlingX [34].

4.2.1 Kubernetes

Kubernetes [31] is developed by Google for large-scale container cluster orches-
tration and management that employs Docker as underlying container management
system. It is now an opensource container cluster orchestration and management
tool hosted by Cloud Native Computing Foundation (CNCF). Some features of the
Kubernetes include:

544 M. Jaseemuddin et al.

• Service discovery and load balancing: Kubernetes provides access to contain-
ers either through the DNS name or IP addresses. It also distributes the network
traffic for load balancing if the container traffic is high so that the deployment
remains stable.

• Storage orchestration: Kubernetes allows automatic mount of a variety of
storage systems selected by the user suitable for their deployment strategy, such
as local storage, storage with public cloud providers etc.

• Automated rollouts and rollbacks: A desired state for the deployment of
containers can be defined using Kubernetes that it attains through a transition
process at a controlled rate. For example, the process of creating new containers,
adapting the resource allocation to the new container, and removing existing
containers can be automated through Kubernetes.

• Automatic bin packing: Kubernetes automate the deployment of containers on a
cluster of nodes by selecting best node through bin packing based on container’s
CPU and memory (RAM) needs.

• Self-healing: Kubernetes performs container health check and restarts a failed
container and replaces or shuts down a non-responsive container. It only adver-
tises a ready container to the clients.

• Secret and configuration management: Kubernetes allows storing and manag-
ing sensitive information, such as passwords, OAuth tokens, and SSH keys.

Kubernetes Cluster is a set of compute nodes or machines for running container-
ized applications, which is managed through at least one Master. It works on a
variety of underlying infrastructure such as bare metal servers, virtual machines,
public cloud providers, private clouds, and hybrid cloud environments. Figure 8
shows components of the Kubernetes cluster. In general, it consists of a few key
components that form the complete cluster solution:

• Control Plane or Master: One or more Master nodes that control all aspects of
the cluster like node provisioning, scheduling, decommissioning, and scaling of
the cluster.

• Worker Node(s): These are hosts or servers that can be physical or virtual where
container pods are deployed. They are managed by the master node.

• Kubelet: It is an agent that runs on worker nodes and interact with the control
plane for container management and reporting.

• Pods: It represents a single instance of an application. Each pod is a container,
such as a Docker container, or a series of tightly coupled containers, along with
options that govern how the containers are run.

• Container runtime engine: Each compute node has a container runtime engine
to run the containers. For example, Docker or an Open Container Initiative-
compliant runtime such as containerd, rkt and CRI-O.

• Kube-API-Server: It exposes Kubernetes API as a frontend for interacting,
commanding, and managing a cluster.

• ETCD: It is a key-value repository of cluster data information.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 545

Fig. 8 Kubernetes cluster components [31]

• Kube-Scheduler: It selects a compute node and assigns that to a newly created
Pods to run on. It makes the scheduling decision based on parameters, such as
resource requirement, policy constraints, data locality, deadlines etc.

• Kube-Controller-manager: It manages the operation of a cluster and includes
following functions: The Replication controller consults the scheduler to ensure
correct number of pods are running. The Endpoints controller populates the
endpoints object, such as it joins services and pods. The Service Account
controller creates default accounts and a Token controller provides API access
tokens for new namespaces. There is also a Node controller that detects when a
node goes down and responds to it.

• Kube-proxy: Each compute node also contains a kube-proxy, which is a network
proxy to manage network communication inside or outside of the cluster.

• Persistent storage: Kubernetes also manages the application data attached to a
cluster. It allows users to request a persistent storage in a cluster independent of
a pod, which can outlive the life of a pod.

• Container registry: Kubernetes provides its own container registry to store
container images. It also allows using a third-party registry.

546 M. Jaseemuddin et al.

Fig. 9 High level design of
KubeEdge [32]

4.2.2 KubeEdge

KubeEdge [32] is an opensource project based on Kubernetes that offers edge-cloud
infrastructure to connect resource-constrained devices at the edge with the central
cloud. Figure 9 shows architecture of KubeEdge. In the edge platform, KubeEdge
downloads containers and serverless functions from remote repository in the cloud
via EdgeHub and saves them locally. It retrieves the data from EventHub, which
collects data and events from end device. It then launches containers and serverless
functions to serve the requests and start computations. EdgeSync synchronizes the
information about the containers and serverless functions among the edge nodes by
using ETCD distributed key-value store of Kubernetes.

4.2.3 StarlingX

StarlingX [34] is a fully integrated edge cloud software stack based on Open Stack
cloud suite [36]. It is an open source project supported by major industry leaders.
It offers Kubernetes powered containerized clusters with the ability to deploy up
to a hundred of edge server nodes in a single cluster. Some of the key features of
StarlingX are as follows:

1. All-In-One (AIO) solution to create a fully functional multipurpose edge cloud
optimized for the ultra-low latency and performance goals of edge applications.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 547

Fig. 10 shows building blocks of the StarlingX edge cloud platform [34]

2. Ease of deployment: Predefined configurations to support different edge cloud
deployment models. Tested and released as a complete full-stack solution with
compatibility between its opensource components.

3. Features to offer service management, high security, fault tolerant, high service
uptime, high availability, fast response to events and fast recovery.

It integrates Open Stack and Kubernetes with the following additional building
blocks for the deployment of distributed edge sites controlled through a centralized
edge cloud as shown in Fig. 10: Configuration Management, Fault Management,
Host Management, Service Management, and Software Management. The Star-
lingX edge cloud infrastructure is similar to Kubernetes with some additional
components that includes controller node(s) to control the edge stack; worker nodes
to run the containers; optional storage nodes with CEPH software to store file and
objects; management network between the controller, worker, storage and other
nodes for management of nodes; optional storage network for data transfer; data
network for internal and external communication of containers; optional IPMI and
PXE-boot networks for booting and configuration management of servers; and
external OAM network for StarlingX API calls.

4.3 Cloud Resource Management

The edge cloud brings compute and data resources closer to the end-user devices
to process these data. This decreases the amount of data transferred to and from

548 M. Jaseemuddin et al.

the central cloud networks resulting in faster communication with users. The non-
real-time data can be sent back to the central cloud for further processing as
needed. Unlike central cloud resources, the resources that are available in the edge
cloud have following features: (1) limited computing power, (2) heterogeneous
computing resources as the resources are provided by different third party and
end-users, and (3) they are to dynamic workloads with strict QoS requirements.
The resource management includes architecture, infrastructure, and algorithms [35].
Edge resource management architecture can be divided into dataflow, control, and
tenancy architectures. Dataflow architecture defines the movement of workloads and
data from the central cloud and user devices to the edge cloud. Control architecture
defines how the available edge resources are managed in the cloud network, either
through a single centralized management or through a distributed multi-controller
setup. Tenancy architecture defines the hosting of single or multiple instances or
entities on edge nodes. Data-flow architecture includes aggregation, sharing and
offloading. In aggregation the data from multiple end-user devices are gathered
and filtered to remove and filter excess data, which reduces the communication
overhead and decreases the data transfer between edge and central clouds. Resource
sharing helps satisfy the computing requirements of the workload by using peer
device resources with enough battery power. It avoids offloading workload to the
cloud. Finally, offloading techniques are used when sharing of the workload is not
feasible. It allows the application to be offloaded to the edge cloud for processing
to take advantage of more powerful and resourcefulness of the edge. For example
the database of an application can be replicated at the edge from the central cloud
to be used and shared by different applications or for the purpose of seamless query
execution at the edge only if the edge nodes are not resource constrained.

Infrastructure management is the second component of resource management
that includes hardware, software, and middleware to manage the computing,
network, and storage resources. Hardware component of infrastructure management
includes low-power mobile devices, routers, and gateways. Another aspect is the
design and implementation of algorithms for proper management of the cloud
resources. These algorithms include: (1) Discovery algorithms to identify the
edge cloud resources for distributed computation; (2) Benchmarking algorithms
to capture the performance of the edge cloud resource for better decision-making
in service deployments; (3) Load balancing algorithms to distribute the cloud
workload based on defined criteria such as fairness and priorities; and (4) Placement
algorithms to find a suitable location for containers and services to reduce IO and
network contention [35].

4.4 Locality-Aware Container Scheduling

Classical hypervisors provide an isolated environment and dedicate exact amount
of resource to every virtual machine it hosts without the need for resolving
resource contention among those VMs. Unlike virtual machines, containers share

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 549

the operating system kernel and boot up as applications running on a server. The
container takes a part of or the whole system IO, disks, and network bandwidth.
When multiple containers and their dependent services run on a system and compete
for resources, the ensuing resource contention increases the application response
time [36].

The design objective of edge clouds is to minimize the response time of
applications to meet the latency requirement of users. Container scheduler is respon-
sible for assuring contention-free resource assignment, but most of the existing
schedulers employ simple load balancing schemes such as round-robin without
making application-specific dependency checks between containers for their IO,
computing and network contentions. The round robin placement of applications
without collocating their dependent services on the same node can cause inter-node
traffic surge [36]. Hence, bundling the application with its dependent services in a
single container reduce this traffic overhead. Even containerized deployment of data
intensive applications can cause disk IO contention that can increase the execution
time of an application [36]. The disk IO contention happens due to contention for
using a single disk head. However, compute intensive and data intensive applications
do not intervene and exhibit sufficient isolation among resource usage [36].

Based on above observations Zhao et al. proposed a locality-aware container
scheduling algorithm that considers both IO contention and network traffic in
making container placement decisions [36]. The algorithm, as shown in Table 1,
schedules applications A1 . . .Ai on C1 . . .Cj containers locating all IO access
within the container. These containers are deployed on nodes that are organized
in Zones such that inter-zone traffic is several orders of magnitude slower than
intra-zone traffic. The zone represents a geographical area. The dependencies among
applications are captured in a Dependency matrix D, where Dij = 1 indicates that
Ai has IO dependency on Aj. The traffic exchange among containers are captured in
a Traffic matrix T, where Tij = 1 indicates the cost of traffic exchange between
containers Ci and Cj, which is significantly different when the containers are
located within the same zone as compared to when they are located in different
zones. The problem of locality-aware scheduling is to minimize the IO contention
of a container, which occurs when the total application IO bandwidth of all the
applications scheduled on the container exceeds the container’s IO bandwidth. Since
the solution of this problem is exponential, instead of minimizing IO contention
the algorithm maximizes the number of applications scheduled on a container such
that the total IO bandwidth of the applications does not exceed the container’s IO
bandwidth. It sorts both applications in the increasing order of their IO requirements
and containers in the increasing order of their available IO bandwidth. It assigns
an application to the first container in the sorted container list that has available
IO resource close to or higher than the application’s IO needs while satisfying
the application’s CPU, Memory, and disk space requirements. It iterates over all
applications and within each iteration the position of a container in the sorted list is
adjusted after assigning an application to that container [36].

The above algorithm assigns applications to a container without factoring in
its network traffic load. Considering network traffic, the problem becomes finding

550 M. Jaseemuddin et al.

Table 1 Heuristic container deployment algorithm [36]

out placement of applications in zones while upholding following condition in
addition to satisfying their CPU, memory, and disk constraints: The total traffic cost
between an application and the services it depends on is minimized while keeping
the covariance of the load in a zone within a user defined threshold. Therefore, the
problem for an application to achieve the minimal network traffic is defined in the
following formula. Given Ai we find Zj (1 ≤ j ≤ |Z|) such that [36]:

argj min
∑

k

Di,k × Tj,zone(Ak)

subject to

CV (Z) ≤ UDT

Zj.cpu > Ai.cpu.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 551

Zj.ram > Ai.ram

Zj.disk > Ai.disk

Where CV(Z) is the covariance of a zone’s load and UDT is a user defined threshold.
The load and traffic can be combined for the joint optimization of the locality-aware
scheduling. The scheduler output is a mapping function F(M) that finds the best
zone to deploy the container based on the weighted combination of the normalized
network traffic (tr) and its weight α with the normalized coefficient of variance (cv)
and its weight β, as shown in the following equation [36].

argM min (FM)

where

F(M) = ∝ .tr(M) + β.cv(M)

α + β

subject to

Zj.cpu > Aj.cpu

Zj.ram > Aj.ram

Zj.disk > Aj.disk

Zj.io > Aj.io

In above equation the normalized traffic is computed as the ratio of the applica-
tion’s actual traffic to the aggregate bandwidth, and the normalized load is computed
as the coefficient of variance of all the loads on a zone [36]. The Diego scheduler
[37] of Cloud Foundry was modified to simulate and analyze the algorithm. In
one test case eight random containers were deployed on two nodes (REP1 and
REP2) in two zones (Z0 and Z1). The application dependency matrix includes
two independent applications and six applications that are dependent on each other.
The traffic matrix includes the cost of inter-node traffic, which is ten times higher
than the cost of intra-node traffic. The result shows that the unmodified Diego
scheduler performed simple load balancing and placed 4 containers on different
nodes generating significant inter-node traffic. The locality-aware Diego scheduler
placed 6 containers on one node and 2 containers on another node to achieve tenfold
reduction of the inter-node traffic.

552 M. Jaseemuddin et al.

4.5 Container Migration

Container migration is a method of migrating lightweight containers between one
server to another within the same edge or between two different edge clouds. The
migration schemes are available for both Linux containers (LXC) and Docker. As
we mentioned earlier initialization and start-up of containers is quite fast, which
helps expedite the migration process. Migration of live containers is desirable for
several reasons, for instance: (1) to maintain low latency access in case of mobile
users such as connected vehicles, (2) to distribute load across servers, and (3) to
optimize energy consumption by consolidating loads on few servers and shutting
down the remaining servers. Reasons 2 and 3 provide the rationale for Virtual
Machine (VM) migration too. Even though VM migration exists in datacenters
and its technology has matured over the years, container migration is a relatively
new area with potential for improvement in developing its algorithm. VM migration
works well but its process is slow due to the big size of VMs and long VM boot
time, which is another reason that VM is not suitable for edge computing, where
low latency applications need fast migration during service hand-over between edge
servers.

The container migration involves a migration decision that triggers the migration
process. The migration decision could be a simple trigger detecting the mobility of
the user device, e.g. the Radio Network Information Service (RNIS) in 5G network
can provide an early indicator of user experiencing cell change [3]. Alternatively,
it could be a complex algorithm that may use context framework as discussed in
Sect. 2 and consider multiple factors such as mobility, resource availability, QoS
assurance etc. The container migration process includes three basic steps:

1. Freeze the operation of the container and checkpoint its state.
2. Transfer the container image along with saved state to the target server.
3. Restart container operation from the point of migration at the target server by

restoring the saved state.

In the following subsections we only focus on the container migration process
and discuss two important container migration systems – LXC migration and
Docker migration.

4.5.1 Linux Container (LXC) Container Migration

LXC container is a container hypervisor solution that provides full virtualization,
and it is a viable choice for containers in edge clouds environments. It offers near
bare-metal virtualization and has advanced storage and network support.

The LXC container migration follows a three step migration process. In steps 1
and 3 it needs a checkpoint and recovery tool to save and restore the container state.
CRIU is a software tool to perform checkpoint and restore in user space. It is used
to freeze a live container and checkpoint its state in a set of files. After transferring

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 553

Fig. 11 LXC container migration with MPTCP [38]

the files, CRIU is called at the destination to restore the state from the files. CRIU
assumes that both checkpoint and restore happens under the same file structure,
which can be achieved either by using the shared file system at both source and
destination or copy the file structure at the source and transfer that to the destination.
The files corresponding to the container image are transferred using either RSYNC
or SCP. RSYNC is Linux’s de-facto differential file transfer tool with the ability
to ignore duplicates. SCP copies files from the source to the destination servers
and overwrites existing files. It is good for first stage copying. To accelerate and
improve file transfer speed and stability, failover Multiprotocol TCP (MPTCP) can
be employed instead of normal TCP to create parallel connection links.

In [38], a container migration algorithm is presented. The algorithm is tested
by migrating a LXC container from one VM on the source server to another
VM on the destination server. The containers on edge servers are installed inside
virtual machines to create an extra layer of security. The CRIU works on privileged
containers that may have full root access. In this installation, if the containers are
compromised, the hackers cannot access the host server but only the VM that
significantly reduces the risk of compromising the server due to security breach.
Figure 11 shows the above implementation of the LXC based container system with
MPTCP [38]. The end-users and mobile applications access the edge services and
containers through the WAN. Lxcbr0 is a bridge that connects all the containers to
the host system which in this case is an edge Virtual Machine.

The migration steps are as follows [38]:

1. Checkpoint the running container LXC to a directory specified by /tmp/check-
point in the lxc-checkpoint -s -D /tmp/checkpoint -n LXC command to freeze and
dump the container files. The files will be saved as. MG and dump.log.

554 M. Jaseemuddin et al.

2. Copy the files from /tmp/checkpoint and /var/lib/lxc/container-name to the
destination edge server by using RSYNC command. The files in the first directory
contains saved state of the container. The second directory is the default directory
of the privileged containers. The RSYNC command copies both the frozen state
and the entire filesystem of the container from the source server to the destination
server, which essentially recreates the whole environment of the container at the
destination.

3. Restore the container in the destination edge server by using lxc-checkpoint -r
command that restores the files from the /tmp/checkpoint and /var/lib/lxc/container-
name directories. It then starts the container from the point its state was frozen.
This is the last step of the migration process.

One of the issues with CRIU is its inability to live migrate the container that is
it needs to suspend the container operation and freeze its state and then restore the
container state from the transferred files and resume its operation. This approach
leads to a small container downtime for the end-user. However, there are some
projects like P.haul [39] that makes it possible to live-migrate the container, but
the current implementation is based on freeze/restore approach.

4.5.2 Docker Container Migration

Docker is a container management system for creating and managing containers and
it is widely used in practice. Docker images are available via DockerHub central
repository which makes it easy to maintain and distribute custom-made images. It
has a large community of developers that provides a strong support base for adding
new features. The Docker release has no mechanism to manage the migration of
containers. A migration algorithm is proposed in [40] that utilizes the benefit of
layered structure of Docker to achieve low downtime. The Docker’s storage driver
supports multi layered image system of a running container with one top writable
(R/W) layer, called container layer, and several bottom Read-Only (RO) base image
layers. This makes it ideal for the migration algorithm to select and migrate the
modified data only during migration. Docker supports copy-on-write (COW) which
means all the writeable layers of the container are put into a thin layer of image file
and we just need to transfer this layer to migrate the container. The Base images
that are RO can be fetched from the DockerHub to the destination server before
even migration begins provided destination server is known in advance. Prefetching
of RO layers reduces the transfer time for base images significantly which leads
to fast migration process between the servers. Thus, Docker containers become
viable service provisioning abstraction for edge clouds serving mobile nodes such
as connected vehicles.

The storage management driver of Docker’s file system, AUFS, creates the
layered images upon container creation and stacks them in a way that each layer
references the other image layers as a hierarchy. The topmost layer is a writeable
(R/W) layer that refers to the next RO layer underneath and the reference goes down

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 555

Fig. 12 Memory layout of a
Docker container [40]

Fig. 13 Docker AUFS layered file system structure [40]

the chain of layers to the bottom most. Figures 12 and 13 depicts the layered file
system approach [40].

During the migration of Docker images, only the run-time memory states, and the
thin top writeable (R/W) image layer are transferred to the destination. Furthermore,
the size of the memory states and writeable layer can be decreased by using
compression methods. This leads to a fast hand over operation which is suitable
for migration of Docker containers over low-capacity WAN networks.

When a Docker container resumes its operation at the destination server, it
mounts all read-only and writeable image layers on a union mount point under
/mnt/<rootfs ID>/ so the filesystem appears unified with the file system before it
was powered off. The migration tools such as CRIU employs RSYNC to move
the files between the servers when the container is still running. It slows down
the migration process as it needs to transfer the whole file system. Another issue
that may arise is the filesystem contention error between the OS and RSYNC tool
since both need to access the files at the same time which may lead to migration

556 M. Jaseemuddin et al.

Fig. 14 Handoff service system architecture [40]

failure. Lastly, RSYNC transfers the whole file system into a single directory on the
destination server and corrupt the layered filesystem of Docker container and the
containers loses its layered storage system. To avoid moving the whole filesystem
an algorithm is designed as shown in Fig. 14 to accomplish this task and speed up
the process [40].

The migration algorithm for a running container from a source server to a target
destination server is described in the following steps [40]:

1. Synchronize Base Image Layers: Find the target server through a separate
mechanism, and then contact the target server to synchronize the base image
layers of the container.

2. Pre-dump Container: While the container is still running and before shutting
it down for migration, create a snapshot of the container runtime memory and
dump it to the target server.

3. Migration Request: The migration request received at the source server triggers
the migration process.

4. Stop and Checkpoint the Container: The migration process stops the container
and checkpoints its runtime states.

5. Synchronize Container Layer: The file system does not change after container
checkpoint. The container layer along with the checkpointed runtime states and
configuration files are transferred to the target server.

6. Reload Docker Daemon: The Docker daemon is reloaded at the target server to
reload the runtime state and configuration files and build the container.

7. Apply Memory Difference: After checkpointing the final memory dump is
compared to the pre-dumped memory in step 2. The memory differences are
generated and sent to the target server.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 557

8. Restore Container: After receiving the memory difference, the container is
restored at the target server.

9. Clean Up Source Node: Finally, the container footprint at the source server is
removed by simply removing the container.

The data transfer time from the source to the target server is the dominant
component of the migration time [40]. The migration time can be reduced by
(1) reducing the amount of data transfer, and (2) parallelizing and pipelining
some migration steps. The writable container layer can only be transferred after
shutting down the container. However, base image layers are RO layers that can
be transferred earlier. There are two different types of base image layers – the
common base image layers are from the DockerHub that can be transferred as
soon as the target server is known, while the other type includes base image layers
that created locally by a running container from its container layer. As soon as the
container creates its base image layer, it can be transferred to the target server. The
container memory dump can also be transferred in two steps to reduce the exposure
of transfer time to the container shutdown time. The initial memory dump is created
before starting the container that can be transferred as soon as the target server is
known. After checkpointing container, a memory difference is created and only the
difference is transferred while the container is shut down for migration. The memory
and disk dumps are compressed by bzip2 compression method to further speedup the
transfer process. The compression and transfer can happen in parallel using Linux
pipes over secure SSH channels to speed up the process. The layered architecture
of Docker AUFS makes the migration process more efficient that results in reduced
migration time. However, the drawback of AUFS is that it has high I/O overhead
that reduces the performance of I/O intensive applications [30].

4.6 Case Study: Rocket Video Analytics

Real-time video analytics involve recognition and tracking of objects in video
streams collected from multiple video cameras each generates 30 frames per second
that require high compute power. The applications that use analytics to interact
with human (augmented reality) or activate an actuator (traffic light control) require
low latency. A team in Microsoft research has developed software stack of video
analytics, called Rocket, which was deployed in Bellevue, Washington, to track
volumes of cars, bikes, and pedestrians and raise alerts when anomalous traffic
pattern is detected [9]. Figure 15 shows the Rocket software stack that is used
by applications for traffic planning, surveillance, etc. The applications involve
processing of high-level video queries, for instance tracking a suspicious person for
a surveillance application. The video cameras are deployed with local computation
serving as fog nodes where frames can be pre-processed. The frames and associated
data are dispatched to the edge cloud for further processing. The video pipeline
optimizer of the stack converts a raw video query into a pipeline process of

558 M. Jaseemuddin et al.

Fig. 15 Software stack of Rocket video analytics [9]

vision modules such as a pipeline of video decoding, object recognition and object
tracking modules. It develops a resource-accuracy profile of the query based on the
relationship between the resource configuration of modules and the desired level of
accuracy of their execution. Generating resource-accuracy profile is a challenging
task because it involves processing a large number of configuration parameters and
their combinations. The profile is processed by the resource manager to allocate
CPU, GPU, network, and other resources that are geo-distributed over fog nodes,
private clusters, and edge clouds. The manager schedules resources to thousands of
query profiles for accuracy instead of fairness, which gives profiles that require high
accuracy preferential access to resources for the same level of allocated resources.
Video-analytics of live streams from traffic monitoring cameras at intersections and
surveillance cameras showed that accuracy-based scheduler achieves 80% more
average accuracy than a fairness-based scheduler.

The modules of the pipeline are deployed at the camera or offloaded to the edge
cloud server. The placement and offloading decisions are application dependent
that utilize intelligent frame processing and application level optimization. The
processing of every frame is prohibitive. An object tracking application detects
a moving object and follows it from one frame to the next in a stream of video
frames. It is a compute intensive task that processes a single frame on a 8-core
processor in 1 s [9]. It can be performed in two stages – object recognition followed
by object tracking [44]. The object tracking is a less compute intensive task; hence,
it can be performed in the fog node. The object recognition pipeline includes three
modules that are offloaded to the edge cloud as shown in Fig. 16. The detection
module detects an object through high level features such as contours of a car and
locate it using bounding boxes. The feature extraction module extracts features from
within the bounding boxes. Finally, the recognition module labels the object. The
object recognition incurs significant delay during that the camera view moves 20

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 559

Fig. 16 Glimpse processing [44]

frames forward finding the location of the object stale in the new frame [44]. For
example, the object moves away from its location in frame 0, which is selected for
object recognition, in a future frame 20 representing the current view. Rocket stack
incorporates a technique developed in Glimpse [44], which selects a frame, called
trigger frame, and uploads it for deep vision processing to the object recognition
pipeline in the edge cloud server. The fog node (camera) stores subsequent frames
in its active cache as shown in Fig. 16. The server performs object detection,
feature extraction, and object recognition by labeling the object through the Deep
Neural Network (DNN) machine learning process. It returns bounding boxes, object
features, and the object label to the fog node for object tracking. The fog node
tracks the object in the sequence of frames stored in the active cache by estimating
the displacement of object features from one frame to another. It cannot process
every frame from the trigger frame up to the current frame because the processing
delay will cause user view to move forward many frames. The Glimpse employs an
adaptive subsampling strategy to select a subset of frames compromising accuracy
of tracking for low processing delay.

5 Future Work

The application design and service provisioning for edge cloud is a growing area.
The new paradigm of microservice architecture for cloud applications provides

560 M. Jaseemuddin et al.

natural boundaries for the partitioning of applications to optimize offloading
decisions. It also facilitates scalable deployment of applications in the edge cloud.
The low application latency needs improvement in the container registry design
for fast container image download that reduces the application startup time. The
distributed nature of edge cloud requires a cloud service broker for container
placement and resource allocation to meet user SLAs. We discussed each of these
new areas below for future work.

Cloud application design based on the new paradigm of microservice architecture
utilizes its modularity, flexibility, and ability to scale with user demands. Unlike
monolithic code base, the cloud application, with the new approach, is composed of
modules that are implemented as stand-alone microservices. The service interfaces
of these modules are implemented using either event-based or asynchronous calls
to interact with other modules. The new design approach facilitates migration of
applications to clouds as each microservice can be deployed independently in its
own container with all its dependencies [28]. Microservice design is also amenable
for computation offloading since the placement decision of a microservice can be
optimized independently for the local objective function.

The low-latency operation of containers requires fast bootstrapping. The con-
tainer framework incorporates a registry where users upload their container images
for sharing. Dockerhub is one popular registry that stores terabytes of data and
adds 1500 repositories of images daily. The Docker daemon gets an image from
the registry when it is needed by the container it runs. The startup time of containers
grows with the size of the images and the number of concurrent requests at the
registry. A trace-based analysis of IBM Docker cloud registry shows that more than
80% requests that most of the registry sites receive are pull requests for layers [41].
The distribution of layers shows that 80% of the layers were of the size less than
10 MB. The concurrent request load experienced by some registry sites was as high
as 100 requests per minute for 80% of the requests. The response time distribution
shows that up to 60% response times were within 1 s while top 25% response times
were 10 s or higher. This study shows that there is a need to improve the registry
design for faster container startup time [41].

The diversity of edge clouds administered by different service providers and
mobile network operators (MNO) form federated cloud structure. The deployment
of edge cloud applications and their dependencies in federated cloud requires
cloud brokering service [42], which negotiates SLAs with the service providers for
resource allocation and service availability. The broker performs service discovery,
service ranking, service selection, service allocation and monitoring of SLAs [42].
Containerization of microservice based cloud applications provides a common
virtualization platform for resource allocation across diverse clouds through cloud
service broker, which decides deployment and migration of containers to meet
latency requirements [43]. Some emerging use cases require application federation
across operators that are local and across borders. For example, public safety
applications (V2X use cases) where users/vehicles need to communicate to the same
backend.

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 561

References

1. M. Satyanarayanan and N. Davies, Augmenting Cognition Through Edge Computing, IEEE
Computer, pp. 37–46, July 2019.

2. S. Noghabi, L. Cox, S. Agarwal and G. Ananthanarayanan, The Emerging Landscape of Edge
Computing, ACM GetMobile, Vol. 23, No. 4, pp. 11–20, Dec. 2019.

3. MEC in 5G networks, ETSI White Paper No. 28, June 2018 (www.etsi.org)
4. Cloud RAN and MEC: A Perfect Pairing, ETSI White Paper No. 23, Feb 2018 (www.etsi.org)
5. StarlingX Project Overview, https://www.starlingx.io/collateral/

StarlingX_Onboarding_Deck_for_Web.pdf
6. Harmonizing standards for edge computing, ETSI White Paper No. 36, July 2020

(www.etsi.org)
7. L. Lin, X. Liao, H. Jin and P. Li, Computation Offloading Toward Edge Computing, Proc. Of

The IEEE, Vol. 107, No. 8, pp. 1584–1607, Aug. 2019.
8. J. Wang, Z. Feng, S. George, R. Iyengar, P. Pillai, and M. Satyanarayanan, “Towards

Scalable Edge-native Applications,” in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing (SEC’19), pp. 152–165, Nov. 2019.

9. G. Ananthanarayanan, et al, Real-Time Video Analytics: The Killer App for Edge Computing,
IEEE Computer, pp. 58–66, Oct. 2017.

10. Dey and G. Abowd, “Towards a better understanding of context and context-awareness”,
Proceedings of Workshop on the What, Who, Where, When and How of Context-Awareness,
The Hague, Netherlands, April 2000.

11. T. Gu, et al., An ontology-based context model in intelligent environments, Proceedings of
Communication Networks and Distributed Systems Modeling and Simulation Conference. San
Diego, California, USA, 2004.

12. T. Strang, C. Linnhoff-Popien, A Context Modeling Survey. In: Workshop on Advanced
Context Modeling, Reasoning, and Management as part of UbiComp 2004, Nottingham 2004.

13. P. Nurmi, M. Martin, and J. A. Flanagan, Enabling proactiveness through Context Prediction,
in Proceedings of the Workshop on Context Awareness for Proactive Systems (CAPS, Helsinki,
Finland, June 2005), Helsinki University Press, pp 159–168, 2005.

14. Claudio Bettini, Oliver Brdiczka , Karen Henricksen, Jadwiga Indulska, Daniela Nicklas,
Anand Ranganathan, Daniele Riboni, A survey of context modeling and reasoning techniques,
Pervasive and Mobile Computing, v.6 n.2, p.161–180, April 2010.

15. Y. Lee, Y. Ju, C. Min, J. Yu and J. Song, “MobiCon: Mobile context monitoring platform:
Incorporating context-awareness to smartphone-centric personal sensor networks,” 2012 9th
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks (SECON), Seoul, 2012, pp. 109–111, doi: https://doi.org/10.1109/
SECON.2012.6275765.

16. Lahlou, S., Langheinrich, M. and Rocker, C. (2005), “Privacy and Trust Issues with Invisible
Computers”. Communications of the ACM, 48.

17. Liang, Y., and Samavi, R. (2020), “Optimization-Based k-Anonymity Algorithms”, Computers
& Security, 93:101753, 2020.

18. M. Jia, J. Cao and L. Yang, “Heuristic offloading of concurrent tasks for computation-
intensive applications in mobile cloud computing,” 2014 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Toronto, ON, 2014, pp. 352–357.

19. I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the cloud: Enabling mobile
phones as interfaces to cloud applications,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009,
vol. 5896 LNCS, pp. 83–102.

20. E. Cuervo and A. Balasubramanian, “MAUI: making smartphones last longer with code
offload,” Proc. 8th . . . , vol. 17, pp. 49–62, 2010.

21. M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos, “MAPCloud: Mobile
applications on an elastic and scalable 2-tier cloud architecture,” in Proceedings – 2012

http://www.etsi.org
http://www.etsi.org
https://www.starlingx.io/collateral/StarlingX_Onboarding_Deck_for_Web.pdf
http://www.etsi.org
http://dx.doi.org/10.1109/SECON.2012.6275765

562 M. Jaseemuddin et al.

IEEE/ACM 5th International Conference on Utility and Cloud Computing, UCC 2012, 2012,
pp. 83–90.

22. M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC: Mobility-aware optimal
service allocation in mobile cloud computing,” in IEEE International Conference on Cloud
Computing, CLOUD, 2013, pp. 75–82.

23. A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud
computing application models,” IEEE Commun. Surv. Tutorials, vol. 16, pp. 393–413, 2014.

24. P. Balakrishnan and C. K. Tham, “Energy-efficient mapping and scheduling of task interaction
graphs for code offloading in mobile cloud computing,” in Proceedings – 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing, UCC 2013, 2013, pp. 34–41.

25. L. Lin, X. Liao, H. Jin and P. Li, “Computation Offloading Toward Edge Computing,” in
Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607, Aug. 2019, doi: https://doi.org/
10.1109/JPROC.2019.2922285.

26. B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: Elastic execution between
mobile devices and cloud,” in Proc. 6th Conf Comput. Syst., Apr. 2011, pp. 301–314.

27. A. Crutcher, C. Koch, K. Coleman, J. Patman, F. Esposito and P. Calyam, “Hyper Profile-
Based Computation Offloading for Mobile Edge Networks,” 2017 IEEE 14th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, 2017, pp. 525–529,
doi: https://doi.org/10.1109/MASS.2017.91.

28. V. Singh, and S. K. Peddoju, Container-based microservice architecture for cloud applications.
In IEEE International Conference on Computing, Communication and Automation (ICCCA),
pp. 847–85, 2017.

29. Doug Chamberlain. Containers vs. Virtual Machines. [Online]. Available: https://
blog.netapp.com/blogs/containers-vs-vms

30. W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, An Updated Performance Comparison of
Virtual Machines and Linux Containers, In IEEE ISPASS (2015).

31. Kubernetes overview. [Online]. Available: https://kubernetes.io/docs/concepts/overview/what-
is-kubernetes/

32. KubeEdge, a Kubernetes Native Edge Computing Framework. [Online]. Available: https://
kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/

33. Zeyi Tao, Qi Xia, Zijiang Hao, Cheng Li, Lele Ma, Shanhe Yi, and Qun La. A Survey of Virtual
Machine Management in Edge Computing. Proceedings of the IEEE | vol. 107, no. 8, pp. 1–16,
August 2019.

34. StarlingX Project Overview. https://www.starlingx.io/collateral/
StarlingX_Onboarding_Deck_for_Web.pdf

35. Cheol-Ho Hong and Blesson Varghese. A Survey on Resource Management in Fog/Edge
Computing, ACM Computing Surveys, vol. 52, no. 1, pp. 1–37, 2019.

36. Dongfang Zhao, Mohamed Mohamed and Heiko Ludwig. Locality-Aware Scheduling for
Containers in Cloud Computing, IEEE Transactions on cloud computing, vol. 8, no. 2, pp.
1–12, 2020.

37. Diego Project. (2015). [Online]. Available: https://github.com/cloudfoundry-incubator/diego-
release

38. Yuqing Qiu, Evaluating and Improving LXC Container Migration between Cloudlets Using
Multipath TCP, pp. 38–60, 2016

39. P. Haul, https://criu.org/P.Haul. Last accessed on Jul 20, 2016.
40. Lele Ma, Shanhe Yi, Qun Li, Efficient Service Handoff Across Edge Servers via Docker

Container Migration, pp.1–11, 2017
41. A. Anwar, et al, Improving Docker Registry Design based on Production Workload Anal-

ysis, 16th USENIX Conference on File and Storage Technologies, Feb. 2018. https://
www.usenix.org/conference/fast18/presentation/anwar

42. S. S. Chauhan, E. S. Pilli, R. Joshi, G. Singh, and M. Govil, Brokering in interconnected cloud
computing environments: A survey, Elsevier Journal of Parallel and Distributed Computing,
Vol. 133, pp. 193–209, Nov. 2019.

http://dx.doi.org/10.1109/JPROC.2019.2922285
http://dx.doi.org/10.1109/MASS.2017.91
https://blog.netapp.com/blogs/containers-vs-vms
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/
https://www.starlingx.io/collateral/StarlingX_Onboarding_Deck_for_Web.pdf
https://github.com/cloudfoundry-incubator/diego-release
https://criu.org/P.Haul
https://www.usenix.org/conference/fast18/presentation/anwar

Application Design and Service Provisioning for Multi-access Edge Cloud (MEC) 563

43. N. D. Keni and A. Kak, Adaptive Containerization for Microservices in Distributed Cloud
Systems, IEEE 17th Annual Consumer Communications and Networking Conference (CCNC),
2020.

44. T. Chen et al., “Glimpse: Continuous, Real-Time Object Recognition on Mobile Devices,”
Proc. ACM Conf. Embedded Networked Sensor Systems (SenSys 15), 2015, pp. 26–29. DOI:
https://doi.org/10.1145/2809695.2809711.

45. M. Rodriguez and R. Buyya, Deadline Based Resource Provisioning and Scheduling Algorithm
for Scientific Workflows on Clouds, IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.
222–235, April-June 2014.

http://dx.doi.org/10.1145/2809695.2809711

Simulating Fog Computing Applications
Using iFogSim Toolkit

Kamran Sattar Awaisi, Assad Abbas, Samee U. Khan, Redowan Mahmud,
and Rajkumar Buyya

Abstract Fog computing is a novel distributed computing paradigm that provides
cloud-like services at the edge of the network. It emerges as an efficient paradigm
to process the enormous amount of Internet of Things (IoT) data and can address
the limitations of cloud-centric IoT models in terms of large end-to-end delays,
and huge network bandwidth consumption. Recently, fog computing and IoT have
been employed in several domains, including transportation, education, healthcare,
and manufacturing industry. To imitate different complex application scenarios for
these domains, a notable number of fog computing-based simulators has already
been developed. Among them, iFogSim has attained significant attention because
of its simplified interface and low complexity. In this article, we present a tutorial
on how to use iFogSim toolkit to simulate four real-time case studies for (1) smart
car parking, (2) smart waste management system, (3) smart coal mining industry,
and (4) sensing as a service. This article is expected to assist the researchers
in understanding and implementing various aspects of fog computing using the
iFogSim toolkit.

Keywords Fog computing · iFogSim · Smart car parking · Smart waste
management system · Smart mining industry

K. S. Awaisi · A. Abbas (�)
COMSATS University Islamabad, Islamabad, Pakistan
e-mail: assadabbas@comsats.edu.pk

S. U. Khan
Mississippi State University, Mississippi, MS, USA
e-mail: skhan@msstate.edu

R. Mahmud · R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and
Information Systems, The University of Melbourne, Melbourne, VIC, Australia
e-mail: mahmudm@student.unimelb.edu.au; rbuyya@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_22

565

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_22&domain=pdf
mailto:assadabbas@comsats.edu.pk
mailto:skhan@msstate.edu
mailto:mahmudm@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1007/978-3-030-69893-5_22

566 K. S. Awaisi et al.

1 Introduction

Internet of Things (IoT) has connected billions of devices across the world and
is consistently promoting the realization of smart cyber-physical environments
including smart factories, smart homes, smart transport, and smart healthcare.
However, due to limited processing and storage capabilities of IoT devices, cloud
computing is often used as the backbone platform to provide computational capacity
and storage services to the IoT-enabled environments [1]. Nevertheless, cloud data-
centers have some potential challenges, such as large end-to-end delays and huge
network bandwidth consumption. These challenges pertinent to cloud computing
impact the response time of latency-sensitive real-time applications, for example
healthcare systems, traffic management, and fire control systems. Additionally, IoT
devices can generate an enormous amount of data within a very short period. When
every IoT device initiates sending these data to cloud servers, the performance of
cloud services is more likely to degrade.

Fog computing extends the cloud services near the edges of the network and
overcomes the challenges of cloud computing [2]. This new distributed computing
paradigm has exhibited tremendous potential to effectively process the data gener-
ated by millions of IoT devices [3]. Since fog computing brings computations closer
to the data generating devices, consequently the latency and network bandwidth
utilization are significantly minimized [4]. Compared to the cloud data centers, fog
nodes have less computational power and storage capacity. Therefore, fog and cloud
computing paradigms work in an integrated manner to provide resources for large-
scale IoT systems.

Since the fog computing systems involve fog nodes, cloud data centers, and
IoT devices; therefore, the real-world implementation of fog scenarios for research
purposes is very expensive [5]. In such situations, simulation and validation of fog
scenarios with the help of toolkits are very beneficial. Currently, there are several
simulation toolkits available, such as FogNetSim++ [6], Edgecloudsim [7], and
iFogSim [8] for modeling and simulating the fog computing environments. Among
these toolkits, iFogSim has significantly attracted the attention of the researchers
and is being used to model a variety of fog computing cases. In this article, we aim
at providing a tutorial on iFogSim to help the researchers quickly understand the
fundamental concepts and the advanced implementation steps. To make the study
more intriguing, we implement four real-time fog-based scenarios namely, (1) smart
car parking system, (2) smart waste management system, (3) smart mining industry,
and (4) sensing as a service in the iFogSim. The tutorial not only provides step by
step installation guidelines but also contains instructions to simulate the scenarios
and create devices, classes, and objects in the iFogSim. Moreover, the tutorial
also presents the corresponding code snippets of all the case studies simulated
in iFogSim. The remainder of the article is organized as follows: Sect. 2 briefly
discusses the installation and setup of iFogSim. Section 3 presents case studies and
code snippets whereas Sect. 4 concludes the paper.

Simulating Fog Computing Applications Using iFogSim Toolkit 567

2 Installation and Setup of iFogSim

iFogSim is a Java based open-source simulation tool for simulating fog computing
scenarios. It is developed by Harshit Gupta and the team at the Cloud Computing
and Distributed Systems (CLOUDS) Lab University of Melbourne Australia [8].
The following are the steps to download, install, and setup the iFogSim.

1. Download the iFogSim source code in the zip file from the GitHub https://
github.com/Cloudslab/iFogSim.

2. Extract the iFogSim zip file and there will be a folder named iFogSim-master.
3. Make sure that you have installed Java Runtime Environment (JRE) or Java

Development Kit (JDK) 1.7 or more.
4. Install Eclipse Mars or any latest release on the computer.
5. Define the workspace for the Eclipse Integrated Development Environment

(IDE).
6. Create a new folder for the iFogSim in the Eclipse workspace and paste all the

files and content of the iFogSim-master in this folder or you can simply copy
the iFogSim-master folder and paste it into the workspace folder

7. Open the Eclipse IDE and create the new Java project.
8. Make sure that the name of the Java project is the same as the name of the folder

as you have created in the workspace for iFogSim.
9. Now open the src of the project and explore the package org.fog.test.perfeval.

In this package, you will find three example scenarios of iFogSim.
10. Open any example scenario, explore it, and run it. You will get the results on

the console.

3 Case Studies

This section presents the four case studies that are implemented using the iFogSim
toolkit. Section 3.1 presents the case study of a smart car parking system, Sect. 3.2
explains the smart waste management system, Sect. 3.3 describes the smart mining
industry case study and Sect. 3.4 discusses the sensing as a service case study.

3.1 Smart Car Parking System

Most of the people are moving towards the cities due to better facilities and
resources. Owing to the increasing population to the cities, the number of vehicles
on the roads have increased enormously as the personal vehicles have become a
significant transportation resource nowadays. Consequently, finding the vacant car
parking space has become a potential issue in the populated areas. People spend a
lot of time finding the vacant car parking space which essentially results in CO2

https://github.com/Cloudslab/iFogSim
https://github.com/Cloudslab/iFogSim

568 K. S. Awaisi et al.

emission, time wastage, and fuel wastage. Parking problems have attracted more
consideration in the past few years and many researches have proposed IoT based
car parking solutions. We presented a fog based smart car parking architecture in [9]
to solve the car parking issues by using fog computing. The fog-based car parking
architecture consists of the following:

– Smart cameras
– Fog nodes
– Light Emitting Diode (LED) display screens
– A cloud server

The smart cameras are deployed in the parking lanes which take the image of the
parking lanes and transmit the images to the fog node. On the fog node, we have
implemented an image processing algorithm to identify those parking slots which
are vacant. After detecting the vacant parking slots, the parking slots information
is updated on the LED. The data is stored in the fog node for a limited amount
of time, and then it is moved to the cloud server for permanent storage. When the
vehicle arrives at the parking gate, the driver finds the vacant car parking space
immediately and parks the vehicle on the desired location. The information on the
LED is updated after every 5 s interval. The communication between the fog node
and the cloud server is enabled through a proxy server. The fog-based car parking
system is displayed in Fig. 1.

Building Scenario with iFogSim for Smart Parking System To simulate the
smart car parking scenario, we need to create two modules in iFogSim i.e.

Fig. 1 Fog based smart car parking system

Simulating Fog Computing Applications Using iFogSim Toolkit 569

Fig. 2 Fog based smart car
parking system application
model of iFogSim

picture-capture and slot-detector. The picture-capture module is embedded in smart
cameras. The smart cameras are programmed in such a way that it takes the pictures
after a specific time interval of 5 s and transmits the images to the fog node. We can
attach the micro-controller device with the smart cameras to establish a connection
with the fog node.

Moreover, we create a proxy server and a cloud server. The proxy server enables
the communication between the fog node and the cloud server. The cameras here
act as the sensor as well. In iFogSim, when we create any device which takes the
input to the system for processing, we call it a sensor and any device which receives
the output after processing is termed as the Actuator. The sensors, actuators, and fog
devices are created in iFogSim using their respective classes. In the smart parking
system scenario, the cameras are created and attached to the fog node. Figure 2
depicts the data flow of the smart parking application model. The picture-capture
module is created in smart cameras. It is programmed to capture the pictures of
parking lane after every 5 s.

The pictures are handed over to the second module which is a slot-detector and
it detects the vacant parking slots. In iFogSim, any computation elements are called
modules.

Building Simulation with iFogSim for Smart Car Parking System The iFogSim
provides built-in classes to create fog nodes, sensors, and actuators. It also takes care
of resource allocation and management policies. The following classes will be used
to create a smart car parking scenario in iFogSim.

1. FogDevice: This class provides a constructor to create the fog devices and
to define the hardware properties of the fog devices i.e. node name (name of
the device to be used in simulation), MIPS (Million Instructions Per Second),
RAM (main memory of the fog node), uplink bandwidth, downlink bandwidth,
level (hierarchy level of the device), ratePerMips (cost rate per MIPS used),
busyPower (the amount of power consumed when the fog node is in busy state),
and idlePower (the amount of power used when the fog node is in the idle state).
When we create the fog device, all these parameters are assigned values. In our
implementation of the case studies, all the computational devices are created
using the FogDevice class.

2. Sensor: By using the sensor class, we create IoT devices in iFogSim. While
creating the sensors, we define the gateway device id and setup link latency.

570 K. S. Awaisi et al.

Gateway device is the device with whom the sensor is attached and any devices,
such as a router, fog node, or a proxy can serve as the Gateway. Setup link latency
is the latency time to create a connection between the sensor and fog device.
Normally, we set the setup link latency time between 1 to 3 ms.

3. Actuator: Actuator class allows to create the objects in iFogSim that are used to
display the output or any information. In the smart car parking scenario, the LED
is created actuator because the vacant car parking slot position will be displayed
on the LEDs. The actuator needs to be connected with any gateway device. The
gateway device sends the data to actuator. Therefore, when we create actuator in
iFogSim, we define the gateway device id and setup link latency.

A new class in org.fog.test.perfeval package is required to create for simulating
this scenario in iFogSim. The FogDevice class lets you to create fog nodes with
different configurations by providing a constructor. A code snippet to create
heterogeneous fog devices is given below:

Code Snippet-1 This code snippet is to be placed in the main class.

//Here we are creating a list for fog devices.
static List<FogDevice> fogDevices = new ArrayList<FogDevice>();
static List<Sensor> sensors = new ArrayList<Sensor>();
static List<Actuator> actuators = new ArrayList<Actuator>();
static int numOfAreas = 7; //the number of fog nodes
static int numOfCamerasPerArea1=10;
// the number of cameras per fog node.
static double CAM_TRANSMISSION_TIME = 5; //time interval
private static boolean CLOUD = false;
private static void createFogDevices(int userId, String appId) {
FogDevice cloud = createFogDevice("cloud", 44800, 40000,
100, 10000, 0, 0.01, 16*103, 16*83.25);
cloud.setParentId(-1);
fogDevices.add(cloud);
FogDevice proxy = createFogDevice("proxy-server", 2800, 4000,
10000, 10000, 1, 0.0, 107.339, 83.4333);
proxy.setParentId(cloud.getId());

double costPerStorage
proxy.setUplinkLatency(100);
fogDevices.add(proxy);
for(int i=0;i<numOfAreas;i++){
addArea(i+"", userId, appId, proxy.getId());
}
}

private static FogDevice addArea(String id, int userId,
String appId, int parentId){
FogDevice router = createFogDevice("a-"+id, 2800, 4000,
1000, 10000, 2, 0.0, 107.339,83.4333);
fogDevices.add(router);
router.setUplinkLatency(2);
for(int i=0;i<numOfCamerasPerArea1;i++){
String mobileId = id+"-"+i;

Simulating Fog Computing Applications Using iFogSim Toolkit 571

FogDevice camera = addCamera(mobileId, userId,
appId, router.getId());
camera.setUplinkLatency(2);
fogDevices.add(camera);
}
router.setParentId(parentId);
return router;
}

private static FogDevice addCamera(String id, int userId,
String appId, int parentId){
FogDevice camera = createFogDevice("c-"+id, 500, 1000, 10000,
10000, 3, 0, 87.53, 82.44);
camera.setParentId(parentId);
Sensor sensor = new Sensor("s-"+id, "CAMERA", userId, appId, new
DeterministicDistribution(CAM_TRANSMISSION_TIME));
sensors.add(sensor);
Actuator ptz = new Actuator("ptz-"+id, userId,
appId, "PTZ_CONTROL");
actuators.add(ptz);
sensor.setGatewayDeviceId(camera.getId());
sensor.setLatency(40.0);
ptz.setGatewayDeviceId(parentId);
ptz.setLatency(1.0);
return camera;
}

Code Snippet-2 This code snippet is to be placed in the newly created main class.
In this code snippet we are creating the modules on fog devices and assigning these
modules to fog nodes. Figure 3 illustrates the physical topology of the car parking
system in iFogSim that we have created in the code-snippet 1 and code-snippet 2.

private static Application createApplication
(String appId, int userId){
Application application =
Application.createApplication(appId, userId);
application.addAppModule("picture-capture", 10);
application.addAppModule("slot-detector", 10);
// adding edge from CAMERA (sensor) to picture-capture module
carrying tuples of type CAMERA
application.addAppEdge("CAMERA", "picture-capture", 1000, 500,
"CAMERA", Tuple.UP,
AppEdge.SENSOR);
application.addAppEdge("picture-capture", "slot-detector",
1000, 500, "slots",Tuple.UP, AppEdge.MODULE);
// adding edge from Slot Detector to PTZ CONTROL (actuator)
application.addAppEdge("slot-detector", "PTZ_CONTROL", 100,
28, 100, "PTZ_PARAMS",
Tuple.UP, AppEdge.ACTUATOR);
application.addTupleMapping("picture-capture", "CAMERA", "slots",
new FractionalSelectivity(1.0));
application.addTupleMapping("slot-detector", "slots",
"PTZ_PARAMS", new FractionalSelectivity(1.0));

572 K. S. Awaisi et al.

Fig. 3 iFogSim topology of smart car parking system

final AppLoop loop1 = new AppLoop(new ArrayList<String>()
{{add("CAMERA");
add("picture-capture");add("slot-detector");
add("PTZ_CONTROL");}});
List<AppLoop> loops = new ArrayList<AppLoop>(){{add(loop1);}};
application.setLoops(loops);
return application;
}

3.2 Smart Waste Management System

With the rapid increase in population and urbanization, the waste generation level
in the cities is increasing day by day. Waste is generated by humans and by every
living thing. Wherever life and human beings are, the waste will be generated
there. According to the World Bank Report published in 2012 [10], the solid
waste management generation level was about 1.3 billion tons per year and it
will reach 2.2 billion tons per year in 2025. Nonetheless, the generation of waste
cannot be prevented; however, introducing smart measures to collect and manage
the generated waste can help in providing health environments [11]. The timely
collection of waste not only prevents the spread of several diseases but also plays
its part in keeping the environment green, clean, and healthy. A cloud-based waste
management system is presented in [12] where authors used the cloud server to
automate the waste management system. The smart waste bins are connected to the
cloud server. The waste level information is transmitted to the cloud server after a
specific time interval. If the waste level has reached the threshold value, then the
waste is collected otherwise no action is taken unless the waste bin generates an
alert indicating that the threshold level is reached.

Cloud computing is suffering from many problems like a large end to end delay
and huge network bandwidth consumption [13]. In case, if we increase the number

Simulating Fog Computing Applications Using iFogSim Toolkit 573

of smart waste bins connected with the cloud server, then there will be network
congestion and it will not be easy to handle and manage the waste data from all the
areas. In a certain community belonging to developing countries, there is a need to
place smart waste bins at different points in streets that people can use to throw the
waste. In this case, if all the waste bins are connected to the cloud server, it will
cause latency and network usage problems. The best possible solution for this is to
geographically partitions different areas and subsequently connect the waste bins of
a particular area to a specific data management server. Consequently, deployment
of fog nodes in the waste management system will make it more efficient and easily
manageable for all the concerned stakeholders.

Building Scenario with iFogSim for Smart Waste Management System In the
proposed fog-based waste management system, there are different waste bins. Each
waste bin is allocated to a different kind of waste, such as kitchen waste, plastic,
paper and cardboard, and metal. Smart waste bins will be placed in rural areas to
manage and collect waste properly and efficiently. Each waste bin is equipped with
the sensor (Ultrasonic sensor HC-SR04) to notify the waste level. Ultrasonic sensors
emit the waves at a specific frequency and then wait for the wave to be reflected
back. Based on the distance and the time taken back after reflection, we measure
the percentage or level of waste in the bin. Figure 4 depicts the fog-based waste
management system. The smart waste bins are connected to the fog server via a
router device.

Figure 5 shows the data flow application model of the fog-based smart waste
management system. In this scenario, five modules will be created. Waste-info-
module collects the waste level information of the waste bins. The module passes
the data to the master-module which is basically responsible for managing the waste
information on the fog node. We create the separate modules for all the stakeholders,
such as healthcare department, recycling unit, and head of the municipal authority
to disseminate the waste collection information among the relevant collection staff.
These modules represent the logical placement and creation of connection for each
stakeholder at the fog node. The location tracking feature of waste collectors can be
implemented in real time implementation of smart waste management system.

Building Simulation with iFogSim for Smart Waste Management System
To simulate the smart waste management scenario, first make a new class in
org.fog.test.perfeval package.

Code Snippet-3 This code snippet is to be placed in main class. In this code
snippet we are adding the modules to the fog devices. Cloud mode is set to FALSE,
and all the computational operations will be performed at fog nodes. In case if
cloud mode is set to TRUE, then all the modules will be placed on cloud server,
and all the computations will be performed on cloud server. There is no need to
change the module placement. The code is commented so that you can develop the
understanding of code. This code snippet should be added in the main method after
initializing the module mapping.

574 K. S. Awaisi et al.

Fig. 4 Fog-based smart waste management system architecture

Fig. 5 Fog based smart waste management system application model of iFogSim

Simulating Fog Computing Applications Using iFogSim Toolkit 575

//Create the list of fog devices
static List<FogDevice> fogDevices = new ArrayList<FogDevice>();
//Create the list of sensors
static List<Sensor> sensors = new ArrayList<Sensor>();
//Create the list of actuators
static List<Actuator> actuators = new ArrayList<Actuator>();
//Define the number of areas
static int numOfTotalAreas = 10;
//Define the number of waste bins with each fog nodes
static int numOfBinsPerArea=1;
//We are using the fog nodes to perform the operations.
//cloud is set to false
private static boolean CLOUD = false;
public static void main(String[] args) {
Log.printLine("Waste Management system...");
try {
Log.disable();
int num_user = 1; // number of cloud users
Calendar calendar = Calendar.getInstance();
boolean trace_flag = false; // mean trace events
CloudSim.init(num_user, calendar, trace_flag);
String appId = "swms"; // identifier of the application
FogBroker broker = new FogBroker("broker");
Application application = createApplication(appId,
broker.getId());
application.setUserId(broker.getId());
createFogDevices(broker.getId(), appId);
Controller controller = null;
ModuleMapping moduleMapping = ModuleMapping.createModuleMapping();
for(FogDevice device : fogDevices){
if(device.getName().startsWith("b")){
// names of all Smart Bins start with ’b’
moduleMapping.addModuleToDevice("waste-info-module",
device.getName());
// mapping
waste information module on waste bins
}
}
for(FogDevice device : fogDevices){
if(device.getName().startsWith("a")){
// names of all fog devices start with ’a’
// mapping master-module on area devices.
moduleMapping.addModuleToDevice("master-module",
device.getName());
// mapping health-module on area devices
moduleMapping.addModuleToDevice("health-module",
device.getName());
// mapping recycle-module on area devices.
moduleMapping.addModuleToDevice("recycle-module",
device.getName());
// mapping municipal-module on area devices.
moduleMapping.addModuleToDevice("municipal-module",
device.getName());
}

576 K. S. Awaisi et al.

}
if(CLOUD){ // if the mode of deployment is cloud-based
// placing all instances of master-module in the Cloud
moduleMapping.addModuleToDevice("master-module", "cloud");
// placing all instances of health-module in the Cloud
moduleMapping.addModuleToDevice("health-module", "cloud");
//placing all instances of recycle-module in the Cloud
moduleMapping.addModuleToDevice("recycle-module", "cloud");
// placing all instances of municipal-module in the Cloud
moduleMapping.addModuleToDevice("municipal-module", "cloud");
}

controller = new Controller("master-controller",
fogDevices, sensors, actuators);
controller.submitApplication(application,
(CLOUD)?(new ModulePlacementMapping(fogDevices,
application, moduleMapping))
:(new ModulePlacementEdgewards(fogDevices, sensors,
actuators, application, moduleMapping)));
TimeKeeper.getInstance().setSimulationStartTime(
Calendar.getInstance().
getTimeInMillis());

CloudSim.startSimulation();

CloudSim.stopSimulation();

Log.printLine("waste management simulation finished!");
}
catch (Exception e) {

e.printStackTrace();
Log.printLine("Unwanted errors happen");
}
}

After adding this code snippet initialize the controller object.

Code Snippet-4 This code snippet is to be placed in main class. In this code snippet
we are creating the heterogeneous fog devices. The fog nodes will be placed in
geographical distributed location and we will also need the location of the smart
bin therefore, while creating the fog nodes and smart bins, we are setting the x-
coordinate and y-coordinate value of the fog nodes and smart bin. In case of smart
bin, the location awareness will help us to know that in which area or street, a
particular waste bin is placed. Moreover, the fog node location will help us to
be aware of the location of the particular fog node. In code snippet-6, we have
created a method which generates the random values and these random value are
then assigned as x and y coordinate to the waste bins and fog nodes.

private static void createFogDevices(int userId, String appId) {
FogDevice cloud = createFogDevice("cloud", 44800, 40000, 100,
10000, 0, 0.01, 16*103, 16*83.25);
cloud.setParentId(-1);
fogDevices.add(cloud);

Simulating Fog Computing Applications Using iFogSim Toolkit 577

FogDevice router = createFogDevice("proxy-server", 7000, 4000,
10000, 10000, 1, 0.0,
107.339, 83.4333);
router.setParentId(cloud.getId());
// latency of connection between proxy server and cloud is 100 ms
router.setUplinkLatency(100.0);
fogDevices.add(router);
for(int i=0;i<numOfTotalAreas;i++){
addArea(i+"", userId, appId, router.getId());
}
}
//creating the fog nodes for each area
private static FogDevice addArea(String id, int userId,
String appId, int parentId){
FogDevice area_fognode = createFogDevice("a-"+id, 5000, 4000,
10000, 10000, 3, 0.0, 107.339, 83.4333);
fogDevices.add(area_fognode);
area_fognode.setUplinkLatency(1.0);
for(int i=0;i<numOfBinsPerArea;i++){
String mobileId = id+"-"+i;
FogDevice bin = addBin(mobileId, userId,
appId, area_fognode.getId());
bin.setUplinkLatency(2.0);
fogDevices.add(bin);
}
//assigning x coordinate value to the fog node
area_fognode.setxCoordinate(getCoordinatevalue(10));
//assigning y coordinate value to the fog node
area_fognode.setyCoordinate(getCoordinatevalue(10));
area_fognode.setParentId(parentId);
return area_fognode;
}
//creating the smart waste bins
private static FogDevice addBin(String id, int userId,
String appId, int parentId){
FogDevice bin = createFogDevice("b-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);
bin.setParentId(parentId);
Sensor sensor = new Sensor("s-"+id, "BIN", userId, appId,
new DeterministicDistribution(getCoordinatevalue(5)));
sensors.add(sensor);
Actuator ptz = new Actuator("act-"+id, userId,
appId, "ACT_CONTROL");
actuators.add(ptz);
sensor.setGatewayDeviceId(bin.getId());
sensor.setLatency(1.0);
ptz.setGatewayDeviceId(parentId);
ptz.setLatency(1.0);
//assigning x coordinate value to the smart bin
bin.setxCoordinate(getCoordinatevalue(10));
//assigning y coordinate value to the smart bin
bin.setyCoordinate(getCoordinatevalue(10));
return bin;
}

578 K. S. Awaisi et al.

Code Snippet-5 This code snippet is to be placed in main class.

private static Application createApplication
(String appId, int userId){

Application application =
Application.createApplication(appId, userId);
application.addAppModule("waste-info-module", 10);
application.addAppModule("master-module", 10);
application.addAppModule("recycle-module", 10);
application.addAppModule("health-module", 10);
application.addAppModule("municipal-module", 10);

application.addAppEdge("BIN", "waste-info-module",1000, 2000,
"BIN", Tuple.UP,
AppEdge.SENSOR);
application.addAppEdge("waste-info-module", "master-module",
1000, 2000, "Task1",
Tuple.UP, AppEdge.MODULE);
application.addAppEdge("master-module", "municipal-module",
1000, 2000, "Task2",
Tuple.UP, AppEdge.MODULE);
application.addAppEdge("master-module", "recycle-module",
1000, 2000, "Task3",
Tuple.UP, AppEdge.MODULE);
application.addAppEdge("master-module", "health-module",
1000, 2000, "Task4",
Tuple.UP, AppEdge.MODULE);
application.addAppEdge("master-module", "ACT_CONTROL",
100, 28, 100, "ACT_PARAMS",
Tuple.UP, AppEdge.ACTUATOR);
application.addTupleMapping("waste-info-module",
"BIN", "Task1",
new FractionalSelectivity(1.0));
application.addTupleMapping("master-module", "BIN", "Task2",
new FractionalSelectivity(1.0));
application.addTupleMapping("master-module", "BIN", "Task3",
new FractionalSelectivity(1.0));
application.addTupleMapping("master-module", "BIN", "Task4",
new FractionalSelectivity(1.0));
application.addTupleMapping("master-module", "BIN", "ACT_CONTROL",
new FractionalSelectivity(1.0));

final AppLoop loop1 = new AppLoop(new ArrayList<String>()
{{add("BIN");
add("waste-info-module");add("master-module");
add("municipal-module");
add("recycle-module");add("health-module");
add("ACT_CONTROL");}});
List<AppLoop> loops = new ArrayList<AppLoop>(){{add(loop1);}};

application.setLoops(loops);
return application;
}

Simulating Fog Computing Applications Using iFogSim Toolkit 579

Code Snippet-6 This code snippet is to be placed in main class. In this code snippet,
we have created a method will generate the random number.

private static double getCoordinatevalue(double min)
{
Random rn=new Random();
return rn.nextDouble()+min;
}

Code Snippet-7 This code snippet is to be placed in FogDevice class. This code
snippet is taken from [5]. We have declared two variables xCoordinate, and
yCoordinate to store the value of x and y coordinate respectively.

public double xCoordinate;
//specifying the xCoordinate of the fog device
public double yCoordinate;
//specifying the yCoordinate of the fog device
//method to set the value of xCoordinate
public void setxCoordinate(double xCoordinate)
{
this.xCoordinate=xCoordinate;
}
//method to get the value of xCoordinate
public double getxCoordinate()
{
return xCoordinate;
}
//method to set the value of yCoordinate
public void setyCoordinate(double yCoordinate)
{
this.yCoordinate=yCoordinate;
}
//method to get the value of yCoordinate
public double getyCoordinate()
{
return yCoordinate;
}

3.3 Smart Mining Industry System

Mining is one of the most important and prominent industries that requires a lot of
data analysis. With every passing day, the enormity of mining industry is increasing
day by day. According to the IBM research [14], the requirement of mines increasing
day by day and every individual requires approximately 3.11 million pounds of
fuel, minerals, and metals in his/her life. Despite its significance, mining industry
entails multiple risks. During the mineral and coal mining, chemical reactions,
hazardous gas emission, suffocation, and rock sliding are among the probable
risks that are hazardous for the lives of mining personnel [16]. Therefore, it is
important to employ the IoT devices, such as heterogeneous sensors to pick up the

580 K. S. Awaisi et al.

Fig. 6 Fog based smart mining industry application model of iFogSim

gases, chemicals, and the surrounding data and to inform the concerned personnel
regarding the undesired and dangerous situations. The surrounding sensors will
collect the data before the digging process. This can also reduce cost and save
the energy by predicting the probability of finding coal and minerals at certain
places before the actual digging process. Gas sensors can be deployed everywhere
in the mines that cannot only help in measuring the biological gases value in the
mines and tunnels but also control the emission of gases. Moreover, numerous
chemical reactions occur in the mines which can be very dangerous for human
labors working in the mine. Therefore, collecting and analyzing the surrounding,
biological gases and chemical reactions’ data is very useful in the mining industry
in making predictions about the digging process and hazardous events.

Building Scenario with iFogSim for Smart Mining Industry System To sim-
ulate this case study, first make a new class in org.fog.test.perfeval package. In
the fog based smart mining industry, there would be heterogeneous sensors i.e.
surrounding sensors, biological sensors, and chemical sensors that are connected to
the fog nodes through a router device. In the fog nodes, we create four modules that
include: (1) master module, (2) gasinfo-module, (3) chinfo-module, and (4) srinfo-
module. The master-module will collect the sensors data from all type of sensors.
It will categorize the data and send the specific data to the respective modules. For
example, the gas sensors data will be sent to the gasinfo-moudule. The gasinfo-
module will process the gas sensors data, analyze the gas values, and it will send
the response back to the master-module. The response is basically the action, which
will be taken in account of gas sensors values. Figure 6 depicts the data flow of the
smart mining industry application model.

Simulating Fog Computing Applications Using iFogSim Toolkit 581

Building Simulation with iFogSim for Mining Industry System To simulate this
scenario, first make a new class in org.fog.test.perfeval package.

Code Snippet-8 This code snippet is to be placed in the main class. In this code
snippet we created the variables for fog devices and sensors. Three type of sensors
variables are created for biological, chemical and surrounding sensors. Moreover,
the modules are placed on the fog nodes. This code snippet should be added in the
main method after initializing the module mapping.

//Create the list of fog devices
static List<FogDevice> fogDevices = new ArrayList<FogDevice>();
//Create the list of sensors
static List<Sensor> sensors = new ArrayList<Sensor>();
//Create the list of actuators
static List<Actuator> actuators = new ArrayList<Actuator>();
//Define the number of fog nodes will be deployed
static int numOfFogDevices = 10;
//Define the number of gas sensors with each fog nodes
static int numOfGasSensorsPerArea=1;
//Define the number of chemical sensors with each fog nodes
static int numOfChSensorsPerArea=1;
//Define the number of surrounding sensors with each fog nodes
static int numOfSrSensorsPerArea=1;
//We are using the fog nodes to perform the operations.
//cloud is set to false
private static boolean CLOUD = false;
public static void main(String[] args) {
Log.printLine("Waste Management system...");
try {
Log.disable();
int num_user = 1; // number of cloud users
Calendar calendar = Calendar.getInstance();
boolean trace_flag = false; // mean trace events
CloudSim.init(num_user, calendar, trace_flag);
String appId = "mins"; // identifier of the application
FogBroker broker = new FogBroker("broker");
Application application =
createApplication(appId, broker.getId());
application.setUserId(broker.getId());
createFogDevices(broker.getId(), appId);
Controller controller = null;
// initializing a module mapping
ModuleMapping moduleMapping =
ModuleMapping.createModuleMapping();
for(FogDevice device : fogDevices){
if(device.getName().startsWith("a")){
moduleMapping.addModuleToDevice("master-module",
device.getName());
if(device.getName().startsWith("g")){
moduleMapping.addModuleToDevice("gasinfo-module",
device.getName()); }
if(device.getName().startsWith("c")){
moduleMapping.addModuleToDevice

582 K. S. Awaisi et al.

("chemicalinfo-module", device.getName()); }
if(device.getName().startsWith("s")){
moduleMapping.addModuleToDevice
("srinfo-module", device.getName());
}}}
// if the mode of deployment is cloud-based
if(CLOUD){
// placing all instances of master-module in Cloud
addModuleToDevice("mastermodule", "cloud");
moduleMapping.addModuleToDevice("gasinfo-module", "cloud");
moduleMapping.addModuleToDevice("chinfo-module", "cloud");
moduleMapping.addModuleToDevice("srinfo-module", "cloud");}

controller = new Controller("master-controller", fogDevices,
sensors, actuators);
controller.submitApplication(application,
(CLOUD)?(new ModulePlacementMapping(fogDevices, application,
moduleMapping))
:(new ModulePlacementEdgewards(fogDevices, sensors, actuators,
application, moduleMapping)));

TimeKeeper.getInstance().setSimulationStartTime(
Calendar.getInstance().

getTimeInMillis());

CloudSim.startSimulation();

CloudSim.stopSimulation();

Log.printLine("mining industry simulation finished!");
} catch (Exception e) {
e.printStackTrace();
Log.printLine("Unwanted errors happen");
}
}

Code Snippet-9 It is to be placed in the main class. In this code snippet we are
creating cloud server, proxy server, fog nodes, gas sensors, chemical sensors, and
surrounding sensors.

private static void createFogDevices(int userId, String appId) {
FogDevice cloud = createFogDevice("cloud", 44800, 40000, 100,
10000, 0, 0.01, 16*103,
16*83.25);
cloud.setParentId(-1);
fogDevices.add(cloud);
FogDevice router = createFogDevice("proxy-server", 7000, 4000,
10000, 10000, 1, 0.0, 107.339, 83.4333);
router.setParentId(cloud.getId());
router.setUplinkLatency(100.0);
fogDevices.add(router);
for(int i=0;i<numOfFogDevices;i++){
addFogNode(i+"", userId, appId, router.getId());
}

Simulating Fog Computing Applications Using iFogSim Toolkit 583

}
private static FogDevice addFogNode(String id,
int userId, String appId, int parentId)
{
FogDevice fognode = createFogDevice("a-"+id, 5000, 4000, 10000,
10000, 3, 0.0, 107.339, 83.4333);
fogDevices.add(fognode);
fognode.setUplinkLatency(1.0);
for(int i=0;i<numOfGasSensorsPerArea;i++){
addGasSensors(i+"", userId, appId, fognode.getId());
}
for(int i=0;i<numOfChSensorsPerArea;i++){
addChSensors(i+"", userId, appId, fognode.getId());
}
for(int i=0;i<numOfSrSensorsPerArea;i++){
addSrSensors(i+"", userId, appId, fognode.getId());
}
return fognode;
}
private static FogDevice addGasSensors(String id, int userId,
String appId, int parentId){
FogDevice gasSensor = createFogDevice("g-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);
gasSensor.setParentId(parentId);
Sensor sensor = new Sensor("s-"+id, "GAS", userId, appId, new
DeterministicDistribution(5));
sensors.add(sensor);
Actuator ptz = new Actuator("act-"+id, userId,
appId, "ACT_CONTROL");
actuators.add(ptz);
sensor.setGatewayDeviceId(gasSensor.getId());
sensor.setLatency(1.0);
ptz.setGatewayDeviceId(parentId);
ptz.setLatency(1.0);
return gasSensor;
}
private static FogDevice addChSensors(String id, int userId,
String appId, int parentId){
FogDevice chSensor = createFogDevice("c-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);
chSensor.setParentId(parentId);
Sensor sensor = new Sensor("sch-"+id, "CH", userId, appId,
new DeterministicDistribution(5));
sensors.add(sensor);
Actuator ptzch = new Actuator("actch-"+id, userId,
appId, "ACT_CONTROLCH");
actuators.add(ptzch);
sensor.setGatewayDeviceId(chSensor.getId());
sensor.setLatency(1.0);
ptzch.setGatewayDeviceId(parentId);
ptzch.setLatency(1.0);
return chSensor;
}
private static FogDevice addSrSensors(String id, int userId,

584 K. S. Awaisi et al.

String appId, int parentId){
FogDevice srSensor = createFogDevice("s-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);
srSensor.setParentId(parentId);
Sensor sensor = new Sensor("ssr-"+id, "SR", userId, appId,
new DeterministicDistribution(5));
sensors.add(sensor);
Actuator ptzch = new Actuator("actsr-"+id, userId,
appId, "ACT_CONTROLSR");
actuators.add(ptzch);
sensor.setGatewayDeviceId(srSensor.getId());
sensor.setLatency(1.0);
ptzch.setGatewayDeviceId(parentId);
ptzch.setLatency(1.0);
return srSensor;
}

Code Snippet-10 It is to be placed in the main class. In this code snippet we are
creating the modules and mapping it to the fog devices.

private static Application createApplication(String appId,
int userId){
Application application = Application.createApplication(appId,
userId);
application.addAppModule("gasinfo-module", 10);
application.addAppModule("master-module", 10);
application.addAppModule("chinfo-module", 10);
application.addAppModule("srinfo-module", 10);
application.addAppEdge("GAS", "master-module",1000,
2000, "GAS", Tuple.UP, AppEdge.SENSOR);
application.addAppEdge("CH", "chinfo-module", 1000,
2000, "CH", Tuple.UP, AppEdge.SENSOR);
application.addAppEdge("SR", "srinfo-module", 1000, 2000,
"SR",
Tuple.UP, AppEdge.SENSOR);
application.addAppEdge("master-module", "gasinfo-module",
1000, 2000,
"gasTask", Tuple.UP, AppEdge.MODULE);
application.addAppEdge("master-module", "chinfo-module", 1000,
2000, "chTask", Tuple.UP, AppEdge.MODULE);
application.addAppEdge("master-module", "srinfo-module", 1000,
2000, "srTask", Tuple.UP, AppEdge.MODULE);
//Response
application.addAppEdge("gasinfo-module", "master-module",
1000, 2000, "gasResponse", Tuple.UP, AppEdge.MODULE);
application.addAppEdge("chinfo-module", "master-module",
1000, 2000, "chResponse", Tuple.UP, AppEdge.MODULE);
application.addAppEdge("srinfo-module", "master-module",
1000, 2000,"srResponse", Tuple.UP, AppEdge.MODULE);
application.addTupleMapping("master-module", "GAS", "gasTask",
new FractionalSelectivity(1.0));
application.addTupleMapping("master-module", "CH", "chTask",
new FractionalSelectivity(1.0));
application.addTupleMapping("master-module", "SR", "srTas",

Simulating Fog Computing Applications Using iFogSim Toolkit 585

new FractionalSelectivity(1.0));
application.addTupleMapping("gasinfo-module",
"gasTask", "gasResponse",
new FractionalSelectivity(1.0));
application.addTupleMapping("chinfo-module",
"chTask", "chResponse",
new FractionalSelectivity(1.0));
application.addTupleMapping("srinfo-module",
"srTask", "srResponse",
new FractionalSelectivity(1.0));

final AppLoop loop1 = new AppLoop(new ArrayList<String>()
{{add("GAS");
add("master-module");add("gasinfo-module");add("gasTask");
add("gasResponse");}});
final AppLoop loop2 = new AppLoop(new
ArrayList<String>(){{add("CH");
add("master-module");add("chinfo-module");
add("chTask")
;add("chResponse");}});
final AppLoop loop3 = new AppLoop(new
ArrayList<String>(){{add("SR");
add("master-module");add("srinfo-module")
;add("srTask");add("srResponse");}});
List<AppLoop> loops = new
ArrayList<AppLoop>(){{add(loop1);add(loop2)
;add(loop3);}};

application.setLoops(loops);
return application;
}

3.4 Sensing as a Service

Nowadays Unmanned Aerial Vehicles (UAVs) are widely used to support on-
demand IoT services [15]. The sensors and actuators associated with an UAV helps
in perceiving the external environments and triggering physical actions respectively
where the structured deployment of IoT devices is infeasible and costly. However,
UAVs are mobile in nature and most of them are energy constrained and are
equipped with limited processing capabilities [17]. Therefore, the data generated
by the UAVs requires assistance from Fog or Cloud computing paradigms to be
processed. It also demands faster networking support for real-time interactions [18].
Considering these requirements, we model an application case scenario and build a
simulation setup to illustrate the UAV-based sensing as a service in integrated Fog-
Cloud environments.

Building Scenario with iFogSim for UAV-Based Sensing as a Service Figure 7
depicts the conceptual integration of UAVs with gateways, Fog nodes and Cloud

586 K. S. Awaisi et al.

Fig. 7 Prospective computing environments for UAV-based sensing as a service

Fig. 8 Application model for UAV-based sensing as a service

data centers. Additionally, the data-driven interactions among these heteroge-
neous components can be realized through a distributed application as shown
in Fig. 8 where the Sensing and Actuation module operate on the UAV-based
sensor and actuator, respectively. The Sensing module forwards D_SENSOR to
the Client module which is more likely to be placed in the UAV. Later, the
Client module performs pre-processing of the sensor generated data and dispatches
to the Processing module. This module incorporates data analytic that help in
transforming the RAW_DATA to a meaningful information suitable for evaluation,
comparison and making actuation decisions. After performing such operations, the
Processing module generates two types of data namely PROCESSED_DATA and
ACTION_COMMAND that are directed to Storage and Client module respectively.
The Storage module preserves the outcome of Processing module for location-
independent and scalable distribution whereas the Client module digest the outcome
for generating the ACTUATION_SIGNAL for the Actuation module.

Building Simulation with iFogSim for UAV-Based Sensing as a Service To
simulate the prospective UAV-based sensing as a service scenario, a new class in
org.fog.test.perfeval package is required to be created.

Code Snippet-11 This code snippet helps in creating the computing environments
for UAV-based sensing as a service and it should be placed in the main class.

private static void createFogDevices(int userId, String appId) {

FogDevice cloud = createFogDevice("cloud", 44800, 40000, 100,

Simulating Fog Computing Applications Using iFogSim Toolkit 587

10000,0.01, 16*103, 16*83.25);
cloud.setParentId(-1);
locator.setLevel(cloud, 0);
FogDevice proxy = createFogDevice("proxy-server", 2800, 4000,
10000, 10000, 0.0, 107.339, 83.4333);
proxy.setParentId(cloud.getId());
proxy.setUplinkLatency(100);
locator.setLevel(proxy, 1);

fogDevices.add(cloud);
fogDevices.add(proxy);

for(int i=0;i<numOfGatewayDevices;i++){
FogDevice gateway = addGw("gateway_"+i,
userId, appId, proxy.getId());
gateway.setUplinkLatency(4);
locator.setLevel(gateway, 2);
fogDevices.add(gateway);
}

for(int i=0;i<numOfIoTDrones;i++){
FogDevice drone = addDrone("drone_"+i, userId, appId, -1);
drone.setUplinkLatency(2);
locator.setLevel(drone, 3);
fogDevices.add(drone);
}
}

private static FogDevice addGw(String name, int userId,
String appId, int parentId){
FogDevice gateway = createFogDevice(name, 2800, 4000, 10000,
10000, 0.0, 107.339, 83.4333);
//locator.setInitialLocation(name,gateway.getId());
gateway.setParentId(parentId);
return gateway;
}

private static FogDevice addDrone(String name, int userId,
String appId, int parentId){
FogDevice drone = createFogDevice(name, 500, 20,
1000, 270, 0, 87.53, 82.44);
drone.setParentId(parentId);
//locator.setInitialLocation(name,drone.getId());
Sensor droneSensor = new Sensor("sensor-"+name, "D-SENSOR",
userId, appId,
new DeterministicDistribution(SENSOR_TRANSMISSION_TIME));
sensors.add(droneSensor);
Actuator dronedisplay = new Actuator("actuator-"+name, userId,
appId, "D-DISPLAY");
actuators.add(dronedisplay);
droneSensor.setGatewayDeviceId(drone.getId());
droneSensor.setLatency(6.0);
dronedisplay.setGatewayDeviceId(drone.getId());
dronedisplay.setLatency(1.0);

588 K. S. Awaisi et al.

return drone;
}

Code Snippet-12 This code snippet creates the application model for UAV-based
sensing as a service and it is also required to be placed in the main class.

private static Application createApplication(String appId,
int userId){

Application application =
Application.createApplication(appId, userId);

application.addAppModule("clientModule", 10);
application.addAppModule("processingModule", 10);
application.addAppModule("storageModule", 10);

if(SENSOR_TRANSMISSION_TIME==5.1)
application.addAppEdge("D-SENSOR", "clientModule",
2000, 500, "D-SENSOR", Tuple.UP, AppEdge.SENSOR);
else
application.addAppEdge("D-SENSOR", "clientModule",
3000, 500, "D-SENSOR", Tuple.UP, AppEdge.SENSOR);
application.addAppEdge("clientModule",
"processingModule", 3500, 500, "RAW_DATA",
Tuple.UP, AppEdge.MODULE);
application.addAppEdge("processingModule",
"storageModule", 1000, 1000, "PROCESSED_DATA",
Tuple.UP, AppEdge.MODULE);
application.addAppEdge("processingModule",
"clientModule", 14, 500, "ACTION_COMMAND",
Tuple.DOWN, AppEdge.MODULE);
application.addAppEdge("clientModule", "D-DISPLAY",
1000, 500, "ACTUATION_SIGNAL", Tuple.DOWN,
AppEdge.ACTUATOR);

application.addTupleMapping("clientModule",
"D-SENSOR", "RAW_DATA",
new FractionalSelectivity(1.0));
application.addTupleMapping("processingModule",
"RAW_DATA", "PROCESSED_DATA",
new FractionalSelectivity(1.0));
application.addTupleMapping("processingModule",
"RAW_DATA", "ACTION_COMMAND",
new FractionalSelectivity(1.0));
application.addTupleMapping("clientModule",
"ACTION_COMMAND", "ACTUATION_SIGNAL",
new FractionalSelectivity(1.0));

final AppLoop loop1 = new AppLoop(new ArrayList<String>()
{{add("D-SENSOR");
add("clientModule");add("processingModule");
add("clientModule");

Simulating Fog Computing Applications Using iFogSim Toolkit 589

add("D-DISPLAY");}});
List<AppLoop> loops = new ArrayList<AppLoop>(){{add(loop1);}};
application.setLoops(loops);

return application;
}

4 Conclusions

In this article, we described the key features of iFogSim along with a step by step
installation and simulation guide to help researchers model and simulate difference
IoT and fog-based scenarios. To help readers gain a better understanding of the
iFogSim toolkit, we modeled four real-time case studies related to smart car parking,
smart waste management system, the smart mining industry and UAV-based sensing
as a service. Moreover, we provided the corresponding code snippets of every case
study. The simulation source codes of the case studies can be accessed from the link:
https://sites.google.com/site/assadabbasciit/.

References

1. R. Mahmud, K. Ramamohanarao, and R. Buyya, “Edge Affinity-based Management of
Applications in Fog Computing Environments,” in Proceedings - 12th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2019, 2019, pp. 61–70.

2. S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in Proceedings
- 3rd Workshop on Hot Topics in Web Systems and Technologies, HotWeb 2015, 2016, pp.
73–78.

3. I. Stojmenovic and S. Wen, “The Fog computing paradigm: Scenarios and security issues,” in
2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014,
2014, pp. 1–8.

4. M. Afrin, M. R. Mahmud, and M. A. Razzaque, “Real time detection of speed breakers and
warning system for on-road drivers,” in Proceedings - IEEE International WIE Conference on
Electrical and Computer Engineering, WIECON-ECE 2015, 2015, pp. 495–498.

5. R. Mahmud and R. Buyya, “Modeling and Simulation of Fog and Edge Computing Environ-
ments Using iFogSim Toolkit,” in Fog and Edge Computing, 2019, pp. 433–465.

6. T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan, “FogNetSim++: A
Toolkit for Modeling and Simulation of Distributed Fog Environment,” IEEE Access, vol. 6,
pp. 63570–63583, 2018.

7. C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environment for performance
evaluation of edge computing systems,” Trans. Emerg. Telecommun. Technol., vol. 29, no. 11,
Nov. 2018.

8. H. Gupta and R. Buyya, “iFogSim: A toolkit for modeling and simulation of resource
management techniques in the Internet of Things , Edge,” no. October 2016, pp. 1275–1296,
2017.

9. K. S. Awaisi et al., “Towards a Fog Enabled Efficient Car Parking Architecture,” IEEE Access,
vol. 7, no. 1, pp. 159100–159111, 2019.

https://sites.google.com/site/assadabbasciit/

590 K. S. Awaisi et al.

10. D. Hoornweg and P. Bhada-Tata, “What a waste: a global review of solid waste management,”
2012.

11. M. Aazam, S. Zeadally, and K. A. Harras, “Deploying Fog Computing in Industrial Internet of
Things and Industry 4.0,” IEEE Trans. Ind. Informatics, vol. 14, no. 10, pp. 4674–4682, 2018.

12. M. Aazam, M. St-Hilaire, C. H. Lung, and I. Lambadaris, “Cloud-based smart waste
management for smart cities,” in IEEE International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks, CAMAD, 2016, pp. 188–193.

13. R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya, “Context-aware Placement of
Industry 4.0 Applications in Fog Computing Environments,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 11, pp. 7004–7013, 2020.

14. “IBM”,https://www.ibm.com/blogs/internet-of-things/mining-industry-benefits/, Accessed on
August 14, 2020 .

15. M. Afrin, J. Jin, and A. Rahman, “Energy-delay co-optimization of resource allocation for
robotic services in cloudlet infrastructure,” in International Conference on Service-Oriented
Computing, 2018, pp. 295–303.

16. M. Afrin, J. Jin, A. Rahman, Y. Tian, and A. Kulkarni, “Multi-objective resource allocation for
Edge Cloud based robotic workflow in smart factory,” Future Generation Computer Systems,
vol. 97, pp. 119–130, 2019.

17. R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of Experience (QoE)-
aware placement of applications in Fog computing environments,” Journal of Parallel and
Distributed Computing, vol. 132, pp. 190–203, 2019.

18. A. N. Toosi, R. Mahmud, Q. Chi, and R. Buyya, “Management and Orchestration of Network
Slices in 5G, Fog, Edge and Clouds,” in Fog and Edge Computing, 2019, pp. 79–102.

https://www.ibm.com/blogs/internet-of-things/mining-industry-benefits/

Index

A
Access and Mobility Management Function

(AMF), 479
Access Network (AN), 288
Active cache, 559
ActiveMQ, 508–509
ActiveMQ publisher, 508
ActiveMQ subscriber, 509
Adaptive load and path management, 204, 205
Advanced Message Queuing Protocol

(AMPQ), 195–196
Agriculture, MEC, 13
Agriculture monitoring, 58
AirSensEUR, 58
Alternating Direction Method of Multipliers

(ADMM), 256
Amazon EC2, 231
Apache thrift server, 509
Application design, MEC

computation offloading, 539–541
computation offloading process, 536
latency-aware offloading, 538–539
location-aware workflow and TIG, 536–538
slack time, 539

Application layer, 405
Application management, 54–55
Application placements strategies, 274–275
Application profiler, 26
Arduino microcontroller, 392
Arrival time-stamping, 508
Artificial intelligence, 388
Attribute-based encryption (ABE), 237
Attributed Graph Rewriting for Complex Event

Processing (AGeCEP), 503

Augmented Reality (AR), 54, 96, 101, 528
Augmenting Named Data Networking (NDN),

215
Authentication Server Function (AUSF), 479

B
Basic safety message (BSM), 290
Big Data, 94, 102–103, 388
Bio-inspired algorithms, 103
Bio-inspired SMEC, 102
Biomedical image

analysis, 388
communication, 400–405
processing method, 406
sensors, 400

Bio-sensors, 392
Bitcoin, 338
Blockchain technology, 334

Bitcoin, 339
consensus mechanisms, 337
Ethereum, 339
flexibility and scalability, 337
immutability and data integrity properties,

339
MEC resource and service orchestration,

347–348
mining, 339
PBFT consensus algorithm, 341–342
sharding and scalability, 344–345
smart contracts, 343–344
third-generation blockchains, 337

Bluetooth, 390, 391, 406
Body area network (BAN), 392

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5

591

https://doi.org/10.1007/978-3-030-69893-5

592 Index

Bootstrapping, 189, 191
BoT application model, 36–37
Branch and Bound (BB) algorithm, 31
Broadcast frame pattern, 404–405
bzip2 compression method, 557

C
Carbon monoxide (CO) gas, 58
Cellular consensus (CC), 338, 343
Cellular mobile communications, 287
Cellular network cellular base station, 5
Central cloud computing infrastructure, 48
Central processing unit (CPU), 34
CEP-as-a-Service (CEPaaS), 503

components of, 507–509
Chicken Swarm Optimization Algorithm

(CSOA), 102
Cloud-based GIS architecture models, 50
Cloud-based resource allocation, 22
Cloud computing, 4, 22, 25, 90, 94–95, 283,

360
Cloud Computing and Distributed Systems

(CLOUDS), 217, 567
Cloud-edge hybrid system, 236
Cloud-edge infrastructure, 316
Cloud environments, 24–25
Cloud-fog-edge system

connectivity, 236
convergence of, 474
hierarchy of, 444
infrastructure protocol, 234–236
resource provisioning, 237–238
security issues, 236–237

Cloud-GIS, 50
Cloud infrastructure, 283
Cloudlet, 5, 7, 72, 97, 232
Cloudlet based MEC system, 8
Cloud Native Computing Foundation (CNCF),

543
Cloud-RAN technology, 73, 528
Cloud resources, 24
Cloud servers, 260
Cloudsim, 14
CloudSim-SDN, 216, 217
CLOUDS-Pi, 214
Cluster based technique, 235
Coal-based brown energy, 146
Code offloading latency and power

consumption, 12
Coherent based routing, 398
Collaborative Intrusion Detection System

(CIDS), 360, 377–378
centralised, 361, 365–367

cross-network mitigation strategies, 381
distributed, 362, 370–373
edge-based solutions, 364–365
enabling security at scale, 381
hierarchical, 361–362, 368–370
hybrid architectures, 381
load balancing distributed, 373–376, 380
multi-dimensional queries, 380
requirements, 362–363
self-healing mechanisms, 381–382
traditional solutions, 363–364
untrusted domains, 381

Common Open Research Emulator (CORE),
216

Communication cost, 79–80
Complex Event Processing (CEP), 502

average CEP latency, 517–518
average end-to-end latency, 518–519
components of, 507
experimental setup, 510–512
IoT server CPU utilization, 519–520
mobile CEP system prototype, 509–510
mobile device CPU utilization, 520–521
performance analysis

body movement event, 513
performance metrics, 514–516
workload and system parameters,

513–514
power consumption of, 516–517
user cost, 521

Complex Event Processing as-a-Service
(CEPaaS), 503

Computation offloading, 6, 43, 539–541
Concordice system, 343
Connectivity, 236
Consensus algorithms, 336
Consensus protocols, 338
Conserving energy, 33
Constrained Application Protocol (CoAP),

196, 198
Content distribution and mobility

dynamic environment, 483
edge devices, 490–493
mobility and content migration, 483–485
resource allocation and optimization,

486–488
streaming services, 488–490
user’s latency, 482

Context-aware traffic management, 213–214
Context mangement framework

context modeling, 532
context monitoring and storage, 533–534
context reasoning, 532–533
context transfer, 531

Index 593

privacy challenges, 535
radio network information service (RNIS),

530
service management, 531

Context modeling
graphical modeling, 532
key-value modeling, 532
logic based modelling, 532
markup scheme modeling (tagged

encoding), 532
object based modeling, 532
ontology based modelling, 532

Context monitoring and storage, 533–534
Context reasoning, 532–533
Continuous Query Language (CQL) queries,

503
Continuous-Time Markov Decision Process

(CTMDP), 481
Conventional appliances, 389
Conventional Mobile BroadBand (MBB), 287
Convolutional neural networks (CNN) model

architecture, 460
bandwidth utilization through splitting, 464
block-wise parameters, 461
deep neural networks into different edge

devices, 463
deep neural networks into edge, fog and

cloud, 462–463
load balancing MEC approach, 465, 466
parameter distribution, 463
transfer learning approach, 461–462

Cooperative, Connected, Automated and
Autonomous Mobility (CCAM),
282

Coordination costs, 148
Core Network (CN), 288
Coriant, 193
Cost estimator, 26
Cost management, 54
Cryptographic protocols, 322

D
Data acquisition, 501
Data as a Service (DaaS), 50
Data Distribution Service (DDS), 195
Data handling components, 501
Data-intensive mobile applications, 42
Data mining, 57
Data network (DN), 288
Data offloading, 6
Decision-maker, 26
Decision-tree theory, 237

Deep learning (DL)
activation layer, 452
artificial neural networks (ANN), 450
convolution layer, 451–452
fully connected (FC) layer, 452
fused tile partitioning, 454
MobileNets, 453–454
NoNN, 454
polling layer, 452
softmax function, 453
structure, 491
transfer learning approach, 456–457

Deep neural networks (DNN) model, 490–493,
559

Deep packet inspection (DPI) services, 211
Deep Q-Network (DQN), 156
Delay management, 52, 54
Delegated proof of stake (DPoS), 337
Denial-of-Service (DoS), 237, 360
Density-based line-segment clustering method,

240
DENT, 193
Descriptive maintenance, 167
Device-to-device (D2D) user group, 255
Dew computing based context-aware local

computing, 104
Diego scheduler, 551
Differentiated Services (DiffServ), 184
DiffServ Code Point (DSCP), 210
Directed Acyclic Graph (DAG), 536
Disaster monitoring, 57
Disaster-related services, 251
Distributed ledger technology (DLT), 334

application scenarios, 350–351
blockchain technology in, 349–350

Distribution Denial Services (DDoS), 317,
360

Docker container migration
AUFS layered file system, 555
container layer, 554
copy-on-write (COW), 554
data transfer time, 557
destination server, 556
handoff service system, 556
(R/W) layer, 554, 555
memory layout of, 555
Read-Only (RO) base image layer, 554
RSYNC tool, 555
source to target server algorithm, 556–557

DockerHub, 557, 560
D-SDN, 192
Dynamic Bayesian Network (DBN), 170
Dynamic TimeWarping (DTW), 240

594 Index

E
Eclipse Integrated Development Environment

(IDE), 567
Edge and fog computing (EFC), 49
Edge-based smart wearable system, 14
EdgeChain, 347
EdgeCloudSim, 14, 566
Edge computing based conceptual framework,

388–389
biomedical image analysis system using

Z-Wave
communication, 400–405
personalized healthcare systems,

405–406
processing method, 406
sensors, 400
wireless, 399–400

challenges, 406–407
LiveNet, 390
power efficient 5G mobile edge computing

study, 81
remote health care and monitoring system,

392
remote healthcare systems, 390
Z-Wave based smart homes and application,

health care, 393
architecture of, 395–396
biomedical image analysis framework,

397–398
magnetoencephalography, 394–395
monitoring system, architecture and

illustration of, 393
sensor nodes, function of, 398–399

Edge-computing model, 262, 283–284
capabilities, 504
defined, 316
layer, 49

Edge Enabler, 528
Edge environments, 24–25
Edge-MAP, 255
Edge processing model, 153
Edge servers, 148
Edit Distance on Real sequence (EDR), 240
Effective deployment, 83–84
Emane, 215, 216
Emergency Department (ED), 269
Empirical evaluation, 214–215
Emulation, 215–216
End-to-end delay, 286
End-users, 281–283
Energy consumption, 14
Energy manager, 150
Energy optimization, 83
Enhanced Mobile BroadBand (eMBB), 287

Environment monitoring, 58–59
Ethereum, 339, 342–343
European Telecommunications Standards

Institute (ETSI), 282, 335, 475, 528
European Union (EU), 282
Evaluation metrics, 32–33

F
Fast probabilistic consensus (FPC), 338, 343
Fault tolerance, 274
Feld of sensors, 389
Fermat Primality Test, 340
First come first serve (FCFS), 260
First generation (1G) roll-out, 287
5G-CARMEN, 283, 288

architecture, 291–292
cooperative maneuvering, 293–294
development and implementation, 283
green driving, 294
SC in, 292–293
situation awareness, 294
video streaming, 294

5G mobile network, 72
broadband networks, 283
multi-access feature of, 8
system service-based, 287

FlowSpec, 209
Fog and edge computing, MEC paradigms, 252
Fog-based vehicular network, 269
Fog computing applications, 95
Fog computing networks (FCN), 259
FogNetSim++, 566
Fog nodes, 49
Follow-Me cloud (FMC), 285
Follow Me edge cloud (FMEC), 286
Fourth generation (4G), 287

G
Gap analysis, 218–219
Gaussian Mixture Model (GMM), 174
Gauss’s law, 394
Genetic algorithm, 259, 261
Geometric measurement, 57
Geospatial analysis procedures, 56–57
Geospatial computing, 52–55
Geospatial data management, 54
Geospatial data service, 55
Geospatial edge-fog computing, 48–49, 53

compression techniques, 61
existing computing paradigms, 50

computing layers with parameters, 51

Index 595

geospatial cloud computing, 50
geospatial cloudlet, 50–51
geospatial mist computing, 51

geospatial query processing, 61
healthcare applications in, 59
image data, types of, 59
limitations in, 61
mineral resources data, 61
mission-critical application, 59
taxonomy, 52

geospatial analysis procedures,
56–57

geospatial applications, 57–59
geospatial computing, 52–55
geospatial data, 56

time-critical application, 59
work in, 60

Geospatial mist computing, 51
Geo-statistics, 57
Gini coefficient-based FCNs selection

algorithm (GCFSA), 259
GisFSk transceiver, 396
Glimpse processing, 559
Global Notification Node (GNN), 373
Global Position Systems (GPS), 238
Google Cloud Platform (GCP), 231
GPU-accelerated edge computing, POMDP,

169, 174, 177–180
Green and Sustainable Mobile Edge

Computing (GS-MEC), 155–156
Green-aware mobile edge computing

energy manager, 150, 151
framework for IoT, 151
future research

benchmarks, 161
collaboration with MCC, 161
energy consumption optimization, 161
evaluations with real testbed, 161
green energy usage maximization, 161
joint data management, 162
mobility of IoT devices, 161
multi-tenancy management, 162
security management, 162
varied QoS satisfactory, 161

offloading scheduler, 150
problem modelling

edge processing model, 153
energy provisioning model, 152
local processing model, 152–153
optimal green-aware offloading,

154–155
task model, 152

QoS manager, 150
resource scheduler, 151

state-of-the-art offloading approaches
energy-saving component, 160
environment, 160
experiments platform, 160
GOLL, 157–158
GreenEdge, 157
green energy sources, 160
GS-MEC, 155–156
LETOC, 156–157
LSDQN, 156
merits and demerits, 160
optimization objective, 160
SOMEC, 158
workloads, 160

synchronizer, 150–151
system monitor, 151

GreenEdge, 157
Green energy manager, 151
Green energy provisioning model, 152
Green Offloading with Low Latency (GOLL),

157–158
GSO-based energy-efficient sensor movement

approach, 102

H
Handoff service system architecture, 556
Health and diseases monitoring, 58
Health care, 101

Z-Wave based smart homes and application,
393

architecture of, 395–396
biomedical image analysis framework,

397–398
magnetoencephalography, 394–395
monitoring system, architecture and

illustration of, 393
sensor nodes, function of, 398–399

HealthFog, 95
Health Index (HI), 168
Heterogeneity, 84
Heterogeneous edge server, 79
Heuristic container deployment algorithm, 550
Hidden Markov Models (HMMs), 169
Hierarchical architectures of edge servers, 79
Home area network (HAN), 404
Home-based healthcare, 389
Home monitoring, 101
Horizontal Pod Autoscaling, 286
Human-Machine-Interface (HMI) protocols,

416
HyperFlow, 192
Hyperledger Fabric, 342
Hyper-profile, 541

596 Index

I
IBM Bluemix, 231
IBM Docker cloud registry, 560
iFogSim

installation and setup, 567
sensing as a service

ACTION_COMMAND, 586
ACTUATION_SIGNAL, 586
code snippet, 586–589
D_SENSOR, 586
PROCESSED_DATA, 586
RAW_DATA, 586
UAVs, 585, 586

smart car parking
actuator, 570
code snippet, 570–572
fog-based car parking architecture,

568
fogdevice, 569
picture-capture module, 569
sensor, 569–570
slot-detector, 569

smart mining industry system
chinfo-module, 580
code snippet, 581–585
fog based application model, 580
gasinfo-module, 580
master module, 580
mine requirement, 579
srinfo-module, 580

smart waste management system
application model, 574
code snippet, 573–579
fog-based architecture, 574
master-module, 573
smart waste bins, 572, 573
waste-info-module, 573

toolkit, 14, 259
iFogSim-master, 567
Industrial Edge Analytics Hubs (IEAHs),

168
Industrial Internet of Things (IIoT), 267, 268,

270, 319, 349, 352
Information and Communication Technologies,

397
Information Technology (IT), 4
Infrastructure as a Service (IaaS), 50
Infrastructure protocol, 234–236
Ingestion time-stamping, 509
Intelligent systems, 397
Intent-based networking (IBN), 211–213
Intercommunication, 502
International Telecommunication Union (ITU),

287

Internet of agricultural things (IoAT)
framework, MEC

edge computing, 423
platform design

cloud network, 424
cloud services, 425
control processes, 425
design requirements, 425–426
edge-mist-fog-cloud, 425
edge services, 425
gateway, 424
Internet of Things, 424
layered view, 426
requirement analysis, 424
testing, 425
wireless sensor network, 425

platform structure, 426–427
Internet of Everything (IoE)

mobile edge computing-based IoE
applications

cloud layer, 321
layer for computation, 320
layer for edge devices, 320

network model, 321–322
security protocol, 328–330
unauthorized attacks/damage, 317

Internet of Health Things (IoHT), 233
Internet of Multimedia Things (IoMT), 233
Internet of Spatial Things (IoST), 230
Internet of Things (IoT), 90, 94, 502

application model, 39–41
blockchain technology, 334
devices, 284
distributed architectures, 334
distributed ledger technology (DLT), 334
MEC in, 12
scalability, 334
sharding, 334

Internet of Vehicles (IoV), 233
Internet 2 OS3E, 192
Internet Topology Zoo, 192
InterPlanetary File System (IPFS), 348
Intrusion detection system (IDS), 268, 360
IoT /Edge devices, MEC

cloud computing, 448
CNN model

architecture, 460
bandwidth utilization through splitting,

464
block-wise parameters, 461
deep neural networks into different edge

devices, 463
deep neural networks into edge, fog and

cloud, 462–463

Index 597

load balancing MEC approach, 465,
466

parameter distribution, 463
transfer learning approach, 461–462

computer vision, 449–450
deep learning (DL)

activation layer, 452
artificial neural networks (ANN), 450
convolution layer, 451–452
fully connected (FC) layer, 452
fused tile partitioning, 454
MobileNets, 453–454
NoNN, 454
polling layer, 452
softmax function, 453
transfer learning approach, 456–457

deep neural networks into different edge
devices, 459–460

deep neural networks into edge, fog and
cloud, 457–459

edge computing, 448
fog computing, 448
functional architecture

application layer, 447
business layer, 447–448
middleware layer, 447
perception layer, 446
transmission layer, 446–447

International Telecommunication Union
(ITU), 446

literature surveys, 453–455
mobile edge computing (MEC), 449
NIC, 445
transfer learning approach, 456–457

Iterative algorithms, 268

J
Java Development Kit (JDK) 1.7, 567
Java Runtime Environment (JRE), 567
Joint Optimization Framework, 269
JSNC, 268

K
Kandoo, 192
k-level temporal hash-based scheme, 239
Knowledge-defined networking (KDN), 539
Knowledge plane (KP), 539, 540
KubeEdge, 546
Kubernetes

cluster components, 544–545
components to form complete cluster

solution, 544–545

features, 543–544
high level design, 546

Kubernetes-based Fog architecture, 260

L
Laplacian mechanism, 237
Latency-aware offloading, 538–539
LETOC, 156–157
LifeGuard, 392
Lightweight Privacy-preserving Data

Aggregation (LPDA) scheme, 237
Linear Programming (LP) optimisation, 31
Link Layer Discovery Protocol (LLDP), 189
Linux Container (LXC) container migration,

552–554
CRIU issues, 554
MG and dump.log, 553
with MPTCP, 553
RSYNC command, 554

LiveNet, 390
Locality-aware container scheduling, 548–551
Local processing model, 152–153
Location-aware services, 241–243
Location-aware workflow and TIG, 536–538
Location Based Services (LBS), 530
Location difference-based proximity detection

(LoDPD) protocol, 237
Logic Programming techniques, 533
Longest Common Subsequences (LCSS), 240
Long Short-Term Memory (LSTM), 156
Low-latency Fog network, 236
Low-power wide area networks (LPWANs),

350
LP-based two-phase heuristic algorithm, 238
Lyapunov-based algorithm, 156
Lyapunov optimization technique, 264

M
Machine Health Monitoring Systems (MHMS),

169
Machine learning-based algorithms, 539–541
Machine learning (ML) model, 540
Machine-to-machine (M2M), 416
Magnetoencephalography (MEG), 393–395,

400
MAN-agement and Orchestration (MANO)

system, 288
Management systems (MS), 4
Markov chain model, 169
Markov Decision Process (MDP), 8, 169, 285
Massive Machine Type Communications

(mMTC), 288

598 Index

Master-slave, 235
Maximum Likelihood Estimate (MLE)

equations, 172
Maxwell’s correction, 394
Media access control (MAC) layer, 402–403
Medical image analysis algorithm, 406
Medical imaging, 389
Message Queuing Telemetry Transport

(MQTT), 194–195, 284, 507
Microservice architecture, 559, 560
Microsoft Azure, 231
Microsoft machine dataset, 174, 178
Million instructions per second (MIPS), 34
Minimum description length (MDL), 240
Mininet, 215, 216
Mirai virus, 316
Mist computing, 51
Mixed-integer linear programming (MILP),

30–31
Mixed integer nonlinear programming

(MINLP) technique, 22
Mobi-IoST, 260, 263
Mobile Ad-hoc Network (MANET), 203–204
Mobile and handheld devices, 392
Mobile-aware computing environments, 23
Mobile based resource provisioning and

allocation mechanisms
in edge computing

ADMM, 256
comparison of, 257–258
core Cloud, 254
device-to-device (D2D) user group,

255
Edge-MAP, 255
IoT architecture, 255
uRLLC, 254

in fog computing
FCFS, 260
FCN, 259
GCFSA, 259
information-centric Internet of Vehicles,

260
Kubernetes-based Fog architecture, 260
LOCA-TOR, 258
MAMF, 259
Mobi-IoST, 260
node-to-node communication in 5G

network, 258
ROAGA, 259
URMILA, 259
vehicle-to-vehicle (V2V) links, 259

future aspects fog and edge related
computing

allocation and provisioning, 273

application placement strategies,
274–275

fault tolerance, 274
power utilization and management, 274
security and privacy, 273–274
support interoperability, 275
unified and dynamic resource

management and provisioning, 275
mathematical models, 268–269
QoS

comparison of existing techniques for
modeling mobility, 264–267

directional model of vehicle mobility,
262

dynamic mobility-aware service model,
264

edge computing model, 262
genetic algorithm, 261
MAPE loop, 261
MEC model, 263
M-Edge and M-All, 263
Mobi-IoST, 263
SDN architecture, 262
user-centric mechanism, 263, 264

smart grid, 272
smart healthcare, 271–272
VANETs, 269–271

Mobile cloud computing (MCC), 5, 11, 22, 72,
90

Mobile device energy model, 30
Mobile edge cloud computing (MECC), 22, 24
Mobile edge computing (MEC), 4, 22, 25, 90,

102, 281, 335, 360, 390
advantages, 146
AI virtual assistant, 319
applications of, 10–13
architecture of, 5–7

edge server placement, 7
resource allocation, 7–8

augmented reality, 318–319
authorization attacks, 322
autonomous vehicles, 319
CF-RAN architecture, 496
challenges in, 13–15
characteristics

flexible deployment, 147
heterogeneous resource collaboration,

147
high bandwidth, 147
location and mobility awareness, 147
low delay, 147
proximity, 147

content distribution and mobility
dynamic environment, 483

Index 599

edge devices, 490–493
mobility and content migration,

483–485
resource allocation and optimization,

486–488
streaming services, 488–490
user’s latency, 482

cryptographic protocols, 323
data-intensive application offloading,

experiment for, 31–32
evaluation metrics, 32–33
experimental setup, 33–36
performance evaluation, 36–41

data transmission, 494–495
DDoS attacks, 322
edge and fog computing, 476–477
energy efficiency, 146
ETSI reference architecture, 480
5G architecture, 480
3GPP 5G network functions

network exposure function (NEF), 480
network repository function (NRF), 479
network slice selection function

(NSSF), 479
policy control function (PCF), 480
unified data management (UDM), 479
user plane function (UPF), 479

green-aware MEC (see Green-aware
mobile edge computing)

green MEC, 496–497
healthcare, 318
host layer

mobile edge platform (MEP), 479
mobile edge platform manager

(MEPM), 478–479
network functions virtualization

infrastructure (NFVI), 479
intelligence techniques at edge, 495–496
latency in, 9–10
literature review, 480–482
malware attacks, 322
manufacturing, 317
mobility management, 494
multi-tiered computing infrastructure, 476
network layer, 479–480
QoS and QoE guarantees, 495
radio access networks (RAN), 475
reference architecture, 477
reference points, 477
relieving energy constraint of, 146
resource management, 493
retail advertising, 320
security protocols, 326–328
side channel attacks, 322

smart building, 319
smart cities, 317–318
smart industry, 319
smart speakers, 320
smart transport, 319
surveillance, 319
sustainable IoT application management

contributions, 149
coordination costs, 148
heterogeneity of edge servers and IoT

devices, 148
offloading trigger, 148
partial task offloading, 149
security guarantee, 149

system architecture, 25–26
system layer, 478
system model, 27

application model, 27–29
mobile device energy model, 30
monetary cost model, 30
optimisation technique, 30–31
task execution time model, 29

video conferencing, 320
Mobile environments, 24–25
Mobile network operators (MNO), 282, 560
Mobile telecommunications, 22
Mobility association rule, 240
Mobility-aware cloud-fog-edge network

architecture, 230
challenges

infrastructure/organizational structure,
234

mobility sensitive, 233–234
resource management, 233
security aspect, 234

cloud/fog/edge nodes, 232
cloud-fog-edge system

connectivity, 236
infrastructure protocol, 234–236
resource provisioning, 237–238
security issues, 236–237

future research directions, 243–244
location-aware services, 241–243
MEC, 232
Mobi-IoST, 232
mobility management, 238–240
motivation, 231

Mobility-aware Internet of Spatial Things
(Mobi-IoST), 233

Mobility based service provisioning, 14
MobMig, 263
Monetary cost model, 30
Monitor-Analyze-Plan-Execute (MAPE) loop,

259, 261

600 Index

Montage-like workflow, 34
Monte Carlo method, 172
MovCloud, 240
MQTT publisher, 509
MQTT Receiver, 508
Multi-Access Edge Cloud (MEC)

application design
computation offloading, 536, 539–541
latency-aware offloading, 538–539
location-aware workflow and TIG,

536–538
slack time, 539

building blocks of, 528, 529
cloud resource management, 547–548
container and VM provisioning, 542–543
container migration

docker, 554–557
LXC container, 552–554

container orchestration
KubeEdge, 546
Kubernetes, 543–546
StarlingX, 546–547

context mangement framework
context modeling, 532
context monitoring and storage,

533–534
context reasoning, 532–533
context transfer, 531
privacy challenges, 535
radio network information service

(RNIS), 530
service management, 531

distributed architecture, 528
distributed computing, 528
distributed data, 528
edge enabler building block, 528
functional decomposition, 529
IBM Docker cloud registry, 560
locality-aware container scheduling,

548–551
lowe latency, 528
microservice architecture, 559, 560
multi-cloud, 528
reliable connectivity, 528
rocket video analytics, 557–559
WCA, 528, 529

Multi-bearer network (MBN), 184, 185
Multicast frame pattern, 404
Multiprotocol TCP (MPTCP), 553
Multiuser Superposition Coding (MSC), 82
MyiFogSim, 14–15

N
NetSim, 216, 217
Network Analytics (NA), 539
Networked operating system (NOS), 192–193
Network Exposure Function (NEF), 480
Network Function Virtualization (NFV)

techniques, 202, 530
Network infrastructure, 202, 205
Network management, 54, 289
Network model, 35–36
Network Operating System (NOS)-based

control data modelling techniques,
201

Network partitioning, 192
Network Repository Function (NRF), 479
Network Slice Selection Function (NSSF),

479
Network slicing, 205–206
New Radio (NR), 287
Next generation NodeB (gNB), 282
Next-generation wireless networking

technologies, 504
NOMA-enabled model, 82–83
Non-conventional methods, 285
Non-tunneling, 199

O
OBU (On-Board Unit) device, 290
Offloading optimisation, 41
Offloading scheduler, 150
Offloading technique, 54–55
Offloading trigger, 148
ONIX, 192
OpenDaylight (ODL), 192, 214
OpenFaas, 289
Open Network Linux (ONL), 193
Open Network Operating System (ONOS),

193
Open Stack’s StarlingX, 528
OPNET, 216, 217
Optimal green-aware offloading, 154–155
Optimisation technique, 30–31
Orchestrator receives, 289
org.fog.test.perfeval package, 570, 573, 580,

581, 586
Orion, 192
Orthogonal Frequency-Division Multiple

Access (OFDMA), 82
Orthogonal multiple access technologies

(OMA), 82

Index 601

P
Paillier encryption algorithm, 237
Partially Observable Markov Decision Process

(POMDP) framework
application performance, 175–176
decision algorithm, 172–173
future work, 180
GPU-accelerated edge computing, 169,

174, 177–180
MDP model of the health of a machine,

171–172
model estimation, 172, 173
particle filter algorithm, 180
performance evaluations, 174
system performance

number of POMDPs solved vs. number
of particles, 177, 178

run time results vs. number of particles,
178, 179

speed-up of POMDP solve time on
different platforms, 179

Partial task offloading, 149
Particle filter, 172, 174, 175, 178, 180
Partitioning algorithms model workflows, 537
Pattern query, 240
Pay-as-you-go business model, 25
Peer to Peer (P2P) collaboration, 235
Personal Health Record (PHR) server, 504
Personalized healthcare systems using Z-Wave

based WSN, 405–406
Physiological parameter screening device, 392
Platform as a Service (PaaS), 50
Point cloud data, 56
Point of interest (POI), 54, 239
Policy Control Function (PCF), 480
Power efficient 5G mobile edge computing

study, 72–74
architecture, 73
challenges of

power efficiency, 77
reliability and mobility, 77
resource allocation, 77
security and privacy, 77–78
task offloading, 77

factors of, 79–80
properties of

challenges, properties and applications,
75

location-awareness, 76
low-latency, 75
network context information, 76–77
on-premises isolation, 74
proximity, 75

resource allocation strategy
multiple-access model, 82
NOMA-enabled model, 82–83

task offloading model
edge computation model, 81
local computation model, 81
tasks model, 80

Power management, 52
Power supply, 83
Power utilization and management, 274
Practical byzantine fault tolerance (PBFT),

337, 341–342
Precision agriculture (PA)

analysis stage, 418
challenges, 418–419
cloud computing, 419–420
determination stage, 418
edge computing, 419–420
farming activities, 421, 422
implementation, 418
inter-field and intra-field unevenness, 418
IOAT framework, MEC

edge computing, 423
platform design, 424–426
platform structure, 426–427

IoT in, 421–422
smart farming

agriculture 4.0, 432
agriculture intelligence, 432
AI/ML use, 430
climate, 433
cost-effective deployment, 429
data analytics/big data/blockchain,

429–430
data analytics component, 428
data handling component, 428
data procurement component, 427
distributed database management

systems, 430–431
drone/UAV, 431–432
prediction models, 433
WSN/IoT scheme, 429

tasks related, 417
WSN applications, 421

Predictive maintenance, 168–170
Prescriptive maintenance, 168, 170–171
PriMa, 170
Probabilistic logic techniques, 533
Proof of authority (PoA), 337
Proof of bandwidth (PoB), 337
Proof of elapsed time (PoET), 337
Proof of stake (PoS), 337, 340–341
Proof of work (PoW), 337, 340

602 Index

Protocol oblivious forwarding, 200–201
Protocol standardization, 83
Protocol translation, 199–200
PubSub communication protocols

AMQP, 195–196
DDS, 195
MQTT, 194–195

Q
QoS management, 55
QoS manager, 150
Quality of Experience (QoE), 12
Quality of Service (QoS), 4, 84, 286, 376, 507
Queuing estimator, 26

R
Radio access network (RAN), 4, 335, 475
Radio Frequency Identification (RFID), 184
Radio Frequency (RF) technology, 398
Radio network information service (RNIS),

530
Raspberry Pi devices, 214, 289
Raster data, 56
Real-time geospatial applications, 54
Redundant Byzantine Fault Tolerance (RBFT),

342
Remote healthcare

distributed system for, 390
LifeGuard, 392

Remote Keyless Entry (RKE), 184
Remote Patient Monitoring (RPM), 502
Request-Response (RR) communication

protocols, CoAP, 196, 198
Resource handler, 26
Resource management, 14, 52–54
Resource manager, 558
Resource optimization algorithm (ROAGA),

259
Resource provisioning, 237–238
Resource scheduler, 151
Retransmission method, 403
Reverse geo-coding, 239
Road Side Units (RSU), 233
Rocket software stack, 557
Rocket video analytics, 557–559
Round-Trip Time (RTT), 287
Routed acknowledges frame pattern, 399
Routed singlecast frame pattern, 399
Routing layer, 405
Rule-based techniques, 533

S
Satisfaction function, 238
Scalability, 334, 336, 344–345
Scaling, 55
SDN middleware

semantic interoperability
protocol oblivious forwarding, 200–201
protocol translation, 199–200
semantic ontology, 201–202

syntactic interoperability
communication protocols, 194–198
non-tunneling, 199
tunneling, 198, 199

Second generation (2G), 287
Secure communication protocol

architecture, 323–324
data transmission phase, 325–326
enrollment phase, 324–325
startup phase, 324
verification phase, 325

Security, 13–14, 84
Selective offloading in mobile edge computing

(SOMEC), 158
Self-scaling mechanism, 286
Semantic enrichment, 239
Semantic interoperability

protocol oblivious forwarding, 200–201
protocol translation, 199–200
semantic ontology, 201–202

Semantic trajectory, 239
Sensor-based remote patient monitoring

systems, 502
Sensor mobile edge computing (SMEC), 90

application of, 100
augmented reality service, 101
healthcare, 101
home monitoring, 101
vehicular network, 100

architecture of, 96–97
advantages of, 97–99
latency in, 99–100

Big Data analytics in, 102–103
bio-inspired SMEC, 102
cloud computing applications, 94–95
definition of, 99
dew computing based context-aware local

computing, 104
fog computing applications, 95
IoT applications, 94
mobile edge computing applications, 95–96
research motivation, 92–93
resource management, 104
security and privacy issues of, 103

Index 603

WSN with MCC, 91
WSN with MEC, 91–92

Sensor nodes, function of, 398–399
Sentimental–spatial POI mining (SPM), 241
Server CEP (SCEP), 502
Server-less container cluster, 289
Service continuity (SC), 282

cloud computing, 283
edge computing, 283–284
5G-CARMEN, 289, 292–293
for MEC, 286–287
security management for

blockchain, 290–291
distributed ledger technologies, 290

service migration, 284–285
video streaming SC

lab environment, 301–302
NS3 based simulator, 299
NS3 simulation evaluation, 305–309
NS3 software architecture, 297–298
Omnetpp++ based simulator, 296–297
Omnet++ software architecture,

295–296
performance of resource allocation,

304–305
proposed prediction algorithm methods,

299–301
security mechanisms, 299
simulator evaluation overview, 309

Service function chaining (SFC), 206–207
Service level agreements (SLAs), 209–211,

289
Service management, 54–55
Service providers, 282
Sharding, 334, 344–345
Signal-to-Interference-and-Noise-Ratio

(SINR), 216
Simulation, 216–217
Singlecast frame pattern, 404
Sink mapper, 509
SLA-aware Fine-grained QoS Provisioning

(SFQP), 211
Slack time (float time), 539
Smart car parking

actuator, 570
code snippet, 570–572
fog-based car parking architecture, 568
fogdevice, 569
picture-capture module, 569
sensor, 569–570
slot-detector, 569

Smart cities, 251
Smart contracts, 343–344

Smart farming
agriculture 4.0, 432
agriculture intelligence, 432
AI/ML use, 430
climate, 433
cost-effective deployment, 429
data analytics/big data/blockchain,

429–430
data analytics component, 428
data handling component, 428
data procurement component, 427
distributed database management systems,

430–431
drone/UAV, 431–432
prediction models, 433
WSN/IoT scheme, 429

Smart grid, 272
Smart health care applications, edge computing

based conceptual framework,
388–389

challenges, 406–407
LiveNet, 390
remote health care and monitoring system,

392
remote healthcare systems, 390
wireless biomedical image analysis system

using Z-Wave, 399–400
communication, 400–405
processing method, 406
sensors, 400
Z-Wave based WSN, personalized

healthcare systems using, 405–406
Z-Wave based smart homes and application,

health care, 393
architecture of, 395–396
biomedical image analysis framework,

397–398
magnetoencephalography, 394–395
monitoring system, architecture and

illustration of, 393
sensor nodes, function of, 398–399

Smart mining industry system
chinfo-module, 580
code snippet, 581–585
fog based application model, 580
gasinfo-module, 580
master module, 580
mine requirement, 579
srinfo-module, 580

Smart textiles based frameworks, 392
Smart transportation, 251
Smart waste management system

application model, 574

604 Index

Smart waste management system (cont.)
code snippet, 573–579
fog-based architecture, 574
master-module, 573
smart waste bins, 572, 573
waste-info-module, 573

Software Defined Network (SDN), 43, 100,
539

Software Defined Networking (SDN) and
MBN

challenges, 187–188
future directions, 218–219
gap analysis, 218–219
middleware (see SDN middleware)
military applications, 188
in military communications, 185
multi-controller management

bootstrapping, 189, 191
networked operating system, 192–193
network partitioning, 192

network component management
adaptive load and path management,

204, 205
network slicing, 205, 206
service function chaining, 206–207
topology awareness, 203–204
unikernel network functions, 207–208

policy evaluation
empirical evaluation, 214–215
emulation, 215–216
simulation, 216–217

research questions, 186, 187
system model, 188, 189
taxonomy, 189, 190
traffic management

context-aware traffic management,
213–214

intent-based networking, 211–213
QoS/QoE, 208, 209
service level agreement, 209–211

solvePOMDP() function, 172, 173
Source mapper, 509
Spatial interpolation, 57
Standard wireless technologies, 391
StarlingX, 546–547

building blocks, 547
features, 546–547

Statistics computer, 509
STMaker, 239
STMicroelectronics, 349
Superconducting Quantum Interference

Devices (SQUID) magnetometers,
398

Supervised learning techniques, 533

Support interoperability, 275
Support Vector Machine (SVM), 172
Switch Light, 193
Synchronizer, 150–151
Syntactic interoperability

communication protocols
AMQP broker, 195–196
DDS, 195
MQTT protocol, 194–195
RR communication protocols, 196, 198

non-tunneling, 199
tunneling, 198, 199

System monitor, 151

T
TableVisor, 200
Task execution time model, 29
Task manager, 26
Task model, 152
Telephone central offices (TCOs), 57
Textual data, 56
Third generation (3G), 287
Third Generation Partnership Project (3GPP)

plan, 287
Time Division Multiple Access (TDMA), 82
Time Window, 285
TOPTRAC, 239
Total weighting, 8
Tourism monitoring, 58
TRACLUS framework, 240
Traj-cloud, 239
Trajstore, 239
Transfer acknowledge frame pattern, 404
Transfer layer, 404–405
Transfer learning approach, 456–457, 461–462
Transmission Control Protocol (TCP) protocol,

286
Transportation monitoring, 57–58
Trigger frame, 559
Tunneling, 198, 199

U
Ubiquitous Resource Management for

Interference and Latency-Aware
services (URMILA), 259

Ultra-Reliable and Low Latency
Communication (uRLLC),
254, 282, 287

Unified and dynamic resource management,
275

Unified Data Management (UDM), 479
Unikernel network functions, 207–208

Index 605

Unmanned aerial vehicle (UAV), 12
Unmanned Aerial Vehicles (UAVs), 585
Unsupervised learning techniques, 533
updateParameters() function, 172, 173
User allocation based edge-cloud placement,

14
User demands, 289
User equipment (UE), 288
User mobility, 84
User Plane Function (UPF), 479
Users change location, 281
Uunmanned aerial vehicle (UAV), 184

V
Vector data, 56
Vehicle to everything (V2X), 282
Vehicle to Vehicle (V2V) communication, 259,

282
Vehicular Ad-hoc Networks (VANETs), 100,

269–271
Vehicular network, 100
VERA, 399
Video pipeline optimizer, 557
Video streaming, 12, 283
Virtualization techniques, 283, 287
Virtual machine (VM) migration, 8
Virtual Network Function (VNF), 201, 289,

528

W
WANDA, 504
Wearable Cognitive Assistance (WCA), 528,

529
Wearable devices, 389
Wearable technologies, 388
Wi-Fi, 390, 391
Wireless biomedical image analysis system

using Z-Wave, 399–400
communication, 400–405
processing method, 406
sensors, 400
Z-Wave based WSN, personalized

healthcare systems using, 405–406
Wireless Body Area Network (WBAN), 397,

398
Wireless cellular networks, 285

Wireless Local Area Network (WLAN), 6, 96
Wireless Metropolitan Area Network

(WMAN), 6, 7, 96–97
Wireless sensor network, 90, 397
Wireless technologies, 388
Workflow application model, 37–38
Workload model, 34–35

Z
Zigbee, 390, 391, 405
Z-Wave, 389–391

biomedical image analysis process, 390
biomedical image communication,

400–405
application layer, 405
media access control (MAC) layer,

402–404
MEG contour map pattern, 402
routing layer, 405
transfer layer, 404–405

biomedical image processing method, 406
biomedical image sensors, 400
in health care application

basic architecture of, 395–396
for cognitive neuroscience, 393
evaluation of, 397–398
function of sensor nodes in, 398–399
magnetoencephalography based

wearable system, 393–395
low energy radio, 389
mobile edge computing, 390
personalized healthcare systems, 405–406
wireless biomedical image analysis system

using, 399–400
communication, 400–405
processing method, 406
sensors, 400
Z-Wave based WSN, personalized

healthcare systems using, 405–406
Z-Wave based smart homes and application,

health care, 393
architecture of, 395–396
biomedical image analysis framework,

evaluation of, 397–398
magnetoencephalography, 394–395
monitoring system, architecture and

illustration of, 393
sensor nodes, function of, 398–399

	Preface
	Contents
	Part I Foundations and Architectural Elements
	Introduction to Mobile Edge Computing
	1 Introduction
	2 Architecture of MEC
	2.1 Edge Server Placement
	2.2 Resource Allocation

	3 Latency in MEC
	4 Applications of MEC
	5 Challenges in MEC
	6 Summary
	 References

	Performance Analysis of Mobile, Edge and Cloud Computing Platforms for Distributed Applications
	1 Introduction
	2 Overview of Cloud, Edge and Mobile Environments
	3 System Architecture
	4 System Model
	4.1 Application Model
	4.2 Task Execution Time Model
	4.3 Mobile Device Energy Model
	4.4 Monetary Cost Model
	4.5 Overview of the Optimisation Technique

	5 Experiment for Data-Intensive Application Offloading
	5.1 Evaluation Metrics
	5.2 Experimental Setup
	5.2.1 Computing Resources
	5.2.2 Workload Model
	5.2.3 Network Model

	5.3 Performance Evaluation
	5.3.1 BoT Application Model
	5.3.2 Workflow Application Model
	5.3.3 IoT Application Model

	6 Discussion and Recommendations
	7 Conclusion and Future Work
	References

	Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy, and Future Directions
	1 Introduction
	2 Existing Computing Paradigms
	2.1 Geospatial Cloud Computing
	2.2 Geospatial Cloudlet
	2.3 Geospatial Mist Computing
	2.4 Discussion

	3 Taxonomy
	3.1 Geospatial Computing
	3.1.1 Resource Management
	3.1.2 Service Management

	3.2 Geospatial Data
	3.3 Geospatial Analysis Procedures
	3.4 Geospatial Applications

	4 Existing Work on Geospatial Edge-Fog Computing: A Glance
	5 Limitations in Geospatial Edge-Fog Computing
	6 Future Directions
	7 Summary
	References

	Study of Power Efficient 5G Mobile Edge Computing
	1 Introduction
	1.1 Properties of MEC
	1.1.1 On-Premises Isolation
	1.1.2 Proximity
	1.1.3 Low-Latency
	1.1.4 Location-Awareness
	1.1.5 Network Context Information

	1.2 Challenges of Mobile Edge Computing
	1.2.1 Reliability and Mobility
	1.2.2 Resource Allocation
	1.2.3 Task Offloading
	1.2.4 Power Efficiency
	1.2.5 Security and Privacy

	2 Factors of Power Efficient MEC Framework
	3 Power Efficient Models for Mobile Edge Computing
	3.1 Power Efficient Task Offloading Model for Mobile Edge Computing
	3.1.1 Tasks Model
	3.1.2 Local Computation Model
	3.1.3 Edge Computation Model

	3.2 Power Efficient Resource Allocation Strategy for MEC
	3.2.1 Multiple-Access Model
	3.2.2 NOMA-Enabled Model

	4 Research Directions
	5 Summary and Conclusions
	References

	SMEC: Sensor Mobile Edge Computing
	1 Introduction
	1.1 WSN with MCC
	1.2 WSN with Mobile Edge Computing (MEC)
	1.3 Research Motivation

	2 Related Work
	2.1 IoT Applications
	2.2 Cloud Computing Applications
	2.3 Fog Computing Applications
	2.4 Mobile Edge Computing Applications

	3 The Architecture of Sensor Mobile Edge Computing (SMEC)
	3.1 Advantages of SMEC over SMCC
	3.1.1 Definition of SMEC

	3.2 Latency in SMEC

	4 Application of SMEC
	4.1 Vehicular Network
	4.2 Augmented Reality Service
	4.3 Home Monitoring
	4.4 Healthcare

	5 Future Scope
	5.1 Bio-inspired SMEC
	5.2 Big Data Analytics in SMEC
	5.3 Security and Privacy Issues of SMEC
	5.4 Dew Computing Based Context-Aware Local Computing
	5.5 Resource Management

	6 Conclusion
	References

	IoT Integration with MEC
	1 Introduction
	2 Chapter Organization
	3 MEC Functionalities for IoT Services
	3.1 Real-Time Analysis and Low Latency Functionality
	3.2 Local Content/Caching Functionality
	3.3 Computing Functionality
	3.3.1 Offloading
	3.3.2 Data Analytics

	4 MEC API
	5 Mobility Management
	6 Benchmark
	6.1 China Mobile
	6.2 AT&T
	6.3 SKT
	6.4 Deutsche Telekom
	6.5 5GPPP

	7 Challenges and Issues
	8 Future Research Direction
	9 Summary
	References

	Green-Aware Mobile Edge Computing for IoT: Challenges, Solutions and Future Directions
	1 Introduction
	1.1 MEC Characteristics
	1.2 Need for Sustainable IoT Application Management in MEC

	2 Green-Aware Framework for MEC
	3 Problem Modelling: Green-Aware Offloading
	3.1 Task Model
	3.2 Green Energy Provisioning Model
	3.3 Local Processing Model
	3.4 Edge Processing Model
	3.5 Optimal Green-Aware Offloading

	4 State-of-the-Art Offloading Approaches
	4.1 GS-MEC
	4.2 LSDQN
	4.3 LETOC
	4.4 GreenEdge
	4.5 GOLL
	4.6 SOMEC
	4.7 Discussions of the Investigated Work

	5 Future Research Directions
	6 Summary and Conclusions
	References

	Part II Systems, Platforms and Services
	Prescriptive Maintenance Using Markov Decision Process and GPU-Accelerated Edge Computing
	1 Introduction
	2 Related Work
	2.1 Predictive Maintenance
	2.2 Prescriptive Maintenance

	3 System Design and Modelling
	3.1 POMDP Model
	3.2 Model Estimation and Decision Algorithm

	4 Performance Evaluations
	5 Evaluation Results
	5.1 Application Performance
	5.2 System Performance

	6 Conclusion
	References

	Software-Defined Multi-domain Tactical Networks: Foundations and Future Directions
	1 Introduction
	1.1 Research Questions and Challenges

	2 System Model and Taxonomy
	3 Multi-controller Management
	3.1 Bootstrapping
	3.2 Network Partitioning
	3.3 Networked Operating System (NOS)

	4 Middleware and Interoperability
	4.1 Syntactic
	4.1.1 Communication Protocols
	4.1.2 Tunneling and Non-tunneling

	4.2 Semantic
	4.2.1 Protocol Translation
	4.2.2 Protocol Oblivious Forwarding
	4.2.3 Semantic Ontology

	5 Network Component Management
	5.1 Topology Awareness
	5.2 Adaptive Load and Path Management
	5.3 Network Slicing
	5.4 Service Function Chaining (SFC)
	5.5 Unikernel Network Functions

	6 Traffic Management
	6.1 Service Level Agreement (SLA)-Aware Traffic Management
	6.2 Intent-Based Traffic Management
	6.3 Context-Aware Traffic Management

	7 Policy Evaluation
	7.1 Empirical
	7.2 Emulation
	7.3 Simulation

	8 Gap Analysis and Future Directions
	9 Summary
	References

	Mobility driven Cloud-Fog-Edge Framework for Location-Aware Services: A Comprehensive Review
	1 Introduction
	2 Motivations and Related Computing Paradigms
	3 Taxonomy: Cloud-Fog-Edge System
	3.1 Infrastructure Protocol
	3.2 Connectivity
	3.3 Security Issues
	3.4 Resource Provisioning

	4 Taxonomy: Mobility Management
	5 Taxonomy: Location-Aware Services
	6 Conclusions and Future Research Directions
	References

	Mobility-Based Resource Allocation and Provisioning in Fog and Edge Computing Paradigms: Review, Challenges, and FutureDirections
	1 Introduction
	2 Existing Mobile Based Resource Provisioning and Allocation Mechanisms in Edge
	3 Existing Mobile Based Resource Provisioning and Allocation Mechanisms in Fog
	4 Modelling Techniques to Support Mobility to Enhance the QoS of the Applications
	5 Mathematical Models for Mobility Based Resource Allocation
	6 Application Use Cases
	6.1 Vehicular Networks
	6.2 Smart Healthcare
	6.3 Smart Grid
	6.4 Others

	7 Future Direction of Mobility-Based Resource Allocation and Provisioning in Fog and Edge related Computing Paradigms
	7.1 Mobility-Based Resource Allocation and Provisioning
	7.2 Security and Privacy
	7.3 Power Utilization and Management
	7.4 Fault Tolerance
	7.5 Support For Application Placements Strategies
	7.6 Support Interoperability
	7.7 Unified and Dynamic Resource Management and Provisioning

	8 Conclusion
	References

	Cross Border Service Continuity with 5G Mobile Edge
	1 Introduction
	2 Background and Related Work
	2.1 Cloud Computing
	2.2 Edge Computing
	2.3 Service Continuity
	2.4 SC for MEC
	2.5 Emerging 5G as an Enabling Technology

	3 Security Management for SC
	3.1 Underlying Technologies
	3.1.1 Distributed Ledger Technologies
	3.1.2 Blockchain

	4 5G-CARMEN
	4.1 Architecture
	4.2 SC in 5G-CARMEN
	4.3 5G-CARMEN Use Cases
	4.3.1 Cooperative Maneuvering
	4.3.2 Situation Awareness
	4.3.3 Green Driving
	4.3.4 Video Streaming

	5 Video Streaming SC Use Case Deployment
	5.1 Software Deployment
	5.1.1 Omnet++ Software Architecture
	5.1.2 NS3 Software Architecture

	5.2 Security Mechanisms
	5.3 Proposed Prediction Algorithm Methods for SC
	5.4 Develop and Setup a Lab Environment
	5.5 Assessment
	5.5.1 Omnet++ Simulation Evaluation
	5.5.2 NS3 Simulation Evaluation
	5.5.3 Simulator Evaluation Overview

	6 Future Research Directions
	7 Conclusions
	References

	Security in Critical Communication for Mobile Edge Computing Based IoE Applications
	1 Introduction
	2 Applications and Security
	3 Architecture for MEC
	3.1 Network Model

	4 Possible Attacks and Cryptographic Solution
	5 Secure Communication Protocol
	5.1 Architecture
	5.2 Protocol in Details

	6 Other Security Protocols: A Comparison
	7 Issues and Challenges to Design Security Protocols
	8 Conclusion and Future Direction
	References

	Blockchain for Mobile Edge Computing: Consensus Mechanisms and Scalability
	1 Introduction
	1.1 MEC and Network Slicing
	1.2 Integration of Blockchain and MEC
	1.3 Related Works
	1.4 Chapter Structure

	2 Blockchain Technology: An Evolving Paradigm
	2.1 Proof of Work
	2.2 Proof of Useful Work
	2.3 Proof of Stake
	2.4 Practical Byzantine Fault Tolerance
	2.5 Third-Generation DLTs: Beyond Blockchain
	2.6 Smart Contracts
	2.7 Sharding and Scalability

	3 Blockchain Technology for Mobile Edge Computing
	3.1 MEC Resource and Service Orchestration with Blockchain
	3.2 Blockchain for a MEC Services Marketplace
	3.3 Blockchain-Powered MEC Services

	4 Performance and Scalability of DLTs at the Edge
	4.1 Blockchain Technology in Resource-Constrained Devices
	4.2 Application Scenarios

	5 Conclusion and Future Work
	References

	Evaluation of Collaborative Intrusion Detection System Architectures in Mobile Edge Computing
	1 Introduction
	2 Related Work
	2.1 CIDS Classification and Requirements
	2.2 Traditional CIDS Solutions
	2.3 Edge-Based CIDS Solutions

	3 CIDS Architectures in MEC
	3.1 Centralised CIDS
	3.2 Hierarchical CIDS
	3.3 Distributed CIDS
	3.4 Load Balancing Distributed CIDS

	4 Comparison of CIDS Approaches
	5 Future Research Directions
	6 Conclusion
	References

	Part III Applications
	Edge Computing Based Conceptual Framework for Smart Health Care Applications Using Z-Wave and Homebased Wireless Sensor Network
	1 Introduction
	2 Literature Review
	3 Z-Wave Based Smart Homes and Their Application in Health Care
	3.1 Architecture and Illustration of the Monitoring System
	3.2 Basics of Magnetoencephalography
	3.3 Basic Architecture of the Z-Wave
	3.4 Evaluation of Z-Wave Based Biomedical Image Analysis Framework
	3.5 Function of Sensor Nodes in Z-Wave

	4 Wireless Biomedical Image Analysis System Using Z-Wave
	4.1 Biomedical Image Sensors
	4.2 Biomedical Image Communication Using Z-Wave
	4.3 Personalized Healthcare Systems Using Z-Wave Based WSN
	4.4 Biomedical Image Processing Method

	5 Challenges and Future Works
	6 Conclusion
	References

	Mobile Edge Computing Based Internet of Agricultural Things: A Systematic Review and Future Directions
	1 Introduction
	2 Precision Agriculture
	2.1 General Overview
	2.2 Challenges in PA Work

	3 Cloud and Edge Computing
	4 WSN and IoT
	4.1 IoT in Precision Agriculture
	4.2 IoT Limitations in PA

	5 MEC Based Internet of Agricultural Things (IoAT) Framework
	5.1 Platform Design
	5.2 Platform Structure

	6 Towards Smart Farming
	6.1 Smart Farming Components

	7 Future Directions
	8 Conclusions
	References

	Deep Learning in Computer Vision through Mobile Edge Computing for IoT
	1 Introduction
	2 Background
	2.1 IoT or Edge Device
	2.2 Mobile Edge Computing
	2.3 Computer Vision
	2.4 Deep Learning

	3 Literature Survey
	4 Three Deep Learning-Based MEC Approaches
	4.1 Transfer Learning Approach in MEC
	4.2 Splitting Layers of Deep Neural Networks into Edge, Fog and Cloud
	4.3 Splitting Layers of a Deep Neural Network into Different Edge Devices

	5 Analysis of Proposed Technique with Case Studies
	5.1 An Analysis of Transfer Learning Approach in MEC
	5.2 An Analysis of Splitting Layers of Deep Neural Networks into Edge, Fog, and Cloud
	5.3 Distribution of Parameters
	5.4 An Analysis of Splitting Layers of a Deep Neural Network into Different Edge Devices

	6 Conclusion and Future Scopes
	References

	Mobile Edge Computing for Content Distribution and Mobility Support in Smart Cities
	1 Introduction
	2 Multi-Tiered Architecture: Concepts and Definitions
	2.1 Edge and Fog Computing in Smart Cities
	2.2 Mobile Edge Computing Specification

	3 Literature Review
	4 Content Distribution and Mobility
	4.1 Mobility and Content Migration
	4.2 Resource Allocation and Optimization
	4.3 Streaming Services
	4.4 Intelligence at the Edge

	5 Challenges
	5.1 Resource Management
	5.2 Mobility Management
	5.3 Data Transmission
	5.4 QoS and QoE Guarantees
	5.5 Intelligence at the Edge
	5.6 Green MEC

	6 Conclusion
	References

	Complex Event Processing in Sensor-Based Environments: Edge Computing Frameworks and Techniques
	1 Introduction
	1.1 Overview of the Chapter

	2 Related Work
	3 Server CEP System
	3.1 Components of the SCEP Application
	3.2 Components of CEP-as-a-Service

	4 Mobile CEP System
	5 Experimental Setup
	6 Performance Analysis
	6.1 The Complex Event Use Case Modeling
	6.2 Workload and System Parameters
	6.3 Performance Metrics

	7 Experimental Results
	7.1 Comparison of Battery Usage
	7.2 Comparison of Average CEP Latency
	7.3 Comparison of Average End-to-End Latency
	7.4 Comparison of IoT Server CPU Utilization
	7.5 Comparison of Mobile Device CPU Utilization
	7.6 Comparison of User Cost

	8 Conclusions
	9 Future Work
	References

	Application Design and Service Provisioning for Multi-access Edge Cloud (MEC)
	1 Introduction
	2 Context Management Framework for Edge Cloud
	2.1 Context Modeling
	2.2 Context Reasoning
	2.3 Context Monitoring and Storage
	2.4 Privacy Challenges of Context

	3 Application Design
	3.1 Location-Aware Workflow and TIG
	3.2 Latency-Aware Offloading
	3.2.1 Slack Time (Float Time)

	3.3 Computation Offloading (Machine Learning-Based Algorithms)

	4 Service Provisioning in Edge Cloud
	4.1 Container and VM Provisioning
	4.2 Container Orchestration
	4.2.1 Kubernetes
	4.2.2 KubeEdge
	4.2.3 StarlingX

	4.3 Cloud Resource Management
	4.4 Locality-Aware Container Scheduling
	4.5 Container Migration
	4.5.1 Linux Container (LXC) Container Migration
	4.5.2 Docker Container Migration

	4.6 Case Study: Rocket Video Analytics

	5 Future Work
	References

	Simulating Fog Computing Applications Using iFogSim Toolkit
	1 Introduction
	2 Installation and Setup of iFogSim
	3 Case Studies
	3.1 Smart Car Parking System
	3.2 Smart Waste Management System
	3.3 Smart Mining Industry System
	3.4 Sensing as a Service

	4 Conclusions
	References

	Index

