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Foreword

Cancer represents a big challenge for all who deal with it, mostly patients with neo-
plasms and those who assist them. The difficulty in managing patients is due to the
incessant search for a cure, related to the exact dimension of the treatment offered,
either to avoid under- and over-treatment. For the therapy selection, understanding
the entire evolution of the neoplastic cycle is necessary, and circulating tumour cells
(CTCs) can be fundamental in this process.

The first time CTCs were identified and described was at the end of the nine-
teenth century, as an autopsy finding. After almost a hundred years, they could be
truly isolated. Only in the last decade of the twentieth century, specific methodolo-
gies for systematic detection of CTCs emerged. Despite such a development, as
several technologies have been present, they often lead to doubtful interpretation
and results.

In the beginning of the twenty-first century, strong data validated the role of
CTCs as prognostic factor in metastatic breast and prostate disease, and through less
robust studies, in metastatic colon and lung cancer. In breast cancer, studies have
already corroborated the use of CTC counts as a prognostic factor before neoadju-
vant and adjuvant chemotherapy, in addition to assisting in monitoring the treatment
of advanced disease. In colorectal cancer, an increasing amount of evidence sup-
ports the count of CTCs as a prognostic factor in the scenario of neoadjuvant and
adjuvant treatment.

The relationship between CTCs and the comprehension of cancer evolution and
progression process is very direct. If we think of these cells as rare cells, difficult to
find, we can understand the wealth of information that a relatively small universe
can reveal to us. The process of epithelium-mesenchymal transition, the ability of
such cells to survive in blood circulation and the inverse process of mesenchymal-
epithelium transition, can also be studied. In addition, CTCs constitute a tumour
component that can be unveiled in order to understand and even treat minimal resid-
ual disease and dormant cells, possibly responsible for tumour recurrences.

In seeking a better understanding of the evolutionary phenomenon of cancer, we
need to remember that this is a polyclonal disease, subject to evolutionary changes,
imposed not only by the tumour microenvironment, but also by interactions with the
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host and the drugs used for treatment. The translation for this temporal analysis, of
the evolutionary film of the tumour throughout its development process, is what we
call liquid biopsy. In this scenario, CTCs have a very relevant role. There are many
advantages to use liquid biopsy:

Minimally invasive procedure (a blood sample)

Can be repeated frequently without imposing risks on the patient

Allows genetic and molecular analysis in real time

Ability to predict whether the therapy used will provide the expected results

Given the above, the importance of CTCs in the future scenario of oncology is

paramount, not only for understanding the entire evolutionary process of cancer but
also for the evolution of current therapy.

Marcello Ferretti Fanelli

Adjunct Professor of the Discipline of Oncology
Jundiai School of Medicine, and Clinical
Oncologist Rede D’Or

Séao Paulo, Brazil
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Chapter 1

Circulating Tumor Cells: Brief Overview
of Methods for Detection

Ludmilla Thomé Domingos Chinen

Images of this book were taken at x 400 or x 600 magnification using a light microscope (Research
System Microscope BX61 - Olympus, Tokyo, Japan) coupled to a digital camera (SC100 - Olympus,
Tokyo, Japan). All images showed in this book-Atlas were checked by Dr. Mauro Ajaj Saieg, the head
of cytopathology depatment of ACCamargo Cancer Center.We thank Dr. Mauro for all his support.

In May 2018, I received the invitation to write about circulating tumor cells (CTCs)
and to add an Atlas to the book. I accepted without thinking about the huge chal-
lenge that lay ahead. CTCs, even today, with so many published studies and so
much relevant clinical data, is still a topic with many doubts and unsolved ques-
tions. We know that they are rare cells among millions of hematopoietic cells, which
come out of the tumor and form metastases, circulating isolated or in the form of
circulating tumor microemboli (CTM)), which are more prone to form metastases
and probably linked to the formation of thrombi. We also know that CTM leave the
primary tumor in this aggregate form and that is not formed in the circulation. We
know that CTCs can circulate with extracellular vesicles (EVs), and there are
authors who believe that EVs are involved in targeting CTCs. CTCs also interact
directly with immune system, silencing or activating them according to “their” needs.

In this book, we discuss a little about data that exists in the literature, about clini-
cal findings in different tumors, and about biological roles of CTCs. Mainly, we
share a little of our experience, using an independent marking CTC separation sys-
tem, ISET (Isolation by SizE of Tumors, Rarecells, France) with the which we have
been working since 2012.

We have made several studies with ISET, in different tumors and received
different sponsorships (FAPESP 2012/01273-8; FAPESP 2013/08125-7,
FAPESP 2014/26897-0; FAPESP 2016/18786-9 (Brazil); MP-TAC PAJ
n°000968.2012.10.000/0 (Brazil); IAEA 20541 (Austria); INCT 465682/2014-6
(Brazil); Faber-Castel (Brazil), PRONON 25000.055121/2015-12- (Brazil), Libbs
(Brazil), to whom we thank with all gratitude.

We are also very grateful to all patients that kindly gave us samples to analyze
and who shared a little of their life experience with us, with generosity. In these last
9 years, we have contact with around 700 patients, to whom we lovingly thank.
Here, in Atlas, we share with you, our reader, some CTCs and CTM pictures from

L. T. D. Chinen (<)
International Research Center, A.C. Camargo Cancer Center, Sdo Paulo, Brazil
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2 L. T. D. Chinen

some patients, without any identification, just to let you know how to identify CTCs/
CTMs and how important we believe these cells are in the biology and comprehen-
sion of the tumor. And for last, I can not forget to thank Rarecells, which provide me
with scientific support so that I could get the best out of the system, and the ISET
developer and CTC’s deep researcher, Dr. Patrizia Paterlini-Brechét, human being
who deserves my admiration.

1.1 Brief Historic Review

Circulating tumor cells (CTCs) are released from primary tumors or metastases dur-
ing tumor formation and progression, and are considered as “liquid biopsy” in real
time, reflecting the disease complexity [28]. Studies with CTCs have been focusing
on their prognostic value, their utility in monitoring treatment, and identification of
new targets for therapy and for resistance, leading to a better comprehension of the
metastatic process [28]. CTCs can also be considered as pharmacological biomark-
ers, and their analysis can help clinicians/researchers to: have proof of action mech-
anisms of drugs; select doses of anti-neoplastic drugs; gain comprehension of
therapeutic and resistance mechanisms of anti-cancer drugs; better combine differ-
ent therapies; and predict treatment outcomes [10].

CTCs were first reported in literature in 1829 [24] (RECAMIER), but the most
known citation was made in 1869, by Thomas Ashworth, an Australian resident
medical doctor. When performing necropsis of a patient with chest sarcoma, he
observed cells in the patient’s saphenous vein identical of those observed in the
chest. Then, the researchers came back to this subject in 2004, when a large study,
including 20 centers, was published in New England Journal of Medicine.
Cristofanilli and his collaborators designed very well a longitudinal study, with the
analysis of CTCs, using a system called CellSearch System (at that time, owned by
Johnson & Johnson). They evaluated 177 women with metastatic breast cancer, and
made CTC counts before and after the start of treatment for metastatic disease. They
also included patients with benign breast diseases and health volunteers. They
observed that health volunteers and patients with benign breast diseases had less
than 2 CTCs in 7.5 ml of blood. In contrast, for patients with metastatic disease, the
authors found a cut-off of 5.0 CTCs/7.5 mL, meaning that those with levels above
the cut-off, had poor progression free-survival (PES) and overall survival (OS). The
CellSearch System was cleared by FDA in 2007, to be used in patients with meta-
static breast, prostate, and colon cancers [7, 8, 25]. It separates CTCs by immuno-
magnetic biomarkers, enriching for cells that express epithelial cell adhesion
molecules (EpCAMs) and depleting those with the leukocyte common antigen,
CD45. The bias with this system and all others created since 2004, which separate
CTCs by antibodies are as follows: a) not all CTCs express EpCAM, because many
CTCs pass through epithelial-mesenchymal transition (EMT), losing epithelial
markers and gaining mesenchymal ones (we will discuss in depth in a chapter about
mesenchymal tumors); b) by capturing the cells that express EpCAM without
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morphological verification of the neoplastic nature of the cells, these systems can
erroneously identify circulating non-malignant epithelial cells as CTCs; and c) leu-
kocytes, mainly neutrophils, also express cytokeratins [21-23, 30].

Due these problems, CellSearch enumeration of CTCs has not become a widely
adopted test for any tumor entity, as it has not demonstrated to have clinical utility
in making treatment decisions [14]. As the majority of clinical trials (clinicaltrials.
gov) worldwide were designed to use CellSearch, with its known failures, now, an
association of CellSearch with DeepArray was made (Menarini Silicon Biosystems),
in an attempt to improve the test and make single cell analysis. In addition, other
methodologies have been including in clinical trials.

All these endeavors in trying to find the best methodology to isolate and identify
CTCs motivated us to write this book. As system based on size and morphology
have gain relevance, as microfluids, per example, having a book that shows the
cytopathological features of CTCs will be of a great scientific and practical value.

Nowadays, some international efforts have been made in an attempt to validate
the different methods and the optimal intervals between the tests, for different tumor
types, to analyze CTC and circulating tumor DNA (ctDNA) as also, to choose the
best technique to isolate these tumor compartments.

Despite their well-known weaknesses, many discoveries about the utility of
CTCs in prognosis were made with CellSearch, the majority of them with breast
cancer. The abundance of studies focused on this disease is reasonable, as about
30% of patients with negative axillary lymph nodes and about 50% of those with
positive axillary lymph nodes will relapse within 5 years. So far, there are no sensi-
tive markers recommended for follow-up of patients surgically treated [16]. There
is no method useful to monitor micrometastases, predict relapse, and guide drug
selection [15]. For patients with no symptoms and no particular findings in clinical
examinations, CA15-3 (Cancer antigen 15-3) and CA 27-29 (Cancer antigen 27-29)
are not recommended [16]. That is the reason why it is vital to look for new prog-
nostic and predictive biomarkers for breast cancer.

Some studies with CTCs in early-stage breast cancer observed that positivity
rates from 9.4 to 48.6% and the presence of one or more CTC/7.5 mL of blood were
related to early recurrence and poor overall survival [2, 13, 20].

By getting all results from all trials with diverse techniques to evaluate CTCs, in
diverse solid tumors, there is one conclusion: CTC enumeration represents an estab-
lished prognostic, but not a predictive biomarker. It is a useful finding, considering
that conventional serum tumor markers, such as CA-125 (cancer antigen-125), PSA
(prostate-specific antigen), and CEA (carcinoembryonic antigen), for example, lack
sensitivity and specificity for monitoring and early diagnosis [26]. However, we and
other researchers believe that these cells can be predictive markers [4], and efforts
have been made in this sense.

It is important to emphasize that CTCs, cell-free DNA (cfDNA) or circulating
tumor DNA (ctDNA), extracellular vesicles, circulating tumor RNA (tRNA), tumor
proteins and tumor-educated platelets (TEP) are all derived from tumor cells, and,
therefore, are considered liquid biopsy. They bring complementary information to
each other. Here, we discuss only CTCs, a tumor compartment that can elucidate the
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Fig. 1.1 Extrinsic and intrinsic factors related to CTCs/CTM survival

mechanism of metastasis (Fig. 1.1) and to be used to test drugs in vitro. Our inten-
tion is to describe the main discoveries about these cells, as well to focus on the
cytopathologic aspects of them, as a way to share our experience with other

researchers.
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Extrinsic factors that can contribute to CTC survival in bloodstream include
platelets and TGF-f produced by them, which allows EMT, protects CTCs from
anoikis, from NK cell attack and help CTC to intravasate, together with factors
produced by neuthophils, such as NETs (neutrophils extracellular traps). Cytokines
produced by CTCs as also by Tregs (regulatory T cells) and dendritic cells (DCs)
contribute to CTC survival and myeloid derived suppressor cells (MDSCs) recruit-
ment, which will corroborate, inhibiting the inflammatory system. Tumor-associated
macrophages (TAMs) help CTCs in the blood traffic, by releasing cytokines and by
fusion with CTCs, making an immune ‘“camouflage.” Intrinsic factors include
genetic alterations that can lead to EMT, tumor senescence, tumor DNA repair,
apoptosis, necrosis, and tumor cell cycle arrest. Intrinsic factors include also altered
cellular metabolism and abnormal gene expression. All these intrinsic factors
together can contribute to the formation of CTCs with tumor stem cells feature,
which need to better evaluate in clinical studies.

1.2 Brief Overview of CTC Capture Technologies

In the last few decades, the number of treatment options for patients with metastatic
cancer has significantly increased, creating a need for biomarkers to determine
whether the tumor(s) will respond to the proposed therapy, monitor, and anticipate
resistance and response to treatment. Ideally, these biomarkers would be obtained
by minimal invasive means to allow sampling in series for a long period. The iden-
tification and characterization of CTCs, for molecular analyzes of tumor heteroge-
neity, as well as the responsiveness to drugs, can satisfy this need.

Currently, there are two major strategies for enrichment of CTCs, those based on
biological properties with marking cell surface, and those based on physical character-
istics such as density, size, electric charge, combined with detection techniques, such
as immunofluorescence, immunohistochemistry, for identification of CTCs. Among
the bio-based technologies is the CellSearch system (applied clinically, but lacking
CTCs, which have undergone epithelial-mesenchymal transition) [12] and RosetteSep
technique that enhances CTCs without phenotypic excluding CD45+ and CD36+ cells
and eliminating them by gradient centrifugation on a Ficoll-Paque plus density.

Recently, a review was published showing that EpCAM-based methods can be
useful, and maybe, pivotal, for isolating CTCs from breast, prostate, and small cell
lung cancer. It seems that EpCAM can also be involved in EMT process in CTCs
from those type of cancers. It corroborates the many findings published on literature
showing the utility of CTC counts by CellSearch in separating patients with breast
and prostate cancer with good versus poor prognosis (overall and progression free
survival) [6].

Employing the strategy of isolating single live CTCs without fixation, there is the
DEPArray™ method, a microfluidic system that classifies single live CTCs based
on dielectrophoresis, which is capable of detecting rare cells and in minimal
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quantities of blood [3, 11, 27]. To analyze the expression of various cell surface
markers in CTCs, and the establishment of xenografts, the FAC technique
(fluorescence-activated cell classification) was adapted for molecular characteriza-
tion of CTCs [1]. However, none of the methodologies can fully correspond to the
heterogeneity of CTCs. Certainly, each technology has its advantages and limita-
tions. New ideas in CTC biology must be integrated with current techniques enrich-
ment, detection, and isolation to optimize the process and improve its reliability.
The RosetteSep and FACS were used for in vivo models (transplantation of CTCs
in mouse to verify if they form tumors) establishment. Enrichment using RosetteSep
can be advantageous due to the lack of phenotypes in tumorigenic CTCs and a
higher recovery rate [1].

Methods based on physical properties with filtering systems have been devel-
oped to capture CTCs based on size compared with leukocytes, especially ISET®
(Isolation by Size of Tumor Cells), CellSieve™ (Creatv MicroTech), Flexible Micro
Spring Array (FMSA), Metacell™, and ScreenCell®, capable of detecting CTCs
and CTM using micropore polycarbonate filters [5, 9, 29].

The size-based methods are promising approaches to isolate CTCs. These meth-
ods usually implicate on blood filtration after erythrocyte lysis and cell fixation,
followed by cytomorphological analysis. The principle of these track-etched micro-
filters is retaining cells according to their sizes, since it is well reported that the
majority of CTCs are larger than normal and mature immune cells. Based on this
assumption, leukocytes pass through pores and are eliminated. It is known that
some types of tumors, such as small cell lung cancer, contain small CTCs that could
be lost in the sample processing. However, the rationale between the variation of
CTC size and clinical relevance is not clear. In addition, these methods bring an
advantage of evaluation of blood components by light or fluorescent microscope
that usually are observed together with CTCs/CTM, such as neutrophils with altered
adhesive capacity, TAMs, blasts, fibrin, and platelet. The clinical meaning of these
components needs to be studied.

Another promising method is one that combines filtration (high-density micro-
porous chip filter) with antibody-based separation of CTCs [17]. A study published
by Lee et al. [19] used this technique to evaluate CTCs from 11 breast cancer
patients, histological grades II and III (Smart Biopsy™ System Isolation Kkit;
Cytogen, Inc., Seoul, Korea). After isolating CTCs by this antibody-independent
method, they divided the sample in two: one half undergone immunofluorescent
staining with anti-EpCAM and the CTCs from the other undergone cancer gene
panel analysis. Mutations were found in CTCs from all 11 patients. Curiously, in
one patient whose CTCs did not stain for EpCAM, mutations in CDKN2A and
IDH2 were found, and another one, tested negative for all tested mutations, despite
having the highest number of EpCAM-positive cells. These findings show that
although EpCAM is considered nowadays an essential protein for detection of
CTCs from breast cancer, some cells can be lost using this marker or over detected
(as discussed exhaustively in this book).

The use of microfluidic platforms is quite recent. These platforms enrich CTC
and CTM according to their physical properties; however, improvements have been
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made combining 3D microfluidics structures and specific antigens, such as geo-
metrically enhanced differential immunocapture (GEDI) microfluidic device, using
anti-PMSA (anti-prostate specific membrane antigen) [18].

So, after this brief presentation, we hope you, our reader, enjoy this book — Atlas

of Liquid Biopsy, that we prepared carefully and lovingly for you. You will note that
a lot needs to be done in this area of circulating tumor cells and we invite you to join
us in this journey!
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Chapter 2

CTCs in Solid Tumors. Clinical
Applications of Circulating Tumor Cells
in Breast Cancer

Douglas Guedes de Castro and Felipe Ko Chen

2.1 Introduction

Breast cancer (BC) is one of the most studied types of cancer since the last century.
For this reason, numerous studies have investigated the correlation between circu-
lating tumor cells (CTCs) and BC [1].

When we consider using CTCs as a biomarker, it becomes necessary to differen-
tiate early BC (eBC) from metastatic BC (mBC). About 70% of patients with mBC
stage IV have >1CTC in 7.5 ml of blood, using CellSearch system to isolate and
quantify CTCs. However, in eBC, using this system, we rarely detect CTCs, prompt-
ing doubts about its clinical use as a biomarker.

The objective of this chapter is to evaluate the validity and clinical applicability
of CTCs in early and advanced BC [2].

2.2 Micrometastasis Biomarkers in BC

Before the use of CTC as a biomarker of micrometastasis in BC, various studies
tried to use bone marrow tumor cells (BMTCs) as a viable biomarker.

In 4 of 8 studies analyzed by Bidard et al., in 2016 [1], there was a correlation
between BMTCs and CTCs that reached up to 94%. This same study concluded that
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the dissemination of tumor cells in the patients’ blood indicated an initial phase
disease, while the detection of BMTCs indicated a more advanced disease [1].

In most mBC studies, the preferred method used to identify CTCs is the CellSearch
system. This system relies on a semi-automated enrichment and immunostaining
device that has been, to this day, the only validated method approved by the US Food
and Drug Administration (FDA) to detect CTCs and for prognostication in meta-
static colorectal, prostate, and breast carcinomas. This specificity was reliably docu-
mented in normal individuals and in patients with benign tumors [8]. CTCs were
defined by the CellSearch system as those co-expressing EpCAM and CKs without
expressing leukocyte common antigen CD45, and positive for 4”,6-diamidino-
2-phenylindole (DAPI) with a nucleus inside the cytoplasm and cell size ‘4 pm. It is
important to emphasize that CTC detection using the CellSearch system does not
rely on any true morphological criteria, but rather on the magnitude of antibody fluo-
rescent signal for CK, DAPI, and CD45. The CellSearch system is an epithelium-
associated marker-dependent method; therefore, it faces technical problems similar
to the PCR-based molecular method; its inability to identify epithelial-mesenchymal
transition (EMT)-induced CTCs can give false-negative results [3-5].

Another well-cited method of detecting CTCs is the ISET (isolation by size of
epithelial tumor cells) method. ISET methodology is a direct method for CTC and
circulating tumor microemboli (CTM) identification, in which CTCs are isolated by
filtration without use of tumor-associated markers, as a consequence of their large
size relative to circulating blood leukocytes. This method is easy to perform, rapid,
and inexpensive and makes it possible to directly isolate and count tumor cells in
patients with different types of carcinomas, by cytopathological analysis [6].

A study commanded by Farace in 2011 [7] comparing CellSearch and ISET
methods, using different metastatic carcinomas, demonstrated quite considerable
discrepancies between the number of CTCs enumerated by the CellSearch and the
ISET systems. In total, 30% of patients were negative according to CellSearch,
while only 5% were negative using ISET. Interestingly, these discrepancies
depended mostly on the patients’ tumor type. Specifically, in patients with mBC,
CTC counts were generally higher by CellSearch than by ISET. However, CTCs
identified by CellSearch may not be true CTCs, because CTCs detected by
CellSearch on the basis of the expression of an epithelial marker (EpCAM), which
does not formally establish the malignant nature of circulating cells in the blood
retained as CTC. Thus, the lower CTC counts obtained by ISET compared with
CellSearch, most likely results from cell loss during the ISET procedure. It is impor-
tant to state that this study did not compare the clinical relevance of both methods.

Although well-designed clinical trials are essential to further understand the
clinical applications of ISET, this system could indeed represent a more accurate
clinical tool for predicting patient’s outcome in certain tumor types, and provide a
significant advantage for performing molecular analyses in the era of personalized
medicine.

A review conducted by Ma in 2013 [9], confirmed these results. They concluded
that, overall, more CTCs were detected by ISET than by the CellSearch system, for
two reasons: (1) the CellSearch system may not detect cells if they have undergone
EMT (i.e., lack expression of CK and/or EpCAM), while ISET can be much more
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efficient in isolating all rare cells of interest; (2) while ISET can isolate CTMs from
metastatic cancer patients, the CellSearch cannot [10, 11]. Therefore, the detection
of blood samples that only have CTMs will be underestimated by the CellSearch
systems that use epithelial-marker-positive selection. However, the CellSearch sys-
tem may overestimate CTCs in peripheral blood samples if they are contaminated
with normal epidermal cells. In addition, the CTC detection efficiency varies in all
relevant studies, whether by ISET or by CellSearch system. One of the main advan-
tages of the CellSearch system is that it has the capacity to detect smaller CTCs than
does ISET. On the other hand, the use of ISET for detection and identification of
CTCs is more reliable than the CellSearch system and requires no expensive or
special laboratory equipment. However, ISET is not sufficiently standardized in its
current form to be routinely applicable in clinical practice (please see some pictures
of CTCs isolated from metastatic breast cancer patients in Figs. 2.1, 2.2, 2.3, 2.4,
2.5,2.6,2.7,2.8,2.9,2.10,2.11, 2.12, and 2.13).
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Fig. 2.3 Patient with - -2 P 4
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collected before the » \ .
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Fig. 2.5 Patient with 57 years old. CTCs were collected before the beginning of radiotherapy for
brain metastatis. Her primary tumor was HER-2 positive. CTC count: 0.75 CTCs/mL. On the right,
we can observe the presence of a hyperchromic nucleus, irregular, with irregular chromatin. Also
note the abundant cytoplasm, not commonly seen in hematopoietic cells. CTC stained with HER-2
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Fig. 2.6 Patient with

56 years old. CTCs were
collected around

4-5 weeks after
radiotherapy for brain
metastatis. Her primary
tumor was HER-2 positive.
CTC count: 2.0 CTCs/
mL. CTCs did not stain for
HER-2
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Fig. 2.7 Patient with 40 years old. CTCs were collected before the beginning of radiotherapy for
brain metastatis. Her primary tumor was Luminal B. CTC count: 3.5 CTCs/mL (microscope: 20x)
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Fig. 2.8 Patient with 46 years old. CTCs were collected around 4-5 weeks after radiotherapy for
brain metastatis. Her primary tumor was Luminal B. CTC count: 3.5 CTCs/mL (microscope: 20x)
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Fig. 2.9 Photo from same
patient Fig. 2.8 showing a
cohesive group of
neoplastic cells, with
planetary aggregation,
forming neoplastic
impaction. Individually,
isolated neoplastic cells are
noted with alteration of the
nuclear/cytoplasmic ratio
and irregularity of
chromatin

(microscope 40x)

Fig.2.10 CTM from a
patient with 42 years old.
CTCs were collected
before the beginning of
radiotherapy for brain
metastatis. Her primary
tumor was Luminal

B. CTC count:

1.75 CTCs/mL

Fig. 2.11 Patient with
61 years old. CTCs were
collected around

4-5 weeks after
radiotherapy for brain
metastatis. Her primary
tumor was Luminal

B. CTC count:

8.75 CTCs/mL
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Fig. 2.12 Same patient of Fig. 2.11 in brown : immunocytochemistry with anti-Notch antibody
visualized with DAB. Here, we can see a CTC without any staining

Fig. 2.13 Same patient of Fig. 2.11

2.3 Metastatic BC

2.3.1 Clinical Validity of CTCs in mBC

In contrast to that observed in eBC, there is enough evidence to utilize CTCs as a
biomarker in mBC.

A study conducted by Cristofanilli in 2004 [12], utilizing the CellSearch® sys-
tem to detect CTCs, analyzed the number of CTCs in patients with mBC. Before
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initiating a new treatment, patients underwent an evaluation of metastatic sites by
means of standard imaging studies and the collection of a blood sample to be used
for the enumeration of circulating tumor cells. A different blood sample was col-
lected at the first follow-up visit, approximately 3 to 4 weeks after the initiation of
the new therapy. Disease status follow-ups were made every 9 to 12 weeks, utilizing
the same techniques used at baseline. This disease status was assessed without
knowledge of the levels of CTCs. An alternate control group made up of 72 pre-
menopausal healthy women and 73 postmenopausal healthy women without known
illnesses and no oncologic history, 99 women with benign breast diseases, and 101
women with other nonmalignant diseases. The respective testing laboratories were
aware that the samples were from a control group, but were unaware to the differ-
ence between no known illness and benign conditions.

A worse prognostic relation was established in patients with a high number of
CTCs in both instances, when compared to those with a low number of CTCs pre-
CT and after one cycle. Interestingly, patients with a high CTC count pre-CT, but
with a low count after one cycle, had a similar prognostic value to those with a low
pre-CT count. These results were corroborated by Hayes in 2006 [13].

Finally, an analysis of 1944 individuals indisputably established the superiority
of using CTC count in comparison to traditional tumor markers, such as CEA and
CALlS5, as a treatment response biomarker in patients with mBC [14].

2.4 Clinical Applicability of CTC in mBC

In a retrospective study conducted by Cristofanilli in 2018 [15], 2436 patients with
mBC from 18 cohort studies were analyzed. These patients were arranged in accor-
dance to their tumor’s biomolecular type, location, and previous treatments. A cut-
off point of 5 CTCs per 7.5 ml of blood was established. Thus, a > 5SCTC/7.5 mL
count was determined as I'V aggressive (IVa) and <5CTC/7.5 mL count as IV indo-
lent (IVi).

Patients IVi had a higher median overall survival, when compared to those stage
IVa (36.3 months vs. 16.0 months, p < 0,0001). Furthermore, patients IVi had a
higher overall survival in all tumor subtypes when compared to I'Va: positive hor-
mone receptor (44 months vs. 17.3 months, P <0.0001), HER2-positive (36.7 months
vs. 20.4 months, P < 0.0001), and triple-negative (23.8 months vs. 9.0 months,
P < 0.0001). Similar results were obtained independent of previous treatment or
tumor location [15].
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2.5 Early BC

2.5.1 CTCs as a Micrometastasis Marker in Patients with eBC
Treated with Neoadjuvant Therapy

Measuring CTCs in patients, submitted to neoadjuvant chemotherapy (CT), intents
on evaluating if the micrometastasis process has started and possibly evaluating its
response to QT.

The IMENEO meta-analysis observed a significant association between T stag-
ing and CTCs (P < .001), using CellSearch system. Excluding tumors T4d from
analysis, they observed that a positive CTC result was detached from clinical or
pathological characteristics of the initial tumor. The positivity was 21.4% and
24.2% in patients with negative and positive lymph nodes, respectively. This study
also showed that there was a statistically significant drop of CTC count at the end of
neoadjuvant QT (p < 0.001). Furthermore, the CTC count pre-QT presented itself as
a strong independent indicator of distant metastasis (hazard ratio [HR]: 3.73, 95%
confidence interval [CI] = 2.82-4.90), overall survival (HR: 3.93, 95%
CI =2.81-5.45) and local relapse (HR: 3.02, 95% CI = 1.88-4.75) [16]. Curiously,
the survival impact was directly related to the number of CTCs detected, suggesting
the use of CTCs as a quantitative biomarker in BC (see some examples in Table 2.1).

2.5.2 CTC as a Micrometastasis Marker in Patients with eBC
Treated with Adjuvant Therapy

In the context of adjuvant therapy in eBC, a multicentric randomized German study,
SUCCESS-A, which tested CTCs in patients eligible to receive adjuvant CT, cor-
related the positivity of CTC to the lymph node status. This study confirmed that
CTCs are an independent factor for disease-free survival (HR: 2.11,
95%CI = 1.49-2.99) and overall survival (HR:2.18, 95%CI = 1.32-3.59). Finally, a
high CTC count was associated with worse prognosis, validating the use of CTCs as
a quantitative biomarker [17]. The recently published 2-year follow-up of this study
showed that those patients that had a positive CTC count after 2 years of treatment
had a risk 3.9 times higher of death and 2.3 times higher of relapse in the multivari-
ate models, when compared to those that had a negative result; all these results were
true in those patients with HER2-negative BC [18].

In 2018, Sparano et al. [19] conducted a study that analyzed the recurrence of
CTC detection after 4.5-7.5 years of follow-up in patients with HER2-negative BC



D. G. de Castro and F. K. Chen

18

(92T ¥H) [eatains

[Te10A0 pue (10000 > @) [eATAINS 901j-uolssarSod
POURLIOYS ()1 PIJLIOSSE SLM ‘QUI[SEq

J2 JUN0d DI, 10J pajsnipe ‘Juounearn jo 1e)s

I9)JE SIUN0D DD PIsLIdU] "dul[eseq Je Tul G-/ OT1
1od ¢ uey) ss[ JO JUNOd DI B YIM sjuaned ‘swIsAsorg
yim paredwod (10000 > d) [BAIAINS [[EIOAO pue uooI[IS
(1000-0 > d) [eAIAINS do1j-uOIssaIS01d pasearoap TULIBUQIA)
[BAIAINS 931] | YIIM PIBIDOSSE SBM [OIYM ‘QUI[eseq e JoySIy 1o poylow
-uorssar5ord :§d | Tw G-, 12d ¢ jo wunod DI € pey ssuaned %6:91 | IOT | TRI0PIEPIE | YH PUR TAHH | wiUdTRISTRD Pr61 Al searg
JUSISJIp
Apueoytugis A[eonsne)s arom Aderoy) Jo uornenrur
Q) 1)Je SY9M ] 01 6 03 dn pue duIjaseq
Je sown) SO pue Sd UBIPIA A[oAndadsar
SYIUOW £°9 PUB 9°9 °€"9 “€°9 ‘6'0[ 1MOYS
Apuesyrusis sem §O ueIpaW DI ¢ YA
swened 104 ‘syuow ¢'I< [[€ Sem DD > Yiim OT1
sjuanyed 103 SO URIPA “A[0A1}0adSaI ‘syjuout 9'¢ ‘swoysAsorg
puE ‘0'¢ ‘p'1 €T °L'T HoMOYs ApurdyIusIs uooIIs
sem S uerpaut ‘)LD < yim sjuaned 10, uneIyojko TULIBUQIA)
‘AfeAnoadsal ‘syjuowt ()'9 pue ‘0’2 ‘9°G “1°9 ‘0°L Surssardxo poyjowr
dn-mof[oj :Nd | 219M DI 6> Yim siuaned 10§ sown S UBTPAN | 9007 | Te 19 sakey pue cyad | wuldIBISID LLT Al searq
[BATAINS [[BIDAO
pue oa13-uorssaidoid jo siojorpaid jueoyrudis
JSOW ) UM JISIA ) ISIY ) JB PUB AUI[Iseq
18 SO JO S[AJ[ YL *(100°0 > ) parstsiad
sdnoid oy usamiaq QouaIgIp siy) ‘Aderoy) jo OT1
uonenIul Ay} J9YJe NSIA (1 ISIY Y IV (100°0 > d) ‘swaisksorg
[BAIAINS [[BIOAO I21I0YS pue (100°() > J) [BAIAINS uodI[IS
9013-uoIssa1301d ueIpaW 10JI0YS € pey ‘W G/ uneIy0IAd TULIBUSIA)
s[[ed Jown) | 1ad s[[ed Jown) Sunenoro ¢> yim dnoid o) yim ™R Surssardxo poyiow
Sunenoxo :n 1) | paredwod ‘poo[q ajoym jo [wr ¢/ 10d ¢ </=$DID | $00T |  HITURJOISL) pue ¢yad | wil2IeISID LLT Al Jsearq
SUOTIRIAQIQQY S)[NSAI UTRJA! b)Y sioyIny SIIBIN POYIRIA | siuaned 8w lowng,
‘ON
JOOUED ISBAIQ UI SO YIM SAIpMS  [°Z dqel



19

2 CTCs in Solid Tumors. Clinical Applications of Circulating Tumor Cells in Breast...

(penunuod)

(10000 > &) 2Anesau ad pue “(1000°0 > d)
aanisod-z¥HH (1000°0 > d) 2anisod-103dadax

QUOWLIOY :1I0Y0J JAIssaIZTe Y 0 paredwod OT11
sodKiqns oseasIp [[e ssoxoe SO JoSuof Apueoyrusis I9dH ‘swoysAsorg
peY 9SBISIP AT 2381S YIM sjuaned ‘IOA0dION pue ‘Joydooar uooI[IS (oA1ssa133e
(1000°0 > d) syuaned DA oaou op 10 quordsagord TULIBUSIA) pue
AAISSAIZTe = BAT Apxeqruts pue (1000°0 > d) AT 2381S yiim 2soy) e RUTEREN poyiouwr judfopur)
/73ud[oput = IAT uey) SO UeIpow 123uof pey sjuaned IAT 25e1S 810C |  MIUeBJOISLD UdS0NSH | w1 YITRISTP) 9¢eve Al searqg
‘(eAneSou DD
sem Juaned SIy)) 90UILINOAI ASEASIP PAOUALIdAXD
yuaned 1 A[uo y3noyye ‘aseasip aanesou-101dooar
Quourioy i syudned 9,14 103 9anisod os[e sem OT11 aAne3ou
Jnsa1 Aesse DI AU, "2OUILINOAI [BIIUI]D 210Joq ‘sw)sAsorg —C¥AH
SIBOA §'7 JO UBIpOW € Je J[nsaI Aesse D1, danisod uooI[IS aAne3ou
® pey 20uaLmoal Yim syuaned 940¢ (1°¢1 TULIBUDIA) -9pou st
‘orjel pIezey) 90UQLINdAI JO YSLI 1oyS1y p[oJ-1'¢| poyiow -ystg
B (IIM PAJRIOOSSe sem J[nsat Aesse D ) oanisod v | 8107 | ‘Te 19 ouereds MH|  waUoIeas|ed Y661 10 [N jsearg
(09°¢ =¥H
“SO 1§+ = ¥H :SAQ) Poo[q Tur o¢ 1od LD
QAL 1583 18 )M sjuaned ur Js1om sem sisousord
YL (200" = d) SO Pue (1000 > d) SAA
10J SISA[eu. 9[qeLIBANNW U SIoyIew dnsousord
Juopuadapul se pauwLIguod a1am s 1) (2000 = d
£SO) [BAIAINS [[RIDAO PUB (800" = d) [BAIAINS
oy10ads-1aoued I1sealq ‘(100" > o) SAC uLISIp
“1000" > d SAA) [BAIAINS 221J-0seasip 100d [im
PALIOSSE sem ST, JO douasaid ay ], -danisod
DD 21am syuaned Jo 951 7z ‘Aderaypowayd 1oyyy OT1
‘snje)s 10)dodar suowroy Jo ‘Surpeid ‘ozrs Jown) ‘swoysAsorg
[)IM punoj sem uoneosse oN (100" > o) SOLD uooI[IS
Surmoys syuaned aanisod-apou Jo 9,177 pue TULIBUDIA])
QAIESOU-IPOU JO 959°6] Ym ‘sjuaned Jo 946 7 poylowt
[BAIAINS [[BISAO iSO ur pajolap a1am s) 1) ‘Aderdyowayd a10jog | H10T ‘Te 39 oy MH|  wiUoIeas|ed 970¢ Apreg jsearg




D. G. de Castro and F. K. Chen

10ydaoar
suouLioy “yH

(100" >d ‘SS’€010S'T =1D %S6 “1€'C =dH)
SAd pue (100" > d ‘TS'L 9 +0°C = [1D]

[2AIUI 9OUIPYU0D 9C6 “16°¢ = [YH] oner
prezey) SO Joj ooueas[a1 onsoudoid juopuadopur
pue jueoyrusis A[feonsne)s pey Aderayjowaydo
I10)Je s1eaA 7 snels DD Jey) Po[eaAdl

qurfaseq Je snels D) PAPN[OUI Jey) SUOISSAITT
X0)) ‘syjuowt /¢ sem jutodown siy) 193ye dn-mof[oy
ueIpaw oy, -oAnisod-) 1) 21om sjuaned

(%7'81) 861 ‘Adeioyowrayd Io)je sIedk omy,

610¢

‘Te 3o ddeiag,

Q711
‘swaysAsorg

uooiig
IULIBUIIA])
poyow
wiYoIeasS[[eD

L801

ySu
Y3y ‘o3e)s
Arreg JseaIrg

(LDN)
Aderoyjowrayd
JueAn(peodN

(800" = J) TeAIayur 9a1j-9sderor

[BUOIS21000] PUE ‘(100" > J) [BAIAINS JIJ-OSBISIP
JueIsIp ‘(100" > d) SO 10§ sepowt onsousord
J[qeLreAnnu jo Aifiqe snsousord ayy pasearour
DN 210J0q uonddjep HID Surppe ‘d[qe[reae
'Iep [[nJ PIm syuaned 198 uf A[eanoadsax

“(60°6 01 €7 =1D %S6) ST'9 PUE “(99'9
0180'C=1D %S6) €8°€ ‘(#S¥ 01 TH'T = 1D %S6)
€9'C (69'T 01 §9°0 = [1D] TeAzeIuT 9oUPYUOD
%56) 60°1 JO yreap jo soner prezey poe[dsip

IDN 2I10J2q SDID 910Ul 10 dAY pue ‘INOJ 0}

Q1Y) ‘oM ‘QuO M Ssjudned osuodsar 93o[dwod
Tear3ojoyed uo jou 1nq ‘(100" > ) [eAIIUT
Qa13-asdefa1 [euor3a1000] pue ‘(100" > J) [BAIAINS
92I-9SBASIP JURISIP (100" > ) SO uo 1oedur
[BIUSWRIOAP PUB [BIUSWLIIP B PRy P)I2)p
SDLD Jo qunu Y, (100" > ) 9ZIS Jown) Yim
PaJeIo0SSE sem sIy) S DN 210J2q sjuaned Jo 9,7°GT
ur $)I,D 9IOW IO QUO PI[BIAI UOTIOAP DD

810C

‘Te 19 preptq

aAnedou-ordin
+79dH
‘[-z9dHl]

/+ 101dadar
QUOWLIOH

OT1
‘swoysAsorg
uooIIs
IULIBUIIA])
poylouwr
WLYdIBIS[OD

YLLT

T T Jsearq

SUOTBIAQIQQY

S)[NSAI UTEIA]

Ie9)

s1o0yny

SIONIRIA

POYRI

sjuaned
ON

J3e1g Jowng,

20

(panunuod) 1z AqeL



21

2 CTCs in Solid Tumors. Clinical Applications of Circulating Tumor Cells in Breast...

(penunuod)

JuswIeAn)
juean(peoau ;N

(s€00=d"91'1E~p1']

1D%S6 “S6'S YH) smeis 7YHH pue ‘2df)
[eo130103s1y ‘opeI3 ‘oFe)s [epou ‘@3e)s Jown) ‘oJe
10J paisn[pe SUOISSAITAI X0O A[qELIBAN[NW UI pUL
(110°0=d *€0'81—L¥'T [ID] [eAIAIUT 20UAPYUOD
%56 ‘v1'S [YH] onel prezey) ajqerrearun

ur .Y 10j 103oe} onsousoid Jueoyrusis € sem
smeys DI ‘syuaned aanisod-1o)deser suouroy
uy ‘syuanjed aanedou-10)desar suowioy ¢¢

ur g pue sjuaned aanisod-1oidesar suowroy g6
UL [ ] ‘POAISSQO QI9M SQOUILINDAI [ € ‘[[BIOAQ
'syuaned (9,8°2) ur aanisod sem smeis DD YL,

810T

Vv $S400NS
‘e 30 Tuuef

dH

Q711
‘swaIsAsorg
uodIIs
TULIRUSIA)
poyowr
WLYdIBIS[RD

90¢

RERTI )
1sBA1q A[IBd
NSU YSIH

jsearg

[BAIAINS 931)
-Q0UALINDAT 1S, Y

(900°0— =¥

‘960 = d) (29/1¢) syudned ayy Jo 9,06 ur
paurelqo a1om Ajanisod gH Surpredar sjnsax
JuepI0oU0)) "A[2A103dSAI ‘10dUR)ISLAId 1S PUPY
pue Aesse YoIeag[[oD) 2y SUIsSn 9,64 PUE 9 7¢
sem sD 1D 2anisod-gydH nq stowny Arewrrrd
QAneSou-ZYdH YPim siuaned 100ued Isealq

JO QeI AY], ‘91 sem Ae1 Aianisod 7YHH pue
‘JooueDIsealq s eupy Suisn aanisod D10 drom
syuaned 956¢ “siuaned asay) JO 9 [ Ul PAAISqO
a1om $D1.D 2ANIsod-gyHH pue ‘sOLD §<

pey syuaned Jo 9,06 ‘Aesse YoIeas[e) ay) Sursn

010T

I LOALAd
‘Te 10 wye,g

CIdH

YoIeag[[aD pue
Jadue)isearq

JsqLeUpY

124

Al

jsearg




D. G. de Castro and F. K. Chen

22

(Qouelg
‘S[[e0aIRY)
Lasipue Q11
syuanjed 1o0ued 3uny Jo ((Z JO N0 §) %07 ‘swoysAsorg
Auo ur pue 1oued Aeysord YPim syuaned ay) jo uodI[IS sewouroIe))
(0T JO 10 Z) 9%(9 UI ‘Io0ued JseaIq Yiim sjuaned TULIBUIIA) Sun
a1 Jo (07 JOINO 1) 9%GG Ul paureIqo UM poyiouwt pue a1eIsolq
LASI PUB Yo1eaS[[o)) UaMm1aq $I[NSI JUEPIOIUOD) 1107 | Te 10 adeIR WiUoTeaS D 09 Al qsearg
(2000=d)
oSe)s Jown) Y31y YIM PIRIDOSSE PUB SEWOUIDIBD
[2100P 0] PAIOLNSAI SeM DT, UO UOIssAIAXAIIA0
49H stown) Arewnd oantsod-gydH
im syuaned g Jo 1 urjuesaid drom [N Ioyje 10
210J9q 2AnIs0d-gYHH AP[eom 10 2ANe3ou-gYdH
Pa109s DI, JuduILn qewnznise) e sjudned
¢ pue szown) Arewnid oAne3oU-ZYHH YIm
syuoned g Surpnyour ‘syuaned aanisod-D 1D %14
Ul PIAIRSqo 1M D I,D Surssardxarono-gyaH
uo1dAAP DI Pue N 03 dsuodsar owny
U99M12q UOIIBIDOSSE OU SBM I} ‘QIOULIAYLIN]
*$oNsLIv)ORIRYD Jown) Arewid yiim 9)e[a110d OT1
J0U PIp UONOARP DD LN Jeye aanisod-D 1D ‘swshsorg
QIoM SISBI 9,¢"Q SeAIYM ‘N Jalje 9ANe3U-) 1D [, uodI[Ig
1om sased aansod-) 1D A[[entur 9(0°G| omenQJedon TULIBUQA)
(20070 = d) LN 19e 9901 Ut pue N 210J9q eR poyewt
siuaned Jo 9,971 UL TW §'£/D1D [ PAAP M | 010T Jiopyiery CddH ISLCLEN IDO] L8T I Jsealq
SUOTIBIAQIQQY S)NSAI UTBIA] Te9x sioyIny SINIR]A POYIRIA | siuoned aSeig Jowng,
‘ON

(panunuod) 1z AqeL



2 CTCs in Solid Tumors. Clinical Applications of Circulating Tumor Cells in Breast... 23

that received primary surgical treatment, followed by adjuvant CT. In the multivari-
ate models, a positive CTC was associated with a risk 13.1 times higher of recur-
rence in patients with positive hormone receptors (HR: 13.1, 95% CI = 4.7-36.3).
No patients with negative hormone receptors and positive assay had a recurrence of
CTC (0%, 95% CI = 0% to 37%).

The TREAT-CTC trial was the first attempt to try to demonstrate the clinical
applicability of CTCs in patients with eBC. This study also tried to evaluate if the
addition of a new adjuvant therapy (Trastuzumab) would help to elongate the
relapse-free interval in patients with a positive CTC count. This study, therefore,
concluded the following: (1) CTC-based screening is feasible in the adjuvant setting
of early breast cancer. (2) CTC-positive patients do have a higher risk of relapse. (3)
Trastuzumab has no effect on CTCs in HER2-negative BC [20-23].

Therefore, the use of CTCs as an evaluating tool of metastatic risk in eBC still
needs further scientific comprobation. However, it is highly probable that the num-
ber of CTCs will have a significant impact as a prognostic and metastatic biomarker
ineBC [1].

2.6 Conclusion

The use of CTCs as a prognostic factor in early and mBC has been shown to be quite
significant. Despite the detection of CTCs in eBC being a rare event, its clinical
validity as a prognosis marker has reached the highest level of scientific evidence.
However, its clinical applicability is still a subject to be studied.

Focusing on adjuvant treatments such as radiotherapy, QT, and hormonal ther-
apy, and associating these with new detecting techniques and with new biomarkers
such as circulation tumor DNA, will possibly reveal new treatments and early
micrometastasis diagnosis [24, 25].

And finally, when we are talking about patients with mBC, the quantitative and
qualitative CTC analysis must be considered an important tool with prognostic and
therapeutic implications.
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Chapter 3
Circulating Tumor Cells in Head
and Neck Cancer

Thiago Bueno de Oliveira

3.1 Introduction

Head and neck cancer is a broad term that encompasses epithelial malignancies
originating from the paranasal sinuses, nasal cavity, oral cavity, pharynx, and lar-
ynx. Most of these cancers are squamous cell carcinoma for which the main risk
factors are tobacco and alcohol [1]. Other established risk factor is HPV infection,
especially for oropharynx tumors [2—4]. It is the seventh most common neoplasm
worldwide, accounting for 700000 cases and 350000 deaths annually [5].

The majority of patients are diagnosed with locoregional advanced disease and
are treated in a multidisciplinary approach. Despite this, however, around 50% of
these patients will present disease recurrence [6, 7]. The multidisciplinary approach
includes upfront surgery followed by chemoradiation [8—10], upfront cisplatin-
based chemoradiation [7, 11], upfront cetuximab-based bio-radiation [12, 13], or
induction chemotherapy (ICT) followed by radiation-based local treatment [14—19].
Unfortunately, there are no predictive biomarkers to guide the choice of therapy. In
this scenario, the utilization of circulating tumor cells (CTCs) yields a great
perspective.

One of the first trials to investigate the role of CTCs in head and neck cancer was
done by Pajonk et al. [20] and analyzed 77 patients with locoregional advanced
head and neck squamous cell carcinoma (LA-HNSCC) with a RT-PCR based tech-
nique for detection of CK19 positive CTCs. The detection rate was only 6.5%
(5/77), and presence of CTCs was related to relapse, although without statistical
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significance. Some years later, Jatana et al. [21] analyzed 48 patients with
LA-HNSCC that underwent upfront surgery with a immunomagnetic cytokeratin-
based approach and found a significant correlation of absence of CTCs and better
disease-free survival (DFS) and CTC counts higher than 25/mL with worse DFS
(» =0.01 and p = 0.04, respectively). Similar results were found by Toyoshima et al.
[22] analyzing 48 patients with oral cavity primary cancer submitted to surgical
treatment, using a mRNA RT-PCR technique. The detection rate was 37.5%, and the
absence of CTCs was related to a better DFS (p = 0.01).

The CellSearch System® was also utilized in head and neck cancer studies.
Nichols et al. [23] found a detection rate of 40% (6/15) and a relation of CTC pres-
ence and lung nodules bigger than 1 cm (p = 0.01), suggesting micrometastatic
dissemination. Bozec et al. [24] found lower detection rates, of 12% (6/49) in
patients with oral cavity and oropharynx tumors before treatment, with no correla-
tion with clinical endpoints.

The largest data on CellSearch® in head and neck cancer were provided by three
prospective trials [25-27]. Grisanti et al. [25] evaluated 53 patients with recurrent or
metastatic disease, with a detection rate of 26% (14/53) at baseline and 41% (22/53)
at any time point. The presence of one or more CTCs correlated with a worse PFS
(HR =3.068; CI95%: 1.53-6.13; p = 0.002) and OS (HR = 3.0; CI95%: 1.48-6.00;
p =0.002). Disease control with systemic therapy was achieved by 8% of CTC+ as
opposed by 45% of CTC— patients (p = 0.03). Buglione et al. [26] analyzed 73
patients with LA-HNSCC and reported a detection rate of 15% (11/73) and a cor-
relation of response rate and absence or disappearance of CTCs during treatment
(p = 0.017). Grobe et al. [27] reported a 12.5% detection rate (10/80) in patients
with oral cavity tumors, and a correlation of CTC presence and worse recurrence-
free survival (RFS; p < 0.001).

Two studies analyzed more than 100 patients [28, 29]. Tinhofer et al. [29] evalu-
ated 144 patients with LA-HNSCC from oral cavity, oropharynx, larynx, hypophar-
ynx, and cervical occult primary that underwent upfront surgical resection. CTCs
were analyzed after surgery and before adjuvant radiation-based treatment, with a
mRNA RT-PCR technique for EGFR positive CTC detection. The detection rate
was 29% (42/144) and the prognosis impact analysis yielded mixed results. Overall,
the presence of CTC was not predictive for OS or DFS. However, while in oropha-
ryngeal carcinomas (n = 63), the detection of CTC was associated with a trend for
improved DFS (2-year DFS: 100% for CTC+ versus 79% for CTC—; p = 0.059) the
reverse was observed for carcinomas from other sites (n = 81), with 2-year DFS of
29% for CTC+ versus 75% for CTC—; p = 0.001. In multivariate analysis, CTC
remained an independent prognostic marker for DFS (HR = 4.3; 95%CI: 1.7-10.9;
p =0.002) and OS (HR = 2.7; 95%CI: 1.2-6.3; p = 0.016) in non-oropharyngeal
tumors. Liu et al. [28] analyzed 178 patients, with nasopharyngeal (n = 135) and
hypopharyngeal (n = 45) squamous cell carcinoma (SCC), that underwent blood
collection for CTC detection before and after treatment. CTCs were isolated using
negative immunomagnetic bead enrichment and were identified by fluorescence in
situ hybridization. The number of CTCs was associated with distant metastasis
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(p = 0.026) and patients with undetectable CTCs and decreasing or negative CTCs
post-treatment had a better prognosis (p < 0.05).

What is shown in these trials is a potential role of CTCs as prognostic markers in
head and neck cancer, although with some conflicting results. These mixed results
were evidenced by three metanalysis exploring this potential prognostic impact of
CTCs in head and neck cancer [30-32]. Wang et al. [30] analyzed 433 patients from
8 studies and showed that disease progression (recurrence/metastasis) rate in the
CTC-positive patients was significantly higher (OR = 3.44; 95%CI: 1.87-6.33;
p =0.01). However, there was no significant correlation of CTCs and TNM (III-1V
versus I-II; OR = 1.54; 95%CI: 0.87-2.72; p > 0.05) or nodal involvement
(OR =1.20; 95%CI: 0.67-1.90; p > 0.05). Wu et al. [31] analyzed 857 patients from
22 studies, but only 5 had data on survival endpoints (DFS, PES or OS). A signifi-
cant impact CTC-positivity was demonstrated for DFS (HR = 4.62; 96%CI:
2.51-8.52), but not for PFS or OS. Finally, Cho et al. [32] analyzed 429 patients
from 6 studies and found that the presence of CTCs was significantly associated
shorter PFS (HR = 4.88; 95%CI: 1.93-12.35; p < 0.001) but it was not prognostic
for OS (HR =1.92; 95%CI: 0.93-3.96; p = 0.078).

Another common point about these trials is that most of them rely on techniques
that are dependent mainly of cytokeratin marking of the CTCs, which could trans-
late into low detection rates, as observed in some trials. For example, the CellSearch
System®, which depends on the immunomagnetic capture of EpCAM positive
cells, could ignore CTCs that no longer express this marker, as occurs during the
epithelial to mesenchymal transition (EMT) process. Other trials depend on com-
plex and costly techniques, like mRNA RT-PCR. In both cases, the integrity and
preservation of cellular functions is harmed, which could difficult further analysis
in the cells.

Another line of research in CTC isolation utilizes microfiltration techniques,
which separates the cells based on size and deformability, like the ClearCell FX
System®, utilized by Kulasinghe et al. [33] to evaluate 23 patients with head and
neck cancer. The detection rate was 47.5% (11/23) and CTC-positive patients had
shorter PES (HR = 4.946; 95%CI:1.571-15.57; p = 0.0063), while PD-L1-positive
CTCs were found to be significantly associated with worse outcome (HR = 5.159;
95%ClI: 1.011-26.33; p = 0.0485).

In general, the microfiltration assays show higher detection rates, probably
related to the separation by size of the CTCs, independently of antibodies. Taking
this rationale into consideration, our research group demonstrated the potential clin-
ical applicability of the ISET (Isolation by SizE of Tumor cells, Rarecell, France)
method in the management of head and neck cancer patients, both as a prognostic
factor and as a predictive of treatment response. In a preliminary analysis [34] of 53
LA-HNSCC patients, analyzed for CTCs at baseline and after treatment (first fol-
low-up), we found a detection rate of 92.5% (49/53) at baseline and 93.8% (30/32)
at first follow-up. Circulating tumor microemboli (CTM), defined as a cluster of 3
or more CTCs, were found in 28.3% (n = 15) at baseline (CTM1) and 23.3% (n="7)
in the first follow-up (CTM2). Comparing CTM1 with CTM2, patients with unfa-
vorable evolution (CTM1 negative/CTM2-positive) had PFS of 17.5 months,
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patients always CTM-negative showed PES of 22.4 months, and those always posi-
tive, 4.7 months (P < .001). The TGF-PRI (transforming growth factor beta type I
receptor) expression in the first follow-up correlated with poor PFS (12 x 26 months;
p =0.007), being an independent prognostic factor (HR = 6.088; p = 0.033). These
data showed the importance of CTCs and CTM Kkinetics, the variation between pre-
and post-treatment results, as also the possibility of investigating prognostic and
predictive biomarkers expression in the CTCs, once the cells were well preserved
for this (please see some pictures of CTCs isolated from patients with localized
head and neck cancer in Figs. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11,
3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23, 3.24, 3.25,
and 3.26).

Later, our group presented the final analysis of this trial [35], including 83
LA-HNSCC patients, demonstrating a detection rate of 94% (79/83) and a signifi-
cant correlation of CTC counts and survival. For each increase of 1 CTC at baseline
there was a relative increase of 18% in the risk of death (HR = 1.18; CI95%:
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Fig. 3.1 CTCs from a men, 64 years old, with squamous cell carcinoma. Blood was collected
before treatment with radiotherapy and cisplatin, for stage III disease. Patient had 3.85 CTCs/
mL. In brown: DAB (anti-EGFR). In blue: hematoxylin (microscope 40x)

Fig. 3.2 CTCs from the same patient Fig. 3.1. Second blood collection, after until 3 months of
treatment. Patient had 1.80 CTCs/mL. In the right figure: Membrane and cytoplasm staining with
DAB for anti-MRP-7 antibody (microscope 40x)
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Fig. 3.3 CTCs from a men, 60 years old, with poorly differentiated squamous cell carcinoma.
Blood was collected before treatment with radiotherapy and cisplatin, for stage Va disease. Patient
had 3.42 CTCs/mL and developed lung metastasis; on the left we can see a cell stained with anti-
EGFR. (microscope 40x)
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Fig.3.5 CTCs from a men, 75 years old, with moderately differentiated squamous cell carcinoma.
Blood was collected before treatment with radiotherapy and cisplatin, for stage IVB disease.
Patient had lymph node metastasis and 4.0 CTCs/mL (microscope 40x)

1.06-1.31; p<0.001), 16% in the risk of progression (HR = 1.16; CI95%: 1.04—1.28;
p =0.004), and a reduction of 26% in the odds of complete response to treatment
(nonsurgical group only — OR = 0.74; CI195%: 0.58-0.95; p = 0.022). We also estab-
lished cut-off points of baseline CTCs for OS and PFS, patients with CTCs < 6.5/ml
had an estimated 2-year OS of 85.6% versus 22.9% for CTCs > 6.5/ml (HR = 0.18;
CI95%: 0.06-0.49; P < 0.0001) and patients with CTCs < 3.8/ml had an estimated
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Fig. 3.6 CTCs from a men, 59 years old, with poorly differentiated squamous cell carcinoma.
Blood was collected before treatment with radiotherapy and cisplatin, for stage IVA disease.
Patient had 4.0 CTCs/mL at first collection. At second collection, no response to treatment,
10 CTCs/mL, and recurrence in the bone, liver and lungs. In brown: antiEGFR staining (micro-
scope 40x)
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Fig. 3.8 CTCs from a men, 59 years old, with squamous cell carcinoma. Blood was collected after
3 months of treatment with radiotherapy and cisplatin, for stage IVA disease. Patient had
11.6 CTCs/mL at this point. In brown: anti-EGFR staining

2y PFES of 71.8% versus 37% for CTCs > 3.8/ml (HR = 0.32; CI95%:0.15-0.67;
p =0.001). In a subgroup analysis of 67 patients treated with a curative nonsurgical
approach [36], the presence of CTM was correlated with worse OS (HR = 3.01;
1C95%: 1.06-8.52; p = 0.029) and PFS (HR = 3.84; IC95%: 1.62-9.11; p < 0.001).
High CTC counts (cut-off 3.8/mL) and CTM were potential predictors of benefit of
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Fig. 3.9 CTCs from a
men, 72 years old, with
moderately differentiated
squamous cell carcinoma.
Blood was collected before
treatment with
radiotherapy and cisplatin,
for stage I1I disease.
Patient had 2.75 CTCs/mL
(microscope 40x).

Fig.3.10 CTCs from a woman, 68 years old, with poorly differentiated squamous cell carcinoma.
Blood was collected before treatment with radiotherapy and cisplatin, for stage IVA disease.
Patient had lymph node metastasis and 2.0 CTCs/mL at this point. In brown: anti-EGFR staining
(microscope 40x)

ICT. In patients with CTCs < 3.8 CTCs/mL 2-year OS was 88% for ICT versus 80%
for initial radiotherapy (RT) (HR = 0.55; IC95%: 0.10-1.84; p = 0.470), while in
patients with CTCs > 3.8/mL 2-year OS was 79% for ICT versus 30% for initial RT
(HR =0.32;1C95%: 0.07-1.38; p = 0.112). The same was observed with CTM, with
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Fig. 3.11 CTCs from the . ~
same patient Fig. 3.10.

Microemboli staining for
MRP-7 (microscope 40x)
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Fig. 3.12 Cell staining for $-tubulin. CTCs from a woman, 48 years old, with squamous cell car-
cinoma. Blood was collected before treatment with radiotherapy and cisplatin, for stage IVA dis-
ease. Patient had lymph node metastasis and 2.0 CTCs/mL (microscope 40x)
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Fig. 3.13 CTCs from a men, 73 years old, with squamous cell carcinoma. Blood was collected
before treatment with induction chemotherapy with carboplatin plus paclitaxel, for stage IV dis-
ease. Patient had 2.0 CTCs/mL. Cell staining for MMP-2 (metalloproteinase 2). We can observe in
both pictures an irregular nuclei and high proportion nuclei/cytoplasm (microscope 40x).

worse outcomes for initial RT in CTM-positive patients, in comparison to the other
groups (CTM positive undergoing ICT or CTM negative) both for OS (p = 0.020)
and PFS (p < 0.001).

In summary, CTCs have potential prognostic impact in head and neck patients,
both for baseline counts and presence of CTM, as well as for kinetics evolution
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Fig. 3.14 CTCs from a men, 51 years old, with squamous cell carcinoma. Blood was collected
before treatment with induction chemotherapy with carboplatin plus paclitaxel, for stage IVA dis-
ease. Patient had 2.7 CTCs/mL (microscope 40x)

Fig. 3.15 CTC from the
same patient Fig. 3.14. We
can observe a large cell
with irregular and lobular
hyperchromic nuclei. In
brown: membrane and
cytoplasmic staining with
anti-MMP-2

(microscope 40x)

Fig. 3.16 CTCs from a men, 78 years old, with squamous cell carcinoma. Blood was collected
before treatment with radiotherapy and cisplatin, for stage IVA disease. Patient had lung metastasis
and 4.71 CTCs/mL (microscope 40x).

during treatment (see Table 3.1). It also has a predictive role, especially with tech-
niques that preserves cell integrity allowing biomarker evaluation in the CTCs and
CTM. The results utilizing the ISET method are compelling, given the high detec-
tion rates, the undisputable prognostic, and the potential predictive role in this
scenario.
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Fig. 3.17 CTCs from a
men, 81 years old, with
squamous cell carcinoma.
Blood was collected before
treatment with
radiotherapy and
cetuximab upfront, for
stage IVA disease. Patient
had 4.75 CTCs/mL. In
brown: staining with
anti-EGFR

(microscope 60x)

T. B. de Oliveira

Fig. 3.18 CTCs from the same patient Fig. 3.17. Cell staining for anti-MMP-2 (microscope 40x)

Fig. 3.19 CTCs from a men, 79 years old, with moderately differentiated squamous cell carci-
noma. Blood was collected before treatment with radiotherapy and cisplatin, for stage III disease.
Patient had 3.0 CTCs/mL. Cell staining for anti-TGF-p receptor I (microscope 40x)
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Fig. 3.20 CTCs from a
men, 76 years old, with
moderately differentiated
squamous cell carcinoma.
Blood was collected before
treatment with
radiotherapy and
cetuximab, for stage IVA
disease. Patient had

3.57 CTCs/mL. Cell
staining for anti-MMP-2
(microscope 60x)

Fig. 3.21 CTCs from a men, 65 years old, with squamous cell carcinoma. Blood was collected
before treatment with induction chemotherapy followed by radiotherapy and carboplatin, for stage
IVB disease. Patient had 0.5 CTCs/mL. Cell staining for anti-MRP-7 (multidrug resistance pro-
tein-7) (microscope 40x)

Fig. 3.22 CTCs from a
men, 46 years old, with
well-differentiated
squamous cell carcinoma.
Blood was collected after
until three months of
treatment with
radiotherapy and
cetuximab, for stage III
disease. Patient had

4.0 CTCs/mL. We can
observe a large cell with
irregular nuclei and
membrane staining for
EGFR (microscope 40x)
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Fig. 3.23 CTCs from a
men, 80 years old, with
squamous cell carcinoma.
Blood was collected after
until 3 months of treatment
with radiotherapy and
cetuximab upfront, for
stage IVA disease. Patient
had lymph node metastasis
and 2.4 CTCs/mL
(microscope 40x)

Fig. 3.24 CTCs from a
men, 48 years old, with
squamous cell carcinoma.
Blood was collected before
treatment with
radiotherapy and cisplatin,
for stage IVA disease.
Patient had 4.25 CTCs/
mL. We can observe a cell
with irregular nuclei
(microscope 60x)

T. B. de Oliveira
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Fig. 3.25 CTCs from a men, 52 years old, with squamous cell carcinoma. Blood was collected
after until 3 months of treatment with radiotherapy and cisplatin, for stage IVA disease. Patient had
lymph node metastasis and 1.2 CTCs/mL. In brown: cell staining for EGFR (microscope 40x)

Fig. 3.26 CTCs from a
men, 60 years old, with
squamous cell carcinoma.
Blood was collected before
treatment with
radiotherapy and cisplatin,
for stage IVA disease.
Patient had 1.6 CTCs/mL
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Chapter 4
Circulating Tumor Cells in Colorectal
Cancer

Virgilio Souza e Silva, Angelo Borsarelli Carvalho de Brito,
and Daniela Costa

4.1 Introduction

Colorectal cancer (CCR) is the second most common cancer diagnosed in women
and third most in men, accounting for approximately 10% of all annually diagnosed
cancers and cancer-related deaths worldwide [8]. These rates also vary geographi-
cally, with the highest rates seen in the most developed countries. It is a prevalent
disease in older patients, but the incidence is rising in younger ones, especially
rectal cancer and left-sided colon cancer [19].

CCR is largely an asymptomatic disease until it reaches an advanced stage; in
these cases, symptoms such as rectal bleeding, change in bowel habits, anemia, or
abdominal pain should alert patients to look for a doctor. In asymptomatic patients,
screening methods are important. Colonoscopy, occult blood in feces, and sigmoid-
oscopy are the most common used methods, but each one has its own limitations
[12]. Thus, new and less invasive methods need to be investigated.

For metastatic CCR, systemic therapy typically includes chemotherapy back-
bone paired with a biological treatment. Fluoropyrimidines combined with oxali-
platin (FOLFOX) and irinotecan (FOLFIRI) chemotherapies are the most commonly
used regimens [12]. In terms of response rate and survival, the addiction of a bio-
logic (anti-VEGF or anti-EGFR) antibody in the chemotherapy regimen, depending
on the tumor-specific factor, must be considered.

Figures separated by Ludmilla T.D. Chinen and revised by Mauro Saieg (Cytopathologist from AC
Camargo Cancer Center, Sdo Paulo, SP — Brasil)
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It is known that genetic intratumor heterogeneity contributes to treatment failure
and drug resistance [14]. Several studies comparing mutational profiles of primary
tumors and associated metastatic lesions [13, 36] and local recurrences [29] have
provided evidence of intratumor heterogeneity.

Early during the formation and growth of a primary tumor, cells are shed from
the primary tumor and then circulate through the bloodstream. These circulating
tumor cells (CTCs) can be enriched and detected by different technologies, which
take advantage of their physical and biological properties. CTC analysis is consid-
ered a real-time “liquid biopsy” for patients with cancer [3].

Compared with conventional biopsy, the “liquid biopsy” has some advantages:
requires only a small amount of blood [23], is minimally invasive [24], allows early
detection of cancer [17] and-real time monitoring for treatment responses and resis-
tance, by repeated analysis [6]. Some disadvantages are the lack of standardization
techniques [9] and insufficient clinical and technical validation [4].

In CCR, CTCs can be used for screening (early detection of invasive cancers),
in localized cancer (risk stratification), prognosis and monitoring after treatment,
and metastatic cancer (selection of therapy, monitoring of response, and resistance
mechanisms).

4.2 CTCs for Colorectal Cancer Screening

Although the prognostic value of CTCs in the early stages of CCR has already been
evaluated in several clinical studies, its role in screening and early detection remains
controversial, but it is a very promising topic [22, 30].

The main study on CTCs with the screening approach was recently presented at
ASCO 2018 with 620 participants (182 healthy controls, 111 participants with
precancerous lesions, and 327 patients with stage I-IV CRC). The results were
compared to a standard clinical protocol, including colonoscopy and biopsy results,
revealing an overall accuracy of 88% for all stages of the disease, including precan-
cerous lesions. It is the first study to show high sensitivity in the detection of precan-
cerous colorectal lesions [33].

The simple collection of blood for liquid biopsy can be easily integrated into the
routine physical examination of the patient, increasing adherence to the test and,
thus, allowing an increase in early diagnosis without the need for invasive tests; how-
ever, we still need more studies to support this tracking strategy in colorectal cancer.

4.3 CTCs for Evaluation of Minimal Residual Disease in
metastatic CCR

Treatment for patients with localized CRC consists of surgery, and in some cases,
stages II and III, adjuvant treatment with chemotherapy in addition to surgery is indi-
cated. Identifying patients at high risk of recurrence and treating them with adjuvant
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therapy remains an important clinical issue. In current practice, we used tumor mark-
ers such as carcinoembryonic antigen and clinical-pathological factors to define the
risk of recurrence and prognosis, with limitations in identifying minimal residual
disease (MRD). Therefore, the monitoring of CTCs during post-surgical follow-up
evaluations may allow the patient to better stratify in relation to the risk of recurrence.

In a study with 141 patients (stages II and III), the presence of CTCs after cura-
tive surgery was associated with worse progression-free survival and overall sur-
vival. In this study, recurrence occurred in 72.5% of patients with positive CTCs
after surgery, on the other hand, recurrence occurred in only 12.2% of patients with
negative CTCs [20].

A research with 138 patients showed that postoperative patients with positive
CTC and negative CTC before surgery is an independent indicator of poor progno-
sis for CRC patients treated with curative resection [38].

A study with 130 patients with stage II-III CRC demonstrated that the postopera-
tive CTC counts were earlier than the preoperative CTCs in predicting tumor recur-
rence survival in patients with non-metastatic CRC undergoing surgery. In addition,
the authors developed CTC-based prognostic models to predict tumor recurrence in
stage II-IIT CRC, which can be used to identify patients at high risk for recurrence
and guide aggressive treatment to improve the clinical outcomes of these patients
[35]. Please see some pictures of CTCs isolated from localized colon cancer by
ISET in Figs. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9, 410, 4.11, 4.12, 4.13, 4.14,
4.15,4.16,4.17, 4.18, 4.19, and 4.20.

CTC

d
!. Membrane

pore of 8
micrometers

Fig. 4.1 Patient with 58 years old, male, with stage IIIC (1st collection, at diagnosis). CTC count
was 4.60 CTCs/mL. The CTC count was 0.33 CTCs/mL after surgery and 4.33 CTCs/mL after
adjuvancy. On letter C, we can better visualize nuclear irregularity and lobular nuclei. In boxes
(a—d) we can oberve CTCs with different shapes
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Fig. 4.2 Patient with 61 years old, male, stage IIC. Here, we can observe irregular nuclei. The
CTC count was 3.80 CTCs/mL in baseline (blood collection at diagnosis)
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Fig. 4.3 Patient with 51 years old, male, stage IIA. The CTC count was 6.0 CTCs/mL in the 1st
collection (cell with irregular nuclei and abundant cytoplasm). After surgery (second blood collec-
tion), it was 5.33 CTCs/mL

Finally, a study with 438 patients, with the objective to evaluate the presence of
CTCs in the pre- and postoperative scenario in patients with colorectal cancer in
stages I-III undergoing curative resection and, thus, identifying a subgroup of
patients at high risk of relapse, suggested that the persistent presence of CTCs in the
postoperative period can be a crucial prognostic factor, in addition to conventional
tumor markers in patients with CRC undergoing curative resection. The identifica-
tion of these high-risk patients with persistent positive CTCs is important and,
therefore, can help to define patients for adjuvant therapy with this tumor entity [34].
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Fig. 4.4 CTCs from the same patient of Fig. 4.3. Isolated CTC of 3rd collection (after adjuvancy).
The CTC count was 5.66 CTCs/mL
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Fig. 4.5 Patient with 37 years old, woman, stage IIIB. The CTC count was 4.80 CTCs/mL in the
1st collection

4.4 CTCs for Prognostic Evaluation in Metastatic Disease

The role of CTCs in the prognostic stratification of patients with metastatic CRC
has been demonstrated in several studies emphasizing that the presence of CTCs
can predict future metastasis (disease progression) and unfavorable outcome as
demonstrated in Table 4.1.

In a previous publication of our group, with 54 mCRC patients, we demonstrated
that in addition to the initial CTC count, kinetics was also important for prognostic
definition [27]. Evaluating CTC kinetics, when we compared the baseline (pretreat-
ment) CTC level (CTC1) with the level at first follow-up (CTC2), we observed that
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Fig. 4.6 Patient with 70 years old, male, stage I disease. The CTC count was 1.0 CTCs/mL in the
Ist collection. This figure is of 2nd collection (on letter (a): cytoplasm staining with ERCC1). In
letters (a, b), we can observe chromatin irregularity. The CTC count was 4.67 CTCs/mL
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Fig. 4.7 Patient with 85 years old, woman, with stage IIA. The CTC count was 2.25 CTCs/mL at
baseline. This figure is of 2nd collection ( after surgery), the count was 1.33 CTCs/ml

CTC1-positive patients (CTCs above the median), who became negative (CTCs
below the median) had a favorable evolution (n = 14), with a median progression-
free survival (PES) of 14.7 months. This was higher than that for patients with an
unfavorable evolution (CTC1~ that became CTC2*; n = 13, 6.9 months; p = 0.06).
Patients with WT KRAS with favorable kinetics had higher PFS (14.7 months) in
comparison to those with WT KRAS with unfavorable kinetics (9.4 months;
p =0.02). Moreover, patients whose imaging studies showed radiological progres-
sion had an increased quantification of CTCs at CTC2 compared to those without
progression (p = 0.04). This study made possible the presentation of ISET as a
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Membrane
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CTC

Fig. 4.8 Patient with 56 years old, woman, with stage I. The CTC count was 6 CTCs/mL at base-
line. This figure is of 2nd collection (after surgery), the count was 5 CTCs/ml (cytoplasm staining
for ERCC1). We can observe a classical CTC and an ISET pore

Membrane
pore of 8
micrometers

CTC

Fig. 4.9 Patient with 59 years old, woman, with stage IIIC. The CTC count was 2.50 CTCs/mL at
baseline (cytoplasm staining with TIMP1)

Membrane
pore of 8
micrometers

CTC

Fig. 4.10 CTCs from the same patient of Fig. 4.9. This picture is of the 2nd collection. The count
was 3 CTCs/ml (cytoplasm staining for ERCC1)
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Fig. 4.11 Patient with 71 years old, woman, with stage IIIB. The CTC count was 7 CTCs/mL at
baseline (cytoplasm staining with TYMS). Here, we can observe a neoplastic emboli with three-
dimensional arrangement of epithelial cells

Fig. 4.12 Patient with

69 years old, man, with
stage IIA. The CTC count
was 3.6 CTCs/mL at
baseline (microemboli
staining for TYMS)

Fig. 4.13 Patient with

63 years old, man, with
stage I1IB. The CTC count
was 7.0 CTCs/mL at
baseline (microemboli
staining for f-GAL)
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Fig. 4.14 Same patient of
picture Fig. 4.13. Here, we ' . ® © ..
can observe a proliferation
of epithelial cells with
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Fig. 4.15 Patient with 71 years old, woman, with stage IIIC. The CTC count was 7.0 CTCs/mL at
baseline. We can see neoplastic epithelial cells sketching acinar arrangement

Fig. 4.16 Patient with ko
57 years old, man, with

stage IIIB. The CTC count

was 2.5 CTCs/mL at . O

baseline (at diagnosis) '.
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Fig. 4.18 Same patient of
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Fig. 4.19 Patient with 69 years old, male, with stage IIA. The CTC count was 7 CTCs/mL at
baseline. This figure is of 3rd collection, made after adjuvancy (3.33 CTCs/mL)
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Fig. 4.20 Patient with 59 years old, woman, with stage IIIC. The CTC count was 2.80 CTCs/mL
at diagnosis. This figure is of 3rd collection (after adjuvancy) and the count was 5.33 CTCs/
mL. The asterisk represents CTCs stained with hematoxylin

feasible tool for evaluating CTC kinetics in patients with mCRC, which can be
promising in their clinical evaluation.

These data are reinforced by the meta-analysis with 13 studies that showed that
the rate of disease control was significantly higher in patients with CRC with low
CTC compared to high CTC (RR = 1354, 95% CI [1002-1830], p = 0.048). CRC
patients in the CTC-high group were significantly associated with poor progression-
free survival (PFS; HR = 2500, 95% CI [1746-3580], p < 0.001) and poor overall
survival (OS; HR = 2856, 95% CI [1959-4164], p < 0.001). Patients who converted
from low CTC to high CTC or who were persistently high CTC had a worse disease
progression (OR = 27.088, 95% CI [4960-147,919], p < 0,001), PES (HR = 2095,
95% CI [1105-3969], p = 0.023) and OS (HR = 3604, 95% CI [2096-6197],
p < 0,001) than patients who converted from high CTC to low CTC. Thus, it con-
cludes that CTCs can be used as a new marker capable of predicting the response to
chemotherapy in patients with metastatic CRC [15].

Another more recent meta-analysis with 15 published studies containing 3129
patients reinforces that the presence of CTCs was significantly associated with poor
mortality (overall survival: HR = 2.36, 95% CI: 1.87-2.97; P = 0.006) along with
aggressive disease progression (progression-free survival: HR = 1.83, 95% CI:
1.42-2.36; P < 0.00001) (Yi Tan et al. 2017).

Another study by our group in the metastatic setting evaluated the expression of
TYMS in CTCs, in 34 samples and was TYMS considered positive in 9 (26.5%).
Six of these patients had tumor progression after treatment with 5-FU. An associa-
tion was found between CTC TYMS staining and disease progression (PD),
although without statistical significance (p = 0.07). Patients who had a CTC count
above the median (2 CTCs / mL) had higher TYMS expression (p = 0.02) correlat-
ing with a worse prognosis. These results suggest that TYMS analysis may be a
useful tool as a biomarker predictor of 5-FU resistance if analyzed in CTCs of
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Table 4.1 Studies showing that the presence of CTCs can predict future metastasis (disease
progression) and unfavorable outcome

Author, year

Number of
patients

Population

CTC’s evaluation

Treatment

Main results

Sastre et al.
(2012) [16]

1202

mCCR

CellSearch
System

Chemotherapy +
Mab

bCTC
presented in
41% of
patients;
association
with worse
ECOG, stage
1V, >3
metastatic
sites and CEA
levels

Bidard et al.
(2019) [7]

mCCR

CellSearch
System

Chemotherapy +
surgery
(metastasectomy)

bCTC was
associated
with OS; no
association of
CTC and
metastatic
hepatic
resection

Tan et al.
(2018) [18]

mCCR

Size-exclusion
method

Chemotherapy
+/— Mab

CTC kinetics
during
chemotherapy
was associated
with disease
progression
and trends in
CEA levels

Yang et al.
(2017) [37]

2363
(metanalysis)

Non-
metastatic
CCR

RT-PCR

Adjuvant
chemotherapy for
III and part of 11

CTC positive
was associated
with shorter
oS

(HR =3.07,

P <0.001) and
disease-free
survival

(HR =2.58,

P <0.001)

Chen et al.
(2017) [10]

90 (and 151
healthy
donors)

CCR and
healthy
donors

RT-PCR in
marker genes in
RNA extracted of
CTCs

The
expression of
ECT2 in the
CTC could
serve as an
alternative
measurement
in the
diagnosis and
monitoring of
colorectal
cancer patients
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Table 4.1 (continued)

59

Author, year

Number of
patients

Population

CTC’s evaluation

Treatment

Main results

Souzae
Silva et al.
(2016) [26]

54

mCCR

Isolation by size
of epithelial
tumor (ISET)
cells

Chemotherapy
+/— Mab

ISET was
proved a
feasible tool
for evaluating
CTC kinetics,
that, together
with CTC
levels were
associated
with prognosis

Abdallah
et al. (2015)
[1]

mCCR

Isolation by size
of epithelial
tumor (ISET)
cells

Chemotherapy
+/— Mab surgery
+/—
metastasectomy

Thymidylate
synthase
(TYMS)
expression in
CTC was a
predictor
biomarker of
5-FU
resistance

Barbazan
et al. (2014)
[5]

mCCR

Multimarker
CTC detection
panel

Chemotherapy
+/— Mab

A multimarker
model based
on expression
levels of a
six-gene panel
of tissue-
specific and
EMT-related
markers in
CTC was
associated
with of OS
and PFS

Sastre et al.
(2012) [25]

108

mCCR

CellSearch
System

Chemotherapy +
bevacizumab

CTC count is
a strong
prognostic
factor for PFS
and OS

De
Albuquerque
etal. (2012)
[11]

60

mCCR

Immunomagnetic
enrichment with
BM7 and VU1D9
Ab

Chemotherapy
+/— Mab

CTC positivity
was prognostic
factor and
associated
with
radiographic
disease
progression

(continued)
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Table 4.1 (continued)

Number of
Author, year | patients Population | CTC’s evaluation | Treatment Main results

Matsusaka | 64 mCCR CellSearch Chemotherapy CTC number
etal. (2011) System +/— bevacizumab | before and
[21] during
treatment was
associated
with PFS and
OS in oriental
population
Tol et al. 477 mCCR CellSearch Chemotherapy CTC count
(2010) [31] System +/— Mab before and
during
treatment was
associated
with PES and
OS and
provides
additional
information to
CT imaging
Cohen et al. | 430 mCCR CellSearch Chemotherapy CTC number
(2008) [28] System +/— Mab before and
during
treatment was
associated
with PFES and
OS in
occidental
population

Abbreviations: bCTC baseline CTCs, Mab monoclonal antibody, ECT2 epithelial cell transforming
sequence 2, BM7 antibody which target mucin 1, EMT epithelial-mesenchymal transition, mCCR
metastatic colorectal cancer, OS overall survival, PFS progression-free survival, VU1D9 antibody
which target EpCAM

patients with mCRC [1]. In addition, in another study developed by our group, we
analyzed the immunocytochemical expression of MRP1 and ERCC1 in patients
with metastatic CRC who had previously detectable CTCs. Among patients treated
with irinotecan-based chemotherapy, 4 out of 19 cases with MRP1-positive CTCs
showed a worse progression-free survival (PFS) compared to those with negative
MRP1 CTCs (2.1 months vs. 9.1 months; p = 0.003). These results show MRP1 as
a potential biomarker of resistance to treatment with irinotecan when found in CTCs
of patients with mCRC [2].
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4.5 CTCs as a Predictive Factor in the Treatment of Locally
Advanced Rectal Cancer

Neoadjuvant chemoradiation (NCRT) followed by total mesorectal excision (TME)
is the standard treatment for locally advanced rectal cancer (LARC). Our group
developed a study aiming to explore the role of CTCs in patients undergoing NCRT
followed by surgery for treatment of LARC. In addition, we evaluated the predictive
values of TYMS and RAD23B expression in CTC before and after NCRT. The ini-
tial analysis of 30 patients was published and demonstrated that the complete patho-
logical response (pCR; p = 0.02) or the partial response (p = 0.01) could correlate
with CTC counts. Regarding protein expression, TYMS was absent in 100% of
CTCs from patients with pCR (p =0.001) yet was expressed in 83% of non-respond-
ers at S2 (p < 0.001). Meanwhile, RAD23B was expressed in CTCs from 75% of
non-responders at S1 (p = 0.01) and in 100% of non-responders at S2 (p = 0.001);
100% of non-responders expressed TYMS mRNA at both timepoints (p = 0.001). In
addition, TYMS/RAD23B was not detected in the CTCs of patients exhibiting pCR
(p = 0.001). Thus, TYMS mRNA and/or TYMS/RAD23B expression in CTCs, as
well as CTC kinetics, have the potential to predict non-response to NCRT and avoid
unnecessary radical surgery for LARC patients with pCR [32].
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Chapter 5
Circulating Tumor Cells in the context
Non-small Cell Lung Cancer

Jacqueline Aparecida Torres

5.1 Introduction

Lung cancer is the neoplasm with the highest incidence rate and mortality, affecting
men and women. In 2018, the global annual incidence of lung cancer was 2.1 million
cases (11.6%), in addition to being responsible for 1.8 million deaths. Based on
these data, we can observe that lung cancer is a serious public health problem [25].

Non-small cell lung cancer (NSCLC) is the most incident lung cancer, account-
ing for about 80-85% of cases being subdivided into three main types: adenocarci-
noma, squamous carcinoma, and large cell carcinoma. The overall survival rate of
NSCLC is approximately 50% in 5-year but the progression from stage I to stage [V
decreases this rate to 1% [50].

The main obstacles to the treatment of NSCLC are late diagnosis, metastatic
behavior, and disease recurrence. A small percentage of patients with NSCLC,
approximately 20%, are diagnosed in the early stages of the disease (I or II), where
they could be treated by surgical resection; however, about 80% are diagnosed late
and present with locally advanced disease (22%) or metastatic disease (57%),
requiring chemotherapy and/or radiotherapy. Even patients eligible for surgical
resection may have recurrences due to distant metastases within the first 24 months
[41, 50, 65, 67].

A characteristic of NSCLC is histological heterogeneity. There are variations
within the main groups, such as adenocarcinomas, with distinct subtypes, diagnos-
tic, prognostic, therapy, and demography, being necessary for the notification of the
NSCLC, the realization of an immunohistochemical profile for differentiation [52].

Histological heterogeneity can be explained by intratumoral heterogeneity
(ITH), present in the NSCLC. ITH is understood to be the molecular and genetic
changes that occur in this neoplasm. The origin of molecular heterogeneity can be
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explained by several mechanisms such as genomic or chromosomal instability, epi-
genetic modifications, adaptations to the microenvironment, clonal evolution due to
selective pressure from the tumor microenvironment, or by chemotherapy action. In
addition to these molecular changes, the NSCLC expresses biomarkers such as the
PD-L1 protein whose ligand, programmed death receptor 1 (PD-1), is expressed by
T cells that may be present in the composition of the tumor microenvironment. This
discovery enabled the targeting of the immune response to the target tumor cells
[2, 3, 52].

Currently, the tumor material used to characterize NSCLC histologically, to
identify molecular alterations and protein expression, is obtained by conventional
biopsy. However, this examination is invasive and locally restrictive, making it
impossible to perform with the frequency necessary to understand the molecular
changes that occur in tumor dynamics [33].

In search of new methods to reduce obstacles in the treatment of NSCLC, liquid
biopsy, which is the ex vivo analysis of a body fluid sample for the purpose of
detecting and quantifying targets of interest, has shown a diagnostic approach with
the potential to reveal health changes that include the onset and development of
diseases [13].

Liquid biopsy performed by blood is feasible in patients with NSCL, because,
unlike tissue biopsy, is performed in minimally invasive and safely procedure. In
addition, the blood presents circulating biomarkers that, if analysed, allow a whole
understanding of the tumor biology, since they come from the primary tumor and
metastatic site [32, 53].

Among these biomarkers, circulating tumor cells (CTCs) are present, which are
fragments of the primary tumor that circulate spontaneously individually or in
groups of three or more CTCs (clusters), exclusively by lymphatic vessels and blood
and precedes the metastatic behavior of neoplasms. CTCs have several components
that can be analyzed, such as intact tumor DNA for mutation analysis, tumor RNA
for gene expression and profile identification, and several biomarkers for proteomic
analysis [33, 46].

Although not yet approved by the Food and Drug Administration (FDA) for use
in clinics, CTCs have the potential to complement testing in patients with NSCLC
and, in this review, we will focus on the contribution of CTCs to the comprehension
of this neoplasm.

5.2 Expression of biomarkers in CTCs of patients
with NSCLC

Immunotherapy revolutionized the treatment of patients with NSCLC, as it enabled
the targeting of the immune response to tumor cells, allowing patients affected by
different types of NSCLC to have a longer survival due to its ability to increase or
restore antitumor immune function [2].
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PD-L1 protein is expressed in several cell types, among them cancer cells and
antigen-presenting cells (B lymphocytes, dendritic cells, macrophages) after being
exposed to cytokines. Binding PD-1 to PD-L1 results in a signal that inhibits the full
activity of T cells. However, in cancer patients, this inhibition mechanism causes
tumor cells to pass unharmed to the immune system [3].

The most clinically advanced ICIs are directed to PD-1/PD-L1, performing
immunosuppressive function in patients, obtaining authorization from the Food and
Drug Administration (FDA) as a treatment option for NSCLC. Among the IClIs,
there are nivolumab and pembrolizumab whose target is the PD-1 receptor and
atezolizumab and durvalumab that target the PD-L1 protein [2, 11, 47].

To analyze the efficacy of treatment with ICIs, it is necessary to evaluate in real
time the status of PD-1/PD-L1 expression; however, in clinical practice, it is diffi-
cult to perform this evaluation due to the invasive nature of conventional biopsy.
However, through CTCs, there is the potential to monitor, via liquid biopsy, the
dynamics of PD-1/PD-L1 expression of patients treated with ICIs over time.

Some groups have studied PD-1/PD-L1 expression in CTCs. The study by
Kallergi et al. [26] demonstrated that CTCs PD-1+ and PD-L1+ can be detected
before and after first-line chemotherapy in patients with metastatic NSCLC. For
this, CTCs were isolated from 30 patients with NSCLC before chemotherapy and
from 11 patients after the third treatment cycle, using the ISET Technology®
(Rarecells Diagnostics, France) methodology. To identify the CTCs, Giemsa stain-
ing and immunofluorescence staining (IF) were used.

Using Giemsa staining, CTCs were identified in 28 out of 30 patients (93.3%) at
baseline and in 9 out of 11 patients (81.8%) after the third chemotherapy cycle. On
the other hand, with immunofluorescence staining (FI), CTCs were detected in 17
out of 30 patients (56.7%) at baseline and in 8 out of 11 patients (72.7%) after the
third chemotherapy cycle. At the beginning of the study, the expression of PD-1 and
PD-L1 was observed in 53% and 47% of patients, respectively. After the third treat-
ment cycle, the corresponding numbers were 13% and 63%, respectively. Median
progression-free survival (PFS) was significantly lower in patients with >3 PD-1
CTCs (+) at baseline compared to those with 3 < PD-1 CTCs (+) (p = 0.022) [26].

The pilot study conducted by Dhar et al. [7] also aimed to evaluate the expression
of PD-L1 in CTCs. Twenty-two patients with metastatic NSCLC treated with pem-
brolizumab, nivolumab and avelumab were recruited, of whom 31 samples were
collected before and after chemotherapy. Using the Vortex Chip HT device, CTCs
were isolated in 30 of the 31 samples (96.8%), and samples with CTCs had 1 or
more PD-L1+ CTCs. The PD-L1+ CTCs fraction ranged from 2.2 to 100%. It was
possible to verify the agreement of PD-L1 expression of CTCs with tissue biopsy in
only 4 patients of 22. This group demonstrated that quantification of PD-L1 CTCs
levels when combined with tissue biopsy results can help identify patients with a
higher probability of responding to therapy or, by monitoring throughout treatment,
the patients most likely to become resistant to treatment.

Ilie etal. [20] isolated CTCs, using the ISET Technology® (Rarecells Diagnostics,
France) platform, in samples of 106 patients, as a non-invasive method to evaluate
the status of PD-L1 in patients with advanced NSCLC and compared them with the
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status of PD-L1 in tumor tissue. CTCs were detected in 80 (75%) patients. In 71
samples, it was possible to compare the tissue and CTCs; 6 patients (8%) presented
1 PD-L1(+) CTCs and 11 patients (15%) presented 1% of PD-L1(+) tumor cell in
the tumor tissue, with 93% agreement between tissue and CTCs, demonstrating that
the status of both tissues correlate, revealing the potential of CTCs to assess real-
time PD-L1 expression in patients with NCSLC.

In view of the results presented here, it is observed that CTCs can contribute to
the analysis of expression levels PD-1/PD-L1 before the start of treatment and pro-
gressively over this course.

5.3 Circulating Tumor Cells: Source of Early Detection
and Recurrence of NSCLC

On average, 80% of the patients are diagnosed late, that is, with the disease in
advanced stages, where surgical treatment is not an option. Even with the advance-
ment of therapies, a large portion of the patients do not survive the 5 years after
diagnosis. Reducing tobacco consumption is a very important factor in controlling
the number of NSCLC cases, but in addition, there is an imminent need to diagnose
patients in the early stages of the disease.

The American College of Radiology Imaging Network conducted The National
Lung Screening Trial (NLST) which aimed to compare two forms of early detection
of lung cancer: computed helical low-dose Tomography (CT) — often referred to as
spiral CT — and standard Chest X-ray [40]. The study was conducted with 53.454
smokers and ex-smokers aged between 55 and 74 years, who smoked at least 30
packs-a-year, who had no previous symptoms or history of lung cancer. The results
of this study showed that low-dose CT screening was 24.2% while X-ray was 6.9%.
However, among the positive results, 96.4% in the low-dose CT group and 94.5% in
the X-ray group were false-positive results.

The amount of false-positive results raised the question about expanding this
type of screening, which could increase the rate of consultations based on indeter-
minate cause nodules, generating concerns and high costs. On the basis of this study
and given the imminent need for new methods for the early detection of lung cancer
(LC), Ilie et al. [21] analyzed patients with chronic obstructive pulmonary disease
(COPD), which, regardless of stage of development, is a risk factor for NSCLC. In
addition, based on the invasive behavior of the NSCLC and data from experimental
models where tumors measuring less than 1 mm can release CTCs in the blood-
stream, the group proposed to investigate whether patients with COPD had CTCs,
which could be an early marker of NSCLC.

For this, they analyzed the peripheral blood of 168 patients with COPD, who did
not present any lung cancer detectable by imaging tests. Using ISET Technology
(Rarecells Diagnostics, France), researchers detected CTCs in 3% (5 patients). The
patients were followed-up and after an average of 3.2 years, all presented nodules in
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the lung detected by computed tomography. The 5 patients underwent surgery and
analysis showed that the cancer was stage I, which means that they had not spread
to lymph nodes or developed metastases. This study demonstrated, for the first time,
the potential of CTCs as an early marker of invasive CL in patients at high risk [21].

CTCs are considered the primary metastatic source of cancer due to their ability
to colonize organs and tissues. To this end, CTCs undergo several molecular and
cellular changes, through the epithelium-mesenchymal transition process (EMT),
granting a mesenchymal phenotype to epithelial cells making them more effective
in their mobility due to the weakening of cell-cell adhesion and fusiform shape gain
fundamental for metastatic behavior to be effective [31, 36].

The study by Xie et al. [62] investigated the possible correlations between CTCs
and pathological types and staging of NSCLC during the early postoperative period.
Sixty-nine patients with NSCLC were recruited. CTCs were analyzed by multiple
mRNA in situ after enrichment by nanotechnology for lysis of red blood cells.

The presence of epithelial or mixed CTCs had no significant correlation with
tumor size, lymph node metastasis, and distant metastasis TMN in patients with
NSCLC (P > 0.05), but higher TNM levels were related to the presence of mesen-
chymal CTCs (P < 0.05). After surgery, the patients were divided into pathological
types: 48 patients had adenocarcinoma of which 40 were positive for CTCs. Of the
16 cases of squamous cell carcinoma, only 2 were negative for CTCs and among the
5 patients with large cell carcinoma only 1 had CTCs (P < 0.5) [62].

Frick et al. [12] analyzed CTCs as a prognostic marker to measure the risk of
NSCLC recurrence after stereotactic body radiotherapy (SBRT) treatment. The
treatment is effective in early stage of NSCLC; however, failures occur at the pri-
mary tumor site in about 10-15% and 20-25% in distant locations. For the study, 92
patients with stage I NSCLC treated with SBRT were recruited. The samples for
analysis of CTCs were obtained before, during, and in series up to 24 months after
treatment with SBRT. CTCs were quantified by a trial using adenoviral-based probe
that expresses green fluorescent protein (GFP) that detects high telomerase activity
in cancer cells.

The CTC test was positive before SBRT treatment in 38 of 92 (48%) patients.
During treatment, CTCs were observed in 35 patients with a count of 0.5 CTC/
mL. In the 3-month period after SBRT treatment, CTCs continued to be detected in
10 out of 35 patients (29%). The persistence of CTCs was associated with increased
risk of treatment failures in distant locations and (P = 0,04) tended to increase the
regional failure (P = 0,08) and local failure (P = 0,16). This study suggests that
CTCs before treatment and its post-treatment maintenance are associated with the
risk of recurrence outside the target treatment site, suggesting that CTCs have the
potential to identify patients at higher risk of recurrence [12].

In order to identify the prognostic value of the presence and characterization of
CTCs in the peripheral blood of NSCLC patients undergoing radical resection,
Bayarri-Lara et al. [1] analyzed samples of 56 patients with pathological stage
between IA and IITA, obtained before and 1 month after surgery, the mean follow-
up of these patients was from 3 to 16 months (variation 3-23).
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In the samples prior to surgery, CTCS were detected in 29 of 56 patients (51.8%)
and after 1 month of surgery, 18 patients (32.1%) presented CTCs. During follow-
up, 16 patients (28.6%) presented signs of cancer recurrence in an average of
8 months; 50% of the patients who had CTCs after surgery developed recurrence,
compared to 18.4% of the patients who did not have post-surgery CTCs, thus cor-
relating the presence of CTCs after surgery to a higher risk of early recurrence.

The results of these studies demonstrated the potential of CTCs as an early
marker of diagnosis and recurrence in the NSCLC, which would enable more rigor-
ous and early decision-making, in addition to the individualization of treatment.

5.4 Identification of the NSCLC Molecular Profile in CTCs

Knowing the molecular heterogeneity of NSCLC was an important factor for the
development of new precision therapies, because some of these tumors are depen-
dent on oncogenes, that is, depend on key point mutations of signaling pathways to
grow and survive.

Among NSCLC subtypes, adenocarcinoma is the most incident and may present
at least one driver mutation. The main changes identified were in the epidermal
growth factor receptor (EGFR) and in the anaplastic lymphoma kinase (ALK), both
protein tyrosine kinases (PTKSs) receptors, proteins responsible for gene expression,
acting in cell growth, survival, migration, and apoptosis, these being, until now, the
main targets for the treatment of NSCLC.

The discovery of these molecular changes changed the course of the treatment of
patients with NSCLC, as it enabled the development of tyrosine kinase inhibitors
(TKIs), whose function is to prevent the enzymatic activity of these oncogenes.
EGFR TKIs are gefitinib, erlotinib, afatinib, and osimertinib, and ALK inhibitors
are crizotinib, ceritinibe, and alectinib. The response to the use of TKIs has been
promising, with very significant clinical benefits. Objective response rates of
60-70% are reported with the use of these different TKIs and a disease control rate
of up to 80-90%. However, patients tend to develop drug resistance within 1 to
2 years due to somatic mutations [24, 27, 38, 55].

Mutations in EGFR occur mainly at sites where EGFR binds to TKIs and are
detected in exons 18 to 21 of the tyrosine kinase coding gene. More than 85% of
adenocarcinomas present exon 19 deletions or L858R point mutation in exon 21,
targets that are clinically actionable. At exon 18, point nucleotide substitutions
occur at codon 719. In the exon 20, there are point mutations and insertions includ-
ing T790M, and this mutation is responsible for about 50% of all acquired resis-
tance mutations. In ALK rearrangements, EML4-ALK is the dominant
rearrangement. This mutation is found in 3—7% of NSCLC [5, 10, 51].

It is necessary to develop new ways of detecting somatic mutations in
NSCLC. Studies have shown that CTCs have predictive, diagnostic, and prognostic
value to identify mutations in NSCLC, in addition to identifying and monitoring
mutations related to resistance to TKI treatments.



5 Circulating Tumor Cells in the context Non-small Cell Lung Cancer 71

The study by Yang et al. [64] aimed to isolate and quantify CTCs after treatment
with osimertinib, TKI) with activity against the T790M mutation in EGFR. Patients
(n = 68) had samples collected at baseline and on day 28. CTCs were evaluated by
the CellSearch system. CTCs were divided into favorable (<5 CTCs) and unfavor-
able (>5 CTCs) groups. Patients in the favorable group at the beginning of the study
showed significantly longer median progression-free survival (PFS) compared to
patients in the unfavorable group (9.3 vs.6.5 months; p = 0.0002). The PES interval
for patients in the favorable group on day 28 was 9.7 months, significantly higher
than the mean time of PFS of 6.2 months achieved by patients in the unfavorable
group (p =0.011). This is the first report on the presence of CTCs and its prognostic
role in T790M-positive NSCLC EGFR patients after disease progression with treat-
ment with EGFR-TKI.

The objective of the study by Pailler et al. [45] was to verify whether the sequenc-
ing of CTCs could provide information on acquired resistance to ALK inhibitors in
addition to tumor heterogeneity in NSCLC mutated in ALK. Patients treated with
TKI-ALK (n = 17), crizotinib (n = 14) or lorlatinib (n = 3) were recruited after pro-
gression of the disease.

The samples were filtered with ISET Technology® (Rarecells Diagnostics,
France), CellSearch, and Rosettesep system. Pools of CTCs (n = 126) and 56 unique
CTCs were isolated and sequenced. Hotspot regions over 48 cancer-related genes
and 14 ALK mutations were examined to identify ALK-independent and ALK-
dependent resistance mechanisms. Various mutations were observed in crizotinib-
resistant patients in several genes on independent pathways of ALK. RTK-KRAS
(EGFR, KRAS, BRAF) and TP53 pathways have been mutated recurrently. In a
patient resistant to lorlatinib, two single CTCs in 12 showed mutations in the com-
pound ALK. Mutation of the compound ALK G1202R/F1174C was observed prac-
tically similar to ALK G1202R/F1174L and ALK G1202R/T1151 mutation of the
compound not detected in tumor biopsy. These results highlight the genetic hetero-
geneity and clinical utility of CTCs to identify TKIs-ALK resistance mutations.
Therefore, CTC sequencing can be a unique tool to evaluate resistance mechanisms
and assist in the personalization of treatments [45].

By means of hypermetabolic CTCs, detected by the increased uptake of glucose,
Turetta et al. [58] demonstrated that it is possible to evaluate the mutational status
of the NSCLC. Thirty patients with stage IV NSCLC were included in the study, of
which the blood samples were incubated with 2-NBDG, a fluorescent glucose ana-
log, and analyzed by flow cytometry. Using ddPCR, they detected mutations in
EGRF and KRAS in 85% of patients, corresponding to the primary tumor in 70% of
cases. Multiple mutations in KRAS were found in two patients, other two had muta-
tions different from those detected in the primary tumor and two patients with wild
primary tumor new mutations were detected: EGFR p.746_750del and KRAS
p-G12V. This study demonstrated the potential of CTCs to detect distinct mutations
of the primary tumor, allowing us to know the heterogeneity of the NSCLC.

Analyzing samples of 125 patients with stage IIIB-IV NSCLC, using CellSearch
technology and anti-vimentin antibody to detect mesenchymal CTCs, Lindsay,
et al. [34], observed that 51/125 patients (40.8%) had CTCs and 26/125 (20.8%)
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were CTC + vim at the beginning of the study. A multivariate analysis showed that
patients with 5 CTCs (total) significantly reduced to OS but not PFES compared to
patients with <5 total CTCs.

The researchers divided the patients according to the mutation of the NSCLC
driver, where they observed an increase of vim + CTCs in the mutated subgroup
EGFR (N = 21/94 patients), a reduction of total CTCs in the rearranged subgroup
ALK (N = 13/90 patients), and a total absence of vim + CTCs in adenocarcinomas
mutated with KRAS (N = 19/78 patients. This study demonstrated that EGFR
mutant CTCs express epithelium-mesenchymal transition characteristics not
observed in CTCs of KRAS-mutant adenocarcinoma patients [34].

Chromosomal rearrangements of ROS1 in CTCs of patients with NSCLC
mutated in ROS1 and treated with crizotinib were evaluated by Pailler et al. [43]. A
sample of four patients was analyzed using ISET Technology® (Rarecells
Diagnostics, France), and the ROS1 rearrangement was detected by filter-adapted-
fluorescence in situ hybridization (FA-FISH). In CTCs of all patients, ROS1 rear-
rangement was detected, initially confirmed by conventional biopsy. The mean
number of CTCs at the beginning of the study was 34.5/3 ml of blood. Tumor het-
erogeneity, assessed by the number of copies of ROS1, was significantly higher in
baseline CTCs compared to tumor biopsies. The number of CTCs increased signifi-
cantly in two patients who progressed during crizonitinibe treatment. This study
showed for the first time the ability of CTCs to detect mutated NSCLC in ROSI.

The combination of the studies exposed in this chapter (Table 5.1) demonstrates
the potential of CTCs as an auxiliary and/or independent source for mutation analy-
sis, a tool for prognosis in treatments with TKIs and IClIs, as also for early diagnosis
of NSCLC. It is essential to develop more research in order to contribute to the vali-
dation of CTCs in clinical practice, composing the biomarkers used in liquid
biopsies.
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Chapter 6
Circulating Tumor Cells in Prostate
Cancer

Milena Shizue Tariki

6.1 Introduction

Prostate cancer is the second most common cancer diagnosed in men worldwide
with 1,276,106 new cases annually and 358,989 deaths estimated in 2018 [8]. Itis a
disease of the elderly, with a peak of incidence in 65-74 years old [51].

Recently, an increase in cancer mortality has seen, in part, due to modifications
in screening recommendations since 2012 [37], which led to a decrease in prostate
cancer incidence and increase in diagnosis of metastatic disease at presentation [6,
30]. It is estimated that at the time of diagnosis, 76% of patients have localized
cancer, 13% have regional lymph node involvement, and 6% have distant
metastases [51].

Although 5-year overall survival (OS) is 97.8% in general, it can vary from 100%
of those patients with localized or locally advanced disease to only 30.2% in distant
metastases. In this scenario, prostate cancer has a predicted timeline natural evolu-
tion, from biochemical recurrence (PSA only increase) to evidence of metastasis at
first only in lymph nodes and bone to visceral disease. Also, biologically prostate
cancer cells change from castration sensitive status to castration resistance
along time.

Since docetaxel pivot studies in 2004 [42, 54], which was the first drug to
improve OS in metastatic castration resistant prostate cancer (mCRPC), a lot has
changed. New hormonal agents such as abiraterone and enzalutamide [7, 16, 46,
49], immunotherapy with Sipuleucel T [28], radiopharmaceutical Radium 223 [41],
and chemotherapy with cabazitaxel [15] have also shown OS improvement.

The next step was to test earlier some of those life-prolonging treatments: in the
context of hormone-sensitive disease. The results were that in seven of eight major
trials, an impressive gain such as 17.8 months in OS was achieved and changed
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clinical practice forever [3, 9, 13, 20, 24, 26, 27, 53]. In addition, in non-metastatic-
resistant disease, three trials demonstrated an important prolongation in metastasis-
free survival around 2 years [21, 25, 52].

Despite recent developments in prostate cancer drugs, a little has changed in
terms of personalizing choice of therapy. There is no clear evidence of better effi-
cacy from one drug to another besides side-effect profile and patients’ comorbidi-
ties. Available therapies have not been directly compared in randomized clinical
trials. Moreover, issues such as the best sequencing after progression to one drug
and the best evaluation of response need to be answered.

There is a clear need in finding biomarkers to better guide treatment, so patients
can benefit the most from impressive advances that took decades to come up.
Therefore, liquid biopsies and specially circulating tumor cells have surged as an
important tool not only in predicting treatment outcomes but also as a prognos-
tic marker.

6.2 CTCs in Localized Prostate Cancer

It is assumed that cancer cells disseminate from primary tumor by CTCs (circulat-
ing tumor cells) and that these cells can be found and isolated from peripheral blood
of cancer patients [40]. The presence of CTCs in blood infers less favorable out-
come than the absence in almost all cancers, independent of the technique used [22,
43, 56].

Since the 1990s, some authors have published identification of CTCs in localized
prostate cancer and its correlation with prognosis. In 1992, Moreno et al. [35]
detected PSA RT-PCR positive only in patients with locally advanced or metastatic
prostate cancer but not in control group. The positivity was 33%. This study gener-
ated the hypothesis that circulating tumor cells could be an early event in prostate
cancer. Two years later, researchers from Columbia University found a significant
correlation with PSA RT-PCR positivity and higher pathologic stage in 65 patients
submitted to radical prostatectomy [29]. Unfortunately, studies that came after and
more recently showed that monitoring CTC level after localized treatment is not yet
ready for practical use since some of them failed to demonstrate relationship with
clinical outcome [12, 32]. In the largest of them, only 11% of 152 patients had
detectable CTCs before surgery and did not translate into prediction of biochemical
recurrence in the 48 months that followed [34]. This finding could be attributed to
the technique involved to isolate CTCs (immunomagnetic x isolation based on
physical properties) as they have different sensitivities [19]. Also, maybe the molec-
ular characterization of CTCs matters more than levels.

Screening for prostate cancer has been challenging and controversial since the
main biomarker (PSA) is far from being ideal. PSA can be increased not only in
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prostate cancer but also in benign conditions such as prostatitis and benign prostatic
hyperplasia. Actually, PSA test confers only 25% of true-positive and 14.5% of
true-negative patients [37]. This has generated a special need in finding a better tool
to help detect early prostate cancer.

In this case, CTC detection can possibly add accuracy to PSA test. In 2020, Ried
et al. [45] studied 45 CTCs detected in a group of 2000 patients screened and com-
pared those findings to PSA. CTCs were also tested for PSA expression. For 20
patients diagnosed with prostate cancer and CTCs detected, blood PSA was ele-
vated in only 35%; 100% of patients with prostate cancer had expression of PSA in
CTC. Combination of CTC detection with CTCs with PSA expression conferred a
very high positive predictive value (99%) and also negative predictive value.

6.3 CTGCs in Advanced Prostate Cancer

The magnitude of CTC levels also correlated with outcomes. In 2001, Moreno et al.
[36] found that in ten patients submitted to chemotherapy, high levels of CTCs cor-
related with shorter disease-free survival and low levels, with slow progression. In
2007, Danila et al. isolated CTCs from 120 prostate cancer patients and found
higher levels in patients with bone metastases and in those previously submitted to
chemotherapy [10].

In clinical trials, CTC detection has been incorporated as a parameter of clinical
outcomes after a paper in 2008 showed CTC measurement after treatment corre-
lated with prognosis as a continuing variable, especially when combined to DHL
levels. This correlation was even stronger than PSA decrease in 50% or more [14].

Since then, CTCs have been included in other clinical trials as a measurement of
outcomes. Baseline levels of CTCs have shown correlation with survival. The cut-
off level of < or > 5 cells/7.5 mL blood at baseline identified patients with more or
less favorable outcome [4, 11, 44, 48]. It is important to take into account that the
level of CTCs detected varies from line of treatment, being more unfavorable (>5
CTCs/7.5 mL) in more late lines [33].

Not only baseline counts but also changing in this value over treatment as a
favorable or unfavorable rate could also predict survival and in some studies even
better than PSA response rate [14, 39, 47]. These findings were seen in treatment
with different agents. In Docetaxel trials, decrease in CTC counts to less than 5
CTCs/7.5 mL was associated with decrease in 50% of OS [1, 23, 38, 57]. During
treatment with abiraterone also, CTC detection was checked in parallel with other
end-points and revealed the same worse outcome with levels >5 CTCs/7.5 mL after
treatment.

Sometimes, CTC change was a better predictor of treatment response than clas-
sical imaging evaluation (RECIST) [55].
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6.4 CTCs as a Biomarker of Treatment Resistance

Another focus of CTCs in prostate cancer is their molecular study. Treatment
response to docetaxel, for example, was linked to decrease in expression of KLLK3,
PCA3, and TMPRSS2-ERG in the CTCs [18].

Interestingly, in the publication of Reid et al. [44], CTCs were included as a part
of response evaluation to abiraterone in phase II clinical trial. Changes in CTC
count during treatment were also significantly correlated with PSA response rate
but only in patients whose tumor had ERG rearrangement.

Evidence of cross resistance between novel hormonal agents (abiraterone and
enzalutamide) have emerged. Some trials looked at sequential use of those after
progression on the other ended up with low PSA response rate (such as 5%) and low
progression-free survival (<6 months) [5, 31]. In another trial, even chemotherapy
sequentially would be better option than the other hormonal agent [17].

Some explanation came from the study of androgen receptor and its variants,
specifically AR-V7 that is found more frequently during the use of abiraterone or
enzalutamide and that is not expressed in primary tumor. Splice variants can acti-
vate AR constitutively and avoid new hormonal agents connection and their antitu-
mor inhibition. It is known that these mutated receptors may exist on a primary or
as an acquired resistance. In this case, CTCs became a very useful tool to demon-
strate this important mechanism of resistance since mRNA from CTCs can be iso-
lated in patients exposed to these agents. By studying mRNA from CTCs, researchers
detected splice variants from androgen receptor that was linked to worse outcomes
when patients were treated with abiraterone or enzalutamide [2].

More recently, researchers from Memorial Sloan Kettering Cancer Center
found that not only identification of mRNA AR-V7 (CTCs or whole blood) is suf-
ficient, but the protein localization in the CTCs is a stronger predictor of response
to novel ARSi or taxane therapy [50]. In this observational study, 142 patients
with mCRPC who progressed to first-line therapy were tested for AR-V7 positiv-
ity before and after starting second-line therapy (novel ARSi or taxane) by EPIC
science test. Positive patients were considered nuclear localized AR-V7 and nega-
tive, AR-V7 cytoplasmic or absent. In AR-V7 negative patients, treatment with
ARSi resulted in a superior overall survival than chemotherapy (/6.9 vs.
9.7 months, hazard ratio, 2.38; 95% CI, 1.12-5.06; p = 0.02) and in AR-V7 posi-
tive patients, performance with novel ARSi was inferior than those treated with
taxanes (overall survival 5.6 x 14.3 months, respectively, hazard ratio, 0.35; 95%
CI, 0.14-0.88; p = 0.03). This finding lost significance when positive patients
were also considered to have cytoplasmic AR-V7 localization (HR 0.73, 95% CI
0.26-2.04; p = 0.55).
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6.5 Conclusion

The role of detecting CTCs in prostate cancer has evolved a lot during recent years,
from diagnostic to prognostic and to prediction of response. In the localized disease,
CTC levels can be a promising tool to identify patients at higher risk of recurrence
and so, select patients to a more intensive follow-up (Table 6.1). Unfortunately,
studies in this scenario are few with limited number of recruitment and do not vali-
date CTC collection for this purpose yet. Also, CTCs can be detected in patients
submitted to screening program and in association with PSA contribute to better
find early disease.

In advanced disease, CTC kinetics over time have demonstrated more accuracy
for response evaluation, sometimes more than PSA levels and earlier than images.
As the treatment improved, liquid biopsy with the study of CTC biology has been a
promising tool to select which patient can benefit from one strategy rather than the
other, considering that both are proved to be effective.

Table 6.1 Examples of studies that evaluate CTCs in prostate cancer

Tumor |Stage | N | Method Markers Authors Year | Main results

Prostate | I-IV |29 | RT-PCR PSA Moreno JG | 1992 | 33% detection of

et al. RNA + PSA in locally
advanced or metastatic
disease

0% detection in control
group

Prostate | I-1IT | 148 | RT-PCR | PSA Katz AE 1994 | 67% of T3 patients had
et al. PSA RT-PCR + and in
86% with positive
margin

Prostate | [-III | 152 | CellSearch | EpCAM, CK | Meyer CP | 2016 | Biochemical recurrence
et al. did not increase with
CTC positivity before
surgery (p = 0.7)
Prostate | IV 120 | CellSearch | EpCAM, CK | Danila DC | 2007 | Higher CTC numbers
et al. were seen in bone
metastases disease and
in prior cytotoxic
chemotherapy
Baseline CTC count
were strongly
associated with survival

(continued)
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Table 6.1 (continued)
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Tumor | Stage | N | Method Markers Authors Year | Main results
Prostate | IV 231 | CellSearch | EpCAM, CK | De Bono 2008 | CTC detection after
JS, et al. treatment occurred in
patients with shorter
OS in a better way than
blood PSA. Prognosis
improved in conversion
to CTC unfavorable to
favorable after
treatment (6.8 to
21.3 months) and
worsened in conversion
of favorable to
unfavorable (>26 to
9.3 months)
Prostate | IV 62 | AdnaTest | AdnaTest Antonarakis | 2014 | AR-V7-positivity
Prostate ES etal. correlated with lower
Cancer Detect PSA response, shorter
kit with PSA, clinical or
additional radiographic PFS and
primers OS in patients treated
targeting with abiraterone or
ARV7 and enzalutamide
AR-FL
Prostate | IV 33 | CellSearch | EpCAM, CK | Thalgott M | 2015  CTC counts predicted
et al. better overall survival
and treatment response
than RECIST by
conventional images
Prostate | IV 142 | EPIC Test | AR-V7 Scher HI 2018 | AR-V7 + associated
(nuclear and | et al. with OS benefit of
cytoplasmic) chemo x novel ARSI
and AR-VT - benefited
more from chemo
Prostate 45 |ISET Filtration + Ried K 2020 | CTC detection with
PSA et al. PSA expression
conferred 99% of PPV
and 97% NPV

Abbreviations: PFS progression-free survival, PPV predictive positive value, NPV negative predic-

tive value
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Chapter 7
Circulating Tumor Cells in Gastric Cancer

Check for
updates

Jacqueline Aparecida Torres and Victor Hugo Fonseca de Jesus

7.1 Introduction: Epidemiology

Gastric cancer is currently the sixth most frequent malignant neoplasm worldwide,
with 1,003,701 cases estimated in 2018 [1]. Also, its occurrence varies greatly, with
East Asia and Western South America representing the areas with the highest inci-
dence rates of the disease [2]. However, the frequency of proximal gastric tumors in
most Western countries has constantly risen in the past decades, and the cardia rep-
resents the most common primary tumor site in these locations. Additionally, gastric
cancer represents the second most common cause of cancer-related mortality, with
782,685 deaths estimated in 2018.

Exposure to many agents is associated with increased risk of developing gastric
cancer [3]. The infection by the Gram-negative bacteria Helicobacter pylori has
been recognized as the most important factor leading to the development of gastric
cancer. Other factors associated with increased risk are cigarette smoking, con-
sumption of salty or smoked food, and low consumption of fruits and vegetables.
Obesity is also considered to be a significant risk factor, especially for tumors aris-
ing in the cardia. Among the non-modifiable risk factors, advanced age and male
gender are associated with higher chances of developing gastric cancer.
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7.2 Treatment of Early Disease

The cornerstone of localized gastric cancer treatment is gastrectomy with adequate
(D2) lymphadenectomy [4]. For many years, surgery alone was considered the stan-
dard of care in the management of this disease. Nonetheless, with the development
of active chemotherapy regimens, a multidisciplinary approach has become stan-
dard. The Intergroup INT0016 trial was the first to establish the role of adjuvant
(postoperative) 5-Fluorouracil/Leucovorin and radiotherapy in the management of
this disease. Patients submitted to surgery alone experienced inferior overall and
relapse-free survivals [5]. Subsequently, the role of adjuvant chemotherapy was fur-
ther confirmed in the ACTS-GC and CLASSIC trials. In the first study, the use of
adjuvant S-1 for 1 year was associated with improvements in overall and relapse-
free survivals [6]. In the latter trial, adjuvant XELOX (Capecitabine plus Oxaliplatin)
for 6 months was associated with decreased risks of death and relapse [7]. Thus,
postoperative chemo(radio)therapy became one the preferred treatment strategies
for patients with pathological stage II or III gastric cancer, especially in the East.

Concurrently, groups in the West tested the activity of perioperative chemother-
apy. This approach has potential advantages over adjuvant chemotherapy, such as
early treatment of metastatic disease, potentially higher rates of complete resection,
tumor downstaging, and an in vivo evaluation of chemotherapy activity [8]. Two
studies, the MAGIC and the FFCD 9703 trials, evaluated the role of perioperative
chemotherapy in localized gastric cancer. In the MAGIC trial, patients treated with
ECF (Epirubicin, Cisplatin, and Fluorouracil) for three cycles before surgery (neo-
adjuvant) and three cycles thereafter experienced improved overall and progression-
free survival compared to those treated with surgery alone [9]. Likewise, patients in
the FFCD 9703 trial who were treated with 2-3 cycles of neoadjuvant CF (Cisplatin
and 5-Fluorouracli) and 3-4 postoperative cycles had lower risks of death and
relapse [10]. More recently, results of the FLOT4 trials have established FLOT
(Fluorouracil, Oxaliplatin, and Docetaxel) as the preferred chemotherapy regimen
in the setting of perioperative chemotherapy for gastric cancer [11]. In this trial,
patients treated with four cycles of FLOT before surgery and four cycles thereafter
experienced improved overall and progression-free survival when compared to
those treated with ECF or ECX (Epirubicin, Cisplatin, and Capecitabine). Thus,
FLOT is currently considered the standard perioperative chemotherapy regimen in
clinical stage II or III gastric cancer.

One of the main controversies in the management of localized gastric cancer is
whether patients should undergo upfront surgery followed by adjuvant chemother-
apy or perioperative chemotherapy plus surgery. Early studies showed no differ-
ences in survival outcomes according to the treatment strategy [12, 13]. However,
more recent studies have shown decreased risk of disease relapse for those treated
with perioperative chemotherapy [14—16]. While this benefit might stem from dif-
ferences in the chemotherapy regimens used in the perioperative and adjuvant set-
tings, no trial so far has shown inferior outcomes for patients treated with neoadjuvant
chemotherapy, and therefore perioperative chemotherapy is currently perceived by
many as the most adequate treatment strategy.
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7.3 Treatment of Advanced Disease

7.3.1 First-Line Treatment

Chemotherapy is associated with significant improvements in overall survival for
patients with recurrent or metastatic gastric cancer compared to best supportive care
[17]. For many years, the combination of Epirubicin, Cisplatin, and 5-Fluorouracil
(ECF) was considered to be the standard treatment in this setting [18]. However,
data from recent meta-analysis do not support the use of anthracyclines in gastric
cancer [19]. Therefore, in many parts of the world, Cisplatin plus 5-Fluorouracil (or
another fluoropyrimidine, such as Capecitabine or S-1) was considered the treat-
ment of choice of advanced gastric cancer for many years. Following that, Cisplatin
plus 5-Fluorouracil (plus Leucovorin; FLP) was compared to FLO (infusional
5-Fluorouracil plus Oxaliplatin). That trial showed non-inferiority of FLO in terms
of overall and progression-free survival [20]. The results of this study and of the
REALZ2 [21] trial established the role of Oxaliplatin in the management of advanced
gastric cancer, and regimens based on infusional 5-Fluorouracil plus Oxaliplatin
(such as FOLFOX and FLO) are currently among the most frequently used chemo-
therapy regimens in the West. Conversely, in the East, where the use of oral fluoro-
pyrimidines is very common, the combination of Cisplatin plus S-1 (CS) was shown
to be more effective than S-1 alone [22]. Recently, SOX (S-1 plus Oxaliplatin) was
shown to be at least as effective (REF) [23] or more active than CS [24]. Thus, both
SOX and CS are currently considered standard regimens in the East.

One alternative to the use of platinum plus fluoropyrimidine is to employ regi-
mens that combine 5-Fluorouracil and Irinotecan (e.g., IF or FOLFIRI). The results
of two randomized [25, 26] trials support this concept, and these regimens are gen-
erally used when platinum-based regimens are contraindicated (e.g., when patients
have grade 2 or higher peripheral neuropathy at baseline or when patients develop
disease progression within 3 months of the end of adjuvant platinum-based chemo-
therapy) [27]. One other important issue is the use of taxane-based triplet regimens
(e.g., DCF [Docetaxel, Cisplatin, and 5-Fluorouracil]) in first-line treatment.
Clinical trials have shown that these regimens are associated with improved survival
[28, 29], despite an increase in toxicity. In this sense, the use of modified regimens,
such as modified DCF [30] or FLOT [31], can sustain the anti-cancer activity of the
treatment while keeping side effects in an acceptable range. Thus, triplet-based regi-
mens are often used in patients with adequate performance status and organic func-
tion, especially when symptom or disease burden is high.

Further understanding of the molecular biology of gastric cancer brought insights
to the development of relevant treatment strategies. The discovery that up to 38%
[32] of all gastric cancers present hyperexpression of the HER?2 protein led to clini-
cal trials that added anti-HER?2 treatments to the backbone chemotherapy regimens.
In the ToGA trial [33], patients with HER2 hyperexpression where randomized to
treatment with Cisplatin plus a fluoropyrimidine (Capecitabine or 5-Fluorouracil)
with or without Trastuzumab, an anti-HER2 monoclonal antibody previously shown
to be active in breast cancer. In this trial, patients whose tumors had presented high
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HER?2 expression (3+ on immunohistochemistry or 2+ on immunohistochemistry
with positive in situ fluorescence hybridization [FISH]) experienced significantly
longer overall survival. Therefore, the use anti-HER?2 antibodies is considered to be
standard of care for those patients with tumors with high expression of HER2. In the
first-line setting, many other potential therapeutic targets were tested, including
immunotherapy, with disappointing results. Apart from patients with tumors with
high frequency microsatellite instability (MSI-H) [34], for whom immunotherapy
with Pembrolizumab is considered to be the standard of care in first line, no other
targeted therapy has demonstrated significant benefits in the this setting.

7.3.2 Second and Further Lines Treatment

Randomized trials have also established the role of chemotherapy after progression
on first-line treatment. Irinotecan, Docetaxel, and Ramucirumab were shown to
improve overall survival compared to best supportive care [35-37]. Additionally,
Paclitaxel was shown to be at least as active as Irinotecan in two randomized trials
[38, 39]. Recently, the addition of the anti-VEGFR2 monoclonal antibody
Ramucirumab to Paclitaxel was associated with increased overall response rate, pro-
gression-free survival, and overall survival in the RAINBOW trial. According to the
results of this study, Paclitaxel plus Ramucirumab is likely the most active second-
line chemotherapy regimen currently available for patients with gastric cancer.

While the addition of Trastuzumab to the backbone of chemotherapy improved
survival in the first-line setting, no other anti-HER2 treatment was associated with
improved outcomes in the second-line setting, including Lapatinib, TDM-1, and
maintenance Trastuzumab beyond progression [40—42]. Only recently, the antibody-
drug conjugate (ADC) Trastuzumab deruxtecan was shown to be superior to single-
agent chemotherapy in third- or further lines of treatment [43]. Regarding
immunotherapy, while Pembrolizumab failed to demonstrate improved outcomes in
the second-line setting in the KEYNOTE-061, data from the cohort 1 of the
KEYNOTE 059 and from the ATTRACTION-2 trials support the use of
Pembrolizumab and Nivolumab in the third-line setting, respectively [44, 45].
Importantly, Pembrolizumab is approved only for patients with tumor CPS (a
marker of programmed cell death ligand 1 [PD-L1] expression) higher or equal to
1, while the evaluation of the expression of PD-L1 is not a prerequisite for the treat-
ment with Nivolumab.

7.4 CTC in Gastric Cancer

Circulating tumor cells (CTCs) have been the target of several studies and have been
identified in patients with several cancers including gastric cancer (GC). The inter-
est in knowing more about this compartment of the liquid biopsy is due to the fact
that, when they detach from the primary tumor, CTCs can circulate individually or
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in the form of circulating tumor microemboli (CTMs), making possible to visualize
in a more comprehensive way and in real time the reality of the tumor. CTCs are an
important biomarker that can be used as a source of early detection, to follow-up of
the efficacy of treatments, to discover new therapeutic targets, and to bring new
understanding about the biology of metastases [46—49].

Kuroda et al. [50] analyzed the overexpression FGFR2 (fibroblast growth factor
receptor) in CTCs of GC patients. Patients (n = 100) with CG who underwent gas-
trectomy were recruited, from which 8 ml of total blood was collected before sur-
gery. CTCs positive for FGFR2 were enumerated by flow cytometry, and through
immunohistochemistry (IHC), the expression of FGFR2 of the primary tumor was
evaluated. The IHC was divided into 4 groups (0, 1+, 2+ and 3+) according to the
FGFR?2 expression and the number of cases in each group was 39, 35, 17, and 9,
respectively. The number of CTCs FGFR2* in 2 ml of blood was 0.6 = 1.2; 2.4 +4.2;
2.6+29e8.3+11.2 (mean + SD) in IHC groups 0, 1+, 2+, and 3+, respectively. It
can be observed that the level CTCs FGFR2+ increased proportionally to the level
of FGFR2+ THC. Recurrence-free survival was analyzed and 50/89 patients with
CTCs FGFR2+ > 1 CTC/2 ml had significantly worse survival (P = 0.018, log-rank
test) than patients without CTCs FGFR2+. In conclusion, overexpression of
FGFR2 in CTCs of GC patients can be used to identify overexpression of FGFR2 in
the primary tumor and act as a prognostic factor.

Abdallah et al. [51] analyzed 88 peripheral blood samples from patients (n = 55)
with non-metastatic gastric adenocarcinoma (CAG) to evaluate the presence of
CTCs and CTMs, in addition to the expression of HER2 and plakoglobin. Samples
were obtained before treatment and after surgery, before the administration of adju-
vant chemotherapy. The isolation of CTCs was done using the ISET methodology
(Rarecells Diagnostics, Paris, France). Immunocytochemistry (ICC) was used to
analyze the expression of markers in CTCs and compared to GAC IHC. Baseline
CTCs were observed in 90.9% of patients (50/55) with median of 2.8 CTCs/mL. The
analysis of follow-up CTCs was also high (93.9%) but with reduction of the median
when compared to baseline (1.0 vs. 2.8 CTCs/mL; p = 0.005). CTMs were identi-
fied in 22/55 patients (41.8%) in baseline and 2/55 patients (6.1%) in follow-up.
Patients with CTMs had a worse PFS than those who did not have CTMs
(18.7 months vs. 21.6 months, respectively; p = 0.258). The HER2 expression was
analyzed in 45/55 CAG samples, of which 5/45 (11%) were HER2* and in 42/55
CTCs samples with positivity of 18/42 (42.9%). Negative HER2 patients in CTCs
tended to have better PFS (p = 0.092). There was overlap between 36 patients in the
analysis of HER2 expression (CTCs and primary tumor), with an agreement of
69.4% (k =0.272; p = 0.04). In 10/36 cases (27.8%), HER2 expression was positive
only in CTCs. Plakoglobin was evaluated in 47/55 patients and positive in 59.6% of
CTC baseline cases. Patients 9/47 had the protein identified in CTM being related
to a worse trend of median PFS (15.9 months vs. 21.3 months; p = 0.114). These
results suggest that CTC count and HER-2 and plakoglobin analysis contribute to
evaluate the response and determine prognosis in patients with GAC. (Please see
some pictures of CTCs isolated from metastatic and localized gastric cancer by
ISET in Figs. 7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9, 7.10, 7.11, 7.12, 7.13, 7.14,
7.15,7.16,7.17,7.18,7.19, 7.20, and 7.21).
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Fig. 7.1 CTM from patient (woman) with non-metastatic gastric cancer, 43 years old. Blood was
collected at diagnosis, 13.25 CTCs/mL. Here, we can observe clusters of neoplastic cells with a
three-dimensional arrangement and moderate atypia. Objective magnification: 20x
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Fig. 7.2 CTM from patient (man) with non-metastatic gastric cancer, 40 years old. Blood was
collected at diagnosis, 4.22 CTCs/mL. The patient was selected from neoadjuvant treatment with
5-Fluorouracil. Here, we can observe three-dimensional clusters of neoplastic cells with nuclear
irregularity. Objective magnification: 20x

A " " vY ..." X * l- n
e é ... . CR e ® o

; . ) ., IAE W =8 .
° 5 " x ®

P .. ) OV... U 3 X

9’0 o : i - 5 ' -

Fig. 7.3 CTCs from patient (man) with metastatic gastric cancer, 67 years old, with peritoneum
metastasis. Blood was collected at diagnosis, 9.0 CTCs/mL. Objective magnification: 20x
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Fig. 7.4 CTM from patient (man) with metastatic gastric cancer, 39 years old. Blood was col-
lected at diagnosis (1.16 CTCs/mL) and after 6 months of follow-up. The patient had peritoneum
metastasis at diagnosis. Here, CTM from the second blood collection (44.5 CTCs/mL). We can
observe a group of neoplastic cells with scaly phenotype, showing three-dimensional blocks with
hyperchromic and irregular nuclei in 20x and 40x

Fig. 7.5 CTM from patient of Fig. 7.4, in 60x

Fig. 7.6 CTC from patient :(
(woman) with non- . Z
metastatic gastric cancer,

34 years old. Blood was o @® ®
collected at diagnosis, 2.83

CTCs/mL. Here, we can

observe irregular nuclei
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Fig. 7.7 CTCs from patient (man) with non-metastatic gastric cancer, 39 years old. Blood was
collected at diagnosis, 1.0 CTCs/mL. The patient was submitted to neoadjuvant treatment
with 5-FU
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Fig. 7.8 CTCs from patient (woman) with non-metastatic gastric cancer, 58 years old. Blood was
collected at diagnosis, 4.66 CTCs/mL and after neoadjuvant treatment with 5-FU (4.33 CTCs/mL)

Fig. 7.9 CTM from ®
patient (woman) with .Y
non-metastatic gastric .
cancer, 72 years old. Blood
was collected at diagnosis,
10.5 CTCs/mL
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Fig. 7.10 CTCs from the same patient Fig. 7.9. Here, we can observe irregular and hyperchro-
matic nuclei
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Fig. 7.12 CTCs from patient (man) with non-metastatic gastric cancer. Blood was collected at
diagnosis, 1.33 CTCs/mL and after neoadjuvant treatment with 5-FU (2.0 CTCs/mL). Here, CTCs
from the second collection. At the right side, nuclear details are visible, with hyperchromic and
irregular nuclei and scarce cytoplasm
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Fig. 7.13 CTM from patient (man) with non-metastatic gastric cancer, 70 years old. Blood was
collected at diagnosis, 0.5 CTCs/mL and after a year (1.5 CTCs/mL). Here, we can observe cells
of the second collection, with irregular shaped and hyperchromic nuclei

Fig. 7.14 CTC from the
same patient of Fig. 7.13.
In brown, cytoplasm
staining with DAB for
HER-2

Fig. 7.15 CTM from patient (man) with non-metastatic gastric cancer, 50 years old. Blood was
collected at diagnosis, 8.33 CTCs/mL. Here, we can observe CTM (a, b) and in (¢), HER-2 stain-
ing in microemboli cells in three-dimensional arrangement and nuclear irregularity
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Fig. 7.16 CTCs from patient (woman) with non-metastatic gastric cancer, 53 years old. Blood
was collected at diagnosis, 0.5 CTCs/mL and after neoadjuvancy with 5-FU (5 CTCs/mL). Here,
we can observe cell staining for HER-2 in the second blood collection

Fig. 7.17 CTCs from patient (man) with metastatic gastric cancer, 36 years old. Blood was col-
lected at diagnosis, 3.0 CTCs/mL and after 3 months (3.0 CTCs/ml). Here, we can observe cyto-
plasm staining for HER-2 at the second blood collection

Fig. 7.18 CTCs from the same patient of Fig. 7.17. Cytoplasm staining for HER-2. We can
observe nuclear irregularity and irregular chromatin, with high nucleus/cytoplasmic ratio
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Fig. 7.19 CTC from
patient (woman) with
non-metastatic gastric
cancer, 55 years old. Blood
was collected at diagnosis,
2.33 CTCs/mL and after
neoadjuvant treatment with
5-FU (1.0 CTCs/ml). Here,
we can observe cytoplasm
staining for plakoglobin at
the second blood collection

J. A. Torres and V. H. F. de Jesus
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Fig. 7.20 CTM from patient (woman) with metastatic gastric cancer to peritoneum, 80 years old.
Blood was collected at diagnosis, 40.0 CTCs/mL. Here, we can observe on the right, neoplastic
cell blocks in three-dimensional arrangement and hyperchromic nuclei

Fig. 7.21 CTM from the
same patient of Fig. 7.20
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Epithelial CTCs undergo epithelium-mesenchymal transition (EMT) acquiring
mesenchymal characteristics that result in an increased ability to reach distant sites
and colonize them, forming metastases. During this process, there is a cell surface
vimentin (CSV) overexpression that can be used as a marker to identify EMT CTCs.
Liu et al. [52] studied the expression of PD-L1 (programmed death ligand 1), a
protein that when expressed in tumor cells allows immune system evasion, in CSV+
CTC:s of patients with GC. Total blood (5 ml) was collected from patients (n = 70)
with ressectable (n = 38) and non-ressectable (n = 32) CG. The samples were ana-
lyzed using CVS microsphere and EpCAM. CTCs were detected in 60/70 patients
(86%) (0-512 CTCs/mL). VCS+ PD-L1+ CTCs were identified in 50/70 patients
(71%) (0-261 CTCs/mL). When compared, the total counts of CSV + PD L1+
CTCs showed a significant difference in the distinction between ressectable and
non-ressectable populations (2 vs. 8 mL; P = 0.001), respectively. The total CTC
count in an average follow-up of 12.9 months resulted in HR of 2.364 for PFS (IC
95%:1.038-5.381; P =0.040) and 1.817 for OS (IC 95%: 0.8025-4.114; P=0.152).
However, patients with a higher amount of CTCs CSV+ PD L1+ had worse PFS
(HR: 2.437; IC 95%: 1.074-5.529; P = 0.033) and worse OS (HR: 3.762; IC 95%:
1.629-8.691; P = 0.002) when compared to patients with fewer CTCs CSV+ PD
L1+. This study demonstrated that it is possible to predict therapeutic and prognos-
tic response in CG patients using CTCs PD-LI+ detected by a CVS-based
methodology.

All these studies together demonstrate the potential of CTCs for the treatment
and follow-up of patients with CG. Other studies that relate CTCs in CG are
described in Table 7.1.
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Chapter 8
Circulating Tumor Cells in Mesenchymal
Tumors

Check for
updates

Alexcia Camila Braun and José Gabriel Rodriguez Tarazona

8.1 Mesenchymal Stem Cells

Many authors have previously isolated CTCs from carcinomas and demonstrated
their prognostic value in different tumors. However, the majority of methods used
for isolating these CTCs are based on epithelial antigen-targeted antibodies, and
thus they neither allow the isolation of the CTCs undergoing epithelial-mesenchymal
transition (EMT) nor the detection of CTCs from sarcomas [35, 60].

The ability to differentiate along different lineages and the ability to self-renew
are characteristic of stem cells [49]. Embryonic stem cells (ESCs) and adult stem
cells compose two large groups and the first are associated with tumorigenesis [2,
4]. Based on this observation at the turn of the 1960s and 1970s, Friedenstein was
one of the pioneers of the theory that bone marrow is a reservoir of stem cells of
mesenchymal tissues in adult organisms. In his study, Friedenstein noted in vitro
cultivation that ectopic transplantation of bone marrow (BM) into the kidney cap-
sule resulted in the formation of bone, not only in the proliferation of bone marrow
cells [24]. According to McCulloch, cells from the BM can give rise to multilineage
descendants while retaining the ability to self-renew [45, 59, 61].

Proposed by Caplan in 1991, the term “mesenchymal stem cells” (MSCs) was
used due their ability to differentiate into more than one type of cells capable to
form connective tissue in many organs [10]. The MSCs are multipotent cells that are
present in several adult tissues, such as the umbilical cord, adipose, peripheral
blood, liver, and bone marrow [21, 29].
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The mesenchymal stem cell phenotype is characterized by the presence of CD73,
CD90, CD105 surface antigens and the absence of protein expression CD45, CD34,
CD14, CD11b, CD79a, or CD19 or class II histocompatibility complex antigens
(HLA II, human leukocyte antigens class II). Furthermore, these cells must have the
ability to differentiate osteoblasts, adipocytes, and chondroblasts [8, 18, 31]
(Fig. 8.1).

8.2 Detection of Circulating Tumor Cells of Sarcomas

Sarcomas are a heterogeneous group of soft tissue and bone neoplasms that arise out
of mesenchymal tissues and consequently may arise from mesenchymal stem cells
[42, 62]. In patients with localized disease, distant metastases develop in 50% of
cases, with lungs being the most common metastatic site [42]. Detection of circulat-
ing tumor cells (CTCs), as a measure of metastatic potential, could provide a way to
diagnose and monitor patients. However, the clinical significance of CTCs, as a
prognostic or predictive marker in sarcoma, is poorly explored (Table 8.1).

The detection of CTCs in sarcomas are relatively recent due to the limited num-
ber of patients, the absence of specific markers expressed by sarcoma tumor cells,
and their high diversity/heterogeneity.

Considering that most CTCs are frequently larger than that of normal circulating
cells in blood, cell size represents a potential criterion for isolating sarcoma CTCs.
Chinen et al. [16] and Braun et al. [9], were the first to describe the isolation by size
method to isolate sarcoma CTCs, but other studies, with other techniques, have been
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Fig. 8.1 The ability of mesenchymal stem cells (MSCs) to differentiate in other cells
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performed involving these tumors. Filtration methods are relatively rapid, sensitive,
and easy technique. After isolation, CTCs are characterized by immunocytochemis-
try. Chinen et al. [16] investigated the feasibility of using isolation by size of tumor
cells (ISETs) for isolation, identification, and characterization of CTCs derived
from patients with high-grade and metastatic sarcomas. The researchers studied 11
patients and blood samples (8 ml) were collected from patients with advanced soft
tissue sarcomas (STSs). In these studies, all patients showed CTCs, with numbers
ranging from 2 to 48 per 8 mL of blood.

Braun et al. [9] quantified CTCs and identified CTM as well as the EGF receptor
(EGFR) protein expression in these cells and correlated with clinical outcome in
metastatic STS. Blood was prospectively collected from patients with different
types of high-grade STS, before the beginning of chemotherapy. The samples were
processed and filtered by ISET (Rarecells, France) for the isolation and quantifica-
tion of CTCs and CTMs. EGFR expression was analyzed by immunocytochemistry
(ICC) on CTCs/ CTMs (Fig. 8.2).

The authors analyzed 18 patients with median age of 49 years (18-77 y). The
positivity for EGFR protein expression in CTCs was observed in 93.75% of the
patients. The authors were the first to demonstrate the expression of EGFR protein
in CTCs from sarcoma patients. These results may open an area for future
investigations.

Another strategy for CTC detection in sarcomas is the use of common mesen-
chymal cell markers such as vimentin. Satelli et al. [57] used a new marker on

L]
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Fig. 8.2 (a) Negative control, A-549 cell line “spiked” in healthy blood and negative for EGFR. (b)
Positive control, FaDu cell line “spiked” in healthy blood and stained for EGFR. (¢, d) Examples
of an isolated CTC of sarcoma patient with cytomorphological features (negative staining for
CD45, nucleus size >12 pm, hyperchromatic and irregular nucleus, visible presence of cytoplasm,
and a high nucleus—cytoplasm ratio (Krebs et al. [43]) 15. (e) Immunocytochemistry of CTC with

anti-EGFR antibody and counterstaining with DAB. (f) One CTM from STS patient observed in
the blood filtered using the ISET. (Ref. Braun et al. [9])
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sarcoma CTC regardless of the tissue origin of the sarcoma as detected by a novel
monoclonal antibody. In this study, the authors reported cell-surface vimentin
(CSV) as an exclusive marker on sarcoma CTC. Using flow cytometry and FISH,
they suggested that this new marker established the first universal and specific CTC
marker described for enumerating CTCs from different types of sarcoma, thereby
providing a key prognosis tool to monitor cancer metastasis and relapse.

Gallego et al. [25] used detection of muscle markers for CTC detection in rhab-
domyosarcoma patients. They performed the analysis combining the detection of a
fusion gene product and muscle-specific markers, including MyoD1 and myogenin.
In this study, patients with positivity in peripheral samples at the end of treatment
showed a poorer prognosis than patients with negative samples.

Circulating tumor cells of sarcoma subtypes associated with specific chromo-
somal translocations leading to the expression of a unique fusion product are more
easily identified, and most studies were performed on Ewing’s sarcoma by RT-PCR
analysis for the research of the fusion gene product associated with the disease:
EWS-FLI-1 and EWS-ERG markers [46]. Results from clinical studies of patients
with Ewing’s sarcoma suggest that the detection of CTCs at diagnosis may be asso-
ciated with worse clinical outcomes and that CTCs may be an early marker of recur-
rent disease.

West et al. [63] studied 16 patients with nonmetastatic disease, three of 16 were
RT-PCR positive for EWS/HumFLI1 RNA in BM and three of 10 were positive in
PB. In this study, they showed that it is possible to amplify the EWS/HumFLI1
RNA by RT-PCR from the BM and PB of a subset of patients with both nonmeta-
static and metastatic ES or PNET, which implies that occult tumor cells are present
at these sites.

In the study of Schleiermacher et al. [58], the researchers studied 172 patients
with Ewing tumor. RT-PCR targeting EWS-FLI-1 or EWS-ERG transcripts was
used to search for occult tumor cells in peripheral blood and bone marrow at diag-
nosis. The presence of circulating tumor cells (CTCs) was more frequently observed
in patients with large tumors (P = .006), and CTCs were associated with a poor
outcome among patients with clinically localized disease (P = .045). The study’s
conclusion was that patients with localized Ewing tumor and BM micrometastasis
or CTC are comparable to patients with metastases in terms of the localization of
the primary tumor and relapse pattern.

Avigad et al. [1] reported the prognostic potential of the positive chimeric tran-
script (EWS/FLI1) in bone marrow (BM) and/or peripheral blood (PBL) in 26
patients with EFTs (Ewing family tumors), during a long follow-up period (median,
61 months), and the results suggested that occult tumor cells in BM and/or PBL
samples during long follow-up are strong predictors of recurrent disease in patients
with nonmetastatic EFTs.

Semi-quantitative RT-PCR was described by Wong et al. [64]. The researchers
correlated mRNA levels of “osteoblast-related genes like” in CTCs from peripheral
blood of osteosarcoma patients and found that type I collagen levels were signifi-
cantly higher in osteosarcoma patients than in healthy subjects.
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Hatano et al. [30] developed a similar methodology. They used a system with a
polymerase chain reaction assay based on an enzyme-linked immunosorbent assay
(PCR-ELISA) to detect circulating osteosarcoma cells in a mouse metastatic model.
Osf2/Cbfal, hereafter called Osf2, a member of the runt family of transcription fac-
tors, was used as a target gene, and the amount of the splicing variant of Osf2
mRNA was significantly higher in the blood of mice with metastasis than in the
blood of the control group. The researchers demonstrated that PCR-ELISA using
Osf2 mRNA was a potential method to detect circulating osteosarcoma cells in
peripheral blood.

Multiple studies use flow cytometry to detect CTCs. To isolate these cells, pre-
enrichment steps are required in combination with specific antigen recognition for
discriminating CTCs from circulating hematopoietic cells (anti-CD45 marker) and
epithelial cells (pan-cytokeratin-related marker) [17]. Dubois et al. [19] studied
Ewing sarcoma cell line A673, peripheral blood mononuclear cells (PBMCs), and
bone marrow mononuclear cells (BMMCs). In this study, the cells were stained for
CD99 and CD45 in order to detect CD99+CD45— cells by flow cytometry. Known
quantities of A673 Ewing sarcoma cells were spiked into control PBMC:s to test the
accuracy of this method, and control PBMCs were evaluated to access the level of
background staining. The authors suggested that multicolor flow cytometry for
CD99+CD45— cells provides a new strategy for detecting circulating Ewing sar-
coma cells.

8.3 Epithelial-Mesenchymal Transition (EMT)

To initiate metastasis, tumor cells (CTs) need to leave the primary site to colonize
distant tissues. Within the cascade of events that would allow migration, the so-
called epithelial-mesenchymal transition (EMT) is presented, a process present dur-
ing embryogenesis, when epithelial tissue healing is performed. Carcinoma cells
can also pass through this process, by loss of epithelial properties and acquisition of
partially or totally mesenchymal ones [33, 34].

Carcinoma cells are of epithelial origin and so, undergo to cell-to-cell interaction
through adhesion molecules such as cadherins, claudins, or plakoglobin [27, 41].

EMT is a transformation that, apart from being highly dynamic, can be revers-
ible, and in the case of tumor cells, it is characterized by stimulating the invasive-
ness toward other tissues, by a series of events such as the detriment of cell-cell
adhesion proteins within the tumor, in addition to the loss of cellular-atomic-basal
polarity [33, 44].

It is documented that EMT is probably triggered by paracrine signaling of the
transforming growth factor beta (TGF-f), the Wnt signaling pathway, platelet-
derived growth factors, interleukin-6 (IL-6), and some different agents such as nico-
tine, alcohol, and ultraviolet light. These activators would stimulate transcription
factors, such as the basic helix-loop-helix factor (TWIST) and zinc-finger
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E-box-binding homeobox (ZEB), which help to maintain the mesenchymal pheno-
type by autocrine signaling. Due to the breakage of tight and adherent junctions,
together with the cytoskeleton variations, epithelial markers such as EpCAM and
E-cadherin are negatively regulated, and at the same time the expression of keratins
is altered, together with a positive regulation of mesenchymal markers, such as
vimentin [32].

To invade the extracellular matrix, tumor cells enter and exit the bloodstream
using different cell forms and alternating between the rounded (or amoebic) and the
elongated (or mesenchymal) shape, directed by Rho GTPases (RHO) — RHO-
associated protein kinase (ROCK) RHO-ROCK [39, 40, 52]. The mesenchymal
mode demands the Rac small GTPase (Rac). Cells with amoebic motility exhibit
rounded or ellipsoid morphology. These cells also present weak interaction with
surrounding matrix, induced by elevated RHO levels, that stimulate membrane
blebbing by ROCK-dependent myosin II phosphorylation and consequent actin-
myosin contractility [53, 56]. The balance of activated RAC and RHO may deter-
mine the mesenchymal or amoebic mode, and the mutual antagonism contributes to
maintain different modalities of cell motility [28, 65]. However, the activation
mechanism is still confusing [36, 53, 55].

According Li et al. [38] and Caramel et al. [11], mesenchymal tumors are char-
acterized by early metastasis, frequent relapse, and unfavorable clinical outcomes;
thus, sarcomas exhibit an aggressive clinical phenotype [26]. EMT has been
observed mainly in carcinomas; however, EMT-like processes have also been
reported in non-epithelial cancers. Based on that, some studies indicate that sarco-
mas can undergo phenotypic changes reminiscent to the EMT/MET (mesenchymal-
epithelial transition) [15, 20, 22] (Fig. 8.3).

Studies with melanoma have shown that cells spread in a mesenchymal state
throughout the body during embryogenesis and settle in the skin. These studies sug-
gested that a subpopulation of melanoma cells transiently acquires a mesenchymal-
like state [13, 38].

In Ewing sarcoma, several research groups have shown that individual tumor
cells can switch back and forth between more epithelial and more mesenchymal
phenotypes.

Chaturvedi et al. [14], using an orthotopic xenograft model, showed that EWS/
FLI-induced repression of a5-integrin and zyxin expression promotes tumor pro-
gression by supporting anchorage-independent cell growth. This selective advan-
tage was paired with a trade-off in which metastatic lung colonization is
compromised, demonstrating that phenotypes can change.

Franzetti et al. [23] demonstrated in their study that cell-to-cell heterogeneity of
EWSRI-FLI1 activity determines proliferation/migration choices in Ewing sar-
coma cells, using proteomic analysis.

These data together suggest that certain sarcomas can undergo to an EMT- and
MET-related process through pathways classically involved in the EMT/MET in
carcinomas. The activation of one or another pathway appears to be crucial for the
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Fig. 8.3 Illustration of the EMT/MET

phenotypic switching of sarcomas toward either a more epithelial or mesenchymal
phenotype.

Sannino et al. [54] proposed in a review that certain sarcoma subtypes reside in
a peculiar metastable state that enables individual tumor cells to undergo EMT/
MET-related processes due to specific cues, combining both epithelial and mesen-
chymal biological features in a single tumor, which makes metastable sarcomas
highly aggressive.
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8.4 Plasticity of Circulating Tumor Cells

As previously described, EMT is a complex process that occurs in a broad range of
tissue types and developmental stages. EMT involved various mechanisms of the
dissemination of cancer including the release of CTCs [6, 7, 47].

Most of the assays for detecting CTCs use cell surface proteins, which pose a
challenge to any detection system. In addition, not all steps of EMT are required for
carcinoma cells to become invasive and enter the circulation [3, 5, 51].

In 2009, Aktas et al. analyzed blood samples of 39 patients suffering from meta-
static breast cancer using the AdnaTest Breast Cancer and observed that 97% of 30
healthy donor samples investigated were negative for EMT and 95% for ALDHI1
transcripts. CTCs were detected in 69/226 (31%) cancer samples. In the positive
CTC group, 62% were positive for at least one of the EMT markers and 69% for
ALDHI. In the negative CTC group, the percentages were 7% and 14%, respec-
tively. In non-responders, EMT and ALDHI expression were found in 62% and
44% of patients, in responders the rates were 10% and 5%, respectively.

CTCs were detected in 69/226 (31%) cancer samples. Those results indicate that
a major proportion of CTC of metastatic breast cancer patients shows EMT and
tumor stem cell characteristics.

Lecharpentier et al. [37] found the presence of hybrid epithelial-mesenchymal
CTCs in six NSCLC patients that was reported in a pilot study. They observed the
presence of clusters of dual CTCs strongly co-expressed vimentin and keratin in all
patients (range 5-88/5 ml) and showed for the first time the existence of hybrid
CTCs with an epithelial/mesenchymal phenotype in patients with NSCLC.

Alix-Panabieres et al. [12] in a review exposed that CTCs with mesenchymal
features in patients with various tumor entities can be attributed to higher disease
stages, presence of metastases, and in some studies even to therapy response and
worse outcome.

Future studies should focus more on the detection and characterization of CTCs
with mixed epithelial mesenchymal features.

8.5 Perspectives

The use of CTCs detection in sarcoma patients might be an important diagnostic
tool for the earlier detection of metastatic disease for monitoring therapeutic
response and for identifying the time point during treatment at which an adjustment
in therapy is indicated. CTCs, CTM, and EMT/MET in these cells can be used as
tools to measure the effectiveness of treatment and better select patients for clinical
intervention. Studies with a larger cohort of patients, with well-defined treatment
and follow-up are necessary to confirm data.

Advances may help clarify the extent to which EMT is involved in the various
disease states and point to avenues through which our current understanding of the



8 Circulating Tumor Cells in Mesenchymal Tumors 137

EMT pathway and transitional events can be exploited to target tumors and/or make
them more susceptible to treatment regimes.

8.6 Pictures from Patients

Here, we show some pictures (Figs. 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13,
8.14, 8.15, 8.16, 8.17, 8.18, 8.19, 8.20, 8.21, and 8.22) of CTCs and CTM from
patients with diverse types of sarcomas, treated and followed-up at ACCamargo
Cancer Center, Sao Paulo, Brazil. All pictures were selected by Dr. Ludmilla
T.D. Chinen and reviewed by Dr. Mauro Saieg (cytopathologist).
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Fig. 8.6 CTC from the
same patient Fig. 8.5. In
brown: DAB (anti-
Pgalactosidase). Blue:
hematoxylin

Fig. 8.8 CTC from the same patient Fig. 8.5. In brown, cell on left side, with evident nuclei and
anti-EGFR staining with DAB. Cell on right side: CTC in the middle of the field showing changes
in the N/C ratio and binucleation, with irregular chromatin and high nuclear/cytoplasmatic ratio
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Fig. 8.9 CTC from the same patient Fig. 8.5. In brown: DAB (anti-EGFR). In blue: hematoxylin

Fig. 8.10 CTC from the -
same patient Fig. 8.5. In
brown: DAB (anti-
Bgalactosidase); in blue:
hematoxylin. CTC in the

middle of the field showing
changes in the N/C ratio D
and binucleation, with .
irregular chromatin and
high N/C ratio

Fig. 8.11 CTC from the
same patient Fig. 8.5. In
brown: DAB (anti-EGFR),
in blue: hematoxylin. CTC
in the middle of the field
showing chromatin
irregularity and alteration
of the nuclear/
cytoplasmatic ratio
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Fig. 8.12 CTC from the A d
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Fig. 8.13 CTC isolated from blood, by ISET. Woman, 46 years old, with leiomyosarcoma. At the
time of blood collection, before surgical rescue, she showed 0.75 CTCs/ml. Microscope magnifica-
tion: 40x

Fig. 8.14 CTC isolated
from the same patient
Fig. 8.13. In brown: DAB
(anti-EGFR). Microscope
magnification: 40x
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Fig. 8.15 CTC isolated
from blood, by ISET. Man,
69 years old, with
liposarcoma. At the time of
blood collection, before
treatment with
doxorubicin, he showed
11.25 CTCs/ml.
Microscope

magnification: 40x

Fig. 8.16 CTC isolated
from the same patient of
Fig. 8.15. Neoplastic cell
block, sometimes spindle
shaped, with cytoplasmic
marking for vimentin
(DAB). Microscope
magnification: 40x
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Fig. 8.17 CTM isolated from the same patient of Fig. 8.15. Neoplastic cell blocks, with cytoplas-
mic marking for vimentin (DAB). Microscope magnification: 40x
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Fig. 8.18 CTC isolated from blood, by ISET. Man, 76 years old, with pleomorphic sarcoma. At
the time of blood collection, before treatment with gemcitabine and docetaxel, he showed 5.62
CTCs/ml. Microscope magnification: 40x

Fig. 8.19 CTC from the q & w
same patient of Fig. 8.18.

We can observe intense
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nucleus, irregular
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Fig. 8.20 CTCs from the same patient of Fig. 8.18
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Fig. 8.22 CTC isolated

from blood, by ' a
ISET. Woman, 27 years

old, with synovial sarcoma.
At the time of blood
collection, before treatment
with epirrubicin and
ifosfamide, she showed 1.0
CTC/ml. We can observe a
group of neoplastic cells
showing nuclear
irregularity and three

-

dimensionality. .
Microscope
magnification: 40x
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Chapter 9
Circulating Tumor Microemboli:
Characteristics and Clinical Relevance

Emne Ali Abdallah

9.1 Brief History

The first observation of clusters of non-hematological cells in bloodstream was pos-
tulated by Rudolf Virchow in 1858. He postulated that the entrapment of these struc-
tures in the vasculature could contribute with tumor dissemination. However, due to
misunderstanding of the clinical importance as well as lack of skilled technology to
enrich these clustered-cells, only from 1950s, researches started to show an increased
metastatic potential in clustered cells when compared to single cells in animal mod-
els’ studies [1, 2].

Coman and collaborators (1951) sought to study the reason why specific tumor
types progress to secondary tumors with a preferential distribution. The first expla-
nation was the hypothesis that the local chemical composition and the attraction of
tumor cells is the factor that influence on the preference (the “soil” theory). The
second hypothesis was about the tumor emboli in blood, mechanically lodging in
secondary sites, targeting that organ in the route of blood. Therefore, the investiga-
tors performed an in vivo assay with tumor emboli from Brown-Pearce rabbit tumor
cells. They fixed and stained cells before heart injection and sacrificed the animal
after 1-3 min in order to compare the site of lodging with tumor formation. After
that, they performed heart injection using living cells, and the animals were sacri-
ficed within 1-3 weeks. They concluded that the distribution of stained/fixed cells
observed in capillaries was similar to the secondary tumors formed by living cells,
reinforcing the influence of the shear forces and the route of capillaries on cell lodg-
ing [1]. Later, researchers injecting clusters of B16 melanoma cells in C57 BL/6
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mice observed those cells were more prone to cause lung metastasis when compared
to the group with the same amount of single B16 cells [2].

The lack of methodologies able to enrich, identify, and preserve in an intact man-
ner these cell structures is the most important factor of these years with this scarcity
of research about clustered-cell migration.

Discoveries of some of the mechanisms — from detachment, circulation/migra-
tion, aggregation, half-life, to the clinical importance — of CTM have been addressed
in recent years. It is well known that there are unlimited technical challenges that
restrict advances in this area. Recently, many microfluidic and size-based method-
ologies were developed and showed promising results. These technologies are able
to isolate and to characterize CTM, in order to improve the understanding of the role
of CTM on tumor development and progression. Here, we provide some examples
of CTM captured from blood of patients with cancer by ISET (Isolation by SizE of
Epithelial Tumors, Rarecells, France) (Figs. 9.1,9.2,9.3,9.4,9.5,9.6,9.7, and 9.8).
Some of them were related to poor clinical outcome.

Fig. 9.1

Photomicrography of a
circulating tumor
microemboli (CTM)
isolated from a patient with
gastric cancer. The cells
were stained with
haematoxylin-eosin

Fig. 9.2

Photomicrography of two
circulating tumor
microemboli (CTM)
isolated from a patient with
gastric cancer. The CTM
above containing 4 CTCs
within; and the CTM

below containing o
approximately 10 CTCs
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Fig. 9.3

Photomicrography of a
circulating tumor microemboli
(CTM) from a patient with
gastric cancer. Cell staining
with anti-plakoglobin and
counterstaining with
haematoxylin-eosin. At the
center of CTM, observation of
a strong cytoplasmic
expression of plakoglobin; this
expression is weaker at the
periphery. Aggregated platelets
can be seen within the CTM

Fig. 9.4
Photomicrography of a
circulating tumor
microemboli (CTM) from
a patient with gastric
cancer. Cell staining with
anti-plakoglobin and
counterstaining with
haematoxylin-eosin. In this
figure, is possible to
observe more than 70
CTCs within the CTM

Fig. 9.5
Photomicrography of a
circulating tumor
microemboli (CTM) from
a patient with gastric
cancer. Cell staining with
anti-plakoglobin and
counterstaining with
haematoxylin-eosin. In this
figure, is possible to see
CTCs highly connected
with each other and with
hiperchromatic nuclei
within the CTM
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Fig. 9.6
Photomicrography of a
circulating tumor
microemboli (CTM) from
a patient with gastric
cancer. Cell staining with
anti-plakoglobin and
counterstaining with
haematoxylin-eosin. In this
figure, a large CTM (this
CTM may represent
“collective migration” of
tumor) with weak
expression of plakoglobin

Fig. 9.7
Photomicrography of a
circulating tumor
microemboli (CTM) from
a patient with gastric
cancer. Cell staining with
anti-plakoglobin and
counterstaining with
haematoxylin-eosin. In this
figure, the CTM presents
moderate expression of
plakoglobin

Fig. 9.8
Photomicrography of a
circulating tumor
microemboli (CTM)
isolated from a patient with
gastric cancer (upper
center). Also, a circulating
tumor cell (CTC) in the
lower left of figure. The
cells were stained with
haematoxylin-eosin
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9.2 Physiobiology and Cell Composition of CTM

The cell-to-cell communication within CTM microenvironment certainly provides
advantages in a successful — tumor — cell survival in bloodstream. Studies have been
demonstrating that circulating clusters can be composed not only by tumor cells, but
also by other cell types, such as, neutrophils, lymphocytes, platelets, pericytes, and
stromal cells [3, 4].

However, limited information was obtained in order to understand the biological
characteristics and the interaction within these aggregated cells. Moreover, it is
important to understand which are the fundamental mechanisms for these different
cell population — when aggregated — to drive the increased survival success forward.
There is much to be done in order to characterize these circulating entities in other
types of cancer, since the majority of studies focused on breast cancer.

There is an interest in knowing the physiological condition of CTM. Cells within
CTM are known to be negative for Ki67, a proliferation marker [5]. This lack of
proliferation may implicate that CTMs are resistant to anoikis and hence, resistant
to the majority of the currently available therapies. This is mainly because the target
of most chemotherapeutic agents focus on cell proliferation [6], showing the rele-
vance of studying its composition for developing treatments targeting CTM.

It was demonstrated that CTMs are highly capable to form metastases up to 50
times more than single CTCs [7]. In addition, investigators recently showed a
marked upregulation in plakoglobin expression in CTM (219 times) versus single
CTCs. Plakoglobin is a cell-junction protein that seems to be important in keeping
the CTM structures in bloodstream, and it is also a potential biomarker in CTM. This
data was later confirmed in an independent study with breast cancer patients [8].

CTC-white blood cell (WBC) clusters are prone to induce an increased tumor
growth and metastasis formation and decreased progression-free survival (PFS) and
overall survival (OS) in mice when compared with single CTCs and CTM. By
single-cell RNA sequencing and cytokine network analysis in mouse models and
breast cancer patients with these CTC-WBC clusters in the bloodstream, it was
shown that CTCs are more commonly found in association with neutrophils and
monocytes. Further characterization of CTC-WBC cluster showed that these groups
of cells are more prone to promote cell cycle progression in comparison with single
cells [9] (Fig. 9.9).

9.3 Mechanisms of CTM Migration

There is a concern in the literature over the way these aggregated cells work as well
as their origin. Aceto et al. (2014) have proved that these CTMs are not random
spontaneous events formed into vascular environment [7]. Instead, these structures
are released actively from primary tumor and supplied by an orchestrated
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Fig. 9.9 The interaction among circulating tumor microemboli (CTM) and blood microenviron-
ment. CTM can be constituted both by pure tumor cells and with blood cell types (neutrophils,
macrophages, and platelets). This last composition can promote the communication between
tumor cells and immune cells and increase the chances of tumor cell survival in the blood.
Moreover, neutrophil can release genetic material, forming “neutrophil extracellular traps,” that
can be able to capture CTCs and CTM, stimulating adherence and survival of these structures.
Circulating tumor cells (CTCs) and CTM can induce platelet activation and “educate” them, by
genetic material (mRNA) transference. On the other hand, platelets can stimulate interactions
between CTCs and endothelial cells as well as CTC spread. Platelets release high levels of TGF-f3
(transforming growth factor-p) and ATP, which can be activators of the epithelial-to-mesenchymal
transition (EMT), and help in CTCs” immune evasion. Also, platelets can assist CTC clustering
and CTM formation. CTMs are biologically designed to protect single CTCs from shear stress and
anoikis, but platelets can help in these processes as well

machinery of cell communication. In general, only a little percentage of cells (even
when aggregated) will achieve success in surviving and moving to distant sites.
One unexpected feature of CTMs is that their half-life is shorter than single
CTCs, which is explained by the size of the structure and rapid entrapment in small
capillaries placed around the tumor [7]. So, when found in circulation, it probably
means something in terms of invasiveness and metastatic potential of tumor.
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9.4 Clinical Significance of CTM

A high success rate of metastasis achieved by clustered cells in comparison with
single cells is well described by animal models, as mentioned in the beginning of
this chapter. By injecting DHD/K12/TRb colon cancer cells in portal vein from
syngeneic BD 1X rats, Topal and collaborators (2003) showed a significant higher
liver metastases formation rate when compared to the injection of 0.5 x 10 of
aggregated cells versus single cells, leading to an efficiency in liver metastasis for-
mation of 81% and 16%, respectively [10]. This result allows the investigators to
transpose this hypothesis on clinical aspects and behaviors of the tumors.

The significance of CTM on clinics has been demonstrated in some small pro-
spective studies, with the inclusion of patients ranging from 1 to 128 [11-14]. The
smaller one was the first and the only detecting CTM in glioblastoma and high-
grade glioma, demonstrating that CTM from glioblastoma patients can overcome
the blood—brain barrier and reach the peripheral circulation. The data obtained was
confirmed by exome sequencing [11].

Breast cancer is the type of cancer most commonly studied to explain the impor-
tance of CTM. Three studies with stage III and IV of breast cancer patients, using
the CellSearch® system, showed that the prevalence of CTM among them was simi-
lar at baseline (16.4%, 17.3%, and 17.4%). Moreover, the presence of CTM at dif-
ferent time points was correlated with poor PFS in all three studies [13, 15, 16], and
with poor OS in two of them [13, 16]. Similar results, about prevalence as well as
poor PES and OS, were observed in advanced and metastatic colorectal cancer,
using a size-based platform followed by immunofluorescence [17]. Furthermore, a
greater number of CTM in metastatic colorectal cancer was a significant indicator
of non-response to treatment [18].

There are few studies attempting to explain the importance of CTM in non-small
cell lung cancer, but the clinical significance is not yet clear [5, 19-21], although
these studies provided a high contribution focusing on CTM molecular character-
ization. On the other hand, the presence of CTM was already associated with shorter
PFS and OS [6] in small-cell lung cancer, besides the development of pulmonary
metastases from renal cell carcinoma patients [22].

In relation to diagnosis, a study was made searching for CTC/CTM in patients
with suspicious lesion in the lung at the moment of percutaneous CT-guided fine
needle aspiration (FNA) or core biopsy. They found at least I CTC/CTM per 3 mL
of blood in 75% patients with extrapulmonary metastasis, 69% of patients with
primary lung cancer, and in none of patients with nonmalignant nodules. These
results indicate that CTC/CTM can be found in very early stages of the disease.
However, this tool cannot replace the current gold-standard methods [23]. A
more detailed information about clinical studies on CTM can be seen in Table 9.1
[6, 11-18, 22-32].
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9.5 Hypotheses/Perspectives on CTM

The aspects related to origin of CTM, survival, and destruction remain unclear. An
evaluation of methylation profile in CTM versus single CTCs from breast cancer
patients and in blood from breast cancer xenografts showed high hypomethylation
in transcription factor binding sites related to stemness and proliferation in CTM,
while these regions were hypermethylated in single CTCs. Moreover, the treatment
with the FDA-approved Na*K*/-ATPase inhibitor showed promising results in dis-
sociation of CTC clusters and to reverse the profile of methylation.

The persistent observations of CTM and their importance on metastatic develop-
ment, consequently leading to an inferior survival, raised hypotheses on using these
clustered cells as targets for treatment. A study used in vitro methods to mimic CTC
cluster formation from breast cancer; such clusters increased in vivo metastatic
potential. These cells presented a high heparanase (HPSE) expression, a molecule
suitable for inhibition and knockdown, showing a suppression on tumor cell aggre-
gation, thus suggesting HPSE as a target for inhibition of CTM formation [33].

The phenomenon in which tumor cells are replacing endothelial cells and/or
being found intermediating with endothelial cells around the tumor is known as
“vasculogenic mimicry.” This phenomenon was described in a xenograft model of
colon carcinoma, in vitro and in vivo assays from melanoma cases, and in tissues
from individuals with glioblastoma [34-36]. The hypothesis generated from these
studies is that this condition of vasculogenic mimicry can contribute with tumor cell
migration (in both single and clustered (CTM) forms), as well as with treatment
failure, mainly with angiogenic inhibitors. These observations reinforced the undif-
ferentiated phenotype of tumor cells and a high level of plasticity, since these cells
present potential stem/embryonic-like features.
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Chapter 10
Circulating Endothelial Cells:
Characteristics and Clinical Relevance

José Gabriel Rodriguez Tarazona and Ludmilla Thomé Domingos Chinen

In the long way of cancer research, many studies were carried out by the scientific-
medical community. Day by day, new results of studies clarify many questions, but
in turn new questions arise that need to be clarified to improve and direct new thera-
pies [16]. The tumor microenvironment (and all cellular elements that compose it)
is considered as determinant for cancer development and progression and has been
exhaustively evaluated by many authors [1, 2, 8, 9, 13, 20, 26, 32, 35, 37, 39, 41, 44,
45]. Endothelial cells are involved with tumor development/progression, due to its
close proximity to the primary constituent element of the tumor and serving as a
pavement for the oxygen and biochemical transport. These cells also act as a barrier
and stimulus for cellular migration, together with one or several circulating tumor
cells, giving them the advantage to start a neovasculature directly inside the
blood vessel.

In recent years, circulating endothelial cells (CECs) have materialized as mark-
ers of vascular damage. Although they are present in healthy individuals, they
increase in cardiovascular diseases, vascular infections, vasculitis, and type 2 diabe-
tes. Furthermore, these cells are predictive factors of a possible cardiovascular dis-
ease in patients with coronary cancer and in patients with chronic hemodialysis
treatment. Other studies related endothelial damage in women with a history of
pre-eclampsia (Tuzcu et al. 2015). These cells are also seen to be increased in
patients with cancer, inflammatory, infectious, ischemic, and autoimmune processes
such as systemic lupus erythematosus [7, 12, 22].

The development of new blood vessels, or neovascularization, is necessary for
embryonic development and stimulation of injured tissues, but also promotes the
growth of tumors and inflammatory diseases [11, 40]. Vascular and lymphatic endo-
thelial cells are activated by pro-angiogenic growth factors such as vascular
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endothelial growth factor (VEGF), which stimulates the proliferation and migration
of endothelial cells, promoting the formation of new vessels [17, 21, 31, 36].

In 1997, a research team described for the first time the bone marrow-derived
circulating endothelial progenitor cells (EPCs) [4]. Subsequently, studies showed
that endothelial cells would eventually ascend from cells derived from the bone
marrow. They also demonstrated that endothelial cells derived from human bone
marrow could infiltrate tumors and contribute to the angiogenesis [6, 33].

It has recognized that postnatal neovascularization is stimulated by proliferation
and in situ migration of pre-existing endothelial cells (ECs). It is also evident that
EPC would be housed in neovascularization sites and differentiate in EC in situ
(vasculogenesis), well described for embryonic and postnatal neovascularization [5].

Studies have proposed that neovascular ECs are produced from bone marrow stem
cells or tumors that express VEGF receptor 2 (VEGFR-2+) [3, 19, 23, 29, 34, 42, 43].

The amounts of CEC and EPC, kinetics, and viability can be measured by posi-
tive enrichment by immune beads and flow cytometry. However, since there is no
one specific antigen for endothelial cells, a multiparametric analysis is necessary [7,
15, 46].

Nakajima and colleagues isolated endothelium from surgical specimens of pan-
creatic cancer and normal pancreas by magnetic selection. The primary culture of
tumor CEs was confirmed by positive expression of endothelial markers, CD31 and
ERGI. The cells showed short vessel formations and capillary network initiation,
revealing little angiogenic vigor, in addition, peripheral blood lymphocytes exhibit-
ing fewer adherences to the tumor CE [30]. Preclinical and clinical studies revealed
that circulating endothelial progenitor cells (EPCs) are incorporated in centers of
physiological or pathological neovascularization as in tumor vessels [5, 7], usually
at low frequencies. They also suggested that EPCs are crucial in the vasculogenesis
as well in the later stages of cancer. For this reason, anti-angiogenic drugs could, in
principle, prevent the growth of cancer [7, 10, 28, 47].

Among the obstacles to the success of immunotherapy for the cure, there is the
fact that cancer patients develop resistance to the immune response. Possibly this is
due to phenomena such as the deployment of tumor-associated antigens or tumor
secretions and/or the use of endothelium associated with tumors that could act as a
guardian of the infiltration of immune cells in the tumor [30].

Circulating endothelial cell clusters would originate from the tumor vasculature,
and it has hypothesized that the count of the clusters will decrease after tumor resec-
tion. To test this, a study collected samples and data from 17 patients with colorectal
cancer before and after surgical resection of the tumor (7 = 34 samples in total). The
results indicated that tumor resection significantly decreased the number of these
circulating endothelial cell clusters, supporting that these structures are derived
from the tumor. Furthermore, it would indicate that the clusters of these cells are not
produced from the peripheral circulation by the growth of single circulating endo-
thelial cells, but that they would be released as groups of the tumor vasculature [14].

A study conducted with 42 patients with gastric cancer showed that the number of
endothelial progenitor cells (EPCs) and endothelial cells (ECs) in patients with stage
III was higher than in stages I and II. The number of EPC in patients in stage IV was
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reduced, while the number of EC increased significantly compared to those in
patients in stages I, II, or III. In addition, the number of EPC decreased in patients
with tumors that had not invaded the serosa or with distant metastases. In addition,
the number of EPC and EC in patients with lymph node metastasis increased signifi-
cantly compared to patients without metastases. This would indicate that EPC could
be involved in lymph node metastasis in gastric cancer. This study hypothesizes that
EPCs are involved in angiogenesis in stages I and II, CE and EPCs are linked in
angiogenesis in stage III, and EC would be the main cell involved in angiogenesis in
stage IV. Factors such as hypoxia, neovascularization, and cell adhesion molecules
stimulate the recruitment of EPC [25]. EPCs have demonstrated their promising
value as markers of tumor diagnosis in renal cell and lung adenocarcinoma [25, 27],
breast cancer [18, 38], and colorectal cancer [24]. It has been found that adreno-
medullin receptor antagonists achieve targeted therapy of pancreatic and renal tumors
in mice by inhibiting the mobilization of tumor endothelial cells and EPC [25].

As demonstrated here, knowledge about EPC, CEC, associated angiogenic fac-
tors, inhibitory factors of endogenous angiogenesis, and synthetic inhibitors of
exogenous angiogenesis may encompass angiogenic inhibition therapy and may be
a promising anticancer treatment (Fig. 10.1). Studies are needed to investigate the
factors that affect the mobilization, migration, and differentiation of EPC and CEC
in different clinical stages.

Diferenciation and
proliferation

Cytokines
involved in %

homing frorr]._»“ .

tumor

Circulating EPCs

Initial tumor Trained tumor

Bone marrow EPCs

Fig. 10.1 Cytokines secreted by the tumor activate the bone marrow cells, resulting in the mobi-
lization of subsets of EPCs from the bone marrow en route to the tumor bed in response to chemo-
taxis. Subsequently, EPCs enter the blood and interact with the wall of the blood vessels; this
interaction activates integrins which mediate intercellular adhesion and facilitate transendothelial
migration of the EPCs to the tumor. Both integrins and proteases are essential for tissue invasion.
EPCs differentiate into mature endothelial cells in three steps: (i) integrin-mediated adhesion to the
extracellular matrix, (ii) production of paracrine/juxtacrine factor, and (iii) expression of genes that
regulate endothelial maturation. EPCs regulate the angiogenic process through the paracrine secre-
tion of pro-angiogenic factors and provide a structural function to the new vessels
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Chapter 11
Giant Macrophages: Characteristics
and Clinical Relevance

Julie Earl and Bruno Sainz Jr.

11.1 Introduction

The role of macrophages in tumor development and dissemination has been known
for several years [1-3] and was more recently reviewed by Yang and Zhang in 2017
[4]. Herein, we discuss in depth the role of macrophages and specifically that of
tumor-associated macrophages (TAMs) in these various processes, as well as their
potential role as clinical biomarkers and therapeutic targets. The following terms
describe the different macrophage phenotypes mainly associated with these
processes [5].

Inflammatory monocytes are recruited to inflammatory sites and are character-
ized as follows: CD14+(high), CD16—, CCR2+(high), CSF1R+(high), and LY6G-.

Tumor-associated macrophages (TAMs) are present in the tumor microenviron-
ment and promote tumor development and progression. Human TAMs have the fol-
lowing marker profile: CDI11b+, CDI14+, CD23+, CD34—, CD45+, CD68+,
CDI117—, CD133—, CD146—, CD163+ (h), CD204+, CD206+, CCR2+, CSFI1R+,
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CXCR4+, MHC class II+, VEGFR 1+, and VEGFR2—. However, different markers
are expressed by TAMs with specific tumor-associated functions.
Metastasis-associated macrophages (MAMs) are a subset of inflammatory
monocytes that promote tumor dissemination and invasion and the formation of the
metastatic niche. Studies in mice have shown that MAMs originate from inflamma-
tory monocytes and have the following marker profile: CD11b+, CD31—, CD45+,
CCR2+, CXCR4—, F4/80+, LY6C—, LY6G—, TIE2—, VEGFR 1+, and VEGFR2-.

11.2 The Interplay Between Circulating Tumor Cells
(CTCs) and Macrophages

The tumor microenvironment (TME) is composed of fibroblasts, immune cells, and
vascular endothelial cells. Monocyte-derived macrophages are immune cells that
originate from bone marrow-derived blood monocytes. Tumor-associated macro-
phages (TAMs) are involved in cancer-related inflammation, form part of the tumor
microenvironment, and facilitate the dissemination of circulating tumor cell (CTC)
and their subsequent seeding in metastatic niches [6, 7]. TAMs are either tissue resi-
dent or derived from peripheral sources such as monocytes of bone marrow and
spleen [8], although their exact origin and the mechanisms underlying their pro-
metastatic function in human tumors is unknown.

Macrophages are extremely plastic and can fluctuate between two states of polar-
ization: “M1” or “M2” state. Classically activated macrophages are known as
MI-polarized macrophages, whereas TAMs more closely resemble M2-polarized
macrophages, which express higher levels of anti-inflammatory cytokines and
angiogenic factors compared to their M1-type counterparts [4]. It is important to
note that while TAMs do resemble M2-polarized macrophages, there exist several
subpopulations of TAMs that share features of both M1 and M2 macrophages. Thus,
the traditional M1 or M2 classification of TAMs may not accurately reflect the dif-
ferentiated or biological state of these cells, and therefore, researchers have pro-
posed functionally classifying TAMs (e.g., metastasis-promoting macrophage or
immunosuppressive macrophage) in lieu of using the traditional M1 and M2 nomen-
clature [9-12].

Until a consensus is established, however, the use of binary M1/M2 classification
continues to be widely used [13]. Based on this system, it is believed that macro-
phage polarization toward a pro-inflammatory, classically activated or “M1” pheno-
type is mediated by activation of Toll-like receptors upon engagement with bacterial
components (e.g., lipopolysaccharides) or via type I helper T (Thl)-secreted cyto-
kines [e.g., interferon (IFN)-y]. In general, it is assumed that M1 macrophages are
involved in Thl responses to microorganisms, are involved in clearance of dead/
apoptotic cells, have enhanced cell killing activity, and are characterized by secre-
tion of a battery of pro-inflammatory cytokines that include IL-12, IL-1p, IL-6, and
tumor necrosis factor o« (TNFa) and generation of reactive oxygen and nitrogen
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intermediates [14]. Alternatively and in response to different stimuli or signals,
macrophages can polarize toward an alternatively activated “M?2” phenotype par-
ticipating in Th2-type immunity, wound healing, and tissue remodeling [10]. These
alternate stimuli can include, but are not limited to IL-4, IL-10, and IL-13 [10].
While M1 macrophages are characterized by secretion of pro-inflammatory cyto-
kines, M2 macrophages are characterized by high expression of scavenging mole-
cules, mannose and galactose receptors, activation of the arginase pathway,
production of IL-10, vascular endothelial growth factor (VEGF), matrix metallo-
proteinases (MMPs), and efficient phagocytic activity [10, 14].

Cells of the myeloid lineage constitute one of the dominant immune cell popula-
tions present within tumors. While their initial infiltration into a tumor is dependent
on the release of macrophage chemoattractants from tumor cells, such as colony
stimulating factor 1 (CSF-1), the chemokines, CCL 2, 3, 4, and 8, vascular endothe-
lial growth factor (VEGF), macrophage inflammatory protein-1 alpha (MIP-1a),
and macrophage migration inhibition factor (MIF) [6, 7], once within the tumor,
tumor cells promote the differentiation of monocytes (or M1 macrophages) into
tumor-conditioned macrophages, also known as TAMs [11]. As mentioned above,
while TAMs resemble M2 macrophages and express many of the same cell surface
markers as M2 macrophages, to date no single panel of cell surface markers can
accurately discriminate TAMs from non-TAMs. In the murine setting, the absence
of Grl (Ly6G) and the expression of the canonical markers CD11b, F4/80, and
CSF-1R in combination with mRNA analysis of additional markers are routinely
used to classify macrophage subtypes [9]. In the human setting, antibodies to the
glycoprotein CD68, the LPS-co receptor CD14, CD312, CD115, HLA-DR, or
FcyRIII (CD16) have been used to identify macrophages, but with mixed and often
times contradictory results [15]. Thus, combinations of these markers provide
higher specificity and should be used when possible. To more specifically identify
M2-like TAMs and subsets, the hemoglobin-scavenger receptor CD163 [16, 17], the
macrophage scavenger receptor 1 CD204 [11, 18, 19], the mannose receptor CD206
[20], and more recently the T-cell immunoglobulin and mucin-domain containing
protein-3 (Tim-3) [21] have been used with great success.

TAMs directly participate in tumor initiation, progression, and metastasis via
numerous mechanisms including the following: (1) the secretion of proteolytic mol-
ecules such as MMPs to facilitate ECM remodeling [22-25]; (2) the expression of
non-proteolytic proteins like chemokines [26, 27], TGF-p1 [28, 29], ISG15 [30],
and hCAP/LL-37 [31, 32] to facilitate tumor cell proliferation, migration, and inva-
siveness; (3) the expression of angiogenic mediators such as TGF-f, VEGF-A,
VEGEF-C, platelet-derived growth factor (PDGF), and MMP-9 to sustain the growth
of the tumor stroma and promote de novo tumor blood vessel formation [9, 26, 33,
34]; or (4) the expression of immunosuppressive factors including TGF-p, inducible
nitric oxide synthase (iNOS), arginase-1, IDO (indoleamine 2,3-dioxygenase), and
IL-10 to facilitate T-cell proliferation and activity [35, 36]. While the mechanisms
underlying the pro-tumor effects of TAM-secreted factors on bulk tumors has been
extensively studied, there is now growing evidence to support that TAMs also
enhance tumor cell migration via physical interactions with tumor cells.
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11.2.1 Pro-Tumorigenic Function of TAMs

It is well accepted that high TAM content in the tumor microenvironment is associ-
ated with a poor prognosis due to their pro-tumor and pro-angiogenesis role [37],
and macrophages are found in large numbers at the leading invasion edge of many
primary tumors where they degrade the basement membrane to promote tumor pro-
gression [1]. Thus, they play an important role in the primary tumor, and at the same
time are essential for CTC intravasation. Regarding the latter, previous studies have
hypothesized that CTCs intravasate into the circulatory system with TAMs via tran-
sendothelial migration [1]. Disseminated tumor cells need to survive in the hostile
environment of the blood stream in order to develop metastatic foci at distant sites.
Immune cells including macrophages, platelets, and T cells are thought to protect
CTCs from the immune system and the environment within the blood vessels [5].
CTCs migrate through the blood stream as single cells or microemboli cell clusters,
which consist of cells from the TME such as leukocytes, endothelial cells, or fibro-
blasts. This hinders the detection and destruction of CTCs by the immune system
and also provides a physical protective barrier against damage and destruction in the
harsh environment of the blood stream. Thus, the role of TAMs in CTC intravasa-
tion may be more complex and dynamic than previously recognized.

11.2.2 TAMs Enhance the Invasive Nature of Tumor Cells

Clinical and experimental evidence both in vivo and in vitro show that macrophages
play an important role in tumor progression and dissemination and are therefore,
potential targets for therapy. The relationship between poor disease prognosis and
the presence of TAMs has been shown in tumor types such as breast, lung, and pan-
creas [38—40].

Macrophages are associated with chronic inflammation, and Balkwill et al.
showed in 2005 that treatment with anti-inflammatory agents reduced cancer risk
[41]. NF-xB appears to be important in the inflammatory response. In fact, it has
been shown in vivo that NF-kB activation leads to the upregulation of anti-apoptotic
genes, such as BCL-XL, BFL1, and GADD45p and therefore prevents apoptosis of
tumorigenic cells [42]. Inhibition of NF-kB could be a potential therapeutic strategy
to target macrophages, as this would not only restore apoptosis of malignant cells
but also inhibit the expression of growth and survival factors in macrophages.

Furthermore, Lin et al. in 2001 showed that a homozygous null breast cancer
mouse model for the colony-stimulating factor-1 (CSF-1) gene had reduced tumor
progression with almost no metastasis. Whereas, overexpression of CSF-1 acceler-
ated tumor progression and metastasis [43]. Furthermore, blocking the expression
of CSF-1 in a human xenograft mouse model reduced tumor growth and metastatic
capacity [44], thus supporting the notion of macrophages as enhancers of tumor
progression. Tumors cells appear to “educate” macrophages in order to promote
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tumor invasion and intravasation into the blood vessels and the circulation to form
secondary metastatic lesions [5]. In 2010, Wu et al. showed using co-cultures of
macrophages or macrophage-conditioned medium with tumor cells an enhanced
invasive phenotype, which appears to be dependent on NF-kB and SNAIL [45].
Thus, the tumor-macrophage interaction is fundamental for tumor invasion and dis-
semination. Grivennikov et al. showed in 2012 that TAMs secrete inflammatory
cytokines such as IL-23 and IL-17 that promote cancer progression [46]. IL-23 was
mainly produced by tumor-associated myeloid cells in response to tumor-elicited
inflammation by microbial products in colon tumors. A recent study by Krug et al.
in pancreatic neuroendocrine tumors (PNET) showed that TAMs play a critical role
in the malignant phenotype of PNET. The number of infiltrating TAMs correlated
with tumor invasiveness and metastatic potential. Specifically, in vivo and in vitro
experiments of myeloid cell inhibition with liposomal clodronate showed a reduced
malignant transformation of insulinomas with an associated reduction in angiogen-
esis and the number of infiltrating TAMs [47]. Similarly, Michl and colleagues
showed in a genetic model of pancreatic cancer that clodronate-mediated depletion
of macrophages markedly reduced metastasis formation and was associated with
reduced CD4+CD25+ T cell levels and impaired angiogenesis. Interestingly, tumor
incidence was only slightly reduced, suggesting that TAMs likely are more impor-
tant in dissemination rather than tumorigenesis, at least for pancreatic cancer [48].

TAMs also produce proteases, such as Cathepsin B, matrix metallopeptidase
(MMP) 2, MMP7, and MMP9 that destroy the components of the extracellular
matrix (ECM), and therefore facilitate the invasion and migration of tumor cells [4].
In fact, Finkernagel et al. recently demonstrated in ovarian tumors that the transcrip-
tional profile of TAMs was similar to that of resident macrophages. This included
functions such as bacteria phagocytosis and antigen presentation. However, there
was a subset of genes that were specifically upregulated in TAMs that were associ-
ated with the re-organization of the extracellular matrix [49].

TAMs are also involved in angiogenesis and promote the formation of intra-
tumoral blood vessels that provide essential nutrition to the growing tumor. They
also secrete pro-angiogenesis factors including colony stimulating factor-1 (CSF-1),
various chemokines such as IL-8 and IL-1p, CCL2, CCL3, CCL4, CCLS5, and
CCLS, as well as macrophage migration inhibition factor (MIF), vascular endothe-
lial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast
growth factor (bFGF), tumor-necrosis factor-a (TNF-a), and thymidine phosphory-
lase [6]. Specifically, macrophage infiltration of the tumor site was significantly
reduced in a CSF-1-null mouse model of breast cancer, with a consequent impaired
development of the vasculature of the tumor and reduced vessel density due to
VEGF depletion in the surrounding stroma [33]. Furthermore, human breast cancer
spheroids had an increased angiogenic response and more pronounced vasculariza-
tion when implanted into nude mice if they were infiltrated with macrophages. This
was likely due to the release of VEGF by the spheroid cultures [6].
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11.2.3 TAMs, Inflammation, and the Inmune Response

The role of inflammation in cancer development is clear, and TAMs connect inflam-
mation and cancer. The recruitment of macrophages to the primary tumor is crucial
to establish and maintain an inflammatory TME. Epithelial-mesenchymal transition
(EMT) increases the motility and invasiveness of tumor cells and is a key mecha-
nism in the metastatic process. The transcription factor, Snail, induces EMT via the
repression of the cell adhesion protein E-cadherin and is a crucial factor for
inflammation-initiated invasion and metastasis. The inflammatory cytokine, TNFa,
stabilizes Snail via the activation of the NF-xB pathway [45].

Metastatic tumor cells are immunogenic and should be recognized and neutral-
ized by immune cells such CD8+ T cells natural killer (NK) cells. However, these
metastatic tumor cells develop several strategies to overcome detection and destruc-
tion by the immune system, such as the recruitment of immunosuppressive cells [5].
TAMs are involved in immune suppression in the TME via the inhibition of the
cytotoxic T lymphocyte (CTL) response via IL-10 and the induction of the expres-
sion PD-L1 in monocytes [4]. The anti-inflammatory cytokines produced by M2
TAMs reprogram the immunosuppressive microenvironment to promote tumor
progression.

11.2.4 TAMs Play an Important Role in Metastasis

TAMs are important players in the development of a premalignant niche for the
establishment of metastatic lesions [4] and also play a crucial role in the regulation
of EMT, which enhances the metastatic capabilities of tumor cells [4]. TAM-derived
TNF-a, VEGF, and TGF-f induce macrophages to produce S100A8 (aka SMA1)
and serum amyloid A3, which recruit macrophages and tumor cells to the metastatic
site [4]. Metastasis-associated macrophages (MAMSs) are characterized by the
expression of the markers CD11b, VEGF receptor 1 (VEGFR1), CXC-chemokine
receptor 3 (CXCR3), and CC-chemokine receptor 2 (CCR2) and do not express
GR1, angiopoietin 1 receptor (TIE2), and CD11c [5].

In pancreatic cancer, IFNf produced by primary human PDAC cells can induce
TAMs to secrete IFN-stimulated gene 15 (ISG15), a protein with both anti-viral and
pro-tumorigenic properties. TAM-derived ISG15 can then stimulate pancreatic can-
cer stem cell (CSC) self-renewal and tumor-initiating properties, for example
increased EMT [30]. Sainz et al. demonstrated that PDAC CSCs secrete the TGF-f§
superfamily members Nodal/Activin A and TGF-f1, which promote macrophage
polarization to an M2 phenotype. As a consequence, polarized TAMs secrete a num-
ber of pro-tumoral proteins, including the antimicrobial peptide hCAP-18/LL-37.
This antibacterial peptide binds to its receptors, including formyl peptide receptor 2
(FPR2) and P2X purinoceptor 7 receptor (P2X7R) and enhances the metastatic
potential of pancreatic tumor cells. Specifically, the authors show that tumor cells
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pre-treated with LL-37 have significantly higher metastatic capacity than those
treated with a scrambled peptide control [32].

11.3 Macrophages as a Therapeutic Target

The targeting of TAMs represents a novel strategy in cancer treatment and may be
achieved in various ways such as blocking the recruitment of macrophages to tumors
and re-educating the TME to a more anti-tumor phenotype and macrophage cytore-
ductive strategies. In mouse models, the CCL2-blocking agent (carlumab, CNTOS88)
was shown to inhibit tumor growth in a phase 2 study in metastatic castration-
resistant prostate cancer in 2013 [50].

Furthermore, Sanford et al. showed in 2013 in a pancreatic cancer mouse model
that the CCR2 antagonist (PF-04136309) blocks the mobilization of CCR2+ mono-
cytes, which leads to a depletion of TAMsS, reducing the metastatic potential [51].
Inflammatory macrophages were increased in the blood compared to the bone mar-
row in pancreatic cancer patients, which was a predictor of poorer survival in
patients that had undergone a surgical resection. Pancreatic tumors with high CCL2
expression and low CD8 T-cell infiltrate have significantly decreased survival rates
as tumor cells secrete CCL2, which recruits immunosuppressive CCR2+ macro-
phages to the primary tumor [51]. In a recent dose-finding study by Nywening et al.,
researchers were able to translate these findings directly to patients, by showing that
the addition of an inhibitor of monocyte recruitment, specifically a small molecule
CCR?2 inhibitor PF-04136309 to FOLFIRINOX resulted in tumor shrinkage in 48%
of patients with pancreatic cancer [13], double the historical response rate of
FOLFIRINOX alone.

Re-education of TAMs to an M 1-like phenotype using bioconjugated manganese
dioxide nanoparticles or Pseudomonas aeruginosa mannose-sensitive hemaggluti-
nin have been shown to enhance chemotherapy [39, 52]. In this way, antitumor
macrophages scavenge and destroy phagocytosed tumor cells [53]. The CSF1/CSF1
receptor (CSFIR) is critical for monocyte progenitor generation and TAM polariza-
tion and is therefore a potential cytoreductive treatment target [4]. Furthermore,
macrophage-specific surface markers are potential therapeutic targets, such as the
mannose receptor CD206, the scavenger receptor A, and CD52 [4]. Several phase I
clinical trials have been performed with antibodies against CSF1, which leads to a
reduction in the number of TAMs (ClinicalTrials.gov identifier: NCT01316822,
NCT01444404 and NCT01004861). However, there are currently no phase II or III
clinical trials that specifically target macrophages or TAMs [5]. TAMs appear to
modulate the cytotoxic effects of chemotherapy in animal models via various mech-
anisms. The M2 subtype of TAMs has been shown to be involved in revasculariza-
tion of the tumor after chemotherapy, resulting in tumor relapse that is partly
regulated by VEGF-A. In fact, the number of M2 TAMs around the blood vessels
reduced after pharmacological inhibition of CXCR4, which subsequently dimin-
ished tumor revascularization and regrowth [54].
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More recently, in vitro experiments with sorafenib, an oral multikinase, was
shown to inhibit polarized macrophage-induced epithelial mesenchymal transition
(EMT) in hepatocellular carcinoma cell lines [55]. Specifically, secretion of the
EMT stimulation factor, hepatocyte growth factor (HGF), was decreased in macro-
phages after sorafenib treatment. Consequently, HGF-Met signaling activation by
polarized macrophage-conditioned medium was reduced. These effects were not
observed in normal hepatocytes. Furthermore, pre-treatment of polarized macro-
phages with sorafenib reduced the migration of hepatocellular carcinoma cells.

In humans, histological examination of hepatocellular carcinoma tumors treated
with sorafenib showed a reduced number of tumor-infiltrating CD68+ macrophages
and a reduced expression of the EMT markers, fibronectin and vimentin.
Furthermore, the plasma levels of the EMT stimulation factor, hepatocyte growth
factor (HGF), were significantly reduced after 24 weeks of therapy with sorafenib
in patients with hepatocellular carcinoma, thus, suggesting that sorafenib inhibits
HGEF secretion.

11.4 TAMs as a Biomarker in Oncology

A high number of infiltrating TAMs in the primary tumor are associated with an
aggressive behavior and poor prognosis [4]. The cell surface markers CD163, CD14,
CD204, and CD206 may be used to identify TAMs, although they are not tumor-site
specific [4, 56]. Serum CD163 levels may also be used as a prognostic marker in
some tumor types [4]. Cell-surface vimentin—positive macrophage-like circulating
tumor cells were identified in blood from patients with gastrointestinal stromal
tumors (GISTs). These cells express the macrophage markers CD68 and CD14,
tumor cell markers DOG-1, C-kit and are negative for CD45 [57].

11.4.1 Circulating Tumor Microemboli (CTM)

Circulating tumor clusters or microemboli (CTMs) have been reported in various
tumor types including lung, breast, colon, prostate, and pancreas. CTMs have been
identified via a variety of approaches including cell microscopy, immunocapture,
and microfluidic chips [58—61]. As with the detection of CTCs, higher numbers of
CTMs per ml of blood correlates with a poorer progression-free and overall sur-
vival. CTMs are thought to provide a survival advantage for CTCs in the harsh
environment of the bloodstream and protect them from anoikis [62]. CTMs are
thought to be cell clusters that have collectively shed from the primary tumor and
consist of cells with both epithelial and mesenchymal phenotypes [63].
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11.4.2 CTC-Macrophage Fusions

Cell fusion occurs when two or more cells become merged via the plasma mem-
branes, and the progeny are known as hybrids. The tumor-leucocyte cell fusion
theory of metastatic potential was proposed many years ago, whereby a tumor cell
fuses with a migratory blood cell in order to promote tumor cell dissemination
around the body [64—66]. Many tumor cell types have fusogenic properties and this
was proposed as a mechanism to promote their malignant potential, resistance to
drugs, and apoptosis [67]. In fact, malignant plasma cells in multiple myeloma
(MM) are highly fusogenic and form multinucleated osteoclasts that express CSC
markers with a high metastatic potential [68]. This concept of leukocyte-tumor cell
fusion as a driver of cancer progression has been recently reviewed by Sutton
et al. [69].

Giant circulating cancer-associated macrophage-like cells (CAMLs) were iden-
tified in 2013 [70] and are thought to be exclusively found in cancer patients. These
cells range from 25 to 300 pm in size, with enlarged nuclei and express the pro-
angiogenic markers CD14 and CD11c as well as CD45, cytokeratin, and epithelial
markers CK 8, 18, and 19, and EpCAM [70] (Fig. 11.1). CAMLs are disseminated
TAMs with the ability to seed, proliferate, and neovascularize the metastatic niche
and are also involved in the phagocytosis of neoplastic cells within the primary
tumor. In fact, higher CAML counts were found after chemotherapy treatment com-
pared to untreated or hormone-based therapy. CAMLs or tumor cell-macrophage
hybrids have been found in various tumor types such as breast, prostate, esophageal,
colorectal, and pancreas, and the majority (over 83%) of patients with early and
advanced stage disease are positive for CAMLs [69]. However, healthy controls and
patients with benign disease were negative [70]. Here below we summarize the
most relevant studies of tumor cell-macrophage fusions in various tumor types
(Figs. 11.2 and 11.3).
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A recent study in breast cancer cells by Zhang et al. showed that tumor-
macrophage hybrid cells had enhanced tumorigenic and metastatic capacities such
as increased proliferation, colony formation, migration, and invasion capacity with
resistance to apoptosis. These effects appeared to be induced by EMT and Wnt/f--
catenin signaling, with an associated downregulation of E-cadherin and an increased
expression of N-cadherin, vimentin, Snail, as well as MMP-2, MMP-9, and S100A4
[71]. Another study showed that MCF-7 breast tumor cells and macrophage hybrids
occurred by spontaneous fusions at a rate of around 2%. These fusions showed phe-
notypic and genetic traits from both maternal cells such as CD163 and CD45
expression and short tandem repeat (STR) genetic markers [72]. Another recent
study described the isolation, cultivation, and characterization of macrophage-
tumor cell fusions (MTFs) from the blood of pancreatic ductal adenocarcinoma
(PDAC) patients. The MTFs consisted of M2-polarized macrophages, and the cells
were generally aneuploid with characteristics associated with epithelial, macro-
phage, and stem cells and also expressed markers associated with tumor progression
and metastasis. Furthermore, when transplanted orthotopically into a murine
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pancreas, MTFs grew as well-differentiated cell colonies in many different organs,
without forming an established tumor. Thus, suggesting that these structures dis-
seminate from the primary tumor and form a metastatic niche [73]. Furthermore, a
study in melanoma showed that 2 circulating tumor cell (CTC) populations were
detectable, one cytokeratin positive only and a second that was also positive for
CD45 and the monocyte differentiation marker CD 14, thus, suggesting the presence
of leukocyte/macrophage-tumor cell fusion hybrids in these patients [74]. In fact,
these macrophage-CTC fusions enter into the blood stream and generate metastatic
lesions due to their ability to secrete cytokines to prepare the metastatic niche and
colonize the secondary organ [75]. A recent study by Lindstrom et al. in breast can-
cer showed that cell fusions of MCF-7 cells with macrophages resulted in an
increased radio resistance and enhanced DNA-repair capacity after exposure to Gy
y-radiation [76]. Another study in breast cancer, regarding the tumor-initiating and
metastatic capacities of M2 macrophages and MCF-7 or MDA-MB-231 cell line
hybrids in NOD/SCID mice showed that the hybrids had a more aggressive pheno-
type, including increased migration, invasion, and tumorigenicity. However, their
proliferative ability was reduced and the hybrid phenotype was CD44+CD242/low
with overexpression of EMT associated genes, indicative of stem-like properties
[77]. Although, a study in a murine model of spontaneous neu+ breast cancer dem-
onstrated that even though macrophages are most commonly fused with tumor cells,
they were present at low levels in the primary tumor and undetectable in metastasis
[78]. These studies suggest that TAMs may promote the metastatic potential of
breast cancer cells via cell fusion, and the hybrids may gain a BCSC phenotype,
compared with the parental lines (Fig. 11.4).

Several studies have addressed the specific mechanism by which macrophages
promote the metastatic potential of tumor cells via cell-cell fusion. In fact, acute
myeloid leukemia (AML) cells spontaneously fused with macrophages, dendritic
and endothelial cells in a murine in vivo model. The hybrid cells gave rise to leuke-
mia with 100% penetrance when implanted into mice, and data suggest that tumor
cell-macrophage fusion may be a mechanism of gene transfer to promote tumor
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dissemination [79]. Furthermore, a study by Powell et al. in 2011 suggested that the
cellular properties of macrophages, such as migration and immune evasion, are
transferred to tumor cells via cell fusion as a mechanism of the metastatic conver-
sion of cancer cells [80].

These cell fusions could provide new diagnostic, prognostic, and treatment
response biomarkers in oncology as their presence seems to correlate with many
clinical criteria. However, this presents a challenge due to their low prevalence in
blood and the difficulty to isolate these cells in sufficient quantities in order to per-
form profiling studies. Likewise, the concept and existence of giant macrophages or
CTC-macrophage fusions is still under scrutiny, and the true biological relevance of
these cells has yet to be definitely determined. Without a doubt, the challenges asso-
ciated with identifying and isolating these cells are many and include the scarcity of
these cells, and the methodologies available to isolate them. Regarding the latter,
many systems that have been developed to isolate CTCs include an immune cell
elimination step. Thus, giant macrophages or CTC-macrophage fusions would be
eliminated based on the expression of immune cell markers. Such systems include
the CellSearch® platform (Menarini Silicon Biosystems, Inc. 2019). Thus, for the
detection of these cell hybrids, other methodologies based on cell size would likely
prove more beneficial. For example, the OncoQuick® system represents a simple-to-
use, rapid, and efficient system for the enrichment of CTCs. OncoQuick® tubes
consists of 50 ml polypropylene tube with a porous barrier which is inserted above
a specially developed separation medium, which allows for density gradient cen-
trifugation of cells from up to 30 ml of anticoagulated whole blood. Disseminated
CTCs are enriched in the interphase, and following centrifugation, cells can be vali-
dated via various techniques, including immunofluorescence, RTqPCR, WB, or
in vitro cell culture. This technique was used by Clawson GA et al. to identify and
culture macrophage-tumor cell fusions from blood of patients with pancreatic duc-
tal adenocarcinoma [81]. Indeed, other systems exists, but more research is needed
to determine the best method for isolating these cells. Until then, we can only specu-
late that these cells play an important role in tumor cell dissemination.
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12.1 Introduction

The presence of CTCs in the blood of cancer patients is being investigated for their
potential as real-time noninvasive liquid biopsies. Such a method can provide com-
plete information on the genetic profile of cancers and track genomic changes [1-3].

In addition, the molecular characterization of individual CTCs revealed impor-
tant information about the genotype and phenotype of these tumor cells and demon-
strated a remarkable heterogeneity of CTCs. Although the presence of CTCs is
known in several cancers [4], little is known about the proportion of viable CTCs
[5-7]. Currently, works have been done seeking the molecular characterization of
CTCs, as a manner to increase their diagnostic specificity. Some groups have been
able to grow these cells in vitro and analyze the proteins secreted by them, as well
as induce tumor in animals with CTCs from cancer patients [8, 9].

CTC-derived xenografts (CDXs) or CTC-derived cell lines at relevant times dur-
ing disease progression are decisive in achieving a complete characterization of
CTCs, along with in vivo and in vitro pharmacological tests. Despite this continuing
task being challenging due to the scarcity of CTCs in peripheral blood and limita-
tions related to enrichment methodologies, significant studies have been done to
establish clinically relevant systems for the study of CTC biology in different types
of cancers. In this chapter, we discuss the basic knowledge of CTCs and evaluate
existing CTC-derived models, including in vivo CDXs and in vitro functional cul-
ture assays in different types of cancer.
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12.1.1 Model Organism Databases (MODs)

Model organism databases (MODs) are designed to facilitate researchers to find
specific needs of each model organism and integrate biomedical research data. To
study the development and progression of diseases and to test new treatments,
researchers can use animal models, allowing the development of a better compre-
hension of animal and human anatomy, physiology, pathology, and pharmacology.
The possibility of experimenting under controlled situations and mimicking bio-
logical conditions of diseases or situations, guaranteed the development of scientific
methods and the creation of the concept of animal models [10].

Regarding biomedical research, many species can be used such as Drosophila,
Caenorhabditis elegans, Zebrafish, Xenopus, and also mammals, such as Mus mus-
culus (mouse), dogs, pigs, and monkeys [10, 11]. Due to characteristics such as its
short life cycle, gestation period, and lifespan, as well as its high fecundity and
breeding efficiency, the laboratory mouse (Mus musculus) is widely recognized as
an important vertebrate animal model and is the most frequently used animal in
biomedical research [12]. Mice are considered the model organism of choice for
studying the diseases of humans, with whom they share 99% of their genes [13],
and this high degree of conservation with humans is reflected in its anatomy, physi-
ology, and genetics [14]. They can be used to investigate genetic and cellular sys-
tems relevant to human biology and disease, in a variety of ways to comprehend the
mechanisms, genetics, genomics, and environmental contributions [15].

Modern molecular biology approaches and cost reductions in next generation
sequencing have opened avenues for direct application of model organism research
to elucidating mechanisms of human diseases. The scientific understanding of how
genes, environment, and behavior could interact to generate chronical diseases such
as cancer and obesity remains insufficient, as does current treatment in most cases,
that cannot reach a cure, but only momentary stabilization of the disease.

12.1.2 CTC-Derived Xenografts (PDXs)

Patient-derived xenograft (PDX) technology has emerged as a research platform to
better elucidate the understanding of cancer biology and the evaluation of new ther-
apeutic strategies [16]. PDXs are generated by implanting surgically removed tumor
tissue (primary or metastatic) in immunodeficient mice. Despite these models pres-
ent utility as preclinical tool in many types of cancer, their practicality is a challenge
due to the limited availability of tumor tissue [17]. This limitation can be overcome
by the generation of CDX models after the enrichment of CTCs collected from one
of an easily accessible blood sample, followed by injection in immunodeficient
mice [18-20]. However, it is important to note that the development of CDX is still
a huge challenge due to the amount of viable CTC in various types of cancer. So far,
CDXs been established in breast cancer, melanoma, lung, and prostate (Table 12.1).
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The first CDX CTC-derived xenograft was reported in 2013 by Baccelli et al.
from an immunodeficient mice that developed bone, lung, and liver metastases after
tibial bone injection of CTCs from patients with metastatic breast cancer. The injec-
tion of CTCs of 110 patients was performed. Six receiver mice developed bone,
liver, and lung metastases within 6—12 months after transplant CTC (approximately
1000 CTCs) from three patients with advanced metastatic breast cancer. These
metastases were analyzed and found to express EpCAM, CD44, CD47, and
MET. The authors also showed that the number of CTCs positive for these markers
was strongly correlated with decreased progression-free survival of patients with
metastatic breast cancer. Therefore, this study revealed that CTCs can be an attrac-
tive tool for tracking and directing metastatic development in breast cancer [21]. A
second group developed a CDX model from a patient with metastatic triple negative
breast cancer (TNBC) for the first time. The patient selected for the CDX establish-
ment had advanced TNBC with a high CTC count, analyzed by CellSearch (969
CTCs and 74 CTC clusters/7.5 mL). The enriched cells were injected subcutane-
ously into mice and a noticeable tumor after 5 months. The samples were collected
at two different times (metastasis and progression), which allowed the real-time
assessment of the molecular changes between tumor samples from patients, CTCs
and CDXs. The CDX showed a phenotype equal to that of the patient’s tumor.
Furthermore, the analysis of circulating tumor cells (CTCs) also deciphered a panel
of potential tumor biomarkers [22]. In 2019, Vishnoi et al. developed a TNBC CDX
model with the addition of liver metastasis. The authors identified a first CTC sig-
nature of 597 genes related to liver metastasis in TNBC that can provide informa-
tion about the mechanics of TNBC disease progression in the liver [23].

A study with CDX and melanoma developed by Girotti et al. (2016) reported a
success rate of 13% of CDX established. The CDX tumor was palpable from 1
month after CTC implantation and was sustainable in secondary hosts. In addition,
CDXs represented patients’ tumors [24].

In the study with lung cancer, Hodgkinson et al. (2014) showed that CTCs in
chemosensitive SCLC are tumorigenic. CTCs were isolated from 6 patients with
advanced SCLC who never received chemotherapy. CTCs were injected into NSG
mice (NOD scid gamma mice). Each patient had more than 400 CTCs and 4 CTC
samples gave rise to CDX tumors detected after 2.4 months. The CDXs of CTCs
enriched with CellSearch reproduced the chemotherapeutic response of donor
patients (platinum and etoposide), proving the clinical importance of these
models [9].

Drapkin et al. (2018) also developed CDX models of a patient with SCLC under-
going combined treatment based on olaparib and temozolomide after relapse. By
the way, the models also portrayed the evolution profiles of the patient’s malig-
nancy, which highlights the potential usefulness of CDXs in the treatment of SCLC
[25]. Regarding the NSCLC, Morrow et al. (2016) used CTC samples recovered and
analyzed by CellSearch, in two different moments: baseline and post-brain radio-
therapy. No CDX was developed at the baseline. But the injection of CTCs after
radiotherapy resulted in a remarkable tumor 95 days after injection. Despite not
having CTCs with epithelial characteristics, it was possible to notice a considerable
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population with mesenchymal expression (vimentin). This study suggests that the
absence of EpCAM + CTCs in the NSCLC does not exclude the existence of CTCs
and highlights the importance of investigating CTCs undergoing EMT [26].

And for last, a patient with specific castration-resistant prostate cancer (CRPC),
with an extremely high CTC (126 CTCs per 7.5 mL blood, obtained by CellSearch
and 19,998 CTCs obtained by DLA) gave rise to a palpable tumor in 165 days.
Overall, the genomic characterization of CDX revealed some genomic changes
found in CRPC-NE, such as TP53 mutations, loss of RB1, and PTEN [27].

12.1.3 Ex Vivo Models Derived from CTCs

The expansion of viable CTCs ex vivo can offer an attractive alternative, allowing
molecular analysis and screening of high-yield drugs in a shorter time. The CTC
culture was demonstrated by only a few groups [25, 29-35].

The first CTC cell line for colon cancer was derived by Cayrefourcq et al. (2015).
Blood samples enriched negatively of 71 patients with metastatic colon cancer and
successfully established a permanent cell line from a patient with a CTC count
>300 detected by CellSearch platform. It is important to note that the cell line CTC-
MCC-41 characterized, provided the main genomic characteristics of the primary
tumor of the donor patient and lymph node metastases [8]. In a second study, the
authors established and characterized eight additional cell lines from the same
patient with CTCs collected at different times. Functional experiments showed that
these cells favor angiogenesis in vitro, which was consistent with the secretion of
VEGF and FGF2 (angiogenesis inducers) [8, 29].

Drapkin et al. (2018) generated 16 additional models of SCLC CDX by CTCs
collected at initial diagnosis or progression, with 38% efficiency. Somatic mutations
were maintained between patients’ tumors and CDX, and the genomic outlook
remained stable throughout the initial passages of CDX, showing clonal compliance
[25]. Still in lung cancer, Zhang et al. (2014) focused on lung cancer and developed
a new in situ capture and culture methodology for ex vivo expansion of CTC using
a 3D co-culture model. CTC was successful in 14 out of 19 early-stage lung cancer
patients, using a three-dimensional co-culture model, including fibroblasts, to sup-
port tumor development. This group developed a new model derived from CTC
ex vivo using a 3D co-culture system, developing the tumor through microenviron-
ment stimulation. In the cultured CTCs, several mutations, such as TP53, were
found by sequencing, corresponding to primary tumors of patients [30].

Andree et al. (2018) generated the first CDX model of castration-resistant pros-
tate cancer (CRPC) that resulted in a permanent ex vivo culture of CDX tumor cells.
Samples (n =22) were collected from patients with metastatic CRP, 7 of which were
obtained by diagnostic leukapheresis (DLA) [31]. Notably, the cell line obtained
derived from CDX in vitro responded to the genetic characteristics and
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tumorigenicity of CDX and corresponded to treatments for patients with CRPC
based on enzalutamide and docetaxel [27, 32]. Another group generated 7 first
organoid strains, faithfully characterized with a patient’s CRPC, in addition to a 3D
organoid system derived from the CTC of a patient who had more than 100 CTCs
per 8 mL of blood. There was a high agreement between 3D models and the molecu-
lar diversity of prostate cancer, yet the organoid graft derived from CTC in vivo
showed tumors corresponding to primary cancer [33].

In 2014, Yu et al. reported the establishment of CTC lines from 6 patients with
breast cancer, metastatic luminal subtype. Three out of five cell lines tested were
tumorigenic in vivo, giving rise to tumors similar to the patient’s primary tumor,
elucidating the importance of monitoring the tumor’s mutational evolution through-
out the disease [34]. Jakabova et al. (2017) cultured CTCs of breast cancer patients
at different stages. There was no significant difference between the tested sub-
groups, but the highest occurrence of CTC was observed in the group undergoing
surgery (86.6%) and similarly in the group before the start of neoadjuvant and adju-
vant treatment (82.3%) [35].

Recently, Koch et al. [36] introduced a new line (called CTC-ITB-01) derived
cell CTC from a patient with metastatic breast cancer positive for estrogen receptor
(ER). The CeliSearch® system was used to identify CTCs in parallel. The blood of
the same patient was processed for cell culture by Rosette Sep™ (StemCell
Technologies). For characterization of this cell line, the authors analyzed protein
expression of ER and ERBB?2 (relevant receptors for major breast cancer subtypes)
by Western blot and confirmed by immunocytochemistry, resulting in cells positive
for ER and negative for ERBB2, in correspondence with the primary tumor. It was
also analyzed the whole exome (WES) of CTC cells-ITB-01, both primary tumors
(left and right breast) and the distant vaginal metastasis. Data were analyzed for
mutations of common genes related to cancer. There was an agreement in genes of
the PIK3CA protein, in addition to others associated with hereditary predisposition
to breast cancer, such as BRCA1/2, P53, PTEN, STK11, or CHEK2. Then the meta-
static potential of the CTC-ITB-01 cell line was verified by injection into the mam-
mary glands of female immunodeficient mice. It was possible to observe the constant
increase in tumor burden in the 8.5 months until the sacrifice. Immunohistochemical
staining also revealed that the ER + status of the cell line was maintained in CTC-
derived xenografts (CDXs), confirming that histopathological characteristics are
preserved [36].

These examples show that the establishment of line of functional models of CTC
cells is feasible. The isolation and in vitro culture of CTC may provide an opportu-
nity to noninvasively monitor the varying patterns of drug resistance in individual
patients, while their tumors acquire new mutations and can improve treatment. The
methodologies to cultivate CTCs are still in development, there is no ideal protocol
for the culture of CTC derived from the patient, and, in fact, the cell of each patient
may demonstrate different growth conditions. Therefore, development and optimi-
zation of isolation technologies require specific attention.
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Fig. 12.1 The study of circulating tumor cells can benefit from animal models to establish new
methodologies of CTC quantification and isolation, thus enabling expansion and analysis of
these cells

12.2 Concluding Remarks

There has been a great expansion in techniques to safely detect, quantify, and char-
acterize CTCs at the phenotypic, genetical, and functional levels. The characteriza-
tion of CTC-derived models provides a better understanding of the tumor mechanism
of these cells (Fig. 12.1). As shown in Table 12.1, the procedures for developing
CDXs may vary from one study to another.

Future improvements in the detection of CTCs in vivo, such as individual cells
or clusters, will be invaluable in elucidating their modes of generation and develop-
ing strategies to direct them to their source.

Some emerging technologies can complement CTC analyses and demonstrate
important steps in cancer detection, monitoring, and management. Identification of
the role and importance of CTCs in cancer metastasis and progression, whether by
identifying potential biomarkers, gene signatures, survival mechanisms, or new
mechanisms, could provide new tools for preclinical studies [37].

Still, the increasing in the numbers of studies with ex vivo CTCs is promising,
but very far from being applied in clinical practice, as the culture conditions are still
under elucidation. Therefore, cultures derived from CDXs present a better way to
characterize this population, showing possibilities of providing information about
the biological mechanism of the metastatic process.
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Chapter 13 )
Brief Summary and Perspectives for CTCs

Check for
updates

José Gabriel Rodriguez Tarazona and Ludmilla Thomé Domingos Chinen

As discussed in the previous chapters, the analysis of circulating tumor cells (CTCs)
is an important tool to provide information on the biology of solid cancers and dis-
ease monitoring [5]. Tumors are heterogeneous entities, so in classical biopsy, there
is the possibility that some characteristics, even aggressive subclones, remain unde-
tectable, causing loss of important information [11]. Furthermore, because of its
low invasiveness and low risk, blood biopsies can be used repeatedly and can moni-
tor the dynamics and molecular landscape of the disease [12].

Finding CTCs in patients, time after resection of the primary tumor, is common,
probably due their capacity to re-circulate from secondary metastatic sites into the
bloodstream, or to come back to the site of the primary tumor; but how these CTCs
contribute to metastasis is unclear [26]. Studies in animal models indicate that
tumor cells may return to the primary site, a process called self-seeding [2]. New
approaches must unravel if CTCs re-infiltrate the tumor to give it some resistance
gain and clarify these mechanisms. Another question is whether the microenviron-
ment could cause these released CTCs to be guided through the exosomes as bio-
logical magnets that corroborate both new metastatic sites and the primary tumor
from which the CTCs originate. In fact, we must know whether self-seeding selects
populations of cancer cells, how it does, and if cells have been subjected to selection
through circulation and survival in the blood.

It should be emphasized that the detection of disseminated tumor cells (DTCs) in
the bone marrow of patients with breast cancer is related to locoregional and meta-
static recurrence with more hostile metastatic variants. Next, analyses should
emphasize comparative genomic studies of CTCs and DTCs, along with primary
and metastatic lesions of the same patients [2].

In fact, tumor cells travel through the bloodstream or lymphatic vessels to estab-
lish metastases. Theoretically, the CTCs are generated within the primary or
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metastatic tumor with ability to separate from the basement membrane, colonize and
cross the tissue stroma to enter the blood vessels [14]. It is believed that this pheno-
type happens by the increase of the hypoxia in the tumor by development and com-
petition by resources [1]. A relevant concept for CTCs is the epithelial-mesenchymal
transition (EMT), a process that allows epithelial cells to lose apical-basal polarity,
with consequent removal of neighboring cells, as well as to acquire rounded or elon-
gated morphology, invading the surrounding stroma and becoming less susceptible
to apoptosis. In the process, cells decrease the expression of epithelial markers and
increase expression of mesenchymal proteins and growth factors [7].

One current idea is that if a tumor cell is to be a CTC, it needs to make the EMT
happen and thereby escape the primary/metastatic tumor and cross the blood vessel.
However, if the epithelial-like CTCs are diffused from a tumor into a blood vessel
and during this process passes through the EMT is still a debate. CTCs expelled
from epithelial tumors can be identified with multiple epithelial markers. Many of
clinical trials of CTCs have used platforms that detect CTCs that express epithelial
markers. However, more promising are clinical trials that incorporate CTC sub-
populations, joining EMT, stem-like, and epithelial markers [7]. Future studies
could identify and classify cytopatologically the CTCs as cells recognized by the
two types of morphology (epithelial and mesenchymal) and marking with epithe-
lial, mesenchymal, sarcomatoid, and/or stem antibodies. An assay that could unify
all these markers would undoubtedly leave no CTC unobserved (Fig. 13.1).

Tumor cells undergo EMT to enter and survive in the bloodstream, and perhaps
CTC:s that left the blood vessels, by disseminating into the tissues, could revert to
the former form through a process called mesenchymal-epithelial transition (MET),
and this reversion to the epithelial state implies the presence of a state between

Immunoaffinity method

Size method

@\

Fig. 13.1 A method that combines immunological affinity with a method based on size, within a
systematized electronic platform, could evolve current methodologies, because it would not be
dependent on cell labeling, nor would it depend exclusively on cell size
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epithelial and mesenchymal [8]. The concept of dynamic flow between epithelial
and mesenchymal states would better explain the metastasis process [24], assuming
that the mesenchymal subtype colonizes distant sites and then returns to the epithe-
lial state, once the niche found is appropriate [8]. It should be emphasized that, to
date, no single model of metastasis encompasses all observational findings. In addi-
tion, a number of other factors, including the site of tumor cell origin and the degree
of cellular heterogeneity within a tumor, may influence the process. However, the
EMT/MET model of dissemination has advantages in explaining the wide variety
and plasticity of observed CTCs and has important implications for the direction of
future research [7]. Another consequence of CTC heterogeneity is that not all tumor
cells will continue to develop or are related to metastasis. The future in this field
should focus on identifying subsets or subpopulations of cells exhibiting these
aggressive properties [13].

Another major benefit of using CTCs in clinical practice would be their ability to
diagnose undetectable micrometastases. Minimal residual disease (MRD) is the
presence of malignant cells in organs distant from the primary tumor that are unde-
tectable by conventional imaging tests and laboratory tests used for tumor staging,
all after the surgery to remove the primary tumor. CTCs and DTCs are considered
substitutes for MRD because they are cells with the potential to initiate metastasis
[10]. Studies show that the finding of CTCs can serve as a biomarker for MRD in
ovarian cancer [19], pancreatic cancer [21], breast cancer [6, 15, 22], colon cancer
[16, 18], colorectal cancer [25], prostate cancer [4, 17], and esophageal cancer [9].
Ultrasensitive assays that allow the reliable detection of minute amounts of tumor
cells should be implemented in clinical trials of neoadjuvant and/or adjuvant thera-
pies and can complement current classic post-surgical surveillance procedures for
tumor relapse. Early detection of micrometastatic relapse would lead to intervention
and updating of post-adjuvant therapies before overt metastasis. Therefore, liquid
biopsy analyses would change the current landscape of oncology diagnosis, evolv-
ing cancer therapies targeting MRD [20].

In preliminary studies of detection of CTCs, the major problem for the develop-
ment of a detection assay was the unfamiliarity about the presence of tumor cells in
a blood sample and about their number. Advances were made using the expression
of epithelial markers such as EpCAM, Cytokeratin 8, 18, or 19, but it is important
to emphasize that the detection made by these assays might be marginal as they
limit the detection to epithelial expression. Progress is imperative to detect signifi-
cant heterogeneity of CTCs [3].

New and relevant studies with the aim to identify varieties of CTCs are necessary
and urgent. Maybe, these new studies will use physical characteristics, such as size,
rigidity, dielectric attributes together with diverse protein expression detection
methods. Further research will be needed to identify the biological differences
between these tumor cells and to determine whether specific subsets are responsible
for the metastatic phenotype [3]. The window of the new technologies for CTC
characterization and its gene expression, as well the expansion of CTCs in culture
and animal models, is open [23]. It is also expected that the unification of technolo-
gies helps to develop a personalized medicine.
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