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1 Introduction

In this chapter, we propose a combination of psychologically derived similarity rat-
ings with modern machine learning techniques in the context of cognitive artificial
intelligence.More specifically, we extract a spatial representation of conceptual simi-
larity from psychological data and learn a mapping from visual input onto this spatial
representation.

We base our work on the cognitive framework of conceptual spaces (Gärdenfors
2000), which proposes a geometric representation of conceptual structures: Instances
are represented as points and concepts are represented as regions in psychological
similarity spaces. Based on this representation, one can explain a range of cognitive
phenomena from one-shot learning to concept combination. Conceptual spaces can
be interpreted as a spatial variant of the influential prototype theory of concepts
(Rosch et al. 1976) by identifying the prototype of a given category with the centroid
of the respective convex region. Moreover, conceptual spaces can be related to the
feature spaces typically used in machine learning (Mitchell 1997), where individual
observations are also represented as sets of feature values and where the task is to
identify regions which correspond to pre-defined categories.

As Gärdenfors (2018) has argued, the framework of conceptual spaces splits the
overall problem of concept learning into two sub-problems: On the one hand, the
space itself with its distance relation and its underlying dimensions needs to be
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learned. On the other hand, one needs to identify meaningful regions within this
similarity space. The latter problem can be easily solved by simple learning mech-
anisms such as taking the centroid of a given set of category members (Gärdenfors
2000). The problem of obtaining the similarity spaces themselves is however much
harder. While in humans, the dimensions of these spaces may be partially innate
or learned based on perceptual invariants (Gärdenfors 2018), it is difficult to mimic
such processes in artificial systems.

When using conceptual spaces as a modeling tool, one can distinguish three ways
of obtaining the underlying dimensions: If the domain of interest is well understood,
one canmanually define the dimensions and thus the overall similarity space. This can
for instance be done for the domain of colors, for which a variety of similarity spaces
exists. A second approach is based on machine learning algorithms for dimension-
ality reduction. For instance, unsupervised artificial neural networks (ANNs) such
as autoencoders or self-organizing maps can be used to find a compressed represen-
tation for a given set of input stimuli. This task is typically solved by optimizing
a mathematical error function which may be not satisfactory from a psychological
point of view.

A third way of obtaining the dimensions of a conceptual space is based on dissim-
ilarity ratings obtained from human subjects. One first elicits dissimilarity ratings for
pairs of stimuli in a psychological study. The technique of “multidimensional scaling”
(MDS) takes as an input these pair-wise dissimilarities as well as the desired number
t of dimensions. It then represents each stimulus as a point in a t-dimensional space
in such a way that the distances between points in this space reflect the dissimilari-
ties of their corresponding stimuli. Nonmetric MDS assumes that the dissimilarities
are only ordinally scaled and limits itself to representing the ordering of distances
correctly.Metric MDS on the other hand assumes an interval or ratio scale and also
tries to represent the numerical values of the dissimilarities as closely as possible.We
introduce multidimensional scaling in more detail in Sect. 2. Moreover, we present
a study investigating the differences between similarity spaces produced by metric
and nonmetric MDS in Sect. 3.

One limitation of the MDS approach is that it is unable to generalize to unseen
inputs: If a new stimulus arrives, it is impossible to directly map it onto a point
in the similarity space without eliciting dissimilarities to already known stimuli. In
Sect. 4, we propose to use ANNs in order to learn a mapping from raw stimuli to sim-
ilarity spaces obtained via MDS. This hybrid approach combines the psychological
grounding of MDS with the generalization capability of ANNs.

In order to support our proposal, we present the results of a first feasibility study
in Sect. 5: Here, we use the activations of a pre-trained convolutional network as
features for a simple regression into the similarity spaces from Sect. 3.

Finally, Sect. 6 summarizes the results obtained in this paper and gives an outlook
on future work. Code for reproducing both of our studies can be found online at
https://github.com/lbechberger/LearningPsychologicalSpaces/ (Bechberger 2020).

Our overall contribution can be seen as providing artificial systems with a way to
map raw perceptions onto psychological similarity spaces. These similarity spaces
can then be used in order to learn conceptual regions and to reason with them. Our
research has strong relations to two other chapters in this edited volume.

https://github.com/lbechberger/LearningPsychologicalSpaces/
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The conceptual spaces framework itself can be considered as a specific instance
of the approach labeled as “cognitive and distributional semantics” in the contribu-
tion by Färber, Svetashova, and Harth (Chap. 3). Our hybrid proposal from Sect. 4
exemplifies the procedure of obtaining such a cognitive representation which is both
psychologically grounded and applicable to novel stimuli. Especially the latter prop-
erty of our hybrid proposal is crucial for applications in technical systems such as
the Internet of Things (IoT) considered by Färber, Svetashova, and Harth.

Also the attribute spaces used by Gust and Umbach (Chap. 4) are closely related
to the similarity spaces considered in our contribution. While our work focuses on
grounding such a similarity space in perception, Gust andUmbach analyze how natu-
ral language similarity expressions can be linked to spatial models. The contribution
by Gust and Umbach can thus be seen as a complement to our work, considering a
higher level of abstraction.

2 Multidimensional Scaling

In this section, we provide a brief introduction to multidimensional scaling. We first
give an overview of the elicitation methods for similarity ratings in Sect. 2.1, before
explaining the basics ofMDS algorithms in Sect. 2.2. The interested reader is referred
to Borg and Groenen (2005) for a more detailed introduction to MDS.

2.1 Obtaining Dissimilarity Ratings

In order to collect similarity ratings from human participants, several different tech-
niques can be used (Goldstone 1994; Hout et al. 2013; Wickelmaier 2003). They are
typically grouped into direct and indirect methods: In direct methods, participants
are fully aware that they rate, sort, or classify different stimuli according to their
pairwise dissimilarities. Indirect methods on the other hand are based on secondary
empirical measurements such as confusion probabilities or reaction times.

One of the classical direct techniques is based on explicit ratings for pairwise
comparisons. In this approach, all possible pairs from a set of stimuli are presented
to participants (one pair at a time), and participants rate the dissimilarity of each pair
on a continuous or categorical scale. Another direct technique is based on sorting
tasks. For instance, participants might be asked to group a given set of stimuli into
piles of similar items. In this case, similarity is binary—either two items are sorted
into the same pile or not.

Perceptual confusion tasks can be used as an indirect technique for obtaining
similarity ratings. For example, participants can be asked to report as fast as possible
whether two displayed items are the same or different. In this case, confusion prob-
abilities and reaction times are measured in order to infer the underlying similarity
relation.

http://dx.doi.org/10.1007/978-3-030-69823-2_3
http://dx.doi.org/10.1007/978-3-030-69823-2_4
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Goldstone (1994) has argued that the classical approaches for collecting similarity
data are limited in various ways. Their biggest shortcoming is that explicitly testing
all N ·(N−1)

2 stimulus pairs is quite time-consuming. An increasing number of stimuli
therefore leads to very long experimental sessions which might cause fatigue effects.
Moreover, in the course of such long sessions, participants might switch to a different
rating strategy after some time, making the collected data less homogeneous.

In order tomake the data collection processmore time-efficient, Goldstone (1994)
has proposed the “Spatial Arrangement Method” (SpAM). In this collection tech-
nique, multiple visual stimuli are simultaneously displayed on a computer screen. In
the beginning, the arrangement of these stimuli is randomized. Participants are then
asked to arrange them via drag and drop in such a way that the distances between
the stimuli are proportional to their dissimilarities. Once participants are satisfied
with their solution, they can store the arrangement. The dissimilarity of two stimuli
is then recorded as their Euclidean distance in pixels. As N items can be displayed
at once, each single modification by the user updates N distance values at the same
time which makes this procedure quite efficient. Moreover, SpAM quite naturally
incorporates geometric constraints: If A and B are placed close together and C is
placed far away from A, then it cannot be very close to B.

As the dissimilarity information is recorded in the form of Euclidean distances,
one might assume that the dissimilarity ratings obtained through SpAM are ratio
scaled. This view is for instance held by Hout et al. (2014). However, as participants
are likely to make only a rough arrangement of the stimuli, this assumption might
be too strong in practice. One can argue that it is therefore safer to only assume an
ordinal scale. As far as we know, there have been no explicit investigations on this
issue. We will provide an analysis of this topic in Sect. 3.

2.2 The Algorithms

In this chapter, we follow the mathematical notation by Kruskal (1964a), who gave
the first thorough mathematical treatment of (nonmetric) multidimensional scaling.

One can typically distinguish two types of MDS algorithms (Wickelmaier 2003),
namely metric and nonmetric MDS.Metric MDS assumes that the dissimilarities are
interval or ratio scaled, while nonmetric MDS only assumes an ordinal scale.

Both variants of MDS can be formulated as an optimization problem involving
the pairwise dissimilarities δi j between stimuli and the Euclidean distances di j of
their corresponding points in the t-dimensional similarity space. More specifically,
MDS involves minimizing the so-called “stress” which measures to which extent the
spatial representation violates the information from the dissimilarity matrix:

stress =

√
√
√
√
√

∑

i< j

(

di j − d̂i j
)2

∑

i< j

(

di j
)2
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The denominator in this equation serves as a normalization factor in order to make
stress invariant to the scale of the similarity space.

In metric MDS, we use d̂i j = a · δi j + b to compute stress. This means that we
look for a configuration of points in the similarity space whose distances are a linear
transformation of the dissimilarities.

In nonmetric MDS, on the other hand, the d̂i j are not obtained by a linear but by a
monotone transformation of the dissimilarities: Let us order the dissimilarities of the
stimuli ascendingly: δi1 j1 < δi2 j2 < δi3 j3 < . . . . The d̂i j are then obtained by defining
an analogous ascending order, where the difference between the disparities d̂i j and
the distances di j is as small as possible: d̂i1 j1 < d̂i2 j2 < d̂i3 j3 < . . . . Nonmetric MDS
therefore only tries to reflect the ordering of the dissimilarities in the distances while
metric MDS also tries to take into account their differences and ratios.

There are different approaches towards optimizing the stress function, resulting
in different MDS algorithms. Kruskal’s original nonmetric MDS algorithm (Kruskal
1964b) is based on gradient descent: In an iterative procedure, the derivative of the
stress function with respect to the coordinates of the individual points is computed
and then used to make a small adjustment to these coordinates. Once the derivative
approaches zero, a minimum of the stress function has been found.

A more recent MDS algorithm by de Leeuw (1977) is called SMACOF (an
acronym of “Scaling by Majorizing a Complicated Function”). De Leeuw pointed
out that Kruskal’s gradient descent method has two major shortcomings: Firstly, if
the points for two stimuli coincide (i.e., xi = x j ), then the distance function of these
two points is not differentiable. Secondly, Kruskal was not able to give a proof of con-
vergence for his algorithm. In order to overcome these limitations, De Leeuw showed
that minimizing the stress function is equivalent to maximizing another function λ

which depends on the distances and dissimilarities. This function can be easily max-
imized by using iterative function majorization. Moreover, one can prove that this
iterative procedure converges. SMACOF is computationally efficient and guarantees
a monotone convergence of stress (Borg and Groenen 2005, Chap. 8).

Picking the right number of dimensions t for the similarity space is not trivial.
Kruskal (1964a) proposes two approaches to address this problem.

On the one hand, one can create a so-called “Scree” plot that shows the final stress
value for different values of t . If one can identify an “elbow” in this diagram (i.e.,
a point after which the stress decreases much slower than before), this can point
towards a useful value of t .

On the other hand, one can take a look at the interpretability of the generated
configurations. If the optimal configuration in a t-dimensional space has a sufficient
degree of interpretability and if the optimal configuration in a t + 1 dimensional
space does not add more structure, then a t-dimensional space might be sufficient.
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Fig. 1 Eight example stimuli from the NOUN data set (Horst and Hout 2016)

3 Extracting Similarity Spaces from the NOUN Data Set

It is debatable whether metric or nonmetric MDS should be used with data collected
through SpAM. Nonmetric MDSmakes less assumptions about the underlying mea-
surement scale and therefore seems to be the “safer” choice. If the dissimilarities
are however ratio scaled, then metric MDS might be able to harness these pieces
of information from the distance matrix as additional constraints. This might then
result in a semantic space of higher quality.

In our study, we compare metric to nonmetricMDS on a data set obtained through
SpAM. If the dissimilarities obtained through SpAM are not ratio scaled, then the
main assumption of metric MDS is violated. We would then expect that nonmetric
MDS yields better solutions than metricMDS. If the dissimilarities obtained through
SpAM are however ratio scaled and if the differences and ratios of dissimilarities do
contain considerable amounts of additional information, then metric MDS should
have a clear advantage over nonmetric MDS.

For our study, we used existing dissimilarity ratings reported for the Novel Object
and Unusual Name (NOUN) data set (Horst and Hout 2016), a set of 64 images of
three-dimensional objects that are designed to be novel but also look naturalistic.
Figure1 shows some example stimuli from this data set.

3.1 Evaluation Metrics

We used the stress0 function from R’s smacof package to compute both metric
and nonmetric stress. We expect stress to decrease as the number of dimensions
increases. If the data obtained through SpAM is ratio scaled, then we would expect
thatmetricMDS achieves better values onmetric stress (and potentially on nonmetric
stress as well) than nonmetric MDS. If the SpAM dissimilarities are not ratio scaled,
then metric MDS should not have any advantage over nonmetric MDS.

Another possible way of judging the quality of an MDS solution is to look for
interpretable directions in the resulting space. However, Horst and Hout (2016) have
argued that for the novel stimuli in their data set there are no obvious directions that
one would expect. Without a list of candidate directions, an efficient and objective
evaluation based on interpretable directions is however hard to achieve. We therefore
did not pursue this way of evaluating similarity spaces.
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As an additional way of evaluation, we measured the correlation between the
distances in the MDS space and the dissimilarity scores from the psychological
study.

Pearson’s r (Pearson 1895) measures the linear correlation of two random vari-
ables by dividing their covariance by the product of their individual variances. Given
two vectors x and y (each containing N samples from the random variables X and Y ,
respectively), Pearson’s r can be estimated as follows, where x̄ and ȳ are the average
values of the two vectors:

rxy =
∑N

i=1(xi − x̄)(yi − ȳ)
√

∑N
i=1(xi − x̄)2

√
∑N

i=1(yi − ȳ)2

Spearman’s ρ (Spearman 1904) generalizes Pearson’s r by allowing also for
nonlinear monotone relationships between the two variables. It can be computed by
replacing each observation xi and yi with its corresponding rank, i.e., its index in
a sorted list, and by then computing Pearson’s r on these ranks. By replacing the
actual values with their ranks, the numeric distances between the sample values lose
their importance—only the correct ordering of the samples remains important. Like
Pearson’s r , Spearman’s ρ is confined to the interval [−1, 1] with positive values
indicating a monotonically increasing relationship.

Both MDS variants can be expected to find a configuration such that there is a
monotone relationship between the distances in the similarity space and the original
dissimilarity matrix. That is, smaller dissimilarities correspond to smaller distances
and larger dissimilarities correspond to larger distances. For Spearman’s ρ, we there-
fore do not expect any notable differences between metric and nonmetric MDS. For
metric MDS, we also expect a linear relationship between dissimilarities and dis-
tances. Therefore, if the dissimilarities obtained by SpAM are ratio scaled, then
metric MDS should give better results with respect to Pearson’s r than nonmetric
MDS.

A final way for evaluating the similarity spaces obtained byMDS is visual inspec-
tion: If a visualization of a given similarity space shows meaningful structures and
clusters, this indicates a high quality of the semantic space. We limit our visual
inspection to two-dimensional spaces.

3.2 Methods

In order to investigate the differences between metric and nonmetric MDS in the
context of SpAM, we used the SMACOF algorithm in its original implementation
in R’s smacof library.1 SMACOF can be used in both a metric and a nonmetric
variant. The underlying algorithm stays the same, only the definition of stress and

1See https://cran.r-project.org/web/packages/smacof/smacof.pdf.

https://cran.r-project.org/web/packages/smacof/smacof.pdf
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thus the optimization target differs. Both variants were explored in our study. We
used 256 random starts with the maximum number of iterations per random start set
to 1000. The overall best result over these 256 random starts was kept as final result.

For each of the twoMDSvariants, we constructedMDS spaces of different dimen-
sionality (ranging from one to ten dimensions). For each of these resulting similarity
spaces, we computed both its metric and its nonmetric stress.

In order to analyze how much information about the dissimilarities can be readily
extracted from the images of the stimuli, we also introduced two baselines.

For our first baseline, we used the similarity of downscaled images: For each
original image (with both a width and height of 300 pixels), we created lower-
resolution variants by aggregating all the pixels in a k × k block into a single pixel
(with k ∈ [2, 300]).Wecompareddifferent aggregation functions, namely,minimum,
mean, median, and maximum. The pixels of the resulting downscaled image were
then interpreted as a point in a � 300

k � × � 300
k � dimensional space.

For our second baseline, we extracted the activation vectors from the second-
to-last layer of the pre-trained Inception-v3 network (Szegedy et al. 2016) for each
of the images from the NOUN data set. Each stimulus was thus represented by its
corresponding activation pattern. While the downscaled images represent surface
level information, the activation patterns of the neural network can be seen as more
abstract representation of the image.

For each of the three representation variants (downscaled images, ANN activa-
tions, and points in an MDS-based similarity space), we computed three types of
distances between all pairs of stimuli: The Euclidean distance dE , the Manhattan
distance dM , and the negated inner product dI P . We only report results for the best
choice of the distance function. For each distance function, we used two variants: One
where all dimensions are weighted equally and another one where optimal weights
for the individual dimensions were estimated based on a non-negative least squares
regression in a five-fold cross validation (cf. Peterson et al. (2018) who followed a
similar procedure). For each of the resulting distance matrices, we compute the two
correlation coefficients with respect to the target dissimilarity ratings. We consider
only matrix entries above the diagonal because the matrices are symmetric and all
entries on the diagonal are guaranteed to be zero. Our overall workflow is illustrated
in Fig. 2.

3.3 Results

Figure3a shows the Scree plots of the two MDS variants for both metric and non-
metric stress. As one would expect, stress decreases with an increasing number
of dimensions: More dimensions help to represent the dissimilarity ratings more
accurately. Metric and nonmetric SMACOF yield almost identical performance with
respect to bothmetric and nonmetric stress. This suggests that interpreting the SpAM
dissimilarity ratings as ratio scaled is neither helpful nor harmful.
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Fig. 2 Illustration of our analysis setup. We measure the correlation between the dissimilarity
ratings and distances from three different sources, namely the pixels of downscaled images (left),
activations of an artificial neural network (middle), and similarity spaces obtained by MDS (right)

Figure3b shows some line diagrams illustrating the results of the correlation
analysis for the MDS-based similarity spaces. For both the pixel baseline and the
ANN baseline, the usage of optimized weights considerably improved performance.
As we can see, both of these baselines yield considerably higher correlations than
one would expect for randomly generated configurations of points. Moreover, the
ANN baseline outperforms the pixel baseline with respect to both evaluationmetrics,
indicating that raw pixel information is less useful in our scenario than the more
high-level features extracted by the ANN. For the pixel baseline, we observed that
the minimum aggregator yielded the best results.

We also observe in Fig. 3b that the MDS solutions provide us with a better reflec-
tion of the dissimilarity ratings than both pixel-based and ANN-based distances if
the similarity space has at least two dimensions. This is not surprising since theMDS
solutions are directly based on the dissimilarity ratings, whereas both baselines do
not have access to the dissimilarity information. It therefore seems like our naive
image-based ways of defining dissimilarities are not sufficient.

With respect to the different MDS variants, also the correlation analysis confirms
our observations from the Scree plots: Metric and nonmetric SMACOF are almost
indistinguishable with nonmetric SMACOF yielding slightly higher correlation val-
ues. This supports the view that the assumption of ratio scaled dissimilarity ratings
is not beneficial, but also not very harmful on out data set. Moreover, we find the
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Fig. 3 a Scree plots for both metric and nonmetric stress. b Correlation evaluation for the different
MDS solutions and the two baselines

tendency of improved performance with an increasing number of dimensions. This
again illustrates that MDS is able to fit more information into the space if this space
has a larger dimensionality.

Finally, let us look at the two-dimensional spaces generated by the two MDS
variants in order to get an intuitive feeling for their semantic structure. Figure 4
shows these spaces along with the local neighborhood of three selected items. These
neighborhoods illustrate that in both spaces stimuli are grouped in a meaningful way.
From our visual inspection, it seems that both MDS variants result in comparable
semantic spaces with a similar structure.

Overall, we did not find any systematic difference between metric and nonmetric
MDS on the given data set. It thus seems that the metric assumption is neither
beneficial nor harmful when trying to extract a similarity space. On the one hand, we



Generalizing Psychological Similarity Spaces … 21

Fig. 4 Illustration of the two-dimensional spaces obtained bymetric SMACOF (left) and nonmetric
SMACOF (right)

cannot conclude that the dissimilarities obtained through SpAM are not ratio scaled.
On the other hand, the additional information conveyed by differences and ratios of
dissimilarities does not seem to improve the overall results. We therefore advocate
the usage of nonmetric MDS due to the smaller amount of assumptions made about
the dissimilarity ratings.

4 A Hybrid Approach

Multidimensional scaling (MDS) is directly based on human similarity ratings and
leads therefore to conceptual spaces which can be considered psychologically valid.
The prohibitively large effort required to elicit such similarity ratings on a large
scale however confines this approach to a small set of fixed stimuli. In Sect. 4.1,
we propose to use machine learning methods in order to generalize the similarity
spaces obtained by MDS to unseen stimuli. More specifically, we propose to use
MDS on human similarity ratings to “initialize” the similarity space and artificial
neural networks (ANNs) to learn a mapping from stimuli into this similarity space.
We afterwards relate our proposal to two other recent studies in this area in Sect. 4.2.

4.1 Our Proposal

In order to obtain a solution having both the psychological validity of MDS spaces
and the possibility to generalize to unseen inputs as typically observed for neural
networks, we propose the following hybrid approach, which is illustrated in Fig. 5.
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Fig. 5 Illustration of the proposed hybrid procedure: a subset of data is used to construct a con-
ceptual space via MDS. A neural network is then trained to map images into this similarity space,
aided by a secondary task (e.g., classification)

After having determined the domain of interest (e.g., the domain of animals), one
first needs to acquire a data set of stimuli from this domain. This data set should
cover a wide variety of stimuli and it should be large enough for applying machine
learning algorithms. Using the whole data set with potentially thousands of stimuli in
a psychological experiment is however unfeasible in practice. Therefore, a relatively
small, but still sufficiently representative subset of these stimuli needs to be selected
for the elicitation of human dissimilarity ratings. This subset of stimuli is then used in
a psychological experiment where dissimilarity judgments by humans are obtained,
using one of the techniques described in Sect. 2.1.

In the next step, one can apply MDS to these dissimilarity ratings in order to
extract a spatial representation of the underlying domain. As stated in Sect. 2.2, one
needs to manually select the desired number of dimensions—either based on prior
knowledge or by manually optimizing the trade-off between high representational
accuracy and a low number of dimensions. The resulting similarity space should
ideally be analyzed for meaningful structures and a high correlation of inter-point
distances to the original dissimilarity ratings.

Once this mapping from stimuli (e.g., images of animals) to points in a similarity
space has been established, we can use it in order to derive a ground truth for a
machine learning problem: We can simply treat the stimulus-point mappings as
labeled training instances where the stimulus is identified with the input vector and
the point in the similarity space is used as its label.We can therefore set up a regression
task from the stimulus space to the similarity space.

Artificial neural networks (ANNs) have been shown to be powerful regressors
that are capable of discovering highly non-linear relationships between raw low-
level stimuli (such as images) and desired output variables. They are therefore a
natural choice for this task. ANNs are however a very data-hungry machine learning
method— they need large amounts of training examples andmany training iterations
in order to achieve good performance. On the other hand, the available number of
stimulus-point pairs in our proposed procedure is quite low for a machine learning
problem — as argued before, we can only look at a small number of stimuli in a
psychological experiment.
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We propose to resolve this dilemma not only through data augmentation, but also
by introducing an additional training objective (e.g., correctly classifying the given
images into their respective classes such as cat and dog). This additional training
objective can also be optimized on all the remaining stimuli from the data set that
have not been used in the psychological experiment. Using a secondary task with
additional training data constrains the network’s weights and can be seen as a form
of regularization: These additional constraints are expected to counteract overfitting
tendencies, i.e., tendencies to memorize all given mapping examples without being
able to generalize.

Figure 5 illustrates the secondary task of predicting the correct classes. This
approach is only applicable if the data set contains class labels. If the network is
forced to learn a classification task, then it will likely develop an internal repre-
sentation where all members of the same class are represented in a similar way.
The network then “only” needs to learn a mapping from this internal representation
(which presumably already encodes at least some aspects of a similarity relation
between stimuli) into the target similarity space.

Another secondary task consists in reconstructing the original images from a
low-dimensional internal representation, using the structure of an autoencoder. As
the computation of the reconstruction error does not require class labels, this is
applicable also to unlabeled data sets, which are in general larger and easier to obtain
than labeled data sets. The network needs to accurately reconstruct the given stimuli
while using only information from a small bottleneck layer. The small size of the
bottleneck layer creates an incentive to encode similar input stimuli in similar ways
such that the corresponding reconstructions are also similar to each other. Again,
this similarity relation learned from the overall data set might be useful for learning
the mapping into the similarity space. The autoencoder structure has the additional
advantage that one can use the decoder network to generate an image based on a
point in the conceptual space. This can be a useful tool for visualization and further
analysis.

One should be aware that there is a difference between perceptual and conceptual
similarity: Perceptual similarity focuses on the similarity of the raw stimuli, e.g.,
with respect to their shape, size, and color. Conceptual similarity on the other hand
takes place on a more abstract level and involves conceptual information such as
the typical usage of an object or typical locations where a given object might be
found. For instance, a violin and a piano are perceptually not very similar as they
have different sizes and shapes. Conceptually, they might be however quite similar
as they are both musical instruments that can be found in an orchestra.

While class labels can be assigned on both the perceptual (round vs. elon-
gated) and the conceptual level (musical instrument vs. fruit), the reconstruc-
tion objective always operates on the perceptual level. If the similarity data collected
in the psychological experiment is of perceptual nature, then both secondary tasks
seem promising. If we however target conceptual similarity, then the classification
objective seems to be the preferable choice.
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4.2 Related Work

Peterson et al. (2017, 2018) have investigated whether the activation vectors of a
neural network can be used to predict human similarity ratings. They argue that this
can enable researchers to validate psychological theories on large data sets of real
world images.

In their study, they used six data sets containing 120 images (each 300 by 300
pixels) of one visual domain (namely, animals, automobiles, fruits, furniture, vegeta-
bles, and “various”). Peterson et al. conducted a psychological study which elicited
pairwise similarity ratings for all pairs of images using a Likert scale. When apply-
ing multidimensional scaling to the resulting dissimilarity matrix, they were able to
identify clear clusters in the resulting space (e.g., all birds being located in a simi-
lar region of the animal space). Moreover, when applying a hierarchical clustering
algorithm on the collected similarity data, a meaningful dendrogram emerged.

In order to extract similarity ratings from five different neural networks, they
computed for each image the activation in the second-to-last layer of the network.
Then for each pair of images, they defined their similarity as the inner product
(uT v = ∑n

i=1 uivi ) of these activation vectors. When applying MDS to the resulting
dissimilarity matrix, no meaningful clusters were observed. Also a hierarchical clus-
tering did not result in a meaningful dendrogram. When considering the correlation
between the dissimilarity ratings obtained from the neural networks and the human
dissimilarity matrix, they were able to achieve values of R2 between 0.19 and 0.58
(depending on the visual domain).

Peterson et al. found that their results considerably improved when using a
weighted version of the inner product (

∑n
i=1 wiui vi ): Both the similarity space

obtained by MDS and the dendrogram obtained by hierarchical clustering became
more human-like. Moreover, the correlation between the predicted similarities and
the human similarity ratings increased to values of R2 between 0.35 and 0.74.

While the approach by Peterson et al. illustrates that there is a connection between
the features learned by neural networks and human similarity ratings, it differs from
our proposed approach in one important aspect: Their primary goal is to find a way
to predict the similarity ratings directly. Our research on the other hand is focused
on predicting points in the underlying similarity space.

Sanders andNosofsky (2018) have used a data set containing 360 pictures of rocks
along with an eight-dimensional similarity space for a study which is quite similar
in spirit to what we will present in Sect. 5. Their goal was to train an ensemble of
convolutional neural networks for predicting the correct coordinates in the similarity
space for each rock image from the data set. As the data set is considerably too small
for training an ANN from scratch, they used a pre-trained network as a starting point.
They removed the topmost layers and replaced them by untrained, fully connected
layers with an output of eight linear units, one per dimension of the similarity space.
In order to increase the size of their data set, they applied data augmentation methods
by flipping, rotating, cropping, stretching, and shrinking the original images.
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Their results on the test set showed a value of R2 of 0.808, which means that
over 80% of the variance was accounted for by the neural network. Moreover, an
exemplar model on the space learned by the convolutional neural network was able
to explain 98.9% of the variance seen in human categorization performance.

The work by Sanders and Nosofsky is quite similar in spirit to our own approach:
Like we, they train a neural network to learn the mapping between images and a
similarity space extracted from human similarity ratings. They do so by resorting to
a pre-trained neural network and by using data augmentation techniques. While they
use a data set of 360 images, we are limited to an even smaller data set containing
only 64 images. This makes the machine learning problem even more challenging.
Moreover, the data set used by Sanders andNosofky is based on real objects, whereas
our study investigates a data set of novel and unknown objects. Finally, while they
confine themselves to a single target similarity space for their regression task, we
investigate the influence of the target space on the overall results.

5 Machine Learning Experiments

In order to validate whether our proposed approach is worth pursuing, we conducted
a feasibility study based on the similarity spaces obtained for the NOUN data set
in Sect. 3. Instead of training a neural network from scratch, we limit ourselves to
a simple regression on top of a pre-trained image classification network. With the
three experiments in our study, we address the following three research questions,
respectively:

1. Can we learn a useful mapping from colored images into a low-dimensional
psychological similarity space from a small data set of novel objects for which
no background knowledge is available?
Our prediction: The learned mapping is able to clearly beat a simple baseline.
However, it does not reach the level of generalization observed in the study of
Sanders and Nosofsky (2018) due to the smaller amount of data available.

2. How does the MDS algorithm being used to construct the target similarity space
influence the results?
Our prediction: There is are no considerable differences between metric and
nonmetric MDS.

3. How does the size of the target similarity space (i.e., the number of dimensions)
influence the machine learning results?
Our prediction: Very small target spaces are not able to reflect the similarity
ratings very well and do not contain much meaningful structure. Very large tar-
get spaces on the other hand increase the number of parameters in the model
whichmakes overfittingmore likely. By this reasoning,medium-sized target spaces
should provide a good trade-off and therefore the best regression performance.
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5.1 Methods

Please recall from Sect. 3 that the NOUN data base contains only 64 images with
an image size of 300 by 300 pixels. As this number of training examples is too low
for applying machine learning techniques, we augmented the data set by applying
random crops, a Gaussian blur, additive Gaussian noise, affine transformations (i.e.,
rotations, shears, translations, and scaling), and bymanipulating the image’s contrast
and brightness. These augmentation steps were executed in random order and with
randomized parameter settings. For each of the original 64 images, we created 1,000
augmented versions, resulting in a data set of 64,000 images in total. We assigned
the target coordinates of the original image to each of the 1,000 augmented versions.

For our regression experiments, we used two different types of feature spaces:
The pixels of downscaled images and high-level activation vectors of a pre-trained
neural network.

For the ANN-based features, we used the Inception-v3 network (Szegedy et al.
2016). For each of the augmented images, we used the activations of the second-to-
last layer as a 2048-dimensional feature vector. Instead of training both the mapping
and the classification task simultaneously (as discussed in Sect. 4), we use an already
pre-trained network and augment it by an additional output layer.

As a comparison to the ANN-based features, we used an approach similar to
the pixel baseline from Sect. 3.2: We downscaled each of the augmented images by
dividing it into equal-sized blocks and by computing theminimum (which has shown
the best correlation to the dissimilarity ratings in Sect. 3.3) across all values in each
of these blocks as one entry of the feature vector. We used block sizes of 12 and
24, resulting in feature vectors of size 1875 and 507, respectively (based on three
color channels for downscaled images of size 25× 25 and 13× 13, respectively). By
using these two pixel-based feature spaces, we can analyze differences between low-
dimensional and high-dimensional feature spaces. As the high-dimensional feature
space is in the same order of magnitude as the ANN-based feature space, we can
also make a meaningful comparison between pixel-based features and ANN-based
features.

We compare our regression results to the zero baseline which always predicts
the origin of the coordinate system. In preliminary experiments, it has shown to
be superior to any other simple baselines (such as e.g., drawing from a normal
distribution estimated from the training targets). We do not expect this baseline to
perform well in our experiments, but it defines a lower performance bound for the
regressors.

In our experiments, we limit ourselves to two simple off-the-shelf regressors,
namely a linear regression and a lasso regression. Let N be the number of data
points, t be the number of target dimensions, y(i)

d the target value of data point i in
dimension d, and f (i)

d the prediction of the regressor for data point i in dimension d.
Both of our regressorsmakeuse of a simple linearmodel for eachof the dimensions

in the target space:
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fd = w(d)
0 +

K
∑

k=1

w(d)
k xk

Here, K is the number of features and x is the feature vector. In a linear least-squares
regression, the weights w(d)

k of this model are estimated by minimizing the mean
squared error between the model’s predictions and the actual ground truth value:

MSEd = 1

N

N
∑

i=1

(

y(i)
d − f (i)

d

)2

As the number of features is quite high, even a linear regression needs to estimate
a large number of weights. In order to prevent overfitting, we also consider a lasso
regression which additionally incorporates the L1 norm of the weight matrix as
regularization term. It minimizes the following objective:

1

N

N
∑

i=1

(

y(i)
d − f (i)

d

)2 + β · 1

K
·

K
∑

k=1

w(d)
k

The first part of this objective corresponds to the mean squared error of the linear
model’s predictions, while the second part corresponds to the overall size of the
weights. If the constant β is tuned correctly, this can prevent overfitting and thus
improve performance on the test set. In our experiments, we investigated the follow-
ing values:

β ∈ {0.0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}

Please note that β = 0 corresponds to an ordinary linear least-squares regression.
With our experiments, we would also like to investigate whether learning a map-

ping into a psychological similarity space is easier than learning a mapping into an
arbitrary space of the same dimensionality. In addition to the real regression targets
(which are the coordinates from the similarity space obtained by MDS), we created
another set of regression targets by randomly shuffling the assignment from images
to target points.We ensured that all augmented images created from the same original
image were still mapped onto the same target point. With this shuffling procedure,
we aimed to destroy any semantic structure inherent in the target space. We expect
that the regression works better for the original targets than for the shuffled targets.

In order to evaluate both the regressors and the baseline, we used three different
evaluation metrics:

• The mean squared error (MSE) sums over the average squared difference
between the prediction and the ground truth for each output dimension.
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MSE =
t

∑

d=1

1

N
·

N
∑

i=1

(

y(i)
d − f (i)

d

)2

• The mean euclidean distance (MED) provides us with a way of quantifying the
average distance between the prediction and the target in the similarity space.

MED = 1

N
·

N
∑

i=1

√
√
√
√

t
∑

d=1

(

y(i)
d − f (i)

d

)2

• The coefficient of determination R2 can be interpreted as the amount of variance
in the targets that is explained by the regressor’s predictions.

R2 = 1

t
·

t
∑

d=1

(

1 − S(d)
residual

S(d)
total

)

with S(d)
residual =

N
∑

i=1

(

y(i)
d − f (i)

d

)2

and S(d)
total =

N
∑

i=1

(

y(i)
d − ȳ

)2

We evaluated all regressors using an eight-fold cross validation approach, where
each fold contains all the augmented images generated from eight of the original
images. In each iteration, one of these foldswas used as test set,whereas all other folds
were used as training set. We aggregated all predictions over these eight iterations
(ending up with exactly one prediction per data point) and computed the evaluation
metrics on this set of aggregated predictions.

5.2 Experiment 1: Comparing Feature Spaces and Regressors

In our first experiment, we want to test the following hypotheses:

1. The learned mapping is able to clearly beat the baseline. However, it does not
reach the level of generalization observed in the study of Sanders and Nosofsky
(2018) due to the smaller amount of data available.

2. A regression from the ANN-based features is more successful than a regression
from the pixel-based features.

3. As the similarity spaces created byMDS encode semantic similarity by geometric
distance, we expect that learning the correct mapping generalizes better to the test
set than learning a shuffled mapping.

4. As the feature vectors are quite large, the linear regression has a large number
of weights to optimize, inviting overfitting. Regularization through the L1 loss
included in the lasso regressor can help to reduce overfitting.
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Table 1 Performance of the different regressors for different feature spaces and correct versus
shuffled targets on the four-dimensional space by Horst and Hout (2016). The best results for each
combination of column and regressor are highlighted in boldface
Regressor Feature

space
Targets Test set performance Degree of overfitting β

MSE MED R2 MSE MED R2

Baseline Any Any 1.0000 0.9962 0.0000 1.0000 1.0000 1.0000 –

Linear ANN
(2048)

Correct 0.6076 0.7498 0.3766 42.7093 6.8876 2.6171 –

Shuffled 1.1440 1.0505 −0.1390 56.5298 8.1034 −7.0475 –

Pixel
(1875)

Correct 1.3172 1.0845 −0.3251 2.6191 1.6310 −1.5199 –

Shuffled 1.6075 1.2099 −0.5955 2.6629 1.6522 −0.6700 –

Pixel
(507)

Correct 1.2073 1.0428 −0.2120 2.3360 1.5433 −2.2664 –

Shuffled 1.5853 1.2072 −0.5727 2.5049 1.6036 −0.6458 –

Lasso ANN
(2048)

Correct 0.5740 0.7264 0.4111 28.3766 5.6239 2.3727 0.005,
0.01

Pixel
(1875)

Correct 0.9183 0.9391 0.0788 1.1320 1.1371 2.3313 0.2, 0.5

Pixel
(507)

Correct 0.8946 0.9292 0.1015 1.1677 1.1251 2.2538 0.05, 0.1

5. For smaller feature vectors, we expect less overfitting tendencies than for larger
feature vectors. Therefore, less regularization should be needed to achieve optimal
performance.

Here, we limit ourselves to a single target space, namely the four-dimensional
similarity space obtained by Horst and Hout (2016) through metric MDS.

Table1 shows the results obtained in our experiment, grouped by the regression
algorithm, feature space, and targetmappingused.Wehave also reported the observed
degree of overfitting. It is calculated by dividing training set performance by test set
performance. Perfect generalization would result in a degree of overfitting of one,
whereas larger values reflect the factor to which the regression is more successful on
the training set than on the test set. Let us for now only consider the linear regression.

Wefirst focus on the results obtained on theANN-based feature set. Aswe can see,
the linear regression is able to beat the baseline when trained on the correct targets.
The overall approach therefore seems to be sound. However, we see strong overfitting
tendencies, showing that there is still room for improvement. When trained on the
shuffled targets, the linear regression completely fails to generalize to the test set.
This shows that the correct mapping (having a semantic meaning) is easier to learn
than an unstructuredmapping. In other words, the semantic structure of the similarity
space makes generalization possible.

Let us now consider the pixel-based feature spaces. For both of these spaces,
we observe that linear regression performs worse than the baseline. Moreover, we
can see that learning the shuffled mapping results in even poorer performance than
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learning the correctmapping. Due to the overall poor performance, we do not observe
very strong overfitting tendencies. Finally, when comparing the two pixel-based
feature spaces, we observe that the linear regression tends to perform better on the
low-dimensional feature space than on the high-dimensional one. However, these
performance differences are relatively small.

Overall, ANN-based features seem to be much more useful for our mapping task
than the simple pixel-based features, confirming our observations from Sect. 3.

In order to further improve our results, we now varied the regularization factor β

of the lasso regressor for all feature spaces.
For the ANN-based feature space, we are able to achieve a slight but consistent

improvement by introducing a regularization term: Increasing β causes poorer per-
formance on the training set while yielding improvements on the test set. The best
results on the test set are achieved for β ∈ {0.005, 0.01}. If β however becomes too
large, then performance on the test set starts to decrease again — for β = 0.05 we
do not see any improvements over the vanilla linear regression any more. For β ≥ 5,
the lasso regression collapses and performs worse than the baseline.

Although we are able to improve our performance slightly, the gap between train-
ing set performance and test set performance still remains quite high. It seems that
the overfitting problem can be somewhat mitigated but not solved on our data set
with the introduction of a simple regularization term.

When comparing our best results to the ones obtained by Sanders and Nosofsky
(2018) who achieved values of R2 ≈ 0.8, we have to recognize that our approach per-
forms considerably worse with R2 ≈ 0.4. However, themuch smaller number of data
points in our experiment makes our learning problem much harder than theirs. Even
though we use data augmentation, the small number of different targets might put a
hard limit on the quality of the results obtainable in this setting. Moreover, Sanders
and Nosofsky retrained the whole neural network in their experiments, whereas we
limit ourselves to the features extracted by the pre-trained network. As we are nev-
ertheless able to clearly beat our baselines, we take these results as supporting the
general approach.

For the pixel-based feature spaces, we can also observe positive effects of regu-
larization. For the large space, the best results on the test set are achieved for larger
values of β ∈ {0.2, 0.5}. These results are however only slightly better than baseline
performance. For the small pixel-based feature space, the optimal value of β lies in
{0.05, 0.1}, leading again to a test set performance slightly superior to the baseline.
In case of the small pixel-based feature space, already values of β ≥ 1 lead to a
collapse of the model.

Comparing the regularization results on the three feature spaces, we can conclude
that regularization is indeed helpful, but only to a small degree. On the ANN-based
feature space, we still observe a large amount of overfitting, and performance on
the pixel-based feature spaces is still relatively close to the baseline. Looking at the
optimal values of β, it seems like the lower-dimensional pixel-based feature space
needs less regularization than its higher-dimensional counterpart. Presumably, this
is caused by the smaller possibility for overfitting in the lower-dimensional feature
space. Even though the larger pixel-based feature space and the ANN-based feature
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space have a similar dimensionality, the pixel-based feature space requires a larger
degree of regularization for obtaining optimal performance, indicating that it is more
prone to overfitting than the ANN-based feature space.

5.3 Experiment 2: Comparing MDS Algorithms

After having analyzed the soundness of our approach in experiment 1, we compare
target spaces of the samedimensionality, but obtainedwith differentMDSalgorithms.
More specifically, we compare the results from experiment 1 to analogous procedures
applied to the ANN-based feature space and the four-dimensional similarity spaces
created by both metric and nonmetric SMACOF in Sect. 3. Table2 shows the results
of our second experiment.

In a first step, we can compare the different target spaces by taking a look at the
behavior of the zero baseline in each of them. As we can see, the values for MSE
and R2 are identical for all of the different spaces. Only for the MEDwe can observe
some slight variations, which can be explained by the slightly different arrangements
of points in the different similarity spaces.

As we can see from Table2, the results for the linear regression on the different
target spaces are comparable. This adds further support to our results from Sect. 3:

Table 2 Comparison of the results obtainable on four-dimensional spaces created by different
MDS algorithms. Best results in each column are highlighted for each of the regressors
Regressor Target

space
Test set performance Amount of overfitting β

MSE MED R2 MSE MED R2

Baseline Horst and
Hout

1.0000 0.9962 0.0000 1.0000 1.0000 1.0000 –

Metric
SMACOF

1.0000 0.9981 0.0000 1.0000 1.0000 1.0000 –

Nonmetric
SMACOF

1.0000 0.9956 0.0000 1.0000 1.0000 1.0000 –

Linear Horst and
Hout

0.6076 0.7498 0.3766 42.7093 6.8876 2.6171 –

Metric
SMACOF

0.6172 0.7560 0.3766 42.2885 6.8583 2.6162 –

Nonmetric
SMACOF

0.6086 0.7461 0.3706 42.4380 6.8305 2.6585 –

Lasso Horst and
Hout

0.5740 0.7264 0.4111 28.3766 5.6239 2.3727 0.005, 0.01

Metric
SMACOF

0.6052 0.7458 0.3880 35.0367 6.2463 2.5326 0.002

Nonmetric
SMACOF

0.5938 0.7316 0.3853 29.1236 5.6497 2.5413 0.005
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Also when considering the usage as target space for machine learning, metric MDS
does not seem to have any advantage over nonmetric MDS.

For the lasso regressor, we observed similar effects for all of the target spaces:
A certain amount of regularization is helpful to improve test set performance, while
too much emphasis on the regularization term causes both training and test set per-
formance to collapse. We still observe a large amount of overfitting even after using
regularization. Again, the results are comparable across the different target spaces.
However, the optimal performance on the space obtained with metric SMACOF is
consistently worse than the results obtained on the other two spaces. As the space by
Horst andHout is however also based onmetricMDS, we cannot use this observation
as an argument for nonmetric MDS.

5.4 Experiment 3: Comparing Target Spaces of Different Size

In our third and final experiment in this study, we vary the number of dimensions
in the target space. More specifically, we consider similarity spaces with one to ten
dimensions that have been created by nonmetric SMACOF. Again, we only consider
the ANN-based feature space.

Table3 displays the results obtained in our third experiment and Fig. 6 provides a
graphical illustration. When looking at the zero baseline, we observe that the mean
Euclidean distance tends to grow with an increasing number of dimensions, with an
asymptote of one. This indicates that in higher-dimensional spaces, the points seem
to lie closer to the surface of a unit hypersphere around the origin. For both MSE
and R2, we do not observe any differences between the target spaces.

Let us now look at the results of the linear regression. It seems that for all the
evaluation metrics, a two-dimensional target space yields the best result. With an
increasing number of dimensions in the target space, performance tends to decrease.
We can also observe that the amount of overfitting is optimal for a two-dimensional
space and tends to increase with an increasing number of dimensions. A notable
exception is the one-dimensional space which suffers strongly from overfitting and
whose performance with respect to all three evaluation metrics is clearly worse than
the baseline.

The optimal performance of a lasso regressor on the different target spaces yields
similar results: For all target spaces, a certain amount of regularization can help to
improve performance but toomuch regularization decreases performance. Again, we
can only counteract a relatively small amount of the observed overfitting. As we can
see in Table3, again a two-dimensional space yields the best results. With respect
to the optimal regularization factor β, we can observe that low-dimensional spaces
with up to three dimensions seem to use larger values of β than higher-dimensional
spaces with four dimensions andmore. This difference in the degree of regularization
is also reflected in the different degrees of overfitting observed for these groups of
spaces.
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Table 3 Performance of the zero baseline, the linear regression, and the lasso regression on target
spaces of different dimensionality t derived with nonmetric SMACOF, along with the relative
amount of overfitting. Best values for each column are highlighted for each of the regressors

Regressor t Test set performance Amount of overfitting β

MSE MED R2 MSE MED R2

Baseline 1 1.0000 0.8664 0.0000 1.0000 1.0000 1.0000 –

2 1.0000 0.9580 0.0000 1.0000 1.0000 1.0000 –

3 1.0000 0.9848 0.0000 1.0000 1.0000 1.0000 –

4 1.0000 0.9956 0.0000 1.0000 1.0000 1.0000 –

5 1.0000 0.9966 0.0000 1.0000 1.0000 1.0000 –

6 1.0000 0.9973 0.0000 1.0000 1.0000 1.0000 –

7 1.0000 0.9978 0.0000 1.0000 1.0000 1.0000 –

8 1.0000 0.9980 0.0000 1.0000 1.0000 1.0000 –

9 1.0000 0.9982 0.0000 1.0000 1.0000 1.0000 –

10 1.0000 0.9984 0.0000 1.0000 1.0000 1.0000 –

Linear 1 1.1499 0.9046 −0.1499 59.0040 8.3419 −6.5413 –

2 0.4995 0.6370 0.5002 38.9046 6.5291 1.9734 –

3 0.5554 0.6979 0.4435 41.4309 6.7360 2.2243 –

4 0.6086 0.7461 0.3706 42.4380 6.8305 2.6585 –

5 0.6333 0.7692 0.3595 43.4577 6.9023 2.7405 –

6 0.6359 0.7734 0.3469 43.4900 6.8770 2.8397 –

7 0.6675 0.7956 0.3204 44.7364 6.9621 3.0741 –

8 0.6846 0.8094 0.3033 45.1247 6.9876 3.2459 –

9 0.6810 0.8078 0.2983 44.8367 6.9591 3.3004 –

10 0.7107 0.8259 0.2807 46.0530 7.0432 3.5076 –

Lasso 1 0.9912 0.8368 0.0088 1.3656 1.7043 30.9878 1, 2

2 0.4728 0.6052 0.5271 19.1298 4.5081 1.8504 0.02

3 0.5322 0.6720 0.4722 19.4148 4.5725 2.0593 0.02

4 0.5938 0.7316 0.3853 29.1237 5.6497 2.5413 0.005

5 0.6180 0.7576 0.3755 35.1383 6.2167 2.6160 0.002

6 0.6274 0.7651 0.3548 35.0732 6.1797 2.7724 0.001,
0.002

7 0.6589 0.7839 0.3280 39.6352 5.0619 2.9979 0.001,
0.01

8 0.6752 0.8022 0.3117 39.5496 6.5669 3.1527 0.001

9 0.6680 0.7980 0.3108 38.8777 6.1359 3.1615 0.001,
0.002

10 0.6993 0.8166 0.2924 35.3561 5.5563 3.3513 0.002,
0.005
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Fig. 6 Visualization of the regression results for MSE, MED, and R2 as a function of the number
of dimensions

Taken together, the results of our third experiment show that a higher-dimensional
target space makes the regression problem more difficult, but that a one-dimensional
target space does not contain enough semantic structure for a successful mapping.
It seems that a two-dimensional space is in our case the optimal trade-off. However,
even the performance of the lasso regressor on this space is far from satisfactory,
urging for further research.

6 Conclusions

The contributions of this paper are twofold.
In our first study, we investigated whether the dissimilarity ratings obtained

through SpAM are ratio scaled by applying both metric MDS (which assumes a
ratio scale) and nonmetric MDS (which only assumes an ordinal scale). Both MDS
variants produced comparable results—it thus seems that assuming a ratio scale is
neither beneficial nor harmful. We therefore recommend to use nonmetric MDS as
its underlying assumptions are weaker. Future studies on other data sets obtained
through SpAM should seek to confirm or contradict our results.
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In our second study, we analyzed whether learning a mapping from raw images
to points in a psychological similarity space is possible. Our results showed that
using the activations of a pre-trained ANN as features for a regression task seems to
work in principle. However, we observed very strong overfitting tendencies in our
experiments. Furthermore, the overall performance level we were able to achieve is
still far from satisfactory. The results by Sanders and Nosofsky (2018) however show
that larger amounts of training data can alleviate these problems. Future work in this
area should focus on improvements in performance and robustness of this approach.

As follow-up work, we are currently conducting a study on a data set of shapes,
where we plan to apply more sophisticated machine learning methods in order to
counteract the observed overfitting tendencies.
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